Science.gov

Sample records for 5-aminolevulinic acid synthase

  1. Expression of the Rhodobacter sphaeroides hemA and hemT genes, encoding two 5-aminolevulinic acid synthase isozymes.

    PubMed Central

    Neidle, E L; Kaplan, S

    1993-01-01

    The nucleotide sequences of the Rhodobacter sphaeroides hemA and hemT genes, encoding 5-aminolevulinic acid (ALA) synthase isozymes, were determined. ALA synthase catalyzes the condensation of glycine and succinyl coenzyme A, the first and rate-limiting step in tetrapyrrole biosynthesis. The hemA and hemT structural gene sequences were 65% identical to each other, and the deduced HemA and HemT polypeptide sequences were 53% identical, with an additional 16% of aligned amino acids being similar. HemA and HemT were homologous to all characterized ALA synthases, including two human ALA synthase isozymes. In addition, they were evolutionarily related to 7-keto-8-aminopelargonic acid synthetase (BioF) and 2-amino-3-ketobutyrate coenzyme A ligase (Kbl), enzymes which catalyze similar reactions. Two hemA transcripts were identified, both expressed under photosynthetic conditions at levels approximately three times higher than those found under aerobic conditions. A single transcriptional start point was identified for both transcripts, and a consensus sequence at this location indicated that an Fnr-like protein may be involved in the transcriptional regulation of hemA. Transcription of hemT was not detected in wild-type cells under the physiological growth conditions tested. In a mutant strain in which the hemA gene had been inactivated, however, hemT was expressed. In this mutant, hemT transcripts were characterized by Northern (RNA) hybridization, primer extension, and ribonuclease protection techniques. A small open reading frame of unknown function was identified upstream of, and transcribed in the same direction as, hemA. Images PMID:8468290

  2. Evolutinoary Consideration on 5-Aminolevulinate Synthase in Nature

    NASA Astrophysics Data System (ADS)

    Oh-Hama, Tamiko

    1997-08-01

    5-Aminolevulinic acid (ALA), a universal precursor of tetrapyrrole compounds can be synthesized by two pathways: the C5 (glutamate) pathway and ALA synthase. From the phylogenetic distribution it is shown that distribution of ALA synthase is restricted to the α subclass of purple bacteria in prokaryotes, and further distributed to mitochondria of eukaryotes. The monophyletic origin of bacterial and eukaryotic ALA synthase is shown by sequence analysis of the enzyme. Evolution of ALA synthase in the α subclass of purple bacteria is discussed in relation to the energy-generating and biosynthetic devices in subclasses of this bacteria.

  3. Isolation and characterization of a new mutant of Saccharomyces cerevisiae with altered synthesis of 5-aminolevulinic acid.

    PubMed Central

    Carvajal, E; Panek, A D; Mattoon, J R

    1990-01-01

    A new gene, RHM1, required for normal production of 5-aminolevulinic acid by Saccharomyces cerevisiae, was identified by a novel screening method. Ethyl methanesulfonate treatment of a fluorescent porphyric strain bearing the pop3-1 mutation produced nonfluorescent or weakly fluorescent mutants with defects in early stages of tetrapyrrole biosynthesis. Class I mutants defective in synthesis of 5-aminolevulinate regained fluorescence when grown on medium supplemented with 5-aminolevulinate, whereas class II mutants altered in later biosynthetic steps did not. Among six recessive class I mutants, at least three complementation groups were found. One mutant contained an allele of HEM1, the structural gene for 5-aminolevulinate synthase, and two mutants contained alleles of the regulatory gene CYC4. The remaining mutants contained genes complementary to both hem1 and cyc4. Mutant strain DA3-RS3/68 contained mutant gene rhm1, which segregated independently of hem1 and cyc4 during meiosis. 5-Aminolevulinate synthase activity of the rhm1 mutant was 35 to 40% of that of the parental pop3-1 strain, whereas intracellular 5-aminolevulinate concentration was only 3 to 4% of the parental value. Transformation of an rhm1 strain with a multicopy plasmid containing the cloned HEM1 gene restored normal levels of 5-aminolevulinate synthase activity, but intracellular 5-aminolevulinate was increased to only 9 to 10% of normal. We concluded that RHM1 could control either targeting of 5-aminolevulinate synthase to the mitochondrial matrix or the activity of the enzyme in vivo. PMID:2188943

  4. Pleiotropic effects of 5-aminolevulinic acid in mouse brain.

    PubMed

    Lavandera, Jimena; Rodríguez, Jorge; Ruspini, Silvina; Meiss, Roberto; Zuccoli, Johanna Romina; Martínez, María Del Carmen; Gerez, Esther; Batlle, Alcira; Buzaleh, Ana María

    2016-08-01

    5-Aminolevulinic acid (ALA) seems to be responsible for the neuropsychiatric manifestations of acute intermittent porphyria (AIP). Our aim was to study the effect of ALA on the different metabolic pathways in the mouse brain to enhance our knowledge about the action of this heme precursor on the central nervous system. Heme metabolism, the cholinergic system, the defense enzyme system, and nitric oxide metabolism were evaluated in the encephalon of CF-1 mice receiving a single (40 mg/kg body mass) or multiple doses of ALA (40 mg/kg, every 48 h for 14 days). We subsequently found ALA accumulation in the encephalon of the mice. ALA also altered the brain cholinergic system. After one dose of ALA, a decrease in superoxide dismutase activity and a reduction in glutathione levels were detected, whereas malondialdehyde levels and catalase activity were increased. Heme oxygenase was also increased as an antioxidant response to protect the encephalon against injury. All nitric oxide synthase isoforms were induced by ALA, these changes were more significant for the inducible isoform in glial cells. In conclusion, ALA affected several metabolic pathways in mouse encephalon. Data indicate that a rapid response to oxidative stress was developed; however, with long-term intoxication, the redox balance was probably restored, thereby minimizing oxidative damage. PMID:27472495

  5. Microbial production and applications of 5-aminolevulinic acid.

    PubMed

    Liu, Shuli; Zhang, Guangming; Li, Xiangkun; Zhang, Jie

    2014-09-01

    5-Aminolevulinic acid (ALA), an important intermediate in tetrapyrrole biosynthesis in organisms, has been widely applied in many fields, such as medicine, agriculture, and the food industry, due to its biochemical characteristics. Research efforts supporting the microbial production of ALA have received increasing interest due to its dominant advantages over chemical synthesis, including higher yields, lesser pollutant emissions, and a lesser monetary cost. ALA synthesis using photosynthetic bacteria (PSB) is a promising approach in various microbial synthesis methods. In this review, recent advances on the microbial production of ALA with an emphasis on PSB are summarized, the key enzymes in the biosynthesis pathway (especially the relationship between key enzymes and key genes) are detailed, regulation strategies are described, and the significant influencing factors on the ALA biosynthesis and application of ALA are outlined. Furthermore, the eco-friendly perspective involving the combination of wastewater treatment and microbial production of ALA is conceived. PMID:25022665

  6. Intraoperative 5-aminolevulinic acid-induced fluorescence in primary central nervous system lymphoma.

    PubMed

    Grossman, Rachel; Nossek, Erez; Shimony, Nir; Raz, Michal; Ram, Zvi

    2014-01-01

    The authors report a case of primary CNS lymphoma located in the floor of the fourth ventricle that showed intense fluorescence after preoperative administration of 5-aminolevulinic acid. The authors believe that this is the first demonstration of a 5-aminolevulinic acid-induced fluorescence pattern in primary CNS lymphoma. PMID:24138204

  7. Production of 5-aminolevulinic acid by cell free multi-enzyme catalysis.

    PubMed

    Meng, Qinglong; Zhang, Yanfei; Ju, Xiaozhi; Ma, Chunling; Ma, Hongwu; Chen, Jiuzhou; Zheng, Ping; Sun, Jibin; Zhu, Jun; Ma, Yanhe; Zhao, Xueming; Chen, Tao

    2016-05-20

    5-Aminolevulinic acid (ALA) is the precursor for the biosynthesis of tetrapyrroles and has broad agricultural and medical applications. Currently ALA is mainly produced by chemical synthesis and microbial fermentation. Cell free multi-enzyme catalysis is a promising method for producing high value chemicals. Here we reported our work on developing a cell free process for ALA production using thermostable enzymes. Cheap substrates (succinate and glycine) were used for ALA synthesis by two enzymes: 5-aminolevulinic acid synthase (ALAS) from Laceyella sacchari (LS-ALAS) and succinyl-CoA synthase (Suc) from Escherichia coli. ATP was regenerated by polyphosphate kinase (Ppk) using polyphosphate as the substrate. Succinate was added into the reaction system in a fed-batch mode to avoid its inhibition effect on Suc. After reaction for 160min, ALA concentration was increased to 5.4mM. This is the first reported work on developing the cell free process for ALA production. Through further process and enzyme optimization the cell free process could be an effective and economic way for ALA production. PMID:27012885

  8. 5-Aminolevulinic acid regulates the inflammatory response and alloimmune reaction.

    PubMed

    Fujino, Masayuki; Nishio, Yoshiaki; Ito, Hidenori; Tanaka, Tohru; Li, Xiao-Kang

    2016-08-01

    5-Aminolevulinic acid (5-ALA) is a naturally occurring amino acid and precursor of heme and protoporphyrin IX (PpIX). Exogenously administrated 5-ALA increases the accumulation of PpIX in tumor cells specifically due to the compromised metabolism of 5-ALA to heme in mitochondria. PpIX emits red fluorescence by the irradiation of blue light and the formation of reactive oxygen species and singlet oxygen. Thus, performing a photodynamic diagnosis (PDD) and photodynamic therapy (PDT) using 5-ALA have given rise to a new strategy for tumor diagnosis and therapy. In addition to the field of tumor therapy, 5-ALA has been implicated in the treatment of inflammatory disease, autoimmune disease and transplantation due to the anti-inflammation and immunoregulation properties that are elicited with the expression of heme oxygenase (HO)-1, an inducible enzyme that catalyzes the rate-limiting step in the oxidative degradation of heme to free iron, biliverdin and carbon monoxide (CO), in combination with sodium ferrous citrate (SFC), because an inhibitor of HO-1 abolishes the effects of 5-ALA. Furthermore, NF-E2-related factor 2 (Nrf2), mitogen-activated protein kinase (MAPK), and heme are involved in the HO-1 expression. Biliverdin and CO are also known to have anti-apoptotic, anti-inflammatory and immunoregulatory functions. We herein review the current use of 5-ALA in inflammatory diseases, transplantation medicine, and tumor therapy. PMID:26643355

  9. Photodynamic inactivation of Klebsiella pneumoniae biofilms and planktonic cells by 5-aminolevulinic acid and 5-aminolevulinic acid methyl ester.

    PubMed

    Liu, Chengcheng; Zhou, Yingli; Wang, Li; Han, Lei; Lei, Jin'e; Ishaq, Hafiz Muhammad; Nair, Sean P; Xu, Jiru

    2016-04-01

    The treatment of Klebsiella pneumoniae, particularly extended-spectrum β-lactamase (ESBL)-producing K. pneumoniae, is currently a great challenge. Photodynamic antimicrobial chemotherapy is a promising approach for killing antibiotic-resistant bacteria. The aim of this study was to evaluate the capacity of 5-aminolevulinic acid (5-ALA) and its derivative 5-ALA methyl ester (MAL) in the presence of white light to cause photodynamic inactivation (PDI) of K. pneumoniae planktonic and biofilm cells. In the presence of white light, 5-ALA and MAL inactivated planktonic cells in a concentration-dependent manner. Biofilms were also sensitive to 5-ALA and MAL-mediated PDI. The mechanisms by which 5-ALA and MAL caused PDI of ESBL-producing K. pneumonia were also investigated. Exposure of K. pneumonia to light in the presence of either 5-ALA or MAL induced cleavage of genomic DNA and the rapid release of intracellular biopolymers. Intensely denatured cytoplasmic contents and aggregated ribosomes were also detected by transmission electron microscopy. Scanning electron microscopy showed that PDI of biofilms caused aggregated bacteria to detach and that the bacterial cell envelope was damaged. This study provides insights into 5-ALA and MAL-mediated PDI of ESBL-producing K. pneumoniae. PMID:26886586

  10. [Activity of 5-aminolevulinate synthase in rat liver during degradation of cytochrome P-450 caused by administration of cadmium chloride].

    PubMed

    Kaliman, P A; Inshina, N N

    2003-01-01

    The 5-aminolevulinate synthase, tryptophan-2,3-dioxygenase activities and cytochrome P-450 content in the rat liver was studied in different terms after CdCl2 administration and after administration of metal salt against a background of 2-hours action of alpha-tocopherol. The lowering of activity of 5-aminolevulinate synthase in 2 h with the consequent increase of the enzyme activity in 6 h and 24 h was detected. The holoenzyme activity and heme saturation of tryptophan-2,3-dioxygenase increased 6 h after CdCl2 administration. The holoenzyme activity and the total activity of tryptophan-2,3-dioxygenase rised in 24 h. The level of cytochrome P-450 lowered. Preliminary administration of alpha-tocopherol prevented changes of studied parameters 24 h after CdCl2 administration. The relationship between decrease of cytochrome P-450 level and 5-aminolevulinate synthase activation are discussed. PMID:14577179

  11. 5-aminolevulinic acid in photodynamic diagnosis and therapy of urological malignancies

    NASA Astrophysics Data System (ADS)

    Nelius, Thomas; de Riese, Werner T. W.

    2003-06-01

    Completeness and certainty of tumor detection are very important issues in clinical oncology. Recent technological developments in ultrasound, radiologic and magnetic resonance imaging diagnostics are very promising, but could not improve the detection rate of early stage malignancies. One of the most promising new approaches is the use of 5-aminolevulinic acid, a potent photosensitizer, in photodynamic diagnosis and therapy. 5-aminolevulinic acid is meanwhile a well-established tool in the photodynamic diagnosis of bladder cancer. It has been shown to improve the sensitivity of detection of superficial tumors and carcinoma in situ, which enables to reduce the risk of tumor recurrence related to undetected lesions or incomplete transurethral resection of the primary lesions. The use of 5-aminolevulinic acid is steadily expanding in diagnostics of urological malignancies. First clinical results are now reported in detection of urethral and ureteral lesions as well as in urine fluorescence cytology. Furthermore, due to the selective accumulation in transitional cell carcinoma of the bladder, 5-aminolevulinic acid may be an ideal candidate for photodynamic therapy in superficial bladder cancer. Summarizing the data of multiple clinical trials, 5-aminolevulinic acid is a promising agent in photodynamic diagnostics and treatment of superficial bladder cancer.

  12. Metabolic engineering of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid.

    PubMed

    Feng, Lili; Zhang, Ya; Fu, Jing; Mao, Yufeng; Chen, Tao; Zhao, Xueming; Wang, Zhiwen

    2016-06-01

    5-Aminolevulinic acid (5-ALA) has recently attracted attention for its potential applications in the fields of medicine and agriculture. In this study, Corynebacterium glutamicum was firstly engineered for 5-ALA production via the C4 pathway. HemA encoding 5-aminolevulinic acid synthase from Rhodobacter sphaeroides was codon optimized and expressed in C. glutamicum ATCC13032, resulting in accumulation of 5-ALA. Deletion of all known genes responsible for the formation of acetate and lactate further enhanced production of 5-ALA. Overexpression of ppc gene encoding phoenolpyruvate carboxylase resulted in an accumulation of 5-ALA up to 2.06 ± 0.05 g/L. Furthermore, deletion of high-molecular-weight penicillin-binding proteins (HMW-PBPs) genes pbp1a, pbp1b, and pbp2b led to an increase in 5-ALA production of 13.53%, 29.47%, and 22.22%, respectively. Finally, 5-ALA production was enhanced to 3.14 ± 0.02 g/L in shake flask by heterologously expressing rhtA encoding threonine/homoserine exporter, and 86.77% of supplemented glycine was channeled toward 5-ALA production in shake flask. The engineered C. glutamicum ALA7 strain produced 7.53 g/L 5-ALA in a 5 L bioreactor. This study demonstrated the potential utility of C. glutamicum as a platform for metabolic production of 5-ALA. Change of cell permeability by metabolic engineering HMW-PBPs may provide a new strategy for biochemicals production in Corynebacterium glutamicum. Biotechnol. Bioeng. 2016;113: 1284-1293. © 2015 Wiley Periodicals, Inc. PMID:26616115

  13. Evolution of cyclizing 5-aminolevulinate synthases in the biosynthesis of actinomycete secondary metabolites: outcomes for genetic screening techniques

    PubMed Central

    Petříčková, Kateřina; Chroňáková, Alica; Zelenka, Tomáš; Chrudimský, Tomáš; Pospíšil, Stanislav; Petříček, Miroslav; Krištůfek, Václav

    2015-01-01

    A combined approach, comprising PCR screening and genome mining, was used to unravel the diversity and phylogeny of genes encoding 5-aminolevulinic acid synthases (ALASs, hemA gene products) in streptomycetes-related strains. In actinomycetes, these genes were believed to be directly connected with the production of secondary metabolites carrying the C5N unit, 2-amino-3-hydroxycyclopent-2-enone, with biological activities making them attractive for future use in medicine and agriculture. Unlike “classical” primary metabolism ALAS, the C5N unit-forming cyclizing ALAS (cALAS) catalyses intramolecular cyclization of nascent 5-aminolevulinate. Specific amino acid sequence changes can be traced by comparison of “classical” ALASs against cALASs. PCR screening revealed 226 hemA gene-carrying strains from 1,500 tested, with 87% putatively encoding cALAS. Phylogenetic analysis of the hemA homologs revealed strain clustering according to putative type of metabolic product, which could be used to select producers of specific C5N compound classes. Supporting information was acquired through analysis of actinomycete genomic sequence data available in GenBank and further genetic or metabolic characterization of selected strains. Comparison of 16S rRNA taxonomic identification and BOX-PCR profiles provided evidence for numerous horizontal gene transfers of biosynthetic genes or gene clusters within actinomycete populations and even from non-actinomycete organisms. Our results underline the importance of environmental and evolutionary data in the design of efficient techniques for identification of novel producers. PMID:26300877

  14. Dual pH-responsive 5-aminolevulinic acid pseudopolyrotaxane prodrug micelles for enhanced photodynamic therapy.

    PubMed

    Tong, Hongxin; Wang, Yin; Li, Huan; Jin, Qiao; Ji, Jian

    2016-03-11

    Novel 5-aminolevulinic acid (ALA) pseudopolyrotaxane prodrug micelles with dual pH-responsive properties were prepared by the host-guest interaction of α-cyclodextrin (α-CD) and poly(ethylene glycol) (PEG). The micelles exhibited pH dependent cellular uptake and pH-sensitive ALA release, enabling enhanced photodynamic therapy. PMID:26882232

  15. The 5-aminolevulinic acid-induced porphyrin biosynthesis in benign and malignant cells of the skin.

    PubMed

    Lang, K; Bolsen, K; Stahl, W; Ruzicka, T; Sies, H; Lehmann, P; Fritsch, C

    2001-12-01

    In fluorescence diagnosis and photodynamic therapy of neoplastic tissues 5-aminolevulinic acid is used to synthesize endogenous porphyrins as photosensitizers. The efficacy of neoplastic tissues to fluorescence diagnosis and photodynamic therapy is thought to be dependent on the total level of intralesional formed porphyrins. The available profiles of porphyrin metabolites in normal and in neoplastic cell lines after administration of 5-aminolevulinic acid vary considerably. Thus, this is the first in-vitro study which compares the porphyrin biosynthesis in normal skin cells (HaCaT, fibroblasts) with melanoma cells (Bro, SKMel-23, SKMel-28). After incubation with 1 mM 5-aminolevulinic acid, kinetics of porphyrin levels and metabolites were determined in the cells and the corresponding supernatants. Exogenous 5-aminolevulinic acid induced porphyrin formation in all cells with maximum values after an incubation period of 16-36 h. Increase of porphyrin levels varied from 10- to 80-fold (SKMel-28>HaCaT>fibroblasts>SKMel-23>Bro) with minimum 1.5 times higher levels of porphyrins in the supernatants than in the cells. In cells and supernatants protoporphyrin and coproporphyrin were the predominantly formed porphyrin metabolites. Metastatic melanoma cells (SKMel-23, SKMel-28) accumulated much higher porphyrin levels than primary melanoma cells (Bro). In conclusion, by optimizing the treatment modalities, especially the light source, topical photodynamic therapy (PDT) could become a treatment alternative of melanoma metastases in progressive disease. PMID:11748002

  16. Photofrin and 5-aminolevulinic acid permeation through oral mucosa in vitro

    NASA Astrophysics Data System (ADS)

    Flock, Stephen T.; Alleman, Anthony; Lehman, Paul; Blevins, Steve; Stone, Angie; Fink, Louis; Dinehart, Scott; Stern, Scott J.

    1994-07-01

    Photofrin and 5-aminolevulinic acid are photosensitizers that show promise in the photodynamic treatment of cancer, port-wine stains, atherosclerosis and viral lesions. Photofrin is a mixture of porphyrins which, upon the absorption of light, become temporarily cytotoxic. One side-effect associated with the use of Photofrin is long-term cutaneous photosensitivity. It is possible that topical application of this photosensitizing dye will ameliorate such a side-effect. Another way to avoid the cutaneous photosensitivity in photodynamic therapy is to use 5- aminolevulinic acid, which is a porphyrin precursor that causes an increase in the synthesis and concentration of the photosensitizer protoporphyrin IX. 5-aminolevulinic acid is usually applied topically, and so minimizes cutaneous photosensitivity while maximizing the local protoporphyrin concentration. There are a host of disorders in oral mucosa that are potentially treatable by photodynamic therapy. However, since stratum corneum presents an impermeable barrier to many pharmaceuticals, it is not clear that topical application of the photosensitizer will result in a clinically relevant tissue concentration. We have therefore studied the permeation behavior of Photofrin and 5-aminolevulinic acid by applying them to the surface of ex vivo oral mucosa tissue positioned by a Franz diffusion cell. In order to increase the permeability of the photosensitizer across the stratum corneum, we studied the effects of four different drug carriers: phosphate buffered saline, dimethylsulfoxide, ethanol and Azone with isopropyl alcohol.

  17. Erythroid 5-aminolevulinate synthase mediates the upregulation of membrane band 3 protein expression by iron.

    PubMed

    Huang, Qianchuan; Li, Jinying; Feng, Weihua; Xu, Yanqun; Huang, Zhenxia; Lv, Shuqing; Zhou, Hong; Gao, Lei

    2010-03-01

    Iron deficiency leads to abnormal expression and function of band 3 protein in erythrocytes, but the underlying mechanisms remain elusive. The mRNA of erythroid-specific 5-aminolevulinate synthase (eALAS) contains an iron response element and the eALAS protein is an important mediator of iron utilization by erythrocytes. In this study, we investigated the effect of short hairpin RNA (shRNA) mediated silencing of eALAS on the expression of band 3 protein induced by iron. By real-time RT-PCR and Western blot we showed that at mRNA and protein level iron-induced expression of band 3 protein was lower in eALAS-shRNA transfected K562 cells than in control cells. Of note, the lowest expression was detected in K562 cells cultured in iron deficiency condition (p < 0.01). Thus either iron deficiency or depletion of eALAS could suppress the expression of erythroid band 3 protein. These results demonstrated for the first time that iron and the iron-regulatory system regulate the expression of the erythrocyte membrane proteins. PMID:20087844

  18. Immunocytochemical studies on the localization of 5-aminolevulinate synthase in rat liver.

    PubMed

    Rohde, M; Srivastava, G; Rylatt, D B; Bundesen, P; Zamattia, J; Crane, D I; May, B K

    1990-08-01

    The localization of 5-aminolevulinate synthase (ALAS) in hepatocytes of untreated and porphyrinogenic drug-treated rats has been examined by an immunocytochemical approach using a monoclonal antibody and protein A-gold labeling. Gold particles representing antigenic sites for ALAS were observed in the mitochondria and cytoplasm of untreated and drug-treated cells. Quantitative analysis of the labeling density showed that levels of ALAS increased significantly in both of these cellular compartments following drug treatment. Evidence that the detected cytoplasmic form of ALAS represents the precursor of the enzyme was obtained from immunoblotting experiments. The direct detection of cytosolic ALAS in vivo rules out the possibility that enzyme activity previously detected in the cytosol fraction resulted from mitochondrial leakage during cell fractionation. The results indicate that the cytosolic accumulation of ALAS is not a consequence of the inability of mitochondria to accommodate more enzyme. However, the molecular basis for this cytosolic accumulation is not known. The studies also established that the mitochondrial enzyme is predominantly, if not exclusively, associated with the matrix side of the inner mitochondrial membrane. PMID:2369125

  19. Regulation of the hemA gene during 5-aminolevulinic acid formation in Pseudomonas aeruginosa.

    PubMed Central

    Hungerer, C; Troup, B; Römling, U; Jahn, D

    1995-01-01

    The general tetrapyrrole precursor 5-aminolevulinic acid is formed in bacteria via two different biosynthetic pathways. Members of the alpha group of the proteobacteria use 5-aminolevulinic acid synthase for the condensation of succinyl-coenzyme A and glycine, while other bacteria utilize a two-step pathway from aminoacylated tRNA(Glu). The tRNA-dependent pathway, involving the enzymes glutamyl-tRNA reductase (encoded by hemA) and glutamate-1-semialdehyde-2,1-aminomutase (encoded by hemL), was demonstrated to be used by Pseudomonas aeruginosa, Pseudomonas putida, Pseudomonas stutzeri, Comamonas testosteroni, Azotobacter vinelandii, and Acinetobacter calcoaceticus. To study the regulation of the pathway, the glutamyl-tRNA reductase gene (hemA) from P. aeruginosa was cloned by complementation of an Escherichia coli hemA mutant. The hemA gene was mapped to the SpeI A fragment and the DpnIL fragment of the P. aeruginosa chromosome corresponding to min 24.1 to 26.8. The cloned hemA gene, coding for a protein of 423 amino acids with a calculated molecular mass of 46,234 Da, forms an operon with the gene for protein release factor 1 (prf1). This translational factor mediates the termination of the protein chain at the ribosome at amber and ochre codons. Since the cloned hemA gene did not possess one of the appropriate stop codons, an autoregulatory mechanism such as that postulated for the enterobacterial system was ruled out. Three open reading frames of unknown function transcribed in the opposite direction to the hemA gene were found. hemM/orf1 and orf2 were found to be homologous to open reading frames located in the 5' region of enterobacterial hemA genes. Utilization of both transcription start sites was changed in a P. aeruginosa mutant missing the oxygen regulator Anr (Fnr analog), indicating the involvement of the transcription factor in hemA expression. DNA sequences homologous to one half of an Anr binding site were detected at one of the determined

  20. Evidence that isolated developing chloroplasts are capable of synthesizing chlorophyll b from 5-aminolevulinic acid

    SciTech Connect

    Huang, Laiqiang; Hoffman, N.E. )

    1990-09-01

    Developing chloroplasts isolated from cucumber (Cucumis sativus L. var Beit Alpha) cotyledons are capable of incorporating ({sup 14}C)5-aminolevulinic acid into chlorophyll (Chl) b and Chl a when incubated under photosynthetic illumination. Thin layer chromatography and high pressure liquid chromatography were employed to analyze the pigments. The specific radioactivity in Chl a was over three times higher than that found in Chl b. Both Chl a and b synthesizing activities in organello decayed rapidly at approximately the same rate. We conclude that concomitant synthesis of Chl a/b-binding apoprotein is not required for Chl b synthesis.

  1. Enhanced 5-aminolevulinic acid-gold nanoparticle conjugate-based photodynamic therapy using pulse laser

    NASA Astrophysics Data System (ADS)

    Xu, Hao; Yao, Cuiping; Wang, Jing; Chang, Zhennan; Zhang, Zhenxi

    2016-02-01

    The low bioavailability is a crucial limitation for the application of 5-aminolevulinic acid (ALA) in theranostics. In this research, 5-aminolevulinic acid and gold nanoparticle conjugates (ALA-GNPs) were synthesized to improve the bioavailability of ALA and to investigate the impact of ALA photodynamic therapy (ALA-PDT) in Hela cells. A 532 nm pulse laser and light-emitting diode (central wavelengths 502 nm) were jointly used as light sources in PDT research. The results show a 532 nm pulse laser can control ALA release from ALA-GNPs by adjusting the pulse laser dose. This laser control release may be attributed to the heat generation from GNPs under pulse laser irradiation, which indicates accurately adjusting the pulse laser dose to control the drug release in the cell interior can be considered as a new cellular surgery modality. Furthermore, the PDT results in Hela cells indicate the enhancement of ALA release by pulse laser before PDT can promote the efficacy of cell eradication in the light-emitting diode PDT (LED-PDT). This laser mediated drug release system can provide a new online therapy approach in PDT and it can be utilized in the optical monitor technologies based individual theranostics.

  2. Recent advances in photodynamic diagnosis of gastric cancer using 5-aminolevulinic acid

    PubMed Central

    Koizumi, Noriaki; Harada, Yoshinori; Minamikawa, Takeo; Tanaka, Hideo; Otsuji, Eigo; Takamatsu, Tetsuro

    2016-01-01

    Photodynamic diagnosis based on 5-aminolevulinic acid-induced protoporphyrin IX has been clinically applied in many fields based upon its evidenced efficacy and adequate safety. In order to establish a personalized medicine approach for treating gastric cancer patients, rapid intraoperative detection of malignant lesions has become important. Feasibility of photodynamic diagnosis using 5-aminolevulinic acid for gastric cancer patients has been investigated, especially for the detection of peritoneal dissemination and lymph node metastasis. This method enables intraoperative real-time fluorescence detection of peritoneal dissemination, exhibiting higher sensitivity than white light observation without histopathological examination. The method also enables detection of metastatic foci within excised lymph nodes, exhibiting a diagnostic accuracy comparable to that of a current molecular diagnostics technique. Although several complicating issues still need to be resolved, such as the effect of tissue autofluorescence and the insufficient depth penetration of excitation light, this simple and rapid method has the potential to become a useful diagnostic tool for gastric cancer, as well as urinary bladder cancer and glioma. PMID:26811665

  3. Novel multifunctional acyloxyalkyl ester prodrugs of 5-aminolevulinic acid display improved anticancer activity dependent on photoactivation

    NASA Astrophysics Data System (ADS)

    Berkovitch, G.; Nudelman, A.; Ehenberg, B.; Rephaeli, A.; Malik, Z.

    2009-06-01

    New approaches to PDT using multifunctional 5-aminolevulinic acid (ALA) based prodrugs activating mutual routes of toxicity are described. We investigated the mutual anti-cancer activity of ALA prodrugs which upon metabolic hydrolysis by unspecific esterases release ALA, formaldehyde or acetaldehye and the histone deacetylase inhibitor (HDACI) butyric acid. The most potent prodrug in this study was butyryloxyethyl 5-amino-4-oxopentanoate (AN-233) that stimulated a rapid biosynthesis of protoporphyrin IX (PpIX) in human glioblastoma U-251 cells and generated an efficient photodynamic destruction. AN-233 induced a considerable high level of intracellular ROS in the cells following light irradiation, reduction of mitochondrial activity, dissipation of the mitochondrial membrane potential resulting in necrotic and apoptotic cell death. The main advantage of AN-233 over ALA stems from its ability to induce photodamage at a significantly lower dose than ALA.

  4. Catalytically active alkaline molten globular enzyme: Effect of pH and temperature on the structural integrity of 5-aminolevulinate synthase.

    PubMed

    Stojanovski, Bosko M; Breydo, Leonid; Hunter, Gregory A; Uversky, Vladimir N; Ferreira, Gloria C

    2014-12-01

    5-Aminolevulinate synthase (ALAS), a pyridoxal-5'phosphate (PLP)-dependent enzyme, catalyzes the first step of heme biosynthesis in mammals. Circular dichroism (CD) and fluorescence spectroscopies were used to examine the effects of pH (1.0-3.0 and 7.5-10.5) and temperature (20 and 37°C) on the structural integrity of ALAS. The secondary structure, as deduced from far-UV CD, is mostly resilient to pH and temperature changes. Partial unfolding was observed at pH2.0, but further decreasing pH resulted in acid-induced refolding of the secondary structure to nearly native levels. The tertiary structure rigidity, monitored by near-UV CD, is lost under acidic and specific alkaline conditions (pH10.5 and pH9.5/37°C), where ALAS populates a molten globule state. As the enzyme becomes less structured with increased alkalinity, the chiral environment of the internal aldimine is also modified, with a shift from a 420nm to 330nm dichroic band. Under acidic conditions, the PLP cofactor dissociates from ALAS. Reaction with 8-anilino-1-naphthalenesulfonic acid corroborates increased exposure of hydrophobic clusters in the alkaline and acidic molten globules, although the reaction is more pronounced with the latter. Furthermore, quenching the intrinsic fluorescence of ALAS with acrylamide at pH1.0 and 9.5 yielded subtly different dynamic quenching constants. The alkaline molten globule state of ALAS is catalytically active (pH9.5/37°C), although the kcat value is significantly decreased. Finally, the binding of 5-aminolevulinate restricts conformational fluctuations in the alkaline molten globule. Overall, our findings prove how the structural plasticity of ALAS contributes to reaching a functional enzyme. PMID:25240868

  5. Asn-150 of Murine Erythroid 5-Aminolevulinate Synthase Modulates the Catalytic Balance between the Rates of the Reversible Reaction.

    PubMed

    Stojanovski, Bosko M; Ferreira, Gloria C

    2015-12-25

    5-Aminolevulinate synthase (ALAS) catalyzes the first step in mammalian heme biosynthesis, the pyridoxal 5'-phosphate (PLP)-dependent and reversible reaction between glycine and succinyl-CoA to generate CoA, CO2, and 5-aminolevulinate (ALA). Apart from coordinating the positioning of succinyl-CoA, Rhodobacter capsulatus ALAS Asn-85 has a proposed role in regulating the opening of an active site channel. Here, we constructed a library of murine erythroid ALAS variants with substitutions at the position occupied by the analogous bacterial asparagine, screened for ALAS function, and characterized the catalytic properties of the N150H and N150F variants. Quinonoid intermediate formation occurred with a significantly reduced rate for either the N150H- or N150F-catalyzed condensation of glycine with succinyl-CoA during a single turnover. The introduced mutations caused modifications in the ALAS active site such that the resulting variants tipped the balance between the forward- and reverse-catalyzed reactions. Although wild-type ALAS catalyzes the conversion of ALA into the quinonoid intermediate at a rate 6.3-fold slower than the formation of the same quinonoid intermediate from glycine and succinyl-CoA, the N150F variant catalyzes the forward reaction at a mere 1.2-fold faster rate than that of the reverse reaction, and the N150H variant reverses the rate values with a 1.7-fold faster rate for the reverse reaction than that for the forward reaction. We conclude that the evolutionary selection of Asn-150 was significant for optimizing the forward enzymatic reaction at the expense of the reverse, thus ensuring that ALA is predominantly available for heme biosynthesis. PMID:26511319

  6. Human Erythroid 5-Aminolevulinate Synthase Mutations Associated with X-Linked Protoporphyria Disrupt the Conformational Equilibrium and Enhance Product Release.

    PubMed

    Fratz, Erica J; Clayton, Jerome; Hunter, Gregory A; Ducamp, Sarah; Breydo, Leonid; Uversky, Vladimir N; Deybach, Jean-Charles; Gouya, Laurent; Puy, Hervé; Ferreira, Gloria C

    2015-09-15

    Regulation of 5-aminolevulinate synthase (ALAS) is at the origin of balanced heme production in mammals. Mutations in the C-terminal region of human erythroid-specific ALAS (hALAS2) are associated with X-linked protoporphyria (XLPP), a disease characterized by extreme photosensitivity, with elevated blood concentrations of free protoporphyrin IX and zinc protoporphyrin. To investigate the molecular basis for this disease, recombinant hALAS2 and variants of the enzyme harboring the gain-of-function XLPP mutations were constructed, purified, and analyzed kinetically, spectroscopically, and thermodynamically. Enhanced activities of the XLPP variants resulted from increases in the rate at which the product 5-aminolevulinate (ALA) was released from the enzyme. Circular dichroism spectroscopy revealed that the XLPP mutations altered the microenvironment of the pyridoxal 5'-phosphate cofactor, which underwent further and specific alterations upon succinyl-CoA binding. Transient kinetic analyses of the variant-catalyzed reactions and protein fluorescence quenching upon binding of ALA to the XLPP variants demonstrated that the protein conformational transition step associated with product release was predominantly affected. Of relevance is the fact that XLPP could also be modeled in cell culture. We propose that (1) the XLPP mutations destabilize the succinyl-CoA-induced hALAS2 closed conformation and thus accelerate ALA release, (2) the extended C-terminus of wild-type mammalian ALAS2 provides a regulatory role that allows for allosteric modulation of activity, thereby controlling the rate of erythroid heme biosynthesis, and (3) this control is disrupted in XLPP, resulting in porphyrin accumulation. PMID:26300302

  7. Review of dermatology use of 5-aminolevulinic acid photodynamic therapy in China from 1997 to 2013

    NASA Astrophysics Data System (ADS)

    Wang, Peiru; Zhang, Guolong; Wang, Xiuli

    2015-07-01

    The prodrug 5-aminolevulinic acid (ALA) and its ester derivatives have been used in photodynamic therapy (PDT) in dermatology worldwide. In China, ALA-PDT was first used to treat urethral condylomata acuminata and non-melanoma skin cancers in 1997. A powder formulation of ALA hydrochloride was approved by the Chinese Food and Drug Administration for the treatment of condylomata acuminata in 2007. Large successful experience of treating condylomatas was accumulated compared with Western countries. Meanwhile, numerous clinical studies as well as off-label use of ALAPDT have been carried out in China. To reflect the progress of ALA-PDT in China, several major Chinese and English databases were searched and published data were reviewed in this article.

  8. To what extent will 5-aminolevulinic acid change the face of malignant glioma surgery?

    PubMed

    Díez Valle, Ricardo; Tejada Solis, Sonia

    2015-01-01

    Glioma surgery is an essential part of glioma management; however, fully achieving the goal of surgery has been uncommon. The goal of surgery is 'maximal safe resection' with the accepted target for maximal being complete resection of the contrast-enhancing tumor. This ideal result was obtained in less than 30% of cases in centers of excellence until a few years ago. The development of fluorescence-guided surgery using 5-aminolevulinic acid has initiated a radical change. Over the past 5 years, various groups have published rates of complete resection of the enhancing tumor that exceed 80%. In the coming years, as the use of the technology expands, complete resection should become a common, predictable result at many centers. Consequently, adjuvant therapies that benefit from resection could play a bigger role, resection could be incorporated as a variable in randomized trials and distant recurrence might become a more common problem. PMID:26118538

  9. 5-aminolevulinic acid guidance during awake craniotomy to maximise extent of safe resection of glioblastoma multiforme.

    PubMed

    Corns, Robert; Mukherjee, Soumya; Johansen, Anja; Sivakumar, Gnanamurthy

    2015-01-01

    Overall survival for patients with glioblastoma multiforme (GBM) has been consistently shown to improve when the surgeon achieves a gross total resection of the tumour. It has also been demonstrated that surgical adjuncts such as 5-aminolevulinic acid (5-ALA) fluorescence--which delineates malignant tumour tissue--normal brain tissue margin seen using violet-blue excitation under an operating microscope--helps achieve this. We describe the case of a patient with recurrent left frontal GBM encroaching on Broca's area (eloquent brain). Gross total resection of the tumour was achieved by combining two techniques, awake resection to prevent damage to eloquent brain and 5-ALA fluorescence guidance to maximise the extent of tumour resection.This technique led to gross total resection of all T1-enhancing tumour with the avoidance of neurological deficit. The authors recommend this technique in patients when awake surgery can be tolerated and gross total resection is the aim of surgery. PMID:26177997

  10. Optical spectroscopy by 5-aminolevulinic acid hexylester induced photodynamic treatment in rat bladder cancer

    NASA Astrophysics Data System (ADS)

    Larsen, Eivind L. P.; Randeberg, Lise L.; Gederaas, Odrun A.; Arum, Carl-Jørgen; Krokan, Hans E.; Hjelme, Dag R.; Svaasand, Lars O.

    2006-02-01

    Photodynamic therapy (PDT) is a treatment modality which has been shown to be effective for both malignant and non-malignant diseases. New photosensitizers such as 5-aminolevulinic acid hexylester (hALA) may increase the efficiency of PDT. Monitoring of the tissue response provides important information for optimizing factors such as drug and light dose for this treatment modality. Optical spectroscopy may be suited for this task. To test the efficacy of hALA induced PDT, a study on rats with a superficial bladder cancer model, in which a bladder cancer cell line (AY-27) is instilled, will be performed. Preliminary studies have included a PDT feasibility study on rats, fluorescence spectroscopy on AY-27 cell suspensions, and optical reflection and fluorescence spectroscopy in rat bladders in vivo. The results from the preliminary studies are promising, and the study on hALA induced PDT treatment of bladder cancer will be continued.

  11. Fluorescence-guided resections and photodynamic therapy for malignant gliomas using 5-aminolevulinic acid

    NASA Astrophysics Data System (ADS)

    Stepp, Herbert G.; Beck, Tobias; Beyer, Wolfgang; Pongratz, Thomas; Sroka, Ronald; Baumgartner, Reinhold; Stummer, Walter; Olzowy, Bernhard; Mehrkens, Jan H.; Tonn, Joerg C.; Reulen, Hans J.

    2005-04-01

    Oral application of 20 mg/kg bw of 5-aminolevulinic acid results in a highly specific accumulation of fluorescent and phototoxic Protoporphyrin IX in malignant glioma tissue. Surgical removal with fluorescence guidance is studied in a phase III clinical trial, adjuvant Photodynamic Therapy (PDT) to the surgical cavity is in phase II and for interstitial PDT of recurrent gliomas, a phase I/II study has started. Fluorescence guided resections have been shown to be safe and effective in augmenting neurosurgical removal of malignant gliomas in 52 consecutive patients. Intra-operative fluorescence spectroscopy showed statistically significant higher sensitizer accumulation in vital brain tumor versus the infiltration zone and in the infiltration zone versus adjacent normal brain, which contained very little PPIX. This is promisingly exploited for PDT - both to the surgical cavity by surface irradiation and for stereotactically guided interstitial irradiation.

  12. Photodynamic therapy using 5-aminolevulinic acid-induced photosensitization: current clinical status

    NASA Astrophysics Data System (ADS)

    Marcus, Stuart L.; Golub, Allyn L.; Shulman, D. Geoffrey

    1995-03-01

    Photodynamic therapy using 5-aminolevulinic acid-induced photosensitization (ALA PDT) via endogenous protoporphyrin IX (PpIX) synthesis has been reported as efficacious, using topical formulations, in the treatment of a variety of dermatologic diseases including superficial basal cell carcinoma, Bowen's disease, and actinic (solar) keratoses. Application of ALA PDT to the detection and treatment of both malignant and non-malignant diseases of internal organs has recently been reported. Local internal application of ALA has been used for the detection, via PpIX fluorescence, of pathological conditions of the human urinary bladder and for selective endometrial ablation in animal model systems. Systemic, oral administration of ALA has been used for ALA PDT of superficial head and neck cancer and of colorectal cancer. This paper reviews the current clinical status of ALA PDT.

  13. Utilization of 5-aminolevulinic acid in the photodynamic therapy of tumors: biochemical and photobiological aspects

    NASA Astrophysics Data System (ADS)

    Pottier, Roy H.; Kennedy, James C.

    1994-03-01

    Inherent in both plants and animals is the natural porphyrin, Protoporphyrin IX (Pp). Although Pp does not appear to have any intrinsic biological activity, it is a potent natural photosensitizer. When activated with ultraviolet or visible light, this photosensitizer can induce significant photodynamic effects on tissues, cells, subcellular elements, and macromolecules via the production of singlet oxygen. The biosynthesis of endogenous Pp is under strict enzymatic control. It is possible to bypass a rate controlling step and induce large, transient concentrations of Pp by the addition of exogenous 5-aminolevulinic acid (ALA). ALA may be administered systemically or topically. Much larger amounts of Pp are produced in certain types of tumor tissue than in adjacent normal tissue. Topically applied ALA can be used to treat a variety of skin lesions, including actinic keratosis, basal cell carcinomas and psoriasis.

  14. Photodynamic diagnosis (PDD) of bladder cancer with intravesical 5-aminolevulinic-acid-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Grimbergen, Matthijs C. M.; Jonges, T. G. N.; Lock, M. Tycho W.; van Swol, Christiaan F. P.; Boon, Tom A.; van Moorselaar, R. Jeroen A.

    2001-05-01

    Flat urothelial lesions as well as small papillary tumors are easily missed during transurethral resection (TUR). PDD is based on the detection of protoporphyrin-IX induced fluorescence after topical administration of 5- aminolevulinic acid (ALA). We report on our initial clinical results of 130 procedures in 98 patients. Two hours prior to TUR 1.5 g ALA dissolved in 50 ml 1.4% NaHCO3 solution was installed intravesically. For fluorescence excitation a blue light source (375-440 nm, Karl Storz) was used. In total 478 biopsies (2-9 per patient) were taken from fluorescent and nonfluorescent areas. Normal nonfluorescent bladder urothelium was blue, whereas cancer epithelium developed a brilliant red fluorescence. During white light cystoscopy, 143 bladder tumors were found. Sixty-three additional tumors were detected because of their positive fluorescence. The overall sensitivity of fluorescence cystoscopy (98%) was greater than that of white light cystoscopy (69%). Their specificities were 51% and 80% respectively.

  15. Physiological and metabolic effects of 5-aminolevulinic acid for mitigating salinity stress in creeping bentgrass.

    PubMed

    Yang, Zhimin; Chang, Zuoliang; Sun, Lihong; Yu, Jingjin; Huang, Bingru

    2014-01-01

    The objectives of this study were to determine whether foliar application of a chlorophyll precursor, 5-aminolevulinic acid (ALA), could mitigate salinity stress damages in perennial grass species by regulating photosynthetic activities, ion content, antioxidant metabolism, or metabolite accumulation. A salinity-sensitive perennial grass species, creeping bentgrass (Agrostis stolonifera), was irrigated daily with 200 mM NaCl for 28 d, which were foliar sprayed with water or ALA (0.5 mg L-1) weekly during the experiment in growth chamber. Foliar application of ALA was effective in mitigating physiological damage resulting from salinity stress, as manifested by increased turf quality, shoot growth rate, leaf relative water content, chlorophyll content, net photosynthetic rate, stomatal conductance and transpiration rate. Foliar application of ALA also alleviated membrane damages, as shown by lower membrane electrolyte leakage and lipid peroxidation, which was associated with increases in the activities of antioxidant enzymes. Leaf content of Na+ was reduced and the ratio of K+/Na+ was increased with ALA application under salinity stress. The positive effects of ALA for salinity tolerance were also associated with the accumulation of organic acids (α-ketoglutaric acid, succinic acid, and malic acid), amino acids (alanine, 5-oxoproline, aspartic acid, and γ -aminobutyric acid), and sugars (glucose, fructose, galactose, lyxose, allose, xylose, sucrose, and maltose). ALA-mitigation of physiological damages by salinity could be due to suppression of Na+ accumulation and enhanced physiological and metabolic activities related to photosynthesis, respiration, osmotic regulation, and antioxidant defense. PMID:25551443

  16. Physiological and Metabolic Effects of 5-Aminolevulinic Acid for Mitigating Salinity Stress in Creeping Bentgrass

    PubMed Central

    Yang, Zhimin; Chang, Zuoliang; Sun, Lihong; Yu, Jingjin; Huang, Bingru

    2014-01-01

    The objectives of this study were to determine whether foliar application of a chlorophyll precursor, 5-aminolevulinic acid (ALA), could mitigate salinity stress damages in perennial grass species by regulating photosynthetic activities, ion content, antioxidant metabolism, or metabolite accumulation. A salinity-sensitive perennial grass species, creeping bentgrass (Agrostis stolonifera), was irrigated daily with 200 mM NaCl for 28 d, which were foliar sprayed with water or ALA (0.5 mg L−1) weekly during the experiment in growth chamber. Foliar application of ALA was effective in mitigating physiological damage resulting from salinity stress, as manifested by increased turf quality, shoot growth rate, leaf relative water content, chlorophyll content, net photosynthetic rate, stomatal conductance and transpiration rate. Foliar application of ALA also alleviated membrane damages, as shown by lower membrane electrolyte leakage and lipid peroxidation, which was associated with increases in the activities of antioxidant enzymes. Leaf content of Na+ was reduced and the ratio of K+/Na+ was increased with ALA application under salinity stress. The positive effects of ALA for salinity tolerance were also associated with the accumulation of organic acids (α-ketoglutaric acid, succinic acid, and malic acid), amino acids (alanine, 5-oxoproline, aspartic acid, and γ -aminobutyric acid), and sugars (glucose, fructose, galactose, lyxose, allose, xylose, sucrose, and maltose). ALA-mitigation of physiological damages by salinity could be due to suppression of Na+ accumulation and enhanced physiological and metabolic activities related to photosynthesis, respiration, osmotic regulation, and antioxidant defense. PMID:25551443

  17. Effect of 5-aminolevulinic acid on erythropoiesis: A preclinical in vitro characterization for the treatment of congenital sideroblastic anemia

    SciTech Connect

    Fujiwara, Tohru; Takahashi, Kiwamu; Okitsu, Yoko; Fukuhara, Noriko; Onishi, Yasushi; Ishizawa, Kenichi; Ichinohasama, Ryo; Nakamura, Yukio; Nakajima, Motowo; Tanaka, Tohru; Harigae, Hideo

    2014-11-07

    Highlights: • Treatment with ALA induces erythroid differentiation of K562 cells. • Transportation of ALA into erythroid cells occurs predominantly via SLC36A1. • ALA restores defects in ALAS2 in human iPS cell-derived erythroblasts. • ALA may represent a novel therapeutic option for CSA caused by ALAS2 mutations. - Abstract: Congenital sideroblastic anemia (CSA) is a hereditary disorder characterized by microcytic anemia and bone marrow sideroblasts. The most common form of CSA is attributed to mutations in the X-linked gene 5-aminolevulinic acid synthase 2 (ALAS2). ALAS2 is a mitochondrial enzyme, which utilizes glycine and succinyl-CoA to form 5-aminolevulinic acid (ALA), a crucial precursor in heme synthesis. Therefore, ALA supplementation could be an effective therapeutic strategy to restore heme synthesis in CSA caused by ALAS2 defects. In a preclinical study, we examined the effects of ALA in human erythroid cells, including K562 cells and human induced pluripotent stem cell-derived erythroid progenitor (HiDEP) cells. ALA treatment resulted in significant dose-dependent accumulation of heme in the K562 cell line. Concomitantly, the treatment substantially induced erythroid differentiation as assessed using benzidine staining. Quantitative reverse transcription polymerase chain reaction (RT-PCR) analysis confirmed significant upregulation of heme-regulated genes, such as the globin genes [hemoglobin alpha (HBA) and hemoglobin gamma (HBG)] and the heme oxygenase 1 (HMOX1) gene, in K562 cells. Next, to investigate the mechanism by which ALA is transported into erythroid cells, quantitative RT-PCR analysis was performed on previously identified ALA transporters, including solute carrier family 15 (oligopeptide transporter), member (SLC15A) 1, SLC15A2, solute carrier family 36 (proton/amino acid symporter), member (SLC36A1), and solute carrier family 6 (neurotransmitter transporter), member 13 (SLC6A13). Our analysis revealed that SLC36A1 was abundantly

  18. Binding of /sup 14/C-5-aminolevulinic acid to a stromal protein from developing pea chloroplasts

    SciTech Connect

    Thayer, S.S.; Castelfranco, P.A.; Wilkinson, J.; Benson, G.

    1987-04-01

    /sup 14/-5-Aminolevulinic acid (/sup 14/C-ALA) binds to a stromal protein with an apparent molecular weight of 42-43 KD on LDS and non-denaturing gels. The reaction is rapid. Binding is inhibited by sulfhydryl reagents, mM concentrations of levulinic, dihydroxy heptanoic acids and gabaculine, 10 ..mu..M N-methylprotoporphyrin. Dicarboxilic acids, such as deltaKG, Glu, OAA, do not inhibit. Chloramphenicol, ATP, protoporphyrin, anoxia, light, darkness have no effect. The product, once formed, is stable to treatment with 5% conc. HCl in cold acetone. It can be chased in a second incubation with unlabeled ALA, but not with levulinic acid. No activity was detected in the subplastidic membrane fractions. Western blot analysis failed to reveal any homology between the labeled protein and either cytochrome for ALA dehydratase. This ALA-binding protein was not formed in chloroplasts isolated from fully expanded pea leaves. Therefore, it is deemed likely to participate in ALA metabolism during chloroplast development.

  19. Tunable phosphatase-sensitive stable prodrugs of 5-aminolevulinic acid for tumor fluorescence photodetection.

    PubMed

    Babič, Andrej; Herceg, Viktorija; Ateb, Imène; Allémann, Eric; Lange, Norbert

    2016-08-10

    5-Aminolevulinic acid (5-ALA) has been at the forefront of small molecule based fluorescence-guided tumor resection and photodynamic therapy. 5-ALA and two of its esters received marketing authorization but suffer from several major limitations, namely low stability and poor pharmacokinetic profile. Here, we present a new class of 5-ALA derivatives aiming at the stabilization of 5-ALA by incorporating a phosphatase sensitive group, with or without self-cleavable linker. Compared to 5-ALA hexyl ester (5-ALA-Hex), these compounds display an excellent stability under acidic, basic and physiological conditions. The activation and conversion into the 5-ALA is controlled and can be structure-tailored. The prodrugs display reduced acute toxicity compared to 5-ALA-Hex with superior dose response profiles of protoporphyrin IX synthesis and fluorescence intensity in human glioblastoma cells in vitro. Clinically relevant fluorescence kinetics in vivo shown in U87MG glioblastoma spheroid tumor model in chick embryos provide a solid basis for their further development and translation to clinical fluorescence guided tumor resection and photodynamic therapy. PMID:27235981

  20. Clinical applications of 5-aminolevulinic acid-mediated fluorescence for gastric cancer

    PubMed Central

    Namikawa, Tsutomu; Yatabe, Tomoaki; Inoue, Keiji; Shuin, Taro; Hanazaki, Kazuhiro

    2015-01-01

    5-aminolevulinic acid (ALA) is a naturally occurring amino acid that is a protoporphyrin IX (PpIX) precursor and a next-generation photosensitive substance. After exogenous administration of ALA, PpIX specifically accumulates in cancer cells owing to the impaired metabolism of ALA to PpIX in mitochondria, which results in a red fluorescence following irradiation with blue light and the formation of singlet oxygen. Fluorescence navigation by photodynamic diagnosis (PDD) using ALA provides good visualization and detection of gastric cancer lesions and is a potentially valuable diagnostic tool for gastric cancer for evaluating both the surgical resection margins and extension of the lesion. Furthermore, PDD using ALA might be used to detect peritoneal metastases during preoperative staging laparoscopy, where it could provide useful information for the selection of a therapeutic approach. Another promising application for this modality is in the evaluation of lymph node metastases. Photodynamic therapy (PDT) using ALA to cause selective damage based on the accumulation of a photosensitizer in malignant tissue is expected to be a non-invasive endoscopic treatment for superficial early gastric cancer. ALA has the potential to be used not only as a diagnostic agent but also as a therapeutic drug, resulting in a new strategy for cancer diagnosis and therapy. Here, we review the current use of PDD and PDT in gastric cancer and evaluate its future potential beyond conventional modalities combined with a light energy upconverter, a light-emitting diode and near-infrared rays as light sources. PMID:26269666

  1. Alternative Routes for the Synthesis of 5-Aminolevulinic Acid in Maize Leaves 1

    PubMed Central

    Harel, Eitan; Ne'Eman, Emma

    1983-01-01

    Intact plastids from greening maize (Zea mays L.) leaves converted [14C]glutamate and [14C]2-ketoglutarate (KG) to [14C]5-aminolevulinic acid (ALA). Glutamate appeared to be the immediate precursor of ALA, while KG was first converted to glutamate, as shown by the effect of various inhibitors of amino acid metabolism. Plastids from greening leaves contained markedly higher activity as compared with etioplasts or chloroplasts. The synthesis of ALA by intact plastids was light dependent. The enzyme system resides in the stroma of plastids or may be lightly bound to membranes. The solubilized system showed maximal activity around pH 7.9 and required Mg2+, ATP, and NADPH although dependence on the latter was not clear-cut. A relatively high level of activity could be extracted from etioplasts. Maximal activity was obtained from plastids of leaves which had been illuminated for 90 minutes, after which activity declined sharply. The enzyme system solubilized from plastids also catalyzed the conversion of putative glutamate 1-semialdehyde to ALA in a reaction which was not dependent on the addition of an amino donor. The system in maize greatly resembled the one which had been reported from barley. It is suggested that this system is the one responsible for the biosynthesis of ALA destined for chlorophyll formation. PMID:16663121

  2. Fluorescence photodetection of head and neck cancer following topical or systemic application of 5-aminolevulinic acid

    NASA Astrophysics Data System (ADS)

    Leunig, Andreas; Rick, Kai; Stepp, Herbert G.; Gutmann, Ralph; Goetz, Alwin E.; Baumgartner, Reinhold; Feyh, Jens

    1996-12-01

    The aim of photodynamic diagnosis is the complete visualization of all neoplastic lesions in a tumorous organ after topical or systemic application of a tumor selective photosensitizer. In this investigation we performed quantitative fluorescence measurements following topical and systemic application of 5-aminolevulinic acid to head and neck tumors. We investigated 15 patients with neoplastic lesions of the oral cavity and 5 patients with carcinoma of the larynx after rinsing a 0.4 percent-5-ALA solution or inhalation 5 percent-5-ALA. One patient was given 5-ALA systemically p.o. in a concentration of 10mg/kg b.w. Time course and type of porphyrin accumulation were analyzed in neoplastic and surrounding normal tissue by measuring emission spectra of ALA-induced protoporphyrin IX fluorescence at regular intervals for up to 3 hours following 15 minutes of continuous rinsing of a 0.4 percent- ALA-solution, 1 hour of continuous inhalation and 3 hours after p.o. application. After excitation with violet light of a high pressure xenon arc lamp, fluorescence images in the red spectral range from the tumor tissue and the corresponding macroscopic visible tumor were recorded with a CCD-camera. A quantitative analysis of the fluorescence contrast in neoplastic and surrounding tissue was performed using an optical multichannel analyzer.

  3. Effect of 5-aminolevulinic acid on kinetics of protoporphyrin IX production in CHO cells.

    PubMed

    Wołuń-Cholewa, M; Warchoł, W

    2004-01-01

    5-aminolevulinic acid (ALA) is utilized in a photodynamic therapy as a compound capable of augmenting intracellular pool of protoporphyrin IX (PpIX), which exhibits properties of a photosensitizer. The studies were aimed at monitoring accumulation of endogenous protoporphyrin IX in CHO cells under effect of various concentrations of ALA in culture medium and following removal of the compound from the culture medium. Cell content of PpIX was determined following incubation of the cells for 72 h in a culture medium containing different concentration of ALA. Moreover, the cells were preincubated for 2 h in ALA at various concentrations and separated from the compound by medium change and their PpIX content was monitored following incubation. PpIX content was defined by a fluorescent technique under the confocal microscope. In the course of continuous incubation of cells with ALA, biphasic alterations were noted in cellular PpIX concentration. Removal of ALA from the incubation medium resulted at first in a decrease in PpIX content in cells, which was followed by an evidently augmented accumulation of the compound in the cells. The results suggested that in the case of CHO cells, exogenous ALA was not an exclusive source of PpIX synthesis and that alterations in enzyme activities were responsible for production of PpIX. PMID:15253138

  4. Comparison of 5-Aminolevulinic Acid Photodynamic Therapy and Clobetasol Propionate in Treatment of Vulvar Lichen Sclerosus.

    PubMed

    Shi, Lei; Miao, Fei; Zhang, Ling-Lin; Zhang, Guo-Long; Wang, Pei-Ru; Ji, Jie; Wang, Xiao-Jie; Huang, Zheng; Wang, Hong-Wei; Wang, Xiu-Li

    2016-06-15

    The aim of this study was to evaluate the effectiveness of 5-aminolevulinic acid photodynamic therapy (ALA-PDT) for the treatment of vulvar lichen sclerosus (VLS) and compare its effectiveness with that of clobetasol propionate. Four sessions of topical photodynamic therapy (PDT) were administered at 2-week intervals (n = 20). Clobetasol propionate (0.05%) was used daily for 8 weeks (n = 20). The rate of complete response in the PDT group (14/20) was double that of the clobetasol propionate group (7/20) (p < 0.05, 2 = 4.912). Horizontal visual analogue scores indicated that PDT was more effective than clobetasol propionate. Pain intensity numeric rating scale values for PDT were between 3.05 and 4.45. One month after the final session of PDT, only one patient relapsed and all 7 patients in clobetasol propionate group relapsed. ALA-PDT is a well-tolerated and effective option for the treatment of VLS. PMID:26775671

  5. Comparison of 5-aminolevulinic acid-encapsulated liposome versus ethosome for skin delivery for photodynamic therapy.

    PubMed

    Fang, Yi-Ping; Tsai, Yi-Hung; Wu, Pao-Chu; Huang, Yaw-Bin

    2008-05-22

    Topical photodynamic therapy (PDT) with 5-aminolevulinic acid (ALA) is an alternative therapy for many non-melanoma skin cancers. The major limitation of this therapy, however, is the low permeability of ALA through the stratum corneum (SC) of the skin. The objective of the present work was to characterize ethosomes containing ALA and to enhance the skin production of protoporphyrin IX (PpIX), compared to traditional liposomes. Results showed that the average particle sizes of the ethosomes were less than those of liposomes. Moreover, the entrapment efficiency of ALA in the ethosome formulations was 8-66% depending on the surfactant added. The particle size of the ethosomes was still approximately <200 nm after 32 days of storage. An in vivo animal study observed the presence of PpIX in the skin by confocal laser scanning microscopy (CLSM). The results indicated that the penetration ability of ethosomes was greater than that of liposomes. The enhancements of all the formulations were ranging from 11- to 15-fold in contrast to that of control (ALA in an aqueous solution) in terms of PpIX intensity. In addition, colorimetry detected no erythema in the irradiated skin. The results demonstrated that the enhancement ratio of ethosome formulations did not significantly differ between the non-irradiated and irradiated groups except for PE/CH/SS, which may have been due to a photobleaching effect of the PDT-irradiation process. PMID:18325699

  6. Physicochemical characterisation of a novel thermogelling formulation for percutaneous penetration of 5-aminolevulinic acid.

    PubMed

    Grüning, Nadja; Müller-Goymann, Christel Charlotte

    2008-06-01

    The present contribution was dedicated to the development and characterisation of a semisolid formulation of 5-aminolevulinic acid (5-ALA), appropriate for the diagnosis and treatment of actinic keratosis in photodynamic therapy. To achieve sufficiently high concentrations of the polar substance within the living epithelium after topical application, the semisolid base was enriched with penetration enhancers. A semisolid liquid crystalline system for drug delivering was the formulation of choice. It was composed of isopropyl alcohol, dimethyl isosorbide, medium chain triglycerides, water, and Pluronic F 127 as a polyoxyethylene-polyoxypropylene surface-active block copolymer. Rheometrical investigations were performed in the oscillatory mode and showed a thermo reversible gelification behaviour of the formulation, which therefore was denoted Thermogel. Permeation studies through human stratum corneum revealed higher permeation coefficients for 5-ALA from the Thermogel than from different German Pharmacopoeia creams. For example a 7.5-fold increase in comparison with Basiscreme DAC, and a 19.5-fold increase compared to water containing hydrophilic ointment. With respect to Dolgit(R) Mikrogel, the permeation coefficient from the Thermogel was 6.4-fold higher. These results were in accordance with those of differential scanning calorimetry measurements. Thermogel disclosed the strongest interactions with stratum corneum lipids. PMID:17828744

  7. Role of 5-aminolevulinic acid-conjugated gold nanoparticles for photodynamic therapy of cancer

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenxi; Wang, Sijia; Xu, Hao; Wang, Bo; Yao, Cuiping

    2015-05-01

    There are three possible mechanisms for 5-aminolevulinic acid (5-ALA) conjugated gold nanoparticles (GNPs) through electrostatic bonding for photodynamic therapy (PDT) of cancer: GNPs delivery function, singlet oxygen generation (SOG) by GNPs irradiated by light, and surface resonance enhancement (SRE) of SOG. Figuring out the exact mechanism is important for further clinical treatment. 5-ALA-GNPs and human chronic myeloid leukemia K562 cells were used to study delivery function and SOG by GNPs. The SRE of SOG enabled by GNPs was explored by protoporphyrin IX (PpIX)-GNPs conjugate through electrostatic bonding. Cell experiments show that the GNPs can improve the efficiency of PDT, which is due to the vehicle effect of GNPs. PpIX-GNPs conjugate experiments demonstrated that SOG can be improved about 2.5 times over PpIX alone. The experiments and theoretical results show that the local field enhancement (LFE) via localized surface plasmon resonance (LSPR) of GNPs is the major role; the LFE was dependent on the irradiation wavelength and the GNP's size. The LFE increased with an increase of the GNP size (2R ≤50 nm). However, the LSPR function of the GNPs was not found in cell experiments. Our study shows that in 5-ALA-conjugated GNPs PDT, the delivery function of GNPs is the major role.

  8. Sonodynamic therapy using 5-aminolevulinic acid enhances the efficacy of bleomycin.

    PubMed

    Osaki, Tomohiro; Ono, Misato; Uto, Yoshihiro; Ishizuka, Masahiro; Tanaka, Tohru; Yamanaka, Nobuyasu; Kurahashi, Tsukasa; Azuma, Kazuo; Murahata, Yusuke; Tsuka, Takeshi; Ito, Norihiko; Imagawa, Tomohiro; Okamoto, Yoshiharu

    2016-04-01

    Sonodynamic therapy (SDT) kills tumor cells through the synergistic effects of ultrasound and a sonosensitizer agent. We examined whether 5-aminolevulinic acid (5-ALA)-based SDT at 1 or 3 MHz could enhance the cytotoxicity of bleomycin (BLM) toward mouse mammary tumor cells both in vitro and in vivo. At 1 MHz, cell viability in the 5-ALA-based SDT group at 1, 2, and 3 W/cm(2) was 34.30%, 50.90%, and 60.16%, respectively. Cell viability in the 5-ALA-based SDT+BLM group at 1, 2, and 3 W/cm(2) was 0.09%, 0.32%, and 0.17%, respectively. In contrast, at 3 MHz, 5-ALA-based SDT+BLM did not show pronounced cytotoxicity. In the in vivo study, 5-ALA-based SDT+BLM was significantly more cytotoxic than 5-ALA-based SDT at 1 MHz and 3 MHz. These findings suggest that the mechanism of tumor shrinkage induced by 5-ALA-based SDT+BLM might involve not only direct cell killing, but also vascular shutdown. Thus, we show here that 5-ALA-based SDT enhances the efficacy of BLM both in vitro and in vivo. PMID:26799128

  9. Off-label photodynamic therapy for recalcitrant facial flat warts using topical 5-aminolevulinic acid.

    PubMed

    Yang, Ya-Li; Sang, Junjun; Liao, Ning-Xin; Wei, Fang; Liao, Wanqin; Chen, Jiang-Han

    2016-07-01

    The facial flat wart (verruca plana) is one of the most common reasons for dermatology and primary care visits. Although there are many therapeutic modalities, no single therapy has been proven to be completely curative. Case reports and uncontrolled studies suggested that photodynamic therapy (PDT) with topical 5-aminolevulinic acid (ALA) can effectively treat recalcitrant facial flat warts. A total of 12 patients with recalcitrant facial flat warts were enrolled in the study. ALA gel (10 %) was applied topically to lesions and incubated for 3 h. The lesions were irradiated by an LED light of 630 ± 10 nm at dose levels of 60-100 mW/cm. Clinical assessment was conducted before and after every treatment for up to 24 weeks. Among the ten patients completing three sessions of ALA-PDT, five had complete lesions clearance, and the other five patients were significantly improved. At the 24-week follow-up, the average effective rate was 88.8 %, with no recurrences. No significant side effects were reported. A low-dose topical ALA-PDT regimen using 10 % ALA, 3 h incubation, and a red light source for three treatment sessions are suggested as the optimal scheme for the treatment of recalcitrant flat warts on the face in Chinese patients. Superior efficacy is found in elevated or active period lesions with mild side effects. PMID:27059226

  10. Plasma protoporphyrin IX following administration of 5-aminolevulinic acid as a potential tumor marker

    PubMed Central

    OTA, URARA; FUKUHARA, HIDEO; ISHIZUKA, MASAHIRO; ABE, FUMINORI; KAWADA, CHIAKI; TAMURA, KENJI; TANAKA, TOHRU; INOUE, KEIJI; OGURA, SHUN-ICHIRO; SHUIN, TARO

    2015-01-01

    Exogenously administered 5-aminolevulinic acid (ALA) is metabolized to protoporphyrin IX (PpIX), which specifically accumulates in cancer cells and emits red fluorescence by blue light irradiation. These phenomena are applied for the intraoperative diagnosis of cancer. Based on the fact that accumulated PpIX in cancer cells is exported extracellularly via the ATP-binding cassette transporter G2, we hypothesized that the measurement of plasma PpIX concentrations could be applied as a tumor marker for cancer screening. In the present study, the use of plasma samples from bladder cancer patients were evaluated as a tumor marker. ALA, 1.0 g, was orally administered to bladder cancer patients and healthy adults. The plasma concentration of PpIX was measured using a high-performance liquid chromatography system. The plasma PpIX concentration following ALA administration was significantly higher in bladder cancer patients than that in the healthy adults, suggesting the effectiveness of plasma PpIX analysis following ALA administration for cancer screening. Additionally, 4 h after ALA administration, plasma PpIX showed high sensitivity (94.4%) and high specificity (80.0%). PMID:26171183

  11. Photodynamic effects on nasopharyngeal carcinoma (NPC) cells with 5-aminolevulinic acid or its hexyl ester.

    PubMed

    Wu, R W K; Chu, E S M; Yow, C M N; Chen, J Y

    2006-10-01

    Nasopharyngeal carcinoma (NPC) is a prevalent cancer in Hong Kong and southern China. To explore a new modality of NPC treatment, 5-aminolevulinic acid (ALA) or its hexyl ester (ALA-H) mediated photodynamic therapy (PDT) was studied in vitro. The results show that NPC cells are sensitive to both ALA and ALA-H mediated PDT. However, ALA-H PDT is much more effective at cell inactivation than ALA-PDT, due to a higher efficiency of ALA-H on producing endogenous protoporphyrin (PpIX) in cells. Both apoptosis and necrosis are involved in cell death, but apoptosis plays a major role under the short time incubation of drugs. ALA and ALA-H mediated PDT not only destroy the cells directly, but also inhibit the expression of matrix metalloproteinase-2 (MMP2) in cells, a maker for tumor metastasis. The ALA-H shows promising PDT results on NPC in vitro; therefore it is worth investigating further in vivo for NPC treatment. PMID:16442708

  12. Rhodobacter sphaeroides mutants which accumulate 5-aminolevulinic acid under aerobic and dark conditions.

    PubMed

    Nishikawa, S; Watanabe, K; Tanaka, T; Miyachi, N; Hotta, Y; Murooka, Y

    1999-01-01

    The photosynthetic bacterium Rhodobacter sphaeroides accumulates 5-aminolevulinic acid (ALA), which is a precursor in tetrapyrrole biosynthesis, under light illumination and upon addition of levulinic acid as an inhibitor of ALA dehydratase. To generate an industrial strain which produces ALA in the absence of light, we sequentially mutated R. sphaeroides CR-286 using N-methyl-N'-nitro-N-nitrosoguanidine (NTG). The mutant strains were screened by cultivating in the absence of light and assayed for ALA by the Ehrlich reaction in a 96-well microtiter plate. The mutant strain CR-386, derived from R. sphaeroides CR-286, was selected as a mutant that exhibited significant ALA accumulation. While CR-286 required light illumination for ALA production, CR-386 was able to accumulate 1.5 mM ALA in the presence of 50 mM glucose, 60 mM glycine, 15 mM levulinic acid and 1.0% (w/v) yeast extract under conditions of agitation in the absence of light. The mutant strain CR-450, derived from strain CR-386, was selected further as a mutant that exhibited significant ALA accumulation but no accumulation of aminoacetone, analogue of ALA. CR-450 accumulated 3.8 mM ALA under the same conditions. In the presence of 50 mM glucose, 60 mM glycine, 5 mM levulinic acid and 1.0% (w/v) yeast extract, the mutant strain CR-520, derived from strain CR-450, and strain CR-606, derived from strain CR-520, accumulated 8.1 mM and 11.2 mM ALA, respectively. In batch fermentation, the strain CR-606 accumulated 20 mM ALA over 18 h after the addition of glycine, levulinic acid, glucose and yeast extract. PMID:16232557

  13. 5-Aminolevulinic Acid Photodynamic Therapy combined with CO2 laser therapy in treatment of laryngeal papilloma: Case report.

    PubMed

    Zhang, Yunjie; Yang, Yuguang; Zou, Xianbiao; Huang, Zheng

    2016-06-01

    This article describes the case of 5-Aminolevulinic Acid Photodynamic Therapy (ALA-PDT) via self-retaining laryngoscope under general anesthesia combined with CO2 Laser Therapy in the treatment of three patients with juvenile laryngeal papilloma. Laryngeal papilloma Clinically, it features rapid growth, multi-focus, frequent recurrence and possibility of spreading to the lower respiratory tract. ALA-PDT via self-retaining laryngoscope under general anesthesia combined with CO2 Laser Therapy is safe and effective for clearing laryngeal papilloma, laryngeal papilloma was fully removed from the three patients, with no recurrence during the 6-24 months of follow-up medical examination. 5-Aminolevulinic Acid Photodynamic Therapy (ALA-PDT) via self-retaining laryngoscope under general anesthesia combined with CO2 Laser can be used for treating laryngeal papilloma. PMID:27045601

  14. Murine erythroid 5-aminolevulinate synthase: Truncation of a disordered N-terminal extension is not detrimental for catalysis.

    PubMed

    Stojanovski, Bosko M; Breydo, Leonid; Uversky, Vladimir N; Ferreira, Gloria C

    2016-05-01

    5-Aminolevulinate synthase (ALAS), a pyridoxal 5'-phosphate (PLP)-dependent homodimeric enzyme, catalyzes the initial step of heme biosynthesis in non-plant eukaryotes. The precursor form of the enzyme is translated in the cytosol, and upon mitochondrial import, the N-terminal targeting presequence is proteolytically cleaved to generate mature ALAS. In bone marrow-derived erythroid cells, a mitochondrial- and site-specific endoprotease of yet unknown primary structure, produces a protein shorter than mature erythroid ALAS (ALAS2) found in peripheral blood erythroid cells. This truncated ALAS2 lacks the presequence and the N-terminal sequence (corresponding to ~7 KDa molecular mass) present in ALAS2 from peripheral blood erythroid cells. How the truncation affects the structural topology and catalytic properties of ALAS2 is presently not known. To address this question, we created a recombinant, truncated, murine ALAS2 (ΔmALAS2) devoid of the cleavable N-terminal region and examined its catalytic and biophysical properties. The N-terminal truncation of mALAS2 did not significantly affect the organization of the secondary structure, but a subtle reduction in the rigidity of the tertiary structure was noted. Furthermore, thermal denaturation studies revealed a decrease of 4.3°C in the Tm value of ΔmALAS2, implicating lower thermal stability. While the kcat of ΔmALAS2 is slightly increased over that of the wild-type enzyme, the slowest step in the ΔmALAS2-catalyzed reaction remains dominated by ALA release. Importantly, intrinsic disorder algorithms imply that the N-terminal region of mALAS2 is highly disordered, and thus susceptible to proteolysis. We propose that the N-terminal truncation offers a cell-specific ALAS2 regulatory mechanism without hindering heme synthesis. PMID:26854603

  15. Hydrokolloid occlusive dressings for photodynamic therapy (PDT) of cutaneous lesions with endogenous porphyrins induced by 5-aminolevulinic acid

    NASA Astrophysics Data System (ADS)

    Gahlen, Johannes; Stern, Josef; Herfarth, Christian

    1995-03-01

    Protoporphyrin (Pp IX) is the final intermediate product before haem and can be stimulated to a phototoxic reaction with light. The presence of 5-aminolevulinic acid can increase the intracellular biosynthesis of Pp IX in certain types of tumor cells. The photosensitizing concentrations of Pp IX make laser light induced fluorescence diagnostics (LIFD) and photodynamic therapy possible. A topical application of a 5-aminolevulinic acid solution requires a waterproof occlusive dressing for several hours. We developed a simple technique for a practical preparation for PDT using a hydrocolloid dressing. The normal surrounding skin can be spared. We present our first therapeutic experience with a case of cutaneous breast cancer in a 65-year-old female patient. Six hours after topical application of 10% isotonic 5- aminolevulinic acid under the hydrocolloid dressing PDT was performed (Ar-Dye Laser, 630 nm wavelength). Twenty four hours after PDT a superficial tumor necrosis could be observed with a maximum depth of tumor necrosis of 2 - 3 mm. The surrounding normal skin was without any inflammation.

  16. 5-Aminolevulinic acid production in engineered Corynebacterium glutamicum via C5 biosynthesis pathway.

    PubMed

    Ramzi, Ahmad Bazli; Hyeon, Jeong Eun; Kim, Seung Wook; Park, Chulhwan; Han, Sung Ok

    2015-12-01

    ALA (5-aminolevulinic acid) is an important intermediate in the synthesis of tetrapyrroles and the use of ALA has been gradually increasing in many fields, including medicine and agriculture. In this study, improved biological production of ALA in Corynebacterium glutamicum was achieved by overexpressing glutamate-initiated C5 pathway. For this purpose, copies of the glutamyl t-RNA reductase HemA from several bacteria were mutated by site-directed mutagenesis of which a HemA version from Salmonella typhimurium exhibited the highest ALA production. Cultivation of the HemA-expressing strain produced approximately 204 mg/L of ALA, while co-expression with HemL (glutamate-1-semialdehyde aminotransferase) increased ALA concentration to 457 mg/L, representing 11.6- and 25.9-fold increases over the control strain (17 mg/L of ALA). Further effects of metabolic perturbation were investigated, leading to penicillin addition that further improves ALA production to 584 mg/L. In an optimized flask fermentation, engineered C. glutamicum strains expressing the HemA and hemAL operon produced up to 1.1 and 2.2g/L ALA, respectively, under glutamate-producing conditions. The final yields represent 10.7- and 22.0-fold increases over the control strain (0.1g/L of ALA). From these findings, ALA biosynthesis from glucose was successfully demonstrated and this study is the first to report ALA overproduction in C. glutamicum via metabolic engineering. PMID:26453466

  17. Photodynamic therapy of urethral condylomata acuminata using topically 5-aminolevulinic acid

    NASA Astrophysics Data System (ADS)

    Wang, Xiuli; Wang, Hongwei; Wang, Haishan; Xu, Shizheng; Liao, Kanghuang; Hillemanns, Peter

    2005-07-01

    Background Electrocoagulation and laser evaporation for urethral condylomata acuminata have high recurrence rates and can be associated with urethral malformations. Objective To investigate the effect of photodynamic therapy (PDT) with topical 5-aminolevulinic acid (ALA) on urethral condylomata acuminata and to examine the histological changes in lesions of condylomata acuminata after ALA-PDT. Methods One hundred and sixty-four urethral condylomata patients were given topical ALA followed by intraurethral PDT through a cylindrical fiber. Among the cases, 16 penile and vulval condylomatous lesions in 11 patients were treated with topical ALA-PDT at same time. After the treatment, biopsy specimens were collected from the 16 penile and vulval lesions. The histological changes were then evaluated by light microscope and electron microscope. Results The complete response rate for urethral condylomata by topical ALA-PDT was 95.12% and the recurrence rate was 5.13% after 6 to 24 months follow-up. Keratinocytes in middle and upper layers of the epidermis with marked vacuolation and some necrocytosis were detected one and three hours after PDT. Necrosis in all layers of the epidermis was noted five hours after PDT by microscopy. In electron microscopy of kerationcytes, distinct ultrastructural abnormalities of mitochondrion, endoplasmic reticulum and membrane damage were observed. Apoptotic bodies were detected three hours after PDT and a large number of the keratinocytes exhibited necrosis five hours after PDT by electron microscope. Conclusions Results suggests that topical ALA-PDT is a simple, effective, relatively safe, less recurrent and comparatively well tolerated treatment for urethral condylomata acuminata. The mechanisms might be that ALA-PDT could trigger apoptotic process and necrosis in the HPV infected keratinocytes. Key words:

  18. Rapid stabilisation of atherosclerotic plaque with 5-aminolevulinic acid-mediated sonodynamic therapy.

    PubMed

    Li, Zhitao; Sun, Xin; Guo, Shuyuan; Wang, Liping; Wang, Tengyu; Peng, Chenghai; Wang, Wei; Tian, Zhen; Zhao, Ruibo; Cao, Wenwu; Tian, Ye

    2015-10-01

    5-Aminolevulinic acid-mediated sonodynamic therapy (ALA-SDT) effectively induces the apoptosis of atherogenic macrophages, but whether it can stabilise atherosclerotic plaque in vivo is unclear. Here, we used an animal model to evaluate the effects of ALA-SDT on plaque stabilisation. Sixty rabbits were induced atherosclerotic plaques in the femoral artery with a combination of silastic tube placement with atherogenic diet, and randomly assigned into control (n = 12) and SDT (n = 48) groups. In the SDT group, after intravenous injected with ALA (60 mg/kg) animals underwent the treatment of ultrasound with intensities of 0.75, 1.00, 1.50 and 2.00 W/cm(²) (n = 12 for each intensity). Seven days after the treatment, the plaque disruption assay was performed to test plaque stability. We found that ALA-SDT with ultrasound intensity of 1.5 W/cm(²) showed the strongest efficacy to stabilise plaques. Under this condition, the frequency of plaque disruption decreased by 88% (p<0.01), positive area of macrophages reduced by 94% (p<0.001) and percentage content of lipids dropped by 60% (p < 0.001), while percentage content of collagens increased by 127% (p<0.001). We also found that the plaque stabilisation by ALA-SDT was associated with increased macrophage apoptosis and apoptotic cell clearance. Moreover, ALA-SDT decreased the contents and activities of matrix metalloproteinase-2,9 and increased the levels of tissue inhibitors of matrix metalloproteinase-1,2 in plaques. Our studies demonstrate that ALA-SDT promotes plaque stabilisation by inducing macrophage elimination and inhibiting matrix degradation. This method might be a promising regimen for atherosclerosis therapy. PMID:26179778

  19. [Effect of 5-aminolevulinic acid on photosynthetic characteristics of tomato seedlings under NaCl stress].

    PubMed

    Zhao, Yan-Yan; Yan, Fei; Hu, Li-Pan; Zhou, Xiao-Ting; Zou, Zhi-Rong

    2014-10-01

    In this research, the possibility of exogenous application of 5-aminolevulinic acid (ALA) on photosynthetic characteristics of tomato seedlings under NaCl stress was investigated. Five leaves seedlings of tomato (Solanum lycopersicum cv. Jinpeng No. 1) were used as starting materials, applied with 50 mg · L(-1) ALA by foliage spray or 10 mg · L(-1) ALA by root soaking to study the changes in their photosynthesis and fluorescence parameters under 100 mmol · L(-1) NaCl. The result showed that, photosynthetic gas exchange parameters (net photosynthetic rate P,, stomata conductance g(s), intercellular CO2 concentration Ci, transpiration Tr) and chlorophyll fluorescence parameters (Fv'/Fm', Fm', ΦPS II, ETR, qP, Pc) were severely reduced under NaCl treatment and ALA application by foliage spray or root soaking with proper concentrations exerted positive influences on tomato seedlings under salt stress, while there were some differences between foliage spray and root soaking in the influence on chlorophyll content, photosynthesis and chlorophyll fluorescence. Both foliage spray with 50 mg · L(-1) ALA and root soaking with 10 mg L(-1) ALA significantly increased Pn, Ci, g(s) and Tr of tomato seedlings under NaCl stress, alleviated photosynthetic inhibition. Root application of ALA had a better effect on the chlorophyll content than foliage application. However, the photosynthetic parameters showed that foliage application of ALA had a better effect than root application, and both treatments had no difference in the influence on chlorophyll fluorescence parameters of tomato seedlings. It could be deduced that the regulating effect of ALA on enhancing salt tolerance of tomato seedlings is attributed to its effect on improving chlorophyll biosynthesis and metabolism, increasing stomatal conductance and reducing stomatal limitation, thus, enhancing the photosynthetic capacity and PS II photochemical efficiency of tomato leaves under NaCl stress. PMID:25796901

  20. 5-Aminolevulinic Acid-Induced Protoporphyrin IX Fluorescence in Meningioma: Qualitative and Quantitative Measurements In Vivo

    PubMed Central

    Valdes, Pablo A.; Bekelis, Kimon; Harris, Brent T.; Wilson, Brian C.; Leblond, Frederic; Kim, Anthony; Simmons, Nathan E.; Erkmen, Kadir; Paulsen, Keith D.; Roberts, David W.

    2014-01-01

    BACKGROUND The use of 5-aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) fluorescence has shown promise as a surgical adjunct for maximizing the extent of surgical resection in gliomas. To date, the clinical utility of 5-ALA in meningiomas is not fully understood, with most descriptive studies using qualitative approaches to 5-ALA-PpIX. OBJECTIVE To assess the diagnostic performance of 5-ALA-PpIX fluorescence during surgical resection of meningioma. METHODS ALA was administered to 15 patients with meningioma undergoing PpIX fluorescence-guided surgery at our institution. At various points during the procedure, the surgeon performed qualitative, visual assessments of fluorescence by using the surgical microscope, followed by a quantitative fluorescence measurement by using an intra-operative probe. Specimens were collected at each point for subsequent neuropathological analysis. Clustered data analysis of variance was used to ascertain a difference between groups, and receiver operating characteristic analyses were performed to assess diagnostic capabilities. RESULTS Red-pink fluorescence was observed in 80% (12/15) of patients, with visible fluorescence generally demonstrating a strong, homogenous character. Quantitative fluorescence measured diagnostically significant PpIX concentrations (CPpIx) in both visibly and nonvisibly fluorescent tissues, with significantly higher CPpIx in both visibly fluorescent (P < .001) and tumor tissue (P = .002). Receiver operating characteristic analyses also showed diagnostic accuracies up to 90% for differentiating tumor from normal dura. CONCLUSION ALA-induced PpIX fluorescence guidance is a potential and promising adjunct in accurately detecting neoplastic tissue during meningioma resective surgery. These results suggest a broader reach for PpIX as a biomarker for meningiomas than was previously noted in the literature. PMID:23887194

  1. Alleviation of salt-induced oxidative damage by 5-aminolevulinic acid in wheat seedlings

    NASA Astrophysics Data System (ADS)

    Genişel, Mucip; Erdal, Serkan

    2016-04-01

    The aim of this study was to elucidate how 5-aminolevulinic acid (ALA), the precursor of chlorophyll compounds, affects the defence mechanisms of wheat seedlings induced by salt stress. To determine the possible stimulative effects of ALA against salinity, 11-day old wheat seedlings were sprayed with ALA at two different concentrations (10 and 20 mg.l-1) and then stressed by exposure to salt (150 mM NaCl). The salt stress led to significant changes in the antioxidant activity. While guaiacol peroxidase activity decreased, the activities of superoxide dismutase, catalase, and ascorbate peroxidase markedly increased under salt stress. Compared to the salt stress alone, the application of ALA beforehand further increased the activity of these enzymes. This study is the first time the effects of ALA have been monitored with regard to protein content and the isoenzyme profiles of the antioxidant enzymes. Although the salt stress reduced both the soluble protein content and protein band intensities, pre-treating with ALA significantly mitigated these stress-induced reductions. The data for the isoenzyme profiles of the antioxidant enzymes paralleled that of the ALA-induced increases in antioxidant activity. As a consequence of the high antioxidant activity in the seedlings pre-treated with ALA, the stress-induced elevations in the reactive oxygen species, superoxide anion, and hydrogen peroxide contents and lipid peroxidation levels were markedly diminished. Taken together, this data demonstrated that pre-treating with ALA confers resistance to salt stress by modulating the protein synthesis and antioxidant activity in wheat seedlings.

  2. Nitric Oxide Mediates 5-Aminolevulinic Acid-Induced Antioxidant Defense in Leaves of Elymus nutans Griseb. Exposed to Chilling Stress

    PubMed Central

    Fu, Juanjuan; Chu, Xitong; Sun, Yongfang; Miao, Yanjun; Xu, Yuefei; Hu, Tianming

    2015-01-01

    Nitric oxide (NO) and 5-aminolevulinic acid (ALA) are both extremely important signalling molecules employed by plants to control many aspects of physiology. In the present study, the role of NO in ALA-induced antioxidant defense in leaves of two sources of Elymus nutans Griseb. (Damxung, DX and Zhengdao, ZD) was investigated. Chilling stress enhanced electrolyte leakage, accumulation of malondialdehyde (MDA), hydrogen peroxide (H2O2) and superoxide radical in two E. nutans, which were substantially alleviated by exogenous ALA and NO application. Pretreatment with NO scavenger PTIO or NOS inhibitor L-NNA alone and in combination with ALA induced enhancements in electrolyte leakage and the accumulation of MDA, H2O2 and superoxide radical in leaves of DX and ZD exposed to chilling stress, indicating that the inhibition of NO biosynthesis reduced the chilling resistance of E. nutans and the ALA-enhanced chilling resistance. Further analyses showed that ALA and NO enhanced antioxidant defense and activated plasma membrane (PM) H+-ATPase and decreased the accumulation of ROS induced by chilling stress. A pronounced increase in nitric oxide synthase (NOS) activity and NO release by exogenous ALA treatment was found in chilling-resistant DX plants exposed to chilling stress, while only a little increase was observed in chilling-sensitive ZD. Furthermore, inhibition of NO accumulation by PTIO or L-NNA blocked the protective effect of exogenous ALA, while both exogenous NO treatment and inhibition of endogenous NO accumulation did not induce ALA production. These results suggested that NO might be a downstream signal mediating ALA-induced chilling resistance in E. nutans. PMID:26151364

  3. Regulation of Cadmium-Induced Proteomic and Metabolic Changes by 5-Aminolevulinic Acid in Leaves of Brassica napus L.

    PubMed Central

    Ali, Basharat; Gill, Rafaqat A.; Yang, Su; Gill, Muhammad B.; Farooq, Muhammad A.; Liu, Dan; Daud, Muhammad K.; Ali, Shafaqat; Zhou, Weijun

    2015-01-01

    It is evident from previous reports that 5-aminolevulinic acid (ALA), like other known plant growth regulators, is effective in countering the injurious effects of heavy metal-stress in oilseed rape (Brassica napus L.). The present study was carried out to explore the capability of ALA to improve cadmium (Cd2+) tolerance in B. napus through physiological, molecular, and proteomic analytical approaches. Results showed that application of ALA helped the plants to adjust Cd2+-induced metabolic and photosynthetic fluorescence changes in the leaves of B. napus under Cd2+ stress. The data revealed that ALA treatment enhanced the gene expressions of antioxidant enzyme activities substantially and could increase the expression to a certain degree under Cd2+ stress conditions. In the present study, 34 protein spots were identified that differentially regulated due to Cd2+ and/or ALA treatments. Among them, 18 proteins were significantly regulated by ALA, including the proteins associated with stress related, carbohydrate metabolism, catalysis, dehydration of damaged protein, CO2 assimilation/photosynthesis and protein synthesis/regulation. From these 18 ALA-regulated proteins, 12 proteins were significantly down-regulated and 6 proteins were up-regulated. Interestingly, it was observed that ALA-induced the up-regulation of dihydrolipoyl dehydrogenase, light harvesting complex photo-system II subunit 6 and 30S ribosomal proteins in the presence of Cd2+ stress. In addition, it was also observed that ALA-induced the down-regulation in thioredoxin-like protein, 2, 3-bisphosphoglycerate, proteasome and thiamine thiazole synthase proteins under Cd2+ stress. Taken together, the present study sheds light on molecular mechanisms involved in ALA-induced Cd2+ tolerance in B. napus leaves and suggests a more active involvement of ALA in plant physiological processes than previously proposed. PMID:25909456

  4. Intra-operative visualization of brain tumors with 5-aminolevulinic acid-induced fluorescence.

    PubMed

    Widhalm, Georg

    2014-01-01

    Precise histopathological diagnosis of brain tumors is essential for the correct patient management. Furthermore, complete resection of brain tumors is associated with an improved patient prognosis. However, histopathological undergrading and incomplete tumor removal are not uncommon, especially due to insufficient intra-operative visualization of brain tumor tissue. The fluorescent dye 5-aminolevulinic acid (5-ALA) is currently applied for fluorescence-guided resections of high-grade gliomas. The value of 5-ALA-induced protoporphyrin (PpIX) fluorescence for intra-operative visualization of other tumors than high-grade gliomas remains unclear. Within the frame of this thesis, we found a significantly higher rate of complete resections of our high-grade gliomas as compared to control cases by using the newly established 5-ALA fluorescence technology at our department. Additionally, we showed that MRI spectroscopy-based chemical shift imaging (CSI) is capable to identify intratumoral high-grade glioma areas (= anaplastic foci) during navigation guided resections to avoid histopathological undergrading. However, the accuracy of navigation systems with integrated pre-operative imaging data such as CSI declines during resections due to intra-operative brainshift. In two further studies, we found that 5-ALA induced PpIX fluorescence is capable as a novel intra-operative marker to detect anaplastic foci within initially suspected low-grade gliomas independent of brainshift. Finally, we showed that the application of 5-ALA is also of relevance in needle biopsies for intra-operative identification of representative brain tumor tissue. These data indicate that 5-ALA is not only of major importance for resection of high-grade gliomas, but also for intra-operative visualization of anaplastic foci as well as representative brain tumor tissue in needle biopsies unaffected by brainshift. Consequently, this new technique might become a novel standard in brain tumor surgery that

  5. 5-Aminolevulinic Acid-Based Sonodynamic Therapy Induces the Apoptosis of Osteosarcoma in Mice

    PubMed Central

    Li, Yongning; Zhou, Qi; Hu, Zheng; Yang, Bin; Li, Qingsong; Wang, Jianhua; Zheng, Jinhua; Cao, Wenwu

    2015-01-01

    Objective Sonodynamic therapy (SDT) is promising for treatment of cancer, but its effect on osteosarcoma is unclear. This study examined the effect of 5-Aminolevulinic Acid (5-ALA)-based SDT on the growth of implanted osteosarcoma and their potential mechanisms in vivo and in vitro. Methods The dose and metabolism of 5-ALA and ultrasound periods were optimized in a mouse model of induced osteosarcoma and in UMR-106 cells. The effects of ALA-SDT on the proliferation and apoptosis of UMR-106 cells and the growth of implanted osteosarcoma were examined. The levels of mitochondrial membrane potential (ΔψM), ROS production, BcL-2, Bax, p53 and caspase 3 expression in UMR-106 cells were determined. Results Treatment with 5-ALA for eight hours was optimal for ALA-SDT in the mouse tumor model and treatment with 2 mM 5-ALA for 6 hours and ultrasound (1.0 MHz 2.0 W/cm2) for 7 min were optimal for UMR-106 cells. SDT, but not 5-ALA, alone inhibited the growth of implanted osteosarcoma in mice (P<0.01) and reduced the viability of UMR-106 cells (p<0.05). ALA-SDT further reduced the tumor volumes and viability of UMR-106 cells (p<0.01 for both). Pre-treatment with 5-ALA significantly enhanced the SDT-mediated apoptosis (p<0.01) and morphological changes. Furthermore, ALA-SDT significantly reduced the levels of ΔψM, but increased levels of ROS in UMR-106 cells (p<0.05 or p<0.01 vs. the Control or the Ultrasound). Moreover, ALA-SDT inhibited the proliferation of osteosarcoma cells and BcL-2 expression, but increased levels of Bax, p53 and caspase 3 expression in the implanted osteosarcoma tissues (p<0.05 or p<0.01 vs. the Control or the Ultrasound). Conclusions The ALA-SDT significantly inhibited osteosarcoma growth in vivo and reduced UMR-106 cell survival by inducing osteosarcoma cell apoptosis through the ROS-related mitochondrial pathway. PMID:26161801

  6. Involvement of Singlet Oxygen in 5-Aminolevulinic Acid-Induced Photodynamic Damage of Cucumber (Cucumis sativus L.) Chloroplasts 1

    PubMed Central

    Chakraborty, Niranjan; Tripathy, Baishnab Charan

    1992-01-01

    Cucumber (Cucumis sativus L., cv Poinsette) plants were sprayed with 20 millimolar 5-aminolevulinic acid and then incubated in the dark for 14 hours. The intact chloroplasts were isolated from the above plants in the dark and were exposed to weak light (250 micromoles per square meter per second). Within 30 minutes, photosystem II activity was reduced by 50%. The singlet oxygen (1O2) scavengers, histidine and sodium azide (NaN3) significantly protected against the damage caused to photosystem II. The hydroxyl radical scavenger formate failed to protect the thylakoid membranes. The production of 1O2 monitored as N,N-dimethyl p-nitrosoaniline bleaching increased as a function of light exposure time of treated chloroplasts and was abolished by the 1O2 quencher, NaN3. Membrane lipid peroxidation monitored as malondialdehyde production was also significantly reduced when chloroplasts were illuminated in the presence of NaN3 and histidine. Protochlorophyllide was the most abundant pigment accumulated in intact chloroplasts isolated from 5-aminolevulinic acid-treated plants and was probably acting as type II photosensitizer. PMID:16668650

  7. Differential reduction in soluble and membrane-bound c-type cytochrome contents in a Paracoccus denitrificans mutant partially deficient in 5-aminolevulinate synthase activity.

    PubMed Central

    Page, M D; Ferguson, S J

    1994-01-01

    A mutant of Paracoccus denitrificans, DP104, unable to grow anaerobically with nitrate as the terminal electron acceptor or aerobically with methanol as the electron donor and staining negatively in the dimethylphenylene diamine oxidation (Nadi) test, was isolated by transposon Tn5::phoA mutagenesis. P. denitrificans DP104 grown aerobically with succinate or choline had very low levels (2 to 3% of the wild-type levels) of spectroscopically detectable soluble c-type cytochromes. In contrast, membrane cytochromes of the a, b, and c types were present at 50% of the levels found in the wild type. The apo form of cytochrome c550, at an approximately 1:1 molar ratio with the holo form, was found in the periplasm of DP104. The TnphoA element was shown to be inserted immediately upstream of the translational start of hemA, the gene coding for 5-aminolevulinate synthase, which was sequenced. Low-level expression of this gene, driven off an incidental promoter provided by TnphoA-cointegrated suicide vector DNA, is the basis of the phenotype which could be complemented by the addition of 5-aminolevulinate to growth media. Disruption of the hemA gene generated a P. denitrificans strain auxotrophic for 5-aminolevulinate, establishing that there is no hemA-independent pathway of heme synthesis in this organism. The differential deficiency in periplasmic c-type cytochromes relative to membrane cytochromes in DP104 is suggested to arise from unequal competition for the restricted supply of heme which results from the effects of the transposon insertion. Images PMID:7928952

  8. Transport properties and association behaviour of the zwitterionic drug 5-aminolevulinic acid in water. A precision conductometric study.

    PubMed

    Merclin, Nadia; Beronius, Per

    2004-02-01

    The behavior of the hydrochloride salt of 5-aminolevulinic acid (ALA-HCl) with respect to transport properties and dissociation in aqueous solution at 25 degrees C has been studied using precision conductometry within the concentration range 0.24-5.17mM. The conductivity data are interpreted according to elaborated conductance theory. The carboxyl group appears to be, in practice, undissociated. The dissociation constant, K(a), of the NH(3)(+) form of the amino acid molecules is determined to 6.78x10(-5) (molarity scale); pK(a)=4.17. The limiting molar conductivity of the ALA-H(+) ion, lambda(0)=33.5cm(2)Omega(-1)mol(-1); electric mobility u=3.47x10(-4)cm(2)V(-1)s(-1), is close to the electric mobilites of the acetate and benzoic ions. PMID:14757508

  9. Topical versus systemic 5-aminolevulinic acid administration for photodynamic therapy of the colon in B10.RBP mice

    NASA Astrophysics Data System (ADS)

    Gil, Maciej; Woszczynski, Marek; Regula, Jaroslaw; MacRobert, Alexander J.; Butruk, Eugeniusz; Bown, Stephen G.

    1999-07-01

    5-aminolevulinic acid (5-ALA) is an interesting photosensitizing substance for photodynamic therapy (PDT), successfully applied topically for urological malignancy. In gastroenterology it has proven efficacy for treatment of some GI neoplasms after systemic administration. This study was aimed at investigating the possibility of topical 5-ALA administration also for the PDT of gut cancer in a mice model. 5-ALA solution at different concentrations (5%, 1.5%, and 0.5%) was instilled in the colon of mice, which was later removed and examined by fluorescence microscopy. The results of fluorescence studies were compared with those obtained in a control group treated with 5-ALA given systematically. Satisfactory epithelial fluorescence levels and good selectivity between gut layers were obtained after intracolonic 5-ALA instillation. However, mean fluorescence intensity was higher after systemic drug applications. Our results suggest that 5-ALA may probably be used topically for the PDT of some gut neoplasms.

  10. The heme precursor 5-aminolevulinic acid disrupts the Warburg effect in tumor cells and induces caspase-dependent apoptosis.

    PubMed

    Sugiyama, Yuta; Hagiya, Yuichiro; Nakajima, Motowo; Ishizuka, Masahiro; Tanaka, Tohru; Ogura, Shun-Ichiro

    2014-03-01

    Our previous study demonstrated that 5-aminolevulinic acid (ALA) administered to mice stimulates oxidative phosphorylation by upregulation of the mitochondrial respiratory chain complex IV enzyme cytochrome c oxidase (COX). The present study investigated whether ALA disrupts the Warburg effect, which represents a shift in ATP generation from oxidative phosphorylation to glycolysis, protecting tumor cells against oxidative stress-mediated apoptosis. The human lung carcinoma cell line A549 exposed to ALA exhibited enhanced oxidative phosphorylation, which was indicated by an increase in COX protein expression and oxygen consumption. Furthermore, ALA suppressed glycolysis-mediated acidosis. This normalization of the ATP metabolic pathways significantly increased the generation of superoxide anion radical (O2•-) and the functional expression of active caspase-3, leading to caspase-dependent apoptosis. These data demonstrate that ALA inhibits the Warburg effect and induces cancer cell death. Use of this endogenous compound might constitute a novel approach to cancer therapy. PMID:24366173

  11. Photodynamic Therapy Using Systemic Administration of 5-Aminolevulinic Acid and a 410-nm Wavelength Light-Emitting Diode for Methicillin-Resistant Staphylococcus aureus-Infected Ulcers in Mice

    PubMed Central

    Morimoto, Kuniyuki; Ozawa, Toshiyuki; Awazu, Kunio; Ito, Nobuhisa; Honda, Norihiro; Matsumoto, Sohkichi; Tsuruta, Daisuke

    2014-01-01

    Bacterial resistance to antibiotics has become a worldwide problem. One potential alternative for bacterial control is photodynamic therapy. 5-aminolevulinic acid is a natural precursor of the photosensitizer protoporphyrin IX. Relatively little is known about the antibacterial efficacy of photodynamic therapy using the systemic administration of 5-aminolevulinic acid; a few reports have shown that 5-aminolevulinic acid exerts photodynamic effects on methicillin-resistant Staphylococcus aureus (MRSA) in vitro. In this study, we evaluated the effectiveness of photodynamic therapy using 5-aminolevulinic acid and a 410-nm wavelength light-emitting diode in vitro and in vivo for the treatment of MRSA. We found that 5-aminolevulinic acid photodynamic therapy with the light-emitting diode had an in-vitro bactericidal effect on MRSA. In vivo, protoporphyrin IX successfully accumulated in MRSA on ulcer surfaces after intraperitoneal administration of 5-aminolevulinic acid to mice. Furthermore, 5-aminolevulinic acid photodynamic therapy accelerated wound healing and decreased bacterial counts on ulcer surfaces; in contrast, vancomycin treatment did not accelerate wound healing. Our findings indicate that 5-aminolevulinic acid photodynamic therapy may be a new treatment option for MRSA-infected wounds. PMID:25140800

  12. Optimization of Biomass and 5-Aminolevulinic Acid Production by Rhodobacter sphaeroides ATCC17023 via Response Surface Methodology.

    PubMed

    Liu, Shuli; Zhang, Guangming; Li, Jianzheng; Li, Xiangkun; Zhang, Jie

    2016-06-01

    Microbial 5-aminolevulinic acid (ALA) produced from wastewater is considered as potential renewable energy. However, many hurdles are needed to be overcome such as the regulation of key influencing factors on ALA yield. Biomass and ALA production by Rhodobacter sphaeroides was optimized using response surface methodology. The culturing medium was artificial volatile fatty acids wastewater. Three additives were optimized, namely succinate and glycine that are precursors of ALA biosynthesis, and D-glucose that is an inhibitor of ALA dehydratase. The optimal conditions were achieved by analyzing the response surface plots. Statistical analysis showed that succinate at 8.56 mmol/L, glycine at 5.06 mmol/L, and D-glucose at 7.82 mmol/L were the best conditions. Under these optimal conditions, the highest biomass production and ALA yield of 3.55 g/L and 5.49 mg/g-biomass were achieved. Subsequent verification experiments at optimal values had the maximum biomass production of 3.41 ± 0.002 g/L and ALA yield of 5.78 ± 0.08 mg/g-biomass. PMID:26875086

  13. Influence of precursors and inhibitor on the production of extracellular 5-aminolevulinic acid and biomass by Rhodopseudomonas palustris KG31.

    PubMed

    Saikeur, Angkana; Choorit, Wanna; Prasertsan, Poonsuk; Kantachote, Duangporn; Sasaki, Ken

    2009-05-01

    5-Aminolevulinic acid (ALA) and the biomass of photosynthetic bacteria, Rhodopseudomonas palustris KG31, have very high potential for development and exploitation as bioherbicide and biofertilizer respectively. In this work, the effects of two precursors and an inhibitor of aminolevulinic dehydratase (ALAD) added to the VFA culture medium on the production of ALA and biomass were investigated. The experimental runs were carried out according to a Box-Behnken design. The precursors were added to the medium at the beginning of cultivation, while the inhibitor was added after 24 h. Statistical analysis indicated that levulinic acid (LA) has a positive effect on ALA production while glycine has a negative effect on biomass production. In order to enhance both ALA and biomass products, the most suitable medium was VFA medium supplemented with 3.0 mM glycine and 10 mM LA, giving ALA and biomass of 182.91 microM and 3.1 gDCW/l within 54 h. PMID:19420716

  14. Clearance of protoporphyrin IX from mouse skin after topical application of 5-aminolevulinic acid and its methyl ester

    NASA Astrophysics Data System (ADS)

    Juzenas, Petras; Sorensen, Roar; Iani, Vladimir; Moan, Johan

    1999-02-01

    The clearance of protoporphyrin IX (PpIX) from the skin of hairless BALB/c mice after topical application of 5- aminolevulinic acid (ALA) and its methyl ester (ALA-Me) was investigated. Creams containing 2 or 20% of ALA or ALA-Me were topically applied on spots of approximately 1 cm2 for 12 hours. The PpIX fluorescence was detected by the means of a Perkin Elmer LS50B luminescence spectrometer equipped with a fiber-optic probe. The emission spectrum was identical with that of cell-bound PpIX. After 12 hours application of ALA and ALA-Me similar amounts of PpIX were found. After creme removal the ALA-induced PpIX fluorescence decayed with a half-life of about 20 hours (20% ALA cream). The ALA-Me-induced PpIX was faster cleared from the skin than ALA-induced PpIX, and had a half-life of about 7 hours (20% ALA-Me cream).

  15. Formation of protoporphyrin IX in mouse skin after topical application of 5-aminolevulinic acid and its methyl esther

    NASA Astrophysics Data System (ADS)

    Sorensen, Roar; Juzenas, Petras; Iani, Vladimir; Moan, Johan

    1999-02-01

    Normal skin of nude mice (Balb/c) was treated topically with 5-aminolevulinic acid (ALA) and its methyl ester (ALA-Me) for 24 hours. Approximately 0.1 gram of freshly prepared cream was applied to a spot of 1 cm2 on the flank of the mice, which was then covered with a transparent dressing. The ALA induced protoporphyrin IX (PpIX) was studied by means of a noninvasive fiber-optic fluorescence probe connected to a luminescence spectrometer. The excitation wavelength was 407 nm, and the emission wavelength was 637 nm. For the first hour a slight lag in PpIX production was observed for the mice treated with ALA-Me compared to the mice treated with ALA. After approximately 12 hours the ALA and the ALA-Me treated mice showed the same PpIX fluorescence intensity. From 12 hours until 24 hours the PpIX fluorescence intensity decreased for both treatment modalities, even though ALA and ALA-Me were continuously present. At 24 hours ALA-Me-treated mice had less than half the amount of PpIX in their skin compared with ALA- treated mice.

  16. Prospective study of topical 5-aminolevulinic acid photodynamic therapy for the treatment of severe adolescent acne in Chinese patients.

    PubMed

    Ma, Ying; Liu, Ye; Wang, Qianqian; Ren, Jie; Xiang, Leihong

    2015-05-01

    Acne vulgaris is one of the most common skin diseases in adolescents. In the present study, we aimed to evaluate the effectiveness and safety of topical 5-aminolevulinic acid (ALA)-mediated photodynamic therapy (PDT) for the treatment of severe acne in Chinese adolescent patients. Twenty-one Chinese adolescent patients aged 12-18 years with Pillsbury III-IV severe facial acne were treated with three courses of ALA-PDT. A 5% ALA lotion was applied topically for 60 min followed by irradiation with light-emitting diode light at 633 nm with a light intensity of 75-80 mW/cm(2) and a light dose of 90-96 J/cm(2) . Clinical assessment was conducted before and after each treatment, and at each follow-up session. The total effective rates were 85.71%, 90.48%, and 95.23% after the three PDT sessions, and at the 4- and 8-week follow ups, respectively. ALA-PDT is an effective treatment for severe adolescent acne vulgaris, and is associated with mild and reversible side-effects. PMID:25772520

  17. [Photodynamic diagnosis and therapy of neoplasms of the facial skin after topical administration of 5-aminolevulinic acid].

    PubMed

    Lang, S; Baumgartner, R; Struck, R; Leunig, A; Gutmann, R; Feyh, J

    1995-02-01

    Topical application of 5-aminolevulinic acid (5-ALA) is a useful instrument for photodynamic diagnosis and therapy of skin tumours. Diagnostic fluorescence imaging after laser light irradiation (410 nm) revealed a high, tumour-specific fluorescence even in tumour areas not apparent prior to this examination technique. This demonstrates the possibility of photodynamic diagnosis to detect skin tumours. In the therapeutic group 8 patients with 6 solar keratoses and 12 basal cell carcinomas underwent laser light irradiation using a wavelength of 635 nm (dosage 100 J/cm2) 6 hours after topical application of 5-ALA in W/O emulsion. 2-12 hours after laser application we observed reddened tumour tissue with mild oedema, subsequently followed by a crust and epithelised within 4-6 weeks. 2 months after PDT a complete response was observed for all solar keratoses and for 10 of 12 basal cell carcinomas. Photodynamic therapy following topical application of 5-ALA may be an alternative treatment modality for skin tumours. PMID:7710611

  18. 5-Aminolevulinic Acid-Mediated Sonodynamic Therapy Inhibits RIPK1/RIPK3-Dependent Necroptosis in THP-1-Derived Foam Cells

    PubMed Central

    Tian, Fang; Yao, Jianting; Yan, Meng; Sun, Xin; Wang, Wei; Gao, Weiwei; Tian, Zhen; Guo, Shuyuan; Dong, Zengxiang; Li, Bicheng; Gao, Tielei; Shan, Peng; Liu, Bing; Wang, Haiyang; Cheng, Jiali; Gao, Qianping; Zhang, Zhiguo; Cao, Wenwu; Tian, Ye

    2016-01-01

    Necroptosis, or programmed necrosis, contributes to the formation of necrotic cores in atherosclerotic plaque in animal models. However, whether inhibition of necroptosis ameliorates atherosclerosis is largely unknown. In this study, we demonstrated that necroptosis occurred in clinical atherosclerotic samples, suggesting that it may also play an important role in human atherosclerosis. We established an in vitro necroptotic model in which necroptosis was induced in THP-1-derived foam cells by serum deprivation. With this model, we demonstrated that 5-aminolevulinic acid-mediated sonodynamic therapy (ALA-SDT) inhibited necroptosis while promoting apoptosis. ALA-SDT activated the caspase-3 and caspase-8 pathways in foam cells, which is responsible for the switch from necroptosis to apoptosis. The inhibition of either caspase-8 or caspase-3 abolished the anti-necroptotic effect of ALA-SDT. In addition, we found that caspase-3 activation peaked 4 hours after ALA-SDT treatment, 2 hours earlier than maximal caspase-8activation. Taken together, our data indicate that ALA-SDT mediates the switch from necroptosis to apoptosis by activating the caspase-3 and caspase-8 pathways and may improve the prognosis of atherosclerosis. PMID:26911899

  19. Development and ex vivo evaluation of 5-aminolevulinic acid-loaded niosomal formulations for topical photodynamic therapy.

    PubMed

    Bragagni, Marco; Scozzafava, Andrea; Mastrolorenzo, Antonio; Supuran, Claudiu T; Mura, Paola

    2015-10-15

    The objective of this study was the development of a niosomal formulation for improving skin permeation and penetration of 5-aminolevulinic acid (ALA) in the treatment of skin malignancies by photodynamic therapy (PDT). Different niosomal dispersions were prepared, using two different preparation methods. The effect of addition to a classic formulation, consisting in an equimolar Span 60-cholesterol mixture, of two different edge activators, dicethyl-phosphate (DCP) and sodium cholate (SC), and of the presence of ethanol on the vesicle properties and stability was evaluated. Selected formulations were loaded with the drug and evaluated for physicochemical and stability properties and encapsulation efficiency. Classic and elastic DCP-containing niosomes were the only formulations able to effectively incorporate the drug without instability problems. Ex vivo permeation and penetration studies through excised human skin showed that both the niosomal formulations were significantly more effective in improving ALA skin delivery than the simple aqueous drug solution commonly used in clinical practice, allowing, respectively, an increase of about 80 and 40% of the drug permeated amount and of about 100 and 50% of the drug retained into the skin. These results lead to consider the developed formulations potentially useful for improving ALA bioavailability and therapeutic effectiveness in skin malignancies treatment by topical PDT. PMID:26283280

  20. 5-Aminolevulinic Acid-Protoporphyrin IX Fluorescence-Guided Surgery of High-Grade Gliomas: A Systematic Review.

    PubMed

    Guyotat, Jacques; Pallud, Johan; Armoiry, Xavier; Pavlov, Vladislav; Metellus, Philippe

    2016-01-01

    The current first-line treatment of malignant gliomas consists in surgical resection (if possible) as large as possible. The existing tools don't permit to identify the limits of tumor infiltration, which goes beyond the zone of contrast enhancement on MRI. The fluorescence-guided malignant gliomas surgery was started 15 years ago and had become a standard of care in many countries. The technique is based on fluorescent molecule revelation using the filters, positioned within the surgical microscope. The fluorophore, protoporphyrin IX (PpIX), is converted in tumoral cells from 5-aminolevulinic acid (5-ALA), given orally before surgery. Many studies have shown that the ratio of gross total resections was higher if the fluorescence technique was used. The fluorescence signal intensity is correlated to the cell density and the PpIX concentration. The current method has a very high specificity but still lower sensibility, particularly regarding the zones with poor tumoral infiltration. This book reviews the principles of the technique and the results (extent of resection and survival). PMID:26508406

  1. Rheological characterization and permeation behavior of poloxamer 407-based systems containing 5-aminolevulinic acid for potential application in photodynamic therapy.

    PubMed

    van Hemelrijck, Carlos; Müller-Goymann, Christel C

    2012-11-01

    Topical application of 5-aminolevulinic acid (ALA) in photodynamic therapy is of great interest because of avoiding systemic side effects with such an easy way of application. However, due to ALA's high polarity its dermal bioavailability is rather limited and thus, permeation enhancement of this active is of major interest in research. In a previous study, a semisolid poloxamer 407-based (POX), five-component system ("thermogel") was developed for permeation enhancement of ALA across isolated human stratum corneum. In the present study, five-component systems of systematically varied compositions were investigated both rheologically and in terms of permeation enhancement. The five-component systems contained water, a fixed combination of 1:1 of isopropyl alcohol (IPA) and dimethyl isosorbide (DMIS) and a fixed ratio of 4:1 of POX to propylene glycol dicaprylocaprate (MIG). Rheological characterization showed that complex viscosity depended on IPA/DMIS and POX/MIG content. The gelation temperature (GT) was strongly influenced by interactions between MIG, IPA and DMIS. Regarding permeation behavior, several systems showing better permeation fluxes than the original "thermogel" were identified. Surprisingly, permeation flux did not inversely correlate with the complex viscosity, showing that permeation behavior may depend on a variety of further physicochemical characteristics including individual composition and microstructure of the respective formulation. PMID:22898092

  2. 5-aminolevulinic acid for quantitative seek-and-treat of high-grade dysplasia in Barrett's esophagus cellular models

    NASA Astrophysics Data System (ADS)

    Yeh, Shu-Chi Allison; Ling, Celine S. N.; Andrews, David W.; Patterson, Michael S.; Diamond, Kevin R.; Hayward, Joseph E.; Armstrong, David; Fang, Qiyin

    2015-02-01

    High-grade dysplasia (HGD) in Barrett's esophagus (BE) poses increased risk for developing esophageal adenocarcinoma. To date, early detection and treatment of HGD regions are still challenging due to the sampling error from tissue biopsy and relocation error during the treatment after histopathological analysis. In this study, CP-A (metaplasia) and CP-B (HGD) cell lines were used to investigate the "seek-and-treat" potential using 5-aminolevulinic acid-induced protoporphyrin IX (PpIX). The photodynamic therapy photosensitizer then provides both a phototoxic effect and additional image contrast for automatic detection and real-time laser treatment. Complementary to our studies on automatic classification, this work focused on characterizing subcellular irradiation and the potential phototoxicity on both metaplasia and HGD. The treatment results showed that the HGD cells are less viable than metaplastic cells due to more PpIX production at earlier times. Also, due to mitochondrial localization of PpIX, a better killing effect was achieved by involving mitochondria or whole cells compared with just nucleus irradiation in the detected region. With the additional toxicity given by PpIX and potential morphological/textural differences for pattern recognition, this cellular platform serves as a platform to further investigate real-time "seek-and-treat" strategies in three-dimensional models for improving early detection and treatment of BE.

  3. Needle-free injection of 5-aminolevulinic acid in photodynamic therapy for the treatment of condylomata acuminata

    PubMed Central

    LI, XIULI; WANG, XIUXIU; GU, JUNYING; MA, YUE’E; LIU, ZHIYU; SHI, YULING

    2013-01-01

    The external application of 5-aminolevulinic acid (ALA) in photodynamic therapy (PDT) results in a shallow penetration depth in thick or extensive condylomata acuminata (CA) lesions, thus demonstrating a poor therapeutic effect for those patients. To compare the efficacy of needle-free injection with external application of ALA in PDT for the treatment of CA, 160 CA patients with thick or extensive warts received ALA-PDT by means of external application or needle-free injection of ALA, respectively. The complete response (CR) rate and recurrence rate in the two groups were analyzed. The CR rate after the first treatment in the needle-free injection group (68.8%) was significantly higher compared with that in the external application group (52.5%; P=0.035). The recurrence rates in the needle-free injection group and external application group were 4.1 and 15.4%, respectively (P=0.022). The needle-free injection of ALA increases the therapeutic effect of PDT for CA patients with thick or extensive lesions. It shortens the treatment time and reduces the recurrence rate, and has great potential in the treatment of CA. PMID:23935753

  4. In Vivo Curative and Protective Potential of Orally Administered 5-Aminolevulinic Acid plus Ferrous Ion against Malaria

    PubMed Central

    Suzuki, Shigeo; Hikosaka, Kenji; Balogun, Emmanuel O.; Komatsuya, Keisuke; Niikura, Mamoru; Kobayashi, Fumie; Takahashi, Kiwamu; Tanaka, Tohru; Nakajima, Motowo

    2015-01-01

    5-Aminolevulinic acid (ALA) is a naturally occurring amino acid present in diverse organisms and a precursor of heme biosynthesis. ALA is commercially available as a component of cosmetics, dietary supplements, and pharmaceuticals for cancer diagnosis and therapy. Recent reports demonstrated that the combination of ALA and ferrous ion (Fe2+) inhibits the in vitro growth of the human malaria parasite Plasmodium falciparum. To further explore the potential application of ALA and ferrous ion as a combined antimalarial drug for treatment of human malaria, we conducted an in vivo efficacy evaluation. Female C57BL/6J mice were infected with the lethal strain of rodent malaria parasite Plasmodium yoelii 17XL and orally administered ALA plus sodium ferrous citrate (ALA/SFC) as a once-daily treatment. Parasitemia was monitored in the infected mice, and elimination of the parasites was confirmed using diagnostic PCR. Treatment of P. yoelii 17XL-infected mice with ALA/SFC provided curative efficacy in 60% of the mice treated with ALA/SFC at 600/300 mg/kg of body weight; no mice survived when treated with vehicle alone. Interestingly, the cured mice were protected from homologous rechallenge, even when reinfection was attempted more than 230 days after the initial recovery, indicating long-lasting resistance to reinfection with the same parasite. Moreover, parasite-specific antibodies against reported vaccine candidate antigens were found and persisted in the sera of the cured mice. These findings provide clear evidence that ALA/SFC is effective in an experimental animal model of malaria and may facilitate the development of a new class of antimalarial drug. PMID:26324278

  5. Effect of continuous and multiple doses of 5-aminolevulinic acid on protoporphyrin IX concentrations in the rat uterus.

    PubMed

    Roy, B N; Van Vugt, D A; Weagle, G E; Pottier, R H; Reid, R L

    1997-11-01

    The objective of the present study was to determine if the concentration of protoporphyrin IX (PpIX) in the rat endometrium could be increased by administering 5-aminolevulinic acid (ALA) in multiple doses or by continuous infusion. The effect of pH, temperature and time in solution on the stability of ALA were also investigated. Estrogen-filled silastic capsules were implanted subcutaneously into ovary intact female rats (200-225 g) (n = 66). On the third day of hormonal priming, ALA (10 mg or 25 mg) dissolved in saline and adjusted to a pH of 5-5.5 was administered intrauterine either as a single bolus or as two injections 3 hours apart (n = 10). A fifth group of rats was infused with 25 mg ALA over a 12 hour period using an osmotic minipump (n = 6). In a second experiment, ALA (25 mg) was injected immediately after being dissolved in saline (pH 2) (n = 16) or after incubation at 37 degrees C for 12 hour (pH 2) (n = 7). PpIX was then extracted from the endometrium and myometrium using a 1:1 methanol/perchloric acid solution and quantified spectrofluorometrically. A dose-response relationship was observed between 10 and 25 mg of ALA and endometrial PpIX concentrations. However, no differences in endometrial PpIX concentrations were detected between rats administered ALA either as a single bolus or as two doses. Continuous infusion of 25 mg of ALA resulted in statistically lower endometrial PpIX concentrations compared to 25 mg ALA injected either as a single bolus or as two injections. Neither pH, temperature, nor time in solution affected ALA-induced PpIX accumulation. We conclude that the simplest way of achieving the highest PpIX concentration in the rat endometrium in vivo is to administer a bolus injection of 25 mg of ALA. PMID:9440319

  6. Outcomes after combined use of intraoperative MRI and 5-aminolevulinic acid in high-grade glioma surgery

    PubMed Central

    Schatlo, Bawarjan; Fandino, Javier; Smoll, Nicolas R.; Wetzel, Oliver; Remonda, Luca; Marbacher, Serge; Perrig, Wolfgang; Landolt, Hans; Fathi, Ali-Reza

    2015-01-01

    Background Previous studies have shown the individual benefits of 5-aminolevulinic acid (5-ALA) and intraoperative (i)MRI in enhancing survival for patients with high-grade glioma. In this retrospective study, we compare rates of progression-free and overall survival between patients who underwent surgical resection with the combination of 5-ALA and iMRI and a control group without iMRI. Methods In 200 consecutive patients with high-grade gliomas, we recorded age, sex, World Health Organization tumor grade, and pre- and postoperative Karnofsky performance status (good ≥80 and poor <80). A 0.15-Tesla magnet was used for iMRI; all patients operated on with iMRI received 5-ALA. Overall and progression-free survival rates were compared using multivariable regression analysis. Results Median overall survival was 13.8 months in the non-iMRI group and 17.9 months in the iMRI group (P = .043). However, on identifying confounding variables (ie, KPS and resection status) in this univariate analysis, we then adjusted for these confounders in multivariate analysis and eliminated this distinction in overall survival (hazard ratio: 1.23, P = .34, 95% CI: 0.81, 1.86). Although 5-ALA enhanced the achievement of gross total resection (odds ratio: 3.19, P = .01, 95% CI: 1.28, 7.93), it offered no effect on overall or progression-free survival when adjusted for resection status. Conclusions Gross total resection is the key surgical variable that influences progression and survival in patients with high-grade glioma and more likely when surgical adjuncts, such as iMRI in combination with 5-ALA, are used to enhance resection. PMID:25858636

  7. 5-Aminolevulinic acid-mediated sonodynamic therapy reverses macrophage and dendritic cell passivity in murine melanoma xenografts.

    PubMed

    Wang, Shan; Hu, Zheng; Wang, Xiaolong; Gu, Chuanwen; Gao, Zhongxiuzi; Cao, Wenwu; Zheng, Jinhua

    2014-09-01

    Sonodynamic therapy (SDT) uses a combination of sonosensitizing drugs and low-intensity therapeutic ultrasound to cause apoptosis and autophagy of tumor cells. However, its effects on the tumor microenvironment, especially on the immune state, remain unknown. In this study, we investigated the transformation of macrophages and dendritic cells (DCs) in the tumor microenvironment during 5-aminolevulinic acid (5-ALA)-mediated SDT in mice transplanted with B16F10 melanomas. Tumor growth and mouse weight were measured. Hematoxylin-eosin staining was used to evaluate tumor morphology to quantify the anti-tumor efficacy of 5-ALA-mediated SDT. We investigated anti-tumor immunity in the tumor microenvironment by immunocytochemical staining of CD68, CD163, CD80, CD86, tumor necrosis factor α (TNF-α), interleukin 10 (IL-10) and interferon γ (IFN-γ). Tumor growth was restrained by 5-ALA-mediated SDT in B16F10 melanoma-bearing mice. CD68 levels increased and CD163 decreased, indicating that M2 macrophages were converted to the M1 phenotype in the tumor. The increase in CD80 and CD86 showed that DCs in the tumor microenvironment tend to mature after SDT treatment. The cytokines INF-γ, TNF-α and IL-10 significantly increased in SDT. Application of low-intensity therapeutic ultrasound alone also led to similar trends in our study, but combined treatment with 5-ALA yielded a change. The original stabilized immune state in the tumor microenvironment can be interrupted by low-intensity therapeutic ultrasound combined with 5-ALA, which enhanced the pro-inflammatory response and reversed the passive properties of macrophages and dendritic cells. PMID:25023114

  8. Comparative split-face study of 5-aminolevulinic acid photodynamic therapy with intense pulsed light for photorejuvenation of Asian skin.

    PubMed

    Kosaka, Sachiko; Yasumoto, Minako; Akilov, Oleg E; Hasan, Tayyaba; Kawana, Seiji

    2010-12-01

    Photodynamic therapy (PDT) with 5-aminolevulinic acid (ALA) (ALA-PDT) using intense pulsed light (IPL) as a light source (IPL-ALA-PDT) has been used for photorejuvenation, but it is unclear if this protocol can be applied to darker skin types. We performed this study to assess our IPL-ALA-PDT protocol for photorejuvenation in Asian skin. To determine an appropriate dose, ALA ointment (0-20%) was applied to the upper arm of five healthy volunteers and the fluorescence intensity (FI) was measured using a spectrofluorometer. Non-linear regression analysis of FI 2 h after ALA application with global fitting gave a typical sigmoid dose-response curve with R² = 0.9705 and saturation after 5% ALA. The entire faces of 16 Japanese women with photodamage were then treated with IPL (500-670 and 870-1400 nm, 23-30 J/cm²) 2 h after application of 5% ALA to one side of the face. Three treatments were delivered at 4-week intervals with follow-up visits. Comparative analysis of photorejuvenation showed noticeable improvements on both sides of the face, although the reduction in the photoaging score from baseline did not differ significantly between the two sides in all subjects. Despite this finding, 75% of the patients felt that the IPL-ALA-PDT-treated side of the face showed greater improvement than the IPL-treated side. However, all IPL-ALA-PDT-treated sides showed adverse effects such as erythema and pain. Therefore, we conclude that the IPL-ALA-PDT protocol requires optimization for photorejuvenation in Asians. PMID:21083701

  9. Clearance of protoporphyrin IX induced by 5-aminolevulinic acid from WiDr human colon carcinoma cells

    NASA Astrophysics Data System (ADS)

    Juzeniene, Asta; Kaliszewski, Miron; Bugaj, Andrzej; Moan, Johan

    2009-06-01

    5-aminolevulinic acid-mediated photodynamic therapy (ALA-PDT) is the most widely practiced form of PDT in dermatology. One of the advantages of ALA-PDT is that undesirable photosensitization lasts only for 24-48 h. In order to optimize ALA-PDT it is necessary to understand the mechanisms controlling intracellular PpIX clearance (efflux and transformation into heme) in order to decrease protoporphyrin IX (PpIX) clearance rates in the early stages of its production. The aim of this study was to investigate the factors controlling the clearance of intracellular PpIX. Fluorescence spectroscopy was used to study PpIX kinetics in WiDr cells initially treated with ALA. The clearance rate of PpIX in WiDr cells was faster after application of a low concentration of ALA (0.1 mM) than after application of high concentration of ALA (1 mM). PpIX was cleared faster from cells which initially were seeded at low densities than cells seeded at higher densities. The presence of the iron chelator deferoxamine reduced the clearance rate of PpIX, while the presence of ferrous sulfate acted oppositely. The decay rate of PpIX in WiDr cells was faster at higher temperature than at lower. The ferrochelatase activity at pH 7.2 was significantly greater than that at pH 6.7. ALA concentration, application time, cell density, temperature, pH, intracellular iron content, intracellular amount and localization of PpIX are factors controlling PpIX clearance.

  10. Efficacy of a Complex of 5-Aminolevulinic Acid and Glycyl-Histidyl-Lysine Peptide on Hair Growth

    PubMed Central

    Sim, Hyun Bo; Jang, Yong Hyun; Lee, Seok-Jong; Kim, Do Won; Yim, Soon-Ho

    2016-01-01

    Background Pattern hair loss is a very common problem. Although effective therapeutics for the treatment of pattern hair loss have been used, novel therapeutic modalities are still required to enhance hair growth. Objective We investigated the efficacy and safety of a complex (ALAVAX) of 5-aminolevulinic acid (5-ALA) and glycyl-histidyl-lysine (GHK) peptide for the treatment of pattern hair loss. Methods Forty-five patients with male pattern hair loss were treated with ALAVAX 100 mg/ml (group A), ALAVAX 50 mg/ml (group B) or placebo (group C) once a day for 6 months. Total hair count, hair length, hair thickness, patient's assessment and adverse events were evaluated at month 1, 3, and 6. Results An increase in hair count for 6 months was 52.6 (p<0.05) in group A, 71.5 (p<0.05) in group B, and 9.6 in group C. The ratio of changes in hair count between group B (2.38) and group C (1.21) at 6 months showed a statistically significant difference (p<0.05). The proportion above good satisfaction was higher in group A (26.7%) than in the other groups (group B: 14.3%, group C: 7.1%). There was no statistically significant difference in hair length and hair thickness among 3 groups at 6 months. There was no adverse event in 3 groups. Conclusion Our study showed that a complex of 5-ALA and GHK peptide may be considered as one of the complementary agents for the treatment of male pattern hair loss. PMID:27489425

  11. A LC–MS/MS method for the specific, sensitive, and simultaneous quantification of 5-aminolevulinic acid and porphobilinogen

    PubMed Central

    Zhang, Jinglan; Yasuda, Makiko; Desnick, Robert J.; Balwani, Manisha; Bishop, David; Yu, Chunli

    2012-01-01

    Accurate determinations of 5-aminolevulinic acid (ALA) and porphobilinogen (PBG) in physiologic fluids are required for the diagnosis and therapeutic monitoring of acute porphyrias. Current colorimetric methods are insensitive and over-estimate ALA and PBG due to poor specificity, while LC–MS/MS methods increase sensitivity, but have limited matrices. An LC–MS/MS method was developed to simultaneously determine ALA and PBG concentrations in fluids or tissues which were solid phase extracted, butanol derivatized, and quantitated by selective reaction monitoring using 13C5, 15N-ALA and 2,4-13C2-PBG internal standards. ALA was separated from interfering compounds on a reverse phase C8-column. For ALA and PBG, the matrix effects (87.3–105%) and process efficiencies (77.6–97.8% and 37.2–41.6%, respectively) were acceptable in plasma and urine matrices. The assay was highly sensitive for ALA and PBG (LLOQ = 0.05 µM with 25 µL urine or 100 µL plasma), and required ~4 h from extraction to results. ALA and PBG accuracy ranged from 88.2 to 110% (n = 10); intra- and inter-assay coefficients of variations were <10% for urine and plasma. In clinical applications, patients with mutation-confirmed acute porphyrias had normal to slightly increased urinary ALA and PBG levels when asymptomatic, and high levels during acute attacks, which decreased with hemin therapy. In AIP mice, baseline ALA and PBG levels in urine, plasma, and liver were increased after phenobarbital induction 28-/63-, 42-/266-, and 13-/316-fold, respectively. This LC–MS/MS method is rapid, specific, highly sensitive, accurate, and simultaneously measures ALA and PBG in urine, plasma, and tissues permitting porphyria clinical diagnoses, therapeutic monitoring, and research. PMID:21783436

  12. Photobleaching-based method to individualize irradiation time during interstitial 5-aminolevulinic acid photodynamic therapy.

    PubMed

    Hennig, Georg; Stepp, Herbert; Johansson, Ann

    2011-09-01

    Interstitial photodynamic therapy (iPDT) is being investigated for the treatment of high-grade human brain malignancies. In recent clinical studies, fluorescence monitoring during iPDT of glioblastoma multiforme has revealed patient-specific accumulation of photosensitizer (aminolevulinic acid (ALA) induced protoporphyrin IX, PpIX) and its photobleaching kinetics. As photosensitizer degradation, also referred to as photobleaching, and tissue damage are caused by the same underlying processes, the photobleaching kinetics might provide a tool for real-time treatment supervision. Here, we show with computer simulations that varying optical properties have a strong influence on the irradiation time required to fully bleach the photosensitizer. We propose a method to potentially determine the time point during iPDT, when the photosensitizer within the target volume has been largely photobleached. Simulations show that it is possible to determine this time point by continuously monitoring the ratio of the fluorescence intensities at two time points during irradiation. We show that this method works for a large range of optical properties, different photobleaching rates and varying inter-fibre distances. In conclusion, the relative fluorescence method offers the potential to individualize irradiation times to consume the photosensitizer within the target tissue during iPDT. PMID:21864802

  13. Short Communication Molecular cloning and expression pattern of the porcine 5-aminolevulinate synthase 1 (ALAS1) gene and its association with reproductive traits.

    PubMed

    Liu, L Q; Li, F E; Deng, C Y

    2016-01-01

    5-Aminolevulinate synthase 1 (ALAS1) is the first enzyme in the heme biosynthetic pathway and is upregulated in follicular tissue during the early stages of ovulation. In this study, we isolated the complete coding sequence of the porcine ALAS1 gene and its 2-9 intron sequence, identified a single nucleotide polymorphism (SNP; T/C) in intron 9, and developed a PCR-MspI-restriction fragment length polymorphism genotyping assay. Association of the SNP with litter size was assessed in two populations [purebred Large White and the experimental synthetic (DIV) line]. Statistical analysis demonstrated that for total number of piglets born (TNB) in all parities, pigs with the CC genotype had an additional 0.68 and 0.74 piglets compared to the TC and TT animals (P < 0.05) in the DIV line, respectively. Purebred Large White sows inheriting the CC and TC genotypes gave birth to an additional 0.96 and 0.70 piglets compared to the TT animals (P < 0.05) in all parities, respectively. In addition, for TNB in all parities, a significant additive effect of 0.48 ± 0.23 and 0.37 ± 0.17 piglets/ litter was detected in sows of both populations (P < 0.05), respectively. The highest levels of ALAS1 gene expression were observed in isolated ovarian granulosa cells 2 and 12 h after stimulation with pregnant mare serum gonadotropin human chorionic gonadotropin, which represents the time of follicular development and ovulation, respectively. Therefore, the ALAS1 gene was significantly associated with litter size in two populations and could be a useful molecular marker for the selection of increasing litter size in pigs. PMID:26910002

  14. Safety and Efficacy of 5-Aminolevulinic Acid for High Grade Glioma in Usual Clinical Practice: A Prospective Cohort Study

    PubMed Central

    Teixidor, Pilar; Vidal, Xavier; Montané, Eva

    2016-01-01

    Background During the last decade, the use of 5-aminolevulinic acid (5-ALA) has been steadily increasing in neurosurgery. The study's main objectives were to prospectively evaluate the effectiveness and safety of 5-ALA when used in clinical practice setting on high-grade gliomas’ patients. Methods National, multicenter and prospective observational study. Inclusion criteria: authorized conditions of use of 5-ALA. Exclusion criteria: contraindication to 5-ALA, inoperable or partial resected tumors, pregnancy and children. Epidemiological, clinical, laboratory, radiological, and safety data were collected. Effectiveness was assessed using complete resection of the tumor, and progression-free and overall survival probabilities. Results Between May 2010 and September 2014, 85 patients treated with 5-ALA were included, and 77 were suitable for the effectiveness analysis. Complete resection was achieved in 41 patients (54%). Surgeons considered suboptimal the fluorescence of 5-ALA in 40% of the patients assessed. The median duration of follow-up was 12.3 months. The progression-free survival probability at 6 months was 58%. The median duration overall survival was 14.2 months. Progression tumor risk factors were grade of glioma, age and resection degree; and death risk factors were grade of glioma and gender. No severe adverse effects were reported. At one month after surgery, new or increased neurological morbidity was 6.5%. Hepatic enzymes were frequently increased within the first month after surgery; however, they subsequently normalized, and this was found to have no clinical significance. Conclusion In clinical practice, the 5-ALA showed a good safety profile, but the benefits related to 5-ALA have not been yet clearly shown. The improved differentiation expected by fluorescence between normal and tumor cerebral tissue was suboptimal in a relevant number of patients; in addition, the expected higher degree of resection was lower than in clinical trials as well as

  15. In Vitro Comparison of Hypericin and 5-Aminolevulinic Acid-Derived Protoporphyrin IX for Photodynamic Inactivation of Medulloblastoma Cells

    PubMed Central

    Ritz, Rainer; Scheidle, Christian; Noell, Susan; Roser, Florian; Schenk, Martin; Dietz, Klaus; Strauss, Wolfgang S. L.

    2012-01-01

    Background Hypericin (HYP) is a naturally occurring photosensitizer. Cellular uptake and photodynamic inactivation after incubation with this photosensitizer have neither been examined in medulloblastoma cells in vitro, nor compared with 5-aminolevulinic acid-derived protoporphyrin IX (5-ALA-derived PpIX). Methods In 3 medulloblastoma cell lines (D283 Med, Daoy, and D341 Med) the time- and concentration-dependent intracellular accumulation of HYP and 5-ALA-derived PpIX was analyzed by fluorescence microscopy (FM) and FACS. Photocytotoxicity was measured after illumination at 595 nm (HYP) and 635 nm (5-ALA-derived PpIX) in D283 Med cells and compared to U373 MG glioma cells. Results All medulloblastoma cell lines exhibited concentration- and time-dependent uptake of HYP. Incubation with HYP up to 10 µM resulted in a rapid increase in fluorescence intensity, which peaked between 2 and 4 hours. 5-ALA-derived PpIX accumulation increased in D283 Med cells by 22% over baseline after 5-ALA incubation up to 1.2 mM. Photocytotoxicity of 5-ALA-derived PpIX was higher in D283 Med medulloblastoma compared to U373MG glioma. The [lethal dose (light dose that is required to reduce cell survival to 50% of control)] of 5-ALA-derived PpIX was 3.8 J/cm2 in D283 Med cells versus 5.7 J/cm2 in U373MG glioma cells. Photocytotoxicity of HYP in D283 Med cells was determined at 2.5 µM after an incubation time of 2 h and an illumination wavelength of 595 nm. The value was 0.47 J/cm2. Conclusion By its 5-fold increase in fluorescence over autofluorescence levels HYP has excellent properties for tumor visualization in medulloblastomas. The high photocytotoxicity of HYP, compared to 5-ALA-derived PpIX, is convincingly demonstrated by its 8- to 13-fold lower . Therefore HYP might be a promising molecule for intraoperative visualization and photodynamic treatment of medulloblastomas. PMID:23251668

  16. Treating cutaneous squamous cell carcinoma using 5-aminolevulinic acid polylactic-co-glycolic acid nanoparticle-mediated photodynamic therapy in a mouse model

    PubMed Central

    Wang, Xiaojie; Shi, Lei; Tu, Qingfeng; Wang, Hongwei; Zhang, Haiyan; Wang, Peiru; Zhang, Linglin; Huang, Zheng; Zhao, Feng; Luan, Hansen; Wang, Xiuli

    2015-01-01

    Background Squamous cell carcinoma (SCC) is a common skin cancer, and its treatment is still difficult. The aim of this study was to evaluate the effectiveness of nanoparticle (NP)-assisted 5-aminolevulinic acid (ALA) delivery for topical photodynamic therapy (PDT) of cutaneous SCC. Materials and methods Ultraviolet-induced cutaneous SCCs were established in hairless mice. ALA-loaded polylactic-co-glycolic acid (PLGA) NPs were prepared and characterized. The kinetics of ALA PLGA NP-induced protoporphyrin IX fluorescence in SCCs, therapeutic efficacy of ALA NP-mediated PDT, and immune responses were examined. Results PLGA NPs enhanced protoporphyrin IX production in SCC. ALA PLGA NP-mediated topical PDT was more effective than free ALA of the same concentration in treating cutaneous SCC. Conclusion PLGA NPs provide a promising strategy for delivering ALA in topical PDT of cutaneous SCC. PMID:25609949

  17. Insulin-Like Growth Factor-2 Is Induced Following 5-Aminolevulinic Acid-Mediated Photodynamic Therapy in SW620 Human Colon Cancer Cell Line

    PubMed Central

    Woźniak, Marta; Duś-Szachniewicz, Kamila; Ziółkowski, Piotr

    2015-01-01

    The IGF system is a family of polypeptide growth factors, which plays a significant role in the development and growth of many cells. Dysregulation of insulin-like growth factors and their pathway components has been connected with essential tumor properties, such as tumor cell proliferation, antiapoptotic properties, invasive behavior and chemotherapy resistance. However, the effects of photodynamic therapy (PDT), one of the cancer treatment methods for the regulation of the IGF signaling pathway, are still unclear. The aim of this study was to investigate the expression of IGF-2 after 5-aminolevulinic acid (5-ALA)-mediated-PDT in SW620 human colorectal cancer cells with evaluation of cell proliferation and apoptosis and to determine the effects of PDT on the IGF-2 receptor (IGF-2R), IGF-2 binding protein-1 (IGF-2BP-1) and the proapoptotic protein, BAX. Cells were treated with 5-aminolevulinic acid and its methyl ester. Changes of the expression and concentration of IGF-2 before and after treatment were assayed by immunocytochemistry, Western blot and ELISA. We found that IGF-2 was significantly overexpressed in the SW620 cell line, while its receptor and binding protein-1 were not significantly changed. Within this study, we would like to suggest that IGF-2 contributes to the effects of PDT and that its expression will influence post-PDT efficacy. PMID:26445041

  18. 5-Aminolevulinic Acid-based Photodynamic Intense Pulsed Light Therapy Shows Better Effects in the Treatment of Skin Photoaging in Asian Skin

    PubMed Central

    Xiang, Leihong Flora; Gold, Michael H.

    2010-01-01

    Objective: To investigate the effects of photodynamic intense pulsed light therapy on skin photoaging in Asian skin. Methods: This was a prospective, single-blinded, controlled, clinical trial with 40 patients enrolled. The enrolled patients applied 5% 5-aminolevulinic acid on the left side of the face while a placebo was applied on the right side of the face. After a one-hour incubation, the patients received intense pulsed light therapy. After four treatment cycles, the pH values, transepidermal water loss of the dermis of the forehead and canthus skin, as well as the moisture capacity of stratum corneum and the global score of photoaging were assessed. Results: The pH value of forehead and canthus skin, moisture capacity of stratum corneum, and the dermis of forehead and canthus skin of the photodynamic intense pulsed light therapy treated sides were significantly higher than those of the control sides in all of the patients. The photoaging score decreased after the therapy on both sides, with the photodynamic intense pulsed light therapy treated sides decreasing more than the control sides (P<0.01). Conclusion: 5-aminolevulinic acid photodynamic intense pulsed light therapy showed better effects in the treatment of skin photoaging compared to intense pulsed light therapy alone. PMID:20725543

  19. Insulin-Like Growth Factor-2 Is Induced Following 5-Aminolevulinic Acid-Mediated Photodynamic Therapy in SW620 Human Colon Cancer Cell Line.

    PubMed

    Woźniak, Marta; Duś-Szachniewicz, Kamila; Ziółkowski, Piotr

    2015-01-01

    The IGF system is a family of polypeptide growth factors, which plays a significant role in the development and growth of many cells. Dysregulation of insulin-like growth factors and their pathway components has been connected with essential tumor properties, such as tumor cell proliferation, antiapoptotic properties, invasive behavior and chemotherapy resistance. However, the effects of photodynamic therapy (PDT), one of the cancer treatment methods for the regulation of the IGF signaling pathway, are still unclear. The aim of this study was to investigate the expression of IGF-2 after 5-aminolevulinic acid (5-ALA)-mediated-PDT in SW620 human colorectal cancer cells with evaluation of cell proliferation and apoptosis and to determine the effects of PDT on the IGF-2 receptor (IGF-2R), IGF-2 binding protein-1 (IGF-2BP-1) and the proapoptotic protein, BAX. Cells were treated with 5-aminolevulinic acid and its methyl ester. Changes of the expression and concentration of IGF-2 before and after treatment were assayed by immunocytochemistry, Western blot and ELISA. We found that IGF-2 was significantly overexpressed in the SW620 cell line, while its receptor and binding protein-1 were not significantly changed. Within this study, we would like to suggest that IGF-2 contributes to the effects of PDT and that its expression will influence post-PDT efficacy. PMID:26445041

  20. Generation of reactive oxygen species from 5-aminolevulinic acid and Glutamate in cooperation with excited CdSe/ZnS QDs

    NASA Astrophysics Data System (ADS)

    Duong, Hong Dinh; Lee, Jee Won; Rhee, Jong Il

    2014-08-01

    CdSe/ZnS quantum dots (QDs) can be joined in the reductive pathway involving the electron transfer to an acceptor or in the oxidative pathway involving the hole transfer to a donor. They were exploited in the oxidation reactions of 5-aminolevulinic acid (ALA) and glutamate (GLU) for the generation of reactive oxygen species (ROS) such as hydroxyl radical (HO●) and superoxide anion (O2 ● -). Fast and highly efficient oxidation reactions of ALA to produce HO● and of GLU to produce O2 ●- were observed in the cooperation of mercaptopropionic acid (MPA)-capped CdSe/ZnS QDs under LED irradiation. Fluorescence spectroscopy and electron spin resonance (ESR) spectroscopy were used to evaluate the generation of different forms of ROS. Confocal fluorescent microscopic images of the size and morphology of HeLa cells confirmed the ROS generation from ALA or GLU in cooperation with CdSe/ZnS QDs under LED irradiation.

  1. Bi-functional prodrugs of 5-aminolevulinic acid and butyric acid increase erythropoiesis in anemic mice in an erythropoietin-independent manner.

    PubMed

    Rephaeli, Ada; Tarasenko, Nataly; Fibach, Eitan; Rozic, Gabriela; Lubin, Ido; Lipovetsky, Julia; Furman, Svetlana; Malik, Zvi; Nudelman, Abraham

    2016-08-25

    Anemia is a major cause of morbidity and mortality worldwide resulting from a wide variety of pathological conditions. In severe cases it is treated by blood transfusions or injection of erythroid stimulating agents, e.g., erythropoietin (Epo), which can be associated with serious adverse effects. Therefore, there is a need to develop new treatment modalities. We recently reported that treatment of erythroleukemic cells with the novel the bi-functional prodrugs of 5-aminolevulinic acid (ALA) and butyric acid (BA), AN233 and AN908, enhanced hemoglobin (Hb) synthesis to a substantially higher level than did ALA and BA individually or their mixture. Herein, we describe that these prodrugs when given orally to mice induced histone deacetylase inhibition in the kidneys, bone marrow and spleen, thus, indicating good penetrability to the tissues. In mice where anemia was chemically induced, treatment with the prodrugs increased the Hb, the number of red blood cells (RBCs) and the percentage of reticulocytes to normal levels. The prodrugs had no adverse effects even after repeated treatment at 100-200mg/kg for 50days. The lack of increased levels of Epo in the blood of mice that were treated with the prodrugs suggests that AN233 and AN908 affected the Hb and RBC levels in an Epo-independent manner. Taken together with our previous studies, we propose that the prodrugs increase globin expression by BA inhibition of histone deacetylase and elevation heme synthesis by ALA. These results support an Epo-independent approach for treating anemia with these prodrugs. PMID:27283485

  2. A Pilot Cost-Effectiveness Analysis of Treatments in Newly Diagnosed High-Grade Gliomas: The Example of 5-Aminolevulinic Acid Compared With White-Light Surgery

    PubMed Central

    Alves, Marta; Castel-Branco, Marta; Stummer, Walter

    2015-01-01

    BACKGROUND: High-grade gliomas are aggressive, incurable tumors characterized by extensive diffuse invasion of the normal brain parenchyma. Novel therapies at best prolong survival; their costs are formidable and benefit is marginal. Economic restrictions thus require knowledge of the cost-effectiveness of treatments. Here, we show the cost-effectiveness of enhanced resections in malignant glioma surgery using a well-characterized tool for intraoperative tumor visualization, 5-aminolevulinic acid (5-ALA). OBJECTIVE: To evaluate the cost-effectiveness of 5-ALA fluorescence-guided neurosurgery compared with white-light surgery in adult patients with newly diagnosed high-grade glioma, adopting the perspective of the Portuguese National Health Service. METHODS: We used a Markov model (cohort simulation). Transition probabilities were estimated with the use of data from 1 randomized clinical trial and 1 noninterventional prospective study. Utility values and resource use were obtained from published literature and expert opinion. Unit costs were taken from official Portuguese reimbursement lists (2012 values). The health outcomes considered were quality-adjusted life-years, life-years, and progression-free life-years. Extensive 1-way and probabilistic sensitivity analyses were performed. RESULTS: The incremental cost-effectiveness ratios are below €10 000 in all evaluated outcomes, being around €9100 per quality-adjusted life-year gained, €6700 per life-year gained, and €8800 per progression-free life-year gained. The probability of 5-ALA fluorescence-guided surgery cost-effectiveness at a threshold of €20000 is 96.0% for quality-adjusted life-year, 99.6% for life-year, and 98.8% for progression-free life-year. CONCLUSION: 5-ALA fluorescence-guided surgery appears to be cost-effective in newly diagnosed high-grade gliomas compared with white-light surgery. This example demonstrates cost-effectiveness analyses for malignant glioma surgery to be feasible on

  3. Combination of 5-aminolevulinic acid and ferrous ion reduces plasma glucose and hemoglobin A1c levels in Zucker diabetic fatty rats.

    PubMed

    Hara, Takeshi; Koda, Aya; Nozawa, Naoko; Ota, Urara; Kondo, Hikaru; Nakagawa, Hitoshi; Kamiya, Atsuko; Miyashita, Kazutoshi; Itoh, Hiroshi; Nakajima, Motowo; Tanaka, Tohru

    2016-06-01

    Mitochondrial dysfunction is associated with type 2 diabetes mellitus (T2DM). 5-Aminolevulinic acid (ALA), a natural amino acid produced only in the mitochondria, is a precursor of heme. Cytochromes that contain heme play an important role in aerobic energy metabolism. Thus, ALA may help reduce T2DM-associated hyperglycemia. In this study, we investigated the effect of ALA combined with sodium ferrous citrate (SFC) on hyperglycemia in Zucker diabetic fatty (ZDF) rats. We found that the gavage administration of ALA combined with SFC (ALA/SFC) for 6 weeks reduced plasma glucose and hemoglobin A1c (HbA1c) levels in rats without affecting plasma insulin levels. The glucose-lowering effect depended on the amount of ALA/SFC administered per day. Furthermore, the glucose tolerance was also significantly improved by ALA/SFC administration. Although food intake was slightly reduced in the rats administered ALA/SFC, there was no effect on their body weight. Importantly, ALA/SFC administration induced heme oxygenase-1 (HO-1) expression in white adipose tissue and liver, and the induced expression levels of HO-1 correlated with the glucose-lowering effects of ALA/SFC. Taken together, these results suggest that ALA combined with ferrous ion is effective in reducing hyperglycemia of T2DM without affecting plasma insulin levels. HO-1 induction may be involved in the mechanisms underlying the glucose-lowering effect of ALA/SFC. PMID:27239432

  4. Topical glycerol monooleate/propylene glycol formulations enhance 5-aminolevulinic acid in vitro skin delivery and in vivo protophorphyrin IX accumulation in hairless mouse skin.

    PubMed

    Steluti, Regilene; De Rosa, Fernanda Scarmato; Collett, John; Tedesco, Antônio Cláudio; Bentley, Maria Vitória Lopes Badra

    2005-08-01

    Photodynamic therapy (PDT), a potential therapy for cancer treatment, utilizes exogenously applied or endogenously formed photosensitizers, further activated by light in an appropriate wavelength and dose to induce cell death through free radical formation. 5-Aminolevulinic acid (5-ALA) is a pro-drug which can be converted to the effective photosensitizer, protoporphyrin IX (PpIX). However, the use of 5-ALA in PDT is limited by the low penetration capacity of this highly hydrophilic molecule into appropriate skin layers. In the present study, we propose to increase 5-ALA penetration by using formulations containing glycerol monooleate (GMO), an interesting and useful component of pharmaceutical formulations. Propylene glycol solutions containing different concentrations of GMO significantly increased the in vitro skin permeation/retention of 5-ALA in comparison to control solutions. In vivo studies also showed increased PpIX accumulation in mouse hairless skin, after the use of topical 5-ALA formulations containing GMO in a concentration-dependent manner. The results show that skin 5-ALA penetration and PpIX accumulation, important factors for the success of topical 5-ALA-PDT in skin cancer, are optimized by GMO/propylene glycol formulations. PMID:15996585

  5. eEF1A1 binds and enriches protoporphyrin IX in cancer cells in 5-aminolevulinic acid based photodynamic therapy

    PubMed Central

    Fan, Zhichao; Cui, Xiaojun; Wei, Dan; Liu, Wei; Li, Buhong; He, Hao; Ye, Huamao; Zhu, Naishuo; Wei, Xunbin

    2016-01-01

    Photodynamic therapy (PDT) with protoporphyrin IX (PpIX), which is endogenously derived from 5-aminolevulinic acid (5-ALA) or its derivatives, is a promising modality for the treatment of both pre-malignant and malignant lesions. However, the mechanisms of how ALA-induced PpIX selectively accumulated in the tumors are not fully elucidated. Here we discovered that eukaryotic translation elongation factor 1 alpha 1 (eEF1A1) interacted with PpIX (with an affinity constant of 2.96 × 106 M−1). Microscopy imaging showed that ALA-induced PpIX was co-localized with eEF1A1 in cancer cells. eEF1A1 was found to enrich ALA-induced PpIX in cells by competitively blocking the downstream bioavailability of PpIX. Taken together, our study discovered eEF1A1 as a novel photosensitizer binding protein, which may play an essential role in the enrichment of ALA-induced PpIX in cancer cells during PDT. These suggested eEF1A1 as a molecular marker to predict the selectivity and efficiency of 5-ALA based PDT in cancer therapy. PMID:27150264

  6. Preferential accumulation of 5-aminolevulinic acid-induced protoporphyrin IX in breast cancer: a comprehensive study on six breast cell lines with varying phenotypes

    NASA Astrophysics Data System (ADS)

    Millon, Stacy R.; Ostrander, Julie H.; Yazdanfar, Siavash; Brown, J. Quincy; Bender, Janelle E.; Rajeha, Anita; Ramanujam, Nirmala

    2010-01-01

    We describe the potential of 5-aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) fluorescence as a source of contrast for margin detection in commonly diagnosed breast cancer subtypes. Fluorescence intensity of PpIX in untreated and ALA-treated normal mammary epithelial and breast cancer cell lines of varying estrogen receptor expression were quantitatively imaged with confocal microscopy. Percentage change in fluorescence intensity integrated over 610-700 nm (attributed to PpIX) of posttreated compared to pretreated cells showed statistically significant differences between four breast cancer and two normal mammary epithelial cell lines. However, a direct comparison of post-treatment PpIX fluorescence intensities showed no differences between breast cancer and normal mammary epithelial cell lines due to confounding effects by endogenous fluorescence from flavin adenine dinucleotide (FAD). Clinically, it is impractical to obtain pre- and post-treatment images. Thus, spectral imaging was demonstrated as a means to remove the effects of endogenous FAD fluorescence allowing for discrimination between post-treatment PpIX fluorescence of four breast cancer and two normal mammary epithelial cell lines. Fluorescence spectral imaging of ALA-treated breast cancer cells showed preferential PpIX accumulation regardless of malignant phenotype and suggests a useful contrast mechanism for discrimination of residual cancer at the surface of breast tumor margins.

  7. eEF1A1 binds and enriches protoporphyrin IX in cancer cells in 5-aminolevulinic acid based photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Fan, Zhichao; Cui, Xiaojun; Wei, Dan; Liu, Wei; Li, Buhong; He, Hao; Ye, Huamao; Zhu, Naishuo; Wei, Xunbin

    2016-05-01

    Photodynamic therapy (PDT) with protoporphyrin IX (PpIX), which is endogenously derived from 5-aminolevulinic acid (5-ALA) or its derivatives, is a promising modality for the treatment of both pre-malignant and malignant lesions. However, the mechanisms of how ALA-induced PpIX selectively accumulated in the tumors are not fully elucidated. Here we discovered that eukaryotic translation elongation factor 1 alpha 1 (eEF1A1) interacted with PpIX (with an affinity constant of 2.96 × 106 M‑1). Microscopy imaging showed that ALA-induced PpIX was co-localized with eEF1A1 in cancer cells. eEF1A1 was found to enrich ALA-induced PpIX in cells by competitively blocking the downstream bioavailability of PpIX. Taken together, our study discovered eEF1A1 as a novel photosensitizer binding protein, which may play an essential role in the enrichment of ALA-induced PpIX in cancer cells during PDT. These suggested eEF1A1 as a molecular marker to predict the selectivity and efficiency of 5-ALA based PDT in cancer therapy.

  8. Wavelength-dependent in-vitro and in-vivo photodynamic effects after sensitization with 5-aminolevulinic acid induced protoporphyrin IX

    NASA Astrophysics Data System (ADS)

    Szeimies, Rolf-Markus; Abels, Christoph; Fritsch, Clemens; Steinbach, Pia; Baeumler, Wolfgang; Messmann, Helmut; Goetz, Alwin E.; Goerz, Guenter; Landthaler, Michael

    1996-01-01

    Photodynamic therapy (PDT) with topically applied 5-aminolevulinic acid (ALA) is of growing interest, in particular in dermatology. Due to the fact that PDT with intravenously administered Photofrin is the only clinically approved sensitizer so far and is performed at a wavelength of 630 nm, this wavelength is also used in most experimental and clinical trials with ALA. In this study influence of irradiation with coherent light from a tunable dye laser at different wavelengths ranging from 625 to 649 nm was investigated. In in vitro experiments HaCaT immortalized human keratinocytes were sensitized with 30 (mu) g/ml ALA for 24 hrs. By determination of cell viability with the MTT test, best cell-killing effects were observed following irradiation at 635 nm. In an in vivo setting using an amelanotic melanoma (A-Mel-3) grown subcutaneously in Syrian Golden hamsters, these results were confirmed: tumor growth determined by measuring tumor volume increase after 28 days was less pronounced in animals treated with 100 mg/kg ALA i.v. and irradiated 2.5 hrs. later at 635 nm, as compared to animals receiving an equal dose and irradiated at 630 nm. This observation in vitro is probably due to large amounts of photosensitizing protoporphyrin IX (PP) localized in cell membranes which is visualized by confocal laser scanning microscopy (CLSM) and determined by HPLC analysis. These results suggest that in ALA-PDT when a coherent light source is used probably better results are achieved irradiating at 635 nm.

  9. Characterization of a pseudo ternary phase diagram of poloxamer 407 systems for potential application of 5-aminolevulinic acid in photodynamic therapy.

    PubMed

    van Hemelrijck, Carlos; Müller-Goymann, Christel C

    2011-11-28

    A poloxamer 407 (POX) gel containing dimethyl isosorbide (DMIS), isopropyl alcohol (IPA), propylene glycol dicaprylocaprate (MIG) and water has been suggested in a previous study for permeation enhancement of 5-aminolevulinic acid (ALA) across isolated human stratum corneum. The purpose of this study was to characterize other formulations coming from the same pseudo ternary phase diagram as the "Thermogel" in order to find out which of them show appropriate characteristics to be used as a vehicle for ALA since it could be shown that variation of the ingredients' content had an influence on the permeation rate. A pseudo ternary phase diagram was developed with water, a fixed combination of 1:1 of IPA and DMIS and a fixed ratio of 4:1 POX to MIG. The systems were categorized according to their consistencies and ringing gel characteristics with special emphasis on appropriate formulations for dermal application. Polarizing microscopy enabled a clear differentiation between isotropic and anisotropic systems. Wide angle X-ray diffraction analyzes confirmed that anisotropy was due to crystalline POX. Furthermore both methods showed that IPA/DMIS was an inferior solvent mixture for POX related to water. PMID:21925581

  10. Synergism of herbicide toxicity by 5-aminolevulinic acid is related to physiological and ultra-structural disorders in crickweed (Malachium aquaticum L.).

    PubMed

    Xu, Ling; Zhang, Wenfang; Ali, Basharat; Islam, Faisal; Zhu, Jinwen; Zhou, Weijun

    2015-11-01

    Selection of effective herbicides to control weeds has been one of the major objectives of scientists. This study determines the differential tolerance or susceptibility of crickweed (Malachium aquaticum L.) to various concentration combinations of 5-aminolevulinic acid (ALA) (1, 10 and 100mg/L) and propyl 4-(2-(4,6-dimethoxypyrimidin-2-yloxy)benzylamino)benzoate (ZJ0273) (100, 200, and 500mg/L). ALA was applied as pre- and post-treatment alone or in combination with ZJ0273. Results showed that ZJ0273 stress alone imposed negative effects on M. aquaticum seedling's growth, net photosynthetic rates and SPAD values, and the rate of decline was consistently increased with the increase in ZJ0273 concentration. The ZJ0273 treatment showed a gradual decrease in the activities of antioxidant enzymes peroxidase (POD), superoxide dismutase (SOD), and ascorbate peroxidase (APX), and increase in the accumulation of malondialdehyde (MDA). Changes in chloroplast swelling, increased number of plastoglobuli, disruption of thylakoid, disintegrated mitochondria and turbid nucleoplasm were noticed. Moreover, SDS-PAGE analysis of total proteins revealed that herbicide stress in the leaves was associated with the decrease or disappearance of some protein bands. Further, two-dimensional gel electrophoresis (2-DE) results showed that proteins in different spots were classified into three types for M. aquaticum. These results indicate that the combined treatment of ALA and ZJ0273 synergizes the herbicide toxicity which is different from its independent effects on M. aquaticum and thus, could improve weed control efficacy. PMID:26615151

  11. eEF1A1 binds and enriches protoporphyrin IX in cancer cells in 5-aminolevulinic acid based photodynamic therapy.

    PubMed

    Fan, Zhichao; Cui, Xiaojun; Wei, Dan; Liu, Wei; Li, Buhong; He, Hao; Ye, Huamao; Zhu, Naishuo; Wei, Xunbin

    2016-01-01

    Photodynamic therapy (PDT) with protoporphyrin IX (PpIX), which is endogenously derived from 5-aminolevulinic acid (5-ALA) or its derivatives, is a promising modality for the treatment of both pre-malignant and malignant lesions. However, the mechanisms of how ALA-induced PpIX selectively accumulated in the tumors are not fully elucidated. Here we discovered that eukaryotic translation elongation factor 1 alpha 1 (eEF1A1) interacted with PpIX (with an affinity constant of 2.96 × 10(6) M(-1)). Microscopy imaging showed that ALA-induced PpIX was co-localized with eEF1A1 in cancer cells. eEF1A1 was found to enrich ALA-induced PpIX in cells by competitively blocking the downstream bioavailability of PpIX. Taken together, our study discovered eEF1A1 as a novel photosensitizer binding protein, which may play an essential role in the enrichment of ALA-induced PpIX in cancer cells during PDT. These suggested eEF1A1 as a molecular marker to predict the selectivity and efficiency of 5-ALA based PDT in cancer therapy. PMID:27150264

  12. Differential antioxidant defense and detoxification mechanisms in photodynamically stressed rice plants treated with the deregulators of porphyrin biosynthesis, 5-aminolevulinic acid and oxyfluorfen.

    PubMed

    Phung, Thu-Ha; Jung, Sunyo

    2015-04-01

    This study focuses on differential molecular mechanisms of antioxidant and detoxification systems in rice plants under two different types of photodynamic stress imposed by porphyrin deregulators, 5-aminolevulinic acid (ALA) and oxyfluorfen (OF). The ALA-treated plants with white necrosis exhibited a greater decrease in photochemical quantum efficiency, Fv/Fm, as well as a greater increase in activity of superoxide dismutase, compared to the OF-treated plants. By contrast, the brown necrosis in OF-treated plants resulted in not only more widely dispersed H2O2 production and greater increases in H2O2-decomposing enzymes, catalase and peroxidase, but also lower ascorbate redox state. In addition, ALA- and OF-treated plants markedly up-regulated transcript levels of genes involved in detoxification processes including transport and movement, cellular homeostasis, and xenobiotic conjugation, with prominent up-regulation of serine/threonine kinase and chaperone only in ALA-treated plants. Our results demonstrate that different photodynamic stress imposed by ALA and OF developed differential actions of antioxidant enzymes and detoxification. Particularly, detoxification system may play potential roles in plant protection against photodynamic stress imposed by porphyrin deregulators, thereby contributing to alleviation of photodynamic damage. PMID:25735982

  13. Heterologous expression of glutamyl-tRNA reductase gene in Rhodobacter sphaeroides O.U.001 to enhance 5-aminolevulinic acid production

    PubMed Central

    Kars, Gökhan; Alparslan, Ümmühan

    2014-01-01

    The pathways for synthesis of 5-aminolevulinic acid (5-ALA) use either succinyl-CoA and glycine (C-4 pathway), or glutamate (C-5 pathway). Although Rhodobacter sphaeroides synthesizes 5-ALA through the C-4 pathway, it also has the genes coding for the enzymes of the C-5 pathway, except for glutamyl-tRNA reductase. The glutamyl-tRNA reductase gene was cloned from Rhodospirillum rubrum and expressed in R. sphaeroides; thus, the C-5 pathway was enabled to function upon assembling all the required genes. Consequently, a new and unique bacterial strain producing more 5-ALA was developed. Biohydrogen was also produced in the same bioprocess within a biorefinery approach using sugar beet molasses as substrate. The amount of 5-ALA produced by the modified strain was 25.9 mg/g dry cell weight (DCW), whereas the wild-type strain produced 12.4 mg/g DCW. In addition, the amount of H2 generated by the modified and wild-type cells, respectively, was 0.92 L/L culture and 1.05 L/L culture. PMID:26740781

  14. Alleviation of Lead Toxicity by 5-Aminolevulinic Acid Is Related to Elevated Growth, Photosynthesis, and Suppressed Ultrastructural Damages in Oilseed Rape

    PubMed Central

    Tian, Tian; Qin, Yebo; Gill, Rafaqat A.; Ali, Shafaqat

    2014-01-01

    Lead (Pb) is a widely spread pollutant and leads to diverse morphological and structural changes in the plants. In this study, alleviating role of 5-aminolevulinic acid (ALA) in oilseed rape (Brassica napus L.) was investigated with or without foliar application of ALA (25 mg L−1) in hydroponic environment under different Pb levels (0, 100, and 400 µM). Outcomes stated that plant morphology and photosynthetic attributes were reduced under the application of Pb alone. However, ALA application significantly increased the plant growth and photosynthetic parameters under Pb toxicity. Moreover, ALA also lowered the Pb concentration in shoots and roots under Pb toxicity. The microscopic studies depicted that exogenously applied ALA ameliorated the Pb stress and significantly improved the cell ultrastructures. After application of ALA under Pb stress, mesophyll cell had well-developed nucleus and chloroplast having a number of starch granules. Moreover, micrographs illustrated that root tip cell contained well-developed nucleus, a number of mitochondria, and golgi bodies. These results proposed that under 15-day Pb-induced stress, ALA improved the plant growth, chlorophyll content, photosynthetic parameters, and ultrastructural modifications in leaf mesophyll and root tip cells of the B. napus plants. PMID:24683549

  15. 5-aminolevulinic acid-mediated photodynamic therapy of intraepithelial neoplasia and human papillomavirus of the uterine cervix--a new experimental approach.

    PubMed

    Wierrani, F; Kubin, A; Jindra, R; Henry, M; Gharehbaghi, K; Grin, W; Söltz-Szötz, J; Alth, G; Grünberger, W

    1999-01-01

    The aim of this study was to treat patients for ectocervical dysplasia [cervical intraepithelial neoplasia (CIN) grades 1 and 2] and associated human papilloma virus (HPV) infections with photodynamic therapy (PDT). In 20 patients, 5-aminolevulinic acid (5-ALA, 12% w/v) was applied topically with a cervical cap 8 h prior to illumination. A thermal light source (150 W halogen lamp) emitting a broadband red light (total energy: 100 J/cm2, fluence rate: 90 mW/cm2) was used for superficial illumination of the portio. In addition, an Nd:YAG pumped dye laser (652 nm) was used to illuminate the cervical canal (total energy: 50 J/cm2, fluence rate: 300 mW/cm2). Preliminary results of follow-ups at 1, 3, 6, and 9 months posttherapy showed a cytological improvement in the grading of the PAP smears in 19 patients and the eradication of cervical HPV in 80%. These results demonstrate that ectocervical dysplasia and associated HPV infections can be treated by PDT. PMID:10403907

  16. Mitochondrial and endoplasmic reticulum stress-induced apoptotic pathways are activated by 5-aminolevulinic acid-based photodynamic therapy in HL60 leukemia cells.

    PubMed

    Grebenová, Dana; Kuzelová, Katerina; Smetana, Karel; Pluskalová, Michaela; Cajthamlová, Hana; Marinov, Iuri; Fuchs, Ota; Soucek, Josef; Jarolím, Petr; Hrkal, Zbynek

    2003-02-01

    We studied the mechanism of the cytotoxic effects of 5-aminolevulinic acid-based photodynamic therapy (ALA-PDT; induction with 1 mM ALA for 4 h followed by a blue light dose of 18 J/cm(2)) on the human promyelocytic leukemia cell line HL60 using biochemical and electron microscopy methods. The disruption of mitochondrial membrane potential, deltapsi(m), was paralleled by a decrease in ATP level, unmasking of the mitochondrial antigen 7A6, release of cytochrome c into the cytoplasm, activation of caspases 9 and 3 and cleavage of poly(ADP-ribose) polymerase (PARP). This was followed by DNA fragmentation. These data suggest that ALA-PDT activates the mitochondrial apoptotic pathway. The level of endoplasmic reticulum Ca(2+)-binding chaperones ERp57 and ERp72 and of anti-apoptotic proteins Bcl-2 and Bcl-x(L) was decreased whereas that of Ca(2+)-binding protein calmodulin and the stress protein HSP60 was elevated following ALA-PDT. Inhibition of the initiator caspase 9, execution caspase 3 and Ca(2+)-dependent protease m-calpain, did not prevent DNA fragmentation. We conclude that, in our in vitro model, ALA-based photodynamic treatment initiates several signaling processes in HL60 cells that lead to rapidly progressing apoptosis, which is followed by slow necrosis. Two apoptotic processes proceed in parallel, one representing the mitochondrial pathway, the other involving disruption of calcium homeostasis and activation of the endoplasmic reticulum stress-mediated pathway. PMID:12633980

  17. The role of 5-aminolevulinic acid in enhancing surgery for high-grade glioma, its current boundaries, and future perspectives: A systematic review.

    PubMed

    Mansouri, Alireza; Mansouri, Sheila; Hachem, Laureen D; Klironomos, George; Vogelbaum, Michael A; Bernstein, Mark; Zadeh, Gelareh

    2016-08-15

    5-Aminolevulinic acid (5-ALA) has been approved as an intraoperative adjunct in glioma surgery in Europe, but not North America. A systematic review was conducted to assess the evidence regarding 5-ALA as a surgical adjunct. The MEDLINE, EMBASE, and CENTRAL databases were searched, using terms relevant to "5-ALA" and "high-grade gliomas." Included studies were based on adults aged ≥18 years who underwent surgical resection/biopsy. No language or date limitations were used. Forty-three studies (1830 patients) were identified. Thirty-six were coordinated by European countries, 2 were in the United States, and none were in Canada. One was randomized, 28 were prospective, and 14 were retrospective. Twenty-six studies assessed the utility of 5-ALA as a diagnostic tool, 24 assessed its influence on the extent of resection (EOR), 9 assessed survival, and 22 reported adverse events. 5-ALA had high sensitivity and positive predictive value, whereas its specificity increased with additional adjuncts. The EOR increased with 5-ALA, but only progression-free survival was significantly influenced. Reporting of adverse events was not systematic. The use of 5-ALA improved tumor visualization and thus enabled a greater EOR and perhaps increased survival. However, additional adjuncts may be necessary for maximizing the specificity of resection and patient safety. Additional parameters, such as patient quality of life and health economic analyses, would be informative. Thus, additional systematic collection of prospective evidence may be necessary for the global incorporation of this potentially valuable surgical adjunct into routine practice. Cancer 2016;122:2469-78. © 2016 American Cancer Society. PMID:27183272

  18. Topical delivery of 5-aminolevulinic acid-encapsulated ethosomes in a hyperproliferative skin animal model using the CLSM technique to evaluate the penetration behavior.

    PubMed

    Fang, Yi-Ping; Huang, Yaw-Bin; Wu, Pao-Chu; Tsai, Yi-Hung

    2009-11-01

    Psoriasis, an inflammatory skin disease, exhibits recurring itching, soreness, and cracked and bleeding skin. Currently, the topical delivery of 5-aminolevulinic acid-photodynamic therapy (ALA-PDT) is an optional treatment for psoriasis which provides long-term therapeutic effects, is non-toxic and enjoys better compliance with patients. However, the precursor of ALA is hydrophilic, and thus its ability to penetrate the skin is limited. Also, little research has provided a platform to investigate the penetration behavior in disordered skin. We employed a highly potent ethosomal carrier (phosphatidylethanolamine; PE) to investigate the penetration behavior of ALA and the recovery of skin in a hyperproliferative murine model. We found that the application of ethosomes produced a significant increase in cumulative amounts of 5-26-fold in normal and hyperproliferative murine skin samples when compared to an ALA aqueous solution; and the ALA aqueous solution appeared less precise in terms of the penetration mode in hyperproliferative murine skin. After the ethosomes had been applied, the protoporphyrin IX (PpIX) intensity increased about 3.64-fold compared with that of the ALA aqueous solution, and the penetration depth reached 30-80 microm. The results demonstrated that the ethosomal carrier significantly improved the delivery of ALA and the formation of PpIX in both normal and hyperproliferative murine skin samples, and the expression level of tumor necrosis factor (TNF)-alpha was reduced after the ALA-ethosomes were applied to treat hyperproliferative murine skin. Furthermore, the results of present study encourage more investigations on the mechanism of the interaction with ethosomes and hyperproliferative murine skin. PMID:19660544

  19. Histopathological implications of ventricle wall 5-aminolevulinic acid-induced fluorescence in the absence of tumor involvement on magnetic resonance images.

    PubMed

    Moon, Ju Hyung; Kim, Se Hoon; Shim, Jin-Kyoung; Roh, Tae-Hoon; Sung, Kyoung Su; Lee, Ji-Hyun; Park, Junseong; Choi, Junjeong; Kim, Eui-Hyun; Kim, Sun Ho; Kang, Seok-Gu; Chang, Jong Hee

    2016-08-01

    During 5-aminolevulinic acid (ALA)-guided glioblastoma multiforme (GBM) surgery, we encountered fluorescence in ventricular walls that lacked enhancement on magnetic resonance (MR) images and were free of macroscopic invasion of tumor cells. However, the meaning of ventricular wall fluorescence during 5-ALA-guided surgery is still unknown. The aim of this study was to investigate the relationship between intraoperative 5-ALA fluorescence and histopathological findings of ventricular walls free of enhancement on MR images. Nineteen patients with newly diagnosed GBM located near the lateral ventricle underwent 5‑ALA fluorescence‑guided surgery. During the surgery, the ventricle wall was opened and investigated with the aid of a surgical microscope equipped with optical filters to examine 5‑ALA fluorescence of the ventricular wall. Twenty‑five ventricular wall tissues that were apparently free of tumor involvement by MR imaging and macroscopic observation were obtained during surgery. Among the 19 cases with brightly fluorescing tumor masses, 11 patients (57.9%) exhibited 5‑ALA‑induced fluorescence in the ventricular wall. Of the 25 ventricular wall samples, 11 exhibited 5‑ALA‑induced fluorescence; upon pathologic examination, tumors were present in 5 samples (45.5%), but the remaining 6 (54.5%) were free of tumor cells. A pathologic examination revealed no tumor cells in the 14 samples that lacked 5‑ALA‑induced fluorescence. Our data suggest the possibility that glioma cells exhibiting 5‑ALA fluorescence are present in the ventricle wall, despite no signs of tumor involvement in MR images. Further investigation of non‑tumor cells from tissues with 5‑ALA fluorescence is needed to understand the nature of this unexpected ventricular wall fluorescence. PMID:27374931

  20. Impact of 5-aminolevulinic acid with iron supplementation on exercise efficiency and home-based walking training achievement in older women

    PubMed Central

    Masuki, Shizue; Morita, Atsumi; Kamijo, Yoshi-ichiro; Ikegawa, Shigeki; Kataoka, Yufuko; Ogawa, Yu; Sumiyoshi, Eri; Takahashi, Kiwamu; Tanaka, Tohru; Nakajima, Motowo

    2015-01-01

    A reduction in exercise efficiency with aging limits daily living activities. We examined whether 5-aminolevulinic acid (ALA) with sodium ferrous citrate (SFC) increased exercise efficiency and voluntary achievement of interval walking training (IWT) in older women. Ten women [65 ± 3(SD) yr] who had performed IWT for >12 mo and were currently performing IWT participated in this study. The study was conducted in a placebo-controlled, double-blind crossover design. All subjects underwent two trials for 7 days each in which they performed IWT with ALA+SFC (100 and 115 mg/day, respectively) or placebo supplement intake (CNT), intermittently with a 2-wk washout period. Before and after each trial, subjects underwent a graded cycling test at 27.0°C atmospheric temperature and 50% relative humidity, and oxygen consumption rate, carbon dioxide production rate, and lactate concentration in plasma were measured. Furthermore, for the first 6 days of each trial, exercise intensity for IWT was measured by accelerometry. We found that, in the ALA+SFC trial, oxygen consumption rate and carbon dioxide production rate during graded cycling decreased by 12% (P < 0.001) and 11% (P = 0.001) at every workload, respectively, accompanied by a 16% reduction in lactate concentration in plasma (P < 0.001), although all remained unchanged in the CNT trial (P > 0.2). All of the reductions were significantly greater in the ALA+SFC than the CNT trial (P < 0.05). Furthermore, the training days, impulse, and time at fast walking were 42% (P = 0.028), 102% (P = 0.027), and 69% (P = 0.039) higher during the ALA+SFC than the CNT intake period, respectively. Thus ALA+SFC supplementation augmented exercise efficiency and thereby improved IWT achievement in older women. PMID:26514619

  1. Perturbed porphyrin biosynthesis contributes to differential herbicidal symptoms in photodynamically stressed rice (Oryza sativa) treated with 5-aminolevulinic acid and oxyfluorfen.

    PubMed

    Phung, Thu-Ha; Jung, Sunyo

    2014-11-01

    This paper focuses on the molecular mechanism of deregulated porphyrin biosynthesis in rice plants under photodynamic stress imposed by an exogenous supply of 5-aminolevulinic acid (ALA) and oxyfluorfen (OF). Plants treated with 5 mM ALA or 50 µM OF exhibited differential herbicidal symptoms as characterized by white and brown necrosis, respectively, with substantial increases in cellular leakage and malondialdehyde production. Protoporphyrin IX accumulated to higher levels after 1 day of ALA and OF treatment, whereas it decreased to the control level after 2 days of ALA treatment. Plants responded to OF by greatly decreasing the levels of Mg-protoporphyrin IX (MgProto IX), MgProto IX methyl ester, and protochlorophyllide to levels lower than control, whereas their levels drastically increased 1 day after ALA treatment and then disappeared 2 days after the treatment. Enzyme activity and transcript levels of HEMA1, GSA and ALAD for ALA synthesis greatly decreased in ALA- and OF-treated plants. Transcript levels of PPO1, CHLH, CHLI, and PORB genes involving Mg-porphyrin synthesis continuously decreased in ALA- and OF-treated plants, with greater decreases in ALA-treated plants. By contrast, up-regulation of FC2 and HO2 genes in Fe-porphyrin branch was noticeable in ALA and OF-treated plants 1 day and 2 days after the treatments, respectively. Decreased transcript levels of nuclear-encoded genes Lhcb1, Lhcb6, and RbcS were accompanied by disappearance of MgProto IX in ALA- and OF-treated plants after 2 days of the treatments. Under photodynamic stress imposed by ALA and OF, tight control of porphyrin biosynthesis prevents accumulation of toxic metabolic intermediates not only by down-regulation of their biosynthesis but also by photodynamic degradation. The up-regulation of FC2 and HO2 also appears to compensate for the photodynamic stress-induced damage. PMID:25454526

  2. Impact of 5-aminolevulinic acid with iron supplementation on exercise efficiency and home-based walking training achievement in older women.

    PubMed

    Masuki, Shizue; Morita, Atsumi; Kamijo, Yoshi-ichiro; Ikegawa, Shigeki; Kataoka, Yufuko; Ogawa, Yu; Sumiyoshi, Eri; Takahashi, Kiwamu; Tanaka, Tohru; Nakajima, Motowo; Nose, Hiroshi

    2016-01-01

    A reduction in exercise efficiency with aging limits daily living activities. We examined whether 5-aminolevulinic acid (ALA) with sodium ferrous citrate (SFC) increased exercise efficiency and voluntary achievement of interval walking training (IWT) in older women. Ten women [65 ± 3(SD) yr] who had performed IWT for >12 mo and were currently performing IWT participated in this study. The study was conducted in a placebo-controlled, double-blind crossover design. All subjects underwent two trials for 7 days each in which they performed IWT with ALA+SFC (100 and 115 mg/day, respectively) or placebo supplement intake (CNT), intermittently with a 2-wk washout period. Before and after each trial, subjects underwent a graded cycling test at 27.0 °C atmospheric temperature and 50% relative humidity, and oxygen consumption rate, carbon dioxide production rate, and lactate concentration in plasma were measured. Furthermore, for the first 6 days of each trial, exercise intensity for IWT was measured by accelerometry. We found that, in the ALA+SFC trial, oxygen consumption rate and carbon dioxide production rate during graded cycling decreased by 12% (P < 0.001) and 11% (P = 0.001) at every workload, respectively, accompanied by a 16% reduction in lactate concentration in plasma (P < 0.001), although all remained unchanged in the CNT trial (P > 0.2). All of the reductions were significantly greater in the ALA+SFC than the CNT trial (P < 0.05). Furthermore, the training days, impulse, and time at fast walking were 42% (P = 0.028), 102% (P = 0.027), and 69% (P = 0.039) higher during the ALA+SFC than the CNT intake period, respectively. Thus ALA+SFC supplementation augmented exercise efficiency and thereby improved IWT achievement in older women. PMID:26514619

  3. Oil components modulate the skin delivery of 5-aminolevulinic acid and its ester prodrug from oil-in-water and water-in-oil nanoemulsions

    PubMed Central

    Zhang, Li-Wen; Al-Suwayeh, Saleh A; Hung, Chi-Feng; Chen, Chih-Chieh; Fang, Jia-You

    2011-01-01

    The study evaluated the potential of nanoemulsions for the topical delivery of 5-aminolevulinic acid (ALA) and methyl ALA (mALA). The drugs were incorporated in oil-in-water (O/W) and water-in-oil (W/O) formulations obtained by using soybean oil or squalene as the oil phase. The droplet size, zeta potential, and environmental polarity of the nanocarriers were assessed as physicochemical properties. The O/W and W/O emulsions showed diameters of 216–256 and 18–125 nm, which, respectively, were within the range of submicron- and nano-sized dispersions. In vitro diffusion experiments using Franz-type cells and porcine skin were performed. Nude mice were used, and skin fluorescence derived from protoporphyrin IX was documented by confocal laser scanning microscopy (CLSM). The loading of ALA or mALA into the emulsions resulted in slower release across cellulose membranes. The release rate and skin flux of topical drug application were adjusted by changing the type of nanocarrier, the soybean oil O/W systems showing the highest skin permeation. This formulation increased ALA flux via porcine skin to 180 nmol/cm2/h, which was 2.6-fold that of the aqueous control. The CLSM results showed that soybean oil systems promoted mALA permeation to deeper layers of the skin from ∼100 μm to ∼140 μm, which would be beneficial for treating subepidermal and subcutaneous lesions. Drug permeation from W/O systems did not surpass that from the aqueous solution. An in vivo dermal irritation test indicated that the emulsions were safe for topical administration of ALA and mALA. PMID:21556344

  4. Differential antioxidant defense and detoxification mechanisms in photodynamically stressed rice plants treated with the deregulators of porphyrin biosynthesis, 5-aminolevulinic acid and oxyfluorfen

    SciTech Connect

    Phung, Thu-Ha; Jung, Sunyo

    2015-04-03

    This study focuses on differential molecular mechanisms of antioxidant and detoxification systems in rice plants under two different types of photodynamic stress imposed by porphyrin deregulators, 5-aminolevulinic acid (ALA) and oxyfluorfen (OF). The ALA-treated plants with white necrosis exhibited a greater decrease in photochemical quantum efficiency, F{sub v}/F{sub m}, as well as a greater increase in activity of superoxide dismutase, compared to the OF-treated plants. By contrast, the brown necrosis in OF-treated plants resulted in not only more widely dispersed H{sub 2}O{sub 2} production and greater increases in H{sub 2}O{sub 2}-decomposing enzymes, catalase and peroxidase, but also lower ascorbate redox state. In addition, ALA- and OF-treated plants markedly up-regulated transcript levels of genes involved in detoxification processes including transport and movement, cellular homeostasis, and xenobiotic conjugation, with prominent up-regulation of serine/threonine kinase and chaperone only in ALA-treated plants. Our results demonstrate that different photodynamic stress imposed by ALA and OF developed differential actions of antioxidant enzymes and detoxification. Particularly, detoxification system may play potential roles in plant protection against photodynamic stress imposed by porphyrin deregulators, thereby contributing to alleviation of photodynamic damage. - Highlights: • We employ two different types of photodynamic stress, white and brown necrosis. • We examine molecular mechanisms of antioxidative and detoxification systems. • ALA and OF develop differential actions of antioxidant and detoxification systems. • Coordinated mechanism of antioxidants and detoxification works against toxic ROS. • Detoxification system plays critical roles in protection against photodynamic stress.

  5. Enhancement of 5-aminolevulinic-acid-induced photodynamic therapy using light-dose fractionation and iron-chelating agents

    NASA Astrophysics Data System (ADS)

    Curnow, Alison; Postle-Hacon, Matthew J.; MacRobert, Alexander J.; Bown, Stephen G.

    1998-05-01

    Preliminary clinical studies of 5-aminolaevulinic acid (ALA) induced photodynamic therapy (PDT) with the maximum tolerated oral dose (60 mg/kg), currently appear to only produce limited amounts of necrosis. We have studied ways of increasing this effect without increasing the drug dose. In normal, female, Wistar rats we have found it possible to increase the area of necrosis produced in the colon substantially by simply interrupting the light dose (25 J, 635 nm, 100 mW) for a short period of time, while all other variables are kept constant. It is possible to cause up to four times more necrosis with a dose of 200 mg/kg ALA i.v. by introducing a single 150 second interval which splits the light dose into two fractions after 5 J has been delivered. We have found these parameters to be optimal for this dose. Likewise, in the same model, the effect of the iron chelating agent, CP94, was also investigated and we have found it possible to produce three times the area of necrosis with the simultaneous administration of 100 mg/kg CP94 i.v. and 50 mg/kg ALA i.v. We have therefore shown, that it is possible to significantly increase the effects of ALA induced PDT without increasing the administered dose of ALA by utilizing these techniques.

  6. 5-Aminolevulinic Acid Thins Pear Fruits by Inhibiting Pollen Tube Growth via Ca2+-ATPase-Mediated Ca2+ Efflux

    PubMed Central

    An, Yuyan; Li, Jie; Duan, Chunhui; Liu, Longbo; Sun, Yongping; Cao, Rongxiang; Wang, Liangju

    2016-01-01

    Chemical fruit thinning has become a popular practice in modern fruit orchards for achieving high quality fruits, reducing costs of hand thinning and promoting return bloom. However, most of the suggested chemical thinners are often concerned for their detrimental effects and environmental problems. 5-Aminolevulic acid (ALA) is a natural, nontoxic, biodegradable, and environment-friendly plant growth regulator. One of its outstanding roles is improving plant photosynthesis and fruit quality. Here, results showed that applying 100–200 mg/L ALA at full bloom stage significantly reduced pear fruit set. Both in vivo and in vitro studies showed that ALA significantly inhibited pollen germination and tube growth. ALA decreased not only cytosolic Ca2+ concentration ([Ca2+]cyt) but also “tip-focused” [Ca2+]cyt gradient, indicating that ALA inhibited pollen tube growth by down-regulating calcium signaling. ALA drastically enhanced pollen Ca2+-ATPase activity, suggesting that ALA-induced decrease of calcium signaling probably resulted from activating calcium pump. The significant negative correlations between Ca2+-ATPase activity and pollen germination or pollen tube length further demonstrated the critical role of calcium pump in ALA's negative effect on pollen germination. Taken together, our results suggest that ALA at low concentrations is a potential biochemical thinner, and it inhibits pollen germination and tube growth via Ca2+ efflux by activating Ca2+-ATPase, thereby thinning fruits by preventing fertilization. PMID:26904082

  7. Interstitial photodynamic therapy of canine prostate with meso-tetra-(m-hydroxyphenyl) chlorin and 5-aminolevulinic acid: a preliminary study

    NASA Astrophysics Data System (ADS)

    Chang, Shi-Chung; Buonaccorsi, Giovanni A.; MacRobert, Alexander J.; Bown, Stephen G.

    1996-01-01

    Photodynamic therapy (PDT) is proved to have potential for managing various malignancies. We investigated tissue biodistribution and photodynamic effects on a canine model in vivo using second generation photosensitizers, meso-tetra(m-hydroxyphenyl)chlorin (mTHPC) and 5-aminolaevulinic acid (ALA) to evaluate the feasibility and possible future application of PDT on the prostate. Using fluorescence microscopy, the optimal sensitization time of the prostate was between 24 - 72 hours with mTHPC and, 3 hours with ALA. After optimum time of sensitization, prostates of mature beagle were treated with laser at various sites by placing fiber interstitially under the guidance of transrectal ultrasound. The light dose for each treatment site was 100 J (100 mW for 1,000 seconds at the wavelength of 650 and 630 nm, respectively). With mTHPC, single laser fiber was able to induce organ confined PDT lesion as large as 20 by 18 by 18 mm in size. However, the PDT lesion with ALA was negligible 3 days after treatment. Physical distress manifested as urinary retention, poor appetite and body weigh loss, was more prominent with increasing number of treatment sites as a result of extensive prostatic swelling and urethral damages. However, these problems usually alleviated spontaneously 7 to 10 days after PDT. The characteristic histological changes were hemorrhagic necrosis and glandular destruction with preservation of interlobular collagen fibers. Urethral damage seen at the early stage healed by regeneration of urothelium in 4 weeks. We conclude that interstitial PDT with mTHPC is technically possible to produce extensive glandular necrosis in the normal prostate which heals safely and does not change the prostatic architecture. ALA, although it seems promising for bladder tumors, is much less effective than mTHPC on the prostate. With mTHPC, it might have the potential for treating prostate cancers localized in the periphery of the gland.

  8. In vitro study of cell death with 5-aminolevulinic acid based photodynamic therapy to improve the efficiency of cancer treatment

    NASA Astrophysics Data System (ADS)

    Firdous, S.; Nawaz, M.; Ikram, M.; Ahmed, M.

    2012-03-01

    Photodynamic therapy (PDT) is a kind of photochemo therapeutic treatment that exerts its effect mainly through the induction of cell death. Distinct types of cell death may be elicited by different PDT regimes. In this study, efforts are underway to optimize PDT protocols for improved efficacy and combination of all three PDT mechanisms involved in the different human carcinomas cell narcosis. Our in vitro cell culture experiments with 5-aminolevulanic acid (ALA) a clinically approved photiosensitizer (PS) and 635 nm laser light have yielded promising results, as follow: (1) (human cervical cancer (HeLa) cell line incubated, for 18 h, with 30 μg/ml of 5-ALA, treated with laser light dose of 50 J/cm2 can produce 85% of cell killing (2) human larynx carcinoma (Hep2c) cell line incubated, for 7 h, with 55 μg/ml of 5-ALA, treated with laser light dose of 85 J/cm2 can produce 75% of cell killing (3) human liver cancer (HepG2) cell line incubated, for 22-48 h, with 262 μg/ml of 5-ALA, treated with laser light dose of 120 J/cm2 can produce 95% of cell killing (4) human muscle cancer (RD) cell line incubated, for 47 h, with 250 μg/ml of 5-ALA, treated with laser light dose of 80 J/cm2 can produce 76% of cell killing (5) Human embryonic kidney (HEK293T) cell line incu-bated, for 18 h, with 400 μg/ml of 5-ALA, treated with laser light dose of 40 J/cm2 can produce 82% of cell killing confirming the efficacy of photodynamic therapy.

  9. Evaluating the efficacy and safety of a novel endoscopic fluorescence imaging modality using oral 5-aminolevulinic acid for colorectal tumors

    PubMed Central

    Tsuruki, Eriko So; Saito, Yutaka; Abe, Seiichiro; Takamaru, Hiroyuki; Yamada, Masayoshi; Sakamoto, Taku; Nakajima, Takeshi; Matsuda, Takahisa; Sekine, Shigeki; Taniguchi, Hirokazu

    2016-01-01

    Background and study aims: Five-aminolevulinic acid (5-ALA) is being increasingly used for photodynamic diagnosis and therapy of various types of tumors including brain, urologic, and other neoplasias. The use of 5-ALA to treat Barrett’s carcinomas has been documented, but its clinical effectiveness for diagnosis of gastrointestinal tumors, particularly early cancers, remains unknown. Patients and methods: The aim of our feasibility study was to evaluate the visibility of colorectal tumors using endoscopic fluorescence imaging (EFI) after oral administration of 5-ALA. The lesions identified by direct visualization and by the spectrums produced using EFI modality with 5-ALA were compared to the clinicopathologic features of resected specimens. Results: Twenty-three patients with a total of 27 known colorectal lesions were enrolled in the study. The median tumor size was 30 mm (range 10 – 75). Eleven of the lesions were flat or depressed lesions and 16 were sessile. Red fluorescence was observed in 22 out of 27 lesions. Red fluorescence was negative in 4 out of 11 flat or depressed lesions. In comparison with histopathologic findings, the rates of red fluorescence visibility were 62.5 % in low-grade intraepithelial neoplasia, 77.8 % in high-grade neoplasia, and 100 % in submucosal carcinoma. Red fluorescence visibility increased with the degree of dysplasia. There were no significant adverse events identified in this study. Conclusions: This feasibility study using EFI with 5-ALA demonstrated high visibility of superficial colorectal neoplasia. EFI with 5-ALA appears to be a novel, safe technique for improving real-time colorectal tumor imaging. PMID:26793782

  10. Clinical efficacy of 5-aminolevulinic acid photodynamic therapy in the treatment of moderate to severe facial acne vulgaris

    PubMed Central

    CHEN, XIANGQI; SONG, HONGTAO; CHEN, SHENGPING; ZHANG, JING; NIU, GAOXIANG; LIU, XIANGNONG

    2015-01-01

    Acne vulgaris is considered as a therapeutic challenge in terms of managing ongoing symptoms and preventing scar formation. Although there are many available treatments for alleviating acne, therapies for resistant or moderate-to-severe forms have been limited to systemic agents that are accompanied by potentially severe side-effects. While, aminolevulinic acid (ALA) photodynamic therapy (PDT) has increasingly been used as a simple and safe therapeutic option of acne vulgaris, the clinical efficacy requires confirmation in further studies. The aim of this study was to investigate the efficacy and safety of 5-ALA-PDT in the treatment of moderate-to-severe facial acne vulgaris. A total of 50 patients with moderate-to-severe facial acne were enrolled in the study and randomly divided equally into a therapy group and a control group. In the therapy group, the patients were treated with 5% 5-ALA for 1.5 h, followed by three 20-min doses of infrared radiation once a week; in the control group, the patients were treated with three 20 min doses of infrared radiation without 5-ALA once a week. Both treatments lasted for 3 weeks. The clinical efficacy was determined by evaluating acne lesion counts at weeks 0, 2, 4 and 6. Total efficacy rate (TER) was the primary endpoint of the study, and was defined as the proportion of the patients whose treatment effectiveness evaluation was cured (≥90% of skin lesions improved) and excellent (60–89% improvement). Adverse effects were recorded throughout the study. The study was completed by 24 patients in the therapy group and 23 patients in the control group. The numbers of acne lesions significantly decreased. The TER of the therapy group was significantly higher than that of the control group at weeks 4 and 6. Adverse effects were observed in 12 patients of the therapy group and 2 patients of the control group. In the therapy group the most common adverse effect was a burning sensation (n=7), followed by transient

  11. Comparative study of two routes of administration of 5-aminolevulinic acid (oral and intratumoral via) and their effect on the accumulation of PpIX in tissues in murine model of breast cancer

    NASA Astrophysics Data System (ADS)

    González-Agüero, G.; Ramón-Gallegos, E.

    2012-10-01

    Protoporphyrin IX (PpIX) is a photosensitizer synthesized from 5-aminolevulinic acid (ALA) that has been used in photodynamic therapy (PDT) as a promising treatment for many types of cancer. In this work it was quantified the accumulation of PpIX in tumors and in different tissues of female mice (nu/nu) inoculated with breast cancer cells. Two routes of administration of ALA: gastric probe and intratumoral injection were used to find optimum time of accumulation and the via that induce the higher quantity of PpIX to improve the efficiency of PDT. The results show that the accumulation of PpIX using the intratumoral via is two times bigger than the oral via in tumors at 8 h of treatment. The concentrations obtained in the different tissues are not physiologically significant.

  12. Photodynamic therapy of human skin tumors using topical application of 5-aminolevulinic acid, dimethylsulfoxide (DMSO), and edetic acid disodium salt (EDTA)

    NASA Astrophysics Data System (ADS)

    Orenstein, Arie; Kostenich, Gennady; Tsur, H.; Roitman, Leonid; Ehrenberg, Benjamin; Malik, Zvi

    1995-01-01

    The results of photodynamic therapy (PDT) in 48 patients bearing basal cell carcinoma (BCC) and 7 patients with squamous cell carcinoma (SCC) of the skin are described. Five- aminolevulinic acid (5-ALA) was applied topically in two formulations. The first formulation contained 20% of 5-ALA in a base cream, and the second formulation (5-ALA composite cream), contained an additional 2% of dimethylsulfoxide (DMSO) and 2% of edetic acid disodium salt (EDTA). The creams were left on the skin for 2 - 5 hours. Production of protoporphyrin (PP) was measured in situ by a laser-induced fluorescence (LIF) method. The results of fluorescence measurement clearly indicate that PP accumulation in tumors induced by the 5-ALA composite cream was markedly higher than that induced by the 5-ALA cream. The tumors were light-irradiated (600 - 720 nm) after 4 - 5 hours of cream applications, using the light delivery system Versa-Light by a light dose of 100 J/cm2. The clinically superficial BCC tumors were highly responsive to PDT; the overall result in BCC patients was an 85.4% complete response. Histological examination showed an initial edematous reaction, followed by necrosis and complete disappearance of the tumor. The superficial SCC tumors showed a 100% complete response after PDT. The ulcerated nodular SCC showed partial responses.

  13. The Value of 5-Aminolevulinic Acid in Low-grade Gliomas and High-grade Gliomas Lacking Glioblastoma Imaging Features: An Analysis Based on Fluorescence, Magnetic Resonance Imaging, 18F-Fluoroethyl Tyrosine Positron Emission Tomography, and Tumor Molecular Factors

    PubMed Central

    Jaber, Mohammed; Wölfer, Johannes; Ewelt, Christian; Holling, Markus; Hasselblatt, Martin; Niederstadt, Thomas; Zoubi, Tarek; Weckesser, Matthias

    2015-01-01

    BACKGROUND: Approximately 20% of grade II and most grade III gliomas fluoresce after 5-aminolevulinic acid (5-ALA) application. Conversely, approximately 30% of nonenhancing gliomas are actually high grade. OBJECTIVE: The aim of this study was to identify preoperative factors (ie, age, enhancement, 18F-fluoroethyl tyrosine positron emission tomography [18F-FET PET] uptake ratios) for predicting fluorescence in gliomas without typical glioblastomas imaging features and to determine whether fluorescence will allow prediction of tumor grade or molecular characteristics. METHODS: Patients harboring gliomas without typical glioblastoma imaging features were given 5-ALA. Fluorescence was recorded intraoperatively, and biopsy specimens collected from fluorescing tissue. World Health Organization (WHO) grade, Ki-67/MIB-1 index, IDH1 (R132H) mutation status, O6-methylguanine DNA methyltransferase (MGMT) promoter methylation status, and 1p/19q co-deletion status were assessed. Predictive factors for fluorescence were derived from preoperative magnetic resonance imaging and 18F-FET PET. Classification and regression tree analysis and receiver-operating-characteristic curves were generated for defining predictors. RESULTS: Of 166 tumors, 82 were diagnosed as WHO grade II, 76 as grade III, and 8 as glioblastomas grade IV. Contrast enhancement, tumor volume, and 18F-FET PET uptake ratio >1.85 predicted fluorescence. Fluorescence correlated with WHO grade (P < .001) and Ki-67/MIB-1 index (P < .001), but not with MGMT promoter methylation status, IDH1 mutation status, or 1p19q co-deletion status. The Ki-67/MIB-1 index in fluorescing grade III gliomas was higher than in nonfluorescing tumors, whereas in fluorescing and nonfluorescing grade II tumors, no differences were noted. CONCLUSION: Age, tumor volume, and 18F-FET PET uptake are factors predicting 5-ALA-induced fluorescence in gliomas without typical glioblastoma imaging features. Fluorescence was associated with an increased

  14. The application of 5-aminolevulinic acid in the treatment of precancerous lesions, skin cancer, and a new approach to the control of therapy

    NASA Astrophysics Data System (ADS)

    Kulas, Zbigniew; Bereś-Pawlik, Elżbieta; Bieniek, Andrzej; Matusiak, Łukasz

    2009-02-01

    The aim of our work was to determine a therapeutic effect of photodynamic therapy (PDT). Twenty five patients with the Bowen's disease, actinic keratosis and basal cell carcinoma (superficial, nodular) were examined. They were treated with photosensitizer - aminolevulinic acid (metabolized in protoporphyrin IX), and the new red light source built of high-power diodes. A new method, based on numerical analysis of fluorescence imaging of tissues, was proposed as a way for controlling therapy.

  15. Photodynamic Therapy (PDT) using intratumoral injection of the 5- aminolevulinic acid (5-ALA) for the treatment of eye cancer in cattle

    NASA Astrophysics Data System (ADS)

    Hage, Raduan; Mancilha, Geraldo; Zângaro, Renato A.; Munin, Egberto; Plapler, Hélio

    2007-02-01

    A six-year old Holstein cow with an eye cancer (ocular squamous cell carcinoma) involving the third eyelid and conjunctiva was submitted to photodynamic therapy using intratumoral 20% aminolevulinic acid (5-ALA - Aldrich Chemical Company, Milwaukee, USA) and a light emitting diode (LED - VET LED - MMOptics (R)) with wavelength between 600 and 700 nm, 2 cm diameter circular light beam, power of 150 mW, light dose of 50 J/cm2 as a source of irradiation. Fifteen days after the experimental procedure we observed about 50% tumor reduction and complete remission after 3 months. Relapse was not observed up to 12 months after the treatment. Although the study only includes one animal not allowing definite conclusions, it indicates that PDT represents a safe and technically feasible approach in the treatment of eye cancer in cattle.

  16. Loss-of-Function Ferrochelatase and Gain-of-Function Erythroid-Specific 5-Aminolevulinate Synthase Mutations Causing Erythropoietic Protoporphyria and X-Linked Protoporphyria in North American Patients Reveal Novel Mutations and a High Prevalence of X-Linked Protoporphyria

    PubMed Central

    Balwani, Manisha; Doheny, Dana; Bishop, David F; Nazarenko, Irina; Yasuda, Makiko; Dailey, Harry A; Anderson, Karl E; Bissell, D Montgomery; Bloomer, Joseph; Bonkovsky, Herbert L; Phillips, John D; Liu, Lawrence; Desnick, Robert J

    2013-01-01

    Erythropoietic protoporphyria (EPP) and X-linked protoporphyria (XLP) are inborn errors of heme biosynthesis with the same phenotype but resulting from autosomal recessive loss-of-function mutations in the ferrochelatase (FECH) gene and gain-of-function mutations in the X-linked erythroid-specific 5-aminolevulinate synthase (ALAS2) gene, respectively. The EPP phenotype is characterized by acute, painful, cutaneous photosensitivity and elevated erythrocyte protoporphyrin levels. We report the FECH and ALAS2 mutations in 155 unrelated North American patients with the EPP phenotype. FECH sequencing and dosage analyses identified 140 patients with EPP: 134 with one loss-of-function allele and the common IVS3-48T>C low expression allele, three with two loss-of-function mutations and three with one loss-of-function mutation and two low expression alleles. There were 48 previously reported and 23 novel FECH mutations. The remaining 15 probands had ALAS2 gain-of-function mutations causing XLP: 13 with the previously reported deletion, c.1706_1709delAGTG, and two with novel mutations, c.1734delG and c.1642C>T(p.Q548X). Notably, XLP represented ~10% of EPP phenotype patients in North America, two to five times more than in Western Europe. XLP males had twofold higher erythrocyte protoporphyrin levels than EPP patients, predisposing to more severe photosensitivity and liver disease. Identification of XLP patients permits accurate diagnosis and counseling of at-risk relatives and asymptomatic heterozygotes. PMID:23364466

  17. A prospective Phase II clinical trial of 5-aminolevulinic acid to assess the correlation of intraoperative fluorescence intensity and degree of histologic cellularity during resection of high-grade gliomas.

    PubMed

    Lau, Darryl; Hervey-Jumper, Shawn L; Chang, Susan; Molinaro, Annette M; McDermott, Michael W; Phillips, Joanna J; Berger, Mitchel S

    2016-05-01

    OBJECT There is evidence that 5-aminolevulinic acid (ALA) facilitates greater extent of resection and improves 6-month progression-free survival in patients with high-grade gliomas. But there remains a paucity of studies that have examined whether the intensity of ALA fluorescence correlates with tumor cellularity. Therefore, a Phase II clinical trial was undertaken to examine the correlation of intensity of ALA fluorescence with the degree of tumor cellularity. METHODS A single-center, prospective, single-arm, open-label Phase II clinical trial of ALA fluorescence-guided resection of high-grade gliomas (Grade III and IV) was held over a 43-month period (August 2010 to February 2014). ALA was administered at a dose of 20 mg/kg body weight. Intraoperative biopsies from resection cavities were collected. The biopsies were graded on a 4-point scale (0 to 3) based on ALA fluorescence intensity by the surgeon and independently based on tumor cellularity by a neuropathologist. The primary outcome of interest was the correlation of ALA fluorescence intensity to tumor cellularity. The secondary outcome of interest was ALA adverse events. Sensitivities, specificities, positive predictive values (PPVs), negative predictive values (NPVs), and Spearman correlation coefficients were calculated. RESULTS A total of 211 biopsies from 59 patients were included. Mean age was 53.3 years and 59.5% were male. The majority of biopsies were glioblastoma (GBM) (79.7%). Slightly more than half (52.5%) of all tumors were recurrent. ALA intensity of 3 correlated with presence of tumor 97.4% (PPV) of the time. However, absence of ALA fluorescence (intensity 0) correlated with the absence of tumor only 37.7% (NPV) of the time. For all tumor types, GBM, Grade III gliomas, and recurrent tumors, ALA intensity 3 correlated strongly with cellularity Grade 3; Spearman correlation coefficients (r) were 0.65, 0.66, 0.65, and 0.62, respectively. The specificity and PPV of ALA intensity 3 correlating

  18. 5-Aminolevulinate production by Escherichia coli containing the Rhodobacter sphaeroides hemA gene

    SciTech Connect

    Van Der Werf, M.J.; Zeikus, J.G. |

    1996-10-01

    The Rhodobacter sphaeroides hemA gene codes for 5-aminolevulinate (ALA) synthase. This enzyme catalyzes the pyridoxal phosphate-dependent condensation of succinyl coenzyme A and glycine-forming ALA. The R. sphaeroides hemA gene in the pUC18/19 vector system was transformed into Escherichia coli. The effects of both genetic and physiological factors on the expression of ALA synthase and the production of ALA were studied. ALA synthase activity levels were maximal when hemA had the same transcription direction as the lac promoter. The distance between the lac promoter and hemA affected the expression of ALA synthase on different growth substrates. The E. coli host strain used had an enormous effect on the ALA synthase activity level and on the production of ALA, with E. coli DH1 being best suited. The ALA synthase activity level was also dependent on the carbon source. Succinate, L-malate, fumarate, and L-aspartate gave the highest levels of ALA synthase activity, while the use of lactose as a carbon source resulted in a repression of ALA synthase. After growth on succinate, ALA synthase represented {approx}5% of total cellular protein. The ALA synthase activity level was also dependent on the pH of the medium, with maximal activity occurring at pH 6.5. ALA production by whole cells was limited by the availability of glycine, and the addition of 2 g of glycine per liter to the growth medium increased the production of ALA fivefold, to 2.25 mM. In recombinant E. coli extracts, up to 22 mM ALA was produced from succinate, glycine, and ATP. 58 refs., 4 figs., 7 tabs.

  19. Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases.

    PubMed

    Herbst, Dominik A; Jakob, Roman P; Zähringer, Franziska; Maier, Timm

    2016-03-24

    Polyketide synthases (PKSs) are biosynthetic factories that produce natural products with important biological and pharmacological activities. Their exceptional product diversity is encoded in a modular architecture. Modular PKSs (modPKSs) catalyse reactions colinear to the order of modules in an assembly line, whereas iterative PKSs (iPKSs) use a single module iteratively as exemplified by fungal iPKSs (fiPKSs). However, in some cases non-colinear iterative action is also observed for modPKSs modules and is controlled by the assembly line environment. PKSs feature a structural and functional separation into a condensing and a modifying region as observed for fatty acid synthases. Despite the outstanding relevance of PKSs, the detailed organization of PKSs with complete fully reducing modifying regions remains elusive. Here we report a hybrid crystal structure of Mycobacterium smegmatis mycocerosic acid synthase based on structures of its condensing and modifying regions. Mycocerosic acid synthase is a fully reducing iPKS, closely related to modPKSs, and the prototype of mycobacterial mycocerosic acid synthase-like PKSs. It is involved in the biosynthesis of C20-C28 branched-chain fatty acids, which are important virulence factors of mycobacteria. Our structural data reveal a dimeric linker-based organization of the modifying region and visualize dynamics and conformational coupling in PKSs. On the basis of comparative small-angle X-ray scattering, the observed modifying region architecture may be common also in modPKSs. The linker-based organization provides a rationale for the characteristic variability of PKS modules as a main contributor to product diversity. The comprehensive architectural model enables functional dissection and re-engineering of PKSs. PMID:26976449

  20. Producing dicarboxylic acids using polyketide synthases

    SciTech Connect

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-10-29

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing a dicarboxylic acid (diacid). Such diacids include diketide-diacids and triketide-diacids. The invention includes recombinant nucleic acid encoding the PKS, and host cells comprising the PKS. The invention also includes methods for producing the diacids.

  1. Producing dicarboxylic acids using polyketide synthases

    SciTech Connect

    Katz, Leonard; Fortman, Jeffrey L.; Keasling, Jay D.

    2015-05-26

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing a dicarboxylic acid (diacid). Such diacids include diketide-diacids and triketide-diacids. The invention includes recombinant nucleic acid encoding the PKS, and host cells comprising the PKS. The invention also includes methods for producing the diacids.

  2. In situ assay for 5-aminolevulinate dehydratase and application to the study of a catabolite repression-resistant Saccharomyces cerevisiae mutant.

    PubMed

    Borralho, L M; Panek, A D; Malamud, D R; Sanders, H K; Mattoon, J R

    1983-10-01

    To facilitate the study of the effects of carbon catabolite repression and mutations on 5-aminolevulinate dehydratase (EC 4.2.1.24) from Saccharomyces cerevisiae, a sensitive in situ assay was developed, using cells permeabilized by five cycles of freezing and thawing. Enzymatic activity was measured by colorimetric determination of porphobilinogen with a modified Ehrlich reagent. For normal strains, porphobilinogen production was linear for 15 min, and the reaction rate was directly proportional to the permeabilized cell concentration up to 20 mg (dry weight) per ml. The reaction exhibited Michaelis-Menten-type kinetics, and an apparent Km of 2.6 mM was obtained for 5-aminolevulinic acid. This value is only slightly higher than the value of 1.8 mM obtained for the enzyme assayed in cell extracts. The in situ assay was used to assess catabolite repression-dependent changes in 5-aminolevulinate dehydratase during batch culture on glucose medium. In normal S. cerevisiae cells, the enzyme is strongly repressed as long as glucose is present in the medium. In contrast, a strain bearing the hex2-3 mutation exhibits derepressed levels of enzyme activity during growth on glucose. Synthesis of cytochromes by this strain is also resistant to catabolite repression. Similar studies employing a strain containing the glc1 mutation, which enhances porphyrin accumulation, did not reveal any significant phenotypic change in catabolite regulation of 5-aminolevulinate dehydratase. PMID:6352674

  3. Light regulation of chlorophyll biosynthesis at the level of 5-aminolevulinate formation in Arabidopsis.

    PubMed Central

    Ilag, L L; Kumar, A M; Söll, D

    1994-01-01

    5-Aminolevulinic acid (ALA) is the universal precursor of tetrapyrroles, such as chlorophyll and heme. The major control of chlorophyll biosynthesis is at the step of ALA formation. In the chloroplasts of plants, as in Escherichia coli, ALA is derived from the glutamate of Glu-tRNA via the two-step C5 pathway. The first enzyme, Glu-tRNA reductase, catalyzes the reduction of Glu-tRNA to glutamate 1-semialdehyde with the release of intact tRNA. The second enzyme, glutamate 1-semialdehyde 2,1-aminomutase, converts glutamate 1-semialdehyde to ALA. To further examine ALA formation in plants, we isolated Arabidopsis genes that encode the enzymes of the C5 pathway via functional complementation of mutations in the corresponding genes of E. coli. The Glu-tRNA reductase gene was designated HEMA and the glutamate 1-semialdehyde 2,1-aminomutase gene, GSA1. Each gene contains two short introns (149 and 241 nucleotides for HEMA, 153 and 86 nucleotides for GSA1). The deduced amino acid sequence of the HEMA protein predicts a protein of 60 kD with substantial similarity (30 to 47% identity) to sequences derived from the known hemA genes from microorganisms that make ALA by the C5 pathway. Purified Arabidopsis HEMA protein has Glu-tRNA reductase activity. The GSA1 gene encodes a 50-kD protein whose deduced amino acid sequence shows extensive homology (55 to 78% identity) with glutamate 1-semialdehyde 2,1-aminomutase proteins from other species. RNA gel blot analyses indicated that transcripts for both genes are found in root, leaf, stem, and flower tissues and that their levels are dramatically elevated by light. Thus, light may regulate ALA, and hence chlorophyll formation, by exerting coordinated transcriptional control over both enzymes of the C5 pathway. PMID:7908550

  4. Geranyl diphosphate synthase molecules, and nucleic acid molecules encoding same

    SciTech Connect

    Croteau, Rodney Bruce; Burke, Charles Cullen

    2008-06-24

    In one aspect, the present invention provides isolated nucleic acid molecules that each encode a geranyl diphosphate synthase protein, wherein each isolated nucleic acid molecule hybridizes to a nucleic acid molecule consisting of the sequence set forth in SEQ ID NO:1 under conditions of 5.times.SSC at 45.degree. C. for one hour. The present invention also provides isolated geranyl diphosphate synthase proteins, and methods for altering the level of expression of geranyl diphosphate synthase protein in a host cell.

  5. A Formulation Study of 5-Aminolevulinic Encapsulated in DPPC Liposomes in Melanoma Treatment

    PubMed Central

    Lin, Ming-Wei; Huang, Yaw-Bin; Chen, Chun-Lin; Wu, Pao-Chu; Chou, Chien-Ying; Wu, Ping-Ching; Hung, Shih-Ya

    2016-01-01

    Photodynamic therapy (PDT) is a widely used technique for epithelial skin cancer treatment. 5-aminolevulinic acid (5-ALA) is a drug currently used for PDT and is a hydrophilic molecule at its physiological pH, and this limits its capacity to cross the stratum corneum of skin. Since skin penetration is a key factor in the efficacy of topical 5-ALA-mediated PDT, numerous strategies have been proposed to improve skin penetration. Yet this problem is still ongoing. The results of a previous study showed a low rate of 5-ALA encapsulated in liposomes (5.7%) that were 400 nm in size. In the present study, we used 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes as vehicles and tested their delivery efficacy of 5-ALA-medicated PDT both in vitro and in vivo. Our data shows that 5-ALA encapsulated in 0.1 or 0.5% DPPC liposomes (5-ALA/DPPC) had a better encapsulated rate (15~16%) and were smaller in size (84~89 nm). We found the 5-ALA/DPPC formulation reduced cell viability, mitochondria membrane potential, and enhanced intracellular ROS accumulation as compared to 5-ALA alone in melanoma cells. Furthermore, the 5-ALA/DPPC formulation also had better skin penetration ability as compared to the 5-ALA in our ex vivo data by assaying 5-ALA converted into protoporphyrin IX (PpIX) in the skin of the mice that were experimented on. In melanoma xenograft models, 5-ALA/DPPC enhanced PpIX accumulation only in tumor tissue but not normal skin. In conclusion, we found DPPC liposomes to be good carriers for 5-ALA delivery and believe that they may prove useful in 5-ALA-mediated PDT in the future. PMID:27429584

  6. Quantitative and qualitative 5-aminolevulinic acid–induced protoporphyrin IX fluorescence in skull base meningiomas

    PubMed Central

    Bekelis, Kimon; Valdés, Pablo A.; Erkmen, Kadir; Leblond, Frederic; Kim, Anthony; Wilson, Brian C.; Harris, Brent T.; Paulsen, Keith D.; Roberts, David W.

    2011-01-01

    Object Complete resection of skull base meningiomas provides patients with the best chance for a cure; however, surgery is frequently difficult given the proximity of lesions to vital structures, such as cranial nerves, major vessels, and venous sinuses. Accurate discrimination between tumor and normal tissue is crucial for optimal tumor resection. Qualitative assessment of protoporphyrin IX (PpIX) fluorescence following the exogenous administration of 5-aminolevulinic acid (ALA) has demonstrated utility in malignant glioma resection but limited use in meningiomas. Here the authors demonstrate the use of ALA-induced PpIX fluorescence guidance in resecting a skull base meningioma and elaborate on the advantages and disadvantages provided by both quantitative and qualitative fluorescence methodologies in skull base meningioma resection. Methods A 52-year-old patient with a sphenoid wing WHO Grade I meningioma underwent tumor resection as part of an institutional review board–approved prospective study of fluorescence-guided resection. A surgical microscope modified for fluorescence imaging was used for the qualitative assessment of visible fluorescence, and an intraoperative probe for in situ fluorescence detection was utilized for quantitative measurements of PpIX. The authors assessed the detection capabilities of both the qualitative and quantitative fluorescence approaches. Results The patient harboring a sphenoid wing meningioma with intraorbital extension underwent radical resection of the tumor with both visibly and nonvisibly fluorescent regions. The patient underwent a complete resection without any complications. Some areas of the tumor demonstrated visible fluorescence. The quantitative probe detected neoplastic tissue better than the qualitative modified surgical microscope. The intraoperative probe was particularly useful in areas that did not reveal visible fluorescence, and tissue from these areas was confirmed as tumor following histopathological

  7. Producing a trimethylpentanoic acid using hybrid polyketide synthases

    SciTech Connect

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2014-10-07

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing trimethylpentanoic acid. The present invention also provides for a host cell comprising the PKS and when cultured produces the trimethylpentanoic acid. The present invention also provides for a method of producing the trimethylpentanoic acid, comprising: providing a host cell of the present invention, and culturing said host cell in a suitable culture medium such that the trimethylpentanoic acid is produced, optionally isolating the trimethylpentanoic acid, and optionally, reducing the isolated trimethylpentanoic acid into a trimethylpentanol or an iso-octane.

  8. Responses to hexyl 5-aminolevulinate-induced photodynamic treatment in rat bladder cancer model

    NASA Astrophysics Data System (ADS)

    Arum, Carl-Jørgen; Gederas, Odrun; Larsen, Eivind; Randeberg, Lise; Zhao, Chun-Mei

    2010-02-01

    OBJECTIVES: In this study, we evaluated histologically the effects of hexyl 5-aminolevulinateinduced photodynamic treatment in the AY-27 tumor cell induced rat bladder cancer model. MATERIAL & METHODS: The animals (fischer-344 female rats) were divided into 2 groups, half of which were orthotopically implanted with 400,000 syngeniec AY-27 urothelia1 rat bladder cancer cells and half sham implanted. 14 days post implantation 6 rats from each group were treated with hexyl 5-aminolevulinate-induced photodynamic treatment (8mM HAL and light fluence of 20 J/cm2). Additional groups of animals were only given HAL instillation, only light treatment, or no treatment. All animals were sacrificed 7 days after the PDT/only HAL/only light or no treatment. Each bladder was removed, embedded in paraffin and stained with hematoxylin, eosin, and saferin for histological evaluation at high magnification for features of tissue damage by a pathologist blinded to the sample source. RESULTS: In all animals that were AY-27 implanted and not given complete PDT treatment, viable tumors were found in the bladder mucosa and wall. In the animals treated with complete HAL-PDT only 3 of 6 animals had viable tumor. In the 3 animals with viable tumor it was significantly reduced in volume compared to the untreated animals. It was also noted that in the PDT treated animals there was a significantly increased inflammatory response (lymphocytic and mononuclear cell infiltration) in the peri-tumor area compared to implanted animals without complete HAL-PDT. CONCLUSION: Our results suggest that hexyl 5-aminolevulinate-induced photodynamic treatment in a rat bladder cancer model involves both direct effects on cell death (necrosis and apoptosis) and indirect effects to evoke the host immune-response, together contributing to tumor eradication.

  9. Light/Dark Profiles of Sucrose Phosphate Synthase, Sucrose Synthase, and Acid Invertase in Leaves of Sugar Beets

    PubMed Central

    Vassey, Terry L.

    1989-01-01

    The activity of sucrose phosphate synthase, sucrose synthase, and acid invertase was monitored in 1- to 2-month-old sugar beet (Beta vulgaris L.) leaves. Sugar beet leaves achieve full laminar length in 13 days. Therefore, leaves were harvested at 2-day intervals for 15 days. Sucrose phosphate synthase activity was not detectable for 6 days in the dark-grown leaves. Once activity was measurable, sucrose phosphate synthase activity never exceeded half that observed in the light-grown leaves. After 8 days in the dark, leaves which were illuminated for 30 minutes showed no significant change in sucrose phosphate synthase activity. Leaves illuminated for 24 hours after 8 days in darkness, however, recovered sucrose phosphate synthase activity to 80% of that of normally grown leaves. Sucrose synthase and acid invertase activity in the light-grown leaves both increased for the first 7 days and then decreased as the leaves matured. In contrast, the activity of sucrose synthase oscillated throughout the growth period in the dark-grown leaves. Acid invertase activity in the dark-grown leaves seemed to be the same as the activity found in the light-grown leaves. PMID:16666537

  10. Cannabidiolic-acid synthase, the chemotype-determining enzyme in the fiber-type Cannabis sativa.

    PubMed

    Taura, Futoshi; Sirikantaramas, Supaart; Shoyama, Yoshinari; Yoshikai, Kazuyoshi; Shoyama, Yukihiro; Morimoto, Satoshi

    2007-06-26

    Cannabidiolic-acid (CBDA) synthase is the enzyme that catalyzes oxidative cyclization of cannabigerolic-acid into CBDA, the dominant cannabinoid constituent of the fiber-type Cannabis sativa. We cloned a novel cDNA encoding CBDA synthase by reverse transcription and polymerase chain reactions with degenerate and gene-specific primers. Biochemical characterization of the recombinant enzyme demonstrated that CBDA synthase is a covalently flavinylated oxidase. The structural and functional properties of CBDA synthase are quite similar to those of tetrahydrocannabinolic-acid (THCA) synthase, which is responsible for the biosynthesis of THCA, the major cannabinoid in drug-type Cannabis plants. PMID:17544411

  11. Subcellular localization of dinoflagellate polyketide synthases and fatty acid synthase activity.

    PubMed

    Van Dolah, Frances M; Zippay, Mackenzie L; Pezzolesi, Laura; Rein, Kathleen S; Johnson, Jillian G; Morey, Jeanine S; Wang, Zhihong; Pistocchi, Rossella

    2013-12-01

    Dinoflagellates are prolific producers of polyketide secondary metabolites. Dinoflagellate polyketide synthases (PKSs) have sequence similarity to Type I PKSs, megasynthases that encode all catalytic domains on a single polypeptide. However, in dinoflagellate PKSs identified to date, each catalytic domain resides on a separate transcript, suggesting multiprotein complexes similar to Type II PKSs. Here, we provide evidence through coimmunoprecipitation that single-domain ketosynthase and ketoreductase proteins interact, suggesting a predicted multiprotein complex. In Karenia brevis (C.C. Davis) Gert Hansen & Ø. Moestrup, previously observed chloroplast localization of PKSs suggested that brevetoxin biosynthesis may take place in the chloroplast. Here, we report that PKSs are present in both cytosol and chloroplast. Furthermore, brevetoxin is not present in isolated chloroplasts, raising the question of what chloroplast-localized PKS enzymes might be doing. Antibodies to K. brevis PKSs recognize cytosolic and chloroplast proteins in Ostreopsis cf. ovata Fukuyo, and Coolia monotis Meunier, which produce different suites of polyketide toxins, suggesting that these PKSs may share common pathways. Since PKSs are closely related to fatty acid synthases (FAS), we sought to determine if fatty acid biosynthesis colocalizes with either chloroplast or cytosolic PKSs. [(3) H]acetate labeling showed fatty acids are synthesized in the cytosol, with little incorporation in chloroplasts, consistent with a Type I FAS system. However, although 29 sequences in a K. brevis expressed sequence tag database have similarity (BLASTx e-value <10(-10) ) to PKSs, no transcripts for either Type I (cytosolic) or Type II (chloroplast) FAS are present. Further characterization of the FAS complexes may help to elucidate the functions of the PKS enzymes identified in dinoflagellates. PMID:27007632

  12. Binding Modes of Zaragozic Acid A to Human Squalene Synthase and Staphylococcal Dehydrosqualene Synthase*

    PubMed Central

    Liu, Chia-I; Jeng, Wen-Yih; Chang, Wei-Jung; Ko, Tzu-Ping; Wang, Andrew H.-J.

    2012-01-01

    Zaragozic acids (ZAs) belong to a family of fungal metabolites with nanomolar inhibitory activity toward squalene synthase (SQS). The enzyme catalyzes the committed step of sterol synthesis and has attracted attention as a potential target for antilipogenic and antiinfective therapies. Here, we have determined the structure of ZA-A complexed with human SQS. ZA-A binding induces a local conformational change in the substrate binding site, and its C-6 acyl group also extends over to the cofactor binding cavity. In addition, ZA-A effectively inhibits a homologous bacterial enzyme, dehydrosqualene synthase (CrtM), which synthesizes the precursor of staphyloxanthin in Staphylococcus aureus to cope with oxidative stress. Size reduction at Tyr248 in CrtM further increases the ZA-A binding affinity, and it reveals a similar overall inhibitor binding mode to that of human SQS/ZA-A except for the C-6 acyl group. These structures pave the way for further improving selectivity and development of a new generation of anticholesterolemic and antimicrobial inhibitors. PMID:22474324

  13. Binding modes of zaragozic acid A to human squalene synthase and staphylococcal dehydrosqualene synthase.

    PubMed

    Liu, Chia-I; Jeng, Wen-Yih; Chang, Wei-Jung; Ko, Tzu-Ping; Wang, Andrew H-J

    2012-05-25

    Zaragozic acids (ZAs) belong to a family of fungal metabolites with nanomolar inhibitory activity toward squalene synthase (SQS). The enzyme catalyzes the committed step of sterol synthesis and has attracted attention as a potential target for antilipogenic and antiinfective therapies. Here, we have determined the structure of ZA-A complexed with human SQS. ZA-A binding induces a local conformational change in the substrate binding site, and its C-6 acyl group also extends over to the cofactor binding cavity. In addition, ZA-A effectively inhibits a homologous bacterial enzyme, dehydrosqualene synthase (CrtM), which synthesizes the precursor of staphyloxanthin in Staphylococcus aureus to cope with oxidative stress. Size reduction at Tyr(248) in CrtM further increases the ZA-A binding affinity, and it reveals a similar overall inhibitor binding mode to that of human SQS/ZA-A except for the C-6 acyl group. These structures pave the way for further improving selectivity and development of a new generation of anticholesterolemic and antimicrobial inhibitors. PMID:22474324

  14. Nitroaromatic amino acids as inhibitors of neuronal nitric oxide synthase.

    PubMed

    Cowart, M; Kowaluk, E A; Daanen, J F; Kohlhaas, K L; Alexander, K M; Wagenaar, F L; Kerwin, J F

    1998-07-01

    Nitric oxide (NO.) is an important biomodulator of many physiological processes. The inhibition of inappropriate production of NO. by the isoforms of nitric oxide synthase (NOS) has been proposed as a therapeutic approach for the treatment of stroke, inflammation, and other processes. In this study, certain 2-nitroaryl-substituted amino acid analogues were discovered to inhibit NOS. Analogues bearing a 5-methyl substituent on the aromatic ring demonstrated maximal inhibitory potency. For two selected inhibitors, investigation of the kinetics of the enzyme showed the inhibition to be competitive with l-arginine. Additionally, functional NOS inhibition in tissue preparations was demonstrated. PMID:9651169

  15. The type I fatty acid and polyketide synthases: a tale of two megasynthases

    PubMed Central

    Tsai, Shiou-Chuan

    2008-01-01

    This review chronicles the synergistic growth of the fields of fatty acid and polyketide synthesis over the last century. In both animal fatty acid synthases and modular polyketide synthases, similar catalytic elements are covalently linked in the same order in megasynthases. Whereas in fatty acid synthases the basic elements of the design remain immutable, guaranteeing the faithful production of saturated fatty acids, in the modular polyketide synthases, the potential of the basic design has been exploited to the full for the elaboration of a wide range of secondary metabolites of extraordinary structural diversity. PMID:17898897

  16. Salmonella typhimurium mutants defective in acetohydroxy acid synthases I and II.

    PubMed

    Shaw, K J; Berg, C M; Sobol, T J

    1980-03-01

    An analysis of transposon-induced mutants shows that Salmonella typhimurium possesses two major isozymes of acetohydroxy acid synthase, the enzymes which mediate the first common step in isoleucine and valine biosynthesis. A third (minor) acetohydroxy acid synthase is present, but its significance in isoleucine and valine synthesis may be negligible. Mutants defective in acetohydroxy acid synthase II (ilvG::Tn10) require isoleucine, alpha-ketobutyrate, or threonine for growth, a mutant defective in acetohydroxy acid synthase I (ilvB::Tn5) is a prototroph, and a double mutant (ilvG::Tn10 ilvB::Tn5) requires isoleucine plus valine for growth. PMID:6245063

  17. Fractionated PDT with 5-aminolevulinic acid: effective, cost effective, and patient friendly

    NASA Astrophysics Data System (ADS)

    de Vijlder, Hannah C.; Middelburg, Tom A.; de Bruijn, Henriette S.; Robinson, Dominic J.; Neumann, H. A. Martino; de Haas, Ellen R. M.

    2009-06-01

    PDT with ALA and MAL is established as a relatively effective treatment for non-melanoma skin cancer and premalignancies. PDT is often repeated, because a single treatment gives poor long term results. Preclinical studies showed that ALA-PDT applying a fractionated illumination scheme with a small first light fraction and a second larger light fraction separated by a dark interval of two hours resulted in a significant increase in efficacy. Whereas the efficacy was not enhanced by fractionating MAL-PDT, indicating that ALA-PDT mechanism is not the same as MAL-PDT mechanism. The increase in efficacy using fractionated PDT was confirmed clinically. A randomized comparative clinical study comparing fractionated ALA-PDT versus non-fractionated ALA-PDT in the treatment of superficial basal cell carcinoma showed a significant higher response rate in the lesions treated with fractionated ALA-PDT after a follow-up of one year ( p<0.002, log-rank test). The five year follow-up is studied at moment. So far the complete response in the group treated with fractionated ALA-PDT seems to be only a few percentages lower compared to the one year follow-up. Besides the gain in response rate, fractionated ALA PDT is cost effective. ALA gel is less expensive than the commercially available MAL (Metvix) and moreover fractionated ALA-PDT takes one treatment day, instead of two treatment days using the Metvix treatment protocol (two MAL-PDT treatments separated by one week), both reducing direct and indirect costs and the burden to the patient.

  18. Chitosan-based mucoadhesive films containing 5-aminolevulinic acid for buccal cancer's treatment.

    PubMed

    Costa, Irina dos Santos Miranda; Abranches, Renata Pereira; Garcia, Maria Teresa Junqueira; Pierre, Maria Bernadete Riemma

    2014-11-01

    Photodynamic therapy (PDT) is a relatively new method to treat various kinds of tumors, including those of the oral cavity. The topical 5-ALA-PDT treatment for tumors of the oral mucosa is preferred, since when administered systemically, there is a general photosensitization drawback in the patient. However, 5-ALA is a hydrophilic molecule and its penetration and retention is limited by topical route, including oral mucosa. We propose a topical delivery system of chitosan-based mucoadhesive film, aiming to promote greater retention of 5-ALA in tissue. The chitosan (CHT) films (4% w/w) were prepared using the solvent evaporation/casting technique. They were tested without 5-ALA resulting in permeability to water vapor (W.V.P=2.15-8.54 g mm/(h cm(2)Pa) swelling ∼300.0% (±10.5) at 4 h or 24 h and in vitro residence time >24 h for all tests. CHT films containing 10.0% (w/w) 5-ALA have resulted in average weight of 0.22 g and thickness of 0.608 mm as suitable characteristics for oral application. In the presence of CHT films both in vitro permeation and retention of 5-ALA (1.0% or 10.0%) were increased. However, 10.0% 5-ALA presented highest values of permeation and retention (∼4 and 17 times respectively, compared to propylene glycol vehicle). On the other hand, in vitro mucoadhesion of CHT films was decreased (18.2-fold and 3.1-fold) by 5-ALA addition (1.0% or 10.0% respectively). However, CHT film containing 10.0% of 5-ALA can be a potential delivery system for topical use in the treatment of tumors of the oral cavity using PDT because it favored the retention of 5-ALA in this tissue and has shown convenient mucoadhesion. PMID:25190225

  19. Increased brain edema following 5-aminolevulinic acid mediated photodynamic in normal and tumor bearing rats

    NASA Astrophysics Data System (ADS)

    Hirschberg, Henry; Angell-Petersen, Even; Spetalen, Signe; Mathews, Marlon; Madsen, Steen J.

    2007-02-01

    Introduction: Failure of treatment for high grade gliomas is usually due to local recurrence at the site of surgical resection indicating that a more aggressive form of local therapy, such as PDT, could be of benefit. PDT causes damage to both tumor cells as well as cerebral blood vessels leading to degradation of the blood brain barrier with subsequent increase of brain edema. The increase in brain edema following ALA-PDT was evaluated in terms of animal survival, histopatological changes in normal brain and tumor tissue and MRI scanning. The effect of steroid treatment, to reduce post-treatment PDT induced edema, was also examined. Methods:Tumors were established in the brains of inbred BD-IX and Fisher rats. At various times following tumor induction the animals were injected with ALA ip. and four hours later light treatment at escalating fluences and fluence rates were given. Nontumor bearing control animals were also exposed to ALA-PDT in a similar manner to evaluate damage to normal brain and degree of blood brain barrier (BBB) disruption. Results: Despite a very low level of PpIX production in normal brain, with a 200:1 tumor to normal tissue selectivity ratio measured at a distance of 2 mm from the tumor border, many animals succumbed shortly after treatment. A total radiant energy of 54 J to non-tumor bearing animals resulted in 50% mortality within 5 days of treatment. Treatment of tumor bearing animals with moderate fluence levels produced similar brain edema compared to higher fluence levels. ALA PDT in nontumor bearing animals produced edema that was light dose dependent. PDT appeared to open the BBB for a period of 24-48 hrs after which it was restored. The addition of post operative steroid treatment reduced the incident of post treatment morbidity and mortality. Conclusions: T2 and contrast enhanced T1 MRI scanning proved to be a highly effective and non-evasive modality in following the development of the edema reaction and the degree and time course of BBB dysfunction thus allowing the use of fewer animals.

  20. Total synthesis of the squalene synthase inhibitor zaragozic acid C.

    PubMed

    Nakamura, Seiichi

    2005-01-01

    Zaragozic acids and squalestatins were documented by Merck, Glaxo, and Tokyo Noko University/Mitsubishi Kasei Corporation as part of a program aimed at identifying novel inhibitors of squalene synthase, as well as farnesyl transferase. These natural products have attracted considerable attention from numerous synthetic chemists because of their therapeutic potential and novel architecture. This review highlights our total syntheses of zaragozic acid C by two convergent strategies. The key steps in our first-generation synthesis involve 1) simultaneous creation of the C4 and C5 quaternary stereocenters through the Sn(OTf)2-promoted aldol coupling reaction between the alpha-keto ester and silyl ketene thioacetal derived from L- and D-tartaric acids, respectively; and 2) construction of the bicyclic core structure via acid-catalyzed internal ketalization under kinetically controlled conditions. The second-generation strategy relies on a tandem carbonyl ylide formation/1,3-dipolar cycloaddition approach and features elongation of the C1 alkyl side chain through an olefin cross-metathesis as well as high convergency and flexibility. PMID:15635219

  1. Fatty Acid Synthase Inhibitor C75 Ameliorates Experimental Colitis

    PubMed Central

    Matsuo, Shingo; Yang, Weng-Lang; Aziz, Monowar; Kameoka, Shingo; Wang, Ping

    2014-01-01

    Abnormalities of lipid metabolism through overexpression of fatty acid synthase (FASN), which catalyzes the formation of long-chain fatty acids, are associated with the development of inflammatory bowel disease (IBD). C75 is a synthetic α-methylene-γ-butyrolactone compound that inhibits FASN activity. We hypothesized that C75 treatment could effectively reduce the severity of experimental colitis. Male C57BL/6 mice were fed 4% dextran sodium sulfate (DSS) for 7 d. C75 (5 mg/kg body weight) or dimethyl sulfoxide (DMSO) (vehicle) was administered intraperitoneally from d 2 to 6. Clinical parameters were monitored daily. Mice were euthanized on d 8 for histological evaluation and measurements of colon length, chemokine, cytokine and inflammatory mediator expression. C75 significantly reduced body weight loss from 23% to 15% on d 8, compared with the vehicle group. The fecal bleeding, diarrhea and colon histological damage scores in the C75-treated group were significantly lower than scores in the vehicle animals. Colon shortening was significantly improved after C75 treatment. C75 protected colon tissues from DSS-induced apoptosis by inhibiting caspase-3 activity. Macrophage inflammatory protein 2, keratinocyte-derived chemokine, myeloperoxidase activity and proinflammatory cytokines (tumor necrosis factor-α, interleukin [IL]-1β and IL-6) in the colon were significantly downregulated in the C75-treated group, compared with the vehicle group. Treatment with C75 in colitis mice inhibited the elevation of FASN, cyclooxygenase-2 and inducible nitric oxide synthase expression as well as IκB degradation in colon tissues. C75 administration alleviates the severity of colon damage and inhibits the activation of inflammatory pathways in DSS-induced colitis. Thus, inhibition of FASN may represent an attractive therapeutic potential for treating IBD. PMID:24306512

  2. Anti-cancer drugs targeting fatty acid synthase (FAS).

    PubMed

    Pandey, Puspa R; Liu, Wen; Xing, Fei; Fukuda, Koji; Watabe, Kounosuke

    2012-05-01

    Fatty acid synthase (FAS) is a key enzyme of the fatty acid biosynthetic pathway which catalyzes de novo lipid synthesis. FAS expression in normal adult tissues is generally very low or undetectable as majority of fatty acids obtained are from dietary sources, whereas it is significantly upregulated in cancer cells despite adequate nutritional lipid supply. Activation of FAS provides rapidly proliferating tumor cells sufficient amount of lipids for membrane biogenesis and confers growth and survival advantage possibly acting as a metabolic oncogene. Importantly, inhibition of FAS in cancer cells using the pharmacological FAS inhibitors results in tumor cell death by apoptosis whereas normal cells are resistant. Due to this differential expression of FAS, the inhibitors of this enzyme are selectively toxic to tumor cells and therefore FAS is considered an attractive therapeutic target for cancer. Several FAS inhibitors are already patented and commercially available; however, the potential toxicity of these FAS inhibitors remains to be tested in clinical trials. In this review, we discuss some of the potent FAS inhibitors along with their patent information, the mechanism of anti-cancer effects and the development of more specific and potent FAS inhibitors with lower side effects that are expected to emerge as anti-cancer treatment in the near future. PMID:22338595

  3. Effects of light irradiation upon photodynamic therapy based on 5-aminolevulinic acid–gold nanoparticle conjugates in K562 cells via singlet oxygen generation

    PubMed Central

    Xu, Hao; Liu, Chen; Mei, Jiansheng; Yao, Cuiping; Wang, Sijia; Wang, Jing; Li, Zheng; Zhang, Zhenxi

    2012-01-01

    Purpose As a precursor of the potent photosensitizer protoporphyrin IX (PpIX), 5-aminolevulinic acid (5-ALA), was conjugated onto cationic gold nanoparticles (GNPs) to improve the efficacy of photodynamic therapy (PDT). Methods Cationic GNPs reduced by branched polyethyleneimine and 5-ALA were conjugated onto the cationic GNPs by creating an electrostatic interaction at physiological pH. The efficacy of ALA-GNP conjugates in PDT was investigated under irradiation with a mercury lamp (central wavelength of 395 nm) and three types of light-emitting diode arrays (central wavelengths of 399, 502, and 621 nm, respectively). The impacts of GNPs on PDT were then analyzed by measuring the intracellular PpIX levels in K562 cells and the singlet oxygen yield of PpIX under irradiation. Results The 2 mM ALA-GNP conjugates showed greater cytotoxicity against K562 cells than ALA alone. Light-emitting diode (505 nm) irradiation of the conjugates caused a level of K562 cell destruction similar to that with irradiation by a mercury lamp, although it had no adverse effects on drug-free control cells. These results may be attributed to the singlet oxygen yield of PpIX, which can be enhanced by GNPs. Conclusion Under irradiation with a suitable light source, ALA-GNP conjugates can effectively destroy K562 cells. The technique offers a new strategy of PDT. PMID:23055721

  4. High light inhibits chlorophyll biosynthesis at the level of 5-aminolevulinate synthesis during de-etiolation in cucumber (Cucumis sativus) cotyledons.

    PubMed

    Aarti, D; Tanaka, R; Ito, H; Tanaka, A

    2007-01-01

    Using the vascular plant Cucumis sativus (cucumber) as a model, we studied the effects of high (intense and excess) light upon chlorophyll biosynthesis during de-etiolation. When illuminated with high light (1500-1600 microE/m2/s), etiolated cucumber cotyledons failed to synthesize chlorophyll entirely. However, upon transfer to low light conditions (40-45 microE/m2/s), chlorophyll biosynthesis and subsequent accumulation resumed following an initial 2-12 h delay. Duration of high light treatment negatively correlated with chlorophyll biosynthetic activity. Specifically, we found that high light severely inhibited 5-aminolevulinic acid (ALA) synthesis. This effect partly could be because of the decrease in protein level of glutamyl-tRNA reductase (GluTR) observed. Protein level of glutamate-1-semialdehyde (GSA-AT) remained unchanged. It was also found that high light did not suppress HEMA 1 expression. Therefore, we speculated that this significant inhibition of ALA synthesis might have occurred mainly because of concomitant inactivation of GluTR and/or inhibition of complex formation between GluTR and GSA-AT. Our further observation that both methyl viologen and rose bengal similarly inhibit ALA synthesis under low light conditions suggested that reactive oxygen species (ROS) could be responsible for the inhibition of ALA synthesis in cotyledons exposed to high light conditions. PMID:16922603

  5. Expression of fatty acid synthase in nonalcoholic fatty liver disease

    PubMed Central

    Dorn, Christoph; Riener, Marc-Oliver; Kirovski, Georgi; Saugspier, Michael; Steib, Kathrin; Weiss, Thomas S; Gäbele, Erwin; Kristiansen, Glen; Hartmann, Arndt; Hellerbrand, Claus

    2010-01-01

    Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid accumulation which starts with simple hepatic steatosis and may progress toward inflammation (nonalcoholic steatohepatitis [NASH]). Fatty acid synthase (FASN) catalyzes the last step in fatty acid biosynthesis, and thus, it is believed to be a major determinant of the maximal hepatic capacity to generate fatty acids by de novo lipogenesis. The aim of this study was to analyze the correlation between hepatic steatosis and inflammation with FASN expression. In vitro incubation of primary human hepatocytes with fatty acids dose-dependently induced cellular lipid-accumulation and FASN expression, while stimulation with TNF did not affect FASN levels. Further, hepatic FASN expression was significantly increased in vivo in a murine model of hepatic steatosis without significant inflammation but not in a murine NASH model as compared to control mice. Also, FASN expression was not increased in mice subjected to bile duct ligation, an experimental model characterized by severe hepatocellular damage and inflammation. Furthermore, FASN expression was analyzed in 102 human control or NAFLD livers applying tissue micro array technology and immunohistochemistry, and correlated significantly with the degree of hepatic steatosis, but not with inflammation or ballooning of hepatocytes. Quantification of FASN mRNA expression in human liver samples confirmed significantly higher FASN levels in hepatic steatosis but not in NASH, and expression of SREBP1, which is the main transcriptional regulator of FASN, paralleled FASN expression levels in human and experimental NAFLD. In conclusion, the transcriptional induction of FASN expression in hepatic steatosis is impaired in NASH, while hepatic inflammation in the absence of steatosis does not affect FASN expression, suggesting that FASN may serve as a new diagnostic marker or therapeutic target for the progression of NAFLD. PMID:20606731

  6. Expression of fatty acid synthase in nonalcoholic fatty liver disease.

    PubMed

    Dorn, Christoph; Riener, Marc-Oliver; Kirovski, Georgi; Saugspier, Michael; Steib, Kathrin; Weiss, Thomas S; Gäbele, Erwin; Kristiansen, Glen; Hartmann, Arndt; Hellerbrand, Claus

    2010-01-01

    Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid accumulation which starts with simple hepatic steatosis and may progress toward inflammation (nonalcoholic steatohepatitis [NASH]). Fatty acid synthase (FASN) catalyzes the last step in fatty acid biosynthesis, and thus, it is believed to be a major determinant of the maximal hepatic capacity to generate fatty acids by de novo lipogenesis. The aim of this study was to analyze the correlation between hepatic steatosis and inflammation with FASN expression. In vitro incubation of primary human hepatocytes with fatty acids dose-dependently induced cellular lipid-accumulation and FASN expression, while stimulation with TNF did not affect FASN levels. Further, hepatic FASN expression was significantly increased in vivo in a murine model of hepatic steatosis without significant inflammation but not in a murine NASH model as compared to control mice. Also, FASN expression was not increased in mice subjected to bile duct ligation, an experimental model characterized by severe hepatocellular damage and inflammation. Furthermore, FASN expression was analyzed in 102 human control or NAFLD livers applying tissue micro array technology and immunohistochemistry, and correlated significantly with the degree of hepatic steatosis, but not with inflammation or ballooning of hepatocytes. Quantification of FASN mRNA expression in human liver samples confirmed significantly higher FASN levels in hepatic steatosis but not in NASH, and expression of SREBP1, which is the main transcriptional regulator of FASN, paralleled FASN expression levels in human and experimental NAFLD. In conclusion, the transcriptional induction of FASN expression in hepatic steatosis is impaired in NASH, while hepatic inflammation in the absence of steatosis does not affect FASN expression, suggesting that FASN may serve as a new diagnostic marker or therapeutic target for the progression of NAFLD. PMID:20606731

  7. Fatty acid synthase as a potential therapeutic target in cancer

    PubMed Central

    Flavin, Richard; Peluso, Stephane; Nguyen, Paul L; Loda, Massimo

    2011-01-01

    Fatty acid synthase (FASN) is a key enzyme involved in neoplastic lipogenesis. Overexpression of FASN is common in many cancers, and accumulating evidence suggests that it is a metabolic oncogene with an important role in tumor growth and survival, making it an attractive target for cancer therapy. Early small-molecule FASN inhibitors such as cerulenin, C75 and orlistat have been shown to induce apoptosis in several cancer cell lines and to induce tumor growth delay in several cancer xenograft models but their mechanism is still not well understood. These molecules suffer from pharmacological limitations and weight loss as a side effect that prevent their development as systemic drugs. Several potent inhibitors have recently been reported that may help to unravel and exploit the full potential of FASN as a target for cancer therapy in the near future. Furthermore, novel sources of FASN inhibitors, such as green tea and dietary soy, make both dietary manipulation and chemoprevention potential alternative modes of therapy in the future. PMID:20373869

  8. Acyl-carrier protein - Phosphopantetheinyltransferase partnerships in fungal fatty acid synthases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The synthesis of fatty acids is an essential primary metabolic process for energy storage and cellular structural integrity. Assembly of saturated fatty acids is achieved by fatty acid synthases (FASs) that combine acetyl- and malonyl-CoAs by repetitive decarboxylative Claisen condensations with su...

  9. Chloropropionyl-CoA: a mechanism-based inhibitor of HMG-CoA synthase and fatty acid synthase

    SciTech Connect

    Miziorko, H.M.; Ahmad, F.; Behnke, C.E.

    1986-05-01

    Recent work on the mechanisms of inactivation of HMG-CoA synthase and fatty acid synthase by chloropropionyl-CoA (Cl-prop-CoA) suggests that this analog is a mechanism-based (suicide) inhibitor; the acyl group is enzymatically converted to an acrylyl derivative prior to alkylation of the target proteins. When Cl-(/sup 3/H)prop-CoA is incubated with the target enzymes, /sup 3/H/sub 2/O is produced concomitantly with enzyme inactivation; this suggests that deprotonation and chloride elimination to form an acrylyl moiety occurs. Difficulty in cleanly synthesizing acrylyl-CoA complicates direct demonstration of the intermediacy of this species. However, synthesis of a functionally equivalent reactive substrate analog, S-acrylyl-N-acetylcysteamine has been accomplished. This analog irreversibly inhibits both HMG-CoA synthase and fatty acid synthase in a site directed fashion. Concentrations required for effective inhibition (K/sub i/ values of 1.9 mM and 3.6 mM, respectively) are much higher than observed with Cl-prop-CoA. Maximal rates of inactivation (as vertical bar ..-->.. infinity) are comparable to those measured with Cl-prop-CoA, indicating that an acrylyl derivative is kinetically competent to function as an intermediate, as required if Cl-prop-CoA is a mechanism-based inhibitor. S-acrylyl-N-acetylcysteamine also inactivates HMG-CoA lyase. In this case, kinetic studies indicate that a bimolecular process is involved (k/sub 2/ = 86.7M/sup -1/min/sup -1/ at 30/sup 0/, pH 7.0).

  10. Direct transfer of starter substrates from type I fatty acid synthase to type III polyketide synthases in phenolic lipid synthesis.

    PubMed

    Miyanaga, Akimasa; Funa, Nobutaka; Awakawa, Takayoshi; Horinouchi, Sueharu

    2008-01-22

    Alkylresorcinols and alkylpyrones, which have a polar aromatic ring and a hydrophobic alkyl chain, are phenolic lipids found in plants, fungi, and bacteria. In the Gram-negative bacterium Azotobacter vinelandii, phenolic lipids in the membrane of dormant cysts are essential for encystment. The aromatic moieties of the phenolic lipids in A. vinelandii are synthesized by two type III polyketide synthases (PKSs), ArsB and ArsC, which are encoded by the ars operon. However, details of the synthesis of hydrophobic acyl chains, which might serve as starter substrates for the type III polyketide synthases (PKSs), were unknown. Here, we show that two type I fatty acid synthases (FASs), ArsA and ArsD, which are members of the ars operon, are responsible for the biosynthesis of C(22)-C(26) fatty acids from malonyl-CoA. In vivo and in vitro reconstitution of phenolic lipid synthesis systems with the Ars enzymes suggested that the C(22)-C(26) fatty acids produced by ArsA and ArsD remained attached to the ACP domain of ArsA and were transferred hand-to-hand to the active-site cysteine residues of ArsB and ArsC. The type III PKSs then used the fatty acids as starter substrates and carried out two or three extensions with malonyl-CoA to yield the phenolic lipids. The phenolic lipids in A. vinelandii were thus found to be synthesized solely from malonyl-CoA by the four members of the ars operon. This is the first demonstration that a type I FAS interacts directly with a type III PKS through substrate transfer. PMID:18199837

  11. Cyclopentanedi- and tricarboxylic acids as squalene synthase inhibitors: syntheses and evaluation.

    PubMed

    Shen, W; Garvey, D S; Cohen, J; Stein, H; Rosenberg, S H

    1998-04-21

    Based on earlier lead squalene synthase inhibitor A-87049 (3) and zaragozic acids, a series of cyclopentanedi- and tricarboxylic acids were synthesized and evaluated against the enzyme. Some exhibited good potency and SAR revealed the importance of conformation and substitution pattern of these synthetic inhibitors. PMID:9871507

  12. Isolation and partial characterization of the gene for goose fatty acid synthase.

    PubMed

    Kameda, K; Goodridge, A G

    1991-01-01

    Fatty acid synthase is regulated by diet and hormones, with regulation being primarily transcriptional. In chick embryo hepatocytes in culture, triiodothyronine stimulates accumulation of enzyme and transcription of the gene. Since the 5'-flanking region of this gene is likely involved in hormonal regulation of its expression, we have isolated and partially characterized an avian fatty acid synthase gene. A genomic DNA library was constructed in a cosmid vector and screened with cDNA clones that contained sequence complementary to the 3' end of goose fatty acid synthase mRNA. A genomic clone (approximately 35 kilobase pairs (kb] was isolated, and a 6.5-kb EcoRI fragment thereof contained DNA complementary to the 3' noncoding region of fatty acid synthase mRNA. Additional cosmid libraries were screened with 5' fragments of previously isolated genomic clones, resulting in the isolation of five overlapping cosmid DNAs. The entire region of cloned DNA spans approximately 105 kb. Exon-containing fragments were identified by hybridization with end-labeled poly(A)+ RNA and by hybridization of labeled exon-containing genomic DNA fragments to fatty acid synthase mRNA. A new set of cDNA clones spanning approximately 3.2 kb was isolated from a lambda-ZAP goose liver cDNA library using the 5'-most exon-containing fragment of the 5'-most genomic DNA clone. This region of mRNA contains a 5'-untranslated sequence and a continuous open reading frame which includes a region that codes for the essential cysteine of the beta-ketoacyl synthase domain. The entire fatty acid synthase gene spans about 50 kb. The 5' 15 kb of the gene contain 7 exons. S1 nuclease and primer extension analyses were used to identify a single site for initiation of transcription, 174 nucleotides upstream from the putative translation initiation codon. Putative "TATA" and "CCAAT" boxes are located 28 and 60 base pairs (bp), respectively, upstream of the site of initiation of transcription. The 5'-flanking 597

  13. Cyclopropane fatty acid synthase from Oenococcus oeni: expression in Lactococcus lactis subsp. cremoris and biochemical characterization.

    PubMed

    To, Thi Mai Huong; Grandvalet, Cosette; Alexandre, Hervé; Tourdot-Maréchal, Raphaëlle

    2015-11-01

    Bacterial cyclopropane fatty acid synthases (CFA synthases) catalyze the transfer of a methyl group from S-adenosyl-L-methionine (AdoMet) to the double bond of a lipid chain, thereby forming a cyclopropane ring. CFAs contribute to resistance to acidity, dryness, and osmotic imbalance in many bacteria. This work describes the first biochemical characterization of a lactic acid bacterium CFA synthase. We have overexpressed Oenococcus oeni CFA synthase in E. coli in order to purify the enzyme. The optimum cyclopropanation activity was obtained at pH 5.6 and 35.8 °C. The high K(m) (AdoMet) value obtained (2.26 mM) demonstrates the low affinity of O. oeni enzyme toward the L. lactis subsp. cremoris unsaturated phospholipids. These results explain the partial complementation of the L. lactis subsp. cremoris cfa mutant by the O. oeni cfa gene and suggest a probable substrate specificity of the O. oeni enzyme. The current study reveals an essential hypothesis about the specificity of O. oeni CFA synthase which could play a key function in the acid tolerance mechanisms of this enological bacterium. PMID:26294376

  14. Purification and characterization of cannabidiolic-acid synthase from Cannabis sativa L.. Biochemical analysis of a novel enzyme that catalyzes the oxidocyclization of cannabigerolic acid to cannabidiolic acid.

    PubMed

    Taura, F; Morimoto, S; Shoyama, Y

    1996-07-19

    We identified a unique enzyme that catalyzes the oxidocyclization of cannabigerolic acid to cannabidiolic acid (CBDA) in Cannabis sativa L. (CBDA strain). The enzyme, named CBDA synthase, was purified to apparent homogeneity by a four-step procedure: ammonium sulfate precipitation followed by chromatography on DEAE-cellulose, phenyl-Sepharose CL-4B, and hydroxylapatite. The active enzyme consists of a single polypeptide with a molecular mass of 74 kDa and a pI of 6.1. The NH2-terminal amino acid sequence of CBDA synthase is similar to that of Delta1-tetrahydrocannabinolic-acid synthase. CBDA synthase does not require coenzymes, molecular oxygen, hydrogen peroxide, and metal ion cofactors for the oxidocyclization reaction. These results indicate that CBDA synthase is neither an oxygenase nor a peroxidase and that the enzymatic cyclization does not proceed via oxygenated intermediates. CBDA synthase catalyzes the formation of CBDA from cannabinerolic acid as well as cannabigerolic acid, although the kcat for the former (0.03 s-1) is lower than that for the latter (0.19 s-1). Therefore, we conclude that CBDA is predominantly biosynthesized from cannabigerolic acid rather than cannabinerolic acid. PMID:8663284

  15. Zaragozic acids: a family of fungal metabolites that are picomolar competitive inhibitors of squalene synthase.

    PubMed

    Bergstrom, J D; Kurtz, M M; Rew, D J; Amend, A M; Karkas, J D; Bostedor, R G; Bansal, V S; Dufresne, C; VanMiddlesworth, F L; Hensens, O D

    1993-01-01

    Three closely related fungal metabolites, zaragozic acids A, B, and C, that are potent inhibitors of squalene synthase have been isolated and characterized. Zaragozic acids A, B, and C were produced from an unidentified sterile fungal culture, Sporormiella intermedia, and Leptodontium elatius, respectively. The structures of the zaragozic acids and their trimethyl esters were determined by a combination of physical and chemical techniques. The zaragozic acids are characterized by a novel 2,8-dioxobicyclo[3.2.1]octane-4,6,7- trihydroxyl-3,4,5-tricarboxylic acid core and differ from each other in the structures of the 6-acyl and 1-alkyl side chains. They were found to be potent competitive inhibitors of rat liver squalene synthase with apparent Ki values of 78 pM, 29 pM, and 45 pM, respectively. They inhibited cholesterol synthesis in Hep G2 cells, and zaragozic acid A was an inhibitor of acute hepatic cholesterol synthesis in the mouse (50% inhibitory dose of 200 micrograms/kg of body weight). Inhibition of squalene synthase in cells and in vivo was accompanied by an accumulation of label from [3H]mevalonate into farnesyl diphosphate, farnesol, and organic acids. These data indicate that the zaragozic acids are a previously unreported class of therapeutic agents with potential for the treatment of hypercholesterolemia. PMID:8419946

  16. Selective protection and relative importance of the carboxylic acid groups of zaragozic acid A for squalene synthase inhibition.

    PubMed

    Biftu, T; Acton, J J; Berger, G D; Bergstrom, J D; Dufresne, C; Kurtz, M M; Marquis, R W; Parsons, W H; Rew, D R; Wilson, K E

    1994-02-01

    Chemistry that allows selective modification of the carboxylic acid groups of the squalene synthase inhibitor zaragozic acid A (1) was developed and applied to the synthesis of compounds modified at the 3-,4-,5-,3,4-,3,5-, and 4,5-positions. A key step in this procedure is the selective debenzylation by transfer hydrogenolysis in the presence of other olefinic groups. These compounds were tested in the rat squalene synthase assay and in vivo mouse model. Modification at C3 retains significant enzyme potency and enhances oral activity, indicating that C3 is not essential for squalene synthase activity. Modification at C4 and C5 results in significant loss in enzyme activity. In contrast, substitution at C3 or C4 enhances in vivo activity. Furthermore, disubstitution at the C3 and C4 positions results in additive in vivo potency. PMID:8308869

  17. Self-consistent synthesis of the squalene synthase inhibitor zaragozic acid C via controlled oligomerization.

    PubMed

    Nicewicz, David A; Satterfield, Andrew D; Schmitt, Daniel C; Johnson, Jeffrey S

    2008-12-24

    Despite the prevalence of repeating subunits in chiral natural products, stereocontrolled oligomerization is a largely unexplored strategy for construction of carbon skeletal frameworks. This report describes the use of silyl glyoxylates as dipolar glycolic acid synthons in a controlled oligomerization reaction for the efficient construction of the squalene synthase inhibitor zaragozic acid C. This new methodology allows rapid, stereocontrolled formation of the carbon skeleton with a desirable protecting group scheme while minimizing functional group repair and oxidation state manipulations. PMID:19053214

  18. Metabolic engineering of Pseudomonas putida for production of docosahexaenoic acid based on a myxobacterial PUFA synthase.

    PubMed

    Gemperlein, Katja; Zipf, Gregor; Bernauer, Hubert S; Müller, Rolf; Wenzel, Silke C

    2016-01-01

    Long-chain polyunsaturated fatty acids (LC-PUFAs) can be produced de novo via polyketide synthase-like enzymes known as PUFA synthases, which are encoded by pfa biosynthetic gene clusters originally discovered from marine microorganisms. Recently similar gene clusters were detected and characterized in terrestrial myxobacteria revealing several striking differences. As the identified myxobacterial producers are difficult to handle genetically and grow very slowly we aimed to establish heterologous expression platforms for myxobacterial PUFA synthases. Here we report the heterologous expression of the pfa gene cluster from Aetherobacter fasciculatus (SBSr002) in the phylogenetically distant model host bacteria Escherichia coli and Pseudomonas putida. The latter host turned out to be the more promising PUFA producer revealing higher production rates of n-6 docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA). After several rounds of genetic engineering of expression plasmids combined with metabolic engineering of P. putida, DHA production yields were eventually increased more than threefold. Additionally, we applied synthetic biology approaches to redesign and construct artificial versions of the A. fasciculatus pfa gene cluster, which to the best of our knowledge represents the first example of a polyketide-like biosynthetic gene cluster modulated and synthesized for P. putida. Combination with the engineering efforts described above led to a further increase in LC-PUFA production yields. The established production platform based on synthetic DNA now sets the stage for flexible engineering of the complex PUFA synthase. PMID:26617065

  19. Free radical oxidation of (E)-retinoic acid by prostaglandin H synthase.

    PubMed

    Samokyszyn, V M; Chen, T; Maddipati, K R; Franz, T J; Lehman, P A; Lloyd, R V

    1995-01-01

    Cooxidative metabolism of all-trans (E)-retinoic acid (RA) by prostaglandin H synthase was investigated employing ram seminal vesicle microsomes (RSVM) or purified, RSVM-derived enzyme. RA was shown to undergo hydroperoxide [H2O2 or 5-phenyl-4-penten-1-yl hydroperoxide (PPHP)]- or arachidonic acid-dependent cooxidation by microsomal prostaglandin H (PGH) synthase as evidenced by UV spectroscopic analysis of reaction mixtures. Cooxidation of RA by microsomal or purified PGH synthase, using PPHP as substrate, was characterized by uptake of dioxygen which was first order with respect to enzyme concentration. Dioxygen uptake was inhibited by the peroxidase reducing substrate 2-methoxyphenol. In addition, O2 uptake was inhibited by the spin trap nitrosobenzene. ESR spin trapping studies, using alpha-phenyl-N-tert-butylnitrone (PBN) as the spin trap, demonstrated the formation of RA-PBN adducts, characterized by hyperfine coupling constants of alpha H = 3.2 G and alpha N = 15.8 G. Reverse phase HPLC analysis of reaction mixtures demonstrated the formation of 4-hydroxy-RA, 5,6-epoxy-RA, 4-oxo-RA, (13Z)-retinoic acid, and other geometric isomers which were identified on the basis of cochromatography with synthetic standards, UV spectroscopy, and/or mass spectrometry. Mechanisms are proposed for the hydroperoxide-dependent, PGH synthase-catalyzed oxidation of RA that are consistent with these results. PMID:7548765

  20. Evidence for a cyclic diguanylic acid-dependent cellulose synthase in plants.

    PubMed Central

    Amor, Y; Mayer, R; Benziman, M; Delmer, D

    1991-01-01

    Because numerous attempts to detect an activity for a cellulose synthase in plants have failed, we have taken a different approach toward detecting polypeptides involved in this process. The uniqueness of the structure and function of cyclic diguanylic acid (c-di-GMP) as an activator of the cellulose synthase of the bacterium Acetobacter xylinum makes it an attractive probe to use in a search for a c-di-GMP receptor that might be involved in the process in plants. Direct photolabeling with 32P-c-di-GMP has been used, therefore, to identify in plants two membrane polypeptides of 83 and 48 kD derived from cotton fibers that possess properties consistent with their being components of a c-di-GMP-dependent cellulose synthase. Based upon several criteria, the 48-kD species is proposed to be derived by proteolytic cleavage of the 83-kD polypeptide. Both polypeptides bind c-di-GMP with high affinity and specificity and show antigenic relatedness to the bacterial cellulose synthase, and the N-terminal sequence of the 48-kD polypeptide also indicates relatedness to the bacterial synthase. Ability to detect both cotton fiber polypeptides by photolabeling increases markedly in extracts derived from fibers entering the active phase of secondary wall cellulose synthesis. These results provide a basis for future work aimed at identifying and characterizing genes involved in cellulose synthesis in plants. PMID:1668373

  1. Mechanistic studies of 3-deoxy-D-manno-octulosonic acid 8-phosphate synthase

    SciTech Connect

    Dotson, G.D.; Woodard, R.W.

    1994-12-01

    The enzyme 3-deOXY-D-manno-octulosonic acid 8-phosphate synthase (KDO 8-P synthase) catalyses the condensation of arabinose 5-phosphate (A 5-P) with phosphoenolpyruvate (PEP) to give the unique eight-carbon acidic sugar 3-deoxy-D-nianno-octulosonic acid 8-phosphate (KDO 8-P) found only in gram-negative bacteria and required for lipid A maturation and cellular growth. The E. coli gene kdsA that encodes KDO 8-P synthase has been amplified by standard PCR methodologies. The synthetic gene, subcloned into the expression vector pT7-7 was used to infect E. coli BL 21 (DE 3). Purification of crude supernatant from this transformant on Q Sepharose yields >200 mg of near-homogeneous KDO 8-P synthase per liter of cell culture. To explore the mechanism of KDO 8-P synthase, we prepared (E)- and (Z)-(3{sup 2}H)PEP, (2-{sup 13}C)PEP, and (2-{sup 13}C,{sup 18}O)PEP chemically from the appropriately labeled 3-bromopyruvates by reaction with trimethylphosphite under Perkow reaction conditions. Our {sup 1}H-NMR analysis of the stereochemistry at C3 of the KDO 8-Ps, obtained by separate incubation of (E)- and (Z)-(3-{sup 2}H)PEP with A 5-P in the presence of KDO 8-P synthase, demonstrated that the reaction is stereospecific with respect to both the C3 of PEP and the C1 carbonyl of A 5-P. (Z)-(3-{sup 2}H)PEP gave predominantly (3S)-(3{sup 2}H)KDO 8-P and (E)-(3-{sup 2}H)PEP gave predominantly (3R)-(3{sup 2}H)KDO-8P, which indicates condensation of the si face of PEP upon the re face of A 5-P-an orientation analogous to that seen with the similar aldehyde Iyase DAH 7-P synthase. The fate of the enolic oxygen of (2-{sup 13}C, {sup 18}O)PEP, during the course of the KDO 8-P synthase-catalyzed reaction as monitored by both {sup 13}C- and {sup 31}P-NMR spectroscopy demonstrated that the inorganic phosphate (Pi) and not the KDO 8-P contained the {sup 18}O.

  2. Apoptotic effect of tannic acid on fatty acid synthase over-expressed human breast cancer cells.

    PubMed

    Nie, Fangyuan; Liang, Yan; Jiang, Bing; Li, Xiabing; Xun, Hang; He, Wei; Lau, Hay Tong; Ma, Xiaofeng

    2016-02-01

    Breast cancer is one of the most common cancers and is the second leading cause of cancer mortality in women worldwide. Novel therapies and chemo-therapeutic drugs are urgently needed to be developed for the treatment of breast cancer. Increasing evidence suggests that fatty acid synthase (FAS) plays an important role in breast cancer, for the expression of FAS is significantly higher in human breast cancer cells than in normal cells. Tannic acid (TA), a natural polyphenol, possesses significant biological functions, including bacteriostasis, hemostasis, and anti-oxidant. Our previous studies demonstrated that TA is a natural FAS inhibitor whose inhibitory activity is stronger than that of classical FAS inhibitors, such as C75 and cerulenin. This study further assessed the effect and therapeutic potential of TA on FAS over-expressed breast cancer cells, and as a result, TA had been proven to possess the functions of inhibiting intracellular FAS activity, down-regulating FAS expression in human breast cancer MDA-MB-231 and MCF-7 cells, and inducing cancer cell apoptosis. Since high-expressed FAS is recognized as a molecular marker for breast cancer and plays an important role in cancer prognosis, these findings suggest that TA is a potential drug candidate for treatment of breast cancer. PMID:26349913

  3. Massive production of farnesol-derived dicarboxylic acids in mice treated with the squalene synthase inhibitor zaragozic acid A.

    PubMed

    Vaidya, S; Bostedor, R; Kurtz, M M; Bergstrom, J D; Bansal, V S

    1998-07-01

    The zaragozic acids are potent inhibitors of squalene synthase. In vivo studies in mice confirmed our earlier observations that inhibition of squalene synthase by zaragozic acid A was accompanied by an increase in the incorporation of label from [3H]mevalonate into farnesyl-diphosphate (FPP)-derived isoprenoic acids (J. D. Bergstrom et al., 1993, Proc. Natl. Acad. Sci. USA 90, 80-84). Farnesyl-diphosphate-derived metabolites appear transiently in the liver. We were unable to detect any farnesol formation in the zaragozic acid-treated animals which indicates that FPP is readily converted to farnesoic acid and dicarboxylic acids in the liver. These metabolites were found to be produced only in the liver and not in the kidney. trans-3,7-Dimethyl-2-octaen-1,8-dioic acid and 3, 7-dimethyloctan-1,8-dioic acid were identified as the major end products of farnesyl-diphosphate metabolism in the urine of mice treated with zaragozic acid A. Quantitative analysis of these FPP-derived dicarboxylic acids by gas-liquid chromatography revealed that approximately 11 mg of total dicarboxylic acids is excreted per day into the urine of a mouse after 3 days of treatment with zaragozic acid A. PMID:9647670

  4. Crystallization of Δ{sup 1}-tetrahydrocannabinolic acid (THCA) synthase from Cannabis sativa

    SciTech Connect

    Shoyama, Yoshinari; Takeuchi, Ayako; Taura, Futoshi; Tamada, Taro; Adachi, Motoyasu; Kuroki, Ryota; Shoyama, Yukihiro; Morimoto, Satoshi

    2005-08-01

    Δ{sup 1}-Tetrahydrocannabinolic acid (THCA) synthase from C. sativa was crystallized. The crystal diffracted to 2.7 Å resolution with sufficient quality for further structure determination. Δ{sup 1}-Tetrahydrocannabinolic acid (THCA) synthase is a novel oxidoreductase that catalyzes the biosynthesis of the psychoactive compound THCA in Cannabis sativa (Mexican strain). In order to investigate the structure–function relationship of THCA synthase, this enzyme was overproduced in insect cells, purified and finally crystallized in 0.1 M HEPES buffer pH 7.5 containing 1.4 M sodium citrate. A single crystal suitable for X-ray diffraction measurement was obtained in 0.09 M HEPES buffer pH 7.5 containing 1.26 M sodium citrate. The crystal diffracted to 2.7 Å resolution at beamline BL41XU, SPring-8. The crystal belonged to the primitive cubic space group P432, with unit-cell parameters a = b = c = 178.2 Å. The calculated Matthews coefficient was approximately 4.1 or 2.0 Å{sup 3} Da{sup −1} assuming the presence of one or two molecules of THCA synthase in the asymmetric unit, respectively.

  5. Coexpressing Escherichia coli cyclopropane synthase with Sterculia foetida Lysophosphatidic acid acyltransferase enhances cyclopropane fatty acid accumulation.

    PubMed

    Yu, Xiao-Hong; Prakash, Richa Rawat; Sweet, Marie; Shanklin, John

    2014-01-01

    Cyclopropane fatty acids (CPAs) are desirable as renewable chemical feedstocks for the production of paints, plastics, and lubricants. Toward our goal of creating a CPA-accumulating crop, we expressed nine higher plant cyclopropane synthase (CPS) enzymes in the seeds of fad2fae1 Arabidopsis (Arabidopsis thaliana) and observed accumulation of less than 1% CPA. Surprisingly, expression of the Escherichia coli CPS gene resulted in the accumulation of up to 9.1% CPA in the seed. Coexpression of a Sterculia foetida lysophosphatidic acid acyltransferase (SfLPAT) increases CPA accumulation up to 35% in individual T1 seeds. However, seeds with more than 9% CPA exhibit wrinkled seed morphology and reduced size and oil accumulation. Seeds with more than 11% CPA exhibit strongly decreased seed germination and establishment, and no seeds with CPA more than 15% germinated. That previous reports suggest that plant CPS prefers the stereospecific numbering (sn)-1 position whereas E. coli CPS acts on sn-2 of phospholipids prompted us to investigate the preferred positions of CPS on phosphatidylcholine (PC) and triacylglycerol. Unexpectedly, in planta, E. coli CPS acts primarily on the sn-1 position of PC; coexpression of SfLPAT results in the incorporation of CPA at the sn-2 position of lysophosphatidic acid. This enables a cycle that enriches CPA at both sn-1 and sn-2 positions of PC and results in increased accumulation of CPA. These data provide proof of principle that CPA can accumulate to high levels in transgenic seeds and sets the stage for the identification of factors that will facilitate the movement of CPA from PC into triacylglycerol to produce viable seeds with additional CPA accumulation. PMID:24204024

  6. Discovery, biosynthesis, and mechanism of action of the zaragozic acids: potent inhibitors of squalene synthase.

    PubMed

    Bergstrom, J D; Dufresne, C; Bills, G F; Nallin-Omstead, M; Byrne, K

    1995-01-01

    The zaragozic acids (ZAs), a family of fungal metabolites containing a novel 4,6,7-trihydroxy-2,8-dioxobicyclo[3.2.1]octane-3,4,5-tricarboxylic acid core, were discovered independently by two separate groups screening natural product sources to discover inhibitors of squalene synthase. This family of compounds all contain the same core but differ in their 1-alkyl and their 6-acyl side chains. Production of the ZAs is distributed over an extensive taxonomic range of Ascomycotina or their anamorphic states. The zaragozic acids are very potent inhibitors of squalene synthase that inhibit cholesterol synthesis and lower plasma cholesterol levels in primates. They also inhibit fungal ergosterol synthesis and are potent fungicidal compounds. The biosynthesis of the zaragozic acids appears to proceed through alkyl citrate intermediates and new members of the family have been produced through directed biosynthesis. These potent natural product based inhibitors of squalene synthase have potential to be developed either as cholesterol lowering agents and/or as antifungal agents. PMID:8561474

  7. Differential accumulation and organ-specific metabolism of 5-aminolevulinic acid between cancer cells and normal epithelial and stromal cells

    NASA Astrophysics Data System (ADS)

    Krieg, Rene C.; Rauch, Joachim; Seidl, Juergen; Stepp, Herbert G.; Messmann, Helmut; Knuechel, Ruth

    2001-01-01

    To optimize conditions of photodynamic therapy (PDT) with ALA induced protoporphyrin IX (PPIX), topography of accumulation and metabolism of PPIX were analyzed in vitro. Adenocarcinoma cell lines, urothelial carcinoma cell lines, and a normal fibroblast cell line were cultured in plateau phase. ALA-induced PPIX accumulation, porphobilinogendeaminase-, ferrochelatase- activity, intracellular iron content, transferrin receptor expression and PPIX localization were determined using standard techniques. PBG activity as well as PPIX content were found higher in adenocarcinoma cells than in urothelial cells. Urothelial cell lines showed significant alterations in FC values in contrast to similar levels of FC in adenocarcinoma cell lines overall. Well differentiated cells showed higher iron content than lower differentiated cells. Transferrin receptor expression was found independent of PPIX content and intracellular iron content. In HT29, PPIX localizes mostly in the cell membrane, in SW480 and CaCo2 in mitochondria, and in urothelial cells mainly in cytosol. Data presented encourage the systematic and organ- related analysis of PPIX metabolism, since significant differences have been found between urothelial tumor cells and adenocarcinoma cells which may demand different strategies of therapy optimization and combination therapy regimens.

  8. The effects of visual fluorescence marking induced by 5-aminolevulinic acid for endoscopic diagnosis of urinary bladder cancer

    NASA Astrophysics Data System (ADS)

    Daniltchenko, Dmitri I.; Koenig, Frank; Schnorr, Dietmar; Valdman, Alexander; Al-Shukri, Salman; Loening, Stefan A.

    2003-10-01

    During cystoscopy procedure, fluorescence diagnostics induced by 5-ALA improves visual detection of the bladder cancer. Macroscopic ALA-fluorescence allows visualizing of small flat tumors, carcinoma in situ, true neoplasm margins and dysplasias of the bladder. Following ALA instillation, cystoscopy has been performed under both standard and blue light illumination. Totally, 153 biopsies have been carried out at 53 patients with suspicion of bladder cancer. The results were compared to ALA-fluorescence data. In 13% of the patients, bladder cancer and dysplasia were found out in addition, due to red fluorescence. The sensitivity and specificity of ALA-fluorescence technique aggregated 96% and 52% respectively. The sensitivity and specificity of 5-ALA-fluorescent detection exceeded standard endoscopy under white light on 20%. The new method does not exclude a false positive and a false negative fluorescent luminescence. The ALA-based fluorescence detection system enhances the diagnosis of malignant/dysplastic bladder lesions significantly.

  9. Photodynamic therapy (PDT) and photodiagnosis (PD) using endogenous photosensitization induced by 5-aminolevulinic acid (ALA): current clinical and development status

    NASA Astrophysics Data System (ADS)

    Marcus, Stuart L.; Sobel, Russel S.; Golub, Allyn L.; Carroll, Ronald L.; Lundahl, Scott L.; Shulman, D. Geoffrey

    1996-04-01

    Exogenous provision of ALA to many tissues results in the accumulation of sufficient quantities of the endogenous photosensitizer protoporphyrin IX, (PpIX), to produce a photodynamic effect. Therefore, ALA may be considered the only current PDT agent in clinical development which is a biochemical precursor of a photosensitizer. Topical ALA application, followed by exposure to activating light (ALA PDT), has been reported effective for the treatment of a variety of dermatologic diseases including cutaneous T-cell lymphoma, superficial basal cell carcinoma, Bowen's disease, and actinic (solar) keratoses, and is also being examined for treatment of acne and hirsutism. PpIX induced by ALA application also may serve as a fluorescence detection marker for photodiagnosis (PD) of malignant and pre- malignant conditions of the urinary bladder and other organs. Local internal application of ALA has also been used for selective endometrial ablation in animal model systems and is beginning to be examined in human clinical studies. Systemic, oral administration of ALA has been used for ALA PDT of superficial head and neck cancer, various gastrointestinal cancers, and the condition known as Barrett's esophagus. This brief paper reviews the current clinical and development status of ALA PDT.

  10. The gene controlling marijuana psychoactivity: molecular cloning and heterologous expression of Delta1-tetrahydrocannabinolic acid synthase from Cannabis sativa L.

    PubMed

    Sirikantaramas, Supaart; Morimoto, Satoshi; Shoyama, Yoshinari; Ishikawa, Yu; Wada, Yoshiko; Shoyama, Yukihiro; Taura, Futoshi

    2004-09-17

    Delta(1)-tetrahydrocannabinolic acid (THCA) synthase is the enzyme that catalyzes oxidative cyclization of cannabigerolic acid into THCA, the precursor of Delta(1)-tetrahydrocannabinol. We cloned a novel cDNA (GenBank trade mark accession number AB057805) encoding THCA synthase by reverse transcription and polymerase chain reactions from rapidly expanding leaves of Cannabis sativa. This gene consists of a 1635-nucleotide open reading frame, encoding a 545-amino acid polypeptide of which the first 28 amino acid residues constitute the signal peptide. The predicted molecular weight of the 517-amino acid mature polypeptide is 58,597 Da. Interestingly, the deduced amino acid sequence exhibited high homology to berberine bridge enzyme from Eschscholtzia californica, which is involved in alkaloid biosynthesis. The liquid culture of transgenic tobacco hairy roots harboring the cDNA produced THCA upon feeding of cannabigerolic acid, demonstrating unequivocally that this gene encodes an active THCA synthase. Overexpression of the recombinant THCA synthase was achieved using a baculovirus-insect expression system. The purified recombinant enzyme contained covalently attached FAD cofactor at a molar ratio of FAD to protein of 1:1. The mutant enzyme constructed by changing His-114 of the wild-type enzyme to Ala-114 exhibited neither absorption characteristics of flavoproteins nor THCA synthase activity. Thus, we concluded that the FAD binding residue is His-114 and that the THCA synthase reaction is FAD-dependent. This is the first report on molecular characterization of an enzyme specific to cannabinoid biosynthesis. PMID:15190053

  11. Fatty acid synthase is required for mammary gland development and milk production during lactation

    PubMed Central

    Suburu, Janel; Shi, Lihong; Wu, Jiansheng; Wang, Shihua; Samuel, Michael; Thomas, Michael J.; Kock, Nancy D.; Yang, Guangyu; Kridel, Steven

    2014-01-01

    The mammary gland is one of the few adult tissues that strongly induce de novo fatty acid synthesis upon physiological stimulation, suggesting that fatty acid is important for milk production during lactation. The committed enzyme to perform this function is fatty acid synthase (FASN). To determine whether de novo fatty acid synthesis is obligatory or dietary fat is sufficient for mammary gland development and function during lactation, Fasn was specifically knocked out in mouse mammary epithelial cells. We found that deletion of Fasn hindered the development and induced the premature involution of the lactating mammary gland and significantly decreased medium- and long-chain fatty acids and total fatty acid contents in the milk. Consequently, pups nursing from Fasn knockout mothers experienced growth retardation and preweanling death, which was rescued by cross-fostering pups to a lactating wild-type mother. These results demonstrate that FASN is essential for the development, functional competence, and maintenance of the lactating mammary gland. PMID:24668799

  12. Feline acute intermittent porphyria: a phenocopy masquerading as an erythropoietic porphyria due to dominant and recessive hydroxymethylbilane synthase mutations

    PubMed Central

    Clavero, Sonia; Bishop, David F.; Haskins, Mark E.; Giger, Urs; Kauppinen, Raili; Desnick, Robert J.

    2010-01-01

    Human acute intermittent porphyria (AIP), the most common acute hepatic porphyria, is an autosomal dominant inborn error of heme biosynthesis due to the half-normal activity of hydroxymethylbilane synthase (HMB-synthase). Here, we describe the first naturally occurring animal model of AIP in four unrelated cat lines who presented phenotypically as congenital erythropoietic porphyria (CEP). Affected cats had erythrodontia, brownish urine, fluorescent bones, and markedly elevated urinary uroporphyrin (URO) and coproporphyrin (COPRO) consistent with CEP. However, their uroporphyrinogen-III-synthase (URO-synthase) activities (deficient in CEP) were normal. Notably, affected cats had half-normal HMB-synthase activities and elevated urinary 5-aminolevulinic acid (ALA) and porphobilinogen (PBG), the deficient enzyme and accumulated metabolites in human AIP. Sequencing the feline HMB-synthase gene revealed different mutations in each line: a duplication (c.189dupT), an in-frame 3 bp deletion (c.842_844delGAG) identical to that causing human AIP and two missense mutations, c.250G>A (p.A84T) and c.445C>T (p.R149W). Prokaryotic expression of mutations c.842_844delGAG and c.445C>T resulted in mutant enzymes with <1% wild-type activity, whereas c.250G>A expressed a stable enzyme with ∼35% of wild-type activity. The discolored teeth from the affected cats contained markedly elevated URO I and III, accounting for the CEP-like phenocopy. In three lines, the phenotype was an autosomal dominant trait, while affected cats with the c.250G>A (p.A84T) mutation were homozygous, a unique recessive form of AIP. These animal models may permit further investigation of the pathogenesis of the acute, life-threatening neurological attacks in human AIP and the evaluation of therapeutic strategies. GenBank Accession Numbers: GQ850461–GQ850464. PMID:19934113

  13. Deletion of a Chitin Synthase Gene in a Citric Acid Producing Strain of Aspergillus niger

    SciTech Connect

    Rinker, Torri E.; Baker, Scott E.

    2007-01-29

    Citric acid production by the filamentous fungus Aspergillus niger is carried out in a process that causes the organism to drastically alter its morphology. This altered morphology includes hyphal swelling and highly limited polar growth resulting in clumps of swollen cells that eventually aggregate into pellets of approximately 100 microns in diameter. In this pelleted form, A. niger has increased citric acid production as compared to growth in filamentous form. Chitin is a crucial component of the cell wall of filamentous fungi. Alterations in the deposition or production of chitin may have profound effects on the morphology of the organism. In order to study the role of chitin synthesis in pellet formation we have deleted a chitin synthase gene (csmA) in Aspergillus niger strain ATCC 11414 using a PCR based deletion construct. This class of chitin synthases is only found in filamentous fungi and is not present in yeasts. The csmA genes contain a myosin motor domain at the N-terminus and a chitin synthesis domain at the C-terminus. They are believed to contribute to the specialized polar growth observed in filamentous fungi that is lacking in yeasts. The csmA deletion strain (csmAΔ) was subjected to minimal media with and without osmotic stabilizers as well as tested in citric acid production media. Without osmotic stabilizers, the mutant germlings were abnormally swollen, primarily in the subapical regions, and contained large vacuoles. However, this swelling is ultimately not inhibitory to growth as the germlings are able to recover and undergo polar growth. Colony formation was largely unaffected in the absence of osmotic stabilizers. In citric acid production media csmAΔ was observed to have a 2.5 fold increase in citric acid production. The controlled expression of this class of chitin synthases may be useful for improving production of organic acids in filamentous fungi.

  14. Improvement of dolichol-linked oligosaccharide biosynthesis by the squalene synthase inhibitor zaragozic acid.

    PubMed

    Haeuptle, Micha A; Welti, Michael; Troxler, Heinz; Hülsmeier, Andreas J; Imbach, Timo; Hennet, Thierry

    2011-02-25

    The majority of congenital disorders of glycosylation (CDG) are caused by defects of dolichol (Dol)-linked oligosaccharide assembly, which lead to under-occupancy of N-glycosylation sites. Most mutations encountered in CDG are hypomorphic, thus leaving residual activity to the affected biosynthetic enzymes. We hypothesized that increased cellular levels of Dol-linked substrates might compensate for the low biosynthetic activity and thereby improve the output of protein N-glycosylation in CDG. To this end, we investigated the potential of the squalene synthase inhibitor zaragozic acid A to redirect the flow of the polyisoprene pathway toward Dol by lowering cholesterol biosynthesis. The addition of zaragozic acid A to CDG fibroblasts with a Dol-P-Man synthase defect led to the formation of longer Dol-P species and to increased Dol-P-Man levels. This treatment was shown to decrease the pathologic accumulation of incomplete Dol pyrophosphate-GlcNAc(2)Man(5) in Dol-P-Man synthase-deficient fibroblasts. Zaragozic acid A treatment also decreased the amount of truncated protein N-linked oligosaccharides in these CDG fibroblasts. The increased cellular levels of Dol-P-Man and possibly the decreased cholesterol levels in zaragozic acid A-treated cells also led to increased availability of the glycosylphosphatidylinositol anchor as shown by the elevated cell-surface expression of the CD59 protein. This study shows that manipulation of the cellular Dol pool, as achieved by zaragozic acid A addition, may represent a valuable approach to improve N-linked glycosylation in CDG cells. PMID:21183681

  15. Improvement of Dolichol-linked Oligosaccharide Biosynthesis by the Squalene Synthase Inhibitor Zaragozic Acid*

    PubMed Central

    Haeuptle, Micha A.; Welti, Michael; Troxler, Heinz; Hülsmeier, Andreas J.; Imbach, Timo; Hennet, Thierry

    2011-01-01

    The majority of congenital disorders of glycosylation (CDG) are caused by defects of dolichol (Dol)-linked oligosaccharide assembly, which lead to under-occupancy of N-glycosylation sites. Most mutations encountered in CDG are hypomorphic, thus leaving residual activity to the affected biosynthetic enzymes. We hypothesized that increased cellular levels of Dol-linked substrates might compensate for the low biosynthetic activity and thereby improve the output of protein N-glycosylation in CDG. To this end, we investigated the potential of the squalene synthase inhibitor zaragozic acid A to redirect the flow of the polyisoprene pathway toward Dol by lowering cholesterol biosynthesis. The addition of zaragozic acid A to CDG fibroblasts with a Dol-P-Man synthase defect led to the formation of longer Dol-P species and to increased Dol-P-Man levels. This treatment was shown to decrease the pathologic accumulation of incomplete Dol pyrophosphate-GlcNAc2Man5 in Dol-P-Man synthase-deficient fibroblasts. Zaragozic acid A treatment also decreased the amount of truncated protein N-linked oligosaccharides in these CDG fibroblasts. The increased cellular levels of Dol-P-Man and possibly the decreased cholesterol levels in zaragozic acid A-treated cells also led to increased availability of the glycosylphosphatidylinositol anchor as shown by the elevated cell-surface expression of the CD59 protein. This study shows that manipulation of the cellular Dol pool, as achieved by zaragozic acid A addition, may represent a valuable approach to improve N-linked glycosylation in CDG cells. PMID:21183681

  16. A conserved amino acid residue critical for product and substrate specificity in plant triterpene synthases.

    PubMed

    Salmon, Melissa; Thimmappa, Ramesha B; Minto, Robert E; Melton, Rachel E; Hughes, Richard K; O'Maille, Paul E; Hemmings, Andrew M; Osbourn, Anne

    2016-07-26

    Triterpenes are structurally complex plant natural products with numerous medicinal applications. They are synthesized through an origami-like process that involves cyclization of the linear 30 carbon precursor 2,3-oxidosqualene into different triterpene scaffolds. Here, through a forward genetic screen in planta, we identify a conserved amino acid residue that determines product specificity in triterpene synthases from diverse plant species. Mutation of this residue results in a major change in triterpene cyclization, with production of tetracyclic rather than pentacyclic products. The mutated enzymes also use the more highly oxygenated substrate dioxidosqualene in preference to 2,3-oxidosqualene when expressed in yeast. Our discoveries provide new insights into triterpene cyclization, revealing hidden functional diversity within triterpene synthases. They further open up opportunities to engineer novel oxygenated triterpene scaffolds by manipulating the precursor supply. PMID:27412861

  17. A conserved amino acid residue critical for product and substrate specificity in plant triterpene synthases

    PubMed Central

    Salmon, Melissa; Thimmappa, Ramesha B.; Minto, Robert E.; Melton, Rachel E.; O’Maille, Paul E.; Hemmings, Andrew M.; Osbourn, Anne

    2016-01-01

    Triterpenes are structurally complex plant natural products with numerous medicinal applications. They are synthesized through an origami-like process that involves cyclization of the linear 30 carbon precursor 2,3-oxidosqualene into different triterpene scaffolds. Here, through a forward genetic screen in planta, we identify a conserved amino acid residue that determines product specificity in triterpene synthases from diverse plant species. Mutation of this residue results in a major change in triterpene cyclization, with production of tetracyclic rather than pentacyclic products. The mutated enzymes also use the more highly oxygenated substrate dioxidosqualene in preference to 2,3-oxidosqualene when expressed in yeast. Our discoveries provide new insights into triterpene cyclization, revealing hidden functional diversity within triterpene synthases. They further open up opportunities to engineer novel oxygenated triterpene scaffolds by manipulating the precursor supply. PMID:27412861

  18. Canola engineered with a microalgal polyketide synthase-like system produces oil enriched in docosahexaenoic acid.

    PubMed

    Walsh, Terence A; Bevan, Scott A; Gachotte, Daniel J; Larsen, Cory M; Moskal, William A; Merlo, P A Owens; Sidorenko, Lyudmila V; Hampton, Ronnie E; Stoltz, Virginia; Pareddy, Dayakar; Anthony, Geny I; Bhaskar, Pudota B; Marri, Pradeep R; Clark, Lauren M; Chen, Wei; Adu-Peasah, Patrick S; Wensing, Steven T; Zirkle, Ross; Metz, James G

    2016-08-01

    Dietary omega-3 long-chain polyunsaturated fatty acids (LC-PUFAs), docosahexaenoic acid (DHA, C22:6) and eicosapentaenoic acid (EPA, C20:5) are usually derived from marine fish. Although production of both EPA and DHA has been engineered into land plants, including Arabidopsis, Camelina sativa and Brassica juncea, neither has been produced in commercially relevant amounts in a widely grown crop. We report expression of a microalgal polyketide synthase-like PUFA synthase system, comprising three multidomain polypeptides and an accessory enzyme, in canola (Brassica napus) seeds. This transgenic enzyme system is expressed in the cytoplasm, and synthesizes DHA and EPA de novo from malonyl-CoA without substantially altering plastidial fatty acid production. Furthermore, there is no significant impact of DHA and EPA production on seed yield in either the greenhouse or the field. Canola oil processed from field-grown grain contains 3.7% DHA and 0.7% EPA, and can provide more than 600 mg of omega-3 LC-PUFAs in a 14 g serving. PMID:27398790

  19. Crystallization of Delta1-tetrahydrocannabinolic acid (THCA) synthase from Cannabis sativa.

    PubMed

    Shoyama, Yoshinari; Takeuchi, Ayako; Taura, Futoshi; Tamada, Taro; Adachi, Motoyasu; Kuroki, Ryota; Shoyama, Yukihiro; Morimoto, Satoshi

    2005-08-01

    Delta1-Tetrahydrocannabinolic acid (THCA) synthase is a novel oxidoreductase that catalyzes the biosynthesis of the psychoactive compound THCA in Cannabis sativa (Mexican strain). In order to investigate the structure-function relationship of THCA synthase, this enzyme was overproduced in insect cells, purified and finally crystallized in 0.1 M HEPES buffer pH 7.5 containing 1.4 M sodium citrate. A single crystal suitable for X-ray diffraction measurement was obtained in 0.09 M HEPES buffer pH 7.5 containing 1.26 M sodium citrate. The crystal diffracted to 2.7 A resolution at beamline BL41XU, SPring-8. The crystal belonged to the primitive cubic space group P432, with unit-cell parameters a = b = c = 178.2 A. The calculated Matthews coefficient was approximately 4.1 or 2.0 A3 Da(-1) assuming the presence of one or two molecules of THCA synthase in the asymmetric unit, respectively. PMID:16511162

  20. Crystallization of Δ1-tetrahydrocannabinolic acid (THCA) synthase from Cannabis sativa

    PubMed Central

    Shoyama, Yoshinari; Takeuchi, Ayako; Taura, Futoshi; Tamada, Taro; Adachi, Motoyasu; Kuroki, Ryota; Shoyama, Yukihiro; Morimoto, Satoshi

    2005-01-01

    Δ1-Tetrahydrocannabinolic acid (THCA) synthase is a novel oxidoreductase that catalyzes the biosynthesis of the psychoactive compound THCA in Cannabis sativa (Mexican strain). In order to investigate the structure–function relationship of THCA synthase, this enzyme was overproduced in insect cells, purified and finally crystallized in 0.1 M HEPES buffer pH 7.5 containing 1.4 M sodium citrate. A single crystal suitable for X-ray diffraction measurement was obtained in 0.09 M HEPES buffer pH 7.5 containing 1.26 M sodium citrate. The crystal diffracted to 2.7 Å resolution at beamline BL41XU, SPring-8. The crystal belonged to the primitive cubic space group P432, with unit-cell parameters a = b = c = 178.2 Å. The calculated Matthews coefficient was approximately 4.1 or 2.0 Å3 Da−1 assuming the presence of one or two molecules of THCA synthase in the asymmetric unit, respectively. PMID:16511162

  1. Open reading frame 3, which is adjacent to the mycocerosic acid synthase gene, is expressed as an acyl coenzyme A synthase in Mycobacterium bovis BCG.

    PubMed Central

    Fitzmaurice, A M; Kolattukudy, P E

    1997-01-01

    The aim of this study was to test for expression of a 900-bp open reading frame (ORF), ORF3, located at the 5' end of the mycocerosic acid synthase gene in Mycobacterium bovis BCG and to determine the nature of the ORF3 protein. ORF3 was expressed as a 61-kDa C-terminal fusion protein with glutathione S-transferase in Escherichia coli. Polyclonal rabbit antiserum, prepared against this fusion protein, cross-reacted with a 65-kDa protein in M. bovis BCG crude extracts. Since this protein was larger than that predicted from the nucleotide sequence (32 kDa), ORF3 was resequenced, revealing an ORF of 1,749 bp that encodes a 64.8-kDa protein containing 583 amino acids. Reverse transcription-PCR revealed that ORF3 is expressed in M. bovis BCG. The ORF3 product has a high degree of similarity to the acyladenylate family of enzymes. Immunoaffinity absorption chromatography was used to isolate the 65-kDa cross-reacting protein from M. bovis BCG. This purified protein catalyzed coenzyme A (CoA) ester synthesis of n-C10 to n-C18 fatty acids but not mycocerosic acids. ORF3 antibodies severely inhibited acyl-CoA synthase activities of the purified protein and extracts of M. bovis BCG, Mycobacterium smegmatis, and E. coli. They also showed immunological cross-reactivity with proteins in these extracts. Both the ORF3 protein and the acyl-CoA synthase activity were located in the cell cytosol or were loosely associated with the cell membrane. These results indicate that ORF3 encodes an acyl-CoA synthase-like protein. PMID:9098059

  2. Carnosol and Carnosic Acids from Salvia officinalis Inhibit Microsomal Prostaglandin E2 Synthase-1

    PubMed Central

    Bauer, Julia; Kuehnl, Susanne; Rollinger, Judith M.; Scherer, Olga; Northoff, Hinnak; Stuppner, Hermann; Werz, Oliver; Koeberle, Andreas

    2012-01-01

    Prostaglandin E2 (PGE2), the most relevant eicosanoid promoting inflammation and tumorigenesis, is formed by cyclooxygenases (COXs) and PGE2 synthases from free arachidonic acid. Preparations of the leaves of Salvia officinalis are commonly used in folk medicine as an effective antiseptic and anti-inflammatory remedy and possess anticancer activity. Here, we demonstrate that a standard ethyl acetate extract of S. officinalis efficiently suppresses the formation of PGE2 in a cell-free assay by direct interference with microsomal PGE2 synthase (mPGES)-1. Bioactivity-guided fractionation of the extract yielded closely related fractions that potently suppressed mPGES-1 with IC50 values between 1.9 and 3.5 μg/ml. Component analysis of these fractions revealed the diterpenes carnosol and carnosic acid as potential bioactive principles inhibiting mPGES-1 activity with IC50 values of 5.0 μM. Using a human whole-blood assay as a robust cell-based model, carnosic acid, but not carnosol, blocked PGE2 generation upon stimulation with lipopolysaccharide (IC50 = 9.3 μM). Carnosic acid neither inhibited the concomitant biosynthesis of other prostanoids [6-keto PGF1α, 12(S)-hydroxy-5-cis-8,10-trans-heptadecatrienoic acid, and thromboxane B2] in human whole blood nor affected the activities of COX-1/2 in a cell-free assay. Together, S. officinalis extracts and its ingredients carnosol and carnosic acid inhibit PGE2 formation by selectively targeting mPGES-1. We conclude that the inhibitory effect of carnosic acid on PGE2 formation, observed in the physiologically relevant whole-blood model, may critically contribute to the anti-inflammatory and anticarcinogenic properties of S. officinalis. PMID:22511203

  3. Inhibition of Fatty Acid Synthase Sensitizes Prostate Cancer Cells to Radiotherapy.

    PubMed

    Rae, Colin; Haberkorn, Uwe; Babich, John W; Mairs, Robert J

    2015-11-01

    Many common human cancers, including colon, prostate and breast cancer, express high levels of fatty acid synthase compared to normal human tissues. This elevated expression is associated with protection against apoptosis, increased metastasis and poor prognosis. Inhibitors of fatty acid synthase, such as the cerulenin synthetic analog C75, decrease prostate cancer cell proliferation, increase apoptosis and decrease tumor growth in experimental models. Although radiotherapy is widely used in the treatment of prostate cancer patients, the risk of damage to neighboring normal organs limits the radiation dose that can be delivered. In this study, we examined the potential of fatty acid synthase inhibition to sensitize prostate cancer cells to radiotherapy. The efficacy of C75 alone or in combination with X irradiation was examined in monolayers and in multicellular tumor spheroids. Treatment with C75 alone decreased clonogenic survival, an effect that was abrogated by the antioxidant. C75 treatment also delayed spheroid growth in a concentration-dependent manner. The radiosensitizing effect of C75 was indicated by combination index values between 0.65 and 0.71 and the reduced surviving fraction of clonogens, in response to 2 Gy X irradiation, from 0.51 to 0.30 and 0.11 in the presence of 25 and 35 μM C75, respectively. This increased sensitivity to radiation was reduced by the presence of the antioxidant. The C75 treatment also enhanced the spheroid growth delay induced by X irradiation in a supra-additive manner. The level of radiation-induced apoptosis in prostate cancer cells was increased further by C75, which induced cell cycle arrest in the G2/M phase, but only at a concentration greater than that required for radiosensitization. Radiation-induced G2/M blockade was not affected by C75 treatment. These results suggest the potential use of fatty acid synthase inhibition to enhance the efficacy of radiotherapy of prostate carcinoma and that C75-dependent cell

  4. Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors.

    PubMed

    Loftus, T M; Jaworsky, D E; Frehywot, G L; Townsend, C A; Ronnett, G V; Lane, M D; Kuhajda, F P

    2000-06-30

    With the escalation of obesity-related disease, there is great interest in defining the mechanisms that control appetite and body weight. We have identified a link between anabolic energy metabolism and appetite control. Both systemic and intracerebroventricular treatment of mice with fatty acid synthase (FAS) inhibitors (cerulenin and a synthetic compound C75) led to inhibition of feeding and dramatic weight loss. C75 inhibited expression of the prophagic signal neuropeptide Y in the hypothalamus and acted in a leptin-independent manner that appears to be mediated by malonyl-coenzyme A. Thus, FAS may represent an important link in feeding regulation and may be a potential therapeutic target. PMID:10875926

  5. Functional characterization of amyrin synthase involved in ursolic acid biosynthesis in Catharanthus roseus leaf epidermis.

    PubMed

    Yu, Fang; Thamm, Antje M K; Reed, Darwin; Villa-Ruano, Nemesio; Quesada, Alfonso Lara; Gloria, Edmundo Lozoya; Covello, Patrick; De Luca, Vincenzo

    2013-07-01

    Catharanthus roseus accumulates high levels of the pentacyclic triterpene, ursolic acid, as a component of its wax exudate on the leaf surface. Bioinformatic analyses of transcripts derived from the leaf epidermis provide evidence for the specialized role of this tissue in the biosynthesis of ursolic acid. Cloning and functional expression in yeast of a triterpene synthase derived from this tissue showed it to be predominantly an α-amyrin synthase (CrAS), since the α-amyrin to β-amyrin reaction products accumulated in a 5:1 ratio. Expression analysis of CrAS showed that triterpene biosynthesis occurs predominantly in the youngest leaf tissues and in the earliest stages of seedling development. Further studies using laser capture microdissection to harvest RNA from epidermis, mesophyll, idioblasts, laticifers and vasculature of leaves showed the leaf epidermis to be the preferred sites of CrAS expression and provide conclusive evidence for the involvement of this tissue in the biosynthesis of ursolic acid in C. roseus. PMID:22652241

  6. Arabidopsis peroxisomal citrate synthase is required for fatty acid respiration and seed germination.

    PubMed

    Pracharoenwattana, Itsara; Cornah, Johanna E; Smith, Steven M

    2005-07-01

    We tested the hypothesis that peroxisomal citrate synthase (CSY) is required for carbon transfer from peroxisomes to mitochondria during respiration of triacylglycerol in Arabidopsis thaliana seedlings. Two genes encoding peroxisomal CSY are expressed in Arabidopsis seedlings, and seeds from plants with both CSY genes disrupted were dormant and did not metabolize triacylglycerol. Germination was achieved by removing the seed coat and supplying sucrose, but the seedlings still did not use triacylglycerol. The mutant seedlings were resistant to 2,4-dichlorophenoxybutyric acid, indicating a block in peroxisomal beta-oxidation, and were unable to develop further after transfer to soil. The mutant phenotype was complemented with a cDNA encoding CSY with either its native peroxisomal targeting sequence (PTS2) or a heterologous PTS1 sequence from pumpkin (Cucurbita pepo) malate synthase. These results suggest that peroxisomal CSY in Arabidopsis is not only a key enzyme of the glyoxylate cycle but also catalyzes an essential step in the respiration of fatty acids. We conclude that citrate is exported from the peroxisome during fatty acid respiration, whereas in yeast, acetylcarnitine is exported. PMID:15923350

  7. Natural fatty acid synthase inhibitors as potent therapeutic agents for cancers: A review.

    PubMed

    Zhang, Jia-Sui; Lei, Jie-Ping; Wei, Guo-Qing; Chen, Hui; Ma, Chao-Ying; Jiang, He-Zhong

    2016-09-01

    Context Fatty acid synthase (FAS) is the only mammalian enzyme to catalyse the synthesis of fatty acid. The expression level of FAS is related to cancer progression, aggressiveness and metastasis. In recent years, research on natural FAS inhibitors with significant bioactivities and low side effects has increasingly become a new trend. Herein, we present recent research progress on natural fatty acid synthase inhibitors as potent therapeutic agents. Objective This paper is a mini overview of the typical natural FAS inhibitors and their possible mechanism of action in the past 10 years (2004-2014). Method The information was collected and compiled through major databases including Web of Science, PubMed, and CNKI. Results Many natural products induce cancer cells apoptosis by inhibiting FAS expression, with fewer side effects than synthetic inhibitors. Conclusion Natural FAS inhibitors are widely distributed in plants (especially in herbs and foods). Some natural products (mainly phenolics) possessing potent biological activities and stable structures are available as lead compounds to synthesise promising FAS inhibitors. PMID:26864638

  8. Cytosylglucuronic acid synthase (cytosine: UDP-glucuronosyltransferase) from Streptomyces griseochromogenes, the first prokaryotic UDP-glucuronosyltransferase.

    PubMed Central

    Gould, S J; Guo, J

    1994-01-01

    Cytosylglucuronic acid synthase (cytosine: UDP-glucuronosyltransferase), the first prokaryotic UDP-GT and a key enzyme in the biosynthesis of the antibiotic blasticidin S, was purified 870-fold. It has optimum activity at a pH of 8.4 to 8.6, Kms of 6.0 (UDP-glucuronic acid) and 243 (cytosine) microM, and a maximum rate of metabolism of 14.6 mumol/min/mg. The apparent M(r) is 43,000. Activity was slightly enhanced by Mg2+ or Ca2+ but was not inhibited by EDTA. Activity was strongly inhibited by UDP. Cytosylglucuronic acid differs from eukaryotic UDP-glucuronosyltransferases in being a soluble protein with no apparent phospholipid requirement. Images PMID:8113166

  9. Quinic acids from Aster caucasicus and from transgenic callus expressing a beta-amyrin synthase.

    PubMed

    Pecchia, Paola; Cammareri, Maria; Malafronte, Nicola; Consiglio, M Federica; Gualtieri, Maria Josefina; Conicella, Clara

    2011-11-01

    Several different classes of secondary metabolites, including flavonoids, triterpenoid saponins and quinic acid derivatives, are found in Aster spp. (Fam. Asteraceae). Several Aster compounds revealed biological as well as pharmacological activities. In this work, a phytochemical investigation of A. caucasicus evidenced the presence of quinic acid derivatives, as well as the absence of triterpene saponins. To combine in one species the production of different phytochemicals, including triterpenes, an Agrobacterium-mediated transformation of A. caucasicus was set up to introduce A. sedifolius beta-amyrin synthase (AsOXA1)-encoding gene under the control of the constitutive promoter CaMV35S. The quali-quantitative analysis of transgenic calli with ectopic expression of AsOXA1 showed, in one sample, a negligible amount of triterpene saponins combined with higher amount of quinic acid derivatives as compared with the wild type callus. PMID:22224284

  10. Fatty Acid Synthase Impacts the Pathobiology of Candida parapsilosis In Vitro and during Mammalian Infection

    PubMed Central

    Nguyen, Long Nam; Trofa, David; Nosanchuk, Joshua D.

    2009-01-01

    Cytosolic fungal fatty acid synthase is composed of two subunits α and β, which are encoded by Fas1 and Fas2 genes. In this study, the Fas2 genes of the human pathogen Candida parapsilosis were deleted using a modified SAT1 flipper technique. CpFas2 was essential in media lacking exogenous fatty acids and the growth of Fas2 disruptants (Fas2 KO) was regulated by the supplementation of different long chain fatty acids, such as myristic acid (14∶0), palmitic acid (16∶0), and Tween 80, in a dose-specific manner. Lipidomic analysis revealed that Fas2 KO cells were severely restricted in production of unsaturated fatty acids. The Fas2 KO strains were unable to form normal biofilms and were more efficiently killed by murine-like macrophages, J774.16, than the wild type, heterozygous and reconstituted strains. Furthermore, Fas2 KO yeast were significantly less virulent in a systemic murine infection model. The Fas2 KO cells were also hypersensitive to human serum, and inhibition of CpFas2 in WT C. parapsilosis by cerulenin significantly decreased fungal growth in human serum. This study demonstrates that CpFas2 is essential for C. parapsilosis growth in the absence of exogenous fatty acids, is involved in unsaturated fatty acid production, influences fungal virulence, and represents a promising antifungal drug target. PMID:20027295

  11. Colonic Fatty Acid Synthase is Down-regulated in Sprague-Dawley Rats Fed Soy Protein Isolate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty Acid Synthase (FAS), a key enzyme in the fatty acid biosynthetic pathway, is over-expressed in multiple cancers. The aim of this study was to evaluate the effects of dietary proteins [soy protein isolate (SPI) and casein (CAS), latter is the control] on the expression of FAS in the colonic muc...

  12. 7-deoxyloganetic acid synthase catalyzes a key 3 step oxidation to form 7-deoxyloganetic acid in Catharanthus roseus iridoid biosynthesis.

    PubMed

    Salim, Vonny; Wiens, Brent; Masada-Atsumi, Sayaka; Yu, Fang; De Luca, Vincenzo

    2014-05-01

    Iridoids are key intermediates required for the biosynthesis of monoterpenoid indole alkaloids (MIAs), as well as quinoline alkaloids. Although most iridoid biosynthetic genes have been identified, one remaining three step oxidation required to form the carboxyl group of 7-deoxyloganetic acid has yet to be characterized. Here, it is reported that virus-induced gene silencing of 7-deoxyloganetic acid synthase (7DLS, CYP76A26) in Catharanthus roseus greatly decreased levels of secologanin and the major MIAs, catharanthine and vindoline in silenced leaves. Functional expression of this gene in Saccharomyces cerevisiae confirmed its function as an authentic 7DLS that catalyzes the 3 step oxidation of iridodial-nepetalactol to form 7-deoxyloganetic acid. The identification of CYP76A26 removes a key bottleneck for expression of iridoid and related MIA pathways in various biological backgrounds. PMID:24594312

  13. 3-Ketoacyl-acyl carrier protein synthase III from spinach (Spinacia oleracea) is not similar to other condensing enzymes of fatty acid synthase.

    PubMed Central

    Tai, H; Jaworski, J G

    1993-01-01

    A cDNA clone encoding spinach (Spinacia oleracea) 3-ketoacyl-acyl carrier protein synthase III (KAS III), which catalyzes the initial condensing reaction in fatty acid biosynthesis, was isolated. Based on the amino acid sequence of tryptic digests of purified spinach KAS III, degenerate polymerase chain reaction (PCR) primers were designed and used to amplify a 612-bp fragment from first-strand cDNA of spinach leaf RNA. A root cDNA library was probed with the PCR fragment, and a 1920-bp clone was isolated. Its deduced amino acid sequence matched the sequences of the tryptic digests obtained from the purified KAS III. Northern analysis confirmed that it was expressed in both leaf and root. The clone contained a 1218-bp open reading frame coding for 405 amino acids. The identity of the clone was confirmed by expression in Escherichia coli BL 21 as a glutathione S-transferase fusion protein. The deduced amino acid sequence was 48 and 45% identical with the putative KAS III of Porphyra umbilicalis and KAS III of E. coli, respectively. It also had a strong local homology to the plant chalcone synthases but had little homology with other KAS isoforms from plants, bacteria, or animals. PMID:8290632

  14. Inhibition of the fungal fatty acid synthase type I multienzyme complex

    PubMed Central

    Johansson, Patrik; Wiltschi, Birgit; Kumari, Preeti; Kessler, Brigitte; Vonrhein, Clemens; Vonck, Janet; Oesterhelt, Dieter; Grininger, Martin

    2008-01-01

    Fatty acids are among the major building blocks of living cells, making lipid biosynthesis a potent target for compounds with antibiotic or antineoplastic properties. We present the crystal structure of the 2.6-MDa Saccharomyces cerevisiae fatty acid synthase (FAS) multienzyme in complex with the antibiotic cerulenin, representing, to our knowledge, the first structure of an inhibited fatty acid megasynthase. Cerulenin attacks the FAS ketoacyl synthase (KS) domain, forming a covalent bond to the active site cysteine C1305. The inhibitor binding causes two significant conformational changes of the enzyme. First, phenylalanine F1646, shielding the active site, flips and allows access to the nucleophilic cysteine. Second, methionine M1251, placed in the center of the acyl-binding tunnel, rotates and unlocks the inner part of the fatty acid binding cavity. The importance of the rotational movement of the gatekeeping M1251 side chain is reflected by the cerulenin resistance and the changed product spectrum reported for S. cerevisiae strains mutated in the adjacent glycine G1250. Platensimycin and thiolactomycin are two other potent inhibitors of KSs. However, in contrast to cerulenin, they show selectivity toward the prokaryotic FAS system. Because the flipped F1646 characterizes the catalytic state accessible for platensimycin and thiolactomycin binding, we superimposed structures of inhibited bacterial enzymes onto the S. cerevisiae FAS model. Although almost all side chains involved in inhibitor binding are conserved in the FAS multienzyme, a different conformation of the loop K1413–K1423 of the KS domain might explain the observed low antifungal properties of platensimycin and thiolactomycin. PMID:18725634

  15. Isoniazid affects multiple components of the type II fatty acid synthase system of Mycobacterium tuberculosis.

    PubMed

    Slayden, R A; Lee, R E; Barry, C E

    2000-11-01

    Genetic and biochemical evidence has implicated two different target enzymes for isoniazid (INH) within the unique type II fatty acid synthase (FAS) system involved in the production of mycolic acids. These two components are an enoyl acyl carrier protein (ACP) reductase, InhA, and a beta-ketoacyl-ACP synthase, KasA. We compared the consequences of INH treatment of Mycobacterium tuberculosis (MTB) with two inhibitors having well-defined targets: triclosan (TRC), which inhibits InhA; and thiolactomycin (TLM), which inhibits KasA. INH and TLM, but not TRC, upregulate the expression of an operon containing five FAS II components, including kasA and acpM. Although all three compounds inhibit mycolic acid synthesis, treatment with INH and TLM, but not with TRC, results in the accumulation of ACP-bound lipid precursors to mycolic acids that were 26 carbons long and fully saturated. TLM-resistant mutants of MTB were more cross-resistant to INH than TRC-resistant mutants. Overexpression of KasA conferred more resistance to TLM and INH than to TRC. Overexpression of InhA conferred more resistance to TRC than to INH and TLM. Co-overexpression of both InhA and KasA resulted in strongly enhanced levels of INH resistance, in addition to cross-resistance to both TLM and TRC. These results suggest that these components of the FAS II complex are not independently regulated and that alterations in the expression level of InhA affect expression levels of KasA. Nonetheless, INH appeared to resemble TLM more closely in overall mode of action, and KasA levels appeared to be tightly correlated with INH sensitivity. PMID:11069675

  16. Cloning and characterisation of rosmarinic acid synthase from Melissa officinalis L.

    PubMed

    Weitzel, Corinna; Petersen, Maike

    2011-05-01

    Lemon balm (Melissa officinalis L.; Lamiaceae) is a well-known medicinal plant mainly due to two groups of compounds, the essential oil and the phenylpropanoid derivatives. The prominent phenolic compound is rosmarinic acid (RA), an ester of caffeic acid and 3,4-dihydroxyphenyllactic acid. RA shows a number of interesting biological activities. Rosmarinic acid synthase (RAS; 4-coumaroyl-CoA:hydroxyphenyllactic acid hydroxycinnamoyltransferase) catalyses the ester formation. Cell cultures of M. officinalis have been established in order to characterise the formation of RA in an important diploid medicinal plant. RAS activity as well as the expression of the RAS gene are closely correlated with the accumulation of RA in suspension cultures of M. officinalis. The RAS cDNA and gene (MoRAS) were isolated. The RAS gene was shown to be intron-free. MoRAS belongs to the BAHD superfamily of acyltransferases. Southern-blot analysis suggests the presence of only one RAS gene copy in the M. officinalis genome. The enzyme was characterised with respect to enzyme properties, substrate preferences and kinetic data in crude plant extracts and as heterologously synthesised protein from Escherichia coli. PMID:21354582

  17. Zaragozic acids D and D2: potent inhibitors of squalene synthase and of Ras farnesyl-protein transferase.

    PubMed

    Dufresne, C; Wilson, K E; Singh, S B; Zink, D L; Bergstrom, J D; Rew, D; Polishook, J D; Meinz, M; Huang, L; Silverman, K C

    1993-11-01

    Two new zaragozic acids, D and D2, have been isolated from the keratinophilic fungus Amauroascus niger. Zaragozic acids D [4] and D2 [5] are related to the previously described zaragozic acids A [1], B [2], and C [3] and are potent inhibitors of squalene synthase. Furthermore, all the zaragozic acids (A, B, C, D, and D2) are also active against farnesyl transferase. Zaragozic acids D and D2 inhibit farnesyl transferase with IC50 values of 100 nM, while zaragozic acids A and B are less potent. PMID:8289063

  18. Crystal structure of the thioesterase domain of human fatty acid synthase inhibited by orlistat

    SciTech Connect

    Pemble,C.; Johnson, L.; Kridel, S.; Lowther, W.

    2007-01-01

    Human fatty acid synthase (FAS) is uniquely expressed at high levels in many tumor types. Pharmacological inhibition of FAS therefore represents an important therapeutic opportunity. The drug Orlistat, which has been approved by the US Food and Drug Administration, inhibits FAS, induces tumor cell-specific apoptosis and inhibits the growth of prostate tumor xenografts. We determined the 2.3-{angstrom}-resolution crystal structure of the thioesterase domain of FAS inhibited by Orlistat. Orlistat was captured in the active sites of two thioesterase molecules as a stable acyl-enzyme intermediate and as the hydrolyzed product. The details of these interactions reveal the molecular basis for inhibition and suggest a mechanism for acyl-chain length discrimination during the FAS catalytic cycle. Our findings provide a foundation for the development of new cancer drugs that target FAS.

  19. Isolation and molecular characterization of 1-aminocyclopropane-1-carboxylic acid synthase genes in Hevea brasiliensis.

    PubMed

    Zhu, Jia-Hong; Xu, Jing; Chang, Wen-Jun; Zhang, Zhi-Li

    2015-01-01

    Ethylene is an important factor that stimulates Hevea brasiliensis to produce natural rubber. 1-Aminocyclopropane-1-carboxylic acid synthase (ACS) is a rate-limiting enzyme in ethylene biosynthesis. However, knowledge of the ACS gene family of H. brasiliensis is limited. In this study, nine ACS-like genes were identified in H. brasiliensis. Sequence and phylogenetic analysis results confirmed that seven isozymes (HbACS1-7) of these nine ACS-like genes were similar to ACS isozymes with ACS activity in other plants. Expression analysis results showed that seven ACS genes were differentially expressed in roots, barks, flowers, and leaves of H. brasiliensis. However, no or low ACS gene expression was detected in the latex of H. brasiliensis. Moreover, seven genes were differentially up-regulated by ethylene treatment. These results provided relevant information to help determine the functions of the ACS gene in H. brasiliensis, particularly the functions in regulating ethylene stimulation of latex production. PMID:25690030

  20. CT2108A and B: New fatty acid synthase inhibitors as antifungal agents.

    PubMed

    Laakso, Jodi A; Raulli, Robert; McElhaney-Feser, Gail E; Actor, Paul; Underiner, Ted L; Hotovec, Brian J; Mocek, Ursula; Cihlar, Ronald L; Broedel, Sheldon E

    2003-08-01

    A systematic screen for new natural products that displayed antifungal activity by inhibition of fungal fatty acid synthase (FAS) led to the discovery of two new fungal metabolites, designated CT2108A (1) and CT2108B (2). The metabolites were produced by Penicillium solitum (Westling) strain CT2108 and were classified as azaphilones. The structures of these new metabolites were determined using a variety of 1D and 2D NMR experiments, including COSY, HMQC, and HMBC. The chemical conversion of CT2108A to CT2108B was effected using WCl(6). The related metabolite, patulodin (3), was also isolated from the fermentation culture of this P. solitum isolate. Both new compounds inhibited fungal FAS, and neither was found to significantly inhibit human FAS activity. PMID:12932120

  1. wALADin Benzimidazoles Differentially Modulate the Function of Porphobilinogen Synthase Orthologs

    PubMed Central

    2015-01-01

    The heme biosynthesis enzyme porphobilinogen synthase (PBGS) is a potential drug target in several human pathogens. wALADin1 benzimidazoles have emerged as species-selective PBGS inhibitors against Wolbachia endobacteria of filarial worms. In the present study, we have systematically tested wALADins against PBGS orthologs from bacteria, protozoa, metazoa, and plants to elucidate the inhibitory spectrum. However, the effect of wALADin1 on different PBGS orthologs was not limited to inhibition: several orthologs were stimulated by wALADin1; others remained unaffected. We demonstrate that wALADins allosterically modulate the PBGS homooligomeric equilibrium with inhibition mediated by favoring low-activity oligomers, while 5-aminolevulinic acid, Mg2+, or K+ stabilized high-activity oligomers. Pseudomonas aeruginosa PBGS could be inhibited or stimulated by wALADin1 depending on these factors and pH. We have defined the wALADin chemotypes responsible for either inhibition or stimulation, facilitating the design of tailored PBGS modulators for potential application as antimicrobial agents, herbicides, or drugs for porphyric disorders. PMID:24568185

  2. Characterization of the lysyl adducts of prostaglandin H-synthases that are derived from oxygenation of arachidonic acid.

    PubMed

    Boutaud, O; Brame, C J; Chaurand, P; Li, J; Rowlinson, S W; Crews, B C; Ji, C; Marnett, L J; Caprioli, R M; Roberts, L J; Oates, J A

    2001-06-12

    These investigations characterize the covalent binding of reactive products of prostaglandin H-synthases (PGHSs) to the enzyme and to other molecules. The intermediate product of oxygenation of arachidonic acid by the PGHSs, prostaglandin (PG) H2, undergoes rearrangement to the highly reactive gamma-keto aldehydes, levuglandin (LG) E2 and D2. We previously have demonstrated that LGE2 reacts with the epsilon-amine of lysine to form both the lysyl-levuglandin Shiff base and the pyrrole-derived lysyl-levuglandin lactam adducts. We now demonstrate that these lysyl-levuglandin adducts are formed on the PGHSs following the oxygenation of arachidonic acid; after reduction of the putative Schiff base, proteolytic digestion of the enzyme, and isolation of the adducted amino acid residues, these adducts were identified by liquid chromatography-tandem mass spectrometry. The reactivity of the LGs is reflected by the finding that virtually all of the LG predicted to be formed from PGH2 can be accounted for as adducts of the PGH-synthase and that oxygenation of arachidonic acid by PGH-synthases also leads to the formation of adducts of other proteins present in the reaction solution. The reactivity of the PGH-synthase adducts themselves is demonstrated by the formation of intermolecular cross-links. PMID:11389610

  3. Low-temperature Storage of Cucumbers Induces Changes in the Organic Acid Content and in Citrate Synthase Activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To elucidate the cause of reported pyruvate accumulation in chilled stored cucumbers (Cucumis sativus L.) cv. ‘Toppugurin’, we have examined differences in the extent of incorporation of acetate-1,2-14C into the tricarboxylic acid (TCA) cycle and the specific activity of the enzyme citrate synthase ...

  4. Studies on acetyl-CoA carboxylase and fatty acid synthase from rat mammary gland and mammary tumours.

    PubMed Central

    Ahmad, P M; Feltman, D S; Ahmad, F

    1982-01-01

    The activities of two lipogenic enzymes, acetyl-CoA carboxylase and fatty acid synthase, were determined in two transplantable mammary adenocarcinomas (13762 and R3230AC) carried by non-pregnant, pregnant and lactating rats, and in mammary tissue of control animals (non-tumour-carrying) of comparable physiological states. During mammary-gland differentiation of control or tumour-carrying animals, the activities of acetyl-CoA carboxylase and fatty acid synthase in the lactating gland increased by about 40--50-fold over the values found in non-pregnant animals. On the other hand, in tumours carried by lactating dams there were only modest increases (1.5--2-fold) in acetyl-CoA carboxylase and fatty acid synthase compared with the neoplasms carried by non-pregnant animals. On the basis of the Km values for different substrates and immunodiffusion and immunotitration data, the fatty acid synthase of neoplastic tissues appeared to be indistinguishable from the control mammary-gland enzyme. However, a comparison of the immunotitration and immunodiffusion experiments indicated that the mammary-gland acetyl-CoA carboxylase might differ from the enzyme present in mammary neoplasms. Images Fig. 1. Fig. 2. PMID:6130760

  5. Dietary Soy Protein Inhibits DNA Damage and Cell Survival of Colon Epithelial Cells through Attenuated Expression of Fatty Acid Synthase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary intake of soy protein decreases tumor incidence in rat models of chemically induced colon cancer. We hypothesized that decreased expression of Fatty Acid Synthase (FASN) underlies, in part, the tumor preventive effects of soy protein, since FASN over-expression characterizes early tumorigene...

  6. Lysophosphatidic acid induces vasodilation mediated by LPA1 receptors, phospholipase C, and endothelial nitric oxide synthase

    PubMed Central

    Ruisanchez, Éva; Dancs, Péter; Kerék, Margit; Németh, Tamás; Faragó, Bernadett; Balogh, Andrea; Patil, Renukadevi; Jennings, Brett L.; Liliom, Károly; Malik, Kafait U.; Smrcka, Alan V.; Tigyi, Gabor; Benyó, Zoltán

    2014-01-01

    Lysophosphatidic acid (LPA) has been implicated as a mediator of several cardiovascular functions, but its potential involvement in the control of vascular tone is obscure. Here, we show that both LPA (18:1) and VPC31143 (a synthetic agonist of LPA1–3 receptors) relax intact mouse thoracic aorta with similar Emax values (53.9 and 51.9% of phenylephrine-induced precontraction), although the EC50 of LPA- and VPC31143-induced vasorelaxations were different (400 vs. 15 nM, respectively). Mechanical removal of the endothelium or genetic deletion of endothelial nitric oxide synthase (eNOS) not only diminished vasorelaxation by LPA or VPC31143 but converted it to vasoconstriction. Freshly isolated mouse aortic endothelial cells expressed LPA1, LPA2, LPA4 and LPA5 transcripts. The LPA1,3 antagonist Ki16425, the LPA1 antagonist AM095, and the genetic deletion of LPA1, but not that of LPA2, abolished LPA-induced vasorelaxation. Inhibition of the phosphoinositide 3 kinase–protein kinase B/Akt pathway by wortmannin or MK-2206 failed to influence the effect of LPA. However, pharmacological inhibition of phospholipase C (PLC) by U73122 or edelfosine, but not genetic deletion of PLCε, abolished LPA-induced vasorelaxation and indicated that a PLC enzyme, other than PLCε, mediates the response. In summary, the present study identifies LPA as an endothelium-dependent vasodilator substance acting via LPA1, PLC, and eNOS.—Ruisanchez, É., Dancs, P., Kerék, M., Németh, T., Faragó, B., Balogh, A., Patil, R., Jennings, B. L., Liliom, K., Malik, K. U., Smrcka, A. V., Tigyi, G., Benyó, Z. Lysophosphatidic acid induces vasodilation mediated by LPA1 receptors, phospholipase C, and endothelial nitric oxide synthase. PMID:24249637

  7. Tissue responses to hexyl 5-aminolevulinate-induced photodynamic treatment in syngeneic orthotopic rat bladder cancer model: possible pathways of action

    NASA Astrophysics Data System (ADS)

    Arum, Carl-Jørgen; Gederaas, Odrun A.; Larsen, Eivind L. P.; Randeberg, Lise L.; Hjelde, Astrid; Krokan, Hans E.; Svaasand, Lars O.; Chen, Duan; Zhao, Chun-Mei

    2011-02-01

    Orthotopic bladder cancer model in rats mimics human bladder cancer with respect to urothelial tumorigenesis and progression. Utilizing this model at pT1 (superficial stage), we analyze the tissue responses to hexyl 5-aminolevulinate-induced photodynamic therapy (HAL-PDT). In comparison to untreated rats, HAL-PDT causes little change in tumor-free rat bladder but induces inflammatory changes with increased lymphocytes and mononuclear cell infiltration in rat bladders with tumor. Immunohistochemistry reveals that HAL-PDT is without effect on proliferating cell nuclear antigen expression within the tumor and increases caspase-3 expression in both normal urothelium and the tumor. Transmission electron microscopy reveals severe mitochondrial damage, formations of apoptotic bodies, vacuoles, and lipofuscin bodies, but no microvillus-formed niches in HAL-PDT-treated bladder cancer rats. Bioinformatics analysis of the gene expression profile indicates an activation of T-cell receptor signaling pathway in bladder cancer rats without PDT. HAL-PDT increases the expression of CD3 and CD45RA in the tumor (determined by immunohistochemistry). We suggest that pathways of action of HAL-PDT may include, at least, activations of mitochondrial apoptosis and autophagy, breakdown of cancer stem cell niches, and importantly, enhancement of T-cell activation.

  8. Decarboxylation of malonyl-(acyl carrier protein) by 3-oxoacyl-(acyl carrier protein) synthases in plant fatty acid biosynthesis.

    PubMed Central

    Winter, E; Brummel, M; Schuch, R; Spener, F

    1997-01-01

    In order to identify regulatory steps in fatty acid biosynthesis, the influence of intermediate 3-oxoacyl-(acyl carrier proteins) (3-oxoacyl-ACPs) and end-product acyl-ACPs of the fatty acid synthase reaction on the condensation reaction was investigated in vitro, using total fatty acid synthase preparations and purified 3-oxoacyl-ACP synthases (KASs; EC 2.3.1.41) from Cuphea lanceolata seeds. KAS I and II in the fatty acid synthase preparations were assayed for the elongation of octanoyl- and hexadecanoyl-ACP respectively, and the accumulation of the corresponding condensation product 3-oxoacyl-ACP was studied by modulating the content of the reducing equivalentS NADH and NADPH. Complete omission of reducing equivalents resulted with either KAS in the abnormal synthesis of acetyl-ACP from malonyl-ACP by a decarboxylation reaction. Supplementation with NADPH or NADH, separately or in combination with recombinant 3-oxoacyl-ACP reductase (EC 1.1.1.100), led to a decrease in the amount of acetyl-ACP and a simultaneous increase in elongation products. This demonstrates that the accumulation of 3-oxoacyl-ACP inhibits the condensation reaction on the one hand, and induces the decarboxylation of malonyl-ACP on the other. By carrying out similar experiments with purified enzymes, this decarboxylation was attributed to the action of KAS. Our data point to a regulatory mechanism for the degradation of malonyl-ACP in plants which is activated by the accumulation of the fatty acid synthase intermediate 3-oxoacyl-ACP. PMID:9020860

  9. Structure of Quinolinate Synthase from Pyrococcus horikoshii in the Presence of Its Product, Quinolinic Acid.

    PubMed

    Esakova, Olga A; Silakov, Alexey; Grove, Tyler L; Saunders, Allison H; McLaughlin, Martin I; Yennawar, Neela H; Booker, Squire J

    2016-06-15

    Quinolinic acid (QA) is a common intermediate in the biosynthesis of nicotinamide adenine dinucleotide (NAD(+)) and its derivatives in all organisms that synthesize the molecule de novo. In most prokaryotes, it is formed from the condensation of dihydroxyacetone phosphate (DHAP) and aspartate-enamine by the action of quinolinate synthase (NadA). NadA contains a [4Fe-4S] cluster cofactor with a unique, non-cysteinyl-ligated, iron ion (Fea), which is proposed to bind the hydroxyl group of a postulated intermediate in the last step of the reaction to facilitate a dehydration. However, direct evidence for this role in catalysis has yet to be provided. Herein, we present the structure of NadA in the presence of the product of its reaction, QA. We find that N1 and the C7 carboxylate group of QA ligate to Fea in a bidentate fashion, which is confirmed by Hyperfine Sublevel Correlation (HYSCORE) spectroscopy. This binding mode would place the C5 hydroxyl group of the postulated final intermediate distal to Fea and virtually incapable of coordinating to it. The structure shows that three strictly conserved amino acids, Glu198, Tyr109, and Tyr23, are in close proximity to the bound product. Substitution of these amino acids with Gln, Phe, and Phe, respectively, leads to complete loss of activity. PMID:27224840

  10. Δ(9)-Tetrahydrocannabinolic acid synthase production in Pichia pastoris enables chemical synthesis of cannabinoids.

    PubMed

    Lange, Kerstin; Schmid, Andreas; Julsing, Mattijs K

    2015-10-10

    Δ(9)-Tetrahydrocannabinol (THC) is of increasing interest as a pharmaceutical and bioactive compound. Chemical synthesis of THC uses a laborious procedure and does not satisfy the market demand. The implementation of biocatalysts for specific synthesis steps might be beneficial for making natural product availability independent from the plant. Δ(9)-Tetrahydrocannabinolic acid synthase (THCAS) from C. sativa L. catalyzes the cyclization of cannabigerolic acid (CBGA) to Δ(9)-tetrahydrocannabinolic acid (THCA), which is non-enzymatically decarboxylated to THC. We report the preparation of THCAS in amounts sufficient for the biocatalytic production of THC(A). Active THCAS was most efficiently obtained from Pichia pastoris. THCAS was produced on a 2L bioreactor scale and the enzyme was isolated by single-step chromatography with a specific activity of 73Ug(-1)total protein. An organic/aqueous two-liquid phase setup for continuous substrate delivery facilitated in situ product removal. In addition, THCAS activity in aqueous environments lasted for only 20min whereas the presence of hexane stabilized the activity over 3h. In conclusion, production of THCAS in P. pastoris Mut(S) KM71 KE1, subsequent isolation, and its application in a two-liquid phase setup enables the synthesis of THCA on a mg scale. PMID:26197418

  11. Using modern tools to probe the structure-function relationship of fatty acid synthases

    PubMed Central

    Burkart, Michael D.

    2015-01-01

    Fatty acid biosynthesis is essential to life and represents one of the most conserved pathways in Nature, preserving the same handful of chemical reactions over all species. Recent interest in the molecular details of the de novo fatty acid synthase (FAS) has been heightened by demand for renewable fuels and the emergence of multidrug resistant bacterial strains. Central to FAS is the acyl carrier protein (ACP), a protein chaperone that shuttles the growing acyl chain between catalytic enzymes within the FAS. Human efforts to alter fatty acid biosynthesis for oil production, chemical feedstock or antimicrobial purposes has been met with limited success in part due to a lack of detailed molecular information behind the ACP-partner protein interactions inherent to the pathway. This review will focus on recently developed tools for the modification of ACP and analysis of protein-protein interactions, such as mechanism-based crosslinking, and the studies exploiting them. Discussion specific to each enzymatic domain focuses first on mechanism and known inhibitors, followed by available structures and known interactions with ACP. While significant unknowns remain, new understandings into the intricacies of FAS point to future advances in manipulating this complex molecular factory. PMID:25676190

  12. Inhibition of Fatty Acid Synthase Decreases Expression of Stemness Markers in Glioma Stem Cells

    PubMed Central

    Yasumoto, Yuki; Miyazaki, Hirofumi; Vaidyan, Linda Koshy; Kagawa, Yoshiteru; Ebrahimi, Majid; Yamamoto, Yui; Ogata, Masaki; Katsuyama, Yu; Sadahiro, Hirokazu; Suzuki, Michiyasu; Owada, Yuji

    2016-01-01

    Cellular metabolic changes, especially to lipid metabolism, have recently been recognized as a hallmark of various cancer cells. However, little is known about the significance of cellular lipid metabolism in the regulation of biological activity of glioma stem cells (GSCs). In this study, we examined the expression and role of fatty acid synthase (FASN), a key lipogenic enzyme, in GSCs. In the de novo lipid synthesis assay, GSCs exhibited higher lipogenesis than differentiated non-GSCs. Western blot and immunocytochemical analyses revealed that FASN is strongly expressed in multiple lines of patient-derived GSCs (G144 and Y10), but its expression was markedly reduced upon differentiation. When GSCs were treated with 20 μM cerulenin, a pharmacological inhibitor of FASN, their proliferation and migration were significantly suppressed and de novo lipogenesis decreased. Furthermore, following cerulenin treatment, expression of the GSC markers nestin, Sox2 and fatty acid binding protein (FABP7), markers of GCSs, decreased while that of glial fibrillary acidic protein (GFAP) expression increased. Taken together, our results indicate that FASN plays a pivotal role in the maintenance of GSC stemness, and FASN-mediated de novo lipid biosynthesis is closely associated with tumor growth and invasion in glioblastoma. PMID:26808816

  13. Enzymatic formation of a resorcylic acid by creating a structure-guided single-point mutation in stilbene synthase

    PubMed Central

    Bhan, Namita; Li, Lingyun; Cai, Chao; Xu, Peng; Linhardt, Robert J; Koffas, Mattheos A G

    2015-01-01

    A novel C17 resorcylic acid was synthesized by a structure-guided Vitis vinifera stilbene synthase (STS) mutant, in which threonine 197 was replaced with glycine (T197G). Altering the architecture of the coumaroyl binding and cyclization pocket of the enzyme led to the attachment of an extra acetyl unit, derived from malonyl-CoA, to p-coumaroyl-CoA. The resulting novel pentaketide can be produced strictly by STS-like enzymes and not by Chalcone synthase-like type III polyketide synthases; due to the unique thioesterase like activity of STS-like enzymes. We utilized a liquid chromatography mass spectrometry-based data analysis approach to directly compare the reaction products of the mutant and wild type STS. The findings suggest an easy to employ platform for precursor-directed biosynthesis and identification of unnatural polyketides by structure-guided mutation of STS-like enzymes. PMID:25402946

  14. Cloning and manipulation of the Escherichia coli cyclopropane fatty acid synthase gene: physiological aspects of enzyme overproduction.

    PubMed Central

    Grogan, D W; Cronan, J E

    1984-01-01

    Like many other eubacteria, cultures of Escherichia coli accumulate cyclopropane fatty acids (CFAs) at a well-defined stage of growth, due to the action of the cytoplasmic enzyme CFA synthase. We report the isolation of the putative structural gene, cfa, for this enzyme on an E. coli-ColE1 chimeric plasmid by the use of an autoradiographic colony screening technique. When introduced into a variety of E. coli strains, this plasmid, pLC18-11, induced corresponding increases in CFA content and CFA synthase activity. Subsequent manipulation of the cfa locus, facilitated by the insertion of pLC18-11 into a bacteriophage lambda vector, allowed genetic and physiological studies of CFA synthase in E. coli. Overproduction of this enzyme via multicopy cfa plasmids caused abnormally high levels of CFA in membrane phospholipid but no discernable growth perturbation. Infection with phage lambda derivatives bearing cfa caused transient overproduction of the enzyme, although pL-mediated expression of cfa could not be demonstrated in plasmids derived from such phages. CFA synthase specific activities could be raised to very high levels by using cfa runaway-replication plasmids. A variety of physiological factors were found to modulate the levels of CFA synthase in normal and gene-amplified cultures. These studies argue against several possible mechanisms for the temporal regulation of CFA formation. PMID:6325391

  15. Fatty acid synthase-positive hepatocytes and subsequent steatosis in rat livers by irinotecan

    PubMed Central

    SAWANO, TAKEYUKI; SHIMIZU, TAKESHI; YAMADA, TOSHIYUKI; NANASHIMA, NAOKI; MIURA, TAKUYA; MOROHASHI, SATOKO; KUDO, DAISUKE; HUI, FENG MAO; KIJIMA, HIROSHI; HAKAMADA, KENICHI; TSUCHIDA, SHIGEKI

    2015-01-01

    Using a rat model, we investigated factors contributing to the pathogenesis of irinotecan-associated fatty liver disease. Male Sprague-Dawley rats were administered 200 mg/kg irinotecan by intraperitoneal injection on days 1–4, but not on days 5–7. This schedule was repeated 3 times. Rats were sacrificed 4, 18 and 25 days after the last injection, and liver steatosis was evaluated by hematoxylin and eosin (H&E) staining, microarray analysis and immunohistochemistry. Panacinar intrahepatocyte vacuoles were absent on days 4 and 25, but present on day 18, and this alteration was more prominent around the bile ducts than the central veins. Microarray analysis showed that the expression of genes involved in the synthesis of cholesterol and fatty acids was upregulated on day 4. Immunohistochemistry detected fatty acid synthase (Fasn)-strongly positive hepatocytes as well as the activation of liver progenitor cells on day 4, whereas intracellular vacuoles were evident in carbonic anhydrase 3 (CA3)-positive hepatocytes on day 18. Thus, irinotecan-induced liver steatosis was preceded by Fasn-strongly-positive hepatocytes and liver progenitor cell activation. The magnitude of the decrease in the number of Fasn-strongly positive hepatocytes between days 4 and 18 was similar to that of the increase in the number of CA3-positive hepatocytes accompanying vacuoles. PMID:25708528

  16. P300 acetyltransferase regulates fatty acid synthase expression, lipid metabolism and prostate cancer growth.

    PubMed

    Gang, Xiaokun; Yang, Yinhui; Zhong, Jian; Jiang, Kui; Pan, Yunqian; Karnes, R Jeffrey; Zhang, Jun; Xu, Wanhai; Wang, Guixia; Huang, Haojie

    2016-03-22

    De novo fatty acid (FA) synthesis is required for prostate cancer (PCa) survival and progression. As a key enzyme for FA synthesis fatty acid synthase (FASN) is often overexpressed in human prostate cancers and its expression correlates with worse prognosis and poor survival. P300 is an acetyltransferase that acts as a transcription co-activator. Increasing evidence suggests that P300 is a major PCa promoter, although the underlying mechanism remains poorly understood. Here, we demonstrated that P300 binds to and increases histone H3 lysine 27 acetylation (H3K27Ac) in the FASN gene promoter. We provided evidence that P300 transcriptionally upregulates FASN expression and promotes lipid accumulation in human PCa cells in culture and Pten knockout prostate tumors in mice. Pharmacological inhibition of P300 decreased FASN expression and lipid droplet accumulation in PCa cells. Immunohistochemistry analysis revealed that expression of P300 protein positively correlates with FASN protein levels in a cohort of human PCa specimens. We further showed that FASN is a key mediator of P300-induced growth of PCa cells in culture and in mice. Together, our findings demonstrate P300 as a key factor that regulates FASN expression, lipid accumulation and cell growth in PCa. They also suggest that this regulatory pathway can serve as a new therapeutic target for PCa treatment. PMID:26934656

  17. Fatty acid synthase inhibitors from plants: isolation, structure elucidation, and SAR studies.

    PubMed

    Li, Xing-Cong; Joshi, Alpana S; ElSohly, Hala N; Khan, Shabana I; Jacob, Melissa R; Zhang, Zhizheng; Khan, Ikhlas A; Ferreira, Daneel; Walker, Larry A; Broedel, Sheldon E; Raulli, Robert E; Cihlar, Ronald L

    2002-12-01

    Fatty acid synthase (FAS) has been identified as a potential antifungal target. FAS prepared from Saccharomyces cerevisiae was employed for bioactivity-guided fractionation of Chlorophora tinctoria,Paspalum conjugatum, Symphonia globulifera, Buchenavia parviflora, and Miconia pilgeriana. Thirteen compounds (1-13), including three new natural products (1, 4, 12), were isolated and their structures identified by spectroscopic interpretation. They represented five chemotypes, namely, isoflavones, flavones, biflavonoids, hydrolyzable tannin-related derivatives, and triterpenoids. 3'-Formylgenistein (1) and ellagic acid 4-O-alpha-l-rhamnopyranoside (9) were the most potent compounds against FAS, with IC(50) values of 2.3 and 7.5 microg/mL, respectively. Furthermore, 43 (14-56) analogues of the five chemotypes from our natural product repository and commercial sources were tested for their FAS inhibitory activity. Structure-activity relationships for some chemotypes were investigated. All these compounds were further evaluated for antifungal activity against Candida albicans and Cryptococcus neoformans. Although there were several antifungal compounds in the set, correlation between the FAS inhibitory activity and antifungal activity could not be defined. PMID:12502337

  18. P300 acetyltransferase regulates fatty acid synthase expression, lipid metabolism and prostate cancer growth

    PubMed Central

    Zhong, Jian; Jiang, Kui; Pan, Yunqian; Karnes, R. Jeffrey; Zhang, Jun; Xu, Wanhai; Wang, Guixia; Huang, Haojie

    2016-01-01

    De novo fatty acid (FA) synthesis is required for prostate cancer (PCa) survival and progression. As a key enzyme for FA synthesis fatty acid synthase (FASN) is often overexpressed in human prostate cancers and its expression correlates with worse prognosis and poor survival. P300 is an acetyltransferase that acts as a transcription co-activator. Increasing evidence suggests that P300 is a major PCa promoter, although the underlying mechanism remains poorly understood. Here, we demonstrated that P300 binds to and increases histone H3 lysine 27 acetylation (H3K27Ac) in the FASN gene promoter. We provided evidence that P300 transcriptionally upregulates FASN expression and promotes lipid accumulation in human PCa cells in culture and Pten knockout prostate tumors in mice. Pharmacological inhibition of P300 decreased FASN expression and lipid droplet accumulation in PCa cells. Immunohistochemistry analysis revealed that expression of P300 protein positively correlates with FASN protein levels in a cohort of human PCa specimens. We further showed that FASN is a key mediator of P300-induced growth of PCa cells in culture and in mice. Together, our findings demonstrate P300 as a key factor that regulates FASN expression, lipid accumulation and cell growth in PCa. They also suggest that this regulatory pathway can serve as a new therapeutic target for PCa treatment. PMID:26934656

  19. Imperfect pseudo-merohedral twinning in crystals of fungal fatty acid synthase

    PubMed Central

    Jenni, Simon; Ban, Nenad

    2009-01-01

    The recent high-resolution structures of fungal fatty acid synthase (FAS) have provided new insights into the principles of fatty acid biosynthesis by large multifunctional enzymes. The crystallographic phase problem for the 2.6 MDa fungal FAS was initially solved to 5 Å resolution using two crystal forms from Thermomyces lanuginosus. Monoclinic crystals in space group P21 were obtained from orthorhombic crystals in space group P212121 by dehydration. Here, it is shown how this space-group transition induced imperfect pseudo-merohedral twinning in the monoclinic crystal, giving rise to a Moiré pattern-like interference of the two twin-related reciprocal lattices. The strategy for processing the twinned diffraction images and obtaining a quantitative analysis is presented. The twinning is also related to the packing of the molecules in the two crystal forms, which was derived from self-rotation function analysis and molecular-replacement solutions using a low-resolution electron microscopy map as a search model. PMID:19171964

  20. Engineering a Polyketide Synthase for In Vitro Production of Adipic Acid.

    PubMed

    Hagen, Andrew; Poust, Sean; Rond, Tristan de; Fortman, Jeffrey L; Katz, Leonard; Petzold, Christopher J; Keasling, Jay D

    2016-01-15

    Polyketides have enormous structural diversity, yet polyketide synthases (PKSs) have thus far been engineered to produce only drug candidates or derivatives thereof. Thousands of other molecules, including commodity and specialty chemicals, could be synthesized using PKSs if composing hybrid PKSs from well-characterized parts derived from natural PKSs was more efficient. Here, using modern mass spectrometry techniques as an essential part of the design-build-test cycle, we engineered a chimeric PKS to enable production one of the most widely used commodity chemicals, adipic acid. To accomplish this, we introduced heterologous reductive domains from various PKS clusters into the borrelidin PKS' first extension module, which we previously showed produces a 3-hydroxy-adipoyl intermediate when coincubated with the loading module and a succinyl-CoA starter unit. Acyl-ACP intermediate analysis revealed an unexpected bottleneck at the dehydration step, which was overcome by introduction of a carboxyacyl-processing dehydratase domain. Appending a thioesterase to the hybrid PKS enabled the production of free adipic acid. Using acyl-intermediate based techniques to "debug" PKSs as described here, it should one day be possible to engineer chimeric PKSs to produce a variety of existing commodity and specialty chemicals, as well as thousands of chemicals that are difficult to produce from petroleum feedstocks using traditional synthetic chemistry. PMID:26501439

  1. Mechanism of Orlistat Hydrolysis by the Thioesterase of Human Fatty Acid Synthase

    PubMed Central

    2015-01-01

    Fatty acid synthase (FASN), the sole protein capable of de novo synthesis of free fatty acids, is overexpressed in a wide variety of human cancers and is associated with poor prognosis and aggressiveness of these cancers. Orlistat, an FDA-approved drug for obesity treatment that inhibits pancreatic lipases in the GI tract, also inhibits the thioesterase (TE) of human FASN. The cocrystal structure of TE with orlistat shows a pseudo TE dimer containing two different forms of orlistat in the active site, an intermediate that is covalently bound to a serine residue (Ser2308) and a hydrolyzed and inactivated product. In this study, we attempted to understand the mechanism of TE-catalyzed orlistat hydrolysis by examining the role of the hexyl tail of the covalently bound orlistat in water activation for hydrolysis using molecular dynamics simulations. We found that the hexyl tail of the covalently bound orlistat undergoes a conformational transition, which is accompanied by destabilization of a hydrogen bond between a hydroxyl moiety of orlistat and the catalytic His2481 of TE that in turn leads to an increased hydrogen bonding between water molecules and His2481 and increased chance for water activation to hydrolyze the covalent bond between orlistat and Ser2308. Thus, the conformation of the hexyl tail of orlistat plays an important role in orlistat hydrolysis. Strategies that stabilize the hexyl tail may lead to the design of more potent irreversible inhibitors that target FASN and block TE activity with greater endurance. PMID:25309810

  2. Expression of dehydratase domains from a polyunsaturated fatty acid synthase increases the production of fatty acids in Escherichia coli.

    PubMed

    Oyola-Robles, Delise; Rullán-Lind, Carlos; Carballeira, Néstor M; Baerga-Ortiz, Abel

    2014-02-01

    Increasing the production of fatty acids by microbial fermentation remains an important step toward the generation of biodiesel and other portable liquid fuels. In this work, we report an Escherichia coli strain engineered to overexpress a fragment consisting of four dehydratase domains from the polyunsaturated fatty acid (PUFA) synthase enzyme complex from the deep-sea bacterium, Photobacterium profundum. The DH1-DH2-UMA enzyme fragment was excised from its natural context within a multi-enzyme PKS and expressed as a stand-alone protein. Fatty acids were extracted from the cell pellet, esterified with methanol and quantified by GC-MS analysis. Results show that the E. coli strain expressing the DH tetradomain fragment was capable of producing up to a 5-fold increase (80.31 mg total FA/L culture) in total fatty acids over the negative control strain lacking the recombinant enzyme. The enhancement in production was observed across the board for all the fatty acids that are typically made by E. coli. The overexpression of the DH tetradomain did not affect E. coli cell growth, thus showing that the observed enhancement in fatty acid production was not a result of effects associated with cell density. The observed enhancement was more pronounced at lower temperatures (3.8-fold at 16 °C, 3.5-fold at 22 °C and 1.5-fold at 30 °C) and supplementation of the media with 0.4% glycerol did not result in an increase in fatty acid production. All these results taken together suggest that either the dehydration of fatty acid intermediates are a limiting step in the E. coli fatty acid biosynthesis machinery, or that the recombinant dehydratase domains used in this study are also capable of catalyzing thioester hydrolysis of the final products. The enzyme in this report is a new tool which could be incorporated into other existing strategies aimed at improving fatty acid production in bacterial fermentations toward accessible biodiesel precursors. PMID:24411456

  3. Expression of dehydratase domains from a polyunsaturated fatty acid synthase increases the production of fatty acids in Escherichia coli

    PubMed Central

    Oyola-Robles, Delise; Rullán-Lind, Carlos; Carballeira, Néstor M.; Baerga-Ortiz, Abel

    2014-01-01

    Increasing the production of fatty acids by microbial fermentation remains an important step towards the generation of biodiesel and other portable liquid fuels. In this work, we report an Escherichia coli strain engineered to overexpress a fragment consisting of four dehydratase domains from the polyunsaturated fatty acid (PUFA) synthase enzyme complex from the deep-sea bacterium, Photobacterium profundum. The DH1-DH2-UMA enzyme fragment was excised from its natural context within a multi-enzyme PKS and expressed as a stand-alone protein. Fatty acids were extracted from the cell pellet, esterified with methanol and quantified by GC-MS analysis. Results show that the E. coli strain expressing the DH tetradomain fragment was capable of producing up to a 5-fold increase (80.31 mg total FA/L culture) in total fatty acids over the negative control strain lacking the recombinant enzyme. The enhancement in production was observed across the board for all the fatty acids that are typically made by E. coli. The overexpression of the DH tetradomain did not affect E. coli cell growth, thus showing that the observed enhancement in fatty acid production was not a result of effects associated with cell density. The observed enhancement was more pronounced at lower temperatures (3.8-fold at 16 °C, 3.5-fold at 22 °C and 1.5-fold at 30 °C) and supplementation of the media with 0.4% glycerol did not result in an increase in fatty acid production. All these results taken together suggest that either the dehydration of fatty acid intermediates are a limiting step in the E. coli fatty acid biosynthesis machinery, or that the recombinant dehydratase domains used in this study are also capable of catalyzing thioester hydrolysis of the final products. The enzyme in this report is a new tool which could be incorporated into other existing strategies aimed at improving fatty acid production in bacterial fermentations towards accessible biodiesel precursors. PMID:24411456

  4. Microbial Type I Fatty Acid Synthases (FAS): Major Players in a Network of Cellular FAS Systems

    PubMed Central

    Schweizer, Eckhart; Hofmann, Jörg

    2004-01-01

    The present review focuses on microbial type I fatty acid synthases (FASs), demonstrating their structural and functional diversity. Depending on their origin and biochemical function, multifunctional type I FAS proteins form dimers or hexamers with characteristic organization of their catalytic domains. A single polypeptide may contain one or more sets of the eight FAS component functions. Alternatively, these functions may split up into two different and mutually complementing subunits. Targeted inactivation of the individual yeast FAS acylation sites allowed us to define their roles during the overall catalytic process. In particular, their pronounced negative cooperativity is presumed to coordinate the FAS initiation and chain elongation reactions. Expression of the unlinked genes, FAS1 and FAS2, is in part constitutive and in part subject to repression by the phospholipid precursors inositol and choline. The interplay of the involved regulatory proteins, Rap1, Reb1, Abf1, Ino2/Ino4, Opi1, Sin3 and TFIIB, has been elucidated in considerable detail. Balanced levels of subunits α and β are ensured by an autoregulatory effect of FAS1 on FAS2 expression and by posttranslational degradation of excess FAS subunits. The functional specificity of type I FAS multienzymes usually requires the presence of multiple FAS systems within the same cell. De novo synthesis of long-chain fatty acids, mitochondrial fatty acid synthesis, acylation of certain secondary metabolites and coenzymes, fatty acid elongation, and the vast diversity of mycobacterial lipids each result from specific FAS activities. The microcompartmentalization of FAS activities in type I multienzymes may thus allow for both the controlled and concerted action of multiple FAS systems within the same cell. PMID:15353567

  5. Bacterial delta-aminolevulinic acid synthase activity is not essential for leghemoglobin formation in the soybean/Bradyrhizobium japonicum symbiosis

    SciTech Connect

    Guerinot, M.L.; Chelm, B.K.

    1986-03-01

    Previous studies of legume nodules have indicated that formation of the heme moiety of leghemoglobin is a function of the bacterial symbiont. The authors now show that a hemA mutant of Bradyrhizobium japonicum that cannot carry out the first step in heme biosynthesis forms fully effective nodules on soybeans. The bacterial mutant strain was constructed by first isolated the wild-type hemA gene encoding delta-aminolevulinic acid synthase (EC 2.3.1.37) from a cosmid library, using a fragment of the Rhizobium meliloti hemA gene as a hybridization probe. A deletion of the hemA gene region, generated in vitro, then was used to construct the analogous chromosomal mutation by gene-directed mutagenesis. The mutant strain had no delta-aminolevulinic acid synthase activity and was unable to grow in minimal medium unless delta-aminolevulinic acid was added. Despite its auxotrophy, the mutant strain incited nodules that appeared normal, contained heme, and were capable of high levels of acetylene reduction. These results rule out bacterial delta-aminolevulinic acid synthase activity as the exclusive source of delta-aminolevulinic acid for heme formation in soybean nodules.

  6. Characterization and analysis of the cotton cyclopropane fatty acid synthase family and their contribution to cyclopropane fatty acid synthesis

    SciTech Connect

    Yu X. H.; Shanklin J.; Rawat, R.

    2011-05-01

    Cyclopropane fatty acids (CPA) have been found in certain gymnosperms, Malvales, Litchi and other Sapindales. The presence of their unique strained ring structures confers physical and chemical properties characteristic of unsaturated fatty acids with the oxidative stability displayed by saturated fatty acids making them of considerable industrial interest. While cyclopropenoid fatty acids (CPE) are well-known inhibitors of fatty acid desaturation in animals, CPE can also inhibit the stearoyl-CoA desaturase and interfere with the maturation and reproduction of some insect species suggesting that in addition to their traditional role as storage lipids, CPE can contribute to the protection of plants from herbivory. Three genes encoding cyclopropane synthase homologues GhCPS1, GhCPS2 and GhCPS3 were identified in cotton. Determination of gene transcript abundance revealed differences among the expression of GhCPS1, 2 and 3 showing high, intermediate and low levels, respectively, of transcripts in roots and stems; whereas GhCPS1 and 2 are both expressed at low levels in seeds. Analyses of fatty acid composition in different tissues indicate that the expression patterns of GhCPS1 and 2 correlate with cyclic fatty acid (CFA) distribution. Deletion of the N-terminal oxidase domain lowered GhCPS's ability to produce cyclopropane fatty acid by approximately 70%. GhCPS1 and 2, but not 3 resulted in the production of cyclopropane fatty acids upon heterologous expression in yeast, tobacco BY2 cell and Arabidopsis seed. In cotton GhCPS1 and 2 gene expression correlates with the total CFA content in roots, stems and seeds. That GhCPS1 and 2 are expressed at a similar level in seed suggests both of them can be considered potential targets for gene silencing to reduce undesirable seed CPE accumulation. Because GhCPS1 is more active in yeast than the published Sterculia CPS and shows similar activity when expressed in model plant systems, it represents a strong candidate gene for

  7. Characterization and analysis of the cotton cyclopropane fatty acid synthase family and their contribution to cyclopropane fatty acid synthesis

    PubMed Central

    2011-01-01

    Background Cyclopropane fatty acids (CPA) have been found in certain gymnosperms, Malvales, Litchi and other Sapindales. The presence of their unique strained ring structures confers physical and chemical properties characteristic of unsaturated fatty acids with the oxidative stability displayed by saturated fatty acids making them of considerable industrial interest. While cyclopropenoid fatty acids (CPE) are well-known inhibitors of fatty acid desaturation in animals, CPE can also inhibit the stearoyl-CoA desaturase and interfere with the maturation and reproduction of some insect species suggesting that in addition to their traditional role as storage lipids, CPE can contribute to the protection of plants from herbivory. Results Three genes encoding cyclopropane synthase homologues GhCPS1, GhCPS2 and GhCPS3 were identified in cotton. Determination of gene transcript abundance revealed differences among the expression of GhCPS1, 2 and 3 showing high, intermediate and low levels, respectively, of transcripts in roots and stems; whereas GhCPS1 and 2 are both expressed at low levels in seeds. Analyses of fatty acid composition in different tissues indicate that the expression patterns of GhCPS1 and 2 correlate with cyclic fatty acid (CFA) distribution. Deletion of the N-terminal oxidase domain lowered GhCPS's ability to produce cyclopropane fatty acid by approximately 70%. GhCPS1 and 2, but not 3 resulted in the production of cyclopropane fatty acids upon heterologous expression in yeast, tobacco BY2 cell and Arabidopsis seed. Conclusions In cotton GhCPS1 and 2 gene expression correlates with the total CFA content in roots, stems and seeds. That GhCPS1 and 2 are expressed at a similar level in seed suggests both of them can be considered potential targets for gene silencing to reduce undesirable seed CPE accumulation. Because GhCPS1 is more active in yeast than the published Sterculia CPS and shows similar activity when expressed in model plant systems, it

  8. In vitro reconstitution and steady-state analysis of the fatty acid synthase from Escherichia coli

    PubMed Central

    Yu, Xingye; Liu, Tiangang; Zhu, Fayin; Khosla, Chaitan

    2011-01-01

    Microbial fatty acid derivatives are emerging as promising alternatives to fossil fuel derived transportation fuels. Among bacterial fatty acid synthases (FAS), the Escherichia coli FAS is perhaps the most well studied, but little is known about its steady-state kinetic behavior. Here we describe the reconstitution of E. coli FAS using purified protein components and report detailed kinetic analysis of this reconstituted system. When all ketosynthases are present at 1 μM, the maximum rate of free fatty acid synthesis of the FAS exceeded 100 μM/ min. The steady-state turnover frequency was not significantly inhibited at high concentrations of any substrate or cofactor. FAS activity was saturated with respect to most individual protein components when their concentrations exceeded 1 μM. The exceptions were FabI and FabZ, which increased FAS activity up to concentrations of 10 μM; FabH and FabF, which decreased FAS activity at concentrations higher than 1 μM; and holo-ACP and TesA, which gave maximum FAS activity at 30 μM concentrations. Analysis of the S36T mutant of the ACP revealed that the unusual dependence of FAS activity on holo-ACP concentration was due, at least in part, to the acyl-phosphopantetheine moiety. MALDI-TOF mass spectrometry analysis of the reaction mixture further revealed medium and long chain fatty acyl-ACP intermediates as predominant ACP species. We speculate that one or more of such intermediates are key allosteric regulators of FAS turnover. Our findings provide a new basis for assessing the scope and limitations of using E. coli as a biocatalyst for the production of diesel-like fuels. PMID:22042840

  9. Overexpression of fatty acid synthase predicts a poor prognosis for human gastric cancer

    PubMed Central

    DUAN, JIANGMAN; SUN, LI; HUANG, HONGXIANG; WU, ZHENZHEN; WANG, LIN; LIAO, WANGJUN

    2016-01-01

    Fatty acid synthase (FASN), a lipogenic multi-enzyme complex, is reported to be overexpressed in various types of of tumor tissues and serves an important role in tumor development and progression. However, the expression of FASN and its possible role in gastric cancer (GC) remains to be defined. In the present study, FASN expression in a group sample of 167 GC tissues was detected by immunohistochemistry and its correlation with clinicopathological features was analyzed. By clinical analysis, it was identified that FASN overexpression was positively correlated with the overall survival [P=0.008; hazard ratio (HR), 4.412; 95% confidence interval (CI), 1.463–13.305] and recurrence rate (P=0.014; HR, 1.705; 95% CI, 1.116–2.606) in patients with GC. In addition, expression of the FASN protein in GC tissues was correlated with age (P=0.032), clinical stage (P<0.001), gastric wall invasion (P=0.014), lymph node metastasis (P<0.001) and distant metastasis (P<0.001), however not with gender (P>0.05). In addition, FASN was observed to be overexpressed in GC tissues at an mRNA and protein level, compared with the adjacent non-cancerous tissues (P<0.05). Taken together, it was suggested that FASN was closely associated with GC metastasis and survival, which further provided evidence that FASN may be a promising prognostic biomarker for patients with GC. PMID:26936091

  10. {alpha}-Lipoic acid prevents lipotoxic cardiomyopathy in acyl CoA-synthase transgenic mice

    SciTech Connect

    Lee, Young; Naseem, R. Haris; Park, Byung-Hyun; Garry, Daniel J.; Richardson, James A.; Schaffer, Jean E.; Unger, Roger H. . E-mail: roger.unger@utsouthwestern.edu

    2006-05-26

    {alpha}-Lipoic acid ({alpha}-LA) mimics the hypothalamic actions of leptin on food intake, energy expenditure, and activation of AMP-activated protein kinase (AMPK). To determine if, like leptin, {alpha}-LA protects against cardiac lipotoxicity, {alpha}-LA was fed to transgenic mice with cardiomyocyte-specific overexpression of the acyl CoA synthase (ACS) gene. Untreated ACS-transgenic mice died prematurely with increased triacylglycerol content and dilated cardiomyopathy, impaired systolic function and myofiber disorganization, apoptosis, and interstitial fibrosis on microscopy. In {alpha}-LA-treated ACS-transgenic mice heart size, echocardiogram and TG content were normal. Plasma TG fell 50%, hepatic-activated phospho-AMPK rose 6-fold, sterol regulatory element-binding protein-1c declined 50%, and peroxisome proliferator-activated receptor-{gamma} cofactor-1{alpha} mRNA rose 4-fold. Since food restriction did not prevent lipotoxicity, we conclude that {alpha}-LA treatment, like hyperleptinemia, protects the heart of ACS-transgenic mice from lipotoxicity.

  11. Circulating Fatty Acid Synthase in pregnant women: Relationship to blood pressure, maternal metabolism and newborn parameters

    PubMed Central

    Carreras-Badosa, Gemma; Prats-Puig, Anna; Puig, Teresa; Vázquez-Ruíz, Montserrat; Bruel, Monserrat; Mendoza, Ericka; de Zegher, Francis; Ibáñez, Lourdes; López-Bermejo, Abel; Bassols, Judit

    2016-01-01

    The enzyme FASN (fatty acid synthase) is potentially related with hypertension and metabolic dysfunction. FASN is highly expressed in the human placenta. We aimed to investigate the relationship circulating FASN has with blood pressure, maternal metabolism and newborn parameters in healthy pregnant women. Circulating FASN was assessed in 115 asymptomatic pregnant women in the second trimester of gestation along with C-peptide, fasting glucose and insulin, post-load glucose lipids, HMW-adiponectin and blood pressure (the latter was assessed in each trimester of gestation). At birth, newborns and placentas were weighed. FASN expression was also able to be assessed in 80 placentas. Higher circulating FASN was associated with lower systolic blood pressure (SBP), with a more favourable metabolic phenotype (lower fasting glucose and insulin, post load glucose, HbAc1, HOMA-IR and C-peptide), and with lower placental and birth weight (all p < 0.05 to p < 0.001). Placental FASN expression related positively to circulating FASN (p < 0.005) and negatively to placental weight (p < 0.05). Our observations suggest a physiological role of placental FASN in human pregnancy. Future studies will clarify whether circulating FASN of placental origin does actually regulate placental and fetal growth, and (thereby) has a favourable influence on the pregnant mother’s insulin sensitivity and blood pressure. PMID:27090298

  12. Intron-exon organization of the gene for the multifunctional animal fatty acid synthase.

    PubMed Central

    Amy, C M; Williams-Ahlf, B; Naggert, J; Smith, S

    1992-01-01

    The complete intron-exon organization of the gene encoding a multifunctional mammalian fatty acid synthase has been elucidated, and specific exons have been assigned to coding sequences for the component domains of the protein. The rat gene is interrupted by 42 introns and the sequences bordering the splice-site junctions universally follow the GT/AG rule. However, of the 41 introns that interrupt the coding region of the gene, 23 split the reading frame in phase I, 14 split the reading frame in phase 0, and only 4 split the reading frame in phase II. Remarkably, 46% of the introns interrupt codons for glycine. With only one exception, boundaries between the constituent enzymes of the multifunctional polypeptide coincide with the location of introns in the gene. The significance of the predominance of phase I introns, the almost uniformly short length of the 42 introns and the overall small size of the gene, is discussed in relation to the evolution of multifunctional proteins. Images PMID:1736293

  13. Cellulose production and cellulose synthase gene detection in acetic acid bacteria.

    PubMed

    Valera, Maria José; Torija, Maria Jesús; Mas, Albert; Mateo, Estibaliz

    2015-02-01

    The ability of acetic acid bacteria (AAB) to produce cellulose has gained much industrial interest due to the physical and chemical characteristics of bacterial cellulose. The production of cellulose occurs in the presence of oxygen and in a glucose-containing medium, but it can also occur during vinegar elaboration by the traditional method. The vinegar biofilm produced by AAB on the air-liquid interface is primarily composed of cellulose and maintains the cells in close contact with oxygen. In this study, we screened for the ability of AAB to produce cellulose using different carbon sources in the presence or absence of ethanol. The presence of cellulose in biofilms was confirmed using the fluorochrome Calcofluor by microscopy. Moreover, the process of biofilm formation was monitored under epifluorescence microscopy using the Live/Dead BacLight Kit. A total of 77 AAB strains belonging to 35 species of Acetobacter, Komagataeibacter, Gluconacetobacter, and Gluconobacter were analysed, and 30 strains were able to produce a cellulose biofilm in at least one condition. This cellulose production was correlated with the PCR amplification of the bcsA gene that encodes cellulose synthase. A total of eight degenerated primers were designed, resulting in one primer pair that was able to detect the presence of this gene in 27 AAB strains, 26 of which formed cellulose. PMID:25381910

  14. Synthesis of novel beta-lactone inhibitors of fatty acid synthase.

    PubMed

    Richardson, Robyn D; Ma, Gil; Oyola, Yatsandra; Zancanella, Manuel; Knowles, Lynn M; Cieplak, Piotr; Romo, Daniel; Smith, Jeffrey W

    2008-09-11

    Fatty acid synthase (FAS) is necessary for growth and survival of tumor cells and is a promising drug target for oncology. Here, we report on the syntheses and activity of novel inhibitors of the thioesterase domain of FAS. Using the structure of orlistat as a starting point, which contains a beta-lactone as the central pharmacophore, 28 novel congeners were synthesized and examined. Structural features such as the length of the alpha- and beta-alkyl chains, their chemical composition, and amino ester substitutions were altered and the resulting compounds explored for inhibitory activity toward the thioesterase domain of FAS. Nineteen congeners show improved potency for FAS in biochemical assays relative to orlistat. Three of that subset, including the natural product valilactone, also display an increased potency in inducing tumor cell death and improved solubility compared to orlistat. These findings support the idea that an orlistat congener can be optimized for use in a preclinical drug design and for clinical drug development. PMID:18710210

  15. Synthesis of Novel β-Lactone Inhibitors of Fatty Acid Synthase

    PubMed Central

    Richardson, Robyn D.; Ma, Gil; Oyola, Yatsandra; Zancanella, Manuel; Knowles, Lynn M.; Cieplak, Piotr; Romo, Daniel; Smith, Jeffrey W.

    2011-01-01

    Fatty acid synthase (FAS) is necessary for growth and survival of tumor cells and is a promising drug target for oncology. Here, we report on the syntheses and activity of novel inhibitors of the thioesterase domain of FAS. Using the structure of orlistat as a starting point, which contains a β-lactone as the central pharmacophore, 28 novel congeners were synthesized and examined. Structural features such as the length of the α- and β-alkyl chains, their chemical composition, and amino ester substitutions were altered and the resulting compounds explored for inhibitory activity toward the thioesterase domain of FAS. Nineteen congeners show improved potency for FAS in biochemical assays relative to orlistat. Three of that subset, including the natural product valilactone, also display an increased potency in inducing tumor cell death and improved solubility compared to orlistat. These findings support the idea that an orlistat congener can be optimized for use in a preclinical drug design and for clinical drug development. PMID:18710210

  16. TSH/TSHR Signaling Suppresses Fatty Acid Synthase (FASN) Expression in Adipocytes.

    PubMed

    Chen, Jicui; Ren, Jianmin; Jing, Qingping; Lu, Sumei; Zhang, Yuchao; Liu, Yuantao; Yu, Cong; Gao, Peng; Zong, Chen; Li, Xia; Wang, Xiangdong

    2015-09-01

    TSH/TSHR signaling plays a role in the regulation of lipid metabolism in adipocytes. However, the precise mechanisms are not known. In the present study, we determined the effect of TSH on fatty acid synthase (FASN) expression, and explored the underlying mechanisms. In vitro, TSH reduced FASN expression in both mRNA and protein levels in mature adipocytes and was accompanied by protein kinase A (PKA) activation, cAMP-response element binding protein (CREB) phosphorylation, as well as extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun NH2 -terminal kinase (JNK) activation. TSH-induced downregulation of FASN was partially abolished by inhibition of PKA and ERK, but not JNK. TSHR and FASN expression in visceral tissue was significantly increased in C57BL/6 mice with diet-induced obesity compared with control animals, whereas thyroid TSHR expression was normal. These findings suggest that activation of TSHR directly inhibits FASN expression in mature adipocytes, possibly mediated by PKA and ERK. In obese animals, this function of TSHR seems to be counteracted. The precise mechanisms need further investigation. PMID:25655684

  17. Fatty acid synthase is a novel therapeutic target in multiple myeloma.

    PubMed

    Okawa, Yutaka; Hideshima, Teru; Ikeda, Hiroshi; Raje, Noopur; Vallet, Sonia; Kiziltepe, Tanyel; Yasui, Hiroshi; Enatsu, Sotaro; Pozzi, Samantha; Breitkreutz, Iris; Cirstea, Diana; Santo, Loredana; Richardson, Paul; Anderson, Kenneth C

    2008-05-01

    This study investigated the biological significance of the inhibition of fatty acid synthase (FAS) in multiple myeloma (MM) using the small molecule inhibitor Cerulenin. Cerulenin triggered growth inhibition in both MM cell lines and MM patient cells, and overcame the survival and growth advantages conferred by interleukin-6, insulin-like growth factor-1, and bone marrow stromal cells. It induced apoptosis in MM cell lines with only modest activation of caspase -8, -9, -3 and PARP; moreover, the pan-caspase inhibitor Z-VAD-FMK did not inhibit Cerulenin-induced apoptosis and cell death. In addition, treatment of MM cells with Cerulenin primarily up-regulated apoptosis-inducing factor/endonuclease G, mediators of caspase-independent apoptosis. Importantly, Cerulenin induced endoplasmic reticulum stress response via up-regulation of the Grp78/IRE1alpha/JNK pathway. Although the C-Jun-NH(2)-terminal kinase (JNK) inhibitor SP600215 blocked Cerulenin-induced cytotoxicity, it did not inhibit apoptosis and caspase cleavage. Furthermore, Cerulenin showed synergistic cytotoxic effects with various agents including Bortezomib, Melphalan and Doxorubicin. Our results therefore indicate that inhibition of FAS by Cerulenin primarily triggered caspase-independent apoptosis and JNK-dependent cytotoxicity in MM cells. This report demonstrated that inhibition of FAS has anti-tumour activity against MM cells, suggesting that it represents a novel therapeutic target in MM. PMID:18410446

  18. Retraction: Fatty acid synthase is a novel therapeutic target in multiple myeloma

    PubMed Central

    Okawa, Yutaka; Hideshima, Teru; Ikeda, Hiroshi; Raje, Noopur; Vallet, Sonia; Kiziltepe, Tanyel; Yasui, Hiroshi; Enatsu, Sotaro; Pozzi, Samantha; Breitkreutz, Iris; Cirstea, Diana; Santo, Loredana; Richardson, Paul; Anderson, Kenneth C

    2008-01-01

    This study investigated the biological significance of the inhibition of fatty acid synthase (FAS) in multiple myeloma (MM) using the small molecule inhibitor Cerulenin. Cerulenin triggered growth inhibition in both MM cell lines and MM patient cells, and overcame the survival and growth advantages conferred by interleukin-6, insulin-like growth factor-1, and bone marrow stromal cells. It induced apoptosis in MM cell lines with only modest activation of caspase -8, -9, -3 and PARP; moreover, the pan-caspase inhibitor Z-VAD-FMK did not inhibit Cerulenin-induced apoptosis and cell death. In addition, treatment of MM cells with Cerulenin primarily up-regulated apoptosis-inducing factor/endonuclease G, mediators of caspase-independent apoptosis. Importantly, Cerulenin induced endoplasmic reticulum stress response via up-regulation of the Grp78/IRE1α/JNK pathway. Although the C-Jun-NH2-terminal kinase (JNK) inhibitor SP600215 blocked Cerulenin-induced cytotoxicity, it did not inhibit apoptosis and caspase cleavage. Furthermore, Cerulenin showed synergistic cytotoxic effects with various agents including Bortezomib, Melphalan and Doxorubicin. Our results therefore indicate that inhibition of FAS by Cerulenin primarily triggered caspase-independent apoptosis and JNK-dependent cytotoxicity in MM cells. This report demonstrated that inhibition of FAS has anti-tumour activity against MM cells, suggesting that it represents a novel therapeutic target in MM. PMID:18410446

  19. Coexpressing Escherichia coli Cyclopropane Synthase with Sterculia foetida Lysophosphatidic Acid Acyltransferase Enhances Cyclopropane Fatty Acid Accumulation1[W][OPEN

    PubMed Central

    Yu, Xiao-Hong; Prakash, Richa Rawat; Sweet, Marie; Shanklin, John

    2014-01-01

    Cyclopropane fatty acids (CPAs) are desirable as renewable chemical feedstocks for the production of paints, plastics, and lubricants. Toward our goal of creating a CPA-accumulating crop, we expressed nine higher plant cyclopropane synthase (CPS) enzymes in the seeds of fad2fae1 Arabidopsis (Arabidopsis thaliana) and observed accumulation of less than 1% CPA. Surprisingly, expression of the Escherichia coli CPS gene resulted in the accumulation of up to 9.1% CPA in the seed. Coexpression of a Sterculia foetida lysophosphatidic acid acyltransferase (SfLPAT) increases CPA accumulation up to 35% in individual T1 seeds. However, seeds with more than 9% CPA exhibit wrinkled seed morphology and reduced size and oil accumulation. Seeds with more than 11% CPA exhibit strongly decreased seed germination and establishment, and no seeds with CPA more than 15% germinated. That previous reports suggest that plant CPS prefers the stereospecific numbering (sn)-1 position whereas E. coli CPS acts on sn-2 of phospholipids prompted us to investigate the preferred positions of CPS on phosphatidylcholine (PC) and triacylglycerol. Unexpectedly, in planta, E. coli CPS acts primarily on the sn-1 position of PC; coexpression of SfLPAT results in the incorporation of CPA at the sn-2 position of lysophosphatidic acid. This enables a cycle that enriches CPA at both sn-1 and sn-2 positions of PC and results in increased accumulation of CPA. These data provide proof of principle that CPA can accumulate to high levels in transgenic seeds and sets the stage for the identification of factors that will facilitate the movement of CPA from PC into triacylglycerol to produce viable seeds with additional CPA accumulation. PMID:24204024

  20. Inhibition of Mycobacterium tuberculosis dihydrodipicolinate synthase by alpha-ketopimelic acid and its other structural analogues

    PubMed Central

    Shrivastava, Priyanka; Navratna, Vikas; Silla, Yumnam; Dewangan, Rikeshwer P.; Pramanik, Atreyi; Chaudhary, Sarika; Rayasam, GeethaVani; Kumar, Anuradha; Gopal, Balasubramanian; Ramachandran, Srinivasan

    2016-01-01

    The Mycobacterium tuberculosis dihydrodipicolinate synthase (Mtb-dapA) is an essential gene. Mtb-DapA catalyzes the aldol condensation between pyruvate and L-aspartate-beta-semialdehyde (ASA) to yield dihydrodipicolinate. In this work we tested the inhibitory effects of structural analogues of pyruvate on recombinant Mtb-DapA (Mtb-rDapA) using a coupled assay with recombinant dihydrodipicolinate reductase (Mtb-rDapB). Alpha-ketopimelic acid (α-KPA) showed maximum inhibition of 88% and IC50 of 21 μM in the presence of pyruvate (500 μM) and ASA (400 μM). Competition experiments with pyruvate and ASA revealed competition of α-KPA with pyruvate. Liquid chromatography-mass spectrometry (LC-MS) data with multiple reaction monitoring (MRM) showed that the relative abundance peak of final product, 2,3,4,5-tetrahydrodipicolinate, was decreased by 50%. Thermal shift assays showed 1 °C Tm shift of Mtb-rDapA upon binding α-KPA. The 2.4 Å crystal structure of Mtb-rDapA-α-KPA complex showed the interaction of critical residues at the active site with α-KPA. Molecular dynamics simulations over 500 ns of pyruvate docked to Mtb-DapA and of α-KPA-bound Mtb-rDapA revealed formation of hydrogen bonds with pyruvate throughout in contrast to α-KPA. Molecular descriptors analysis showed that ligands with polar surface area of 91.7 Å2 are likely inhibitors. In summary, α-hydroxypimelic acid and other analogues could be explored further as inhibitors of Mtb-DapA. PMID:27501775

  1. Inhibition of Mycobacterium tuberculosis dihydrodipicolinate synthase by alpha-ketopimelic acid and its other structural analogues.

    PubMed

    Shrivastava, Priyanka; Navratna, Vikas; Silla, Yumnam; Dewangan, Rikeshwer P; Pramanik, Atreyi; Chaudhary, Sarika; Rayasam, GeethaVani; Kumar, Anuradha; Gopal, Balasubramanian; Ramachandran, Srinivasan

    2016-01-01

    The Mycobacterium tuberculosis dihydrodipicolinate synthase (Mtb-dapA) is an essential gene. Mtb-DapA catalyzes the aldol condensation between pyruvate and L-aspartate-beta-semialdehyde (ASA) to yield dihydrodipicolinate. In this work we tested the inhibitory effects of structural analogues of pyruvate on recombinant Mtb-DapA (Mtb-rDapA) using a coupled assay with recombinant dihydrodipicolinate reductase (Mtb-rDapB). Alpha-ketopimelic acid (α-KPA) showed maximum inhibition of 88% and IC50 of 21 μM in the presence of pyruvate (500 μM) and ASA (400 μM). Competition experiments with pyruvate and ASA revealed competition of α-KPA with pyruvate. Liquid chromatography-mass spectrometry (LC-MS) data with multiple reaction monitoring (MRM) showed that the relative abundance peak of final product, 2,3,4,5-tetrahydrodipicolinate, was decreased by 50%. Thermal shift assays showed 1 °C Tm shift of Mtb-rDapA upon binding α-KPA. The 2.4 Å crystal structure of Mtb-rDapA-α-KPA complex showed the interaction of critical residues at the active site with α-KPA. Molecular dynamics simulations over 500 ns of pyruvate docked to Mtb-DapA and of α-KPA-bound Mtb-rDapA revealed formation of hydrogen bonds with pyruvate throughout in contrast to α-KPA. Molecular descriptors analysis showed that ligands with polar surface area of 91.7 Å(2) are likely inhibitors. In summary, α-hydroxypimelic acid and other analogues could be explored further as inhibitors of Mtb-DapA. PMID:27501775

  2. The smoking-associated oxidant hypothiocyanous acid induces endothelial nitric oxide synthase dysfunction.

    PubMed

    Talib, Jihan; Kwan, Jair; Suryo Rahmanto, Aldwin; Witting, Paul K; Davies, Michael J

    2014-01-01

    Smokers have an elevated risk of cardiovascular disease but the origin(s) of this increased risk are incompletely defined. Considerable evidence supports an accumulation of the oxidant-generating enzyme MPO (myeloperoxidase) in the inflamed artery wall, and smokers have high levels of SCN(-), a preferred MPO substrate, with this resulting in HOSCN (hypothiocyanous acid) formation. We hypothesized that this thiol-specific oxidant may target the Zn(2+)-thiol cluster of eNOS (endothelial nitric oxide synthase), resulting in enzyme dysfunction and reduced formation of the critical signalling molecule NO•. Decreased NO• bioavailability is an early and critical event in atherogenesis, and HOSCN-mediated damage to eNOS may contribute to smoking-associated disease. In the present study it is shown that exposure of isolated eNOS to HOSCN or MPO/H2O2/SCN(-) decreased active dimeric eNOS levels, and increased inactive monomer and Zn(2+) release, compared with controls, HOCl (hypochlorous acid)- or MPO/H2O2/Cl(-)-treated samples. eNOS activity was increasingly compromised by MPO/H2O2/Cl(-) with increasing SCN(-) concentrations. Exposure of HCAEC (human coronary artery endothelial cell) lysates to pre-formed HOSCN, or MPO/H2O2/Cl(-) with increasing SCN(-), increased eNOS monomerization and Zn(2+) release, and decreased activity. Intact HCAECs exposed to HOCl and HOSCN had decreased eNOS activity and NO2(-)/NO3(-) formation (products of NO• decomposition), and increased free Zn(2+). Exposure of isolated rat aortic rings to HOSCN resulted in thiol loss, and decreased eNOS activity and cGMP levels. Overall these data indicate that high SCN(-) levels, as seen in smokers, can increase HOSCN formation and enhance eNOS dysfunction in human endothelial cells, with this potentially contributing to increased atherogenesis in smokers. PMID:24112082

  3. Transcripts for genes encoding soluble acid invertase and sucrose synthase accumulate in root tip and cortical cells containing mycorrhizal arbuscules.

    PubMed

    Blee, Kristopher A; Anderson, Anne J

    2002-09-01

    Arbuscule formation by the arbuscular mycorrhizal fungus Glomus intraradices (Schenck & Smith) was limited to cortical cells immediately adjacent to the endodermis. Because these cortical cells are the first to intercept photosynthate exiting the vascular cylinder, transcript levels for sucrose metabolizing-enzymes were compared between mycorrhizal and non-mycorrhizal roots. The probes corresponded to genes encoding a soluble acid invertase with potential vacuolar targeting, which we generated from Phaseolus vulgaris roots, a Rhizobium-responsive sucrose synthase of soybean and a cell wall acid invertase of carrot. Transcripts in non-mycorrhizal roots were developmentally regulated and abundant in the root tips for all three probes but in differentiated roots of P. vulgaris they were predominantly located in phloem tissues for sucrose synthase or the endodermis and phloem for soluble acid invertase. In mycorrhizal roots increased accumulations of transcripts for sucrose synthase and vacuolar invertase were both observed in the same cortical cells bearing arbuscules that fluoresce. There was no effect on the expression of the cell wall invertase gene in fluorescent carrot cells containing arbuscules. Thus, it appears that presence of the fungal hyphae in the fluorescent arbusculated cell stimulates discrete alterations in expression of sucrose metabolizing enzymes to increase the sink potential of the cell. PMID:12175013

  4. Enhanced acetohydroxy acid synthase III activity in an ilvH mutant of Escherichia coli K-12.

    PubMed Central

    Ricca, E; Limauro, D; Lago, C T; de Felice, M

    1988-01-01

    The acetohydroxy acid synthase III isozyme, which catalyzes the first common step in the biosynthesis of isoleucine, leucine, and valine in Escherichia coli K-12, is composed of two subunits, the ilvI and ilvH gene products. A missense mutation in ilvH (ilvH612), which reduced the sensitivity of the enzyme to the end product inhibition by valine, also increased its specific activity and lowered the Km for alpha-acetolactate synthesis. The mutation increased the sensitivity of acetohydroxy acid synthase III to dialysis and heat treatment and reduced the requirement for thiamine pyrophosphate addition to the assay mixture for activity. A strain carrying the ilvH612 mutation grew better than a homologous ilvH+ strain in the presence of leucine. The data indicate that this is a consequence of a more active acetohydroxy acid synthase III isozyme rather than the result of an alteration of the leucine-mediated repression of the ilvIH operon. PMID:3053650

  5. Identification of amino acid networks governing catalysis in the closed complex of class I terpene synthases

    PubMed Central

    Buettner, Alexander; Goerner, Christian; Hertel, Michael; van Rijn, Jeaphianne; Wallrapp, Frank; Eisenreich, Wolfgang; Sieber, Volker; Kourist, Robert; Brück, Thomas

    2016-01-01

    Class I terpene synthases generate the structural core of bioactive terpenoids. Deciphering structure–function relationships in the reactive closed complex and targeted engineering is hampered by highly dynamic carbocation rearrangements during catalysis. Available crystal structures, however, represent the open, catalytically inactive form or harbor nonproductive substrate analogs. Here, we present a catalytically relevant, closed conformation of taxadiene synthase (TXS), the model class I terpene synthase, which simulates the initial catalytic time point. In silico modeling of subsequent catalytic steps allowed unprecedented insights into the dynamic reaction cascades and promiscuity mechanisms of class I terpene synthases. This generally applicable methodology enables the active-site localization of carbocations and demonstrates the presence of an active-site base motif and its dominating role during catalysis. It additionally allowed in silico-designed targeted protein engineering that unlocked the path to alternate monocyclic and bicyclic synthons representing the basis of a myriad of bioactive terpenoids. PMID:26842837

  6. Identification of amino acid networks governing catalysis in the closed complex of class I terpene synthases.

    PubMed

    Schrepfer, Patrick; Buettner, Alexander; Goerner, Christian; Hertel, Michael; van Rijn, Jeaphianne; Wallrapp, Frank; Eisenreich, Wolfgang; Sieber, Volker; Kourist, Robert; Brück, Thomas

    2016-02-23

    Class I terpene synthases generate the structural core of bioactive terpenoids. Deciphering structure-function relationships in the reactive closed complex and targeted engineering is hampered by highly dynamic carbocation rearrangements during catalysis. Available crystal structures, however, represent the open, catalytically inactive form or harbor nonproductive substrate analogs. Here, we present a catalytically relevant, closed conformation of taxadiene synthase (TXS), the model class I terpene synthase, which simulates the initial catalytic time point. In silico modeling of subsequent catalytic steps allowed unprecedented insights into the dynamic reaction cascades and promiscuity mechanisms of class I terpene synthases. This generally applicable methodology enables the active-site localization of carbocations and demonstrates the presence of an active-site base motif and its dominating role during catalysis. It additionally allowed in silico-designed targeted protein engineering that unlocked the path to alternate monocyclic and bicyclic synthons representing the basis of a myriad of bioactive terpenoids. PMID:26842837

  7. Evolution of Conifer Diterpene Synthases: Diterpene Resin Acid Biosynthesis in Lodgepole Pine and Jack Pine Involves Monofunctional and Bifunctional Diterpene Synthases1[W][OA

    PubMed Central

    Hall, Dawn E.; Zerbe, Philipp; Jancsik, Sharon; Quesada, Alfonso Lara; Dullat, Harpreet; Madilao, Lina L.; Yuen, Macaire; Bohlmann, Jörg

    2013-01-01

    Diterpene resin acids (DRAs) are major components of pine (Pinus spp.) oleoresin. They play critical roles in conifer defense against insects and pathogens and as a renewable resource for industrial bioproducts. The core structures of DRAs are formed in secondary (i.e. specialized) metabolism via cycloisomerization of geranylgeranyl diphosphate (GGPP) by diterpene synthases (diTPSs). Previously described gymnosperm diTPSs of DRA biosynthesis are bifunctional enzymes that catalyze the initial bicyclization of GGPP followed by rearrangement of a (+)-copalyl diphosphate intermediate at two discrete class II and class I active sites. In contrast, similar diterpenes of gibberellin primary (i.e. general) metabolism are produced by the consecutive activity of two monofunctional class II and class I diTPSs. Using high-throughput transcriptome sequencing, we discovered 11 diTPS from jack pine (Pinus banksiana) and lodgepole pine (Pinus contorta). Three of these were orthologous to known conifer bifunctional levopimaradiene/abietadiene synthases. Surprisingly, two sets of orthologous PbdiTPSs and PcdiTPSs were monofunctional class I enzymes that lacked functional class II active sites and converted (+)-copalyl diphosphate, but not GGPP, into isopimaradiene and pimaradiene as major products. Diterpene profiles and transcriptome sequences of lodgepole pine and jack pine are consistent with roles for these diTPSs in DRA biosynthesis. The monofunctional class I diTPSs of DRA biosynthesis form a new clade within the gymnosperm-specific TPS-d3 subfamily that evolved from bifunctional diTPS rather than monofunctional enzymes (TPS-c and TPS-e) of gibberellin metabolism. Homology modeling suggested alterations in the class I active site that may have contributed to their functional specialization relative to other conifer diTPSs. PMID:23370714

  8. Biological activities of novel zaragozic acids, the potent inhibitors of squalene synthase, produced by the fungus, Mollisia sp. SANK 10294.

    PubMed

    Tanimoto, T; Hamano, K; Onodera, K; Hosoya, T; Kakusaka, M; Hirayama, T; Shimada, Y; Koga, T; Tsujita, Y

    1997-05-01

    Four novel zaragozic acids, F-10863A, B, C and D, were isolated from a culture broth of the fungus Mollisia sp. SANK 10294. F-10863 compounds contain a 4,6,7-trihydroxy-2,8-dioxyobicyclo-[3.2.1]octane-3,4,5-tricarboxyl ic acid core like previously reported zaragozic acids, but the structures of the side chains are different. Recently, it was found that F-10863A is identical to zaragozic acid D3, while the other three are novel compounds. F-10863 compounds are potent inhibitors of squalene synthase like previously reported zaragozic acids, and, furthermore, they exhibit serum cholesterol-lowering activity in vivo. PMID:9207908

  9. Sonic hedgehog signaling directly targets Hyaluronic Acid Synthase 2, an essential regulator of phalangeal joint patterning.

    PubMed

    Liu, Jiang; Li, Qiang; Kuehn, Michael R; Litingtung, Ying; Vokes, Steven A; Chiang, Chin

    2013-03-15

    Sonic hedgehog (Shh) signal, mediated by the Gli family of transcription factors, plays an essential role in the growth and patterning of the limb. Through analysis of the early limb bud transcriptome, we identified a posteriorly-enriched gene, Hyaluronic Acid Synthase 2 (Has2), which encodes a key enzyme for the synthesis of hyaluronan (HA), as a direct target of Gli transcriptional regulation during early mouse limb development. Has2 expression in the limb bud is lost in Shh null and expanded anteriorly in Gli3 mutants. We identified an ∼3kb Has2 promoter fragment that contains two strong Gli-binding consensus sequences, and mutation of either site abrogated the ability of Gli1 to activate Has2 promoter in a cell-based assay. Additionally, this promoter fragment is sufficient to direct expression of a reporter gene in the posterior limb mesenchyme. Chromatin immunoprecipitation of DNA-Gli3 protein complexes from limb buds indicated that Gli3 strongly binds to the Has2 promoter region, suggesting that Has2 is a direct transcriptional target of the Shh signaling pathway. We also showed that Has2 conditional mutant (Has2cko) hindlimbs display digit-specific patterning defects with longitudinally shifted phalangeal joints and impaired chondrogenesis. Has2cko limbs show less capacity for mesenchymal condensation with mislocalized distributions of chondroitin sulfate proteoglycans (CSPGs), aggrecan and link protein. Has2cko limb phenotype displays striking resemblance to mutants with defective chondroitin sulfation suggesting tight developmental control of HA on CSPG function. Together, our study identifies Has2 as a novel downstream target of Shh signaling required for joint patterning and chondrogenesis. PMID:23313125

  10. Cancer cell-associated fatty acid synthase activates endothelial cells and promotes angiogenesis in colorectal cancer.

    PubMed

    Zaytseva, Yekaterina Y; Elliott, Victoria A; Rychahou, Piotr; Mustain, W Conan; Kim, Ji Tae; Valentino, Joseph; Gao, Tianyan; O'Connor, Kathleen L; Neltner, Janna M; Lee, Eun Y; Weiss, Heidi L; Evers, B Mark

    2014-06-01

    Upregulation of fatty acid synthase (FASN), a key enzyme of de novo lipogenesis, is associated with metastasis in colorectal cancer (CRC). However, the mechanisms of regulation are unknown. Since angiogenesis is crucial for metastasis, we investigated the role of FASN in the neovascularization of CRC. The effect of FASN on tumor vasculature was studied in orthotopic CRCs, the chick embryo chorioallantoic membrane (CAM) and Matrigel plug models using immunohistochemistry, immunofluorescent staining and confocal microscopy. Cell secretion was evaluated by ELISA and antibody arrays. Proliferation, migration and tubulogenesis of endothelial cells (ECs) were assessed in CRC-EC coculture models. In this study, we found that stable knockdown of FASN decreased microvessel density in HT29 and HCT116 orthotopic CRCs and resulted in 'normalization' of tumor vasculature in both orthotopic and CAM models. Furthermore, FASN regulated secretion of pro- and antiangiogenic factors, including vascular endothelial growth factor-A (VEGF-A). Mechanisms associated with the antiangiogenic activity noted with knockdown of FASN included: downregulation of VEGF(189), upregulation of antiangiogenic isoform VEGF(165b) and a decrease in expression and activity of matrix metalloproteinase-9. Furthermore, conditioned medium from FASN knockdown CRC cells inhibited activation of vascular endothelial growth factor receptor-2 and its downstream signaling and decreased proliferation, migration and tubulogenesis of ECs as compared with control medium. Together, these results suggest that cancer cell-associated FASN regulates tumor vasculature through alteration of the profile of secreted angiogenic factors and regulation of their bioavailability. Inhibition of FASN upstream of VEGF-A and other angiogenic pathways can be a novel therapeutic strategy to prevent or inhibit metastasis in CRC. PMID:24510238

  11. Cancer cell-associated fatty acid synthase activates endothelial cells and promotes angiogenesis in colorectal cancer

    PubMed Central

    Evers, B.Mark

    2014-01-01

    Upregulation of fatty acid synthase (FASN), a key enzyme of de novo lipogenesis, is associated with metastasis in colorectal cancer (CRC). However, the mechanisms of regulation are unknown. Since angiogenesis is crucial for metastasis, we investigated the role of FASN in the neovascularization of CRC. The effect of FASN on tumor vasculature was studied in orthotopic CRCs, the chick embryo chorioallantoic membrane (CAM) and Matrigel plug models using immunohistochemistry, immunofluorescent staining and confocal microscopy. Cell secretion was evaluated by ELISA and antibody arrays. Proliferation, migration and tubulogenesis of endothelial cells (ECs) were assessed in CRC–EC coculture models. In this study, we found that stable knockdown of FASN decreased microvessel density in HT29 and HCT116 orthotopic CRCs and resulted in ‘normalization’ of tumor vasculature in both orthotopic and CAM models. Furthermore, FASN regulated secretion of pro- and antiangiogenic factors, including vascular endothelial growth factor-A (VEGF-A). Mechanisms associated with the antiangiogenic activity noted with knockdown of FASN included: downregulation of VEGF189, upregulation of antiangiogenic isoform VEGF165b and a decrease in expression and activity of matrix metalloproteinase-9. Furthermore, conditioned medium from FASN knockdown CRC cells inhibited activation of vascular endothelial growth factor receptor-2 and its downstream signaling and decreased proliferation, migration and tubulogenesis of ECs as compared with control medium. Together, these results suggest that cancer cell-associated FASN regulates tumor vasculature through alteration of the profile of secreted angiogenic factors and regulation of their bioavailability. Inhibition of FASN upstream of VEGF-A and other angiogenic pathways can be a novel therapeutic strategy to prevent or inhibit metastasis in CRC. PMID:24510238

  12. Association of Fatty Acid Synthase Polymorphisms and Expression with Outcomes after Radical Prostatectomy

    PubMed Central

    Cheng, Jinrong; Ondracek, Rochelle Payne; Mehedint, Diana C.; Kasza, Karin A.; Xu, Bo; Gill, Simpal; Azabdaftari, Gissou; Yao, Song; Morrison, Carl D.; Mohler, James L.; Marshall, James R.

    2016-01-01

    Fatty acid synthase (FASN), selectively overexpressed in prostate cancer cells, has been described as linked to the aggressiveness of prostate cancer (PCa). Constitutional genetic variation of the FASN gene and the expression levels of FASN protein in cancer cells could thus be expected to predict outcome after radical prostatectomy (RP). This study evaluates the associations of malignant tissue status, neoadjuvant androgen deprivation treatment (NADT) and single nucleotide polymorphisms of FASN with FASN protein expression in prostate tissue. The study then examines the associations of FASN single nucleotide polymorphisms (SNPs) and gene expression with 3 measures of post-prostatectomy outcome. Seven tagging FASN SNPs were genotyped in 659 European American men who underwent RP at Roswell Park Cancer Institute (RPCI) between 1993 and 2005. FASN protein expression was assessed using immunohistochemistry. The patients were followed for an average of 6.9 years (range: 0.1 to 20.6 years). Outcome was assessed using 3 endpoints: biochemical failure, treatment failure and development of distant metastatic PCa. Cox proportional hazards analyses were used to evaluate the associations of the tagging SNPs and FASN expression with these endpoints. Bivariate associations with outcomes were considered; the associations also were controlled for known aggressiveness indicators. Overall, no SNPs were associated with any known aggressiveness indicators. FASN staining intensity was stronger in malignant than in benign tissue, and neoadjuvant androgen deprivation therapy (NADT) was associated with decreased FASN staining in both benign and malignant tissue. The relationships of FASN SNPs and staining intensity with outcome were less clear. One SNP, rs4246444, showed a weak association with outcome. FASN staining intensity also showed a weak and seemingly contradictory relationship with outcome. Additional study with longer follow-up and populations that include more metastatic

  13. MicroRNA-24 can control triacylglycerol synthesis in goat mammary epithelial cells by targeting the fatty acid synthase gene.

    PubMed

    Wang, H; Luo, J; Chen, Z; Cao, W T; Xu, H F; Gou, D M; Zhu, J J

    2015-12-01

    In nonruminants it has been demonstrated that microRNA-24 (miR-24) is involved in preadipocyte differentiation, hepatic lipid, and plasma triacylglycerol synthesis. However, its role in ruminant mammary gland remains unclear. In this study we measured miR-24 expression in goat mammary gland tissue at 4 different stages of lactation and observed that it had highest expression at peak lactation when compared with the dry period. Overexpression or downregulation of miR-24 in goat mammary epithelial cells (GMEC) strongly affected fatty acid profiles; in particular, miR-24 enhanced unsaturated fatty acid concentration. Additional effects of miR-24 included changes in triacylglycerol content and the expression of fatty acid synthase, sterol regulatory element binding transcription protein 1, stearoyl-CoA desaturase, glycerol-3-phosphate acyltransferase mitochondrial, and acetyl-CoA carboxylase. Luciferase reporter assay confirmed that fatty acid synthase is a target of miR-24. Taken together, these results not only highlight the physiological importance of miR-24 in fatty acid metabolism in GMEC, but also laid the foundation for further research on regulatory mechanisms among miR-24 and other microRNA expressed in GMEC. PMID:26476938

  14. Homology analyses of the protein sequences of fatty acid synthases from chicken liver, rat mammary gland, and yeast

    SciTech Connect

    Chang, Soo-Ik ); Hammes, G.G. )

    1989-11-01

    Homology analyses of the protein sequences of chicken liver and rat mammary gland fatty acid synthases were carried out. The amino acid sequences of the chicken and rat enzymes are 67% identical. If conservative substitutions are allowed, 78% of the amino acids are matched. A region of low homologies exists between the functional domains, in particular around amino acid residues 1059-1264 of the chicken enzyme. Homologies between the active sites of chicken and rat and of chicken and yeast enzymes have been analyzed by an alignment method. A high degree of homology exists between the active sites of the chicken and rat enzymes. However, the chicken and yeast enzymes show a lower degree of homology. The DADPH-binding dinucleotide folds of the {beta}-ketoacyl reductase and the enoyl reductase sites were identified by comparison with a known consensus sequence for the DADP- and FAD-binding dinucleotide folds. The active sites of all of the enzymes are primarily in hydrophobic regions of the protein. This study suggests that the genes for the functional domains of fatty acid synthase were originally separated, and these genes were connected to each other by using different connecting nucleotide sequences in different species. An alternative explanation for the differences in rat and chicken is a common ancestry and mutations in the joining regions during evolution.

  15. Physiological implications of the specificity of acetohydroxy acid synthase isozymes of enteric bacteria.

    PubMed Central

    Barak, Z; Chipman, D M; Gollop, N

    1987-01-01

    The rates of formation of the two alternative products of acetohydroxy acid synthase (AHAS) have been determined by a new analytical method (N. Gollop, Z. Barak, and D. M. Chipman, Anal. Biochem., 160:323-331, 1987). For each of the three distinct isozymes of AHAS in Escherichia coli and Salmonella typhimurium, a specificity ratio, R, was defined: Formula: see text, which is constant over a wide range of substrate concentrations. This is consistent with competition between pyruvate and 2-ketobutyrate for an active acetaldehyde intermediate formed irreversibly after addition of the first pyruvate moiety to the enzyme. Isozyme I showed no product preference (R = 1), whereas isozymes II and III form acetohydroxybutyrate (AHB) at approximately 180- and 60-fold faster rates, respectively, than acetolactate (AL) at equal pyruvate and 2-ketobutyrate concentrations. R values higher than 60 represent remarkably high specificity in favor of the substrate with one extra methylene group. In exponentially growing E. coli cells (under aerobic growth on glucose), which contain about 300 microM pyruvate and only 3 microM 2-ketobutyrate, AHAS I would produce almost entirely AL and only 1 to 2% AHB. However, isozymes II and III would synthesize AHB (on the pathway to Ile) and AL (on the pathway to valine-leucine) in essentially the ratio required for protein synthesis. The specificity ratio R of any AHAS isozyme was affected neither by the natural feedback inhibitors (Val, Ile) nor by the pH. On the basis of the specificities of the isozymes, the known regulation of AHAS I expression by the catabolite repression system, and the reported behavior of bacterial mutants containing single AHAS isozymes, we suggest that AHAS I enables a bacterium to cope with poor carbon sources, which lead to low endogenous pyruvate concentrations. Although AHAS II and III are well suited to producing the branched-chain amino acid precursors during growth on glucose, they would fail to provide

  16. Fatty Acid Synthase Cooperates with Glyoxalase 1 to Protect against Sugar Toxicity

    PubMed Central

    Garrido, Damien; Rubin, Thomas; Poidevin, Mickael; Maroni, Brigitte; Le Rouzic, Arnaud; Parvy, Jean-Philippe; Montagne, Jacques

    2015-01-01

    Fatty acid (FA) metabolism is deregulated in several human diseases including metabolic syndrome, type 2 diabetes and cancers. Therefore, FA-metabolic enzymes are potential targets for drug therapy, although the consequence of these treatments must be precisely evaluated at the organismal and cellular levels. In healthy organism, synthesis of triacylglycerols (TAGs)—composed of three FA units esterified to a glycerol backbone—is increased in response to dietary sugar. Saturation in the storage and synthesis capacity of TAGs is associated with type 2 diabetes progression. Sugar toxicity likely depends on advanced-glycation-end-products (AGEs) that form through covalent bounding between amine groups and carbonyl groups of sugar or their derivatives α-oxoaldehydes. Methylglyoxal (MG) is a highly reactive α-oxoaldehyde that is derived from glycolysis through a non-enzymatic reaction. Glyoxalase 1 (Glo1) works to neutralize MG, reducing its deleterious effects. Here, we have used the power of Drosophila genetics to generate Fatty acid synthase (FASN) mutants, allowing us to investigate the consequence of this deficiency upon sugar-supplemented diets. We found that FASN mutants are lethal but can be rescued by an appropriate lipid diet. Rescued animals do not exhibit insulin resistance, are dramatically sensitive to dietary sugar and accumulate AGEs. We show that FASN and Glo1 cooperate at systemic and cell-autonomous levels to protect against sugar toxicity. We observed that the size of FASN mutant cells decreases as dietary sucrose increases. Genetic interactions at the cell-autonomous level, where glycolytic enzymes or Glo1 were manipulated in FASN mutant cells, revealed that this sugar-dependent size reduction is a direct consequence of MG-derived-AGE accumulation. In summary, our findings indicate that FASN is dispensable for cell growth if extracellular lipids are available. In contrast, FA-synthesis appears to be required to limit a cell

  17. Physiological implications of the specificity of acetohydroxy acid synthase isozymes of enteric bacteria.

    PubMed

    Barak, Z; Chipman, D M; Gollop, N

    1987-08-01

    The rates of formation of the two alternative products of acetohydroxy acid synthase (AHAS) have been determined by a new analytical method (N. Gollop, Z. Barak, and D. M. Chipman, Anal. Biochem., 160:323-331, 1987). For each of the three distinct isozymes of AHAS in Escherichia coli and Salmonella typhimurium, a specificity ratio, R, was defined: Formula: see text, which is constant over a wide range of substrate concentrations. This is consistent with competition between pyruvate and 2-ketobutyrate for an active acetaldehyde intermediate formed irreversibly after addition of the first pyruvate moiety to the enzyme. Isozyme I showed no product preference (R = 1), whereas isozymes II and III form acetohydroxybutyrate (AHB) at approximately 180- and 60-fold faster rates, respectively, than acetolactate (AL) at equal pyruvate and 2-ketobutyrate concentrations. R values higher than 60 represent remarkably high specificity in favor of the substrate with one extra methylene group. In exponentially growing E. coli cells (under aerobic growth on glucose), which contain about 300 microM pyruvate and only 3 microM 2-ketobutyrate, AHAS I would produce almost entirely AL and only 1 to 2% AHB. However, isozymes II and III would synthesize AHB (on the pathway to Ile) and AL (on the pathway to valine-leucine) in essentially the ratio required for protein synthesis. The specificity ratio R of any AHAS isozyme was affected neither by the natural feedback inhibitors (Val, Ile) nor by the pH. On the basis of the specificities of the isozymes, the known regulation of AHAS I expression by the catabolite repression system, and the reported behavior of bacterial mutants containing single AHAS isozymes, we suggest that AHAS I enables a bacterium to cope with poor carbon sources, which lead to low endogenous pyruvate concentrations. Although AHAS II and III are well suited to producing the branched-chain amino acid precursors during growth on glucose, they would fail to provide

  18. Heterologous Expression of Methylketone Synthase1 and Methylketone Synthase2 Leads to Production of Methylketones and Myristic Acid in Transgenic Plants1[W][OPEN

    PubMed Central

    Yu, Geng; Pichersky, Eran

    2014-01-01

    Some plants produce methylketones as potent defense compounds against various insects. Wild tomato (Solanum habrochaites), a relative of the cultivated tomato (Solanum lycopersicum), synthesizes large amounts of 2-methylketones in its glandular trichomes, but cultivated tomato trichomes contain little or no methylketones. Two enzymes, Solanum habrochaites methylketone synthase1 (ShMKS1) and ShMKS2, are required to convert β-ketoacyl acyl-carrier protein intermediates of the fatty acid biosynthetic pathway to methylketones. ShMKS2 is a thioesterase that hydrolyzes β-ketoacyl acyl-carrier protein, and ShMKS1 is a decarboxylase that converts the resulting 3-ketoacids to 2-methylketones. We introduced ShMKS2 by itself or together with ShMKS1 to Arabidopsis (Arabidopsis thaliana), tobacco (Nicotiana tabacum), and cultivated tomato under the control of the 35S, Rubisco small subunit, and tomato trichome-specific promoters. Young tobacco and Arabidopsis plants expressing both genes under the control of 35S and Rubisco small subunit promoters produced methylketones in their leaves but had serious growth defects. As plants matured, they ceased to produce methylketones. Tobacco plants but not Arabidopsis or tomato plants expressing only ShMKS2 under the 35S promoter also synthesized methylketones, but at a lower rate. Transgenic cultivated tomato plants expressing ShMKS1 and ShMKS2 under trichome-specific promoters had slightly elevated levels of methylketone. Trace amounts of myristic acid were also detected in transgenic plants constitutively expressing ShMKS2 with or without ShMKS1. These results suggest that increases in methylketone production in plants will require the targeting of the pathway to self-contained structures in the plant and may also require increasing the flux of fatty acid biosynthesis. PMID:24390393

  19. Amino acid determinants of substrate selectivity in the Trypanosoma brucei sphingolipid synthase family.

    PubMed

    Goren, Michael A; Fox, Brian G; Bangs, James D

    2011-10-18

    The substrate selectivity of four Trypanosoma brucei sphingolipid synthases was examined. TbSLS1, an inositol phosphorylceramide (IPC) synthase, and TbSLS4, a bifunctional sphingomyelin (SM)/ethanolamine phosphorylceramide (EPC) synthase, were inactivated by Ala substitutions of a conserved triad of residues His210, His253, and Asp257 thought to form part of the active site. TbSLS4 also catalyzed the reverse reaction, production of ceramide from sphingomyelin, but none of the Ala substitutions of the catalytic triad in TbSLS4 were able to do so. Site-directed mutagenesis identified residues proximal to the conserved triad that were responsible for the discrimination between charge and size of the different head groups. For discrimination between anionic (phosphoinositol) and zwitterionic (phosphocholine, phosphoethanolamine) head groups, doubly mutated V172D/S252F TbSLS1 and D172V/F252S TbSLS3 showed reciprocal conversion between IPC and bifunctional SM/EPC synthases. For differentiation of zwitterionic headgroup size, N170A TbSLS1 and A170N/N187D TbSLS4 showed reciprocal conversion between EPC and bifunctional SM/EPC synthases. These studies provide a mapping of the SLS active site and demonstrate that differences in catalytic specificity of the T. brucei enzyme family are controlled by natural variations in as few as three residue positions. PMID:21899277

  20. A human fatty acid synthase inhibitor binds β-ketoacyl reductase in the keto-substrate site.

    PubMed

    Hardwicke, Mary Ann; Rendina, Alan R; Williams, Shawn P; Moore, Michael L; Wang, Liping; Krueger, Julie A; Plant, Ramona N; Totoritis, Rachel D; Zhang, Guofeng; Briand, Jacques; Burkhart, William A; Brown, Kristin K; Parrish, Cynthia A

    2014-09-01

    Human fatty acid synthase (hFAS) is a complex, multifunctional enzyme that is solely responsible for the de novo synthesis of long chain fatty acids. hFAS is highly expressed in a number of cancers, with low expression observed in most normal tissues. Although normal tissues tend to obtain fatty acids from the diet, tumor tissues rely on de novo fatty acid synthesis, making hFAS an attractive metabolic target for the treatment of cancer. We describe here the identification of GSK2194069, a potent and specific inhibitor of the β-ketoacyl reductase (KR) activity of hFAS; the characterization of its enzymatic and cellular mechanism of action; and its inhibition of human tumor cell growth. We also present the design of a new protein construct suitable for crystallography, which resulted in what is to our knowledge the first co-crystal structure of the human KR domain and includes a bound inhibitor. PMID:25086508

  1. From Amino Acid to Glucosinolate Biosynthesis: Protein Sequence Changes in the Evolution of Methylthioalkylmalate Synthase in Arabidopsis[W][OA

    PubMed Central

    de Kraker, Jan-Willem; Gershenzon, Jonathan

    2011-01-01

    Methylthioalkylmalate synthase (MAM) catalyzes the committed step in the side chain elongation of Met, yielding important precursors for glucosinolate biosynthesis in Arabidopsis thaliana and other Brassicaceae species. MAM is believed to have evolved from isopropylmalate synthase (IPMS), an enzyme involved in Leu biosynthesis, based on phylogenetic analyses and an overlap of catalytic abilities. Here, we investigated the changes in protein structure that have occurred during the recruitment of IPMS from amino acid to glucosinolate metabolism. The major sequence difference between IPMS and MAM is the absence of 120 amino acids at the C-terminal end of MAM that constitute a regulatory domain for Leu-mediated feedback inhibition. Truncation of this domain in Arabidopsis IPMS2 results in loss of Leu feedback inhibition and quaternary structure, two features common to MAM enzymes, plus an 8.4-fold increase in the kcat/Km for a MAM substrate. Additional exchange of two amino acids in the active site resulted in a MAM-like enzyme that had little residual IPMS activity. Hence, combination of the loss of the regulatory domain and a few additional amino acid exchanges can explain the evolution of MAM from IPMS during its recruitment from primary to secondary metabolism. PMID:21205930

  2. Overexpression of fatty acid synthase in human urinary bladder cancer and combined expression of the synthase and Ki-67 as a predictor of prognosis of cancer patients.

    PubMed

    Sugino, Takashi; Baba, Keiichi; Hoshi, Nobuo; Aikawa, Ken; Yamaguchi, Osamu; Suzuki, Toshimitsu

    2011-09-01

    To investigate the status of fatty acid synthase (FAS) in bladder tumors and evaluate its prognostic significance, we immunohistochemically examined the expression of FAS in normal urothelium, carcinoma in situ (CIS), and urothelial carcinoma (UC) in cystectomized bladder. In normal urothelium, only the surface layer expressed FAS, whereas the protein was detected in the basal layer or whole layer of CIS and UC in every specimen. Of the clinicopathological factors in UC, pathological tumor (pT) stage and histological grade were significantly correlated to FAS expression (P = 0.002, P < 0.0001, respectively). Univariate analysis for disease-specific survival indicated that the combination scores of FAS and Ki-67 expression, which were not associated with each other, was a more predictive variable than the individual score of each protein expression. Kaplan-Meier analysis showed that high combination scores of both proteins were significantly associated with poor prognosis (P = 0.04). In conclusion, FAS expression can be a biomarker for tumor aggressiveness and loss of differentiation of bladder cancer, and the evaluation of its expression level in combination with Ki-67 labeling index may be a precise predictor for poor prognosis of cancer patients. PMID:21922386

  3. Mutation of L-2,3-diaminopropionic acid synthase genes blocks staphyloferrin B synthesis in Staphylococcus aureus

    PubMed Central

    2011-01-01

    Background Staphylococcus aureus synthesizes two siderophores, staphyloferrin A and staphyloferrin B, that promote iron-restricted growth. Previous work on the biosynthesis of staphyloferrin B has focused on the role of the synthetase enzymes, encoded from within the sbnA-I operon, which build the siderophore from the precursor molecules citrate, alpha-ketoglutarate and L-2,3-diaminopropionic acid. However, no information yet exists on several other enzymes, expressed from the biosynthetic cluster, that are thought to be involved in the synthesis of the precursors (or synthetase substrates) themselves. Results Using mutants carrying insertions in sbnA and sbnB, we show that these two genes are essential for the synthesis of staphyloferrin B, and that supplementation of the growth medium with L-2,3-diaminopropionic acid can bypass the block in staphyloferrin B synthesis displayed by the mutants. Several mechanisms are proposed for how the enzymes SbnA, with similarity to cysteine synthase enzymes, and SbnB, with similarity to amino acid dehydrogenases and ornithine cyclodeaminases, function together in the synthesis of this unusual nonproteinogenic amino acid L-2,3-diaminopropionic acid. Conclusions Mutation of either sbnA or sbnB result in abrogation of synthesis of staphyloferrin B, a siderophore that contributes to iron-restricted growth of S. aureus. The loss of staphyloferrin B synthesis is due to an inability to synthesize the unusual amino acid L-2,3-diaminopropionic acid which is an important, iron-liganding component of the siderophore structure. It is proposed that SbnA and SbnB function together as an L-Dap synthase in the S. aureus cell. PMID:21906287

  4. Acid Sphingomyelinase Gene Knockout Ameliorates Hyperhomocysteinemic Glomerular Injury in Mice Lacking Cystathionine-β-Synthase

    PubMed Central

    Boini, Krishna M.; Xia, Min; Abais, Justine M.; Xu, Ming; Li, Cai-xia; Li, Pin-Lan

    2012-01-01

    Acid sphingomyelinase (ASM) has been implicated in the development of hyperhomocysteinemia (hHcys)-induced glomerular oxidative stress and injury. However, it remains unknown whether genetically engineering of ASM gene produces beneficial or detrimental action on hHcys-induced glomerular injury. The present study generated and characterized the mice lacking cystathionine β-synthase (Cbs) and Asm mouse gene by cross breeding Cbs+/− and Asm+/− mice. Given that the homozygotes of Cbs−/−/Asm−/− mice could not survive for 3 weeks. Cbs+/−/Asm+/+, Cbs+/−/Asm+/− and Cbs+/−/Asm−/− as well as their Cbs wild type littermates were used to study the role of Asm−/− under a background of Cbs+/− with hHcys. HPLC analysis revealed that plasma Hcys level was significantly elevated in Cbs heterozygous (Cbs+/−) mice with different copies of Asm gene compared to Cbs+/+ mice with different Asm gene copies. Cbs+/−/Asm+/+ mice had significantly increased renal Asm activity, ceramide production and O2.− level compared to Cbs+/+/Asm+/+, while Cbs+/−/Asm−/− mice showed significantly reduced renal Asm activity, ceramide production and O2.− level due to increased plasma Hcys levels. Confocal microscopy demonstrated that colocalization of podocin with ceramide was much lower in Cbs+/−/Asm−/− mice compared to Cbs+/−/Asm+/+ mice, which was accompanied by a reduced glomerular damage index, albuminuria and proteinuria in Cbs+/−/Asm−/− mice. Immunofluorescent analyses of the podocin, nephrin and desmin expression also illustrated less podocyte damages in the glomeruli from Cbs+/−/Asm−/− mice compared to Cbs+/−/Asm+/+ mice. In in vitro studies of podocytes, hHcys-enhanced O2.− production, desmin expression, and ceramide production as well as decreases in VEGF level and podocin expression in podocytes were substantially attenuated by prior treatment with amitriptyline, an Asm inhibitor. In conclusion, Asm gene knockout or

  5. Biosynthesis of Dictyostelium discoideum differentiation-inducing factor by a hybrid type I fatty acid-type III polyketide synthase.

    PubMed

    Austin, Michael B; Saito, Tamao; Bowman, Marianne E; Haydock, Stephen; Kato, Atsushi; Moore, Bradley S; Kay, Robert R; Noel, Joseph P

    2006-09-01

    Differentiation-inducing factors (DIFs) are well known to modulate formation of distinct communal cell types from identical Dictyostelium discoideum amoebas, but DIF biosynthesis remains obscure. We report complimentary in vivo and in vitro experiments identifying one of two approximately 3,000-residue D. discoideum proteins, termed 'steely', as responsible for biosynthesis of the DIF acylphloroglucinol scaffold. Steely proteins possess six catalytic domains homologous to metazoan type I fatty acid synthases (FASs) but feature an iterative type III polyketide synthase (PKS) in place of the expected FAS C-terminal thioesterase used to off load fatty acid products. This new domain arrangement likely facilitates covalent transfer of steely N-terminal acyl products directly to the C-terminal type III PKS active sites, which catalyze both iterative polyketide extension and cyclization. The crystal structure of a steely C-terminal domain confirms conservation of the homodimeric type III PKS fold. These findings suggest new bioengineering strategies for expanding the scope of fatty acid and polyketide biosynthesis. PMID:16906151

  6. The condensing activities of the Mycobacterium tuberculosis type II fatty acid synthase are differentially regulated by phosphorylation.

    PubMed

    Molle, Virginie; Brown, Alistair K; Besra, Gurdyal S; Cozzone, Alain J; Kremer, Laurent

    2006-10-01

    Phosphorylation of proteins by Ser/Thr protein kinases (STPKs) has recently become of major physiological importance because of its possible involvement in virulence of bacterial pathogens. Although Mycobacterium tuberculosis has eleven STPKs, the nature and function of the substrates of these enzymes remain largely unknown. In this work, we have identified for the first time STPK substrates in M. tuberculosis forming part of the type II fatty acid synthase (FAS-II) system involved in mycolic acid biosynthesis: the malonyl-CoA::AcpM transacylase mtFabD, and the beta-ketoacyl AcpM synthases KasA and KasB. All three enzymes were phosphorylated in vitro by different kinases, suggesting a complex network of interactions between STPKs and these substrates. In addition, both KasA and KasB were efficiently phosphorylated in M. bovis BCG each at different sites and could be dephosphorylated by the M. tuberculosis Ser/Thr phosphatase PstP. Enzymatic studies revealed that, whereas phosphorylation decreases the activity of KasA in the elongation process of long chain fatty acids synthesis, this modification enhances that of KasB. Such a differential effect of phosphorylation may represent an unusual mechanism of FAS-II system regulation, allowing pathogenic mycobacteria to produce full-length mycolates, which are required for adaptation and intracellular survival in macrophages. PMID:16873379

  7. Mycolic acid biosynthesis and enzymic characterization of the beta-ketoacyl-ACP synthase A-condensing enzyme from Mycobacterium tuberculosis.

    PubMed

    Kremer, Laurent; Dover, Lynn G; Carrère, Séverine; Nampoothiri, K Madhavan; Lesjean, Sarah; Brown, Alistair K; Brennan, Patrick J; Minnikin, David E; Locht, Camille; Besra, Gurdyal S

    2002-06-01

    Mycolic acids consist of long-chain alpha-alkyl-beta-hydroxy fatty acids that are produced by successive rounds of elongation catalysed by a type II fatty acid synthase (FAS-II). A key feature in the elongation process is the condensation of a two-carbon unit from malonyl-acyl-carrier protein (ACP) to a growing acyl-ACP chain catalysed by a beta-ketoacyl-ACP synthase (Kas). In the present study, we provide evidence that kasA from Mycobacterium tuberculosis encodes an enzyme that elongates in vivo the meromycolate chain, in both Mycobacterium smegmatis and Mycobacterium chelonae. We demonstrate that KasA belongs to the FAS-II system, which utilizes primarily palmitoyl-ACP rather than short-chain acyl-ACP primers. Furthermore, in an in vitro condensing assay using purified recombinant KasA, palmitoyl-AcpM and malonyl-AcpM, KasA was found to express Kas activity. Also, mutated KasA proteins, with mutation of Cys(171), His(311), Lys(340) and His(345) to Ala abrogated the condensation activity of KasA in vitro completely. Finally, purified KasA was highly sensitive to cerulenin, a well-known inhibitor of Kas, which may lead to the development of novel anti-mycobacterial drugs targeting KasA. PMID:12023885

  8. Cyclopropane fatty acid synthase mutants of probiotic human-derived Lactobacillus reuteri are defective in TNF inhibition

    PubMed Central

    Saulnier, Delphine; Thomas, Carissa M; Versalovic, James

    2011-01-01

    Although commensal microbes have been shown to modulate host immune responses, many of the bacterial factors that mediate immune regulation remain unidentified. Select strains of human-derived Lactobacillus reuteri synthesize immunomodulins that potently inhibit production of the inflammatory cytokine TNF. In this study, genetic and genomic approaches were used to identify and investigate L. reuteri genes required for human TNF immunomodulatory activity. Analysis of membrane fatty acids from multiple L. reuteri strains cultured in MRS medium showed that only TNF inhibitory strains produced the cyclopropane fatty acid (CFA) lactobacillic acid. The enzyme cyclopropane fatty acid synthase is required for synthesis of CFAs such as lactobacillic acid, therefore the cfa gene was inactivated and supernatants from the cfa mutant strain were assayed for TNF inhibitory activity. We found that supernatants from the wild-type strain, but not the cfa mutant, suppressed TNF production by activated THP-1 human monocytoid cells. Although this suggested a direct role for lactobacillic acid in immunomodulation, purified lactobacillic acid did not suppress TNF at physiologically relevant concentrations. We further analyzed TNF inhibitory and TNF non-inhibitory strains under different growth conditions and found that lactobacillic acid production did not correlate with TNF inhibition. These results indicate that cfa indirectly contributed to L. reuteri immunomodulatory activity and suggest that other mechanisms, such as decreased membrane fluidity or altered expression of immunomodulins, result in the loss of TNF inhibitory activity. By increasing our understanding of immunomodulation by probiotic species, beneficial microbes can be rationally selected to alleviate intestinal inflammation. PMID:21637024

  9. Binding Pocket Alterations in Dihydrofolate Synthase Confer Resistance to para-Aminosalicylic Acid in Clinical Isolates of Mycobacterium tuberculosis

    PubMed Central

    Zhao, Fei; Wang, Xu-De; Erber, Luke N.; Luo, Ming; Guo, Ai-zhen; Yang, Shan-shan; Gu, Jing; Turman, Breanna J.; Gao, Yun-rong; Li, Dong-fang; Cui, Zong-qiang; Zhang, Zhi-ping; Bi, Li-jun; Baughn, Anthony D.

    2014-01-01

    The mechanistic basis for the resistance of Mycobacterium tuberculosis to para-aminosalicylic acid (PAS), an important agent in the treatment of multidrug-resistant tuberculosis, has yet to be fully defined. As a substrate analog of the folate precursor para-aminobenzoic acid, PAS is ultimately bioactivated to hydroxy dihydrofolate, which inhibits dihydrofolate reductase and disrupts the operation of folate-dependent metabolic pathways. As a result, the mutation of dihydrofolate synthase, an enzyme needed for the bioactivation of PAS, causes PAS resistance in M. tuberculosis strain H37Rv. Here, we demonstrate that various missense mutations within the coding sequence of the dihydropteroate (H2Pte) binding pocket of dihydrofolate synthase (FolC) confer PAS resistance in laboratory isolates of M. tuberculosis and Mycobacterium bovis. From a panel of 85 multidrug-resistant M. tuberculosis clinical isolates, 5 were found to harbor mutations in the folC gene within the H2Pte binding pocket, resulting in PAS resistance. While these alterations in the H2Pte binding pocket resulted in reduced dihydrofolate synthase activity, they also abolished the bioactivation of hydroxy dihydropteroate to hydroxy dihydrofolate. Consistent with this model for abolished bioactivation, the introduction of a wild-type copy of folC fully restored PAS susceptibility in folC mutant strains. Confirmation of this novel PAS resistance mechanism will be beneficial for the development of molecular method-based diagnostics for M. tuberculosis clinical isolates and for further defining the mode of action of this important tuberculosis drug. PMID:24366731

  10. Identification and Characterization of CPS1 as a Hyaluronic Acid Synthase Contributing to the Pathogenesis of Cryptococcus neoformans Infection▿

    PubMed Central

    Jong, Ambrose; Wu, Chun-Hua; Chen, Han-Min; Luo, Feng; Kwon-Chung, Kyung J.; Chang, Yun C.; LaMunyon, Craig W.; Plaas, Anna; Huang, Sheng-He

    2007-01-01

    Cryptococcus neoformans is a pathogenic yeast that often causes devastating meningoencephalitis in immunocompromised individuals. We have previously identified the C. neoformans CPS1 gene, which is required for a capsular layer on the outer cell wall. In this report, we investigate the function of the CPS1 gene and its pathogenesis. We demonstrated that treatment of yeast with either 4-methylumbelliferone or hyaluronidase resulted in a reduction of the level of C. neoformans binding to human brain microvascular endothelial cells (HBMEC). Yeast extracellular structures were also altered accordingly in hyaluronidase-treated cells. Furthermore, observation of yeast strains with different hyaluronic acid contents showed that the ability to bind to HBMEC is proportional to the hyaluronic acid content. A killing assay with Caenorhabditis elegans demonstrated that the CPS1 wild-type strain is more virulent than the cps1Δ strain. When CPS1 is expressed in Saccharomyces cerevisiae and Escherichia coli, hyaluronic acid can be detected in the cells. Additionally, we determined by fluorophore-assisted carbohydrate electrophoretic analysis that hyaluronic acid is a component of the C. neoformans capsule. The size of hyaluronic acid molecules is evaluated by gel filtration and transmission electron microscopy studies. Together, our results support that C. neoformans CPS1 encodes hyaluronic acid synthase and that its product, hyaluronic acid, plays a role as an adhesion molecule during the association of endothelial cells with yeast. PMID:17545316

  11. Performance, 5-aminolevulinic acid (ALA) yield and microbial population dynamics in a photobioreactor system treating soybean wastewater: Effect of hydraulic retention time (HRT) and organic loading rate (OLR).

    PubMed

    Liu, Shuli; Zhang, Guangming; Zhang, Jie; Li, Xiangkun; Li, Jianzheng

    2016-06-01

    Effects of hydraulic retention time (HRT) and influent organic loading rate (OLR) were investigated in a photobioreactor containing PNSB (Rhodobacter sphaeroides)-chemoheterotrophic bacteria to treat soybean wastewater. Pollutants removal, biomass production and ALA yield in different phases were investigated in together with functional microbial population dynamics. The results showed that proper HRT and OLR increased the photobioreactor performance including pollutants removal, biomass and ALA productions. 89.5% COD, 90.6% TN and 91.2% TP removals were achieved as well as the highest biomass production of 2655mg/L and ALA yield of 7.40mg/g-biomass under the optimal HRT of 60h and OLR of 2.48g/L/d. In addition, HRT and OLR have important impacts on PNSB and total bacteria dynamics. PMID:26818577

  12. Complementary use of optical coherence tomography and 5-aminolevulinic acid induced fluorescent spectroscopy for diagnosis of neoplastic processes in cervix and vulva

    NASA Astrophysics Data System (ADS)

    Sapozhnikova, Veronika V.; Shakhova, Natalia M.; Kamensky, Vladislav A.; Kuranov, Roman V.; Loshenov, Victor B.; Petrova, Svetlana A.

    2003-07-01

    A new approach to improving the diagnostic value of optical methods is suggested, which is based on a complementary investigation of different optical parameters of biotissues. The aim of this paper is comparative study of the feasibility of two optical methods - fluorescence spectroscopy and optical coherence tomography - for visualization of borders of neoplastic processes in the uterine cervix and vulva. Fluorescence spectroscopy is based on the detection of biochemical and optical coherence tomography on backscattering properties in norm and pathological changes of tissues. By means of these optical methods changes in biochemical and morphological properties of tissues were investigated. A parallel analysis of these two optical methods and histology from the center of tumors and their optical borders was made. Thirteen female patients with neoplastic changes in uterine cervix and vulva were enrolled in this study. The borders of the tumor determined by optical methods (fluorescence spectroscopy and optical coherence tomography) are coinciding with the biopsy proved ones. In addition, OCT and fluorescence borders of tumor in the uterine cervix and vulva exceeds colposcopically detectable borders, the averaging difference 2 mm. In future optical methods would considerably enhance diagnostic accuracy of conventional methods used in oncogynecology.

  13. Crystallization and X-ray diffraction studies of a complete bacterial fatty-acid synthase type I

    SciTech Connect

    Enderle, Mathias; McCarthy, Andrew; Paithankar, Karthik Shivaji; Grininger, Martin

    2015-10-23

    Bacterial and fungal type I fatty-acid synthases (FAS I) are evolutionarily connected, as bacterial FAS I is considered to be the ancestor of fungal FAS I. In this work, the production, crystallization and X-ray diffraction data analysis of a bacterial FAS I are reported. While a deep understanding of the fungal and mammalian multi-enzyme type I fatty-acid synthases (FAS I) has been achieved in recent years, the bacterial FAS I family, which is narrowly distributed within the Actinomycetales genera Mycobacterium, Corynebacterium and Nocardia, is still poorly understood. This is of particular relevance for two reasons: (i) although homologous to fungal FAS I, cryo-electron microscopic studies have shown that bacterial FAS I has unique structural and functional properties, and (ii) M. tuberculosis FAS I is a drug target for the therapeutic treatment of tuberculosis (TB) and therefore is of extraordinary importance as a drug target. Crystals of FAS I from C. efficiens, a homologue of M. tuberculosis FAS I, were produced and diffracted X-rays to about 4.5 Å resolution.

  14. Polypeptide composition of bacterial cyclic diguanylic acid-dependent cellulose synthase and the occurrence of immunologically crossreacting proteins in higher plants

    SciTech Connect

    Mayer, R.; Ross, P.; Weinhouse, H.; Amikam, D.; Volman, G.; Ohana, P.; Benziman, M. ); Calhoon, R.D.; Wong, Hing C.; Emerick, A.W. )

    1991-06-15

    To comprehend the catalytic and regulatory mechanism of the cyclic diguanylic acid (c-di-GMP)-dependent cellulose synthase of Acetobacter xylinum and its relatedness to similar enzymes in other organisms, the structure of this enzyme was analyzed at the polypeptide level. The enzyme, purified 350-fold by enzyme-product entrapment, contains three major peptides (90, 67, and 54 kDa), which, based on direct photoaffinity and immunochemical labeling and amino acid sequence analysis, are constituents of the native cellulose synthase. Labeling of purified synthase with either ({sup 32}P)c-di-GMP or ({alpha}-{sup 32}P)UDP-glucose indicates that activator- and substrate-specific binding sites are most closely associated with the 67- and 54-kDa peptides, respectively, whereas marginal photolabeling is detected in the 90-k-Da peptide. However, antibodies raised against a protein derived from the cellulose synthase structural gene (bcsB) specifically label all three peptides. The authors suggest that the structurally related 67- and 54-kDa peptides are fragments proteolytically derived from the 90-kDa peptide encoded by bcsB. The anti-cellulose synthase antibodies crossreact with a similar set of peptides derived from other cellulose-producing microorganisms and plants such as Agrobacterium tumefaciens, Rhizobium leguminosarum, mung bean, peas, barley, and cotton. The occurrence of such cellulose synthase-like structures in plant species suggests that a common enzymatic mechanism for cellulose biogenesis is employed throughout nature.

  15. Campylobacter jejuni fatty acid synthase II: Structural and functional analysis of [beta]-hydroxyacyl-ACP dehydratase (FabZ)

    SciTech Connect

    Kirkpatrick, Andrew S.; Yokoyama, Takeshi; Choi, Kyoung-Jae; Yeo, Hye-Jeong

    2009-08-14

    Fatty acid biosynthesis is crucial for all living cells. In contrast to higher organisms, bacteria use a type II fatty acid synthase (FAS II) composed of a series of individual proteins, making FAS II enzymes excellent targets for antibiotics discovery. The {beta}-hydroxyacyl-ACP dehydratase (FabZ) catalyzes an essential step in the FAS II pathway. Here, we report the structure of Campylobacter jejuni FabZ (CjFabZ), showing a hexamer both in crystals and solution, with each protomer adopting the characteristic hot dog fold. Together with biochemical analysis of CjFabZ, we define the first functional FAS II enzyme from this pathogen, and provide a framework for investigation on roles of FAS II in C. jejuni virulence

  16. Structure-guided Discovery of Phenyl diketo-acids as Potent Inhibitors of M. tuberculosis Malate Synthase

    PubMed Central

    Krieger, Inna V.; Freundlich, Joel S.; Gawandi, Vijay B.; Roberts, Justin P.; Gawandi, Vidyadhar B.; Sun, Qingan; Owen, Joshua L.; Fraile, Maria T.; Huss, Sofia I.; Lavandera, Jose-Luis; Ioerger, Thomas R.; Sacchettini, James C.

    2012-01-01

    Summary The glyoxylate shunt plays an important role in fatty-acid metabolism, and has been shown to be critical to survival of several pathogens involved in chronic infections. For Mycobacterium tuberculosis (Mtb), a strain with a defective glyoxylate shunt was previously shown to be unable to establish infection in a mouse model. We report the development of novel phenyl-diketo acid (PDKA) inhibitors of malate synthase (GlcB), one of two glyoxylate shunt enzymes, using structure-based methods. PDKA inhibitors were active against Mtb grown on acetate, and over-expression of GlcB ameliorated this inhibition. Crystal structures of complexes of GlcB with PDKA inhibitors were used to guide optimization of potency. A selected PDKA compound demonstrated efficacy in a mouse model of tuberculosis. The discovery of these PDKA derivatives provides chemical validation of GlcB as an attractive target for tuberculosis therapeutics. PMID:23261599

  17. Analogs of the antituberculous agent pyrazinamide are competitive inhibitors of NADPH binding to M. tuberculosis fatty acid synthase I.

    PubMed

    Sayahi, Halimah; Pugliese, Kaitlin M; Zimhony, Oren; Jacobs, William R; Shekhtman, Alexander; Welch, John T

    2012-11-01

    Analogs of pyrazinamide (=pyrazine-2-carboxamide; PZA), an essential component of short-course antituberculous chemotherapy, such as 5-chloropyrazinamide (5-Cl-PZA) act as competitive inhibitors of NADPH binding to purified mycobacterial fatty acid synthase I (FAS I) as shown by Saturation Transfer Difference (STD) NMR studies. In addition, pyrazinoic acid esters (POE) and 5-Cl-POE reversibly bind to FAS I with the relatively greater affinity of longer-chain esters for FAS I, clear from the STD amplification factors. The competitive binding of PZA and 5-Cl-PZA clearly illustrates that both agents bind FAS. In contrast to PZA, at low NADPH concentrations 5-Cl-PZA is a cooperative inhibitor of NADPH binding. PMID:23161636

  18. Acetohydroxy acid synthase I is required for isoleucine and valine biosynthesis by Salmonella typhimurium LT2 during growth on acetate or long-chain fatty acids.

    PubMed

    Dailey, F E; Cronan, J E; Maloy, S R

    1987-02-01

    Salmonella typhimurium LT2 normally expresses two acetohydroxy acid synthases (AHAS I and AHAS II). The function of AHAS I in this organism was unclear, since AHAS I-deficient (ilvBN) mutants of LT2 grew well on glucose or succinate minimal media, whereas AHAS II-deficient (ilvGM) mutants requried isoleucine for normal growth on glucose minimal media. We report that AHAS I-deficient mutants of S. typhimurium required isoleucine and valine for growth on acetate or oleate minimal media, whereas AHAS II-deficient mutants were able to grow on these media without isoleucine supplementation. PMID:3542980

  19. DNA Sequence and Expression Variation of Hop (Humulus lupulus) Valerophenone Synthase (VPS), a Key Gene in Bitter Acid Biosynthesis

    PubMed Central

    Castro, Consuelo B.; Whittock, Lucy D.; Whittock, Simon P.; Leggett, Grey; Koutoulis, Anthony

    2008-01-01

    Background The hop plant (Humulus lupulus) is a source of many secondary metabolites, with bitter acids essential in the beer brewing industry and others having potential applications for human health. This study investigated variation in DNA sequence and gene expression of valerophenone synthase (VPS), a key gene in the bitter acid biosynthesis pathway of hop. Methods Sequence variation was studied in 12 varieties, and expression was analysed in four of the 12 varieties in a series across the development of the hop cone. Results Nine single nucleotide polymorphisms (SNPs) were detected in VPS, seven of which were synonymous. The two non-synonymous polymorphisms did not appear to be related to typical bitter acid profiles of the varieties studied. However, real-time quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analysis of VPS expression during hop cone development showed a clear link with the bitter acid content. The highest levels of VPS expression were observed in two triploid varieties, ‘Symphony’ and ‘Ember’, which typically have high bitter acid levels. Conclusions In all hop varieties studied, VPS expression was lowest in the leaves and an increase in expression was consistently observed during the early stages of cone development. PMID:18519445

  20. Fatty acid synthase plays a role in cancer metabolism beyond providing fatty acids for phospholipid synthesis or sustaining elevations in glycolytic activity

    SciTech Connect

    Hopperton, Kathryn E.; Duncan, Robin E.; Bazinet, Richard P.; Archer, Michael C.

    2014-01-15

    Fatty acid synthase is over-expressed in many cancers and its activity is required for cancer cell survival, but the role of endogenously synthesized fatty acids in cancer is unknown. It has been suggested that endogenous fatty acid synthesis is either needed to support the growth of rapidly dividing cells, or to maintain elevated glycolysis (the Warburg effect) that is characteristic of cancer cells. Here, we investigate both hypotheses. First, we compared utilization of fatty acids synthesized endogenously from {sup 14}C-labeled acetate to those supplied exogenously as {sup 14}C-labeled palmitate in the culture medium in human breast cancer (MCF-7 and MDA-MB-231) and untransformed breast epithelial cells (MCF-10A). We found that cancer cells do not produce fatty acids that are different from those derived from exogenous palmitate, that these fatty acids are esterified to the same lipid and phospholipid classes in the same proportions, and that their distribution within neutral lipids is not different from untransformed cells. These results suggest that endogenously synthesized fatty acids do not fulfill a specific function in cancer cells. Furthermore, we observed that cancer cells excrete endogenously synthesized fatty acids, suggesting that they are produced in excess of requirements. We next investigated whether lipogenic activity is involved in the maintenance of high glycolytic activity by culturing both cancer and non-transformed cells under anoxic conditions. Although anoxia increased glycolysis 2–3 fold, we observed no concomitant increase in lipogenesis. Our results indicate that breast cancer cells do not have a specific qualitative or quantitative requirement for endogenously synthesized fatty acids and that increased de novo lipogenesis is not required to sustain elevations in glycolytic activity induced by anoxia in these cells. - Highlights: • Fatty acid synthase (FASN) is over-expressed in cancer but its function is unknown. • We compare

  1. An Intronless β-amyrin Synthase Gene is More Efficient in Oleanolic Acid Accumulation than its Paralog in Gentiana straminea.

    PubMed

    Liu, Yanling; Zhao, Zhongjuan; Xue, Zheyong; Wang, Long; Cai, Yunfei; Wang, Peng; Wei, Tiandi; Gong, Jing; Liu, Zhenhua; Li, Juan; Li, Shuo; Xiang, Fengning

    2016-01-01

    Paralogous members of the oxidosqualene cyclase (OSC) family encode a diversity of enzymes that are important in triterpenoid biosynthesis. This report describes the isolation of the Gentiana straminea gene GsAS2 that encodes a β-amyrin synthase (βAS) enzyme. Unlike its previously isolated paralog GsAS1, GsAS2 lacks introns. Its predicted protein product was is a 759 residue polypeptide that shares high homology with other known β-amyrin synthases (βASs). Heterologously expressed GsAS2 generates more β-amyrin in yeast than does GsAS1. Constitutive over-expression of GsAS2 resulted in a 5.7 fold increase in oleanolic acid accumulation, while over-expression of GsAS1 led to a 3 fold increase. Additionally, RNAi-directed suppression of GsAS2 and GsAS1 in G. straminea decreased oleonolic acid levels by 65.9% and 21% respectively, indicating that GsAS2 plays a more important role than GsAS1 in oleanolic acid biosynthesis in G. straminea. We uses a docking model to explore the catalytic mechanism of GsAS1/2 and predicted that GsAS2, with its Y560, have higher efficiency than GsAS1 and mutated versions of GsAS2 in β-amyrin produce. When the key residue in GsAS2 was mutagenized, it produced about 41.29% and 71.15% less β-amyrin than native, while the key residue in GsAS1 was mutagenized to that in GsAS2, the mutant produced 38.02% more β-amyrin than native GsAS1. PMID:27624821

  2. Insulin resistance reduces arterial prostacyclin synthase and eNOS activities by increasing endothelial fatty acid oxidation

    PubMed Central

    Du, Xueliang; Edelstein, Diane; Obici, Silvana; Higham, Ninon; Zou, Ming-Hui; Brownlee, Michael

    2006-01-01

    Insulin resistance markedly increases cardiovascular disease risk in people with normal glucose tolerance, even after adjustment for known risk factors such as LDL, triglycerides, HDL, and systolic blood pressure. In this report, we show that increased oxidation of FFAs in aortic endothelial cells without added insulin causes increased production of superoxide by the mitochondrial electron transport chain. FFA-induced overproduction of superoxide activated a variety of proinflammatory signals previously implicated in hyperglycemia-induced vascular damage and inactivated 2 important antiatherogenic enzymes, prostacyclin synthase and eNOS. In 2 nondiabetic rodent models — insulin-resistant, obese Zucker (fa/fa) rats and high-fat diet–induced insulin-resistant mice — inactivation of prostacyclin synthase and eNOS was prevented by inhibition of FFA release from adipose tissue; by inhibition of the rate-limiting enzyme for fatty acid oxidation in mitochondria, carnitine palmitoyltransferase I; and by reduction of superoxide levels. These studies identify what we believe to be a novel mechanism contributing to the accelerated atherogenesis and increased cardiovascular disease risk occurring in people with insulin resistance. PMID:16528409

  3. Stilbene Synthase and Chalcone Synthase 1

    PubMed Central

    Rolfs, Claus-Henning; Kindl, Helmut

    1984-01-01

    Cultured cells of Picea excelsa capable of forming stilbenes and flavanoids have been established. Unlike needles of intact plants containing piceatannol (3,3′,4′,5-tetrahydroxystilbene) and stilbene glycosides the cultured cells converted phenylalanine and p-coumaric acid primarily into resveratrol monomethyl ether (3,4′-dihydroxy-5-methoxystilbene) and naringenin. Partially purified enzyme preparations were assayed for chalcone synthase as well as for stilbene synthase activity converting malonyl-CoA plus p-coumaroyl-CoA into 3,4′,5-trihydroxystilbene (resveratrol). Although stilbene synthase and chalcone synthase use the same substrates and exhibit similar molecular properties, i.e. molecular weight and subunit molecular weight, they are two different proteins. This difference was demonstrated by gel electrophoresis and by means of monospecific antibodies. PMID:16663649

  4. Functional replacement of the Saccharomyces cerevisiae fatty acid synthase with a bacterial type II system allows flexible product profiles.

    PubMed

    Fernandez-Moya, Ruben; Leber, Christopher; Cardenas, Javier; Da Silva, Nancy A

    2015-12-01

    The native yeast type I fatty acid synthase (FAS) is a complex, rigid enzyme, and challenging to engineer for the production of medium- or short-chain fatty acids. Introduction of a type II FAS is a promising alternative as it allows expression control for each discrete enzyme and the addition of heterologous thioesterases. In this study, the native Saccharomyces cerevisiae FAS was functionally replaced by the Escherichia coli type II FAS (eFAS) system. The E. coli acpS + acpP (together), fabB, fabD, fabG, fabH, fabI, fabZ, and tesA were expressed in individual S. cerevisiae strains, and enzyme activity was confirmed by in vitro activity assays. Eight genes were then integrated into the yeast genome, while tesA or an alternate thioesterase gene, fatB from Ricinus communis or TEII from Rattus novergicus, was expressed from a multi-copy plasmid. Native FAS activity was eliminated by knocking out the yeast FAS2 gene. The strains expressing only the eFAS as de novo fatty acid source grew without fatty acid supplementation demonstrating that this type II FAS is able to functionally replace the native yeast FAS. The engineered strain expressing the R. communis fatB thioesterase increased total fatty acid titer 1.7-fold and shifted the fatty acid profile towards C14 production, increasing it from <1% in the native strain to more than 30% of total fatty acids, and reducing C18 production from 39% to 8%. PMID:26084339

  5. Monoterpene synthases from common sage (Salvia officinalis)

    DOEpatents

    Croteau, Rodney Bruce; Wise, Mitchell Lynn; Katahira, Eva Joy; Savage, Thomas Jonathan

    1999-01-01

    cDNAs encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase from common sage (Salvia officinalis) have been isolated and sequenced, and the corresponding amino acid sequences has been determined. Accordingly, isolated DNA sequences (SEQ ID No:1; SEQ ID No:3 and SEQ ID No:5) are provided which code for the expression of (+)-bornyl diphosphate synthase (SEQ ID No:2), 1,8-cineole synthase (SEQ ID No:4) and (+)-sabinene synthase SEQ ID No:6), respectively, from sage (Salvia officinalis). In other aspects, replicable recombinant cloning vehicles are provided which code for (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase, or for a base sequence sufficiently complementary to at least a portion of (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant monoterpene synthases that may be used to facilitate their production, isolation and purification in significant amounts. Recombinant (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase may be used to obtain expression or enhanced expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase in plants in order to enhance the production of monoterpenoids, or may be otherwise employed for the regulation or expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase, or the production of their products.

  6. Crystallization and X-ray diffraction studies of a complete bacterial fatty-acid synthase type I

    PubMed Central

    Enderle, Mathias; McCarthy, Andrew; Paithankar, Karthik Shivaji; Grininger, Martin

    2015-01-01

    While a deep understanding of the fungal and mammalian multi-enzyme type I fatty-acid synthases (FAS I) has been achieved in recent years, the bacterial FAS I family, which is narrowly distributed within the Actinomycetales genera Mycobacterium, Corynebacterium and Nocardia, is still poorly understood. This is of particular relevance for two reasons: (i) although homologous to fungal FAS I, cryo-electron microscopic studies have shown that bacterial FAS I has unique structural and functional properties, and (ii) M. tuberculosis FAS I is a drug target for the therapeutic treatment of tuberculosis (TB) and therefore is of extraordinary importance as a drug target. Crystals of FAS I from C. efficiens, a homologue of M. tuberculosis FAS I, were produced and diffracted X-rays to about 4.5 Å resolution. PMID:26527268

  7. Influence of polysorbate 80 and cyclopropane fatty acid synthase activity on lactic acid production by Lactobacillus casei ATCC 334 at low pH.

    PubMed

    Broadbent, J R; Oberg, T S; Hughes, J E; Ward, R E; Brighton, C; Welker, D L; Steele, J L

    2014-03-01

    Lactic acid is an important industrial chemical commonly produced through microbial fermentation. The efficiency of acid extraction is increased at or below the acid's pKa (pH 3.86), so there is interest in factors that allow for a reduced fermentation pH. We explored the role of cyclopropane synthase (Cfa) and polysorbate (Tween) 80 on acid production and membrane lipid composition in Lactobacillus casei ATCC 334 at low pH. Cells from wild-type and an ATCC 334 cfa knockout mutant were incubated in APT broth medium containing 3 % glucose plus 0.02 or 0.2 % Tween 80. The cultures were allowed to acidify the medium until it reached a target pH (4.5, 4.0, or 3.8), and then the pH was maintained by automatic addition of NH₄OH. Cells were collected at the midpoint of the fermentation for membrane lipid analysis, and media samples were analyzed for lactic and acetic acids when acid production had ceased. There were no significant differences in the quantity of lactic acid produced at different pH values by wild-type or mutant cells grown in APT, but the rate of acid production was reduced as pH declined. APT supplementation with 0.2 % Tween 80 significantly increased the amount of lactic acid produced by wild-type cells at pH 3.8, and the rate of acid production was modestly improved. This effect was not observed with the cfa mutant, which indicated Cfa activity and Tween 80 supplementation were each involved in the significant increase in lactic acid yield observed with wild-type L. casei at pH 3.8. PMID:24370881

  8. Retinoic acid activates human inducible nitric oxide synthase gene through binding of RAR{alpha}/RXR{alpha} heterodimer to a novel retinoic acid response element in the promoter

    SciTech Connect

    Zou Fang; Liu Yan; Liu Li; Wu Kailang; Wei Wei; Zhu Ying . E-mail: yingzhu@whu.edu.cn; Wu Jianguo . E-mail: wu9988@vip.sina.com

    2007-04-06

    Human inducible nitric oxide synthase (hiNOS) catalyzes nitric oxide (NO) which has a significant effect on tumor suppression and cancer therapy. Here we revealed the detailed molecular mechanism involved in the regulation of hiNOS expression induced by retinoic acid (RA). We showed that RAR{alpha}/RXR{alpha} heterodimer was important in hiNOS promoter activation, hiNOS protein expression, and NO production. Serial deletion and site-directed mutation analysis revealed two half-sites of retinoic acid response element (RARE) spaced by 5 bp located at -172 to -156 in the hiNOS promoter. EMSA and ChIP assays demonstrated that RAR{alpha}/RXR{alpha} directly bound to this RARE of hiNOS promoter. Our results suggested the identification of a novel RARE in the hiNOS promoter and the roles of the nuclear receptors (RAR{alpha}/RXR{alpha}) in the induction of hiNOS by RA.

  9. Structural characterization of the Mycobacterium tuberculosis biotin biosynthesis enzymes 7,8-diaminopelargonic acid synthase and dethiobiotin synthetase .

    PubMed

    Dey, Sanghamitra; Lane, James M; Lee, Richard E; Rubin, Eric J; Sacchettini, James C

    2010-08-10

    Mycobacterium tuberculosis (Mtb) depends on biotin synthesis for survival during infection. In the absence of biotin, disruption of the biotin biosynthesis pathway results in cell death rather than growth arrest, an unusual phenotype for an Mtb auxotroph. Humans lack the enzymes for biotin production, making the proteins of this essential Mtb pathway promising drug targets. To this end, we have determined the crystal structures of the second and third enzymes of the Mtb biotin biosynthetic pathway, 7,8-diaminopelargonic acid synthase (DAPAS) and dethiobiotin synthetase (DTBS), at respective resolutions of 2.2 and 1.85 A. Superimposition of the DAPAS structures bound either to the SAM analogue sinefungin or to 7-keto-8-aminopelargonic acid (KAPA) allowed us to map the putative binding site for the substrates and to propose a mechanism by which the enzyme accommodates their disparate structures. Comparison of the DTBS structures bound to the substrate 7,8-diaminopelargonic acid (DAPA) or to ADP and the product dethiobiotin (DTB) permitted derivation of an enzyme mechanism. There are significant differences between the Mtb enzymes and those of other organisms; the Bacillus subtilis DAPAS, presented here at a high resolution of 2.2 A, has active site variations and the Escherichia coli and Helicobacter pylori DTBS have alterations in their overall folds. We have begun to exploit the unique characteristics of the Mtb structures to design specific inhibitors against the biotin biosynthesis pathway in Mtb. PMID:20565114

  10. Increased expression of fatty acid synthase provides a survival advantage to colorectal cancer cells via upregulation of cellular respiration.

    PubMed

    Zaytseva, Yekaterina Y; Harris, Jennifer W; Mitov, Mihail I; Kim, Ji Tae; Butterfield, D Allan; Lee, Eun Y; Weiss, Heidi L; Gao, Tianyan; Evers, B Mark

    2015-08-01

    Fatty acid synthase (FASN), a lipogenic enzyme, is upregulated in colorectal cancer (CRC). Increased de novo lipid synthesis is thought to be a metabolic adaptation of cancer cells that promotes survival and metastasis; however, the mechanisms for this phenomenon are not fully understood. We show that FASN plays a role in regulation of energy homeostasis by enhancing cellular respiration in CRC. We demonstrate that endogenously synthesized lipids fuel fatty acid oxidation, particularly during metabolic stress, and maintain energy homeostasis. Increased FASN expression is associated with a decrease in activation of energy-sensing pathways and accumulation of lipid droplets in CRC cells and orthotopic CRCs. Immunohistochemical evaluation demonstrated increased expression of FASN and p62, a marker of autophagy inhibition, in primary CRCs and liver metastases compared to matched normal colonic mucosa. Our findings indicate that overexpression of FASN plays a crucial role in maintaining energy homeostasis in CRC via increased oxidation of endogenously synthesized lipids. Importantly, activation of fatty acid oxidation and consequent downregulation of stress-response signaling pathways may be key adaptation mechanisms that mediate the effects of FASN on cancer cell survival and metastasis, providing a strong rationale for targeting this pathway in advanced CRC. PMID:25970773

  11. Elevated expression of fatty acid synthase and nuclear localization of carnitine palmitoyltransferase 1C are common among human gliomas.

    PubMed

    Wakamiya, Tomihiro; Suzuki, Satoshi O; Hamasaki, Hideomi; Honda, Hiroyuki; Mizoguchi, Masahiro; Yoshimoto, Koji; Iwaki, Toru

    2014-10-01

    Fatty acid synthase (FASN) and carnitine palmitoyltransferase 1C (CPT1C), a brain-specific isoform of the CPT1 family, are upregulated in certain types of cancers, including gliomas. Acetyl-CoA carboxylase (ACC) catalyzes the carboxylation of acetyl-CoA to malonyl-CoA, the rate-limiting step in fatty acid synthesis, and its phosphorylated form inhibits lipid synthesis. We examined the expression and subcellular localization of these fatty acid metabolism-related molecules in human gliomas. We performed immunostaining of two glioma cell lines (U373MG and U87MG) and 41 surgical specimens of diffuse gliomas with various histological grades (21 with the isocitrate dehydrogenase 1(IDH1) R132H mutation and 20 without the mutation). In the cultured glioma cells, CPT1C and phosphorylated ACC (p-ACC) were mainly localized to the nuclei, whereas FASN localized to the cytoplasm. In the surgical specimens, most glioma tissues showed nuclear staining for CPT1C and p-ACC, and cytoplasmic staining for FASN, regardless of the genetic status of IDH1 and the histological grade. Therefore, elevated cytoplasmic expression of FASN and nuclear localization of CPT1C are common among human diffuse gliomas, which may be regulated by the differential phosphorylation status of ACC in the cellular compartment. PMID:24984811

  12. Δ9-Tetrahydrocannabinolic acid synthase: The application of a plant secondary metabolite enzyme in biocatalytic chemical synthesis.

    PubMed

    Lange, Kerstin; Schmid, Andreas; Julsing, Mattijs K

    2016-09-10

    Δ(9)-Tetrahydrocannabinolic acid synthase (THCAS) from the secondary metabolism of Cannabis sativa L. catalyzes the oxidative formation of an intramolecular CC bond in cannabigerolic acid (CBGA) to synthesize Δ(9)-tetrahydrocannabinolic acid (THCA), which is the direct precursor of Δ(9)-tetrahydrocannabinol (Δ(9)-THC). Aiming on a biotechnological production of cannabinoids, we investigated the potential of the heterologously produced plant oxidase in a cell-free system on preparative scale. THCAS was characterized in an aqueous/organic two-liquid phase setup in order to solubilize the hydrophobic substrate and to allow in situ product removal. Compared to the single phase aqueous setup the specific activity decreased by a factor of approximately 2 pointing to a substrate limitation of CBGA in the two-liquid phase system. However, the specific activity remained stable for at least 3h illustrating the benefit of the two-liquid phase setup. In a repeated-batch setup, THCAS showed only a minor loss of specific activity in the third batch pointing to a high intrinsic stability and high solvent tolerance of the enzyme. Maximal space-time-yields of 0.121gL(-1)h(-1) were reached proving the two-liquid phase concept suitable for biotechnological production of cannabinoids. PMID:27369551

  13. Characterization of the N-acetylneuraminic acid synthase (NeuB) from the psychrophilic fish pathogen Moritella viscosa.

    PubMed

    Berg, Tor Olav; Gurung, Man Kumari; Altermark, Bjørn; Smalås, Arne O; Ræder, Inger Lin U

    2015-01-30

    Moritella viscosa is a Gram-negative psychrophilic bacterium that causes winter ulcer disease in Atlantic salmon and cod. Its genome reveals that it possesses the ability to synthesize sialic acids. Indeed, sialic acid can be isolated from the bacterium and when analyzed using HPLC-MS/MS, the presence of N-acetylneuraminic acid was confirmed. Thus, the N-acetylneuraminic acid synthase NeuB from M. viscosa (MvNeuB) was recombinantly produced and characterized. The optimum pH and temperature for MvNeuB activity are 7.5 and 30 °C, respectively. The KM for N-acetylmannosamine and phosphoenolpyruvate is 18±5 and 0.8±0.2 mM, respectively. The kcat value (∼225 min(-1)) for both N-acetylmannosamine and phosphoenolpyruvate is the highest turnover number found for an enzyme in this class until the date. A calorimetric study of MvNeuB shows that the enzyme has a two-step transition peak probably reflecting the two domains these proteins consist of. MvNeuB is less stable at higher temperature and has a high catalytic activity at lower temperature compared to mesophilic counterparts. Enzymes from psychrophilic organisms are generally cold adapted meaning they can maintain adequate function near the freezing point of water. Cold adapted enzymes are catalytically more efficient at lower temperature and are more thermo-labile compared to their mesophilic counterparts. MvNeuB is a typical cold adapted enzyme and could be further explored for production of sialic acids and derivates at low temperatures. PMID:25498013

  14. Folic Acid Promotes Recycling of Tetrahydrobiopterin and Protects Against Hypoxia-Induced Pulmonary Hypertension by Recoupling Endothelial Nitric Oxide Synthase

    PubMed Central

    Chalupsky, Karel; Kračun, Damir; Kanchev, Ivan; Bertram, Katharina

    2015-01-01

    Abstract Aims: Nitric oxide (NO) derived from endothelial NO synthase (eNOS) has been implicated in the adaptive response to hypoxia. An imbalance between 5,6,7,8-tetrahydrobiopterin (BH4) and 7,8-dihydrobiopterin (BH2) can result in eNOS uncoupling and the generation of superoxide instead of NO. Dihydrofolate reductase (DHFR) can recycle BH2 to BH4, leading to eNOS recoupling. However, the role of DHFR and eNOS recoupling in the response to hypoxia is not well understood. We hypothesized that increasing the capacity to recycle BH4 from BH2 would improve NO bioavailability as well as pulmonary vascular remodeling (PVR) and right ventricular hypertrophy (RVH) as indicators of pulmonary hypertension (PH) under hypoxic conditions. Results: In human pulmonary artery endothelial cells and murine pulmonary arteries exposed to hypoxia, eNOS was uncoupled as indicated by reduced superoxide production in the presence of the nitric oxide synthase inhibitor, L-(G)-nitro-L-arginine methyl ester (L-NAME). Concomitantly, NO levels, BH4 availability, and expression of DHFR were diminished under hypoxia. Application of folic acid (FA) restored DHFR levels, NO bioavailability, and BH4 levels under hypoxia. Importantly, FA prevented the development of hypoxia-induced PVR, right ventricular pressure increase, and RVH. Innovation: FA-induced upregulation of DHFR recouples eNOS under hypoxia by improving BH4 recycling, thus preventing hypoxia-induced PH. Conclusion: FA might serve as a novel therapeutic option combating PH. Antioxid. Redox Signal. 23, 1076–1091. PMID:26414244

  15. Delayed circulatory failure due to the induction of nitric oxide synthase by lipoteichoic acid from Staphylococcus aureus in anaesthetized rats.

    PubMed Central

    De Kimpe, S J; Hunter, M L; Bryant, C E; Thiemermann, C; Vane, J R

    1995-01-01

    1. This study investigates the effect of lipoteichoic acid (LTA) from the cell wall of Staphylococcus aureus, a micro-organism without endotoxin, on haemodynamics and induction of nitric oxide synthase (iNOS) in the anaesthetized rat. 2. Intravenous injection of LTA (10 mg kg-1) resulted in a decrease in blood pressure from 123 +/- 1 mmHg to 83 +/- 7 mmHg after 270 min (P < 0.001) and a reduction of the pressor response to noradrenaline (1 microgram kg-1) from 33 +/- 1 mmHg.min to 23 +/- 3 mmHg.min after 270 min (P < 0.05). 3. The delayed circulatory failure (hypotension and vascular hyporeactivity) caused by LTA was prevented by pretreatment of rats with dexamethasone (10 mg kg-1, 60 min prior to LTA) or the nitric oxide synthase inhibitor NG-monomethyl-L-arginine (L-NMMA, 10 mg kg-1 h-1, i.v. infusion starting 30 min prior to LTA). 4. In contrast, treatment of rats with polymyxin B (0.05 mg kg-1), an agent which binds endotoxin (lipopolysaccharides, LPS), did not affect the delayed circulatory failure caused by LTA. Polymyxin B, however, attenuated the hypotension and vascular hyporeactivity to noradrenaline afforded by endotoxaemia (2 mg kg-1 LPS, i.v.) for 270 min. 5. The delayed circulatory failure caused by LTA was associated with a time-dependent increase in (i) the expression of iNOS protein in the lung (Western blot analysis), and (ii) iNOS activity. This increase in iNOS protein and activity was prevented by pretreatment of LTA-rats with dexamethasone (10 mg kg-1).(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 6 PMID:7542534

  16. In Silico Structure Prediction of Human Fatty Acid Synthase-Dehydratase: A Plausible Model for Understanding Active Site Interactions.

    PubMed

    John, Arun; Umashankar, Vetrivel; Samdani, A; Sangeetha, Manoharan; Krishnakumar, Subramanian; Deepa, Perinkulam Ravi

    2016-01-01

    Fatty acid synthase (FASN, UniProt ID: P49327) is a multienzyme dimer complex that plays a critical role in lipogenesis. Consequently, this lipogenic enzyme has gained tremendous biomedical importance. The role of FASN and its inhibition is being extensively researched in several clinical conditions, such as cancers, obesity, and diabetes. X-ray crystallographic structures of some of its domains, such as β-ketoacyl synthase, acetyl transacylase, malonyl transacylase, enoyl reductase, β-ketoacyl reductase, and thioesterase, (TE) are already reported. Here, we have attempted an in silico elucidation of the uncrystallized dehydratase (DH) catalytic domain of human FASN. This theoretical model for DH domain was predicted using comparative modeling methods. Different stand-alone tools and servers were used to validate and check the reliability of the predicted models, which suggested it to be a highly plausible model. The stereochemical analysis showed 92.0% residues in favorable region of Ramachandran plot. The initial physiological substrate β-hydroxybutyryl group was docked into active site of DH domain using Glide. The molecular dynamics simulations carried out for 20 ns in apo and holo states indicated the stability and accuracy of the predicted structure in solvated condition. The predicted model provided useful biochemical insights into the substrate-active site binding mechanisms. This model was then used for identifying potential FASN inhibitors using high-throughput virtual screening of the National Cancer Institute database of chemical ligands. The inhibitory efficacy of the top hit ligands was validated by performing molecular dynamics simulation for 20 ns, where in the ligand NSC71039 exhibited good enzyme inhibition characteristics and exhibited dose-dependent anticancer cytotoxicity in retinoblastoma cancer cells in vitro. PMID:27559295

  17. Geranyl diphosphate synthase from mint

    SciTech Connect

    Croteau, Rodney Bruce; Wildung, Mark Raymond; Burke, Charles Cullen; Gershenzon, Jonathan

    1999-01-01

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate.

  18. Geranyl diphosphate synthase from mint

    SciTech Connect

    Croteau, R.B.; Wildung, M.R.; Burke, C.C.; Gershenzon, J.

    1999-03-02

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate. 5 figs.

  19. SFH2 regulates fatty acid synthase activity in the yeast Saccharomyces cerevisiae and is critical to prevent saturated fatty acid accumulation in response to haem and oleic acid depletion.

    PubMed

    Desfougères, Thomas; Ferreira, Thierry; Bergès, Thierry; Régnacq, Matthieu

    2008-01-01

    The yeast Saccharomyces cerevisiae is a facultative anaerobic organism. Under anaerobiosis, sustained growth relies on the presence of exogenously supplied unsaturated fatty acids and ergosterol that yeast is unable to synthesize in the absence of oxygen or upon haem depletion. In the absence of exogenous supplementation with unsaturated fatty acid, a net accumulation of SFA (saturated fatty acid) is observed that induces significant modification of phospholipid profile [Ferreira, Régnacq, Alimardani, Moreau-Vauzelle and Bergès (2004) Biochem. J. 378, 899-908]. In the present paper, we focus on the role of SFH2/CSR1, a hypoxic gene related to SEC14 and its involvement in lipid metabolism upon haem depletion in the absence of oleic acid supplementation. We observed that inactivation of SFH2 results in enhanced accumulation of SFA and phospholipid metabolism alterations. It results in premature growth arrest and leads to an exacerbated sensitivity to exogenous SFA. This phenotype is suppressed in the presence of exogenous oleic acid, or by a controlled expression of FAS1, one of the two genes encoding FAS. We present several lines of evidence to suggest that Sfh2p and oleic acid regulate SFA synthase in yeast at different levels: whereas oleic acid acts on FAS2 at the transcriptional level, we show that Sfh2p inhibits fatty acid synthase activity in response to haem depletion. PMID:17803462

  20. Function of heterologous Mycobacterium tuberculosis InhA, a type 2 fatty acid synthase enzyme involved in extending C20 fatty acids to C60-to-C90 mycolic acids, during de novo lipoic acid synthesis in Saccharomyces cerevisiae.

    PubMed

    Gurvitz, Aner; Hiltunen, J Kalervo; Kastaniotis, Alexander J

    2008-08-01

    We describe the physiological function of heterologously expressed Mycobacterium tuberculosis InhA during de novo lipoic acid synthesis in yeast (Saccharomyces cerevisiae) mitochondria. InhA, representing 2-trans-enoyl-acyl carrier protein reductase and the target for the front-line antituberculous drug isoniazid, is involved in the activity of dissociative type 2 fatty acid synthase (FASII) that extends associative type 1 fatty acid synthase (FASI)-derived C(20) fatty acids to form C(60)-to-C(90) mycolic acids. Mycolic acids are major constituents of the protective layer around the pathogen that contribute to virulence and resistance to certain antimicrobials. Unlike FASI, FASII is thought to be incapable of de novo biosynthesis of fatty acids. Here, the genes for InhA (Rv1484) and four similar proteins (Rv0927c, Rv3485c, Rv3530c, and Rv3559c) were expressed in S. cerevisiae etr1Delta cells lacking mitochondrial 2-trans-enoyl-thioester reductase activity. The phenotype of the yeast mutants includes the inability to produce sufficient levels of lipoic acid, form mitochondrial cytochromes, respire, or grow on nonfermentable carbon sources. Yeast etr1Delta cells expressing mitochondrial InhA were able to respire, grow on glycerol, and produce lipoic acid. Commensurate with a role in mitochondrial de novo fatty acid biosynthesis, InhA could accept in vivo much shorter acyl-thioesters (C(4) to C(8)) than was previously thought (>C(12)). Moreover, InhA functioned in the absence of AcpM or protein-protein interactions with its native FASII partners KasA, KasB, FabD, and FabH. None of the four proteins similar to InhA complemented the yeast mutant phenotype. We discuss the implications of our findings with reference to lipoic acid synthesis in M. tuberculosis and the potential use of yeast FASII mutants for investigating the physiological function of drug-targeted pathogen enzymes involved in fatty acid biosynthesis. PMID:18552191

  1. New Inducible Nitric Oxide Synthase and Cyclooxygenase-2 Inhibitors, Nalidixic Acid Linked to Isatin Schiff Bases via Certain l-Amino Acid Bridges.

    PubMed

    Naglah, Ahmed M; Ahmed, Atallah F; Wen, Zhi-Hong; Al-Omar, Mohamed A; Amr, Abd El-Galil E; Kalmouch, Atef

    2016-01-01

    A series of new Schiff bases were synthesized by condensation of isatins with the nalidixic acid-l-amino acid hydrazides. Prior to hydrazide formation, a peptide linkage has been prepared via coupling of nalidixic acid with appropriate l-amino acid methyl esters to yield 3a-c. The chemical structures of the new Schiff bases (5b and 5d-h) were confirmed by means of IR, NMR, mass spectroscopic, and elemental analyses. The anti-inflammatory activity of these Schiff bases was evaluated via measurement of the expressed inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in the lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells model. The Schiff bases exhibited significant dual inhibitory effect against the induction of the pro-inflammatory iNOS and COX-2 proteins with variable potencies. However, they strongly down-regulated the iNOS expression to the level of 16.5% ± 7.4%-42.2% ± 19.6% compared to the effect on COX-2 expression (<56.4% ± 3.1% inhibition) at the same concentration (10 μM). The higher iNOS inhibition activity of the tested Schiff bases, relative to that of COX-2, seems to be a reflection of the combined suppressive effects exerted by their nalidixic acid, isatins (4a-c), and l-amino acid moieties against iNOS expression. These synthesized nalidixic acid-l-amino acid-isatin conjugates can be regarded as a novel class of anti-inflammatory antibacterial agents. PMID:27092477

  2. ACTIVATION OF VASCULAR ENDOTHELIAL NITRIC OXIDE SYNTHASE AND HEME OXYGENASE-1 EXPRESSION BY ELECTROPHILIC NITRO-FATTY ACIDS

    PubMed Central

    Khoo, Nicholas K.H.; Rudolph, Volker; Cole, Marsha P.; Golin-Bisello, Franca; Schopfer, Francisco J.; Woodcock, Steven R.; Batthyany, Carlos; Freeman, Bruce A.

    2010-01-01

    Reactive oxygen species mediate a decrease in nitric oxide (NO) bioavailability and endothelial dysfunction, with secondary oxidized and nitrated byproducts of these reactions contributing to the pathogenesis of numerous vascular diseases. While oxidized lipids and lipoproteins exacerbate inflammatory reactions in the vasculature, in stark contrast the nitration of polyunsaturated fatty acids and complex lipids yield electrophilic products that exhibit pluripotent anti-inflammatory signaling capabilities acting via both cGMP-dependent and -independent mechanisms. Herein we report that nitro-oleic acid (OA-NO2) treatment increases expression of endothelial nitric oxide synthase (eNOS) and heme oxygenase 1 (HO-1) in the vasculature, thus transducing vascular protective effects associated with enhanced NO production. Administration of OA-NO2 via osmotic pump results in a significant increase in eNOS and HO-1 mRNA in mouse aortas. Moreover, HPLC-MS/MS analysis showed that NO2-FAs are rapidly metabolized in cultured endothelial cells (ECs) and treatment with NO2-FAs stimulated the phosphorylation of eNOS at Ser1179. These post-translational modifications of eNOS, in concert with elevated eNOS gene expression, contributed to an increase in endothelial NO production. In aggregate, OA-NO2-induced eNOS and HO-1 expression by vascular cells can induce beneficial effects on endothelial function and provide a new strategy for treating various vascular inflammatory and hypertensive disorders. PMID:19857569

  3. Amino acid replacements can selectively affect the interaction energy of autonomous folding units in the alpha subunit of tryptophan synthase.

    PubMed

    Chen, X; Rambo, R; Matthews, C R

    1992-03-01

    Amino acid replacements were made at the interface between two autonomous folding units in the alpha subunit of tryptophan synthase from Salmonella typhimurium to test their mutual interaction energy. The results of equilibrium studies of the urea-induced unfolding reaction of the wild-type and mutant proteins in which phenylalanine 22 is replaced by leucine, isoleucine, and valine can be understood in terms of a selective decrease in the interaction energy between the two folding units; the intrinsic stability of each folding unit is not significantly altered. Kinetic studies of the rate-limiting step in unfolding show that the interaction energy appears in the transition state preceding the native conformation. Comparisons of the individual effects of these nonpolar side chains show that both hydrophobic and steric effects play important roles in the interaction energy between the folding units. The implication of these results is that the high cooperativity observed in the folding of many globular proteins may be reduced by appropriate amino acid replacements. PMID:1540577

  4. Regulation of Expression of Citrate Synthase by the Retinoic Acid Receptor-Related Orphan Receptor α (RORα)

    PubMed Central

    Crumbley, Christine; Wang, Yongjun; Banerjee, Subhashis; Burris, Thomas P.

    2012-01-01

    The retinoic acid receptor-related orphan receptor α (RORα) is a member of the nuclear receptor superfamily of transcription factors that plays an important role in regulation of the circadian rhythm and metabolism. Mice lacking a functional RORα display a range of metabolic abnormalities including decreased serum cholesterol and plasma triglycerides. Citrate synthase (CS) is a key enzyme of the citric acid cycle that provides energy for cellular function. Additionally, CS plays a critical role in providing citrate derived acetyl-CoA for lipogenesis and cholesterologenesis. Here, we identified a functional RORα response element (RORE) in the promoter of the CS gene. ChIP analysis demonstrates RORα occupancy of the CS promoter and a putative RORE binds to RORα effectively in an electrophoretic mobility shift assay and confers RORα responsiveness to a reporter gene in a cotransfection assay. We also observed a decrease in CS gene expression and CS enzymatic activity in the staggerer mouse, which has a mutation of in the Rora gene resulting in nonfunctional RORα protein. Furthermore, we found that SR1001 a RORα inverse agonist eliminated the circadian pattern of expression of CS mRNA in mice. These data suggest that CS is a direct RORα target gene and one mechanism by which RORα regulates lipid metabolism is via regulation of CS expression. PMID:22485150

  5. Jinggangmycin increases fecundity of the brown planthopper, Nilaparvata lugens (Stål) via fatty acid synthase gene expression.

    PubMed

    Li, Lei; Jiang, Yiping; Liu, Zongyu; You, Linlin; Wu, You; Xu, Bing; Ge, Linquan; Stanley, David; Song, Qisheng; Wu, Jincai

    2016-01-01

    The antibiotic jinggangmycin (JGM) is mainly used in controlling the rice sheath blight, Rhizoctonia solani, in China. JGM also enhances reproduction of the brown planthopper (BPH), Nilaparvata lugens (Stål). To date, however, molecular mechanisms of the enhancement are unclear. Our related report documented the influence of foliar JGM sprays on ovarian protein content. Here, we used isobaric tags for relative and absolute quantitation (iTRAQ) protocols to analyze ovarian proteins of BPH females following JGM spray (JGM-S) and topical application (JGM-T). We recorded changes in expression of 284 proteins (142↑ and 142↓) in JGM-S compared to the JGM-S control group (S-control); 267 proteins were differentially expressed (130↑ and 137↓) in JGM-T compared to the JGM-T control group (T-control), of which, 22 proteins were up-regulated in both groups. Comparing the JGM-S to the JGM-T group, 114 proteins were differentially expressed (62↑ and 52↓). Based on the biological significance of fatty acids, pathway annotation and enrichment analysis, we designed a dsRNA construct to silence a gene encoding fatty acid synthase (FAS). FAS was more highly expressed in JGM-S vs S-control and JGM-S vs JGM-T groups. The dsFAS treatment reduced fecundity by about 46% and reduced ovarian and fat body fatty acid concentrations in JGM-S-treated females relative to controls. We infer FAS provides critically needed fatty acids to support JGM-enhanced fecundity in BPH. PMID:26388431

  6. Increased expression of fatty acid synthase and acetyl-CoA carboxylase in the prefrontal cortex and cerebellum in the valproic acid model of autism

    PubMed Central

    Chen, Jianling; Wu, Wei; Fu, Yingmei; Yu, Shunying; Cui, Donghong; Zhao, Min; Du, Yasong; Li, Jijun; Li, Xiaohong

    2016-01-01

    The primary aim of the present study was to investigate alterations in enzymes associated with fatty acid synthesis, namely fatty acid synthase (FASN) and acetyl-CoA carboxylase (ACC), in the prefrontal cortex and cerebellum of the valproic acid (VPA)-induced animal model of autism. In this model, pregnant rats were given a single intraperitoneal injection of VPA, and prefrontal cortex and cerebellum samples from their pups were analyzed. The results of western blotting and reverse transcription-quantitative polymerase chain reaction analyses demonstrated that the protein and mRNA expression levels of FASN, ACC and phospho-ACC (pACC) were increased in the prefrontal cortex and cerebellum of the VPA model of autism. Furthermore, in the prefrontal cortex and cerebellum of the VPA model of autism, AMPK expression is increased, whereas PI3K and Akt expression are unchanged. This suggests that disorder of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt/FASN and/or adenosine 5′-monophosphate-activated protein kinase (AMPK)/ACC pathway may be involved in the pathogenesis of autism. It is hypothesized that fatty acid synthesis participates in autism through PI3K/Akt/FASN and AMPK/ACC pathways. PMID:27602061

  7. Direct Inhibition of Cellular Fatty Acid Synthase Impairs Replication of Respiratory Syncytial Virus and Other Respiratory Viruses

    PubMed Central

    Ohol, Yamini M.; Wang, Zhaoti; Kemble, George; Duke, Gregory

    2015-01-01

    Fatty acid synthase (FASN) catalyzes the de novo synthesis of palmitate, a fatty acid utilized for synthesis of more complex fatty acids, plasma membrane structure, and post-translational palmitoylation of host and viral proteins. We have developed a potent inhibitor of FASN (TVB-3166) that reduces the production of respiratory syncytial virus (RSV) progeny in vitro from infected human lung epithelial cells (A549) and in vivo from mice challenged intranasally with RSV. Addition of TVB-3166 to the culture medium of RSV-infected A549 cells reduces viral spread without inducing cytopathic effects. The antiviral effect of the FASN inhibitor is a direct consequence of reducing de novo palmitate synthesis; similar doses are required for both antiviral activity and inhibition of palmitate production, and the addition of exogenous palmitate to TVB-3166-treated cells restores RSV production. TVB-3166 has minimal effect on RSV entry but significantly reduces viral RNA replication, protein levels, viral particle formation and infectivity of released viral particles. TVB-3166 substantially impacts viral replication, reducing production of infectious progeny 250-fold. In vivo, oral administration of TVB-3166 to RSV-A (Long)-infected BALB/c mice on normal chow, starting either on the day of infection or one day post-infection, reduces RSV lung titers 21-fold and 9-fold respectively. Further, TVB-3166 also inhibits the production of RSV B, human parainfluenza 3 (PIV3), and human rhinovirus 16 (HRV16) progeny from A549, HEp2 and HeLa cells respectively. Thus, inhibition of FASN and palmitate synthesis by TVB-3166 significantly reduces RSV progeny both in vitro and in vivo and has broad-spectrum activity against other respiratory viruses. FASN inhibition may alter the composition of regions of the host cell membrane where RSV assembly or replication occurs, or change the membrane composition of RSV progeny particles, decreasing their infectivity. PMID:26659560

  8. Examining the Relationship Between Cu-ATSM Hypoxia Selectivity and Fatty Acid Synthase Expression in Human Prostate Cancer Cell Lines

    PubMed Central

    Vāvere, Amy L.; Lewis, Jason S.

    2013-01-01

    Introduction PET imaging with Cu-ATSM for delineating hypoxia has provided valuable clinical information, but investigations in animal models of prostate cancer have shown some inconsistencies. As a defense mechanism in prostate cancer cells, the fatty acid synthesis pathway harnesses its oxidizing power for improving the redox balance despite conditions of extreme hypoxia, potentially altering Cu-ATSM hypoxia-selectivity. Methods Human prostate tumor cultured cell lines (PC-3, 22Rv1, LNCaP, and LAPC-4), were treated with an FAS inhibitor (C75, 100 μM) under anoxia. 64Cu-ATSM uptake into these treated cells, and non-treated anoxic cells, was then examined. Fatty acid synthase (FAS) expression level in each cell line was subsequently quantified by ELISA. An additional study was performed in PC-3 cells to examine the relationship between the restoration of 64Cu-ATSM hypoxia-selectivity and the concentration of C75 (100, 20, 4, or 0.8 μM) administered to the cells. Results Inhibition of fatty acid synthesis with C75 resulted in a significant increase in 64Cu-ATSM retention into prostate tumor cells in vitro under anoxia over 60 mins. Inhibition studies demonstrated higher uptake values of 20.9 ± 3.27, 103.0 ± 32.6, 144.2 ± 32.3, and 200.1 ± 79.3% at 15 mins over control values for LAPC-4, PC-3, LNCaP, and 22Rv1 cells, respectively. A correlation was seen (R2 = 0.911) with FAS expression plotted against % change in 64Cu-ATSM uptake with C75 treatment. Conclusions Although Cu-ATSM has clinical relevance in the PET imaging of hypoxia in many tumor types, its translation to the imaging of prostate cancer may be limited by the over-expression of FAS associated with prostatic malignancies. PMID:18355682

  9. Down-regulation of hepatic urea synthesis by oxypurines: xanthine and uric acid inhibit N-acetylglutamate synthase.

    PubMed

    Nissim, Itzhak; Horyn, Oksana; Nissim, Ilana; Daikhin, Yevgeny; Caldovic, Ljubica; Barcelona, Belen; Cervera, Javier; Tuchman, Mendel; Yudkoff, Marc

    2011-06-24

    We previously reported that isobutylmethylxanthine (IBMX), a derivative of oxypurine, inhibits citrulline synthesis by an as yet unknown mechanism. Here, we demonstrate that IBMX and other oxypurines containing a 2,6-dione group interfere with the binding of glutamate to the active site of N-acetylglutamate synthetase (NAGS), thereby decreasing synthesis of N-acetylglutamate, the obligatory activator of carbamoyl phosphate synthase-1 (CPS1). The result is reduction of citrulline and urea synthesis. Experiments were performed with (15)N-labeled substrates, purified hepatic CPS1, and recombinant mouse NAGS as well as isolated mitochondria. We also used isolated hepatocytes to examine the action of various oxypurines on ureagenesis and to assess the ameliorating affect of N-carbamylglutamate and/or l-arginine on NAGS inhibition. Among various oxypurines tested, only IBMX, xanthine, or uric acid significantly increased the apparent K(m) for glutamate and decreased velocity of NAGS, with little effect on CPS1. The inhibition of NAGS is time- and dose-dependent and leads to decreased formation of the CPS1-N-acetylglutamate complex and consequent inhibition of citrulline and urea synthesis. However, such inhibition was reversed by supplementation with N-carbamylglutamate. The data demonstrate that xanthine and uric acid, both physiologically occurring oxypurines, inhibit the hepatic synthesis of N-acetylglutamate. An important and novel concept emerging from this study is that xanthine and/or uric acid may have a role in the regulation of ureagenesis and, thus, nitrogen homeostasis in normal and disease states. PMID:21540182

  10. Abietadiene synthase from grand fir (Abies grandis). cDNA isolation, characterization, and bacterial expression of a bifunctional diterpene cyclase involved in resin acid biosynthesis.

    PubMed

    Vogel, B S; Wildung, M R; Vogel, G; Croteau, R

    1996-09-20

    (-)-Abietic acid, the principal diterpenoid resin acid of the wound-induced oleoresin secreted by grand fir (Abies grandis), is synthesized by the cyclization of geranylgeranyl diphosphate to (-)-abieta-7(8),13(14)-diene, followed by sequential three-step oxidation of the C-18 methyl group of the olefin to a carboxyl function. The enzyme catalyzing the cyclization reaction, abietadiene synthase, was purified from stems of wounded grand fir saplings and was digested with trypsin. Amino acid sequence information from the resulting peptides allowed construction of degenerate oligonucleotide primers, which amplified a 551-base pair fragment from a wound-induced stem cDNA library. This hybridization probe was then utilized to screen the wound-induced stem cDNA library, from which three cDNA clones were isolated that were functionally expressed in Escherichia coli, thereby confirming that a single protein catalyzes the complex, multistep cyclization of geranylgeranyl diphosphate to abietadiene. cDNA isolate Ac22.1, which yielded the highest expressed level of cyclase activity, was 2861 base pairs in length and encoded an 868-amino acid open reading frame that included a putative plastidial transit peptide. Deduced amino acid sequence comparison to other terpene cyclases revealed an amino-terminal region of the abietadiene synthase, which resembles those of enzymes that employ substrate double bond protonation to initiate the carbocationic reaction cascade, and a carboxyl-terminal region of the synthase, which resembles those of enzymes that employ ionization of the substrate allylic diphosphate ester function to initiate the cyclization reaction. This apparent fusion of segments of the two distinct terpenoid cyclase types is consistent with the novel mechanism of the bifunctional abietadiene synthase in catalyzing both protonation-initiated and ionization-initiated cyclization steps. PMID:8798524

  11. Effect of nitric oxide synthase inhibition on the exchange of glucose and fatty acids in human skeletal muscle

    PubMed Central

    2013-01-01

    Background The role of nitric oxide in controlling substrate metabolism in humans is incompletely understood. Methods The present study examined the effect of nitric oxide blockade on glucose uptake, and free fatty acid and lactate exchange in skeletal muscle of eight healthy young males. Exchange was determined by measurements of muscle perfusion by positron emission tomography and analysis of arterial and femoral venous plasma concentrations of glucose, fatty acids and lactate. The measurements were performed at rest and during exercise without (control) and with blockade of nitric oxide synthase (NOS) with NG-monomethyl-l-arginine (L-NMMA). Results Glucose uptake at rest was 0.40 ± 0.21 μmol/100 g/min and increased to 3.71 ± 2.53 μmol/100 g/min by acute one leg low intensity exercise (p < 0.01). Prior inhibition of NOS by L-NMMA did not affect glucose uptake, at rest or during exercise (0.40 ± 0.26 and 4.74 ± 2.69 μmol/100 g/min, respectively). In the control trial, there was a small release of free fatty acids from the limb at rest (−0.05 ± 0.09 μmol/100 g/min), whereas during inhibition of NOS, there was a small uptake of fatty acids (0.04 ± 0.05 μmol/100 g/min, p < 0.05). During exercise fatty acid uptake was increased to (0.89 ± 1.07 μmol/100 g/min), and there was a non-significant trend (p = 0.10) for an increased FFA uptake with NOS inhibition 1.23 ± 1.48 μmol/100 g/min) compared to the control condition. Arterial concentrations of all substrates and exchange of lactate over the limb at rest and during exercise remained unaltered during the two conditions. Conclusion In conclusion, inhibition of nitric oxide synthesis does not alter muscle glucose uptake during low intensity exercise, but affects free fatty acid exchange especially at rest, and may thus be involved in the modulation of energy metabolism in the human skeletal muscle. PMID:23773265

  12. S-2-amino-5-(2-nitroimidazol-1-yl)pentanoic acid: a model for potential bioreductively activated prodrugs for inhibitors of nitric oxide synthase (NOS) activity.

    PubMed

    Ulhaq, S; Naylor, M A; Chinje, E C; Threadgill, M D; Stratford, I J

    1997-01-01

    Treatment of 1,1-dimethylethyl S-(2-1,1-dimethylethoxycarbonylamino)-5-bromopentanoate with 1-potassio-2-nitroimidazole, followed by deprotection, afforded S-2-amino-5-(2-nitroimidazol-1-yl)pentanoic acid, which was reduced to S-2-amino-5-(2-aminoimidazol-1-yl)pentanoic acid. This aminoimadazole inhibited rat brain nitric oxide synthase (NOS) activity 3.2 times more potently than did the nitro analogue. Thus S-2-amino-5-(2-nitroimidazol-1-yl)pentanoic acid is a potent prodrug which may be bioreductively activated to a NOS inhibitor in hypoxic solid tumours. PMID:9051114

  13. Saponin biosynthesis in Saponaria vaccaria. cDNAs encoding beta-amyrin synthase and a triterpene carboxylic acid glucosyltransferase.

    PubMed

    Meesapyodsuk, Dauenpen; Balsevich, John; Reed, Darwin W; Covello, Patrick S

    2007-02-01

    Saponaria vaccaria (Caryophyllaceae), a soapwort, known in western Canada as cowcockle, contains bioactive oleanane-type saponins similar to those found in soapbark tree (Quillaja saponaria; Rosaceae). To improve our understanding of the biosynthesis of these saponins, a combined polymerase chain reaction and expressed sequence tag approach was taken to identify the genes involved. A cDNA encoding a beta-amyrin synthase (SvBS) was isolated by reverse transcription-polymerase chain reaction and characterized by expression in yeast (Saccharomyces cerevisiae). The SvBS gene is predominantly expressed in leaves. A S. vaccaria developing seed expressed sequence tag collection was developed and used for the isolation of a full-length cDNA bearing sequence similarity to ester-forming glycosyltransferases. The gene product of the cDNA, classified as UGT74M1, was expressed in Escherichia coli, purified, and identified as a triterpene carboxylic acid glucosyltransferase. UGT74M1 is expressed in roots and leaves and appears to be involved in monodesmoside biosynthesis in S. vaccaria. PMID:17172290

  14. Curcumin inhibits intracellular fatty acid synthase and induces apoptosis in human breast cancer MDA-MB-231 cells.

    PubMed

    Fan, Huijin; Liang, Yan; Jiang, Bing; Li, Xiabing; Xun, Hang; Sun, Jia; He, Wei; Lau, Hay Tong; Ma, Xiaofeng

    2016-05-01

    High levels of fatty acid synthase (FAS) expression have been found in many tumors, including prostate, breast, and ovarian cancers, and inhibition of FAS has been reported to obstruct tumor growth in vitro and in vivo. Curcumin is one of the major active ingredients of Curcuma longa, which has been proven to inhibit the growth of cancer cells. In the present study, we investigated the potential activity of curcumin as a FAS inhibitor for chemoprevention of breast cancer. As a result, curcumin induced human breast cancer MDA-MB-231 cell apoptosis with the half-inhibitory concentration value of 3.63 ± 0.26 µg/ml, and blocked FAS activity, expression and mRNA level in a dose-dependent manner. Curcumin also regulated B-cell lymphoma 2 (Bcl-2), Bax and p-Akt protein expression in MDA-MB-231 cells. Moreover, FAS knockdown showed similar effect as curcumin. All these results suggested that curcumin may induce cell apoptosis via inhibiting FAS. PMID:26985864

  15. Pharmacophore Modeling and Virtual Screening for Novel Acidic Inhibitors of Microsomal Prostaglandin E2 Synthase-1 (mPGES-1)

    PubMed Central

    2011-01-01

    Microsomal prostaglandin E2 synthase-1 (mPGES-1) catalyzes prostaglandin E2 formation and is considered as a potential anti-inflammatory pharmacological target. To identify novel chemical scaffolds active on this enzyme, two pharmacophore models for acidic mPGES-1 inhibitors were developed and theoretically validated using information on mPGES-1 inhibitors from literature. The models were used to screen chemical databases supplied from the National Cancer Institute (NCI) and the Specs. Out of 29 compounds selected for biological evaluation, nine chemically diverse compounds caused concentration-dependent inhibition of mPGES-1 activity in a cell-free assay with IC50 values between 0.4 and 7.9 μM, respectively. Further pharmacological characterization revealed that also 5-lipoxygenase (5-LO) was inhibited by most of these active compounds in cell-free and cell-based assays with IC50 values in the low micromolar range. Together, nine novel chemical scaffolds inhibiting mPGES-1 are presented that may possess anti-inflammatory properties based on the interference with eicosanoid biosynthesis. PMID:21466167

  16. Triterpenoic Acids from Apple Pomace Enhance the Activity of the Endothelial Nitric Oxide Synthase (eNOS).

    PubMed

    Waldbauer, Katharina; Seiringer, Günter; Nguyen, Dieu Linh; Winkler, Johannes; Blaschke, Michael; McKinnon, Ruxandra; Urban, Ernst; Ladurner, Angela; Dirsch, Verena M; Zehl, Martin; Kopp, Brigitte

    2016-01-13

    Pomace is an easy-accessible raw material for the isolation of fruit-derived compounds. Fruit consumption is associated with health-promoting effects, such as the prevention of cardiovascular disease. Increased vascular nitric oxide (NO) bioavailability, for example, due to an enhanced endothelial nitric oxide synthase (eNOS) activity, could be one molecular mechanism mediating this effect. To identify compounds from apple (Malus domestica Borkh.) pomace that have the potential to amplify NO bioavailability via eNOS activation, a bioassay-guided fractionation of the methanol/water (70:30) extract has been performed using the (14)C-L-arginine to (14)C-L-citrulline conversion assay (ACCA) in the human endothelium-derived cell line EA.hy926. Phytochemical characterization of the active fractions was performed using the spectrophotometric assessment of the total phenolic content, as well as TLC, HPLC-DAD-ELSD, and HPLC-MS analyses. Eleven triterpenoic acids, of which one is a newly discovered compound, were identified as the main constituents in the most active fraction, accompanied by only minor contents of phenolic compounds. When tested individually, none of the tested compounds exhibited significant eNOS activation. Nevertheless, cell stimulation with the reconstituted compound mixture restored eNOS activation, validating the potential of apple pomace as a source of bioactive components. PMID:26682617

  17. Up-regulation of fatty acid synthase induced by EGFR/ERK activation promotes tumor growth in pancreatic cancer

    SciTech Connect

    Bian, Yong; Yu, Yun; Wang, Shanshan; Li, Lin

    2015-08-07

    Lipid metabolism is dysregulated in many human diseases including atherosclerosis, type 2 diabetes and cancers. Fatty acid synthase (FASN), a key lipogenic enzyme involved in de novo lipid biosynthesis, is significantly upregulated in multiple types of human cancers and associates with tumor progression. However, limited data is available to understand underlying biological functions and clinical significance of overexpressed FASN in pancreatic ductal adenocarcinoma (PDAC). Here, upregulated FASN was more frequently observed in PDAC tissues compared with normal pancreas in a tissue microarray. Kaplan–Meier survival analysis revealed that high expression level of FASN resulted in a significantly poor prognosis of PDAC patients. Knockdown or inhibition of endogenous FASN decreased cell proliferation and increased cell apoptosis in HPAC and AsPC-1 cells. Furthermore, we demonstrated that EGFR/ERK signaling accounts for elevated FASN expression in PDAC as ascertained by performing siRNA assays and using specific pharmacological inhibitors. Collectively, our results indicate that FASN exhibits important roles in tumor growth and EGFR/ERK pathway is responsible for upregulated expression of FASN in PDAC. - Highlights: • Increased expression of FASN indicates a poor prognosis in PDAC. • Elevated FASN favors tumor growth in PDAC in vitro. • Activation of EGFR signaling contributes to elevated FASN expression.

  18. Biophysical Investigation of the Mode of Inhibition of Tetramic Acids, the Allosteric Inhibitors of Undecaprenyl Pyrophosphate Synthase

    PubMed Central

    2010-01-01

    Undecaprenyl pyrophosphate synthase (UPPS) catalyzes the consecutive condensation of eight molecules of isopentenyl pyrophosphate (IPP) with farnesyl pyrophosphate (FPP) to generate the C55 undecaprenyl pyrophosphate (UPP). It has been demonstrated that tetramic acids (TAs) are selective and potent inhibitors of UPPS, but the mode of inhibition was unclear. In this work, we used a fluorescent FPP probe to study possible TA binding at the FPP binding site. A photosensitive TA analogue was designed and synthesized for the study of the site of interaction of TA with UPPS using photo-cross-linking and mass spectrometry. The interaction of substrates with UPPS and with the UPPS·TA complex was investigated by protein fluorescence spectroscopy. Our results suggested that tetramic acid binds to UPPS at an allosteric site adjacent to the FPP binding site. TA binds to free UPPS enzyme but not to substrate-bound UPPS. Unlike Escherichia coli UPPS which follows an ordered substrate binding mechanism, Streptococcus pneumoniae UPPS appears to follow a random-sequential substrate binding mechanism. Only one substrate, FPP or IPP, is able to bind to the UPPS·TA complex, but the quaternary complex, UPPS·TA·FPP·IPP, cannot be formed. We propose that binding of TA to UPPS significantly alters the conformation of UPPS needed for proper substrate binding. As the result, substrate turnover is prevented, leading to the inhibition of UPPS catalytic activity. These probe compounds and biophysical assays also allowed us to quickly study the mode of inhibition of other UPPS inhibitors identified from a high-throughput screening and inhibitors produced from a medicinal chemistry program. PMID:20476728

  19. Biophysical investigation of the mode of inhibition of tetramic acids, the allosteric inhibitors of undecaprenyl pyrophosphate synthase.

    PubMed

    Lee, Lac V; Granda, Brian; Dean, Karl; Tao, Jianshi; Liu, Eugene; Zhang, Rui; Peukert, Stefan; Wattanasin, Sompong; Xie, Xiaoling; Ryder, Neil S; Tommasi, Ruben; Deng, Gejing

    2010-06-29

    Undecaprenyl pyrophosphate synthase (UPPS) catalyzes the consecutive condensation of eight molecules of isopentenyl pyrophosphate (IPP) with farnesyl pyrophosphate (FPP) to generate the C(55) undecaprenyl pyrophosphate (UPP). It has been demonstrated that tetramic acids (TAs) are selective and potent inhibitors of UPPS, but the mode of inhibition was unclear. In this work, we used a fluorescent FPP probe to study possible TA binding at the FPP binding site. A photosensitive TA analogue was designed and synthesized for the study of the site of interaction of TA with UPPS using photo-cross-linking and mass spectrometry. The interaction of substrates with UPPS and with the UPPS.TA complex was investigated by protein fluorescence spectroscopy. Our results suggested that tetramic acid binds to UPPS at an allosteric site adjacent to the FPP binding site. TA binds to free UPPS enzyme but not to substrate-bound UPPS. Unlike Escherichia coli UPPS which follows an ordered substrate binding mechanism, Streptococcus pneumoniae UPPS appears to follow a random-sequential substrate binding mechanism. Only one substrate, FPP or IPP, is able to bind to the UPPS.TA complex, but the quaternary complex, UPPS.TA.FPP.IPP, cannot be formed. We propose that binding of TA to UPPS significantly alters the conformation of UPPS needed for proper substrate binding. As the result, substrate turnover is prevented, leading to the inhibition of UPPS catalytic activity. These probe compounds and biophysical assays also allowed us to quickly study the mode of inhibition of other UPPS inhibitors identified from a high-throughput screening and inhibitors produced from a medicinal chemistry program. PMID:20476728

  20. Protein-protein interactions within the Fatty Acid Synthase-II system of Mycobacterium tuberculosis are essential for mycobacterial viability.

    PubMed

    Veyron-Churlet, Romain; Guerrini, Olivier; Mourey, Lionel; Daffé, Mamadou; Zerbib, Didier

    2004-12-01

    Despite the existence of efficient chemotherapy, tuberculosis remains a leading cause of mortality worldwide. New drugs are urgently needed to reduce the potential impact of the emergence of multidrug-resistant strains of the causative agent Mycobacterium tuberculosis (Mtb). The front-line antibiotic isoniazid (INH), and several other drugs, target the biosynthesis of mycolic acids and especially the Fatty Acid Synthase-II (FAS-II) elongation system. This biosynthetic pathway is essential and specific for mycobacteria and still represents a valuable system for the search of new anti-tuberculous agents. Several data, in the literature, suggest the existence of protein-protein interactions within the FAS-II system. These interactions themselves might serve as targets for a new generation of drugs directed against Mtb. By using an extensive in vivo yeast two-hybrid approach and in vitro co-immunoprecipitation, we have demonstrated the existence of both homotypic and heterotypic interactions between the known components of FAS-II. The condensing enzymes KasA, KasB and mtFabH interact with each other and with the reductases MabA and InhA. Furthermore, we have designed and constructed point mutations of the FAS-II reductase MabA, able to disrupt its homotypic interactions and perturb the interaction pattern of this protein within FAS-II. Finally, we showed by a transdominant genetic approach that these mutants are dominant negative in both non-pathogenic and pathogenic mycobacteria. These data allowed us to draw a dynamic model of the organization of FAS-II. They also represent an important step towards the design of a new generation of anti-tuberculous agents, as being inhibitors of essential protein-protein interactions. PMID:15554959

  1. Mice with heterozygous deficiency of lipoic acid synthase have an increased sensitivity to lipopolysaccharide-induced tissue injury

    PubMed Central

    Yi, Xianwen; Kim, Kuikwon; Yuan, Weiping; Xu, Longquan; Kim, Hyung-Suk; Homeister, Jonathon W.; Key, Nigel S.; Maeda, Nobuyo

    2009-01-01

    α-Lipoic acid (1, 2-dithiolane-3-pentanoic acid; LA), synthesized in mitochondria by LA synthase (Lias), is a potent antioxidant and a cofactor for metabolic enzyme complexes. In this study, we examined the effect of genetic reduction of LA synthesis on its antioxidant and anti-inflammatory properties using a model of LPS-induced inflammation in Lias+/– mice. The increase of plasma proinflammatory cytokine, TNF-α, and NF-κB at an early phase following LPS injection was greater in Lias+/– mice compared with Lias+/+ mice. The circulating blood white blood cell (WBC) and platelet counts dropped continuously during the initial 4 h. The counts subsequently recovered partially in Lias+/+ mice, but the recovery was impaired totally in Lias+/– mice. Administration of exogenous LA normalized the recovery of WBC counts in Lias+/– mice but not platelets. Enhanced neutrophil sequestration in the livers of Lias+/– mice was associated with increased hepatocyte injury and increased gene expression of growth-related oncogene, E-selectin, and VCAM-1 in the liver and/or lung. Lias gene expression in tissues was 50% of normal expression in Lias+/– mice and reduced further by LPS treatment. Decreased Lias expression was associated with diminished hepatic LA and tissue oxidative stress. Finally, Lias+/– mice displayed enhanced mortality when exposed to LPS-induced sepsis. These data demonstrate the importance of endogenously produced LA for preventing leukocyte accumulation and tissue injury that result from LPS-induced inflammation. PMID:18845616

  2. Daylight photodynamic therapy with 1.5% 3-butenyl 5-aminolevulinate gel as a convenient, effective and safe therapy in acne treatment: A double-blind randomized controlled trial.

    PubMed

    Kwon, Hyuck Hoon; Moon, Ki Rang; Park, Seon Yong; Yoon, Ji Young; Suh, Dae Hun; Lee, Jee Bum

    2016-05-01

    While daylight photodynamic therapy (PDT) is a simpler and more tolerable treatment procedure for both clinicians and patients, it has never been applied for acne treatment. In this study, we evaluated efficacy, safety and histological changes of facial acne after application of the novel variant of 5-aminolevulinate (ALA)-ester, 1.5% 3-butenyl ALA-bu gel, using daylight only as the potential visible light source. Forty-six acne patients were randomly assigned to either ALA-bu or vehicle application group in a double-blind fashion. Both groups applied the allocated gel to facial acne lesions every other day for 12 weeks. At the final 12 week, both inflammatory and non-inflammatory acne lesions had decreased significantly by 58.0% and 34.1% in the ALA-bu group, respectively. Only a few patients expressed mild adverse effects. In the histopathological analysis, attenuated inflammatory cell infiltrations were observed and immunostaining intensities for interleukin-8, interleukin-1β, matrix metalloproteinase-9 and phosphorylated nuclear factor-κB were reduced concomitantly. Changes of their mRNA expression demonstrated comparable patterns. In conclusion, this ambulatory PDT was effective, very well tolerated and convenient for treating inflammatory acne lesions. Experimental results correlated well with clinical results. This novel regimen would provide a viable option for acne therapy. PMID:26660491

  3. Identification of a microsomal retinoic acid synthase as a microsomal cytochrome P-450-linked monooxygenase system.

    PubMed

    Tomita, S; Tsujita, M; Matsuo, Y; Yubisui, T; Ichikawa, Y

    1993-12-01

    1. To characterize an enzyme which metabolizes retinal in liver microsomes, several properties of the enzymatic reaction from retinal to retinoic acid were investigated using rabbit liver microsomes. 2. The maximum pH of the reaction in the liver microsomes was 7.6. 3. The Km and Vmax values for all-trans, 9-cis and 13-cis-retinals were determined. 4. The reaction proceeded in the presence of NADPH and molecular oxygen. 5. The incorporation of one atom of molecular oxygen into retinal was confirmed by using oxygen-18, showing that the reaction comprised monooxygenation, not dehydrogenation. 6. The monooxygenase activity was inhibited by carbon monoxide, phenylisocyanide and anti-NADPH-cytochrome P-450 reductase IgG, but not by anti-cytochrome b5 IgG. 7. The enzymatic activity inhibited by carbon monoxide was photoreversibly restored by light of a wavelength of around 450 nm. 8. The retinal-induced spectra of liver microsomes with three isomeric retinals were type I spectra. 9. The microsomal monooxygenase activity induced by phenobarbital or ethanol were more effective than that by 3-methylcholanthrene, clotrimazole or beta-naphthoflavone. 10. These results showed that the monooxygenase reaction from retinal to retinoic acid in liver microsomes is catalyzed by a cytochrome P-450-linked monooxygenase system. PMID:8138015

  4. Tetra- and pentacyclic triterpene acids from the ancient anti-inflammatory remedy frankincense as inhibitors of microsomal prostaglandin E(2) synthase-1.

    PubMed

    Verhoff, Moritz; Seitz, Stefanie; Paul, Michael; Noha, Stefan M; Jauch, Johann; Schuster, Daniela; Werz, Oliver

    2014-06-27

    The microsomal prostaglandin E2 synthase (mPGES)-1 is the terminal enzyme in the biosynthesis of prostaglandin (PG)E2 from cyclooxygenase (COX)-derived PGH2. We previously found that mPGES-1 is inhibited by boswellic acids (IC50 = 3-30 μM), which are bioactive triterpene acids present in the anti-inflammatory remedy frankincense. Here we show that besides boswellic acids, additional known triterpene acids (i.e., tircuallic, lupeolic, and roburic acids) isolated from frankincense suppress mPGES-1 with increased potencies. In particular, 3α-acetoxy-8,24-dienetirucallic acid (6) and 3α-acetoxy-7,24-dienetirucallic acid (10) inhibited mPGES-1 activity in a cell-free assay with IC50 = 0.4 μM, each. Structure-activity relationship studies and docking simulations revealed concrete structure-related interactions with mPGES-1 and its cosubstrate glutathione. COX-1 and -2 were hardly affected by the triterpene acids (IC50 > 10 μM). Given the crucial role of mPGES-1 in inflammation and the abundance of highly active triterpene acids in frankincence extracts, our findings provide further evidence of the anti-inflammatory potential of frankincense preparations and reveal novel, potent bioactivities of tirucallic acids, roburic acids, and lupeolic acids. PMID:24844534

  5. Tetra- and Pentacyclic Triterpene Acids from the Ancient Anti-inflammatory Remedy Frankincense as Inhibitors of Microsomal Prostaglandin E2 Synthase-1

    PubMed Central

    2014-01-01

    The microsomal prostaglandin E2 synthase (mPGES)-1 is the terminal enzyme in the biosynthesis of prostaglandin (PG)E2 from cyclooxygenase (COX)-derived PGH2. We previously found that mPGES-1 is inhibited by boswellic acids (IC50 = 3–30 μM), which are bioactive triterpene acids present in the anti-inflammatory remedy frankincense. Here we show that besides boswellic acids, additional known triterpene acids (i.e., tircuallic, lupeolic, and roburic acids) isolated from frankincense suppress mPGES-1 with increased potencies. In particular, 3α-acetoxy-8,24-dienetirucallic acid (6) and 3α-acetoxy-7,24-dienetirucallic acid (10) inhibited mPGES-1 activity in a cell-free assay with IC50 = 0.4 μM, each. Structure–activity relationship studies and docking simulations revealed concrete structure-related interactions with mPGES-1 and its cosubstrate glutathione. COX-1 and -2 were hardly affected by the triterpene acids (IC50 > 10 μM). Given the crucial role of mPGES-1 in inflammation and the abundance of highly active triterpene acids in frankincence extracts, our findings provide further evidence of the anti-inflammatory potential of frankincense preparations and reveal novel, potent bioactivities of tirucallic acids, roburic acids, and lupeolic acids. PMID:24844534

  6. The Nutrient-Dependent O-GlcNAc Modification Controls the Expression of Liver Fatty Acid Synthase.

    PubMed

    Baldini, Steffi F; Wavelet, Cindy; Hainault, Isabelle; Guinez, Céline; Lefebvre, Tony

    2016-08-14

    Liver Fatty Acid Synthase (FAS) is pivotal for de novo lipogenesis. Loss of control of this metabolic pathway contributes to the development of liver pathologies ranging from steatosis to nonalcoholic steatohepatitis (NASH) which can lead to cirrhosis and, less frequently, to hepatocellular carcinoma. Therefore, deciphering the molecular mechanisms governing the expression and function of key enzymes such as FAS is crucial. Herein, we link the availability of this lipogenic enzyme to the nutrient-dependent post-translational modification O-GlcNAc that is thought to be deregulated in metabolic diseases (diabetes, obesity, and metabolic syndrome). We demonstrate that expression and activity of liver FAS correlate with O-GlcNAcylation contents in ob/ob mice and in mice fed with a high-carbohydrate diet both in a transcription-dependent and -independent manner. More importantly, inhibiting the removal of O-GlcNAc residues in mice intraperitoneally injected with the selective and potent O-GlcNAcase (OGA) inhibitor Thiamet-G increases FAS expression. FAS and O-GlcNAc transferase (OGT) physically interact, and FAS is O-GlcNAc modified. Treatment of a liver cell line with drugs or nutrients that elevate the O-GlcNAcylation interferes with FAS expression. Inhibition of OGA increases the interaction between FAS and the deubiquitinase Ubiquitin-specific protease-2a (USP2A) in vivo and ex vivo, providing mechanistic insights into the control of FAS expression through O-GlcNAcylation. Together, these results reveal a new type of regulation of FAS, linked to O-GlcNAcylation status, and advance our knowledge on deregulation of lipogenesis in diverse forms of liver diseases. PMID:27185461

  7. Early Growth Response1and Fatty Acid Synthase Expression is Altered in Tumor Adjacent Prostate Tissue and Indicates Field Cancerization

    PubMed Central

    Jones, Anna C.; Trujillo, Kristina A.; Phillips, Genevieve K.; Fleet, Trisha M.; Murton, Jaclyn K.; Severns, Virginia; Shah, Satyan K.; Davis, Michael S.; Smith, Anthony Y.; Griffith, Jeffrey K.; Fischer, Edgar G.; Bisoffi, Marco

    2011-01-01

    BACKGROUND Field cancerization denotes the occurrence of molecular alterations in histologically normal tissues adjacent to tumors. In prostate cancer, identification of field cancerization has several potential clinical applications. However, prostate field cancerization remains ill defined. Our previous work has shown up-regulated mRNA of the transcription factor early growth response 1 (EGR-1) and the lipogenic enzyme fatty acid synthase (FAS) in tissues adjacent to prostate cancer. METHODS Immunofluorescence data were analyzed quantitatively by spectral imaging and linear unmixing to determine the protein expression levels of EGR-1 and FAS in human cancerous, histologically normal adjacent, and disease-free prostate tissues. RESULTS EGR-1 expression was elevated in both structurally intact tumor adjacent (1.6× on average) and in tumor (3.0× on average) tissues compared to disease-free tissues. In addition, the ratio of cytoplasmic versus nuclear EGR-1 expression was elevated in both tumor adjacent and tumor tissues. Similarly, FAS expression was elevated in both tumor adjacent (2.7× on average) and in tumor (2.5× on average) compared to disease-free tissues. CONCLUSIONS EGR-1 and FAS expression is similarly deregulated in tumor and structurally intact adjacent prostate tissues and defines field cancerization. In cases with high suspicion of prostate cancer but negative biopsy, identification of field cancerization could help clinicians target areas for repeat biopsy. Field cancerization at surgical margins on prostatectomy specimen should also be looked at as a predictor of cancer recurrence. EGR-1 and FAS could also serve as molecular targets for chemoprevention. PMID:22127986

  8. Induction of hyaluronic acid synthase 2 (HAS2) in human vascular smooth muscle cells by vasodilatory prostaglandins.

    PubMed

    Sussmann, M; Sarbia, M; Meyer-Kirchrath, J; Nüsing, R M; Schrör, K; Fischer, J W

    2004-03-19

    Hyaluronic acid (HA) is a prominent constituent of the extracellular matrix of atherosclerotic vascular lesions in humans known to modulate vascular smooth muscle phenotype. The regulation of HA synthesis by vasodilatory prostaglandins was analyzed in human arterial smooth muscle cells (SMCs). The prostacyclin analogue, iloprost (100 nmol/L), markedly increased pericellular formation of HA coats and HA secretion into the cell culture medium in human arterial SMCs (8.7+/-1.6-fold). Expression of HA synthase 2 (HAS2) was determined by semiquantitative RT-PCR and found to be strongly upregulated at concentrations of iloprost between 1 and 100 nmol/L after 3 hours. Furthermore, endogenous cyclooxygenase-2 (COX2) activity was required for basal expression of HAS2 mRNA in SMCs in vitro. Total HA secretion in response to iloprost was markedly decreased by RNA interference (RNAi), specific for HAS2. In addition, siRNA targeting HAS2 strongly increased the spreading of human SMCs compared with mock-transfected cells. HAS2 mRNA levels were also stimulated by a selective prostacyclin receptor (IP) agonist, cicaprost (10 nmol/L), prostaglandin E(2) (10 nmol/L), and the EP(2) receptor agonist, butaprost (1 micromol/L). Induction of HAS2 mRNA and HA synthesis by prostaglandins was mimicked by stable cAMP analogues and forskolin. In human atherectomy specimens from the internal carotid artery, HA deposits and COX2 expression colocalized frequently. In addition, strong EP(2) receptor expression was detected in SMCs in HA-rich areas. Therefore, upregulation of HAS2 expression via EP(2) and IP receptors might contribute to the accumulation of HA during human atherosclerosis, thereby mediating proatherosclerotic functions of COX2. PMID:14752026

  9. 18β-Glycyrrhetinic acid suppresses cell proliferation through inhibiting thromboxane synthase in non-small cell lung cancer.

    PubMed

    Huang, Run-Yue; Chu, Yong-Liang; Huang, Qing-Chun; Chen, Xiu-Min; Jiang, Ze-Bo; Zhang, Xian; Zeng, Xing

    2014-01-01

    18β-Glycyrrhetinic acid (18β-GA) is a bioactive component of licorice. The anti-cancer activity of 18β-GA has been studied in many cancer types, whereas its effects in lung cancer remain largely unknown. We first showed that 18β-GA effectively suppressed cell proliferation and inhibited expression as well as activity of thromboxane synthase (TxAS) in non-small cell lung cancer (NSCLC) cells A549 and NCI-H460. In addition, the administration of 18β-GA did not have any additional inhibitory effect on the decrease of cell proliferation induced by transfection with TxAS small interference RNA (siRNA). Moreover, 18β-GA failed to inhibit cell proliferation in the immortalized human bronchial epithelial cells 16HBE-T and another NSCLC cell line NCI-H23, both of which expressed minimal level of TxAS as compared to A549 and NCI-H460. However, 18β-GA abolished the enhancement of cell proliferation induced by transfection of NCI-H23 with pCMV6-TxAS plasmid. Further study found that the activation of both extracellular signal-regulated kinase (ERK)1/2 and cyclic adenosine monophosphate response element binding protein (CREB) induced by TxAS cDNA transfection could be totally blocked by 18β-GA. Altogether, we have delineated that, through inhibiting TxAS and its initiated ERK/CREB signaling, 18β-GA suppresses NSCLC cell proliferation. Our study has highlighted the significance of 18β-GA with respect to prevention and treatment of NSCLC. PMID:24695790

  10. Proto-oncogene FBI-1 (Pokemon) and SREBP-1 synergistically activate transcription of fatty-acid synthase gene (FASN).

    PubMed

    Choi, Won-Il; Jeon, Bu-Nam; Park, Hyejin; Yoo, Jung-Yoon; Kim, Yeon-Sook; Koh, Dong-In; Kim, Myung-Hwa; Kim, Yu-Ri; Lee, Choong-Eun; Kim, Kyung-Sup; Osborne, Timothy F; Hur, Man-Wook

    2008-10-24

    FBI-1 (Pokemon/ZBTB7A) is a proto-oncogenic transcription factor of the BTB/POZ (bric-à-brac, tramtrack, and broad complex and pox virus zinc finger) domain family. Recent evidence suggested that FBI-1 might be involved in adipogenic gene expression. Coincidentally, expression of FBI-1 and fatty-acid synthase (FASN) genes are often increased in cancer and immortalized cells. Both FBI-1 and FASN are important in cancer cell proliferation. SREBP-1 is a major regulator of many adipogenic genes, and FBI-1 and SREBP-1 (sterol-responsive element (SRE)-binding protein 1) interact with each other directly via their DNA binding domains. FBI-1 enhanced the transcriptional activation of SREBP-1 on responsive promoters, pGL2-6x(SRE)-Luc and FASN gene. FBI-1 and SREBP-1 synergistically activate transcription of the FASN gene by acting on the proximal GC-box and SRE/E-box. FBI-1, Sp1, and SREBP-1 can bind to all three SRE, GC-box, and SRE/E-box. Binding competition among the three transcription factors on the GC-box and SRE/E-box appears important in the transcription regulation. FBI-1 is apparently changing the binding pattern of Sp1 and SREBP-1 on the two elements in the presence of induced SREBP-1 and drives more Sp1 binding to the proximal promoter with less of an effect on SREBP-1 binding. The changes induced by FBI-1 appear critical in the synergistic transcription activation. The molecular mechanism revealed provides insight into how proto-oncogene FBI-1 may attack the cellular regulatory mechanism of FASN gene expression to provide more phospholipid membrane components needed for rapid cancer cell proliferation. PMID:18682402

  11. Crystal Structure of Arachidonic Acid Bound to a Mutant of Prostaglandin Endoperoxide Synthase-1 that Forms Predominantly 11-HPETE

    SciTech Connect

    Harman, C.; Rieke, C.J.; Garavito, R.M.; Smith, W.L.

    2010-03-05

    Kinetic studies and analysis of the products formed by native and mutant forms of ovine prostaglandin endoperoxide H synthase-1 (oPGHS-1) have suggested that arachidonic acid (AA) can exist in the cyclooxygenase active site of the enzyme in three different, catalytically competent conformations that lead to prostaglandin G{sub 2} (PGG{sub 2}), 11Rhydroperoxyeicosatetraenoic acid (HPETE), and 15R,SHPETE, respectively. We have identified an oPGHS-1 mutant (V349A/W387F) that forms predominantly 11RHPETE. Thus, the preferred catalytically competent arrangement of AA in the cyclooxygenase site of this double mutant must be one that leads to 11-HPETE. The crystal structure of Co{sup 3+}-protoporphyrin IX V349A/W387F oPGHS-1 in a complex with AA was determined to 3.1 {angstrom}. Significant differences are observed in the positions of atoms C-3, C-4, C-5, C-6, C-10, C-11, and C-12 of bound AA between native and V349A/W387F oPGHS-1; in comparison, the positions of the side chains of cyclooxygenase active site residues are unchanged. The structure of the double mutant presented here provides structural insight as to how Val{sup 349} and Trp{sup 387} help position C-9 and C-11 of AA so that the incipient 11-peroxyl radical intermediate is able to add to C-9 to form the 9,11 endoperoxide group of PGG{sub 2}. In the V349A/W387F oPGHS-1 {center_dot} AA complex the locations of C-9 and C-11 of AA with respect to one another make it difficult to form the endoperoxide group from the 11-hydroperoxyl radical. Therefore, the reaction apparently aborts yielding 11R-HPETE instead of PGG{sub 2}. In addition, the observed differences in the positions of carbon atoms of AA bound to this mutant provides indirect support for the concept that the conformer of AA shown previously to be bound within the cyclooxygenase active site of native oPGHS-1 is the one that leads to PGG{sub 2}.

  12. Characterization of the peroxidase mechanism upon reaction of prostacyclin synthase with peracetic acid. Identification of a tyrosyl radical intermediate.

    PubMed

    Yeh, Hui-Chun; Gerfen, Gary J; Wang, Jinn-Shyan; Tsai, Ah-Lim; Wang, Lee-Ho

    2009-02-10

    Prostacyclin synthase (PGIS) is a membrane-bound class III cytochrome P450 that catalyzes an isomerization of prostaglandin H(2), an endoperoxide, to prostacyclin. We report here the characterization of the PGIS intermediates in reactions with other peroxides, peracetic acid (PA), and iodosylbenzene. Rapid-scan stopped-flow experiments revealed an intermediate with an absorption spectrum similar to that of compound ES (Cpd ES), which is an oxo-ferryl (Fe(IV)O) plus a protein-derived radical. Cpd ES, formed upon reaction with PA, has an X-band (9 GHz) EPR signal of g = 2.0047 and a half-saturation power, P(1/2), of 0.73 mW. High-field (130 GHz) EPR reveals the presence of two species of tyrosyl radicals in Cpd ES with their g-tensor components (g(x), g(y), g(z)) of 2.00970, 2.00433, 2.00211 and 2.00700, 2.00433, 2.00211 at a 1:2 ratio, indicating that one is involved in hydrogen bonding and the other is not. The line width of the g = 2 signal becomes narrower, while its P(1/2) value becomes smaller as the reaction proceeds, indicating migration of the unpaired electron to an alternative site. The rate of electron migration ( approximately 0.2 s(-1)) is similar to that of heme bleaching, suggesting the migration is associated with the enzymatic inactivation. Moreover, a g = 6 signal that is presumably a high-spin ferric species emerges after the appearance of the amino acid radical and subsequently decays at a rate comparable to that of enzymatic inactivation. This loss of the g = 6 species thus likely indicates another pathway leading to enzymatic inactivation. The inactivation, however, was prevented by the exogenous reductant guaiacol. The studies of PGIS with PA described herein provide a mechanistic model of a peroxidase reaction catalyzed by the class III cytochromes P450. PMID:19187034

  13. Structure-function relationships of the yeast fatty acid synthase: negative-stain, cryo-electron microscopy, and image analysis studies of the end views of the structure.

    PubMed

    Stoops, J K; Kolodziej, S J; Schroeter, J P; Bretaudiere, J P; Wakil, S J

    1992-07-15

    The yeast fatty acid synthase (M(r) = 2.5 x 10(6)) is organized in an alpha 6 beta 6 complex. In these studies, the synthase structure has been examined by negative-stain and cryo-electron microscopy. Side and end views of the structure indicate that the molecule, shaped similar to a prolate ellipsoid, has a high-density band of protein bisecting its major axis. Stained and frozen-hydrated average images of the end views show an excellent concordance and a hexagonal ring having three each alternating egg- and kidney-shaped features with low-protein-density protrusions extending outward from the egg-shaped features. Images also show that the barrel-like structure is not hollow but has a Y-shaped central core, which appears to make contact with the three egg-shaped features. Numerous side views of the structure give good evidence that the beta subunits have an archlike shape. We propose a model for the synthase that has point-group symmetry 32 and six equivalent sites of fatty acid synthesis. The protomeric unit is alpha 2 beta 2. The ends of each of the two archlike beta subunits interact with opposite sides of the two dichotomously arranged disclike alpha subunits. Three such protomeric units form the ring. We propose that the six fatty acid synthesizing centers are composed of two complementary half-alpha subunits and a beta subunit, an arrangement having all the partial activities of the multifunctional enzyme required for fatty acid synthesis. PMID:1631160

  14. Crystal Structure and Substrate Specificity of Human Thioesterase 2: INSIGHTS INTO THE MOLECULAR BASIS FOR THE MODULATION OF FATTY ACID SYNTHASE.

    PubMed

    Ritchie, Melissa K; Johnson, Lynnette C; Clodfelter, Jill E; Pemble, Charles W; Fulp, Brian E; Furdui, Cristina M; Kridel, Steven J; Lowther, W Todd

    2016-02-12

    The type I fatty acid synthase (FASN) is responsible for the de novo synthesis of palmitate. Chain length selection and release is performed by the C-terminal thioesterase domain (TE1). FASN expression is up-regulated in cancer, and its activity levels are controlled by gene dosage and transcriptional and post-translational mechanisms. In addition, the chain length of fatty acids produced by FASN is controlled by a type II thioesterase called TE2 (E.C. 3.1.2.14). TE2 has been implicated in breast cancer and generates a broad lipid distribution within milk. The molecular basis for the ability of the TE2 to compete with TE1 for the acyl chain attached to the acyl carrier protein (ACP) domain of FASN is unknown. Herein, we show that human TE1 efficiently hydrolyzes acyl-CoA substrate mimetics. In contrast, TE2 prefers an engineered human acyl-ACP substrate and readily releases short chain fatty acids from full-length FASN during turnover. The 2.8 Å crystal structure of TE2 reveals a novel capping domain insert within the α/β hydrolase core. This domain is reminiscent of capping domains of type II thioesterases involved in polyketide synthesis. The structure also reveals that the capping domain had collapsed onto the active site containing the Ser-101-His-237-Asp-212 catalytic triad. This observation suggests that the capping domain opens to enable the ACP domain to dock and to place the acyl chain and 4'-phosphopantetheinyl-linker arm correctly for catalysis. Thus, the ability of TE2 to prematurely release fatty acids from FASN parallels the role of editing thioesterases involved in polyketide and non-ribosomal peptide synthase synthases. PMID:26663084

  15. Proteomic Upregulation of Fatty Acid Synthase and Fatty Acid Binding Protein 5 and Identification of Cancer- and Race-Specific Pathway Associations in Human Prostate Cancer Tissues

    PubMed Central

    Myers, Jennifer S.; von Lersner, Ariana K.; Sang, Qing-Xiang Amy

    2016-01-01

    Protein profiling studies of prostate cancer have been widely used to characterize molecular differences between diseased and non-diseased tissues. When combined with pathway analysis, profiling approaches are able to identify molecular mechanisms of prostate cancer, group patients by cancer subtype, and predict prognosis. This strategy can also be implemented to study prostate cancer in very specific populations, such as African Americans who have higher rates of prostate cancer incidence and mortality than other racial groups in the United States. In this study, age-, stage-, and Gleason score-matched prostate tumor specimen from African American and Caucasian American men, along with non-malignant adjacent prostate tissue from these same patients, were compared. Protein expression changes and altered pathway associations were identified in prostate cancer generally and in African American prostate cancer specifically. In comparing tumor to non-malignant samples, 45 proteins were significantly cancer-associated and 3 proteins were significantly downregulated in tumor samples. Notably, fatty acid synthase (FASN) and epidermal fatty acid-binding protein (FABP5) were upregulated in human prostate cancer tissues, consistent with their known functions in prostate cancer progression. Aldehyde dehydrogenase family 1 member A3 (ALDH1A3) was also upregulated in tumor samples. The Metastasis Associated Protein 3 (MTA3) pathway was significantly enriched in tumor samples compared to non-malignant samples. While the current experiment was unable to detect statistically significant differences in protein expression between African American and Caucasian American samples, differences in overrepresentation and pathway enrichment were found. Structural components (Cytoskeletal Proteins and Extracellular Matrix Protein protein classes, and Biological Adhesion Gene Ontology (GO) annotation) were overrepresented in African American but not Caucasian American tumors. Additionally, 5

  16. Two polysialic acid synthases, mouse ST8Sia II and IV, synthesize different degrees of polysialic acids on different substrate glycoproteins in mouse neuroblastoma Neuro2a cells.

    PubMed

    Kojima, N; Tachida, Y; Tsuji, S

    1997-12-01

    We previously cloned cDNAs encoding two different polysialic acid (PSA) synthases, ST8Sia II and IV, from mouse, and showed that both mouse ST8Sia II and IV can synthesize PSA on the neural cell adhesion molecule (NCAM) as well as other glycoproteins such as fetuin, at least in vitro (Kojima, N., Tachida, Y., Yoshida, Y., and Tsuji, S. (1996) J. Biol. Chem. 271, 19457-19463]. In the present study, to clarify how the two PSA synthases act differently in vivo, we first cloned PSA-expressing cell lines (N2a-II and N2a-IV) by stable transfection of the cDNA encoding either mST8Sia II or IV into mouse neuroblastoma Neuro2a cells, which do not express PSA but express NCAM, then compared the expression of the PSA and NCAM isoforms and de novo synthesis of PSA between N2a-II and N2a-IV. Western blotting with an anti-NCAM polyclonal antibody showed that NCAM was expressed as the polysialylated form in both ST8Sia II cDNA-transfected and ST8Sia IV cDNA-transfected Neuro2a cells, but that the polysialylated NCAMs expressed in ST8Sia IV cDNA-transfected clones migrated much slower on SDS-PAGE than those expressed in ST8Sia II cDNA-transfected clones. The slower migration of polysialylated NCAM of the ST8Sia IV cDNA-transfected clone (N2a-IV) than that of the ST8Sia II cDNA-transfected clone (N2a-II) was also observed when cells were metabolically labeled with [3H]glucosamine or pulse-chase labeled with [35S] methionine followed by immunoprecipitation with anti-PSA antibody or anti-NCAM monoclonal antibody. In addition, polysialylated N-glycans of PSA-carrying glycoproteins prepared from [3H] glucosamine-labeled N2a-IV by immunoprecipitation with anti-PSA monoclonal antibody were eluted at a much higher salt concentration than those from [3H] glucosamine-labeled N2a-II on an anion-exchange column. These results indicated that the degree of de novo polysialylation of NCAM by mST8Sia IV was much higher than that by mST8Sia II. In N2a-IV, NCAM-120, -140, and -180 were expressed as

  17. Differential regulation of genes encoding 1-aminocyclopropane-1-carboxylate (ACC) synthase in etiolated pea seedlings: effects of indole-3-acetic acid, wounding, and ethylene.

    PubMed

    Peck, S C; Kende, H

    1998-12-01

    Treatment of 5- to 6-day-old etiolated pea (Pisum sativum L.) seedlings with indole-3-acetic acid (IAA) induced within 15 min an increase in the transcript levels of two genes encoding 1-aminocyclopropane-1-carboxylate (ACC) synthase, Ps-ACS1 and Ps-ACS2. Simultaneous treatment with ethylene inhibited this increase and also caused a decrease in ACC synthase enzyme activity as compared to that of seedlings treated with IAA alone. These results indicate that ethylene inhibits its own biosynthesis by decreasing ACC synthase transcript levels via a negative feedback loop. Wounding of pea stems had no effect on the expression of Ps-ACS1, but led within 10 min to an increase in the mRNA levels of Ps-ACS2. This increase was also inhibited by ethylene. The wound signal was transmitted over a distance of at least 4 cm through the stem with no delay in induction or response intensity. The rapid transmission of the wound response is consistent with the possibility that a hydraulic or electric signal is responsible for the spread of the wound response. PMID:9869404

  18. Disrupted short chain specific β-oxidation and improved synthase expression increase synthesis of short chain fatty acids in Saccharomyces cerevisiae.

    PubMed

    Leber, Christopher; Choi, Jin Wook; Polson, Brian; Da Silva, Nancy A

    2016-04-01

    Biologically derived fatty acids have gained tremendous interest as an alternative to petroleum-derived fuels and chemical precursors. We previously demonstrated the synthesis of short chain fatty acids in Saccharomyces cerevisiae by introduction of the Homo sapiens fatty acid synthase (hFAS) with heterologous phosphopantetheine transferases and heterologous thioesterases. In this study, short chain fatty acid production was improved by combining a variety of novel enzyme and metabolic engineering strategies. The use of a H. sapiens-derived thioesterase and phosphopantetheine transferase were evaluated. In addition, strains were engineered to disrupt either the full β-oxidation (by deleting FAA2, PXA1, and POX1) or short chain-specific β-oxidation (by deleting FAA2, ANT1, and PEX11) pathways. Prohibiting full β-oxidation increased hexanoic and octanoic acid levels by 8- and 79-fold relative to the parent strain expressing hFAS. However, by targeting only short chain β-oxidation, hexanoic and octanoic acid levels increased further to 31- and 140-fold over the parent. In addition, an optimized hFAS gene increased hexanoic, octanoic, decanoic and total short chain fatty acid levels by 2.9-, 2.0-, 2.3-, and 2.2-fold, respectively, relative to the non-optimized counterpart. By combining these unique enzyme and metabolic engineering strategies, octanoic acid was increased more than 181-fold over the parent strain expressing hFAS. PMID:26388428

  19. Expression of Ceramide Synthase 6 Transcriptionally Activates Acid Ceramidase in a c-Jun N-terminal Kinase (JNK)-dependent Manner.

    PubMed

    Tirodkar, Tejas S; Lu, Ping; Bai, Aiping; Scheffel, Matthew J; Gencer, Salih; Garrett-Mayer, Elizabeth; Bielawska, Alicja; Ogretmen, Besim; Voelkel-Johnson, Christina

    2015-05-22

    A family of six ceramide synthases with distinct but overlapping substrate specificities is responsible for generation of ceramides with acyl chains ranging from ∼14-26 carbons. Ceramide synthase 6 (CerS6) preferentially generates C14- and C16-ceramides, and we have previously shown that down-regulation of this enzyme decreases apoptotic susceptibility. In this study, we further evaluated how increased CerS6 expression impacts sphingolipid composition and metabolism. Overexpression of CerS6 in HT29 colon cancer cells resulted in increased apoptotic susceptibility and preferential generation of C16-ceramide, which occurred at the expense of very long chain, saturated ceramides. These changes were also reflected in sphingomyelin composition. HT-CerS6 cells had increased intracellular levels of sphingosine, which is generated by ceramidases upon hydrolysis of ceramide. qRT-PCR analysis revealed that only expression of acid ceramidase (ASAH1) was increased. The increase in acid ceramidase was confirmed by expression and activity analyses. Pharmacological inhibition of JNK (SP600125) or curcumin reduced transcriptional up-regulation of acid ceramidase. Using an acid ceramidase promoter driven luciferase reporter plasmid, we demonstrated that CerS1 has no effect on transcriptional activation of acid ceramidase and that CerS2 slightly but significantly decreased the luciferase signal. Similar to CerS6, overexpression of CerS3-5 resulted in an ∼2-fold increase in luciferase reporter gene activity. Exogenous ceramide failed to induce reporter activity, while a CerS inhibitor and a catalytically inactive mutant of CerS6 failed to reduce it. Taken together, these results suggest that increased expression of CerS6 can mediate transcriptional activation of acid ceramidase in a JNK-dependent manner that is independent of CerS6 activity. PMID:25839235

  20. Fatty Acid Biosynthesis in Pseudomonas aeruginosa Is Initiated by the FabY Class of β-Ketoacyl Acyl Carrier Protein Synthases

    PubMed Central

    Yuan, Yanqiu; Sachdeva, Meena; Leeds, Jennifer A.

    2012-01-01

    The prototypical type II fatty acid synthesis (FAS) pathway in bacteria utilizes two distinct classes of β-ketoacyl synthase (KAS) domains to assemble long-chain fatty acids, the KASIII domain for initiation and the KASI/II domain for elongation. The central role of FAS in bacterial viability and virulence has stimulated significant effort toward developing KAS inhibitors, particularly against the KASIII domain of the β-acetoacetyl-acyl carrier protein (ACP) synthase FabH. Herein, we show that the opportunistic pathogen Pseudomonas aeruginosa does not utilize a FabH ortholog but rather a new class of divergent KAS I/II enzymes to initiate the FAS pathway. When a P. aeruginosa cosmid library was used to rescue growth in a fabH downregulated strain of Escherichia coli, a single unannotated open reading frame, PA5174, complemented fabH depletion. While deletion of all four KASIII domain-encoding genes in the same P. aeruginosa strain resulted in a wild-type growth phenotype, deletion of PA5174 alone specifically attenuated growth due to a defect in de novo FAS. Siderophore secretion and quorum-sensing signaling, particularly in the rhl and Pseudomonas quinolone signal (PQS) systems, was significantly muted in the absence of PA5174. The defect could be repaired by intergeneric complementation with E. coli fabH. Characterization of recombinant PA5174 confirmed a preference for short-chain acyl coenzyme A (acyl-CoA) substrates, supporting the identification of PA5174 as the predominant enzyme catalyzing the condensation of acetyl coenzyme A with malonyl-ACP in P. aeruginosa. The identification of the functional role for PA5174 in FAS defines the new FabY class of β-ketoacyl synthase KASI/II domain condensation enzymes. PMID:22753059

  1. An Arabidopsis callose synthase.

    PubMed

    Ostergaard, Lars; Petersen, Morten; Mattsson, Ole; Mundy, John

    2002-08-01

    Beta-1,3-glucan polymers are major structural components of fungal cell walls, while cellulosic beta-1,4-glucan is the predominant polysaccharide in plant cell walls. Plant beta-1,3-glucan, called callose, is produced in pollen and in response to pathogen attack and wounding, but it has been unclear whether callose synthases can also produce cellulose and whether plant cellulose synthases may also produce beta-1,3-glucans. We describe here an Arabidopsis gene, AtGsl5, encoding a plasma membrane-localized protein homologous to yeast beta-1,3-glucan synthase whose expression partially complements a yeast beta-1,3-glucan synthase mutant. AtGsl5 is developmentally expressed at highest levels in flowers, consistent with flowers having high beta-1,3-glucan synthase activities for deposition of callose in pollen. A role for AtGsl5 in callose synthesis is also indicated by AtGsl5 expression in the Arabidopsis mpk4 mutant which exhibits systemic acquired resistance (SAR), elevated beta-1,3-glucan synthase activity, and increased callose levels. In addition, AtGsl5 is a likely target of salicylic acid (SA)-dependent SAR, since AtGsl5 mRNA accumulation is induced by SA in wild-type plants, while expression of the nahG salicylate hydroxylase reduces AtGsl5 mRNA levels in the mpk4 mutant. These results indicate that AtGsl5 is likely involved in callose synthesis in flowering tissues and in the mpk4 mutant. PMID:12081364

  2. Sequence heterogeneity of cannabidiolic- and tetrahydrocannabinolic acid-synthase in Cannabis sativa L. and its relationship with chemical phenotype.

    PubMed

    Onofri, Chiara; de Meijer, Etienne P M; Mandolino, Giuseppe

    2015-08-01

    Sequence variants of THCA- and CBDA-synthases were isolated from different Cannabis sativa L. strains expressing various wild-type and mutant chemical phenotypes (chemotypes). Expressed and complete sequences were obtained from mature inflorescences. Each strain was shown to have a different specificity and/or ability to convert the precursor CBGA into CBDA and/or THCA type products. The comparison of the expressed sequences led to the identification of different mutations, all of them due to SNPs. These SNPs were found to relate to the cannabinoid composition of the inflorescence at maturity and are therefore proposed to have a functional significance. The amount of variation was found to be higher within the CBDAS sequence family than in the THCAS family, suggesting a more recent evolution of THCA-forming enzymes from the CBDAS group. We therefore consider CBDAS as the ancestral type of these synthases. PMID:25865737

  3. Inhibitory activity to protein prenylation and antifungal activity of zaragozic acid D3, a potent inhibitor of squalene synthase produced by the fungus, Mollisia sp. SANK 10294.

    PubMed

    Tanimoto, T; Ohya, S; Tsujita, Y

    1998-04-01

    Recently we found novel zaragozic acids (ZAs), F-10863A (zaragozic acid D3, ZAD3), B, C and D in the culture broth of the fungus Mollisia sp. SANK 10294 as potent inhibitors of squalene synthase. There are several other enzymes that use farnesylpyrophosphate as their substrate. Among them we chose farnesyl-protein transferase and examined whether ZAD3 and F-10863B inhibit this enzyme's activity. ZAD3 and F-10863B inhibited farnesyl-protein transferase with IC50 values of 0.60 and 3.7 microM, respectively. They also inhibited geranylgeranyl-protein transferase at similar concentrations. In addition, they exhibited potent antifungal activity. PMID:9630865

  4. Hybrid polyketide synthases

    DOEpatents

    Fortman, Jeffrey L.; Hagen, Andrew; Katz, Leonard; Keasling, Jay D.; Poust, Sean; Zhang, Jingwei; Zotchev, Sergey

    2016-05-10

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing an even-chain or odd-chain diacid or lactam or diamine. The present invention also provides for a host cell comprising the PKS and when cultured produces the even-chain diacid, odd-chain diacid, or KAPA. The present invention also provides for a host cell comprising the PKS capable of synthesizing a pimelic acid or KAPA, and when cultured produces biotin.

  5. β-Ketoacyl-acyl Carrier Protein Synthase I (KASI) Plays Crucial Roles in the Plant Growth and Fatty Acids Synthesis in Tobacco

    PubMed Central

    Yang, Tianquan; Xu, Ronghua; Chen, Jianghua; Liu, Aizhong

    2016-01-01

    Fatty acids serve many functions in plants, but the effects of some key genes involved in fatty acids biosynthesis on plants growth and development are not well understood yet. To understand the functions of 3-ketoacyl-acyl-carrier protein synthase I (KASI) in tobacco, we isolated two KASI homologs, which we have designated NtKASI-1 and NtKASI-2. Expression analysis showed that these two KASI genes were transcribed constitutively in all tissues examined. Over-expression of NtKASI-1 in tobacco changed the fatty acid content in leaves, whereas over-expressed lines of NtKASI-2 exhibited distinct phenotypic features such as slightly variegated leaves and reduction of the fatty acid content in leaves, similar to the silencing plants of NtKASI-1 gene. Interestingly, the silencing of NtKASI-2 gene had no discernibly altered phenotypes compared to wild type. The double silencing plants of these two genes enhanced the phenotypic changes during vegetative and reproductive growth compared to wild type. These results uncovered that these two KASI genes had the partially functional redundancy, and that the KASI genes played a key role in regulating fatty acids synthesis and in mediating plant growth and development in tobacco. PMID:27509494

  6. β-Ketoacyl-acyl Carrier Protein Synthase I (KASI) Plays Crucial Roles in the Plant Growth and Fatty Acids Synthesis in Tobacco.

    PubMed

    Yang, Tianquan; Xu, Ronghua; Chen, Jianghua; Liu, Aizhong

    2016-01-01

    Fatty acids serve many functions in plants, but the effects of some key genes involved in fatty acids biosynthesis on plants growth and development are not well understood yet. To understand the functions of 3-ketoacyl-acyl-carrier protein synthase I (KASI) in tobacco, we isolated two KASI homologs, which we have designated NtKASI-1 and NtKASI-2. Expression analysis showed that these two KASI genes were transcribed constitutively in all tissues examined. Over-expression of NtKASI-1 in tobacco changed the fatty acid content in leaves, whereas over-expressed lines of NtKASI-2 exhibited distinct phenotypic features such as slightly variegated leaves and reduction of the fatty acid content in leaves, similar to the silencing plants of NtKASI-1 gene. Interestingly, the silencing of NtKASI-2 gene had no discernibly altered phenotypes compared to wild type. The double silencing plants of these two genes enhanced the phenotypic changes during vegetative and reproductive growth compared to wild type. These results uncovered that these two KASI genes had the partially functional redundancy, and that the KASI genes played a key role in regulating fatty acids synthesis and in mediating plant growth and development in tobacco. PMID:27509494

  7. ATP synthase.

    PubMed

    Junge, Wolfgang; Nelson, Nathan

    2015-01-01

    Oxygenic photosynthesis is the principal converter of sunlight into chemical energy. Cyanobacteria and plants provide aerobic life with oxygen, food, fuel, fibers, and platform chemicals. Four multisubunit membrane proteins are involved: photosystem I (PSI), photosystem II (PSII), cytochrome b6f (cyt b6f), and ATP synthase (FOF1). ATP synthase is likewise a key enzyme of cell respiration. Over three billion years, the basic machinery of oxygenic photosynthesis and respiration has been perfected to minimize wasteful reactions. The proton-driven ATP synthase is embedded in a proton tight-coupling membrane. It is composed of two rotary motors/generators, FO and F1, which do not slip against each other. The proton-driven FO and the ATP-synthesizing F1 are coupled via elastic torque transmission. Elastic transmission decouples the two motors in kinetic detail but keeps them perfectly coupled in thermodynamic equilibrium and (time-averaged) under steady turnover. Elastic transmission enables operation with different gear ratios in different organisms. PMID:25839341

  8. Molecular evolution and sequence divergence of plant chalcone synthase and chalcone synthase-Like genes.

    PubMed

    Han, Yingying; Zhao, Wenwen; Wang, Zhicui; Zhu, Jingying; Liu, Qisong

    2014-06-01

    Plant chalcone synthase (CHS) and CHS-Like (CHSL) proteins are polyketide synthases. In this study, we evaluated the molecular evolution of this gene family using representative types of CHSL genes, including stilbene synthase (STS), 2-pyrone synthase (2-PS), bibenzyl synthase (BBS), acridone synthase (ACS), biphenyl synthase (BIS), benzalacetone synthase, coumaroyl triacetic acid synthase (CTAS), and benzophenone synthase (BPS), along with their CHS homologs from the same species of both angiosperms and gymnosperms. A cDNA-based phylogeny indicated that CHSLs had diverse evolutionary patterns. STS, ACS, and 2-PS clustered with CHSs from the same species (late diverged pattern), while CTAS, BBS, BPS, and BIS were distant from their CHS homologs (early diverged pattern). The amino-acid phylogeny suggested that CHS and CHSL proteins formed clades according to enzyme function. The CHSs and CHSLs from Polygonaceae and Arachis had unique evolutionary histories. Synonymous mutation rates were lower in late diverged CHSLs than in early diverged ones, indicating that gene duplications occurred more recently in late diverged CHSLs than in early diverged ones. Relative rate tests proved that late diverged CHSLs had unequal rates to CHSs from the same species when using fatty acid synthase, which evolved from the common ancestor with the CHS superfamily, as the outgroup, while the early diverged lineages had equal rates. This indicated that late diverged CHSLs experienced more frequent mutation than early diverged CHSLs after gene duplication, allowing obtaining new functions in relatively short period of time. PMID:24849013

  9. Statins and the squalene synthase inhibitor zaragozic acid stimulate the non-amyloidogenic pathway of amyloid-beta protein precursor processing by suppression of cholesterol synthesis.

    PubMed

    Kojro, Elzbieta; Füger, Petra; Prinzen, Claudia; Kanarek, Anna Maria; Rat, Dorothea; Endres, Kristina; Fahrenholz, Falk; Postina, Rolf

    2010-01-01

    Cholesterol-lowering drugs such as statins influence the proteolytic processing of the amyloid-beta protein precursor (AbetaPP) and are reported to stimulate the activity of alpha-secretase, the major preventive secretase of Alzheimer's disease. Statins can increase the alpha-secretase activity by their cholesterol-lowering properties as well as by impairment of isoprenoids synthesis. In the present study, we elucidate the contribution of these pathways in alpha-secretase activation. We demonstrate that zaragozic acid, a potent inhibitor of squalene synthase which blocks cholesterol synthesis but allows synthesis of isoprenoids, also stimulates alpha-secretase activity. Treatment of human neuroblastoma cells with 50 microM zaragozic acid resulted in a approximately 3 fold increase of alpha-secretase activity and reduced cellular cholesterol by approximately 30%. These effects were comparable to results obtained from cells treated with a low lovastatin concentration (2 microM). Zaragozic acid-stimulated secretion of alpha-secretase-cleaved soluble AbetaPP was dose dependent and saturable. Lovastatin- or zaragozic acid-stimulated increase of alpha-secretase activity was completely abolished by a selective ADAM10 inhibitor. By targeting the alpha-secretase ADAM10 to lipid raft domains via a glycosylphosphatidylinositol anchor, we demonstrate that ADAM10 is unable to cleave AbetaPP in a cholesterol-rich environment. Our results indicate that inhibition of cholesterol biosynthesis by a low lovastatin concentration is sufficient for alpha-secretase activation. PMID:20413873

  10. Modulation of medium-chain fatty acid synthesis in Synechococcus sp. PCC 7002 by replacing FabH with a Chaetoceros Ketoacyl-ACP synthase

    DOE PAGESBeta

    Gu, Huiya; Jinkerson, Robert E.; Davies, Fiona K.; Sisson, Lyle A.; Schneider, Philip E.; Posewitz, Matthew C.

    2016-05-26

    The isolation or engineering of algal cells synthesizing high levels of medium-chain fatty acids (MCFAs) is attractive to mitigate the high clouding point of longer chain fatty acids in algal based biodiesel. To develop a more informed understanding of MCFA synthesis in photosynthetic microorganisms, we isolated several algae from Great Salt Lake and screened this collection for MCFA accumulation to identify strains naturally accumulating high levels of MCFA. A diatom, Chaetoceros sp. GSL56, accumulated particularly high levels of C14 (up to 40%), with the majority of C14 fatty acids allocated in triacylglycerols. Using whole cell transcriptome sequencing and de novomore » assembly, putative genes encoding fatty acid synthesis enzymes were identified. Enzymes from this Chaetoceros sp. were expressed in the cyanobacterium Synechococcus sp. PCC 7002 to validate gene function and to determine whether eukaryotic enzymes putatively lacking bacterial evolutionary control mechanisms could be used to improve MCFA production in this promising production strain. Replacement of the Synechococcus 7002 native FabH with a Chaetoceros ketoacyl-ACP synthase Ill increased MCFA synthesis up to fivefold. In conclusion, the level of increase is dependent on promoter strength and culturing conditions.« less

  11. Modulation of Medium-Chain Fatty Acid Synthesis in Synechococcus sp. PCC 7002 by Replacing FabH with a Chaetoceros Ketoacyl-ACP Synthase

    PubMed Central

    Gu, Huiya; Jinkerson, Robert E.; Davies, Fiona K.; Sisson, Lyle A.; Schneider, Philip E.; Posewitz, Matthew C.

    2016-01-01

    The isolation or engineering of algal cells synthesizing high levels of medium-chain fatty acids (MCFAs) is attractive to mitigate the high clouding point of longer chain fatty acids in algal based biodiesel. To develop a more informed understanding of MCFA synthesis in photosynthetic microorganisms, we isolated several algae from Great Salt Lake and screened this collection for MCFA accumulation to identify strains naturally accumulating high levels of MCFA. A diatom, Chaetoceros sp. GSL56, accumulated particularly high levels of C14 (up to 40%), with the majority of C14 fatty acids allocated in triacylglycerols. Using whole cell transcriptome sequencing and de novo assembly, putative genes encoding fatty acid synthesis enzymes were identified. Enzymes from this Chaetoceros sp. were expressed in the cyanobacterium Synechococcus sp. PCC 7002 to validate gene function and to determine whether eukaryotic enzymes putatively lacking bacterial evolutionary control mechanisms could be used to improve MCFA production in this promising production strain. Replacement of the Synechococcus 7002 native FabH with a Chaetoceros ketoacyl-ACP synthase III increased MCFA synthesis up to fivefold. The level of increase is dependent on promoter strength and culturing conditions. PMID:27303412

  12. Modulation of Medium-Chain Fatty Acid Synthesis in Synechococcus sp. PCC 7002 by Replacing FabH with a Chaetoceros Ketoacyl-ACP Synthase.

    PubMed

    Gu, Huiya; Jinkerson, Robert E; Davies, Fiona K; Sisson, Lyle A; Schneider, Philip E; Posewitz, Matthew C

    2016-01-01

    The isolation or engineering of algal cells synthesizing high levels of medium-chain fatty acids (MCFAs) is attractive to mitigate the high clouding point of longer chain fatty acids in algal based biodiesel. To develop a more informed understanding of MCFA synthesis in photosynthetic microorganisms, we isolated several algae from Great Salt Lake and screened this collection for MCFA accumulation to identify strains naturally accumulating high levels of MCFA. A diatom, Chaetoceros sp. GSL56, accumulated particularly high levels of C14 (up to 40%), with the majority of C14 fatty acids allocated in triacylglycerols. Using whole cell transcriptome sequencing and de novo assembly, putative genes encoding fatty acid synthesis enzymes were identified. Enzymes from this Chaetoceros sp. were expressed in the cyanobacterium Synechococcus sp. PCC 7002 to validate gene function and to determine whether eukaryotic enzymes putatively lacking bacterial evolutionary control mechanisms could be used to improve MCFA production in this promising production strain. Replacement of the Synechococcus 7002 native FabH with a Chaetoceros ketoacyl-ACP synthase III increased MCFA synthesis up to fivefold. The level of increase is dependent on promoter strength and culturing conditions. PMID:27303412

  13. Increased thymidylate synthase in L1210 cells possessing acquired resistance to N10-propargyl-5,8-dideazafolic acid (CB3717): development, characterization, and cross-resistance studies

    SciTech Connect

    Jackman, A.L.; Alison, D.L.; Calvert, A.H.; Harrap, K.R.

    1986-06-01

    The properties are described of a mutant L1210 cell line (L1210:C15) with acquired resistance (greater than 200-fold) to the thymidylate synthase (TS) inhibitor N10-propargyl-5,8-dideazafolic acid. TS was overproduced 45-fold and was accompanied by a small increase in the activity of dihydrofolate reductase (2.6-fold). Both the level of resistance and enzyme activities were maintained in drug-free medium (greater than 300 generations). Failure of N10-propargyl-5,8-dideazafolic acid to suppress the (/sup 3/H)-2'-deoxyuridine incorporation into the acid-precipitable material of the resistant line supported the evidence that TS overproduction was the mechanism of resistance; consequently the L1210:C15 cells were largely cross-resistant to another (but weaker) TS inhibitor, 5,8-dideazafolic acid. Minimal cross-resistance was observed to the dihydrofolate reductase inhibitors methotrexate and 5-methyl-5,8-dideazaaminopterin (5- and 2-fold, respectively). L1210 and L1210:C15 cells were, however, equally sensitive to 5-fluorodeoxyuridine (FdUrd), an unexpected finding since a metabolite, 5-fluorodeoxyuridine monophosphate, is a potent TS inhibitor; however, this cytotoxicity against the L1210:C15 cells was antagonized by coincubation with 5 microM folinic acid although folinic acid potentiated the cytotoxicity of FdUrd to the N10-propargyl-5,8-dideazafolic acid-sensitive L1210 line. Thymidine was much less effective as a FdUrd protecting agent in the L1210:C15 when compared with the L1210 cells; however, a combination of thymidine plus hypoxanthine was without any additional effect (compared with thymidine alone) against the sensitive line but effectively protected L1210:C15 cells.

  14. Efficient production of gamma-aminobutyric acid using Escherichia coli by co-localization of glutamate synthase, glutamate decarboxylase, and GABA transporter.

    PubMed

    Dung Pham, Van; Somasundaram, Sivachandiran; Lee, Seung Hwan; Park, Si Jae; Hong, Soon Ho

    2016-01-01

    Gamma-aminobutyric acid (GABA) is an important bio-product, which is used in pharmaceutical formulations, nutritional supplements, and biopolymer monomer. The traditional GABA process involves the decarboxylation of glutamate. However, the direct production of GABA from glucose is a more efficient process. To construct the recombinant strains of Escherichia coli, a novel synthetic scaffold was introduced. By carrying out the co-localization of glutamate synthase, glutamate decarboxylase, and GABA transporter, we redirected the TCA cycle flux to GABA pathway. The genetically engineered E. coli strain produced 1.08 g/L of GABA from 10 g/L of initial glucose. Thus, with the introduction of a synthetic scaffold, we increased GABA production by 2.2-fold. The final GABA concentration was increased by 21.8% by inactivating competing pathways. PMID:26620318

  15. IAA-synthase, an enzyme complex from Arabidopsis thaliana catalyzing the formation of indole-3-acetic acid from (S)-tryptophan.

    PubMed

    Müller, A; Weiler, E W

    2000-08-01

    An enzyme complex was isolated from Arabidopsis thaliana that catalyzes the entire pathway of biosynthesis of the major plant growth hormone, indole-3-acetic acid (IAA), from (S)-tryptophan. The 160-180 kDa, soluble complex catalyzes a strictly O2-dependent reaction which requires no further added factors and is stereospecific for the substrate (S)-tryptophan (app. Km = 120 microM). H2(18)O labeling proved that both oxygen atoms of IAA were delivered via H2O. This, as well as immunological evidence for the presence of a nitrilase-like protein in the complex, suggests the reaction to proceed via the intermediate indole-3-acetonitrile. IAA-synthase forms a tight metabolite channel committed to IAA production and occurs in shoots, roots and cell cultures of A. thaliana. PMID:11030425

  16. Biosynthesis of Akaeolide and Lorneic Acids and Annotation of Type I Polyketide Synthase Gene Clusters in the Genome of Streptomyces sp. NPS554

    PubMed Central

    Zhou, Tao; Komaki, Hisayuki; Ichikawa, Natsuko; Hosoyama, Akira; Sato, Seizo; Igarashi, Yasuhiro

    2015-01-01

    The incorporation pattern of biosynthetic precursors into two structurally unique polyketides, akaeolide and lorneic acid A, was elucidated by feeding experiments with 13C-labeled precursors. In addition, the draft genome sequence of the producer, Streptomyces sp. NPS554, was performed and the biosynthetic gene clusters for these polyketides were identified. The putative gene clusters contain all the polyketide synthase (PKS) domains necessary for assembly of the carbon skeletons. Combined with the 13C-labeling results, gene function prediction enabled us to propose biosynthetic pathways involving unusual carbon-carbon bond formation reactions. Genome analysis also indicated the presence of at least ten orphan type I PKS gene clusters that might be responsible for the production of new polyketides. PMID:25603349

  17. Vanillic acid prevents the deregulation of lipid metabolism, endothelin 1 and up regulation of endothelial nitric oxide synthase in nitric oxide deficient hypertensive rats.

    PubMed

    Kumar, Subramanian; Prahalathan, Pichavaram; Saravanakumar, Murugesan; Raja, Boobalan

    2014-11-15

    Hypertension is one of the main factors causing cardiovascular diseases. The present study was designed to evaluate the protective effect of vanillic acid against nitric oxide deficient rats. Hypertension was induced in adult male albino rats of Wistar strain, weighing 180-220g, by oral administration of N(ω)-nitro-l arginine methyl ester (l-NAME) 40mg/kg in drinking water for 4 weeks. Vanillic acid was administered orally at a dose of 50mg/kg b.w. Nitric oxide deficient rats showed increased levels of mean arterial pressure (MAP), heart rate (HR) and decreased heart nitric oxide metabolites (NOx). A significant increase in the levels of plasma cholesterol, low density lipoprotein-cholesterol (LDL-C), very low density lipoprotein-cholesterol (VLDL-C), triglycerides (TG), free fatty acids (FFA), phospholipids (PL), 3-hydroxy 3-methylglutaryl coenzyme A (HMG-CoA) reductase in the plasma, liver and kidney and decreased level of high density lipoprotein-cholesterol (HDL-C) are observed, whereas there is a decrease in the activities of plasma lipoprotein lipase (LPL) and lecithin cholesterol acyl transferase (LCAT) in nitric oxide deficient rats. l-NAME rats also showed an increase in TC, TG, FFA and PL levels in the liver and kidney tissues. Vanillic acid treatment brought the above parameters towards near normal level. Moreover the down regulated endothelial nitric oxide synthase (eNOS) and up regulated expression of endothelin 1 (ET1) components was also attenuated by vanillic acid treatment. All the above outcomes were confirmed by the histopathological examination. These results suggest that vanillic acid has enough potential to attenuate hypertension, dyslipidemia and hepatic and renal damage in nitric oxide deficient rats. PMID:25239071

  18. Inhibition of G-protein-coupled Receptor Kinase 2 Prevents the Dysfunctional Cardiac Substrate Metabolism in Fatty Acid Synthase Transgenic Mice.

    PubMed

    Abd Alla, Joshua; Graemer, Muriel; Fu, Xuebin; Quitterer, Ursula

    2016-02-01

    Impairment of myocardial fatty acid substrate metabolism is characteristic of late-stage heart failure and has limited treatment options. Here, we investigated whether inhibition of G-protein-coupled receptor kinase 2 (GRK2) could counteract the disturbed substrate metabolism of late-stage heart failure. The heart failure-like substrate metabolism was reproduced in a novel transgenic model of myocardium-specific expression of fatty acid synthase (FASN), the major palmitate-synthesizing enzyme. The increased fatty acid utilization of FASN transgenic neonatal cardiomyocytes rapidly switched to a heart failure phenotype in an adult-like lipogenic milieu. Similarly, adult FASN transgenic mice developed signs of heart failure. The development of disturbed substrate utilization of FASN transgenic cardiomyocytes and signs of heart failure were retarded by the transgenic expression of GRKInh, a peptide inhibitor of GRK2. Cardioprotective GRK2 inhibition required an intact ERK axis, which blunted the induction of cardiotoxic transcripts, in part by enhanced serine 273 phosphorylation of Pparg (peroxisome proliferator-activated receptor γ). Conversely, the dual-specific GRK2 and ERK cascade inhibitor, RKIP (Raf kinase inhibitor protein), triggered dysfunctional cardiomyocyte energetics and the expression of heart failure-promoting Pparg-regulated genes. Thus, GRK2 inhibition is a novel approach that targets the dysfunctional substrate metabolism of the failing heart. PMID:26670611

  19. Development of a Medium-Throughput Targeted LCMS Assay to Detect Endogenous Cellular Levels of Malonyl-CoA to Screen Fatty Acid Synthase Inhibitors.

    PubMed

    Hopcroft, Philip J; Fisher, David I

    2016-02-01

    The fatty acid synthase (FAS) enzyme in mammalian cells is a large multidomain protein responsible for de novo synthesis of fatty acids. The steps catalyzed by FAS involve the condensation of acetyl-CoA and malonyl-CoA moieties in the presence of NADPH until palmitate is formed. Inhibition of FAS causes an accumulation of intracellular malonyl-CoA, as this metabolite is essentially committed to fatty acid synthesis once formed. Detection of intracellular metabolites for screening can be problematic due to a lack of appropriate tools, but here we describe a targeted liquid chromatography-mass spectroscopy (LCMS) method to directly measure endogenous levels of malonyl-CoA to drive a drug development structure-activity relationship (SAR) screening cascade. Our process involves preparation of samples at 96-well scale, normalization postpermeabilization via use of a whole-well imaging platform, and the LCMS detection methodology. The assay is amenable to multiplexing cellular endpoints, has a typical Z' of >0.6, and has high reproducibility of EC50 values. PMID:26586251

  20. Crystal Structure of the Human Fatty Acid Synthase Enoyl-Acyl Carrier Protein-Reductase Domain Complexed with Triclosan Reveals Allosteric Protein-Protein Interface Inhibition*

    PubMed Central

    Sippel, Katherine H.; Vyas, Nand K.; Zhang, Wei; Sankaran, Banumathi; Quiocho, Florante A.

    2014-01-01

    Human fatty acid synthase (FAS) is a large, multidomain protein that synthesizes long chain fatty acids. Because these fatty acids are primarily provided by diet, FAS is normally expressed at low levels; however, it is highly up-regulated in many cancers. Human enoyl-acyl carrier protein-reductase (hER) is one of the FAS catalytic domains, and its inhibition by drugs like triclosan (TCL) can increase cytotoxicity and decrease drug resistance in cancer cells. We have determined the structure of hER in the presence and absence of TCL. TCL was not bound in the active site, as predicted, but rather at the protein-protein interface (PPI). TCL binding induces a dimer orientation change that causes downstream structural rearrangement in critical active site residues. Kinetics studies indicate that TCL is capable of inhibiting the isolated hER domain with an IC50 of ∼55 μm. Given the hER-TCL structure and the inhibition observed in the hER domain, it seems likely that TCL is observed in the physiologically relevant binding site and that it acts as an allosteric PPI inhibitor. TCL may be a viable scaffold for the development of anti-cancer PPI FAS inhibitors. PMID:25301948

  1. Cryo-EM structure of fatty acid synthase (FAS) from Rhodosporidium toruloides provides insights into the evolutionary development of fungal FAS

    PubMed Central

    Fischer, Manuel; Rhinow, Daniel; Zhu, Zhiwei; Mills, Deryck J; Zhao, Zongbao K; Vonck, Janet; Grininger, Martin

    2015-01-01

    Fungal fatty acid synthases Type I (FAS I) are up to 2.7 MDa large molecular machines composed of large multifunctional polypeptides. Half of the amino acids in fungal FAS I are involved in structural elements that are responsible for scaffolding the elaborate barrel-shaped architecture and turning fungal FAS I into highly efficient de novo producers of fatty acids. Rhodosporidium toruloides is an oleaginous fungal species and renowned for its robust conversion of carbohydrates into lipids to over 70% of its dry cell weight. Here, we use cryo-EM to determine a 7.8-Å reconstruction of its FAS I that reveals unexpected features; its novel form of splitting the multifunctional polypeptide chain into the two subunits α and β, and its duplicated ACP domains. We show that the specific distribution into α and β occurs by splitting at one of many possible sites that can be accepted by fungal FAS I. While, therefore, the specific distribution in α and β chains in R. toruloides FAS I is not correlated to increased protein activities, we also show that the duplication of ACP is an evolutionary late event and argue that duplication is beneficial for the lipid overproduction phenotype. PMID:25761671

  2. The fatty acid synthase fasn-1 acts upstream of WNK and Ste20/GCK-VI kinases to modulate antimicrobial peptide expression in C. elegans epidermis

    PubMed Central

    Lee, Kwang-Zin; Kniazeva, Marina; Han, Min; Pujol, Nathalie

    2010-01-01

    An important part of the innate immune response of the nematode C. elegans to fungal infection is the rapid induction of antimicrobial peptide gene expression. One of these genes, nlp-29, is expressed at a low level in adults under normal conditions. Its expression is upregulated in the epidermis by infection with Drechmeria coniospora, but also by physical injury and by osmotic stress. For infection and wounding, the induction is dependent on a p38 MAP kinase cascade, but for osmotic stress, this pathway is not required. To characterize further the pathways that control the expression of nlp-29, we carried out a genetic screen for negative regulatory genes. We isolated a number of Peni (peptide expression no infection) mutants and cloned one. It corresponds to fasn-1, the nematode ortholog of vertebrate fatty acid synthase. We show here that a pathway involving fatty acid synthesis and the evolutionary conserved wnk-1 and gck-3/Ste20/GCK-VI kinases modulates nlp-29 expression in the C. elegans epidermis, independently of p38 MAPK signaling. The control of the antimicrobial peptide gene nlp-29 thus links different physiological processes, including fatty acid metabolism, osmoregulation, maintenance of epidermal integrity and the innate immune response to infection. PMID:21178429

  3. Increase in nervonic acid content in transformed yeast and transgenic plants by introduction of a Lunaria annua L. 3-ketoacyl-CoA synthase (KCS) gene.

    PubMed

    Guo, Yiming; Mietkiewska, Elzbieta; Francis, Tammy; Katavic, Vesna; Brost, Jennifer M; Giblin, Michael; Barton, Dennis L; Taylor, David C

    2009-03-01

    Nervonic acid is a Very Long-Chain Monounsaturated Fatty Acid (VLCMFA), 24:1 Delta15 (cis-tetracos-15-enoic acid) found in the seed oils of Lunaria annua, borage, hemp, Acer (Purpleblow maple) and Tropaeolum speciosum (Flame flower). However, of these, only the "money plant" (Lunaria annua L.) has been studied and grown sparingly for future development as a niche crop and the outlook has been disappointing. Therefore, our goal was to isolate and characterize strategic new genes for high nervonic acid production in Brassica oilseed crops. To this end, we have isolated a VLCMFA-utilizing 3-Keto-Acyl-CoA Synthase (KCS; fatty acid elongase; EC 2.3.1.86) gene from Lunaria annua and functionally expressed it in yeast, with the recombinant KCS protein able to catalyze the synthesis of several VLCMFAs, including nervonic acid. Seed-specific expression of the Lunaria KCS in Arabidopsis resulted in a 30-fold increase in nervonic acid proportions in seed oils, compared to the very low quantities found in the wild-type. Similar transgenic experiments using B. carinata as the host resulted in a 7-10 fold increase in seed oil nervonic acid proportions. KCS enzyme activity assays indicated that upon using (14)C-22:1-CoA as substrate, the KCS activity from developing seeds of transgenic B. carinata was 20-30-fold higher than the low erucoyl-elongation activity exhibited by wild type control plants. There was a very good correlation between the Lun KCS transcript intensity and the resultant 22:1-CoA KCS activity in developing seed. The highest nervonic acid level in transgenic B. carinata expressing the Lunaria KCS reached 30%, compared to 2.8% in wild type plant. In addition, the erucic acid proportions in these transgenic lines were considerably lower than that found in native Lunaria oil. These results show the functional utility of the Lunaria KCS in engineering new sources of high nervonate/reduced erucic oils in the Brassicaceae. PMID:19082744

  4. Producing biofuels using polyketide synthases

    DOEpatents

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-04-16

    The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

  5. Partial purification and characterization of indol-3-ylacetylglucose:myo-inositol indol-3-ylacetyltransferase (indoleacetic acid-inositol synthase)

    NASA Technical Reports Server (NTRS)

    Kesy, J. M.; Bandurski, R. S.

    1990-01-01

    A procedure is described for the purification of the enzyme indol-3-ylacetylglucose:myo-inositol indol-3-ylacetyltransferase (IAA-myo-inositol synthase). This enzyme catalyzes the transfer of indol-3-ylacetate from 1-0-indol-3-ylacetyl-beta-d-glucose to myo-inositol to form indol-3-ylacetyl-myo-inositol and glucose. A hexokinase or glucose oxidase based assay system is described. The enzyme has been purified approximately 16,000-fold, has an isoelectric point of pH 6.1 and yields three catalytically inactive bands upon acrylamide gel electrophoresis of the native protein. The enzyme shows maximum transferase activity with myo-inositol but shows some transferase activity with scyllo-inositol and myo-inosose-2. No transfer of IAA occurs with myo-inositol-d-galactopyranose, cyclohexanol, mannitol, or glycerol as acyl acceptor. The affinity of the enzyme for 1-0-indol-3-ylacetyl-beta-d-glucose is, Km = 30 micromolar, and for myo-inositol is, Km = 4 millimolar. The enzyme does not catalyze the exchange incorporation of glucose into IAA-glucose indicating the reaction mechanism involves binding of IAA glucose to the enzyme with subsequent hydrolytic cleavage of the acyl moiety by the hydroxyl of myo-inositol to form IAA myo-inositol ester.

  6. Metformin-Induced Killing of Triple Negative Breast Cancer Cells is Mediated by Reduction in Fatty Acid Synthase via miRNA-193b

    PubMed Central

    Wahdan-Alaswad, Reema S.; Cochrane, Dawn R.; Spoelstra, Nicole S.; Howe, Erin N.; Edgerton, Susan M.; Anderson, Steven M.; Thor, Ann D.; Richer, Jennifer K.

    2015-01-01

    The anti-diabetic drug metformin (1,1-dimethylbiguanide hydrochloride) reduces both the incidence and mortality of several types of cancer. Metformin has been shown to selectively kill cancer stem cells and triple negative breast cancer (TNBC) cell lines are more sensitive to the effects of metformin. However, the mechanism underlying the enhanced susceptibility of TNBC to metformin had not been elucidated. Expression profiling of metformin-treated TNBC lines revealed fatty acid synthase (FASN) as one of the genes most significantly downregulated following 24 hours of treatment and a decrease in FASN protein was also observed. Since FASN is critical for de novo fatty acid synthesis, and is important for survival of TNBC, we hypothesized that FASN downregulation facilitates metformin-induced apoptosis. Profiling studies also exposed a rapid metformin-induced increase in miR-193 family members, and miR-193b was found to directly target the FASN 3′UTR. Addition of exogenous miR-193b mimic to untreated TNBC cells resulted in decreased FASN protein expression and increased apoptosis of TNBC cells, while spontaneously immortalized, non-transformed breast epithelial cells remained unaffected. Conversely, antagonizing miR-193 activity impaired the ability of metformin to decrease FASN and cause cell death. Further, the metformin-stimulated increase in miR-193 resulted in reduced mammosphere formation by TNBC lines. These studies provide mechanistic insight into the metformin-induced killing of TNBC. PMID:25213330

  7. Metformin-induced killing of triple-negative breast cancer cells is mediated by reduction in fatty acid synthase via miRNA-193b.

    PubMed

    Wahdan-Alaswad, Reema S; Cochrane, Dawn R; Spoelstra, Nicole S; Howe, Erin N; Edgerton, Susan M; Anderson, Steven M; Thor, Ann D; Richer, Jennifer K

    2014-12-01

    The anti-diabetic drug metformin (1,1-dimethylbiguanide hydrochloride) reduces both the incidence and mortality of several types of cancer. Metformin has been shown to selectively kill cancer stem cells, and triple-negative breast cancer (TNBC) cell lines are more sensitive to the effects of metformin as compared to luminal breast cancer. However, the mechanism underlying the enhanced susceptibility of TNBC to metformin has not been elucidated. Expression profiling of metformin-treated TNBC lines revealed fatty acid synthase (FASN) as one of the genes most significantly downregulated following 24 h of treatment, and a decrease in FASN protein was also observed. Since FASN is critical for de novo fatty acid synthesis and is important for the survival of TNBC, we hypothesized that FASN downregulation facilitates metformin-induced apoptosis. Profiling studies also exposed a rapid metformin-induced increase in miR-193 family members, and miR-193b directly targets the FASN 3'UTR. Addition of exogenous miR-193b mimic to untreated TNBC cells decreased FASN protein expression and increased apoptosis of TNBC cells, while spontaneously immortalized, non-transformed breast epithelial cells remained unaffected. Conversely, antagonizing miR-193 activity impaired the ability of metformin to decrease FASN and cause cell death. Further, the metformin-stimulated increase in miR-193 resulted in reduced mammosphere formation by TNBC lines. These studies provide mechanistic insight into metformin-induced killing of TNBC. PMID:25213330

  8. Differential Expression of 1-Aminocyclopropane-1-Carboxylate Synthase Genes during Orchid Flower Senescence Induced by the Protein Phosphatase Inhibitor Okadaic Acid1

    PubMed Central

    Wang, Ning Ning; Yang, Shang Fa; Charng, Yee-yung

    2001-01-01

    Applying 10 pmol of okadaic acid (OA), a specific inhibitor of type 1 or type 2A serine/threonine protein phosphatases, to the orchid (Phalaenopsis species) stigma induced a dramatic increase in ethylene production and an accelerated senescence of the whole flower. Aminoethoxyvinylglycine or silver thiosulfate, inhibitors of ethylene biosynthesis or action, respectively, effectively inhibited the OA-induced ethylene production and retarded flower senescence, suggesting that the protein phosphatase inhibitor induced orchid flower senescence through an ethylene-mediated signaling pathway. OA treatment induced a differential expression pattern for the 1-aminocyclopropane-1-carboxylic acid synthase multigene family. Accumulation of Phal-ACS1 transcript in the stigma, labelum, and ovary induced by OA were higher than those induced by pollination as determined by “semiquantitative” reverse transcriptase-polymerase chain reaction. In contrast, the transcript levels of Phal-ACS2 and Phal-ACS3 induced by OA were much lower than those induced by pollination. Staurosporine, a protein kinase inhibitor, on the other hand, inhibited the OA-induced Phal-ACS1 expression in the stigma and delayed flower senescence. Our results suggest that a hyper-phosphorylation status of an unidentified protein(s) is involved in up-regulating the expression of Phal-ACS1 gene resulting in increased ethylene production and accelerated the senescence process of orchid flower. PMID:11351088

  9. Upregulation of UGT2B4 Expression by 3'-Phosphoadenosine-5'-Phosphosulfate Synthase Knockdown: Implications for Coordinated Control of Bile Acid Conjugation.

    PubMed

    Barrett, Kathleen G; Fang, Hailin; Cukovic, Daniela; Dombkowski, Alan A; Kocarek, Thomas A; Runge-Morris, Melissa

    2015-07-01

    During cholestasis, the bile acid-conjugating enzymes, SULT2A1 and UGT2B4, work in concert to prevent the accumulation of toxic bile acids. To understand the impact of sulfotransferase deficiency on human hepatic gene expression, we knocked down 3'-phosphoadenosine-5'-phosphosulfate synthases (PAPSS) 1 and 2, which catalyze synthesis of the obligate sulfotransferase cofactor, in HepG2 cells. PAPSS knockdown caused no change in SULT2A1 expression; however, UGT2B4 expression increased markedly (∼41-fold increase in UGT2B4 mRNA content). Knockdown of SULT2A1 in HepG2 cells also increased UGT2B4 expression. To investigate the underlying mechanism, we transfected PAPSS-deficient HepG2 cells with a luciferase reporter plasmid containing ∼2 Kb of the UGT2B4 5'-flanking region, which included a response element for the bile acid-sensing nuclear receptor, farnesoid X receptor (FXR). FXR activation or overexpression increased UGT2B4 promoter activity; however, knocking down FXR or mutating or deleting the FXR response element did not significantly decrease UGT2B4 promoter activity. Further evaluation of the UGT2B4 5'-flanking region indicated the presence of distal regulatory elements between nucleotides -10090 and -10037 that negatively and positively regulated UGT2B4 transcription. Pulse-chase analysis showed that increased UGT2B4 expression in PAPSS-deficient cells was attributable to both increased mRNA synthesis and stability. Transfection analysis demonstrated that the UGT2B4 3'-untranslated region decreased luciferase reporter expression less in PAPSS-deficient cells than in control cells. These data indicate that knocking down PAPSS increases UGT2B4 transcription and mRNA stability as a compensatory response to the loss of SULT2A1 activity, presumably to maintain bile acid-conjugating activity. PMID:25948711

  10. Replacement of two amino acids of 9R-dioxygenase-allene oxide synthase of Aspergillus niger inverts the chirality of the hydroperoxide and the allene oxide.

    PubMed

    Sooman, Linda; Wennman, Anneli; Hamberg, Mats; Hoffmann, Inga; Oliw, Ernst H

    2016-02-01

    The genome of Aspergillus niger codes for a fusion protein (EHA25900), which can be aligned with ~50% sequence identity to 9S-dioxygenase (DOX)-allene oxide synthase (AOS) of Fusarium oxysporum, homologues of the Fusarium and Colletotrichum complexes and with over 62% sequence identity to homologues of Aspergilli, including (DOX)-9R-AOS of Aspergillus terreus. The aims were to characterize the enzymatic activities of EHA25900 and to identify crucial amino acids for the stereospecificity. Recombinant EHA25900 oxidized 18:2n-6 sequentially to 9R-hydroperoxy-10(E),12(Z)-octadecadienoic acid (9R-HPODE) and to a 9R(10)-allene oxide. 9S- and 9R-DOX-AOS catalyze abstraction of the pro-R hydrogen at C-11, but the direction of oxygen insertion differs. A comparison between twelve 9-DOX domains of 9S- and 9R-DOX-AOS revealed conserved amino acid differences, which could contribute to the chirality of products. The Gly616Ile replacement of 9R-DOX-AOS (A. niger) increased the biosynthesis of 9S-HPODE and the 9S(10)-allene oxide, whereas the Phe627Leu replacement led to biosynthesis of 9S-HPODE and the 9S(10)-allene oxide as main products. The double mutant (Gly616Ile, Phe627Leu) formed over 90% of the 9S stereoisomer of HPODE. 9S-HPODE was formed by antarafacial hydrogen abstraction and oxygen insertion, i.e., the original H-abstraction was retained but the product chirality was altered. We conclude that 9R-DOX-AOS can be altered to 9S-DOX-AOS by replacement of two amino acids (Gly616Ile, Phe627Leu) in the DOX domain. PMID:26603902

  11. Production of long chain alcohols and alkanes upon coexpression of an acyl-ACP reductase and aldehyde-deformylating oxgenase with a bacterial type-I fatty acid synthase in E. coli

    DOE PAGESBeta

    Coursolle, Dan; Shanklin, John; Lian, Jiazhang; Zhao, Huimin

    2015-06-23

    Microbial long chain alcohols and alkanes are renewable biofuels that could one day replace petroleum-derived fuels. Here we report a novel pathway for high efficiency production of these products in Escherichia coli strain BL21(DE3). We first identified the acyl-ACP reductase/aldehyde deformylase combinations with the highest activity in this strain. Next, we used catalase coexpression to remove toxic byproducts and increase the overall titer. Finally, by introducing the type-I fatty acid synthase from Corynebacterium ammoniagenes, we were able to bypass host regulatory mechanisms of fatty acid synthesis that have thus far hampered efforts to optimize the yield of acyl-ACP-derived products inmore » BL21(DE3). When all these engineering strategies were combined with subsequent optimization of fermentation conditions, we were able to achieve a final titer around 100 mg/L long chain alcohol/alkane products including a 57 mg/L titer of pentadecane, the highest titer reported in E. coli BL21(DE3) to date. The expression of prokaryotic type-I fatty acid synthases offer a unique strategy to produce fatty acid-derived products in E. coli that does not rely exclusively on the endogenous type-II fatty acid synthase system.« less

  12. Production of long chain alcohols and alkanes upon coexpression of an acyl-ACP reductase and aldehyde-deformylating oxgenase with a bacterial type-I fatty acid synthase in E. coli

    SciTech Connect

    Coursolle, Dan; Shanklin, John; Lian, Jiazhang; Zhao, Huimin

    2015-06-23

    Microbial long chain alcohols and alkanes are renewable biofuels that could one day replace petroleum-derived fuels. Here we report a novel pathway for high efficiency production of these products in Escherichia coli strain BL21(DE3). We first identified the acyl-ACP reductase/aldehyde deformylase combinations with the highest activity in this strain. Next, we used catalase coexpression to remove toxic byproducts and increase the overall titer. Finally, by introducing the type-I fatty acid synthase from Corynebacterium ammoniagenes, we were able to bypass host regulatory mechanisms of fatty acid synthesis that have thus far hampered efforts to optimize the yield of acyl-ACP-derived products in BL21(DE3). When all these engineering strategies were combined with subsequent optimization of fermentation conditions, we were able to achieve a final titer around 100 mg/L long chain alcohol/alkane products including a 57 mg/L titer of pentadecane, the highest titer reported in E. coli BL21(DE3) to date. The expression of prokaryotic type-I fatty acid synthases offer a unique strategy to produce fatty acid-derived products in E. coli that does not rely exclusively on the endogenous type-II fatty acid synthase system.

  13. Production of long chain alcohols and alkanes upon coexpression of an acyl-ACP reductase and aldehyde-deformylating oxygenase with a bacterial type-I fatty acid synthase in E. coli.

    PubMed

    Coursolle, Dan; Lian, Jiazhang; Shanklin, John; Zhao, Huimin

    2015-09-01

    Microbial long chain alcohols and alkanes are renewable biofuels that could one day replace petroleum-derived fuels. Here we report a novel pathway for high efficiency production of these products in Escherichia coli strain BL21(DE3). We first identified the acyl-ACP reductase/aldehyde deformylase combinations with the highest activity in this strain. Next, we used catalase coexpression to remove toxic byproducts and increase the overall titer. Finally, by introducing the type-I fatty acid synthase from Corynebacterium ammoniagenes, we were able to bypass host regulatory mechanisms of fatty acid synthesis that have thus far hampered efforts to optimize the yield of acyl-ACP-derived products in BL21(DE3). When all these engineering strategies were combined with subsequent optimization of fermentation conditions, we were able to achieve a final titer around 100 mg L(-1) long chain alcohol/alkane products including a 57 mg L(-1) titer of pentadecane, the highest titer reported in E. coli BL21(DE3) to date. The expression of prokaryotic type-I fatty acid synthases offer a unique strategy to produce fatty acid-derived products in E. coli that does not rely exclusively on the endogenous type-II fatty acid synthase system. PMID:26135500

  14. Polyester synthases: natural catalysts for plastics.

    PubMed Central

    Rehm, Bernd H A

    2003-01-01

    Polyhydroxyalkanoates (PHAs) are biopolyesters composed of hydroxy fatty acids, which represent a complex class of storage polyesters. They are synthesized by a wide range of different Gram-positive and Gram-negative bacteria, as well as by some Archaea, and are deposited as insoluble cytoplasmic inclusions. Polyester synthases are the key enzymes of polyester biosynthesis and catalyse the conversion of (R)-hydroxyacyl-CoA thioesters to polyesters with the concomitant release of CoA. These soluble enzymes turn into amphipathic enzymes upon covalent catalysis of polyester-chain formation. A self-assembly process is initiated resulting in the formation of insoluble cytoplasmic inclusions with a phospholipid monolayer and covalently attached polyester synthases at the surface. Surface-attached polyester synthases show a marked increase in enzyme activity. These polyester synthases have only recently been biochemically characterized. An overview of these recent findings is provided. At present, 59 polyester synthase structural genes from 45 different bacteria have been cloned and the nucleotide sequences have been obtained. The multiple alignment of the primary structures of these polyester synthases show an overall identity of 8-96% with only eight strictly conserved amino acid residues. Polyester synthases can been assigned to four classes based on their substrate specificity and subunit composition. The current knowledge on the organization of the polyester synthase genes, and other genes encoding proteins related to PHA metabolism, is compiled. In addition, the primary structures of the 59 PHA synthases are aligned and analysed with respect to highly conserved amino acids, and biochemical features of polyester synthases are described. The proposed catalytic mechanism based on similarities to alpha/beta-hydrolases and mutational analysis is discussed. Different threading algorithms suggest that polyester synthases belong to the alpha/beta-hydrolase superfamily, with

  15. Improved diagnosis and therapy of superficial transitional cell carcinoma (TCC) of the urinary bladder by 5-aminolevulinic-acid (5-ALA)-induced protoporphyrin IX (PPIX) fluorescence: a prospective study in 100 patients

    NASA Astrophysics Data System (ADS)

    Kuntz, Rainer M.; Ruecker, Frank

    2001-05-01

    The prognosis of superficial bladder cancer is strongly related to a high recurrence rate and the presence of concomitant plane tumor lesions such as severe dysplasia or carcinoma in situ. They are frequently overlooked on white light cystoscopy. Furthermore, the traditional transurethral tumor resection of superficial bladder tumor is frequently incomplete. This prospective study aimed to evaluate whether or not 5-ALA induced PPIX fluorescence cystoscopy could increase the detection of superficial bladder tumors and/or plane carcinoma in situ invisible on white light cystoscopy. 100 patients with superficial TCC of the urinary bladder underwent cystoscopy under white light and under blue fluorescence light. 2 hours (1-4 hours) prior to cystoscopy 50 ml 3 percent 5-ALA-solution were intravesically instilled into the empty bladder. All lesions visible on white light cystoscopy were compared with fluorescence findings and, vice versa, all fluorescence findings were compared with white light cystoscopy findings. All lesions visible under white light, and all lesions only visible under 5-ALA induced fluorescence were resected/biopsied and histologically examined.

  16. Prolonged Exposure of Primary Human Muscle Cells to Plasma Fatty Acids Associated with Obese Phenotype Induces Persistent Suppression of Muscle Mitochondrial ATP Synthase β Subunit.

    PubMed

    Tran, Lee; Hanavan, Paul D; Campbell, Latoya E; De Filippis, Elena; Lake, Douglas F; Coletta, Dawn K; Roust, Lori R; Mandarino, Lawrence J; Carroll, Chad C; Katsanos, Christos S

    2016-01-01

    Our previous studies show reduced abundance of the β-subunit of mitochondrial H+-ATP synthase (β-F1-ATPase) in skeletal muscle of obese individuals. The β-F1-ATPase forms the catalytic core of the ATP synthase, and it is critical for ATP production in muscle. The mechanism(s) impairing β-F1-ATPase metabolism in obesity, however, are not completely understood. First, we studied total muscle protein synthesis and the translation efficiency of β-F1-ATPase in obese (BMI, 36±1 kg/m2) and lean (BMI, 22±1 kg/m2) subjects. Both total protein synthesis (0.044±0.006 vs 0.066±0.006%·h-1) and translation efficiency of β-F1-ATPase (0.0031±0.0007 vs 0.0073±0.0004) were lower in muscle from the obese subjects when compared to the lean controls (P<0.05). We then evaluated these same responses in a primary cell culture model, and tested the specific hypothesis that circulating non-esterified fatty acids (NEFA) in obesity play a role in the responses observed in humans. The findings on total protein synthesis and translation efficiency of β-F1-ATPase in primary myotubes cultured from a lean subject, and after exposure to NEFA extracted from serum of an obese subject, were similar to those obtained in humans. Among candidate microRNAs (i.e., non-coding RNAs regulating gene expression), we identified miR-127-5p in preventing the production of β-F1-ATPase. Muscle expression of miR-127-5p negatively correlated with β-F1-ATPase protein translation efficiency in humans (r = - 0.6744; P<0.01), and could be modeled in vitro by prolonged exposure of primary myotubes derived from the lean subject to NEFA extracted from the obese subject. On the other hand, locked nucleic acid inhibitor synthesized to target miR-127-5p significantly increased β-F1-ATPase translation efficiency in myotubes (0.6±0.1 vs 1.3±0.3, in control vs exposure to 50 nM inhibitor; P<0.05). Our experiments implicate circulating NEFA in obesity in suppressing muscle protein metabolism, and establish

  17. Prolonged Exposure of Primary Human Muscle Cells to Plasma Fatty Acids Associated with Obese Phenotype Induces Persistent Suppression of Muscle Mitochondrial ATP Synthase β Subunit

    PubMed Central

    Tran, Lee; Hanavan, Paul D.; Campbell, Latoya E.; De Filippis, Elena; Lake, Douglas F.; Coletta, Dawn K.; Roust, Lori R.; Mandarino, Lawrence J.; Carroll, Chad C.; Katsanos, Christos S.

    2016-01-01

    Our previous studies show reduced abundance of the β-subunit of mitochondrial H+-ATP synthase (β-F1-ATPase) in skeletal muscle of obese individuals. The β-F1-ATPase forms the catalytic core of the ATP synthase, and it is critical for ATP production in muscle. The mechanism(s) impairing β-F1-ATPase metabolism in obesity, however, are not completely understood. First, we studied total muscle protein synthesis and the translation efficiency of β-F1-ATPase in obese (BMI, 36±1 kg/m2) and lean (BMI, 22±1 kg/m2) subjects. Both total protein synthesis (0.044±0.006 vs 0.066±0.006%·h-1) and translation efficiency of β-F1-ATPase (0.0031±0.0007 vs 0.0073±0.0004) were lower in muscle from the obese subjects when compared to the lean controls (P<0.05). We then evaluated these same responses in a primary cell culture model, and tested the specific hypothesis that circulating non-esterified fatty acids (NEFA) in obesity play a role in the responses observed in humans. The findings on total protein synthesis and translation efficiency of β-F1-ATPase in primary myotubes cultured from a lean subject, and after exposure to NEFA extracted from serum of an obese subject, were similar to those obtained in humans. Among candidate microRNAs (i.e., non-coding RNAs regulating gene expression), we identified miR-127-5p in preventing the production of β-F1-ATPase. Muscle expression of miR-127-5p negatively correlated with β-F1-ATPase protein translation efficiency in humans (r = – 0.6744; P<0.01), and could be modeled in vitro by prolonged exposure of primary myotubes derived from the lean subject to NEFA extracted from the obese subject. On the other hand, locked nucleic acid inhibitor synthesized to target miR-127-5p significantly increased β-F1-ATPase translation efficiency in myotubes (0.6±0.1 vs 1.3±0.3, in control vs exposure to 50 nM inhibitor; P<0.05). Our experiments implicate circulating NEFA in obesity in suppressing muscle protein metabolism, and establish

  18. Inhibition of de novo Palmitate Synthesis by Fatty Acid Synthase Induces Apoptosis in Tumor Cells by Remodeling Cell Membranes, Inhibiting Signaling Pathways, and Reprogramming Gene Expression

    PubMed Central

    Ventura, Richard; Mordec, Kasia; Waszczuk, Joanna; Wang, Zhaoti; Lai, Julie; Fridlib, Marina; Buckley, Douglas; Kemble, George; Heuer, Timothy S.

    2015-01-01

    Inhibition of de novo palmitate synthesis via fatty acid synthase (FASN) inhibition provides an unproven approach to cancer therapy with a strong biological rationale. FASN expression increases with tumor progression and associates with chemoresistance, tumor metastasis, and diminished patient survival in numerous tumor types. TVB-3166, an orally-available, reversible, potent, and selective FASN inhibitor induces apoptosis, inhibits anchorage-independent cell growth under lipid-rich conditions, and inhibits in-vivo xenograft tumor growth. Dose-dependent effects are observed between 20–200 nM TVB-3166, which agrees with the IC50 in biochemical FASN and cellular palmitate synthesis assays. Mechanistic studies show that FASN inhibition disrupts lipid raft architecture, inhibits biological pathways such as lipid biosynthesis, PI3K–AKT–mTOR and β-catenin signal transduction, and inhibits expression of oncogenic effectors such as c-Myc; effects that are tumor-cell specific. Our results demonstrate that FASN inhibition has anti-tumor activities in biologically diverse preclinical tumor models and provide mechanistic and pharmacologic evidence that FASN inhibition presents a promising therapeutic strategy for treating a variety of cancers, including those expressing mutant K-Ras, ErbB2, c-Met, and PTEN. The reported findings inform ongoing studies to link mechanisms of action with defined tumor types and advance the discovery of biomarkers supporting development of FASN inhibitors as cancer therapeutics. Research in context Fatty acid synthase (FASN) is a vital enzyme in tumor cell biology; the over-expression of FASN is associated with diminished patient prognosis and resistance to many cancer therapies. Our data demonstrate that selective and potent FASN inhibition with TVB-3166 leads to selective death of tumor cells, without significant effect on normal cells, and inhibits in vivo xenograft tumor growth at well-tolerated doses. Candidate biomarkers for

  19. Characterization of FabG and FabI of the Streptomyces coelicolor dissociated fatty acid synthase.

    PubMed

    Singh, Renu; Reynolds, Kevin A

    2015-03-01

    Streptomyces coelicolor produces fatty acids for both primary metabolism and for biosynthesis of the secondary metabolite undecylprodiginine. The first and last reductive steps during the chain elongation cycle of fatty acid biosynthesis are catalyzed by FabG and FabI. The S. coelicolor genome sequence has one fabI gene (SCO1814) and three likely fabG genes (SCO1815, SCO1345, and SCO1846). We report the expression, purification, and characterization of the corresponding gene products. Kinetic analyses revealed that all three FabGs and FabI are capable of utilizing both straight and branched-chain β-ketoacyl-NAC and enoyl-NAC substrates, respectively. Furthermore, only SCO1345 differentiates between ACPs from both biosynthetic pathways. The data presented provide the first experimental evidence that SCO1815, SCO1346, and SCO1814 have the catalytic capability to process intermediates in both fatty acid and undecylprodiginine biosynthesis. PMID:25662938

  20. Mutational and x-ray crystallographic analysis of the interaction of dihomo-y-linolenic acid with prostaglandin endoperoxide H synthases.

    SciTech Connect

    Thuresson, E. D.; Malkowski, M. G.; Lakkides, K. M.; Rieke, C. J.; Mulichak, A. M.; Ginell, S.; Garavito, R. M.; Smith, W. L.; Biosciences Division; Michigan State Univ.

    2003-03-30

    Prostaglandin endoperoxide H synthases-1 and -2 (PGHSs) catalyze the committed step in prostaglandin biosynthesis. Both isozymes can oxygenate a variety of related polyunsaturated fatty acids. We report here the x-ray crystal structure of dihomo-{gamma}-linolenic acid (DHLA) in the cyclooxygenase site of PGHS-1 and the effects of active site substitutions on the oxygenation of DHLA, and we compare these results to those obtained previously with arachidonic acid (AA). DHLA is bound within the cyclooxygenase site in the same overall L-shaped conformation as AA. C-1 and C-11 through C-20 are in the same positions for both substrates, but the positions of C-2 through C-10 differ by up to 1.74 Angstroms. In general, substitutions of active site residues caused parallel changes in the oxygenation of both AA and DHLA. Two significant exceptions were Val-349 and Ser-530. A V349A substitution caused an 800-fold decrease in the Vmax/Km for DHLA but less than a 2-fold change with AA; kinetic evidence indicates that C-13 of DHLA is improperly positioned with respect to Tyr-385 in the V349A mutant thereby preventing efficient hydrogen abstraction. Val-349 contacts C-5 of DHLA and appears to serve as a structural bumper positioning the carboxyl half of DHLA, which, in turn, positions properly the omega -half of this substrate. A V349A substitution in PGHS-2 has similar, minor effects on the rates of oxygenation of AA and DHLA. Thus, Val-349 is a major determinant of substrate specificity for PGHS-1 but not for PGHS-2. Ser-530 also influences the substrate specificity of PGHS-1; an S530T substitution causes 40- and 750-fold decreases in oxygenation efficiencies for AA and DHLA, respectively.

  1. A functional cellulose synthase from ascidian epidermis

    PubMed Central

    Matthysse, Ann G.; Deschet, Karine; Williams, Melanie; Marry, Mazz; White, Alan R.; Smith, William C.

    2004-01-01

    Among animals, urochordates (e.g., ascidians) are unique in their ability to biosynthesize cellulose. In ascidians cellulose is synthesized in the epidermis and incorporated into a protective coat know as the tunic. A putative cellulose synthase-like gene was first identified in the genome sequences of the ascidian Ciona intestinalis. We describe here a cellulose synthase gene from the ascidian Ciona savignyi that is expressed in the epidermis. The predicted C. savignyi cellulose synthase amino acid sequence showed conserved features found in all cellulose synthases, including plants, but was most similar to cellulose synthases from bacteria, fungi, and Dictyostelium discoidium. However, unlike other known cellulose synthases, the predicted C. savignyi polypeptide has a degenerate cellulase-like region near the carboxyl-terminal end. An expression construct carrying the C. savignyi cDNA was found to restore cellulose biosynthesis to a cellulose synthase (CelA) minus mutant of Agrobacterium tumefaciens, showing that the predicted protein has cellulose synthase activity. The lack of cellulose biosynthesis in all other groups of metazoans and the similarity of the C. savignyi cellulose synthase to enzymes from cellulose-producing organisms support the hypothesis that the urochordates acquired the cellulose biosynthetic pathway by horizontal transfer. PMID:14722352

  2. Effect of 2,4-Dichlorophenoxyacetic Acid on Endogenous Cyanide, β-Cyanoalanine Synthase Activity, and Ethylene Evolution in Seedlings of Soybean and Barley 1

    PubMed Central

    Tittle, Forrest L.; Goudey, J. Stephen; Spencer, Mary S.

    1990-01-01

    Treatment of etiolated seedlings of barley (Hordeum vulgare) and soybean (Glycine max) with 1 millimolar 2,4-dichlorophenoxyacetic acid (2,4-D) resulted in a 14-fold and greater than 100-fold increase in ethylene production, respectively. Simultaneous monitoring of endogenous cyanide and β-cyanoalanine synthase (β-CAS) (EC 4.4. 1.9) activity was also performed. Endogenous levels of cyanide did not change in barley. In soybean, endogenous cyanide increased within 3 hours, increased again 6 hours after exposure to 2,4-D, and continued to increase throughout the experimental period. The activity of β-CAS increased in both barley and soybean 9 hours after herbicide treatment. The increase in cyanide preceded the increase in β-CAS activity by 3 to 6 hours in soybean. The steady-state concentration of endogenous cyanide in soybean was 1 micromolar, based on rates of ethylene production and cyanide metabolism by β-CAS. This agreed with the determination of endogenous cyanide by both distillation and isotope dilution. Given the apparent compartmentalization of β-CAS in mitochondria and the localization of ethylene/HCN production at the plasmalemma and/or tonoplast, our results suggest that extra-mitochondrial accumulation of cyanide in the cytoplasm may occur. If so, the activity of cyanide-sensitive cytoplasmic enzymes could be adversely affected, thus possibly contributing to the toxicity of 2,4-D. PMID:16667809

  3. Acetohydroxy acid synthase I, a required enzyme for isoleucine and valine biosynthesis in Escherichia coli K-12 during growth on acetate as the sole carbon source.

    PubMed Central

    Dailey, F E; Cronan, J E

    1986-01-01

    Escherichia coli K-12 has two acetohydroxy acid synthase (AHAS) isozymes (AHAS I and AHAS III). Both of these isozymes catalyze the synthesis of alpha-aceto-alpha-hydroxybutyrate and alpha-acetolactate, which are key intermediates of the isoleucine-valine biosynthetic pathway. Strains lacking either isozyme but not both activities have been previously shown to grow well in minimal media in the absence of isoleucine and valine on any of several commonly used carbon sources (e.g., glucose or succinate). We report the characterization of mutants that were unable to grow on either acetate or oleate as a sole carbon source due to a defect in isoleucine-valine biosynthesis. The defect in isoleucine-valine biosynthesis was expressed only on these carbon sources and was due to the loss of AHAS I activity, resulting from lesions in the ilvBN operon. Previously identified ilvBN mutant strains also failed to grow on acetate or oleate minimal media. Our results indicated that AHAS I is an essential enzyme for isoleucine and valine biosynthesis when E. coli K-12 is grown on acetate or oleate as the sole carbon source. AHAS III was expressed during growth on acetate or oleate but was somehow unable to produce sufficient amounts of alpha-aceto-alpha-hydroxybutyrate and alpha-acetolactate to allow growth. PMID:3511034

  4. Maintained activity of glycogen synthase kinase-3{beta} despite of its phosphorylation at serine-9 in okadaic acid-induced neurodegenerative model

    SciTech Connect

    Lim, Yong-Whan; Yoon, Seung-Yong; Choi, Jung-Eun; Kim, Sang-Min; Lee, Hui-Sun; Choe, Han; Lee, Seung-Chul; Kim, Dong-Hou

    2010-04-30

    Glycogen synthase kinase-3{beta} (GSK3{beta}) is recognized as one of major kinases to phosphorylate tau in Alzheimer's disease (AD), thus lots of AD drug discoveries target GSK3{beta}. However, the inactive form of GSK3{beta} which is phosphorylated at serine-9 is increased in AD brains. This is also inconsistent with phosphorylation status of other GSK3{beta} substrates, such as {beta}-catenin and collapsin response mediator protein-2 (CRMP2) since their phosphorylation is all increased in AD brains. Thus, we addressed this paradoxical condition of AD in rat neurons treated with okadaic acid (OA) which inhibits protein phosphatase-2A (PP2A) and induces tau hyperphosphorylation and cell death. Interestingly, OA also induces phosphorylation of GSK3{beta} at serine-9 and other substrates including tau, {beta}-catenin and CRMP2 like in AD brains. In this context, we observed that GSK3{beta} inhibitors such as lithium chloride and 6-bromoindirubin-3'-monoxime (6-BIO) reversed those phosphorylation events and protected neurons. These data suggest that GSK3{beta} may still have its kinase activity despite increase of its phosphorylation at serine-9 in AD brains at least in PP2A-compromised conditions and that GSK3{beta} inhibitors could be a valuable drug candidate in AD.

  5. Expression of cyclooxygenase-2, alpha 1-acid-glycoprotein and inducible nitric oxide synthase in the developing lesions of murine leprosy

    PubMed Central

    Silva Miranda, Mayra; Rodríguez, Kendy Wek; Martínez Cordero, Erasmo; Rojas-Espinosa, Oscar

    2006-01-01

    Murine leprosy is a chronic disease of the mouse, the most popular animal model used in biomedical investigation, which is caused by Mycobacterium lepraemurium (MLM) whose characteristic lesion is the macrophage-made granuloma. From onset to the end of the disease, the granuloma undergoes changes that gradually transform the environment into a more appropriate milieu for the growth of M. lepraemurium. The mechanisms that participate in the formation and maturation of the murine leprosy granulomas are not completely understood; however, microbial and host-factors are believed to participate in their formation. In this study, we analysed the role of various pro-inflammatory and anti-inflammatory proteins in granulomas of murine leprosy after 21 weeks of infection. We assessed the expression of cyclooxygenase-2 (COX-2), alpha acid-glycoprotein (AGP), and inducible nitric oxide synthase (iNOS) at sequential stages of infection. We also looked for the nitric-oxide nitrosylation product, nitrotyrosine (NT) in the granulomatous lesions of murine leprosy. We found that a pro-inflammatory environment predominates in the early granulomas while an anti-inflammatory environment predominates in late granulomas. No obvious signs of bacillary destruction were observed during the entire period of infection, but nitrosylation products and cell alterations were observed in granulomas in the advanced stages of disease. The change from a pro-inflammatory to an anti-inflammatory environment, which is probably driven by the bacillus itself, results in a more conducive environment for both bacillus replication and the disease progression. PMID:17222216

  6. 4-Methylumbelliferone inhibits hyaluronan synthesis by depletion of cellular UDP-glucuronic acid and downregulation of hyaluronan synthase 2 and 3

    SciTech Connect

    Kultti, Anne; Pasonen-Seppaenen, Sanna; Jauhiainen, Marjo; Rilla, Kirsi J.; Kaernae, Riikka; Pyoeriae, Emma; Tammi, Raija H.; Tammi, Markku I.

    2009-07-01

    Hyaluronan accumulation on cancer cells and their surrounding stroma predicts an unfavourable disease outcome, suggesting that hyaluronan enhances tumor growth and spreading. 4-Methylumbelliferone (4-MU) inhibits hyaluronan synthesis and retards cancer spreading in experimental animals through mechanisms not fully understood. These mechanisms were studied in A2058 melanoma cells, MCF-7 and MDA-MB-361 breast, SKOV-3 ovarian and UT-SCC118 squamous carcinoma cells by analysing hyaluronan synthesis, UDP-glucuronic acid (UDP-GlcUA) content, and hyaluronan synthase (HAS) mRNA levels. The maximal inhibition in hyaluronan synthesis ranged 22-80% in the cell lines tested. Active glucuronidation of 4-MU produced large quantities of 4-MU-glucuronide, depleting the cellular UDP-GlcUA pool. The maximal reduction varied between 38 and 95%. 4-MU also downregulated HAS mRNA levels: HAS3 was 84-60% lower in MDA-MB-361, A2058 and SKOV-3 cells. HAS2 was the major isoenzyme in MCF-7 cells and lowered by 81%, similar to 88% in A2058 cells. These data indicate that both HAS substrate and HAS2 and/or HAS3 mRNA are targeted by 4-MU. Despite different target point sensitivities, the reduction of hyaluronan caused by 4-MU was associated with a significant inhibition of cell migration, proliferation and invasion, supporting the importance of hyaluronan synthesis in cancer, and the therapeutic potential of hyaluronan synthesis inhibition.

  7. Saponin Biosynthesis in Saponaria vaccaria. cDNAs Encoding β-Amyrin Synthase and a Triterpene Carboxylic Acid Glucosyltransferase1[OA

    PubMed Central

    Meesapyodsuk, Dauenpen; Balsevich, John; Reed, Darwin W.; Covello, Patrick S.

    2007-01-01

    Saponaria vaccaria (Caryophyllaceae), a soapwort, known in western Canada as cowcockle, contains bioactive oleanane-type saponins similar to those found in soapbark tree (Quillaja saponaria; Rosaceae). To improve our understanding of the biosynthesis of these saponins, a combined polymerase chain reaction and expressed sequence tag approach was taken to identify the genes involved. A cDNA encoding a β-amyrin synthase (SvBS) was isolated by reverse transcription-polymerase chain reaction and characterized by expression in yeast (Saccharomyces cerevisiae). The SvBS gene is predominantly expressed in leaves. A S. vaccaria developing seed expressed sequence tag collection was developed and used for the isolation of a full-length cDNA bearing sequence similarity to ester-forming glycosyltransferases. The gene product of the cDNA, classified as UGT74M1, was expressed in Escherichia coli, purified, and identified as a triterpene carboxylic acid glucosyltransferase. UGT74M1 is expressed in roots and leaves and appears to be involved in monodesmoside biosynthesis in S. vaccaria. PMID:17172290

  8. Synergism in the effect of prior jasmonic acid application on herbivore-induced volatile emission by Lima bean plants: transcription of a monoterpene synthase gene and volatile emission

    PubMed Central

    Menzel, Tila R.; Weldegergis, Berhane T.; David, Anja; Boland, Wilhelm; Gols, Rieta; van Loon, Joop J. A.; Dicke, Marcel

    2014-01-01

    Jasmonic acid (JA) plays a central role in induced plant defence e.g. by regulating the biosynthesis of herbivore-induced plant volatiles that mediate the attraction of natural enemies of herbivores. Moreover, exogenous application of JA can be used to elicit plant defence responses similar to those induced by biting-chewing herbivores and mites that pierce cells and consume their contents. In the present study, we used Lima bean (Phaseolus lunatus) plants to explore how application of a low dose of JA followed by minor herbivory by spider mites (Tetranychus urticae) affects transcript levels of P. lunatus (E)-β-ocimene synthase (PlOS), emission of (E)-β-ocimene and nine other plant volatiles commonly associated with herbivory. Furthermore, we investigated the plant’s phytohormonal response. Application of a low dose of JA increased PlOS transcript levels in a synergistic manner when followed by minor herbivory for both simultaneous and sequential infestation. Emission of (E)-β-ocimene was also increased, and only JA, but not SA, levels were affected by treatments. Projection to latent structures-discriminant analysis (PLS-DA) of other volatiles showed overlap between treatments. Thus, a low-dose JA application results in a synergistic effect on gene transcription and an increased emission of a volatile compound involved in indirect defence after herbivore infestation. PMID:25318119

  9. Caffeic Acid Phenethyl Ester inhibit Hepatic Fibrosis by Nitric Oxide Synthase and Cystathionine Gamma-Lyase in Rats

    PubMed Central

    Shi, Yan; Guo, Li; Shi, Lu; Yu, Jinyang; Song, Min; Li, Yana

    2015-01-01

    Background Our aim was to study the effect of caffeic acid phenethyl ester (CAPE) on iNOS and cystathionine gamma-lyase (CSE) of hepatic fibrosis rat, and discuss the anti-hepatic fibrosis mechanism of caffeic acid phenethyl ester. Material/Methods We observed changes of NO and H2S in serum of hepatic fibrosis rats. Enzyme-linked immunosorbent assay was used to test OD value of iNOS and CSE in serum of each. The expressions of iNOS and CSE protein in the liver were also detected by immunohistochemistry. Results Compared with the model group, the expression of NO and iNOS was decreased obviously and the level of H2S and CSE was increased in the CAPE group. Conclusions CAPE has the effect of anti-hepatic fibrosis, which can be realized through adjusting the expression level of iNOS and CSE. PMID:26378818

  10. Structural genes of glutamate 1-semialdehyde aminotransferase for porphyrin synthesis in a cyanobacterium and Escherichia coli.

    PubMed

    Grimm, B; Bull, A; Breu, V

    1991-01-01

    In bacteria 5-aminolevulinate, the universal precursor in the biosynthesis of the porphyrin nucleus of hemes, chlorophylls and bilins is synthesised by two different pathways: in non-sulphur purple bacteria (Rhodobacter) or Rhizobium 5-aminolevulinate synthase condenses glycine and succinyl-CoA into 5-aminolevulinate as is the case in mammalian cells and yeast. In cyanobacteria, green and purple sulphur bacteria, as in chloroplasts of higher plants and algae a three step pathway converts glutamate into 5-aminolevulinate. The last step is the conversion of glutamate 1-semialdehyde into 5-aminolevulinate. Using a cDNA clone encoding glutamate 1-semialdehyde aminotransferase from barley, genes for this enzyme were cloned from Synechococcus PCC6301 and Escherichia coli and sequenced. The popC gene of E. coli, previously considered to encode 5-aminolevulinate synthase, appears to be a structural gene for glutamate 1-semialdehyde aminotransferase. Domains with identical amino acid sequences comprise 48% of the primary structure of the barley, cyanobacterial and putative E. coli glutamate 1-semialdehyde aminotransferases. The cyanobacterial and barley enzymes share 72% identical residues. The peptide containing a likely pyridoxamine phosphate binding lysine is conserved in all three protein sequences. PMID:1900346

  11. Thyroid hormone responsive protein Spot14 enhances catalysis of fatty acid synthase in lactating mammary epithelium[S

    PubMed Central

    Rudolph, Michael C.; Wellberg, Elizabeth A.; Lewis, Andrew S.; Terrell, Kristina L.; Merz, Andrea L.; Maluf, N. Karl; Serkova, Natalie J.; Anderson, Steven M.

    2014-01-01

    Thyroid hormone responsive protein Spot 14 has been consistently associated with de novo fatty acid synthesis activity in multiple tissues, including the lactating mammary gland, which synthesizes large quantities of medium chain fatty acids (MCFAs) exclusively via FASN. However, the molecular function of Spot14 remains undefined during lactation. Spot14-null mice produce milk deficient in total triglyceride and de novo MCFA that does not sustain optimal neonatal growth. The lactation defect was rescued by provision of a high fat diet to the lactating dam. Transgenic mice overexpressing Spot14 in mammary epithelium produced total milk fat equivalent to controls, but with significantly greater MCFA. Spot14-null dams have no diminution of metabolic gene expression, enzyme protein levels, or intermediate metabolites that accounts for impaired de novo MCFA. When [13C] fatty acid products were quantified in vitro using crude cytosolic lysates, native FASN activity was 1.6-fold greater in control relative to Spot14-null lysates, and add back of Spot14 partially restored activity. Recombinant FASN catalysis increased 1.4-fold and C = 14:0 yield was enhanced 4-fold in vitro following addition of Spot14. These findings implicate Spot14 as a direct protein enhancer of FASN catalysis in the mammary gland during lactation when maximal MCFA production is needed. PMID:24771867

  12. Involvement of salicylic acid on antioxidant and anticancer properties, anthocyanin production and chalcone synthase activity in ginger (Zingiber officinale Roscoe) varieties.

    PubMed

    Ghasemzadeh, Ali; Jaafar, Hawa Z E; Karimi, Ehsan

    2012-01-01

    The effect of foliar application of salicylic acid (SA) at different concentrations (10-3 M and 10-5 M) was investigated on the production of secondary metabolites (flavonoids), chalcone synthase (CHS) activity, antioxidant activity and anticancer activity (against breast cancer cell lines MCF-7 and MDA-MB-231) in two varieties of Malaysian ginger, namely Halia Bentong and Halia Bara. The results of high performance liquid chromatography (HPLC) analysis showed that application of SA induced the synthesis of anthocyanin and fisetin in both varieties. Anthocyanin and fisetin were not detected in the control plants. Accordingly, the concentrations of some flavonoids (rutin and apigenin) decreased significantly in plants treated with different concentrations of SA. The present study showed that SA enhanced the chalcone synthase (CHS) enzyme activity (involving flavonoid synthesis) and recorded the highest activity value of 5.77 nkat /mg protein in Halia Bara with the 10-5 M SA treatment. As the SA concentration was decreased from 10-3 M to 10-5 M, the free radical scavenging power (FRAP) increased about 23% in Halia Bentong and 10.6% in Halia Bara. At a concentration of 350 μg mL-1, the DPPH antioxidant activity recorded the highest value of 58.30%-72.90% with the 10-5 M SA treatment followed by the 10-3 M SA (52.14%-63.66%) treatment. The lowest value was recorded in the untreated control plants (42.5%-46.7%). These results indicate that SA can act not only as an inducer but also as an inhibitor of secondary metabolites. Meanwhile, the highest anticancer activity against MCF-7 and MDA-MB-231 cell lines was observed for H. Bara extracts treated with 10-5 M SA with values of 61.53 and 59.88%, respectively. The results suggest that the high anticancer activity in these varieties may be related to the high concentration of potent anticancer components including fisetin and anthocyanin. The results thus indicate that the synthesis of flavonoids in ginger can be increased

  13. Involvement of Salicylic Acid on Antioxidant and Anticancer Properties, Anthocyanin Production and Chalcone Synthase Activity in Ginger (Zingiber officinale Roscoe) Varieties

    PubMed Central

    Ghasemzadeh, Ali; Jaafar, Hawa Z. E.; Karimi, Ehsan

    2012-01-01

    The effect of foliar application of salicylic acid (SA) at different concentrations (10−3 M and 10−5 M) was investigated on the production of secondary metabolites (flavonoids), chalcone synthase (CHS) activity, antioxidant activity and anticancer activity (against breast cancer cell lines MCF-7 and MDA-MB-231) in two varieties of Malaysian ginger, namely Halia Bentong and Halia Bara. The results of high performance liquid chromatography (HPLC) analysis showed that application of SA induced the synthesis of anthocyanin and fisetin in both varieties. Anthocyanin and fisetin were not detected in the control plants. Accordingly, the concentrations of some flavonoids (rutin and apigenin) decreased significantly in plants treated with different concentrations of SA. The present study showed that SA enhanced the chalcone synthase (CHS) enzyme activity (involving flavonoid synthesis) and recorded the highest activity value of 5.77 nkat /mg protein in Halia Bara with the 10−5 M SA treatment. As the SA concentration was decreased from 10−3 M to 10−5 M, the free radical scavenging power (FRAP) increased about 23% in Halia Bentong and 10.6% in Halia Bara. At a concentration of 350 μg mL−1, the DPPH antioxidant activity recorded the highest value of 58.30%–72.90% with the 10−5 M SA treatment followed by the 10−3 M SA (52.14%–63.66%) treatment. The lowest value was recorded in the untreated control plants (42.5%–46.7%). These results indicate that SA can act not only as an inducer but also as an inhibitor of secondary metabolites. Meanwhile, the highest anticancer activity against MCF-7 and MDA-MB-231 cell lines was observed for H. Bara extracts treated with 10−5 M SA with values of 61.53 and 59.88%, respectively. The results suggest that the high anticancer activity in these varieties may be related to the high concentration of potent anticancer components including fisetin and anthocyanin. The results thus indicate that the synthesis of flavonoids in

  14. Homology study of two polyhydroxyalkanoate (PHA) synthases from Pseudomonas aureofaciens.

    PubMed

    Umeda, F; Nishikawa, T; Miyasaka, H; Maeda, I; Kawase, M; Yagi, K

    2001-11-01

    Recently, we have cloned and analyzed two polyhydroxyalkanoate (PHA) synthase genes (phaC1 and phaC2 in the pha cluster) from Pseudomonas aureofaciens. In this report, the deduced amino acid (AA) sequences of PHA synthase 1 and PHA synthase 2 from P. aureofaciens are compared with those from three other bacterial strains (Pseudomonas sp. 61-3, P. oleovorans and P. aeruginosa) containing the homologous pha cluster. The level of homology of either PHA synthase 1 or PHA synthase 2 was high with each enzyme from these three bacterial strains. Furthermore, multialignment of PHA synthase AA sequences implied that both enzymes of PHA synthase 1 and PHA synthase 2 were highly conserved in the four strains including P. aureofaciens. PMID:11916262

  15. Siro(haem)amide in Allochromatium vinosum and relevance of DsrL and DsrN, a homolog of cobyrinic acid a,c-diamide synthase, for sulphur oxidation.

    PubMed

    Lübbe, Yvonne J; Youn, Hyung-Sun; Timkovich, Russell; Dahl, Christiane

    2006-08-01

    In the purple sulphur bacterium Allochromatium vinosum, the prosthetic group of dissimilatory sulphite reductase (DsrAB) was identified as siroamide, an amidated form of the classical sirohaem. The genes dsrAB are the first two of a large cluster of genes necessary for the oxidation of sulphur globules stored intracellularly during growth on sulphide and thiosulphate. DsrN is homologous to cobyrinic acid a,c diamide synthase and may therefore catalyze glutamine-dependent amidation of sirohaem. Indeed, an A. vinosumDeltadsrN in frame deletion mutant showed a significantly reduced sulphur oxidation rate that was fully restored upon complementation with dsrN in trans. Sulphite reductase was still present in the DeltadsrN mutant. DsrL is a homolog of the small subunits of bacterial glutamate synthases and was proposed to deliver glutamine for sirohaem amidation. However, recombinant DsrL does not exhibit glutamate synthase activity nor does the gene complement a glutamate synthase-deficient Escherichia coli strain. Deletion of dsrL showed that the encoded protein is absolutely essential for sulphur oxidation in A. vinosum. PMID:16907720

  16. Isolation and characterization of isochorismate synthase and cinnamate 4-hydroxylase during salinity stress, wounding, and salicylic acid treatment in Carthamus tinctorius

    PubMed Central

    Sadeghi, Mahnaz; Dehghan, Sara; Fischer, Rainer; Wenzel, Uwe; Vilcinskas, Andreas; Kavousi, Hamid Reza; Rahnamaeian, Mohammad

    2013-01-01

    Salicylic acid (SA) is a prominent signaling molecule during biotic and abiotic stresses in plants biosynthesized via cinnamate and isochorismate pathways. Cinnamate 4-hydroxylase (C4H) and isochorismate synthase (ICS) are the main enzymes in phenylpropanoid and isochorismate pathways, respectively. To investigate the actual roles of these genes in resistance mechanism to environmental stresses, here, the coding sequences of these enzymes in safflower (Carthamus tinctorius), as an oilseed industrial medicinal plant, were partially isolated and their expression profiles during salinity stress, wounding, and salicylic acid treatment were monitored. As a result, safflower ICS (CtICS) and C4H (CtC4H) were induced in early time points after wounding (3–6 h). Upon salinity stress, CtICS and CtC4H were highly expressed for the periods of 6–24 h and 3–6 h after treatment, respectively. It seems evident that ICS expression level is SA concentration dependent as if safflower treatment with 1 mM SA could induce ICS much stronger than that with 0.1 mM, while C4H is less likely to be so. Based on phylogenetic analysis, safflower ICS has maximum similarity to its ortholog in Vitis vinifera up to 69%, while C4H shows the highest similarity to its ortholog in Echinacea angustifolia up to 96%. Overall, the isolated genes of CtICS and CtC4H in safflower could be considered in plant breeding programs for salinity tolerance as well as for pathogen resistance. PMID:24309561

  17. Theanaphthoquinone inhibits fatty acid synthase expression in EGF-stimulated human breast cancer cells via the regulation of EGFR/ErbB-2 signaling

    SciTech Connect

    Weng, M.-S.; Ho, C.-T.; Ho, Y.-S.; Lin, J.-K. . E-mail: jklin@ha.mc.ntu.edu.tw

    2007-01-15

    Fatty acid synthase (FAS) is a major lipogenic enzyme catalyzing the synthesis of long-chain saturated fatty acids. Most breast cancers require lipogenesis for growth. Here, we demonstrated the effects of theanaphthoquinone (TNQ), a member of the thearubigins generated by the oxidation of theaflavin (TF-1), on the expression of FAS in human breast cancer cells. TNQ was found to suppress the EGF-induced expression of FAS mRNA and FAS protein in MDA-MB-231 cells. Expression of FAS has previously been shown to be regulated by the SREBP family of transcription factors. In this study, we demonstrated that the EGF-induced nuclear translocation of SREBP-1 was blocked by TNQ. Moreover, TNQ also modulated EGF-induced ERK1/2 and Akt phosphorylation. Treatment of MDA-MB-231 cells with PI 3-kinase inhibitors, LY294002 and Wortmannin, inhibited the EGF-induced expression of FAS and nuclear translocation of SREBP-1. Treatment with TNQ inhibited EGF-induced EGFR/ErbB-2 phosphorylation and dimerization. Furthermore, treatment with kinase inhibitors of EGFR and ErbB-2 suggested that EGFR/ErbB-2 activation was involved in EGF-induced FAS expression. In constitutive FAS expression, TNQ inhibited FAS expression and Akt autophosphorylation in BT-474 cells. The PI 3-kinase inhibitors and tyrosine kinase inhibitors of EGFR and ErbB-2 also reduced constitutive FAS expression. In addition, pharmacological blockade of FAS by TNQ decreased cell viability and induced cell death in BT-474 cells. In summary, our findings suggest that TNQ modulates FAS expression by the regulation of EGFR/ErbB-2 pathways and induces cell death in breast cancer cells.

  18. Deficiency in a Very-Long-Chain Fatty Acid β-Ketoacyl-Coenzyme A Synthase of Tomato Impairs Microgametogenesis and Causes Floral Organ Fusion1[W

    PubMed Central

    Smirnova, Anna; Leide, Jana; Riederer, Markus

    2013-01-01

    Previously, it was shown that β-ketoacyl-coenzyme A synthase ECERIFERUM6 (CER6) is necessary for the biosynthesis of very-long-chain fatty acids with chain lengths beyond C28 in tomato (Solanum lycopersicum) fruits and C26 in Arabidopsis (Arabidopsis thaliana) leaves and the pollen coat. CER6 loss of function in Arabidopsis resulted in conditional male sterility, since pollen coat lipids are responsible for contact-mediated pollen hydration. In tomato, on the contrary, pollen hydration does not rely on pollen coat lipids. Nevertheless, mutation in SlCER6 impairs fertility and floral morphology. Here, the contribution of SlCER6 to the sexual reproduction and flower development of tomato was addressed. Cytological analysis and cross-pollination experiments revealed that the slcer6 mutant has male sterility caused by (1) hampered pollen dispersal and (2) abnormal tapetum development. SlCER6 loss of function provokes a decrease of n- and iso-alkanes with chain lengths of C27 or greater and of anteiso-alkanes with chain lengths of C28 or greater in flower cuticular waxes, but it has no impact on flower cuticle ultrastructure and cutin content. Expression analysis confirmed high transcription levels of SlCER6 in the anther and the petal, preferentially in sites subject to epidermal fusion. Hence, wax deficiency was proposed to be the primary reason for the flower fusion phenomenon in tomato. The SlCER6 substrate specificity was revisited. It might be involved in elongation of not only linear but also branched very-long-chain fatty acids, leading to production of the corresponding alkanes. SlCER6 implements a function in the sexual reproduction of tomato that is different from the one in Arabidopsis: SlCER6 is essential for the regulation of timely tapetum degradation and, consequently, microgametogenesis. PMID:23144186

  19. Fatty acid synthase overexpression in adult testicular germ cell tumors: potential role in the progression of non-seminomatous germ cell tumors.

    PubMed

    Miyai, Kosuke; Iwaya, Keiichi; Asano, Tomohiko; Tamai, Seiichi; Matsubara, Osamu; Tsuda, Hitoshi

    2014-02-01

    Overexpression of fatty acid synthase (FASN), which is a key enzyme responsible for the endogenous synthesis of fatty acids, and its association with multistep progression have been demonstrated in various human malignant tumors. We aimed to clarify the potential role of FASN overexpression in the development and progression of adult testicular germ cell tumors (TGCTs). From the primary sites of a cohort of 113 TGCT cases, we obtained 221 histological components: 53 intratubular germ cell neoplasias, unclassified (IGCNUs), 84 seminomas, 32 embryonal carcinomas, seven choriocarcinomas, 21 yolk sac tumors, and 24 teratomas. Samples were analyzed for overexpression of FASN by immunohistochemistry. Intensities of immunoreactivity and the fraction of positive cells were classified into each four categories (intensity, 0 to 3; fraction, 0-10 % = 1, 11-50 % = 2, 51-80 % = 3, and >80 % = 4). The overall score was determined by multiplication of both scores and overall scores greater than 6 were considered FASN overexpression. On a component basis, FASN overexpression was detected in 8 % of seminomas but not in IGCNUs (0 %) and was detected frequently in non-seminomatous germ cell tumors (NSGCTs) (88 % of embryonal carcinomas, all choriocarcinomas, 81 % of yolk sac tumors, and 54 % of teratomas). There were no cases of a mixed tumor (i.e., a tumor with multiple histological components) that overexpressed FASN in seminoma components but not in co-existing NSGCT components, suggesting sequential progression. Our immunohistochemical data suggest that FASN overexpression occurs as a late event during the progression from IGCNUs/seminomas to NSGCTs. PMID:24337182

  20. Reduced expression of intestinal N-acetylglutamate synthase in suckling piglets: a novel molecular mechanism for arginine as a nutritionally essential amino acid for neonates.

    PubMed

    Geng, Meimei; Li, Tiejun; Kong, Xiangfeng; Song, Xiaoyan; Chu, Wuying; Huang, Ruilin; Yin, Yulong; Wu, Guoyao

    2011-05-01

    The objective of this study was to determine developmental changes in mRNA and protein levels for N-acetylglutamate synthase (NAGS; a key enzyme in synthesis of citrulline and arginine from glutamine/glutamate and proline) in the small intestine of suckling piglets. The porcine NAGS gene was cloned using the real-time polymerase-chain reaction (RT-PCR) method. The porcine NAGS gene encoded 368 amino acid residues and had a high degree of sequence similarity to the "conserved domain" of human and mouse NAGS genes. The porcine NAGS gene was expressed in E. coli BL21 and a polyclonal antibody against the porcine NAGS protein was developed. Real-time RT-PCR and western-blot analyses were performed to quantify NAGS mRNA and protein, respectively, in the jejunum and ileum of 1- to 28-day-old pigs. Results indicated that intestinal NAGS mRNA levels were lower in 7- to 28-day-old than in 1-day-old pigs. Immunochemical analysis revealed that NAGS protein was localized in enterocytes of the gut. Notably, intestinal NAGS protein abundance declined progressively during the 28-day suckling period. The postnatal decrease in NAGS protein levels was consistent with the previous report of reduced NAGS enzymatic activity as well as reduced synthesis of citrulline and arginine in the small intestine of 7- to 28-day-old pigs. Collectively, these results suggest that intestinal NAGS expression is regulated primarily at the post-transcriptional level. The findings also provide a new molecular basis to explain that endogenous synthesis of arginine is impaired in sow-reared piglets and arginine is a nutritionally essential amino acid for the neonates. PMID:20931344

  1. Differential inductions of phenylalanine ammonia-lyase and chalcone synthase during wounding, salicylic acid treatment, and salinity stress in safflower, Carthamus tinctorius.

    PubMed

    Dehghan, Sara; Sadeghi, Mahnaz; Pöppel, Anne; Fischer, Rainer; Lakes-Harlan, Reinhard; Kavousi, Hamid Reza; Vilcinskas, Andreas; Rahnamaeian, Mohammad

    2014-01-01

    Safflower (Carthamus tinctorius L.) serves as a reference dicot for investigation of defence mechanisms in Asteraceae due to abundant secondary metabolites and high resistance/tolerance to environmental stresses. In plants, phenylpropanoid and flavonoid pathways are considered as two central defence signalling cascades in stress conditions. Here, we describe the isolation of two major genes in these pathways, CtPAL (phenylalanine ammonia-lyase) and CtCHS (chalcone synthase) in safflower along with monitoring their expression profiles in different stress circumstances. The aa (amino acid) sequence of isolated region of CtPAL possesses the maximum identity up to 96% to its orthologue in Cynara scolymus, while that of CtCHS retains the highest identity to its orthologue in Callistephus chinensis up to 96%. Experiments for gene expression profiling of CtPAL and CtCHS were performed after the treatment of seedlings with 0.1 and 1 mM SA (salicylic acid), wounding and salinity stress. The results of semi-quantitative RT-PCR revealed that both CtPAL and CtCHS genes are further responsive to higher concentration of SA with dissimilar patterns. Regarding wounding stress, CtPAL gets slightly induced upon injury at 3 hat (hours after treatment) (hat), whereas CtCHS gets greatly induced at 3 hat and levels off gradually afterward. Upon salinity stress, CtPAL displays a similar expression pattern by getting slightly induced at 3 hat, but CtCHS exhibits a biphasic expression profile with two prominent peaks at 3 and 24 hat. These results substantiate the involvement of phenylpropanoid and particularly flavonoid pathways in safflower during wounding and especially salinity stress. PMID:24865400

  2. Differential inductions of phenylalanine ammonia-lyase and chalcone synthase during wounding, salicylic acid treatment, and salinity stress in safflower, Carthamus tinctorius

    PubMed Central

    Dehghan, Sara; Sadeghi, Mahnaz; Pöppel, Anne; Fischer, Rainer; Lakes-Harlan, Reinhard; Kavousi, Hamid Reza; Vilcinskas, Andreas; Rahnamaeian, Mohammad

    2014-01-01

    Safflower (Carthamus tinctorius L.) serves as a reference dicot for investigation of defence mechanisms in Asteraceae due to abundant secondary metabolites and high resistance/tolerance to environmental stresses. In plants, phenylpropanoid and flavonoid pathways are considered as two central defence signalling cascades in stress conditions. Here, we describe the isolation of two major genes in these pathways, CtPAL (phenylalanine ammonia-lyase) and CtCHS (chalcone synthase) in safflower along with monitoring their expression profiles in different stress circumstances. The aa (amino acid) sequence of isolated region of CtPAL possesses the maximum identity up to 96% to its orthologue in Cynara scolymus, while that of CtCHS retains the highest identity to its orthologue in Callistephus chinensis up to 96%. Experiments for gene expression profiling of CtPAL and CtCHS were performed after the treatment of seedlings with 0.1 and 1 mM SA (salicylic acid), wounding and salinity stress. The results of semi-quantitative RT–PCR revealed that both CtPAL and CtCHS genes are further responsive to higher concentration of SA with dissimilar patterns. Regarding wounding stress, CtPAL gets slightly induced upon injury at 3 hat (hours after treatment) (hat), whereas CtCHS gets greatly induced at 3 hat and levels off gradually afterward. Upon salinity stress, CtPAL displays a similar expression pattern by getting slightly induced at 3 hat, but CtCHS exhibits a biphasic expression profile with two prominent peaks at 3 and 24 hat. These results substantiate the involvement of phenylpropanoid and particularly flavonoid pathways in safflower during wounding and especially salinity stress. PMID:24865400

  3. Influence of key amino acid mutation on the active site structure and on folding in acetyl-CoA synthase: a theoretical perspective.

    PubMed

    Greco, Claudio; Ciancetta, Antonella; Bruschi, Maurizio; Kulesza, Alexander; Moro, Giorgio; Cosentino, Ugo

    2015-05-18

    Ad hoc quantum chemical modeling of the acetyl-CoA synthase local structure and folding allowed us to identify an unprecedented coordination mode of histidine sidechain to protein-embedded metal ions. PMID:25896878

  4. The first chemical synthesis of novel MeO-3-GlcUA derivative of hyaluronan-based disaccharide to elucidate the catalytic mechanism of hyaluronic acid synthases (HASs)

    PubMed Central

    Wei, Guohua; Kumar, Vipin; Xue, Jun; Locke, Robert D.; Matta, Khushi L.

    2009-01-01

    The first chemical synthesis of MeO-3-GlcUAβ(1→3)GlcNAc-UDP to elucidate the catalytic mechanism of hyaluronic acid synthases (HASs) is described. Construction of the desired β(1→3)-linked disaccharide 10 was achieved very efficiently by coupling MeO-3-GlcUA donor 3 with the suitable protected GlcNTroc acceptor 4 using BF3.Et2O as Lewis acid. Chemoselective removal of anomeric NAP, phosphorylation, hydrogenation, coupling with UMP-morpholidate and finally complete deprotection gave the target compound 1 in good yield. PMID:20161585

  5. Engineering of chromosomal wax ester synthase integrated Saccharomyces cerevisiae mutants for improved biosynthesis of fatty acid ethyl esters.

    PubMed

    Shi, Shuobo; Valle-Rodríguez, Juan Octavio; Siewers, Verena; Nielsen, Jens

    2014-09-01

    In recent years, significant advances have been made to engineer robust microbes for overproducing biochemical products from renewable resources. These accomplishments have to a large extend been based on plasmid based methods. However, plasmid maintenance may cause a metabolic burden on the host cell and plasmid-based overexpression of genes can result in genetically unstable strains, which contributes to loss in productivity. Here, a chromosome engineering method based on delta integration was applied in Saccharomyces cerevisiae for the production of fatty acid ethyl esters (FAEEs), which can be directly used as biodiesel and would be a possible substitute for conventional petroleum-based diesel. An integration construct was designed and integrated into chromosomal delta sequences by repetitive transformation, which resulted in 1-6 copies of the integration construct per genome. The corresponding FAEE production increased up to 34 mg/L, which is an about sixfold increase compared to the equivalent plasmid-based producer. The integrated cassette in the yeast genome was stably maintained in nonselective medium after deletion of RAD52 which is essential for efficient homologous recombination. To obtain a further increase of FAEE production, genes encoding endogenous acyl-CoA binding protein (ACB1) and a bacterial NADP(+)-dependent glyceraldehyde-3-phosphate dehydrogenase (gapN) were overexpressed in the final integration strain, which resulted in another 40% percent increase in FAEE production. Our integration strategy enables easy engineering of strains with adjustable gene copy numbers integrated into the genome and this allows for an easy evaluation of the effect of the gene copy number on pathway flux. It therefore represents a valuable tool for introducing and expressing a heterologous pathway in yeast. PMID:24752598

  6. All-trans retinoic acid induces arginase-1 and inducible nitric oxide synthase-producing dendritic cells with T cell inhibitory function.

    PubMed

    Bhatt, Sumantha; Qin, Jie; Bennett, Carole; Qian, Shiguang; Fung, John J; Hamilton, Thomas A; Lu, Lina

    2014-06-01

    Hepatic stellate cells (HSC) are a major source of the immunoregulatory metabolite all-trans retinoic acid (ATRA), which may contribute to the generation of tolerogenic dendritic cells (DCs) in the liver. The present study seeks to clarify the mechanism(s) through which ATRA promotes the development of tolerogenic DCs. Although bone marrow-derived ATRA-treated DCs (RA-DCs) and conventional DCs had comparable surface phenotype, RA-DCs had diminished stimulatory capacity and could directly inhibit the expansion of DC/OVA-stimulated OT-II T cells. Arginase-1 (Arg-1) was found promote suppression because 1) ATRA was a potent inducer of Arg-1 protein and activity, 2) the Arg-1 inhibitor N(w)-hydroxy nor-l-arginine partially reversed suppression, and 3) the suppressive function of RA-DCs was partially compromised using OT-II T cells from GCN2(-/-) mice, which are insensitive to Arg-1. Inducible NO synthase (iNOS), however, was found to be a more significant contributor to RA-DC function because 1) ATRA potentiated the expression of IFN-γ-induced iNOS, 2) suppressive function in RA-DCs was blocked by the iNOS inhibitor N(G)-monomethyl-l-arginine, monoacetate salt, and 3) RA-DCs derived from iNOS(-/-) mice exhibited near complete loss of tolerogenic function, despite sustained Arg-1 activity. The expression of iNOS and the suppressive function of RA-DCs were dependent on both IFN-γ and ATRA. Furthermore, the in vivo behavior of RA-DCs proved to be consistent with their in vitro behavior. Thus, we conclude that ATRA enhances both Arg-1 and iNOS expression in IFN-γ-treated DCs, resulting in a tolerogenic phenotype. These findings elucidate mechanisms through which ATRA may contribute to liver immune tolerance. PMID:24790153

  7. Vanadate and selenium inhibit the triiodothyronine induced enzyme activity and mRNA level for both fatty acid synthase and malic enzyme

    SciTech Connect

    Zhu, Y.; Mirmiran, R.; Goodridge, A.G.; Stapleton, S.R. Western Michigan Univ., Kalamazoo )

    1991-03-15

    In chick-embryo hepatocytes in culture, triiodothyronine stimulates enzyme activity, mRNA level and transcription rate for both fatty acid synthase (FAS) and malic enzyme (ME). Insulin alone has no effect but amplifies the induction by T3. Recent evidence has demonstrated the insulin-mimicking action of vanadate and selenium on various physiological processes. Little information, however, is available on the affects of vanadate and selenium on the expression of genes that are regulated by insulin. These studies were initiated to test the potential of vanadate and selenium to mimic the amplification affect of insulin on the T3 induction of FAS and ME. In chick-embryo hepatocytes incubated in a chemically defined medium, addition of T3 for 48h causes an increase in the enzyme activity and mRNA level for both FAS and ME. Addition of sodium vanadate or sodium selenate (20 {mu}M) coincident with the T3 almost completely inhibited the stimulation of FAS and ME activity and accumulation of their respective mRNA's. Fifty percent maximal inhibition occurred at about 3-40{mu}M vanadate or 5-10{mu}M selenium. Vanadate and selenium similarity inhibited FAS and ME enzyme activity and mRNA level when the cells were incubated in the presence of insulin and T3. The effect of these metals was selective; isocitrate dehydrogenase activity as well as the level of glyceraldehyde 3-phosphate mRNA were not affected by any of the additions made to the cells in culture. This effect by vanadate and selenium also does not appear to be a generalized effect of metals on lipogenic enzymes as molydate under similar experimental conditions has no effect on either the enzyme activity or mRNA level of FAS or ME. Studies are continuing to determine the mechanism of action of these agents on the regulation of lipogenic enzymes.

  8. MicroRNA-1207-5p inhibits hepatocellular carcinoma cell growth and invasion through the fatty acid synthase-mediated Akt/mTOR signalling pathway.

    PubMed

    Zhao, Gang; Dong, Lei; Shi, Haitao; Li, Hong; Lu, Xiaolan; Guo, Xiaoyan; Wang, Jinhai

    2016-09-01

    Fatty acid synthase (FASN) has emerged as a unique oncologic target for the treatment of cancers, including hepatocellular carcinoma (HCC). However, effective inhibitors of FASN for cancer treatment are lacking. MicroRNAs (miRNAs) have emerged as novel and endogenic inhibitors of gene expression. In the present study, we aimed to investigate the role of miR‑1207‑5p in HCC and the regulation of FASN through miR‑1207‑5p. The expression of miR-1207-5p was markedly reduced in HCC tissues and cell lines as detected with real‑time quantitative polymerase chain reaction (qPCR). Overexpression of miR-1207-5p significantly suppressed the cell growth and invasion of HCC cells. By contrast, inhibition of miR‑1207‑5p exhibited an opposite effect. Bioinformatics analysis showed that FASN is a predicted target of miR‑1207‑5p which was validated by dual‑luciferase reporter assay, qPCR and western blot analysis. Overexpression of miR‑1207‑5p inhibited the Akt/mTOR signalling pathway, and promotion of this pathway was noted following inhibition of miR‑1207‑5p. Rescue experiments showed that the restoration of FASN expression partially reversed the inhibitory effect of miR‑1207‑5p on cell growth, invasion and Akt phosphorylation. In conclusion, our study suggests that miR‑1207‑5p/FASN plays an important role in HCC, and provides novel insight into developing new inhibitors for FASN for therapeutic interventions for HCC. PMID:27461404

  9. Dual Fatty Acid Synthase and HER2 Signaling Blockade Shows Marked Antitumor Activity against Breast Cancer Models Resistant to Anti-HER2 Drugs

    PubMed Central

    Blancafort, Adriana; Giró-Perafita, Ariadna; Oliveras, Glòria; Palomeras, Sònia; Turrado, Carlos; Campuzano, Òscar; Carrión-Salip, Dolors; Massaguer, Anna; Brugada, Ramon; Palafox, Marta; Gómez-Miragaya, Jorge; González-Suárez, Eva; Puig, Teresa

    2015-01-01

    Blocking the enzyme Fatty Acid Synthase (FASN) leads to apoptosis of HER2-positive breast carcinoma cells. The hypothesis is that blocking FASN, in combination with anti-HER2 signaling agents, would be an effective antitumor strategy in preclinical HER2+ breast cancer models of trastuzumab and lapatinib resistance. We developed and molecularly characterized in vitro HER2+ models of resistance to trastuzumab (SKTR), lapatinib (SKLR) and both (SKLTR). The cellular interactions of combining anti-FASN polyphenolic compounds (EGCG and the synthetic G28UCM) with anti-HER2 signaling drugs (trastuzumab plus pertuzumab and temsirolimus) were analyzed. Tumor growth inhibition after treatment with EGCG, pertuzumab, temsirolimus or the combination was evaluated in two in vivo orthoxenopatients: one derived from a HER2+ patient and another from a patient who relapsed on trastuzumab and lapatinib-based therapy. SKTR, SKLR and SKLTR showed hyperactivation of EGFR and p-ERK1/2 and PI3KCA mutations. Dual-resistant cells (SKLTR) also showed hyperactivation of HER4 and recovered levels of p-AKT compared with mono-resistant cells. mTOR, p-mTOR and FASN expression remained stable in SKTR, SKLR and SKLTR. In vitro, anti-FASN compounds plus pertuzumab showed synergistic interactions in lapatinib- and dual- resistant cells and improved the results of pertuzumab plus trastuzumab co-treatment. FASN inhibitors combined with temsirolimus displayed the strongest synergistic interactions in resistant cells. In vivo, both orthoxenopatients showed strong response to the antitumor activity of the combination of EGCG with pertuzumab or temsirolimus, without signs of toxicity. We showed that the simultaneous blockade of FASN and HER2 pathways is effective in cells and in breast cancer models refractory to anti-HER2 therapies. PMID:26107737

  10. A Ser/Thr protein kinase phosphorylates MA-ACS1 (Musa acuminata 1-aminocyclopropane-1-carboxylic acid synthase 1) during banana fruit ripening.

    PubMed

    Choudhury, Swarup Roy; Roy, Sujit; Sengupta, Dibyendu N

    2012-08-01

    1-Aminocyclopropane-1-carboxylic acid synthase (ACS) catalyzes the rate-limiting step in ethylene biosynthesis during ripening. ACS isozymes are regulated both transcriptionally and post-translationally. However, in banana, an important climacteric fruit, little is known about post-translational regulation of ACS. Here, we report the post-translational modification of MA-ACS1 (Musa acuminata ACS1), a ripening inducible isozyme in the ACS family, which plays a key role in ethylene biosynthesis during banana fruit ripening. Immunoprecipitation analyses of phospholabeled protein extracts from banana fruit using affinity-purified anti-MA-ACS1 antibody have revealed phosphorylation of MA-ACS1, particularly in ripe fruit tissue. We have identified the induction of a 41-kDa protein kinase activity in pulp at the onset of ripening. The 41-kDa protein kinase has been identified as a putative protein kinase by MALDI-TOF/MS analysis. Biochemical analyses using partially purified protein kinase fraction from banana fruit have identified the protein kinase as a Ser/Thr family of protein kinase and its possible involvement in MA-ACS1 phosphorylation during ripening. In vitro phosphorylation analyses using synthetic peptides and site-directed mutagenized recombinant MA-ACS1 have revealed that serine 476 and 479 residues at the C-terminal region of MA-ACS1 are phosphorylated. Overall, this study provides important novel evidence for in vivo phosphorylation of MA-ACS1 at the molecular level as a possible mechanism of post-translational regulation of this key regulatory protein in ethylene signaling pathway in banana fruit during ripening. PMID:22419220

  11. Acid-sensing ion channel 1 and nitric oxide synthase are in adjacent layers in the wall of rat and human cerebral arteries

    PubMed Central

    Lin, Li-Hsien; Jin, Jingwen; Nashelsky, Marcus B.; Talman, William T.

    2014-01-01

    Extracellular acidification activates a family of proteins known as acid-sensing ion channels (ASICs). One ASIC subtype, ASIC type 1 (ASIC1), may play an important role in synaptic plasticity, memory, fear conditioning and ischemic brain injury. ASIC1 is found primarily in neurons, but one report showed its expression in isolated mouse cerebrovascular cells. In this study, we sought to determine if ASIC1 is present in intact rat and human major cerebral arteries. A potential physiological significance of such a finding is suggested by studies showing that nitric oxide (NO), which acts as a powerful vasodilator, may modulate proton-gated currents in cultured cells expressing ASIC1s. Because both constitutive NO synthesizing enzymes, neuronal nitric oxide synthase (nNOS) and endothelial NOS (eNOS), are expressed in cerebral arteries we also studied the anatomical relationship between ASIC1 and nNOS or eNOS in both rat and human cerebral arteries. Western blot analysis demonstrated ASIC1 in cerebral arteries from both species. Immunofluorescent histochemistry and confocal microscopy also showed that ASIC1-immunoreactivity (IR), colocalized with the smooth muscle marker alpha-smooth muscle actin (SMA), was present in the anterior cerebral artery (ACA), middle cerebral artery (MCA), posterior cerebral artery (PCA) and basilar artery (BA) of rat and human. Expression of ASIC1 in cerebral arteries is consistent with a role for ASIC1 in modulating cerebrovascular tone both in rat and human. Potential interactions between smooth muscle ASIC1 and nNOS or eNOS were supported by the presence of nNOS-IR in the neighboring adventitial layer and the presence of nNOS-IR and eNOS-IR in the adjacent endothelial layer of the cerebral arteries. PMID:25462386

  12. Evolution of a Double Amino Acid Substitution in the 5-Enolpyruvylshikimate-3-Phosphate Synthase in Eleusine indica Conferring High-Level Glyphosate Resistance1

    PubMed Central

    Yu, Qin; Jalaludin, Adam; Han, Heping; Chen, Ming; Sammons, R. Douglas; Powles, Stephen B.

    2015-01-01

    Glyphosate is the most important and widely used herbicide in world agriculture. Intensive glyphosate selection has resulted in the widespread evolution of glyphosate-resistant weed populations, threatening the sustainability of this valuable once-in-a-century agrochemical. Field-evolved glyphosate resistance due to known resistance mechanisms is generally low to modest. Here, working with a highly glyphosate-resistant Eleusine indica population, we identified a double amino acid substitution (T102I + P106S [TIPS]) in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene in glyphosate-resistant individuals. This TIPS mutation recreates the biotechnology-engineered commercial first generation glyphosate-tolerant EPSPS in corn (Zea mays) and now in other crops. In E. indica, the naturally evolved TIPS mutants are highly (more than 180-fold) resistant to glyphosate compared with the wild type and more resistant (more than 32-fold) than the previously known P106S mutants. The E. indica TIPS EPSPS showed very high-level (2,647-fold) in vitro resistance to glyphosate relative to the wild type and is more resistant (600-fold) than the P106S variant. The evolution of the TIPS mutation in crop fields under glyphosate selection is likely a sequential event, with the P106S mutation being selected first and fixed, followed by the T102I mutation to create the highly resistant TIPS EPSPS. The sequential evolution of the TIPS mutation endowing high-level glyphosate resistance is an important mechanism by which plants adapt to intense herbicide selection and a dramatic example of evolution in action. PMID:25717039

  13. Fetal and neonatal exposure to nicotine leads to augmented hepatic and circulating triglycerides in adult male offspring due to increased expression of fatty acid synthase

    SciTech Connect

    Ma, Noelle; Nicholson, Catherine J.; Wong, Michael; Holloway, Alison C.; Hardy, Daniel B.

    2014-02-15

    While nicotine replacement therapy is assumed to be a safer alternative to smoking during pregnancy, the long-term consequences for the offspring remain elusive. Animal studies now suggest that maternal nicotine exposure during perinatal life leads to a wide range of adverse outcomes for the offspring including increased adiposity. The focus of this study was to investigate if nicotine exposure during pregnancy and lactation leads to alterations in hepatic triglyceride synthesis. Female Wistar rats were randomly assigned to receive daily subcutaneous injections of saline (vehicle) or nicotine bitartrate (1 mg/kg/day) for two weeks prior to mating until weaning. At postnatal day 180 (PND 180), nicotine exposed offspring exhibited significantly elevated levels of circulating and hepatic triglycerides in the male offspring. This was concomitant with increased expression of fatty acid synthase (FAS), the critical hepatic enzyme in de novo triglyceride synthesis. Given that FAS is regulated by the nuclear receptor Liver X receptor (LXRα), we measured LXRα expression in both control and nicotine-exposed offspring. Nicotine exposure during pregnancy and lactation led to an increase in hepatic LXRα protein expression and enriched binding to the putative LXRE element on the FAS promoter in PND 180 male offspring. This was also associated with significantly enhanced acetylation of histone H3 [K9,14] surrounding the FAS promoter, a hallmark of chromatin activation. Collectively, these findings suggest that nicotine exposure during pregnancy and lactation leads to an increase in circulating and hepatic triglycerides long-term via changes in the transcriptional and epigenetic regulation of the hepatic lipogenic pathway. - Highlights: • Our data reveals the links nicotine exposure in utero and long-term hypertriglyceridemia. • It is due to nicotine-induced augmented expression of hepatic FAS and LXRα activity. • Moreover, this involves nicotine-induced enhanced

  14. DNase I hypersensitivity sites and nuclear protein binding on the fatty acid synthase gene: identification of an element with properties similar to known glucose-responsive elements.

    PubMed Central

    Foufelle, F; Lepetit, N; Bosc, D; Delzenne, N; Morin, J; Raymondjean, M; Ferré, P

    1995-01-01

    We have shown previously that fatty acid synthase (FAS) gene expression is positively regulated by glucose in rat adipose tissue and liver. In the present study, we have identified in the first intron of the gene a sequence closely related to known glucose-responsive elements such as in the L-pyruvate kinase and S14 genes, including a putative upstream stimulatory factor/major late transcription factor (USF/MLTF) binding site (E-box) (+ 292 nt to + 297 nt). Location of this sequence corresponds to a site of hypersensitivity to DNase I which is present in the liver but not in the spleen. Moreover, using this information from a preliminary report of the present work, others have shown that a + 283 nt to + 303 nt sequence of the FAS gene can confer glucose responsiveness to a heterologous promoter. The protein binding to this region has been investigated in vitro by a combination of DNase I footprinting and gel-retardation experiments with synthetic oligonucleotides and known nuclear proteins. DNase I footprinting experiments using a + 161 nt to + 405 nt fragment of the FAS gene demonstrate that a region from + 290 nt to + 316 nt is protected by nuclear extracts from liver and spleen. This region binds two ubiquitous nuclear factors, USF/MLTF and the CAAT-binding transcription factor/nuclear factor 1 (CTF/NF1). Binding of these factors is similar in nuclear extracts from liver which does or does not express the FAS gene as observed for glucose-responsive elements in the L-pyruvate kinase and S14 genes. This suggests a posttranslational modification of a factor of the complex after glucose stimulation. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7772036

  15. Proto-oncogene FBI-1 (Pokemon) and SREBP-1 Synergistically Activate Transcription of Fatty-acid Synthase Gene (FASN)*S⃞

    PubMed Central

    Choi, Won-Il; Jeon, Bu-Nam; Park, Hyejin; Yoo, Jung-Yoon; Kim, Yeon-Sook; Koh, Dong-In; Kim, Myung-Hwa; Kim, Yu-Ri; Lee, Choong-Eun; Kim, Kyung-Sup; Osborne, Timothy F.; Hur, Man-Wook

    2008-01-01

    FBI-1 (Pokemon/ZBTB7A) is a proto-oncogenic transcription factor of the BTB/POZ (bric-à-brac, tramtrack, and broad complex and pox virus zinc finger) domain family. Recent evidence suggested that FBI-1 might be involved in adipogenic gene expression. Coincidentally, expression of FBI-1 and fatty-acid synthase (FASN) genes are often increased in cancer and immortalized cells. Both FBI-1 and FASN are important in cancer cell proliferation. SREBP-1 is a major regulator of many adipogenic genes, and FBI-1 and SREBP-1 (sterol-responsive element (SRE)-binding protein 1) interact with each other directly via their DNA binding domains. FBI-1 enhanced the transcriptional activation of SREBP-1 on responsive promoters, pGL2-6x(SRE)-Luc and FASN gene. FBI-1 and SREBP-1 synergistically activate transcription of the FASN gene by acting on the proximal GC-box and SRE/E-box. FBI-1, Sp1, and SREBP-1 can bind to all three SRE, GC-box, and SRE/E-box. Binding competition among the three transcription factors on the GC-box and SRE/E-box appears important in the transcription regulation. FBI-1 is apparently changing the binding pattern of Sp1 and SREBP-1 on the two elements in the presence of induced SREBP-1 and drives more Sp1 binding to the proximal promoter with less of an effect on SREBP-1 binding. The changes induced by FBI-1 appear critical in the synergistic transcription activation. The molecular mechanism revealed provides insight into how proto-oncogene FBI-1 may attack the cellular regulatory mechanism of FASN gene expression to provide more phospholipid membrane components needed for rapid cancer cell proliferation. PMID:18682402

  16. Metformin blocks the stimulative effect of a high-energy diet on colon carcinoma growth in vivo and is associated with reduced expression of fatty acid synthase.

    PubMed

    Algire, Carolyn; Amrein, Lilian; Zakikhani, Mahvash; Panasci, Lawrence; Pollak, Michael

    2010-06-01

    The molecular mechanisms responsible for the association of obesity with adverse colon cancer outcomes are poorly understood. We investigated the effects of a high-energy diet on growth of an in vivo colon cancer model. Seventeen days following the injection of 5x10(5) MC38 colon carcinoma cells, tumors from mice on the high-energy diet were approximately twice the volume of those of mice on the control diet. These findings were correlated with the observation that the high-energy diet led to elevated insulin levels, phosphorylated AKT, and increased expression of fatty acid synthase (FASN) by the tumor cells. Metformin, an antidiabetic drug, leads to the activation of AMPK and is currently under investigation for its antineoplastic activity. We observed that metformin blocked the effect of the high-energy diet on tumor growth, reduced insulin levels, and attenuated the effect of diet on phosphorylation of AKT and expression of FASN. Furthermore, the administration of metformin led to the activation of AMPK, the inhibitory phosphorylation of acetyl-CoA carboxylase, the upregulation of BNIP3 and increased apoptosis as estimated by poly (ADP-ribose) polymerase (PARP) cleavage. Prior work showed that activating mutations of PI3K are associated with increased AKT activation and adverse outcome in colon cancer; our results demonstrate that the aggressive tumor behavior associated with a high-energy diet has similar effects on this signaling pathway. Furthermore, metformin is demonstrated to reverse the effects of the high-energy diet, thus suggesting a potential role for this agent in the management of a metabolically defined subset of colon cancers. PMID:20228137

  17. Induction of fatty acid synthase and S14 gene expression by glucose, xylitol and dihydroxyacetone in cultured rat hepatocytes is closely correlated with glucose 6-phosphate concentrations.

    PubMed Central

    Mourrieras, F; Foufelle, F; Foretz, M; Morin, J; Bouche, S; Ferre, P

    1997-01-01

    It is now well established that the transcription of several genes belonging to the glycolytic and lipogenic pathway is stimulated in the presence of a high glucose concentration in adipocytes and hepatocytes. We have previously proposed that glucose 6-phosphate could be the signal metabolite that transduces the glucose effect. This proposal has recently been challenged and both an intermediate of the pentose phosphate pathway, xylulose 5-phosphate, and metabolites of the later part of glycolysis (3-phosphoglycerate and phosphoenolpyruvate) have been proposed. To discriminate between these possibilities, we have measured concomitantly, in primary cultures of adult rat hepatocytes, the expression of the fatty acid synthase (FAS) and S14 genes and the concentration of glucose metabolites. We have used various substrates entering at different steps of the glycolytic pathway (glucose, dihydroxyacetone) and the pentose phosphate pathway (xylitol). When compared with 5 mM glucose, 25 mM glucose induces a marked increase in both S14 and FAS gene expression, detectable as early as 2 h and peaking at 6 h. Increasing concentrations (1-5 mM) of xylitol and dihydroxyacetone in the presence of 5 mM glucose are also able to induce S14 and FAS gene expression progressively. Among the various glucose metabolites measured, glucose 6-phosphate, in contrast with xylulose 5-phosphate and metabolites of the lower part of glycolysis, is the only one that shows a clear-cut parallelism between its concentration and the degree of S14 and FAS gene expression. We conclude that glucose 6-phosphate is the most likely signal metabolite for the glucose-induced transcription of this group of genes. PMID:9291103

  18. Sugar/osmoticum levels modulate differential abscisic acid-independent expression of two stress-responsive sucrose synthase genes in Arabidopsis.

    PubMed Central

    Déjardin, A; Sokolov, L N; Kleczkowski, L A

    1999-01-01

    Sucrose synthase (Sus) is a key enzyme of sucrose metabolism. Two Sus-encoding genes (Sus1 and Sus2) from Arabidopsis thaliana were found to be profoundly and differentially regulated in leaves exposed to environmental stresses (cold stress, drought or O(2) deficiency). Transcript levels of Sus1 increased on exposure to cold and drought, whereas Sus2 mRNA was induced specifically by O(2) deficiency. Both cold and drought exposures induced the accumulation of soluble sugars and caused a decrease in leaf osmotic potential, whereas O(2) deficiency was characterized by a nearly complete depletion in sugars. Feeding abscisic acid (ABA) to detached leaves or subjecting Arabidopsis ABA-deficient mutants to cold stress conditions had no effect on the expression profiles of Sus1 or Sus2, whereas feeding metabolizable sugars (sucrose or glucose) or non-metabolizable osmotica [poly(ethylene glycol), sorbitol or mannitol] mimicked the effects of osmotic stress on Sus1 expression in detached leaves. By using various sucrose/mannitol solutions, we demonstrated that Sus1 was up-regulated by a decrease in leaf osmotic potential rather than an increase in sucrose concentration itself. We suggest that Sus1 expression is regulated via an ABA-independent signal transduction pathway that is related to the perception of a decrease in leaf osmotic potential during stresses. In contrast, the expression of Sus2 was independent of sugar/osmoticum effects, suggesting the involvement of a signal transduction mechanism distinct from that regulating Sus1 expression. The differential stress-responsive regulation of Sus genes in leaves might represent part of a general cellular response to the allocation of carbohydrates during acclimation processes. PMID:10567234

  19. Liver-specific mono-unsaturated fatty acid synthase-1 inhibitor for anti-hepatitis C treatment.

    PubMed

    Nio, Yasunori; Hasegawa, Hikari; Okamura, Hitomi; Miyayama, Yohei; Akahori, Yuichi; Hijikata, Makoto

    2016-08-01

    Recently, direct antiviral agents against hepatitis C virus (HCV) infection have been developed as highly effective anti-HCV drugs. However, the appearance of resistant viruses against direct anti-viral agents is an unsolved problem. One of the strategies considered to suppress the emergence of the drug-resistant viruses is to use drugs inhibiting the host factor, which contributes to HCV proliferation, in combination with direct anti-viral agents. The replication complex was reported to be present in the membranous compartment in the cells. Thus, lipid metabolism modulators are good candidates to regulate virus assembly and HCV replication. Recent studies have shown that stearoyl-CoA desaturase (SCD), an enzyme for long-chain mono-unsaturated fatty acid (LCMUFA) synthesis, is a key factor that defines HCV replication efficiency. Systemic exposure to SCD-1 inhibor induces some side effects in the eyes and skin. Thus, systemic SCD-1 inhibitors are considered inappropriate for HCV therapy. To avoid the side effects of systemic SCD-1 inhibitors, the liver-specific SCD-1 inhibitor, MK8245, was synthesized; it showed antidiabetic effects in diabetic model mice with no side effects. In the phase 1 clinical study on measurement of MK8245 tolerability, no significant side effects were reported (ClinicalTrials.gov Identifier: NCT00790556). Therefore, we thought liver-specific SCD-1 inhibitors would be suitable agents for HCV-infected patients. MK8245 was evaluated using recombinant HCV culture systems. Considering current HCV treatments, to avoid the emergence of direct anti-viral agents-resistant viruses, combination therapy with direct anti-viral agents and host-targeted agents would be optimal. With this viewpoint, we confirmed MK8245's additive or synergistic anti-HCV effects on current direct anti-viral agents and interferon-alpha therapy. The results suggest that MK8245 is an option for anti-HCV multi-drug therapy with a low risk of emergence of drug-resistant HCV

  20. Classification of fungal chitin synthases.

    PubMed Central

    Bowen, A R; Chen-Wu, J L; Momany, M; Young, R; Szaniszlo, P J; Robbins, P W

    1992-01-01

    Comparison of the chitin synthase genes of Saccharomyces cerevisiae CHS1 and CHS2 with the Candida albicans CHS1 gene (UDP-N-acetyl-D-glucosamine:chitin 4-beta-N-acetylglucosaminyltransferase, EC 2.4.1.16) revealed two small regions of complete amino acid sequence conservation that were used to design PCR primers. Fragments homologous to chitin synthase (approximately 600 base pairs) were amplified from the genomic DNA of 14 fungal species. These fragments were sequenced, and their deduced amino acid sequences were aligned. With the exception of S. cerevisiae CHS1, the sequences fell into three distinct classes, which could represent separate functional groups. Within each class phylogenetic analysis was performed. Although not the major purpose of the investigation, this analysis tends to confirm some relationships consistent with current taxonomic groupings. Images PMID:1731323

  1. Nitric oxide donors prevent while the nitric oxide synthase inhibitor L-NAME increases arachidonic acid plus CYP2E1-dependent toxicity

    SciTech Connect

    Wu Defeng; Cederbaum, Arthur . E-mail: arthur.cederbaum@mssm.edu

    2006-10-15

    Polyunsaturated fatty acids such as arachidonic acid (AA) play an important role in alcohol-induced liver injury. AA promotes toxicity in rat hepatocytes with high levels of cytochrome P4502E1 and in HepG2 E47 cells which express CYP2E1. Nitric oxide (NO) participates in the regulation of various cell activities as well as in cytotoxic events. NO may act as a protectant against cytotoxic stress or may enhance cytotoxicity when produced at elevated concentrations. The goal of the current study was to evaluate the effect of endogenously or exogenously produced NO on AA toxicity in liver cells with high expression of CYP2E1 and assess possible mechanisms for its actions. Pyrazole-induced rat hepatocytes or HepG2 cells expressing CYP2E1 were treated with AA in the presence or absence of an inhibitor of nitric oxide synthase L-N {sup G}-Nitroarginine Methylester (L-NAME) or the NO donors S-nitroso-N-acetylpenicillamine (SNAP), and (Z)-1-[-(2-aminoethyl)-N-(2-aminoethyl)]diazen-1-ium-1,2-diolate (DETA-NONO). AA decreased cell viability from 100% to 48 {+-} 6% after treatment for 48 h. In the presence of L-NAME, viability was further lowered to 23 {+-} 5%, while, SNAP or DETA-NONO increased viability to 66 {+-} 8 or 71 {+-} 6%. The L-NAME potentiated toxicity was primarily necrotic in nature. L-NAME did not affect CYP2E1 activity or CYP2E1 content. SNAP significantly lowered CYP2E1 activity but not protein. AA treatment increased lipid peroxidation and lowered GSH levels. L-NAME potentiated while SNAP prevented these changes. Thus, L-NAME increased, while NO donors decreased AA-induced oxidative stress. Antioxidants prevented the L-NAME potentiation of AA toxicity. Damage to mitochondria by AA was shown by a decline in the mitochondrial membrane potential (MMP). L-NAME potentiated this decline in MMP in association with its increase in AA-induced oxidative stress and toxicity. NO donors decreased this decline in MMP in association with their decrease in AA

  2. Trans-chalcone and quercetin down-regulate fatty acid synthase gene expression and reduce ergosterol content in the human pathogenic dermatophyte Trichophyton rubrum

    PubMed Central

    2013-01-01

    Background Fatty acid synthase (FAS) is a promising antifungal target due to its marked structural differences between fungal and mammalian cells. The aim of this study was to evaluate the antifungal activity of flavonoids described in the scientific literature as FAS inhibitors (quercetin, trans-chalcone, ellagic acid, luteolin, galangin, and genistein) against the dermatophyte Trichophyton rubrum and their effects on fatty acid and ergosterol synthesis. Methods The antifungal activity of the natural products was tested by the microdilution assay for determination of the minimum inhibitory concentration (MIC). The effect of the compounds on the cell membrane was evaluated using a protoplast regeneration assay. Ergosterol content was quantified by spectrophotometry. Inhibition of FAS by flavonoids was evaluated by an enzymatic assay to determine IC50 values. Quantitative RT-PCR was used to measure transcription levels of the FAS1 and ERG6 genes involved in fatty acid and ergosterol biosynthesis, respectively, during exposure of T. rubrum to the flavonoids tested. Results The flavonoids quercetin and trans-chalcone were effective against T. rubrum, with MICs of 125 and 7.5 μg/mL for the wild-type strain (MYA3108) and of 63 and 1.9 μg/mL for the ABC transporter mutant strain (ΔTruMDR2), respectively. The MICs of the fluconazole and cerulenin controls were 63 and 125 μg/mL for the wild-type strain and 30 and 15 μg/mL for the mutant strain, respectively. Quercetin and trans-chalcone also reduced ergosterol content in the two strains, indicating that interference with fatty acid and ergosterol synthesis caused cell membrane disruption. The MIC of quercetin reduced the number of regenerated protoplasts by 30.26% (wild-type strain) and by 91.66% (mutant strain). Half the MIC (0.5 MIC) of quercetin did not reduce the number of regenerated wild-type fungal colonies, but caused a 36.19% reduction in the number of mutant strain protoplasts. In contrast, the MIC and 0

  3. Divinyl ether synthase gene and protein, and uses thereof

    DOEpatents

    Howe, Gregg A.; Itoh, Aya

    2011-09-13

    The present invention relates to divinyl ether synthase genes, proteins, and methods of their use. The present invention encompasses both native and recombinant wild-type forms of the synthase, as well as mutants and variant forms, some of which possess altered characteristics relative to the wild-type synthase. The present invention also relates to methods of using divinyl ether synthase genes and proteins, including in their expression in transgenic organisms and in the production of divinyl ether fatty acids, and to methods of suing divinyl ether fatty acids, including in the protection of plants from pathogens.

  4. Divinyl ether synthase gene, and protein and uses thereof

    DOEpatents

    Howe, Gregg A.; Itoh, Aya

    2006-12-26

    The present invention relates to divinyl ether synthase genes, proteins, and methods of their use. The present invention encompasses both native and recombinant wild-type forms of the synthase, as well as mutants and variant forms, some of which possess altered characteristics relative to the wild-type synthase. The present invention also relates to methods of using divinyl ether synthase genes and proteins, including in their expression in transgenic organisms and in the production of divinyl ether fatty acids, and to methods of suing divinyl ether fatty acids, including in the protection of plants from pathogens.

  5. Geranyl diphosphate synthase large subunit, and methods of use

    DOEpatents

    Croteau, Rodney B.; Burke, Charles C.; Wildung, Mark R.

    2001-10-16

    A cDNA encoding geranyl diphosphate synthase large subunit from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase large subunit). In another aspect, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase large subunit. In yet another aspect, the present invention provides isolated, recombinant geranyl diphosphate synthase protein comprising an isolated, recombinant geranyl diphosphate synthase large subunit protein and an isolated, recombinant geranyl diphosphate synthase small subunit protein. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase.

  6. OsJAR1 and OsJAR2 are jasmonyl-L-isoleucine synthases involved in wound- and pathogen-induced jasmonic acid signalling.

    PubMed

    Wakuta, Shinji; Suzuki, Erika; Saburi, Wataru; Matsuura, Hideyuki; Nabeta, Kensuke; Imai, Ryozo; Matsui, Hirokazu

    2011-06-17

    The synthesis of JA-Ile was catalysed by JA-Ile synthase, which is a member of the group I GH3 family of proteins. Here, we showed evidence that OsGH3.5 (OsJAR1) and OsGH3.3 (OsJAR2) are the functional JA-Ile synthases in rice, using recombinant proteins. The expression levels of OsJAR1 and OsJAR2 were induced in response to wounding with the concomitant accumulation of JA-Ile. In contrast, only the expression of OsJAR1 was associated with the accumulation of JA-Ile after blast infection. Our data suggest that these two JA-Ile synthases are differentially involved in the activation of JA signalling in response to wounding and pathogen challenge in rice. PMID:21619871

  7. Upregulation of UGT2B4 Expression by 3′-Phosphoadenosine-5′-Phosphosulfate Synthase Knockdown: Implications for Coordinated Control of Bile Acid Conjugation

    PubMed Central

    Barrett, Kathleen G.; Fang, Hailin; Cukovic, Daniela; Dombkowski, Alan A.; Kocarek, Thomas A.

    2015-01-01

    During cholestasis, the bile acid–conjugating enzymes, SULT2A1 and UGT2B4, work in concert to prevent the accumulation of toxic bile acids. To understand the impact of sulfotransferase deficiency on human hepatic gene expression, we knocked down 3′-phosphoadenosine-5′-phosphosulfate synthases (PAPSS) 1 and 2, which catalyze synthesis of the obligate sulfotransferase cofactor, in HepG2 cells. PAPSS knockdown caused no change in SULT2A1 expression; however, UGT2B4 expression increased markedly (∼41-fold increase in UGT2B4 mRNA content). Knockdown of SULT2A1 in HepG2 cells also increased UGT2B4 expression. To investigate the underlying mechanism, we transfected PAPSS-deficient HepG2 cells with a luciferase reporter plasmid containing ∼2 Kb of the UGT2B4 5′-flanking region, which included a response element for the bile acid–sensing nuclear receptor, farnesoid X receptor (FXR). FXR activation or overexpression increased UGT2B4 promoter activity; however, knocking down FXR or mutating or deleting the FXR response element did not significantly decrease UGT2B4 promoter activity. Further evaluation of the UGT2B4 5′-flanking region indicated the presence of distal regulatory elements between nucleotides −10090 and −10037 that negatively and positively regulated UGT2B4 transcription. Pulse-chase analysis showed that increased UGT2B4 expression in PAPSS-deficient cells was attributable to both increased mRNA synthesis and stability. Transfection analysis demonstrated that the UGT2B4 3′-untranslated region decreased luciferase reporter expression less in PAPSS-deficient cells than in control cells. These data indicate that knocking down PAPSS increases UGT2B4 transcription and mRNA stability as a compensatory response to the loss of SULT2A1 activity, presumably to maintain bile acid–conjugating activity. PMID:25948711

  8. Cellulose synthase interacting protein

    PubMed Central

    Somerville, Chris

    2010-01-01

    Cellulose is the most abundant biopolymer on earth. The great abundance of cellulose places it at the forefront as a primary source of biomass for renewable biofuels. However, the knowledge of how plant cells make cellulose remains very rudimentary. Cellulose microfibrils are synthesized at the plasma membrane by hexameric protein complexes, also known as cellulose synthase complexes. The only known components of cellulose synthase complexes are cellulose synthase (CESA) proteins until the recent identification of a novel component. CSI1, which encodes CESA interacting protein 1 (CSI1) in Arabidopsis. CSI1, as the first non-CESA proteins associated with cellulose synthase complexes, opens up many opportunities. PMID:21150290

  9. Roles of endothelial nitric oxide synthase (eNOS) and mitochondrial permeability transition pore (MPTP) in epoxyeicosatrienoic acid (EET)-induced cardioprotection against infarction in intact rat hearts.

    PubMed

    Gross, Garrett J; Hsu, Anna; Pfeiffer, Adam W; Nithipatikom, Kasem

    2013-06-01

    We previously demonstrated that 11,12 and 14,15-epoxeicosatrienoic acids (EETs) produce cardioprotection against ischemia-reperfusion injury in dogs and rats. Several signaling mechanisms have been implicated in the cardioprotective actions of the EETs; however, their mechanisms remain largely elusive. Since nitric oxide (NO) plays a significant role in cardioprotection and EETs have been demonstrated to induce NO production in various tissues, we hypothesized that NO is involved in mediating the EET actions in cardioprotection. To test this hypothesis, we used an in vivo rat model of infarction in which intact rat hearts were subjected to 30-min occlusion of the left coronary artery and 2-hr reperfusion. 11,12-EET or 14,15-EET (2.5mg/kg) administered 10min prior to the occlusion reduced infarct size, expressed as a percentage of the AAR (IS/AAR), from 63.9±0.8% (control) to 45.3±1.2% and 45.5±1.7%, respectively. A nonselective nitric oxide synthase (NOS) inhibitor, L-NAME (1.0mg/kg) or a selective endothelial NOS inhibitor, L-NIO (0.30mg/kg) alone did not affect IS/AAR but they completely abolished the cardioprotective effects of the EETs. On the other hand, a selective neuronal NOS inhibitor, nNOS I (0.03mg/kg) and a selective inducible NOS inhibitor, 1400W (0.10mg/kg) did not affect IS/AAR or block the cardioprotective effects of the EETs. Administration of 11,12-EET (2.5mg/kg) to the rats also transiently increased the plasma NO concentration. 14,15-EET (10μM) induced the phosphorylation of eNOS (Ser(1177)) as well as a transient increase of NO production in rat cardiomyoblast cell line (H9c2 cells). When 11,12-EET or 14,15-EET was administered at 5min prior to reperfusion, infarct size was also reduced to 42.8±2.2% and 42.6±1.9%, respectively. Interestingly, L-NAME (1.0mg/kg) and a mitochondrial KATP channel blocker, 5-HD (10mg/kg) did not abolish while a sarcolemmal KATP channel blocker, HMR 1098 (6.0mg/kg) and a mitochondrial permeability transition

  10. Physiological function of mycobacterial mtFabD, an essential malonyl-CoA:AcpM transacylase of type 2 fatty acid synthase FASII, in yeast mct1Delta cells.

    PubMed

    Gurvitz, Aner

    2009-01-01

    Mycobacterium tuberculosis mtFabD is an essential malonyl-CoA:AcpM transacylase and is important for vital protein-protein interactions within type 2 fatty acid synthase FASII. mtFabD contacts KasA, KasB, FabH, InhA, and possibly also HadAB, HadBC, and FabG1/MabA. Disruption of mtFabD's interactions during FASII has been proposed for drug development. Here, the gene for a mitochondrially targeted mtFabD was ectopically expressed in Saccharomyces cerevisiae mct1Delta mutant cells lacking the corresponding mitochondrial malonyl-CoA transferase Mct1p, allowing the mutants to recover their abilities to respire on glycerol and synthesize lipoic acid. Hence, mtFabD could physiologically function in an environment lacking holo-AcpM or other native interaction partners. PMID:19859569

  11. Dissection of the early steps in the porphobilinogen synthase catalyzed reaction

    SciTech Connect

    Jaffe, E.K.; Hanes, D.

    1986-05-01

    The porphobilinogen (PBG) synthase catalyzed reaction involves the formation of a Schiff's base between enzyme and P-site 5-aminolevulinate (ALA), requiring both Zn(II) and enzyme SH groups for the production of PBG from two ALA molecules. Using NaBH/sub 4/ and (4-/sup 14/C)-ALA, they have investigated the involvement of both Zn(II) and SH groups in the binding of P- and A-site ALA and in the formation of the Schiff's base with active holoenzyme, inactive apoenzyme, and inactive methylmethane-thiosulfonate (MMTS) modified apoenzyme. ALA dependent NaBH/sub 4/ inactivation of these enzyme forms was quantified at 56%, 96%, and 95% inactivation respectively with concurrent /sup 14/C incorporation of 2.3, 3.8, and 3.4 per octamer respectively, representing the trapping of the P-site ALA Schiff's base. These results provide the first evidence of a partial enzyme reaction with ALA where PBG is not produced, and combined with ALA binding curves demonstrate the following: (1) Homooctameric PBG synthase binds no more than eight ALA per octamer (two per active site), four of which can be trapped as the P-site ALA Schiff's base; (2) P-site ALA binding and enzymic Schiff's base formation require neither Zn(II) nor SH groups; and (3) Zn(II) and/or SH groups are involved in the binding of A-site ALA and the cooperativity between ALA binding sites. These results isolate the role of Zn(II) to a step following P-site Schiff's base formation and define the sequence of events preceding formation of the active quaternary complex.

  12. Identification of a 1-aminocyclopropane-1-carboxylic acid synthase gene linked to the female (F) locus that enhances female sex expression in cucumber.

    PubMed Central

    Trebitsh, T; Staub, J E; O'Neill, S D

    1997-01-01

    Sex determination in cucumber (Cucumis sativus L.) is controlled largely by three genes: F, m, and a. The F and m loci interact to produce monoecious (M_f_) or gynoecious (M_f_) sex phenotypes. Ethylene and factors that induce ethylene biosynthesis, such as 1-aminocyclopropane-1-carboxylate (ACC) and auxin, also enhance female sex expression. A genomic sequence (CS-ACS1) encoding ACC synthase was amplified from genomic DNA by a polymerase chain reaction using degenerate oligonucleotide primers. Expression of CS-ACS1 is induced by auxin, but not by ACC, in wounded and intact shoot apices. Southern blo hybridization analysis of near-isogenic gynoecious (MMFF) and monoecious (MMff) lines derived from divers genetic backgrounds revealed the existence of an additional ACC synthase (CS-ACS1G) genomic sequence in the gynoecious lines. Sex phenotype analysis of a segregating F2 population detected a 100% correlation between the CS-ACS1G marker and the presence of the F locus. The CS-ACS1G gene is located in linkage group B coincident with the F locus, and in the population tested there was no recombination between the CS-ACS1G gene and the F locus. Collectively, these data suggest that CS-ACS1G is closely linked to the F locus and may play a pivotal role in the determination of sex in cucumber flowers. PMID:9085580

  13. Inactivation of the inhA-encoded fatty acid synthase II (FASII) enoyl-acyl carrier protein reductase induces accumulation of the FASI end products and cell lysis of Mycobacterium smegmatis.

    PubMed

    Vilchèze, C; Morbidoni, H R; Weisbrod, T R; Iwamoto, H; Kuo, M; Sacchettini, J C; Jacobs, W R

    2000-07-01

    The mechanism of action of isoniazid (INH), a first-line antituberculosis drug, is complex, as mutations in at least five different genes (katG, inhA, ahpC, kasA, and ndh) have been found to correlate with isoniazid resistance. Despite this complexity, a preponderance of evidence implicates inhA, which codes for an enoyl-acyl carrier protein reductase of the fatty acid synthase II (FASII), as the primary target of INH. However, INH treatment of Mycobacterium tuberculosis causes the accumulation of hexacosanoic acid (C(26:0)), a result unexpected for the blocking of an enoyl-reductase. To test whether inactivation of InhA is identical to INH treatment of mycobacteria, we isolated a temperature-sensitive mutation in the inhA gene of Mycobacterium smegmatis that rendered InhA inactive at 42 degrees C. Thermal inactivation of InhA in M. smegmatis resulted in the inhibition of mycolic acid biosynthesis, a decrease in hexadecanoic acid (C(16:0)) and a concomitant increase of tetracosanoic acid (C(24:0)) in a manner equivalent to that seen in INH-treated cells. Similarly, INH treatment of Mycobacterium bovis BCG caused an inhibition of mycolic acid biosynthesis, a decrease in C(16:0), and a concomitant accumulation of C(26:0). Moreover, the InhA-inactivated cells, like INH-treated cells, underwent a drastic morphological change, leading to cell lysis. These data show that InhA inactivation, alone, is sufficient to induce the accumulation of saturated fatty acids, cell wall alterations, and cell lysis and are consistent with InhA being a primary target of INH. PMID:10869086

  14. Chitin synthase homologs in three ectomycorrhizal truffles.

    PubMed

    Lanfranco, L; Garnero, L; Delpero, M; Bonfante, P

    1995-12-01

    Degenerate PCR primers were used to amplify a conserved gene portion coding chitin synthase from genomic DNA of six species of ectomycorrhizal truffles. DNA was extracted from both hypogeous fruitbodies and in vitro growing mycelium of Tuber borchii. A single fragment of about 600 bp was amplified for each species. The amplification products from Tuber magnatum, T. borchii and T. ferrugineum were cloned and sequenced, revealing a high degree of identity (91.5%) at the nucleotide level. On the basis of the deduced amino acid sequences these clones were assigned to class II chitin synthase. Southern blot experiments performed on genomic DNA showed that the amplification products derive from a single copy gene. Phylogenetic analysis of the nucleotide sequences of class II chitin synthase genes confirmed the current taxonomic position of the genus Tuber, and suggested a close relationship between T. magnatum and T. uncinatum. PMID:8593947

  15. Toxic accumulation of