Science.gov

Sample records for 5-aminolevulinic acid synthase

  1. Characterization of 5-aminolevulinate synthase from Agrobacterium radiobacter, screening new inhibitors for 5-aminolevulinate dehydratase from Escherichia coli and their potential use for high 5-aminolevulinate production.

    PubMed

    Lin, Jianping; Fu, Weiqi; Cen, Peilin

    2009-04-01

    The hemA gene encoding 5-aminolevulinate synthase (ALAS) from Agrobacterium radiobacter zju-0121 showed 92.6% homology with that from A. radiobacter ATCC4718 and contained several rare codons. To enhance the expression of this gene, Escherichia coli Rosetta(DE3), which is a rare codon optimizer strain, was used as the host to construct an efficient recombinant strain. And the encoded protein was over-expressed as fusion protein and was purified by affinity purification on Ni-NTA agarose and by gel filtration chromatography on Sephadex G-25 Medium resin. The recombinant protein was partly characterized, and D-glucose, D-fructose, D-xylose, D-mannose, L-arabinose, D-galactose, lactose, sucrose and maltose were detected to have no distinct inhibition on this recombinant ALAS. Meanwhile, 20mM D-glucose or D-xylose inhibited about 20% activity of ALA dehydratase (ALAD) from Escherichia coli Rosetta(DE3). Combining D-xylose as a new inhibitor for ALAD with D-glucose in fed-batch culture and based on the optimal culture system using Rosetta(DE3)/pET28a-hemA, the yield of ALA achieved was 7.3g/l (56 mM) under the appropriate conditions in the fermenter.

  2. Photodynamic therapy with 5-aminolevulinic acid: basic principles and applications

    NASA Astrophysics Data System (ADS)

    Pottier, Roy H.; Kennedy, James C.

    1996-01-01

    Numerous photosensitizing pigments that absorb visible light and are selectively retained in neoplastic tissue are being investigated as potential photochemotherapeutic agents. While much emphasis is being placed on the synthesis of new, far-red absorbing photosensitizers, an alternative approach has been to stimulate the human body to produce its own natural photosensitizer, namely protoporphyrin IX (PpIX). Exogenous 5-aminolevulinic acid (ALA) is rapidly bioconverted into PP by mitochondria, the process being particularly efficient in tumor cells. Since PpIX has a natural and rapid clearing mechanism (via the capture of iron in the process of being converted into heme), ALA-PDT does not suffer from lingering skin phototoxicity. ALA may be introduced orally, intravenously, or topically, and ALA-PDT has been shown to be effective in the treatment of both malignant and non-malignant lesions.

  3. A New Strategy for Production of 5-Aminolevulinic Acid in Recombinant Corynebacterium glutamicum with High Yield

    PubMed Central

    Yang, Peng; Liu, Wenjing; Cheng, Xuelian; Wang, Jing; Qi, Qingsheng

    2016-01-01

    ABSTRACT 5-Aminolevulinic acid (ALA), a nonprotein amino acid involved in tetrapyrrole synthesis, has been widely applied in agriculture, medicine, and food production. Many engineered metabolic pathways have been constructed; however, the production yields are still low. In this study, several 5-aminolevulinic acid synthases (ALASs) from different sources were evaluated and compared with respect to their ALA production capacities in an engineered Corynebacterium glutamicum CgS1 strain that can accumulate succinyl-coenzyme A (CoA). A codon-optimized ALAS from Rhodobacter capsulatus SB1003 displayed the best potential. Recombinant strain CgS1/pEC-SB produced 7.6 g/liter ALA using a mineral salt medium in a fed-batch fermentation mode. Employing two-stage fermentation, 12.46 g/liter ALA was produced within 17 h, with a productivity of 0.73 g/liter/h, in recombinant C. glutamicum. Through overexpression of the heterologous nonspecific ALA exporter RhtA from Escherichia coli, the titer was further increased to 14.7 g/liter. This indicated that strain CgS1/pEC-SB-rhtA holds attractive industrial application potential for the future. IMPORTANCE In this study, a two-stage fermentation strategy was used for production of the value-added nonprotein amino acid 5-aminolevulinic acid from glucose and glycine in a generally recognized as safe (GRAS) host, Corynebacterium glutamicum. The ALA titer represented the highest in the literature, to our knowledge. This high production capacity, combined with the potential easy downstream processes, made the recombinant strain an attractive candidate for industrial use in the future. PMID:26921424

  4. Production of 5-aminolevulinic acid by cell free multi-enzyme catalysis.

    PubMed

    Meng, Qinglong; Zhang, Yanfei; Ju, Xiaozhi; Ma, Chunling; Ma, Hongwu; Chen, Jiuzhou; Zheng, Ping; Sun, Jibin; Zhu, Jun; Ma, Yanhe; Zhao, Xueming; Chen, Tao

    2016-05-20

    5-Aminolevulinic acid (ALA) is the precursor for the biosynthesis of tetrapyrroles and has broad agricultural and medical applications. Currently ALA is mainly produced by chemical synthesis and microbial fermentation. Cell free multi-enzyme catalysis is a promising method for producing high value chemicals. Here we reported our work on developing a cell free process for ALA production using thermostable enzymes. Cheap substrates (succinate and glycine) were used for ALA synthesis by two enzymes: 5-aminolevulinic acid synthase (ALAS) from Laceyella sacchari (LS-ALAS) and succinyl-CoA synthase (Suc) from Escherichia coli. ATP was regenerated by polyphosphate kinase (Ppk) using polyphosphate as the substrate. Succinate was added into the reaction system in a fed-batch mode to avoid its inhibition effect on Suc. After reaction for 160min, ALA concentration was increased to 5.4mM. This is the first reported work on developing the cell free process for ALA production. Through further process and enzyme optimization the cell free process could be an effective and economic way for ALA production.

  5. Therapeutic effects of topical 5-aminolevulinic acid photodynamic therapy

    PubMed Central

    Hu, Yin-E; Dai, Shu-Fang; Wang, Bin; Qu, Wei; Gao, Jun-Ling

    2016-01-01

    Objective: To evaluate the therapeutic effects of combined 5-aminolevulinic acid (ALA) and photodynamic therapy (PDT) on genital warts and the safety. Methods: One hundred ten patients with genital warts who were treated in our hospital from June 2013 to October 2014 were selected. The warts and affected parts were disinfected with benzalkonium bromide solution, and the warts were covered with absorbent cotton that had already been added freshly prepared 20% ALA solution, packaged and fixed. Then they were wet-dressed in dark, into which ALA solution was added according to the proportion of 5:3:2 every 30 minutes for three consecutive hours. Afterwards, the warts were illuminated by using photodynamic laser apparatus. The clinical outcomes, adverse reactions and recurrence rates were observed. Results: Genital warts were relieved in 107 out of the 110 cases (cure rate: 97.3%). Male patients had significantly better treatment outcomes at the urethral orifice than those in other affected parts. In the 107 patients, the cure rate of male patients was 98.8%, and they were cured after being treated four times. In contrast, female patients, who were cured after 5 times of treatment, had the cure rate of 91.7%. Their cure rates were similar (χ2=0, P>0.05), but the males were cured after significantly fewer times of treatment than the females (t=-7.432, P<0.05). Five patients suffered from mild tingling or burning sensation upon dressing at the urethral orifice, and the others were all free from systemic adverse reactions. After illumination, a small portion of the patients had mildly red, swelling, painful affected parts, with mild edema that almost disappeared within three days. Three patients relapsed at the urethral orifice and were then cured after further treatment. Conclusion: ALA-PDT can treat genital warts safely with high cure rate and low recurrence rate, particularly working for those of males at the urethral orifice. PMID:27648048

  6. Therapeutic effects of topical 5-aminolevulinic acid photodynamic therapy

    PubMed Central

    Hu, Yin-E; Dai, Shu-Fang; Wang, Bin; Qu, Wei; Gao, Jun-Ling

    2016-01-01

    Objective: To evaluate the therapeutic effects of combined 5-aminolevulinic acid (ALA) and photodynamic therapy (PDT) on genital warts and the safety. Methods: One hundred ten patients with genital warts who were treated in our hospital from June 2013 to October 2014 were selected. The warts and affected parts were disinfected with benzalkonium bromide solution, and the warts were covered with absorbent cotton that had already been added freshly prepared 20% ALA solution, packaged and fixed. Then they were wet-dressed in dark, into which ALA solution was added according to the proportion of 5:3:2 every 30 minutes for three consecutive hours. Afterwards, the warts were illuminated by using photodynamic laser apparatus. The clinical outcomes, adverse reactions and recurrence rates were observed. Results: Genital warts were relieved in 107 out of the 110 cases (cure rate: 97.3%). Male patients had significantly better treatment outcomes at the urethral orifice than those in other affected parts. In the 107 patients, the cure rate of male patients was 98.8%, and they were cured after being treated four times. In contrast, female patients, who were cured after 5 times of treatment, had the cure rate of 91.7%. Their cure rates were similar (χ2=0, P>0.05), but the males were cured after significantly fewer times of treatment than the females (t=-7.432, P<0.05). Five patients suffered from mild tingling or burning sensation upon dressing at the urethral orifice, and the others were all free from systemic adverse reactions. After illumination, a small portion of the patients had mildly red, swelling, painful affected parts, with mild edema that almost disappeared within three days. Three patients relapsed at the urethral orifice and were then cured after further treatment. Conclusion: ALA-PDT can treat genital warts safely with high cure rate and low recurrence rate, particularly working for those of males at the urethral orifice.

  7. Photofrin and 5-aminolevulinic acid permeation through oral mucosa in vitro

    NASA Astrophysics Data System (ADS)

    Flock, Stephen T.; Alleman, Anthony; Lehman, Paul; Blevins, Steve; Stone, Angie; Fink, Louis; Dinehart, Scott; Stern, Scott J.

    1994-07-01

    Photofrin and 5-aminolevulinic acid are photosensitizers that show promise in the photodynamic treatment of cancer, port-wine stains, atherosclerosis and viral lesions. Photofrin is a mixture of porphyrins which, upon the absorption of light, become temporarily cytotoxic. One side-effect associated with the use of Photofrin is long-term cutaneous photosensitivity. It is possible that topical application of this photosensitizing dye will ameliorate such a side-effect. Another way to avoid the cutaneous photosensitivity in photodynamic therapy is to use 5- aminolevulinic acid, which is a porphyrin precursor that causes an increase in the synthesis and concentration of the photosensitizer protoporphyrin IX. 5-aminolevulinic acid is usually applied topically, and so minimizes cutaneous photosensitivity while maximizing the local protoporphyrin concentration. There are a host of disorders in oral mucosa that are potentially treatable by photodynamic therapy. However, since stratum corneum presents an impermeable barrier to many pharmaceuticals, it is not clear that topical application of the photosensitizer will result in a clinically relevant tissue concentration. We have therefore studied the permeation behavior of Photofrin and 5-aminolevulinic acid by applying them to the surface of ex vivo oral mucosa tissue positioned by a Franz diffusion cell. In order to increase the permeability of the photosensitizer across the stratum corneum, we studied the effects of four different drug carriers: phosphate buffered saline, dimethylsulfoxide, ethanol and Azone with isopropyl alcohol.

  8. Comparison of the beluga whale (Delphinapterus leucas) expressed genes for 5-aminolevulinate synthase with those in other vertebrates.

    PubMed

    Kreiling, J A; Duncan, R; Faggart, M A; Cornell, N W

    1999-06-01

    The cDNA and inferred amino acid sequences were determined for beluga whale (Delphinapterus leucas) erythroid (E) and housekeeping (H) forms of 5-aminolevulinate synthase (ALS), and they were compared with known sequences for five other vertebrates with particular attention to regulatory features. The cDNAs for whale ALS-E and -H encode, respectively, proteins of 582 and 640 amino acids. Sequence alignments suggest that the whale ALS-H, like those for rat and chicken, has an N-terminal mitochondrial targeting sequence of 56 amino acids. There is a high degree of amino acid conservation between the beluga whale proteins and those of other vertebrates, including regulatory elements and functional residues that have been defined in other ALSs. Both whale proteins contain three heme regulatory motifs suggesting that mitochondrial uptake may be regulated by heme. The ALS-E mRNA contains an iron responsive element in its 5'-untranslated region indicating that its expression may be post-transcriptionally regulated by cellular iron. This extensive structural similarity and the presence of the same regulatory elements found in other ALSs indicate that regulation of ALS in beluga whale is similar to that in other vertebrates.

  9. Regulation of the hemA gene during 5-aminolevulinic acid formation in Pseudomonas aeruginosa.

    PubMed Central

    Hungerer, C; Troup, B; Römling, U; Jahn, D

    1995-01-01

    The general tetrapyrrole precursor 5-aminolevulinic acid is formed in bacteria via two different biosynthetic pathways. Members of the alpha group of the proteobacteria use 5-aminolevulinic acid synthase for the condensation of succinyl-coenzyme A and glycine, while other bacteria utilize a two-step pathway from aminoacylated tRNA(Glu). The tRNA-dependent pathway, involving the enzymes glutamyl-tRNA reductase (encoded by hemA) and glutamate-1-semialdehyde-2,1-aminomutase (encoded by hemL), was demonstrated to be used by Pseudomonas aeruginosa, Pseudomonas putida, Pseudomonas stutzeri, Comamonas testosteroni, Azotobacter vinelandii, and Acinetobacter calcoaceticus. To study the regulation of the pathway, the glutamyl-tRNA reductase gene (hemA) from P. aeruginosa was cloned by complementation of an Escherichia coli hemA mutant. The hemA gene was mapped to the SpeI A fragment and the DpnIL fragment of the P. aeruginosa chromosome corresponding to min 24.1 to 26.8. The cloned hemA gene, coding for a protein of 423 amino acids with a calculated molecular mass of 46,234 Da, forms an operon with the gene for protein release factor 1 (prf1). This translational factor mediates the termination of the protein chain at the ribosome at amber and ochre codons. Since the cloned hemA gene did not possess one of the appropriate stop codons, an autoregulatory mechanism such as that postulated for the enterobacterial system was ruled out. Three open reading frames of unknown function transcribed in the opposite direction to the hemA gene were found. hemM/orf1 and orf2 were found to be homologous to open reading frames located in the 5' region of enterobacterial hemA genes. Utilization of both transcription start sites was changed in a P. aeruginosa mutant missing the oxygen regulator Anr (Fnr analog), indicating the involvement of the transcription factor in hemA expression. DNA sequences homologous to one half of an Anr binding site were detected at one of the determined

  10. Evidence that isolated developing chloroplasts are capable of synthesizing chlorophyll b from 5-aminolevulinic acid

    SciTech Connect

    Huang, Laiqiang; Hoffman, N.E. )

    1990-09-01

    Developing chloroplasts isolated from cucumber (Cucumis sativus L. var Beit Alpha) cotyledons are capable of incorporating ({sup 14}C)5-aminolevulinic acid into chlorophyll (Chl) b and Chl a when incubated under photosynthetic illumination. Thin layer chromatography and high pressure liquid chromatography were employed to analyze the pigments. The specific radioactivity in Chl a was over three times higher than that found in Chl b. Both Chl a and b synthesizing activities in organello decayed rapidly at approximately the same rate. We conclude that concomitant synthesis of Chl a/b-binding apoprotein is not required for Chl b synthesis.

  11. Enhanced 5-aminolevulinic acid-gold nanoparticle conjugate-based photodynamic therapy using pulse laser

    NASA Astrophysics Data System (ADS)

    Xu, Hao; Yao, Cuiping; Wang, Jing; Chang, Zhennan; Zhang, Zhenxi

    2016-02-01

    The low bioavailability is a crucial limitation for the application of 5-aminolevulinic acid (ALA) in theranostics. In this research, 5-aminolevulinic acid and gold nanoparticle conjugates (ALA-GNPs) were synthesized to improve the bioavailability of ALA and to investigate the impact of ALA photodynamic therapy (ALA-PDT) in Hela cells. A 532 nm pulse laser and light-emitting diode (central wavelengths 502 nm) were jointly used as light sources in PDT research. The results show a 532 nm pulse laser can control ALA release from ALA-GNPs by adjusting the pulse laser dose. This laser control release may be attributed to the heat generation from GNPs under pulse laser irradiation, which indicates accurately adjusting the pulse laser dose to control the drug release in the cell interior can be considered as a new cellular surgery modality. Furthermore, the PDT results in Hela cells indicate the enhancement of ALA release by pulse laser before PDT can promote the efficacy of cell eradication in the light-emitting diode PDT (LED-PDT). This laser mediated drug release system can provide a new online therapy approach in PDT and it can be utilized in the optical monitor technologies based individual theranostics.

  12. Catalytically active alkaline molten globular enzyme: Effect of pH and temperature on the structural integrity of 5-aminolevulinate synthase.

    PubMed

    Stojanovski, Bosko M; Breydo, Leonid; Hunter, Gregory A; Uversky, Vladimir N; Ferreira, Gloria C

    2014-12-01

    5-Aminolevulinate synthase (ALAS), a pyridoxal-5'phosphate (PLP)-dependent enzyme, catalyzes the first step of heme biosynthesis in mammals. Circular dichroism (CD) and fluorescence spectroscopies were used to examine the effects of pH (1.0-3.0 and 7.5-10.5) and temperature (20 and 37°C) on the structural integrity of ALAS. The secondary structure, as deduced from far-UV CD, is mostly resilient to pH and temperature changes. Partial unfolding was observed at pH2.0, but further decreasing pH resulted in acid-induced refolding of the secondary structure to nearly native levels. The tertiary structure rigidity, monitored by near-UV CD, is lost under acidic and specific alkaline conditions (pH10.5 and pH9.5/37°C), where ALAS populates a molten globule state. As the enzyme becomes less structured with increased alkalinity, the chiral environment of the internal aldimine is also modified, with a shift from a 420nm to 330nm dichroic band. Under acidic conditions, the PLP cofactor dissociates from ALAS. Reaction with 8-anilino-1-naphthalenesulfonic acid corroborates increased exposure of hydrophobic clusters in the alkaline and acidic molten globules, although the reaction is more pronounced with the latter. Furthermore, quenching the intrinsic fluorescence of ALAS with acrylamide at pH1.0 and 9.5 yielded subtly different dynamic quenching constants. The alkaline molten globule state of ALAS is catalytically active (pH9.5/37°C), although the kcat value is significantly decreased. Finally, the binding of 5-aminolevulinate restricts conformational fluctuations in the alkaline molten globule. Overall, our findings prove how the structural plasticity of ALAS contributes to reaching a functional enzyme.

  13. Catalytically active alkaline molten globular enzyme: Effect of pH and temperature on the structural integrity of 5-aminolevulinate synthase.

    PubMed

    Stojanovski, Bosko M; Breydo, Leonid; Hunter, Gregory A; Uversky, Vladimir N; Ferreira, Gloria C

    2014-12-01

    5-Aminolevulinate synthase (ALAS), a pyridoxal-5'phosphate (PLP)-dependent enzyme, catalyzes the first step of heme biosynthesis in mammals. Circular dichroism (CD) and fluorescence spectroscopies were used to examine the effects of pH (1.0-3.0 and 7.5-10.5) and temperature (20 and 37°C) on the structural integrity of ALAS. The secondary structure, as deduced from far-UV CD, is mostly resilient to pH and temperature changes. Partial unfolding was observed at pH2.0, but further decreasing pH resulted in acid-induced refolding of the secondary structure to nearly native levels. The tertiary structure rigidity, monitored by near-UV CD, is lost under acidic and specific alkaline conditions (pH10.5 and pH9.5/37°C), where ALAS populates a molten globule state. As the enzyme becomes less structured with increased alkalinity, the chiral environment of the internal aldimine is also modified, with a shift from a 420nm to 330nm dichroic band. Under acidic conditions, the PLP cofactor dissociates from ALAS. Reaction with 8-anilino-1-naphthalenesulfonic acid corroborates increased exposure of hydrophobic clusters in the alkaline and acidic molten globules, although the reaction is more pronounced with the latter. Furthermore, quenching the intrinsic fluorescence of ALAS with acrylamide at pH1.0 and 9.5 yielded subtly different dynamic quenching constants. The alkaline molten globule state of ALAS is catalytically active (pH9.5/37°C), although the kcat value is significantly decreased. Finally, the binding of 5-aminolevulinate restricts conformational fluctuations in the alkaline molten globule. Overall, our findings prove how the structural plasticity of ALAS contributes to reaching a functional enzyme. PMID:25240868

  14. Utilization of 5-aminolevulinic acid in the photodynamic therapy of tumors: biochemical and photobiological aspects

    NASA Astrophysics Data System (ADS)

    Pottier, Roy H.; Kennedy, James C.

    1994-03-01

    Inherent in both plants and animals is the natural porphyrin, Protoporphyrin IX (Pp). Although Pp does not appear to have any intrinsic biological activity, it is a potent natural photosensitizer. When activated with ultraviolet or visible light, this photosensitizer can induce significant photodynamic effects on tissues, cells, subcellular elements, and macromolecules via the production of singlet oxygen. The biosynthesis of endogenous Pp is under strict enzymatic control. It is possible to bypass a rate controlling step and induce large, transient concentrations of Pp by the addition of exogenous 5-aminolevulinic acid (ALA). ALA may be administered systemically or topically. Much larger amounts of Pp are produced in certain types of tumor tissue than in adjacent normal tissue. Topically applied ALA can be used to treat a variety of skin lesions, including actinic keratosis, basal cell carcinomas and psoriasis.

  15. Clinical utility of 5-aminolevulinic acid HCl to better visualize and more completely remove gliomas

    PubMed Central

    Halani, Sameer H; Adamson, D Cory

    2016-01-01

    Surgical resection is typically the first line of treatment for gliomas. However, the neurosurgeon faces a major challenge in achieving maximal resection in high-grade gliomas as these infiltrative tumors make it difficult to discern tumor margins from normal brain with conventional white-light microscopy alone. To aid in resection of these infiltrative tumors, fluorescence-guided surgery has gained much popularity in intraoperative visualization of malignant gliomas, with 5-aminolevulinic acid (5-ALA) leading the way. First introduced in an article in Neurosurgery, 5-ALA has since become a safe, effective, and inexpensive method to visualize and improve resection of gliomas. This has undoubtedly led to improvements in the clinical course of patients as demonstrated by the increased overall and progression-free survival in patients with such devastating disease. This literature review aims to discuss the major studies and trials demonstrating the clinical utility of 5-ALA and its ability to aid in complete resection of malignant gliomas.

  16. 5-aminolevulinic acid guidance during awake craniotomy to maximise extent of safe resection of glioblastoma multiforme.

    PubMed

    Corns, Robert; Mukherjee, Soumya; Johansen, Anja; Sivakumar, Gnanamurthy

    2015-01-01

    Overall survival for patients with glioblastoma multiforme (GBM) has been consistently shown to improve when the surgeon achieves a gross total resection of the tumour. It has also been demonstrated that surgical adjuncts such as 5-aminolevulinic acid (5-ALA) fluorescence--which delineates malignant tumour tissue--normal brain tissue margin seen using violet-blue excitation under an operating microscope--helps achieve this. We describe the case of a patient with recurrent left frontal GBM encroaching on Broca's area (eloquent brain). Gross total resection of the tumour was achieved by combining two techniques, awake resection to prevent damage to eloquent brain and 5-ALA fluorescence guidance to maximise the extent of tumour resection.This technique led to gross total resection of all T1-enhancing tumour with the avoidance of neurological deficit. The authors recommend this technique in patients when awake surgery can be tolerated and gross total resection is the aim of surgery. PMID:26177997

  17. Fluorescence-guided resections and photodynamic therapy for malignant gliomas using 5-aminolevulinic acid

    NASA Astrophysics Data System (ADS)

    Stepp, Herbert G.; Beck, Tobias; Beyer, Wolfgang; Pongratz, Thomas; Sroka, Ronald; Baumgartner, Reinhold; Stummer, Walter; Olzowy, Bernhard; Mehrkens, Jan H.; Tonn, Joerg C.; Reulen, Hans J.

    2005-04-01

    Oral application of 20 mg/kg bw of 5-aminolevulinic acid results in a highly specific accumulation of fluorescent and phototoxic Protoporphyrin IX in malignant glioma tissue. Surgical removal with fluorescence guidance is studied in a phase III clinical trial, adjuvant Photodynamic Therapy (PDT) to the surgical cavity is in phase II and for interstitial PDT of recurrent gliomas, a phase I/II study has started. Fluorescence guided resections have been shown to be safe and effective in augmenting neurosurgical removal of malignant gliomas in 52 consecutive patients. Intra-operative fluorescence spectroscopy showed statistically significant higher sensitizer accumulation in vital brain tumor versus the infiltration zone and in the infiltration zone versus adjacent normal brain, which contained very little PPIX. This is promisingly exploited for PDT - both to the surgical cavity by surface irradiation and for stereotactically guided interstitial irradiation.

  18. Review of dermatology use of 5-aminolevulinic acid photodynamic therapy in China from 1997 to 2013

    NASA Astrophysics Data System (ADS)

    Wang, Peiru; Zhang, Guolong; Wang, Xiuli

    2015-07-01

    The prodrug 5-aminolevulinic acid (ALA) and its ester derivatives have been used in photodynamic therapy (PDT) in dermatology worldwide. In China, ALA-PDT was first used to treat urethral condylomata acuminata and non-melanoma skin cancers in 1997. A powder formulation of ALA hydrochloride was approved by the Chinese Food and Drug Administration for the treatment of condylomata acuminata in 2007. Large successful experience of treating condylomatas was accumulated compared with Western countries. Meanwhile, numerous clinical studies as well as off-label use of ALAPDT have been carried out in China. To reflect the progress of ALA-PDT in China, several major Chinese and English databases were searched and published data were reviewed in this article.

  19. Human Erythroid 5-Aminolevulinate Synthase Mutations Associated with X-Linked Protoporphyria Disrupt Conformational Equilibrium and Enhance Product Release†

    PubMed Central

    Fratz, Erica J.; Clayton, Jerome; Hunter, Gregory A.; Ducamp, Sarah; Breydo, Leonid; Uversky, Vladimir N.; Deybach, Jean-Charles; Gouya, Laurent; Puy, Hervé; Ferreira, Gloria C.

    2015-01-01

    Regulation of 5-aminolevulinate synthase (ALAS) is at the origin of balanced heme production in mammals. Mutations in the C-terminal region of human erythroid-specific ALAS (hALAS2) are associated with X-linked protoporphyria (XLPP), a disease characterized by extreme photosensitivity, with elevated blood concentrations of free protoporphyrin IX and zinc protoporphyrin. To investigate the molecular basis for this disease, recombinant hALAS2 and variants of the enzyme harboring the gain-of-function XLPP mutations were constructed, purified, and analyzed kinetically, spectroscopically and thermodynamically. Enhanced activities of the XLPP variants resulted from accelerations in the rate at which the product 5-aminolevulinate (ALA) was released from the enzyme. Circular dichroism spectroscopy revealed that the XLPP mutations altered the microenvironment of the pyridoxal 5’-phosphate cofactor, which underwent further and specific alterations upon succinyl-CoA binding. Transient kinetic analyses of the variant-catalyzed reactions and protein fluorescence quenching upon ALA binding to the XLPP variants demonstrated that the protein conformational transition step associated with product release was predominantly affected. Of relevance, XLPP could also be modeled in cell culture. We propose that 1) the XLPP mutations destabilize the succinyl-CoA-induced hALAS2 closed conformation and thus accelerate ALA release, 2) the extended C-terminus of wild-type mammalian ALAS2 provides a regulatory role that allows for allosteric modulation of activity, thereby controlling the rate of erythroid heme biosynthesis, and 3) this control is disrupted in XLPP, resulting in porphyrin accumulation. PMID:26300302

  20. Asn-150 of Murine Erythroid 5-Aminolevulinate Synthase Modulates the Catalytic Balance between the Rates of the Reversible Reaction.

    PubMed

    Stojanovski, Bosko M; Ferreira, Gloria C

    2015-12-25

    5-Aminolevulinate synthase (ALAS) catalyzes the first step in mammalian heme biosynthesis, the pyridoxal 5'-phosphate (PLP)-dependent and reversible reaction between glycine and succinyl-CoA to generate CoA, CO2, and 5-aminolevulinate (ALA). Apart from coordinating the positioning of succinyl-CoA, Rhodobacter capsulatus ALAS Asn-85 has a proposed role in regulating the opening of an active site channel. Here, we constructed a library of murine erythroid ALAS variants with substitutions at the position occupied by the analogous bacterial asparagine, screened for ALAS function, and characterized the catalytic properties of the N150H and N150F variants. Quinonoid intermediate formation occurred with a significantly reduced rate for either the N150H- or N150F-catalyzed condensation of glycine with succinyl-CoA during a single turnover. The introduced mutations caused modifications in the ALAS active site such that the resulting variants tipped the balance between the forward- and reverse-catalyzed reactions. Although wild-type ALAS catalyzes the conversion of ALA into the quinonoid intermediate at a rate 6.3-fold slower than the formation of the same quinonoid intermediate from glycine and succinyl-CoA, the N150F variant catalyzes the forward reaction at a mere 1.2-fold faster rate than that of the reverse reaction, and the N150H variant reverses the rate values with a 1.7-fold faster rate for the reverse reaction than that for the forward reaction. We conclude that the evolutionary selection of Asn-150 was significant for optimizing the forward enzymatic reaction at the expense of the reverse, thus ensuring that ALA is predominantly available for heme biosynthesis.

  1. Physiological and Metabolic Effects of 5-Aminolevulinic Acid for Mitigating Salinity Stress in Creeping Bentgrass

    PubMed Central

    Yang, Zhimin; Chang, Zuoliang; Sun, Lihong; Yu, Jingjin; Huang, Bingru

    2014-01-01

    The objectives of this study were to determine whether foliar application of a chlorophyll precursor, 5-aminolevulinic acid (ALA), could mitigate salinity stress damages in perennial grass species by regulating photosynthetic activities, ion content, antioxidant metabolism, or metabolite accumulation. A salinity-sensitive perennial grass species, creeping bentgrass (Agrostis stolonifera), was irrigated daily with 200 mM NaCl for 28 d, which were foliar sprayed with water or ALA (0.5 mg L−1) weekly during the experiment in growth chamber. Foliar application of ALA was effective in mitigating physiological damage resulting from salinity stress, as manifested by increased turf quality, shoot growth rate, leaf relative water content, chlorophyll content, net photosynthetic rate, stomatal conductance and transpiration rate. Foliar application of ALA also alleviated membrane damages, as shown by lower membrane electrolyte leakage and lipid peroxidation, which was associated with increases in the activities of antioxidant enzymes. Leaf content of Na+ was reduced and the ratio of K+/Na+ was increased with ALA application under salinity stress. The positive effects of ALA for salinity tolerance were also associated with the accumulation of organic acids (α-ketoglutaric acid, succinic acid, and malic acid), amino acids (alanine, 5-oxoproline, aspartic acid, and γ -aminobutyric acid), and sugars (glucose, fructose, galactose, lyxose, allose, xylose, sucrose, and maltose). ALA-mitigation of physiological damages by salinity could be due to suppression of Na+ accumulation and enhanced physiological and metabolic activities related to photosynthesis, respiration, osmotic regulation, and antioxidant defense. PMID:25551443

  2. Physiological and metabolic effects of 5-aminolevulinic acid for mitigating salinity stress in creeping bentgrass.

    PubMed

    Yang, Zhimin; Chang, Zuoliang; Sun, Lihong; Yu, Jingjin; Huang, Bingru

    2014-01-01

    The objectives of this study were to determine whether foliar application of a chlorophyll precursor, 5-aminolevulinic acid (ALA), could mitigate salinity stress damages in perennial grass species by regulating photosynthetic activities, ion content, antioxidant metabolism, or metabolite accumulation. A salinity-sensitive perennial grass species, creeping bentgrass (Agrostis stolonifera), was irrigated daily with 200 mM NaCl for 28 d, which were foliar sprayed with water or ALA (0.5 mg L-1) weekly during the experiment in growth chamber. Foliar application of ALA was effective in mitigating physiological damage resulting from salinity stress, as manifested by increased turf quality, shoot growth rate, leaf relative water content, chlorophyll content, net photosynthetic rate, stomatal conductance and transpiration rate. Foliar application of ALA also alleviated membrane damages, as shown by lower membrane electrolyte leakage and lipid peroxidation, which was associated with increases in the activities of antioxidant enzymes. Leaf content of Na+ was reduced and the ratio of K+/Na+ was increased with ALA application under salinity stress. The positive effects of ALA for salinity tolerance were also associated with the accumulation of organic acids (α-ketoglutaric acid, succinic acid, and malic acid), amino acids (alanine, 5-oxoproline, aspartic acid, and γ -aminobutyric acid), and sugars (glucose, fructose, galactose, lyxose, allose, xylose, sucrose, and maltose). ALA-mitigation of physiological damages by salinity could be due to suppression of Na+ accumulation and enhanced physiological and metabolic activities related to photosynthesis, respiration, osmotic regulation, and antioxidant defense.

  3. Effect of 5-aminolevulinic acid on erythropoiesis: A preclinical in vitro characterization for the treatment of congenital sideroblastic anemia

    SciTech Connect

    Fujiwara, Tohru; Takahashi, Kiwamu; Okitsu, Yoko; Fukuhara, Noriko; Onishi, Yasushi; Ishizawa, Kenichi; Ichinohasama, Ryo; Nakamura, Yukio; Nakajima, Motowo; Tanaka, Tohru; Harigae, Hideo

    2014-11-07

    Highlights: • Treatment with ALA induces erythroid differentiation of K562 cells. • Transportation of ALA into erythroid cells occurs predominantly via SLC36A1. • ALA restores defects in ALAS2 in human iPS cell-derived erythroblasts. • ALA may represent a novel therapeutic option for CSA caused by ALAS2 mutations. - Abstract: Congenital sideroblastic anemia (CSA) is a hereditary disorder characterized by microcytic anemia and bone marrow sideroblasts. The most common form of CSA is attributed to mutations in the X-linked gene 5-aminolevulinic acid synthase 2 (ALAS2). ALAS2 is a mitochondrial enzyme, which utilizes glycine and succinyl-CoA to form 5-aminolevulinic acid (ALA), a crucial precursor in heme synthesis. Therefore, ALA supplementation could be an effective therapeutic strategy to restore heme synthesis in CSA caused by ALAS2 defects. In a preclinical study, we examined the effects of ALA in human erythroid cells, including K562 cells and human induced pluripotent stem cell-derived erythroid progenitor (HiDEP) cells. ALA treatment resulted in significant dose-dependent accumulation of heme in the K562 cell line. Concomitantly, the treatment substantially induced erythroid differentiation as assessed using benzidine staining. Quantitative reverse transcription polymerase chain reaction (RT-PCR) analysis confirmed significant upregulation of heme-regulated genes, such as the globin genes [hemoglobin alpha (HBA) and hemoglobin gamma (HBG)] and the heme oxygenase 1 (HMOX1) gene, in K562 cells. Next, to investigate the mechanism by which ALA is transported into erythroid cells, quantitative RT-PCR analysis was performed on previously identified ALA transporters, including solute carrier family 15 (oligopeptide transporter), member (SLC15A) 1, SLC15A2, solute carrier family 36 (proton/amino acid symporter), member (SLC36A1), and solute carrier family 6 (neurotransmitter transporter), member 13 (SLC6A13). Our analysis revealed that SLC36A1 was abundantly

  4. Binding of /sup 14/C-5-aminolevulinic acid to a stromal protein from developing pea chloroplasts

    SciTech Connect

    Thayer, S.S.; Castelfranco, P.A.; Wilkinson, J.; Benson, G.

    1987-04-01

    /sup 14/-5-Aminolevulinic acid (/sup 14/C-ALA) binds to a stromal protein with an apparent molecular weight of 42-43 KD on LDS and non-denaturing gels. The reaction is rapid. Binding is inhibited by sulfhydryl reagents, mM concentrations of levulinic, dihydroxy heptanoic acids and gabaculine, 10 ..mu..M N-methylprotoporphyrin. Dicarboxilic acids, such as deltaKG, Glu, OAA, do not inhibit. Chloramphenicol, ATP, protoporphyrin, anoxia, light, darkness have no effect. The product, once formed, is stable to treatment with 5% conc. HCl in cold acetone. It can be chased in a second incubation with unlabeled ALA, but not with levulinic acid. No activity was detected in the subplastidic membrane fractions. Western blot analysis failed to reveal any homology between the labeled protein and either cytochrome for ALA dehydratase. This ALA-binding protein was not formed in chloroplasts isolated from fully expanded pea leaves. Therefore, it is deemed likely to participate in ALA metabolism during chloroplast development.

  5. Mechanism for enhanced 5-aminolevulinic acid fluorescence in isocitrate dehydrogenase 1 mutant malignant gliomas

    PubMed Central

    Kim, Ji Young; Kim, Sung Kwon; Kim, Seung-Ki; Park, Sung-Hye; Kim, Hyeonjin; Lee, Se-Hoon; Choi, Seung Hong; Park, Sunghyouk; Park, Chul-Kee

    2015-01-01

    Fluorescence-guided surgery using 5-aminolevulinic acid (5-ALA) has become the main treatment modality in malignant gliomas. However unlike glioblastomas, there are inconsistent result about fluorescence status in WHO grade III gliomas. Here, we show that mutational status of IDH1 is linked to 5-ALA fluorescence. Using genetically engineered malignant glioma cells harboring wild type (U87MG-IDH1WT) or mutant (U87MG-IDH1R132H) IDH1, we demonstrated a lag in 5-ALA metabolism and accumulation of protoporphyrin IX (PpIX) in U87MG-IDH1R132H cells. Next, we used liquid chromatography–mass spectrometry (LC-MS) to screen for tricarboxylic acid (TCA) cycle-related metabolite changes caused by 5-ALA exposure. We observed low baseline levels of NADPH, an essential cofactor for the rate-limiting step of heme degradation, in U87MG-IDH1R132H cells. High levels of NADPH are required to metabolize excessive 5-ALA, giving a plausible reason for the temporarily enhanced 5-ALA fluorescence in mutant IDH1 cells. This hypothesis was supported by the results of metabolic screening in human malignant glioma samples. In conclusion, we have discovered a relationship between enhanced 5-ALA fluorescence and IDH1 mutations in WHO grade III gliomas. Low levels of NADPH in tumors with mutated IDH1 is responsible for the enhanced fluorescence. PMID:26008980

  6. Transcriptomic analysis for elucidating the physiological effects of 5-aminolevulinic acid accumulation on Corynebacterium glutamicum.

    PubMed

    Yu, Xiaoli; Jin, Haiying; Cheng, Xuelian; Wang, Qian; Qi, Qingsheng

    2016-11-01

    5-Aminolevulinic acid (ALA), the committed intermediate of the heme biosynthetic pathway, attracts close attention among researchers because of its potential applications to cancer treatment and agriculture. Overexpression of heterologous hemA and hemL, which encode glutamyl-tRNA reductase and glutamate-1-semialdehyde aminotransferase, respectively, in Corynebacterium glutamicum produces ALA, although whether ALA accumulation causes unintended effects on the host is unknown. Here we used an integrated systems approach to compare global transcriptional changes induced by the expression of hemA and hemL. Metabolic pathway such as glycolysis was inhibited, but tricarboxylic acid cycle, pentose phosphate pathway, and respiratory metabolism were stimulated. Moreover, the transcriptional levels of certain genes involved in heme biosynthesis were up-regulated, and the data implicate the two-component system (TCS) HrrSA was involved in the regulation of heme synthesis. With these understandings, it is proposed that ALA accumulation stimulates heme synthesis pathway and respiratory metabolism. Our study illuminates the physiological effects of overexpressing hemA and hemL on the phenotype of C. glutamicum and contributes important insights into the regulatory mechanisms of the heme biosynthetic pathways. PMID:27664748

  7. Alternative Routes for the Synthesis of 5-Aminolevulinic Acid in Maize Leaves 1

    PubMed Central

    Harel, Eitan; Ne'Eman, Emma

    1983-01-01

    Intact plastids from greening maize (Zea mays L.) leaves converted [14C]glutamate and [14C]2-ketoglutarate (KG) to [14C]5-aminolevulinic acid (ALA). Glutamate appeared to be the immediate precursor of ALA, while KG was first converted to glutamate, as shown by the effect of various inhibitors of amino acid metabolism. Plastids from greening leaves contained markedly higher activity as compared with etioplasts or chloroplasts. The synthesis of ALA by intact plastids was light dependent. The enzyme system resides in the stroma of plastids or may be lightly bound to membranes. The solubilized system showed maximal activity around pH 7.9 and required Mg2+, ATP, and NADPH although dependence on the latter was not clear-cut. A relatively high level of activity could be extracted from etioplasts. Maximal activity was obtained from plastids of leaves which had been illuminated for 90 minutes, after which activity declined sharply. The enzyme system solubilized from plastids also catalyzed the conversion of putative glutamate 1-semialdehyde to ALA in a reaction which was not dependent on the addition of an amino donor. The system in maize greatly resembled the one which had been reported from barley. It is suggested that this system is the one responsible for the biosynthesis of ALA destined for chlorophyll formation. PMID:16663121

  8. Role of 5-aminolevulinic acid-conjugated gold nanoparticles for photodynamic therapy of cancer

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenxi; Wang, Sijia; Xu, Hao; Wang, Bo; Yao, Cuiping

    2015-05-01

    There are three possible mechanisms for 5-aminolevulinic acid (5-ALA) conjugated gold nanoparticles (GNPs) through electrostatic bonding for photodynamic therapy (PDT) of cancer: GNPs delivery function, singlet oxygen generation (SOG) by GNPs irradiated by light, and surface resonance enhancement (SRE) of SOG. Figuring out the exact mechanism is important for further clinical treatment. 5-ALA-GNPs and human chronic myeloid leukemia K562 cells were used to study delivery function and SOG by GNPs. The SRE of SOG enabled by GNPs was explored by protoporphyrin IX (PpIX)-GNPs conjugate through electrostatic bonding. Cell experiments show that the GNPs can improve the efficiency of PDT, which is due to the vehicle effect of GNPs. PpIX-GNPs conjugate experiments demonstrated that SOG can be improved about 2.5 times over PpIX alone. The experiments and theoretical results show that the local field enhancement (LFE) via localized surface plasmon resonance (LSPR) of GNPs is the major role; the LFE was dependent on the irradiation wavelength and the GNP's size. The LFE increased with an increase of the GNP size (2R ≤50 nm). However, the LSPR function of the GNPs was not found in cell experiments. Our study shows that in 5-ALA-conjugated GNPs PDT, the delivery function of GNPs is the major role.

  9. Rational design of 5-aminolevulinic acid derivatives aimed at improving photodynamic therapy.

    PubMed

    Casas, Adriana; Batlle, Alcira

    2002-07-01

    5-aminolevulinic acid (ALA) is the first intermediate in heme biosynthesis and is therefore a precursor of protoporphyrin IX (PpIX). PpIX is used as an endogenous photosensitizer in photodynamic therapy (PDT). Several chemical modifications have been made, both on the amino and carboxyl groups of ALA to induce higher PpIX production and photosensitisation. Esterification of ALA with aliphatic lineal and cyclic alcohols was found to reduce the amount of ALA required for photosensitization. Esterification by aliphatic alcohols with carbohydrate chains equal or lower than C4 leads to porphyrin accumulation lower than ALA, whereas equal or longer than C6 chains leads to greater synthesis of porphyrin. A branch point in the alcohol located next to the site of ester cleavage limits access of the esters to the esterase active site, resulting in lower PpIX production. ALA esters of the polyethylenglycol family can induce high levels of PpIX, with some selectivity for endothelial cells toward tumor cells. On the basis of the differential expression of some aminopeptidases in tumor vasculature when compared to normal vasculature, some ALA-pseudopeptides were synthesized. In a rational design of ALA derivatives, the transport mechanism of these aminoacids into the cell is central. Due to the similar characteristics between ALA and GABA transport, a novel approach for designing new ALA derivatives which could penetrate more easily into tumoral cells, would be to take into account the structures of the inhibitors of GABA transport. PMID:12678731

  10. Clinical utility of 5-aminolevulinic acid HCl to better visualize and more completely remove gliomas.

    PubMed

    Halani, Sameer H; Adamson, D Cory

    2016-01-01

    Surgical resection is typically the first line of treatment for gliomas. However, the neurosurgeon faces a major challenge in achieving maximal resection in high-grade gliomas as these infiltrative tumors make it difficult to discern tumor margins from normal brain with conventional white-light microscopy alone. To aid in resection of these infiltrative tumors, fluorescence-guided surgery has gained much popularity in intraoperative visualization of malignant gliomas, with 5-aminolevulinic acid (5-ALA) leading the way. First introduced in an article in Neurosurgery, 5-ALA has since become a safe, effective, and inexpensive method to visualize and improve resection of gliomas. This has undoubtedly led to improvements in the clinical course of patients as demonstrated by the increased overall and progression-free survival in patients with such devastating disease. This literature review aims to discuss the major studies and trials demonstrating the clinical utility of 5-ALA and its ability to aid in complete resection of malignant gliomas. PMID:27672334

  11. Clinical utility of 5-aminolevulinic acid HCl to better visualize and more completely remove gliomas

    PubMed Central

    Halani, Sameer H; Adamson, D Cory

    2016-01-01

    Surgical resection is typically the first line of treatment for gliomas. However, the neurosurgeon faces a major challenge in achieving maximal resection in high-grade gliomas as these infiltrative tumors make it difficult to discern tumor margins from normal brain with conventional white-light microscopy alone. To aid in resection of these infiltrative tumors, fluorescence-guided surgery has gained much popularity in intraoperative visualization of malignant gliomas, with 5-aminolevulinic acid (5-ALA) leading the way. First introduced in an article in Neurosurgery, 5-ALA has since become a safe, effective, and inexpensive method to visualize and improve resection of gliomas. This has undoubtedly led to improvements in the clinical course of patients as demonstrated by the increased overall and progression-free survival in patients with such devastating disease. This literature review aims to discuss the major studies and trials demonstrating the clinical utility of 5-ALA and its ability to aid in complete resection of malignant gliomas. PMID:27672334

  12. Role of 5-aminolevulinic acid-conjugated gold nanoparticles for photodynamic therapy of cancer.

    PubMed

    Zhang, Zhenxi; Wang, Sijia; Xu, Hao; Wang, Bo; Yao, Cuiping

    2015-05-01

    There are three possible mechanisms for 5-aminolevulinic acid (5-ALA) conjugated gold nanoparticles (GNPs) through electrostatic bonding for photodynamic therapy (PDT) of cancer: GNPs delivery function,singlet oxygen generation (SOG) by GNPs irradiated by light, and surface resonance enhancement (SRE) of SOG. Figuring out the exact mechanism is important for further clinical treatment. 5-ALA-GNPs and human chronic myeloid leukemia K562 cells were used to study delivery function and SOG by GNPs. The SRE of SOG enabled by GNPs was explored by protoporphyrin IX (PpIX)-GNPs conjugate through electrostatic bonding.Cell experiments show that the GNPs can improve the efficiency of PDT, which is due to the vehicle effect of GNPs. PpIX–GNPs conjugate experiments demonstrated that SOG can be improved about 2.5 times over PpIX alone. The experiments and theoretical results show that the local field enhancement (LFE) via localized surface plasmon resonance (LSPR) of GNPs is the major role; the LFE was dependent on the irradiation wavelength and the GNP's size. The LFE increased with an increase of the GNP size (2R ≤ 50 nm). However, the LSPR function of the GNPs was not found in cell experiments. Our study shows that in 5-ALA-conjugated GNPs PDT, the delivery function of GNPs is the major role.

  13. Comparison of 5-aminolevulinic acid-encapsulated liposome versus ethosome for skin delivery for photodynamic therapy.

    PubMed

    Fang, Yi-Ping; Tsai, Yi-Hung; Wu, Pao-Chu; Huang, Yaw-Bin

    2008-05-22

    Topical photodynamic therapy (PDT) with 5-aminolevulinic acid (ALA) is an alternative therapy for many non-melanoma skin cancers. The major limitation of this therapy, however, is the low permeability of ALA through the stratum corneum (SC) of the skin. The objective of the present work was to characterize ethosomes containing ALA and to enhance the skin production of protoporphyrin IX (PpIX), compared to traditional liposomes. Results showed that the average particle sizes of the ethosomes were less than those of liposomes. Moreover, the entrapment efficiency of ALA in the ethosome formulations was 8-66% depending on the surfactant added. The particle size of the ethosomes was still approximately <200 nm after 32 days of storage. An in vivo animal study observed the presence of PpIX in the skin by confocal laser scanning microscopy (CLSM). The results indicated that the penetration ability of ethosomes was greater than that of liposomes. The enhancements of all the formulations were ranging from 11- to 15-fold in contrast to that of control (ALA in an aqueous solution) in terms of PpIX intensity. In addition, colorimetry detected no erythema in the irradiated skin. The results demonstrated that the enhancement ratio of ethosome formulations did not significantly differ between the non-irradiated and irradiated groups except for PE/CH/SS, which may have been due to a photobleaching effect of the PDT-irradiation process. PMID:18325699

  14. Physicochemical characterisation of a novel thermogelling formulation for percutaneous penetration of 5-aminolevulinic acid.

    PubMed

    Grüning, Nadja; Müller-Goymann, Christel Charlotte

    2008-06-01

    The present contribution was dedicated to the development and characterisation of a semisolid formulation of 5-aminolevulinic acid (5-ALA), appropriate for the diagnosis and treatment of actinic keratosis in photodynamic therapy. To achieve sufficiently high concentrations of the polar substance within the living epithelium after topical application, the semisolid base was enriched with penetration enhancers. A semisolid liquid crystalline system for drug delivering was the formulation of choice. It was composed of isopropyl alcohol, dimethyl isosorbide, medium chain triglycerides, water, and Pluronic F 127 as a polyoxyethylene-polyoxypropylene surface-active block copolymer. Rheometrical investigations were performed in the oscillatory mode and showed a thermo reversible gelification behaviour of the formulation, which therefore was denoted Thermogel. Permeation studies through human stratum corneum revealed higher permeation coefficients for 5-ALA from the Thermogel than from different German Pharmacopoeia creams. For example a 7.5-fold increase in comparison with Basiscreme DAC, and a 19.5-fold increase compared to water containing hydrophilic ointment. With respect to Dolgit(R) Mikrogel, the permeation coefficient from the Thermogel was 6.4-fold higher. These results were in accordance with those of differential scanning calorimetry measurements. Thermogel disclosed the strongest interactions with stratum corneum lipids.

  15. Effects of 5-aminolevulinic acid on a murine model of diet-induced obesity

    PubMed Central

    Koganei, Megumi; Saitou, Yuri; Tsuchiya, Kyoko; Abe, Fuminori; Tanaka, Toru; Horinouchi, Izumi; Izumi, Yoshiya; Yamaji, Taketo; Takahashi, Takeshi

    2015-01-01

    The effects of 5-aminolevulinic acid (5-ALA) on obesity were investigated using a murine model (diet-induced obese mice). Diet-induced obese mice were divided into 4 groups: a control group (C group), which was fed a high-fat diet; a low-5-ALA dose (10 mg/kg/day) group (10A group); a moderate-5-ALA dose (30 mg/kg/day) group (30A group); and a high-5-ALA dose (100 mg/kg/day) group (100A group). 5-ALA was administered by mixing the high fat diet for 8 weeks. Body weight increases in the 30A and 100A groups were significantly smaller compared with those of the C group. Body fat measurements by X-ray computed tomography indicated that the 100A group showed a tendency toward low visceral fat quantities during the final week of the study. Visceral fat weights in the 30A and 100A groups were slightly low. The levels of serum alanine aminotransferase (ALT) and total cholesterol (TC) in the 10A group was slightly low, whereas the 30A and 100A groups showed significantly lower ALT and TC values. Liver lipid concentration showed a dose-dependent decrease with ALA. Thus, in this diet-induced obese murine model, administration of 5-ALA had a significantly beneficial impact on the visceral fat, serum ALT and TC, and liver lipid concentration. PMID:26388673

  16. Sonodynamic therapy using 5-aminolevulinic acid enhances the efficacy of bleomycin.

    PubMed

    Osaki, Tomohiro; Ono, Misato; Uto, Yoshihiro; Ishizuka, Masahiro; Tanaka, Tohru; Yamanaka, Nobuyasu; Kurahashi, Tsukasa; Azuma, Kazuo; Murahata, Yusuke; Tsuka, Takeshi; Ito, Norihiko; Imagawa, Tomohiro; Okamoto, Yoshiharu

    2016-04-01

    Sonodynamic therapy (SDT) kills tumor cells through the synergistic effects of ultrasound and a sonosensitizer agent. We examined whether 5-aminolevulinic acid (5-ALA)-based SDT at 1 or 3 MHz could enhance the cytotoxicity of bleomycin (BLM) toward mouse mammary tumor cells both in vitro and in vivo. At 1 MHz, cell viability in the 5-ALA-based SDT group at 1, 2, and 3 W/cm(2) was 34.30%, 50.90%, and 60.16%, respectively. Cell viability in the 5-ALA-based SDT+BLM group at 1, 2, and 3 W/cm(2) was 0.09%, 0.32%, and 0.17%, respectively. In contrast, at 3 MHz, 5-ALA-based SDT+BLM did not show pronounced cytotoxicity. In the in vivo study, 5-ALA-based SDT+BLM was significantly more cytotoxic than 5-ALA-based SDT at 1 MHz and 3 MHz. These findings suggest that the mechanism of tumor shrinkage induced by 5-ALA-based SDT+BLM might involve not only direct cell killing, but also vascular shutdown. Thus, we show here that 5-ALA-based SDT enhances the efficacy of BLM both in vitro and in vivo. PMID:26799128

  17. 5-aminolevulinic acid and neuronavigation in high-grade glioma surgery: results of a combined approach.

    PubMed

    Panciani, Pier Paolo; Fontanella, Marco; Garbossa, Diego; Agnoletti, Alessandro; Ducati, Alessandro; Lanotte, Michele

    2012-02-01

    In high-grade glioma surgery, several techniques are used to achieve the maximum cytoreductive treatment preserving neurological functions. However, the effectiveness of all the methods used alone is reduced by specific limitations of each. We assessed the reliability of a multimodal strategy based on 5-aminolevulinic acid (5-ALA) and neuronavigation. We prospectively studied 18 patients with suspected, non eloquent-area malignant gliomas amenable for complete resection. Conventional illumination was used until the excision appeared complete. The cavity was then systematically inspected in violet-blue light to identify any residual tumour. Multiple biopsies of both fluorescent and non-fluorescent tissue were performed in all cases. Each specimen was labelled according to the sampling location (inside or outside the boundary set by the neuronavigator). The samples were analysed by a neuropathologist blinded to the intraoperative classification. We reviewed the results of both methods, either singly or in combination. Individual analysis showed higher 5-ALA reliability compared to neuronavigation. However, several false-negative fluorescent specimens were detected. With the combined use of fluorescence and neuroimaging, only 1 sample (negative for both 5-ALA and navigation) was tumoral tissue. In our experience, the combined approach showed the best sensitivity and it is recommended in cases of lesions involving non-eloquent areas.

  18. Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli

    PubMed Central

    Zhang, Junli; Kang, Zhen; Chen, Jian; Du, Guocheng

    2015-01-01

    5-Aminolevulinic acid (ALA), the committed intermediate of the heme biosynthesis pathway, shows significant promise for cancer treatment. Here, we identified that in addition to hemA and hemL, hemB, hemD, hemF, hemG and hemH are also the major regulatory targets of the heme biosynthesis pathway. Interestingly, up-regulation of hemD and hemF benefited ALA accumulation whereas overexpression of hemB, hemG and hemH diminished ALA accumulation. Accordingly, by combinatorial overexpression of the hemA, hemL, hemD and hemF with different copy-number plasmids, the titer of ALA was improved to 3.25 g l−1. Furthermore, in combination with transcriptional and enzymatic analysis, we demonstrated that ALA dehydratase (HemB) encoded by hemB is feedback inhibited by the downstream intermediate protoporphyrinogen IX. This work has great potential to be scaled-up for microbial production of ALA and provides new important insights into the regulatory mechanism of the heme biosynthesis pathway. PMID:25716896

  19. Effectiveness of 5-aminolevulinic acid photodynamic therapy in the treatment of hidradenitis suppurativa: a report of 5 cases.

    PubMed

    Andino Navarrete, R; Hasson Nisis, A; Parra Cares, J

    2014-01-01

    Hidradenitis suppurativa has been described as a chronic, recurrent, and disabling inflammatory disease involving the entire hair follicle. Several treatments, including photodynamic therapy, have been used, but the results have been inconsistent and recurrence is high. In this prospective study, we evaluated disease severity, quality of life, and treatment tolerance in 5 patients with moderate to severe hidradenitis suppurativa treated with photodynamic therapy using 5-aminolevulinic acid and a 635-nm light source. Treatment effectiveness was evaluated using the Sartorius severity score, the Dermatology Life Quality Index, and a visual analog scale for pain and disease activity. Significant improvements were observed with all 3 instruments and the effects remained visible at 8 weeks. Our results suggest that photodynamic therapy with 5-aminolevulinic acid and a light wavelength of 635 nm could reduce disease severity and improve quality of life in patients with difficult-to-treat hidradenitis suppurativa.

  20. Hydrokolloid occlusive dressings for photodynamic therapy (PDT) of cutaneous lesions with endogenous porphyrins induced by 5-aminolevulinic acid

    NASA Astrophysics Data System (ADS)

    Gahlen, Johannes; Stern, Josef; Herfarth, Christian

    1995-03-01

    Protoporphyrin (Pp IX) is the final intermediate product before haem and can be stimulated to a phototoxic reaction with light. The presence of 5-aminolevulinic acid can increase the intracellular biosynthesis of Pp IX in certain types of tumor cells. The photosensitizing concentrations of Pp IX make laser light induced fluorescence diagnostics (LIFD) and photodynamic therapy possible. A topical application of a 5-aminolevulinic acid solution requires a waterproof occlusive dressing for several hours. We developed a simple technique for a practical preparation for PDT using a hydrocolloid dressing. The normal surrounding skin can be spared. We present our first therapeutic experience with a case of cutaneous breast cancer in a 65-year-old female patient. Six hours after topical application of 10% isotonic 5- aminolevulinic acid under the hydrocolloid dressing PDT was performed (Ar-Dye Laser, 630 nm wavelength). Twenty four hours after PDT a superficial tumor necrosis could be observed with a maximum depth of tumor necrosis of 2 - 3 mm. The surrounding normal skin was without any inflammation.

  1. Alleviation of salt-induced oxidative damage by 5-aminolevulinic acid in wheat seedlings

    NASA Astrophysics Data System (ADS)

    Genişel, Mucip; Erdal, Serkan

    2016-04-01

    The aim of this study was to elucidate how 5-aminolevulinic acid (ALA), the precursor of chlorophyll compounds, affects the defence mechanisms of wheat seedlings induced by salt stress. To determine the possible stimulative effects of ALA against salinity, 11-day old wheat seedlings were sprayed with ALA at two different concentrations (10 and 20 mg.l-1) and then stressed by exposure to salt (150 mM NaCl). The salt stress led to significant changes in the antioxidant activity. While guaiacol peroxidase activity decreased, the activities of superoxide dismutase, catalase, and ascorbate peroxidase markedly increased under salt stress. Compared to the salt stress alone, the application of ALA beforehand further increased the activity of these enzymes. This study is the first time the effects of ALA have been monitored with regard to protein content and the isoenzyme profiles of the antioxidant enzymes. Although the salt stress reduced both the soluble protein content and protein band intensities, pre-treating with ALA significantly mitigated these stress-induced reductions. The data for the isoenzyme profiles of the antioxidant enzymes paralleled that of the ALA-induced increases in antioxidant activity. As a consequence of the high antioxidant activity in the seedlings pre-treated with ALA, the stress-induced elevations in the reactive oxygen species, superoxide anion, and hydrogen peroxide contents and lipid peroxidation levels were markedly diminished. Taken together, this data demonstrated that pre-treating with ALA confers resistance to salt stress by modulating the protein synthesis and antioxidant activity in wheat seedlings.

  2. Photodynamic therapy of urethral condylomata acuminata using topically 5-aminolevulinic acid

    NASA Astrophysics Data System (ADS)

    Wang, Xiuli; Wang, Hongwei; Wang, Haishan; Xu, Shizheng; Liao, Kanghuang; Hillemanns, Peter

    2005-07-01

    Background Electrocoagulation and laser evaporation for urethral condylomata acuminata have high recurrence rates and can be associated with urethral malformations. Objective To investigate the effect of photodynamic therapy (PDT) with topical 5-aminolevulinic acid (ALA) on urethral condylomata acuminata and to examine the histological changes in lesions of condylomata acuminata after ALA-PDT. Methods One hundred and sixty-four urethral condylomata patients were given topical ALA followed by intraurethral PDT through a cylindrical fiber. Among the cases, 16 penile and vulval condylomatous lesions in 11 patients were treated with topical ALA-PDT at same time. After the treatment, biopsy specimens were collected from the 16 penile and vulval lesions. The histological changes were then evaluated by light microscope and electron microscope. Results The complete response rate for urethral condylomata by topical ALA-PDT was 95.12% and the recurrence rate was 5.13% after 6 to 24 months follow-up. Keratinocytes in middle and upper layers of the epidermis with marked vacuolation and some necrocytosis were detected one and three hours after PDT. Necrosis in all layers of the epidermis was noted five hours after PDT by microscopy. In electron microscopy of kerationcytes, distinct ultrastructural abnormalities of mitochondrion, endoplasmic reticulum and membrane damage were observed. Apoptotic bodies were detected three hours after PDT and a large number of the keratinocytes exhibited necrosis five hours after PDT by electron microscope. Conclusions Results suggests that topical ALA-PDT is a simple, effective, relatively safe, less recurrent and comparatively well tolerated treatment for urethral condylomata acuminata. The mechanisms might be that ALA-PDT could trigger apoptotic process and necrosis in the HPV infected keratinocytes. Key words:

  3. [Effect of 5-aminolevulinic acid on photosynthetic characteristics of tomato seedlings under NaCl stress].

    PubMed

    Zhao, Yan-Yan; Yan, Fei; Hu, Li-Pan; Zhou, Xiao-Ting; Zou, Zhi-Rong

    2014-10-01

    In this research, the possibility of exogenous application of 5-aminolevulinic acid (ALA) on photosynthetic characteristics of tomato seedlings under NaCl stress was investigated. Five leaves seedlings of tomato (Solanum lycopersicum cv. Jinpeng No. 1) were used as starting materials, applied with 50 mg · L(-1) ALA by foliage spray or 10 mg · L(-1) ALA by root soaking to study the changes in their photosynthesis and fluorescence parameters under 100 mmol · L(-1) NaCl. The result showed that, photosynthetic gas exchange parameters (net photosynthetic rate P,, stomata conductance g(s), intercellular CO2 concentration Ci, transpiration Tr) and chlorophyll fluorescence parameters (Fv'/Fm', Fm', ΦPS II, ETR, qP, Pc) were severely reduced under NaCl treatment and ALA application by foliage spray or root soaking with proper concentrations exerted positive influences on tomato seedlings under salt stress, while there were some differences between foliage spray and root soaking in the influence on chlorophyll content, photosynthesis and chlorophyll fluorescence. Both foliage spray with 50 mg · L(-1) ALA and root soaking with 10 mg L(-1) ALA significantly increased Pn, Ci, g(s) and Tr of tomato seedlings under NaCl stress, alleviated photosynthetic inhibition. Root application of ALA had a better effect on the chlorophyll content than foliage application. However, the photosynthetic parameters showed that foliage application of ALA had a better effect than root application, and both treatments had no difference in the influence on chlorophyll fluorescence parameters of tomato seedlings. It could be deduced that the regulating effect of ALA on enhancing salt tolerance of tomato seedlings is attributed to its effect on improving chlorophyll biosynthesis and metabolism, increasing stomatal conductance and reducing stomatal limitation, thus, enhancing the photosynthetic capacity and PS II photochemical efficiency of tomato leaves under NaCl stress. PMID:25796901

  4. [Effect of 5-aminolevulinic acid on photosynthetic characteristics of tomato seedlings under NaCl stress].

    PubMed

    Zhao, Yan-Yan; Yan, Fei; Hu, Li-Pan; Zhou, Xiao-Ting; Zou, Zhi-Rong

    2014-10-01

    In this research, the possibility of exogenous application of 5-aminolevulinic acid (ALA) on photosynthetic characteristics of tomato seedlings under NaCl stress was investigated. Five leaves seedlings of tomato (Solanum lycopersicum cv. Jinpeng No. 1) were used as starting materials, applied with 50 mg · L(-1) ALA by foliage spray or 10 mg · L(-1) ALA by root soaking to study the changes in their photosynthesis and fluorescence parameters under 100 mmol · L(-1) NaCl. The result showed that, photosynthetic gas exchange parameters (net photosynthetic rate P,, stomata conductance g(s), intercellular CO2 concentration Ci, transpiration Tr) and chlorophyll fluorescence parameters (Fv'/Fm', Fm', ΦPS II, ETR, qP, Pc) were severely reduced under NaCl treatment and ALA application by foliage spray or root soaking with proper concentrations exerted positive influences on tomato seedlings under salt stress, while there were some differences between foliage spray and root soaking in the influence on chlorophyll content, photosynthesis and chlorophyll fluorescence. Both foliage spray with 50 mg · L(-1) ALA and root soaking with 10 mg L(-1) ALA significantly increased Pn, Ci, g(s) and Tr of tomato seedlings under NaCl stress, alleviated photosynthetic inhibition. Root application of ALA had a better effect on the chlorophyll content than foliage application. However, the photosynthetic parameters showed that foliage application of ALA had a better effect than root application, and both treatments had no difference in the influence on chlorophyll fluorescence parameters of tomato seedlings. It could be deduced that the regulating effect of ALA on enhancing salt tolerance of tomato seedlings is attributed to its effect on improving chlorophyll biosynthesis and metabolism, increasing stomatal conductance and reducing stomatal limitation, thus, enhancing the photosynthetic capacity and PS II photochemical efficiency of tomato leaves under NaCl stress.

  5. Blood interference in fiber-optical based fluorescence guided resection of glioma using 5-aminolevulinic acid

    NASA Astrophysics Data System (ADS)

    Haj-Hosseini, Neda; Lowndes, Shannely; Salerud, Göran; Wårdell, Karin

    2011-03-01

    Fluorescence guidance in brain tumor resection is performed intra-operatively where bleeding is included. When using fiber-optical probes, the transmission of light to and from the tissue is totally or partially blocked if a small amount of blood appears in front of the probe. Sometimes even after rinsing with saline, the remnant blood cells on the optical probe head, disturb the measurements. In such a case, the corresponding spectrum cannot be reliably quantified and is therefore discarded. The optimal case would be to calculate and take out the blood effect systematically from the collected signals. However, the first step is to study the pattern of blood interference in the fluorescence spectrum. In this study, a fiber-optical based fluorescence spectroscopy system with a laser excitation light of 405 nm (1.4 J/cm2) was used during fluorescence guided brain tumor resection using 5-aminolevulinic acid (5-ALA). The blood interference pattern in the fluorescence spectrum collected from the brain was studied in two patients. The operation situation was modeled in the laboratory by placing blood drops from the finger tip on the skin of forearm and the data was compared to the brain in vivo measurements. Additionally, a theoretical model was developed to simulate the blood interference pattern on the skin autofluorescence. The blood affects the collected fluorescence intensity and leaves traces of oxy and deoxy-hemoglobin absorption peaks. According to the developed theoretical model, the autofluorescence signal is considered to be totally blocked by an approximately 500 μm thick blood layer.

  6. Nitric Oxide Mediates 5-Aminolevulinic Acid-Induced Antioxidant Defense in Leaves of Elymus nutans Griseb. Exposed to Chilling Stress

    PubMed Central

    Fu, Juanjuan; Chu, Xitong; Sun, Yongfang; Miao, Yanjun; Xu, Yuefei; Hu, Tianming

    2015-01-01

    Nitric oxide (NO) and 5-aminolevulinic acid (ALA) are both extremely important signalling molecules employed by plants to control many aspects of physiology. In the present study, the role of NO in ALA-induced antioxidant defense in leaves of two sources of Elymus nutans Griseb. (Damxung, DX and Zhengdao, ZD) was investigated. Chilling stress enhanced electrolyte leakage, accumulation of malondialdehyde (MDA), hydrogen peroxide (H2O2) and superoxide radical in two E. nutans, which were substantially alleviated by exogenous ALA and NO application. Pretreatment with NO scavenger PTIO or NOS inhibitor L-NNA alone and in combination with ALA induced enhancements in electrolyte leakage and the accumulation of MDA, H2O2 and superoxide radical in leaves of DX and ZD exposed to chilling stress, indicating that the inhibition of NO biosynthesis reduced the chilling resistance of E. nutans and the ALA-enhanced chilling resistance. Further analyses showed that ALA and NO enhanced antioxidant defense and activated plasma membrane (PM) H+-ATPase and decreased the accumulation of ROS induced by chilling stress. A pronounced increase in nitric oxide synthase (NOS) activity and NO release by exogenous ALA treatment was found in chilling-resistant DX plants exposed to chilling stress, while only a little increase was observed in chilling-sensitive ZD. Furthermore, inhibition of NO accumulation by PTIO or L-NNA blocked the protective effect of exogenous ALA, while both exogenous NO treatment and inhibition of endogenous NO accumulation did not induce ALA production. These results suggested that NO might be a downstream signal mediating ALA-induced chilling resistance in E. nutans. PMID:26151364

  7. Regulation of Cadmium-Induced Proteomic and Metabolic Changes by 5-Aminolevulinic Acid in Leaves of Brassica napus L.

    PubMed

    Ali, Basharat; Gill, Rafaqat A; Yang, Su; Gill, Muhammad B; Farooq, Muhammad A; Liu, Dan; Daud, Muhammad K; Ali, Shafaqat; Zhou, Weijun

    2015-01-01

    It is evident from previous reports that 5-aminolevulinic acid (ALA), like other known plant growth regulators, is effective in countering the injurious effects of heavy metal-stress in oilseed rape (Brassica napus L.). The present study was carried out to explore the capability of ALA to improve cadmium (Cd2+) tolerance in B. napus through physiological, molecular, and proteomic analytical approaches. Results showed that application of ALA helped the plants to adjust Cd2+-induced metabolic and photosynthetic fluorescence changes in the leaves of B. napus under Cd2+ stress. The data revealed that ALA treatment enhanced the gene expressions of antioxidant enzyme activities substantially and could increase the expression to a certain degree under Cd2+ stress conditions. In the present study, 34 protein spots were identified that differentially regulated due to Cd2+ and/or ALA treatments. Among them, 18 proteins were significantly regulated by ALA, including the proteins associated with stress related, carbohydrate metabolism, catalysis, dehydration of damaged protein, CO2 assimilation/photosynthesis and protein synthesis/regulation. From these 18 ALA-regulated proteins, 12 proteins were significantly down-regulated and 6 proteins were up-regulated. Interestingly, it was observed that ALA-induced the up-regulation of dihydrolipoyl dehydrogenase, light harvesting complex photo-system II subunit 6 and 30S ribosomal proteins in the presence of Cd2+ stress. In addition, it was also observed that ALA-induced the down-regulation in thioredoxin-like protein, 2, 3-bisphosphoglycerate, proteasome and thiamine thiazole synthase proteins under Cd2+ stress. Taken together, the present study sheds light on molecular mechanisms involved in ALA-induced Cd2+ tolerance in B. napus leaves and suggests a more active involvement of ALA in plant physiological processes than previously proposed.

  8. Regulation of Cadmium-Induced Proteomic and Metabolic Changes by 5-Aminolevulinic Acid in Leaves of Brassica napus L.

    PubMed Central

    Ali, Basharat; Gill, Rafaqat A.; Yang, Su; Gill, Muhammad B.; Farooq, Muhammad A.; Liu, Dan; Daud, Muhammad K.; Ali, Shafaqat; Zhou, Weijun

    2015-01-01

    It is evident from previous reports that 5-aminolevulinic acid (ALA), like other known plant growth regulators, is effective in countering the injurious effects of heavy metal-stress in oilseed rape (Brassica napus L.). The present study was carried out to explore the capability of ALA to improve cadmium (Cd2+) tolerance in B. napus through physiological, molecular, and proteomic analytical approaches. Results showed that application of ALA helped the plants to adjust Cd2+-induced metabolic and photosynthetic fluorescence changes in the leaves of B. napus under Cd2+ stress. The data revealed that ALA treatment enhanced the gene expressions of antioxidant enzyme activities substantially and could increase the expression to a certain degree under Cd2+ stress conditions. In the present study, 34 protein spots were identified that differentially regulated due to Cd2+ and/or ALA treatments. Among them, 18 proteins were significantly regulated by ALA, including the proteins associated with stress related, carbohydrate metabolism, catalysis, dehydration of damaged protein, CO2 assimilation/photosynthesis and protein synthesis/regulation. From these 18 ALA-regulated proteins, 12 proteins were significantly down-regulated and 6 proteins were up-regulated. Interestingly, it was observed that ALA-induced the up-regulation of dihydrolipoyl dehydrogenase, light harvesting complex photo-system II subunit 6 and 30S ribosomal proteins in the presence of Cd2+ stress. In addition, it was also observed that ALA-induced the down-regulation in thioredoxin-like protein, 2, 3-bisphosphoglycerate, proteasome and thiamine thiazole synthase proteins under Cd2+ stress. Taken together, the present study sheds light on molecular mechanisms involved in ALA-induced Cd2+ tolerance in B. napus leaves and suggests a more active involvement of ALA in plant physiological processes than previously proposed. PMID:25909456

  9. Quantification of topically delivered 5-aminolevulinic acid by lontophoresis across ex vivo human stratum corneum.

    PubMed

    Boddé, Harry E; Roemelé, Peter E H; Star, Willem M

    2002-04-01

    Iontophoretic transport of the prodrug 5-aminolevulinic acid (ALA), which is used for photodynamic therapy (PDT), across human stratum corneum (SC) was studied quantitatively in vitro. The experiments were carried out in a three-compartment iontophoresis cell consisting of two electrode chambers equipped with Ag-AgCl electrodes, each separated from a central acceptor chamber by a sheet of SC, supported by a dialysis membrane, to mimic the side-by-side configuration normally used in vivo. Acceptor fluid samples were collected every hour for a period of 30 h in a fraction collector and analyzed by high-performance liquid chromatography-fluorometry after derivatization of the ALA. The iontophoretic ALA flux was studied as a function of the applied current density and the ALA concentration in the donor solution (1, 2.5 or 10% ALA). Depending on the ALA concentration in the donor cell, iontophoresis enhances the flux from close to the detection limit of 0.23 nmol cm(-2) h(-1) at zero current density (passive diffusion) to several hundred or thousand nanomoles per square centimeter per hour at current densities ranging from 100 to 1000 microA cm(-2). For example, interpolating our data we find that with an ALA concentration of 2% in the donor chamber, a current density of 0.255 mA cm(-2) transports 0.065 micromol cm(-2) ALA across the SC in 10 min (conditions of Rhodes et al. (1997), J. Invest. Dermatol. 108, 87-91). For passive diffusion we find that a 5 h topical application of 20% ALA results in the transport of 0.05 micromol cm(-2). Thus, the amount of ALA that passively diffuses through the SC in several hours, leading to therapeutic levels of protoporphyrin IX (PpIX) in the epidermis, can be delivered by iontophoresis in 10 min or less. However, because the formation of sufficient PpIX also requires several hours and also because the SC overlying skin lesions such as basal cell carcinoma (BCC) is not intact, the clinical benefit of topical ALA delivery by

  10. Risk factors for developing oral 5-aminolevulinic acid-induced side effects in patients undergoing fluorescence guided resection.

    PubMed

    Chung, Ivan Wong Hin; Eljamel, Sam

    2013-12-01

    Oral 5 aminolevulinic acid (5-ALA) is used to assist surgical resection of malignant tumours in the brain and other locations. Hypotension and alteration of liver functions have been reported as potential adverse effects. This study was designed to assess the incidence and contributing factors that cause 5-ALA induced side effects in a cohort of 90 patients. Hypotension occurred in 11% of patients irrespective of 5-ALA dose. The only contributing factor was the presence of cardiovascular disease and antihypertensive drug therapy with an odd ratio of 17.7. Liver function were disturbed in 2% in patients who received 20mg or less/kg body weight compared to 4% in those who received a dose of >20mg/kg 5-ALA. The liver dysfunction was minor and was not clinically significant. We concluded that 5-ALA induced side effects were minimal and hypotension more likely to occur in patients receiving antihypertensive drug therapy.

  11. Optimization of Influencing Factors on Biomass Accumulation and 5-Aminolevulinic Acid (ALA) Yield in Rhodobacter sphaeroides Wastewater Treatment.

    PubMed

    Liu, Shuli; Li, Xiangkun; Zhang, Guangming; Zhang, Jie

    2015-11-01

    This study aimed to optimize four factors affecting biomass accumulation and 5-aminolevulinic acid (ALA) yield together with pollutants removal in Rhodobacter sphaeroides wastewater treatment. Results showed that it was feasible to produce biomass and ALA in R. sphaeroides wastewater treatment. Microaerobic, 1,000-3,000 lux, and pH 7.0 were optimal conditions for the highest ALA yield of 4.5 ± 0.5 mg/g-biomass. Under these conditions, COD removal and biomass production rate were 93.3 ± 0.9% and 31.8 ± 0.5 mg/l/h, respectively. In addition, trace elements Fe(2+), Mg(2+), Ni(2+), and Zn(2+) further improved the ALA yield, COD removal, and biomass production rate. Specifically, the highest ALA yield (12.5 ± 0.6 mg/g-biomass) was achieved with Fe(2+) addition.

  12. The heme precursor 5-aminolevulinic acid disrupts the Warburg effect in tumor cells and induces caspase-dependent apoptosis.

    PubMed

    Sugiyama, Yuta; Hagiya, Yuichiro; Nakajima, Motowo; Ishizuka, Masahiro; Tanaka, Tohru; Ogura, Shun-Ichiro

    2014-03-01

    Our previous study demonstrated that 5-aminolevulinic acid (ALA) administered to mice stimulates oxidative phosphorylation by upregulation of the mitochondrial respiratory chain complex IV enzyme cytochrome c oxidase (COX). The present study investigated whether ALA disrupts the Warburg effect, which represents a shift in ATP generation from oxidative phosphorylation to glycolysis, protecting tumor cells against oxidative stress-mediated apoptosis. The human lung carcinoma cell line A549 exposed to ALA exhibited enhanced oxidative phosphorylation, which was indicated by an increase in COX protein expression and oxygen consumption. Furthermore, ALA suppressed glycolysis-mediated acidosis. This normalization of the ATP metabolic pathways significantly increased the generation of superoxide anion radical (O2•-) and the functional expression of active caspase-3, leading to caspase-dependent apoptosis. These data demonstrate that ALA inhibits the Warburg effect and induces cancer cell death. Use of this endogenous compound might constitute a novel approach to cancer therapy. PMID:24366173

  13. Photodynamic therapy using systemic administration of 5-aminolevulinic acid and a 410-nm wavelength light-emitting diode for methicillin-resistant Staphylococcus aureus-infected ulcers in mice.

    PubMed

    Morimoto, Kuniyuki; Ozawa, Toshiyuki; Awazu, Kunio; Ito, Nobuhisa; Honda, Norihiro; Matsumoto, Sohkichi; Tsuruta, Daisuke

    2014-01-01

    Bacterial resistance to antibiotics has become a worldwide problem. One potential alternative for bacterial control is photodynamic therapy. 5-aminolevulinic acid is a natural precursor of the photosensitizer protoporphyrin IX. Relatively little is known about the antibacterial efficacy of photodynamic therapy using the systemic administration of 5-aminolevulinic acid; a few reports have shown that 5-aminolevulinic acid exerts photodynamic effects on methicillin-resistant Staphylococcus aureus (MRSA) in vitro. In this study, we evaluated the effectiveness of photodynamic therapy using 5-aminolevulinic acid and a 410-nm wavelength light-emitting diode in vitro and in vivo for the treatment of MRSA. We found that 5-aminolevulinic acid photodynamic therapy with the light-emitting diode had an in-vitro bactericidal effect on MRSA. In vivo, protoporphyrin IX successfully accumulated in MRSA on ulcer surfaces after intraperitoneal administration of 5-aminolevulinic acid to mice. Furthermore, 5-aminolevulinic acid photodynamic therapy accelerated wound healing and decreased bacterial counts on ulcer surfaces; in contrast, vancomycin treatment did not accelerate wound healing. Our findings indicate that 5-aminolevulinic acid photodynamic therapy may be a new treatment option for MRSA-infected wounds.

  14. Photodynamic Therapy Using Systemic Administration of 5-Aminolevulinic Acid and a 410-nm Wavelength Light-Emitting Diode for Methicillin-Resistant Staphylococcus aureus-Infected Ulcers in Mice

    PubMed Central

    Morimoto, Kuniyuki; Ozawa, Toshiyuki; Awazu, Kunio; Ito, Nobuhisa; Honda, Norihiro; Matsumoto, Sohkichi; Tsuruta, Daisuke

    2014-01-01

    Bacterial resistance to antibiotics has become a worldwide problem. One potential alternative for bacterial control is photodynamic therapy. 5-aminolevulinic acid is a natural precursor of the photosensitizer protoporphyrin IX. Relatively little is known about the antibacterial efficacy of photodynamic therapy using the systemic administration of 5-aminolevulinic acid; a few reports have shown that 5-aminolevulinic acid exerts photodynamic effects on methicillin-resistant Staphylococcus aureus (MRSA) in vitro. In this study, we evaluated the effectiveness of photodynamic therapy using 5-aminolevulinic acid and a 410-nm wavelength light-emitting diode in vitro and in vivo for the treatment of MRSA. We found that 5-aminolevulinic acid photodynamic therapy with the light-emitting diode had an in-vitro bactericidal effect on MRSA. In vivo, protoporphyrin IX successfully accumulated in MRSA on ulcer surfaces after intraperitoneal administration of 5-aminolevulinic acid to mice. Furthermore, 5-aminolevulinic acid photodynamic therapy accelerated wound healing and decreased bacterial counts on ulcer surfaces; in contrast, vancomycin treatment did not accelerate wound healing. Our findings indicate that 5-aminolevulinic acid photodynamic therapy may be a new treatment option for MRSA-infected wounds. PMID:25140800

  15. Optimization of Biomass and 5-Aminolevulinic Acid Production by Rhodobacter sphaeroides ATCC17023 via Response Surface Methodology.

    PubMed

    Liu, Shuli; Zhang, Guangming; Li, Jianzheng; Li, Xiangkun; Zhang, Jie

    2016-06-01

    Microbial 5-aminolevulinic acid (ALA) produced from wastewater is considered as potential renewable energy. However, many hurdles are needed to be overcome such as the regulation of key influencing factors on ALA yield. Biomass and ALA production by Rhodobacter sphaeroides was optimized using response surface methodology. The culturing medium was artificial volatile fatty acids wastewater. Three additives were optimized, namely succinate and glycine that are precursors of ALA biosynthesis, and D-glucose that is an inhibitor of ALA dehydratase. The optimal conditions were achieved by analyzing the response surface plots. Statistical analysis showed that succinate at 8.56 mmol/L, glycine at 5.06 mmol/L, and D-glucose at 7.82 mmol/L were the best conditions. Under these optimal conditions, the highest biomass production and ALA yield of 3.55 g/L and 5.49 mg/g-biomass were achieved. Subsequent verification experiments at optimal values had the maximum biomass production of 3.41 ± 0.002 g/L and ALA yield of 5.78 ± 0.08 mg/g-biomass. PMID:26875086

  16. Formation of protoporphyrin IX in mouse skin after topical application of 5-aminolevulinic acid and its methyl esther

    NASA Astrophysics Data System (ADS)

    Sorensen, Roar; Juzenas, Petras; Iani, Vladimir; Moan, Johan

    1999-02-01

    Normal skin of nude mice (Balb/c) was treated topically with 5-aminolevulinic acid (ALA) and its methyl ester (ALA-Me) for 24 hours. Approximately 0.1 gram of freshly prepared cream was applied to a spot of 1 cm2 on the flank of the mice, which was then covered with a transparent dressing. The ALA induced protoporphyrin IX (PpIX) was studied by means of a noninvasive fiber-optic fluorescence probe connected to a luminescence spectrometer. The excitation wavelength was 407 nm, and the emission wavelength was 637 nm. For the first hour a slight lag in PpIX production was observed for the mice treated with ALA-Me compared to the mice treated with ALA. After approximately 12 hours the ALA and the ALA-Me treated mice showed the same PpIX fluorescence intensity. From 12 hours until 24 hours the PpIX fluorescence intensity decreased for both treatment modalities, even though ALA and ALA-Me were continuously present. At 24 hours ALA-Me-treated mice had less than half the amount of PpIX in their skin compared with ALA- treated mice.

  17. Clearance of protoporphyrin IX from mouse skin after topical application of 5-aminolevulinic acid and its methyl ester

    NASA Astrophysics Data System (ADS)

    Juzenas, Petras; Sorensen, Roar; Iani, Vladimir; Moan, Johan

    1999-02-01

    The clearance of protoporphyrin IX (PpIX) from the skin of hairless BALB/c mice after topical application of 5- aminolevulinic acid (ALA) and its methyl ester (ALA-Me) was investigated. Creams containing 2 or 20% of ALA or ALA-Me were topically applied on spots of approximately 1 cm2 for 12 hours. The PpIX fluorescence was detected by the means of a Perkin Elmer LS50B luminescence spectrometer equipped with a fiber-optic probe. The emission spectrum was identical with that of cell-bound PpIX. After 12 hours application of ALA and ALA-Me similar amounts of PpIX were found. After creme removal the ALA-induced PpIX fluorescence decayed with a half-life of about 20 hours (20% ALA cream). The ALA-Me-induced PpIX was faster cleared from the skin than ALA-induced PpIX, and had a half-life of about 7 hours (20% ALA-Me cream).

  18. Photosensitizer fluorescence and singlet oxygen luminescence as dosimetric predictors of topical 5-aminolevulinic acid photodynamic therapy induced clinical erythema

    PubMed Central

    Mallidi, Srivalleesha; Anbil, Sriram; Lee, Seonkyung; Manstein, Dieter; Elrington, Stefan; Kositratna, Garuna; Schoenfeld, David; Pogue, Brian; Davis, Steven J.; Hasan, Tayyaba

    2014-01-01

    Abstract. The need for patient-specific photodynamic therapy (PDT) in dermatologic and oncologic applications has triggered several studies that explore the utility of surrogate parameters as predictive reporters of treatment outcome. Although photosensitizer (PS) fluorescence, a widely used parameter, can be viewed as emission from several fluorescent states of the PS (e.g., minimally aggregated and monomeric), we suggest that singlet oxygen luminescence (SOL) indicates only the active PS component responsible for the PDT. Here, the ability of discrete PS fluorescence-based metrics (absolute and percent PS photobleaching and PS re-accumulation post-PDT) to predict the clinical phototoxic response (erythema) resulting from 5-aminolevulinic acid PDT was compared with discrete SOL (DSOL)-based metrics (DSOL counts pre-PDT and change in DSOL counts pre/post-PDT) in healthy human skin. Receiver operating characteristic curve (ROC) analyses demonstrated that absolute fluorescence photobleaching metric (AFPM) exhibited the highest area under the curve (AUC) of all tested parameters, including DSOL based metrics. The combination of dose-metrics did not yield better AUC than AFPM alone. Although sophisticated real-time SOL measurements may improve the clinical utility of SOL-based dosimetry, discrete PS fluorescence-based metrics are easy to implement, and our results suggest that AFPM may sufficiently predict the PDT outcomes and identify treatment nonresponders with high specificity in clinical contexts. PMID:24503639

  19. Improvement of systemic 5-aminolevulinic acid-based photodynamic therapy in vivo using light fractionation with a 75-minute interval.

    PubMed

    de Bruijn, H S; van der Veen, N; Robinson, D J; Star, W M

    1999-02-15

    We have studied different single and fractionated illumination schemes after systemic administration of 5-aminolevulinic acid (ALA) to Improve the response of nodular tumors to ALA-mediated photodynamic therapy. Tumors transplanted on the thigh of female WAG/Rij rats were transdermally illuminated with red light (633 nm) after systemic ALA administration (200 mg/kg). The effectiveness of each treatment scheme was determined from the tumor volume doubling time. A single illumination (100 J/cm2 at 100 mW/cm2, 2.5 h after ALA administration) yielded a doubling time of 6.6+/-1.2 days. This was significantly different from the untreated control (doubling time, 1.7+/-0.1 days). The only treatment scheme that yielded a significant improvement compared to all other schemes studied was illumination at both 1 and 2.5 h after ALA administration (both 100 J/cm2 at 100 mW/cm2) and resulted in a tumor volume doubling time of 18.9+/-2.9 days. A possible mechanism to explain this phenomenon is that the protoporphyrin IX formed after administration of ALA is photodegraded by the first illumination. In the 75-min interval, new porphyrin is formed enhancing the effect of the second illumination. PMID:10029082

  20. Prospective study of topical 5-aminolevulinic acid photodynamic therapy for the treatment of severe adolescent acne in Chinese patients.

    PubMed

    Ma, Ying; Liu, Ye; Wang, Qianqian; Ren, Jie; Xiang, Leihong

    2015-05-01

    Acne vulgaris is one of the most common skin diseases in adolescents. In the present study, we aimed to evaluate the effectiveness and safety of topical 5-aminolevulinic acid (ALA)-mediated photodynamic therapy (PDT) for the treatment of severe acne in Chinese adolescent patients. Twenty-one Chinese adolescent patients aged 12-18 years with Pillsbury III-IV severe facial acne were treated with three courses of ALA-PDT. A 5% ALA lotion was applied topically for 60 min followed by irradiation with light-emitting diode light at 633 nm with a light intensity of 75-80 mW/cm(2) and a light dose of 90-96 J/cm(2) . Clinical assessment was conducted before and after each treatment, and at each follow-up session. The total effective rates were 85.71%, 90.48%, and 95.23% after the three PDT sessions, and at the 4- and 8-week follow ups, respectively. ALA-PDT is an effective treatment for severe adolescent acne vulgaris, and is associated with mild and reversible side-effects.

  1. Topical photodynamic therapy with 5-aminolevulinic acid in the treatment of actinic keratoses: a first clinical study

    NASA Astrophysics Data System (ADS)

    Karrer, Sigrid; Szeimies, Rolf-Markus; Sauerwald, Angela; Landthaler, Michael

    1996-01-01

    In this first clinical study performed according to GCP- (good clinical practice) guidelines, efficacy, and tolerability of topical photodynamic therapy (PDT) using 5-aminolevulinic acid (ALA) were tested in the treatment of actinic keratoses. Ten patients (6 f, 4 m) with 36 lesions (19 located on hands and arms, 17 on the head) received ALA-PDT once. Five to six hours after occlusive application of ALA (water-in-oil-emulsion containing 10% ALA) irradiation was performed with an incoherent light source. Up to 3 months after treatment patients were monitored. A score evaluating infiltration and keratosis of treated actinic keratoses allowed us to estimate therapeutic efficacy. Compared to the initial score (100%) significantly lower score-sums were observed at the 28 day follow-up at both localizations (head: 15%; hand: 67%). Complete remission (score sum 0) resulted in 71% of actinic keratoses localized on the head. Except for slight pain and burning sensations during and after irradiation there were no notable side effects. This study proved good efficacy and tolerability of topical PDT in the treatment of actinic keratoses. Whether PDT is able to compete with established treatment modalities remains to be shown in further studies.

  2. 5-Aminolevulinic Acid-Mediated Sonodynamic Therapy Inhibits RIPK1/RIPK3-Dependent Necroptosis in THP-1-Derived Foam Cells

    PubMed Central

    Tian, Fang; Yao, Jianting; Yan, Meng; Sun, Xin; Wang, Wei; Gao, Weiwei; Tian, Zhen; Guo, Shuyuan; Dong, Zengxiang; Li, Bicheng; Gao, Tielei; Shan, Peng; Liu, Bing; Wang, Haiyang; Cheng, Jiali; Gao, Qianping; Zhang, Zhiguo; Cao, Wenwu; Tian, Ye

    2016-01-01

    Necroptosis, or programmed necrosis, contributes to the formation of necrotic cores in atherosclerotic plaque in animal models. However, whether inhibition of necroptosis ameliorates atherosclerosis is largely unknown. In this study, we demonstrated that necroptosis occurred in clinical atherosclerotic samples, suggesting that it may also play an important role in human atherosclerosis. We established an in vitro necroptotic model in which necroptosis was induced in THP-1-derived foam cells by serum deprivation. With this model, we demonstrated that 5-aminolevulinic acid-mediated sonodynamic therapy (ALA-SDT) inhibited necroptosis while promoting apoptosis. ALA-SDT activated the caspase-3 and caspase-8 pathways in foam cells, which is responsible for the switch from necroptosis to apoptosis. The inhibition of either caspase-8 or caspase-3 abolished the anti-necroptotic effect of ALA-SDT. In addition, we found that caspase-3 activation peaked 4 hours after ALA-SDT treatment, 2 hours earlier than maximal caspase-8activation. Taken together, our data indicate that ALA-SDT mediates the switch from necroptosis to apoptosis by activating the caspase-3 and caspase-8 pathways and may improve the prognosis of atherosclerosis. PMID:26911899

  3. 5-Aminolevulinic Acid-Mediated Sonodynamic Therapy Inhibits RIPK1/RIPK3-Dependent Necroptosis in THP-1-Derived Foam Cells.

    PubMed

    Tian, Fang; Yao, Jianting; Yan, Meng; Sun, Xin; Wang, Wei; Gao, Weiwei; Tian, Zhen; Guo, Shuyuan; Dong, Zengxiang; Li, Bicheng; Gao, Tielei; Shan, Peng; Liu, Bing; Wang, Haiyang; Cheng, Jiali; Gao, Qianping; Zhang, Zhiguo; Cao, Wenwu; Tian, Ye

    2016-01-01

    Necroptosis, or programmed necrosis, contributes to the formation of necrotic cores in atherosclerotic plaque in animal models. However, whether inhibition of necroptosis ameliorates atherosclerosis is largely unknown. In this study, we demonstrated that necroptosis occurred in clinical atherosclerotic samples, suggesting that it may also play an important role in human atherosclerosis. We established an in vitro necroptotic model in which necroptosis was induced in THP-1-derived foam cells by serum deprivation. With this model, we demonstrated that 5-aminolevulinic acid-mediated sonodynamic therapy (ALA-SDT) inhibited necroptosis while promoting apoptosis. ALA-SDT activated the caspase-3 and caspase-8 pathways in foam cells, which is responsible for the switch from necroptosis to apoptosis. The inhibition of either caspase-8 or caspase-3 abolished the anti-necroptotic effect of ALA-SDT. In addition, we found that caspase-3 activation peaked 4 hours after ALA-SDT treatment, 2 hours earlier than maximal caspase-8activation. Taken together, our data indicate that ALA-SDT mediates the switch from necroptosis to apoptosis by activating the caspase-3 and caspase-8 pathways and may improve the prognosis of atherosclerosis. PMID:26911899

  4. Needle-free injection of 5-aminolevulinic acid in photodynamic therapy for the treatment of condylomata acuminata

    PubMed Central

    LI, XIULI; WANG, XIUXIU; GU, JUNYING; MA, YUE’E; LIU, ZHIYU; SHI, YULING

    2013-01-01

    The external application of 5-aminolevulinic acid (ALA) in photodynamic therapy (PDT) results in a shallow penetration depth in thick or extensive condylomata acuminata (CA) lesions, thus demonstrating a poor therapeutic effect for those patients. To compare the efficacy of needle-free injection with external application of ALA in PDT for the treatment of CA, 160 CA patients with thick or extensive warts received ALA-PDT by means of external application or needle-free injection of ALA, respectively. The complete response (CR) rate and recurrence rate in the two groups were analyzed. The CR rate after the first treatment in the needle-free injection group (68.8%) was significantly higher compared with that in the external application group (52.5%; P=0.035). The recurrence rates in the needle-free injection group and external application group were 4.1 and 15.4%, respectively (P=0.022). The needle-free injection of ALA increases the therapeutic effect of PDT for CA patients with thick or extensive lesions. It shortens the treatment time and reduces the recurrence rate, and has great potential in the treatment of CA. PMID:23935753

  5. 5-aminolevulinic acid for quantitative seek-and-treat of high-grade dysplasia in Barrett's esophagus cellular models

    NASA Astrophysics Data System (ADS)

    Yeh, Shu-Chi Allison; Ling, Celine S. N.; Andrews, David W.; Patterson, Michael S.; Diamond, Kevin R.; Hayward, Joseph E.; Armstrong, David; Fang, Qiyin

    2015-02-01

    High-grade dysplasia (HGD) in Barrett's esophagus (BE) poses increased risk for developing esophageal adenocarcinoma. To date, early detection and treatment of HGD regions are still challenging due to the sampling error from tissue biopsy and relocation error during the treatment after histopathological analysis. In this study, CP-A (metaplasia) and CP-B (HGD) cell lines were used to investigate the "seek-and-treat" potential using 5-aminolevulinic acid-induced protoporphyrin IX (PpIX). The photodynamic therapy photosensitizer then provides both a phototoxic effect and additional image contrast for automatic detection and real-time laser treatment. Complementary to our studies on automatic classification, this work focused on characterizing subcellular irradiation and the potential phototoxicity on both metaplasia and HGD. The treatment results showed that the HGD cells are less viable than metaplastic cells due to more PpIX production at earlier times. Also, due to mitochondrial localization of PpIX, a better killing effect was achieved by involving mitochondria or whole cells compared with just nucleus irradiation in the detected region. With the additional toxicity given by PpIX and potential morphological/textural differences for pattern recognition, this cellular platform serves as a platform to further investigate real-time "seek-and-treat" strategies in three-dimensional models for improving early detection and treatment of BE.

  6. Cystic acne improved by photodynamic therapy with short-contact 5-aminolevulinic acid and sequential combination of intense pulsed light and blue light activation.

    PubMed

    Melnick, Stuart

    2005-01-01

    Photodynamic therapy with short-contact 5-aminolevulinic acid (Levulan Kerastick, Dusa Pharmaceuticals, Inc.) and activation by intense pulsed light in an initial treatment and blue light in 3 subsequent treatments has resulted in significant improvement in severity of acne, reduction in the number of lesions, improvement in skin texture, and smoothing of scar edges in an Asian patient with severe (class 4) facial cystic acne and scarring. PMID:16302560

  7. In Vivo Curative and Protective Potential of Orally Administered 5-Aminolevulinic Acid plus Ferrous Ion against Malaria

    PubMed Central

    Suzuki, Shigeo; Hikosaka, Kenji; Balogun, Emmanuel O.; Komatsuya, Keisuke; Niikura, Mamoru; Kobayashi, Fumie; Takahashi, Kiwamu; Tanaka, Tohru; Nakajima, Motowo

    2015-01-01

    5-Aminolevulinic acid (ALA) is a naturally occurring amino acid present in diverse organisms and a precursor of heme biosynthesis. ALA is commercially available as a component of cosmetics, dietary supplements, and pharmaceuticals for cancer diagnosis and therapy. Recent reports demonstrated that the combination of ALA and ferrous ion (Fe2+) inhibits the in vitro growth of the human malaria parasite Plasmodium falciparum. To further explore the potential application of ALA and ferrous ion as a combined antimalarial drug for treatment of human malaria, we conducted an in vivo efficacy evaluation. Female C57BL/6J mice were infected with the lethal strain of rodent malaria parasite Plasmodium yoelii 17XL and orally administered ALA plus sodium ferrous citrate (ALA/SFC) as a once-daily treatment. Parasitemia was monitored in the infected mice, and elimination of the parasites was confirmed using diagnostic PCR. Treatment of P. yoelii 17XL-infected mice with ALA/SFC provided curative efficacy in 60% of the mice treated with ALA/SFC at 600/300 mg/kg of body weight; no mice survived when treated with vehicle alone. Interestingly, the cured mice were protected from homologous rechallenge, even when reinfection was attempted more than 230 days after the initial recovery, indicating long-lasting resistance to reinfection with the same parasite. Moreover, parasite-specific antibodies against reported vaccine candidate antigens were found and persisted in the sera of the cured mice. These findings provide clear evidence that ALA/SFC is effective in an experimental animal model of malaria and may facilitate the development of a new class of antimalarial drug. PMID:26324278

  8. In vitro skin permeation and retention of 5-aminolevulinic acid ester derivatives for photodynamic therapy.

    PubMed

    De Rosa, Fernanda Scarmato; Tedesco, Antônio Cláudio; Lopez, Renata Fonseca Vianna; Pierre, Maria Bernadete Riemma; Lange, Norbert; Marchetti, Juliana Maldonado; Rotta, Jeane Cristina Gomes; Bentley, Maria Vitória Lopes Badra

    2003-04-29

    In photodynamic therapy (PDT), 5-aminiolevulinic acid (5-ALA) applied topically is converted, via the heme cycle, into protoporphyrin IX (PpIX), a photosensitizing agent, which upon excitation with light can induce tumor destruction. Due to its hydrophilic and zwitterionic characteristics, 5-ALA has limited penetration into the skin. More lipophilic 5-ALA ester derivatives are expected to cross stratum corneum more easily than 5-ALA. According to the determination of the partition coefficients of 5-ALA methyl, n-butyl, n-hexyl and n-octyl esters, these compounds showed an increased affinity to the SC, with 5-ALA hexyl ester and 5-ALA-octyl ester having the highest partition coefficients. Our in vitro skin permeation studies demonstrated an increased permeated amount for hexyl-ALA after 6 h of incubation, compared to other esters and 5-ALA. After 6 h, more 5-ALA-hexyl ester and -octyl ester were retained at viable epidermis and dermis than 5-ALA. According to these results, and considering that the conversion of 5-ALA into PpIX occurs preferentially in epidermis, it can be supposed that topical use of ester derivatives with longer chains (C(6) or C(8)) is an interesting proposal to optimize topical 5-ALA-PDT

  9. Comparative split-face study of 5-aminolevulinic acid photodynamic therapy with intense pulsed light for photorejuvenation of Asian skin.

    PubMed

    Kosaka, Sachiko; Yasumoto, Minako; Akilov, Oleg E; Hasan, Tayyaba; Kawana, Seiji

    2010-12-01

    Photodynamic therapy (PDT) with 5-aminolevulinic acid (ALA) (ALA-PDT) using intense pulsed light (IPL) as a light source (IPL-ALA-PDT) has been used for photorejuvenation, but it is unclear if this protocol can be applied to darker skin types. We performed this study to assess our IPL-ALA-PDT protocol for photorejuvenation in Asian skin. To determine an appropriate dose, ALA ointment (0-20%) was applied to the upper arm of five healthy volunteers and the fluorescence intensity (FI) was measured using a spectrofluorometer. Non-linear regression analysis of FI 2 h after ALA application with global fitting gave a typical sigmoid dose-response curve with R² = 0.9705 and saturation after 5% ALA. The entire faces of 16 Japanese women with photodamage were then treated with IPL (500-670 and 870-1400 nm, 23-30 J/cm²) 2 h after application of 5% ALA to one side of the face. Three treatments were delivered at 4-week intervals with follow-up visits. Comparative analysis of photorejuvenation showed noticeable improvements on both sides of the face, although the reduction in the photoaging score from baseline did not differ significantly between the two sides in all subjects. Despite this finding, 75% of the patients felt that the IPL-ALA-PDT-treated side of the face showed greater improvement than the IPL-treated side. However, all IPL-ALA-PDT-treated sides showed adverse effects such as erythema and pain. Therefore, we conclude that the IPL-ALA-PDT protocol requires optimization for photorejuvenation in Asians.

  10. Efficacy of a Complex of 5-Aminolevulinic Acid and Glycyl-Histidyl-Lysine Peptide on Hair Growth

    PubMed Central

    Sim, Hyun Bo; Jang, Yong Hyun; Lee, Seok-Jong; Kim, Do Won; Yim, Soon-Ho

    2016-01-01

    Background Pattern hair loss is a very common problem. Although effective therapeutics for the treatment of pattern hair loss have been used, novel therapeutic modalities are still required to enhance hair growth. Objective We investigated the efficacy and safety of a complex (ALAVAX) of 5-aminolevulinic acid (5-ALA) and glycyl-histidyl-lysine (GHK) peptide for the treatment of pattern hair loss. Methods Forty-five patients with male pattern hair loss were treated with ALAVAX 100 mg/ml (group A), ALAVAX 50 mg/ml (group B) or placebo (group C) once a day for 6 months. Total hair count, hair length, hair thickness, patient's assessment and adverse events were evaluated at month 1, 3, and 6. Results An increase in hair count for 6 months was 52.6 (p<0.05) in group A, 71.5 (p<0.05) in group B, and 9.6 in group C. The ratio of changes in hair count between group B (2.38) and group C (1.21) at 6 months showed a statistically significant difference (p<0.05). The proportion above good satisfaction was higher in group A (26.7%) than in the other groups (group B: 14.3%, group C: 7.1%). There was no statistically significant difference in hair length and hair thickness among 3 groups at 6 months. There was no adverse event in 3 groups. Conclusion Our study showed that a complex of 5-ALA and GHK peptide may be considered as one of the complementary agents for the treatment of male pattern hair loss. PMID:27489425

  11. Short Communication: Molecular cloning and expression pattern of the porcine 5-aminolevulinate synthase 1 (ALAS1) gene and its association with reproductive traits.

    PubMed

    Liu, L Q; Li, F E; Deng, C Y

    2016-01-01

    5-Aminolevulinate synthase 1 (ALAS1) is the first enzyme in the heme biosynthetic pathway and is upregulated in follicular tissue during the early stages of ovulation. In this study, we isolated the complete coding sequence of the porcine ALAS1 gene and its 2-9 intron sequence, identified a single nucleotide polymorphism (SNP; T/C) in intron 9, and developed a PCR-MspI-restriction fragment length polymorphism genotyping assay. Association of the SNP with litter size was assessed in two populations [purebred Large White and the experimental synthetic (DIV) line]. Statistical analysis demonstrated that for total number of piglets born (TNB) in all parities, pigs with the CC genotype had an additional 0.68 and 0.74 piglets compared to the TC and TT animals (P < 0.05) in the DIV line, respectively. Purebred Large White sows inheriting the CC and TC genotypes gave birth to an additional 0.96 and 0.70 piglets compared to the TT animals (P < 0.05) in all parities, respectively. In addition, for TNB in all parities, a significant additive effect of 0.48 ± 0.23 and 0.37 ± 0.17 piglets/ litter was detected in sows of both populations (P < 0.05), respectively. The highest levels of ALAS1 gene expression were observed in isolated ovarian granulosa cells 2 and 12 h after stimulation with pregnant mare serum gonadotropin human chorionic gonadotropin, which represents the time of follicular development and ovulation, respectively. Therefore, the ALAS1 gene was significantly associated with litter size in two populations and could be a useful molecular marker for the selection of increasing litter size in pigs. PMID:26910002

  12. In Vitro Comparison of Hypericin and 5-Aminolevulinic Acid-Derived Protoporphyrin IX for Photodynamic Inactivation of Medulloblastoma Cells

    PubMed Central

    Ritz, Rainer; Scheidle, Christian; Noell, Susan; Roser, Florian; Schenk, Martin; Dietz, Klaus; Strauss, Wolfgang S. L.

    2012-01-01

    Background Hypericin (HYP) is a naturally occurring photosensitizer. Cellular uptake and photodynamic inactivation after incubation with this photosensitizer have neither been examined in medulloblastoma cells in vitro, nor compared with 5-aminolevulinic acid-derived protoporphyrin IX (5-ALA-derived PpIX). Methods In 3 medulloblastoma cell lines (D283 Med, Daoy, and D341 Med) the time- and concentration-dependent intracellular accumulation of HYP and 5-ALA-derived PpIX was analyzed by fluorescence microscopy (FM) and FACS. Photocytotoxicity was measured after illumination at 595 nm (HYP) and 635 nm (5-ALA-derived PpIX) in D283 Med cells and compared to U373 MG glioma cells. Results All medulloblastoma cell lines exhibited concentration- and time-dependent uptake of HYP. Incubation with HYP up to 10 µM resulted in a rapid increase in fluorescence intensity, which peaked between 2 and 4 hours. 5-ALA-derived PpIX accumulation increased in D283 Med cells by 22% over baseline after 5-ALA incubation up to 1.2 mM. Photocytotoxicity of 5-ALA-derived PpIX was higher in D283 Med medulloblastoma compared to U373MG glioma. The [lethal dose (light dose that is required to reduce cell survival to 50% of control)] of 5-ALA-derived PpIX was 3.8 J/cm2 in D283 Med cells versus 5.7 J/cm2 in U373MG glioma cells. Photocytotoxicity of HYP in D283 Med cells was determined at 2.5 µM after an incubation time of 2 h and an illumination wavelength of 595 nm. The value was 0.47 J/cm2. Conclusion By its 5-fold increase in fluorescence over autofluorescence levels HYP has excellent properties for tumor visualization in medulloblastomas. The high photocytotoxicity of HYP, compared to 5-ALA-derived PpIX, is convincingly demonstrated by its 8- to 13-fold lower . Therefore HYP might be a promising molecule for intraoperative visualization and photodynamic treatment of medulloblastomas. PMID:23251668

  13. 5-Aminolevulinic acid ameliorates cadmium-induced morphological, biochemical, and ultrastructural changes in seedlings of oilseed rape.

    PubMed

    Ali, Basharat; Huang, C R; Qi, Z Y; Ali, Shafaqat; Daud, M K; Geng, X X; Liu, H B; Zhou, W J

    2013-10-01

    Due to its prolific growth, oilseed rape (Brassica napus L.) can be grown successfully for phytoremediation of cadmium (Cd)-contaminated soils. Nowadays, use of plant growth regulators against heavy metals stress is one of the major objectives of researchers. The present study evaluates the ameliorate effects of 5-aminolevulinic acid (ALA, 0, 0.4, 2, and 10 mg/l) on the growth of oilseed rape (B. napus L. cv. ZS 758) seedlings under Cd stress (0, 100, and 500 μM). Results have shown that Cd stress hampered the seedling growth by decreasing the radical and hypocotyls length, shoot and root biomass, chlorophyll content, and antioxidants enzymes. On the other hand, Cd stress increased the level of malondialdehyde (MDA) and production of H2O2 and accumulation of Cd in the shoots. The microscopic study of leaf mesophyll cells showed that toxicity of Cd totally destroyed the whole cell structure, and accumulation of Cd also appeared in micrographs. Application of ALA at lower dosage (2 mg/l) enhanced the seedling growth and biomass. The results showed that 2 mg/l ALA significantly improved chlorophyll content under Cd stress and decreased the level of Cd contents in shoots. Application of ALA reduced the MDA and H2O2 levels in the cotyledons. The antioxidants enzymes (ascorbate peroxidase, peroxidase, catalase, glutathione reductase, and superoxide dismutase) enhanced their activities significantly with the application of 2 mg/l ALA under Cd stress. This study also indicated that higher dosage of ALA (10 mg/l) imposed the negative effect on the growth of oilseed rape. Microscopic study showed that application of ALA alleviated the toxic effects of Cd in the mesophyll cell and improved the cell structure. Use of 2 mg/l ALA under 500 μM Cd was found to be more effective, and under this dosage, cell structure was clear, with obvious cell wall and cell membrane as well as a big nucleus, which was found with well-developed two or more nucleoli. Chloroplast was almost round

  14. Treating cutaneous squamous cell carcinoma using 5-aminolevulinic acid polylactic-co-glycolic acid nanoparticle-mediated photodynamic therapy in a mouse model

    PubMed Central

    Wang, Xiaojie; Shi, Lei; Tu, Qingfeng; Wang, Hongwei; Zhang, Haiyan; Wang, Peiru; Zhang, Linglin; Huang, Zheng; Zhao, Feng; Luan, Hansen; Wang, Xiuli

    2015-01-01

    Background Squamous cell carcinoma (SCC) is a common skin cancer, and its treatment is still difficult. The aim of this study was to evaluate the effectiveness of nanoparticle (NP)-assisted 5-aminolevulinic acid (ALA) delivery for topical photodynamic therapy (PDT) of cutaneous SCC. Materials and methods Ultraviolet-induced cutaneous SCCs were established in hairless mice. ALA-loaded polylactic-co-glycolic acid (PLGA) NPs were prepared and characterized. The kinetics of ALA PLGA NP-induced protoporphyrin IX fluorescence in SCCs, therapeutic efficacy of ALA NP-mediated PDT, and immune responses were examined. Results PLGA NPs enhanced protoporphyrin IX production in SCC. ALA PLGA NP-mediated topical PDT was more effective than free ALA of the same concentration in treating cutaneous SCC. Conclusion PLGA NPs provide a promising strategy for delivering ALA in topical PDT of cutaneous SCC. PMID:25609949

  15. Generation of reactive oxygen species from 5-aminolevulinic acid and Glutamate in cooperation with excited CdSe/ZnS QDs

    NASA Astrophysics Data System (ADS)

    Duong, Hong Dinh; Lee, Jee Won; Rhee, Jong Il

    2014-08-01

    CdSe/ZnS quantum dots (QDs) can be joined in the reductive pathway involving the electron transfer to an acceptor or in the oxidative pathway involving the hole transfer to a donor. They were exploited in the oxidation reactions of 5-aminolevulinic acid (ALA) and glutamate (GLU) for the generation of reactive oxygen species (ROS) such as hydroxyl radical (HO●) and superoxide anion (O2 ● -). Fast and highly efficient oxidation reactions of ALA to produce HO● and of GLU to produce O2 ●- were observed in the cooperation of mercaptopropionic acid (MPA)-capped CdSe/ZnS QDs under LED irradiation. Fluorescence spectroscopy and electron spin resonance (ESR) spectroscopy were used to evaluate the generation of different forms of ROS. Confocal fluorescent microscopic images of the size and morphology of HeLa cells confirmed the ROS generation from ALA or GLU in cooperation with CdSe/ZnS QDs under LED irradiation.

  16. Homology modeling of human γ-butyric acid transporters and the binding of pro-drugs 5-aminolevulinic acid and methyl aminolevulinic acid used in photodynamic therapy.

    PubMed

    Baglo, Yan; Gabrielsen, Mari; Sylte, Ingebrigt; Gederaas, Odrun A

    2013-01-01

    Photodynamic therapy (PDT) is a safe and effective method currently used in the treatment of skin cancer. In ALA-based PDT, 5-aminolevulinic acid (ALA), or ALA esters, are used as pro-drugs to induce the formation of the potent photosensitizer protoporphyrin IX (PpIX). Activation of PpIX by light causes the formation of reactive oxygen species (ROS) and toxic responses. Studies have indicated that ALA and its methyl ester (MAL) are taken up into the cells via γ-butyric acid (GABA) transporters (GATs). Uptake via GATs into peripheral sensory nerve endings may also account for one of the few adverse side effects of ALA-based PDT, namely pain. In the present study, homology models of the four human GAT subtypes were constructed using three x-ray crystal structures of the homologous leucine transporter (LeuT) as templates. Binding of the native substrate GABA and the possible substrates ALA and MAL was investigated by molecular docking of the ligands into the central putative substrate binding sites in the outward-occluded GAT models. Electrostatic potentials (ESPs) of the putative substrate translocation pathway of each subtype were calculated using the outward-open and inward-open homology models. Our results suggested that ALA is a substrate of all four GATs and that MAL is a substrate of GAT-2, GAT-3 and BGT-1. The ESP calculations indicated that differences likely exist in the entry pathway of the transporters (i.e. in outward-open conformations). Such differences may be exploited for development of inhibitors that selectively target specific GAT subtypes and the homology models may hence provide tools for design of therapeutic inhibitors that can be used to reduce ALA-induced pain. PMID:23762315

  17. Photodynamic therapy of superficial basal cell carcinoma with 5-aminolevulinic acid with dimethylsulfoxide and ethylendiaminetetraacetic acid: a comparison of two light sources.

    PubMed

    Soler, A M; Angell-Petersen, E; Warloe, T; Tausjø, J; Steen, H B; Moan, J; Giercksky, K E

    2000-06-01

    The aim of this prospective randomized study was to compare the clinical and cosmetic outcome of superficial basal cell carcinomas (BCC), using either laser or broadband halogen light, in photodynamic therapy with topical 5-aminolevulinic acid (ALA). A total of 83 patients with 245 superficial BCC were included in the study. Standard treatment involved 15 min of local pretreatment with 99% dimethylsulfoxide (DMSO) before topical application of 20% ALA with DMSO (2%) and ethylendiaminetetraacetic acid (2%) as cofactors for 3 h before light exposure with either laser or a broadband lamp (BL). A complete response was achieved in 95 lesions (86%) in the laser group and 110 lesions (82%) in the BL group 6 months after treatment. Of these, 80 lesions (84%) in the laser group and 101 lesions (92%) in the lamp group were independently evaluated to have an excellent or good cosmetic post-treatment score. No serious adverse events were reported. This study shows that there is no statistical significant difference in cure the rate (P = 0.49) and the cosmetic outcome (P = 0.075) with topical application of a modified ALA-cream between light exposure from a simple BL with continuous spectrum (570-740 nm) or from a red-light laser (monochromatic 630 nm). Cost and safety are further elements in favor of the BL in this setting.

  18. Treatment of moderate to severe inflammatory acne vulgaris: photodynamic therapy with 5-aminolevulinic acid and a novel advanced fluorescence technology pulsed light source.

    PubMed

    Gold, Michael H; Biron, Julie A; Boring, Molly; Bridges, Tancy M; Bradshaw, Virginia L

    2007-03-01

    The use of photodynamic therapy (PDT) with 20% 5-aminolevulinic acid (ALA) for the treatment of acne vulgaris has been explored. This study evaluates the safety and efficacy of a new Advanced Fluorescence Technology (AFT) pulsed light source (420-950 nm) for photoactivation in ALA PDT for the treatment of moderate to severe inflammatory facial acne vulgaris. Nineteen subjects received 4 ALA PDT treatments with the AFT pulsed light source. Treatments were spaced 2 weeks apart. ALA was incubated for 15 to 30 minutes. At the end of the fourth treatment, the total reductions in inflammatory and noninflammatory lesion counts were 54.5% and 37.5%, respectively. Median Global Severity Scores suggest a trend toward reduction after several treatments. Investigator and subject assessments show moderate to marked improvement in most patients. The new AFT pulsed light source with ALA PDT appears to be a safe and effective modality for the treatment of moderate to severe inflammatory acne vulgaris.

  19. Complete resolution of a squamous cell carcinoma of the skin using intralesional 5-aminolevulinic acid photodynamic therapy intralesional PDT for SCC.

    PubMed

    Sotiriou, Eleni; Apalla, Zoi; Ioannides, Demetris

    2010-10-01

    We present an 82-year-old female patient with a 2-year history of an infiltrative squamous cell carcinoma (SCC) on her right cheek. The patient was treated with one intralesional photodynamic therapy (PDT) session using 10% 5-aminolevulinic acid solution. We used red light by a non-coherent light source at a light dose of 100 J/cm² and a fluency rate of 100 mW/cm². Complete clinical and histological response was achieved 3 months after the treatment procedure. Cosmetic outcome was evaluated as fair. The patient remains disease free with the absence of any clinical sign of recurrence 16 months after PDT. Long-term follow-up is needed for assessment of recurrences. Optimization of the therapeutic protocol, as well as justification of our results in larger studies are needed in order to elicit safe conclusions.

  20. A Pilot Cost-Effectiveness Analysis of Treatments in Newly Diagnosed High-Grade Gliomas: The Example of 5-Aminolevulinic Acid Compared With White-Light Surgery

    PubMed Central

    Alves, Marta; Castel-Branco, Marta; Stummer, Walter

    2015-01-01

    BACKGROUND: High-grade gliomas are aggressive, incurable tumors characterized by extensive diffuse invasion of the normal brain parenchyma. Novel therapies at best prolong survival; their costs are formidable and benefit is marginal. Economic restrictions thus require knowledge of the cost-effectiveness of treatments. Here, we show the cost-effectiveness of enhanced resections in malignant glioma surgery using a well-characterized tool for intraoperative tumor visualization, 5-aminolevulinic acid (5-ALA). OBJECTIVE: To evaluate the cost-effectiveness of 5-ALA fluorescence-guided neurosurgery compared with white-light surgery in adult patients with newly diagnosed high-grade glioma, adopting the perspective of the Portuguese National Health Service. METHODS: We used a Markov model (cohort simulation). Transition probabilities were estimated with the use of data from 1 randomized clinical trial and 1 noninterventional prospective study. Utility values and resource use were obtained from published literature and expert opinion. Unit costs were taken from official Portuguese reimbursement lists (2012 values). The health outcomes considered were quality-adjusted life-years, life-years, and progression-free life-years. Extensive 1-way and probabilistic sensitivity analyses were performed. RESULTS: The incremental cost-effectiveness ratios are below €10 000 in all evaluated outcomes, being around €9100 per quality-adjusted life-year gained, €6700 per life-year gained, and €8800 per progression-free life-year gained. The probability of 5-ALA fluorescence-guided surgery cost-effectiveness at a threshold of €20000 is 96.0% for quality-adjusted life-year, 99.6% for life-year, and 98.8% for progression-free life-year. CONCLUSION: 5-ALA fluorescence-guided surgery appears to be cost-effective in newly diagnosed high-grade gliomas compared with white-light surgery. This example demonstrates cost-effectiveness analyses for malignant glioma surgery to be feasible on

  1. eEF1A1 binds and enriches protoporphyrin IX in cancer cells in 5-aminolevulinic acid based photodynamic therapy.

    PubMed

    Fan, Zhichao; Cui, Xiaojun; Wei, Dan; Liu, Wei; Li, Buhong; He, Hao; Ye, Huamao; Zhu, Naishuo; Wei, Xunbin

    2016-01-01

    Photodynamic therapy (PDT) with protoporphyrin IX (PpIX), which is endogenously derived from 5-aminolevulinic acid (5-ALA) or its derivatives, is a promising modality for the treatment of both pre-malignant and malignant lesions. However, the mechanisms of how ALA-induced PpIX selectively accumulated in the tumors are not fully elucidated. Here we discovered that eukaryotic translation elongation factor 1 alpha 1 (eEF1A1) interacted with PpIX (with an affinity constant of 2.96 × 10(6) M(-1)). Microscopy imaging showed that ALA-induced PpIX was co-localized with eEF1A1 in cancer cells. eEF1A1 was found to enrich ALA-induced PpIX in cells by competitively blocking the downstream bioavailability of PpIX. Taken together, our study discovered eEF1A1 as a novel photosensitizer binding protein, which may play an essential role in the enrichment of ALA-induced PpIX in cancer cells during PDT. These suggested eEF1A1 as a molecular marker to predict the selectivity and efficiency of 5-ALA based PDT in cancer therapy. PMID:27150264

  2. Alleviation of lead toxicity by 5-aminolevulinic acid is related to elevated growth, photosynthesis, and suppressed ultrastructural damages in oilseed rape.

    PubMed

    Tian, Tian; Ali, Basharat; Qin, Yebo; Malik, Zaffar; Gill, Rafaqat A; Ali, Shafaqat; Zhou, Weijun

    2014-01-01

    Lead (Pb) is a widely spread pollutant and leads to diverse morphological and structural changes in the plants. In this study, alleviating role of 5-aminolevulinic acid (ALA) in oilseed rape (Brassica napus L.) was investigated with or without foliar application of ALA (25 mg L(-1)) in hydroponic environment under different Pb levels (0, 100, and 400 µM). Outcomes stated that plant morphology and photosynthetic attributes were reduced under the application of Pb alone. However, ALA application significantly increased the plant growth and photosynthetic parameters under Pb toxicity. Moreover, ALA also lowered the Pb concentration in shoots and roots under Pb toxicity. The microscopic studies depicted that exogenously applied ALA ameliorated the Pb stress and significantly improved the cell ultrastructures. After application of ALA under Pb stress, mesophyll cell had well-developed nucleus and chloroplast having a number of starch granules. Moreover, micrographs illustrated that root tip cell contained well-developed nucleus, a number of mitochondria, and golgi bodies. These results proposed that under 15-day Pb-induced stress, ALA improved the plant growth, chlorophyll content, photosynthetic parameters, and ultrastructural modifications in leaf mesophyll and root tip cells of the B. napus plants.

  3. Topical glycerol monooleate/propylene glycol formulations enhance 5-aminolevulinic acid in vitro skin delivery and in vivo protophorphyrin IX accumulation in hairless mouse skin.

    PubMed

    Steluti, Regilene; De Rosa, Fernanda Scarmato; Collett, John; Tedesco, Antônio Cláudio; Bentley, Maria Vitória Lopes Badra

    2005-08-01

    Photodynamic therapy (PDT), a potential therapy for cancer treatment, utilizes exogenously applied or endogenously formed photosensitizers, further activated by light in an appropriate wavelength and dose to induce cell death through free radical formation. 5-Aminolevulinic acid (5-ALA) is a pro-drug which can be converted to the effective photosensitizer, protoporphyrin IX (PpIX). However, the use of 5-ALA in PDT is limited by the low penetration capacity of this highly hydrophilic molecule into appropriate skin layers. In the present study, we propose to increase 5-ALA penetration by using formulations containing glycerol monooleate (GMO), an interesting and useful component of pharmaceutical formulations. Propylene glycol solutions containing different concentrations of GMO significantly increased the in vitro skin permeation/retention of 5-ALA in comparison to control solutions. In vivo studies also showed increased PpIX accumulation in mouse hairless skin, after the use of topical 5-ALA formulations containing GMO in a concentration-dependent manner. The results show that skin 5-ALA penetration and PpIX accumulation, important factors for the success of topical 5-ALA-PDT in skin cancer, are optimized by GMO/propylene glycol formulations.

  4. Inhibition of MAPK signaling pathways enhances cell death induced by 5-Aminolevulinic acid-photodynamic therapy in skin squamous carcinoma cells.

    PubMed

    Ge, Xinhong; Liu, Jianping; Shi, Zhiyun; Jing, Li; Yu, Nan; Zhang, Xiujuan; Jiao, Yaning; Wang, Yili; Li, P Andy

    2016-04-01

    Combination of a photosensitizer, 5-aminolevulinic acid (ALA), with photodynamic therapy (PDT) has been widely used to treat skin squamous cell carcinoma (SCC). However, a portion of SCC patients do not respond well to PDT. The molecular reason for this resistance is not clear. We hypothesize that mitogen-activated phosphorylation kinase (MAPK) plays a key role in mediating SCC resistance to PDT. To determine whether inhibition of MAPK signaling enhances the anti-tumor effect of ALA-PDT in SCC. The human squamous carcinoma cell line, SCL-1, was either untreated or treated with various combinations of ALA, PDT light source and inhibitors of MAPK signaling components. ALA-PDT treatment significantly decreased cell viability, increased the percentage of annexin-V positive cells and resulted in formation of apoptotic bodies. ALA-PDT treated cells showed increased levels of p-MEK, p-ERK1/2, p-p38, p-Elk-1, p-JNK and p-c-Jun. Addition of inhibitors for ERK1/2 (PD98059), p38 (SB203580) and JNK (SP60125) reversed the changes and led to a more dramatic decrease in SCL-1 cell viability than seen with ALA-PDT alone. Inhibition of the MAPK pathway enhances the cytotoxic effect of ALA-PDT on SCL-1.

  5. eEF1A1 binds and enriches protoporphyrin IX in cancer cells in 5-aminolevulinic acid based photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Fan, Zhichao; Cui, Xiaojun; Wei, Dan; Liu, Wei; Li, Buhong; He, Hao; Ye, Huamao; Zhu, Naishuo; Wei, Xunbin

    2016-05-01

    Photodynamic therapy (PDT) with protoporphyrin IX (PpIX), which is endogenously derived from 5-aminolevulinic acid (5-ALA) or its derivatives, is a promising modality for the treatment of both pre-malignant and malignant lesions. However, the mechanisms of how ALA-induced PpIX selectively accumulated in the tumors are not fully elucidated. Here we discovered that eukaryotic translation elongation factor 1 alpha 1 (eEF1A1) interacted with PpIX (with an affinity constant of 2.96 × 106 M‑1). Microscopy imaging showed that ALA-induced PpIX was co-localized with eEF1A1 in cancer cells. eEF1A1 was found to enrich ALA-induced PpIX in cells by competitively blocking the downstream bioavailability of PpIX. Taken together, our study discovered eEF1A1 as a novel photosensitizer binding protein, which may play an essential role in the enrichment of ALA-induced PpIX in cancer cells during PDT. These suggested eEF1A1 as a molecular marker to predict the selectivity and efficiency of 5-ALA based PDT in cancer therapy.

  6. Wavelength-dependent in-vitro and in-vivo photodynamic effects after sensitization with 5-aminolevulinic acid induced protoporphyrin IX

    NASA Astrophysics Data System (ADS)

    Szeimies, Rolf-Markus; Abels, Christoph; Fritsch, Clemens; Steinbach, Pia; Baeumler, Wolfgang; Messmann, Helmut; Goetz, Alwin E.; Goerz, Guenter; Landthaler, Michael

    1996-01-01

    Photodynamic therapy (PDT) with topically applied 5-aminolevulinic acid (ALA) is of growing interest, in particular in dermatology. Due to the fact that PDT with intravenously administered Photofrin is the only clinically approved sensitizer so far and is performed at a wavelength of 630 nm, this wavelength is also used in most experimental and clinical trials with ALA. In this study influence of irradiation with coherent light from a tunable dye laser at different wavelengths ranging from 625 to 649 nm was investigated. In in vitro experiments HaCaT immortalized human keratinocytes were sensitized with 30 (mu) g/ml ALA for 24 hrs. By determination of cell viability with the MTT test, best cell-killing effects were observed following irradiation at 635 nm. In an in vivo setting using an amelanotic melanoma (A-Mel-3) grown subcutaneously in Syrian Golden hamsters, these results were confirmed: tumor growth determined by measuring tumor volume increase after 28 days was less pronounced in animals treated with 100 mg/kg ALA i.v. and irradiated 2.5 hrs. later at 635 nm, as compared to animals receiving an equal dose and irradiated at 630 nm. This observation in vitro is probably due to large amounts of photosensitizing protoporphyrin IX (PP) localized in cell membranes which is visualized by confocal laser scanning microscopy (CLSM) and determined by HPLC analysis. These results suggest that in ALA-PDT when a coherent light source is used probably better results are achieved irradiating at 635 nm.

  7. Differential antioxidant defense and detoxification mechanisms in photodynamically stressed rice plants treated with the deregulators of porphyrin biosynthesis, 5-aminolevulinic acid and oxyfluorfen.

    PubMed

    Phung, Thu-Ha; Jung, Sunyo

    2015-04-01

    This study focuses on differential molecular mechanisms of antioxidant and detoxification systems in rice plants under two different types of photodynamic stress imposed by porphyrin deregulators, 5-aminolevulinic acid (ALA) and oxyfluorfen (OF). The ALA-treated plants with white necrosis exhibited a greater decrease in photochemical quantum efficiency, Fv/Fm, as well as a greater increase in activity of superoxide dismutase, compared to the OF-treated plants. By contrast, the brown necrosis in OF-treated plants resulted in not only more widely dispersed H2O2 production and greater increases in H2O2-decomposing enzymes, catalase and peroxidase, but also lower ascorbate redox state. In addition, ALA- and OF-treated plants markedly up-regulated transcript levels of genes involved in detoxification processes including transport and movement, cellular homeostasis, and xenobiotic conjugation, with prominent up-regulation of serine/threonine kinase and chaperone only in ALA-treated plants. Our results demonstrate that different photodynamic stress imposed by ALA and OF developed differential actions of antioxidant enzymes and detoxification. Particularly, detoxification system may play potential roles in plant protection against photodynamic stress imposed by porphyrin deregulators, thereby contributing to alleviation of photodynamic damage.

  8. Mechanism of rat osteosarcoma cell apoptosis induced by a combination of low-intensity ultrasound and 5-aminolevulinic acid in vitro.

    PubMed

    Li, Y N; Zhou, Q; Yang, B; Hu, Z; Wang, J H; Li, Q S; Cao, W W

    2015-01-01

    We investigated the killing effect of low-intensity ultrasound combined with 5-aminolevulinic acid (5-ALA) on the rat osteosarcoma cell line UMR-106. Logarithmic-phase UMR-106 cells were divided into a control group, ultrasound group and 5-ALA group. The cell apoptotic rate, production of reactive oxygen species, and the change in mitochondrial membrane potential were analyzed by flow cytometry; ultrastructural changes were observed by transmission electron microscopy. Using low-intensity ultrasound at 1.0 MHz and 2.0 W/cm(2) plus 5-ALA at a concentration of 2 mM, the apoptotic rate of the sonodynamic therapy group was 27.2 ± 3.4% which was significantly higher than that of the control group, ultrasound group, and 5-ALA group (P < 0.05). The production of reactive oxygen species was 32.6 ± 2.2% and the decrease in mitochondrial membrane potential was 39.5 ± 2.5%. The 33342 staining showed nuclear condensation and fragmentation in the ultrasound group and 5-ALA group. Structural changes in the cell membrane, mitochondria, Golgi apparatus, and other organelles observed by transmission electron microscopy included formation of apoptotic bodies. The killing effect of low-intensity ultrasound combined with 5-ALA on UMR-106 cells was significant. Cell apoptosis played a vital role in the killing effect, and the mitochondria pathway contributed to the apoptosis of UMR-106 cells. PMID:26345893

  9. The Safety and Tolerability of 5-Aminolevulinic Acid Phosphate with Sodium Ferrous Citrate in Patients with Type 2 Diabetes Mellitus in Bahrain

    PubMed Central

    Al-Saber, Feryal; Aldosari, Waleed; Alselaiti, Mariam; Khalfan, Hesham; Kaladari, Ahmed; Khan, Ghulam; Harb, George; Rehani, Riyadh; Kudo, Sizuka; Koda, Aya; Tanaka, Tohru

    2016-01-01

    Type 2 diabetes mellitus is prevalent especially in Gulf countries and poses serious long-term risks to patients. A multifaceted treatment approach can include nutritional supplements with antioxidant properties such as 5-aminolevulinic acid (5-ALA) with sodium ferrous citrate (SFC). This prospective, randomized, single-blind, placebo-controlled, dose escalating pilot clinical trial assessed the safety of 5-ALA with SFC at doses up to 200 mg 5-ALA/229.42 mg SFC per day in patients living in Bahrain with type 2 diabetes mellitus that was uncontrolled despite the use of one or more antidiabetic drugs. Fifty-three patients (n = 53) from 3 sites at one center were enrolled by Dr. Feryal (Site #01), Dr. Hesham (Site #02), and Dr. Waleed (Site #03) (n = 35, 5-ALA-SFC; n = 18, placebo). There was no significant difference in incidence of adverse events reported, and the most frequent events reported were gastrointestinal in nature, consistent with the known safety profile of 5-ALA in patients with diabetes. No significant changes in laboratory values and no difference in hypoglycemia between patients receiving 5-ALA and placebo were noted. Overall, the current results support that use of 5-ALA-SFC up to 200 mg per day taken as 2 divided doses is safe in patients taking concomitant oral antidiabetic medications and may offer benefits in the diabetic population. This trial is registered with ClinicalTrials.gov NCT02481141. PMID:27738640

  10. Synergism of herbicide toxicity by 5-aminolevulinic acid is related to physiological and ultra-structural disorders in crickweed (Malachium aquaticum L.).

    PubMed

    Xu, Ling; Zhang, Wenfang; Ali, Basharat; Islam, Faisal; Zhu, Jinwen; Zhou, Weijun

    2015-11-01

    Selection of effective herbicides to control weeds has been one of the major objectives of scientists. This study determines the differential tolerance or susceptibility of crickweed (Malachium aquaticum L.) to various concentration combinations of 5-aminolevulinic acid (ALA) (1, 10 and 100mg/L) and propyl 4-(2-(4,6-dimethoxypyrimidin-2-yloxy)benzylamino)benzoate (ZJ0273) (100, 200, and 500mg/L). ALA was applied as pre- and post-treatment alone or in combination with ZJ0273. Results showed that ZJ0273 stress alone imposed negative effects on M. aquaticum seedling's growth, net photosynthetic rates and SPAD values, and the rate of decline was consistently increased with the increase in ZJ0273 concentration. The ZJ0273 treatment showed a gradual decrease in the activities of antioxidant enzymes peroxidase (POD), superoxide dismutase (SOD), and ascorbate peroxidase (APX), and increase in the accumulation of malondialdehyde (MDA). Changes in chloroplast swelling, increased number of plastoglobuli, disruption of thylakoid, disintegrated mitochondria and turbid nucleoplasm were noticed. Moreover, SDS-PAGE analysis of total proteins revealed that herbicide stress in the leaves was associated with the decrease or disappearance of some protein bands. Further, two-dimensional gel electrophoresis (2-DE) results showed that proteins in different spots were classified into three types for M. aquaticum. These results indicate that the combined treatment of ALA and ZJ0273 synergizes the herbicide toxicity which is different from its independent effects on M. aquaticum and thus, could improve weed control efficacy. PMID:26615151

  11. Inhibition of MAPK signaling pathways enhances cell death induced by 5-Aminolevulinic acid-photodynamic therapy in skin squamous carcinoma cells.

    PubMed

    Ge, Xinhong; Liu, Jianping; Shi, Zhiyun; Jing, Li; Yu, Nan; Zhang, Xiujuan; Jiao, Yaning; Wang, Yili; Li, P Andy

    2016-04-01

    Combination of a photosensitizer, 5-aminolevulinic acid (ALA), with photodynamic therapy (PDT) has been widely used to treat skin squamous cell carcinoma (SCC). However, a portion of SCC patients do not respond well to PDT. The molecular reason for this resistance is not clear. We hypothesize that mitogen-activated phosphorylation kinase (MAPK) plays a key role in mediating SCC resistance to PDT. To determine whether inhibition of MAPK signaling enhances the anti-tumor effect of ALA-PDT in SCC. The human squamous carcinoma cell line, SCL-1, was either untreated or treated with various combinations of ALA, PDT light source and inhibitors of MAPK signaling components. ALA-PDT treatment significantly decreased cell viability, increased the percentage of annexin-V positive cells and resulted in formation of apoptotic bodies. ALA-PDT treated cells showed increased levels of p-MEK, p-ERK1/2, p-p38, p-Elk-1, p-JNK and p-c-Jun. Addition of inhibitors for ERK1/2 (PD98059), p38 (SB203580) and JNK (SP60125) reversed the changes and led to a more dramatic decrease in SCL-1 cell viability than seen with ALA-PDT alone. Inhibition of the MAPK pathway enhances the cytotoxic effect of ALA-PDT on SCL-1. PMID:27032574

  12. Alleviation of Lead Toxicity by 5-Aminolevulinic Acid Is Related to Elevated Growth, Photosynthesis, and Suppressed Ultrastructural Damages in Oilseed Rape

    PubMed Central

    Tian, Tian; Qin, Yebo; Gill, Rafaqat A.; Ali, Shafaqat

    2014-01-01

    Lead (Pb) is a widely spread pollutant and leads to diverse morphological and structural changes in the plants. In this study, alleviating role of 5-aminolevulinic acid (ALA) in oilseed rape (Brassica napus L.) was investigated with or without foliar application of ALA (25 mg L−1) in hydroponic environment under different Pb levels (0, 100, and 400 µM). Outcomes stated that plant morphology and photosynthetic attributes were reduced under the application of Pb alone. However, ALA application significantly increased the plant growth and photosynthetic parameters under Pb toxicity. Moreover, ALA also lowered the Pb concentration in shoots and roots under Pb toxicity. The microscopic studies depicted that exogenously applied ALA ameliorated the Pb stress and significantly improved the cell ultrastructures. After application of ALA under Pb stress, mesophyll cell had well-developed nucleus and chloroplast having a number of starch granules. Moreover, micrographs illustrated that root tip cell contained well-developed nucleus, a number of mitochondria, and golgi bodies. These results proposed that under 15-day Pb-induced stress, ALA improved the plant growth, chlorophyll content, photosynthetic parameters, and ultrastructural modifications in leaf mesophyll and root tip cells of the B. napus plants. PMID:24683549

  13. eEF1A1 binds and enriches protoporphyrin IX in cancer cells in 5-aminolevulinic acid based photodynamic therapy

    PubMed Central

    Fan, Zhichao; Cui, Xiaojun; Wei, Dan; Liu, Wei; Li, Buhong; He, Hao; Ye, Huamao; Zhu, Naishuo; Wei, Xunbin

    2016-01-01

    Photodynamic therapy (PDT) with protoporphyrin IX (PpIX), which is endogenously derived from 5-aminolevulinic acid (5-ALA) or its derivatives, is a promising modality for the treatment of both pre-malignant and malignant lesions. However, the mechanisms of how ALA-induced PpIX selectively accumulated in the tumors are not fully elucidated. Here we discovered that eukaryotic translation elongation factor 1 alpha 1 (eEF1A1) interacted with PpIX (with an affinity constant of 2.96 × 106 M−1). Microscopy imaging showed that ALA-induced PpIX was co-localized with eEF1A1 in cancer cells. eEF1A1 was found to enrich ALA-induced PpIX in cells by competitively blocking the downstream bioavailability of PpIX. Taken together, our study discovered eEF1A1 as a novel photosensitizer binding protein, which may play an essential role in the enrichment of ALA-induced PpIX in cancer cells during PDT. These suggested eEF1A1 as a molecular marker to predict the selectivity and efficiency of 5-ALA based PDT in cancer therapy. PMID:27150264

  14. 5-Aminolevulinic acid combined with ferrous iron induces carbon monoxide generation in mouse kidneys and protects from renal ischemia-reperfusion injury.

    PubMed

    Hou, Jiangang; Cai, Songjie; Kitajima, Yuya; Fujino, Masayuki; Ito, Hidenori; Takahashi, Kiwamu; Abe, Fuminori; Tanaka, Tohru; Ding, Qiang; Li, Xiao-Kang

    2013-10-15

    Renal ischemia reperfusion injury (IRI) is a major factor responsible for acute renal failure. An intermediate in heme synthesis, 5-aminolevulinic acid (5-ALA) is fundamental in aerobic energy metabolism. Heme oxygenase (HO)-1 cleaves heme to form biliverdin, carbon monoxide (CO), and iron (Fe(2+)), which is used with 5-ALA. In the present study, we investigated the role of 5-ALA in the attenuation of acute renal IRI using a mouse model. Male Balb/c mice received 30 mg/kg 5-ALA with Fe(2+) 48, 24, and 2 h before IRI and were subsequently subjected to bilateral renal pedicle occlusion for 45 min. The endogenous CO concentration of the kidneys from the mice administered 5-ALA/Fe(2+) increased significantly, and the peak concentrations of serum creatinine and blood urea nitrogen decreased. 5-ALA/Fe(2+) treatments significantly decreased the tubular damage and number of apoptotic cells. IRI-induced renal thiobarbituric acid-reactive substance levels were also significantly decreased in the 5-ALA/Fe(2+) group. Furthermore, mRNA expression of HO-1, TNF-α, and interferon-γ was significantly increased after IRI. Levels of HO-1 were increased and levels of TNF-α and interferon-γ were decreased in the 5-ALA/Fe(2+)-pretreated renal parenchyma after IRI. F4/80 staining showed reduced macrophage infiltration, and TUNEL staining revealed that there were fewer interstitial apoptotic cells. These findings suggest that 5-ALA/Fe(2+) can protect the kidneys against IRI by reducing macrophage infiltration and decreasing renal cell apoptosis via the generation of CO.

  15. 5-Aminolevulinic Acid Thins Pear Fruits by Inhibiting Pollen Tube Growth via Ca(2+)-ATPase-Mediated Ca(2+) Efflux.

    PubMed

    An, Yuyan; Li, Jie; Duan, Chunhui; Liu, Longbo; Sun, Yongping; Cao, Rongxiang; Wang, Liangju

    2016-01-01

    Chemical fruit thinning has become a popular practice in modern fruit orchards for achieving high quality fruits, reducing costs of hand thinning and promoting return bloom. However, most of the suggested chemical thinners are often concerned for their detrimental effects and environmental problems. 5-Aminolevulic acid (ALA) is a natural, nontoxic, biodegradable, and environment-friendly plant growth regulator. One of its outstanding roles is improving plant photosynthesis and fruit quality. Here, results showed that applying 100-200 mg/L ALA at full bloom stage significantly reduced pear fruit set. Both in vivo and in vitro studies showed that ALA significantly inhibited pollen germination and tube growth. ALA decreased not only cytosolic Ca(2+) concentration ([Ca(2+)]cyt) but also "tip-focused" [Ca(2+)]cyt gradient, indicating that ALA inhibited pollen tube growth by down-regulating calcium signaling. ALA drastically enhanced pollen Ca(2+)-ATPase activity, suggesting that ALA-induced decrease of calcium signaling probably resulted from activating calcium pump. The significant negative correlations between Ca(2+)-ATPase activity and pollen germination or pollen tube length further demonstrated the critical role of calcium pump in ALA's negative effect on pollen germination. Taken together, our results suggest that ALA at low concentrations is a potential biochemical thinner, and it inhibits pollen germination and tube growth via Ca(2+) efflux by activating Ca(2+)-ATPase, thereby thinning fruits by preventing fertilization.

  16. 5-Aminolevulinic Acid Thins Pear Fruits by Inhibiting Pollen Tube Growth via Ca2+-ATPase-Mediated Ca2+ Efflux

    PubMed Central

    An, Yuyan; Li, Jie; Duan, Chunhui; Liu, Longbo; Sun, Yongping; Cao, Rongxiang; Wang, Liangju

    2016-01-01

    Chemical fruit thinning has become a popular practice in modern fruit orchards for achieving high quality fruits, reducing costs of hand thinning and promoting return bloom. However, most of the suggested chemical thinners are often concerned for their detrimental effects and environmental problems. 5-Aminolevulic acid (ALA) is a natural, nontoxic, biodegradable, and environment-friendly plant growth regulator. One of its outstanding roles is improving plant photosynthesis and fruit quality. Here, results showed that applying 100–200 mg/L ALA at full bloom stage significantly reduced pear fruit set. Both in vivo and in vitro studies showed that ALA significantly inhibited pollen germination and tube growth. ALA decreased not only cytosolic Ca2+ concentration ([Ca2+]cyt) but also “tip-focused” [Ca2+]cyt gradient, indicating that ALA inhibited pollen tube growth by down-regulating calcium signaling. ALA drastically enhanced pollen Ca2+-ATPase activity, suggesting that ALA-induced decrease of calcium signaling probably resulted from activating calcium pump. The significant negative correlations between Ca2+-ATPase activity and pollen germination or pollen tube length further demonstrated the critical role of calcium pump in ALA's negative effect on pollen germination. Taken together, our results suggest that ALA at low concentrations is a potential biochemical thinner, and it inhibits pollen germination and tube growth via Ca2+ efflux by activating Ca2+-ATPase, thereby thinning fruits by preventing fertilization. PMID:26904082

  17. Differential antioxidant defense and detoxification mechanisms in photodynamically stressed rice plants treated with the deregulators of porphyrin biosynthesis, 5-aminolevulinic acid and oxyfluorfen

    SciTech Connect

    Phung, Thu-Ha; Jung, Sunyo

    2015-04-03

    This study focuses on differential molecular mechanisms of antioxidant and detoxification systems in rice plants under two different types of photodynamic stress imposed by porphyrin deregulators, 5-aminolevulinic acid (ALA) and oxyfluorfen (OF). The ALA-treated plants with white necrosis exhibited a greater decrease in photochemical quantum efficiency, F{sub v}/F{sub m}, as well as a greater increase in activity of superoxide dismutase, compared to the OF-treated plants. By contrast, the brown necrosis in OF-treated plants resulted in not only more widely dispersed H{sub 2}O{sub 2} production and greater increases in H{sub 2}O{sub 2}-decomposing enzymes, catalase and peroxidase, but also lower ascorbate redox state. In addition, ALA- and OF-treated plants markedly up-regulated transcript levels of genes involved in detoxification processes including transport and movement, cellular homeostasis, and xenobiotic conjugation, with prominent up-regulation of serine/threonine kinase and chaperone only in ALA-treated plants. Our results demonstrate that different photodynamic stress imposed by ALA and OF developed differential actions of antioxidant enzymes and detoxification. Particularly, detoxification system may play potential roles in plant protection against photodynamic stress imposed by porphyrin deregulators, thereby contributing to alleviation of photodynamic damage. - Highlights: • We employ two different types of photodynamic stress, white and brown necrosis. • We examine molecular mechanisms of antioxidative and detoxification systems. • ALA and OF develop differential actions of antioxidant and detoxification systems. • Coordinated mechanism of antioxidants and detoxification works against toxic ROS. • Detoxification system plays critical roles in protection against photodynamic stress.

  18. Comparative Study of Photodynamic Therapy with Topical Methyl Aminolevulinate versus 5-Aminolevulinic Acid for Facial Actinic Keratosis with Long-Term Follow-Up

    PubMed Central

    Ko, Dong-Yeob; Kim, Ki-Ho

    2014-01-01

    Background Few studies have compared the efficacy, cosmetic outcomes, and adverse events between 5-aminolevulinic acid photodynamic therapy (ALA-PDT) and methyl aminolevulinate-PDT (MAL-PDT) for actinic keratoses (AKs) in Asian ethnic populations with dark-skin. Objective We retrospectively compared the long-term efficacy, recurrence rates, cosmetic outcomes, and safety of ALA-PDT versus MAL-PDT for facial AKs in Koreans. Methods A total of 222 facial AKs in 58 patients were included in this study. A total of 153 lesions (29 patients) were treated with 5-ALA, and 69 lesions (29 patients) with MAL. ALA and MAL creams were applied for 6 hours and 3 hours, respectively; the lesions were then illuminated with a halogen lamp at 150 J/cm2 for ALA-PDT and a diode lamp at 37 J/cm2 for MAL-PDT. Results The complete response rates of ALA-PDT and MAL-PDT were 56.9% and 50.7%, respectively, with no significant difference at 12 months after treatment. No significant difference in recurrence rates was observed between the 2 PDT modalities at either 6 or 12 months after treatment. There was no significant difference in the cosmetic outcomes between the 2 treatment modalities at 12 months after PDT. However, ALA-PDT caused significantly more painful than MAL-PDT (p=0.005). The adverse events were mild to moderate, transient, and self-limiting for both modalities. Conclusion MAL-PDT was similar to ALA-PDT in terms of long-term efficacy, recurrence rates, cosmetic outcomes, and adverse events; however, it was a significantly less painful procedure than ALA-PDT in our study. PMID:24966631

  19. Effects of exogenous 5-aminolevulinic acid on photosynthesis, stomatal conductance, transpiration rate, and PIP gene expression of tomato seedlings subject to salinity stress.

    PubMed

    Zhao, Y Y; Yan, F; Hu, L P; Zhou, X T; Zou, Z R; Cui, L R

    2015-01-01

    The effects of exogenous 5-aminolevulinic acid (ALA) on photosynthesis, plant growth, and the expression of two aquaporin genes in tomato seedlings under control and salinity conditions were investigated. Exogenous ALA application significantly improved net photosynthetic rate (Pn), total chlorophyll content, and plant biomass accumulation of tomato seedlings under salinity stress. As revealed by real-time PCR analyses, after treatment with ALA alone, expression of both LePIP1 and LePIP2 in the two tomato cultivars was up-regulated at 2 h and subsequently decreased to normal levels. Under salinity stress, transcript levels of LePIP1 in both leaves and roots of salt-sensitive cultivars (cv. Zhongza No.9) increased significantly and were considerably higher than in cultivars exposed to ALA alone. In contrast, the expression levels of LePIP1 and LePIP2 in cvs. Jinpeng No.1 cultivars were slightly lower under salinity stress than under ALA treatment. In addition, transcript levels of both LePIP1 and LePIP2 in the roots of Jinpeng No. 1 cultivars were considerably lower than those in the roots of Zhongza No. 9 cultivars under salinity stress, regardless of ALA supplementation, implying that Jinpeng No. 1 cultivars had a better capacity to maintain membrane intrinsic protein stability. Further, ALA application distinctly counteracted the up- or down-regulation of LePIP1 and LePIP2 in both cultivars under salinity stress, in accordance with the improvements instomatal conductance, transpiration rate, and Pn of tomato leaves. The results presented here indicate that ALA controls aquaporin expression, thus, presumably ALA regulates water homeostasis and enhances salt tolerance of tomato seedlings. PMID:26125845

  20. Impact of 5-aminolevulinic acid with iron supplementation on exercise efficiency and home-based walking training achievement in older women.

    PubMed

    Masuki, Shizue; Morita, Atsumi; Kamijo, Yoshi-ichiro; Ikegawa, Shigeki; Kataoka, Yufuko; Ogawa, Yu; Sumiyoshi, Eri; Takahashi, Kiwamu; Tanaka, Tohru; Nakajima, Motowo; Nose, Hiroshi

    2016-01-01

    A reduction in exercise efficiency with aging limits daily living activities. We examined whether 5-aminolevulinic acid (ALA) with sodium ferrous citrate (SFC) increased exercise efficiency and voluntary achievement of interval walking training (IWT) in older women. Ten women [65 ± 3(SD) yr] who had performed IWT for >12 mo and were currently performing IWT participated in this study. The study was conducted in a placebo-controlled, double-blind crossover design. All subjects underwent two trials for 7 days each in which they performed IWT with ALA+SFC (100 and 115 mg/day, respectively) or placebo supplement intake (CNT), intermittently with a 2-wk washout period. Before and after each trial, subjects underwent a graded cycling test at 27.0 °C atmospheric temperature and 50% relative humidity, and oxygen consumption rate, carbon dioxide production rate, and lactate concentration in plasma were measured. Furthermore, for the first 6 days of each trial, exercise intensity for IWT was measured by accelerometry. We found that, in the ALA+SFC trial, oxygen consumption rate and carbon dioxide production rate during graded cycling decreased by 12% (P < 0.001) and 11% (P = 0.001) at every workload, respectively, accompanied by a 16% reduction in lactate concentration in plasma (P < 0.001), although all remained unchanged in the CNT trial (P > 0.2). All of the reductions were significantly greater in the ALA+SFC than the CNT trial (P < 0.05). Furthermore, the training days, impulse, and time at fast walking were 42% (P = 0.028), 102% (P = 0.027), and 69% (P = 0.039) higher during the ALA+SFC than the CNT intake period, respectively. Thus ALA+SFC supplementation augmented exercise efficiency and thereby improved IWT achievement in older women.

  1. Topical delivery of 5-aminolevulinic acid-encapsulated ethosomes in a hyperproliferative skin animal model using the CLSM technique to evaluate the penetration behavior.

    PubMed

    Fang, Yi-Ping; Huang, Yaw-Bin; Wu, Pao-Chu; Tsai, Yi-Hung

    2009-11-01

    Psoriasis, an inflammatory skin disease, exhibits recurring itching, soreness, and cracked and bleeding skin. Currently, the topical delivery of 5-aminolevulinic acid-photodynamic therapy (ALA-PDT) is an optional treatment for psoriasis which provides long-term therapeutic effects, is non-toxic and enjoys better compliance with patients. However, the precursor of ALA is hydrophilic, and thus its ability to penetrate the skin is limited. Also, little research has provided a platform to investigate the penetration behavior in disordered skin. We employed a highly potent ethosomal carrier (phosphatidylethanolamine; PE) to investigate the penetration behavior of ALA and the recovery of skin in a hyperproliferative murine model. We found that the application of ethosomes produced a significant increase in cumulative amounts of 5-26-fold in normal and hyperproliferative murine skin samples when compared to an ALA aqueous solution; and the ALA aqueous solution appeared less precise in terms of the penetration mode in hyperproliferative murine skin. After the ethosomes had been applied, the protoporphyrin IX (PpIX) intensity increased about 3.64-fold compared with that of the ALA aqueous solution, and the penetration depth reached 30-80 microm. The results demonstrated that the ethosomal carrier significantly improved the delivery of ALA and the formation of PpIX in both normal and hyperproliferative murine skin samples, and the expression level of tumor necrosis factor (TNF)-alpha was reduced after the ALA-ethosomes were applied to treat hyperproliferative murine skin. Furthermore, the results of present study encourage more investigations on the mechanism of the interaction with ethosomes and hyperproliferative murine skin.

  2. Impact of 5-aminolevulinic acid with iron supplementation on exercise efficiency and home-based walking training achievement in older women

    PubMed Central

    Masuki, Shizue; Morita, Atsumi; Kamijo, Yoshi-ichiro; Ikegawa, Shigeki; Kataoka, Yufuko; Ogawa, Yu; Sumiyoshi, Eri; Takahashi, Kiwamu; Tanaka, Tohru; Nakajima, Motowo

    2015-01-01

    A reduction in exercise efficiency with aging limits daily living activities. We examined whether 5-aminolevulinic acid (ALA) with sodium ferrous citrate (SFC) increased exercise efficiency and voluntary achievement of interval walking training (IWT) in older women. Ten women [65 ± 3(SD) yr] who had performed IWT for >12 mo and were currently performing IWT participated in this study. The study was conducted in a placebo-controlled, double-blind crossover design. All subjects underwent two trials for 7 days each in which they performed IWT with ALA+SFC (100 and 115 mg/day, respectively) or placebo supplement intake (CNT), intermittently with a 2-wk washout period. Before and after each trial, subjects underwent a graded cycling test at 27.0°C atmospheric temperature and 50% relative humidity, and oxygen consumption rate, carbon dioxide production rate, and lactate concentration in plasma were measured. Furthermore, for the first 6 days of each trial, exercise intensity for IWT was measured by accelerometry. We found that, in the ALA+SFC trial, oxygen consumption rate and carbon dioxide production rate during graded cycling decreased by 12% (P < 0.001) and 11% (P = 0.001) at every workload, respectively, accompanied by a 16% reduction in lactate concentration in plasma (P < 0.001), although all remained unchanged in the CNT trial (P > 0.2). All of the reductions were significantly greater in the ALA+SFC than the CNT trial (P < 0.05). Furthermore, the training days, impulse, and time at fast walking were 42% (P = 0.028), 102% (P = 0.027), and 69% (P = 0.039) higher during the ALA+SFC than the CNT intake period, respectively. Thus ALA+SFC supplementation augmented exercise efficiency and thereby improved IWT achievement in older women. PMID:26514619

  3. Topical delivery of 5-aminolevulinic acid-encapsulated ethosomes in a hyperproliferative skin animal model using the CLSM technique to evaluate the penetration behavior.

    PubMed

    Fang, Yi-Ping; Huang, Yaw-Bin; Wu, Pao-Chu; Tsai, Yi-Hung

    2009-11-01

    Psoriasis, an inflammatory skin disease, exhibits recurring itching, soreness, and cracked and bleeding skin. Currently, the topical delivery of 5-aminolevulinic acid-photodynamic therapy (ALA-PDT) is an optional treatment for psoriasis which provides long-term therapeutic effects, is non-toxic and enjoys better compliance with patients. However, the precursor of ALA is hydrophilic, and thus its ability to penetrate the skin is limited. Also, little research has provided a platform to investigate the penetration behavior in disordered skin. We employed a highly potent ethosomal carrier (phosphatidylethanolamine; PE) to investigate the penetration behavior of ALA and the recovery of skin in a hyperproliferative murine model. We found that the application of ethosomes produced a significant increase in cumulative amounts of 5-26-fold in normal and hyperproliferative murine skin samples when compared to an ALA aqueous solution; and the ALA aqueous solution appeared less precise in terms of the penetration mode in hyperproliferative murine skin. After the ethosomes had been applied, the protoporphyrin IX (PpIX) intensity increased about 3.64-fold compared with that of the ALA aqueous solution, and the penetration depth reached 30-80 microm. The results demonstrated that the ethosomal carrier significantly improved the delivery of ALA and the formation of PpIX in both normal and hyperproliferative murine skin samples, and the expression level of tumor necrosis factor (TNF)-alpha was reduced after the ALA-ethosomes were applied to treat hyperproliferative murine skin. Furthermore, the results of present study encourage more investigations on the mechanism of the interaction with ethosomes and hyperproliferative murine skin. PMID:19660544

  4. 5-Aminolevulinic Acid Protects against Cisplatin-Induced Nephrotoxicity without Compromising the Anticancer Efficiency of Cisplatin in Rats In Vitro and In Vivo

    PubMed Central

    Matsumoto, Tatsuki; Ishihara, Masayuki; Hamada, Kazu; Shimamura, Yoshiko; Ogata, Koji; Inoue, Kosuke; Taniguchi, Yoshinori; Horino, Taro; Karashima, Takashi; Tamura, Kenji; Fukuhara, Hideo; Fujimoto, Shimpei; Tsuda, Masayuki; Shuin, Taro

    2013-01-01

    Background/Aims Nephrotoxicity is a frequent and major limitation in cisplatin (CDDP)-based chemotherapy. 5-Aminolevulinic acid (ALA) is widely distributed in animal cells, and it is a precursor of tetrapyrole compounds such as heme that is fundamentally important in aerobic energy metabolism. The aim of this study is to evaluate the protective role of ALA in CDDP-induced acute kidney injury (AKI). Method We used CDDP-induced AKI rat model and cultured renal tubular cells (NRK-52E). We divided four groups of rats: control, CDDP only, CDDP + ALA(post);(ALA 10 mg/kg + Fe in drinking water) after CDDP, CDDP + ALA(pre & post). Result CDDP increased Cr up to 6.5 mg/dl, BUN up to 230 mg/dl, and ALA significantly reduced these changes. ALA ameliorates CDDP-induced morphological renal damages, and reduced tubular apoptosis evaluated by TUNEL staining and cleaved caspase 3. Protein and mRNA levels of ATP5α, complex(COX) IV, UCP2, PGC-1α in renal tissue were significantly decreased by CDDP, and ALA ameliorates reduction of these enzymes. In contrast, Heme Oxigenase (HO)-1 level is induced by CDDP treatment, and ALA treatment further up-regulates HO-1 levels. In NRK-52E cells, the CDDP-induced reduction of protein and mRNA levels of mitochondrial enzymes was significantly recovered by ALA + Fe. CDDP-induced apoptosis were ameliorated by ALA + Fe treatment. Furthermore, we evaluated the size of transplantated bladder carcinoma to the rat skin, and ALA did not change the anti cancer effects of CDDP. Conclusion These data suggested that the protective role of ALA in cisplatin-induced AKI is via protection of mitochondrial viability and prevents tubular apoptosis. Also there are no significant effects of ALA on anticancer efficiency of CDDP in rats. Thus, ALA has the potential to prevent CDDP nephrotoxicity without compromising its anticancer efficacy. PMID:24324635

  5. Effects of exogenous 5-aminolevulinic acid on photosynthesis, stomatal conductance, transpiration rate, and PIP gene expression of tomato seedlings subject to salinity stress.

    PubMed

    Zhao, Y Y; Yan, F; Hu, L P; Zhou, X T; Zou, Z R; Cui, L R

    2015-06-11

    The effects of exogenous 5-aminolevulinic acid (ALA) on photosynthesis, plant growth, and the expression of two aquaporin genes in tomato seedlings under control and salinity conditions were investigated. Exogenous ALA application significantly improved net photosynthetic rate (Pn), total chlorophyll content, and plant biomass accumulation of tomato seedlings under salinity stress. As revealed by real-time PCR analyses, after treatment with ALA alone, expression of both LePIP1 and LePIP2 in the two tomato cultivars was up-regulated at 2 h and subsequently decreased to normal levels. Under salinity stress, transcript levels of LePIP1 in both leaves and roots of salt-sensitive cultivars (cv. Zhongza No.9) increased significantly and were considerably higher than in cultivars exposed to ALA alone. In contrast, the expression levels of LePIP1 and LePIP2 in cvs. Jinpeng No.1 cultivars were slightly lower under salinity stress than under ALA treatment. In addition, transcript levels of both LePIP1 and LePIP2 in the roots of Jinpeng No. 1 cultivars were considerably lower than those in the roots of Zhongza No. 9 cultivars under salinity stress, regardless of ALA supplementation, implying that Jinpeng No. 1 cultivars had a better capacity to maintain membrane intrinsic protein stability. Further, ALA application distinctly counteracted the up- or down-regulation of LePIP1 and LePIP2 in both cultivars under salinity stress, in accordance with the improvements instomatal conductance, transpiration rate, and Pn of tomato leaves. The results presented here indicate that ALA controls aquaporin expression, thus, presumably ALA regulates water homeostasis and enhances salt tolerance of tomato seedlings.

  6. Interstitial photodynamic therapy of canine prostate with meso-tetra-(m-hydroxyphenyl) chlorin and 5-aminolevulinic acid: a preliminary study

    NASA Astrophysics Data System (ADS)

    Chang, Shi-Chung; Buonaccorsi, Giovanni A.; MacRobert, Alexander J.; Bown, Stephen G.

    1996-01-01

    Photodynamic therapy (PDT) is proved to have potential for managing various malignancies. We investigated tissue biodistribution and photodynamic effects on a canine model in vivo using second generation photosensitizers, meso-tetra(m-hydroxyphenyl)chlorin (mTHPC) and 5-aminolaevulinic acid (ALA) to evaluate the feasibility and possible future application of PDT on the prostate. Using fluorescence microscopy, the optimal sensitization time of the prostate was between 24 - 72 hours with mTHPC and, 3 hours with ALA. After optimum time of sensitization, prostates of mature beagle were treated with laser at various sites by placing fiber interstitially under the guidance of transrectal ultrasound. The light dose for each treatment site was 100 J (100 mW for 1,000 seconds at the wavelength of 650 and 630 nm, respectively). With mTHPC, single laser fiber was able to induce organ confined PDT lesion as large as 20 by 18 by 18 mm in size. However, the PDT lesion with ALA was negligible 3 days after treatment. Physical distress manifested as urinary retention, poor appetite and body weigh loss, was more prominent with increasing number of treatment sites as a result of extensive prostatic swelling and urethral damages. However, these problems usually alleviated spontaneously 7 to 10 days after PDT. The characteristic histological changes were hemorrhagic necrosis and glandular destruction with preservation of interlobular collagen fibers. Urethral damage seen at the early stage healed by regeneration of urothelium in 4 weeks. We conclude that interstitial PDT with mTHPC is technically possible to produce extensive glandular necrosis in the normal prostate which heals safely and does not change the prostatic architecture. ALA, although it seems promising for bladder tumors, is much less effective than mTHPC on the prostate. With mTHPC, it might have the potential for treating prostate cancers localized in the periphery of the gland.

  7. Evaluating the efficacy and safety of a novel endoscopic fluorescence imaging modality using oral 5-aminolevulinic acid for colorectal tumors

    PubMed Central

    Tsuruki, Eriko So; Saito, Yutaka; Abe, Seiichiro; Takamaru, Hiroyuki; Yamada, Masayoshi; Sakamoto, Taku; Nakajima, Takeshi; Matsuda, Takahisa; Sekine, Shigeki; Taniguchi, Hirokazu

    2016-01-01

    Background and study aims: Five-aminolevulinic acid (5-ALA) is being increasingly used for photodynamic diagnosis and therapy of various types of tumors including brain, urologic, and other neoplasias. The use of 5-ALA to treat Barrett’s carcinomas has been documented, but its clinical effectiveness for diagnosis of gastrointestinal tumors, particularly early cancers, remains unknown. Patients and methods: The aim of our feasibility study was to evaluate the visibility of colorectal tumors using endoscopic fluorescence imaging (EFI) after oral administration of 5-ALA. The lesions identified by direct visualization and by the spectrums produced using EFI modality with 5-ALA were compared to the clinicopathologic features of resected specimens. Results: Twenty-three patients with a total of 27 known colorectal lesions were enrolled in the study. The median tumor size was 30 mm (range 10 – 75). Eleven of the lesions were flat or depressed lesions and 16 were sessile. Red fluorescence was observed in 22 out of 27 lesions. Red fluorescence was negative in 4 out of 11 flat or depressed lesions. In comparison with histopathologic findings, the rates of red fluorescence visibility were 62.5 % in low-grade intraepithelial neoplasia, 77.8 % in high-grade neoplasia, and 100 % in submucosal carcinoma. Red fluorescence visibility increased with the degree of dysplasia. There were no significant adverse events identified in this study. Conclusions: This feasibility study using EFI with 5-ALA demonstrated high visibility of superficial colorectal neoplasia. EFI with 5-ALA appears to be a novel, safe technique for improving real-time colorectal tumor imaging. PMID:26793782

  8. Low-Dose Topical 5-Aminolevulinic Acid Photodynamic Therapy in the Treatment of Different Severity of Acne Vulgaris.

    PubMed

    Tao, Shi-Qin; Li, Fei; Cao, Lei; Xia, Ru-Shan; Fan, Hua; Fan, Ying; Sun, Hui; Jing, Cheng; Yang, Li-Jia

    2015-12-01

    The objective of this article is to investigate the effectiveness and safety of photodynamic therapy (PDT) with 3.6 % topical aminolevulinic acid (ALA) and a short incubation time with red light in moderate to severe acne. One hundred and thirty-six patients with moderate to severe acne were treated with 3.6 % topical ALA-PDT for three sessions with an interval of 2 weeks. Patients were evaluated for efficacy and safety on week 2, 4, 6, 8, and 12 after the initial treatment. Most patients showed apparent clearance of acne lesions at the treated site after three sessions. The effective treatment rates were increased after the multiple therapies. The clinical outcomes are the best at 4 weeks after the final treatment. The total effectiveness rate and cure rate of the low-dose ALA-PDT procedure is 92.65 and 47.06 %, respectively. Thirty-one patients and nineteen patients showed apparent exacerbation of acne lesions before the 2nd and 3rd treatment, respectively, but all of them showed good or excellent improvement after a three-course treatment. A few patients showed mild relapse including papules and comedos at 8 weeks after the final treatment. No significant differences are found in the effects of different acne severity and different genders. Adverse reactions are mild and transient. A 3.6 % topical ALA-PDT with a short time incubation with red light is a simple and an effective treatment option for moderate to severe acne with mild side effects in Chinese people.

  9. In vitro study of cell death with 5-aminolevulinic acid based photodynamic therapy to improve the efficiency of cancer treatment

    NASA Astrophysics Data System (ADS)

    Firdous, S.; Nawaz, M.; Ikram, M.; Ahmed, M.

    2012-03-01

    Photodynamic therapy (PDT) is a kind of photochemo therapeutic treatment that exerts its effect mainly through the induction of cell death. Distinct types of cell death may be elicited by different PDT regimes. In this study, efforts are underway to optimize PDT protocols for improved efficacy and combination of all three PDT mechanisms involved in the different human carcinomas cell narcosis. Our in vitro cell culture experiments with 5-aminolevulanic acid (ALA) a clinically approved photiosensitizer (PS) and 635 nm laser light have yielded promising results, as follow: (1) (human cervical cancer (HeLa) cell line incubated, for 18 h, with 30 μg/ml of 5-ALA, treated with laser light dose of 50 J/cm2 can produce 85% of cell killing (2) human larynx carcinoma (Hep2c) cell line incubated, for 7 h, with 55 μg/ml of 5-ALA, treated with laser light dose of 85 J/cm2 can produce 75% of cell killing (3) human liver cancer (HepG2) cell line incubated, for 22-48 h, with 262 μg/ml of 5-ALA, treated with laser light dose of 120 J/cm2 can produce 95% of cell killing (4) human muscle cancer (RD) cell line incubated, for 47 h, with 250 μg/ml of 5-ALA, treated with laser light dose of 80 J/cm2 can produce 76% of cell killing (5) Human embryonic kidney (HEK293T) cell line incu-bated, for 18 h, with 400 μg/ml of 5-ALA, treated with laser light dose of 40 J/cm2 can produce 82% of cell killing confirming the efficacy of photodynamic therapy.

  10. Clinical efficacy of 5-aminolevulinic acid photodynamic therapy in the treatment of moderate to severe facial acne vulgaris

    PubMed Central

    CHEN, XIANGQI; SONG, HONGTAO; CHEN, SHENGPING; ZHANG, JING; NIU, GAOXIANG; LIU, XIANGNONG

    2015-01-01

    Acne vulgaris is considered as a therapeutic challenge in terms of managing ongoing symptoms and preventing scar formation. Although there are many available treatments for alleviating acne, therapies for resistant or moderate-to-severe forms have been limited to systemic agents that are accompanied by potentially severe side-effects. While, aminolevulinic acid (ALA) photodynamic therapy (PDT) has increasingly been used as a simple and safe therapeutic option of acne vulgaris, the clinical efficacy requires confirmation in further studies. The aim of this study was to investigate the efficacy and safety of 5-ALA-PDT in the treatment of moderate-to-severe facial acne vulgaris. A total of 50 patients with moderate-to-severe facial acne were enrolled in the study and randomly divided equally into a therapy group and a control group. In the therapy group, the patients were treated with 5% 5-ALA for 1.5 h, followed by three 20-min doses of infrared radiation once a week; in the control group, the patients were treated with three 20 min doses of infrared radiation without 5-ALA once a week. Both treatments lasted for 3 weeks. The clinical efficacy was determined by evaluating acne lesion counts at weeks 0, 2, 4 and 6. Total efficacy rate (TER) was the primary endpoint of the study, and was defined as the proportion of the patients whose treatment effectiveness evaluation was cured (≥90% of skin lesions improved) and excellent (60–89% improvement). Adverse effects were recorded throughout the study. The study was completed by 24 patients in the therapy group and 23 patients in the control group. The numbers of acne lesions significantly decreased. The TER of the therapy group was significantly higher than that of the control group at weeks 4 and 6. Adverse effects were observed in 12 patients of the therapy group and 2 patients of the control group. In the therapy group the most common adverse effect was a burning sensation (n=7), followed by transient

  11. Effect of cell cycle phase on the sensitivity of SAS cells to sonodynamic therapy using low-intensity ultrasound combined with 5-aminolevulinic acid in vitro.

    PubMed

    Li, Nan; Sun, Miao; Wang, Yao; Lv, Yanhong; Hu, Zheng; Cao, Wenwu; Zheng, Jinhua; Jiao, Xiaohui

    2015-08-01

    Sonodynamic therapy (SDT) with 5-aminolevulinic acid (5-ALA) can effectively inhibit various types of tumor in vitro and in vivo. However, the association between the efficacy of SDT and the phase of the cell cycle remains to be elucidated. 5-ALA may generate different quantities of sonosensitizer, protoporphyrin IX (PpIX), in different phases of the cell cycle, which may result in differences in sensitivity to 5-ALA-induced SDT. The present study aimed to investigate the effect of the cell cycle on the susceptibility of SAS cells to SDT following synchronization to different cell cycle phases. These results indicates that the rates of cell death and apoptosis of the SAS cells in the S and G2/M phases were significantly higher following SDT, compared with those in the G1-phase cells and unsynchronized cells, with a corresponding increase in PpIX in the S and G2/M cells. In addition, the expression of caspase-3 increased, while that of B-cell lymphoma (Bcl)-2 decreased markedly in theS and G2/M cells following SDT. Cyclin A was also expressed at higher levels in the S and G2/M cells, compared with the G1-phase cells. SDT also caused a significant upregulation of cyclin A in all phases of the cell cycle, however this was most marked in the S and G2/M cells. It was hypothesized that high expression levels of cyclin A in the S and G2/M cells may promote the induction of caspase-3 and reduce the induction of Bcl-2 by SDT and, therefore, enhance apoptosis. Taken together, these data demonstrated that cells in The S and G2/M phases generate more intracellular PpIX, have higher levels of cyclin A and are, therefore, more sensitive to SDT-induced cytotoxicity. These findings indicate the potential novel approach to preventing the onset of cancer by combining cell-cycle regulators with SDT. This sequential combination therapy may be a simple and cost-effective way of enhancing the effects of SDT in clinical settings.

  12. Photodynamic therapy of human skin tumors using topical application of 5-aminolevulinic acid, dimethylsulfoxide (DMSO), and edetic acid disodium salt (EDTA)

    NASA Astrophysics Data System (ADS)

    Orenstein, Arie; Kostenich, Gennady; Tsur, H.; Roitman, Leonid; Ehrenberg, Benjamin; Malik, Zvi

    1995-01-01

    The results of photodynamic therapy (PDT) in 48 patients bearing basal cell carcinoma (BCC) and 7 patients with squamous cell carcinoma (SCC) of the skin are described. Five- aminolevulinic acid (5-ALA) was applied topically in two formulations. The first formulation contained 20% of 5-ALA in a base cream, and the second formulation (5-ALA composite cream), contained an additional 2% of dimethylsulfoxide (DMSO) and 2% of edetic acid disodium salt (EDTA). The creams were left on the skin for 2 - 5 hours. Production of protoporphyrin (PP) was measured in situ by a laser-induced fluorescence (LIF) method. The results of fluorescence measurement clearly indicate that PP accumulation in tumors induced by the 5-ALA composite cream was markedly higher than that induced by the 5-ALA cream. The tumors were light-irradiated (600 - 720 nm) after 4 - 5 hours of cream applications, using the light delivery system Versa-Light by a light dose of 100 J/cm2. The clinically superficial BCC tumors were highly responsive to PDT; the overall result in BCC patients was an 85.4% complete response. Histological examination showed an initial edematous reaction, followed by necrosis and complete disappearance of the tumor. The superficial SCC tumors showed a 100% complete response after PDT. The ulcerated nodular SCC showed partial responses.

  13. The Value of 5-Aminolevulinic Acid in Low-grade Gliomas and High-grade Gliomas Lacking Glioblastoma Imaging Features: An Analysis Based on Fluorescence, Magnetic Resonance Imaging, 18F-Fluoroethyl Tyrosine Positron Emission Tomography, and Tumor Molecular Factors

    PubMed Central

    Jaber, Mohammed; Wölfer, Johannes; Ewelt, Christian; Holling, Markus; Hasselblatt, Martin; Niederstadt, Thomas; Zoubi, Tarek; Weckesser, Matthias

    2015-01-01

    BACKGROUND: Approximately 20% of grade II and most grade III gliomas fluoresce after 5-aminolevulinic acid (5-ALA) application. Conversely, approximately 30% of nonenhancing gliomas are actually high grade. OBJECTIVE: The aim of this study was to identify preoperative factors (ie, age, enhancement, 18F-fluoroethyl tyrosine positron emission tomography [18F-FET PET] uptake ratios) for predicting fluorescence in gliomas without typical glioblastomas imaging features and to determine whether fluorescence will allow prediction of tumor grade or molecular characteristics. METHODS: Patients harboring gliomas without typical glioblastoma imaging features were given 5-ALA. Fluorescence was recorded intraoperatively, and biopsy specimens collected from fluorescing tissue. World Health Organization (WHO) grade, Ki-67/MIB-1 index, IDH1 (R132H) mutation status, O6-methylguanine DNA methyltransferase (MGMT) promoter methylation status, and 1p/19q co-deletion status were assessed. Predictive factors for fluorescence were derived from preoperative magnetic resonance imaging and 18F-FET PET. Classification and regression tree analysis and receiver-operating-characteristic curves were generated for defining predictors. RESULTS: Of 166 tumors, 82 were diagnosed as WHO grade II, 76 as grade III, and 8 as glioblastomas grade IV. Contrast enhancement, tumor volume, and 18F-FET PET uptake ratio >1.85 predicted fluorescence. Fluorescence correlated with WHO grade (P < .001) and Ki-67/MIB-1 index (P < .001), but not with MGMT promoter methylation status, IDH1 mutation status, or 1p19q co-deletion status. The Ki-67/MIB-1 index in fluorescing grade III gliomas was higher than in nonfluorescing tumors, whereas in fluorescing and nonfluorescing grade II tumors, no differences were noted. CONCLUSION: Age, tumor volume, and 18F-FET PET uptake are factors predicting 5-ALA-induced fluorescence in gliomas without typical glioblastoma imaging features. Fluorescence was associated with an increased

  14. 5-Aminolevulinic Acid-Mediated Sonodynamic Therapy Promotes Phenotypic Switching from Dedifferentiated to Differentiated Phenotype via Reactive Oxygen Species and p38 Mitogen-Activated Protein Kinase in Vascular Smooth Muscle Cells.

    PubMed

    Dan, Juhua; Sun, Xin; Li, Wanlu; Zhang, Yun; Li, Xuesong; Xu, Haobo; Li, Zhitao; Tian, Zhen; Guo, Shuyuan; Yao, Jianting; Gao, Weidong; Tian, Ye

    2015-06-01

    Sonodynamic therapy (SDT) has been found to inhibit in-stent restenosis in animal models. However, the mechanism is not fully elucidated. Here, we investigated the effects of 5-aminolevulinic acid (ALA)-mediated SDT (ALA-SDT) on vascular smooth muscle cells (VSMCs), a cause of restenosis, with a focus on SDT-induced phenotypic switching. Serum-induced dedifferentiated VSMCs were cultured with ALA (1 mm, 24 h) and exposed to ultrasound (0.8 W/cm(2)) for 5 min. Results indicated that ALA-SDT inhibited the migration and proliferation of VSMCs and enhanced the expression of differentiated phenotypic markers in VSMCs. Additionally, ALA-SDT increased intracellular reactive oxygen species accumulation and phosphorylated p38 mitogen-activated protein kinase in VSMCs. Inhibition of reactive oxygen species elevation or p38 mitogen-activated protein kinase activity abolished the expression of smooth muscle 22α (SM22α) in VSMCs induced by ALA-SDT. Taken together, these results suggest that ALA-SDT promotes transformation of the VSMC phenotype from the dedifferentiated to differentiated status via reactive oxygen species and activated p38 mitogen-activated protein kinase.

  15. Inhibitory Effect of Gabaculine on 5-Aminolevulinate Dehydratase Activity in Radish Seedlings 1

    PubMed Central

    Tchuinmogne, Simo J.; Huault, Claude; Aoues, Abdelkader; Balangé, Alain P.

    1989-01-01

    We have compared the activity of 5-aminolevulinate dehydratase (5-ALAD) with the amount of protein detected by specific antibodies in rocket immunoelectrophoresis. Parallel kinetic evolutions of enzymic activity and amount of antigen were observed in radish (Raphanus sativus L.) cotyledons, both in complete darkness or under standard far red light involving phytochrome. However, the treatment of seedlings with gabaculine leads to an important decrease in enzymic activity, while the specific protein content is maintained. This inhibition is not overcome by the addition of glutamic acid, but by 5-aminolevulinic acid which points to a specific control of 5-ALAD activity by its substrate. As there is no discrepancy between the enzymic activity and the amount of antigen during the time course development of seedlings, this could confirm a coordinate cellular control between 5-aminolevulinic acid formation and 5-ALAD protein synthesis, both being amplified by the action of phytochrome. PMID:16666925

  16. The application of 5-aminolevulinic acid in the treatment of precancerous lesions, skin cancer, and a new approach to the control of therapy

    NASA Astrophysics Data System (ADS)

    Kulas, Zbigniew; Bereś-Pawlik, Elżbieta; Bieniek, Andrzej; Matusiak, Łukasz

    2009-02-01

    The aim of our work was to determine a therapeutic effect of photodynamic therapy (PDT). Twenty five patients with the Bowen's disease, actinic keratosis and basal cell carcinoma (superficial, nodular) were examined. They were treated with photosensitizer - aminolevulinic acid (metabolized in protoporphyrin IX), and the new red light source built of high-power diodes. A new method, based on numerical analysis of fluorescence imaging of tissues, was proposed as a way for controlling therapy.

  17. In vitro study of 5-aminolevulinic acid-based photodynamic therapy for apoptosis in human cervical HeLa cell line

    NASA Astrophysics Data System (ADS)

    Atif, M.; Firdous, S.; Khurshid, A.; Noreen, L.; Zaidi, S. S. Z.; Ikram, M.

    2009-12-01

    5-aminolevulanic acid (ALA), belonging among the promising second generation of sensitizers, was evaluated as an inducer of photodamage on HeLa (human cervical adenocarcinoma) cell line. A diode laser (635 nm) was used as a source for initiation of the photodynamic effect. We studied the influence of different incubation times, various concentrations of sensitizer, different irradiation doses and various combinations of sensitizer and light doses on the photodamage of HeLa cells. Viability of cells was determined by means of neutral red assay. The quantitative cellular uptake of ALA sensitizer was done by spectrophotometric measurements. No prominent cytotoxic or phototoxic effects on HeLa were observed due to sensitizer or light doses when studied independently of each other. However phototoxicity evoked by laser irradiated sensitizer was detected in HeLa cell line.

  18. Photodynamic Therapy (PDT) using intratumoral injection of the 5- aminolevulinic acid (5-ALA) for the treatment of eye cancer in cattle

    NASA Astrophysics Data System (ADS)

    Hage, Raduan; Mancilha, Geraldo; Zângaro, Renato A.; Munin, Egberto; Plapler, Hélio

    2007-02-01

    A six-year old Holstein cow with an eye cancer (ocular squamous cell carcinoma) involving the third eyelid and conjunctiva was submitted to photodynamic therapy using intratumoral 20% aminolevulinic acid (5-ALA - Aldrich Chemical Company, Milwaukee, USA) and a light emitting diode (LED - VET LED - MMOptics (R)) with wavelength between 600 and 700 nm, 2 cm diameter circular light beam, power of 150 mW, light dose of 50 J/cm2 as a source of irradiation. Fifteen days after the experimental procedure we observed about 50% tumor reduction and complete remission after 3 months. Relapse was not observed up to 12 months after the treatment. Although the study only includes one animal not allowing definite conclusions, it indicates that PDT represents a safe and technically feasible approach in the treatment of eye cancer in cattle.

  19. 5-Aminolevulinate production by Escherichia coli containing the Rhodobacter sphaeroides hemA gene

    SciTech Connect

    Van Der Werf, M.J.; Zeikus, J.G. |

    1996-10-01

    The Rhodobacter sphaeroides hemA gene codes for 5-aminolevulinate (ALA) synthase. This enzyme catalyzes the pyridoxal phosphate-dependent condensation of succinyl coenzyme A and glycine-forming ALA. The R. sphaeroides hemA gene in the pUC18/19 vector system was transformed into Escherichia coli. The effects of both genetic and physiological factors on the expression of ALA synthase and the production of ALA were studied. ALA synthase activity levels were maximal when hemA had the same transcription direction as the lac promoter. The distance between the lac promoter and hemA affected the expression of ALA synthase on different growth substrates. The E. coli host strain used had an enormous effect on the ALA synthase activity level and on the production of ALA, with E. coli DH1 being best suited. The ALA synthase activity level was also dependent on the carbon source. Succinate, L-malate, fumarate, and L-aspartate gave the highest levels of ALA synthase activity, while the use of lactose as a carbon source resulted in a repression of ALA synthase. After growth on succinate, ALA synthase represented {approx}5% of total cellular protein. The ALA synthase activity level was also dependent on the pH of the medium, with maximal activity occurring at pH 6.5. ALA production by whole cells was limited by the availability of glycine, and the addition of 2 g of glycine per liter to the growth medium increased the production of ALA fivefold, to 2.25 mM. In recombinant E. coli extracts, up to 22 mM ALA was produced from succinate, glycine, and ATP. 58 refs., 4 figs., 7 tabs.

  20. Neurotransmitter transporter family including SLC6A6 and SLC6A13 contributes to the 5-aminolevulinic acid (ALA)-induced accumulation of protoporphyrin IX and photodamage, through uptake of ALA by cancerous cells.

    PubMed

    Tran, Tai Tien; Mu, Anfeng; Adachi, Yuka; Adachi, Yasushi; Taketani, Shigeru

    2014-01-01

    δ-Aminolevulinic acid (ALA)-induced protoporphyrin accumulation is widely used in the treatment of cancer, as photodynamic therapy (PDT). To clarify the mechanisms of ALA uptake by tumor cells, we have examined the ALA-induced accumulation of protoporphyrin by the treatment of colon cancer DLD-1 and epithelial cancer HeLa cells with γ-aminobutyric acid (GABA)-related compounds. When the cells were treated with GABA, taurine and β-alanine, the level of protoporphyrin was decreased, suggesting that plasma membrane transporters involved in the transport of neurotransmitters contribute to the uptake of ALA. By transfection with neurotransmitter transporters SLC6A6, SLC6A8 and SLC6A13 cDNA, the ALA- and ALA methylester-dependent accumulation of protoporphyrin markedly increased in HEK293T cells, dependent on an increase in the uptake of ALA. When ALA-treated cells were exposed to white light, the extent of photodamage increased in SLC6A6- and SLC6A13-expressing cells. Conversely, knockdown of SLC6A6 or SLC6A13 with siRNAs in DLD-1 and HeLa cells decreased the ALA-induced accumulation. The expression of SLC6A6 and SLC6A13 was found in some cancer cell lines. Immunohistochemical studies revealed that the presence of these transporters was elevated in colon cancerous cells. These results indicated that neurotransmitter transporters including SLC6A6 and SLC6A13 mediate the uptake of ALA and can play roles in the enhancement of ALA-induced accumulation of protoporphyrin in cancerous cells.

  1. Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases.

    PubMed

    Herbst, Dominik A; Jakob, Roman P; Zähringer, Franziska; Maier, Timm

    2016-03-24

    Polyketide synthases (PKSs) are biosynthetic factories that produce natural products with important biological and pharmacological activities. Their exceptional product diversity is encoded in a modular architecture. Modular PKSs (modPKSs) catalyse reactions colinear to the order of modules in an assembly line, whereas iterative PKSs (iPKSs) use a single module iteratively as exemplified by fungal iPKSs (fiPKSs). However, in some cases non-colinear iterative action is also observed for modPKSs modules and is controlled by the assembly line environment. PKSs feature a structural and functional separation into a condensing and a modifying region as observed for fatty acid synthases. Despite the outstanding relevance of PKSs, the detailed organization of PKSs with complete fully reducing modifying regions remains elusive. Here we report a hybrid crystal structure of Mycobacterium smegmatis mycocerosic acid synthase based on structures of its condensing and modifying regions. Mycocerosic acid synthase is a fully reducing iPKS, closely related to modPKSs, and the prototype of mycobacterial mycocerosic acid synthase-like PKSs. It is involved in the biosynthesis of C20-C28 branched-chain fatty acids, which are important virulence factors of mycobacteria. Our structural data reveal a dimeric linker-based organization of the modifying region and visualize dynamics and conformational coupling in PKSs. On the basis of comparative small-angle X-ray scattering, the observed modifying region architecture may be common also in modPKSs. The linker-based organization provides a rationale for the characteristic variability of PKS modules as a main contributor to product diversity. The comprehensive architectural model enables functional dissection and re-engineering of PKSs.

  2. Critical aspartic acid residues in pseudouridine synthases.

    PubMed

    Ramamurthy, V; Swann, S L; Paulson, J L; Spedaliere, C J; Mueller, E G

    1999-08-01

    The pseudouridine synthases catalyze the isomerization of uridine to pseudouridine at particular positions in certain RNA molecules. Genomic data base searches and sequence alignments using the first four identified pseudouridine synthases led Koonin (Koonin, E. V. (1996) Nucleic Acids Res. 24, 2411-2415) and, independently, Santi and co-workers (Gustafsson, C., Reid, R., Greene, P. J., and Santi, D. V. (1996) Nucleic Acids Res. 24, 3756-3762) to group this class of enzyme into four families, which display no statistically significant global sequence similarity to each other. Upon further scrutiny (Huang, H. L., Pookanjanatavip, M., Gu, X. G., and Santi, D. V. (1998) Biochemistry 37, 344-351), the Santi group discovered that a single aspartic acid residue is the only amino acid present in all of the aligned sequences; they then demonstrated that this aspartic acid residue is catalytically essential in one pseudouridine synthase. To test the functional significance of the sequence alignments in light of the global dissimilarity between the pseudouridine synthase families, we changed the aspartic acid residue in representatives of two additional families to both alanine and cysteine: the mutant enzymes are catalytically inactive but retain the ability to bind tRNA substrate. We have also verified that the mutant enzymes do not release uracil from the substrate at a rate significant relative to turnover by the wild-type pseudouridine synthases. Our results clearly show that the aligned aspartic acid residue is critical for the catalytic activity of pseudouridine synthases from two additional families of these enzymes, supporting the predictive power of the sequence alignments and suggesting that the sequence motif containing the aligned aspartic acid residue might be a prerequisite for pseudouridine synthase function.

  3. Producing dicarboxylic acids using polyketide synthases

    SciTech Connect

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-10-29

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing a dicarboxylic acid (diacid). Such diacids include diketide-diacids and triketide-diacids. The invention includes recombinant nucleic acid encoding the PKS, and host cells comprising the PKS. The invention also includes methods for producing the diacids.

  4. Producing dicarboxylic acids using polyketide synthases

    SciTech Connect

    Katz, Leonard; Fortman, Jeffrey L.; Keasling, Jay D.

    2015-05-26

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing a dicarboxylic acid (diacid). Such diacids include diketide-diacids and triketide-diacids. The invention includes recombinant nucleic acid encoding the PKS, and host cells comprising the PKS. The invention also includes methods for producing the diacids.

  5. Expression of a hemA gene from Agrobacterium radiobacter in a rare codon optimizing Escherichia coli for improving 5-aminolevulinate production.

    PubMed

    Fu, Weiqi; Lin, Jianping; Cen, Peilin

    2010-01-01

    The 5-aminolevulinate (ALA) synthase gene (hemA) from Agrobacterium radiobacter zju-0121, which was cloned previously in our laboratory, contains several rare codons. To enhance the expression of this gene, Escherichia coli Rosetta(DE3), which is a rare codon optimizer strain, was picked out as the host to construct an efficient recombinant strain. Cell extracts of the recombinant E. coli were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under the appropriate conditions. The results indicated that the activity of ALA synthase expressed in Rosetta(DE3)/pET-28a(+)-hemA was about 20% higher than that in E. coli BL21(DE3). Then the effects of precursors (glycine and succinate) and glucose, which is an inhibitor for ALA dehydratase as well as the carbon sources for cell growth, on the production of 5-aminolevulinate were investigated. Based on an optimal fed-batch culture system described in our previous work, up to 6.5 g/l (50 mM) ALA was produced in a 15-l fermenter.

  6. A Formulation Study of 5-Aminolevulinic Encapsulated in DPPC Liposomes in Melanoma Treatment

    PubMed Central

    Lin, Ming-Wei; Huang, Yaw-Bin; Chen, Chun-Lin; Wu, Pao-Chu; Chou, Chien-Ying; Wu, Ping-Ching; Hung, Shih-Ya

    2016-01-01

    Photodynamic therapy (PDT) is a widely used technique for epithelial skin cancer treatment. 5-aminolevulinic acid (5-ALA) is a drug currently used for PDT and is a hydrophilic molecule at its physiological pH, and this limits its capacity to cross the stratum corneum of skin. Since skin penetration is a key factor in the efficacy of topical 5-ALA-mediated PDT, numerous strategies have been proposed to improve skin penetration. Yet this problem is still ongoing. The results of a previous study showed a low rate of 5-ALA encapsulated in liposomes (5.7%) that were 400 nm in size. In the present study, we used 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes as vehicles and tested their delivery efficacy of 5-ALA-medicated PDT both in vitro and in vivo. Our data shows that 5-ALA encapsulated in 0.1 or 0.5% DPPC liposomes (5-ALA/DPPC) had a better encapsulated rate (15~16%) and were smaller in size (84~89 nm). We found the 5-ALA/DPPC formulation reduced cell viability, mitochondria membrane potential, and enhanced intracellular ROS accumulation as compared to 5-ALA alone in melanoma cells. Furthermore, the 5-ALA/DPPC formulation also had better skin penetration ability as compared to the 5-ALA in our ex vivo data by assaying 5-ALA converted into protoporphyrin IX (PpIX) in the skin of the mice that were experimented on. In melanoma xenograft models, 5-ALA/DPPC enhanced PpIX accumulation only in tumor tissue but not normal skin. In conclusion, we found DPPC liposomes to be good carriers for 5-ALA delivery and believe that they may prove useful in 5-ALA-mediated PDT in the future. PMID:27429584

  7. Geranyl diphosphate synthase molecules, and nucleic acid molecules encoding same

    DOEpatents

    Croteau, Rodney Bruce; Burke, Charles Cullen

    2008-06-24

    In one aspect, the present invention provides isolated nucleic acid molecules that each encode a geranyl diphosphate synthase protein, wherein each isolated nucleic acid molecule hybridizes to a nucleic acid molecule consisting of the sequence set forth in SEQ ID NO:1 under conditions of 5.times.SSC at 45.degree. C. for one hour. The present invention also provides isolated geranyl diphosphate synthase proteins, and methods for altering the level of expression of geranyl diphosphate synthase protein in a host cell.

  8. Responses to hexyl 5-aminolevulinate-induced photodynamic treatment in rat bladder cancer model

    NASA Astrophysics Data System (ADS)

    Arum, Carl-Jørgen; Gederas, Odrun; Larsen, Eivind; Randeberg, Lise; Zhao, Chun-Mei

    2010-02-01

    OBJECTIVES: In this study, we evaluated histologically the effects of hexyl 5-aminolevulinateinduced photodynamic treatment in the AY-27 tumor cell induced rat bladder cancer model. MATERIAL & METHODS: The animals (fischer-344 female rats) were divided into 2 groups, half of which were orthotopically implanted with 400,000 syngeniec AY-27 urothelia1 rat bladder cancer cells and half sham implanted. 14 days post implantation 6 rats from each group were treated with hexyl 5-aminolevulinate-induced photodynamic treatment (8mM HAL and light fluence of 20 J/cm2). Additional groups of animals were only given HAL instillation, only light treatment, or no treatment. All animals were sacrificed 7 days after the PDT/only HAL/only light or no treatment. Each bladder was removed, embedded in paraffin and stained with hematoxylin, eosin, and saferin for histological evaluation at high magnification for features of tissue damage by a pathologist blinded to the sample source. RESULTS: In all animals that were AY-27 implanted and not given complete PDT treatment, viable tumors were found in the bladder mucosa and wall. In the animals treated with complete HAL-PDT only 3 of 6 animals had viable tumor. In the 3 animals with viable tumor it was significantly reduced in volume compared to the untreated animals. It was also noted that in the PDT treated animals there was a significantly increased inflammatory response (lymphocytic and mononuclear cell infiltration) in the peri-tumor area compared to implanted animals without complete HAL-PDT. CONCLUSION: Our results suggest that hexyl 5-aminolevulinate-induced photodynamic treatment in a rat bladder cancer model involves both direct effects on cell death (necrosis and apoptosis) and indirect effects to evoke the host immune-response, together contributing to tumor eradication.

  9. Structural and functional organization of the animal fatty acid synthase.

    PubMed

    Smith, Stuart; Witkowski, Andrzej; Joshi, Anil K

    2003-07-01

    The entire pathway of palmitate synthesis from malonyl-CoA in mammals is catalyzed by a single, homodimeric, multifunctional protein, the fatty acid synthase. Each subunit contains three N-terminal domains, the beta-ketoacyl synthase, malonyl/acetyl transferase and dehydrase separated by a structural core from four C-terminal domains, the enoyl reductase, beta-ketoacyl reductase, acyl carrier protein and thiosterase. The kinetics and specificities of the substrate loading reaction catalyzed by the malonyl/acetyl transferase, the condensation reaction catalyzed by beta-ketoacyl synthase and chain-terminating reaction catalyzed by the thioesterase ensure that intermediates do not leak off the enzyme, saturated chains exclusively are elongated and palmitate is released as the major product. Only in the fatty acid synthase dimer do the subunits adopt conformations that facilitate productive coupling of the individual reactions for fatty acid synthesis at the two acyl carrier protein centers. Introduction of a double tagging and dual affinity chromatographic procedure has permitted the engineering and isolation of heterodimeric fatty acid synthases carrying different mutations on each subunit. Characterization of these heterodimers, by activity assays and chemical cross-linking, has been exploited to map the functional topology of the protein. The results reveal that the two acyl carrier protein domains engage in substrate loading and condensation reactions catalyzed by the malonyl/acetyl transferase and beta-ketoacyl synthase domains of either subunit. In contrast, the reactions involved in processing of the beta-carbon atom, following each chain elongation step, together with the release of palmitate, are catalyzed by the cooperation of the acyl carrier protein with catalytic domains of the same subunit. These findings suggest a revised model for the fatty acid synthase in which the two polypeptides are oriented such that head-to-tail contacts are formed both between

  10. Producing a trimethylpentanoic acid using hybrid polyketide synthases

    DOEpatents

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2014-10-07

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing trimethylpentanoic acid. The present invention also provides for a host cell comprising the PKS and when cultured produces the trimethylpentanoic acid. The present invention also provides for a method of producing the trimethylpentanoic acid, comprising: providing a host cell of the present invention, and culturing said host cell in a suitable culture medium such that the trimethylpentanoic acid is produced, optionally isolating the trimethylpentanoic acid, and optionally, reducing the isolated trimethylpentanoic acid into a trimethylpentanol or an iso-octane.

  11. Structural organization of the multifunctional animal fatty-acid synthase.

    PubMed

    Witkowski, A; Rangan, V S; Randhawa, Z I; Amy, C M; Smith, S

    1991-06-15

    The amino acid sequence of the multifunctional fatty-acid synthase has been examined to investigate the exact location of the seven functional domains. Good agreement in predicting the location of interdomain boundaries was obtained using three independent methods. First, the sites of limited proteolytic attack that give rise to relatively stable, large polypeptide fragments were identified; cryptic sites for protease attack at the subunit interface were unmasked by first dissociating the dimer into its component subunits. Second, polypeptide regions exhibiting higher-than-average rates of non-conservative mutation were identified. Third, the sizes of putative functional domains were compared with those of related monofunctional proteins that exhibit similar primary or secondary structure. Residues 1-406 were assigned to the oxoacyl synthase, residues 430-802 to the malonyl/acetyl transferase, residues 1630-1850 to the enoyl reductase, residues 1870-2100 to the oxyreductase, residues 2114-2190 to the acyl-carrier protein and residues 2200-2505 to the thioesterase. The 47-kDa transferase and 8-kDa acyl-carrier-protein domains, which are situated at opposite ends of the multifunctional subunit, were nevertheless isolated from tryptic digests as a non-covalently associated complex. Furthermore, a centrally located domain encompassing residues 1160-1545 was isolated as a nicked dimer. These findings, indicating that interactions between the head-to-tail juxtaposed subunits occur in both the polar and equatorial regions, are consistent with previously derived electron-micrograph images that show subunit contacts in these areas. The data permit refinement of the model for the fatty-acid synthase dimer and suggest that the malonyl/acetyl transferase and oxoacyl synthase of one subunit cooperate with the reductases, acyl carrier protein and thioesterase of the companion subunit in the formation of a center for fatty-acid synthesis.

  12. Fractionated PDT with 5-aminolevulinic acid: effective, cost effective, and patient friendly

    NASA Astrophysics Data System (ADS)

    de Vijlder, Hannah C.; Middelburg, Tom A.; de Bruijn, Henriette S.; Robinson, Dominic J.; Neumann, H. A. Martino; de Haas, Ellen R. M.

    2009-06-01

    PDT with ALA and MAL is established as a relatively effective treatment for non-melanoma skin cancer and premalignancies. PDT is often repeated, because a single treatment gives poor long term results. Preclinical studies showed that ALA-PDT applying a fractionated illumination scheme with a small first light fraction and a second larger light fraction separated by a dark interval of two hours resulted in a significant increase in efficacy. Whereas the efficacy was not enhanced by fractionating MAL-PDT, indicating that ALA-PDT mechanism is not the same as MAL-PDT mechanism. The increase in efficacy using fractionated PDT was confirmed clinically. A randomized comparative clinical study comparing fractionated ALA-PDT versus non-fractionated ALA-PDT in the treatment of superficial basal cell carcinoma showed a significant higher response rate in the lesions treated with fractionated ALA-PDT after a follow-up of one year ( p<0.002, log-rank test). The five year follow-up is studied at moment. So far the complete response in the group treated with fractionated ALA-PDT seems to be only a few percentages lower compared to the one year follow-up. Besides the gain in response rate, fractionated ALA PDT is cost effective. ALA gel is less expensive than the commercially available MAL (Metvix) and moreover fractionated ALA-PDT takes one treatment day, instead of two treatment days using the Metvix treatment protocol (two MAL-PDT treatments separated by one week), both reducing direct and indirect costs and the burden to the patient.

  13. The type I fatty acid and polyketide synthases: a tale of two megasynthases

    PubMed Central

    Tsai, Shiou-Chuan

    2008-01-01

    This review chronicles the synergistic growth of the fields of fatty acid and polyketide synthesis over the last century. In both animal fatty acid synthases and modular polyketide synthases, similar catalytic elements are covalently linked in the same order in megasynthases. Whereas in fatty acid synthases the basic elements of the design remain immutable, guaranteeing the faithful production of saturated fatty acids, in the modular polyketide synthases, the potential of the basic design has been exploited to the full for the elaboration of a wide range of secondary metabolites of extraordinary structural diversity. PMID:17898897

  14. The type I fatty acid and polyketide synthases: a tale of two megasynthases.

    PubMed

    Smith, Stuart; Tsai, Shiou-Chuan

    2007-10-01

    This review chronicles the synergistic growth of the fields of fatty acid and polyketide synthesis over the last century. In both animal fatty acid synthases and modular polyketide synthases, similar catalytic elements are covalently linked in the same order in megasynthases. Whereas in fatty acid synthases the basic elements of the design remain immutable, guaranteeing the faithful production of saturated fatty acids, in the modular polyketide synthases, the potential of the basic design has been exploited to the full for the elaboration of a wide range of secondary metabolites of extraordinary structural diversity.

  15. Noninvasive fluorescence monitoring of protoporphyrin IX production and clinical outcomes in actinic keratoses following short-contact application of 5-aminolevulinate

    NASA Astrophysics Data System (ADS)

    Warren, Christine B.; Lohser, Sara; Wene, Lauren C.; Pogue, Brian W.; Bailin, Philip L.; Maytin, Edward V.

    2010-09-01

    Topical 5-aminolevulinic acid (ALA) is widely used in photodynamic therapy (PDT) of actinic keratoses (AK), a type of premalignant skin lesion. However, the optimal time between ALA application and exposure to light has not been carefully investigated. Our objective is to study the kinetics of protoporphyrin IX (PpIX) accumulation in AK after short contact ALA and relate this to erythemal responses. Using a noninvasive dosimeter, PpIX fluorescence measurements (5 replicates) were taken at 20-min intervals for 2 h following ALA application, in 63 AK in 20 patients. Data were analyzed for maximal fluorescent signal obtained, kinetic slope, and changes in erythema. Our results show that PpIX accumulation was linear over time, becoming statistically higher than background in 48% of all lesions by 20 min, 92% of lesions by 1 h, and 100% of lesions by 2 h. PpIX accumulation was roughly correlated with changes in lesional erythema post-PDT. We conclude that significant amounts of PpIX are produced in all AK lesions by 2 h. The linear kinetics of accumulation suggest that shorter ALA application times may be efficacious in many patients. Noninvasive fluorescence monitoring of PpIX may be useful to delineate areas of high PpIX accumulation within precancerous areas of the skin.

  16. Mechanism of the beta-ketoacyl synthase reaction catalyzed by the animal fatty acid synthase.

    PubMed

    Witkowski, Andrzej; Joshi, Anil K; Smith, Stuart

    2002-09-01

    The catalytic mechanism of the beta-ketoacyl synthase domain of the multifunctional fatty acid synthase has been investigated by a combination of mutagenesis, active-site titration, product analysis, and product inhibition. Neither the reactivity of the active-site Cys161 residue toward iodoacetamide nor the rate of unidirectional transfer of acyl moieties to Cys161 was significantly decreased by replacement of any of the conserved residues, His293, His331, or Lys326, with Ala. Decarboxylation of malonyl moieties in the fully-active Cys161Gln background generated equimolar amounts of acetyl-CoA and bicarbonate, rather than carbon dioxide, and was seriously compromised by replacement of any of the conserved basic residues. The ability of bicarbonate to inhibit decarboxylation of malonyl moieties in the Cys161Gln background was significantly reduced by replacement of His293 but less so by replacement of His331. The data are consistent with a reaction mechanism, in which the initial primer transfer reaction is promoted largely through a lowering of the pKa of the Cys161 thiol by a helix dipole effect and activation of the substrate thioester carbon atom by binding of the keto group in an oxyanion hole. The data also indicate that an activated water molecule is present at the active site that is required either for the rapid hydration of carbon dioxide, prior its release as bicarbonate or, alternatively, for an initial attack on the malonyl C3. In the alternative mechanism, a negatively-charged tetrahedral transition state could be generated, stabilized in part by interaction of His293 with the negatively charged oxygen at C3 and interaction of His331 with the negatively charged thioester carbonyl oxygen, that breaks down to generate bicarbonate directly. Finally, the carbanion at C2, attacks the electrophilic C1 of the primer, generating a second tetrahedral transition state, also stabilized through contacts with the oxyanion hole and His331, that breaks down to form

  17. Expression of fatty acid synthase in nonalcoholic fatty liver disease.

    PubMed

    Dorn, Christoph; Riener, Marc-Oliver; Kirovski, Georgi; Saugspier, Michael; Steib, Kathrin; Weiss, Thomas S; Gäbele, Erwin; Kristiansen, Glen; Hartmann, Arndt; Hellerbrand, Claus

    2010-01-01

    Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid accumulation which starts with simple hepatic steatosis and may progress toward inflammation (nonalcoholic steatohepatitis [NASH]). Fatty acid synthase (FASN) catalyzes the last step in fatty acid biosynthesis, and thus, it is believed to be a major determinant of the maximal hepatic capacity to generate fatty acids by de novo lipogenesis. The aim of this study was to analyze the correlation between hepatic steatosis and inflammation with FASN expression. In vitro incubation of primary human hepatocytes with fatty acids dose-dependently induced cellular lipid-accumulation and FASN expression, while stimulation with TNF did not affect FASN levels. Further, hepatic FASN expression was significantly increased in vivo in a murine model of hepatic steatosis without significant inflammation but not in a murine NASH model as compared to control mice. Also, FASN expression was not increased in mice subjected to bile duct ligation, an experimental model characterized by severe hepatocellular damage and inflammation. Furthermore, FASN expression was analyzed in 102 human control or NAFLD livers applying tissue micro array technology and immunohistochemistry, and correlated significantly with the degree of hepatic steatosis, but not with inflammation or ballooning of hepatocytes. Quantification of FASN mRNA expression in human liver samples confirmed significantly higher FASN levels in hepatic steatosis but not in NASH, and expression of SREBP1, which is the main transcriptional regulator of FASN, paralleled FASN expression levels in human and experimental NAFLD. In conclusion, the transcriptional induction of FASN expression in hepatic steatosis is impaired in NASH, while hepatic inflammation in the absence of steatosis does not affect FASN expression, suggesting that FASN may serve as a new diagnostic marker or therapeutic target for the progression of NAFLD. PMID:20606731

  18. Studies on tetrahydrocannabinolic acid synthase that produces the acidic precursor of tetrahydrocannabinol, the pharmacologically active cannabinoid in marijuana.

    PubMed

    Taura, F

    2009-06-01

    Tetrahydrocannabinol (THC), the psychoactive component of marijuana, is now regarded as a promising medicine because this cannabinoid has been shown to exert a variety of therapeutic activities. It has been demonstrated that THC is generated from the acidic precursor, tetrahydrocannabinolic acid (THCA) by nonenzymatic decarboxylation, and that THCA is biosynthesized by THCA synthase, which catalyzes a unique biosynthetic reaction, the stereospecific oxidative cyclization of the geranyl group of the substrate cannabigerolic acid. Molecular characterization of THCA synthase has revealed its structural characteristics and reaction mechanism. THCA synthase is the first cannabinoid synthase to be studied and is potentially attractive target for various biotechnological applications as it produces the direct precursor of THC. This review describes the research history of this enzyme, i.e., purification, molecular cloning, biochemical characterization, and possible biotechnological application of THCA synthase. PMID:22495534

  19. Effects and mechanism of acid rain on plant chloroplast ATP synthase.

    PubMed

    Sun, Jingwen; Hu, Huiqing; Li, Yueli; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2016-09-01

    Acid rain can directly or indirectly affect plant physiological functions, especially photosynthesis. The enzyme ATP synthase is the key in photosynthetic energy conversion, and thus, it affects plant photosynthesis. To clarify the mechanism by which acid rain affects photosynthesis, we studied the effects of acid rain on plant growth, photosynthesis, chloroplast ATP synthase activity and gene expression, chloroplast ultrastructure, intracellular H(+) level, and water content of rice seedlings. Acid rain at pH 4.5 remained the chloroplast structure unchanged but increased the expression of six chloroplast ATP synthase subunits, promoted chloroplast ATP synthase activity, and increased photosynthesis and plant growth. Acid rain at pH 4.0 or less decreased leaf water content, destroyed chloroplast structure, inhibited the expression of six chloroplast ATP synthase subunits, decreased chloroplast ATP synthase activity, and reduced photosynthesis and plant growth. In conclusion, acid rain affected the chloroplast ultrastructure, chloroplast ATPase transcription and activity, and P n by changing the acidity in the cells, and thus influencing the plant growth and development. Finally, the effects of simulated acid rain on the test indices were found to be dose-dependent. PMID:27278067

  20. Effects and mechanism of acid rain on plant chloroplast ATP synthase.

    PubMed

    Sun, Jingwen; Hu, Huiqing; Li, Yueli; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2016-09-01

    Acid rain can directly or indirectly affect plant physiological functions, especially photosynthesis. The enzyme ATP synthase is the key in photosynthetic energy conversion, and thus, it affects plant photosynthesis. To clarify the mechanism by which acid rain affects photosynthesis, we studied the effects of acid rain on plant growth, photosynthesis, chloroplast ATP synthase activity and gene expression, chloroplast ultrastructure, intracellular H(+) level, and water content of rice seedlings. Acid rain at pH 4.5 remained the chloroplast structure unchanged but increased the expression of six chloroplast ATP synthase subunits, promoted chloroplast ATP synthase activity, and increased photosynthesis and plant growth. Acid rain at pH 4.0 or less decreased leaf water content, destroyed chloroplast structure, inhibited the expression of six chloroplast ATP synthase subunits, decreased chloroplast ATP synthase activity, and reduced photosynthesis and plant growth. In conclusion, acid rain affected the chloroplast ultrastructure, chloroplast ATPase transcription and activity, and P n by changing the acidity in the cells, and thus influencing the plant growth and development. Finally, the effects of simulated acid rain on the test indices were found to be dose-dependent.

  1. The action of exogenous abscisic acid on malate-synthase synthesis in germinating castor-bean seeds.

    PubMed

    Dommes, J; Northcote, D H

    1985-12-01

    The presence of 30 μM abscisic acid inhibited development of malate-synthase activity in the endosperm of germinating castor-bean seeds. Malate synthase was purified from castor-bean endosperms and an antibody to it was prepared from rabbit serum. This antibody was used to measure the amounts of malate-synthase mRNA using an in-vitro translation system. The effect of abscisic acid appeared to be greater on malate-synthase mRNA than on the bulk of mRNA, indicating some specificity of abscisic-acid action. The extent of the inhibition of malate-synthase activity and of malate-synthase mRNA accumulation were similar. This indicates that abscisic acid inhibits malate-synthase activity by lowering levels of translatable malate-synthase mRNA rather than by affecting the translation rate of this mRNA.

  2. Acyl-carrier protein - Phosphopantetheinyltransferase partnerships in fungal fatty acid synthases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The synthesis of fatty acids is an essential primary metabolic process for energy storage and cellular structural integrity. Assembly of saturated fatty acids is achieved by fatty acid synthases (FASs) that combine acetyl- and malonyl-CoAs by repetitive decarboxylative Claisen condensations with su...

  3. Ethylene-Enhanced 1-Aminocyclopropane-1-carboxylic Acid Synthase Activity in Ripening Apples 1

    PubMed Central

    Bufler, Gebhard

    1984-01-01

    Apples (Malus sylvestris Mill, cv Golden Delicious) were treated before harvest with aminoethoxyvinylglycine (AVG). AVG is presumed to reversibly inhibit 1-aminocyclopropane-1-carboxylic acid (ACC) activity, but not the formation of ACC synthase. AVG treatment effectively blocked initiation of autocatalytic ethylene production and ripening of harvested apples. Exogenous ethylene induced extractable ACC synthase activity and ripening in AVG-treated apples. Removal of exogenous ethylene caused a rapid decline in ACC synthase activity and in CO2 production. The results with ripened, AVG-treated apples indicate (a) a dose-response relationship between ethylene and enhancement of ACC synthase activity with a half-maximal response at approximately 0.8 μl/l ethylene; (b) reversal of ethylene-enhanced ACC synthase activity by CO2; (c) enhancement of ACC synthase activity by the ethylene-activity analog propylene. Induction of ACC synthase activity, autocatalytic ethylene production, and ripening of preclimacteric apples not treated with AVG were delayed by 6 and 10% CO2, but not by 1.25% CO2. However, each of these CO2 concentrations reduced the rate of increase of ACC synthase activity. PMID:16663569

  4. Direct transfer of starter substrates from type I fatty acid synthase to type III polyketide synthases in phenolic lipid synthesis

    PubMed Central

    Miyanaga, Akimasa; Funa, Nobutaka; Awakawa, Takayoshi; Horinouchi, Sueharu

    2008-01-01

    Alkylresorcinols and alkylpyrones, which have a polar aromatic ring and a hydrophobic alkyl chain, are phenolic lipids found in plants, fungi, and bacteria. In the Gram-negative bacterium Azotobacter vinelandii, phenolic lipids in the membrane of dormant cysts are essential for encystment. The aromatic moieties of the phenolic lipids in A. vinelandii are synthesized by two type III polyketide synthases (PKSs), ArsB and ArsC, which are encoded by the ars operon. However, details of the synthesis of hydrophobic acyl chains, which might serve as starter substrates for the type III polyketide synthases (PKSs), were unknown. Here, we show that two type I fatty acid synthases (FASs), ArsA and ArsD, which are members of the ars operon, are responsible for the biosynthesis of C22–C26 fatty acids from malonyl-CoA. In vivo and in vitro reconstitution of phenolic lipid synthesis systems with the Ars enzymes suggested that the C22–C26 fatty acids produced by ArsA and ArsD remained attached to the ACP domain of ArsA and were transferred hand-to-hand to the active-site cysteine residues of ArsB and ArsC. The type III PKSs then used the fatty acids as starter substrates and carried out two or three extensions with malonyl-CoA to yield the phenolic lipids. The phenolic lipids in A. vinelandii were thus found to be synthesized solely from malonyl-CoA by the four members of the ars operon. This is the first demonstration that a type I FAS interacts directly with a type III PKS through substrate transfer. PMID:18199837

  5. Direct transfer of starter substrates from type I fatty acid synthase to type III polyketide synthases in phenolic lipid synthesis.

    PubMed

    Miyanaga, Akimasa; Funa, Nobutaka; Awakawa, Takayoshi; Horinouchi, Sueharu

    2008-01-22

    Alkylresorcinols and alkylpyrones, which have a polar aromatic ring and a hydrophobic alkyl chain, are phenolic lipids found in plants, fungi, and bacteria. In the Gram-negative bacterium Azotobacter vinelandii, phenolic lipids in the membrane of dormant cysts are essential for encystment. The aromatic moieties of the phenolic lipids in A. vinelandii are synthesized by two type III polyketide synthases (PKSs), ArsB and ArsC, which are encoded by the ars operon. However, details of the synthesis of hydrophobic acyl chains, which might serve as starter substrates for the type III polyketide synthases (PKSs), were unknown. Here, we show that two type I fatty acid synthases (FASs), ArsA and ArsD, which are members of the ars operon, are responsible for the biosynthesis of C(22)-C(26) fatty acids from malonyl-CoA. In vivo and in vitro reconstitution of phenolic lipid synthesis systems with the Ars enzymes suggested that the C(22)-C(26) fatty acids produced by ArsA and ArsD remained attached to the ACP domain of ArsA and were transferred hand-to-hand to the active-site cysteine residues of ArsB and ArsC. The type III PKSs then used the fatty acids as starter substrates and carried out two or three extensions with malonyl-CoA to yield the phenolic lipids. The phenolic lipids in A. vinelandii were thus found to be synthesized solely from malonyl-CoA by the four members of the ars operon. This is the first demonstration that a type I FAS interacts directly with a type III PKS through substrate transfer.

  6. Quantitative fluorescence using 5-aminolevulinic acid–induced protoporphyrin IX biomarker as a surgical adjunct in low-grade glioma surgery

    PubMed Central

    Valdés, Pablo A.; Jacobs, Valerie; Harris, Brent T.; Wilson, Brian C.; Leblond, Frederic; Paulsen, Keith D.; Roberts, David W.

    2015-01-01

    OBJECT Previous studies in high-grade gliomas (HGGs) have indicated that protoporphyrin IX (PpIX) accumulates in higher concentrations in tumor tissue, and, when used to guide surgery, it has enabled improved resection leading to increased progression-free survival. Despite the benefits of complete resection and the advances in fluorescence-guided surgery, few studies have investigated the use of PpIX in low-grade gliomas (LGGs). Here, the authors describe their initial experience with 5-aminolevulinic acid (ALA)–induced PpIX fluorescence in a series of patients with LGG. METHODS Twelve patients with presumed LGGs underwent resection of their tumors after receiving 20 μg/kg of ALA approximately 3 hours prior to surgery under an institutional review board–approved protocol. Intraoperative assessments of the resulting PpIX emissions using both qualitative, visible fluorescence and quantitative measurements of PpIX concentration were obtained from tissue locations that were subsequently biopsied and evaluated histopathologically. Mixed models for random effects and receiver operating characteristic curve analysis for diagnostic performance were performed on the fluorescence data relative to the gold-standard histopathology. RESULTS Five of the 12 LGGs (1 ganglioglioma, 1 oligoastrocytoma, 1 pleomorphic xanthoastrocytoma, 1 oligodendroglioma, and 1 ependymoma) demonstrated at least 1 instance of visible fluorescence during surgery. Visible fluorescence evaluated on a specimen-by-specimen basis yielded a diagnostic accuracy of 38.0% (cutoff threshold: visible fluorescence score ≥ 1, area under the curve = 0.514). Quantitative fluorescence yielded a diagnostic accuracy of 67% (for a cutoff threshold of the concentration of PpIX [CPpIX] > 0.0056 μg/ml, area under the curve = 0.66). The authors found that 45% (9/20) of nonvisibly fluorescent tumor specimens, which would have otherwise gone undetected, accumulated diagnostically significant levels of CPpIX that were

  7. Isolation and partial characterization of the gene for goose fatty acid synthase.

    PubMed

    Kameda, K; Goodridge, A G

    1991-01-01

    Fatty acid synthase is regulated by diet and hormones, with regulation being primarily transcriptional. In chick embryo hepatocytes in culture, triiodothyronine stimulates accumulation of enzyme and transcription of the gene. Since the 5'-flanking region of this gene is likely involved in hormonal regulation of its expression, we have isolated and partially characterized an avian fatty acid synthase gene. A genomic DNA library was constructed in a cosmid vector and screened with cDNA clones that contained sequence complementary to the 3' end of goose fatty acid synthase mRNA. A genomic clone (approximately 35 kilobase pairs (kb] was isolated, and a 6.5-kb EcoRI fragment thereof contained DNA complementary to the 3' noncoding region of fatty acid synthase mRNA. Additional cosmid libraries were screened with 5' fragments of previously isolated genomic clones, resulting in the isolation of five overlapping cosmid DNAs. The entire region of cloned DNA spans approximately 105 kb. Exon-containing fragments were identified by hybridization with end-labeled poly(A)+ RNA and by hybridization of labeled exon-containing genomic DNA fragments to fatty acid synthase mRNA. A new set of cDNA clones spanning approximately 3.2 kb was isolated from a lambda-ZAP goose liver cDNA library using the 5'-most exon-containing fragment of the 5'-most genomic DNA clone. This region of mRNA contains a 5'-untranslated sequence and a continuous open reading frame which includes a region that codes for the essential cysteine of the beta-ketoacyl synthase domain. The entire fatty acid synthase gene spans about 50 kb. The 5' 15 kb of the gene contain 7 exons. S1 nuclease and primer extension analyses were used to identify a single site for initiation of transcription, 174 nucleotides upstream from the putative translation initiation codon. Putative "TATA" and "CCAAT" boxes are located 28 and 60 base pairs (bp), respectively, upstream of the site of initiation of transcription. The 5'-flanking 597

  8. Human fatty acid synthase: Structure and substrate selectivity of the thioesterase domain

    PubMed Central

    Chakravarty, Bornali; Gu, Ziwei; Chirala, Subrahmanyam S.; Wakil, Salih J.; Quiocho, Florante A.

    2004-01-01

    Human fatty acid synthase is a large homodimeric multifunctional enzyme that synthesizes palmitic acid. The unique carboxyl terminal thioesterase domain of fatty acid synthase hydrolyzes the growing fatty acid chain and plays a critical role in regulating the chain length of fatty acid released. Also, the up-regulation of human fatty acid synthase in a variety of cancer makes the thioesterase a candidate target for therapeutic treatment. The 2.6-Å resolution structure of human fatty acid synthase thioesterase domain reported here is comprised of two dissimilar subdomains, A and B. The smaller subdomain B is composed entirely of α-helices arranged in an atypical fold, whereas the A subdomain is a variation of the α/β hydrolase fold. The structure revealed the presence of a hydrophobic groove with a distal pocket at the interface of the two subdomains, which constitutes the candidate substrate binding site. The length and largely hydrophobic nature of the groove and pocket are consistent with the high selectivity of the thioesterase for palmitoyl acyl substrate. The structure also set the identity of the Asp residue of the catalytic triad of Ser, His, and Asp located in subdomain A at the proximal end of the groove. PMID:15507492

  9. Photodynamic therapy (PDT) and photodiagnosis (PD) using endogenous photosensitization induced by 5-aminolevulinic acid (ALA): current clinical and development status

    NASA Astrophysics Data System (ADS)

    Marcus, Stuart L.; Sobel, Russel S.; Golub, Allyn L.; Carroll, Ronald L.; Lundahl, Scott L.; Shulman, D. Geoffrey

    1996-04-01

    Exogenous provision of ALA to many tissues results in the accumulation of sufficient quantities of the endogenous photosensitizer protoporphyrin IX, (PpIX), to produce a photodynamic effect. Therefore, ALA may be considered the only current PDT agent in clinical development which is a biochemical precursor of a photosensitizer. Topical ALA application, followed by exposure to activating light (ALA PDT), has been reported effective for the treatment of a variety of dermatologic diseases including cutaneous T-cell lymphoma, superficial basal cell carcinoma, Bowen's disease, and actinic (solar) keratoses, and is also being examined for treatment of acne and hirsutism. PpIX induced by ALA application also may serve as a fluorescence detection marker for photodiagnosis (PD) of malignant and pre- malignant conditions of the urinary bladder and other organs. Local internal application of ALA has also been used for selective endometrial ablation in animal model systems and is beginning to be examined in human clinical studies. Systemic, oral administration of ALA has been used for ALA PDT of superficial head and neck cancer, various gastrointestinal cancers, and the condition known as Barrett's esophagus. This brief paper reviews the current clinical and development status of ALA PDT.

  10. Mapping the functional topology of the animal fatty acid synthase by mutant complementation in vitro.

    PubMed

    Rangan, V S; Joshi, A K; Smith, S

    2001-09-11

    An in vitro mutant complementation approach has been used to map the functional topology of the animal fatty acid synthase. A series of knockout mutants was engineered, each mutant compromised in one of the seven functional domains, and heterodimers generated by hybridizing all possible combinations of the mutated subunits were isolated and characterized. Heterodimers comprised of a subunit containing either a beta-ketoacyl synthase or malonyl/acetyltransferase mutant, paired with a subunit containing mutations in any one of the other five domains, are active in fatty acid synthesis. Heterodimers in which both subunits carry a knockout mutation in either the dehydrase, enoyl reductase, keto reductase, or acyl carrier protein are inactive. Heterodimers comprised of a subunit containing a thioesterase mutation paired with a subunit containing a mutation in either the dehydrase, enoyl reductase, beta-ketoacyl reductase, or acyl carrier protein domains exhibit very low fatty acid synthetic ability. The results are consistent with a model for the fatty acid synthase in which the substrate loading and condensation reactions are catalyzed by cooperation of an acyl carrier protein domain of one subunit with the malonyl/acetyltransferase or beta-ketoacyl synthase domains, respectively, of either subunit. The beta-carbon-processing reactions, responsible for the complete reduction of the beta-ketoacyl moiety following each condensation step, are catalyzed by cooperation of an acyl carrier protein domain with the beta-ketoacyl reductase, dehydrase, and enoyl reductase domains associated exclusively with the same subunit. The chain-terminating reaction is carried out most efficiently by cooperation of an acyl carrier protein domain with the thioesterase domain of the same subunit. These results are discussed in the context of a revised model for the fatty acid synthase.

  11. Red versus blue light illumination in hexyl 5-aminolevulinate photodynamic therapy: the influence of light color and irradiance on the treatment outcome in vitro.

    PubMed

    Helander, Linda; Krokan, Hans E; Johnsson, Anders; Gederaas, Odrun A; Plaetzer, Kristjan

    2014-08-01

    Hexyl 5-aminolevulinate (HAL) is a lipophilic derivative of 5-aminolevulinate, a key intermediate in biosynthesis of the photosensitizer protoporphyrin IX (PpIX). The photodynamic efficacy and cell death mode after red versus blue light illumination of HAL-induced PpIX have been examined and compared using five different cancer cell lines. LED arrays emitting at 410 and 624 nm served as homogenous and adjustable light sources. Our results show that the response after HAL-PDT is cell line specific, both regarding the shape of the dose-survival curve, the overall dose required for efficient cell killing, and the relative amount of apoptosis. The ratio between 410 and 624 nm in absorption coefficient correlates well with the difference in cell killing at the same wavelengths. In general, the PDT efficacy was several folds higher for blue light as compared with red light, as expected. However, HAL-PDT₆₂₄ induced more apoptosis than HAL-PDT₄₁₀ and illumination with low irradiance resulted in more apoptosis than high irradiance at the same lethal dose. This indicates differences in death modes after low and high irradiance after similar total light doses. From a treatment perspective, these differences may be important.

  12. Red versus blue light illumination in hexyl 5-aminolevulinate photodynamic therapy: the influence of light color and irradiance on the treatment outcome in vitro

    NASA Astrophysics Data System (ADS)

    Helander, Linda; Krokan, Hans E.; Johnsson, Anders; Gederaas, Odrun A.; Plaetzer, Kristjan

    2014-08-01

    Hexyl 5-aminolevulinate (HAL) is a lipophilic derivative of 5-aminolevulinate, a key intermediate in biosynthesis of the photosensitizer protoporphyrin IX (PpIX). The photodynamic efficacy and cell death mode after red versus blue light illumination of HAL-induced PpIX have been examined and compared using five different cancer cell lines. LED arrays emitting at 410 and 624 nm served as homogenous and adjustable light sources. Our results show that the response after HAL-PDT is cell line specific, both regarding the shape of the dose-survival curve, the overall dose required for efficient cell killing, and the relative amount of apoptosis. The ratio between 410 and 624 nm in absorption coefficient correlates well with the difference in cell killing at the same wavelengths. In general, the PDT efficacy was several folds higher for blue light as compared with red light, as expected. However, HAL-PDT624 induced more apoptosis than HAL-PDT410 and illumination with low irradiance resulted in more apoptosis than high irradiance at the same lethal dose. This indicates differences in death modes after low and high irradiance after similar total light doses. From a treatment perspective, these differences may be important.

  13. Metabolic engineering of Pseudomonas putida for production of docosahexaenoic acid based on a myxobacterial PUFA synthase.

    PubMed

    Gemperlein, Katja; Zipf, Gregor; Bernauer, Hubert S; Müller, Rolf; Wenzel, Silke C

    2016-01-01

    Long-chain polyunsaturated fatty acids (LC-PUFAs) can be produced de novo via polyketide synthase-like enzymes known as PUFA synthases, which are encoded by pfa biosynthetic gene clusters originally discovered from marine microorganisms. Recently similar gene clusters were detected and characterized in terrestrial myxobacteria revealing several striking differences. As the identified myxobacterial producers are difficult to handle genetically and grow very slowly we aimed to establish heterologous expression platforms for myxobacterial PUFA synthases. Here we report the heterologous expression of the pfa gene cluster from Aetherobacter fasciculatus (SBSr002) in the phylogenetically distant model host bacteria Escherichia coli and Pseudomonas putida. The latter host turned out to be the more promising PUFA producer revealing higher production rates of n-6 docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA). After several rounds of genetic engineering of expression plasmids combined with metabolic engineering of P. putida, DHA production yields were eventually increased more than threefold. Additionally, we applied synthetic biology approaches to redesign and construct artificial versions of the A. fasciculatus pfa gene cluster, which to the best of our knowledge represents the first example of a polyketide-like biosynthetic gene cluster modulated and synthesized for P. putida. Combination with the engineering efforts described above led to a further increase in LC-PUFA production yields. The established production platform based on synthetic DNA now sets the stage for flexible engineering of the complex PUFA synthase. PMID:26617065

  14. Evidence for a cyclic diguanylic acid-dependent cellulose synthase in plants.

    PubMed Central

    Amor, Y; Mayer, R; Benziman, M; Delmer, D

    1991-01-01

    Because numerous attempts to detect an activity for a cellulose synthase in plants have failed, we have taken a different approach toward detecting polypeptides involved in this process. The uniqueness of the structure and function of cyclic diguanylic acid (c-di-GMP) as an activator of the cellulose synthase of the bacterium Acetobacter xylinum makes it an attractive probe to use in a search for a c-di-GMP receptor that might be involved in the process in plants. Direct photolabeling with 32P-c-di-GMP has been used, therefore, to identify in plants two membrane polypeptides of 83 and 48 kD derived from cotton fibers that possess properties consistent with their being components of a c-di-GMP-dependent cellulose synthase. Based upon several criteria, the 48-kD species is proposed to be derived by proteolytic cleavage of the 83-kD polypeptide. Both polypeptides bind c-di-GMP with high affinity and specificity and show antigenic relatedness to the bacterial cellulose synthase, and the N-terminal sequence of the 48-kD polypeptide also indicates relatedness to the bacterial synthase. Ability to detect both cotton fiber polypeptides by photolabeling increases markedly in extracts derived from fibers entering the active phase of secondary wall cellulose synthesis. These results provide a basis for future work aimed at identifying and characterizing genes involved in cellulose synthesis in plants. PMID:1668373

  15. Mechanistic studies of 3-deoxy-D-manno-octulosonic acid 8-phosphate synthase

    SciTech Connect

    Dotson, G.D.; Woodard, R.W.

    1994-12-01

    The enzyme 3-deOXY-D-manno-octulosonic acid 8-phosphate synthase (KDO 8-P synthase) catalyses the condensation of arabinose 5-phosphate (A 5-P) with phosphoenolpyruvate (PEP) to give the unique eight-carbon acidic sugar 3-deoxy-D-nianno-octulosonic acid 8-phosphate (KDO 8-P) found only in gram-negative bacteria and required for lipid A maturation and cellular growth. The E. coli gene kdsA that encodes KDO 8-P synthase has been amplified by standard PCR methodologies. The synthetic gene, subcloned into the expression vector pT7-7 was used to infect E. coli BL 21 (DE 3). Purification of crude supernatant from this transformant on Q Sepharose yields >200 mg of near-homogeneous KDO 8-P synthase per liter of cell culture. To explore the mechanism of KDO 8-P synthase, we prepared (E)- and (Z)-(3{sup 2}H)PEP, (2-{sup 13}C)PEP, and (2-{sup 13}C,{sup 18}O)PEP chemically from the appropriately labeled 3-bromopyruvates by reaction with trimethylphosphite under Perkow reaction conditions. Our {sup 1}H-NMR analysis of the stereochemistry at C3 of the KDO 8-Ps, obtained by separate incubation of (E)- and (Z)-(3-{sup 2}H)PEP with A 5-P in the presence of KDO 8-P synthase, demonstrated that the reaction is stereospecific with respect to both the C3 of PEP and the C1 carbonyl of A 5-P. (Z)-(3-{sup 2}H)PEP gave predominantly (3S)-(3{sup 2}H)KDO 8-P and (E)-(3-{sup 2}H)PEP gave predominantly (3R)-(3{sup 2}H)KDO-8P, which indicates condensation of the si face of PEP upon the re face of A 5-P-an orientation analogous to that seen with the similar aldehyde Iyase DAH 7-P synthase. The fate of the enolic oxygen of (2-{sup 13}C, {sup 18}O)PEP, during the course of the KDO 8-P synthase-catalyzed reaction as monitored by both {sup 13}C- and {sup 31}P-NMR spectroscopy demonstrated that the inorganic phosphate (Pi) and not the KDO 8-P contained the {sup 18}O.

  16. Engineering of an active animal fatty acid synthase dimer with only one competent subunit.

    PubMed

    Joshi, Anil K; Rangan, Vangipuram S; Witkowski, Andrzej; Smith, Stuart

    2003-02-01

    Animal fatty acid synthases are large polypeptides containing seven functional domains that are active only in the dimeric form. Inactivity of the monomeric form has long been attributed to the obligatory participation of domains from both subunits in catalysis of substrate loading and condensation reactions. However, we have engineered a fatty acid synthase containing one wild-type subunit and one subunit compromised by mutations in all seven functional domains that is active in fatty acid synthesis. This finding indicates that a single subunit, in the context of a dimer, is able to catalyze the entire biosynthetic pathway and suggests that, in the natural complex, each of the two subunits forms a scaffold that optimizes the conformation of the companion subunit.

  17. Crystallization of Δ{sup 1}-tetrahydrocannabinolic acid (THCA) synthase from Cannabis sativa

    SciTech Connect

    Shoyama, Yoshinari; Takeuchi, Ayako; Taura, Futoshi; Tamada, Taro; Adachi, Motoyasu; Kuroki, Ryota; Shoyama, Yukihiro; Morimoto, Satoshi

    2005-08-01

    Δ{sup 1}-Tetrahydrocannabinolic acid (THCA) synthase from C. sativa was crystallized. The crystal diffracted to 2.7 Å resolution with sufficient quality for further structure determination. Δ{sup 1}-Tetrahydrocannabinolic acid (THCA) synthase is a novel oxidoreductase that catalyzes the biosynthesis of the psychoactive compound THCA in Cannabis sativa (Mexican strain). In order to investigate the structure–function relationship of THCA synthase, this enzyme was overproduced in insect cells, purified and finally crystallized in 0.1 M HEPES buffer pH 7.5 containing 1.4 M sodium citrate. A single crystal suitable for X-ray diffraction measurement was obtained in 0.09 M HEPES buffer pH 7.5 containing 1.26 M sodium citrate. The crystal diffracted to 2.7 Å resolution at beamline BL41XU, SPring-8. The crystal belonged to the primitive cubic space group P432, with unit-cell parameters a = b = c = 178.2 Å. The calculated Matthews coefficient was approximately 4.1 or 2.0 Å{sup 3} Da{sup −1} assuming the presence of one or two molecules of THCA synthase in the asymmetric unit, respectively.

  18. Coexpressing Escherichia coli cyclopropane synthase with Sterculia foetida Lysophosphatidic acid acyltransferase enhances cyclopropane fatty acid accumulation.

    PubMed

    Yu, Xiao-Hong; Prakash, Richa Rawat; Sweet, Marie; Shanklin, John

    2014-01-01

    Cyclopropane fatty acids (CPAs) are desirable as renewable chemical feedstocks for the production of paints, plastics, and lubricants. Toward our goal of creating a CPA-accumulating crop, we expressed nine higher plant cyclopropane synthase (CPS) enzymes in the seeds of fad2fae1 Arabidopsis (Arabidopsis thaliana) and observed accumulation of less than 1% CPA. Surprisingly, expression of the Escherichia coli CPS gene resulted in the accumulation of up to 9.1% CPA in the seed. Coexpression of a Sterculia foetida lysophosphatidic acid acyltransferase (SfLPAT) increases CPA accumulation up to 35% in individual T1 seeds. However, seeds with more than 9% CPA exhibit wrinkled seed morphology and reduced size and oil accumulation. Seeds with more than 11% CPA exhibit strongly decreased seed germination and establishment, and no seeds with CPA more than 15% germinated. That previous reports suggest that plant CPS prefers the stereospecific numbering (sn)-1 position whereas E. coli CPS acts on sn-2 of phospholipids prompted us to investigate the preferred positions of CPS on phosphatidylcholine (PC) and triacylglycerol. Unexpectedly, in planta, E. coli CPS acts primarily on the sn-1 position of PC; coexpression of SfLPAT results in the incorporation of CPA at the sn-2 position of lysophosphatidic acid. This enables a cycle that enriches CPA at both sn-1 and sn-2 positions of PC and results in increased accumulation of CPA. These data provide proof of principle that CPA can accumulate to high levels in transgenic seeds and sets the stage for the identification of factors that will facilitate the movement of CPA from PC into triacylglycerol to produce viable seeds with additional CPA accumulation. PMID:24204024

  19. Effect of abscisic and gibberellic acids on malate synthase transcripts in germinating castor bean seeds.

    PubMed

    Rodriguez, D; Dommes, J; Northcote, D H

    1987-05-01

    Several clones complementary to malate synthase mRNA have been identified in a complementary-DNA library to mRNA from castor bean endosperm. One of these clones has been used as a probe to measure levels of transcripts during seed germination and the effects of gibberellic acid and abscisic acid on these levels have been examined.Malate synthase transcripts increased during germination and GA3 advanced their appearance in the endosperm. Exogenously applied ABA inhibited the accumulation of transcripts over a time course of germination but the addition of GA3 counteracted its inhibitory effects. The data confirmed previous reports which indicated that the action of both growth regulators was on transcript accumulation and that there is a coordinated induction of the enzymes involved in the lipid metabolism in oil seeds.

  20. Deletion of a Chitin Synthase Gene in a Citric Acid Producing Strain of Aspergillus niger

    SciTech Connect

    Rinker, Torri E.; Baker, Scott E.

    2007-01-29

    Citric acid production by the filamentous fungus Aspergillus niger is carried out in a process that causes the organism to drastically alter its morphology. This altered morphology includes hyphal swelling and highly limited polar growth resulting in clumps of swollen cells that eventually aggregate into pellets of approximately 100 microns in diameter. In this pelleted form, A. niger has increased citric acid production as compared to growth in filamentous form. Chitin is a crucial component of the cell wall of filamentous fungi. Alterations in the deposition or production of chitin may have profound effects on the morphology of the organism. In order to study the role of chitin synthesis in pellet formation we have deleted a chitin synthase gene (csmA) in Aspergillus niger strain ATCC 11414 using a PCR based deletion construct. This class of chitin synthases is only found in filamentous fungi and is not present in yeasts. The csmA genes contain a myosin motor domain at the N-terminus and a chitin synthesis domain at the C-terminus. They are believed to contribute to the specialized polar growth observed in filamentous fungi that is lacking in yeasts. The csmA deletion strain (csmAΔ) was subjected to minimal media with and without osmotic stabilizers as well as tested in citric acid production media. Without osmotic stabilizers, the mutant germlings were abnormally swollen, primarily in the subapical regions, and contained large vacuoles. However, this swelling is ultimately not inhibitory to growth as the germlings are able to recover and undergo polar growth. Colony formation was largely unaffected in the absence of osmotic stabilizers. In citric acid production media csmAΔ was observed to have a 2.5 fold increase in citric acid production. The controlled expression of this class of chitin synthases may be useful for improving production of organic acids in filamentous fungi.

  1. A conserved amino acid residue critical for product and substrate specificity in plant triterpene synthases.

    PubMed

    Salmon, Melissa; Thimmappa, Ramesha B; Minto, Robert E; Melton, Rachel E; Hughes, Richard K; O'Maille, Paul E; Hemmings, Andrew M; Osbourn, Anne

    2016-07-26

    Triterpenes are structurally complex plant natural products with numerous medicinal applications. They are synthesized through an origami-like process that involves cyclization of the linear 30 carbon precursor 2,3-oxidosqualene into different triterpene scaffolds. Here, through a forward genetic screen in planta, we identify a conserved amino acid residue that determines product specificity in triterpene synthases from diverse plant species. Mutation of this residue results in a major change in triterpene cyclization, with production of tetracyclic rather than pentacyclic products. The mutated enzymes also use the more highly oxygenated substrate dioxidosqualene in preference to 2,3-oxidosqualene when expressed in yeast. Our discoveries provide new insights into triterpene cyclization, revealing hidden functional diversity within triterpene synthases. They further open up opportunities to engineer novel oxygenated triterpene scaffolds by manipulating the precursor supply. PMID:27412861

  2. A conserved amino acid residue critical for product and substrate specificity in plant triterpene synthases

    PubMed Central

    Salmon, Melissa; Thimmappa, Ramesha B.; Minto, Robert E.; Melton, Rachel E.; O’Maille, Paul E.; Hemmings, Andrew M.; Osbourn, Anne

    2016-01-01

    Triterpenes are structurally complex plant natural products with numerous medicinal applications. They are synthesized through an origami-like process that involves cyclization of the linear 30 carbon precursor 2,3-oxidosqualene into different triterpene scaffolds. Here, through a forward genetic screen in planta, we identify a conserved amino acid residue that determines product specificity in triterpene synthases from diverse plant species. Mutation of this residue results in a major change in triterpene cyclization, with production of tetracyclic rather than pentacyclic products. The mutated enzymes also use the more highly oxygenated substrate dioxidosqualene in preference to 2,3-oxidosqualene when expressed in yeast. Our discoveries provide new insights into triterpene cyclization, revealing hidden functional diversity within triterpene synthases. They further open up opportunities to engineer novel oxygenated triterpene scaffolds by manipulating the precursor supply. PMID:27412861

  3. Canola engineered with a microalgal polyketide synthase-like system produces oil enriched in docosahexaenoic acid.

    PubMed

    Walsh, Terence A; Bevan, Scott A; Gachotte, Daniel J; Larsen, Cory M; Moskal, William A; Merlo, P A Owens; Sidorenko, Lyudmila V; Hampton, Ronnie E; Stoltz, Virginia; Pareddy, Dayakar; Anthony, Geny I; Bhaskar, Pudota B; Marri, Pradeep R; Clark, Lauren M; Chen, Wei; Adu-Peasah, Patrick S; Wensing, Steven T; Zirkle, Ross; Metz, James G

    2016-08-01

    Dietary omega-3 long-chain polyunsaturated fatty acids (LC-PUFAs), docosahexaenoic acid (DHA, C22:6) and eicosapentaenoic acid (EPA, C20:5) are usually derived from marine fish. Although production of both EPA and DHA has been engineered into land plants, including Arabidopsis, Camelina sativa and Brassica juncea, neither has been produced in commercially relevant amounts in a widely grown crop. We report expression of a microalgal polyketide synthase-like PUFA synthase system, comprising three multidomain polypeptides and an accessory enzyme, in canola (Brassica napus) seeds. This transgenic enzyme system is expressed in the cytoplasm, and synthesizes DHA and EPA de novo from malonyl-CoA without substantially altering plastidial fatty acid production. Furthermore, there is no significant impact of DHA and EPA production on seed yield in either the greenhouse or the field. Canola oil processed from field-grown grain contains 3.7% DHA and 0.7% EPA, and can provide more than 600 mg of omega-3 LC-PUFAs in a 14 g serving. PMID:27398790

  4. Catalytic residues are shared between two pseudosubunits of the dehydratase domain of the animal fatty acid synthase.

    PubMed

    Pasta, Saloni; Witkowski, Andrzej; Joshi, Anil K; Smith, Stuart

    2007-12-01

    Expression, characterization, and mutagenesis of a series of N-terminal fragments of an animal fatty acid synthase, containing the beta-ketoacyl synthase, acyl transferase, and dehydratase domains, demonstrate that the dehydratase domain consists of two pseudosubunits, derived from contiguous regions of the same polypeptide, in which a single active site is formed by the cooperation of the catalytic histidine 878 residue of the first pseudosubunit with aspartate 1032 of the second pseudosubunit. Mutagenesis and modeling studies revealed an essential role for glutamine 1036 in anchoring the position of the catalytic aspartate. These findings establish that sequence elements previously assigned to a central structural core region of the type I fatty acid synthases and some modular polyketide synthase counterparts play an essential catalytic role as part of the dehydratase domain.

  5. Carnosol and carnosic acids from Salvia officinalis inhibit microsomal prostaglandin E2 synthase-1.

    PubMed

    Bauer, Julia; Kuehnl, Susanne; Rollinger, Judith M; Scherer, Olga; Northoff, Hinnak; Stuppner, Hermann; Werz, Oliver; Koeberle, Andreas

    2012-07-01

    Prostaglandin E(2) (PGE(2)), the most relevant eicosanoid promoting inflammation and tumorigenesis, is formed by cyclooxygenases (COXs) and PGE(2) synthases from free arachidonic acid. Preparations of the leaves of Salvia officinalis are commonly used in folk medicine as an effective antiseptic and anti-inflammatory remedy and possess anticancer activity. Here, we demonstrate that a standard ethyl acetate extract of S. officinalis efficiently suppresses the formation of PGE(2) in a cell-free assay by direct interference with microsomal PGE(2) synthase (mPGES)-1. Bioactivity-guided fractionation of the extract yielded closely related fractions that potently suppressed mPGES-1 with IC(50) values between 1.9 and 3.5 μg/ml. Component analysis of these fractions revealed the diterpenes carnosol and carnosic acid as potential bioactive principles inhibiting mPGES-1 activity with IC(50) values of 5.0 μM. Using a human whole-blood assay as a robust cell-based model, carnosic acid, but not carnosol, blocked PGE(2) generation upon stimulation with lipopolysaccharide (IC(50) = 9.3 μM). Carnosic acid neither inhibited the concomitant biosynthesis of other prostanoids [6-keto PGF(1α), 12(S)-hydroxy-5-cis-8,10-trans-heptadecatrienoic acid, and thromboxane B(2)] in human whole blood nor affected the activities of COX-1/2 in a cell-free assay. Together, S. officinalis extracts and its ingredients carnosol and carnosic acid inhibit PGE(2) formation by selectively targeting mPGES-1. We conclude that the inhibitory effect of carnosic acid on PGE(2) formation, observed in the physiologically relevant whole-blood model, may critically contribute to the anti-inflammatory and anticarcinogenic properties of S. officinalis.

  6. Carnosol and Carnosic Acids from Salvia officinalis Inhibit Microsomal Prostaglandin E2 Synthase-1

    PubMed Central

    Bauer, Julia; Kuehnl, Susanne; Rollinger, Judith M.; Scherer, Olga; Northoff, Hinnak; Stuppner, Hermann; Werz, Oliver; Koeberle, Andreas

    2012-01-01

    Prostaglandin E2 (PGE2), the most relevant eicosanoid promoting inflammation and tumorigenesis, is formed by cyclooxygenases (COXs) and PGE2 synthases from free arachidonic acid. Preparations of the leaves of Salvia officinalis are commonly used in folk medicine as an effective antiseptic and anti-inflammatory remedy and possess anticancer activity. Here, we demonstrate that a standard ethyl acetate extract of S. officinalis efficiently suppresses the formation of PGE2 in a cell-free assay by direct interference with microsomal PGE2 synthase (mPGES)-1. Bioactivity-guided fractionation of the extract yielded closely related fractions that potently suppressed mPGES-1 with IC50 values between 1.9 and 3.5 μg/ml. Component analysis of these fractions revealed the diterpenes carnosol and carnosic acid as potential bioactive principles inhibiting mPGES-1 activity with IC50 values of 5.0 μM. Using a human whole-blood assay as a robust cell-based model, carnosic acid, but not carnosol, blocked PGE2 generation upon stimulation with lipopolysaccharide (IC50 = 9.3 μM). Carnosic acid neither inhibited the concomitant biosynthesis of other prostanoids [6-keto PGF1α, 12(S)-hydroxy-5-cis-8,10-trans-heptadecatrienoic acid, and thromboxane B2] in human whole blood nor affected the activities of COX-1/2 in a cell-free assay. Together, S. officinalis extracts and its ingredients carnosol and carnosic acid inhibit PGE2 formation by selectively targeting mPGES-1. We conclude that the inhibitory effect of carnosic acid on PGE2 formation, observed in the physiologically relevant whole-blood model, may critically contribute to the anti-inflammatory and anticarcinogenic properties of S. officinalis. PMID:22511203

  7. Natural fatty acid synthase inhibitors as potent therapeutic agents for cancers: A review.

    PubMed

    Zhang, Jia-Sui; Lei, Jie-Ping; Wei, Guo-Qing; Chen, Hui; Ma, Chao-Ying; Jiang, He-Zhong

    2016-09-01

    Context Fatty acid synthase (FAS) is the only mammalian enzyme to catalyse the synthesis of fatty acid. The expression level of FAS is related to cancer progression, aggressiveness and metastasis. In recent years, research on natural FAS inhibitors with significant bioactivities and low side effects has increasingly become a new trend. Herein, we present recent research progress on natural fatty acid synthase inhibitors as potent therapeutic agents. Objective This paper is a mini overview of the typical natural FAS inhibitors and their possible mechanism of action in the past 10 years (2004-2014). Method The information was collected and compiled through major databases including Web of Science, PubMed, and CNKI. Results Many natural products induce cancer cells apoptosis by inhibiting FAS expression, with fewer side effects than synthetic inhibitors. Conclusion Natural FAS inhibitors are widely distributed in plants (especially in herbs and foods). Some natural products (mainly phenolics) possessing potent biological activities and stable structures are available as lead compounds to synthesise promising FAS inhibitors.

  8. Cytosylglucuronic acid synthase (cytosine: UDP-glucuronosyltransferase) from Streptomyces griseochromogenes, the first prokaryotic UDP-glucuronosyltransferase.

    PubMed Central

    Gould, S J; Guo, J

    1994-01-01

    Cytosylglucuronic acid synthase (cytosine: UDP-glucuronosyltransferase), the first prokaryotic UDP-GT and a key enzyme in the biosynthesis of the antibiotic blasticidin S, was purified 870-fold. It has optimum activity at a pH of 8.4 to 8.6, Kms of 6.0 (UDP-glucuronic acid) and 243 (cytosine) microM, and a maximum rate of metabolism of 14.6 mumol/min/mg. The apparent M(r) is 43,000. Activity was slightly enhanced by Mg2+ or Ca2+ but was not inhibited by EDTA. Activity was strongly inhibited by UDP. Cytosylglucuronic acid differs from eukaryotic UDP-glucuronosyltransferases in being a soluble protein with no apparent phospholipid requirement. Images PMID:8113166

  9. Quinic acids from Aster caucasicus and from transgenic callus expressing a beta-amyrin synthase.

    PubMed

    Pecchia, Paola; Cammareri, Maria; Malafronte, Nicola; Consiglio, M Federica; Gualtieri, Maria Josefina; Conicella, Clara

    2011-11-01

    Several different classes of secondary metabolites, including flavonoids, triterpenoid saponins and quinic acid derivatives, are found in Aster spp. (Fam. Asteraceae). Several Aster compounds revealed biological as well as pharmacological activities. In this work, a phytochemical investigation of A. caucasicus evidenced the presence of quinic acid derivatives, as well as the absence of triterpene saponins. To combine in one species the production of different phytochemicals, including triterpenes, an Agrobacterium-mediated transformation of A. caucasicus was set up to introduce A. sedifolius beta-amyrin synthase (AsOXA1)-encoding gene under the control of the constitutive promoter CaMV35S. The quali-quantitative analysis of transgenic calli with ectopic expression of AsOXA1 showed, in one sample, a negligible amount of triterpene saponins combined with higher amount of quinic acid derivatives as compared with the wild type callus.

  10. Porphobilinogen Synthase from the Butterfly, Pieris brassicae: Purification and Comparative Characterization

    PubMed Central

    Rilk-van Gessel, Roland; Kayser, Hartmut

    2007-01-01

    Porphobilinogen represents a key building block of tetrapyrroles serving as functional ligands of many vitally important proteins. Here we report the first purification of porphobilinogen synthase (PBGS) from whole insects by sequentially employing two modes of native electrophoresis on polyacrylamide gels subsequent to more conventional procedures. Using adults of Pieris brassicae L. (Lepidoptera: Pieridae) we achieved ∼10,000-fold purification with final yields of up to 25% of electrophoretically pure PBGS with a specific activity of ∼160 µmol PBG h-1 mg-1 at 37°C and an affinity of 0.36 mM to its substrate 5-aminolevulinic acid. Enzyme activity was inhibited by the substrate mimics, levulinic acid and succinylacetone, and by chelating agents. PBGS behaved as a relatively heat-stable octameric complex of 292.3 kDa composed of 36.5 kDa subunits. Most general features of this insect PBGS were comparable to those published for other animal PBGS enzymes, while remarkable differences were found to the reported recombinant Drosophila enzyme. Moreover, rabbit antiserum directed against purified Pieris PBGS revealed significant immunological differences among insect PBGS enzymes from a wide range of orders contrasting to the overall evolutionary conserved features of this enzyme. PMID:20302542

  11. 7-deoxyloganetic acid synthase catalyzes a key 3 step oxidation to form 7-deoxyloganetic acid in Catharanthus roseus iridoid biosynthesis.

    PubMed

    Salim, Vonny; Wiens, Brent; Masada-Atsumi, Sayaka; Yu, Fang; De Luca, Vincenzo

    2014-05-01

    Iridoids are key intermediates required for the biosynthesis of monoterpenoid indole alkaloids (MIAs), as well as quinoline alkaloids. Although most iridoid biosynthetic genes have been identified, one remaining three step oxidation required to form the carboxyl group of 7-deoxyloganetic acid has yet to be characterized. Here, it is reported that virus-induced gene silencing of 7-deoxyloganetic acid synthase (7DLS, CYP76A26) in Catharanthus roseus greatly decreased levels of secologanin and the major MIAs, catharanthine and vindoline in silenced leaves. Functional expression of this gene in Saccharomyces cerevisiae confirmed its function as an authentic 7DLS that catalyzes the 3 step oxidation of iridodial-nepetalactol to form 7-deoxyloganetic acid. The identification of CYP76A26 removes a key bottleneck for expression of iridoid and related MIA pathways in various biological backgrounds.

  12. 7-deoxyloganetic acid synthase catalyzes a key 3 step oxidation to form 7-deoxyloganetic acid in Catharanthus roseus iridoid biosynthesis.

    PubMed

    Salim, Vonny; Wiens, Brent; Masada-Atsumi, Sayaka; Yu, Fang; De Luca, Vincenzo

    2014-05-01

    Iridoids are key intermediates required for the biosynthesis of monoterpenoid indole alkaloids (MIAs), as well as quinoline alkaloids. Although most iridoid biosynthetic genes have been identified, one remaining three step oxidation required to form the carboxyl group of 7-deoxyloganetic acid has yet to be characterized. Here, it is reported that virus-induced gene silencing of 7-deoxyloganetic acid synthase (7DLS, CYP76A26) in Catharanthus roseus greatly decreased levels of secologanin and the major MIAs, catharanthine and vindoline in silenced leaves. Functional expression of this gene in Saccharomyces cerevisiae confirmed its function as an authentic 7DLS that catalyzes the 3 step oxidation of iridodial-nepetalactol to form 7-deoxyloganetic acid. The identification of CYP76A26 removes a key bottleneck for expression of iridoid and related MIA pathways in various biological backgrounds. PMID:24594312

  13. Tissue responses to hexyl 5-aminolevulinate-induced photodynamic treatment in syngeneic orthotopic rat bladder cancer model: possible pathways of action

    NASA Astrophysics Data System (ADS)

    Arum, Carl-Jørgen; Gederaas, Odrun A.; Larsen, Eivind L. P.; Randeberg, Lise L.; Hjelde, Astrid; Krokan, Hans E.; Svaasand, Lars O.; Chen, Duan; Zhao, Chun-Mei

    2011-02-01

    Orthotopic bladder cancer model in rats mimics human bladder cancer with respect to urothelial tumorigenesis and progression. Utilizing this model at pT1 (superficial stage), we analyze the tissue responses to hexyl 5-aminolevulinate-induced photodynamic therapy (HAL-PDT). In comparison to untreated rats, HAL-PDT causes little change in tumor-free rat bladder but induces inflammatory changes with increased lymphocytes and mononuclear cell infiltration in rat bladders with tumor. Immunohistochemistry reveals that HAL-PDT is without effect on proliferating cell nuclear antigen expression within the tumor and increases caspase-3 expression in both normal urothelium and the tumor. Transmission electron microscopy reveals severe mitochondrial damage, formations of apoptotic bodies, vacuoles, and lipofuscin bodies, but no microvillus-formed niches in HAL-PDT-treated bladder cancer rats. Bioinformatics analysis of the gene expression profile indicates an activation of T-cell receptor signaling pathway in bladder cancer rats without PDT. HAL-PDT increases the expression of CD3 and CD45RA in the tumor (determined by immunohistochemistry). We suggest that pathways of action of HAL-PDT may include, at least, activations of mitochondrial apoptosis and autophagy, breakdown of cancer stem cell niches, and importantly, enhancement of T-cell activation.

  14. Fatty acid synthase is preferentially degraded by autophagy upon nitrogen starvation in yeast

    PubMed Central

    Shpilka, Tomer; Welter, Evelyn; Borovsky, Noam; Amar, Nira; Shimron, Frida; Peleg, Yoav; Elazar, Zvulun

    2015-01-01

    Autophagy, an evolutionarily conserved intracellular catabolic process, leads to the degradation of cytosolic proteins and organelles in the vacuole/lysosome. Different forms of selective autophagy have recently been described. Starvation-induced protein degradation, however, is considered to be nonselective. Here we describe a novel interaction between autophagy-related protein 8 (Atg8) and fatty acid synthase (FAS), a pivotal enzymatic complex responsible for the entire synthesis of C16- and C18-fatty acids in yeast. We show that although FAS possesses housekeeping functions, under starvation conditions it is delivered to the vacuole for degradation by autophagy in a Vac8- and Atg24-dependent manner. We also provide evidence that FAS degradation is essential for survival under nitrogen deprivation. Our results imply that during nitrogen starvation specific proteins are preferentially recruited into autophagosomes PMID:25605918

  15. Amino acid sequence of a new mitochondrially synthesized proteolipid of the ATP synthase of Saccharomyces cerevisiae.

    PubMed Central

    Velours, J; Esparza, M; Hoppe, J; Sebald, W; Guerin, B

    1984-01-01

    The purification and the amino acid sequence of a proteolipid translated on ribosomes in yeast mitochondria is reported. This protein, which is a subunit of the ATP synthase, was purified by extraction with chloroform/methanol (2/1) and subsequent chromatography on phosphocellulose and reverse phase h.p.l.c. A mol. wt. of 5500 was estimated by chromatography on Bio-Gel P-30 in 80% formic acid. The complete amino acid sequence of this protein was determined by automated solid phase Edman degradation of the whole protein and of fragments obtained after cleavage with cyanogen bromide. The sequence analysis indicates a length of 48 amino acid residues. The calculated mol. wt. of 5870 corresponds to the value found by gel chromatography. This polypeptide contains three basic residues and no negatively charged side chain. The three basic residues are clustered at the C terminus. The primary structure of this protein is in full agreement with the predicted amino acid sequence of the putative polypeptide encoded by the mitochondrial aap1 gene recently discovered in Saccharomyces cerevisiae. Moreover, this protein shows 50% homology with the amino acid sequence of a putative polypeptide encoded by an unidentified reading frame also discovered near the mitochondrial ATPase subunit 6 gene in Aspergillus nidulans. Images Fig. 2. PMID:6323165

  16. Isoniazid affects multiple components of the type II fatty acid synthase system of Mycobacterium tuberculosis.

    PubMed

    Slayden, R A; Lee, R E; Barry, C E

    2000-11-01

    Genetic and biochemical evidence has implicated two different target enzymes for isoniazid (INH) within the unique type II fatty acid synthase (FAS) system involved in the production of mycolic acids. These two components are an enoyl acyl carrier protein (ACP) reductase, InhA, and a beta-ketoacyl-ACP synthase, KasA. We compared the consequences of INH treatment of Mycobacterium tuberculosis (MTB) with two inhibitors having well-defined targets: triclosan (TRC), which inhibits InhA; and thiolactomycin (TLM), which inhibits KasA. INH and TLM, but not TRC, upregulate the expression of an operon containing five FAS II components, including kasA and acpM. Although all three compounds inhibit mycolic acid synthesis, treatment with INH and TLM, but not with TRC, results in the accumulation of ACP-bound lipid precursors to mycolic acids that were 26 carbons long and fully saturated. TLM-resistant mutants of MTB were more cross-resistant to INH than TRC-resistant mutants. Overexpression of KasA conferred more resistance to TLM and INH than to TRC. Overexpression of InhA conferred more resistance to TRC than to INH and TLM. Co-overexpression of both InhA and KasA resulted in strongly enhanced levels of INH resistance, in addition to cross-resistance to both TLM and TRC. These results suggest that these components of the FAS II complex are not independently regulated and that alterations in the expression level of InhA affect expression levels of KasA. Nonetheless, INH appeared to resemble TLM more closely in overall mode of action, and KasA levels appeared to be tightly correlated with INH sensitivity. PMID:11069675

  17. Para-aminobenzoic acid (PABA) synthase enhances thermotolerance of mushroom Agaricus bisporus.

    PubMed

    Lu, Zhonglei; Kong, Xiangxiang; Lu, Zhaoming; Xiao, Meixiang; Chen, Meiyuan; Zhu, Liang; Shen, Yuemao; Hu, Xiangyang; Song, Siyang

    2014-01-01

    Most mushrooms are thermo-sensitive to temperatures over 23°C, which greatly restricts their agricultural cultivation. Understanding mushroom's innate heat-tolerance mechanisms may facilitate genetic improvements of their thermotolerance. Agaricus bisporus strain 02 is a relatively thermotolerant mushroom strain, while strain 8213 is quite thermo-sensitive. Here, we compared their responses at proteomic level to heat treatment at 33°C. We identified 73 proteins that are differentially expressed between 02 and 8213 or induced upon heat stress in strain 02 itself, 48 of which with a known identity. Among them, 4 proteins are constitutively more highly expressed in 02 than 8213; and they can be further upregulated in response to heat stress in 02, but not in 8213. One protein is encoded by the para-aminobenzoic acid (PABA) synthase gene Pabs, which has been shown to scavenge the reactive oxygen species in vitro. Pabs mRNA and its chemical product PABA show similar heat stress induction pattern as PABA synthase protein and are more abundant in 02, indicating transcriptional level upregulation of Pabs upon heat stress. A specific inhibitor of PABA synthesis impaired thermotolerance of 02, while exogenous PABA or transgenic overexpression of 02 derived PABA synthase enhanced thermotolerance of 8213. Furthermore, compared to 8213, 02 accumulated less H2O2 but more defense-related proteins (e.g., HSPs and Chitinase) under heat stress. Together, these results demonstrate a role of PABA in enhancing mushroom thermotolerance by removing H2O2 and elevating defense-related proteins. PMID:24614118

  18. Para-aminobenzoic acid (PABA) synthase enhances thermotolerance of mushroom Agaricus bisporus.

    PubMed

    Lu, Zhonglei; Kong, Xiangxiang; Lu, Zhaoming; Xiao, Meixiang; Chen, Meiyuan; Zhu, Liang; Shen, Yuemao; Hu, Xiangyang; Song, Siyang

    2014-01-01

    Most mushrooms are thermo-sensitive to temperatures over 23°C, which greatly restricts their agricultural cultivation. Understanding mushroom's innate heat-tolerance mechanisms may facilitate genetic improvements of their thermotolerance. Agaricus bisporus strain 02 is a relatively thermotolerant mushroom strain, while strain 8213 is quite thermo-sensitive. Here, we compared their responses at proteomic level to heat treatment at 33°C. We identified 73 proteins that are differentially expressed between 02 and 8213 or induced upon heat stress in strain 02 itself, 48 of which with a known identity. Among them, 4 proteins are constitutively more highly expressed in 02 than 8213; and they can be further upregulated in response to heat stress in 02, but not in 8213. One protein is encoded by the para-aminobenzoic acid (PABA) synthase gene Pabs, which has been shown to scavenge the reactive oxygen species in vitro. Pabs mRNA and its chemical product PABA show similar heat stress induction pattern as PABA synthase protein and are more abundant in 02, indicating transcriptional level upregulation of Pabs upon heat stress. A specific inhibitor of PABA synthesis impaired thermotolerance of 02, while exogenous PABA or transgenic overexpression of 02 derived PABA synthase enhanced thermotolerance of 8213. Furthermore, compared to 8213, 02 accumulated less H2O2 but more defense-related proteins (e.g., HSPs and Chitinase) under heat stress. Together, these results demonstrate a role of PABA in enhancing mushroom thermotolerance by removing H2O2 and elevating defense-related proteins.

  19. Cloning and characterisation of rosmarinic acid synthase from Melissa officinalis L.

    PubMed

    Weitzel, Corinna; Petersen, Maike

    2011-05-01

    Lemon balm (Melissa officinalis L.; Lamiaceae) is a well-known medicinal plant mainly due to two groups of compounds, the essential oil and the phenylpropanoid derivatives. The prominent phenolic compound is rosmarinic acid (RA), an ester of caffeic acid and 3,4-dihydroxyphenyllactic acid. RA shows a number of interesting biological activities. Rosmarinic acid synthase (RAS; 4-coumaroyl-CoA:hydroxyphenyllactic acid hydroxycinnamoyltransferase) catalyses the ester formation. Cell cultures of M. officinalis have been established in order to characterise the formation of RA in an important diploid medicinal plant. RAS activity as well as the expression of the RAS gene are closely correlated with the accumulation of RA in suspension cultures of M. officinalis. The RAS cDNA and gene (MoRAS) were isolated. The RAS gene was shown to be intron-free. MoRAS belongs to the BAHD superfamily of acyltransferases. Southern-blot analysis suggests the presence of only one RAS gene copy in the M. officinalis genome. The enzyme was characterised with respect to enzyme properties, substrate preferences and kinetic data in crude plant extracts and as heterologously synthesised protein from Escherichia coli. PMID:21354582

  20. Cloning and characterisation of rosmarinic acid synthase from Melissa officinalis L.

    PubMed

    Weitzel, Corinna; Petersen, Maike

    2011-05-01

    Lemon balm (Melissa officinalis L.; Lamiaceae) is a well-known medicinal plant mainly due to two groups of compounds, the essential oil and the phenylpropanoid derivatives. The prominent phenolic compound is rosmarinic acid (RA), an ester of caffeic acid and 3,4-dihydroxyphenyllactic acid. RA shows a number of interesting biological activities. Rosmarinic acid synthase (RAS; 4-coumaroyl-CoA:hydroxyphenyllactic acid hydroxycinnamoyltransferase) catalyses the ester formation. Cell cultures of M. officinalis have been established in order to characterise the formation of RA in an important diploid medicinal plant. RAS activity as well as the expression of the RAS gene are closely correlated with the accumulation of RA in suspension cultures of M. officinalis. The RAS cDNA and gene (MoRAS) were isolated. The RAS gene was shown to be intron-free. MoRAS belongs to the BAHD superfamily of acyltransferases. Southern-blot analysis suggests the presence of only one RAS gene copy in the M. officinalis genome. The enzyme was characterised with respect to enzyme properties, substrate preferences and kinetic data in crude plant extracts and as heterologously synthesised protein from Escherichia coli.

  1. wALADin Benzimidazoles Differentially Modulate the Function of Porphobilinogen Synthase Orthologs

    PubMed Central

    2015-01-01

    The heme biosynthesis enzyme porphobilinogen synthase (PBGS) is a potential drug target in several human pathogens. wALADin1 benzimidazoles have emerged as species-selective PBGS inhibitors against Wolbachia endobacteria of filarial worms. In the present study, we have systematically tested wALADins against PBGS orthologs from bacteria, protozoa, metazoa, and plants to elucidate the inhibitory spectrum. However, the effect of wALADin1 on different PBGS orthologs was not limited to inhibition: several orthologs were stimulated by wALADin1; others remained unaffected. We demonstrate that wALADins allosterically modulate the PBGS homooligomeric equilibrium with inhibition mediated by favoring low-activity oligomers, while 5-aminolevulinic acid, Mg2+, or K+ stabilized high-activity oligomers. Pseudomonas aeruginosa PBGS could be inhibited or stimulated by wALADin1 depending on these factors and pH. We have defined the wALADin chemotypes responsible for either inhibition or stimulation, facilitating the design of tailored PBGS modulators for potential application as antimicrobial agents, herbicides, or drugs for porphyric disorders. PMID:24568185

  2. Structure and function of ∆1-tetrahydrocannabinolic acid (THCA) synthase, the enzyme controlling the psychoactivity of Cannabis sativa.

    PubMed

    Shoyama, Yoshinari; Tamada, Taro; Kurihara, Kazuo; Takeuchi, Ayako; Taura, Futoshi; Arai, Shigeki; Blaber, Michael; Shoyama, Yukihiro; Morimoto, Satoshi; Kuroki, Ryota

    2012-10-12

    ∆1-Tetrahydrocannabinolic acid (THCA) synthase catalyzes the oxidative cyclization of cannabigerolic acid (CBGA) into THCA, the precursor of the primary psychoactive agent ∆1-tetrahydrocannabinol in Cannabis sativa. The enzyme was overproduced in insect cells, purified, and crystallized in order to investigate the structure-function relationship of THCA synthase, and the tertiary structure was determined to 2.75Å resolution by X-ray crystallography (R(cryst)=19.9%). The THCA synthase enzyme is a member of the p-cresol methyl-hydroxylase superfamily, and the tertiary structure is divided into two domains (domains I and II), with a flavin adenine dinucleotide coenzyme positioned between each domain and covalently bound to His114 and Cys176 (located in domain I). The catalysis of THCA synthesis involves a hydride transfer from C3 of CBGA to N5 of flavin adenine dinucleotide and the deprotonation of O6' of CBGA. The ionized residues in the active site of THCA synthase were investigated by mutational analysis and X-ray structure. Mutational analysis indicates that the reaction does not involve the carboxyl group of Glu442 that was identified as the catalytic base in the related berberine bridge enzyme but instead involves the hydroxyl group of Tyr484. Mutations at the active-site residues His292 and Tyr417 resulted in a decrease in, but not elimination of, the enzymatic activity of THCA synthase, suggesting a key role for these residues in substrate binding and not direct catalysis.

  3. Isolation and Molecular Characterization of 1-Aminocyclopropane-1-carboxylic Acid Synthase Genes in Hevea brasiliensis

    PubMed Central

    Zhu, Jia-Hong; Xu, Jing; Chang, Wen-Jun; Zhang, Zhi-Li

    2015-01-01

    Ethylene is an important factor that stimulates Hevea brasiliensis to produce natural rubber. 1-Aminocyclopropane-1-carboxylic acid synthase (ACS) is a rate-limiting enzyme in ethylene biosynthesis. However, knowledge of the ACS gene family of H. brasiliensis is limited. In this study, nine ACS-like genes were identified in H. brasiliensis. Sequence and phylogenetic analysis results confirmed that seven isozymes (HbACS1–7) of these nine ACS-like genes were similar to ACS isozymes with ACS activity in other plants. Expression analysis results showed that seven ACS genes were differentially expressed in roots, barks, flowers, and leaves of H. brasiliensis. However, no or low ACS gene expression was detected in the latex of H. brasiliensis. Moreover, seven genes were differentially up-regulated by ethylene treatment.These results provided relevant information to help determine the functions of the ACS gene in H. brasiliensis, particularly the functions in regulating ethylene stimulation of latex production. PMID:25690030

  4. Crystal structure of the thioesterase domain of human fatty acid synthase inhibited by orlistat

    SciTech Connect

    Pemble,C.; Johnson, L.; Kridel, S.; Lowther, W.

    2007-01-01

    Human fatty acid synthase (FAS) is uniquely expressed at high levels in many tumor types. Pharmacological inhibition of FAS therefore represents an important therapeutic opportunity. The drug Orlistat, which has been approved by the US Food and Drug Administration, inhibits FAS, induces tumor cell-specific apoptosis and inhibits the growth of prostate tumor xenografts. We determined the 2.3-{angstrom}-resolution crystal structure of the thioesterase domain of FAS inhibited by Orlistat. Orlistat was captured in the active sites of two thioesterase molecules as a stable acyl-enzyme intermediate and as the hydrolyzed product. The details of these interactions reveal the molecular basis for inhibition and suggest a mechanism for acyl-chain length discrimination during the FAS catalytic cycle. Our findings provide a foundation for the development of new cancer drugs that target FAS.

  5. Fatty acid synthase inhibitors of phenolic constituents isolated from Garcinia mangostana.

    PubMed

    Jiang, He Zhong; Quan, Xiao Fang; Tian, Wei Xi; Hu, Jiang Miao; Wang, Peng Cheng; Huang, Sheng Zhuo; Cheng, Zhong Quan; Liang, Wen Juan; Zhou, Jun; Ma, Xiao Feng; Zhao, You Xing

    2010-10-15

    Natural inhibitors of fatty acid synthase (FAS) are emerging as potential therapeutic agents to treat cancer and obesity. The bioassay-guided chemical investigation of the hulls of Garcinia mangostana led to the isolation of 13 phenolic compounds (1-13) mainly including xanthone and benzophenone, in which compounds 7, 8, 9, 10, and 11 were isolated from this plant for the first time and compound 9 was a new natural product. These isolates possess strong inhibitory activity of FAS with the IC(50) values ranging from 1.24 to 91.07 μM. The study indicates that two types of natural products, xanthones and benzophenones, could be considered as promising FAS inhibitors.

  6. A Novel Class of Plant Type III Polyketide Synthase Involved in Orsellinic Acid Biosynthesis from Rhododendron dauricum

    PubMed Central

    Taura, Futoshi; Iijima, Miu; Yamanaka, Eriko; Takahashi, Hironobu; Kenmoku, Hiromichi; Saeki, Haruna; Morimoto, Satoshi; Asakawa, Yoshinori; Kurosaki, Fumiya; Morita, Hiroyuki

    2016-01-01

    Rhododendron dauricum L. produces daurichromenic acid, the anti-HIV meroterpenoid consisting of sesquiterpene and orsellinic acid (OSA) moieties. To characterize the enzyme responsible for OSA biosynthesis, a cDNA encoding a novel polyketide synthase (PKS), orcinol synthase (ORS), was cloned from young leaves of R. dauricum. The primary structure of ORS shared relatively low identities to those of PKSs from other plants, and the active site of ORS had a unique amino acid composition. The bacterially expressed, recombinant ORS accepted acetyl-CoA as the preferable starter substrate, and produced orcinol as the major reaction product, along with four minor products including OSA. The ORS identified in this study is the first plant PKS that generates acetate-derived aromatic tetraketides, such as orcinol and OSA. Interestingly, OSA production was clearly enhanced in the presence of Cannabis sativa olivetolic acid cyclase, suggesting that the ORS is involved in OSA biosynthesis together with an unidentified cyclase in R. dauricum. PMID:27729920

  7. Using modern tools to probe the structure-function relationship of fatty acid synthases

    PubMed Central

    Burkart, Michael D.

    2015-01-01

    Fatty acid biosynthesis is essential to life and represents one of the most conserved pathways in Nature, preserving the same handful of chemical reactions over all species. Recent interest in the molecular details of the de novo fatty acid synthase (FAS) has been heightened by demand for renewable fuels and the emergence of multidrug resistant bacterial strains. Central to FAS is the acyl carrier protein (ACP), a protein chaperone that shuttles the growing acyl chain between catalytic enzymes within the FAS. Human efforts to alter fatty acid biosynthesis for oil production, chemical feedstock or antimicrobial purposes has been met with limited success in part due to a lack of detailed molecular information behind the ACP-partner protein interactions inherent to the pathway. This review will focus on recently developed tools for the modification of ACP and analysis of protein-protein interactions, such as mechanism-based crosslinking, and the studies exploiting them. Discussion specific to each enzymatic domain focuses first on mechanism and known inhibitors, followed by available structures and known interactions with ACP. While significant unknowns remain, new understandings into the intricacies of FAS point to future advances in manipulating this complex molecular factory. PMID:25676190

  8. Inhibition of Fatty Acid Synthase Decreases Expression of Stemness Markers in Glioma Stem Cells

    PubMed Central

    Yasumoto, Yuki; Miyazaki, Hirofumi; Vaidyan, Linda Koshy; Kagawa, Yoshiteru; Ebrahimi, Majid; Yamamoto, Yui; Ogata, Masaki; Katsuyama, Yu; Sadahiro, Hirokazu; Suzuki, Michiyasu; Owada, Yuji

    2016-01-01

    Cellular metabolic changes, especially to lipid metabolism, have recently been recognized as a hallmark of various cancer cells. However, little is known about the significance of cellular lipid metabolism in the regulation of biological activity of glioma stem cells (GSCs). In this study, we examined the expression and role of fatty acid synthase (FASN), a key lipogenic enzyme, in GSCs. In the de novo lipid synthesis assay, GSCs exhibited higher lipogenesis than differentiated non-GSCs. Western blot and immunocytochemical analyses revealed that FASN is strongly expressed in multiple lines of patient-derived GSCs (G144 and Y10), but its expression was markedly reduced upon differentiation. When GSCs were treated with 20 μM cerulenin, a pharmacological inhibitor of FASN, their proliferation and migration were significantly suppressed and de novo lipogenesis decreased. Furthermore, following cerulenin treatment, expression of the GSC markers nestin, Sox2 and fatty acid binding protein (FABP7), markers of GCSs, decreased while that of glial fibrillary acidic protein (GFAP) expression increased. Taken together, our results indicate that FASN plays a pivotal role in the maintenance of GSC stemness, and FASN-mediated de novo lipid biosynthesis is closely associated with tumor growth and invasion in glioblastoma. PMID:26808816

  9. Structure of Quinolinate Synthase from Pyrococcus horikoshii in the Presence of Its Product, Quinolinic Acid.

    PubMed

    Esakova, Olga A; Silakov, Alexey; Grove, Tyler L; Saunders, Allison H; McLaughlin, Martin I; Yennawar, Neela H; Booker, Squire J

    2016-06-15

    Quinolinic acid (QA) is a common intermediate in the biosynthesis of nicotinamide adenine dinucleotide (NAD(+)) and its derivatives in all organisms that synthesize the molecule de novo. In most prokaryotes, it is formed from the condensation of dihydroxyacetone phosphate (DHAP) and aspartate-enamine by the action of quinolinate synthase (NadA). NadA contains a [4Fe-4S] cluster cofactor with a unique, non-cysteinyl-ligated, iron ion (Fea), which is proposed to bind the hydroxyl group of a postulated intermediate in the last step of the reaction to facilitate a dehydration. However, direct evidence for this role in catalysis has yet to be provided. Herein, we present the structure of NadA in the presence of the product of its reaction, QA. We find that N1 and the C7 carboxylate group of QA ligate to Fea in a bidentate fashion, which is confirmed by Hyperfine Sublevel Correlation (HYSCORE) spectroscopy. This binding mode would place the C5 hydroxyl group of the postulated final intermediate distal to Fea and virtually incapable of coordinating to it. The structure shows that three strictly conserved amino acids, Glu198, Tyr109, and Tyr23, are in close proximity to the bound product. Substitution of these amino acids with Gln, Phe, and Phe, respectively, leads to complete loss of activity. PMID:27224840

  10. Cloning and manipulation of the Escherichia coli cyclopropane fatty acid synthase gene: physiological aspects of enzyme overproduction.

    PubMed Central

    Grogan, D W; Cronan, J E

    1984-01-01

    Like many other eubacteria, cultures of Escherichia coli accumulate cyclopropane fatty acids (CFAs) at a well-defined stage of growth, due to the action of the cytoplasmic enzyme CFA synthase. We report the isolation of the putative structural gene, cfa, for this enzyme on an E. coli-ColE1 chimeric plasmid by the use of an autoradiographic colony screening technique. When introduced into a variety of E. coli strains, this plasmid, pLC18-11, induced corresponding increases in CFA content and CFA synthase activity. Subsequent manipulation of the cfa locus, facilitated by the insertion of pLC18-11 into a bacteriophage lambda vector, allowed genetic and physiological studies of CFA synthase in E. coli. Overproduction of this enzyme via multicopy cfa plasmids caused abnormally high levels of CFA in membrane phospholipid but no discernable growth perturbation. Infection with phage lambda derivatives bearing cfa caused transient overproduction of the enzyme, although pL-mediated expression of cfa could not be demonstrated in plasmids derived from such phages. CFA synthase specific activities could be raised to very high levels by using cfa runaway-replication plasmids. A variety of physiological factors were found to modulate the levels of CFA synthase in normal and gene-amplified cultures. These studies argue against several possible mechanisms for the temporal regulation of CFA formation. PMID:6325391

  11. Characterization of the beta-carbon processing reactions of the mammalian cytosolic fatty acid synthase: role of the central core.

    PubMed

    Witkowski, Andrzej; Joshi, Anil K; Smith, Stuart

    2004-08-17

    The properties of the beta-ketoacyl reductase, dehydrase, and enoyl reductase components of the animal fatty acid synthase responsible for the reduction of the beta-ketoacyl moiety formed at each round of chain elongation have been studied by engineering and characterizing mutants defective in each of these three catalytic domains. These "beta-carbon processing" mutants leak the stalled four-carbon intermediates by direct transfer to CoA. However, enoyl reductase mutants leak beta-ketobutyryl, beta-hydroxybutyryl, and crotonyl moieties, a finding explained, at least in part, by the observation that the equilibrium and rate constant for the dehydrase reaction favor the formation of beta-hydroxy rather than enoyl moieties. In this regard, the type I animal fatty acid synthase resembles its type II counterpart in Escherichia coli in that both systems rely on the enoyl reductase to pull the beta-carbon processing reactions to completion. Kinetic and nucleotide binding measurements on fatty acid synthases mutated in either of the two nucleotide binding domains revealed that the NADPH binding sites are nonidentical, the enoyl reductase exhibiting higher affinity. Surprisingly, NADPH binding is also completely compromised by certain deletions and mutations in the central core region distant from the nucleotide binding sites. Comparable central core sequences are present in the structurally related modular polyketide synthases, except in those modules that lack all three beta-carbon processing enzymes. These findings suggest that the central core region of fatty acid and polyketide synthases plays an important role in facilitating the beta-carbon processing reactions.

  12. Fatty acid synthase-positive hepatocytes and subsequent steatosis in rat livers by irinotecan

    PubMed Central

    SAWANO, TAKEYUKI; SHIMIZU, TAKESHI; YAMADA, TOSHIYUKI; NANASHIMA, NAOKI; MIURA, TAKUYA; MOROHASHI, SATOKO; KUDO, DAISUKE; HUI, FENG MAO; KIJIMA, HIROSHI; HAKAMADA, KENICHI; TSUCHIDA, SHIGEKI

    2015-01-01

    Using a rat model, we investigated factors contributing to the pathogenesis of irinotecan-associated fatty liver disease. Male Sprague-Dawley rats were administered 200 mg/kg irinotecan by intraperitoneal injection on days 1–4, but not on days 5–7. This schedule was repeated 3 times. Rats were sacrificed 4, 18 and 25 days after the last injection, and liver steatosis was evaluated by hematoxylin and eosin (H&E) staining, microarray analysis and immunohistochemistry. Panacinar intrahepatocyte vacuoles were absent on days 4 and 25, but present on day 18, and this alteration was more prominent around the bile ducts than the central veins. Microarray analysis showed that the expression of genes involved in the synthesis of cholesterol and fatty acids was upregulated on day 4. Immunohistochemistry detected fatty acid synthase (Fasn)-strongly positive hepatocytes as well as the activation of liver progenitor cells on day 4, whereas intracellular vacuoles were evident in carbonic anhydrase 3 (CA3)-positive hepatocytes on day 18. Thus, irinotecan-induced liver steatosis was preceded by Fasn-strongly-positive hepatocytes and liver progenitor cell activation. The magnitude of the decrease in the number of Fasn-strongly positive hepatocytes between days 4 and 18 was similar to that of the increase in the number of CA3-positive hepatocytes accompanying vacuoles. PMID:25708528

  13. P300 acetyltransferase regulates fatty acid synthase expression, lipid metabolism and prostate cancer growth.

    PubMed

    Gang, Xiaokun; Yang, Yinhui; Zhong, Jian; Jiang, Kui; Pan, Yunqian; Karnes, R Jeffrey; Zhang, Jun; Xu, Wanhai; Wang, Guixia; Huang, Haojie

    2016-03-22

    De novo fatty acid (FA) synthesis is required for prostate cancer (PCa) survival and progression. As a key enzyme for FA synthesis fatty acid synthase (FASN) is often overexpressed in human prostate cancers and its expression correlates with worse prognosis and poor survival. P300 is an acetyltransferase that acts as a transcription co-activator. Increasing evidence suggests that P300 is a major PCa promoter, although the underlying mechanism remains poorly understood. Here, we demonstrated that P300 binds to and increases histone H3 lysine 27 acetylation (H3K27Ac) in the FASN gene promoter. We provided evidence that P300 transcriptionally upregulates FASN expression and promotes lipid accumulation in human PCa cells in culture and Pten knockout prostate tumors in mice. Pharmacological inhibition of P300 decreased FASN expression and lipid droplet accumulation in PCa cells. Immunohistochemistry analysis revealed that expression of P300 protein positively correlates with FASN protein levels in a cohort of human PCa specimens. We further showed that FASN is a key mediator of P300-induced growth of PCa cells in culture and in mice. Together, our findings demonstrate P300 as a key factor that regulates FASN expression, lipid accumulation and cell growth in PCa. They also suggest that this regulatory pathway can serve as a new therapeutic target for PCa treatment. PMID:26934656

  14. P300 acetyltransferase regulates fatty acid synthase expression, lipid metabolism and prostate cancer growth.

    PubMed

    Gang, Xiaokun; Yang, Yinhui; Zhong, Jian; Jiang, Kui; Pan, Yunqian; Karnes, R Jeffrey; Zhang, Jun; Xu, Wanhai; Wang, Guixia; Huang, Haojie

    2016-03-22

    De novo fatty acid (FA) synthesis is required for prostate cancer (PCa) survival and progression. As a key enzyme for FA synthesis fatty acid synthase (FASN) is often overexpressed in human prostate cancers and its expression correlates with worse prognosis and poor survival. P300 is an acetyltransferase that acts as a transcription co-activator. Increasing evidence suggests that P300 is a major PCa promoter, although the underlying mechanism remains poorly understood. Here, we demonstrated that P300 binds to and increases histone H3 lysine 27 acetylation (H3K27Ac) in the FASN gene promoter. We provided evidence that P300 transcriptionally upregulates FASN expression and promotes lipid accumulation in human PCa cells in culture and Pten knockout prostate tumors in mice. Pharmacological inhibition of P300 decreased FASN expression and lipid droplet accumulation in PCa cells. Immunohistochemistry analysis revealed that expression of P300 protein positively correlates with FASN protein levels in a cohort of human PCa specimens. We further showed that FASN is a key mediator of P300-induced growth of PCa cells in culture and in mice. Together, our findings demonstrate P300 as a key factor that regulates FASN expression, lipid accumulation and cell growth in PCa. They also suggest that this regulatory pathway can serve as a new therapeutic target for PCa treatment.

  15. Evolutionary origins of the multienzyme architecture of giant fungal fatty acid synthase.

    PubMed

    Bukhari, Habib S T; Jakob, Roman P; Maier, Timm

    2014-12-01

    Fungal fatty acid synthase (fFAS) is a key paradigm for the evolution of complex multienzymes. Its 48 functional domains are embedded in a matrix of scaffolding elements, which comprises almost 50% of the total sequence and determines the emergent multienzymes properties of fFAS. Catalytic domains of fFAS are derived from monofunctional bacterial enzymes, but the evolutionary origin of the scaffolding elements remains enigmatic. Here, we identify two bacterial protein families of noncanonical fatty acid biosynthesis starter enzymes and trans-acting polyketide enoyl reductases (ERs) as potential ancestors of scaffolding regions in fFAS. The architectures of both protein families are revealed by representative crystal structures of the starter enzyme FabY and DfnA-ER. In both families, a striking structural conservation of insertions to scaffolding elements in fFAS is observed, despite marginal sequence identity. The combined phylogenetic and structural data provide insights into the evolutionary origins of the complex multienzyme architecture of fFAS.

  16. Engineering a Polyketide Synthase for In Vitro Production of Adipic Acid.

    PubMed

    Hagen, Andrew; Poust, Sean; Rond, Tristan de; Fortman, Jeffrey L; Katz, Leonard; Petzold, Christopher J; Keasling, Jay D

    2016-01-15

    Polyketides have enormous structural diversity, yet polyketide synthases (PKSs) have thus far been engineered to produce only drug candidates or derivatives thereof. Thousands of other molecules, including commodity and specialty chemicals, could be synthesized using PKSs if composing hybrid PKSs from well-characterized parts derived from natural PKSs was more efficient. Here, using modern mass spectrometry techniques as an essential part of the design-build-test cycle, we engineered a chimeric PKS to enable production one of the most widely used commodity chemicals, adipic acid. To accomplish this, we introduced heterologous reductive domains from various PKS clusters into the borrelidin PKS' first extension module, which we previously showed produces a 3-hydroxy-adipoyl intermediate when coincubated with the loading module and a succinyl-CoA starter unit. Acyl-ACP intermediate analysis revealed an unexpected bottleneck at the dehydration step, which was overcome by introduction of a carboxyacyl-processing dehydratase domain. Appending a thioesterase to the hybrid PKS enabled the production of free adipic acid. Using acyl-intermediate based techniques to "debug" PKSs as described here, it should one day be possible to engineer chimeric PKSs to produce a variety of existing commodity and specialty chemicals, as well as thousands of chemicals that are difficult to produce from petroleum feedstocks using traditional synthetic chemistry.

  17. Engineering a Polyketide Synthase for In Vitro Production of Adipic Acid.

    PubMed

    Hagen, Andrew; Poust, Sean; Rond, Tristan de; Fortman, Jeffrey L; Katz, Leonard; Petzold, Christopher J; Keasling, Jay D

    2016-01-15

    Polyketides have enormous structural diversity, yet polyketide synthases (PKSs) have thus far been engineered to produce only drug candidates or derivatives thereof. Thousands of other molecules, including commodity and specialty chemicals, could be synthesized using PKSs if composing hybrid PKSs from well-characterized parts derived from natural PKSs was more efficient. Here, using modern mass spectrometry techniques as an essential part of the design-build-test cycle, we engineered a chimeric PKS to enable production one of the most widely used commodity chemicals, adipic acid. To accomplish this, we introduced heterologous reductive domains from various PKS clusters into the borrelidin PKS' first extension module, which we previously showed produces a 3-hydroxy-adipoyl intermediate when coincubated with the loading module and a succinyl-CoA starter unit. Acyl-ACP intermediate analysis revealed an unexpected bottleneck at the dehydration step, which was overcome by introduction of a carboxyacyl-processing dehydratase domain. Appending a thioesterase to the hybrid PKS enabled the production of free adipic acid. Using acyl-intermediate based techniques to "debug" PKSs as described here, it should one day be possible to engineer chimeric PKSs to produce a variety of existing commodity and specialty chemicals, as well as thousands of chemicals that are difficult to produce from petroleum feedstocks using traditional synthetic chemistry. PMID:26501439

  18. P300 acetyltransferase regulates fatty acid synthase expression, lipid metabolism and prostate cancer growth

    PubMed Central

    Zhong, Jian; Jiang, Kui; Pan, Yunqian; Karnes, R. Jeffrey; Zhang, Jun; Xu, Wanhai; Wang, Guixia; Huang, Haojie

    2016-01-01

    De novo fatty acid (FA) synthesis is required for prostate cancer (PCa) survival and progression. As a key enzyme for FA synthesis fatty acid synthase (FASN) is often overexpressed in human prostate cancers and its expression correlates with worse prognosis and poor survival. P300 is an acetyltransferase that acts as a transcription co-activator. Increasing evidence suggests that P300 is a major PCa promoter, although the underlying mechanism remains poorly understood. Here, we demonstrated that P300 binds to and increases histone H3 lysine 27 acetylation (H3K27Ac) in the FASN gene promoter. We provided evidence that P300 transcriptionally upregulates FASN expression and promotes lipid accumulation in human PCa cells in culture and Pten knockout prostate tumors in mice. Pharmacological inhibition of P300 decreased FASN expression and lipid droplet accumulation in PCa cells. Immunohistochemistry analysis revealed that expression of P300 protein positively correlates with FASN protein levels in a cohort of human PCa specimens. We further showed that FASN is a key mediator of P300-induced growth of PCa cells in culture and in mice. Together, our findings demonstrate P300 as a key factor that regulates FASN expression, lipid accumulation and cell growth in PCa. They also suggest that this regulatory pathway can serve as a new therapeutic target for PCa treatment. PMID:26934656

  19. Levels of delta-aminolevulinate dehydratase, uroporphyrinogen-I synthase, and protoporphyrin IX in erythrocytes from anemic mutant mice.

    PubMed Central

    Sassa, S; Bernstein, S E

    1977-01-01

    Levels of erythrocyte delta-aminolevulinate dehydratase [ALA-dehydratase; porphobilinogen synthase; 5-aminolevulinate hydro-lyase (adding 5-aminolevulinate and cyclizing), EC 4.2.1.24], UROPORPHYRINOGEN-I synthase [Uro-synthase; porphobilinogen ammonia-lyase (polymerizing), EC 4.3;1.8], AND PROTOPORPHYRIN IX (Proto) were measured by sensitive semimicroassays using 2-5 mul of whole blood obtained from normal and anemic mutant mice. The levels of erythrocyte ALA-dehydratase and Uro-synthase showed marked developmental changes and ALA-dehydratase was influenced by the Lv gene. Mice with overt hemolytic diseases (ja/ja, sph/sph, nb/nb, ha/ha) had 10- to 20-fold increases in ALA-dehydratase, Uro-synthase, and Proto compared with their normal controls. Mice with an iron deficiency (mk/mk) and mice with hypoplastic anemias (W/Wv, Sl/Sld, an/an) had mild to moderate increases in these parameters. Elevated enzyme activities and Proto correlated well with the number of reticulocytes. Because all mice with anemias possessed elevated levels of ALA-dehydratase, Uro-synthase, and Proto independent of differences in their genotypes, the increase in these parameters is not likely to be the result of a specific gene defect. The increased enzyme activities and Proto concentration probably reflect increased frequency of young red cells that are still active in heme biosynthesis. PMID:265562

  20. Genetic diversity analysis of buffalo fatty acid synthase (FASN) gene and its differential expression among bovines.

    PubMed

    Niranjan, S K; Goyal, S; Dubey, P K; Kumari, N; Mishra, S K; Mukesh, M; Kataria, R S

    2016-01-10

    Fatty Acid Synthase (FASN) gene seems to be structurally and functionally different in bovines in view of their distinctive fatty acid synthesis process. Structural variation and differential expression of FASN gene is reported in buffalo (Bubalus bubalis), a bovine species close to cattle, in this study. Amino acid sequence and phylogenetic analysis of functionally important thioesterase (TE) domain of FASN revealed its conserved nature across mammals. Amino acid residues at TE domain, responsible for substrate binding and processing, were found to be invariant in all the mammalian species. A total of seven polymorphic nucleotide sites, including two in coding region of TE domain were identified across the 10 buffalo populations of riverine and swamp types. G and C alleles were found almost fixed at g18996 and g19056 loci, respectively in riverine buffaloes. Principal component analysis of three SNPs (g18433, g18996 and g19056) revealed distinct classification of riverine and swamp buffalo populations. Reverse Transcription-PCR amplification of mRNA corresponding to exon 8-10 region of buffalo FASN helped in identification of two transcript variants; one transcript of 565 nucleotides and another alternate transcript of 207 nucleotides, seems to have arisen through alternative splicing. Both the transcripts were found to be expressed in most of the vital tissues of buffalo with the highest expression in mammary gland. Semi-quantitative and real-time expression analysis across 13 different buffalo tissues revealed its highest expression in lactating mammary gland. When compared, expression of FASN was also found to be higher in liver, adipose and skeletal muscle of buffalo tissues, than cattle. However, the FASN expression was highest in adipose among the three tissues in both the species. Results indicate structural and functional distinctiveness of bovine FASN. Presence of alternate splicing in buffalo FASN also seems to be a unique phenomenon to the bovines

  1. Expression of dehydratase domains from a polyunsaturated fatty acid synthase increases the production of fatty acids in Escherichia coli

    PubMed Central

    Oyola-Robles, Delise; Rullán-Lind, Carlos; Carballeira, Néstor M.; Baerga-Ortiz, Abel

    2014-01-01

    Increasing the production of fatty acids by microbial fermentation remains an important step towards the generation of biodiesel and other portable liquid fuels. In this work, we report an Escherichia coli strain engineered to overexpress a fragment consisting of four dehydratase domains from the polyunsaturated fatty acid (PUFA) synthase enzyme complex from the deep-sea bacterium, Photobacterium profundum. The DH1-DH2-UMA enzyme fragment was excised from its natural context within a multi-enzyme PKS and expressed as a stand-alone protein. Fatty acids were extracted from the cell pellet, esterified with methanol and quantified by GC-MS analysis. Results show that the E. coli strain expressing the DH tetradomain fragment was capable of producing up to a 5-fold increase (80.31 mg total FA/L culture) in total fatty acids over the negative control strain lacking the recombinant enzyme. The enhancement in production was observed across the board for all the fatty acids that are typically made by E. coli. The overexpression of the DH tetradomain did not affect E. coli cell growth, thus showing that the observed enhancement in fatty acid production was not a result of effects associated with cell density. The observed enhancement was more pronounced at lower temperatures (3.8-fold at 16 °C, 3.5-fold at 22 °C and 1.5-fold at 30 °C) and supplementation of the media with 0.4% glycerol did not result in an increase in fatty acid production. All these results taken together suggest that either the dehydration of fatty acid intermediates are a limiting step in the E. coli fatty acid biosynthesis machinery, or that the recombinant dehydratase domains used in this study are also capable of catalyzing thioester hydrolysis of the final products. The enzyme in this report is a new tool which could be incorporated into other existing strategies aimed at improving fatty acid production in bacterial fermentations towards accessible biodiesel precursors. PMID:24411456

  2. Bacterial delta-aminolevulinic acid synthase activity is not essential for leghemoglobin formation in the soybean/Bradyrhizobium japonicum symbiosis

    SciTech Connect

    Guerinot, M.L.; Chelm, B.K.

    1986-03-01

    Previous studies of legume nodules have indicated that formation of the heme moiety of leghemoglobin is a function of the bacterial symbiont. The authors now show that a hemA mutant of Bradyrhizobium japonicum that cannot carry out the first step in heme biosynthesis forms fully effective nodules on soybeans. The bacterial mutant strain was constructed by first isolated the wild-type hemA gene encoding delta-aminolevulinic acid synthase (EC 2.3.1.37) from a cosmid library, using a fragment of the Rhizobium meliloti hemA gene as a hybridization probe. A deletion of the hemA gene region, generated in vitro, then was used to construct the analogous chromosomal mutation by gene-directed mutagenesis. The mutant strain had no delta-aminolevulinic acid synthase activity and was unable to grow in minimal medium unless delta-aminolevulinic acid was added. Despite its auxotrophy, the mutant strain incited nodules that appeared normal, contained heme, and were capable of high levels of acetylene reduction. These results rule out bacterial delta-aminolevulinic acid synthase activity as the exclusive source of delta-aminolevulinic acid for heme formation in soybean nodules.

  3. Characterization and analysis of the cotton cyclopropane fatty acid synthase family and their contribution to cyclopropane fatty acid synthesis

    SciTech Connect

    Yu X. H.; Shanklin J.; Rawat, R.

    2011-05-01

    Cyclopropane fatty acids (CPA) have been found in certain gymnosperms, Malvales, Litchi and other Sapindales. The presence of their unique strained ring structures confers physical and chemical properties characteristic of unsaturated fatty acids with the oxidative stability displayed by saturated fatty acids making them of considerable industrial interest. While cyclopropenoid fatty acids (CPE) are well-known inhibitors of fatty acid desaturation in animals, CPE can also inhibit the stearoyl-CoA desaturase and interfere with the maturation and reproduction of some insect species suggesting that in addition to their traditional role as storage lipids, CPE can contribute to the protection of plants from herbivory. Three genes encoding cyclopropane synthase homologues GhCPS1, GhCPS2 and GhCPS3 were identified in cotton. Determination of gene transcript abundance revealed differences among the expression of GhCPS1, 2 and 3 showing high, intermediate and low levels, respectively, of transcripts in roots and stems; whereas GhCPS1 and 2 are both expressed at low levels in seeds. Analyses of fatty acid composition in different tissues indicate that the expression patterns of GhCPS1 and 2 correlate with cyclic fatty acid (CFA) distribution. Deletion of the N-terminal oxidase domain lowered GhCPS's ability to produce cyclopropane fatty acid by approximately 70%. GhCPS1 and 2, but not 3 resulted in the production of cyclopropane fatty acids upon heterologous expression in yeast, tobacco BY2 cell and Arabidopsis seed. In cotton GhCPS1 and 2 gene expression correlates with the total CFA content in roots, stems and seeds. That GhCPS1 and 2 are expressed at a similar level in seed suggests both of them can be considered potential targets for gene silencing to reduce undesirable seed CPE accumulation. Because GhCPS1 is more active in yeast than the published Sterculia CPS and shows similar activity when expressed in model plant systems, it represents a strong candidate gene for

  4. In vitro reconstitution and steady-state analysis of the fatty acid synthase from Escherichia coli.

    PubMed

    Yu, Xingye; Liu, Tiangang; Zhu, Fayin; Khosla, Chaitan

    2011-11-15

    Microbial fatty acid derivatives are emerging as promising alternatives to fossil fuel derived transportation fuels. Among bacterial fatty acid synthases (FAS), the Escherichia coli FAS is perhaps the most well studied, but little is known about its steady-state kinetic behavior. Here we describe the reconstitution of E. coli FAS using purified protein components and report detailed kinetic analysis of this reconstituted system. When all ketosynthases are present at 1 μM, the maximum rate of free fatty acid synthesis of the FAS exceeded 100 μM/ min. The steady-state turnover frequency was not significantly inhibited at high concentrations of any substrate or cofactor. FAS activity was saturated with respect to most individual protein components when their concentrations exceeded 1 μM. The exceptions were FabI and FabZ, which increased FAS activity up to concentrations of 10 μM; FabH and FabF, which decreased FAS activity at concentrations higher than 1 μM; and holo-ACP and TesA, which gave maximum FAS activity at 30 μM concentrations. Analysis of the S36T mutant of the ACP revealed that the unusual dependence of FAS activity on holo-ACP concentration was due, at least in part, to the acyl-phosphopantetheine moiety. MALDI-TOF mass spectrometry analysis of the reaction mixture further revealed medium and long chain fatty acyl-ACP intermediates as predominant ACP species. We speculate that one or more of such intermediates are key allosteric regulators of FAS turnover. Our findings provide a new basis for assessing the scope and limitations of using E. coli as a biocatalyst for the production of diesel-like fuels.

  5. In vitro reconstitution and steady-state analysis of the fatty acid synthase from Escherichia coli

    PubMed Central

    Yu, Xingye; Liu, Tiangang; Zhu, Fayin; Khosla, Chaitan

    2011-01-01

    Microbial fatty acid derivatives are emerging as promising alternatives to fossil fuel derived transportation fuels. Among bacterial fatty acid synthases (FAS), the Escherichia coli FAS is perhaps the most well studied, but little is known about its steady-state kinetic behavior. Here we describe the reconstitution of E. coli FAS using purified protein components and report detailed kinetic analysis of this reconstituted system. When all ketosynthases are present at 1 μM, the maximum rate of free fatty acid synthesis of the FAS exceeded 100 μM/ min. The steady-state turnover frequency was not significantly inhibited at high concentrations of any substrate or cofactor. FAS activity was saturated with respect to most individual protein components when their concentrations exceeded 1 μM. The exceptions were FabI and FabZ, which increased FAS activity up to concentrations of 10 μM; FabH and FabF, which decreased FAS activity at concentrations higher than 1 μM; and holo-ACP and TesA, which gave maximum FAS activity at 30 μM concentrations. Analysis of the S36T mutant of the ACP revealed that the unusual dependence of FAS activity on holo-ACP concentration was due, at least in part, to the acyl-phosphopantetheine moiety. MALDI-TOF mass spectrometry analysis of the reaction mixture further revealed medium and long chain fatty acyl-ACP intermediates as predominant ACP species. We speculate that one or more of such intermediates are key allosteric regulators of FAS turnover. Our findings provide a new basis for assessing the scope and limitations of using E. coli as a biocatalyst for the production of diesel-like fuels. PMID:22042840

  6. {alpha}-Lipoic acid prevents lipotoxic cardiomyopathy in acyl CoA-synthase transgenic mice

    SciTech Connect

    Lee, Young; Naseem, R. Haris; Park, Byung-Hyun; Garry, Daniel J.; Richardson, James A.; Schaffer, Jean E.; Unger, Roger H. . E-mail: roger.unger@utsouthwestern.edu

    2006-05-26

    {alpha}-Lipoic acid ({alpha}-LA) mimics the hypothalamic actions of leptin on food intake, energy expenditure, and activation of AMP-activated protein kinase (AMPK). To determine if, like leptin, {alpha}-LA protects against cardiac lipotoxicity, {alpha}-LA was fed to transgenic mice with cardiomyocyte-specific overexpression of the acyl CoA synthase (ACS) gene. Untreated ACS-transgenic mice died prematurely with increased triacylglycerol content and dilated cardiomyopathy, impaired systolic function and myofiber disorganization, apoptosis, and interstitial fibrosis on microscopy. In {alpha}-LA-treated ACS-transgenic mice heart size, echocardiogram and TG content were normal. Plasma TG fell 50%, hepatic-activated phospho-AMPK rose 6-fold, sterol regulatory element-binding protein-1c declined 50%, and peroxisome proliferator-activated receptor-{gamma} cofactor-1{alpha} mRNA rose 4-fold. Since food restriction did not prevent lipotoxicity, we conclude that {alpha}-LA treatment, like hyperleptinemia, protects the heart of ACS-transgenic mice from lipotoxicity.

  7. Intron-exon organization of the gene for the multifunctional animal fatty acid synthase.

    PubMed Central

    Amy, C M; Williams-Ahlf, B; Naggert, J; Smith, S

    1992-01-01

    The complete intron-exon organization of the gene encoding a multifunctional mammalian fatty acid synthase has been elucidated, and specific exons have been assigned to coding sequences for the component domains of the protein. The rat gene is interrupted by 42 introns and the sequences bordering the splice-site junctions universally follow the GT/AG rule. However, of the 41 introns that interrupt the coding region of the gene, 23 split the reading frame in phase I, 14 split the reading frame in phase 0, and only 4 split the reading frame in phase II. Remarkably, 46% of the introns interrupt codons for glycine. With only one exception, boundaries between the constituent enzymes of the multifunctional polypeptide coincide with the location of introns in the gene. The significance of the predominance of phase I introns, the almost uniformly short length of the 42 introns and the overall small size of the gene, is discussed in relation to the evolution of multifunctional proteins. Images PMID:1736293

  8. Circulating Fatty Acid Synthase in pregnant women: Relationship to blood pressure, maternal metabolism and newborn parameters

    PubMed Central

    Carreras-Badosa, Gemma; Prats-Puig, Anna; Puig, Teresa; Vázquez-Ruíz, Montserrat; Bruel, Monserrat; Mendoza, Ericka; de Zegher, Francis; Ibáñez, Lourdes; López-Bermejo, Abel; Bassols, Judit

    2016-01-01

    The enzyme FASN (fatty acid synthase) is potentially related with hypertension and metabolic dysfunction. FASN is highly expressed in the human placenta. We aimed to investigate the relationship circulating FASN has with blood pressure, maternal metabolism and newborn parameters in healthy pregnant women. Circulating FASN was assessed in 115 asymptomatic pregnant women in the second trimester of gestation along with C-peptide, fasting glucose and insulin, post-load glucose lipids, HMW-adiponectin and blood pressure (the latter was assessed in each trimester of gestation). At birth, newborns and placentas were weighed. FASN expression was also able to be assessed in 80 placentas. Higher circulating FASN was associated with lower systolic blood pressure (SBP), with a more favourable metabolic phenotype (lower fasting glucose and insulin, post load glucose, HbAc1, HOMA-IR and C-peptide), and with lower placental and birth weight (all p < 0.05 to p < 0.001). Placental FASN expression related positively to circulating FASN (p < 0.005) and negatively to placental weight (p < 0.05). Our observations suggest a physiological role of placental FASN in human pregnancy. Future studies will clarify whether circulating FASN of placental origin does actually regulate placental and fetal growth, and (thereby) has a favourable influence on the pregnant mother’s insulin sensitivity and blood pressure. PMID:27090298

  9. Influence of Different Levels of Lipoic Acid Synthase Gene Expression on Diabetic Nephropathy

    PubMed Central

    Xu, Longquan; Hiller, Sylvia; Simington, Stephen; Nickeleit, Volker; Maeda, Nobuyo; James, Leighton R.; Yi, Xianwen

    2016-01-01

    Oxidative stress is implicated in the pathogenesis of diabetic nephropathy (DN) but outcomes of many clinical trials are controversial. To define the role of antioxidants in kidney protection during the development of diabetic nephropathy, we have generated a novel genetic antioxidant mouse model with over- or under-expression of lipoic acid synthase gene (Lias). These models have been mated with Ins2Akita/+ mice, a type I diabetic mouse model. We compare the major pathologic changes and oxidative stress status in two new strains of the mice with controls. Our results show that Ins2Akita/+ mice with under-expressed Lias gene, exhibit higher oxidative stress and more severe DN features (albuminuria, glomerular basement membrane thickening and mesangial matrix expansion). In contrast, Ins2Akita/+ mice with highly-expressed Lias gene display lower oxidative stress and less DN pathologic changes. Our study demonstrates that strengthening endogenous antioxidant capacity could be an effective strategy for prevention and treatment of DN. PMID:27706190

  10. Potent Inhibitory Effect of Chinese Dietary Spices on Fatty Acid Synthase.

    PubMed

    Jiang, Bing; Liang, Yan; Sun, Xuebing; Liu, Xiaoxin; Tian, Weixi; Ma, Xiaofeng

    2015-09-01

    Dietary spices have been adopted in cooking since ancient times to enhance flavor and also as food preservatives and disease remedies. In China, the use of spices and other aromatic plants as food flavoring is an integral part of dietary behavior, but relatively little is known about their functions. Fatty acid synthase (FAS) has been recognized as a remedy target, and its inhibitors might be applied in disease treatment. The present work was designed to assess the inhibitory activities on FAS of spices extracts in Chinese menu. The in vitro inhibitory activities on FAS of 22 extracts of spices were assessed by spectrophotometrically monitoring oxidation of NADPH at 340 nm. Results showed that 20 spices extracts (90.9 %) exhibited inhibitory activities on FAS, with half inhibition concentration (IC(50)) values ranging from 1.72 to 810.7 μg/ml. Among them, seven spices showed strong inhibitory effect with IC(50) values lower than 10 μg/ml. These findings suggest that a large proportion of the dietary spices studied possess promising inhibitory activities on FAS, and subsequently might be applied in the treatment of obesity and obesity-related human diseases.

  11. Cellulose production and cellulose synthase gene detection in acetic acid bacteria.

    PubMed

    Valera, Maria José; Torija, Maria Jesús; Mas, Albert; Mateo, Estibaliz

    2015-02-01

    The ability of acetic acid bacteria (AAB) to produce cellulose has gained much industrial interest due to the physical and chemical characteristics of bacterial cellulose. The production of cellulose occurs in the presence of oxygen and in a glucose-containing medium, but it can also occur during vinegar elaboration by the traditional method. The vinegar biofilm produced by AAB on the air-liquid interface is primarily composed of cellulose and maintains the cells in close contact with oxygen. In this study, we screened for the ability of AAB to produce cellulose using different carbon sources in the presence or absence of ethanol. The presence of cellulose in biofilms was confirmed using the fluorochrome Calcofluor by microscopy. Moreover, the process of biofilm formation was monitored under epifluorescence microscopy using the Live/Dead BacLight Kit. A total of 77 AAB strains belonging to 35 species of Acetobacter, Komagataeibacter, Gluconacetobacter, and Gluconobacter were analysed, and 30 strains were able to produce a cellulose biofilm in at least one condition. This cellulose production was correlated with the PCR amplification of the bcsA gene that encodes cellulose synthase. A total of eight degenerated primers were designed, resulting in one primer pair that was able to detect the presence of this gene in 27 AAB strains, 26 of which formed cellulose.

  12. Inhibition of fatty acid synthase by amentoflavone reduces coxsackievirus B3 replication.

    PubMed

    Wilsky, Steffi; Sobotta, Katharina; Wiesener, Nadine; Pilas, Johanna; Althof, Nadine; Munder, Thomas; Wutzler, Peter; Henke, Andreas

    2012-02-01

    Coxsackievirus B3 (CVB3) is a human pathogen that causes acute and chronic infections, but an antiviral drug to treat these diseases has not yet been developed for clinical use. Several intracellular pathways are altered to assist viral transcription, RNA replication, and progeny release. Among these, fatty acid synthase (FAS) expression is increased. In order to test the potential of FAS inhibition as an anti-CVB3 strategy, several experiments were performed, including studies on the correlation of CVB3 replication and FAS expression in human Raji cells and an analysis of the time and dose dependence of the antiviral effect of FAS inhibition due to treatment with amentoflavone. The results demonstrate that CVB3 infection induces an up-regulation of FAS expression already at 1 h postinfection (p.i.). Incubation with increasing concentrations of amentoflavone inhibited CVB3 replication significantly up to 8 h p.i. In addition, suppression of p38 MAP kinase activity by treatment with SB239063 decreased FAS expression as well as viral replication. These data provide evidence that FAS inhibition via amentoflavone administration might present a target for anti-CVB3 therapy. PMID:22075919

  13. Differential regulation of host genes including hepatic fatty acid synthase in HBV-transgenic mice.

    PubMed

    Zhang, Hongmin; Li, Hong; Yang, Yixuan; Li, Sanglin; Ren, Hong; Zhang, Dazhi; Hu, Huaidong

    2013-06-01

    Hepatitis B virus (HBV) is the most common of the hepatitis viruses that cause chronic liver infections in humans, and it is considered to be a major global health problem. To gain a better understanding of HBV pathogenesis, and identify novel putative targets for anti-HBV therapy, this study was designed to elucidate the differential expression of host proteins in liver tissue from HBV-transgenic mice. Liver samples from two groups, (1) HBV-transgenic (Tg) mice, (2) corresponding background normal mice, wild-type (WT) mice, were collected and subjected to iTRAQ and mass spectrometry analysis. In total, 1950 unique proteins were identified, and 68 proteins were found to be differentially expressed in HBV-Tg mice as compared with that in WT mice. Several differentially expressed proteins were further validated by real-time quantitative RT-PCR, Western blot and immunohistochemical analysis. Furthermore, the association of HBV replication with fatty acid synthase (FASN), one of the highly expressed proteins in HBV-Tg mice, was verified. Silencing of FASN expression in HepG2.2.15 cells suppressed viral replication through the IFN signaling pathway, and some downstream antiviral effectors. The implicated role of FASN in HBV replication provides an opportunity to test existing compounds against FASN for adjuvant therapy and/or treatment of HBV replication. PMID:23675653

  14. Effect of modification of the length and flexibility of the acyl carrier protein-thioesterase interdomain linker on functionality of the animal fatty acid synthase.

    PubMed

    Joshi, Anil K; Witkowski, Andrzej; Berman, Harvey A; Zhang, Lei; Smith, Stuart

    2005-03-15

    A natural linker of approximately 20 residues connects the acyl carrier protein with the carboxy-terminal thioesterase domain of the animal fatty acid synthase. This study examines the effects of changes in the length and amino acid composition of this linker on catalytic activity, product composition, and segmental motion of the thioesterase domain. Deletion of 10 residues, almost half of the interdomain linker, had no effect on either mobility of the thioesterase domain, estimated from fluorescence polarization of a pyrenebutyl methylphosphono moiety bound covalently to the active site serine residue, or functionality of the fatty acid synthase; further shortening of the linker limited mobility of the thioesterase domain and resulted in reduced fatty acid synthase activity and an increase in product chain length from 16 to 18 and 20 carbon atoms. Surprisingly, however, even when the entire linker region was deleted, the fatty acid synthase retained 28% activity. Lengthening of the linker, by insertion of an unusually long acyl carrier protein-thioesterase linker from a modular polyketide synthase, increased mobility of the thioesterase domain without having any significant effect on catalytic properties of the complex. Interdomain linkers could also be used to tether, to the acyl carrier protein domain of the fatty acid synthase, a thioesterase active toward shorter chain length acyl thioesters generating novel short-chain fatty acid synthases. These studies reveal that although truncation of the interdomain linker partially impacts the ability of the thioesterase domain to terminate growth of the acyl chain, the overall integrity of the fatty acid synthase is quite tolerant to moderate changes in linker length and flexibility. The retention of fatty acid synthesizing activity on deletion of the entire linker region implies that the inherent flexibility of the phosphopantetheine "swinging arm" also contributes significantly to the successful docking of the long

  15. The smoking-associated oxidant hypothiocyanous acid induces endothelial nitric oxide synthase dysfunction.

    PubMed

    Talib, Jihan; Kwan, Jair; Suryo Rahmanto, Aldwin; Witting, Paul K; Davies, Michael J

    2014-01-01

    Smokers have an elevated risk of cardiovascular disease but the origin(s) of this increased risk are incompletely defined. Considerable evidence supports an accumulation of the oxidant-generating enzyme MPO (myeloperoxidase) in the inflamed artery wall, and smokers have high levels of SCN(-), a preferred MPO substrate, with this resulting in HOSCN (hypothiocyanous acid) formation. We hypothesized that this thiol-specific oxidant may target the Zn(2+)-thiol cluster of eNOS (endothelial nitric oxide synthase), resulting in enzyme dysfunction and reduced formation of the critical signalling molecule NO•. Decreased NO• bioavailability is an early and critical event in atherogenesis, and HOSCN-mediated damage to eNOS may contribute to smoking-associated disease. In the present study it is shown that exposure of isolated eNOS to HOSCN or MPO/H2O2/SCN(-) decreased active dimeric eNOS levels, and increased inactive monomer and Zn(2+) release, compared with controls, HOCl (hypochlorous acid)- or MPO/H2O2/Cl(-)-treated samples. eNOS activity was increasingly compromised by MPO/H2O2/Cl(-) with increasing SCN(-) concentrations. Exposure of HCAEC (human coronary artery endothelial cell) lysates to pre-formed HOSCN, or MPO/H2O2/Cl(-) with increasing SCN(-), increased eNOS monomerization and Zn(2+) release, and decreased activity. Intact HCAECs exposed to HOCl and HOSCN had decreased eNOS activity and NO2(-)/NO3(-) formation (products of NO• decomposition), and increased free Zn(2+). Exposure of isolated rat aortic rings to HOSCN resulted in thiol loss, and decreased eNOS activity and cGMP levels. Overall these data indicate that high SCN(-) levels, as seen in smokers, can increase HOSCN formation and enhance eNOS dysfunction in human endothelial cells, with this potentially contributing to increased atherogenesis in smokers. PMID:24112082

  16. Inhibition of Mycobacterium tuberculosis dihydrodipicolinate synthase by alpha-ketopimelic acid and its other structural analogues

    PubMed Central

    Shrivastava, Priyanka; Navratna, Vikas; Silla, Yumnam; Dewangan, Rikeshwer P.; Pramanik, Atreyi; Chaudhary, Sarika; Rayasam, GeethaVani; Kumar, Anuradha; Gopal, Balasubramanian; Ramachandran, Srinivasan

    2016-01-01

    The Mycobacterium tuberculosis dihydrodipicolinate synthase (Mtb-dapA) is an essential gene. Mtb-DapA catalyzes the aldol condensation between pyruvate and L-aspartate-beta-semialdehyde (ASA) to yield dihydrodipicolinate. In this work we tested the inhibitory effects of structural analogues of pyruvate on recombinant Mtb-DapA (Mtb-rDapA) using a coupled assay with recombinant dihydrodipicolinate reductase (Mtb-rDapB). Alpha-ketopimelic acid (α-KPA) showed maximum inhibition of 88% and IC50 of 21 μM in the presence of pyruvate (500 μM) and ASA (400 μM). Competition experiments with pyruvate and ASA revealed competition of α-KPA with pyruvate. Liquid chromatography-mass spectrometry (LC-MS) data with multiple reaction monitoring (MRM) showed that the relative abundance peak of final product, 2,3,4,5-tetrahydrodipicolinate, was decreased by 50%. Thermal shift assays showed 1 °C Tm shift of Mtb-rDapA upon binding α-KPA. The 2.4 Å crystal structure of Mtb-rDapA-α-KPA complex showed the interaction of critical residues at the active site with α-KPA. Molecular dynamics simulations over 500 ns of pyruvate docked to Mtb-DapA and of α-KPA-bound Mtb-rDapA revealed formation of hydrogen bonds with pyruvate throughout in contrast to α-KPA. Molecular descriptors analysis showed that ligands with polar surface area of 91.7 Å2 are likely inhibitors. In summary, α-hydroxypimelic acid and other analogues could be explored further as inhibitors of Mtb-DapA. PMID:27501775

  17. Coexpressing Escherichia coli Cyclopropane Synthase with Sterculia foetida Lysophosphatidic Acid Acyltransferase Enhances Cyclopropane Fatty Acid Accumulation1[W][OPEN

    PubMed Central

    Yu, Xiao-Hong; Prakash, Richa Rawat; Sweet, Marie; Shanklin, John

    2014-01-01

    Cyclopropane fatty acids (CPAs) are desirable as renewable chemical feedstocks for the production of paints, plastics, and lubricants. Toward our goal of creating a CPA-accumulating crop, we expressed nine higher plant cyclopropane synthase (CPS) enzymes in the seeds of fad2fae1 Arabidopsis (Arabidopsis thaliana) and observed accumulation of less than 1% CPA. Surprisingly, expression of the Escherichia coli CPS gene resulted in the accumulation of up to 9.1% CPA in the seed. Coexpression of a Sterculia foetida lysophosphatidic acid acyltransferase (SfLPAT) increases CPA accumulation up to 35% in individual T1 seeds. However, seeds with more than 9% CPA exhibit wrinkled seed morphology and reduced size and oil accumulation. Seeds with more than 11% CPA exhibit strongly decreased seed germination and establishment, and no seeds with CPA more than 15% germinated. That previous reports suggest that plant CPS prefers the stereospecific numbering (sn)-1 position whereas E. coli CPS acts on sn-2 of phospholipids prompted us to investigate the preferred positions of CPS on phosphatidylcholine (PC) and triacylglycerol. Unexpectedly, in planta, E. coli CPS acts primarily on the sn-1 position of PC; coexpression of SfLPAT results in the incorporation of CPA at the sn-2 position of lysophosphatidic acid. This enables a cycle that enriches CPA at both sn-1 and sn-2 positions of PC and results in increased accumulation of CPA. These data provide proof of principle that CPA can accumulate to high levels in transgenic seeds and sets the stage for the identification of factors that will facilitate the movement of CPA from PC into triacylglycerol to produce viable seeds with additional CPA accumulation. PMID:24204024

  18. Evolution of conifer diterpene synthases: diterpene resin acid biosynthesis in lodgepole pine and jack pine involves monofunctional and bifunctional diterpene synthases.

    PubMed

    Hall, Dawn E; Zerbe, Philipp; Jancsik, Sharon; Quesada, Alfonso Lara; Dullat, Harpreet; Madilao, Lina L; Yuen, Macaire; Bohlmann, Jörg

    2013-02-01

    Diterpene resin acids (DRAs) are major components of pine (Pinus spp.) oleoresin. They play critical roles in conifer defense against insects and pathogens and as a renewable resource for industrial bioproducts. The core structures of DRAs are formed in secondary (i.e. specialized) metabolism via cycloisomerization of geranylgeranyl diphosphate (GGPP) by diterpene synthases (diTPSs). Previously described gymnosperm diTPSs of DRA biosynthesis are bifunctional enzymes that catalyze the initial bicyclization of GGPP followed by rearrangement of a (+)-copalyl diphosphate intermediate at two discrete class II and class I active sites. In contrast, similar diterpenes of gibberellin primary (i.e. general) metabolism are produced by the consecutive activity of two monofunctional class II and class I diTPSs. Using high-throughput transcriptome sequencing, we discovered 11 diTPS from jack pine (Pinus banksiana) and lodgepole pine (Pinus contorta). Three of these were orthologous to known conifer bifunctional levopimaradiene/abietadiene synthases. Surprisingly, two sets of orthologous PbdiTPSs and PcdiTPSs were monofunctional class I enzymes that lacked functional class II active sites and converted (+)-copalyl diphosphate, but not GGPP, into isopimaradiene and pimaradiene as major products. Diterpene profiles and transcriptome sequences of lodgepole pine and jack pine are consistent with roles for these diTPSs in DRA biosynthesis. The monofunctional class I diTPSs of DRA biosynthesis form a new clade within the gymnosperm-specific TPS-d3 subfamily that evolved from bifunctional diTPS rather than monofunctional enzymes (TPS-c and TPS-e) of gibberellin metabolism. Homology modeling suggested alterations in the class I active site that may have contributed to their functional specialization relative to other conifer diTPSs. PMID:23370714

  19. Evolution of Conifer Diterpene Synthases: Diterpene Resin Acid Biosynthesis in Lodgepole Pine and Jack Pine Involves Monofunctional and Bifunctional Diterpene Synthases1[W][OA

    PubMed Central

    Hall, Dawn E.; Zerbe, Philipp; Jancsik, Sharon; Quesada, Alfonso Lara; Dullat, Harpreet; Madilao, Lina L.; Yuen, Macaire; Bohlmann, Jörg

    2013-01-01

    Diterpene resin acids (DRAs) are major components of pine (Pinus spp.) oleoresin. They play critical roles in conifer defense against insects and pathogens and as a renewable resource for industrial bioproducts. The core structures of DRAs are formed in secondary (i.e. specialized) metabolism via cycloisomerization of geranylgeranyl diphosphate (GGPP) by diterpene synthases (diTPSs). Previously described gymnosperm diTPSs of DRA biosynthesis are bifunctional enzymes that catalyze the initial bicyclization of GGPP followed by rearrangement of a (+)-copalyl diphosphate intermediate at two discrete class II and class I active sites. In contrast, similar diterpenes of gibberellin primary (i.e. general) metabolism are produced by the consecutive activity of two monofunctional class II and class I diTPSs. Using high-throughput transcriptome sequencing, we discovered 11 diTPS from jack pine (Pinus banksiana) and lodgepole pine (Pinus contorta). Three of these were orthologous to known conifer bifunctional levopimaradiene/abietadiene synthases. Surprisingly, two sets of orthologous PbdiTPSs and PcdiTPSs were monofunctional class I enzymes that lacked functional class II active sites and converted (+)-copalyl diphosphate, but not GGPP, into isopimaradiene and pimaradiene as major products. Diterpene profiles and transcriptome sequences of lodgepole pine and jack pine are consistent with roles for these diTPSs in DRA biosynthesis. The monofunctional class I diTPSs of DRA biosynthesis form a new clade within the gymnosperm-specific TPS-d3 subfamily that evolved from bifunctional diTPS rather than monofunctional enzymes (TPS-c and TPS-e) of gibberellin metabolism. Homology modeling suggested alterations in the class I active site that may have contributed to their functional specialization relative to other conifer diTPSs. PMID:23370714

  20. Identification of amino acid networks governing catalysis in the closed complex of class I terpene synthases

    PubMed Central

    Buettner, Alexander; Goerner, Christian; Hertel, Michael; van Rijn, Jeaphianne; Wallrapp, Frank; Eisenreich, Wolfgang; Sieber, Volker; Kourist, Robert; Brück, Thomas

    2016-01-01

    Class I terpene synthases generate the structural core of bioactive terpenoids. Deciphering structure–function relationships in the reactive closed complex and targeted engineering is hampered by highly dynamic carbocation rearrangements during catalysis. Available crystal structures, however, represent the open, catalytically inactive form or harbor nonproductive substrate analogs. Here, we present a catalytically relevant, closed conformation of taxadiene synthase (TXS), the model class I terpene synthase, which simulates the initial catalytic time point. In silico modeling of subsequent catalytic steps allowed unprecedented insights into the dynamic reaction cascades and promiscuity mechanisms of class I terpene synthases. This generally applicable methodology enables the active-site localization of carbocations and demonstrates the presence of an active-site base motif and its dominating role during catalysis. It additionally allowed in silico-designed targeted protein engineering that unlocked the path to alternate monocyclic and bicyclic synthons representing the basis of a myriad of bioactive terpenoids. PMID:26842837

  1. Head-to-head coiled arrangement of the subunits of the animal fatty acid synthase.

    PubMed

    Witkowski, Andrzej; Ghosal, Alokesh; Joshi, Anil K; Witkowska, H Ewa; Asturias, Francisco J; Smith, Stuart

    2004-12-01

    The role of the beta-ketoacyl synthase domains in dimerization of the 2505 residue subunits of the multifunctional animal FAS has been evaluated by a combination of crosslinking and characterization of several truncated forms of the protein. Polypeptides containing only the N-terminal 971 residues can form dimers, but polypeptides lacking only the N-terminal 422 residue beta-ketoacyl synthase domain cannot. FAS subunits can be crosslinked with spacer lengths as short as 6 A, via cysteine residues engineered near the N terminus of the full-length polypeptides. The proximity of the N-terminal beta-ketoacyl synthase domains and their essential role in dimerization is consistent with a revised model for the FAS in which a head-to-head arrangement of two coiled subunits facilitates functional interactions between the dimeric beta-ketoacyl synthase and the acyl carrier protein domains of either subunit.

  2. Identification of amino acid networks governing catalysis in the closed complex of class I terpene synthases.

    PubMed

    Schrepfer, Patrick; Buettner, Alexander; Goerner, Christian; Hertel, Michael; van Rijn, Jeaphianne; Wallrapp, Frank; Eisenreich, Wolfgang; Sieber, Volker; Kourist, Robert; Brück, Thomas

    2016-02-23

    Class I terpene synthases generate the structural core of bioactive terpenoids. Deciphering structure-function relationships in the reactive closed complex and targeted engineering is hampered by highly dynamic carbocation rearrangements during catalysis. Available crystal structures, however, represent the open, catalytically inactive form or harbor nonproductive substrate analogs. Here, we present a catalytically relevant, closed conformation of taxadiene synthase (TXS), the model class I terpene synthase, which simulates the initial catalytic time point. In silico modeling of subsequent catalytic steps allowed unprecedented insights into the dynamic reaction cascades and promiscuity mechanisms of class I terpene synthases. This generally applicable methodology enables the active-site localization of carbocations and demonstrates the presence of an active-site base motif and its dominating role during catalysis. It additionally allowed in silico-designed targeted protein engineering that unlocked the path to alternate monocyclic and bicyclic synthons representing the basis of a myriad of bioactive terpenoids.

  3. Gene identification and functional analysis of methylcitrate synthase in citric acid-producing Aspergillus niger WU-2223L.

    PubMed

    Kobayashi, Keiichi; Hattori, Takasumi; Honda, Yuki; Kirimura, Kohtaro

    2013-01-01

    Methylcitrate synthase (EC 2.3.3.5; MCS) is a key enzyme of the methylcitric acid cycle localized in the mitochondria of eukaryotic cells and related to propionic acid metabolism. In this study, cloning of the gene mcsA encoding MCS and heterologous expression of it in Escherichia coli were performed for functional analysis of the MCS of citric acid-producing Aspergillus niger WU-2223L. Only one copy of mcsA (1,495 bp) exists in the A. niger WU-2223L chromosome. It encodes a 51-kDa polypeptide consisting of 465 amino acids containing mitochondrial targeting signal peptides. Purified recombinant MCS showed not only MCS activity (27.6 U/mg) but also citrate synthase (EC 2.3.3.1; CS) activity (26.8 U/mg). For functional analysis of MCS, mcsA disruptant strain DMCS-1, derived from A. niger WU-2223L, was constructed. Although A. niger WU-2223L showed growth on propionate as sole carbon source, DMCS-1 showed no growth. These results suggest that MCS is an essential enzyme in propionic acid metabolism, and that the methylcitric acid cycle operates functionally in A. niger WU-2223L. To determine whether MCS makes a contribution to citric acid production, citric acid production tests on DMCS-1 were performed. The amount of citric acid produced from glucose consumed by DMCS-1 in citric acid production medium over 12 d of cultivation was on the same level to that by WU-2223L. Thus it was found that MCS made no contribution to citric acid production from glucose in A. niger WU-2223L, although MCS showed CS activity.

  4. Gene identification and functional analysis of methylcitrate synthase in citric acid-producing Aspergillus niger WU-2223L.

    PubMed

    Kobayashi, Keiichi; Hattori, Takasumi; Honda, Yuki; Kirimura, Kohtaro

    2013-01-01

    Methylcitrate synthase (EC 2.3.3.5; MCS) is a key enzyme of the methylcitric acid cycle localized in the mitochondria of eukaryotic cells and related to propionic acid metabolism. In this study, cloning of the gene mcsA encoding MCS and heterologous expression of it in Escherichia coli were performed for functional analysis of the MCS of citric acid-producing Aspergillus niger WU-2223L. Only one copy of mcsA (1,495 bp) exists in the A. niger WU-2223L chromosome. It encodes a 51-kDa polypeptide consisting of 465 amino acids containing mitochondrial targeting signal peptides. Purified recombinant MCS showed not only MCS activity (27.6 U/mg) but also citrate synthase (EC 2.3.3.1; CS) activity (26.8 U/mg). For functional analysis of MCS, mcsA disruptant strain DMCS-1, derived from A. niger WU-2223L, was constructed. Although A. niger WU-2223L showed growth on propionate as sole carbon source, DMCS-1 showed no growth. These results suggest that MCS is an essential enzyme in propionic acid metabolism, and that the methylcitric acid cycle operates functionally in A. niger WU-2223L. To determine whether MCS makes a contribution to citric acid production, citric acid production tests on DMCS-1 were performed. The amount of citric acid produced from glucose consumed by DMCS-1 in citric acid production medium over 12 d of cultivation was on the same level to that by WU-2223L. Thus it was found that MCS made no contribution to citric acid production from glucose in A. niger WU-2223L, although MCS showed CS activity. PMID:23832368

  5. Sucrose Phosphate Synthase and Acid Invertase as Determinants of Sucrose Concentration in Developing Muskmelon (Cucumis melo L.) Fruits 1

    PubMed Central

    Hubbard, Natalie L.; Huber, Steven C.; Pharr, D. Mason

    1989-01-01

    Fruits of orange-fleshed and green-fleshed muskmelon (Cucumis melo L.) were harvested at different times throughout development to evaluate changes in metabolism which lead to sucrose accumulation, and to determine the basis of differences in fruit sucrose accumulation among genotypes. Concentrations of sucrose, raffinose saccharides, hexoses and starch, as well as activities of the sucrose metabolizing enzymes sucrose phosphate synthase (SPS) (EC 2.4.1.14), sucrose synthase (EC 2.4.1.13), and acid and neutral invertases (EC 3.2.1.26) were measured. Sucrose synthase and neutral invertase activities were relatively low (1.7 ± 0.3 micromole per hour per gram fresh weight and 2.2 ± 0.2, respectively) and changed little throughout fruit development. Acid invertase activity decreased during fruit development, (from as high as 40 micromoles per hour per gram fresh weight) in unripe fruit, to undetectable activity in mature, ripened fruits, while SPS activity in the fruit increased (from 7 micromoles per hour per gram fresh weight) to as high as 32 micromoles per hour per gram fresh weight. Genotypes which accumulated different amounts of sucrose had similar acid invertase activity but differed in SPS activity. Our results indicate that both acid invertase and SPS are determinants of sucrose accumulation in melon fruit. However, the decline in acid invertase appears to be a normal function of fruit maturation, and is not the primary factor which determines sucrose accumulation. Rather, the capacity for sucrose synthesis, reflected in the activity of SPS, appears to determine sucrose accumulation, which is an important component of fruit quality. PMID:16667212

  6. MicroRNA-24 can control triacylglycerol synthesis in goat mammary epithelial cells by targeting the fatty acid synthase gene.

    PubMed

    Wang, H; Luo, J; Chen, Z; Cao, W T; Xu, H F; Gou, D M; Zhu, J J

    2015-12-01

    In nonruminants it has been demonstrated that microRNA-24 (miR-24) is involved in preadipocyte differentiation, hepatic lipid, and plasma triacylglycerol synthesis. However, its role in ruminant mammary gland remains unclear. In this study we measured miR-24 expression in goat mammary gland tissue at 4 different stages of lactation and observed that it had highest expression at peak lactation when compared with the dry period. Overexpression or downregulation of miR-24 in goat mammary epithelial cells (GMEC) strongly affected fatty acid profiles; in particular, miR-24 enhanced unsaturated fatty acid concentration. Additional effects of miR-24 included changes in triacylglycerol content and the expression of fatty acid synthase, sterol regulatory element binding transcription protein 1, stearoyl-CoA desaturase, glycerol-3-phosphate acyltransferase mitochondrial, and acetyl-CoA carboxylase. Luciferase reporter assay confirmed that fatty acid synthase is a target of miR-24. Taken together, these results not only highlight the physiological importance of miR-24 in fatty acid metabolism in GMEC, but also laid the foundation for further research on regulatory mechanisms among miR-24 and other microRNA expressed in GMEC. PMID:26476938

  7. Homology analyses of the protein sequences of fatty acid synthases from chicken liver, rat mammary gland, and yeast

    SciTech Connect

    Chang, Soo-Ik ); Hammes, G.G. )

    1989-11-01

    Homology analyses of the protein sequences of chicken liver and rat mammary gland fatty acid synthases were carried out. The amino acid sequences of the chicken and rat enzymes are 67% identical. If conservative substitutions are allowed, 78% of the amino acids are matched. A region of low homologies exists between the functional domains, in particular around amino acid residues 1059-1264 of the chicken enzyme. Homologies between the active sites of chicken and rat and of chicken and yeast enzymes have been analyzed by an alignment method. A high degree of homology exists between the active sites of the chicken and rat enzymes. However, the chicken and yeast enzymes show a lower degree of homology. The DADPH-binding dinucleotide folds of the {beta}-ketoacyl reductase and the enoyl reductase sites were identified by comparison with a known consensus sequence for the DADP- and FAD-binding dinucleotide folds. The active sites of all of the enzymes are primarily in hydrophobic regions of the protein. This study suggests that the genes for the functional domains of fatty acid synthase were originally separated, and these genes were connected to each other by using different connecting nucleotide sequences in different species. An alternative explanation for the differences in rat and chicken is a common ancestry and mutations in the joining regions during evolution.

  8. 5-aminolevulinic acid induced protoporphyrin IX as a fluorescence marker for quantitative image analysis of high-grade dysplasia in Barrett's esophagus cellular models

    NASA Astrophysics Data System (ADS)

    Yeh, Shu-Chi Allison; Sahli, Samir; Andrews, David W.; Patterson, Michael S.; Armstrong, David; Provias, John; Fang, Qiyin

    2015-03-01

    Early detection and treatment of high-grade dysplasia (HGD) in Barrett's esophagus may reduce the risk of developing esophageal adenocarcinoma. Confocal endomicroscopy (CLE) has shown advantages over routine white-light endoscopic surveillance with biopsy for histological examination; however, CLE is compromised by insufficient contrast and by intra- and interobserver variation. An FDA-approved PDT photosensitizer was used here to reveal morphological and textural features similar to those found in histological analysis. Support vector machines were trained using the aforementioned features to obtain an automatic and robust detection of HGD. Our results showed 95% sensitivity and 87% specificity using the optimal feature combination and demonstrated the potential for extension to a three-dimensional cell model.

  9. Fatty Acid Synthase Cooperates with Glyoxalase 1 to Protect against Sugar Toxicity

    PubMed Central

    Garrido, Damien; Rubin, Thomas; Poidevin, Mickael; Maroni, Brigitte; Le Rouzic, Arnaud; Parvy, Jean-Philippe; Montagne, Jacques

    2015-01-01

    Fatty acid (FA) metabolism is deregulated in several human diseases including metabolic syndrome, type 2 diabetes and cancers. Therefore, FA-metabolic enzymes are potential targets for drug therapy, although the consequence of these treatments must be precisely evaluated at the organismal and cellular levels. In healthy organism, synthesis of triacylglycerols (TAGs)—composed of three FA units esterified to a glycerol backbone—is increased in response to dietary sugar. Saturation in the storage and synthesis capacity of TAGs is associated with type 2 diabetes progression. Sugar toxicity likely depends on advanced-glycation-end-products (AGEs) that form through covalent bounding between amine groups and carbonyl groups of sugar or their derivatives α-oxoaldehydes. Methylglyoxal (MG) is a highly reactive α-oxoaldehyde that is derived from glycolysis through a non-enzymatic reaction. Glyoxalase 1 (Glo1) works to neutralize MG, reducing its deleterious effects. Here, we have used the power of Drosophila genetics to generate Fatty acid synthase (FASN) mutants, allowing us to investigate the consequence of this deficiency upon sugar-supplemented diets. We found that FASN mutants are lethal but can be rescued by an appropriate lipid diet. Rescued animals do not exhibit insulin resistance, are dramatically sensitive to dietary sugar and accumulate AGEs. We show that FASN and Glo1 cooperate at systemic and cell-autonomous levels to protect against sugar toxicity. We observed that the size of FASN mutant cells decreases as dietary sucrose increases. Genetic interactions at the cell-autonomous level, where glycolytic enzymes or Glo1 were manipulated in FASN mutant cells, revealed that this sugar-dependent size reduction is a direct consequence of MG-derived-AGE accumulation. In summary, our findings indicate that FASN is dispensable for cell growth if extracellular lipids are available. In contrast, FA-synthesis appears to be required to limit a cell

  10. High resolution crystal structure of a Mg2+-dependent porphobilinogen synthase.

    PubMed

    Frankenberg, N; Erskine, P T; Cooper, J B; Shoolingin-Jordan, P M; Jahn, D; Heinz, D W

    1999-06-11

    Common to the biosynthesis of all known tetrapyrroles is the condensation of two molecules of 5-aminolevulinic acid to the pyrrole porphobilinogen catalyzed by the enzyme porphobilinogen synthase (PBGS). Two major classes of PBGS are known. Zn2+-dependent PBGSs are found in mammals, yeast and some bacteria including Escherichia coli, while Mg2+-dependent PBGSs are present mainly in plants and other bacteria. The crystal structure of the Mg2+-dependent PBGS from the human pathogen Pseudomonas aeruginosa in complex with the competitive inhibitor levulinic acid (LA) solved at 1.67 A resolution shows a homooctameric enzyme that consists of four asymmetric dimers. The monomers in each dimer differ from each other by having a "closed" and an "open" active site pocket. In the closed subunit, the active site is completely shielded from solvent by a well-defined lid that is partially disordered in the open subunit. A single molecule of LA binds to a mainly hydrophobic pocket in each monomer where it is covalently attached via a Schiff base to an active site lysine residue. Whereas no metal ions are found in the active site of both monomers, a single well-defined and highly hydrated Mg2+is present only in the closed form about 14 A away from the Schiff base forming nitrogen atom of the active site lysine. We conclude that the observed differences in the active sites of both monomers might be induced by Mg2+-binding to this remote site and propose a structure-based mechanism for this allosteric Mg2+in rate enhancement. PMID:10356331

  11. Identification of an insulin response element in the fatty acid synthase promoter.

    PubMed

    Moustaïd, N; Beyer, R S; Sul, H S

    1994-02-25

    We have previously reported that insulin increases fatty acid synthase (FAS) gene transcription, and that sequences responsible for positive regulation are located within the first 332 base pairs of the FAS promoter. To define minimal sequences required for insulin regulation within this region, chimeric constructs containing serial 5' deletions starting at -318 and extending through position +67 of the rat FAS gene ligated to the luciferase reporter gene were transfected into 3T3-L1 adipocytes. Insulin treatment at 10 nM increased luciferase activity 2-3-fold in 3T3-L1 adipocytes transfected with constructs containing progressive deletions from -318 to -67. This stimulation of the FAS promoter activity by insulin was dose-dependent. However, no effect of insulin was observed when fusion constructs containing FAS promoter sequences spanning from -25 or from -19 to +67 were transfected into adipocytes. These results suggest that the insulin response sequences of the FAS gene may be located in the region from -67 to -25. DNase I footprinting using liver nuclear extracts revealed a protected region spanning -71 and -50 in addition to a region near the putative TATA box. Gel mobility shift assays using the sequence from -71 to -50 as a probe revealed nuclear factor(s) from mouse liver and 3T3-L1 adipocytes that specifically complexed with this sequence. Mutational analysis of this region showed that sequences between -68 and -60 are essential for recognition and interaction with a trans-acting factor(s). Moreover, when three tandem repeats of the sequences spanning -68 to -52 were linked to the SV40 promoter and used for transfection, luciferase activity increased 3.6-fold in response to insulin treatment. Thus, we have identified novel cis-acting DNA sequences responsible for insulin regulation of the FAS gene, which interact with nuclear protein(s) from liver and adipocytes and which are found to share limited homology to insulin response sequences present in other

  12. Acid Sphingomyelinase Gene Knockout Ameliorates Hyperhomocysteinemic Glomerular Injury in Mice Lacking Cystathionine-β-Synthase

    PubMed Central

    Boini, Krishna M.; Xia, Min; Abais, Justine M.; Xu, Ming; Li, Cai-xia; Li, Pin-Lan

    2012-01-01

    Acid sphingomyelinase (ASM) has been implicated in the development of hyperhomocysteinemia (hHcys)-induced glomerular oxidative stress and injury. However, it remains unknown whether genetically engineering of ASM gene produces beneficial or detrimental action on hHcys-induced glomerular injury. The present study generated and characterized the mice lacking cystathionine β-synthase (Cbs) and Asm mouse gene by cross breeding Cbs+/− and Asm+/− mice. Given that the homozygotes of Cbs−/−/Asm−/− mice could not survive for 3 weeks. Cbs+/−/Asm+/+, Cbs+/−/Asm+/− and Cbs+/−/Asm−/− as well as their Cbs wild type littermates were used to study the role of Asm−/− under a background of Cbs+/− with hHcys. HPLC analysis revealed that plasma Hcys level was significantly elevated in Cbs heterozygous (Cbs+/−) mice with different copies of Asm gene compared to Cbs+/+ mice with different Asm gene copies. Cbs+/−/Asm+/+ mice had significantly increased renal Asm activity, ceramide production and O2.− level compared to Cbs+/+/Asm+/+, while Cbs+/−/Asm−/− mice showed significantly reduced renal Asm activity, ceramide production and O2.− level due to increased plasma Hcys levels. Confocal microscopy demonstrated that colocalization of podocin with ceramide was much lower in Cbs+/−/Asm−/− mice compared to Cbs+/−/Asm+/+ mice, which was accompanied by a reduced glomerular damage index, albuminuria and proteinuria in Cbs+/−/Asm−/− mice. Immunofluorescent analyses of the podocin, nephrin and desmin expression also illustrated less podocyte damages in the glomeruli from Cbs+/−/Asm−/− mice compared to Cbs+/−/Asm+/+ mice. In in vitro studies of podocytes, hHcys-enhanced O2.− production, desmin expression, and ceramide production as well as decreases in VEGF level and podocin expression in podocytes were substantially attenuated by prior treatment with amitriptyline, an Asm inhibitor. In conclusion, Asm gene knockout or

  13. Biosynthesis of Dictyostelium discoideum differentiation-inducing factor by a hybrid type I fatty acid-type III polyketide synthase.

    PubMed

    Austin, Michael B; Saito, Tamao; Bowman, Marianne E; Haydock, Stephen; Kato, Atsushi; Moore, Bradley S; Kay, Robert R; Noel, Joseph P

    2006-09-01

    Differentiation-inducing factors (DIFs) are well known to modulate formation of distinct communal cell types from identical Dictyostelium discoideum amoebas, but DIF biosynthesis remains obscure. We report complimentary in vivo and in vitro experiments identifying one of two approximately 3,000-residue D. discoideum proteins, termed 'steely', as responsible for biosynthesis of the DIF acylphloroglucinol scaffold. Steely proteins possess six catalytic domains homologous to metazoan type I fatty acid synthases (FASs) but feature an iterative type III polyketide synthase (PKS) in place of the expected FAS C-terminal thioesterase used to off load fatty acid products. This new domain arrangement likely facilitates covalent transfer of steely N-terminal acyl products directly to the C-terminal type III PKS active sites, which catalyze both iterative polyketide extension and cyclization. The crystal structure of a steely C-terminal domain confirms conservation of the homodimeric type III PKS fold. These findings suggest new bioengineering strategies for expanding the scope of fatty acid and polyketide biosynthesis. PMID:16906151

  14. The condensing activities of the Mycobacterium tuberculosis type II fatty acid synthase are differentially regulated by phosphorylation.

    PubMed

    Molle, Virginie; Brown, Alistair K; Besra, Gurdyal S; Cozzone, Alain J; Kremer, Laurent

    2006-10-01

    Phosphorylation of proteins by Ser/Thr protein kinases (STPKs) has recently become of major physiological importance because of its possible involvement in virulence of bacterial pathogens. Although Mycobacterium tuberculosis has eleven STPKs, the nature and function of the substrates of these enzymes remain largely unknown. In this work, we have identified for the first time STPK substrates in M. tuberculosis forming part of the type II fatty acid synthase (FAS-II) system involved in mycolic acid biosynthesis: the malonyl-CoA::AcpM transacylase mtFabD, and the beta-ketoacyl AcpM synthases KasA and KasB. All three enzymes were phosphorylated in vitro by different kinases, suggesting a complex network of interactions between STPKs and these substrates. In addition, both KasA and KasB were efficiently phosphorylated in M. bovis BCG each at different sites and could be dephosphorylated by the M. tuberculosis Ser/Thr phosphatase PstP. Enzymatic studies revealed that, whereas phosphorylation decreases the activity of KasA in the elongation process of long chain fatty acids synthesis, this modification enhances that of KasB. Such a differential effect of phosphorylation may represent an unusual mechanism of FAS-II system regulation, allowing pathogenic mycobacteria to produce full-length mycolates, which are required for adaptation and intracellular survival in macrophages. PMID:16873379

  15. Mycolic acid biosynthesis and enzymic characterization of the beta-ketoacyl-ACP synthase A-condensing enzyme from Mycobacterium tuberculosis.

    PubMed

    Kremer, Laurent; Dover, Lynn G; Carrère, Séverine; Nampoothiri, K Madhavan; Lesjean, Sarah; Brown, Alistair K; Brennan, Patrick J; Minnikin, David E; Locht, Camille; Besra, Gurdyal S

    2002-06-01

    Mycolic acids consist of long-chain alpha-alkyl-beta-hydroxy fatty acids that are produced by successive rounds of elongation catalysed by a type II fatty acid synthase (FAS-II). A key feature in the elongation process is the condensation of a two-carbon unit from malonyl-acyl-carrier protein (ACP) to a growing acyl-ACP chain catalysed by a beta-ketoacyl-ACP synthase (Kas). In the present study, we provide evidence that kasA from Mycobacterium tuberculosis encodes an enzyme that elongates in vivo the meromycolate chain, in both Mycobacterium smegmatis and Mycobacterium chelonae. We demonstrate that KasA belongs to the FAS-II system, which utilizes primarily palmitoyl-ACP rather than short-chain acyl-ACP primers. Furthermore, in an in vitro condensing assay using purified recombinant KasA, palmitoyl-AcpM and malonyl-AcpM, KasA was found to express Kas activity. Also, mutated KasA proteins, with mutation of Cys(171), His(311), Lys(340) and His(345) to Ala abrogated the condensation activity of KasA in vitro completely. Finally, purified KasA was highly sensitive to cerulenin, a well-known inhibitor of Kas, which may lead to the development of novel anti-mycobacterial drugs targeting KasA. PMID:12023885

  16. An active site mutant of Escherichia coli cyclopropane fatty acid synthase forms new non-natural fatty acids providing insights on the mechanism of the enzymatic reaction.

    PubMed

    E, Guangqi; Drujon, Thierry; Correia, Isabelle; Ploux, Olivier; Guianvarc'h, Dominique

    2013-12-01

    We have produced and purified an active site mutant of the Escherichia coli cyclopropane fatty acid synthase (CFAS) by replacing the strictly conserved G236 within cyclopropane synthases, by a glutamate residue, which corresponds to E146 of the homologous mycolic acid methyltransferase, Hma, producing hydroxymethyl mycolic acids. The G236E CFAS mutant had less than 1% of the in vitro activity of the wild type enzyme. We expressed the G236E CFAS mutant in an E. coli (DE3) strain in which the chromosomal cfa gene had been deleted. After extraction of phospholipids and conversion into the corresponding fatty acid methyl esters (FAMEs), we observed the formation of cyclopropanated FAMEs suggesting that the mutant retained some of the normal activity in vivo. However, we also observed the formation of new C17 methyl-branched unsaturated FAMEs whose structures were determined using GC/MS and NMR analyses. The double bond was located at different positions 8, 9 or 10, and the methyl group at position 10 or 9. Thus, this new FAMEs are likely arising from a 16:1 acyl chain of a phospholipid that had been transformed by the G236E CFAS mutant in vivo. The reaction catalyzed by this G236E CFAS mutant thus starts by the methylation of the unsaturated acyl chain at position 10 or 9 yielding a carbocation at position 9 or 10 respectively. It follows then two competing steps, a normal cyclopropanation or hydride shift/elimination events giving different combinations of alkenes. This study not only provides further evidence that cyclopropane synthases (CSs) form a carbocationic intermediate but also opens the way to CSs engineering for the synthesis of non-natural fatty acids.

  17. Crystallization and X-ray diffraction studies of a complete bacterial fatty-acid synthase type I

    SciTech Connect

    Enderle, Mathias; McCarthy, Andrew; Paithankar, Karthik Shivaji; Grininger, Martin

    2015-10-23

    Bacterial and fungal type I fatty-acid synthases (FAS I) are evolutionarily connected, as bacterial FAS I is considered to be the ancestor of fungal FAS I. In this work, the production, crystallization and X-ray diffraction data analysis of a bacterial FAS I are reported. While a deep understanding of the fungal and mammalian multi-enzyme type I fatty-acid synthases (FAS I) has been achieved in recent years, the bacterial FAS I family, which is narrowly distributed within the Actinomycetales genera Mycobacterium, Corynebacterium and Nocardia, is still poorly understood. This is of particular relevance for two reasons: (i) although homologous to fungal FAS I, cryo-electron microscopic studies have shown that bacterial FAS I has unique structural and functional properties, and (ii) M. tuberculosis FAS I is a drug target for the therapeutic treatment of tuberculosis (TB) and therefore is of extraordinary importance as a drug target. Crystals of FAS I from C. efficiens, a homologue of M. tuberculosis FAS I, were produced and diffracted X-rays to about 4.5 Å resolution.

  18. Polypeptide composition of bacterial cyclic diguanylic acid-dependent cellulose synthase and the occurrence of immunologically crossreacting proteins in higher plants

    SciTech Connect

    Mayer, R.; Ross, P.; Weinhouse, H.; Amikam, D.; Volman, G.; Ohana, P.; Benziman, M. ); Calhoon, R.D.; Wong, Hing C.; Emerick, A.W. )

    1991-06-15

    To comprehend the catalytic and regulatory mechanism of the cyclic diguanylic acid (c-di-GMP)-dependent cellulose synthase of Acetobacter xylinum and its relatedness to similar enzymes in other organisms, the structure of this enzyme was analyzed at the polypeptide level. The enzyme, purified 350-fold by enzyme-product entrapment, contains three major peptides (90, 67, and 54 kDa), which, based on direct photoaffinity and immunochemical labeling and amino acid sequence analysis, are constituents of the native cellulose synthase. Labeling of purified synthase with either ({sup 32}P)c-di-GMP or ({alpha}-{sup 32}P)UDP-glucose indicates that activator- and substrate-specific binding sites are most closely associated with the 67- and 54-kDa peptides, respectively, whereas marginal photolabeling is detected in the 90-k-Da peptide. However, antibodies raised against a protein derived from the cellulose synthase structural gene (bcsB) specifically label all three peptides. The authors suggest that the structurally related 67- and 54-kDa peptides are fragments proteolytically derived from the 90-kDa peptide encoded by bcsB. The anti-cellulose synthase antibodies crossreact with a similar set of peptides derived from other cellulose-producing microorganisms and plants such as Agrobacterium tumefaciens, Rhizobium leguminosarum, mung bean, peas, barley, and cotton. The occurrence of such cellulose synthase-like structures in plant species suggests that a common enzymatic mechanism for cellulose biogenesis is employed throughout nature.

  19. Analogs of the antituberculous agent pyrazinamide are competitive inhibitors of NADPH binding to M. tuberculosis fatty acid synthase I.

    PubMed

    Sayahi, Halimah; Pugliese, Kaitlin M; Zimhony, Oren; Jacobs, William R; Shekhtman, Alexander; Welch, John T

    2012-11-01

    Analogs of pyrazinamide (=pyrazine-2-carboxamide; PZA), an essential component of short-course antituberculous chemotherapy, such as 5-chloropyrazinamide (5-Cl-PZA) act as competitive inhibitors of NADPH binding to purified mycobacterial fatty acid synthase I (FAS I) as shown by Saturation Transfer Difference (STD) NMR studies. In addition, pyrazinoic acid esters (POE) and 5-Cl-POE reversibly bind to FAS I with the relatively greater affinity of longer-chain esters for FAS I, clear from the STD amplification factors. The competitive binding of PZA and 5-Cl-PZA clearly illustrates that both agents bind FAS. In contrast to PZA, at low NADPH concentrations 5-Cl-PZA is a cooperative inhibitor of NADPH binding.

  20. Campylobacter jejuni fatty acid synthase II: Structural and functional analysis of [beta]-hydroxyacyl-ACP dehydratase (FabZ)

    SciTech Connect

    Kirkpatrick, Andrew S.; Yokoyama, Takeshi; Choi, Kyoung-Jae; Yeo, Hye-Jeong

    2009-08-14

    Fatty acid biosynthesis is crucial for all living cells. In contrast to higher organisms, bacteria use a type II fatty acid synthase (FAS II) composed of a series of individual proteins, making FAS II enzymes excellent targets for antibiotics discovery. The {beta}-hydroxyacyl-ACP dehydratase (FabZ) catalyzes an essential step in the FAS II pathway. Here, we report the structure of Campylobacter jejuni FabZ (CjFabZ), showing a hexamer both in crystals and solution, with each protomer adopting the characteristic hot dog fold. Together with biochemical analysis of CjFabZ, we define the first functional FAS II enzyme from this pathogen, and provide a framework for investigation on roles of FAS II in C. jejuni virulence

  1. DNA Sequence and Expression Variation of Hop (Humulus lupulus) Valerophenone Synthase (VPS), a Key Gene in Bitter Acid Biosynthesis

    PubMed Central

    Castro, Consuelo B.; Whittock, Lucy D.; Whittock, Simon P.; Leggett, Grey; Koutoulis, Anthony

    2008-01-01

    Background The hop plant (Humulus lupulus) is a source of many secondary metabolites, with bitter acids essential in the beer brewing industry and others having potential applications for human health. This study investigated variation in DNA sequence and gene expression of valerophenone synthase (VPS), a key gene in the bitter acid biosynthesis pathway of hop. Methods Sequence variation was studied in 12 varieties, and expression was analysed in four of the 12 varieties in a series across the development of the hop cone. Results Nine single nucleotide polymorphisms (SNPs) were detected in VPS, seven of which were synonymous. The two non-synonymous polymorphisms did not appear to be related to typical bitter acid profiles of the varieties studied. However, real-time quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analysis of VPS expression during hop cone development showed a clear link with the bitter acid content. The highest levels of VPS expression were observed in two triploid varieties, ‘Symphony’ and ‘Ember’, which typically have high bitter acid levels. Conclusions In all hop varieties studied, VPS expression was lowest in the leaves and an increase in expression was consistently observed during the early stages of cone development. PMID:18519445

  2. Fatty acid synthase plays a role in cancer metabolism beyond providing fatty acids for phospholipid synthesis or sustaining elevations in glycolytic activity

    SciTech Connect

    Hopperton, Kathryn E.; Duncan, Robin E.; Bazinet, Richard P.; Archer, Michael C.

    2014-01-15

    Fatty acid synthase is over-expressed in many cancers and its activity is required for cancer cell survival, but the role of endogenously synthesized fatty acids in cancer is unknown. It has been suggested that endogenous fatty acid synthesis is either needed to support the growth of rapidly dividing cells, or to maintain elevated glycolysis (the Warburg effect) that is characteristic of cancer cells. Here, we investigate both hypotheses. First, we compared utilization of fatty acids synthesized endogenously from {sup 14}C-labeled acetate to those supplied exogenously as {sup 14}C-labeled palmitate in the culture medium in human breast cancer (MCF-7 and MDA-MB-231) and untransformed breast epithelial cells (MCF-10A). We found that cancer cells do not produce fatty acids that are different from those derived from exogenous palmitate, that these fatty acids are esterified to the same lipid and phospholipid classes in the same proportions, and that their distribution within neutral lipids is not different from untransformed cells. These results suggest that endogenously synthesized fatty acids do not fulfill a specific function in cancer cells. Furthermore, we observed that cancer cells excrete endogenously synthesized fatty acids, suggesting that they are produced in excess of requirements. We next investigated whether lipogenic activity is involved in the maintenance of high glycolytic activity by culturing both cancer and non-transformed cells under anoxic conditions. Although anoxia increased glycolysis 2–3 fold, we observed no concomitant increase in lipogenesis. Our results indicate that breast cancer cells do not have a specific qualitative or quantitative requirement for endogenously synthesized fatty acids and that increased de novo lipogenesis is not required to sustain elevations in glycolytic activity induced by anoxia in these cells. - Highlights: • Fatty acid synthase (FASN) is over-expressed in cancer but its function is unknown. • We compare

  3. An Intronless β-amyrin Synthase Gene is More Efficient in Oleanolic Acid Accumulation than its Paralog in Gentiana straminea.

    PubMed

    Liu, Yanling; Zhao, Zhongjuan; Xue, Zheyong; Wang, Long; Cai, Yunfei; Wang, Peng; Wei, Tiandi; Gong, Jing; Liu, Zhenhua; Li, Juan; Li, Shuo; Xiang, Fengning

    2016-01-01

    Paralogous members of the oxidosqualene cyclase (OSC) family encode a diversity of enzymes that are important in triterpenoid biosynthesis. This report describes the isolation of the Gentiana straminea gene GsAS2 that encodes a β-amyrin synthase (βAS) enzyme. Unlike its previously isolated paralog GsAS1, GsAS2 lacks introns. Its predicted protein product was is a 759 residue polypeptide that shares high homology with other known β-amyrin synthases (βASs). Heterologously expressed GsAS2 generates more β-amyrin in yeast than does GsAS1. Constitutive over-expression of GsAS2 resulted in a 5.7 fold increase in oleanolic acid accumulation, while over-expression of GsAS1 led to a 3 fold increase. Additionally, RNAi-directed suppression of GsAS2 and GsAS1 in G. straminea decreased oleonolic acid levels by 65.9% and 21% respectively, indicating that GsAS2 plays a more important role than GsAS1 in oleanolic acid biosynthesis in G. straminea. We uses a docking model to explore the catalytic mechanism of GsAS1/2 and predicted that GsAS2, with its Y560, have higher efficiency than GsAS1 and mutated versions of GsAS2 in β-amyrin produce. When the key residue in GsAS2 was mutagenized, it produced about 41.29% and 71.15% less β-amyrin than native, while the key residue in GsAS1 was mutagenized to that in GsAS2, the mutant produced 38.02% more β-amyrin than native GsAS1. PMID:27624821

  4. An Intronless β-amyrin Synthase Gene is More Efficient in Oleanolic Acid Accumulation than its Paralog in Gentiana straminea

    PubMed Central

    Liu, Yanling; Zhao, Zhongjuan; Xue, Zheyong; Wang, Long; Cai, Yunfei; Wang, Peng; Wei, Tiandi; Gong, Jing; Liu, Zhenhua; Li, Juan; Li, Shuo; Xiang, Fengning

    2016-01-01

    Paralogous members of the oxidosqualene cyclase (OSC) family encode a diversity of enzymes that are important in triterpenoid biosynthesis. This report describes the isolation of the Gentiana straminea gene GsAS2 that encodes a β-amyrin synthase (βAS) enzyme. Unlike its previously isolated paralog GsAS1, GsAS2 lacks introns. Its predicted protein product was is a 759 residue polypeptide that shares high homology with other known β-amyrin synthases (βASs). Heterologously expressed GsAS2 generates more β-amyrin in yeast than does GsAS1. Constitutive over-expression of GsAS2 resulted in a 5.7 fold increase in oleanolic acid accumulation, while over-expression of GsAS1 led to a 3 fold increase. Additionally, RNAi-directed suppression of GsAS2 and GsAS1 in G. straminea decreased oleonolic acid levels by 65.9% and 21% respectively, indicating that GsAS2 plays a more important role than GsAS1 in oleanolic acid biosynthesis in G. straminea. We uses a docking model to explore the catalytic mechanism of GsAS1/2 and predicted that GsAS2, with its Y560, have higher efficiency than GsAS1 and mutated versions of GsAS2 in β-amyrin produce. When the key residue in GsAS2 was mutagenized, it produced about 41.29% and 71.15% less β-amyrin than native, while the key residue in GsAS1 was mutagenized to that in GsAS2, the mutant produced 38.02% more β-amyrin than native GsAS1. PMID:27624821

  5. Insulin resistance reduces arterial prostacyclin synthase and eNOS activities by increasing endothelial fatty acid oxidation

    PubMed Central

    Du, Xueliang; Edelstein, Diane; Obici, Silvana; Higham, Ninon; Zou, Ming-Hui; Brownlee, Michael

    2006-01-01

    Insulin resistance markedly increases cardiovascular disease risk in people with normal glucose tolerance, even after adjustment for known risk factors such as LDL, triglycerides, HDL, and systolic blood pressure. In this report, we show that increased oxidation of FFAs in aortic endothelial cells without added insulin causes increased production of superoxide by the mitochondrial electron transport chain. FFA-induced overproduction of superoxide activated a variety of proinflammatory signals previously implicated in hyperglycemia-induced vascular damage and inactivated 2 important antiatherogenic enzymes, prostacyclin synthase and eNOS. In 2 nondiabetic rodent models — insulin-resistant, obese Zucker (fa/fa) rats and high-fat diet–induced insulin-resistant mice — inactivation of prostacyclin synthase and eNOS was prevented by inhibition of FFA release from adipose tissue; by inhibition of the rate-limiting enzyme for fatty acid oxidation in mitochondria, carnitine palmitoyltransferase I; and by reduction of superoxide levels. These studies identify what we believe to be a novel mechanism contributing to the accelerated atherogenesis and increased cardiovascular disease risk occurring in people with insulin resistance. PMID:16528409

  6. Characterization of heme-deficient neuronal nitric-oxide synthase reveals a role for heme in subunit dimerization and binding of the amino acid substrate and tetrahydrobiopterin.

    PubMed

    Klatt, P; Pfeiffer, S; List, B M; Lehner, D; Glatter, O; Bächinger, H P; Werner, E R; Schmidt, K; Mayer, B

    1996-03-29

    Neuronal nitric-oxide (NO) synthase contains FAD, FMN, heme, and tetrahydrobiopterin as prosthetic groups and represents a multifunctional oxidoreductase catalyzing oxidation of L-arginine to L-citrulline and NO, reduction of molecular oxygen to superoxide, and electron transfer to cytochromes. To investigate how binding of the prosthetic heme moiety is related to enzyme activities, cofactor, and L-arginine binding, as well as to secondary and quaternary protein structure, we have purified and characterized heme-deficient neuronal NO synthase. The heme-deficient enzyme, which had preserved its cytochrome c reductase activity, contained FAD and FMN, but virtually no tetrahydrobiopterin, and exhibited only marginal NO synthase activity. By means of gel filtration and static light scattering, we demonstrate that the heme-deficient enzyme is a monomer and provide evidence that heme is the sole prosthetic group controlling the quaternary structure of neuronal NO synthase. CD spectroscopy showed that most of the structural elements found in the dimeric holoenzyme were conserved in heme-deficient monomeric NO synthase. However, in spite of being properly folded, the heme-deficient enzyme did bind neither tetrahydrobiopterin nor the substrate analog N(G)-nitro-L-arginine. Our results demonstrate that the prosthetic heme group of neuronal NO synthase is requisite for dimerization of enzyme subunits and for the binding of amino acid substrate and tetrahydrobiopterin.

  7. Stilbene Synthase and Chalcone Synthase 1

    PubMed Central

    Rolfs, Claus-Henning; Kindl, Helmut

    1984-01-01

    Cultured cells of Picea excelsa capable of forming stilbenes and flavanoids have been established. Unlike needles of intact plants containing piceatannol (3,3′,4′,5-tetrahydroxystilbene) and stilbene glycosides the cultured cells converted phenylalanine and p-coumaric acid primarily into resveratrol monomethyl ether (3,4′-dihydroxy-5-methoxystilbene) and naringenin. Partially purified enzyme preparations were assayed for chalcone synthase as well as for stilbene synthase activity converting malonyl-CoA plus p-coumaroyl-CoA into 3,4′,5-trihydroxystilbene (resveratrol). Although stilbene synthase and chalcone synthase use the same substrates and exhibit similar molecular properties, i.e. molecular weight and subunit molecular weight, they are two different proteins. This difference was demonstrated by gel electrophoresis and by means of monospecific antibodies. PMID:16663649

  8. Functional analysis of the gene encoding the clavaminate synthase 2 isoenzyme involved in clavulanic acid biosynthesis in Streptomyces clavuligerus.

    PubMed Central

    Paradkar, A S; Jensen, S E

    1995-01-01

    A Streptomyces clavuligerus mutant disrupted in cas2, encoding the clavaminate synthase (CAS2) isoenzyme, was constructed by a gene replacement procedure. The resulting cas2 mutant showed no clavulanic acid production when grown in starch-asparagine medium. However, in soy medium, the cas2 mutant did produce clavulanic acid, although in amounts less than those produced by wild-type cultures. This medium-dependent leaky phenotype correlated well with the presence of the cas1 transcript, encoding the CAS1 isoenzyme, in cultures grown in soy medium and with its absence from those grown in starch-asparagine medium. This suggested that CAS1 and CAS2 both contribute to clavulanic acid production but that their production is regulated differently. Under nutritional conditions in which cas1 expression is blocked, cas2 becomes essential for clavulanic acid production. Northern (RNA) analysis revealed that while cas1 is transcribed as a 1.4-kb monocistronic transcript only, cas2 is transcribed both as a 1.2-kb monocistronic transcript and as part of a 5.3-kb polycistronic transcript. High-resolution S1 nuclease analysis located the transcription start point of the monocistronic cas2 transcript at a C residue 103 nucleotides upstream from the cas2 start codon. PMID:7868606

  9. Monoterpene synthases from common sage (Salvia officinalis)

    DOEpatents

    Croteau, Rodney Bruce; Wise, Mitchell Lynn; Katahira, Eva Joy; Savage, Thomas Jonathan

    1999-01-01

    cDNAs encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase from common sage (Salvia officinalis) have been isolated and sequenced, and the corresponding amino acid sequences has been determined. Accordingly, isolated DNA sequences (SEQ ID No:1; SEQ ID No:3 and SEQ ID No:5) are provided which code for the expression of (+)-bornyl diphosphate synthase (SEQ ID No:2), 1,8-cineole synthase (SEQ ID No:4) and (+)-sabinene synthase SEQ ID No:6), respectively, from sage (Salvia officinalis). In other aspects, replicable recombinant cloning vehicles are provided which code for (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase, or for a base sequence sufficiently complementary to at least a portion of (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant monoterpene synthases that may be used to facilitate their production, isolation and purification in significant amounts. Recombinant (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase may be used to obtain expression or enhanced expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase in plants in order to enhance the production of monoterpenoids, or may be otherwise employed for the regulation or expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase, or the production of their products.

  10. Crystallization and X-ray diffraction studies of a complete bacterial fatty-acid synthase type I

    PubMed Central

    Enderle, Mathias; McCarthy, Andrew; Paithankar, Karthik Shivaji; Grininger, Martin

    2015-01-01

    While a deep understanding of the fungal and mammalian multi-enzyme type I fatty-acid synthases (FAS I) has been achieved in recent years, the bacterial FAS I family, which is narrowly distributed within the Actinomycetales genera Mycobacterium, Corynebacterium and Nocardia, is still poorly understood. This is of particular relevance for two reasons: (i) although homologous to fungal FAS I, cryo-electron microscopic studies have shown that bacterial FAS I has unique structural and functional properties, and (ii) M. tuberculosis FAS I is a drug target for the therapeutic treatment of tuberculosis (TB) and therefore is of extraordinary importance as a drug target. Crystals of FAS I from C. efficiens, a homologue of M. tuberculosis FAS I, were produced and diffracted X-rays to about 4.5 Å resolution. PMID:26527268

  11. Crystallization and X-ray diffraction studies of a complete bacterial fatty-acid synthase type I.

    PubMed

    Enderle, Mathias; McCarthy, Andrew; Paithankar, Karthik Shivaji; Grininger, Martin

    2015-11-01

    While a deep understanding of the fungal and mammalian multi-enzyme type I fatty-acid synthases (FAS I) has been achieved in recent years, the bacterial FAS I family, which is narrowly distributed within the Actinomycetales genera Mycobacterium, Corynebacterium and Nocardia, is still poorly understood. This is of particular relevance for two reasons: (i) although homologous to fungal FAS I, cryo-electron microscopic studies have shown that bacterial FAS I has unique structural and functional properties, and (ii) M. tuberculosis FAS I is a drug target for the therapeutic treatment of tuberculosis (TB) and therefore is of extraordinary importance as a drug target. Crystals of FAS I from C. efficiens, a homologue of M. tuberculosis FAS I, were produced and diffracted X-rays to about 4.5 Å resolution.

  12. In vitro evidence that D-serine disturbs the citric acid cycle through inhibition of citrate synthase activity in rat cerebral cortex.

    PubMed

    Zanatta, Angela; Schuck, Patrícia Fernanda; Viegas, Carolina Maso; Knebel, Lisiane Aurélio; Busanello, Estela Natacha Brandt; Moura, Alana Pimentel; Wajner, Moacir

    2009-11-17

    The present work investigated the in vitro effects of D-serine (D-Ser) on important parameters of energy metabolism in cerebral cortex of young rats. The parameters analyzed were CO(2) generation from glucose and acetate, glucose uptake and the activities of the respiratory chain complexes I-IV, of the citric acid cycle enzymes citrate synthase, aconitase, isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, fumarase and malate dehydrogenase and of creatine kinase and Na(+),K(+)-ATPase. Our results show that D-Ser significantly reduced CO(2) production from acetate, but not from glucose, reflecting an impairment of the citric acid cycle function. Furthermore, D-Ser did not affect glucose uptake. We also observed that the activity of the mitochondrial enzyme citrate synthase from mitochondrial preparations and purified citrate synthase was significantly inhibited by D-Ser, whereas the other activities of the citric acid cycle as well as the activities of complexes I-III, II-III, II and IV of the respiratory chain, creatine kinase and Na(+),K(+)-ATPase were not affected by this D-amino acid. We also found that L-serine did not affect citrate synthase activity from mitochondrial preparations and purified enzyme. The data indicate that D-Ser impairs the citric acid cycle activity via citrate synthase inhibition, therefore compromising energy metabolism production in cerebral cortex of young rats. Therefore, it is presumed that this mechanism may be involved at least in part in the neurological damage found in patients affected by disorders in which D-Ser metabolism is impaired, with altered cerebral concentrations of this D-amino acid.

  13. Retinoic acid activates human inducible nitric oxide synthase gene through binding of RAR{alpha}/RXR{alpha} heterodimer to a novel retinoic acid response element in the promoter

    SciTech Connect

    Zou Fang; Liu Yan; Liu Li; Wu Kailang; Wei Wei; Zhu Ying . E-mail: yingzhu@whu.edu.cn; Wu Jianguo . E-mail: wu9988@vip.sina.com

    2007-04-06

    Human inducible nitric oxide synthase (hiNOS) catalyzes nitric oxide (NO) which has a significant effect on tumor suppression and cancer therapy. Here we revealed the detailed molecular mechanism involved in the regulation of hiNOS expression induced by retinoic acid (RA). We showed that RAR{alpha}/RXR{alpha} heterodimer was important in hiNOS promoter activation, hiNOS protein expression, and NO production. Serial deletion and site-directed mutation analysis revealed two half-sites of retinoic acid response element (RARE) spaced by 5 bp located at -172 to -156 in the hiNOS promoter. EMSA and ChIP assays demonstrated that RAR{alpha}/RXR{alpha} directly bound to this RARE of hiNOS promoter. Our results suggested the identification of a novel RARE in the hiNOS promoter and the roles of the nuclear receptors (RAR{alpha}/RXR{alpha}) in the induction of hiNOS by RA.

  14. Fatty Acid Synthase as a Factor Required for Exercise-Induced Cognitive Enhancement and Dentate Gyrus Cellular Proliferation

    PubMed Central

    Chorna, Nataliya E.; Santos-Soto, Iván J.; Carballeira, Nestor M.; Morales, Joan L.; de la Nuez, Janneliz; Cátala-Valentin, Alma; Chornyy, Anatoliy P.; Vázquez-Montes, Adrinel; De Ortiz, Sandra Peña

    2013-01-01

    Voluntary running is a robust inducer of adult hippocampal neurogenesis. Given that fatty acid synthase (FASN), the key enzyme for de novo fatty acid biosynthesis, is critically involved in proliferation of embryonic and adult neural stem cells, we hypothesized that FASN could mediate both exercise-induced cell proliferation in the subgranular zone (SGZ) of the dentate gyrus (DG) and enhancement of spatial learning and memory. In 20 week-old male mice, voluntary running-induced hippocampal-specific upregulation of FASN was accompanied also by hippocampal-specific accumulation of palmitate and stearate saturated fatty acids. In experiments addressing the functional role of FASN in our experimental model, chronic intracerebroventricular (i.c.v.) microinfusions of C75, an irreversible FASN inhibitor, and significantly impaired exercise-mediated improvements in spatial learning and memory in the Barnes maze. Unlike the vehicle-injected mice, the C75 group adopted a non-spatial serial escape strategy and displayed delayed escape latencies during acquisition and memory tests. Furthermore, pharmacologic blockade of FASN function with C75 resulted in a significant reduction, compared to vehicle treated controls, of the number of proliferative cells in the DG of running mice as measured by immunoreactive to Ki-67 in the SGZ. Taken together, our data suggest that FASN plays an important role in exercise-mediated cognitive enhancement, which might be associated to its role in modulating exercise-induced stimulation of neurogenesis. PMID:24223732

  15. Fatty acid synthase as a factor required for exercise-induced cognitive enhancement and dentate gyrus cellular proliferation.

    PubMed

    Chorna, Nataliya E; Santos-Soto, Iván J; Carballeira, Nestor M; Morales, Joan L; de la Nuez, Janneliz; Cátala-Valentin, Alma; Chornyy, Anatoliy P; Vázquez-Montes, Adrinel; De Ortiz, Sandra Peña

    2013-01-01

    Voluntary running is a robust inducer of adult hippocampal neurogenesis. Given that fatty acid synthase (FASN), the key enzyme for de novo fatty acid biosynthesis, is critically involved in proliferation of embryonic and adult neural stem cells, we hypothesized that FASN could mediate both exercise-induced cell proliferation in the subgranular zone (SGZ) of the dentate gyrus (DG) and enhancement of spatial learning and memory. In 20 week-old male mice, voluntary running-induced hippocampal-specific upregulation of FASN was accompanied also by hippocampal-specific accumulation of palmitate and stearate saturated fatty acids. In experiments addressing the functional role of FASN in our experimental model, chronic intracerebroventricular (i.c.v.) microinfusions of C75, an irreversible FASN inhibitor, and significantly impaired exercise-mediated improvements in spatial learning and memory in the Barnes maze. Unlike the vehicle-injected mice, the C75 group adopted a non-spatial serial escape strategy and displayed delayed escape latencies during acquisition and memory tests. Furthermore, pharmacologic blockade of FASN function with C75 resulted in a significant reduction, compared to vehicle treated controls, of the number of proliferative cells in the DG of running mice as measured by immunoreactive to Ki-67 in the SGZ. Taken together, our data suggest that FASN plays an important role in exercise-mediated cognitive enhancement, which might be associated to its role in modulating exercise-induced stimulation of neurogenesis.

  16. Crystal structure of Streptococcus pneumoniae acyl carrier protein synthase: an essential enzyme in bacterial fatty acid biosynthesis

    PubMed Central

    Chirgadze, Nickolay Y.; Briggs, Steven L.; McAllister, Kelly A.; Fischl, Anthony S.; Zhao, Genshi

    2000-01-01

    Acyl carrier protein synthase (AcpS) catalyzes the formation of holo-ACP, which mediates the essential transfer of acyl fatty acid intermediates during the biosynthesis of fatty acids and lipids in the cell. Thus, AcpS plays an important role in bacterial fatty acid and lipid biosynthesis, making it an attractive target for therapeutic intervention. We have determined, for the first time, the crystal structure of the Streptococcus pneumoniae AcpS and AcpS complexed with 3′5′-ADP, a product of AcpS, at 2.0 and 1.9 Å resolution, respectively. The crystal structure reveals an α/β fold and shows that AcpS assembles as a tightly packed functional trimer, with a non-crystallographic pseudo-symmetric 3-fold axis, which contains three active sites at the interface between protomers. Only two active sites are occupied by the ligand molecules. Although there is virtually no sequence similarity between the S.pneumoniae AcpS and the Bacillus subtilis Sfp transferase, a striking structural similarity between both enzymes was observed. These data provide a starting point for structure-based drug design efforts towards the identification of AcpS inhibitors with potent antibacterial activity. PMID:11032795

  17. Functional identification of the general acid and base in the dehydration step of indole-3-glycerol phosphate synthase catalysis.

    PubMed

    Zaccardi, Margot J; Yezdimer, Eric M; Boehr, David D

    2013-09-13

    The tryptophan biosynthetic enzyme indole-3-glycerol phosphate synthase is a proposed target for new antimicrobials and is a favored starting framework in enzyme engineering studies. Forty years ago, Parry proposed that the enzyme mechanism proceeds through two intermediates in a series of condensation, decarboxylation, and dehydration steps. X-ray crystal structures have suggested that Lys-110 (numbering according to the Sulfolobus solfataricus enzyme) behaves as a general acid both in the condensation and dehydration steps, but did not reveal an efficient pathway for the reprotonation of this critical residue. Our mutagenesis and kinetic experiments suggest an alternative mechanism whereby Lys-110 acts as a general acid in the condensation step, but another invariant residue, Lys-53, acts as the general acid in the dehydration step. These studies also indicate that the conserved residue Glu-51 acts as the general base in the dehydration step. The revised mechanism effectively divides the active site into discrete regions where the catalytic surfaces containing Lys-110 and Lys-53/Glu-51 catalyze the ring closure (i.e. condensation and decarboxylation) and dehydration steps, respectively. These results can be leveraged toward the development of novel inhibitors against this validated antimicrobial target and toward the rational engineering of the enzyme to produce indole derivatives that are highly prized by the pharmaceutical and agricultural industries.

  18. Increased expression of fatty acid synthase provides a survival advantage to colorectal cancer cells via upregulation of cellular respiration.

    PubMed

    Zaytseva, Yekaterina Y; Harris, Jennifer W; Mitov, Mihail I; Kim, Ji Tae; Butterfield, D Allan; Lee, Eun Y; Weiss, Heidi L; Gao, Tianyan; Evers, B Mark

    2015-08-01

    Fatty acid synthase (FASN), a lipogenic enzyme, is upregulated in colorectal cancer (CRC). Increased de novo lipid synthesis is thought to be a metabolic adaptation of cancer cells that promotes survival and metastasis; however, the mechanisms for this phenomenon are not fully understood. We show that FASN plays a role in regulation of energy homeostasis by enhancing cellular respiration in CRC. We demonstrate that endogenously synthesized lipids fuel fatty acid oxidation, particularly during metabolic stress, and maintain energy homeostasis. Increased FASN expression is associated with a decrease in activation of energy-sensing pathways and accumulation of lipid droplets in CRC cells and orthotopic CRCs. Immunohistochemical evaluation demonstrated increased expression of FASN and p62, a marker of autophagy inhibition, in primary CRCs and liver metastases compared to matched normal colonic mucosa. Our findings indicate that overexpression of FASN plays a crucial role in maintaining energy homeostasis in CRC via increased oxidation of endogenously synthesized lipids. Importantly, activation of fatty acid oxidation and consequent downregulation of stress-response signaling pathways may be key adaptation mechanisms that mediate the effects of FASN on cancer cell survival and metastasis, providing a strong rationale for targeting this pathway in advanced CRC.

  19. Δ9-Tetrahydrocannabinolic acid synthase: The application of a plant secondary metabolite enzyme in biocatalytic chemical synthesis.

    PubMed

    Lange, Kerstin; Schmid, Andreas; Julsing, Mattijs K

    2016-09-10

    Δ(9)-Tetrahydrocannabinolic acid synthase (THCAS) from the secondary metabolism of Cannabis sativa L. catalyzes the oxidative formation of an intramolecular CC bond in cannabigerolic acid (CBGA) to synthesize Δ(9)-tetrahydrocannabinolic acid (THCA), which is the direct precursor of Δ(9)-tetrahydrocannabinol (Δ(9)-THC). Aiming on a biotechnological production of cannabinoids, we investigated the potential of the heterologously produced plant oxidase in a cell-free system on preparative scale. THCAS was characterized in an aqueous/organic two-liquid phase setup in order to solubilize the hydrophobic substrate and to allow in situ product removal. Compared to the single phase aqueous setup the specific activity decreased by a factor of approximately 2 pointing to a substrate limitation of CBGA in the two-liquid phase system. However, the specific activity remained stable for at least 3h illustrating the benefit of the two-liquid phase setup. In a repeated-batch setup, THCAS showed only a minor loss of specific activity in the third batch pointing to a high intrinsic stability and high solvent tolerance of the enzyme. Maximal space-time-yields of 0.121gL(-1)h(-1) were reached proving the two-liquid phase concept suitable for biotechnological production of cannabinoids. PMID:27369551

  20. Citrate enhances in vitro metastatic behaviours of PC-3M human prostate cancer cells: status of endogenous citrate and dependence on aconitase and fatty acid synthase.

    PubMed

    Mycielska, Maria E; Broke-Smith, Timothy P; Palmer, Christopher P; Beckerman, Rachel; Nastos, Theodoros; Erguler, Kamil; Djamgoz, Mustafa B A

    2006-01-01

    Prostate is a unique organ that produces and releases large amounts of citrate. This is reduced significantly in cancer and it is possible that citrate is (re)taken up and used as a metabolite to enhance cellular activity. The main purpose of this study was to determine how cytosolic citrate might affect in vitro metastatic cell behaviours (lateral motility, endocytosis and adhesion). Normal (PNT2-C2) and metastatic (PC-3M) human prostate cancer cells were used in a comparative approach. As regards intermediary metabolic enzymes, aconitase and fatty acid synthase, already implicated in prostate cancer, were evaluated. The level of intracellular citrate was significantly higher in PNT2-C2 cells under both control conditions and following preincubation in extracellular citrate. Supply of exogenous citrate enhanced endocytosis, lateral motility, decreased cell adhesion of PC-3M cells but failed to produce any effect on normal cells. Real-time PCR measurements showed that the mRNA levels of mitochondrial and cytosolic aconitases and fatty acid synthase were significantly higher in PC-3M cells. Correspondingly, aconitase activity was also higher in PC-3M cells. Using cerulenin (an inhibitor of fatty acid synthase), oxalomalate and fluorocitrate (inhibiting aconitases), we investigated the dependence of citrate-induced down-regulation of cellular adhesion on aconitase and fatty acid synthase activities. It was concluded: (1) that strongly metastatic PC-3M cells stored less/utilised more cytosolic citrate than the normal PNT2-C2 cells and (2) that cancer cells could metabolise cytoplasmic citrate via aconitase and fatty acid synthase to enhance their metastatic behaviour. PMID:16798056

  1. Associations of Uric Acid with Polymorphisms in the δ-Aminolevulinic Acid Dehydratase, Vitamin D Receptor, and Nitric Oxide Synthase Genes in Korean Lead Workers

    PubMed Central

    Weaver, Virginia M.; Schwartz, Brian S.; Jaar, Bernard G.; Ahn, Kyu-Dong; Todd, Andrew C.; Lee, Sung-Soo; Kelsey, Karl T.; Silbergeld, Ellen K.; Lustberg, Mark E.; Parsons, Patrick J.; Wen, Jiayu; Lee, Byung-Kook

    2005-01-01

    Recent research suggests that uric acid may be nephrotoxic at lower levels than previously recognized and that it may be one mechanism for lead-related nephrotoxicity. Therefore, in understanding mechanisms for lead-related nephrotoxicity, it would be of value to determine whether genetic polymorphisms that are associated with renal outcomes in lead workers and/or modify associations between lead dose and renal function are also associated with uric acid and/or modify associations between lead dose and uric acid. We analyzed data on three such genetic polymorphisms: δ-aminolevulinic acid dehydratase (ALAD), endothelial nitric oxide synthase (eNOS), and the vitamin D receptor (VDR). Mean (± SD) tibia, blood, and dimercaptosuccinic acid–chelatable lead levels were 37.2 ± 40.4 μg/g bone mineral, 32.0± 15.0 g/dL, and 0.77± 0.86 μg/mg creatinine, respectively, in 798 current and former lead workers. Participants with the eNOS Asp allele had lower mean serum uric acid compared with those with the Glu/Glu genotype. Among older workers (age ≥ median of 40.6 years), ALAD genotype modified associations between lead dose and uric acid levels. Higher lead dose was significantly associated with higher uric acid in workers with the ALAD1-1 genotype; associations were in the opposite direction in participants with the variant ALAD1-2 genotype. In contrast, higher tibia lead was associated with higher uric acid in those with the variant VDR B allele; however, modification was dependent on participants with the bb genotype and high tibia lead levels. We conclude that genetic polymorphisms may modify uric acid mediation of lead-related adverse renal effects. PMID:16263504

  2. (+)-Abscisic Acid Metabolism, 3-Ketoacyl-Coenzyme A Synthase Gene Expression, and Very-Long-Chain Monounsaturated Fatty Acid Biosynthesis in Brassica napus Embryos1

    PubMed Central

    Qi, Qungang; Rose, Patricia A.; Abrams, Garth D.; Taylor, David C.; Abrams, Suzanne R.; Cutler, Adrian J.

    1998-01-01

    Microspore-derived embryos of Brassica napus cv Reston were used to examine the effects of exogenous (+)-abscisic acid (ABA) and related compounds on the accumulation of very-long-chain monounsaturated fatty acids (VLCMFAs), VLCMFA elongase complex activity, and induction of the 3-ketoacyl-coenzyme A synthase (KCS) gene encoding the condensing enzyme of the VLCMFA elongation system. Of the concentrations tested, (+)-ABA at 10 μm showed the strongest effect. Maximum activity of the elongase complex, observed 6 h after 10 μm (+)-ABA treatment, was 60% higher than that of the untreated embryos at 24 h. The transcript of the KCS gene was induced by 10 μm (+)-ABA within 1 h and further increased up to 6 h. The VLCMFAs eicosenoic acid (20:1) and erucoic acid (22:1) increased by 1.5- to 2-fold in embryos treated with (+)-ABA for 72 h. Also, (+)-8′-methylene ABA, which is metabolized more slowly than ABA, had a stronger ABA-like effect on the KCS gene transcription, elongase complex activity (28% higher), and level of VLCMFAs (25–30% higher) than ABA. After 24 h approximately 60% of the added (+)-[3H]ABA (10 μm) was metabolized, yielding labeled phaseic and dihydrophaseic acid. This study demonstrates that (+)-ABA promotes VLCMFA biosynthesis via increased expression of the KCS gene and that reducing ABA catabolism would increase VLCMFAs in microspore-derived embryos. PMID:9662540

  3. Geranyl diphosphate synthase from mint

    DOEpatents

    Croteau, Rodney Bruce; Wildung, Mark Raymond; Burke, Charles Cullen; Gershenzon, Jonathan

    1999-01-01

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate.

  4. Geranyl diphosphate synthase from mint

    DOEpatents

    Croteau, R.B.; Wildung, M.R.; Burke, C.C.; Gershenzon, J.

    1999-03-02

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate. 5 figs.

  5. Expression and regulation of pear 1-aminocyclopropane-1-carboxylic acid synthase gene (PpACS1a) during fruit ripening, under salicylic acid and indole-3-acetic acid treatment, and in diseased fruit.

    PubMed

    Shi, Hai-Yan; Zhang, Yu-Xing

    2014-06-01

    In plants, the level of ethylene is determined by the activity of the key enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS). A gene encoding an ACC synthase protein was isolated from pear (Pyrus pyrifolia). This gene designated PpACS1a (GenBank accession no. KC632526) was 1488 bp in length with an open reading frame (ORF) encoding a protein of 495 amino acids that shared high similarity with other pear ACC synthase proteins. The PpACS1a was grouped into type-1 subfamily of plant ACS based on its conserved domain and phylogenetic status. Real-time quantitative PCR indicated that PpACS1a was differentially expressed in pear tissues and predominantly expressed in anthers. The expression signal of PpACS1a was also detected in fruit and leaves, but no signal was detected in shoots and petals. Furthermore, the PpACS1a expression was regulated during fruit ripening. In addition, the PpACS1a gene expression was regulated by salicylic acid (SA) and indole-3-acetic acid (IAA) in fruit. Moreover, the expression of the PpACS1a was up-regulated in diseased pear fruit. These results indicated that PpACS1a might be involved in fruit ripening and response to SA, IAA and disease.

  6. Delayed circulatory failure due to the induction of nitric oxide synthase by lipoteichoic acid from Staphylococcus aureus in anaesthetized rats.

    PubMed Central

    De Kimpe, S J; Hunter, M L; Bryant, C E; Thiemermann, C; Vane, J R

    1995-01-01

    1. This study investigates the effect of lipoteichoic acid (LTA) from the cell wall of Staphylococcus aureus, a micro-organism without endotoxin, on haemodynamics and induction of nitric oxide synthase (iNOS) in the anaesthetized rat. 2. Intravenous injection of LTA (10 mg kg-1) resulted in a decrease in blood pressure from 123 +/- 1 mmHg to 83 +/- 7 mmHg after 270 min (P < 0.001) and a reduction of the pressor response to noradrenaline (1 microgram kg-1) from 33 +/- 1 mmHg.min to 23 +/- 3 mmHg.min after 270 min (P < 0.05). 3. The delayed circulatory failure (hypotension and vascular hyporeactivity) caused by LTA was prevented by pretreatment of rats with dexamethasone (10 mg kg-1, 60 min prior to LTA) or the nitric oxide synthase inhibitor NG-monomethyl-L-arginine (L-NMMA, 10 mg kg-1 h-1, i.v. infusion starting 30 min prior to LTA). 4. In contrast, treatment of rats with polymyxin B (0.05 mg kg-1), an agent which binds endotoxin (lipopolysaccharides, LPS), did not affect the delayed circulatory failure caused by LTA. Polymyxin B, however, attenuated the hypotension and vascular hyporeactivity to noradrenaline afforded by endotoxaemia (2 mg kg-1 LPS, i.v.) for 270 min. 5. The delayed circulatory failure caused by LTA was associated with a time-dependent increase in (i) the expression of iNOS protein in the lung (Western blot analysis), and (ii) iNOS activity. This increase in iNOS protein and activity was prevented by pretreatment of LTA-rats with dexamethasone (10 mg kg-1).(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 6 PMID:7542534

  7. In Silico Structure Prediction of Human Fatty Acid Synthase-Dehydratase: A Plausible Model for Understanding Active Site Interactions.

    PubMed

    John, Arun; Umashankar, Vetrivel; Samdani, A; Sangeetha, Manoharan; Krishnakumar, Subramanian; Deepa, Perinkulam Ravi

    2016-01-01

    Fatty acid synthase (FASN, UniProt ID: P49327) is a multienzyme dimer complex that plays a critical role in lipogenesis. Consequently, this lipogenic enzyme has gained tremendous biomedical importance. The role of FASN and its inhibition is being extensively researched in several clinical conditions, such as cancers, obesity, and diabetes. X-ray crystallographic structures of some of its domains, such as β-ketoacyl synthase, acetyl transacylase, malonyl transacylase, enoyl reductase, β-ketoacyl reductase, and thioesterase, (TE) are already reported. Here, we have attempted an in silico elucidation of the uncrystallized dehydratase (DH) catalytic domain of human FASN. This theoretical model for DH domain was predicted using comparative modeling methods. Different stand-alone tools and servers were used to validate and check the reliability of the predicted models, which suggested it to be a highly plausible model. The stereochemical analysis showed 92.0% residues in favorable region of Ramachandran plot. The initial physiological substrate β-hydroxybutyryl group was docked into active site of DH domain using Glide. The molecular dynamics simulations carried out for 20 ns in apo and holo states indicated the stability and accuracy of the predicted structure in solvated condition. The predicted model provided useful biochemical insights into the substrate-active site binding mechanisms. This model was then used for identifying potential FASN inhibitors using high-throughput virtual screening of the National Cancer Institute database of chemical ligands. The inhibitory efficacy of the top hit ligands was validated by performing molecular dynamics simulation for 20 ns, where in the ligand NSC71039 exhibited good enzyme inhibition characteristics and exhibited dose-dependent anticancer cytotoxicity in retinoblastoma cancer cells in vitro. PMID:27559295

  8. Function of heterologous Mycobacterium tuberculosis InhA, a type 2 fatty acid synthase enzyme involved in extending C20 fatty acids to C60-to-C90 mycolic acids, during de novo lipoic acid synthesis in Saccharomyces cerevisiae.

    PubMed

    Gurvitz, Aner; Hiltunen, J Kalervo; Kastaniotis, Alexander J

    2008-08-01

    We describe the physiological function of heterologously expressed Mycobacterium tuberculosis InhA during de novo lipoic acid synthesis in yeast (Saccharomyces cerevisiae) mitochondria. InhA, representing 2-trans-enoyl-acyl carrier protein reductase and the target for the front-line antituberculous drug isoniazid, is involved in the activity of dissociative type 2 fatty acid synthase (FASII) that extends associative type 1 fatty acid synthase (FASI)-derived C(20) fatty acids to form C(60)-to-C(90) mycolic acids. Mycolic acids are major constituents of the protective layer around the pathogen that contribute to virulence and resistance to certain antimicrobials. Unlike FASI, FASII is thought to be incapable of de novo biosynthesis of fatty acids. Here, the genes for InhA (Rv1484) and four similar proteins (Rv0927c, Rv3485c, Rv3530c, and Rv3559c) were expressed in S. cerevisiae etr1Delta cells lacking mitochondrial 2-trans-enoyl-thioester reductase activity. The phenotype of the yeast mutants includes the inability to produce sufficient levels of lipoic acid, form mitochondrial cytochromes, respire, or grow on nonfermentable carbon sources. Yeast etr1Delta cells expressing mitochondrial InhA were able to respire, grow on glycerol, and produce lipoic acid. Commensurate with a role in mitochondrial de novo fatty acid biosynthesis, InhA could accept in vivo much shorter acyl-thioesters (C(4) to C(8)) than was previously thought (>C(12)). Moreover, InhA functioned in the absence of AcpM or protein-protein interactions with its native FASII partners KasA, KasB, FabD, and FabH. None of the four proteins similar to InhA complemented the yeast mutant phenotype. We discuss the implications of our findings with reference to lipoic acid synthesis in M. tuberculosis and the potential use of yeast FASII mutants for investigating the physiological function of drug-targeted pathogen enzymes involved in fatty acid biosynthesis. PMID:18552191

  9. Characterization of cationic amino acid transporters and expression of endothelial nitric oxide synthase in human placental microvascular endothelial cells.

    PubMed

    Dye, J F; Vause, S; Johnston, T; Clark, P; Firth, J A; D'Souza, S W; Sibley, C P; Glazier, J D

    2004-01-01

    We investigated the expression and activity of arginine transporters and endothelial nitric oxide synthase (eNOS) in human placental microvascular endothelial cells (HPMEC). Using RT-PCR amplification products for eNOS, CAT1, CAT2A, CAT2B, CAT4, 4F2hc (CD98), rBAT and the light chains y+LAT1, y+LAT2, and b0+T1 were detected in HPMEC, but not B0+. Immunohistochemistry and Western blotting confirmed the presence of 4F2hc and CAT1 protein in HPMEC. 4F2hc-light chain dimers were indicated by a shift in molecular mass detected under nonreducing conditions. L-Arginine transport into HPMEC was independent of Na+ or Cl- and was inhibited by the neutral amino acid glutamine, but not by cystine. The Ki for glutamine inhibition was greater in the absence of Na+. Kinetic analysis supported a two-transporter model attributed to system y+L and system y+. Expression of eNOS in HPMEC was detectable by immunohistochemistry and ELISA but not by Western blotting. Activity of eNOS in HPMEC, measured over 48 h, either as the basal production of nitric oxide (NO) or as the accumulation of intracellular cGMP was not detectable. We conclude that HPMEC transport cationic amino acids by systems y+ and y+L and that basal eNOS expression and activity in these cells is low. PMID:14597568

  10. Inhibitory effects of onion (Allium cepa L.) extract on proliferation of cancer cells and adipocytes via inhibiting fatty acid synthase.

    PubMed

    Wang, Yi; Tian, Wei-Xi; Ma, Xiao-Feng

    2012-01-01

    Onions (Allium cepa L.) are widely used in the food industry for its nutritional and aromatic properties. Our studies showed that ethyl acetate extract of onion (EEO) had potent inhibitory effects on animal fatty acid synthase (FAS), and could induce apoptosis in FAS over-expressing human breast cancer MDA-MB-231 cells. Furthermore, this apoptosis was accompanied by reduction of intracellular FAS activity and could be rescued by 25 mM or 50 mM exogenous palmitic acids, the final product of FAS catalyzed synthesis. These results suggest that the apoptosis induced by EEO occurs via inhibition of FAS. We also found that EEO could suppress lipid accumulation during the differentiation of 3T3-L1 adipocytes, which was also related to its inhibition of intracellular FAS activity. Since obesity is closely related to breast cancer and obese patients are at elevated risk of developing various cancers, these findings suggested that onion might be useful for preventing obesity-related malignancy.

  11. Regulation of Expression of Citrate Synthase by the Retinoic Acid Receptor-Related Orphan Receptor α (RORα)

    PubMed Central

    Crumbley, Christine; Wang, Yongjun; Banerjee, Subhashis; Burris, Thomas P.

    2012-01-01

    The retinoic acid receptor-related orphan receptor α (RORα) is a member of the nuclear receptor superfamily of transcription factors that plays an important role in regulation of the circadian rhythm and metabolism. Mice lacking a functional RORα display a range of metabolic abnormalities including decreased serum cholesterol and plasma triglycerides. Citrate synthase (CS) is a key enzyme of the citric acid cycle that provides energy for cellular function. Additionally, CS plays a critical role in providing citrate derived acetyl-CoA for lipogenesis and cholesterologenesis. Here, we identified a functional RORα response element (RORE) in the promoter of the CS gene. ChIP analysis demonstrates RORα occupancy of the CS promoter and a putative RORE binds to RORα effectively in an electrophoretic mobility shift assay and confers RORα responsiveness to a reporter gene in a cotransfection assay. We also observed a decrease in CS gene expression and CS enzymatic activity in the staggerer mouse, which has a mutation of in the Rora gene resulting in nonfunctional RORα protein. Furthermore, we found that SR1001 a RORα inverse agonist eliminated the circadian pattern of expression of CS mRNA in mice. These data suggest that CS is a direct RORα target gene and one mechanism by which RORα regulates lipid metabolism is via regulation of CS expression. PMID:22485150

  12. ACTIVATION OF VASCULAR ENDOTHELIAL NITRIC OXIDE SYNTHASE AND HEME OXYGENASE-1 EXPRESSION BY ELECTROPHILIC NITRO-FATTY ACIDS

    PubMed Central

    Khoo, Nicholas K.H.; Rudolph, Volker; Cole, Marsha P.; Golin-Bisello, Franca; Schopfer, Francisco J.; Woodcock, Steven R.; Batthyany, Carlos; Freeman, Bruce A.

    2010-01-01

    Reactive oxygen species mediate a decrease in nitric oxide (NO) bioavailability and endothelial dysfunction, with secondary oxidized and nitrated byproducts of these reactions contributing to the pathogenesis of numerous vascular diseases. While oxidized lipids and lipoproteins exacerbate inflammatory reactions in the vasculature, in stark contrast the nitration of polyunsaturated fatty acids and complex lipids yield electrophilic products that exhibit pluripotent anti-inflammatory signaling capabilities acting via both cGMP-dependent and -independent mechanisms. Herein we report that nitro-oleic acid (OA-NO2) treatment increases expression of endothelial nitric oxide synthase (eNOS) and heme oxygenase 1 (HO-1) in the vasculature, thus transducing vascular protective effects associated with enhanced NO production. Administration of OA-NO2 via osmotic pump results in a significant increase in eNOS and HO-1 mRNA in mouse aortas. Moreover, HPLC-MS/MS analysis showed that NO2-FAs are rapidly metabolized in cultured endothelial cells (ECs) and treatment with NO2-FAs stimulated the phosphorylation of eNOS at Ser1179. These post-translational modifications of eNOS, in concert with elevated eNOS gene expression, contributed to an increase in endothelial NO production. In aggregate, OA-NO2-induced eNOS and HO-1 expression by vascular cells can induce beneficial effects on endothelial function and provide a new strategy for treating various vascular inflammatory and hypertensive disorders. PMID:19857569

  13. Low concentrations of salicylic acid delay methyl jasmonate-induced leaf senescence by up-regulating nitric oxide synthase activity.

    PubMed

    Ji, Yingbin; Liu, Jian; Xing, Da

    2016-09-01

    In plants, extensive efforts have been devoted to understanding the crosstalk between salicylic acid (SA) and jasmonic acid (JA) signaling in pathogen defenses, but this crosstalk has scarcely been addressed during senescence. In this study, the effect of SA application on methyl jasmonate (MeJA)-induced leaf senescence was assessed. We found that low concentrations of SA (1-50 μM) played a delayed role against the senescence promoted by MeJA. Furthermore, low concentrations of SA enhanced plant antioxidant defenses and restricted reactive oxygen species (ROS) accumulation in MeJA-treated leaves. When applied simultaneously with MeJA, low concentrations of SA triggered a nitric oxide (NO) burst, and the elevated NO levels were linked to the nitric oxide associated 1 (NOA1)-dependent pathway via nitric oxide synthase (NOS) activity. The ability of SA to up-regulate plant antioxidant defenses, reduce ROS accumulation, and suppress leaf senescence was lost in NO-deficient Atnoa1 plants. In a converse manner, exogenous addition of NO donors increased the plant antioxidant capacity and lowered the ROS levels in MeJA-treated leaves. Taken together, the results indicate that SA at low concentrations counteracts MeJA-induced leaf senescence through NOA1-dependent NO signaling and strengthening of the antioxidant defense. PMID:27440938

  14. Association between single-nucleotide polymorphisms of fatty acid synthase gene and meat quality traits in Datong Yak (Bos grunniens).

    PubMed

    Chu, M; Wu, X Y; Guo, X; Pei, J; Jiao, F; Fang, H T; Liang, C N; Ding, X Z; Bao, P J; Yan, P

    2015-03-30

    Fatty acid synthase (FASN) is a key enzyme in fatty acid anabolism that plays an important role in the fat deposit of eukaryotic cells. Therefore, in this study, we detected 2 novel single-nucleotide polymorphisms (SNPs) in the FASN gene in 313 adult individuals of Datong yak using polymerase chain reaction-single strand conformation polymorphism and DNA sequencing techniques. SNP g.5477C>T is located in intron 3 of FASN, and 3 genotypes, HH, HG, and GG, were detected in this mutation site. SNP g.16930T>A is located in exon 37 of FASN, and 2 genotypes, EE and EF, were detected in this site. Association analysis of these 2 SNPs with meat quality traits showed that in SNP g.5477C>T, yaks with the HH genotype and HG genotype had significantly higher intramuscular fat content than individuals with the GG genotype (P < 0.01). In SNP g.16930T>A, yaks with the EE genotype also had significantly higher IMF content than individuals with the EF genotype (P < 0.01). The results indicate that FASN may be used as a candidate gene affecting intramuscular fat content in Datong yaks.

  15. Improvement of glyphosate resistance through concurrent mutations in three amino acids of the Ochrobactrum 5-enopyruvylshikimate-3-phosphate synthase.

    PubMed

    Tian, Yong-Sheng; Xu, Jing; Xiong, Ai-Sheng; Zhao, Wei; Fu, Xiao-Yan; Peng, Ri-He; Yao, Quan-Hong

    2011-12-01

    A mutant of 5-enopyruvylshikimate-3-phosphate synthase from Ochrobactrum anthropi was identified after four rounds of DNA shuffling and screening. Its ability to restore the growth of the mutant ER2799 cell on an M9 minimal medium containing 300 mM glyphosate led to its identification. The mutant had mutations in seven amino acids: E145G, N163H, N267S, P318R, M377V, M425T, and P438L. Among these mutations, N267S, P318R, and M425T have never been previously reported as important residues for glyphosate resistance. However, in the present study they were found by site-directed mutagenesis to collectively contribute to the improvement of glyphosate tolerance. Kinetic analyses of these three mutants demonstrated that the effectiveness of these three individual amino acid alterations on glyphosate tolerance was in the order P318R > M425T > N267S. The results of the kinetic analyses combined with a three-dimensional structure modeling of the location of P318R and M425T demonstrate that the lower hemisphere's upper surface is possibly another important region for glyphosate resistance. Furthermore, the transgenic Arabidopsis was obtained to confirm the potential of the mutant in developing glyphosate-resistant crops.

  16. Enhancement of the inducible NO synthase activation by retinoic acid is mimicked by RARalpha agonist in vivo.

    PubMed

    Seguin-Devaux, Carole; Devaux, Yvan; Latger-Cannard, Véronique; Grosjean, Sandrine; Rochette-Egly, Cécile; Zannad, Faiez; Meistelman, Claude; Mertes, Paul-Michel; Longrois, Dan

    2002-09-01

    We have previously shown that all-trans retinoic acid (atRA), the active metabolite of vitamin A, enhances the activation of the inducible nitric oxide synthase (NOS II) pathway, a component of innate immunity, in rats in vivo. We investigated the relative contribution of retinoic acid receptor-alpha (RARalpha) and retinoid X receptors (RXRs) to NOS II activation triggered by LPS. Five-day supplementation with 10 mg/kg of either atRA or the RARalpha selective agonist Ro-40-6055, but not with 10 mg/kg of the pan-RXR agonist Ro-25-7386, enhanced the LPS-induced NOS II mRNA, protein expression in liver, and plasma nitrite/nitrate concentration. Both atRA and the RARalpha agonist (but not the RXR agonist) increased the number of peripheral T helper lymphocytes and plasma interferon-gamma concentration. Synergism between retinoids and LPS on NOS II activation within an organ coincided with synergism on interferon regulatory factor-1 mRNA expression but not with the level of expression of the RARalpha protein. These results suggest that, in vivo, atRA activates NOS II through RARalpha and contributes to characterizing the complex effect of retinoids on the host inflammatory/immune response.

  17. Effect of increased free fatty acid supply on glucose metabolism and skeletal muscle glycogen synthase activity in normal man.

    PubMed

    Johnson, A B; Argyraki, M; Thow, J C; Cooper, B G; Fulcher, G; Taylor, R

    1992-02-01

    1. Experimental elevation of plasma non-esterified fatty acid concentrations has been postulated to decrease insulin-stimulated glucose oxidation and storage rates. Possible mechanisms were examined by measuring skeletal muscle glycogen synthase activity and muscle glycogen content before and during hyperinsulinaemia while fasting plasma non-esterified fatty acid levels were maintained. 2. Fasting plasma non-esterified fatty acid levels were maintained in seven healthy male subjects by infusion of 20% (w/v) Intralipid (1 ml/min) for 120 min before and during a 240 min hyperinsulinaemic euglycaemic clamp (100 m-units h-1 kg-1) combined with indirect calorimetry. On the control day, 0.154 mol/l NaCl was infused. Vastus lateralis muscle biopsy was performed before and at the end of the insulin infusion. 3. On the Intralipid study day serum triacylglycerol (2.24 +/- 0.20 versus 0.67 +/- 0.10 mmol/l), plasma nonesterified fatty acid (395 +/- 13 versus 51 +/- 1 mumol/l), blood glycerol (152 +/- 2 versus 11 +/- 1 mumol/l) and blood 3-hydroxybutyrate clamp levels [mean (95% confidence interval)] [81 (64-104) versus 4 (3-5) mumol/l] were all significantly higher (all P less than 0.001) than on the control study day. Lipid oxidation rates were also elevated (1.07 +/- 0.07 versus 0.27 +/- 0.08 mg min-1 kg-1, P less than 0.001). During the clamp with Intralipid infusion, insulin-stimulated whole-body glucose disposal decreased by 28% (from 8.53 +/- 0.77 to 6.17 +/- 0.71 mg min-1 kg-1, P less than 0.005).(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Increased expression of fatty acid synthase and acetyl-CoA carboxylase in the prefrontal cortex and cerebellum in the valproic acid model of autism

    PubMed Central

    Chen, Jianling; Wu, Wei; Fu, Yingmei; Yu, Shunying; Cui, Donghong; Zhao, Min; Du, Yasong; Li, Jijun; Li, Xiaohong

    2016-01-01

    The primary aim of the present study was to investigate alterations in enzymes associated with fatty acid synthesis, namely fatty acid synthase (FASN) and acetyl-CoA carboxylase (ACC), in the prefrontal cortex and cerebellum of the valproic acid (VPA)-induced animal model of autism. In this model, pregnant rats were given a single intraperitoneal injection of VPA, and prefrontal cortex and cerebellum samples from their pups were analyzed. The results of western blotting and reverse transcription-quantitative polymerase chain reaction analyses demonstrated that the protein and mRNA expression levels of FASN, ACC and phospho-ACC (pACC) were increased in the prefrontal cortex and cerebellum of the VPA model of autism. Furthermore, in the prefrontal cortex and cerebellum of the VPA model of autism, AMPK expression is increased, whereas PI3K and Akt expression are unchanged. This suggests that disorder of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt/FASN and/or adenosine 5′-monophosphate-activated protein kinase (AMPK)/ACC pathway may be involved in the pathogenesis of autism. It is hypothesized that fatty acid synthesis participates in autism through PI3K/Akt/FASN and AMPK/ACC pathways. PMID:27602061

  19. Increased expression of fatty acid synthase and acetyl-CoA carboxylase in the prefrontal cortex and cerebellum in the valproic acid model of autism

    PubMed Central

    Chen, Jianling; Wu, Wei; Fu, Yingmei; Yu, Shunying; Cui, Donghong; Zhao, Min; Du, Yasong; Li, Jijun; Li, Xiaohong

    2016-01-01

    The primary aim of the present study was to investigate alterations in enzymes associated with fatty acid synthesis, namely fatty acid synthase (FASN) and acetyl-CoA carboxylase (ACC), in the prefrontal cortex and cerebellum of the valproic acid (VPA)-induced animal model of autism. In this model, pregnant rats were given a single intraperitoneal injection of VPA, and prefrontal cortex and cerebellum samples from their pups were analyzed. The results of western blotting and reverse transcription-quantitative polymerase chain reaction analyses demonstrated that the protein and mRNA expression levels of FASN, ACC and phospho-ACC (pACC) were increased in the prefrontal cortex and cerebellum of the VPA model of autism. Furthermore, in the prefrontal cortex and cerebellum of the VPA model of autism, AMPK expression is increased, whereas PI3K and Akt expression are unchanged. This suggests that disorder of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt/FASN and/or adenosine 5′-monophosphate-activated protein kinase (AMPK)/ACC pathway may be involved in the pathogenesis of autism. It is hypothesized that fatty acid synthesis participates in autism through PI3K/Akt/FASN and AMPK/ACC pathways.

  20. Direct Inhibition of Cellular Fatty Acid Synthase Impairs Replication of Respiratory Syncytial Virus and Other Respiratory Viruses.

    PubMed

    Ohol, Yamini M; Wang, Zhaoti; Kemble, George; Duke, Gregory

    2015-01-01

    Fatty acid synthase (FASN) catalyzes the de novo synthesis of palmitate, a fatty acid utilized for synthesis of more complex fatty acids, plasma membrane structure, and post-translational palmitoylation of host and viral proteins. We have developed a potent inhibitor of FASN (TVB-3166) that reduces the production of respiratory syncytial virus (RSV) progeny in vitro from infected human lung epithelial cells (A549) and in vivo from mice challenged intranasally with RSV. Addition of TVB-3166 to the culture medium of RSV-infected A549 cells reduces viral spread without inducing cytopathic effects. The antiviral effect of the FASN inhibitor is a direct consequence of reducing de novo palmitate synthesis; similar doses are required for both antiviral activity and inhibition of palmitate production, and the addition of exogenous palmitate to TVB-3166-treated cells restores RSV production. TVB-3166 has minimal effect on RSV entry but significantly reduces viral RNA replication, protein levels, viral particle formation and infectivity of released viral particles. TVB-3166 substantially impacts viral replication, reducing production of infectious progeny 250-fold. In vivo, oral administration of TVB-3166 to RSV-A (Long)-infected BALB/c mice on normal chow, starting either on the day of infection or one day post-infection, reduces RSV lung titers 21-fold and 9-fold respectively. Further, TVB-3166 also inhibits the production of RSV B, human parainfluenza 3 (PIV3), and human rhinovirus 16 (HRV16) progeny from A549, HEp2 and HeLa cells respectively. Thus, inhibition of FASN and palmitate synthesis by TVB-3166 significantly reduces RSV progeny both in vitro and in vivo and has broad-spectrum activity against other respiratory viruses. FASN inhibition may alter the composition of regions of the host cell membrane where RSV assembly or replication occurs, or change the membrane composition of RSV progeny particles, decreasing their infectivity.

  1. Direct Inhibition of Cellular Fatty Acid Synthase Impairs Replication of Respiratory Syncytial Virus and Other Respiratory Viruses

    PubMed Central

    Ohol, Yamini M.; Wang, Zhaoti; Kemble, George; Duke, Gregory

    2015-01-01

    Fatty acid synthase (FASN) catalyzes the de novo synthesis of palmitate, a fatty acid utilized for synthesis of more complex fatty acids, plasma membrane structure, and post-translational palmitoylation of host and viral proteins. We have developed a potent inhibitor of FASN (TVB-3166) that reduces the production of respiratory syncytial virus (RSV) progeny in vitro from infected human lung epithelial cells (A549) and in vivo from mice challenged intranasally with RSV. Addition of TVB-3166 to the culture medium of RSV-infected A549 cells reduces viral spread without inducing cytopathic effects. The antiviral effect of the FASN inhibitor is a direct consequence of reducing de novo palmitate synthesis; similar doses are required for both antiviral activity and inhibition of palmitate production, and the addition of exogenous palmitate to TVB-3166-treated cells restores RSV production. TVB-3166 has minimal effect on RSV entry but significantly reduces viral RNA replication, protein levels, viral particle formation and infectivity of released viral particles. TVB-3166 substantially impacts viral replication, reducing production of infectious progeny 250-fold. In vivo, oral administration of TVB-3166 to RSV-A (Long)-infected BALB/c mice on normal chow, starting either on the day of infection or one day post-infection, reduces RSV lung titers 21-fold and 9-fold respectively. Further, TVB-3166 also inhibits the production of RSV B, human parainfluenza 3 (PIV3), and human rhinovirus 16 (HRV16) progeny from A549, HEp2 and HeLa cells respectively. Thus, inhibition of FASN and palmitate synthesis by TVB-3166 significantly reduces RSV progeny both in vitro and in vivo and has broad-spectrum activity against other respiratory viruses. FASN inhibition may alter the composition of regions of the host cell membrane where RSV assembly or replication occurs, or change the membrane composition of RSV progeny particles, decreasing their infectivity. PMID:26659560

  2. Examining the Relationship Between Cu-ATSM Hypoxia Selectivity and Fatty Acid Synthase Expression in Human Prostate Cancer Cell Lines

    PubMed Central

    Vāvere, Amy L.; Lewis, Jason S.

    2013-01-01

    Introduction PET imaging with Cu-ATSM for delineating hypoxia has provided valuable clinical information, but investigations in animal models of prostate cancer have shown some inconsistencies. As a defense mechanism in prostate cancer cells, the fatty acid synthesis pathway harnesses its oxidizing power for improving the redox balance despite conditions of extreme hypoxia, potentially altering Cu-ATSM hypoxia-selectivity. Methods Human prostate tumor cultured cell lines (PC-3, 22Rv1, LNCaP, and LAPC-4), were treated with an FAS inhibitor (C75, 100 μM) under anoxia. 64Cu-ATSM uptake into these treated cells, and non-treated anoxic cells, was then examined. Fatty acid synthase (FAS) expression level in each cell line was subsequently quantified by ELISA. An additional study was performed in PC-3 cells to examine the relationship between the restoration of 64Cu-ATSM hypoxia-selectivity and the concentration of C75 (100, 20, 4, or 0.8 μM) administered to the cells. Results Inhibition of fatty acid synthesis with C75 resulted in a significant increase in 64Cu-ATSM retention into prostate tumor cells in vitro under anoxia over 60 mins. Inhibition studies demonstrated higher uptake values of 20.9 ± 3.27, 103.0 ± 32.6, 144.2 ± 32.3, and 200.1 ± 79.3% at 15 mins over control values for LAPC-4, PC-3, LNCaP, and 22Rv1 cells, respectively. A correlation was seen (R2 = 0.911) with FAS expression plotted against % change in 64Cu-ATSM uptake with C75 treatment. Conclusions Although Cu-ATSM has clinical relevance in the PET imaging of hypoxia in many tumor types, its translation to the imaging of prostate cancer may be limited by the over-expression of FAS associated with prostatic malignancies. PMID:18355682

  3. S-2-amino-5-(2-nitroimidazol-1-yl)pentanoic acid: a model for potential bioreductively activated prodrugs for inhibitors of nitric oxide synthase (NOS) activity.

    PubMed

    Ulhaq, S; Naylor, M A; Chinje, E C; Threadgill, M D; Stratford, I J

    1997-01-01

    Treatment of 1,1-dimethylethyl S-(2-1,1-dimethylethoxycarbonylamino)-5-bromopentanoate with 1-potassio-2-nitroimidazole, followed by deprotection, afforded S-2-amino-5-(2-nitroimidazol-1-yl)pentanoic acid, which was reduced to S-2-amino-5-(2-aminoimidazol-1-yl)pentanoic acid. This aminoimadazole inhibited rat brain nitric oxide synthase (NOS) activity 3.2 times more potently than did the nitro analogue. Thus S-2-amino-5-(2-nitroimidazol-1-yl)pentanoic acid is a potent prodrug which may be bioreductively activated to a NOS inhibitor in hypoxic solid tumours.

  4. Divergence of cuticular hydrocarbons in two sympatric grasshopper species and the evolution of fatty acid synthases and elongases across insects

    PubMed Central

    Finck, Jonas; Berdan, Emma L.; Mayer, Frieder; Ronacher, Bernhard; Geiselhardt, Sven

    2016-01-01

    Cuticular hydrocarbons (CHCs) play a major role in the evolution of reproductive isolation between insect species. The CHC profiles of two closely related sympatric grasshopper species, Chorthippus biguttulus and C. mollis, differ mainly in the position of the first methyl group in major methyl-branched CHCs. The position of methyl branches is determined either by a fatty acid synthase (FAS) or by elongases. Both protein families showed an expansion in insects. Interestingly, the FAS family showed several lineage-specific expansions, especially in insect orders with highly diverse methyl-branched CHC profiles. We found five putative FASs and 12 putative elongases in the reference transcriptomes for both species. A dN/dS test showed no evidence for positive selection acting on FASs and elongases in these grasshoppers. However, one candidate FAS showed species-specific transcriptional differences and may contribute to the shift of the methyl-branch position between the species. In addition, transcript levels of four elongases were expressed differentially between the sexes. Our study indicates that complex methyl-branched CHC profiles are linked to an expansion of FASs genes, but that species differences can also mediated at the transcriptional level. PMID:27677406

  5. Ursolic acid and luteolin-7-glucoside improve lipid profiles and increase liver glycogen content through glycogen synthase kinase-3.

    PubMed

    Azevedo, Marisa F; Camsari, Cagri; Sá, Carla M; Lima, Cristovao F; Fernandes-Ferreira, Manuel; Pereira-Wilson, Cristina

    2010-06-01

    In the present study, two phytochemicals - ursolic acid (UA) and luteolin-7-glucoside (L7G) - were assessed in vivo in healthy rats regarding effects on plasma glucose and lipid profile (total cholesterol, HDL and LDL), as well as liver glycogen content, in view of their importance in the aetiology of diabetes and associated complications. Both UA and L7G significantly decreased plasma glucose concentration. UA also significantly increased liver glycogen levels accompanied by phosphorylation of glycogen synthase kinase-3 (GSK3). The increase in glycogen deposition induced by UA (mediated by GSK3) could have contributed to the lower plasma glucose levels observed. Both compounds significantly lowered total plasma cholesterol and low-density lipoprotein levels, and, in addition, UA increased plasma high-density lipoprotein levels. Our results show that UA particularly may be useful in preventable strategies for people at risk of developing diabetes and associated cardiovascular complications by improving plasma glucose levels and lipid profile, as well as by promoting liver glycogen deposition.

  6. Curcumin inhibits intracellular fatty acid synthase and induces apoptosis in human breast cancer MDA-MB-231 cells.

    PubMed

    Fan, Huijin; Liang, Yan; Jiang, Bing; Li, Xiabing; Xun, Hang; Sun, Jia; He, Wei; Lau, Hay Tong; Ma, Xiaofeng

    2016-05-01

    High levels of fatty acid synthase (FAS) expression have been found in many tumors, including prostate, breast, and ovarian cancers, and inhibition of FAS has been reported to obstruct tumor growth in vitro and in vivo. Curcumin is one of the major active ingredients of Curcuma longa, which has been proven to inhibit the growth of cancer cells. In the present study, we investigated the potential activity of curcumin as a FAS inhibitor for chemoprevention of breast cancer. As a result, curcumin induced human breast cancer MDA-MB-231 cell apoptosis with the half-inhibitory concentration value of 3.63 ± 0.26 µg/ml, and blocked FAS activity, expression and mRNA level in a dose-dependent manner. Curcumin also regulated B-cell lymphoma 2 (Bcl-2), Bax and p-Akt protein expression in MDA-MB-231 cells. Moreover, FAS knockdown showed similar effect as curcumin. All these results suggested that curcumin may induce cell apoptosis via inhibiting FAS. PMID:26985864

  7. Expression of Fatty Acid Synthase Depends on NAC1 and Is Associated with Recurrent Ovarian Serous Carcinomas.

    PubMed

    Ueda, Stefanie M; Yap, Kai Lee; Davidson, Ben; Tian, Yuan; Murthy, Vivek; Wang, Tian-Li; Visvanathan, Kala; Kuhajda, Francis P; Bristow, Robert E; Zhang, Hui; Shih, Ie-Ming

    2010-01-01

    Our previous reports demonstrated that NAC1, a BTB/POZ domain-containing nuclear protein, upregulates in recurrent ovarian serous carcinoma and participates in developing drug resistance in cancer cells. The current study applies quantitative proteomics to identify the proteins controlled by NAC1 by comparing the proteomes of SKOV3 cells with and without expression of a dominant negative NAC1 construct, N130. From the proteins that are downregulated by N130 (upregulated by NAC1), we chose to further characterize fatty acid synthase (FASN). Similar to change in protein level, the FASN transcript level in SKOV3 cells was significantly reduced by N130 induction or by NAC1 knockdown. Immunohistochemistry showed that NAC1 and FASN immunointensities in ovarian serous carcinoma tissues had a highly significant correlation (P < .0001). Moreover, we found that recurrent serous carcinomas exhibited higher FASN immunointensities than their matched primary tumors (P < .001). Multivariate analysis showed that an FASN staining score of >1 in serous carcinomas was associated with a worse overall survival time (P < .01). Finally, C93, a new FASN inhibitor, induced massive apoptosis in carboplatin/paclitaxel resistant ovarian cancer cells. In conclusion, we show that NAC1 is essential for FASN expression in ovarian serous carcinomas and the expression of FASN significantly correlates with tumor recurrence and disease aggressiveness. The dependence of drug resistant tumor cells on FASN suggests a potential application of FASN-based therapeutics for recurrent ovarian cancer patients.

  8. Pharmacophore Modeling and Virtual Screening for Novel Acidic Inhibitors of Microsomal Prostaglandin E2 Synthase-1 (mPGES-1)

    PubMed Central

    2011-01-01

    Microsomal prostaglandin E2 synthase-1 (mPGES-1) catalyzes prostaglandin E2 formation and is considered as a potential anti-inflammatory pharmacological target. To identify novel chemical scaffolds active on this enzyme, two pharmacophore models for acidic mPGES-1 inhibitors were developed and theoretically validated using information on mPGES-1 inhibitors from literature. The models were used to screen chemical databases supplied from the National Cancer Institute (NCI) and the Specs. Out of 29 compounds selected for biological evaluation, nine chemically diverse compounds caused concentration-dependent inhibition of mPGES-1 activity in a cell-free assay with IC50 values between 0.4 and 7.9 μM, respectively. Further pharmacological characterization revealed that also 5-lipoxygenase (5-LO) was inhibited by most of these active compounds in cell-free and cell-based assays with IC50 values in the low micromolar range. Together, nine novel chemical scaffolds inhibiting mPGES-1 are presented that may possess anti-inflammatory properties based on the interference with eicosanoid biosynthesis. PMID:21466167

  9. Ursolic acid and luteolin-7-glucoside improve lipid profiles and increase liver glycogen content through glycogen synthase kinase-3.

    PubMed

    Azevedo, Marisa F; Camsari, Cagri; Sá, Carla M; Lima, Cristovao F; Fernandes-Ferreira, Manuel; Pereira-Wilson, Cristina

    2010-06-01

    In the present study, two phytochemicals - ursolic acid (UA) and luteolin-7-glucoside (L7G) - were assessed in vivo in healthy rats regarding effects on plasma glucose and lipid profile (total cholesterol, HDL and LDL), as well as liver glycogen content, in view of their importance in the aetiology of diabetes and associated complications. Both UA and L7G significantly decreased plasma glucose concentration. UA also significantly increased liver glycogen levels accompanied by phosphorylation of glycogen synthase kinase-3 (GSK3). The increase in glycogen deposition induced by UA (mediated by GSK3) could have contributed to the lower plasma glucose levels observed. Both compounds significantly lowered total plasma cholesterol and low-density lipoprotein levels, and, in addition, UA increased plasma high-density lipoprotein levels. Our results show that UA particularly may be useful in preventable strategies for people at risk of developing diabetes and associated cardiovascular complications by improving plasma glucose levels and lipid profile, as well as by promoting liver glycogen deposition. PMID:20127879

  10. Triterpenoic Acids from Apple Pomace Enhance the Activity of the Endothelial Nitric Oxide Synthase (eNOS).

    PubMed

    Waldbauer, Katharina; Seiringer, Günter; Nguyen, Dieu Linh; Winkler, Johannes; Blaschke, Michael; McKinnon, Ruxandra; Urban, Ernst; Ladurner, Angela; Dirsch, Verena M; Zehl, Martin; Kopp, Brigitte

    2016-01-13

    Pomace is an easy-accessible raw material for the isolation of fruit-derived compounds. Fruit consumption is associated with health-promoting effects, such as the prevention of cardiovascular disease. Increased vascular nitric oxide (NO) bioavailability, for example, due to an enhanced endothelial nitric oxide synthase (eNOS) activity, could be one molecular mechanism mediating this effect. To identify compounds from apple (Malus domestica Borkh.) pomace that have the potential to amplify NO bioavailability via eNOS activation, a bioassay-guided fractionation of the methanol/water (70:30) extract has been performed using the (14)C-L-arginine to (14)C-L-citrulline conversion assay (ACCA) in the human endothelium-derived cell line EA.hy926. Phytochemical characterization of the active fractions was performed using the spectrophotometric assessment of the total phenolic content, as well as TLC, HPLC-DAD-ELSD, and HPLC-MS analyses. Eleven triterpenoic acids, of which one is a newly discovered compound, were identified as the main constituents in the most active fraction, accompanied by only minor contents of phenolic compounds. When tested individually, none of the tested compounds exhibited significant eNOS activation. Nevertheless, cell stimulation with the reconstituted compound mixture restored eNOS activation, validating the potential of apple pomace as a source of bioactive components.

  11. Up-regulation of fatty acid synthase induced by EGFR/ERK activation promotes tumor growth in pancreatic cancer

    SciTech Connect

    Bian, Yong; Yu, Yun; Wang, Shanshan; Li, Lin

    2015-08-07

    Lipid metabolism is dysregulated in many human diseases including atherosclerosis, type 2 diabetes and cancers. Fatty acid synthase (FASN), a key lipogenic enzyme involved in de novo lipid biosynthesis, is significantly upregulated in multiple types of human cancers and associates with tumor progression. However, limited data is available to understand underlying biological functions and clinical significance of overexpressed FASN in pancreatic ductal adenocarcinoma (PDAC). Here, upregulated FASN was more frequently observed in PDAC tissues compared with normal pancreas in a tissue microarray. Kaplan–Meier survival analysis revealed that high expression level of FASN resulted in a significantly poor prognosis of PDAC patients. Knockdown or inhibition of endogenous FASN decreased cell proliferation and increased cell apoptosis in HPAC and AsPC-1 cells. Furthermore, we demonstrated that EGFR/ERK signaling accounts for elevated FASN expression in PDAC as ascertained by performing siRNA assays and using specific pharmacological inhibitors. Collectively, our results indicate that FASN exhibits important roles in tumor growth and EGFR/ERK pathway is responsible for upregulated expression of FASN in PDAC. - Highlights: • Increased expression of FASN indicates a poor prognosis in PDAC. • Elevated FASN favors tumor growth in PDAC in vitro. • Activation of EGFR signaling contributes to elevated FASN expression.

  12. Comparison of backbone dynamics of the type III antifreeze protein and antifreeze-like domain of human sialic acid synthase.

    PubMed

    Choi, Yong-Geun; Park, Chin-Ju; Kim, Hee-Eun; Seo, Yeo-Jin; Lee, Ae-Ree; Choi, Seo-Ree; Lee, Shim Sung; Lee, Joon-Hwa

    2015-02-01

    Antifreeze proteins (AFPs) are found in a variety of cold-adapted (psychrophilic) organisms to promote survival at subzero temperatures by binding to ice crystals and decreasing the freezing temperature of body fluids. The type III AFPs are small globular proteins that consist of one α-helix, three 3(10)-helices, and two β-strands. Sialic acids play important roles in a variety of biological functions, such as development, recognition, and cell adhesion and are synthesized by conserved enzymatic pathways that include sialic acid synthase (SAS). SAS consists of an N-terminal catalytic domain and a C-terminal antifreeze-like (AFL) domain, which is similar to the type III AFPs. Despite having very similar structures, AFL and the type III AFPs exhibit very different temperature-dependent stability and activity. In this study, we have performed backbone dynamics analyses of a type III AFP (HPLC12 isoform) and the AFL domain of human SAS (hAFL) at various temperatures. We also characterized the structural/dynamic properties of the ice-binding surfaces by analyzing the temperature gradient of the amide proton chemical shift and its correlation with chemical shift deviation from random coil. The dynamic properties of the two proteins were very different from each other. While HPLC12 was mostly rigid with a few residues exhibiting slow motions, hAFL showed fast internal motions at low temperature. Our results provide insight into the molecular basis of thermostability and structural flexibility in homologous psychrophilic HPLC12 and mesophilic hAFL proteins.

  13. Protein-protein interactions within the Fatty Acid Synthase-II system of Mycobacterium tuberculosis are essential for mycobacterial viability.

    PubMed

    Veyron-Churlet, Romain; Guerrini, Olivier; Mourey, Lionel; Daffé, Mamadou; Zerbib, Didier

    2004-12-01

    Despite the existence of efficient chemotherapy, tuberculosis remains a leading cause of mortality worldwide. New drugs are urgently needed to reduce the potential impact of the emergence of multidrug-resistant strains of the causative agent Mycobacterium tuberculosis (Mtb). The front-line antibiotic isoniazid (INH), and several other drugs, target the biosynthesis of mycolic acids and especially the Fatty Acid Synthase-II (FAS-II) elongation system. This biosynthetic pathway is essential and specific for mycobacteria and still represents a valuable system for the search of new anti-tuberculous agents. Several data, in the literature, suggest the existence of protein-protein interactions within the FAS-II system. These interactions themselves might serve as targets for a new generation of drugs directed against Mtb. By using an extensive in vivo yeast two-hybrid approach and in vitro co-immunoprecipitation, we have demonstrated the existence of both homotypic and heterotypic interactions between the known components of FAS-II. The condensing enzymes KasA, KasB and mtFabH interact with each other and with the reductases MabA and InhA. Furthermore, we have designed and constructed point mutations of the FAS-II reductase MabA, able to disrupt its homotypic interactions and perturb the interaction pattern of this protein within FAS-II. Finally, we showed by a transdominant genetic approach that these mutants are dominant negative in both non-pathogenic and pathogenic mycobacteria. These data allowed us to draw a dynamic model of the organization of FAS-II. They also represent an important step towards the design of a new generation of anti-tuberculous agents, as being inhibitors of essential protein-protein interactions. PMID:15554959

  14. Structure-function studies of human deoxyhypusine synthase: identification of amino acid residues critical for the binding of spermidine and NAD.

    PubMed

    Lee, C H; Um, P Y; Park, M H

    2001-05-01

    Deoxyhypusine synthase catalyses the first step in the biosynthesis of hypusine [N(epsilon)-(4-amino-2-hydroxybutyl)lysine]. The crystal structure of human deoxyhypusine synthase in complex with NAD revealed four NAD-binding sites per enzyme tetramer, and led to a prediction of the spermidine-binding pocket. We have replaced each of the seven amino acid residues at the predicted spermidine-binding site, and eleven residues that contact NAD, on an individual basis with alanine. Of the amino acid residues at the spermidine site, substitution of Asp-243, Trp-327, His-288, Asp-316 or Glu-323 with alanine caused an almost complete loss of spermidine binding and enzyme activity; only the mutation Tyr-305-->Ala showed partial binding and activity. His-288-->Ala was also deficient in terms of binding NAD. NAD binding was significantly reduced in all of the NAD-site mutant enzymes, except for Glu-137-->Ala, which showed a normal binding of NAD, but was totally lacking in spermidine binding. Of the NAD-site mutant enzymes, Asp-342-->Ala, Asp-313-->Ala and Asp-238-->Ala displayed the lowest binding of NAD. These enzymes and His-288Ala also showed a reduced binding of spermidine, presumably because spermidine binding is dependent on NAD. These findings permit the positive identification of amino acid residues critical for binding of spermidine and NAD, and provide a new insight into the complex molecular interactions involved in the deoxyhypusine synthase reaction. PMID:11311149

  15. Pleiotropic Roles of Polyglycerolphosphate Synthase of Lipoteichoic Acid in Growth of Staphylococcus aureus Cells ▿ †

    PubMed Central

    Oku, Yusuke; Kurokawa, Kenji; Matsuo, Miki; Yamada, Sakuo; Lee, Bok-Luel; Sekimizu, Kazuhisa

    2009-01-01

    Lipoteichoic acid (LTA) is one of two anionic polymers on the surface of the gram-positive bacterium Staphylococcus aureus. LTA is critical for the bacterium-host cell interaction and has recently been shown to be required for cell growth and division. To determine additional biological roles of LTA, we found it necessary to identify permissive conditions for the growth of an LTA-deficient mutant. We found that an LTA-deficient S. aureus ΔltaS mutant could grow at 30°C but not at 37°C. Even at the permissive temperature, ΔltaS mutant cells had aberrant cell division and separation, decreased autolysis, and reduced levels of peptidoglycan hydrolases. Upshift of ΔltaS mutant cells to a nonpermissive temperature caused an inability to exclude Sytox green dye. A high-osmolarity growth medium remarkably rescued the colony-forming ability of the ΔltaS mutant at 37°C, indicating that LTA synthesis is required for growth under low-osmolarity conditions. In addition, the ΔltaS mutation was found to be synthetically lethal with the ΔtagO mutation, which disrupts the synthesis of the other anionic polymer, wall teichoic acid (WTA), at 30°C, suggesting that LTA and WTA compensate for one another in an essential function. PMID:18952789

  16. Identification of a microsomal retinoic acid synthase as a microsomal cytochrome P-450-linked monooxygenase system.

    PubMed

    Tomita, S; Tsujita, M; Matsuo, Y; Yubisui, T; Ichikawa, Y

    1993-12-01

    1. To characterize an enzyme which metabolizes retinal in liver microsomes, several properties of the enzymatic reaction from retinal to retinoic acid were investigated using rabbit liver microsomes. 2. The maximum pH of the reaction in the liver microsomes was 7.6. 3. The Km and Vmax values for all-trans, 9-cis and 13-cis-retinals were determined. 4. The reaction proceeded in the presence of NADPH and molecular oxygen. 5. The incorporation of one atom of molecular oxygen into retinal was confirmed by using oxygen-18, showing that the reaction comprised monooxygenation, not dehydrogenation. 6. The monooxygenase activity was inhibited by carbon monoxide, phenylisocyanide and anti-NADPH-cytochrome P-450 reductase IgG, but not by anti-cytochrome b5 IgG. 7. The enzymatic activity inhibited by carbon monoxide was photoreversibly restored by light of a wavelength of around 450 nm. 8. The retinal-induced spectra of liver microsomes with three isomeric retinals were type I spectra. 9. The microsomal monooxygenase activity induced by phenobarbital or ethanol were more effective than that by 3-methylcholanthrene, clotrimazole or beta-naphthoflavone. 10. These results showed that the monooxygenase reaction from retinal to retinoic acid in liver microsomes is catalyzed by a cytochrome P-450-linked monooxygenase system. PMID:8138015

  17. Discovery of Bacterial Fatty Acid Synthase Type II Inhibitors Using a Novel Cellular Bioluminescent Reporter Assay

    PubMed Central

    Wallace, Joselynn; Bowlin, Nicholas O.; Mills, Debra M.; Saenkham, Panatda; Kwasny, Steven M.; Opperman, Timothy J.; Williams, John D.; Rock, Charles O.; Bowlin, Terry L.

    2015-01-01

    Novel, cellular, gain-of-signal, bioluminescent reporter assays for fatty acid synthesis type II (FASII) inhibitors were constructed in an efflux-deficient strain of Pseudomonas aeruginosa and based on the discovery that FASII genes in P. aeruginosa are coordinately upregulated in response to pathway disruption. A screen of 115,000 compounds identified a series of sulfonamidobenzamide (SABA) analogs, which generated strong luminescent signals in two FASII reporter strains but not in four control reporter strains designed to respond to inhibitors of pathways other than FASII. The SABA analogs selectively inhibited lipid biosynthesis in P. aeruginosa and exhibited minimal cytotoxicity to mammalian cells (50% cytotoxic concentration [CC50] ≥ 80 μM). The most potent SABA analogs had MICs of 0.5 to 7.0 μM (0.2 to 3.0 μg/ml) against an efflux-deficient Escherichia coli (ΔtolC) strain but had no detectable MIC against efflux-proficient E. coli or against P. aeruginosa (efflux deficient or proficient). Genetic, molecular genetic, and biochemical studies revealed that SABA analogs target the enzyme (AccC) catalyzing the biotin carboxylase half-reaction of the acetyl coenzyme A (acetyl-CoA) carboxylase step in the initiation phase of FASII in E. coli and P. aeruginosa. These results validate the capability and the sensitivity of this novel bioluminescent reporter screen to identify inhibitors of E. coli and P. aeruginosa FASII. PMID:26169404

  18. Proto-oncogene FBI-1 (Pokemon) and SREBP-1 synergistically activate transcription of fatty-acid synthase gene (FASN).

    PubMed

    Choi, Won-Il; Jeon, Bu-Nam; Park, Hyejin; Yoo, Jung-Yoon; Kim, Yeon-Sook; Koh, Dong-In; Kim, Myung-Hwa; Kim, Yu-Ri; Lee, Choong-Eun; Kim, Kyung-Sup; Osborne, Timothy F; Hur, Man-Wook

    2008-10-24

    FBI-1 (Pokemon/ZBTB7A) is a proto-oncogenic transcription factor of the BTB/POZ (bric-à-brac, tramtrack, and broad complex and pox virus zinc finger) domain family. Recent evidence suggested that FBI-1 might be involved in adipogenic gene expression. Coincidentally, expression of FBI-1 and fatty-acid synthase (FASN) genes are often increased in cancer and immortalized cells. Both FBI-1 and FASN are important in cancer cell proliferation. SREBP-1 is a major regulator of many adipogenic genes, and FBI-1 and SREBP-1 (sterol-responsive element (SRE)-binding protein 1) interact with each other directly via their DNA binding domains. FBI-1 enhanced the transcriptional activation of SREBP-1 on responsive promoters, pGL2-6x(SRE)-Luc and FASN gene. FBI-1 and SREBP-1 synergistically activate transcription of the FASN gene by acting on the proximal GC-box and SRE/E-box. FBI-1, Sp1, and SREBP-1 can bind to all three SRE, GC-box, and SRE/E-box. Binding competition among the three transcription factors on the GC-box and SRE/E-box appears important in the transcription regulation. FBI-1 is apparently changing the binding pattern of Sp1 and SREBP-1 on the two elements in the presence of induced SREBP-1 and drives more Sp1 binding to the proximal promoter with less of an effect on SREBP-1 binding. The changes induced by FBI-1 appear critical in the synergistic transcription activation. The molecular mechanism revealed provides insight into how proto-oncogene FBI-1 may attack the cellular regulatory mechanism of FASN gene expression to provide more phospholipid membrane components needed for rapid cancer cell proliferation. PMID:18682402

  19. Proto-oncogene FBI-1 (Pokemon) and SREBP-1 synergistically activate transcription of fatty-acid synthase gene (FASN).

    PubMed

    Choi, Won-Il; Jeon, Bu-Nam; Park, Hyejin; Yoo, Jung-Yoon; Kim, Yeon-Sook; Koh, Dong-In; Kim, Myung-Hwa; Kim, Yu-Ri; Lee, Choong-Eun; Kim, Kyung-Sup; Osborne, Timothy F; Hur, Man-Wook

    2008-10-24

    FBI-1 (Pokemon/ZBTB7A) is a proto-oncogenic transcription factor of the BTB/POZ (bric-à-brac, tramtrack, and broad complex and pox virus zinc finger) domain family. Recent evidence suggested that FBI-1 might be involved in adipogenic gene expression. Coincidentally, expression of FBI-1 and fatty-acid synthase (FASN) genes are often increased in cancer and immortalized cells. Both FBI-1 and FASN are important in cancer cell proliferation. SREBP-1 is a major regulator of many adipogenic genes, and FBI-1 and SREBP-1 (sterol-responsive element (SRE)-binding protein 1) interact with each other directly via their DNA binding domains. FBI-1 enhanced the transcriptional activation of SREBP-1 on responsive promoters, pGL2-6x(SRE)-Luc and FASN gene. FBI-1 and SREBP-1 synergistically activate transcription of the FASN gene by acting on the proximal GC-box and SRE/E-box. FBI-1, Sp1, and SREBP-1 can bind to all three SRE, GC-box, and SRE/E-box. Binding competition among the three transcription factors on the GC-box and SRE/E-box appears important in the transcription regulation. FBI-1 is apparently changing the binding pattern of Sp1 and SREBP-1 on the two elements in the presence of induced SREBP-1 and drives more Sp1 binding to the proximal promoter with less of an effect on SREBP-1 binding. The changes induced by FBI-1 appear critical in the synergistic transcription activation. The molecular mechanism revealed provides insight into how proto-oncogene FBI-1 may attack the cellular regulatory mechanism of FASN gene expression to provide more phospholipid membrane components needed for rapid cancer cell proliferation.

  20. Comparison of γδ T cell responses and farnesyl diphosphate synthase inhibition in tumor cells pretreated with zoledronic acid

    PubMed Central

    Idrees, Atif S. M.; Sugie, Tomoharu; Inoue, Chiyomi; Murata-Hirai, Kaoru; Okamura, Haruki; Morita, Craig T.; Minato, Nagahiro; Toi, Masakazu; Tanaka, Yoshimasa

    2013-01-01

    Summary Exposing human tumor cells to nitrogen-containing bisphosphonates (N-BPs), such as zoledronic acid (Zol), greatly increases their susceptibility to killing by γδ T cells. Based on this finding and other studies, cancer immunotherapy using γδ T cells and N-BPs has been studied in pilot clinical trials and has shown benefits. Although Zol treatment can render a wide variety of human tumor cells susceptible to γδ T cell killing, there has not been a systematic investigation to determine which types of tumor cells are the most susceptible to γδ T cell-mediated cytotoxicity. In this study, we determined the Zol concentrations required to stimulate half maximal tumor necrosis factor-α production by γδ T cells cultured with various tumor cell lines pretreated with Zol and compared these concentrations with those required for half maximal inhibition of farnesyl diphosphate synthase (FPPS) in the same tumor cell lines. The inhibition of tumor cell growth by Zol was also assessed. We found that FPPS inhibition strongly correlated with γδ T cell activation, confirming that the mechanism underlying γδ T cell activation by Zol is isopentenyl diphosphate (IPP) accumulation due to FPPS blockade. In addition, we showed that γδ TCR-mediated signaling correlated with γδ T cell tumor necrosis factor-α production and cytotoxicity. Some lymphoma, myeloid leukemia, and mammary carcinoma cell lines were relatively resistant to Zol treatment suggesting that assessing tumor sensitivity to Zol may help select those patients most likely to benefit from immunotherapy with γδ T cells. PMID:23387443

  1. The Nutrient-Dependent O-GlcNAc Modification Controls the Expression of Liver Fatty Acid Synthase.

    PubMed

    Baldini, Steffi F; Wavelet, Cindy; Hainault, Isabelle; Guinez, Céline; Lefebvre, Tony

    2016-08-14

    Liver Fatty Acid Synthase (FAS) is pivotal for de novo lipogenesis. Loss of control of this metabolic pathway contributes to the development of liver pathologies ranging from steatosis to nonalcoholic steatohepatitis (NASH) which can lead to cirrhosis and, less frequently, to hepatocellular carcinoma. Therefore, deciphering the molecular mechanisms governing the expression and function of key enzymes such as FAS is crucial. Herein, we link the availability of this lipogenic enzyme to the nutrient-dependent post-translational modification O-GlcNAc that is thought to be deregulated in metabolic diseases (diabetes, obesity, and metabolic syndrome). We demonstrate that expression and activity of liver FAS correlate with O-GlcNAcylation contents in ob/ob mice and in mice fed with a high-carbohydrate diet both in a transcription-dependent and -independent manner. More importantly, inhibiting the removal of O-GlcNAc residues in mice intraperitoneally injected with the selective and potent O-GlcNAcase (OGA) inhibitor Thiamet-G increases FAS expression. FAS and O-GlcNAc transferase (OGT) physically interact, and FAS is O-GlcNAc modified. Treatment of a liver cell line with drugs or nutrients that elevate the O-GlcNAcylation interferes with FAS expression. Inhibition of OGA increases the interaction between FAS and the deubiquitinase Ubiquitin-specific protease-2a (USP2A) in vivo and ex vivo, providing mechanistic insights into the control of FAS expression through O-GlcNAcylation. Together, these results reveal a new type of regulation of FAS, linked to O-GlcNAcylation status, and advance our knowledge on deregulation of lipogenesis in diverse forms of liver diseases.

  2. The Fatty Acid Synthase Inhibitor Platensimycin Improves Insulin Resistance without Inducing Liver Steatosis in Mice and Monkeys

    PubMed Central

    Nawrocki, Andrea R.; Zhou, Dan; Wu, Margaret; Previs, Stephen; Miller, Corey; Liu, Haiying; Hines, Catherine D. G.; Madeira, Maria; Cao, Jin; Herath, Kithsiri; Wang, Liangsu; Kelley, David E.; Li, Cai

    2016-01-01

    Objectives Platensimycin (PTM) is a natural antibiotic produced by Streptomyces platensis that selectively inhibits bacterial and mammalian fatty acid synthase (FAS) without affecting synthesis of other lipids. Recently, we reported that oral administration of PTM in mouse models (db/db and db/+) with high de novo lipogenesis (DNL) tone inhibited DNL and enhanced glucose oxidation, which in turn led to net reduction of liver triglycerides (TG), reduced ambient glucose, and improved insulin sensitivity. The present study was conducted to explore translatability and the therapeutic potential of FAS inhibition for the treatment of diabetes in humans. Methods We tested PTM in animal models with different DNL tones, i.e. intrinsic synthesis rates, which vary among species and are regulated by nutritional and disease states, and confirmed glucose-lowering efficacy of PTM in lean NHPs with quantitation of liver lipid by MRS imaging. To understand the direct effect of PTM on liver metabolism, we performed ex vivo liver perfusion study to compare FAS inhibitor and carnitine palmitoyltransferase 1 (CPT1) inhibitor. Results The efficacy of PTM is generally reproduced in preclinical models with DNL tones comparable to humans, including lean and established diet-induced obese (eDIO) mice as well as non-human primates (NHPs). Similar effects of PTM on DNL reduction were observed in lean and type 2 diabetic rhesus and lean cynomolgus monkeys after acute and chronic treatment of PTM. Mechanistically, PTM lowers plasma glucose in part by enhancing hepatic glucose uptake and glycolysis. Teglicar, a CPT1 inhibitor, has similar effects on glucose uptake and glycolysis. In sharp contrast, Teglicar but not PTM significantly increased hepatic TG production, thus caused liver steatosis in eDIO mice. Conclusions These findings demonstrate unique properties of PTM and provide proof-of-concept of FAS inhibition having potential utility for the treatment of diabetes and related metabolic

  3. The Nutrient-Dependent O-GlcNAc Modification Controls the Expression of Liver Fatty Acid Synthase.

    PubMed

    Baldini, Steffi F; Wavelet, Cindy; Hainault, Isabelle; Guinez, Céline; Lefebvre, Tony

    2016-08-14

    Liver Fatty Acid Synthase (FAS) is pivotal for de novo lipogenesis. Loss of control of this metabolic pathway contributes to the development of liver pathologies ranging from steatosis to nonalcoholic steatohepatitis (NASH) which can lead to cirrhosis and, less frequently, to hepatocellular carcinoma. Therefore, deciphering the molecular mechanisms governing the expression and function of key enzymes such as FAS is crucial. Herein, we link the availability of this lipogenic enzyme to the nutrient-dependent post-translational modification O-GlcNAc that is thought to be deregulated in metabolic diseases (diabetes, obesity, and metabolic syndrome). We demonstrate that expression and activity of liver FAS correlate with O-GlcNAcylation contents in ob/ob mice and in mice fed with a high-carbohydrate diet both in a transcription-dependent and -independent manner. More importantly, inhibiting the removal of O-GlcNAc residues in mice intraperitoneally injected with the selective and potent O-GlcNAcase (OGA) inhibitor Thiamet-G increases FAS expression. FAS and O-GlcNAc transferase (OGT) physically interact, and FAS is O-GlcNAc modified. Treatment of a liver cell line with drugs or nutrients that elevate the O-GlcNAcylation interferes with FAS expression. Inhibition of OGA increases the interaction between FAS and the deubiquitinase Ubiquitin-specific protease-2a (USP2A) in vivo and ex vivo, providing mechanistic insights into the control of FAS expression through O-GlcNAcylation. Together, these results reveal a new type of regulation of FAS, linked to O-GlcNAcylation status, and advance our knowledge on deregulation of lipogenesis in diverse forms of liver diseases. PMID:27185461

  4. Fatty acid synthase is a metabolic marker of cell proliferation rather than malignancy in ovarian cancer and its precursor cells.

    PubMed

    Veigel, Daniel; Wagner, Renate; Stübiger, Gerald; Wuczkowski, Michael; Filipits, Martin; Horvat, Reinhard; Benhamú, Bellinda; López-Rodríguez, María Luz; Leisser, Asha; Valent, Peter; Grusch, Michael; Hegardt, Fausto G; García, Jordi; Serra, Dolors; Auersperg, Nelly; Colomer, Ramón; Grunt, Thomas W

    2015-05-01

    Ovarian cancer (OC) is caused by genetic aberrations in networks that control growth and survival. Importantly, aberrant cancer metabolism interacts with oncogenic signaling providing additional drug targets. Tumors overexpress the lipogenic enzyme fatty acid synthase (FASN) and are inhibited by FASN blockers, whereas normal cells are FASN-negative and FASN-inhibitor-resistant. Here, we demonstrate that this holds true when ovarian/oviductal cells reside in their autochthonous tissues, whereas in culture they express FASN and are FASN-inhibitor-sensitive. Upon subculture, nonmalignant cells cease growth, express senescence-associated β-galactosidase, lose FASN and become FASN-inhibitor-resistant. Immortalized ovarian/oviductal epithelial cell lines—although resisting senescence—reveal distinct growth activities, which correlate with FASN levels and FASN drug sensitivities. Accordingly, ectopic FASN stimulates growth in these cells. Moreover, FASN levels and lipogenic activities affect cellular lipid composition as demonstrated by thin-layer chromatography. Correlation between proliferation and FASN levels was finally evaluated in cancer cells such as HOC-7, which contain subclones with variable differentiation/senescence and corresponding FASN expression/FASN drug sensitivity. Interestingly, senescent phenotypes can be induced in parental HOC-7 by differentiating agents. In OC cells, FASN drugs induce cell cycle blockade in S and/or G2/M and stimulate apoptosis, whereas in normal cells they only cause cell cycle deceleration without apoptosis. Thus, normal cells, although growth-inhibited, may survive and recover from FASN blockade, whereas malignant cells get extinguished. FASN expression and FASN drug sensitivity are directly linked to cell growth and correlate with transformation/differentiation/senescence only indirectly. FASN is therefore a metabolic marker of cell proliferation rather than a marker of malignancy and is a useful target for future drug

  5. Gibberellic Acid, Synthetic Auxins, and Ethylene Differentially Modulate α-l-Arabinofuranosidase Activities in Antisense 1-Aminocyclopropane-1-Carboxylic Acid Synthase Tomato Pericarp Discs1

    PubMed Central

    Sozzi, Gabriel O.; Greve, L. Carl; Prody, Gerry A.; Labavitch, John M.

    2002-01-01

    α-l-Arabinofuranosidases (α-Afs) are plant enzymes capable of releasing terminal arabinofuranosyl residues from cell wall matrix polymers, as well as from different glycoconjugates. Three different α-Af isoforms were distinguished by size exclusion chromatography of protein extracts from control tomatoes (Lycopersicon esculentum) and an ethylene synthesis-suppressed (ESS) line expressing an antisense 1-aminocyclopropane-1-carboxylic synthase transgene. α-Af I and II are active throughout fruit ontogeny. α-Af I is the first Zn-dependent cell wall enzyme isolated from tomato pericarp tissues, thus suggesting the involvement of zinc in fruit cell wall metabolism. This isoform is inhibited by 1,10-phenanthroline, but remains stable in the presence of NaCl and sucrose. α-Af II activity accounts for over 80% of the total α-Af activity in 10-d-old fruit, but activity drops during ripening. In contrast, α-Af III is ethylene dependent and specifically active during ripening. α-Af I released monosaccharide arabinose from KOH-soluble polysaccharides from tomato cell walls, whereas α-Af II and III acted on Na2CO3-soluble pectins. Different α-Af isoform responses to gibberellic acid, synthetic auxins, and ethylene were followed by using a novel ESS mature-green tomato pericarp disc system. α-Af I and II activity increased when gibberellic acid or 2,4-dichlorophenoxyacetic acid was applied, whereas ethylene treatment enhanced only α-Af III activity. Results suggest that tomato α-Afs are encoded by a gene family under differential hormonal controls, and probably have different in vivo functions. The ESS pericarp explant system allows comprehensive studies involving effects of physiological levels of different growth regulators on gene expression and enzyme activity with negligible wound-induced ethylene production. PMID:12114586

  6. Gibberellic acid, synthetic auxins, and ethylene differentially modulate alpha-L-Arabinofuranosidase activities in antisense 1-aminocyclopropane-1-carboxylic acid synthase tomato pericarp discs.

    PubMed

    Sozzi, Gabriel O; Greve, L Carl; Prody, Gerry A; Labavitch, John M

    2002-07-01

    Alpha-L-Arabinofuranosidases (alpha-Afs) are plant enzymes capable of releasing terminal arabinofuranosyl residues from cell wall matrix polymers, as well as from different glycoconjugates. Three different alpha-Af isoforms were distinguished by size exclusion chromatography of protein extracts from control tomatoes (Lycopersicon esculentum) and an ethylene synthesis-suppressed (ESS) line expressing an antisense 1-aminocyclopropane-1-carboxylic synthase transgene. alpha-Af I and II are active throughout fruit ontogeny. alpha-Af I is the first Zn-dependent cell wall enzyme isolated from tomato pericarp tissues, thus suggesting the involvement of zinc in fruit cell wall metabolism. This isoform is inhibited by 1,10-phenanthroline, but remains stable in the presence of NaCl and sucrose. alpha-Af II activity accounts for over 80% of the total alpha-Af activity in 10-d-old fruit, but activity drops during ripening. In contrast, alpha-Af III is ethylene dependent and specifically active during ripening. alpha-Af I released monosaccharide arabinose from KOH-soluble polysaccharides from tomato cell walls, whereas alpha-Af II and III acted on Na(2)CO(3)-soluble pectins. Different alpha-Af isoform responses to gibberellic acid, synthetic auxins, and ethylene were followed by using a novel ESS mature-green tomato pericarp disc system. alpha-Af I and II activity increased when gibberellic acid or 2,4-dichlorophenoxyacetic acid was applied, whereas ethylene treatment enhanced only alpha-Af III activity. Results suggest that tomato alpha-Afs are encoded by a gene family under differential hormonal controls, and probably have different in vivo functions. The ESS pericarp explant system allows comprehensive studies involving effects of physiological levels of different growth regulators on gene expression and enzyme activity with negligible wound-induced ethylene production.

  7. Gene-gene interactions of fatty acid synthase (FASN) using multifactor-dimensionality reduction method in Korean cattle.

    PubMed

    Lee, Jeayoung; Jin, Mehyun; Lee, Yoonseok; Ha, Jaejung; Yeo, Jungsou; Oh, Dongyep

    2014-01-01

    We examined the gene-gene interactions of five exonic single nucleotide polymorphisms (SNPs) in the gene encoding fatty acid synthase using 513 Korean cattle and using the model free and the non-parametrical multifactor dimensionality reduction method for the analysis. The five SNPs of g.12870 T>C, g.13126 T>C, g.15532 C>A, g.16907 T>C and g.17924 G>A associated with a variety of fatty acid compositions and marbling score were used in this study. The two-factor interaction between g.13126 T>C and g.15532 C>A had the highest training-balanced among the five-factor models and a testing-balanced accuracy at 70.18 % on C18:1 with a cross-validation consistency of 10 out of 10. Also, the two-factor interaction between g.13126 T>C and g.15532 C>A had the highest testing-balanced accuracy at 68.59 % with a 10 out of 10 cross-validation consistency, than any other models on MUFA. In MS, a single SNP g.15532 C>A had the best accuracy at 58.85 % and the two-factor interaction model g.12870 T>C and g.15532 C>A had the highest testing-balanced accuracy at 64.00 %. The three-factor interaction model g.12870 T>C, g.13126 T>C and g.15532 C>A was recorded as having a high testing-balanced accuracy of 63.24 %, but it was lower than the two-factor interaction model. We used likelihood ratio tests for interaction, and Chi square tests to validate our results, with all tests showing statistical significance. We also compared this with mean scores between the high-risk trait group and low-risk trait group. The genotypes of TTCA, TTAA and TCAA at g.15532 and g.13126 on C18:1, genotypes TTCC, TTCA, TTAA, TCAA CCAA at g.15532 and g.13126 on MUFA and genotypes CCCC, TCCA, CCCA, TTAA, TCAA and CCAA at g.15532 and g.12870 on MS were recommended for the genetic improvement of beef quality.

  8. The 10t,12c isomer of conjugated linoleic acid inhibits fatty acid synthase expression and enzyme activity in human breast, colon, and prostate cancer cells.

    PubMed

    Lau, Dominic S Y; Archer, Michael C

    2010-01-01

    The objective of this study was to determine whether downregulation of fatty acid synthase (FAS) expression and/or inhibition of its activity by the two major CLA isomers, 10t,12c and 9c,11t CLA, could contribute to their inhibitory effect on the growth of human breast (MCF-7), colon (HT-29) and prostate (LNCaP) cancer cell lines. We first confirmed and extended the results of others showing that the inhibitory action of CLA on proliferation is dependent on the cell type as well as the structure of the isomer, the 10,12 isomer being a more potent inhibitor than the 9,11 isomer in the concentration range 25-100 microM. By Western analysis, we showed that 10,12 CLA downregulated FAS expression in all of the cell lines in a concentration-dependent manner, but the 9,11 isomer had no effect. Both isomers inhibited FAS enzyme activity, but 10,12 CLA was again more potent than the 9,11 isomer. Our results suggest that downregulation of FAS by 10,12 CLA, but not by the 9,11 isomer, as well as inhibition of FAS enzyme activity by both isomers, may contribute to growth inhibition of cancer cells but only at relatively high concentrations.

  9. Enhanced production of branched-chain fatty acids by replacing β-ketoacyl-(acyl-carrier-protein) synthase III (FabH).

    PubMed

    Jiang, Wen; Jiang, Yanfang; Bentley, Gayle J; Liu, Di; Xiao, Yi; Zhang, Fuzhong

    2015-08-01

    Branched-chain fatty acids (BCFAs) are important precursors for the production of advanced biofuels with improved cold-flow properties. Previous efforts in engineering type II fatty acid synthase (FAS) for BCFA production suffered from low titers and/or the co-production of a large amount of straight-chain fatty acids (SCFAs), making it nearly impossible for further conversion of BCFAs to branched biofuels. Synthesis of both SCFAs and BCFAs requires FabH, the only β-ketoacyl-(acyl-carrier-protein) synthase in Escherichia coli that catalyzes the initial condensation reaction between malonyl-ACP and a short-chain acyl-CoA. In this study, we demonstrated that replacement of the acetyl-CoA-specific E. coli FabH with a branched-chain-acyl-CoA-specific FabH directed the flux to the synthesis of BCFAs, resulting in a significant enhancement in BCFA titer compared to a strain containing both acetyl-CoA- and branched-chain-acyl-CoA-specific FabHs. We further demonstrated that the composition of BCFAs can be tuned by engineering the upstream pathway to control the supply of different branched-chain acyl-CoAs, leading to the production either even-chain-iso-, odd-chain-iso-, or odd-chain-anteiso-BCFAs separately. Overall, the top-performing strain from this study produced BCFAs at 126 mg/L, comprising 52% of the total free fatty acids.

  10. Enhanced production of branched-chain fatty acids by replacing β-ketoacyl-(acyl-carrier-protein) synthase III (FabH).

    PubMed

    Jiang, Wen; Jiang, Yanfang; Bentley, Gayle J; Liu, Di; Xiao, Yi; Zhang, Fuzhong

    2015-08-01

    Branched-chain fatty acids (BCFAs) are important precursors for the production of advanced biofuels with improved cold-flow properties. Previous efforts in engineering type II fatty acid synthase (FAS) for BCFA production suffered from low titers and/or the co-production of a large amount of straight-chain fatty acids (SCFAs), making it nearly impossible for further conversion of BCFAs to branched biofuels. Synthesis of both SCFAs and BCFAs requires FabH, the only β-ketoacyl-(acyl-carrier-protein) synthase in Escherichia coli that catalyzes the initial condensation reaction between malonyl-ACP and a short-chain acyl-CoA. In this study, we demonstrated that replacement of the acetyl-CoA-specific E. coli FabH with a branched-chain-acyl-CoA-specific FabH directed the flux to the synthesis of BCFAs, resulting in a significant enhancement in BCFA titer compared to a strain containing both acetyl-CoA- and branched-chain-acyl-CoA-specific FabHs. We further demonstrated that the composition of BCFAs can be tuned by engineering the upstream pathway to control the supply of different branched-chain acyl-CoAs, leading to the production either even-chain-iso-, odd-chain-iso-, or odd-chain-anteiso-BCFAs separately. Overall, the top-performing strain from this study produced BCFAs at 126 mg/L, comprising 52% of the total free fatty acids. PMID:25788017

  11. Proteomic Upregulation of Fatty Acid Synthase and Fatty Acid Binding Protein 5 and Identification of Cancer- and Race-Specific Pathway Associations in Human Prostate Cancer Tissues

    PubMed Central

    Myers, Jennifer S.; von Lersner, Ariana K.; Sang, Qing-Xiang Amy

    2016-01-01

    Protein profiling studies of prostate cancer have been widely used to characterize molecular differences between diseased and non-diseased tissues. When combined with pathway analysis, profiling approaches are able to identify molecular mechanisms of prostate cancer, group patients by cancer subtype, and predict prognosis. This strategy can also be implemented to study prostate cancer in very specific populations, such as African Americans who have higher rates of prostate cancer incidence and mortality than other racial groups in the United States. In this study, age-, stage-, and Gleason score-matched prostate tumor specimen from African American and Caucasian American men, along with non-malignant adjacent prostate tissue from these same patients, were compared. Protein expression changes and altered pathway associations were identified in prostate cancer generally and in African American prostate cancer specifically. In comparing tumor to non-malignant samples, 45 proteins were significantly cancer-associated and 3 proteins were significantly downregulated in tumor samples. Notably, fatty acid synthase (FASN) and epidermal fatty acid-binding protein (FABP5) were upregulated in human prostate cancer tissues, consistent with their known functions in prostate cancer progression. Aldehyde dehydrogenase family 1 member A3 (ALDH1A3) was also upregulated in tumor samples. The Metastasis Associated Protein 3 (MTA3) pathway was significantly enriched in tumor samples compared to non-malignant samples. While the current experiment was unable to detect statistically significant differences in protein expression between African American and Caucasian American samples, differences in overrepresentation and pathway enrichment were found. Structural components (Cytoskeletal Proteins and Extracellular Matrix Protein protein classes, and Biological Adhesion Gene Ontology (GO) annotation) were overrepresented in African American but not Caucasian American tumors. Additionally, 5

  12. Proteomic Upregulation of Fatty Acid Synthase and Fatty Acid Binding Protein 5 and Identification of Cancer- and Race-Specific Pathway Associations in Human Prostate Cancer Tissues.

    PubMed

    Myers, Jennifer S; von Lersner, Ariana K; Sang, Qing-Xiang Amy

    2016-01-01

    Protein profiling studies of prostate cancer have been widely used to characterize molecular differences between diseased and non-diseased tissues. When combined with pathway analysis, profiling approaches are able to identify molecular mechanisms of prostate cancer, group patients by cancer subtype, and predict prognosis. This strategy can also be implemented to study prostate cancer in very specific populations, such as African Americans who have higher rates of prostate cancer incidence and mortality than other racial groups in the United States. In this study, age-, stage-, and Gleason score-matched prostate tumor specimen from African American and Caucasian American men, along with non-malignant adjacent prostate tissue from these same patients, were compared. Protein expression changes and altered pathway associations were identified in prostate cancer generally and in African American prostate cancer specifically. In comparing tumor to non-malignant samples, 45 proteins were significantly cancer-associated and 3 proteins were significantly downregulated in tumor samples. Notably, fatty acid synthase (FASN) and epidermal fatty acid-binding protein (FABP5) were upregulated in human prostate cancer tissues, consistent with their known functions in prostate cancer progression. Aldehyde dehydrogenase family 1 member A3 (ALDH1A3) was also upregulated in tumor samples. The Metastasis Associated Protein 3 (MTA3) pathway was significantly enriched in tumor samples compared to non-malignant samples. While the current experiment was unable to detect statistically significant differences in protein expression between African American and Caucasian American samples, differences in overrepresentation and pathway enrichment were found. Structural components (Cytoskeletal Proteins and Extracellular Matrix Protein protein classes, and Biological Adhesion Gene Ontology (GO) annotation) were overrepresented in African American but not Caucasian American tumors. Additionally, 5

  13. Proteomic Upregulation of Fatty Acid Synthase and Fatty Acid Binding Protein 5 and Identification of Cancer- and Race-Specific Pathway Associations in Human Prostate Cancer Tissues.

    PubMed

    Myers, Jennifer S; von Lersner, Ariana K; Sang, Qing-Xiang Amy

    2016-01-01

    Protein profiling studies of prostate cancer have been widely used to characterize molecular differences between diseased and non-diseased tissues. When combined with pathway analysis, profiling approaches are able to identify molecular mechanisms of prostate cancer, group patients by cancer subtype, and predict prognosis. This strategy can also be implemented to study prostate cancer in very specific populations, such as African Americans who have higher rates of prostate cancer incidence and mortality than other racial groups in the United States. In this study, age-, stage-, and Gleason score-matched prostate tumor specimen from African American and Caucasian American men, along with non-malignant adjacent prostate tissue from these same patients, were compared. Protein expression changes and altered pathway associations were identified in prostate cancer generally and in African American prostate cancer specifically. In comparing tumor to non-malignant samples, 45 proteins were significantly cancer-associated and 3 proteins were significantly downregulated in tumor samples. Notably, fatty acid synthase (FASN) and epidermal fatty acid-binding protein (FABP5) were upregulated in human prostate cancer tissues, consistent with their known functions in prostate cancer progression. Aldehyde dehydrogenase family 1 member A3 (ALDH1A3) was also upregulated in tumor samples. The Metastasis Associated Protein 3 (MTA3) pathway was significantly enriched in tumor samples compared to non-malignant samples. While the current experiment was unable to detect statistically significant differences in protein expression between African American and Caucasian American samples, differences in overrepresentation and pathway enrichment were found. Structural components (Cytoskeletal Proteins and Extracellular Matrix Protein protein classes, and Biological Adhesion Gene Ontology (GO) annotation) were overrepresented in African American but not Caucasian American tumors. Additionally, 5

  14. Cystathionine-β-Synthase Inhibition for Colon Cancer: Enhancement of the Efficacy of Aminooxyacetic Acid via the Prodrug Approach

    PubMed Central

    Chao, Celia; Zatarain, John R; Ding, Ye; Coletta, Ciro; Mrazek, Amy A; Druzhyna, Nadiya; Johnson, Paul; Chen, Haiying; Hellmich, Judy L; Asimakopoulou, Antonia; Yanagi, Kazunori; Olah, Gabor; Szoleczky, Petra; Törö, Gabor; Bohanon, Fredrick J; Cheema, Minal; Lewis, Rachel; Eckelbarger, David; Ahmad, Akbar; Módis, Katalin; Untereiner, Ashley; Szczesny, Bartosz; Papapetropoulos, Andreas; Zhou, Jia; Hellmich, Mark R; Szabo, Csaba

    2016-01-01

    Colon cancer cells contain high levels of cystathionine-β-synthase (CBS). Its product, hydrogen sulfide (H2S), promotes the growth and proliferation of colorectal tumor cells. To improve the antitumor efficacy of the prototypical CBS inhibitor aminooxyacetic acid (AOAA), we have designed and synthesized YD0171, a methyl ester derivative of AOAA. The antiproliferative effect of YD0171 exceeded the antiproliferative potency of AOAA in HCT116 human colon cancer cells. The esterase inhibitor paraoxon prevented the cellular inhibition of CBS activity by YD0171. YD0171 suppressed mitochondrial respiration and glycolytic function and induced G0/G1 arrest, but did not induce tumor cell apoptosis or necrosis. Metabolomic analysis in HCT116 cells showed that YD0171 affects multiple pathways of cell metabolism. The efficacy of YD0171 as an inhibitor of tumor growth was also tested in nude mice bearing subcutaneous HCT116 cancer cell xenografts. Animals were treated via subcutaneous injection of vehicle or AOAA (0.1, 0.5 or 1 mg/kg/d) for 3 wks. Tumor growth was significantly reduced by 9 mg/kg/d AOAA, but not at the lower doses. YD0171 was more potent: tumor volume was significantly inhibited at 0.5 and 1 mg/kg/d. Thus, the in vivo efficacy of YD0171 is nine times higher than that of AOAA. YD0171 (1 mg/kg/d) attenuated tumor growth and metastasis formation in the intracecal HCT116 tumor model. YD0171 (3 mg/kg/d) also reduced tumor growth in patient-derived tumor xenograft bearing athymic mice. YD0171 (3 mg/kg/d) induced the regression of established HCT116 tumors in vivo. A 5-d safety study in mice demonstrated that YD0171 at 20 mg/kg/d (given in two divided doses) does not increase plasma markers of organ injury, nor does it induce histological alterations in the liver or kidney. YD0171 caused a slight elevation in plasma homocysteine levels. In conclusion, the prodrug approach improves the pharmacological profile of AOAA; YD0171 represents a prototype for CBS inhibitory

  15. Neuroprotective effect of hemeoxygenase-1/glycogen synthase kinase-3β modulators in 3-nitropropionic acid-induced neurotoxicity in rats.

    PubMed

    Khan, A; Jamwal, S; Bijjem, K R V; Prakash, A; Kumar, P

    2015-02-26

    The present study has been designed to explore the possible interaction between hemeoxygenase-1 (HO-1) and glycogen synthase kinase-3β (GSK-3β) pathway in 3-nitropropionic acid (3-NP)-induced neurotoxicity in rats. 3-NP produces neurotoxicity by inhibition of the mitochondrial complex II (enzyme succinate dehydrogenase) and by sensitizing the N-methyl-D-aspartate receptor. Recent studies have reported the therapeutic potential of HO-1/GSK-3β modulators in different neurodegenerative disorders. However, their exact role is yet to be explored. The present study is an attempt to investigate the effect of pharmacological modulation of HO-1/GSK-3β pathway against 3-NP-induced behavioral, biochemical and molecular alterations in rat. Behavioral observation, oxidative stress, pro-inflammatory [tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β)], HO-1 and GSK-3β activity were evaluated post 3-NP treatment. Findings of the present study demonstrate a significant alteration in the locomotor activity, motor coordination, oxidative burden (increased lipid peroxidation, nitrite concentration and decreased endogenous antioxidants), pro-inflammatory mediators [TNF-α, IL-1β], HO-1 and GSK-3β activity in 3-NP-treated animals. Further, administration of hemin (10- and 30-mg/kg; i.p.) and lithium chloride (LiCl) (25- and 50-mg/kg; i.p.) prevented the alteration in body weight, motor impairments, oxidative stress and cellular markers. In addition, combined administration of hemin (10-mg/kg) and LiCl (25-mg/kg) showed synergistic effect on 3-NP-treated rats. Pretreatment with Tin (IV) protoporphyrin (40 μM/kg), HO-1 inhibitor reversed the beneficial effect of LiCl and hemin. Outcomes of the present study suggest that HO-1 and GSK-3β enzymes are involved in the pathophysiology of HD. The modulators of both the pathways might be used as adjuvants or prophylactic therapy for the treatment of HD-like symptoms.

  16. 1-(Fluoroalkylidene)-1,1-bisphosphonic Acids are Potent and Selective Inhibitors of the Enzymatic Activity of Toxoplasma gondii Farnesyl Pyrophosphate Synthase

    PubMed Central

    Szajnman, Sergio H.; Rosso, Valeria S.; Malayil, Leena; Smith, Alyssa; Moreno, Silvia N. J.; Docampo, Roberto

    2012-01-01

    α-Fluorinated-1,1-bisphosphonic acids derived from fatty acids were designed, synthesized and biologically evaluated against Trypanosoma cruzi, the etiologic agent of Chagas disease and against Toxoplasma gondii, the responsible agent of toxoplasmosis and also towards the target parasitic enzymes farnesyl pyrophosphate synthase of T. cruzi (TcFPPS) and T gondii (TgFPPS), respectively. Interestingly, 1-fluorononylidene-1,1-bisphosphonic acid (compound 43) has proven to be an extremely potent inhibitor of the enzymatic activity of TgFPPS at the low nanomolar range exhibiting an IC50 of 30 nM. This compound was two-fold more potent than risedronate (IC50 = 74 nM) taken as a positive control. This enzymatic activity was associated to a strong cell growth inhibition against tachyzoites of T. gondii having an IC50 value of 2.7 μM. PMID:22215028

  17. Disrupted short chain specific β-oxidation and improved synthase expression increase synthesis of short chain fatty acids in Saccharomyces cerevisiae.

    PubMed

    Leber, Christopher; Choi, Jin Wook; Polson, Brian; Da Silva, Nancy A

    2016-04-01

    Biologically derived fatty acids have gained tremendous interest as an alternative to petroleum-derived fuels and chemical precursors. We previously demonstrated the synthesis of short chain fatty acids in Saccharomyces cerevisiae by introduction of the Homo sapiens fatty acid synthase (hFAS) with heterologous phosphopantetheine transferases and heterologous thioesterases. In this study, short chain fatty acid production was improved by combining a variety of novel enzyme and metabolic engineering strategies. The use of a H. sapiens-derived thioesterase and phosphopantetheine transferase were evaluated. In addition, strains were engineered to disrupt either the full β-oxidation (by deleting FAA2, PXA1, and POX1) or short chain-specific β-oxidation (by deleting FAA2, ANT1, and PEX11) pathways. Prohibiting full β-oxidation increased hexanoic and octanoic acid levels by 8- and 79-fold relative to the parent strain expressing hFAS. However, by targeting only short chain β-oxidation, hexanoic and octanoic acid levels increased further to 31- and 140-fold over the parent. In addition, an optimized hFAS gene increased hexanoic, octanoic, decanoic and total short chain fatty acid levels by 2.9-, 2.0-, 2.3-, and 2.2-fold, respectively, relative to the non-optimized counterpart. By combining these unique enzyme and metabolic engineering strategies, octanoic acid was increased more than 181-fold over the parent strain expressing hFAS.

  18. A jojoba beta-Ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants.

    PubMed

    Lassner, M W; Lardizabal, K; Metz, J G

    1996-02-01

    beta-Ketoacyl-coenzyme A (CoA) synthase (KCS) catalyzes the condensation of malonyl-CoA with long-chain acyl-CoA. This reaction is the initial step of the microsomal fatty acyl-CoA elongation pathway responsible for formation of very long chain fatty acids (VLCFAs, or fatty acids with chain lengths > 18 carbons). Manipulation of this pathway is significant for agriculture, because it is the basis of conversion of high erucic acid rapeseed into canola. High erucic acid rapeseed oil, used as an industrial feedstock, is rich in VLCFAs, whereas the edible oil extracted from canola is essentially devoid of VLCFAs. Here, we report the cloning of a cDNA from developing jojoba embryos involved in microsomal fatty acid elongation. The jojoba cDNA is homologous to the recently cloned Arabidopsis FATTY ACID ELONGATION1 (FAE1) gene that has been suggested to encode KCS. We characterize the jojoba enzyme and present biochemical data indicating that the jojoba cDNA does indeed encode KCS. Transformation of low erucic acid rapeseed with the jojoba cDNA restored KCS activity to developing embryos and altered the transgenic seed oil composition to contain high levels of VLCFAs. The data reveal the key role KCS plays in determining the chain lengths of fatty acids found in seed oils.

  19. Pseudouridine synthases.

    PubMed

    Hamma, Tomoko; Ferré-D'Amaré, Adrian R

    2006-11-01

    Pseudouridine synthases are the enzymes responsible for the most abundant posttranscriptional modification of cellular RNAs. These enzymes catalyze the site-specific isomerization of uridine residues that are already part of an RNA chain, and appear to employ both sequence and structural information to achieve site specificity. Crystallographic analyses have demonstrated that all pseudouridine synthases share a common core fold and active site structure and that this core is modified by peripheral domains, accessory proteins, and guide RNAs to give rise to remarkable substrate versatility.

  20. Fatty acid biosynthesis in Pseudomonas aeruginosa is initiated by the FabY class of β-ketoacyl acyl carrier protein synthases.

    PubMed

    Yuan, Yanqiu; Sachdeva, Meena; Leeds, Jennifer A; Meredith, Timothy C

    2012-10-01

    The prototypical type II fatty acid synthesis (FAS) pathway in bacteria utilizes two distinct classes of β-ketoacyl synthase (KAS) domains to assemble long-chain fatty acids, the KASIII domain for initiation and the KASI/II domain for elongation. The central role of FAS in bacterial viability and virulence has stimulated significant effort toward developing KAS inhibitors, particularly against the KASIII domain of the β-acetoacetyl-acyl carrier protein (ACP) synthase FabH. Herein, we show that the opportunistic pathogen Pseudomonas aeruginosa does not utilize a FabH ortholog but rather a new class of divergent KAS I/II enzymes to initiate the FAS pathway. When a P. aeruginosa cosmid library was used to rescue growth in a fabH downregulated strain of Escherichia coli, a single unannotated open reading frame, PA5174, complemented fabH depletion. While deletion of all four KASIII domain-encoding genes in the same P. aeruginosa strain resulted in a wild-type growth phenotype, deletion of PA5174 alone specifically attenuated growth due to a defect in de novo FAS. Siderophore secretion and quorum-sensing signaling, particularly in the rhl and Pseudomonas quinolone signal (PQS) systems, was significantly muted in the absence of PA5174. The defect could be repaired by intergeneric complementation with E. coli fabH. Characterization of recombinant PA5174 confirmed a preference for short-chain acyl coenzyme A (acyl-CoA) substrates, supporting the identification of PA5174 as the predominant enzyme catalyzing the condensation of acetyl coenzyme A with malonyl-ACP in P. aeruginosa. The identification of the functional role for PA5174 in FAS defines the new FabY class of β-ketoacyl synthase KASI/II domain condensation enzymes.

  1. Sequence heterogeneity of cannabidiolic- and tetrahydrocannabinolic acid-synthase in Cannabis sativa L. and its relationship with chemical phenotype.

    PubMed

    Onofri, Chiara; de Meijer, Etienne P M; Mandolino, Giuseppe

    2015-08-01

    Sequence variants of THCA- and CBDA-synthases were isolated from different Cannabis sativa L. strains expressing various wild-type and mutant chemical phenotypes (chemotypes). Expressed and complete sequences were obtained from mature inflorescences. Each strain was shown to have a different specificity and/or ability to convert the precursor CBGA into CBDA and/or THCA type products. The comparison of the expressed sequences led to the identification of different mutations, all of them due to SNPs. These SNPs were found to relate to the cannabinoid composition of the inflorescence at maturity and are therefore proposed to have a functional significance. The amount of variation was found to be higher within the CBDAS sequence family than in the THCAS family, suggesting a more recent evolution of THCA-forming enzymes from the CBDAS group. We therefore consider CBDAS as the ancestral type of these synthases.

  2. Application of chromatography technology in the separation of active alkaloids from Hypecoum leptocarpum and their inhibitory effect on fatty acid synthase.

    PubMed

    Zhang, Qiulong; Luan, Guangxiang; Ma, Tao; Hu, Na; Suo, Yourui; Wang, Xiaoyan; Ma, Xiaofeng; Ding, Chenxu

    2015-12-01

    A method that involved the combination of pH-zone-refining counter-current chromatography and semipreparative reversed-phase liquid chromatography has been established for the preparative separation of alkaloids from Hypecoum leptocarpum. From 1.2 g of crude sample, 31 mg N-feruloyltyramine, 27 mg oxohydrastinine, 47 mg hydroprotopine, 25 mg leptopidine, and 18 mg hypecocarpine have been obtained. The structure of the new compound, hypecocarpine, is confirmed based on the analysis of spectroscopic data, including NMR, UV, and IR spectroscopy and positive electrospray ionization mass spectrometry. The known chemical structures were characterized on the basis of (1) H and (13) C NMR spectroscopy. The purities of the five alkaloids are all over 92.7% as determined by high-performance liquid chromatography. The alkaloids' cytotoxicity in breast cancer cells is assessed by using a Cell Counting Kit assay and their inhibitory effect on fatty acid synthase expression is assessed by a Western blot assay. These results suggest that leptopidine could suppress growth and induce cytotoxicity in breast cancer cells and that the cytotoxicity of leptopidine may be related to its inhibitory effect on fatty acid synthase expression.

  3. Three-factor reciprocal cross mapping of a gene that causes expression of feedback-resistant acetohydroxy acid synthase in Escherichia coli K-12.

    PubMed

    Jackson, J H; Davis, E J; Madu, A C; Braxter, S E

    1981-01-01

    The ilv-662 allele was previously identified as a mutation that caused acetohydroxy acid synthase activity to be resistant to feedback inhibition by valine (Davis et al. 1977). This allele was mapped between thr and leu by cotransduction analysis and labeled ilvJ. This report describes the mapping of ilvJ relative to genes that lie between thr and leu (ara, carA and pdxA) by three factor reciprocal cross analyses. We find that the probable gene order is thr-carA-pdxA-ilvJ-ara-leu. Although the phenotypic properties of ilvJ662 appear to be quite distinct from brnS, a gene reported to involve branched chain amino acid transport (Guardiola et al. 1974), we do not rule out possible allelism because of the uncertainty of the map position of brnS.

  4. Hybrid polyketide synthases

    DOEpatents

    Fortman, Jeffrey L.; Hagen, Andrew; Katz, Leonard; Keasling, Jay D.; Poust, Sean; Zhang, Jingwei; Zotchev, Sergey

    2016-05-10

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing an even-chain or odd-chain diacid or lactam or diamine. The present invention also provides for a host cell comprising the PKS and when cultured produces the even-chain diacid, odd-chain diacid, or KAPA. The present invention also provides for a host cell comprising the PKS capable of synthesizing a pimelic acid or KAPA, and when cultured produces biotin.

  5. β-Ketoacyl-acyl Carrier Protein Synthase I (KASI) Plays Crucial Roles in the Plant Growth and Fatty Acids Synthesis in Tobacco

    PubMed Central

    Yang, Tianquan; Xu, Ronghua; Chen, Jianghua; Liu, Aizhong

    2016-01-01

    Fatty acids serve many functions in plants, but the effects of some key genes involved in fatty acids biosynthesis on plants growth and development are not well understood yet. To understand the functions of 3-ketoacyl-acyl-carrier protein synthase I (KASI) in tobacco, we isolated two KASI homologs, which we have designated NtKASI-1 and NtKASI-2. Expression analysis showed that these two KASI genes were transcribed constitutively in all tissues examined. Over-expression of NtKASI-1 in tobacco changed the fatty acid content in leaves, whereas over-expressed lines of NtKASI-2 exhibited distinct phenotypic features such as slightly variegated leaves and reduction of the fatty acid content in leaves, similar to the silencing plants of NtKASI-1 gene. Interestingly, the silencing of NtKASI-2 gene had no discernibly altered phenotypes compared to wild type. The double silencing plants of these two genes enhanced the phenotypic changes during vegetative and reproductive growth compared to wild type. These results uncovered that these two KASI genes had the partially functional redundancy, and that the KASI genes played a key role in regulating fatty acids synthesis and in mediating plant growth and development in tobacco. PMID:27509494

  6. β-Ketoacyl-acyl Carrier Protein Synthase I (KASI) Plays Crucial Roles in the Plant Growth and Fatty Acids Synthesis in Tobacco.

    PubMed

    Yang, Tianquan; Xu, Ronghua; Chen, Jianghua; Liu, Aizhong

    2016-01-01

    Fatty acids serve many functions in plants, but the effects of some key genes involved in fatty acids biosynthesis on plants growth and development are not well understood yet. To understand the functions of 3-ketoacyl-acyl-carrier protein synthase I (KASI) in tobacco, we isolated two KASI homologs, which we have designated NtKASI-1 and NtKASI-2. Expression analysis showed that these two KASI genes were transcribed constitutively in all tissues examined. Over-expression of NtKASI-1 in tobacco changed the fatty acid content in leaves, whereas over-expressed lines of NtKASI-2 exhibited distinct phenotypic features such as slightly variegated leaves and reduction of the fatty acid content in leaves, similar to the silencing plants of NtKASI-1 gene. Interestingly, the silencing of NtKASI-2 gene had no discernibly altered phenotypes compared to wild type. The double silencing plants of these two genes enhanced the phenotypic changes during vegetative and reproductive growth compared to wild type. These results uncovered that these two KASI genes had the partially functional redundancy, and that the KASI genes played a key role in regulating fatty acids synthesis and in mediating plant growth and development in tobacco. PMID:27509494

  7. Genes Specific for the Biosynthesis of Clavam Metabolites Antipodal to Clavulanic Acid Are Clustered with the Gene for Clavaminate Synthase 1 in Streptomyces clavuligerus

    PubMed Central

    Mosher, Roy H.; Paradkar, Ashish S.; Anders, Cecilia; Barton, Barry; Jensen, Susan E.

    1999-01-01

    Portions of the Streptomyces clavuligerus chromosome flanking cas1, which encodes the clavaminate synthase 1 isoenzyme (CAS1), have been cloned and sequenced. Mutants of S. clavuligerus disrupted in cvm1, the open reading frame located immediately upstream of cas1, were constructed by a gene replacement procedure. Similar techniques were used to generate S. clavuligerus mutants carrying a deletion that encompassed portions of the two open reading frames, cvm4 and cvm5, located directly downstream of cas1. Both classes of mutants still produced clavulanic acid and cephamycin C but lost the ability to synthesize the antipodal clavam metabolites clavam-2-carboxylate, 2-hydroxymethyl-clavam, and 2-alanylclavam. These results suggested that cas1 is clustered with genes essential and specific for clavam metabolite biosynthesis. When a cas1 mutant of S. clavuligerus was constructed by gene replacement, it produced lower levels of both clavulanic acid and most of the antipodal clavams except for 2-alanylclavam. However, a double mutant of S. clavuligerus disrupted in both cas1 and cas2 produced neither clavulanic acid nor any of the antipodal clavams, including 2-alanylclavam. This outcome was consistent with the contribution of both CAS1 and CAS2 to a common pool of clavaminic acid that is shunted toward clavulanic acid and clavam metabolite biosynthesis. PMID:10223939

  8. /sup 13/C NMR studies of porphobilinogen synthase: observation of intermediates bound to a 280,000-dalton protein

    SciTech Connect

    Jaffe, E.K.; Markham, G.D.

    1987-07-14

    /sup 13/C NMR has been used to observe the equilibrium complex of (4-/sup 13/C)-5-aminolevulinate ((4-/sup 13/C)ALA) bound to porphobilinogen (PBG) synthase (5-aminolevulinate dehydratase), a 280,000-dalton protein. (4-/sup 13/C)ALA (chemical shift = 205.9 ppm) forms (3,5-/sup 13/C)PBG (chemical shifts = 121.0 and 123.0 ppm). PBG prepared from a mixture of (4-/sup 13/C)ALA and (/sup 15/N)ALA was used to assign the 121.0 and 123.0 ppm resonances to C/sub 5/ and C/sub 3/, respectively. For the enzyme-bound equilibrium complex formed from holoenzyme and (4-/sup 13/C)ALA, two peaks of equal area with chemical shifts of 121.5 and 127.2 ppm are observed (line widths approx. 50 Hz), indicating that the predominant species is probably a distorted form of PBG. When excess free PBG is present, it is in slow exchange with bound PBG, indicating an exchange rate of < 10 s/sup -1/, which is consistent with the turnover rate of the enzyme. For the complex formed from (4-/sup 13/C)ALA and methyl methanethiosulfonate (MMTS) modified PBG synthase, which does not catalyze PBG formation, the predominant species is a Schiff base adduct (chemical shift = 166.5 ppm, line width approx. 50 Hz). Free ALA is in slow exchange with the Schiff base. Activation of the MMTS-modified enzyme-Schiff base complex with /sup 113/Cd and 2-mercaptoethanol results in the loss of the Schiff base signal and the appearance of bound PBG with the same chemical shifts as for the bound equilibrium complex with Zn(II) enzyme. Neither splitting nor broadening from /sup 113/Cd-/sup 13/C coupling was observed.

  9. Molecular evolution and sequence divergence of plant chalcone synthase and chalcone synthase-Like genes.

    PubMed

    Han, Yingying; Zhao, Wenwen; Wang, Zhicui; Zhu, Jingying; Liu, Qisong

    2014-06-01

    Plant chalcone synthase (CHS) and CHS-Like (CHSL) proteins are polyketide synthases. In this study, we evaluated the molecular evolution of this gene family using representative types of CHSL genes, including stilbene synthase (STS), 2-pyrone synthase (2-PS), bibenzyl synthase (BBS), acridone synthase (ACS), biphenyl synthase (BIS), benzalacetone synthase, coumaroyl triacetic acid synthase (CTAS), and benzophenone synthase (BPS), along with their CHS homologs from the same species of both angiosperms and gymnosperms. A cDNA-based phylogeny indicated that CHSLs had diverse evolutionary patterns. STS, ACS, and 2-PS clustered with CHSs from the same species (late diverged pattern), while CTAS, BBS, BPS, and BIS were distant from their CHS homologs (early diverged pattern). The amino-acid phylogeny suggested that CHS and CHSL proteins formed clades according to enzyme function. The CHSs and CHSLs from Polygonaceae and Arachis had unique evolutionary histories. Synonymous mutation rates were lower in late diverged CHSLs than in early diverged ones, indicating that gene duplications occurred more recently in late diverged CHSLs than in early diverged ones. Relative rate tests proved that late diverged CHSLs had unequal rates to CHSs from the same species when using fatty acid synthase, which evolved from the common ancestor with the CHS superfamily, as the outgroup, while the early diverged lineages had equal rates. This indicated that late diverged CHSLs experienced more frequent mutation than early diverged CHSLs after gene duplication, allowing obtaining new functions in relatively short period of time.

  10. Cloning, expression, and characterization of para-aminobenzoic acid (PABA) synthase from Agaricus bisporus 02, a thermotolerant mushroom strain.

    PubMed

    Deng, Li-Xin; Shen, Yue-Mao; Song, Si-Yang

    2015-01-01

    The pabS gene of Agaricus bisporus 02 encoding a putative PABA synthase was cloned, and then the recombinant protein was expressed in Escherichia coli BL21 under the control of the T7 promoter. The enzyme with an N-terminal GST tag or His tag, designated GST-AbADCS or His-AbADCS, was purified with glutathione Sepharose 4B or Ni Sepharose 6 Fast Flow. The enzyme was an aminodeoxychorismate synthase, and it was necessary to add with an aminodeoxychorismate lyase for synthesizing PABA. AbADCS has maximum activity at a temperature of approximately 25°C and pH 8.0. Magnesium or manganese ions were necessary for the enzymatic activity. The Michaelis-Menten constant for chorismate was 0.12 mM, and 2.55 mM for glutamine. H2O2 did distinct damage on the activity of the enzyme, which could be slightly recovered by Hsp20. Sulfydryl reagents could remarkably promote its activity, suggesting that cysteine residues are essential for catalytic function.

  11. Modulation of medium-chain fatty acid synthesis in Synechococcus sp. PCC 7002 by replacing FabH with a Chaetoceros Ketoacyl-ACP synthase

    DOE PAGES

    Gu, Huiya; Jinkerson, Robert E.; Davies, Fiona K.; Sisson, Lyle A.; Schneider, Philip E.; Posewitz, Matthew C.

    2016-05-26

    The isolation or engineering of algal cells synthesizing high levels of medium-chain fatty acids (MCFAs) is attractive to mitigate the high clouding point of longer chain fatty acids in algal based biodiesel. To develop a more informed understanding of MCFA synthesis in photosynthetic microorganisms, we isolated several algae from Great Salt Lake and screened this collection for MCFA accumulation to identify strains naturally accumulating high levels of MCFA. A diatom, Chaetoceros sp. GSL56, accumulated particularly high levels of C14 (up to 40%), with the majority of C14 fatty acids allocated in triacylglycerols. Using whole cell transcriptome sequencing and de novomore » assembly, putative genes encoding fatty acid synthesis enzymes were identified. Enzymes from this Chaetoceros sp. were expressed in the cyanobacterium Synechococcus sp. PCC 7002 to validate gene function and to determine whether eukaryotic enzymes putatively lacking bacterial evolutionary control mechanisms could be used to improve MCFA production in this promising production strain. Replacement of the Synechococcus 7002 native FabH with a Chaetoceros ketoacyl-ACP synthase Ill increased MCFA synthesis up to fivefold. In conclusion, the level of increase is dependent on promoter strength and culturing conditions.« less

  12. Modulation of Medium-Chain Fatty Acid Synthesis in Synechococcus sp. PCC 7002 by Replacing FabH with a Chaetoceros Ketoacyl-ACP Synthase

    PubMed Central

    Gu, Huiya; Jinkerson, Robert E.; Davies, Fiona K.; Sisson, Lyle A.; Schneider, Philip E.; Posewitz, Matthew C.

    2016-01-01

    The isolation or engineering of algal cells synthesizing high levels of medium-chain fatty acids (MCFAs) is attractive to mitigate the high clouding point of longer chain fatty acids in algal based biodiesel. To develop a more informed understanding of MCFA synthesis in photosynthetic microorganisms, we isolated several algae from Great Salt Lake and screened this collection for MCFA accumulation to identify strains naturally accumulating high levels of MCFA. A diatom, Chaetoceros sp. GSL56, accumulated particularly high levels of C14 (up to 40%), with the majority of C14 fatty acids allocated in triacylglycerols. Using whole cell transcriptome sequencing and de novo assembly, putative genes encoding fatty acid synthesis enzymes were identified. Enzymes from this Chaetoceros sp. were expressed in the cyanobacterium Synechococcus sp. PCC 7002 to validate gene function and to determine whether eukaryotic enzymes putatively lacking bacterial evolutionary control mechanisms could be used to improve MCFA production in this promising production strain. Replacement of the Synechococcus 7002 native FabH with a Chaetoceros ketoacyl-ACP synthase III increased MCFA synthesis up to fivefold. The level of increase is dependent on promoter strength and culturing conditions. PMID:27303412

  13. Modulation of Medium-Chain Fatty Acid Synthesis in Synechococcus sp. PCC 7002 by Replacing FabH with a Chaetoceros Ketoacyl-ACP Synthase.

    PubMed

    Gu, Huiya; Jinkerson, Robert E; Davies, Fiona K; Sisson, Lyle A; Schneider, Philip E; Posewitz, Matthew C

    2016-01-01

    The isolation or engineering of algal cells synthesizing high levels of medium-chain fatty acids (MCFAs) is attractive to mitigate the high clouding point of longer chain fatty acids in algal based biodiesel. To develop a more informed understanding of MCFA synthesis in photosynthetic microorganisms, we isolated several algae from Great Salt Lake and screened this collection for MCFA accumulation to identify strains naturally accumulating high levels of MCFA. A diatom, Chaetoceros sp. GSL56, accumulated particularly high levels of C14 (up to 40%), with the majority of C14 fatty acids allocated in triacylglycerols. Using whole cell transcriptome sequencing and de novo assembly, putative genes encoding fatty acid synthesis enzymes were identified. Enzymes from this Chaetoceros sp. were expressed in the cyanobacterium Synechococcus sp. PCC 7002 to validate gene function and to determine whether eukaryotic enzymes putatively lacking bacterial evolutionary control mechanisms could be used to improve MCFA production in this promising production strain. Replacement of the Synechococcus 7002 native FabH with a Chaetoceros ketoacyl-ACP synthase III increased MCFA synthesis up to fivefold. The level of increase is dependent on promoter strength and culturing conditions. PMID:27303412

  14. Increased thymidylate synthase in L1210 cells possessing acquired resistance to N10-propargyl-5,8-dideazafolic acid (CB3717): development, characterization, and cross-resistance studies

    SciTech Connect

    Jackman, A.L.; Alison, D.L.; Calvert, A.H.; Harrap, K.R.

    1986-06-01

    The properties are described of a mutant L1210 cell line (L1210:C15) with acquired resistance (greater than 200-fold) to the thymidylate synthase (TS) inhibitor N10-propargyl-5,8-dideazafolic acid. TS was overproduced 45-fold and was accompanied by a small increase in the activity of dihydrofolate reductase (2.6-fold). Both the level of resistance and enzyme activities were maintained in drug-free medium (greater than 300 generations). Failure of N10-propargyl-5,8-dideazafolic acid to suppress the (/sup 3/H)-2'-deoxyuridine incorporation into the acid-precipitable material of the resistant line supported the evidence that TS overproduction was the mechanism of resistance; consequently the L1210:C15 cells were largely cross-resistant to another (but weaker) TS inhibitor, 5,8-dideazafolic acid. Minimal cross-resistance was observed to the dihydrofolate reductase inhibitors methotrexate and 5-methyl-5,8-dideazaaminopterin (5- and 2-fold, respectively). L1210 and L1210:C15 cells were, however, equally sensitive to 5-fluorodeoxyuridine (FdUrd), an unexpected finding since a metabolite, 5-fluorodeoxyuridine monophosphate, is a potent TS inhibitor; however, this cytotoxicity against the L1210:C15 cells was antagonized by coincubation with 5 microM folinic acid although folinic acid potentiated the cytotoxicity of FdUrd to the N10-propargyl-5,8-dideazafolic acid-sensitive L1210 line. Thymidine was much less effective as a FdUrd protecting agent in the L1210:C15 when compared with the L1210 cells; however, a combination of thymidine plus hypoxanthine was without any additional effect (compared with thymidine alone) against the sensitive line but effectively protected L1210:C15 cells.

  15. Biosynthesis of Akaeolide and Lorneic Acids and Annotation of Type I Polyketide Synthase Gene Clusters in the Genome of Streptomyces sp. NPS554

    PubMed Central

    Zhou, Tao; Komaki, Hisayuki; Ichikawa, Natsuko; Hosoyama, Akira; Sato, Seizo; Igarashi, Yasuhiro

    2015-01-01

    The incorporation pattern of biosynthetic precursors into two structurally unique polyketides, akaeolide and lorneic acid A, was elucidated by feeding experiments with 13C-labeled precursors. In addition, the draft genome sequence of the producer, Streptomyces sp. NPS554, was performed and the biosynthetic gene clusters for these polyketides were identified. The putative gene clusters contain all the polyketide synthase (PKS) domains necessary for assembly of the carbon skeletons. Combined with the 13C-labeling results, gene function prediction enabled us to propose biosynthetic pathways involving unusual carbon-carbon bond formation reactions. Genome analysis also indicated the presence of at least ten orphan type I PKS gene clusters that might be responsible for the production of new polyketides. PMID:25603349

  16. Efficient production of gamma-aminobutyric acid using Escherichia coli by co-localization of glutamate synthase, glutamate decarboxylase, and GABA transporter.

    PubMed

    Dung Pham, Van; Somasundaram, Sivachandiran; Lee, Seung Hwan; Park, Si Jae; Hong, Soon Ho

    2016-01-01

    Gamma-aminobutyric acid (GABA) is an important bio-product, which is used in pharmaceutical formulations, nutritional supplements, and biopolymer monomer. The traditional GABA process involves the decarboxylation of glutamate. However, the direct production of GABA from glucose is a more efficient process. To construct the recombinant strains of Escherichia coli, a novel synthetic scaffold was introduced. By carrying out the co-localization of glutamate synthase, glutamate decarboxylase, and GABA transporter, we redirected the TCA cycle flux to GABA pathway. The genetically engineered E. coli strain produced 1.08 g/L of GABA from 10 g/L of initial glucose. Thus, with the introduction of a synthetic scaffold, we increased GABA production by 2.2-fold. The final GABA concentration was increased by 21.8% by inactivating competing pathways.

  17. Production of gamma-aminobutyric acid from glucose by introduction of synthetic scaffolds between isocitrate dehydrogenase, glutamate synthase and glutamate decarboxylase in recombinant Escherichia coli.

    PubMed

    Pham, Van Dung; Lee, Seung Hwan; Park, Si Jae; Hong, Soon Ho

    2015-08-10

    Escherichia coli were engineered for the direct production of gamma-aminobutyric acid from glucose by introduction of synthetic protein scaffold. In this study, three enzymes consisting GABA pathway (isocitrate dehydrogenase, glutamate synthase and glutamate decarboxylase) were connected via synthetic protein scaffold. By introduction of scaffold, 0.92g/L of GABA was produced from 10g/L of glucose while no GABA was produced in wild type E. coli. The optimum pH and temperature for GABA production were 4.5 and 30°C, respectively. When competing metabolic network was inactivated by knockout mutation, maximum GABA concentration of 1.3g/L was obtained from 10g/L glucose. The recombinant E. coli strain which produces GABA directly from glucose was successfully constructed by introduction of protein scaffold.

  18. Pu-erh tea, green tea, and black tea suppresses hyperlipidemia, hyperleptinemia and fatty acid synthase through activating AMPK in rats fed a high-fructose diet.

    PubMed

    Huang, Hsiu-Chen; Lin, Jen-Kun

    2012-02-01

    Although green tea extract has been reported to suppress hyperlipidemia, it is unclear how tea extracts prepared from green, oolong, black and pu-erh teas modulate fatty acid synthase expression in rats fed on a high-fructose diet. In this animal study, we evaluated the hypolipidemic and hypoleptinemia effect of these four different tea leaves fed to male Wistar rats for 12 weeks. The results showed that a fructose-rich diet significantly elevated serum triacylglycerols, cholesterol, insulin, and leptin concentrations, as compared with those in the control group. Interestingly, consuming tea leaves for 12 weeks almost normalized the serum triacylglycerols concentrations. Again, rats fed with fructose/green tea and fructose/pu-erh tea showed the greatest reduction in serum TG, cholesterol, insulin and leptin levels. In contrast, serum cholesterol and insulin concentrations of the fructose/oolong tea-fed rats did not normalize. The relative epididymal adipose tissue weight was lower in all rats supplemented with tea leaves than those fed with fructose alone. There was molecular evidence of improved lipid homeostasis according to fatty acid synthase (FAS) protein expression. Furthermore, supplementation of green, black, and pu-erh tea leaves significantly decreased hepatic FAS mRNA and protein levels, and increased AMPK phosphorylation, compared with those of rats fed with fructose only. These findings suggest that the intake of green, black, and pu-erh tea leaves ameliorated the fructose-induced hyperlipidemia and hyperleptinemia state in part through the suppression of FAS protein levels and increased AMPK phosphorylation.

  19. Cytochrome P450-dependent metabolism of oxylipins in tomato. Cloning and expression of allene oxide synthase and fatty acid hydroperoxide lyase.

    PubMed

    Howe, G A; Lee, G I; Itoh, A; Li, L; DeRocher, A E

    2000-06-01

    Allene oxide synthase (AOS) and fatty acid hydroperoxide lyase (HPL) are plant-specific cytochrome P450s that commit fatty acid hydroperoxides to different branches of oxylipin metabolism. Here we report the cloning and characterization of AOS (LeAOS) and HPL (LeHPL) cDNAs from tomato (Lycopersicon esculentum). Functional expression of the cDNAs in Escherichia coli showed that LeAOS and LeHPL encode enzymes that metabolize 13- but not 9-hydroperoxide derivatives of C(18) fatty acids. LeAOS was active against both 13S-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid (13-HPOT) and 13S-hydroperoxy-9(Z),11(E)-octadecadienoic acid, whereas LeHPL showed a strong preference for 13-HPOT. These results suggest a role for LeAOS and LeHPL in the metabolism of 13-HPOT to jasmonic acid and hexenal/traumatin, respectively. LeAOS expression was detected in all organs of the plant. In contrast, LeHPL expression was predominant in leaves and flowers. Damage inflicted to leaves by chewing insect larvae led to an increase in the local and systemic expression of both genes, with LeAOS showing the strongest induction. Wound-induced expression of LeAOS also occurred in the def-1 mutant that is deficient in octadecanoid-based signaling of defensive proteinase inhibitor genes. These results demonstrate that tomato uses genetically distinct signaling pathways for the regulation of different classes of wound responsive genes.

  20. Vanillic acid prevents the deregulation of lipid metabolism, endothelin 1 and up regulation of endothelial nitric oxide synthase in nitric oxide deficient hypertensive rats.

    PubMed

    Kumar, Subramanian; Prahalathan, Pichavaram; Saravanakumar, Murugesan; Raja, Boobalan

    2014-11-15

    Hypertension is one of the main factors causing cardiovascular diseases. The present study was designed to evaluate the protective effect of vanillic acid against nitric oxide deficient rats. Hypertension was induced in adult male albino rats of Wistar strain, weighing 180-220g, by oral administration of N(ω)-nitro-l arginine methyl ester (l-NAME) 40mg/kg in drinking water for 4 weeks. Vanillic acid was administered orally at a dose of 50mg/kg b.w. Nitric oxide deficient rats showed increased levels of mean arterial pressure (MAP), heart rate (HR) and decreased heart nitric oxide metabolites (NOx). A significant increase in the levels of plasma cholesterol, low density lipoprotein-cholesterol (LDL-C), very low density lipoprotein-cholesterol (VLDL-C), triglycerides (TG), free fatty acids (FFA), phospholipids (PL), 3-hydroxy 3-methylglutaryl coenzyme A (HMG-CoA) reductase in the plasma, liver and kidney and decreased level of high density lipoprotein-cholesterol (HDL-C) are observed, whereas there is a decrease in the activities of plasma lipoprotein lipase (LPL) and lecithin cholesterol acyl transferase (LCAT) in nitric oxide deficient rats. l-NAME rats also showed an increase in TC, TG, FFA and PL levels in the liver and kidney tissues. Vanillic acid treatment brought the above parameters towards near normal level. Moreover the down regulated endothelial nitric oxide synthase (eNOS) and up regulated expression of endothelin 1 (ET1) components was also attenuated by vanillic acid treatment. All the above outcomes were confirmed by the histopathological examination. These results suggest that vanillic acid has enough potential to attenuate hypertension, dyslipidemia and hepatic and renal damage in nitric oxide deficient rats. PMID:25239071

  1. A stilbene synthase allele from a Chinese wild grapevine confers resistance to powdery mildew by recruiting salicylic acid signalling for efficient defence

    PubMed Central

    Jiao, Yuntong; Xu, Weirong; Duan, Dong; Wang, Yuejin; Nick, Peter

    2016-01-01

    Stilbenes are central phytoalexins in Vitis, and induction of the key enzyme stilbene synthase (STS) is pivotal for disease resistance. Here, we address the potential for breeding resistance using an STS allele isolated from Chinese wild grapevine Vitis pseudoreticulata (VpSTS) by comparison with its homologue from Vitis vinifera cv. ‘Carigane’ (VvSTS). Although the coding regions of both alleles are very similar (>99% identity on the amino acid level), the promoter regions are significantly different. By expression in Arabidopsis as a heterologous system, we show that the allele from the wild Chinese grapevine can confer accumulation of stilbenes and resistance against the powdery mildew Golovinomyces cichoracearum, whereas the allele from the vinifera cultivar cannot. To dissect the upstream signalling driving the activation of this promoter, we used a dual-luciferase reporter system in a grapevine cell culture. We show elevated responsiveness of the promoter from the wild grape to salicylic acid (SA) and to the pathogen-associated molecular pattern (PAMP) flg22, equal induction of both alleles by jasmonic acid (JA), and a lack of response to the cell death-inducing elicitor Harpin. This elevated SA response of the VpSTS promoter depends on calcium influx, oxidative burst by RboH, mitogen-activated protein kinase (MAPK) signalling, and JA synthesis. We integrate the data in the context of a model where the resistance of V. pseudoreticulata is linked to a more efficient recruitment of SA signalling for phytoalexin synthesis. PMID:27702992

  2. Increase in nervonic acid content in transformed yeast and transgenic plants by introduction of a Lunaria annua L. 3-ketoacyl-CoA synthase (KCS) gene.

    PubMed

    Guo, Yiming; Mietkiewska, Elzbieta; Francis, Tammy; Katavic, Vesna; Brost, Jennifer M; Giblin, Michael; Barton, Dennis L; Taylor, David C

    2009-03-01

    Nervonic acid is a Very Long-Chain Monounsaturated Fatty Acid (VLCMFA), 24:1 Delta15 (cis-tetracos-15-enoic acid) found in the seed oils of Lunaria annua, borage, hemp, Acer (Purpleblow maple) and Tropaeolum speciosum (Flame flower). However, of these, only the "money plant" (Lunaria annua L.) has been studied and grown sparingly for future development as a niche crop and the outlook has been disappointing. Therefore, our goal was to isolate and characterize strategic new genes for high nervonic acid production in Brassica oilseed crops. To this end, we have isolated a VLCMFA-utilizing 3-Keto-Acyl-CoA Synthase (KCS; fatty acid elongase; EC 2.3.1.86) gene from Lunaria annua and functionally expressed it in yeast, with the recombinant KCS protein able to catalyze the synthesis of several VLCMFAs, including nervonic acid. Seed-specific expression of the Lunaria KCS in Arabidopsis resulted in a 30-fold increase in nervonic acid proportions in seed oils, compared to the very low quantities found in the wild-type. Similar transgenic experiments using B. carinata as the host resulted in a 7-10 fold increase in seed oil nervonic acid proportions. KCS enzyme activity assays indicated that upon using (14)C-22:1-CoA as substrate, the KCS activity from developing seeds of transgenic B. carinata was 20-30-fold higher than the low erucoyl-elongation activity exhibited by wild type control plants. There was a very good correlation between the Lun KCS transcript intensity and the resultant 22:1-CoA KCS activity in developing seed. The highest nervonic acid level in transgenic B. carinata expressing the Lunaria KCS reached 30%, compared to 2.8% in wild type plant. In addition, the erucic acid proportions in these transgenic lines were considerably lower than that found in native Lunaria oil. These results show the functional utility of the Lunaria KCS in engineering new sources of high nervonate/reduced erucic oils in the Brassicaceae. PMID:19082744

  3. Acetohydroxyacid synthases: evolution, structure, and function.

    PubMed

    Liu, Yadi; Li, Yanyan; Wang, Xiaoyuan

    2016-10-01

    Acetohydroxyacid synthase, a thiamine diphosphate-dependent enzyme, can condense either two pyruvate molecules to form acetolactate for synthesizing L-valine and L-leucine or pyruvate with 2-ketobutyrate to form acetohydroxybutyrate for synthesizing L-isoleucine. Because the key reaction catalyzed by acetohydroxyacid synthase in the biosynthetic pathways of branched-chain amino acids exists in plants, fungi, archaea, and bacteria, but not in animals, acetohydroxyacid synthase becomes a potential target for developing novel herbicides and antimicrobial compounds. In this article, the evolution, structure, and catalytic mechanism of acetohydroxyacid synthase are summarized. PMID:27576495

  4. Producing biofuels using polyketide synthases

    SciTech Connect

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-04-16

    The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

  5. Partial purification and characterization of indol-3-ylacetylglucose:myo-inositol indol-3-ylacetyltransferase (indoleacetic acid-inositol synthase)

    NASA Technical Reports Server (NTRS)

    Kesy, J. M.; Bandurski, R. S.

    1990-01-01

    A procedure is described for the purification of the enzyme indol-3-ylacetylglucose:myo-inositol indol-3-ylacetyltransferase (IAA-myo-inositol synthase). This enzyme catalyzes the transfer of indol-3-ylacetate from 1-0-indol-3-ylacetyl-beta-d-glucose to myo-inositol to form indol-3-ylacetyl-myo-inositol and glucose. A hexokinase or glucose oxidase based assay system is described. The enzyme has been purified approximately 16,000-fold, has an isoelectric point of pH 6.1 and yields three catalytically inactive bands upon acrylamide gel electrophoresis of the native protein. The enzyme shows maximum transferase activity with myo-inositol but shows some transferase activity with scyllo-inositol and myo-inosose-2. No transfer of IAA occurs with myo-inositol-d-galactopyranose, cyclohexanol, mannitol, or glycerol as acyl acceptor. The affinity of the enzyme for 1-0-indol-3-ylacetyl-beta-d-glucose is, Km = 30 micromolar, and for myo-inositol is, Km = 4 millimolar. The enzyme does not catalyze the exchange incorporation of glucose into IAA-glucose indicating the reaction mechanism involves binding of IAA glucose to the enzyme with subsequent hydrolytic cleavage of the acyl moiety by the hydroxyl of myo-inositol to form IAA myo-inositol ester.

  6. Metformin-Induced Killing of Triple Negative Breast Cancer Cells is Mediated by Reduction in Fatty Acid Synthase via miRNA-193b

    PubMed Central

    Wahdan-Alaswad, Reema S.; Cochrane, Dawn R.; Spoelstra, Nicole S.; Howe, Erin N.; Edgerton, Susan M.; Anderson, Steven M.; Thor, Ann D.; Richer, Jennifer K.

    2015-01-01

    The anti-diabetic drug metformin (1,1-dimethylbiguanide hydrochloride) reduces both the incidence and mortality of several types of cancer. Metformin has been shown to selectively kill cancer stem cells and triple negative breast cancer (TNBC) cell lines are more sensitive to the effects of metformin. However, the mechanism underlying the enhanced susceptibility of TNBC to metformin had not been elucidated. Expression profiling of metformin-treated TNBC lines revealed fatty acid synthase (FASN) as one of the genes most significantly downregulated following 24 hours of treatment and a decrease in FASN protein was also observed. Since FASN is critical for de novo fatty acid synthesis, and is important for survival of TNBC, we hypothesized that FASN downregulation facilitates metformin-induced apoptosis. Profiling studies also exposed a rapid metformin-induced increase in miR-193 family members, and miR-193b was found to directly target the FASN 3′UTR. Addition of exogenous miR-193b mimic to untreated TNBC cells resulted in decreased FASN protein expression and increased apoptosis of TNBC cells, while spontaneously immortalized, non-transformed breast epithelial cells remained unaffected. Conversely, antagonizing miR-193 activity impaired the ability of metformin to decrease FASN and cause cell death. Further, the metformin-stimulated increase in miR-193 resulted in reduced mammosphere formation by TNBC lines. These studies provide mechanistic insight into the metformin-induced killing of TNBC. PMID:25213330

  7. Elevated salicylic acid levels conferred by increased expression of ISOCHORISMATE SYNTHASE 1 contribute to hyperaccumulation of SUMO1 conjugates in the Arabidopsis mutant early in short days 4.

    PubMed

    Villajuana-Bonequi, Mitzi; Elrouby, Nabil; Nordström, Karl; Griebel, Thomas; Bachmair, Andreas; Coupland, George

    2014-07-01

    Post-translational modification of proteins by attachment of small ubiquitin-like modifier (SUMO) is essential for plant growth and development. Mutations in the SUMO protease early in short days 4 (ESD4) cause hyperaccumulation of conjugates formed between SUMO and its substrates, and phenotypically are associated with extreme early flowering and impaired growth. We performed a suppressor mutagenesis screen of esd4 and identified a series of mutants called suppressor of esd4 (sed), which delay flowering, enhance growth and reduce hyperaccumulation of SUMO conjugates. Genetic mapping and genome sequencing indicated that one of these mutations (sed111) is in the gene salicylic acid induction-deficient 2 (SID2), which encodes ISOCHORISMATE SYNTHASE I, an enzyme required for biosynthesis of salicylic acid (SA). Analyses showed that compared with wild-type plants, esd4 contains higher levels of SID2 mRNA and about threefold more SA, whereas sed111 contains lower SA levels. Other sed mutants also contain lower SA levels but are not mutant for SID2, although most reduce SID2 mRNA levels. Therefore, higher SA levels contribute to the small size, early flowering and elevated SUMO conjugate levels of esd4. Our results support previous data indicating that SUMO homeostasis influences SA biosynthesis in wild-type plants, and also demonstrate that elevated levels of SA strongly increase the abundance of SUMO conjugates.

  8. Differential Expression of 1-Aminocyclopropane-1-Carboxylate Synthase Genes during Orchid Flower Senescence Induced by the Protein Phosphatase Inhibitor Okadaic Acid1

    PubMed Central

    Wang, Ning Ning; Yang, Shang Fa; Charng, Yee-yung

    2001-01-01

    Applying 10 pmol of okadaic acid (OA), a specific inhibitor of type 1 or type 2A serine/threonine protein phosphatases, to the orchid (Phalaenopsis species) stigma induced a dramatic increase in ethylene production and an accelerated senescence of the whole flower. Aminoethoxyvinylglycine or silver thiosulfate, inhibitors of ethylene biosynthesis or action, respectively, effectively inhibited the OA-induced ethylene production and retarded flower senescence, suggesting that the protein phosphatase inhibitor induced orchid flower senescence through an ethylene-mediated signaling pathway. OA treatment induced a differential expression pattern for the 1-aminocyclopropane-1-carboxylic acid synthase multigene family. Accumulation of Phal-ACS1 transcript in the stigma, labelum, and ovary induced by OA were higher than those induced by pollination as determined by “semiquantitative” reverse transcriptase-polymerase chain reaction. In contrast, the transcript levels of Phal-ACS2 and Phal-ACS3 induced by OA were much lower than those induced by pollination. Staurosporine, a protein kinase inhibitor, on the other hand, inhibited the OA-induced Phal-ACS1 expression in the stigma and delayed flower senescence. Our results suggest that a hyper-phosphorylation status of an unidentified protein(s) is involved in up-regulating the expression of Phal-ACS1 gene resulting in increased ethylene production and accelerated the senescence process of orchid flower. PMID:11351088

  9. Uric acid attenuates nitric oxide production by decreasing the interaction between endothelial nitric oxide synthase and calmodulin in human umbilical vein endothelial cells: a mechanism for uric acid-induced cardiovascular disease development.

    PubMed

    Park, Jung-Hyun; Jin, Yoon Mi; Hwang, Soojin; Cho, Du-Hyong; Kang, Duk-Hee; Jo, Inho

    2013-08-01

    The elevated level of uric acid in the body is associated with increased risk of cardiovascular diseases, which is mediated by endothelial dysfunction. However, its underlying mechanism is not fully understood, although dysregulation of endothelial nitric oxide (NO) production is likely to be involved. Using human umbilical vascular endothelial cells (HUVEC), we explored the molecular mechanism of uric acid on endothelial NO synthase (eNOS) activity and NO production. Although high dose of uric acid (12mg/dl for 24h treatment) significantly decreased eNOS activity and NO production, it did not alter eNOS expression and phosphorylations at eNOS-Ser(1177), eNOS-Thr(495) and eNOS-Ser(114). Under this condition, we also found no alterations in the dimerization and acetylation of eNOS, compared with the control. Furthermore, uric acid did not change the activity of arginase II, an enzyme degrading l-arginine, a substrate of eNOS, and intracellular level of calcium, a cofactor for eNOS activation. We also found that uric acid did not alter xanthine oxidase activity, suggesting no involvement of xanthine oxidase-derived O2(-) production in the observed inhibitory effects. In vitro and in cell coimmunoprecipitation studies, however, revealed that uric acid significantly decreased the interaction between eNOS and calmodulin (CaM), an eNOS activator, although it did not change the intracellular CaM level. Like in HUVEC, uric acid also decreased eNOS-CaM interaction in bovine aortic EC. Finally, uric acid attenuated ionomycin-induced increase in the interaction between eNOS and CaM. This study suggests firstly that uric acid decreased eNOS activity and NO production through reducing the binding between eNOS and CaM in EC. Our result may provide molecular mechanism by which uric acid induces endothelial dysfunction.

  10. Production of long chain alcohols and alkanes upon coexpression of an acyl-ACP reductase and aldehyde-deformylating oxgenase with a bacterial type-I fatty acid synthase in E. coli

    DOE PAGES

    Coursolle, Dan; Shanklin, John; Lian, Jiazhang; Zhao, Huimin

    2015-06-23

    Microbial long chain alcohols and alkanes are renewable biofuels that could one day replace petroleum-derived fuels. Here we report a novel pathway for high efficiency production of these products in Escherichia coli strain BL21(DE3). We first identified the acyl-ACP reductase/aldehyde deformylase combinations with the highest activity in this strain. Next, we used catalase coexpression to remove toxic byproducts and increase the overall titer. Finally, by introducing the type-I fatty acid synthase from Corynebacterium ammoniagenes, we were able to bypass host regulatory mechanisms of fatty acid synthesis that have thus far hampered efforts to optimize the yield of acyl-ACP-derived products inmore » BL21(DE3). When all these engineering strategies were combined with subsequent optimization of fermentation conditions, we were able to achieve a final titer around 100 mg/L long chain alcohol/alkane products including a 57 mg/L titer of pentadecane, the highest titer reported in E. coli BL21(DE3) to date. The expression of prokaryotic type-I fatty acid synthases offer a unique strategy to produce fatty acid-derived products in E. coli that does not rely exclusively on the endogenous type-II fatty acid synthase system.« less

  11. Production of long chain alcohols and alkanes upon coexpression of an acyl-ACP reductase and aldehyde-deformylating oxgenase with a bacterial type-I fatty acid synthase in E. coli

    SciTech Connect

    Coursolle, Dan; Shanklin, John; Lian, Jiazhang; Zhao, Huimin

    2015-06-23

    Microbial long chain alcohols and alkanes are renewable biofuels that could one day replace petroleum-derived fuels. Here we report a novel pathway for high efficiency production of these products in Escherichia coli strain BL21(DE3). We first identified the acyl-ACP reductase/aldehyde deformylase combinations with the highest activity in this strain. Next, we used catalase coexpression to remove toxic byproducts and increase the overall titer. Finally, by introducing the type-I fatty acid synthase from Corynebacterium ammoniagenes, we were able to bypass host regulatory mechanisms of fatty acid synthesis that have thus far hampered efforts to optimize the yield of acyl-ACP-derived products in BL21(DE3). When all these engineering strategies were combined with subsequent optimization of fermentation conditions, we were able to achieve a final titer around 100 mg/L long chain alcohol/alkane products including a 57 mg/L titer of pentadecane, the highest titer reported in E. coli BL21(DE3) to date. The expression of prokaryotic type-I fatty acid synthases offer a unique strategy to produce fatty acid-derived products in E. coli that does not rely exclusively on the endogenous type-II fatty acid synthase system.

  12. Prolonged Exposure of Primary Human Muscle Cells to Plasma Fatty Acids Associated with Obese Phenotype Induces Persistent Suppression of Muscle Mitochondrial ATP Synthase β Subunit.

    PubMed

    Tran, Lee; Hanavan, Paul D; Campbell, Latoya E; De Filippis, Elena; Lake, Douglas F; Coletta, Dawn K; Roust, Lori R; Mandarino, Lawrence J; Carroll, Chad C; Katsanos, Christos S

    2016-01-01

    Our previous studies show reduced abundance of the β-subunit of mitochondrial H+-ATP synthase (β-F1-ATPase) in skeletal muscle of obese individuals. The β-F1-ATPase forms the catalytic core of the ATP synthase, and it is critical for ATP production in muscle. The mechanism(s) impairing β-F1-ATPase metabolism in obesity, however, are not completely understood. First, we studied total muscle protein synthesis and the translation efficiency of β-F1-ATPase in obese (BMI, 36±1 kg/m2) and lean (BMI, 22±1 kg/m2) subjects. Both total protein synthesis (0.044±0.006 vs 0.066±0.006%·h-1) and translation efficiency of β-F1-ATPase (0.0031±0.0007 vs 0.0073±0.0004) were lower in muscle from the obese subjects when compared to the lean controls (P<0.05). We then evaluated these same responses in a primary cell culture model, and tested the specific hypothesis that circulating non-esterified fatty acids (NEFA) in obesity play a role in the responses observed in humans. The findings on total protein synthesis and translation efficiency of β-F1-ATPase in primary myotubes cultured from a lean subject, and after exposure to NEFA extracted from serum of an obese subject, were similar to those obtained in humans. Among candidate microRNAs (i.e., non-coding RNAs regulating gene expression), we identified miR-127-5p in preventing the production of β-F1-ATPase. Muscle expression of miR-127-5p negatively correlated with β-F1-ATPase protein translation efficiency in humans (r = - 0.6744; P<0.01), and could be modeled in vitro by prolonged exposure of primary myotubes derived from the lean subject to NEFA extracted from the obese subject. On the other hand, locked nucleic acid inhibitor synthesized to target miR-127-5p significantly increased β-F1-ATPase translation efficiency in myotubes (0.6±0.1 vs 1.3±0.3, in control vs exposure to 50 nM inhibitor; P<0.05). Our experiments implicate circulating NEFA in obesity in suppressing muscle protein metabolism, and establish

  13. Inhibition of de novo Palmitate Synthesis by Fatty Acid Synthase Induces Apoptosis in Tumor Cells by Remodeling Cell Membranes, Inhibiting Signaling Pathways, and Reprogramming Gene Expression

    PubMed Central

    Ventura, Richard; Mordec, Kasia; Waszczuk, Joanna; Wang, Zhaoti; Lai, Julie; Fridlib, Marina; Buckley, Douglas; Kemble, George; Heuer, Timothy S.

    2015-01-01

    Inhibition of de novo palmitate synthesis via fatty acid synthase (FASN) inhibition provides an unproven approach to cancer therapy with a strong biological rationale. FASN expression increases with tumor progression and associates with chemoresistance, tumor metastasis, and diminished patient survival in numerous tumor types. TVB-3166, an orally-available, reversible, potent, and selective FASN inhibitor induces apoptosis, inhibits anchorage-independent cell growth under lipid-rich conditions, and inhibits in-vivo xenograft tumor growth. Dose-dependent effects are observed between 20–200 nM TVB-3166, which agrees with the IC50 in biochemical FASN and cellular palmitate synthesis assays. Mechanistic studies show that FASN inhibition disrupts lipid raft architecture, inhibits biological pathways such as lipid biosynthesis, PI3K–AKT–mTOR and β-catenin signal transduction, and inhibits expression of oncogenic effectors such as c-Myc; effects that are tumor-cell specific. Our results demonstrate that FASN inhibition has anti-tumor activities in biologically diverse preclinical tumor models and provide mechanistic and pharmacologic evidence that FASN inhibition presents a promising therapeutic strategy for treating a variety of cancers, including those expressing mutant K-Ras, ErbB2, c-Met, and PTEN. The reported findings inform ongoing studies to link mechanisms of action with defined tumor types and advance the discovery of biomarkers supporting development of FASN inhibitors as cancer therapeutics. Research in context Fatty acid synthase (FASN) is a vital enzyme in tumor cell biology; the over-expression of FASN is associated with diminished patient prognosis and resistance to many cancer therapies. Our data demonstrate that selective and potent FASN inhibition with TVB-3166 leads to selective death of tumor cells, without significant effect on normal cells, and inhibits in vivo xenograft tumor growth at well-tolerated doses. Candidate biomarkers for

  14. Prolonged Exposure of Primary Human Muscle Cells to Plasma Fatty Acids Associated with Obese Phenotype Induces Persistent Suppression of Muscle Mitochondrial ATP Synthase β Subunit

    PubMed Central

    Tran, Lee; Hanavan, Paul D.; Campbell, Latoya E.; De Filippis, Elena; Lake, Douglas F.; Coletta, Dawn K.; Roust, Lori R.; Mandarino, Lawrence J.; Carroll, Chad C.; Katsanos, Christos S.

    2016-01-01

    Our previous studies show reduced abundance of the β-subunit of mitochondrial H+-ATP synthase (β-F1-ATPase) in skeletal muscle of obese individuals. The β-F1-ATPase forms the catalytic core of the ATP synthase, and it is critical for ATP production in muscle. The mechanism(s) impairing β-F1-ATPase metabolism in obesity, however, are not completely understood. First, we studied total muscle protein synthesis and the translation efficiency of β-F1-ATPase in obese (BMI, 36±1 kg/m2) and lean (BMI, 22±1 kg/m2) subjects. Both total protein synthesis (0.044±0.006 vs 0.066±0.006%·h-1) and translation efficiency of β-F1-ATPase (0.0031±0.0007 vs 0.0073±0.0004) were lower in muscle from the obese subjects when compared to the lean controls (P<0.05). We then evaluated these same responses in a primary cell culture model, and tested the specific hypothesis that circulating non-esterified fatty acids (NEFA) in obesity play a role in the responses observed in humans. The findings on total protein synthesis and translation efficiency of β-F1-ATPase in primary myotubes cultured from a lean subject, and after exposure to NEFA extracted from serum of an obese subject, were similar to those obtained in humans. Among candidate microRNAs (i.e., non-coding RNAs regulating gene expression), we identified miR-127-5p in preventing the production of β-F1-ATPase. Muscle expression of miR-127-5p negatively correlated with β-F1-ATPase protein translation efficiency in humans (r = – 0.6744; P<0.01), and could be modeled in vitro by prolonged exposure of primary myotubes derived from the lean subject to NEFA extracted from the obese subject. On the other hand, locked nucleic acid inhibitor synthesized to target miR-127-5p significantly increased β-F1-ATPase translation efficiency in myotubes (0.6±0.1 vs 1.3±0.3, in control vs exposure to 50 nM inhibitor; P<0.05). Our experiments implicate circulating NEFA in obesity in suppressing muscle protein metabolism, and establish

  15. Characterization of FabG and FabI of the Streptomyces coelicolor dissociated fatty acid synthase.

    PubMed

    Singh, Renu; Reynolds, Kevin A

    2015-03-01

    Streptomyces coelicolor produces fatty acids for both primary metabolism and for biosynthesis of the secondary metabolite undecylprodiginine. The first and last reductive steps during the chain elongation cycle of fatty acid biosynthesis are catalyzed by FabG and FabI. The S. coelicolor genome sequence has one fabI gene (SCO1814) and three likely fabG genes (SCO1815, SCO1345, and SCO1846). We report the expression, purification, and characterization of the corresponding gene products. Kinetic analyses revealed that all three FabGs and FabI are capable of utilizing both straight and branched-chain β-ketoacyl-NAC and enoyl-NAC substrates, respectively. Furthermore, only SCO1345 differentiates between ACPs from both biosynthetic pathways. The data presented provide the first experimental evidence that SCO1815, SCO1346, and SCO1814 have the catalytic capability to process intermediates in both fatty acid and undecylprodiginine biosynthesis. PMID:25662938

  16. Stromal concentrations of coenzyme A and its esters are insufficient to account for rates of chloroplast fatty acid synthesis: evidence for substrate channelling within the chloroplast fatty acid synthase.

    PubMed

    Roughan, P G

    1997-10-01

    Concentrations of total CoAs in chloroplasts freshly isolated from spinach and peas were 10-20 microM, assuming a stromal volume of 66 microl per mg of chlorophyll. Acetyl-CoA and CoASH constituted at least 90% of the total CoA in freshly isolated chloroplasts. For a given chloroplast preparation, the concentration of endogenous acetyl-CoA was the same when extractions were performed using HClO4, trichloroacetic acid, propan-2-ol or chloroform/methanol, and the extracts analysed by quantitative HPLC after minimal processing. During fatty acid synthesis from acetate, concentrations of CoASH within spinach and pea chloroplasts varied from less than 0.1 to 5.0 microM. Malonyl-CoA concentrations were also very low (<0.1-3.0 microM) during fatty acid synthesis but could be calculated from radioactivity incorporated from [1-14C]acetate. Concentrations of CoASH in chloroplasts synthesizing fatty acids could be doubled in the presence of Triton X-100, suggesting that the detergent stimulates fatty acid synthesis by increasing the turnover rate of acyl-CoA. However, although taken up, exogenous CoASH (1 microM) did not stimulate fatty acid synthesis by permeabilized spinach chloroplasts. Calculated rates for acetyl-CoA synthetase, acetyl-CoA carboxylase and malonyl-CoA-acyl-carrier protein transacylase reactions at the concentrations of metabolites measured here are < 0.1-4% of the observed rates of fatty acid synthesis from acetate by isolated chloroplasts. The results suggest that CoA and its esters are probably confined within, and channelled through, the initial stages of a fatty acid synthase multienzyme complex.

  17. Effects of bovine fatty acid synthase, stearoyl-coenzyme A desaturase, sterol regulatory element-binding protein 1, and growth hormone gene polymorphisms on fatty acid composition and carcass traits in Japanese Black cattle.

    PubMed

    Matsuhashi, T; Maruyama, S; Uemoto, Y; Kobayashi, N; Mannen, H; Abe, T; Sakaguchi, S; Kobayashi, E

    2011-01-01

    The quality of fat is an important factor in defining the quality of meat. Fat quality is determined by the composition of fatty acids. Among lipid metabolism-related genes, including fatty acid synthesis genes, several genetic variations have been reported in the bovine fatty acid synthase (FASN), stearoyl-CoA desaturase (SCD), sterol regulatory element-binding protein 1 (SREBP1), and GH genes. In the present study, we evaluated the single and epistatic effects of 5 genetic variations (4 SNP and 1 insertion/deletion) in 4 genes (FASN, SCD, SREBP1, and GH) on the fatty acid composition of the longissimus thoracis muscle and carcass and meat quality traits in 480 commercial Japanese Black cattle. Significant single effects of FASN, SCD, and GH(L127V) polymorphisms on the fatty acid composition of the longissimus thoracis muscle were detected. The A293V polymorphism of SCD had the largest effect on myristic acid (C14:0, P < 0.001), myristoleic acid (C14:1, P < 0.001), stearic acid (C18:0, P < 0.001), oleic acid (C18:1, P < 0.001), and MUFA (P < 0.001). Polymorphisms in the FASN, SCD, and SREBP1 genes showed no effect on any meat yield trait. There were no significant epistatic effects on fatty acid composition among pairs of the 3 genes (FASN, SCD, and SREBP1) involved in fatty acid synthesis. No epistatic interactions (P > 0.1) were detected between FASN and SCD for any carcass trait. When the genotypes of 3 markers (FASN, SCD, and GH(L127V)) were substituted from the lesser effect allele to the greater effect allele, the proportion of C18:1 increased by 4.46%. More than 20% of the genetic variance in the C18:1 level could be accounted for by these 3 genetic markers. The present results revealed that polymorphisms in 2 fatty acid synthesis genes (FASN and SCD) independently influenced fatty acid composition in the longissimus thoracis muscle. These results suggest that SNP in the FASN and SCD genes are useful markers for the improvement of fatty acid composition in

  18. 4-Methylumbelliferone inhibits hyaluronan synthesis by depletion of cellular UDP-glucuronic acid and downregulation of hyaluronan synthase 2 and 3

    SciTech Connect

    Kultti, Anne; Pasonen-Seppaenen, Sanna; Jauhiainen, Marjo; Rilla, Kirsi J.; Kaernae, Riikka; Pyoeriae, Emma; Tammi, Raija H.; Tammi, Markku I.

    2009-07-01

    Hyaluronan accumulation on cancer cells and their surrounding stroma predicts an unfavourable disease outcome, suggesting that hyaluronan enhances tumor growth and spreading. 4-Methylumbelliferone (4-MU) inhibits hyaluronan synthesis and retards cancer spreading in experimental animals through mechanisms not fully understood. These mechanisms were studied in A2058 melanoma cells, MCF-7 and MDA-MB-361 breast, SKOV-3 ovarian and UT-SCC118 squamous carcinoma cells by analysing hyaluronan synthesis, UDP-glucuronic acid (UDP-GlcUA) content, and hyaluronan synthase (HAS) mRNA levels. The maximal inhibition in hyaluronan synthesis ranged 22-80% in the cell lines tested. Active glucuronidation of 4-MU produced large quantities of 4-MU-glucuronide, depleting the cellular UDP-GlcUA pool. The maximal reduction varied between 38 and 95%. 4-MU also downregulated HAS mRNA levels: HAS3 was 84-60% lower in MDA-MB-361, A2058 and SKOV-3 cells. HAS2 was the major isoenzyme in MCF-7 cells and lowered by 81%, similar to 88% in A2058 cells. These data indicate that both HAS substrate and HAS2 and/or HAS3 mRNA are targeted by 4-MU. Despite different target point sensitivities, the reduction of hyaluronan caused by 4-MU was associated with a significant inhibition of cell migration, proliferation and invasion, supporting the importance of hyaluronan synthesis in cancer, and the therapeutic potential of hyaluronan synthesis inhibition.

  19. Synergism in the effect of prior jasmonic acid application on herbivore-induced volatile emission by Lima bean plants: transcription of a monoterpene synthase gene and volatile emission.

    PubMed

    Menzel, Tila R; Weldegergis, Berhane T; David, Anja; Boland, Wilhelm; Gols, Rieta; van Loon, Joop J A; Dicke, Marcel

    2014-09-01

    Jasmonic acid (JA) plays a central role in induced plant defence e.g. by regulating the biosynthesis of herbivore-induced plant volatiles that mediate the attraction of natural enemies of herbivores. Moreover, exogenous application of JA can be used to elicit plant defence responses similar to those induced by biting-chewing herbivores and mites that pierce cells and consume their contents. In the present study, we used Lima bean (Phaseolus lunatus) plants to explore how application of a low dose of JA followed by minor herbivory by spider mites (Tetranychus urticae) affects transcript levels of P. lunatus (E)-β-ocimene synthase (PlOS), emission of (E)-β-ocimene and nine other plant volatiles commonly associated with herbivory. Furthermore, we investigated the plant's phytohormonal response. Application of a low dose of JA increased PlOS transcript levels in a synergistic manner when followed by minor herbivory for both simultaneous and sequential infestation. Emission of (E)-β-ocimene was also increased, and only JA, but not SA, levels were affected by treatments. Projection to latent structures-discriminant analysis (PLS-DA) of other volatiles showed overlap between treatments. Thus, a low-dose JA application results in a synergistic effect on gene transcription and an increased emission of a volatile compound involved in indirect defence after herbivore infestation.

  20. Comparative Modeling and Molecular Dynamics Simulation of Substrate Binding in Human Fatty Acid Synthase: Enoyl Reductase and β-Ketoacyl Reductase Catalytic Domains

    PubMed Central

    John, Arun; Krishnakumar, Subramanian

    2015-01-01

    Fatty acid synthase (FASN, EC 2.3.1.85), is a multi-enzyme dimer complex that plays a critical role in lipogenesis. This lipogenic enzyme has gained importance beyond its physiological role due to its implications in several clinical conditions-cancers, obesity, and diabetes. This has made FASN an attractive pharmacological target. Here, we have attempted to predict the theoretical models for the human enoyl reductase (ER) and β-ketoacyl reductase (KR) domains based on the porcine FASN crystal structure, which was the structurally closest template available at the time of this study. Comparative modeling methods were used for studying the structure-function relationships. Different validation studies revealed the predicted structures to be highly plausible. The respective substrates of ER and KR domains-namely, trans-butenoyl and β-ketobutyryl-were computationally docked into active sites using Glide in order to understand the probable binding mode. The molecular dynamics simulations of the apo and holo states of ER and KR showed stable backbone root mean square deviation trajectories with minimal deviation. Ramachandran plot analysis showed 96.0% of residues in the most favorable region for ER and 90.3% for the KR domain, respectively. Thus, the predicted models yielded significant insights into the substrate binding modes of the ER and KR catalytic domains and will aid in identifying novel chemical inhibitors of human FASN that target these domains. PMID:25873848

  1. The metastasis inducer CCN1 (CYR61) activates the fatty acid synthase (FASN)-driven lipogenic phenotype in breast cancer cells

    PubMed Central

    Menendez, Javier A.; Vellon, Luciano; Espinoza, Ingrid; Lupu, Ruth

    2016-01-01

    The angiogenic inducer CCN1 (Cysteine-rich 61, CYR61) is differentially activated in metastatic breast carcinomas. However, little is known about the precise mechanisms that underlie the pro-metastatic actions of CCN1. Here, we investigated the impact of CCN1 expression on fatty acid synthase (FASN), a metabolic oncogene thought to provide cancer cells with proliferative and survival advantages. Forced expression of CCN1 in MCF-7 cells robustly up-regulated FASN protein expression and also significantly increased FASN gene promoter activity 2- to 3-fold, whereas deletion of the sterol response element-binding protein (SREBP) binding site in the FASN promoter completely abrogated CCN1-driven transcriptional activation. Pharmacological blockade of MAPK or PI-3'K activation similarly prevented the ability of CCN1 to induce FASN gene activation. Pharmacological inhibition of FASN activity with the mycotoxin cerulenin or the small compound C75 reversed CCN1-induced acquisition of estrogen independence and resistance to hormone therapies such as tamoxifen and fulvestrant in anchorage-independent growth assays. This study uncovers FASNdependent endogenous lipogenesis as a new mechanism controlling the metastatic phenotype promoted by CCN1. Because estrogen independence and progression to a metastatic phenotype are hallmarks of therapeutic resistance and mortality in breast cancer, this previously unrecognized CCN1-driven lipogenic phenotype represents a novel metabolic target to clinically manage metastatic disease progression. PMID:27713913

  2. Mulberry leaf polyphenol extract induced apoptosis involving regulation of adenosine monophosphate-activated protein kinase/fatty acid synthase in a p53-negative hepatocellular carcinoma cell.

    PubMed

    Yang, Tzi-Peng; Lee, Huei-Jane; Ou, Ting-Tsz; Chang, Ya-Ju; Wang, Chau-Jong

    2012-07-11

    The polyphenols in mulberry leaf possess the ability to inhibit cell proliferation, invasion, and metastasis of tumors. It was reported that the p53 status plays an important role in switching apoptosis and the cell cycle following adenosine monophosphate-activated protein kinase (AMPK) activation. In this study, we aimed to detect the effect of the mulberry leaf polyphenol extract (MLPE) on inducing cell death in p53-negative (Hep3B) and p53-positive (Hep3B with transfected p53) hepatocellular carcinoma cells and also to clarify the role of p53 in MLPE-treated cells. After treatment of the Hep3B cells with MLPE, apoptosis was induced via the AMPK/PI3K/Akt and Bcl-2 family pathways. Transient transfection of p53 into Hep3B cells led to switching autophagy instead of apoptosis by MLPE treatment. We demonstrated that acridine orange staining and protein expressions of LC-3 and beclin-1 were increased in p53-transfected cells. These results implied induction of apoptosis or autophagy in MLPE-treated hepatocellular carcinoma cells can be due to the p53 status. We also found MLPE can not only activate AMPK but also diminish fatty acid synthase, a molecular target for cancer inhibition. At present, our results indicate MLPE can play an active role in mediating the cell death of hepatocellular carcinoma cells and the p53 might play an important role in regulating the death mechanisms.

  3. Effects of a subconvulsive dose of kainic acid on the gene expressions of the arginine vasopressin, oxytocin and neuronal nitric oxide synthase in the rat hypothalamus.

    PubMed

    Yoshimura, Mitsuhiro; Ohkubo, Jun-ichi; Hashimoto, Hirofumi; Matsuura, Takanori; Maruyama, Takashi; Onaka, Tatsushi; Suzuki, Hideaki; Ueta, Yoichi

    2015-10-01

    Arginine vasopressin (AVP) synthesis in the hypothalamo-neurohypophysial system (HNS) is up-regulated by kainic acid (KA)-induced seizure in rats. However, it remains unknown whether a subconvulsive dose of KA affects the HNS. Here we examined the effects of subcutaneous (s.c.) administration of a low dose of KA (4 mg/kg) on the gene expressions of the AVP, oxytocin (OXT) and neuronal nitric oxide synthase (nNOS) in the supraoptic (SON) and paraventricular nuclei (PVN) of the rat hypothalamus, using in situ hybridization histochemistry. The expression of the AVP gene in the SON and PVN was judged to be up-regulated in KA-treated rats in comparison with saline-treated rats as controls. Next, the expression of the OXT gene was significantly increased in the SON at 6-24h and in the PVN at 6 and 12h after s.c. administration of KA. Finally, the expression of the nNOS gene was significantly increased in the SON and PVN at 3 and 6h after s.c. administration of KA. These results suggest that up-regulation of the gene expressions of the AVP, OXT and nNOS in the rat hypothalamus may be differentially affected by peripheral administration of a subconvulsive dose of KA.

  4. Expression of cyclooxygenase-2, alpha 1-acid-glycoprotein and inducible nitric oxide synthase in the developing lesions of murine leprosy

    PubMed Central

    Silva Miranda, Mayra; Rodríguez, Kendy Wek; Martínez Cordero, Erasmo; Rojas-Espinosa, Oscar

    2006-01-01

    Murine leprosy is a chronic disease of the mouse, the most popular animal model used in biomedical investigation, which is caused by Mycobacterium lepraemurium (MLM) whose characteristic lesion is the macrophage-made granuloma. From onset to the end of the disease, the granuloma undergoes changes that gradually transform the environment into a more appropriate milieu for the growth of M. lepraemurium. The mechanisms that participate in the formation and maturation of the murine leprosy granulomas are not completely understood; however, microbial and host-factors are believed to participate in their formation. In this study, we analysed the role of various pro-inflammatory and anti-inflammatory proteins in granulomas of murine leprosy after 21 weeks of infection. We assessed the expression of cyclooxygenase-2 (COX-2), alpha acid-glycoprotein (AGP), and inducible nitric oxide synthase (iNOS) at sequential stages of infection. We also looked for the nitric-oxide nitrosylation product, nitrotyrosine (NT) in the granulomatous lesions of murine leprosy. We found that a pro-inflammatory environment predominates in the early granulomas while an anti-inflammatory environment predominates in late granulomas. No obvious signs of bacillary destruction were observed during the entire period of infection, but nitrosylation products and cell alterations were observed in granulomas in the advanced stages of disease. The change from a pro-inflammatory to an anti-inflammatory environment, which is probably driven by the bacillus itself, results in a more conducive environment for both bacillus replication and the disease progression. PMID:17222216

  5. Tomato allene oxide synthase and fatty acid hydroperoxide lyase, two cytochrome P450s involved in oxylipin metabolism, are targeted to different membranes of chloroplast envelope.

    PubMed

    Froehlich, J E; Itoh, A; Howe, G A

    2001-01-01

    Allene oxide synthase (AOS) and hydroperoxide lyase (HPL) are related cytochrome P450s that metabolize a common fatty acid hydroperoxide substrate to different classes of bioactive oxylipins within chloroplasts. Here, we report the use of in vitro import assays to investigate the targeting of tomato (Lycopersicon esculentum) AOS (LeAOS) and HPL (LeHPL) to isolated chloroplasts. LeAOS, which contains a typical N-terminal transit peptide, was targeted to the inner envelope membrane by a route that requires both ATP and proteinase-sensitive components on the surface of chloroplasts. Imported LeAOS was peripherally associated with the inner envelope; the bulk of the protein facing the stroma. LeHPL, which lacks a typical chloroplast-targeting sequence, was targeted to the outer envelope by an ATP-independent and protease-insensitive pathway. Imported LeHPL was integrated into the outer envelope with most of the protein exposed to the inter-membrane space. We conclude that LeAOS and LeHPL are routed to different envelope membranes by distinct targeting pathways. Partitioning of AOS and HPL to different envelope membranes suggests differences in the spatial organization of these two branches of oxylipin metabolism.

  6. Synergism in the effect of prior jasmonic acid application on herbivore-induced volatile emission by Lima bean plants: transcription of a monoterpene synthase gene and volatile emission

    PubMed Central

    Menzel, Tila R.; Weldegergis, Berhane T.; David, Anja; Boland, Wilhelm; Gols, Rieta; van Loon, Joop J. A.; Dicke, Marcel

    2014-01-01

    Jasmonic acid (JA) plays a central role in induced plant defence e.g. by regulating the biosynthesis of herbivore-induced plant volatiles that mediate the attraction of natural enemies of herbivores. Moreover, exogenous application of JA can be used to elicit plant defence responses similar to those induced by biting-chewing herbivores and mites that pierce cells and consume their contents. In the present study, we used Lima bean (Phaseolus lunatus) plants to explore how application of a low dose of JA followed by minor herbivory by spider mites (Tetranychus urticae) affects transcript levels of P. lunatus (E)-β-ocimene synthase (PlOS), emission of (E)-β-ocimene and nine other plant volatiles commonly associated with herbivory. Furthermore, we investigated the plant’s phytohormonal response. Application of a low dose of JA increased PlOS transcript levels in a synergistic manner when followed by minor herbivory for both simultaneous and sequential infestation. Emission of (E)-β-ocimene was also increased, and only JA, but not SA, levels were affected by treatments. Projection to latent structures-discriminant analysis (PLS-DA) of other volatiles showed overlap between treatments. Thus, a low-dose JA application results in a synergistic effect on gene transcription and an increased emission of a volatile compound involved in indirect defence after herbivore infestation. PMID:25318119

  7. Maintained activity of glycogen synthase kinase-3{beta} despite of its phosphorylation at serine-9 in okadaic acid-induced neurodegenerative model

    SciTech Connect

    Lim, Yong-Whan; Yoon, Seung-Yong; Choi, Jung-Eun; Kim, Sang-Min; Lee, Hui-Sun; Choe, Han; Lee, Seung-Chul; Kim, Dong-Hou

    2010-04-30

    Glycogen synthase kinase-3{beta} (GSK3{beta}) is recognized as one of major kinases to phosphorylate tau in Alzheimer's disease (AD), thus lots of AD drug discoveries target GSK3{beta}. However, the inactive form of GSK3{beta} which is phosphorylated at serine-9 is increased in AD brains. This is also inconsistent with phosphorylation status of other GSK3{beta} substrates, such as {beta}-catenin and collapsin response mediator protein-2 (CRMP2) since their phosphorylation is all increased in AD brains. Thus, we addressed this paradoxical condition of AD in rat neurons treated with okadaic acid (OA) which inhibits protein phosphatase-2A (PP2A) and induces tau hyperphosphorylation and cell death. Interestingly, OA also induces phosphorylation of GSK3{beta} at serine-9 and other substrates including tau, {beta}-catenin and CRMP2 like in AD brains. In this context, we observed that GSK3{beta} inhibitors such as lithium chloride and 6-bromoindirubin-3'-monoxime (6-BIO) reversed those phosphorylation events and protected neurons. These data suggest that GSK3{beta} may still have its kinase activity despite increase of its phosphorylation at serine-9 in AD brains at least in PP2A-compromised conditions and that GSK3{beta} inhibitors could be a valuable drug candidate in AD.

  8. Thrombospondin-1-induced smooth muscle cell chemotaxis and proliferation are dependent on transforming growth factor-β2 and hyaluronic acid synthase.

    PubMed

    Stein, Jeffrey J; Iwuchukwu, Chinenye; Maier, Kristopher G; Gahtan, Vivian

    2013-12-01

    Angioplasty causes local vascular injury, leading to the release of thrombospondin-1 (TSP-1), which stimulates vascular smooth muscle cell (VSMC) migration and proliferation, important steps in the development of intimal hyperplasia. Transforming growth factor beta 2 (TGF-β2) and hyaluronic acid synthase (HAS) are two pro-stenotic genes upregulated in VSMCs by TSP-1. We hypothesized that inhibition of TGF-β2 or HAS would inhibit TSP-1-induced VSMC migration, proliferation, and TSP-1 signaling. Our data demonstrate that Inhibition of either TGF-β2 or HAS inhibited TSP-1-induced VSMC migration and proliferation. Activation of ERK 1 was decreased by TGF-β2 inhibition and unaffected by HAS inhibition. TGF-β2 and HAS are not implicated in TSP-1-induced thbs1 expression, while they are each implicated in TSP-1-induced expression of their own gene. In summary, TSP-1-induced VSMC migration and proliferation rely on intact TGF-β2 signaling and HAS function. TSP-1 activation of ERK 1 is dependent on TGF-β2. These data further expand our understanding of the complexity of TSP-1 cellular signaling and the involvement of TGF-β2 and HAS.

  9. Effect of triterpene acids of Eriobotrya japonica (Thunb.) Lindl. leaf and MAPK signal transduction pathway on inducible nitric oxide synthase expression in alveolar macrophage of chronic bronchitis rats.

    PubMed

    Huang, Y; Li, J; Meng, X M; Jiang, G L; Li, H; Cao, Q; Yu, S C; Lv, X W; Cheng, W M

    2009-01-01

    The goal of this study was to investigate the possible therapy mechanism of triterpene acids of Eriobotrya japonica (Thunb.) Lindl. Leaf (TAL) in alveolar macrophage (AM) of chronic bronchitis (CB) rats. CB model was established by injection of bacillus calmette guein (BCG) plus lipopolisacharide (LPS) in rats. TAL significantly inhibited the increased NO concentration, iNOS expression and phosphorylation of p38 MAPK in alveolar macrophages (AMs) of CB rats. Using in vivo test, we found that SB203580, a p38 MAPK inhibitor, (10 muM) significantly inhibited inducible nitric oxide synthase (iNOS) mRNA expression in AM. This data indicate that TAL highly decreases excessive iNOS expression and NO induction, and p38 MAPK signal transduction participates in iNOS expression and NO induction in AM of CB rats. The effect of TAL on iNOS expression in AM may be related to its inhibition of p38 MAPK signal transduction. PMID:19938219

  10. A downstream regulatory element located within the coding sequence mediates autoregulated expression of the yeast fatty acid synthase gene FAS2 by the FAS1 gene product.

    PubMed

    Wenz, P; Schwank, S; Hoja, U; Schüller, H J

    2001-11-15

    The fatty acid synthase genes FAS1 and FAS2 of the yeast Saccharomyces cerevisiae are transcriptionally co-regulated by general transcription factors (such as Reb1, Rap1 and Abf1) and by the phospholipid-specific heterodimeric activator Ino2/Ino4, acting via their corresponding upstream binding sites. Here we provide evidence for a positive autoregulatory influence of FAS1 on FAS2 expression. Even with a constant FAS2 copy number, a 10-fold increase of FAS2 transcript amount was observed in the presence of FAS1 in multi-copy, compared to a fas1 null mutant. Surprisingly, the first 66 nt of the FAS2 coding region turned out as necessary and sufficient for FAS1-dependent gene expression. FAS2-lacZ fusion constructs deleted for this region showed high reporter gene expression even in the absence of FAS1, arguing for a negatively-acting downstream repression site (DRS) responsible for FAS1-dependent expression of FAS2. Our data suggest that the FAS1 gene product, in addition to its catalytic function, is also required for the coordinate biosynthetic control of the yeast FAS complex. An excess of uncomplexed Fas1 may be responsible for the deactivation of an FAS2-specific repressor, acting via the DRS. PMID:11713312

  11. Thyroid hormone responsive protein Spot14 enhances catalysis of fatty acid synthase in lactating mammary epithelium[S

    PubMed Central

    Rudolph, Michael C.; Wellberg, Elizabeth A.; Lewis, Andrew S.; Terrell, Kristina L.; Merz, Andrea L.; Maluf, N. Karl; Serkova, Natalie J.; Anderson, Steven M.

    2014-01-01

    Thyroid hormone responsive protein Spot 14 has been consistently associated with de novo fatty acid synthesis activity in multiple tissues, including the lactating mammary gland, which synthesizes large quantities of medium chain fatty acids (MCFAs) exclusively via FASN. However, the molecular function of Spot14 remains undefined during lactation. Spot14-null mice produce milk deficient in total triglyceride and de novo MCFA that does not sustain optimal neonatal growth. The lactation defect was rescued by provision of a high fat diet to the lactating dam. Transgenic mice overexpressing Spot14 in mammary epithelium produced total milk fat equivalent to controls, but with significantly greater MCFA. Spot14-null dams have no diminution of metabolic gene expression, enzyme protein levels, or intermediate metabolites that accounts for impaired de novo MCFA. When [13C] fatty acid products were quantified in vitro using crude cytosolic lysates, native FASN activity was 1.6-fold greater in control relative to Spot14-null lysates, and add back of Spot14 partially restored activity. Recombinant FASN catalysis increased 1.4-fold and C = 14:0 yield was enhanced 4-fold in vitro following addition of Spot14. These findings implicate Spot14 as a direct protein enhancer of FASN catalysis in the mammary gland during lactation when maximal MCFA production is needed. PMID:24771867

  12. Homology study of two polyhydroxyalkanoate (PHA) synthases from Pseudomonas aureofaciens.

    PubMed

    Umeda, F; Nishikawa, T; Miyasaka, H; Maeda, I; Kawase, M; Yagi, K

    2001-11-01

    Recently, we have cloned and analyzed two polyhydroxyalkanoate (PHA) synthase genes (phaC1 and phaC2 in the pha cluster) from Pseudomonas aureofaciens. In this report, the deduced amino acid (AA) sequences of PHA synthase 1 and PHA synthase 2 from P. aureofaciens are compared with those from three other bacterial strains (Pseudomonas sp. 61-3, P. oleovorans and P. aeruginosa) containing the homologous pha cluster. The level of homology of either PHA synthase 1 or PHA synthase 2 was high with each enzyme from these three bacterial strains. Furthermore, multialignment of PHA synthase AA sequences implied that both enzymes of PHA synthase 1 and PHA synthase 2 were highly conserved in the four strains including P. aureofaciens. PMID:11916262

  13. Involvement of Salicylic Acid on Antioxidant and Anticancer Properties, Anthocyanin Production and Chalcone Synthase Activity in Ginger (Zingiber officinale Roscoe) Varieties

    PubMed Central

    Ghasemzadeh, Ali; Jaafar, Hawa Z. E.; Karimi, Ehsan

    2012-01-01

    The effect of foliar application of salicylic acid (SA) at different concentrations (10−3 M and 10−5 M) was investigated on the production of secondary metabolites (flavonoids), chalcone synthase (CHS) activity, antioxidant activity and anticancer activity (against breast cancer cell lines MCF-7 and MDA-MB-231) in two varieties of Malaysian ginger, namely Halia Bentong and Halia Bara. The results of high performance liquid chromatography (HPLC) analysis showed that application of SA induced the synthesis of anthocyanin and fisetin in both varieties. Anthocyanin and fisetin were not detected in the control plants. Accordingly, the concentrations of some flavonoids (rutin and apigenin) decreased significantly in plants treated with different concentrations of SA. The present study showed that SA enhanced the chalcone synthase (CHS) enzyme activity (involving flavonoid synthesis) and recorded the highest activity value of 5.77 nkat /mg protein in Halia Bara with the 10−5 M SA treatment. As the SA concentration was decreased from 10−3 M to 10−5 M, the free radical scavenging power (FRAP) increased about 23% in Halia Bentong and 10.6% in Halia Bara. At a concentration of 350 μg mL−1, the DPPH antioxidant activity recorded the highest value of 58.30%–72.90% with the 10−5 M SA treatment followed by the 10−3 M SA (52.14%–63.66%) treatment. The lowest value was recorded in the untreated control plants (42.5%–46.7%). These results indicate that SA can act not only as an inducer but also as an inhibitor of secondary metabolites. Meanwhile, the highest anticancer activity against MCF-7 and MDA-MB-231 cell lines was observed for H. Bara extracts treated with 10−5 M SA with values of 61.53 and 59.88%, respectively. The results suggest that the high anticancer activity in these varieties may be related to the high concentration of potent anticancer components including fisetin and anthocyanin. The results thus indicate that the synthesis of flavonoids in

  14. Involvement of salicylic acid on antioxidant and anticancer properties, anthocyanin production and chalcone synthase activity in ginger (Zingiber officinale Roscoe) varieties.

    PubMed

    Ghasemzadeh, Ali; Jaafar, Hawa Z E; Karimi, Ehsan

    2012-01-01

    The effect of foliar application of salicylic acid (SA) at different concentrations (10-3 M and 10-5 M) was investigated on the production of secondary metabolites (flavonoids), chalcone synthase (CHS) activity, antioxidant activity and anticancer activity (against breast cancer cell lines MCF-7 and MDA-MB-231) in two varieties of Malaysian ginger, namely Halia Bentong and Halia Bara. The results of high performance liquid chromatography (HPLC) analysis showed that application of SA induced the synthesis of anthocyanin and fisetin in both varieties. Anthocyanin and fisetin were not detected in the control plants. Accordingly, the concentrations of some flavonoids (rutin and apigenin) decreased significantly in plants treated with different concentrations of SA. The present study showed that SA enhanced the chalcone synthase (CHS) enzyme activity (involving flavonoid synthesis) and recorded the highest activity value of 5.77 nkat /mg protein in Halia Bara with the 10-5 M SA treatment. As the SA concentration was decreased from 10-3 M to 10-5 M, the free radical scavenging power (FRAP) increased about 23% in Halia Bentong and 10.6% in Halia Bara. At a concentration of 350 μg mL-1, the DPPH antioxidant activity recorded the highest value of 58.30%-72.90% with the 10-5 M SA treatment followed by the 10-3 M SA (52.14%-63.66%) treatment. The lowest value was recorded in the untreated control plants (42.5%-46.7%). These results indicate that SA can act not only as an inducer but also as an inhibitor of secondary metabolites. Meanwhile, the highest anticancer activity against MCF-7 and MDA-MB-231 cell lines was observed for H. Bara extracts treated with 10-5 M SA with values of 61.53 and 59.88%, respectively. The results suggest that the high anticancer activity in these varieties may be related to the high concentration of potent anticancer components including fisetin and anthocyanin. The results thus indicate that the synthesis of flavonoids in ginger can be increased

  15. Differential inductions of phenylalanine ammonia-lyase and chalcone synthase during wounding, salicylic acid treatment, and salinity stress in safflower, Carthamus tinctorius.

    PubMed

    Dehghan, Sara; Sadeghi, Mahnaz; Pöppel, Anne; Fischer, Rainer; Lakes-Harlan, Reinhard; Kavousi, Hamid Reza; Vilcinskas, Andreas; Rahnamaeian, Mohammad

    2014-01-01

    Safflower (Carthamus tinctorius L.) serves as a reference dicot for investigation of defence mechanisms in Asteraceae due to abundant secondary metabolites and high resistance/tolerance to environmental stresses. In plants, phenylpropanoid and flavonoid pathways are considered as two central defence signalling cascades in stress conditions. Here, we describe the isolation of two major genes in these pathways, CtPAL (phenylalanine ammonia-lyase) and CtCHS (chalcone synthase) in safflower along with monitoring their expression profiles in different stress circumstances. The aa (amino acid) sequence of isolated region of CtPAL possesses the maximum identity up to 96% to its orthologue in Cynara scolymus, while that of CtCHS retains the highest identity to its orthologue in Callistephus chinensis up to 96%. Experiments for gene expression profiling of CtPAL and CtCHS were performed after the treatment of seedlings with 0.1 and 1 mM SA (salicylic acid), wounding and salinity stress. The results of semi-quantitative RT-PCR revealed that both CtPAL and CtCHS genes are further responsive to higher concentration of SA with dissimilar patterns. Regarding wounding stress, CtPAL gets slightly induced upon injury at 3 hat (hours after treatment) (hat), whereas CtCHS gets greatly induced at 3 hat and levels off gradually afterward. Upon salinity stress, CtPAL displays a similar expression pattern by getting slightly induced at 3 hat, but CtCHS exhibits a biphasic expression profile with two prominent peaks at 3 and 24 hat. These results substantiate the involvement of phenylpropanoid and particularly flavonoid pathways in safflower during wounding and especially salinity stress. PMID:24865400

  16. Isolation and characterization of isochorismate synthase and cinnamate 4-hydroxylase during salinity stress, wounding, and salicylic acid treatment in Carthamus tinctorius

    PubMed Central

    Sadeghi, Mahnaz; Dehghan, Sara; Fischer, Rainer; Wenzel, Uwe; Vilcinskas, Andreas; Kavousi, Hamid Reza; Rahnamaeian, Mohammad

    2013-01-01

    Salicylic acid (SA) is a prominent signaling molecule during biotic and abiotic stresses in plants biosynthesized via cinnamate and isochorismate pathways. Cinnamate 4-hydroxylase (C4H) and isochorismate synthase (ICS) are the main enzymes in phenylpropanoid and isochorismate pathways, respectively. To investigate the actual roles of these genes in resistance mechanism to environmental stresses, here, the coding sequences of these enzymes in safflower (Carthamus tinctorius), as an oilseed industrial medicinal plant, were partially isolated and their expression profiles during salinity stress, wounding, and salicylic acid treatment were monitored. As a result, safflower ICS (CtICS) and C4H (CtC4H) were induced in early time points after wounding (3–6 h). Upon salinity stress, CtICS and CtC4H were highly expressed for the periods of 6–24 h and 3–6 h after treatment, respectively. It seems evident that ICS expression level is SA concentration dependent as if safflower treatment with 1 mM SA could induce ICS much stronger than that with 0.1 mM, while C4H is less likely to be so. Based on phylogenetic analysis, safflower ICS has maximum similarity to its ortholog in Vitis vinifera up to 69%, while C4H shows the highest similarity to its ortholog in Echinacea angustifolia up to 96%. Overall, the isolated genes of CtICS and CtC4H in safflower could be considered in plant breeding programs for salinity tolerance as well as for pathogen resistance. PMID:24309561

  17. Differential inductions of phenylalanine ammonia-lyase and chalcone synthase during wounding, salicylic acid treatment, and salinity stress in safflower, Carthamus tinctorius

    PubMed Central

    Dehghan, Sara; Sadeghi, Mahnaz; Pöppel, Anne; Fischer, Rainer; Lakes-Harlan, Reinhard; Kavousi, Hamid Reza; Vilcinskas, Andreas; Rahnamaeian, Mohammad

    2014-01-01

    Safflower (Carthamus tinctorius L.) serves as a reference dicot for investigation of defence mechanisms in Asteraceae due to abundant secondary metabolites and high resistance/tolerance to environmental stresses. In plants, phenylpropanoid and flavonoid pathways are considered as two central defence signalling cascades in stress conditions. Here, we describe the isolation of two major genes in these pathways, CtPAL (phenylalanine ammonia-lyase) and CtCHS (chalcone synthase) in safflower along with monitoring their expression profiles in different stress circumstances. The aa (amino acid) sequence of isolated region of CtPAL possesses the maximum identity up to 96% to its orthologue in Cynara scolymus, while that of CtCHS retains the highest identity to its orthologue in Callistephus chinensis up to 96%. Experiments for gene expression profiling of CtPAL and CtCHS were performed after the treatment of seedlings with 0.1 and 1 mM SA (salicylic acid), wounding and salinity stress. The results of semi-quantitative RT–PCR revealed that both CtPAL and CtCHS genes are further responsive to higher concentration of SA with dissimilar patterns. Regarding wounding stress, CtPAL gets slightly induced upon injury at 3 hat (hours after treatment) (hat), whereas CtCHS gets greatly induced at 3 hat and levels off gradually afterward. Upon salinity stress, CtPAL displays a similar expression pattern by getting slightly induced at 3 hat, but CtCHS exhibits a biphasic expression profile with two prominent peaks at 3 and 24 hat. These results substantiate the involvement of phenylpropanoid and particularly flavonoid pathways in safflower during wounding and especially salinity stress. PMID:24865400

  18. Isolation and characterization of isochorismate synthase and cinnamate 4-hydroxylase during salinity stress, wounding, and salicylic acid treatment in Carthamus tinctorius.

    PubMed

    Sadeghi, Mahnaz; Dehghan, Sara; Fischer, Rainer; Wenzel, Uwe; Vilcinskas, Andreas; Kavousi, Hamid Reza; Rahnamaeian, Mohammad

    2013-11-01

    Salicylic acid (SA) is a prominent signaling molecule during biotic and abiotic stresses in plants biosynthesized via cinnamate and isochorismate pathways. Cinnamate 4-hydroxylase (C4H) and isochorismate synthase (ICS) are the main enzymes in phenylpropanoid and isochorismate pathways, respectively. To investigate the actual roles of these genes in resistance mechanism to environmental stresses, here, the coding sequences of these enzymes in safflower (Carthamus tinctorius), as an oilseed industrial medicinal plant, were partially isolated and their expression profiles during salinity stress, wounding, and salicylic acid treatment were monitored. As a result, safflower ICS (CtICS) and C4H (CtC4H) were induced in early time points after wounding (3-6 h). Upon salinity stress, CtICS and CtC4H were highly expressed for the periods of 6-24 h and 3-6 h after treatment, respectively. It seems evident that ICS expression level is SA concentration dependent as if safflower treatment with 1 mM SA could induce ICS much stronger than that with 0.1 mM, while C4H is less likely to be so. Based on phylogenetic analysis, safflower ICS has maximum similarity to its ortholog in Vitis vinifera up to 69%, while C4H shows the highest similarity to its ortholog in Echinacea angustifolia up to 96%. Overall, the isolated genes of CtICS and CtC4H in safflower could be considered in plant breeding programs for salinity tolerance as well as for pathogen resistance.

  19. Differential inductions of phenylalanine ammonia-lyase and chalcone synthase during wounding, salicylic acid treatment, and salinity stress in safflower, Carthamus tinctorius.

    PubMed

    Dehghan, Sara; Sadeghi, Mahnaz; Pöppel, Anne; Fischer, Rainer; Lakes-Harlan, Reinhard; Kavousi, Hamid Reza; Vilcinskas, Andreas; Rahnamaeian, Mohammad

    2014-06-25

    Safflower (Carthamus tinctorius L.) serves as a reference dicot for investigation of defence mechanisms in Asteraceae due to abundant secondary metabolites and high resistance/tolerance to environmental stresses. In plants, phenylpropanoid and flavonoid pathways are considered as two central defence signalling cascades in stress conditions. Here, we describe the isolation of two major genes in these pathways, CtPAL (phenylalanine ammonia-lyase) and CtCHS (chalcone synthase) in safflower along with monitoring their expression profiles in different stress circumstances. The aa (amino acid) sequence of isolated region of CtPAL possesses the maximum identity up to 96% to its orthologue in Cynara scolymus, while that of CtCHS retains the highest identity to its orthologue in Callistephus chinensis up to 96%. Experiments for gene expression profiling of CtPAL and CtCHS were performed after the treatment of seedlings with 0.1 and 1 mM SA (salicylic acid), wounding and salinity stress. The results of semi-quantitative RT-PCR revealed that both CtPAL and CtCHS genes are further responsive to higher concentration of SA with dissimilar patterns. Regarding wounding stress, CtPAL gets slightly induced upon injury at 3 hat (hours after treatment) (hat), whereas CtCHS gets greatly induced at 3 hat and levels off gradually afterward. Upon salinity stress, CtPAL displays a similar expression pattern by getting slightly induced at 3 hat, but CtCHS exhibits a biphasic expression profile with two prominent peaks at 3 and 24 hat. These results substantiate the involvement of phenylpropanoid and particularly flavonoid pathways in safflower during wounding and especially salinity stress.

  20. Theanaphthoquinone inhibits fatty acid synthase expression in EGF-stimulated human breast cancer cells via the regulation of EGFR/ErbB-2 signaling

    SciTech Connect

    Weng, M.-S.; Ho, C.-T.; Ho, Y.-S.; Lin, J.-K. . E-mail: jklin@ha.mc.ntu.edu.tw

    2007-01-15

    Fatty acid synthase (FAS) is a major lipogenic enzyme catalyzing the synthesis of long-chain saturated fatty acids. Most breast cancers require lipogenesis for growth. Here, we demonstrated the effects of theanaphthoquinone (TNQ), a member of the thearubigins generated by the oxidation of theaflavin (TF-1), on the expression of FAS in human breast cancer cells. TNQ was found to suppress the EGF-induced expression of FAS mRNA and FAS protein in MDA-MB-231 cells. Expression of FAS has previously been shown to be regulated by the SREBP family of transcription factors. In this study, we demonstrated that the EGF-induced nuclear translocation of SREBP-1 was blocked by TNQ. Moreover, TNQ also modulated EGF-induced ERK1/2 and Akt phosphorylation. Treatment of MDA-MB-231 cells with PI 3-kinase inhibitors, LY294002 and Wortmannin, inhibited the EGF-induced expression of FAS and nuclear translocation of SREBP-1. Treatment with TNQ inhibited EGF-induced EGFR/ErbB-2 phosphorylation and dimerization. Furthermore, treatment with kinase inhibitors of EGFR and ErbB-2 suggested that EGFR/ErbB-2 activation was involved in EGF-induced FAS expression. In constitutive FAS expression, TNQ inhibited FAS expression and Akt autophosphorylation in BT-474 cells. The PI 3-kinase inhibitors and tyrosine kinase inhibitors of EGFR and ErbB-2 also reduced constitutive FAS expression. In addition, pharmacological blockade of FAS by TNQ decreased cell viability and induced cell death in BT-474 cells. In summary, our findings suggest that TNQ modulates FAS expression by the regulation of EGFR/ErbB-2 pathways and induces cell death in breast cancer cells.

  1. Deficiency in a Very-Long-Chain Fatty Acid β-Ketoacyl-Coenzyme A Synthase of Tomato Impairs Microgametogenesis and Causes Floral Organ Fusion1[W

    PubMed Central

    Smirnova, Anna; Leide, Jana; Riederer, Markus

    2013-01-01

    Previously, it was shown that β-ketoacyl-coenzyme A synthase ECERIFERUM6 (CER6) is necessary for the biosynthesis of very-long-chain fatty acids with chain lengths beyond C28 in tomato (Solanum lycopersicum) fruits and C26 in Arabidopsis (Arabidopsis thaliana) leaves and the pollen coat. CER6 loss of function in Arabidopsis resulted in conditional male sterility, since pollen coat lipids are responsible for contact-mediated pollen hydration. In tomato, on the contrary, pollen hydration does not rely on pollen coat lipids. Nevertheless, mutation in SlCER6 impairs fertility and floral morphology. Here, the contribution of SlCER6 to the sexual reproduction and flower development of tomato was addressed. Cytological analysis and cross-pollination experiments revealed that the slcer6 mutant has male sterility caused by (1) hampered pollen dispersal and (2) abnormal tapetum development. SlCER6 loss of function provokes a decrease of n- and iso-alkanes with chain lengths of C27 or greater and of anteiso-alkanes with chain lengths of C28 or greater in flower cuticular waxes, but it has no impact on flower cuticle ultrastructure and cutin content. Expression analysis confirmed high transcription levels of SlCER6 in the anther and the petal, preferentially in sites subject to epidermal fusion. Hence, wax deficiency was proposed to be the primary reason for the flower fusion phenomenon in tomato. The SlCER6 substrate specificity was revisited. It might be involved in elongation of not only linear but also branched very-long-chain fatty acids, leading to production of the corresponding alkanes. SlCER6 implements a function in the sexual reproduction of tomato that is different from the one in Arabidopsis: SlCER6 is essential for the regulation of timely tapetum degradation and, consequently, microgametogenesis. PMID:23144186

  2. Mutational analysis of a monoterpene synthase reaction: altered catalysis through directed mutagenesis of (-)-pinene synthase from Abies grandis.

    PubMed

    Hyatt, David C; Croteau, Rodney

    2005-07-15

    Two monoterpene synthases, (-)-pinene synthase and (-)-camphene synthase, from grand fir (Abies grandis) produce different product mixtures despite having highly homologous amino acid sequences and, presumably, very similar three-dimensional structures. The major product of (-)-camphene synthase, (-)-camphene, and the major products of (-)-pinene synthase, (-)-alpha-pinene, and (-)-beta-pinene, arise through distinct mechanistic variations of the electrophilic reaction cascade that is common to terpenoid synthases. Structural modeling followed by directed mutagenesis in (-)-pinene synthase was used to replace selected amino acid residues with the corresponding residues from (-)-camphene synthase in an effort to identify the amino acids responsible for the catalytic differences. This approach produced an enzyme in which more than half of the product was channeled through an alternative pathway. It was also shown that several (-)-pinene synthase to (-)-camphene synthase amino acid substitutions were necessary before catalysis was significantly altered. The data support a model in which the collective action of many key amino acids, located both in and distant from the active site pocket, regulate the course of the electrophilic reaction cascade.

  3. Identification and Characterization of FabA from the Type II Fatty Acid Synthase of Streptomyces coelicolor.

    PubMed

    Singh, Renu; Reynolds, Kevin A

    2016-01-22

    FabA is proposed to catalyze the dehydration step of chain elongation in fatty acid and undecylprodiginine biosynthesis in Streptomyces coelicolor. Analysis of the S. coelicolor genome has revealed a fabA gene (SCO4636-SCO4637, encoding a heterodimer 3-hydroxyacyl-ACP dehydratase). Herein, we report the identification and characterization of the corresponding gene products. Kinetic analysis has demonstrated that FabA is capable of utilizing various chain lengths of straight- and branched-chain 3-hydroxyacyl-NAC substrates. Additionally, FabA does not discriminate between acyl carrier proteins (ACPs) from primary and secondary metabolism. These data provide the first experimental evidence that FabA has 3-hydroxyacyl-ACP dehydratase activity and processes intermediates for both biosynthetic pathways.

  4. Engineering of chromosomal wax ester synthase integrated Saccharomyces cerevisiae mutants for improved biosynthesis of fatty acid ethyl esters.

    PubMed

    Shi, Shuobo; Valle-Rodríguez, Juan Octavio; Siewers, Verena; Nielsen, Jens

    2014-09-01

    In recent years, significant advances have been made to engineer robust microbes for overproducing biochemical products from renewable resources. These accomplishments have to a large extend been based on plasmid based methods. However, plasmid maintenance may cause a metabolic burden on the host cell and plasmid-based overexpression of genes can result in genetically unstable strains, which contributes to loss in productivity. Here, a chromosome engineering method based on delta integration was applied in Saccharomyces cerevisiae for the production of fatty acid ethyl esters (FAEEs), which can be directly used as biodiesel and would be a possible substitute for conventional petroleum-based diesel. An integration construct was designed and integrated into chromosomal delta sequences by repetitive transformation, which resulted in 1-6 copies of the integration construct per genome. The corresponding FAEE production increased up to 34 mg/L, which is an about sixfold increase compared to the equivalent plasmid-based producer. The integrated cassette in the yeast genome was stably maintained in nonselective medium after deletion of RAD52 which is essential for efficient homologous recombination. To obtain a further increase of FAEE production, genes encoding endogenous acyl-CoA binding protein (ACB1) and a bacterial NADP(+)-dependent glyceraldehyde-3-phosphate dehydrogenase (gapN) were overexpressed in the final integration strain, which resulted in another 40% percent increase in FAEE production. Our integration strategy enables easy engineering of strains with adjustable gene copy numbers integrated into the genome and this allows for an easy evaluation of the effect of the gene copy number on pathway flux. It therefore represents a valuable tool for introducing and expressing a heterologous pathway in yeast. PMID:24752598

  5. Synergistic neuroprotective effects of lithium and valproic acid or other histone deacetylase inhibitors in neurons: roles of glycogen synthase kinase-3 inhibition.

    PubMed

    Leng, Yan; Liang, Min-Huei; Ren, Ming; Marinova, Zoya; Leeds, Peter; Chuang, De-Maw

    2008-03-01

    Lithium and valproic acid (VPA) are two primary drugs used to treat bipolar mood disorder and have frequently been used in combination to treat bipolar patients resistant to monotherapy with either drug. Lithium, a glycogen synthase kinase-3 (GSK-3) inhibitor, and VPA, a histone deacetylase (HDAC) inhibitor, have neuroprotective effects. The present study was undertaken to demonstrate synergistic neuroprotective effects when both drugs were coadministered. Pretreatment of aging cerebellar granule cells with lithium or VPA alone provided little or no neuroprotection against glutamate-induced cell death. However, copresence of both drugs resulted in complete blockade of glutamate excitotoxicity. Combined treatment with lithium and VPA potentiated serine phosphorylation of GSK-3 alpha and beta isoforms and inhibition of GSK-3 enzyme activity. Transfection with GSK-3alpha small interfering RNA (siRNA) and/or GSK-3beta siRNA mimicked the ability of lithium to induce synergistic protection with VPA. HDAC1 siRNA or other HDAC inhibitors (phenylbutyrate, sodium butyrate or trichostatin A) also caused synergistic neuroprotection together with lithium. Moreover, combination of lithium and HDAC inhibitors potentiated beta-catenin-dependent, Lef/Tcf-mediated transcriptional activity. An additive increase in GSK-3 serine phosphorylation was also observed in mice chronically treated with lithium and VPA. Together, for the first time, our results demonstrate synergistic neuroprotective effects of lithium and HDAC inhibitors and suggest that GSK-3 inhibition is a likely molecular target for the synergistic neuroprotection. Our results may have implications for the combined use of lithium and VPA in treating bipolar disorder. Additionally, combined use of both drugs may be warranted for clinical trials to treat glutamate-related neurodegenerative diseases.

  6. Evolution of a double amino acid substitution in the 5-enolpyruvylshikimate-3-phosphate synthase in Eleusine indica conferring high-level glyphosate resistance.

    PubMed

    Yu, Qin; Jalaludin, Adam; Han, Heping; Chen, Ming; Sammons, R Douglas; Powles, Stephen B

    2015-04-01

    Glyphosate is the most important and widely used herbicide in world agriculture. Intensive glyphosate selection has resulted in the widespread evolution of glyphosate-resistant weed populations, threatening the sustainability of this valuable once-in-a-century agrochemical. Field-evolved glyphosate resistance due to known resistance mechanisms is generally low to modest. Here, working with a highly glyphosate-resistant Eleusine indica population, we identified a double amino acid substitution (T102I+P106S [TIPS]) in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene in glyphosate-resistant individuals. This TIPS mutation recreates the biotechnology-engineered commercial first generation glyphosate-tolerant EPSPS in corn (Zea mays) and now in other crops. In E. indica, the naturally evolved TIPS mutants are highly (more than 180-fold) resistant to glyphosate compared with the wild type and more resistant (more than 32-fold) than the previously known P106S mutants. The E. indica TIPS EPSPS showed very high-level (2,647-fold) in vitro resistance to glyphosate relative to the wild type and is more resistant (600-fold) than the P106S variant. The evolution of the TIPS mutation in crop fields under glyphosate selection is likely a sequential event, with the P106S mutation being selected first and fixed, followed by the T102I mutation to create the highly resistant TIPS EPSPS. The sequential evolution of the TIPS mutation endowing high-level glyphosate resistance is an important mechanism by which plants adapt to intense herbicide selection and a dramatic example of evolution in action. PMID:25717039

  7. Evolution of a Double Amino Acid Substitution in the 5-Enolpyruvylshikimate-3-Phosphate Synthase in Eleusine indica Conferring High-Level Glyphosate Resistance1

    PubMed Central

    Yu, Qin; Jalaludin, Adam; Han, Heping; Chen, Ming; Sammons, R. Douglas; Powles, Stephen B.

    2015-01-01

    Glyphosate is the most important and widely used herbicide in world agriculture. Intensive glyphosate selection has resulted in the widespread evolution of glyphosate-resistant weed populations, threatening the sustainability of this valuable once-in-a-century agrochemical. Field-evolved glyphosate resistance due to known resistance mechanisms is generally low to modest. Here, working with a highly glyphosate-resistant Eleusine indica population, we identified a double amino acid substitution (T102I + P106S [TIPS]) in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene in glyphosate-resistant individuals. This TIPS mutation recreates the biotechnology-engineered commercial first generation glyphosate-tolerant EPSPS in corn (Zea mays) and now in other crops. In E. indica, the naturally evolved TIPS mutants are highly (more than 180-fold) resistant to glyphosate compared with the wild type and more resistant (more than 32-fold) than the previously known P106S mutants. The E. indica TIPS EPSPS showed very high-level (2,647-fold) in vitro resistance to glyphosate relative to the wild type and is more resistant (600-fold) than the P106S variant. The evolution of the TIPS mutation in crop fields under glyphosate selection is likely a sequential event, with the P106S mutation being selected first and fixed, followed by the T102I mutation to create the highly resistant TIPS EPSPS. The sequential evolution of the TIPS mutation endowing high-level glyphosate resistance is an important mechanism by which plants adapt to intense herbicide selection and a dramatic example of evolution in action. PMID:25717039

  8. Versatile enzyme expression and characterization system for Aspergillus nidulans, with the Penicillium brevicompactum polyketide synthase gene from the mycophenolic acid gene cluster as a test case.

    PubMed

    Hansen, Bjarne G; Salomonsen, Bo; Nielsen, Morten T; Nielsen, Jakob B; Hansen, Niels B; Nielsen, Kristian F; Regueira, Torsten B; Nielsen, Jens; Patil, Kiran R; Mortensen, Uffe H

    2011-05-01

    Assigning functions to newly discovered genes constitutes one of the major challenges en route to fully exploiting the data becoming available from the genome sequencing initiatives. Heterologous expression in an appropriate host is central in functional genomics studies. In this context, filamentous fungi offer many advantages over bacterial and yeast systems. To facilitate the use of filamentous fungi in functional genomics, we present a versatile cloning system that allows a gene of interest to be expressed from a defined genomic location of Aspergillus nidulans. By a single USER cloning step, genes are easily inserted into a combined targeting-expression cassette ready for rapid integration and analysis. The system comprises a vector set that allows genes to be expressed either from the constitutive PgpdA promoter or from the inducible PalcA promoter. Moreover, by using the vector set, protein variants can easily be made and expressed from the same locus, which is mandatory for proper comparative analyses. Lastly, all individual elements of the vectors can easily be substituted for other similar elements, ensuring the flexibility of the system. We have demonstrated the potential of the system by transferring the 7,745-bp large mpaC gene from Penicillium brevicompactum to A. nidulans. In parallel, we produced defined mutant derivatives of mpaC, and the combined analysis of A. nidulans strains expressing mpaC or mutated mpaC genes unequivocally demonstrated that mpaC indeed encodes a polyketide synthase that produces the first intermediate in the production of the medically important immunosuppressant mycophenolic acid. PMID:21398493

  9. Proto-oncogene FBI-1 (Pokemon) and SREBP-1 Synergistically Activate Transcription of Fatty-acid Synthase Gene (FASN)*S⃞

    PubMed Central

    Choi, Won-Il; Jeon, Bu-Nam; Park, Hyejin; Yoo, Jung-Yoon; Kim, Yeon-Sook; Koh, Dong-In; Kim, Myung-Hwa; Kim, Yu-Ri; Lee, Choong-Eun; Kim, Kyung-Sup; Osborne, Timothy F.; Hur, Man-Wook

    2008-01-01

    FBI-1 (Pokemon/ZBTB7A) is a proto-oncogenic transcription factor of the BTB/POZ (bric-à-brac, tramtrack, and broad complex and pox virus zinc finger) domain family. Recent evidence suggested that FBI-1 might be involved in adipogenic gene expression. Coincidentally, expression of FBI-1 and fatty-acid synthase (FASN) genes are often increased in cancer and immortalized cells. Both FBI-1 and FASN are important in cancer cell proliferation. SREBP-1 is a major regulator of many adipogenic genes, and FBI-1 and SREBP-1 (sterol-responsive element (SRE)-binding protein 1) interact with each other directly via their DNA binding domains. FBI-1 enhanced the transcriptional activation of SREBP-1 on responsive promoters, pGL2-6x(SRE)-Luc and FASN gene. FBI-1 and SREBP-1 synergistically activate transcription of the FASN gene by acting on the proximal GC-box and SRE/E-box. FBI-1, Sp1, and SREBP-1 can bind to all three SRE, GC-box, and SRE/E-box. Binding competition among the three transcription factors on the GC-box and SRE/E-box appears important in the transcription regulation. FBI-1 is apparently changing the binding pattern of Sp1 and SREBP-1 on the two elements in the presence of induced SREBP-1 and drives more Sp1 binding to the proximal promoter with less of an effect on SREBP-1 binding. The changes induced by FBI-1 appear critical in the synergistic transcription activation. The molecular mechanism revealed provides insight into how proto-oncogene FBI-1 may attack the cellular regulatory mechanism of FASN gene expression to provide more phospholipid membrane components needed for rapid cancer cell proliferation. PMID:18682402

  10. Downregulation of inducible nitric oxide synthase (iNOS) expression is implicated in the antiviral activity of acetylsalicylic acid in HCV-expressing cells.

    PubMed

    Ríos-Ibarra, Clara Patricia; Lozano-Sepulveda, Sonia; Muñoz-Espinosa, Linda; Rincón-Sánchez, Ana Rosa; Cordova-Fletes, Carlos; Rivas-Estilla, Ana María G

    2014-12-01

    Previously, we described that acetylsalicylic acid (ASA) decreases HCV expression, but the mechanisms involved have not been clearly established. We evaluated the participation of inducible nitric oxide synthase (iNOS) in the regulation of HCV-RNA induced by ASA. Huh7 cells expressing non-structural HCV proteins were exposed to 4 mM ASA and incubated at the same times we reported HCV downregulation (24-72 h), and iNOS mRNA and protein levels were then measured by real-time PCR and Western blot, respectively. Nitric oxide levels were measured at the same time. Inhibition of iNOS mRNA by small interfering RNAs (siRNA) and activation of the iNOS gene promoter by ASA treatment were evaluated. In Huh7 replicon cells treated with ASA, we found decreased levels of iNOS mRNA, iNOS protein and nitrosylated protein levels at 48-72 h. ASA exposure also reduced the transactivation of the iNOS promoter in HCV replicon cells at 48 h, and this was partly due to the decrease in the affinity of transcription factor C/EBP-β for its binding site in the iNOS promoter. siRNA silencing of iNOS decreased HCV-RNA expression (65 %) and potentiated the antiviral effect (80 %) of ASA compared with control cells. ASA reduces iNOS expression by downregulating promoter activity, mRNA and protein levels at the same time that it decreases HCV expression. These findings suggest that the antiviral activity of ASA is mediated partially through the modulation of iNOS.

  11. Dual Fatty Acid Synthase and HER2 Signaling Blockade Shows Marked Antitumor Activity against Breast Cancer Models Resistant to Anti-HER2 Drugs

    PubMed Central

    Blancafort, Adriana; Giró-Perafita, Ariadna; Oliveras, Glòria; Palomeras, Sònia; Turrado, Carlos; Campuzano, Òscar; Carrión-Salip, Dolors; Massaguer, Anna; Brugada, Ramon; Palafox, Marta; Gómez-Miragaya, Jorge; González-Suárez, Eva; Puig, Teresa

    2015-01-01

    Blocking the enzyme Fatty Acid Synthase (FASN) leads to apoptosis of HER2-positive breast carcinoma cells. The hypothesis is that blocking FASN, in combination with anti-HER2 signaling agents, would be an effective antitumor strategy in preclinical HER2+ breast cancer models of trastuzumab and lapatinib resistance. We developed and molecularly characterized in vitro HER2+ models of resistance to trastuzumab (SKTR), lapatinib (SKLR) and both (SKLTR). The cellular interactions of combining anti-FASN polyphenolic compounds (EGCG and the synthetic G28UCM) with anti-HER2 signaling drugs (trastuzumab plus pertuzumab and temsirolimus) were analyzed. Tumor growth inhibition after treatment with EGCG, pertuzumab, temsirolimus or the combination was evaluated in two in vivo orthoxenopatients: one derived from a HER2+ patient and another from a patient who relapsed on trastuzumab and lapatinib-based therapy. SKTR, SKLR and SKLTR showed hyperactivation of EGFR and p-ERK1/2 and PI3KCA mutations. Dual-resistant cells (SKLTR) also showed hyperactivation of HER4 and recovered levels of p-AKT compared with mono-resistant cells. mTOR, p-mTOR and FASN expression remained stable in SKTR, SKLR and SKLTR. In vitro, anti-FASN compounds plus pertuzumab showed synergistic interactions in lapatinib- and dual- resistant cells and improved the results of pertuzumab plus trastuzumab co-treatment. FASN inhibitors combined with temsirolimus displayed the strongest synergistic interactions in resistant cells. In vivo, both orthoxenopatients showed strong response to the antitumor activity of the combination of EGCG with pertuzumab or temsirolimus, without signs of toxicity. We showed that the simultaneous blockade of FASN and HER2 pathways is effective in cells and in breast cancer models refractory to anti-HER2 therapies. PMID:26107737

  12. 1-Aminocyclopropane-1-carboxylic acid (ACC) concentration and ACC synthase expression in soybean roots, root tips, and soybean cyst nematode (Heterodera glycines)-infected roots.

    PubMed

    Tucker, Mark L; Xue, Ping; Yang, Ronghui

    2010-01-01

    Colonization of plant roots by root knot and cyst nematodes requires a functional ethylene response pathway. However, ethylene plays many roles in root development and whether its role in nematode colonization is direct or indirect, for example lateral root initiation or root hair growth, is not known. The temporal requirement for ethylene and localized synthesis of ethylene during the life span of soybean cyst nematode (SCN) on soybean roots was further investigated. Although a significant increase in ethylene evolution was not detected from SCN-colonized roots, the concentration of the immediate precursor to ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC), was higher in SCN-colonized root pieces and root tips than in other parts of the root. Moreover, expression analysis of 17 ACC synthase (ACS) genes indicated that a select set of ACS genes is expressed in SCN-colonized root pieces that is clearly different from the set of genes expressed in non-colonized roots or root tips. Semi-quantitative real-time PCR indicated that ACS transcript accumulation correlates with the high concentration of ACC in root tips. In addition, an ACS-like sequence was found in the public SCN nucleotide database. Acquisition of a full-length sequence for this mRNA (accession GQ389647) and alignment with transcripts for other well-characterized ACS proteins indicated that the nematode sequence is missing a key element required for ACS activity and therefore probably is not a functional ACS. Moreover, no significant amount of ACC was found in any growth stage of SCN that was tested.

  13. Fatty acid synthase/oxidized low-density lipoprotein as metabolic oncogenes linking obesity to colon cancer via NF-kappa B in Egyptians.

    PubMed

    Keshk, Walaa Arafa; Zineldeen, Doaa Hussein; Wasfy, Rania E L-sayed; El-Khadrawy, Osama Helmy

    2014-10-01

    Obesity is a major health problem which heightens the risk of several chronic illnesses including cancer development particularly colon cancer. The underlying pathophysiology of obesity associated colon cancer remains to be elucidated. The purpose of this current study was to determine fatty acid synthase (FASN) activity/expression, oxidized low-density lipoprotein (ox-LDL) level and redox status under the context of anthropometric measurements and lipid profile to find their potential role as interacting biomarkers relating obesity to colon cancer initiation and progression via nuclear factor kappa-B (NF-κB) signaling. This study was conducted upon Egyptian individuals; 30 obese subjects with colon cancer, 11 nonobese and 11 obese subjects without colon cancer. FASN gene expression, NF-κB immunoreactivity, and serum ox-LDL level were estimated by real-time PCR, immunohistochemistry and immunoassay, respectively. FASN activity, glycemic status, obesity, and oxidative stress indices were also assessed. It was found that FASN expression and activity were statistically increased in obese with colon cancer (P=0.021 and 0.018, respectively), with statistically significant increase in patients with advanced grading. Moreover, NF-κB immunoreactivity and serum ox-LDL level were significantly increased in obese colon cancer patients with significantly higher levels in those with advanced grading (all P<0.05). Dyslipidemia, insulin resistance, and oxidative stress indices were worsened in obese patients with colon cancer. These results revealed that FASN and ox-LDL as well as oxidative stress may increase the risk of obesity related colon cancer, particularly via NF-κB signaling and could be used as potential predictive and prognostic biomarkers for obesity complicated with colon cancer.

  14. Dual fatty acid synthase and HER2 signaling blockade shows marked antitumor activity against breast cancer models resistant to anti-HER2 drugs.

    PubMed

    Blancafort, Adriana; Giró-Perafita, Ariadna; Oliveras, Glòria; Palomeras, Sònia; Turrado, Carlos; Campuzano, Òscar; Carrión-Salip, Dolors; Massaguer, Anna; Brugada, Ramon; Palafox, Marta; Gómez-Miragaya, Jorge; González-Suárez, Eva; Puig, Teresa

    2015-01-01

    Blocking the enzyme Fatty Acid Synthase (FASN) leads to apoptosis of HER2-positive breast carcinoma cells. The hypothesis is that blocking FASN, in combination with anti-HER2 signaling agents, would be an effective antitumor strategy in preclinical HER2+ breast cancer models of trastuzumab and lapatinib resistance. We developed and molecularly characterized in vitro HER2+ models of resistance to trastuzumab (SKTR), lapatinib (SKLR) and both (SKLTR). The cellular interactions of combining anti-FASN polyphenolic compounds (EGCG and the synthetic G28UCM) with anti-HER2 signaling drugs (trastuzumab plus pertuzumab and temsirolimus) were analyzed. Tumor growth inhibition after treatment with EGCG, pertuzumab, temsirolimus or the combination was evaluated in two in vivo orthoxenopatients: one derived from a HER2+ patient and another from a patient who relapsed on trastuzumab and lapatinib-based therapy. SKTR, SKLR and SKLTR showed hyperactivation of EGFR and p-ERK1/2 and PI3KCA mutations. Dual-resistant cells (SKLTR) also showed hyperactivation of HER4 and recovered levels of p-AKT compared with mono-resistant cells. mTOR, p-mTOR and FASN expression remained stable in SKTR, SKLR and SKLTR. In vitro, anti-FASN compounds plus pertuzumab showed synergistic interactions in lapatinib- and dual- resistant cells and improved the results of pertuzumab plus trastuzumab co-treatment. FASN inhibitors combined with temsirolimus displayed the strongest synergistic interactions in resistant cells. In vivo, both orthoxenopatients showed strong response to the antitumor activity of the combination of EGCG with pertuzumab or temsirolimus, without signs of toxicity. We showed that the simultaneous blockade of FASN and HER2 pathways is effective in cells and in breast cancer models refractory to anti-HER2 therapies.

  15. A Ser/Thr protein kinase phosphorylates MA-ACS1 (Musa acuminata 1-aminocyclopropane-1-carboxylic acid synthase 1) during banana fruit ripening.

    PubMed

    Choudhury, Swarup Roy; Roy, Sujit; Sengupta, Dibyendu N

    2012-08-01

    1-Aminocyclopropane-1-carboxylic acid synthase (ACS) catalyzes the rate-limiting step in ethylene biosynthesis during ripening. ACS isozymes are regulated both transcriptionally and post-translationally. However, in banana, an important climacteric fruit, little is known about post-translational regulation of ACS. Here, we report the post-translational modification of MA-ACS1 (Musa acuminata ACS1), a ripening inducible isozyme in the ACS family, which plays a key role in ethylene biosynthesis during banana fruit ripening. Immunoprecipitation analyses of phospholabeled protein extracts from banana fruit using affinity-purified anti-MA-ACS1 antibody have revealed phosphorylation of MA-ACS1, particularly in ripe fruit tissue. We have identified the induction of a 41-kDa protein kinase activity in pulp at the onset of ripening. The 41-kDa protein kinase has been identified as a putative protein kinase by MALDI-TOF/MS analysis. Biochemical analyses using partially purified protein kinase fraction from banana fruit have identified the protein kinase as a Ser/Thr family of protein kinase and its possible involvement in MA-ACS1 phosphorylation during ripening. In vitro phosphorylation analyses using synthetic peptides and site-directed mutagenized recombinant MA-ACS1 have revealed that serine 476 and 479 residues at the C-terminal region of MA-ACS1 are phosphorylated. Overall, this study provides important novel evidence for in vivo phosphorylation of MA-ACS1 at the molecular level as a possible mechanism of post-translational regulation of this key regulatory protein in ethylene signaling pathway in banana fruit during ripening. PMID:22419220

  16. DNase I hypersensitivity sites and nuclear protein binding on the fatty acid synthase gene: identification of an element with properties similar to known glucose-responsive elements.

    PubMed Central

    Foufelle, F; Lepetit, N; Bosc, D; Delzenne, N; Morin, J; Raymondjean, M; Ferré, P

    1995-01-01

    We have shown previously that fatty acid synthase (FAS) gene expression is positively regulated by glucose in rat adipose tissue and liver. In the present study, we have identified in the first intron of the gene a sequence closely related to known glucose-responsive elements such as in the L-pyruvate kinase and S14 genes, including a putative upstream stimulatory factor/major late transcription factor (USF/MLTF) binding site (E-box) (+ 292 nt to + 297 nt). Location of this sequence corresponds to a site of hypersensitivity to DNase I which is present in the liver but not in the spleen. Moreover, using this information from a preliminary report of the present work, others have shown that a + 283 nt to + 303 nt sequence of the FAS gene can confer glucose responsiveness to a heterologous promoter. The protein binding to this region has been investigated in vitro by a combination of DNase I footprinting and gel-retardation experiments with synthetic oligonucleotides and known nuclear proteins. DNase I footprinting experiments using a + 161 nt to + 405 nt fragment of the FAS gene demonstrate that a region from + 290 nt to + 316 nt is protected by nuclear extracts from liver and spleen. This region binds two ubiquitous nuclear factors, USF/MLTF and the CAAT-binding transcription factor/nuclear factor 1 (CTF/NF1). Binding of these factors is similar in nuclear extracts from liver which does or does not express the FAS gene as observed for glucose-responsive elements in the L-pyruvate kinase and S14 genes. This suggests a posttranslational modification of a factor of the complex after glucose stimulation. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7772036

  17. Fetal and neonatal exposure to nicotine leads to augmented hepatic and circulating triglycerides in adult male offspring due to increased expression of fatty acid synthase

    SciTech Connect

    Ma, Noelle; Nicholson, Catherine J.; Wong, Michael; Holloway, Alison C.; Hardy, Daniel B.

    2014-02-15

    While nicotine replacement therapy is assumed to be a safer alternative to smoking during pregnancy, the long-term consequences for the offspring remain elusive. Animal studies now suggest that maternal nicotine exposure during perinatal life leads to a wide range of adverse outcomes for the offspring including increased adiposity. The focus of this study was to investigate if nicotine exposure during pregnancy and lactation leads to alterations in hepatic triglyceride synthesis. Female Wistar rats were randomly assigned to receive daily subcutaneous injections of saline (vehicle) or nicotine bitartrate (1 mg/kg/day) for two weeks prior to mating until weaning. At postnatal day 180 (PND 180), nicotine exposed offspring exhibited significantly elevated levels of circulating and hepatic triglycerides in the male offspring. This was concomitant with increased expression of fatty acid synthase (FAS), the critical hepatic enzyme in de novo triglyceride synthesis. Given that FAS is regulated by the nuclear receptor Liver X receptor (LXRα), we measured LXRα expression in both control and nicotine-exposed offspring. Nicotine exposure during pregnancy and lactation led to an increase in hepatic LXRα protein expression and enriched binding to the putative LXRE element on the FAS promoter in PND 180 male offspring. This was also associated with significantly enhanced acetylation of histone H3 [K9,14] surrounding the FAS promoter, a hallmark of chromatin activation. Collectively, these findings suggest that nicotine exposure during pregnancy and lactation leads to an increase in circulating and hepatic triglycerides long-term via changes in the transcriptional and epigenetic regulation of the hepatic lipogenic pathway. - Highlights: • Our data reveals the links nicotine exposure in utero and long-term hypertriglyceridemia. • It is due to nicotine-induced augmented expression of hepatic FAS and LXRα activity. • Moreover, this involves nicotine-induced enhanced

  18. Evolution of a double amino acid substitution in the 5-enolpyruvylshikimate-3-phosphate synthase in Eleusine indica conferring high-level glyphosate resistance.

    PubMed

    Yu, Qin; Jalaludin, Adam; Han, Heping; Chen, Ming; Sammons, R Douglas; Powles, Stephen B

    2015-04-01

    Glyphosate is the most important and widely used herbicide in world agriculture. Intensive glyphosate selection has resulted in the widespread evolution of glyphosate-resistant weed populations, threatening the sustainability of this valuable once-in-a-century agrochemical. Field-evolved glyphosate resistance due to known resistance mechanisms is generally low to modest. Here, working with a highly glyphosate-resistant Eleusine indica population, we identified a double amino acid substitution (T102I+P106S [TIPS]) in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene in glyphosate-resistant individuals. This TIPS mutation recreates the biotechnology-engineered commercial first generation glyphosate-tolerant EPSPS in corn (Zea mays) and now in other crops. In E. indica, the naturally evolved TIPS mutants are highly (more than 180-fold) resistant to glyphosate compared with the wild type and more resistant (more than 32-fold) than the previously known P106S mutants. The E. indica TIPS EPSPS showed very high-level (2,647-fold) in vitro resistance to glyphosate relative to the wild type and is more resistant (600-fold) than the P106S variant. The evolution of the TIPS mutation in crop fields under glyphosate selection is likely a sequential event, with the P106S mutation being selected first and fixed, followed by the T102I mutation to create the highly resistant TIPS EPSPS. The sequential evolution of the TIPS mutation endowing high-level glyphosate resistance is an important mechanism by which plants adapt to intense herbicide selection and a dramatic example of evolution in action.

  19. DNase I hypersensitivity sites and nuclear protein binding on the fatty acid synthase gene: identification of an element with properties similar to known glucose-responsive elements.

    PubMed

    Foufelle, F; Lepetit, N; Bosc, D; Delzenne, N; Morin, J; Raymondjean, M; Ferré, P

    1995-06-01

    We have shown previously that fatty acid synthase (FAS) gene expression is positively regulated by glucose in rat adipose tissue and liver. In the present study, we have identified in the first intron of the gene a sequence closely related to known glucose-responsive elements such as in the L-pyruvate kinase and S14 genes, including a putative upstream stimulatory factor/major late transcription factor (USF/MLTF) binding site (E-box) (+ 292 nt to + 297 nt). Location of this sequence corresponds to a site of hypersensitivity to DNase I which is present in the liver but not in the spleen. Moreover, using this information from a preliminary report of the present work, others have shown that a + 283 nt to + 303 nt sequence of the FAS gene can confer glucose responsiveness to a heterologous promoter. The protein binding to this region has been investigated in vitro by a combination of DNase I footprinting and gel-retardation experiments with synthetic oligonucleotides and known nuclear proteins. DNase I footprinting experiments using a + 161 nt to + 405 nt fragment of the FAS gene demonstrate that a region from + 290 nt to + 316 nt is protected by nuclear extracts from liver and spleen. This region binds two ubiquitous nuclear factors, USF/MLTF and the CAAT-binding transcription factor/nuclear factor 1 (CTF/NF1). Binding of these factors is similar in nuclear extracts from liver which does or does not express the FAS gene as observed for glucose-responsive elements in the L-pyruvate kinase and S14 genes. This suggests a posttranslational modification of a factor of the complex after glucose stimulation.

  20. The Effect of Ethylene and Propylene Pulses on Respiration, Ripening Advancement, Ethylene-Forming Enzyme, and 1-Aminocyclopropane-1-carboxylic Acid Synthase Activity in Avocado Fruit.

    PubMed

    Starrett, D A; Laties, G G

    1991-03-01

    When early-season avocado fruit (Persea americana Mill. cv Hass) were treated with ethylene or propylene for 24 hours immediately on picking, the time to the onset of the respiratory climacteric, i.e. the lag period, remained unchanged compared with that in untreated fruit. When fruit were pulsed 24 hours after picking, on the other hand, the lag period was shortened. In both cases, however, a 24 hour ethylene or propylene pulse induced a transient increase in respiration, called the pulse-peak, unaccompanied by ethylene production (IL Eaks [1980] Am Soc Hortic Sci 105: 744-747). The pulse also caused a sharp rise in ethylene-forming enzyme activity in both cases, without any increase in the low level of 1-aminocyclopropane-1-carboxylic acid synthase activity. Thus, the shortening of the lag period by an ethylene pulse is not due to an effect of ethylene on either of the two key enzymes in ethylene biosynthesis. A comparison of two-dimensional polyacrylamide gel electrophoresis polypeptide profiles of in vitro translation products of poly(A(+)) mRNA from control and ethylene-pulsed fruit showed both up- and down-regulation in response to ethylene pulsing of a number of genes expressed during the ripening syndrome. It is proposed that the pulse-peak or its underlying events reflect an intrinsic element in the ripening process that in late-season or continuously ethylene-treated fruit may be subsumed in the overall climacteric response. A computerized system that allows continuous readout of multiple samples has established that the continued presentation of exogeneous ethylene or propylene to preclimacteric fruit elicits a dual respiration response comprising the merged pulse-peak and climacteric peak in series. The sequential removal of cores from a single fruit has proven an unsatisfactory sampling procedure inasmuch as coring induces wound ethylene, evokes a positive respiration response, and advances ripening.

  1. Serous tubal intraepithelial carcinoma upregulates markers associated with high-grade serous carcinomas including Rsf-1 (HBXAP), cyclin E and fatty acid synthase.

    PubMed

    Sehdev, Ann Smith; Kurman, Robert J; Kuhn, Elisabetta; Shih, Ie-Ming

    2010-06-01

    Serous tubal intraepithelial carcinoma (STIC) has been proposed as a precursor for many pelvic high-grade serous carcinomas. Our previous analysis of the ovarian cancer genome identified several genes with oncogenic potential that are amplified and/or overexpressed in the majority of high-grade serous carcinomas. Determining whether these genes are upregulated in STICs is important in further elucidating the relationship of STICs to high-grade serous carcinomas and is fundamental in understanding the molecular pathogenesis of high-grade serous carcinomas. In this study, 37 morphologically defined STICs were obtained from 23 patients with stage IIIC/IV high-grade serous carcinomas. Both STICs and the high-grade serous carcinomas were analyzed for expression of Rsf-1 (HBXAP), cyclin E, fatty acid synthase (FASN) and mucin-4. In addition, they were examined for expression of established markers including p53, Ki-67 and p16. We found that diffuse nuclear p53 and p16 immunoreactivity was observed in 27 (75%) of 36 and 18 (55%) of 33 STICs, respectively, whereas an elevated Ki-67 labeling index (>or=10%) was detected in 29 (78%) of 37 STICs. Cyclin E nuclear staining was seen in 24 (77%) of 35 STICs, whereas normal tubal epithelial cells were all negative. Increased Rsf-1 and FASN immunoreactivity occurred in 63%, and 62% of STICs, respectively, compared with adjacent normal-appearing tubal epithelium. Interestingly, only one STIC showed increased mucin-4 immunoreactivity. Carcinomas, when compared with STICs, overexpressed p16, Rsf-1, cyclin E and FASN in a higher proportion of cases. In conclusion, STICs express several markers including Rsf-1, cyclin E and FASN in high-grade serous carcinomas. In contrast, mucin-4 immunoreactivity either did not change or was reduced in most STICs. These results suggest that overexpression of Rsf-1, cyclin E and FASN occurs early in tumor progression.

  2. Persistent induction of nitric oxide synthase in tumours from mice treated with the anti-tumour agent 5,6-dimethylxanthenone-4-acetic acid.

    PubMed

    Moilanen, E; Thomsen, L L; Miles, D W; Happerfield, D W; Knowles, R G; Moncada, S

    1998-01-01

    An anti-tumour agent 5,6-dimethylxanthenone-4-acetic acid (5,6-MeXAA) induced nitric oxide synthase (NOS) in the tumour, spleen, thymus and small intestine, but not in the lung, liver, kidney, heart or skeletal muscle in B6D2F1 mice bearing subcutaneous colon 38 tumours. This pattern of induction is distinct from that caused by agents such as endotoxin, muramyl dipeptide or Corynebacterium parvum. The induction of NOS (iNOS) in the tumour was more persistent (maximal at 3 days) than in other tissues (maximal at 12 h). Immunohistochemical staining suggested that iNOS was located in macrophages and endothelial cells within and around the tumour. Treatment with 5,6-MeXAA also caused substantial increases in plasma nitrite and nitrate (NOx) concentrations that peaked at 8-12 h after 5,6-MeXAA. The increase in plasma NOx was prevented by a NOS inhibitor N-iminoethyl-L-ornithine (L-NIO), indicating that it was due to enhanced production of NO. Tumour-bearing mice were more responsive than controls to 5,6-MeXAA both in their plasma NOx increase and in their lower maximally tolerated dose. L-NIO was unable to prevent the complete tumour necrosis and regression caused by 5,6-MeXAA at a dose that substantially inhibited the increase of plasma NOx. In conclusion, the experimental anti-tumour agent 5,6-MeXAA induced NO synthesis in tumour-associated macrophages and in immunologically active tissues in parallel with its effects on tumour growth. The experiments with a non-selective NOS inhibitor L-NIO, however, suggest that NO is not a significant component in the mechanism of the anti-tumour action of 5,6-MeXAA in this particular model. PMID:9472639

  3. STRUCTURAL ENZYMOLOGY OF POLYKETIDE SYNTHASES

    PubMed Central

    Tsai, Shiou-Chuan (Sheryl); Ames, Brian Douglas

    2010-01-01

    This chapter describes structural and associated enzymological studies of polyketide synthases, including isolated single domains and multidomain fragments. The sequence–structure–function relationship of polyketide biosynthesis, compared with homologous fatty acid synthesis, is discussed in detail. Structural enzymology sheds light on sequence and structural motifs that are important for the precise timing, substrate recognition, enzyme catalysis, and protein–protein interactions leading to the extraordinary structural diversity of naturally occurring polyketides. PMID:19362634

  4. Nitric oxide donors prevent while the nitric oxide synthase inhibitor L-NAME increases arachidonic acid plus CYP2E1-dependent toxicity

    SciTech Connect

    Wu Defeng; Cederbaum, Arthur . E-mail: arthur.cederbaum@mssm.edu

    2006-10-15

    Polyunsaturated fatty acids such as arachidonic acid (AA) play an important role in alcohol-induced liver injury. AA promotes toxicity in rat hepatocytes with high levels of cytochrome P4502E1 and in HepG2 E47 cells which express CYP2E1. Nitric oxide (NO) participates in the regulation of various cell activities as well as in cytotoxic events. NO may act as a protectant against cytotoxic stress or may enhance cytotoxicity when produced at elevated concentrations. The goal of the current study was to evaluate the effect of endogenously or exogenously produced NO on AA toxicity in liver cells with high expression of CYP2E1 and assess possible mechanisms for its actions. Pyrazole-induced rat hepatocytes or HepG2 cells expressing CYP2E1 were treated with AA in the presence or absence of an inhibitor of nitric oxide synthase L-N {sup G}-Nitroarginine Methylester (L-NAME) or the NO donors S-nitroso-N-acetylpenicillamine (SNAP), and (Z)-1-[-(2-aminoethyl)-N-(2-aminoethyl)]diazen-1-ium-1,2-diolate (DETA-NONO). AA decreased cell viability from 100% to 48 {+-} 6% after treatment for 48 h. In the presence of L-NAME, viability was further lowered to 23 {+-} 5%, while, SNAP or DETA-NONO increased viability to 66 {+-} 8 or 71 {+-} 6%. The L-NAME potentiated toxicity was primarily necrotic in nature. L-NAME did not affect CYP2E1 activity or CYP2E1 content. SNAP significantly lowered CYP2E1 activity but not protein. AA treatment increased lipid peroxidation and lowered GSH levels. L-NAME potentiated while SNAP prevented these changes. Thus, L-NAME increased, while NO donors decreased AA-induced oxidative stress. Antioxidants prevented the L-NAME potentiation of AA toxicity. Damage to mitochondria by AA was shown by a decline in the mitochondrial membrane potential (MMP). L-NAME potentiated this decline in MMP in association with its increase in AA-induced oxidative stress and toxicity. NO donors decreased this decline in MMP in association with their decrease in AA

  5. Divinyl ether synthase gene, and protein and uses thereof

    DOEpatents

    Howe, Gregg A.; Itoh, Aya

    2006-12-26

    The present invention relates to divinyl ether synthase genes, proteins, and methods of their use. The present invention encompasses both native and recombinant wild-type forms of the synthase, as well as mutants and variant forms, some of which possess altered characteristics relative to the wild-type synthase. The present invention also relates to methods of using divinyl ether synthase genes and proteins, including in their expression in transgenic organisms and in the production of divinyl ether fatty acids, and to methods of suing divinyl ether fatty acids, including in the protection of plants from pathogens.

  6. Divinyl ether synthase gene and protein, and uses thereof

    DOEpatents

    Howe, Gregg A.; Itoh, Aya

    2011-09-13

    The present invention relates to divinyl ether synthase genes, proteins, and methods of their use. The present invention encompasses both native and recombinant wild-type forms of the synthase, as well as mutants and variant forms, some of which possess altered characteristics relative to the wild-type synthase. The present invention also relates to methods of using divinyl ether synthase genes and proteins, including in their expression in transgenic organisms and in the production of divinyl ether fatty acids, and to methods of suing divinyl ether fatty acids, including in the protection of plants from pathogens.

  7. Geranyl diphosphate synthase large subunit, and methods of use

    DOEpatents

    Croteau, Rodney B.; Burke, Charles C.; Wildung, Mark R.

    2001-10-16

    A cDNA encoding geranyl diphosphate synthase large subunit from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase large subunit). In another aspect, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase large subunit. In yet another aspect, the present invention provides isolated, recombinant geranyl diphosphate synthase protein comprising an isolated, recombinant geranyl diphosphate synthase large subunit protein and an isolated, recombinant geranyl diphosphate synthase small subunit protein. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase.

  8. OsJAR1 and OsJAR2 are jasmonyl-L-isoleucine synthases involved in wound- and pathogen-induced jasmonic acid signalling.

    PubMed

    Wakuta, Shinji; Suzuki, Erika; Saburi, Wataru; Matsuura, Hideyuki; Nabeta, Kensuke; Imai, Ryozo; Matsui, Hirokazu

    2011-06-17

    The synthesis of JA-Ile was catalysed by JA-Ile synthase, which is a member of the group I GH3 family of proteins. Here, we showed evidence that OsGH3.5 (OsJAR1) and OsGH3.3 (OsJAR2) are the functional JA-Ile synthases in rice, using recombinant proteins. The expression levels of OsJAR1 and OsJAR2 were induced in response to wounding with the concomitant accumulation of JA-Ile. In contrast, only the expression of OsJAR1 was associated with the accumulation of JA-Ile after blast infection. Our data suggest that these two JA-Ile synthases are differentially involved in the activation of JA signalling in response to wounding and pathogen challenge in rice. PMID:21619871

  9. OsJAR1 and OsJAR2 are jasmonyl-L-isoleucine synthases involved in wound- and pathogen-induced jasmonic acid signalling.

    PubMed

    Wakuta, Shinji; Suzuki, Erika; Saburi, Wataru; Matsuura, Hideyuki; Nabeta, Kensuke; Imai, Ryozo; Matsui, Hirokazu

    2011-06-17

    The synthesis of JA-Ile was catalysed by JA-Ile synthase, which is a member of the group I GH3 family of proteins. Here, we showed evidence that OsGH3.5 (OsJAR1) and OsGH3.3 (OsJAR2) are the functional JA-Ile synthases in rice, using recombinant proteins. The expression levels of OsJAR1 and OsJAR2 were induced in response to wounding with the concomitant accumulation of JA-Ile. In contrast, only the expression of OsJAR1 was associated with the accumulation of JA-Ile after blast infection. Our data suggest that these two JA-Ile synthases are differentially involved in the activation of JA signalling in response to wounding and pathogen challenge in rice.

  10. Upregulation of UGT2B4 Expression by 3′-Phosphoadenosine-5′-Phosphosulfate Synthase Knockdown: Implications for Coordinated Control of Bile Acid Conjugation

    PubMed Central

    Barrett, Kathleen G.; Fang, Hailin; Cukovic, Daniela; Dombkowski, Alan A.; Kocarek, Thomas A.

    2015-01-01

    During cholestasis, the bile acid–conjugating enzymes, SULT2A1 and UGT2B4, work in concert to prevent the accumulation of toxic bile acids. To understand the impact of sulfotransferase deficiency on human hepatic gene expression, we knocked down 3′-phosphoadenosine-5′-phosphosulfate synthases (PAPSS) 1 and 2, which catalyze synthesis of the obligate sulfotransferase cofactor, in HepG2 cells. PAPSS knockdown caused no change in SULT2A1 expression; however, UGT2B4 expression increased markedly (∼41-fold increase in UGT2B4 mRNA content). Knockdown of SULT2A1 in HepG2 cells also increased UGT2B4 expression. To investigate the underlying mechanism, we transfected PAPSS-deficient HepG2 cells with a luciferase reporter plasmid containing ∼2 Kb of the UGT2B4 5′-flanking region, which included a response element for the bile acid–sensing nuclear receptor, farnesoid X receptor (FXR). FXR activation or overexpression increased UGT2B4 promoter activity; however, knocking down FXR or mutating or deleting the FXR response element did not significantly decrease UGT2B4 promoter activity. Further evaluation of the UGT2B4 5′-flanking region indicated the presence of distal regulatory elements between nucleotides −10090 and −10037 that negatively and positively regulated UGT2B4 transcription. Pulse-chase analysis showed that increased UGT2B4 expression in PAPSS-deficient cells was attributable to both increased mRNA synthesis and stability. Transfection analysis demonstrated that the UGT2B4 3′-untranslated region decreased luciferase reporter expression less in PAPSS-deficient cells than in control cells. These data indicate that knocking down PAPSS increases UGT2B4 transcription and mRNA stability as a compensatory response to the loss of SULT2A1 activity, presumably to maintain bile acid–conjugating activity. PMID:25948711

  11. sup 15 N and sup 13 C NMR studies of ligands bound to the 280,000-dalton protein porphobilinogen synthase elucidate the structures of enzyme-bound product and a Schiff base intermediate

    SciTech Connect

    Jaffe, E.K.; Rajagopalan, J.S. ); Markham, G.D. )

    1990-09-11

    Porphobilinogen synthase (PBGS) catalyzes the asymmetric condensation of two molecules of 5-aminolevulinic acid (ALA). Despite the 280,000-dalton size of PBGS, much can be learned about the reaction mechanism through {sup 13}C and {sup 15}N NMR. The authors knowledge, these studies represent the largest protein complex for which individual nuclei have been characterized by {sup 13}C or {sup 15}N NMR. Here they extend their {sup 13}C NMR studies to PBGS complexes with (3,3-{sup 2}H{sub 2},3-{sup 13}C)ALA and report {sup 15}N NMR studies of ({sup 15}N)ALA bound to PBGS. As in their previous {sup 13}C NMR studies, observation of enzyme-bound {sup 15}N-labeled species was facilitated by deuteration at nitrogens that are attached to slowly exchanging hydrogens. For holo-PBGS at neutral pH, the NMR spectra reflect the structure of the enzyme-bound product porphobilinogen (PBG), whose chemical shifts are uniformly consistent with deprotonation of the amino group whose solution pK{sub a} is 11. Despite this local environment, the protons of the amino group are in rapid exchange with solvent. For methyl methanethiosulfonate (MMTS) modified PBGS, the NMR spectra reflect the chemistry of an enzyme-bound Schiff base intermediate that is formed between C{sub 4} of ALA and an active-site lysine. The {sup 13}C chemical shift of (3,3-{sup 2}H{sub 2},3-{sup 13}C)ALA confirms that the Schiff base is an imine of E stereochemistry. By comparison to model imines formed between ({sup 15}N)ALA and hydrazine or hydroxylamine, the {sup 15}N chemical shift of the enzyme-bound Schiff base suggests that the free amino group is an environment resembling partial deprotonation. Deprotonation of the amino group would facilitate formation of a Schiff base between the amino group of the enzyme-bound Schiff base and C{sub 4} of the second ALA substrate. This is the first evidence supporting carbon-nitrogen bond formation as the initial site of interaction between the two substrate molecules.

  12. Modulation of nitric oxide synthase activity in brain, liver, and blood vessels of spontaneously hypertensive rats by ascorbic acid: protection from free radical injury.

    PubMed

    Newaz, M A; Yousefipour, Z; Nawal, N N A

    2005-08-01

    End organ damage in essential hypertension has been linked to increased oxygen free radical generation, reduced antioxidant defense, and/or attenuation of nitric oxide synthase (NOS) activity. Ascorbic acid (AA), a water-soluble antioxidant, has been reported as a strong defense against free radicals in both aqueous and nonaqueous environment. In this study we examined the hypothesis that antioxidant ascorbic acid may confer protection from increased free radical activity in brain, liver, and blood vessels of spontaneously hypertensive rats (SHR). Male SHRs were divided into groups: SHR + AA (treated with AA, 1 mg/rat/day; for 12 weeks) or SHR (untreated). Wister-Kyoto rats (WKY) served as the control. Mean systolic blood pressure (SBP) in treated and untreated SHR was 145 +/- 7 mmHg and 142 +/- 8 mmHg, respectively. AA treatment prevented the increase in systolic blood pressure in SHR by 37 +/- 1% (p < 0.05). NOS activity in the brain, liver, and blood vessels of WKY rat was 1.82 +/- 0.02, 0.14 +/- 0.003, and 1.54 +/- 0.06 pmol citruline/mg protein, respectively. In SHR, total NOS activity was significantly reduced by 52 +/- 1%, 21 +/- 3%, and 44 +/- 4%, respectively. AA increased NOS activity in brain, liver, and blood vessels of SHR from 0.87 +/-.03, 0.11 +/-.01, and 0.87 +/-.08 pmol citruline/mg protein to 0.93 +/- 0.01, 0.13 +/- 0.001, and 1.11 +/- 0.03 pmol citruline/mg protein (p < 0.05), respectively. Lipid peroxides in the brain, liver, and blood vessels from WKY rats were 0.87 +/- 0.06, 0.11 +/- 0.005, and 0.47 +/- 0.04 nmol MDA equiv/mg protein, respectively. In SHR, lipid peroxides in brain, liver, and blood vessels were significantly increased by 40 +/- 3%, 64 +/- 3%, and 104 +/- 13%, respectively. AA reduced lipid peroxidation in liver and blood vessels by 17 +/- 1% and 34 +/- 3% but not in brain. Plasma lipid peroxides were almost doubled in SHR (p < 0.01) together with a reduction in total antioxidant status (6 +/- 0.1%; p < 0.05), nitrite (53 +/- 2

  13. Pharmacological and small interference RNA-mediated inhibition of breast cancer-associated fatty acid synthase (oncogenic antigen-519) synergistically enhances Taxol (paclitaxel)-induced cytotoxicity.

    PubMed

    Menendez, Javier A; Vellon, Luciano; Colomer, Ramon; Lupu, Ruth

    2005-05-20

    The relationship between breast cancer-associated fatty acid synthase (FAS; oncogenic antigen-519) and chemotherapy-induced cell damage has not been studied. We examined the ability of C75, a synthetic slow-binding inhibitor of FAS activity, to modulate the cytotoxic activity of the microtubule-interfering agent Taxol (paclitaxel) in SK-Br3, MDA-MB-231, MCF-7 and multidrug-resistant MDR-1 (P-Glycoprotein)-overexpressing MCF-7/AdrR breast cancer cells. When the combination of C75 with Taxol in either concurrent (C75 + Taxol 24 hr) or sequential (C75 24 hr --> Taxol 24 hr) schedules were tested for synergism, addition or antagonism using the isobologram and the median-effect plot analyses, co-exposure of C75 and Taxol mostly demonstrated synergistic effects, whereas sequential exposure to C75 followed by Taxol mainly showed additive or antagonistic interactions. Because the nature of the cytotoxic interactions was definitely schedule-dependent in MCF-7 cells, we next evaluated the effects of C75 on Taxol-induced apoptosis as well as Taxol-activated cell death and cell survival-signaling pathways in this breast cancer cell model. An ELISA for histone-associated DNA fragments demonstrated that C75 and Taxol co-exposure caused a synergistic enhancement of apoptotic cell death, whereas C75 pre-treatment did not enhance the apoptosis-inducing activity of Taxol. Co-exposure to C75 and Taxol induced a remarkable nuclear accumulation of activated p38 mitogen-activated protein kinase (p38 MAPK), which was accompanied by a synergistic nuclear accumulation of the p53 tumor-suppressor protein that was phosphorylated at Ser46, a p38 MAPK-regulated pro-apoptotic modification of p53. As single agents, FAS blocker C75 and Taxol induced a significant stimulation of the proliferation and cell survival mitogen-activated protein kinase extracellular signal-regulated kinase (ERK1/ERK2 MAPK) activity, whereas, in combination, they interfered with ERK1/ERK2 activation. Moreover, the

  14. Physiological function of mycobacterial mtFabD, an essential malonyl-CoA:AcpM transacylase of type 2 fatty acid synthase FASII, in yeast mct1Delta cells.

    PubMed

    Gurvitz, Aner

    2009-01-01

    Mycobacterium tuberculosis mtFabD is an essential malonyl-CoA:AcpM transacylase and is important for vital protein-protein interactions within type 2 fatty acid synthase FASII. mtFabD contacts KasA, KasB, FabH, InhA, and possibly also HadAB, HadBC, and FabG1/MabA. Disruption of mtFabD's interactions during FASII has been proposed for drug development. Here, the gene for a mitochondrially targeted mtFabD was ectopically expressed in Saccharomyces cerevisiae mct1Delta mutant cells lacking the corresponding mitochondrial malonyl-CoA transferase Mct1p, allowing the mutants to recover their abilities to respire on glycerol and synthesize lipoic acid. Hence, mtFabD could physiologically function in an environment lacking holo-AcpM or other native interaction partners. PMID:19859569

  15. Monoterpene synthases from grand fir (Abies grandis). cDNA isolation, characterization, and functional expression of myrcene synthase, (-)-(4S)-limonene synthase, and (-)-(1S,5S)-pinene synthase.

    PubMed

    Bohlmann, J; Steele, C L; Croteau, R

    1997-08-29

    Grand fir (Abies grandis) has been developed as a model system for studying defensive oleoresin formation in conifers in response to insect attack or other injury. The turpentine fraction of the oleoresin is a complex mixture of monoterpene (C10) olefins in which (-)-limonene and (-)-alpha- and (-)-beta-pinene are prominent components; (-)-limonene and (-)-pinene synthase activities are also induced upon stem wounding. A similarity based cloning strategy yielded three new cDNA species from a wounded stem cDNA library that appeared to encode three distinct monoterpene synthases. After expression in Escherichia coli and enzyme assay with geranyl diphosphate as substrate, subsequent analysis of the terpene products by chiral phase gas chromatography and mass spectrometry showed that these sequences encoded a (-)-limonene synthase, a myrcene synthase, and a (-)-pinene synthase that produces both alpha-pinene and beta-pinene. In properties and reaction stereochemistry, the recombinant enzymes resemble the corresponding native monoterpene synthases of wound-induced grand fir stem. The deduced amino acid sequences indicated the limonene synthase to be 637 residues in length (73.5 kDa), the myrcene synthase to be 627 residues in length (72.5 kDa), and the pinene synthase to be 628 residues in length (71.5 kDa); all of these monoterpene synthases appear to be translated as preproteins bearing an amino-terminal plastid targeting sequence. Sequence comparison revealed that these monoterpene synthases from grand fir resemble sesquiterpene (C15) synthases and diterpene (C20) synthases from conifers more closely than other monoterpene synthases from angiosperm species. This similarity between extant monoterpene, sesquiterpene, and diterpene synthases of gymnosperms is surprising since functional diversification of this enzyme class is assumed to have occurred over 300 million years ago. Wound-induced accumulation of transcripts for monoterpene synthases was demonstrated by RNA

  16. Palmitic acid exerts pro-inflammatory effects on vascular smooth muscle cells by inducing the expression of C-reactive protein, inducible nitric oxide synthase and tumor necrosis factor-α.

    PubMed

    Wu, Di; Liu, Juntian; Pang, Xiaoming; Wang, Shuyue; Zhao, Jingjing; Zhang, Xiaolu; Feng, Liuxin

    2014-12-01

    Atherosclerosis is a chronic inflammatory disease in the vessel, and inflammatory cytokines play an important role in the inflammatory process of atherosclerosis. A high level of free fatty acids (FFAs) produced in lipid metabolism disorders are known to participate in the formation of atherosclerosis through multiple bioactivities. As the main saturated fatty acid in FFAs, palmitic acid stimulates the expression of inflammatory cytokines in macrophages. However, it is unclear whether palmitic acid exerts a pro-inflammatory effect on vascular smooth muscle cells (VSMCs). The purpose of the present study was to observe the effect of palmitic acid on the expression of C-reactive protein (CRP), tumor necrosis factor α (TNF-α) and inducible nitric oxide synthase (iNOS) in VSMCs. Rat VSMCs were cultured, and palmitic acid was used as a stimulant for CRP, TNF-α and iNOS expression. mRNA expression was assayed with reverse transcription-polymerase chain reaction, and protein expression was detected with western blot analysis and immunocytochemistry. The results showed that palmitic acid significantly stimulated mRNA and protein expression of CRP, TNF-α and iNOS in VSMCs in time- and concentration-dependent manners, and therefore, palmitic acid is able to exert a pro-inflammatory effect on VSMCs via stimulating CRP, TNF-α and iNOS expression. The findings provide a novel explanation for the direct pro-inflammatory and atherogenic effects of palmitic acid, and for the association with metabolic syndrome, such as type 2 diabetes mellitus, obesity and atherosclerosis. Therefore, the intervention with anti-inflammatory agents may effectively delay the formation and progression of atherosclerosis in patients with metabolic syndrome.

  17. Identification of a 1-aminocyclopropane-1-carboxylic acid synthase gene linked to the female (F) locus that enhances female sex expression in cucumber.

    PubMed Central

    Trebitsh, T; Staub, J E; O'Neill, S D

    1997-01-01

    Sex determination in cucumber (Cucumis sativus L.) is controlled largely by three genes: F, m, and a. The F and m loci interact to produce monoecious (M_f_) or gynoecious (M_f_) sex phenotypes. Ethylene and factors that induce ethylene biosynthesis, such as 1-aminocyclopropane-1-carboxylate (ACC) and auxin, also enhance female sex expression. A genomic sequence (CS-ACS1) encoding ACC synthase was amplified from genomic DNA by a polymerase chain reaction using degenerate oligonucleotide primers. Expression of CS-ACS1 is induced by auxin, but not by ACC, in wounded and intact shoot apices. Southern blo hybridization analysis of near-isogenic gynoecious (MMFF) and monoecious (MMff) lines derived from divers genetic backgrounds revealed the existence of an additional ACC synthase (CS-ACS1G) genomic sequence in the gynoecious lines. Sex phenotype analysis of a segregating F2 population detected a 100% correlation between the CS-ACS1G marker and the presence of the F locus. The CS-ACS1G gene is located in linkage group B coincident with the F locus, and in the population tested there was no recombination between the CS-ACS1G gene and the F locus. Collectively, these data suggest that CS-ACS1G is closely linked to the F locus and may play a pivotal role in the determination of sex in cucumber flowers. PMID:9085580

  18. Inactivation of the inhA-encoded fatty acid synthase II (FASII) enoyl-acyl carrier protein reductase induces accumulation of the FASI end products and cell lysis of Mycobacterium smegmatis.

    PubMed

    Vilchèze, C; Morbidoni, H R; Weisbrod, T R; Iwamoto, H; Kuo, M; Sacchettini, J C; Jacobs, W R

    2000-07-01

    The mechanism of action of isoniazid (INH), a first-line antituberculosis drug, is complex, as mutations in at least five different genes (katG, inhA, ahpC, kasA, and ndh) have been found to correlate with isoniazid resistance. Despite this complexity, a preponderance of evidence implicates inhA, which codes for an enoyl-acyl carrier protein reductase of the fatty acid synthase II (FASII), as the primary target of INH. However, INH treatment of Mycobacterium tuberculosis causes the accumulation of hexacosanoic acid (C(26:0)), a result unexpected for the blocking of an enoyl-reductase. To test whether inactivation of InhA is identical to INH treatment of mycobacteria, we isolated a temperature-sensitive mutation in the inhA gene of Mycobacterium smegmatis that rendered InhA inactive at 42 degrees C. Thermal inactivation of InhA in M. smegmatis resulted in the inhibition of mycolic acid biosynthesis, a decrease in hexadecanoic acid (C(16:0)) and a concomitant increase of tetracosanoic acid (C(24:0)) in a manner equivalent to that seen in INH-treated cells. Similarly, INH treatment of Mycobacterium bovis BCG caused an inhibition of mycolic acid biosynthesis, a decrease in C(16:0), and a concomitant accumulation of C(26:0). Moreover, the InhA-inactivated cells, like INH-treated cells, underwent a drastic morphological change, leading to cell lysis. These data show that InhA inactivation, alone, is sufficient to induce the accumulation of saturated fatty acids, cell wall alterations, and cell lysis and are consistent with InhA being a primary target of INH. PMID:10869086

  19. Farnesyl pyrophosphate synthase enantiospecificity with a chiral risedronate analog, [6,7-dihydro-5H-cyclopenta[c]pyridin-7-yl(hydroxy)methylene]bis(phosphonic acid) (NE-10501): Synthetic, structural, and modeling studies.

    PubMed

    Deprèle, Sylvine; Kashemirov, Boris A; Hogan, James M; Ebetino, Frank H; Barnett, Bobby L; Evdokimov, Artem; McKenna, Charles E

    2008-05-01

    The complex formed from crystallization of human farnesyl pyrophosphate synthase (hFPPS) from a solution of racemic [6,7-dihydro-5H-cyclopenta[c]pyridin-7-yl(hydroxy)methylene]bis(phosphonic acid) (NE-10501, 8), a chiral analog of the anti-osteoporotic drug risedronate, contained the R enantiomer in the enzyme active site. This enantiospecificity was assessed by computer modeling of inhibitor-active site interactions using Autodock 3, which was also evaluated for predictive ability in calculations of the known configurations of risedronate, zoledronate, and minodronate complexed in the active site of hFPPS. In comparison with these structures, the 8 complex exhibited certain differences, including the presence of only one Mg(2+), which could contribute to its 100-fold higher IC(50). An improved synthesis of 8 is described, which decreases the number of steps from 12 to 8 and increases the overall yield by 17-fold.

  20. The Effect of Multiple Sequential Light Sources to Activate Aminolevulinic Acid in the Treatment of Actinic Keratoses: A Retrospective Study

    PubMed Central

    Goldman, Mitchel P.; Fabi, Sabrina G.; Guiha, Isabella

    2014-01-01

    There is a lack of research regarding the sequential use of multiple light sources for topical 5-aminolevulinic acid activation in photodynamic therapy for actinic keratosis. This study evaluated 5-aminolevulinic acid-photodynamic therapy for actinic keratosis using blue light combined with red light, pulsed dye laser, and/or intense pulsed light in a retrospective fashion. Field-directed 5-aminolevulinic acid-photodynamic therapy was performed with blue light only, blue light + pulsed dye laser, blue light + intense pulsed light, blue light + pulsed dye laser + intense pulsed light, or blue light + red light + pulsed dye laser + intense pulsed light for nonhyperkeratotic actinic keratoses of face, scalp, or upper trunk. Blue light + intense pulsed light + pulsed dye laser produced greater patient-reported improvement in actinic keratoses than blue light or blue light + intense pulsed light and greater subject-reported improvement in overall skin quality than blue light + intense pulsed light. The addition of red light led to no further benefit in either outcome measure. Photodynamic therapy with multiple, sequential laser and light sources led to greater patient-graded improvement in actinic keratoses than that with a single light source (blue light), without significant differences in post-treatment adverse events. However, the small, widely disparate number of patients between groups and follow-up times between patients, as well as retrospective assessments based on subjective patient recall, severely limit the significance of these findings. Nevertheless, the results raise interesting questions regarding the use of multiple light and laser sources for photodynamic therapy of actinic keratoses and warrant further research with a prospective, randomized, controlled study. PMID:25276272

  1. Trinuclear Metal Clusters in Catalysis by Terpenoid Synthases.

    PubMed

    Aaron, Julie A; Christianson, David W

    2010-01-01

    Terpenoid synthases are ubiquitous enzymes that catalyze the formation of structurally and stereochemically diverse isoprenoid natural products. Many isoprenoid coupling enzymes and terpenoid cyclases from bacteria, fungi, protists, plants, and animals share the class I terpenoid synthase fold. Despite generally low amino acid sequence identity among these examples, class I terpenoid synthases contain conserved metal binding motifs that coordinate to a trinuclear metal cluster. This cluster not only serves to bind and orient the flexible isoprenoid substrate in the precatalytic Michaelis complex, but it also triggers the departure of the diphosphate leaving group to generate a carbocation that initiates catalysis. Additional conserved hydrogen bond donors assist the metal cluster in this function. Crystal structure analysis reveals that the constellation of three metal ions required for terpenoid synthase catalysis is generally identical among all class I terpenoid synthases of known structure.

  2. Anthranilate synthase from Ruta graveolens. Duplicated AS alpha genes encode tryptophan-sensitive and tryptophan-insensitive isoenzymes specific to amino acid and alkaloid biosynthesis.

    PubMed Central

    Bohlmann, J; Lins, T; Martin, W; Eilert, U

    1996-01-01

    Anthranilate synthase (AS, EC 4.1.3.27) catalyzes the conversion of chorismate into anthranilate, the biosynthetic precursor of both tryptophan and numerous secondary metabolites, including inducible plant defense compounds. The higher plant Ruta graveolens produces tryptophan and elicitor-inducible, anthranilate-derived alkaloids by means of two differentially expressed nuclear genes for chloroplast-localized AS alpha subunits, AS alpha 1 and AS alpha 2. Mechanisms that partition chorismate between tryptophan and inducible alkaloids thus do not entail chloroplast/cytosol separation of AS isoenzymes and yet might involve differential feedback regulation of pathway-specific AS alpha subunits. The two AS alpha isoenzymes of R. graveolens were expressed as glutathione S-transferase fusion proteins in Escherichia coli deletion mutants defective in AS activity and were purified to homogeneity. Differential sensitivity of the transformed E. coli strains toward 5-methyltryptophan, a false-feedback inhibitor of AS, was demonstrated. Characterization of affinity-purified AS alpha isoenzymes revealed that the noninducible AS alpha 2 of R. graveolens is strongly feedback inhibited by 10 microns tryptophan. In contrast, the elicitor-inducible AS alpha 1 isoenzyme is only slightly affected even by tryptophan concentrations 10-fold higher than those observed in planta. These results are consistent with the hypothesis that chorismate flux into biosynthesis of tryptophan and defense-related alkaloid biosynthesis in R. graveolens is regulated at the site of AS alpha isoenzymes at both genetic and enzymatic levels. PMID:8787026

  3. Peroxisomal and mitochondrial citrate synthase in CAM plants.

    PubMed

    Zafra, M F; Segovia, J L; Alejandre, M J; García-Peregrín, E

    1981-12-01

    Citrate synthase wa studied for the first time in peroxisomes and mitochondria of crassulacean acid metabolism plants. Cellular organelles were isolated from Agave americana leaves by sucrose density gradient centrifugation and characterized by the use of catalase and cytochrome oxidase as marker enzymes, respectively. 48,000 X g centrifugation caused the breakdown of the cellular organelles. The presence of a glyoxylate cycle enzyme (citrate synthase) and a glycollate pathway enzyme (catalase) in the same organelles, besides the absence of another glyoxalate cycle enzyme (malate synthase) is reported for the first time, suggesting that peroxisomal and glyoxysomal proteins are synthesized at the same time and housed in he same organelle.

  4. NADPH Oxidase NOX5-S and Nuclear Factor κB1 Mediate Acid-Induced Microsomal Prostaglandin E Synthase-1 Expression in Barrett’s Esophageal Adenocarcinoma Cells

    PubMed Central

    Zhou, Xiaoxu; Li, Dan; Resnick, Murray B.; Wands, Jack

    2013-01-01

    The mechanisms of progression from Barrett’s esophagus (BE) to esophageal adenocarcinoma (EA) are not known. Cycloxygenase-2 (COX-2)-derived prostaglandin E2 (PGE2) has been shown to be important in esophageal tumorigenesis. We have shown that COX-2 mediates acid-induced PGE2 production. The prostaglandin E synthase (PGES) responsible for acid-induced PGE2 production in BE, however, is not known. We found that microsomal PGES1 (mPGES1), mPGES2, and cytosolic PGES (cPGES) were present in FLO EA cells. Pulsed acid treatment significantly increased mPGES1 mRNA and protein levels but had little or no effect on mPGES2 or cPGES mRNA. Knockdown of mPGES1 by mPGES1 small interfering RNA (siRNA) blocked acid-induced increase in PGE2 production and thymidine incorporation. Knockdown of NADPH oxidase, NOX5-S, a variant lacking calcium-binding domains, by NOX5 siRNA significantly inhibited acid-induced increase in mPGES1 expression, thymidine incorporation, and PGE2 production. Overexpression of NOX5-S significantly increased the luciferase activity in FLO cells transfected with a nuclear factor κB (NF-κB) in vivo activation reporter plasmid pNF-κB-Luc. Knockdown of NF-κB1 p50 by p50 siRNA significantly decreased acid-induced increase in mPGES1 expression, thymidine incorporation, and PGE2 production. Two novel NF-κB binding elements, GGAGTCTCCC and CGGGACACCC, were identified in the mPGES1 gene promoter. We conclude that mPGES1 mediates acid-induced increase in PGE2 production and cell proliferation. Acid-induced mPGES1 expression depends on activation of NOX5-S and NF-κB1 p50. Microsomal PGES1 may be a potential target to prevent or treat EA. PMID:23439561

  5. Biosynthesis of riboflavin: an unusual riboflavin synthase of Methanobacterium thermoautotrophicum.

    PubMed Central

    Eberhardt, S; Korn, S; Lottspeich, F; Bacher, A

    1997-01-01

    Riboflavin synthase was purified by a factor of about 1,500 from cell extract of Methanobacterium thermoautotrophicum. The enzyme had a specific activity of about 2,700 nmol mg(-1) h(-1) at 65 degrees C, which is relatively low compared to those of riboflavin synthases of eubacteria and yeast. Amino acid sequences obtained after proteolytic cleavage had no similarity with known riboflavin synthases. The gene coding for riboflavin synthase (designated ribC) was subsequently cloned by marker rescue with a ribC mutant of Escherichia coli. The ribC gene of M. thermoautotrophicum specifies a protein of 153 amino acid residues. The predicted amino acid sequence agrees with the information gleaned from Edman degradation of the isolated protein and shows 67% identity with the sequence predicted for the unannotated reading frame MJ1184 of Methanococcus jannaschii. The ribC gene is adjacent to a cluster of four genes with similarity to the genes cbiMNQO of Salmonella typhimurium, which form part of the cob operon (this operon contains most of the genes involved in the biosynthesis of vitamin B12). The amino acid sequence predicted by the ribC gene of M. thermoautotrophicum shows no similarity whatsoever to the sequences of riboflavin synthases of eubacteria and yeast. Most notably, the M. thermoautotrophicum protein does not show the internal sequence homology characteristic of eubacterial and yeast riboflavin synthases. The protein of M. thermoautotrophicum can be expressed efficiently in a recombinant E. coli strain. The specific activity of the purified, recombinant protein is 1,900 nmol mg(-1) h(-1) at 65 degrees C. In contrast to riboflavin synthases from eubacteria and fungi, the methanobacterial enzyme has an absolute requirement for magnesium ions. The 5' phosphate of 6,7-dimethyl-8-ribityllumazine does not act as a substrate. The findings suggest that riboflavin synthase has evolved independently in eubacteria and methanobacteria. PMID:9139911

  6. Cytocidal amino acid starvation of Saccharomyces cerevisiae and Candida albicans acetolactate synthase (ilv2{Delta}) mutants is influenced by the carbon source and rapamycin.

    PubMed

    Kingsbury, Joanne M; McCusker, John H

    2010-03-01

    The isoleucine and valine biosynthetic enzyme acetolactate synthase (Ilv2p) is an attractive antifungal drug target, since the isoleucine and valine biosynthetic pathway is not present in mammals, Saccharomyces cerevisiae ilv2Delta mutants do not survive in vivo, Cryptococcus neoformans ilv2 mutants are avirulent, and both S. cerevisiae and Cr. neoformans ilv2 mutants die upon isoleucine and valine starvation. To further explore the potential of Ilv2p as an antifungal drug target, we disrupted Candida albicans ILV2, and demonstrated that Ca. albicans ilv2Delta mutants were significantly attenuated in virulence, and were also profoundly starvation-cidal, with a greater than 100-fold reduction in viability after only 4 h of isoleucine and valine starvation. As fungicidal starvation would be advantageous for drug design, we explored the basis of the starvation-cidal phenotype in both S. cerevisiae and Ca. albicans ilv2Delta mutants. Since the mutation of ILV1, required for the first step of isoleucine biosynthesis, did not suppress the ilv2Delta starvation-cidal defects in either species, the cidal phenotype was not due to alpha-ketobutyrate accumulation. We found that starvation for isoleucine alone was more deleterious in Ca. albicans than in S. cerevisiae, and starvation for valine was more deleterious than for isoleucine in both species. Interestingly, while the target of rapamycin (TOR) pathway inhibitor rapamycin further reduced S. cerevisiae ilv2Delta starvation viability, it increased Ca. albicans ilv1Delta and ilv2Delta viability. Furthermore, the recovery from starvation was dependent on the carbon source present during recovery for S. cerevisiae ilv2Delta mutants, reminiscent of isoleucine and valine starvation inducing a viable but non-culturable-like state in this species, while Ca. albicans ilv1Delta and ilv2 Delta viability was influenced by the carbon source present during starvation, supporting a role for glucose wasting in the Ca. albicans cidal

  7. Evaluation of epigallocatechin gallate and related plant polyphenols as inhibitors of the FabG and FabI reductases of bacterial type II fatty-acid synthase.

    PubMed

    Zhang, Yong-Mei; Rock, Charles O

    2004-07-23

    Epigallocatechin gallate (EGCG) is the major component of green tea extracts and possesses antibacterial, antiviral, and antitumor activity. Our study focused on validating the inhibition of the bacterial type II fatty acid synthesis system as a mechanism for the antibacterial effects of EGCG and related plant polyphenols. EGCG and the related tea catechins potently inhibited both the FabG and FabI reductase steps in the fatty acid elongation cycle with IC(50) values between 5 and 15 microm. The presence of the galloyl moiety was essential for activity, and EGCG was a competitive inhibitor of FabI and a mixed type inhibitor of FabG demonstrating that EGCG interfered with cofactor binding in both enzymes. EGCG inhibited acetate incorporation into fatty acids in vivo, although it was much less potent than thiolactomycin, a validated fatty acid synthesis inhibitor, and overexpression of FabG, FabI, or both did not confer resistance. A panel of other plant polyphenols was screened for FabG/FabI inhibition and antibacterial activity. Most of these inhibited both reductase steps, possessed antibacterial activity, and inhibited cellular fatty acid synthesis. The ability of the plant secondary metabolites to interfere with the activity of multiple NAD(P)-dependent cellular processes must be taken into account when assessing the specificity of their effects.

  8. Role of cysteine residues in pseudouridine synthases of different families.

    PubMed

    Ramamurthy, V; Swann, S L; Spedaliere, C J; Mueller, E G

    1999-10-01

    The pseudouridine synthases catalyze the isomerization of uridine to pseudouridine in RNA molecules. An attractive mechanism was proposed based on that of thymidylate synthase, in which the thiol(ate) group of a cysteine side chain serves as the nucleophile in a Michael addition to C6 of the isomerized uridine. Such a role for cysteine in the pseudouridine synthase TruA (also named Psi synthase I) has been discredited by site-directed mutagenesis, but sequence alignments have led to the conclusion that there are four distinct "families" of pseudouridine synthases that share no statistically significant global sequence similarity. It was, therefore, necessary to probe the role of cysteine residues in pseudouridine synthases of the families that do not include TruA. We examined the enzymes RluA and TruB, which are members of different families than TruA and each other. Substitution of cysteine for amino acids with nonnucleophilic side chains did not significantly alter the catalytic activity of either pseudouridine synthase. We conclude, therefore, that neither TruB nor RluA require thiol(ate) groups to effect catalysis, excluding their participation in a Michael addition to C6 of uridine, although not eliminating that mechanism (with an alternate nucleophile) from future consideration.

  9. Rare structural variants of human and murine uroporphyrinogen I synthase.

    PubMed Central

    Meisler, M H; Carter, M L

    1980-01-01

    An isoelectric focusing method for detection of structural variants of the enzyme uroporphyrinogen I synthase [porphobilinogen ammonia-lyase (polymerizing), EC 4.3.1.8] in mammalian tissues has been developed. Mouse and human erythrocytes contain one or two major isozymes of uroporphyrinogen I synthase, respectively. Other tissues contain a set of more acidic isozymes that are encoded by the same structural gene as the erythrocyte isozymes. Mouse populations studied with this method were monomorphic for uroporphyrinogen I synthase, with the exception of one feral mouse population. The pedigree of a human family with a rare structural variant is consistent with autosomal linkage of the structural gene. This system provides a convenient isozyme marker for genetic studies and will facilitate determination of the chromosomal location of the uroporphyrinogen I synthase locus. Images PMID:6930671

  10. Homology modeling and docking studies of FabH (β-ketoacyl-ACP synthase III) enzyme involved in type II fatty acid biosynthesis of Chlorella variabilis: a potential algal feedstock for biofuel production.

    PubMed

    Misra, Namrata; Patra, Mahesh Chandra; Panda, Prasanna Kumar; Sukla, Lala Bihari; Mishra, Barada Kanta

    2013-03-01

    The concept of using microalgae as an alternative renewable source of biofuel has gained much importance in recent years. However, its commercial feasibility is still an area of concern for researchers. Unraveling the fatty acid metabolic pathway and understanding structural features of various key enzymes regulating the process will provide valuable insights to target microalgae for augmented oil content. FabH (β-ketoacyl-acyl carrier protein synthase; KAS III) is a condensing enzyme catalyzing the initial elongation step of type II fatty acid biosynthetic process and acyl carrier protein (ACP) facilitates the shuttling of the fatty acyl intermediates to the active site of the respective enzymes in the pathway. In the present study, a reliable three-dimensional structure of FabH from Chlorella variabilis, an oleaginous green microalga was modeled and subsequently the key residues involved in substrate binding were determined by employing protein-protein docking and molecular dynamics (MD) simulation protocols. The FabH-ACP complex having the lowest docking energy score showed the binding of ACP to the electropositive FabH surface with strong hydrogen bond interactions. The MD simulation results indicated that the substrate-complexed FabH adopted a more stable conformation than the free enzyme. Further, the FabH structure retained its stability throughout the simulation although noticeable displacements were observed in the loop regions. Molecular simulation studies suggested the importance of crucial hydrogen bonding of the conserved Arg(91) of FabH with Glu(53) and Asp(56) of ACP for exhibiting high affinity between the enzyme and substrate. The molecular modeling results are consistent with available experimental results on the flexibility of FabH and the present study provides first in silico insights into the structural and dynamical aspect of catalytic mechanism of FabH, which could be used for further site-specific mutagenic experiments to develop

  11. Benzophenone synthase from Garcinia mangostana L. pericarps.

    PubMed

    Nualkaew, Natsajee; Morita, Hiroyuki; Shimokawa, Yoshihiko; Kinjo, Keishi; Kushiro, Tetsuo; De-Eknamkul, Wanchai; Ebizuka, Yutaka; Abe, Ikuro

    2012-05-01

    The cDNA of a benzophenone synthase (BPS), a type III polyketide synthase (PKS), was cloned and the recombinant protein expressed from the fruit pericarps of Garcinia mangostana L., which contains mainly prenylated xanthones. The obtained GmBPS showed an amino acid sequence identity of 77-78% with other plant BPSs belonging to the same family (Clusiaceae). The recombinant enzyme produced 2,4,6-trihydroxybenzophenone as the predominant product with benzoyl CoA as substrate. It also accepted other substrates, such as other plant PKSs, and used 1-3 molecules of malonyl CoA to form various phloroglucinol-type and polyketide lactone-type compounds. Thus, providing GmBPS with various substrates in vivo might redirect the xanthone biosynthetic pathway.

  12. Increased production of wax esters in transgenic tobacco plants by expression of a fatty acid reductase:wax synthase gene fusion.

    PubMed

    Aslan, Selcuk; Hofvander, Per; Dutta, Paresh; Sun, Chuanxin; Sitbon, Folke

    2015-12-01

    Wax esters are hydrophobic lipids consisting of a fatty acid moiety linked to a fatty alcohol with an ester bond. Plant-derived wax esters are today of particular concern for their potential as cost-effective and sustainable sources of lubricants. However, this aspect is hampered by the fact that the level of wax esters in plants generally is too low to allow commercial exploitation. To investigate whether wax ester biosynthesis can be increased in plants using transgenic approaches, we have here exploited a fusion between two bacterial genes together encoding a single wax ester-forming enzyme, and targeted the resulting protein to chloroplasts in stably transformed tobacco (Nicotiana benthamiana) plants. Compared to wild-type controls, transgenic plants showed both in leaves and stems a significant increase in the total level of wax esters, being eight-fold at the whole plant level. The profiles of fatty acid methyl ester and fatty alcohol in wax esters were related, and C16 and C18 molecules constituted predominant forms. Strong transformants displayed certain developmental aberrations, such as stunted growth and chlorotic leaves and stems. These negative effects were associated with an accumulation of fatty alcohols, suggesting that an adequate balance between formation and esterification of fatty alcohols is crucial for a high wax ester production. The results show that wax ester engineering in transgenic plants is feasible, and suggest that higher yields may become achieved in the near future.

  13. Non-enzymatic modifications of prostaglandin H synthase 1 affect bifunctional enzyme activity - Implications for the sensitivity of blood platelets to acetylsalicylic acid.

    PubMed

    Kassassir, Hassan; Siewiera, Karolina; Talar, Marcin; Stec-Martyna, Emilia; Pawlowska, Zofia; Watala, Cezary

    2016-06-25

    Due to its ability to inhibit the blood platelet PGHS-1, acetylsalicylic acid (ASA, Aspirin(®)) is widely used as a preventive agent in atherothrombotic diseases. However, its beneficial effects seem to be lower in diabetic patients, suggesting that protein glycation may impair effective ASA-mediated acetylation process. On the other hand, it is proposed that ASA can prevent some of the late complications of diabetes by lowering the extent of glycation at protein free amino groups. The aim of this work was to evaluate the extents of non-enzymatic N-glycosylation (glycation) and acetylation of blood platelet PGHS-1 (COX-1) and the competition between glycation and acetylation was investigated in order to demonstrate how these two reactions may compete against platelet PGHS-1. When PGHS-1 was incubated with glycating/acetylating agents (glucose, Glu; 1,6-bisphosphofructose, 1,6-BPF; methylglyoxal, MGO, acetylsalicylic acid, ASA), the enzyme was modified in 13.4 ± 1.6, 5.3 ± 0.5, 10.7 ± 1.2 and 6.4 ± 1.1 mol/mol protein, respectively, and its activity was significantly reduced. The prior glycation/carbonylation of PGHS-1 with Glu, 1,6-BPF or MGO decreased the extent of acetylation from 6.4 ± 1.1 down to 2.5 ± 0.2, 3.6 ± 0.3 and 5.2 ± 0.2 mol/mol protein, respectively, but the enzyme still remained susceptible to the subsequent inhibition of its activity with ASA. When PGHS-1 was first acetylated with ASA and then incubated with glycating/carbonylating agents, we observed the following reductions in the enzyme modifications: from 13.4 ± 1.6 to 8.7 ± 0.6 mol/mol protein for Glu, from 5.3 ± 0.5 to 3.9 ± 0.3 mol/mol protein for 1,6-BPF and from 10.7 ± 1.2 to 7.5 ± 0.5 mol/mol protein for MGO, however subsequent glycation/carbonylation did not significantly affect PGHS-1 function. Overall, our outcomes allow to better understand the structural aspects of the chemical competition between glycation and acetylation of PGHS-1

  14. Use of linalool synthase in genetic engineering of scent production

    DOEpatents

    Pichersky, E.

    1998-12-15

    A purified S-linalool synthase polypeptide from Clarkia breweri is disclosed as is the recombinant polypeptide and nucleic acid sequences encoding the polypeptide. Also disclosed are antibodies immunoreactive with the purified peptide and with recombinant versions of the polypeptide. Methods of using the nucleic acid sequences, as well as methods of enhancing the smell and the flavor of plants expressing the nucleic acid sequences are also disclosed. 5 figs.

  15. Use of linalool synthase in genetic engineering of scent production

    DOEpatents

    Pichersky, Eran

    1998-01-01

    A purified S-linalool synthase polypeptide from Clarkia breweri is disclosed as is the recombinant polypeptide and nucleic acid sequences encoding the polypeptide. Also disclosed are antibodies immunoreactive with the purified peptide and with recombinant versions of the polypeptide. Methods of using the nucleic acid sequences, as well as methods of enhancing the smell and the flavor of plants expressing the nucleic acid sequences are also disclosed.

  16. Artemisia capillaris formula inhibits hepatic steatosis via an miR‑122‑induced decrease in fatty acid synthase expression in vivo and in vitro.

    PubMed

    Liu, Liya; Zhao, Jinyan; Li, Ying; Wan, Yun; Lin, Jiumao; Shen, Aling; Xu, Wei; Li, Huang; Zhang, Yuchen; Xu, Jianfeng; Peng, Jun; Hong, Zhenfeng

    2016-06-01

    treatment decreased the expression levels of fatty acid synthase (FASN) and increased miR‑122 in vivo and in vitro. In conclusion, these results suggested that ACF may inhibit hepatic steatosis via miR‑122‑induced downregulation of FASN in vivo and in vitro.

  17. A C. elegans Model for Mitochondrial Fatty Acid Synthase II: The Longevity-Associated Gene W09H1.5/mecr-1 Encodes a 2-trans-Enoyl-Thioester Reductase

    PubMed Central

    Gurvitz, Aner

    2009-01-01

    Our recognition of the mitochondria as being important sites of fatty acid biosynthesis is continuously unfolding, especially in light of new data becoming available on compromised fatty acid synthase type 2 (FASII) in mammals. For example, perturbed regulation of murine 17β-HSD8 encoding a component of the mitochondrial FASII enzyme 3-oxoacyl-thioester reductase is implicated in polycystic kidney disease. In addition, over-expression in mice of the Mecr gene coding for 2-trans-enoyl-thioester reductase, also of mitochondrial FASII, leads to impaired heart function. However, mouse knockouts for mitochondrial FASII have hitherto not been reported and, hence, there is a need to develop alternate metazoan models such as nematodes or fruit flies. Here, the identification of Caenorhabditis elegans W09H1.5/MECR-1 as a 2-trans-enoyl-thioester reductase of mitochondrial FASII is reported. To identify MECR-1, Saccharomyces cerevisiae etr1Δ mutant cells were employed that are devoid of mitochondrial 2-trans-enoyl-thioester reductase Etr1p. These yeast mutants fail to synthesize sufficient levels of lipoic acid or form cytochrome complexes, and cannot respire or grow on non-fermentable carbon sources. A mutant yeast strain ectopically expressing nematode mecr-1 was shown to contain reductase activity and resemble the self-complemented mutant strain for these phenotype characteristics. Since MECR-1 was not intentionally targeted for compartmentalization using a yeast mitochondrial leader sequence, this inferred that the protein represented a physiologically functional mitochondrial 2-trans-enoyl-thioester reductase. In accordance with published findings, RNAi-mediated knockdown of mecr-1 in C. elegans resulted in life span extension, presumably due to mitochondrial dysfunction. Moreover, old mecr-1(RNAi) worms had better internal organ appearance and were more mobile than control worms, indicating a reduced physiological age. This is the first report on RNAi work dedicated

  18. Terminalia paniculata bark extract attenuates non-alcoholic fatty liver via down regulation of fatty acid synthase in high fat diet-fed obese rats

    PubMed Central

    2014-01-01

    Background This study was performed to understand the possible therapeutic activity of Terminalia paniculata ethanolic extract (TPEE) on non alcoholic fatty liver in rats fed with high fat diet. Methods Thirty six SD rats were divided into 6 groups (n = 6): Normal control (NC), high fat diet (HFD), remaining four groups were fed on HFD along with different doses of TPEE (100,150 and 200 mg/kg b.wt) or orlistat, for ten weeks. Liver tissue was homogenized and analyzed for lipid profiles, activities of superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) content. Further, the expression levels of FAS and AMPK-1α were also studied in addition to histopathology examination of liver tissue in all the groups. Results HFD significantly increased hepatic liver total cholesterol (TC), triglycerides (TG), free fatty acids (FFA) and MDA but decreased the activities of SOD and CAT which were subsequently reversed by supplementation with TPEE in a dose-dependent manner. In addition, TPEE administration significantly down regulated hepatic mRNA expression of FAS but up regulated AMPK-1α compared to HFD alone fed group. Furthermore, western blot analysis of FAS has clearly demonstrated decreased expression of FAS in HFD + TPEE (200 mg/kg b.wt) treated group when compared to HFD group at protein level. Conclusions Our biochemical studies on hepatic lipid profiles and antioxidant enzyme activities supported by histological and expression studies suggest a potential therapeutic role for TPEE in regulating obesity through FAS. PMID:24678767

  19. Citrate synthase from the liver fluke Fasciola hepatica.

    PubMed

    Zinsser, Veronika L; Moore, Catherine M; Hoey, Elizabeth M; Trudgett, Alan; Timson, David J

    2013-06-01

    Citrate synthase catalyses the first step of the Krebs' tricarboxylic acid cycle. A sequence encoding citrate synthase from the common liver fluke, Fasciola hepatica, has been cloned. The encoded protein sequence is predicted to fold into a largely α-helical protein with high structural similarity to mammalian citrate synthases. Although a hexahistidine-tagged version of the protein could be expressed in Escherichia coli, it was not possible to purify it by nickel-affinity chromatography. Similar results were obtained with a version of the protein which lacks the putative mitochondrial targeting sequence (residues 1 to 29). However, extracts from bacterial cells expressing this version had additional citrate synthase activity after correcting for the endogenous, bacterial activity. The apparent K m for oxaloacetate was found to be 0.22 mM, which is higher than that observed in mammalian citrate synthases. Overall, the sequence and structure of F. hepatica citrate synthase are similar to ones from other eukaryotes, but there are enzymological differences which merit further investigation.

  20. The female-specific Cs-ACS1G gene of cucumber. A case of gene duplication and recombination between the non-sex-specific 1-aminocyclopropane-1-carboxylate synthase gene and a branched-chain amino acid transaminase gene.

    PubMed

    Knopf, Ronit Rimon; Trebitsh, Tova

    2006-09-01

    Cucumber (Cucumis sativus L.) is a monoecious plant in which female sex expression (gynoecy) is controlled by the Female (F) locus that can be modified by other sex-determining genes as well as by environmental and hormonal factors. As in many other cucurbits, ethylene is the major plant hormone regulating female sex expression. Previously we isolated the Cs-ACS1 (ACS, 1-aminocyclopropane-1-carboxylate synthase) gene that encodes the rate-limiting enzyme in the ethylene biosynthetic pathway. We proposed that Cs-ACS1 is present in a single copy in monoecious (ffMM) plants whereas gynoecious plants (FFMM) contain an additional copy Cs-ACS1G that was mapped to the F locus. To study the origin of Cs-ACS1G, we cloned and analyzed both the gynoecious-specific Cs-ACS1G gene and the non-sex-specific Cs-ACS1 gene. Our results indicate that Cs-ACS1G is the result of a relatively recent gene duplication and recombination, between Cs-ACS1 and a branched-chain amino acid transaminase (BCAT) gene. Taking into consideration that the Cs-ACS1G gene was mapped to the F locus, we propose that this duplication event gave rise to the F locus and to gynoecious cucumber plants. Computer analysis of the 1 kb region upstream of the transcription initiation site revealed several putative cis-acting regulatory elements that can potentially confer the responsiveness of Cs-ACS1G to developmental and hormonal factors and thereby control female sex determination in cucumber. These findings lead us to a model explaining the action of Cs-ACS1 and Cs-ACS1G in cucumber floral sex determination. PMID:16887844

  1. Identification of avian wax synthases

    PubMed Central

    2012-01-01

    Background Bird species show a high degree of variation in the composition of their preen gland waxes. For instance, galliform birds like chicken contain fatty acid esters of 2,3-alkanediols, while Anseriformes like goose or Strigiformes like barn owl contain wax monoesters in their preen gland secretions. The final biosynthetic step is catalyzed by wax synthases (WS) which have been identified in pro- and eukaryotic organisms. Results Sequence similarities enabled us to identify six cDNAs encoding putative wax synthesizing proteins in chicken and two from barn owl and goose. Expression studies in yeast under in vivo and in vitro conditions showed that three proteins from chicken performed WS activity while a sequence from chicken, goose and barn owl encoded a bifunctional enzyme catalyzing both wax ester and triacylglycerol synthesis. Mono- and bifunctional WS were found to differ in their substrate specificities especially with regard to branched-chain alcohols and acyl-CoA thioesters. According to the expression patterns of their transcripts and the properties of the enzymes, avian WS proteins might not be confined to preen glands. Conclusions We provide direct evidence that avian preen glands possess both monofunctional and bifunctional WS proteins which have different expression patterns and WS activities with different substrate specificities. PMID:22305293

  2. LCAA, a Novel Factor Required for Magnesium Protoporphyrin Monomethylester Cyclase Accumulation and Feedback Control of Aminolevulinic Acid Biosynthesis in Tobacco1[W][OA

    PubMed Central

    Albus, Christin Anne; Salinas, Annabel; Czarnecki, Olaf; Kahlau, Sabine; Rothbart, Maxi; Thiele, Wolfram; Lein, Wolfgang; Bock, Ralph; Grimm, Bernhard; Schöttler, Mark Aurel

    2012-01-01

    Low Chlorophyll Accumulation A (LCAA) antisense plants were obtained from a screen for genes whose partial down-regulation results in a strong chlorophyll deficiency in tobacco (Nicotiana tabacum). The LCAA mutants are affected in a plastid-localized protein of unknown function, which is conserved in cyanobacteria and all photosynthetic eukaryotes. They suffer from drastically reduced light-harvesting complex (LHC) contents, while the accumulation of all other photosynthetic complexes per leaf area is less affected. As the disturbed accumulation of LHC proteins could be either attributable to a defect in LHC biogenesis itself or to a bottleneck in chlorophyll biosynthesis, chlorophyll synthesis rates and chlorophyll synthesis intermediates were measured. LCAA antisense plants accumulate magnesium (Mg) protoporphyrin monomethylester and contain reduced protochlorophyllide levels and a reduced content of CHL27, a subunit of the Mg protoporphyrin monomethylester cyclase. Bimolecular fluorescence complementation assays confirm a direct interaction between LCAA and CHL27. 5-Aminolevulinic acid synthesis rates are increased and correlate with an increased content of glutamyl-transfer RNA reductase. We suggest that LCAA encodes an additional subunit of the Mg protoporphyrin monomethylester cyclase, is required for the stability of CHL27, and contributes to feedback-control of 5-aminolevulinic acid biosynthesis, the rate-limiting step of chlorophyll biosynthesis. PMID:23085838

  3. CYP4 Enzymes as potential drug targets: focus on enzyme multiplicity, inducers and inhibitors, and therapeutic modulation of 20-hydroxyeicosatetraenoic acid (20-HETE) synthase and fatty acid ω-hydroxylase activities

    PubMed Central

    Edson, Katheryne Z.; Rettie, Allan E.

    2014-01-01

    The Cytochrome P450 4 (CYP4) family of enzymes in humans is comprised of thirteen isozymes that typically catalyze the ω-oxidation of endogenous fatty acids and eicosanoids. Several CYP4 enzymes can biosynthesize 20-hydroxyeicosatetraenoic acid or 20-HETE, an important signaling eicosanoid involved in regulation of vascular tone and kidney reabsorption. Additionally, accumulation of certain fatty acids is a hallmark of the rare genetic disorders, Refsum disease and X-ALD. Therefore, modulation of CYP4 enzyme activity, either by inhibition or induction, is a potential strategy for drug discovery. Here we review the substrate specificities, sites of expression, genetic regulation, and inhibition by exogenous chemicals of the human CYP4 enzymes, and discuss the targeting of CYP4 enzymes in the development of new treatments for hypertension, stroke, certain cancers and the fatty acid-linked orphan diseases. PMID:23688133

  4. CYP4 enzymes as potential drug targets: focus on enzyme multiplicity, inducers and inhibitors, and therapeutic modulation of 20-hydroxyeicosatetraenoic acid (20-HETE) synthase and fatty acid ω-hydroxylase activities.

    PubMed

    Edson, Katheryne Z; Rettie, Allan E

    2013-01-01

    The Cytochrome P450 4 (CYP4) family of enzymes in humans is comprised of thirteen isozymes that typically catalyze the ω-oxidation of endogenous fatty acids and eicosanoids. Several CYP4 enzymes can biosynthesize 20- hydroxyeicosatetraenoic acid, or 20-HETE, an important signaling eicosanoid involved in regulation of vascular tone and kidney reabsorption. Additionally, accumulation of certain fatty acids is a hallmark of the rare genetic disorders, Refsum disease and X-ALD. Therefore, modulation of CYP4 enzyme activity, either by inhibition or induction, is a potential strategy for drug discovery. Here we review the substrate specificities, sites of expression, genetic regulation, and inhibition by exogenous chemicals of the human CYP4 enzymes, and discuss the targeting of CYP4 enzymes in the development of new treatments for hypertension, stroke, certain cancers and the fatty acid-linked orphan diseases.

  5. Expression and characterization of glycogen synthase kinase-3 mutants and their effect on glycogen synthase activity in intact cells.

    PubMed Central

    Eldar-Finkelman, H; Argast, G M; Foord, O; Fischer, E H; Krebs, E G

    1996-01-01

    In these studies we expressed and characterized wild-type (WT) GSK-3 (glycogen synthase kinase-3) and its mutants, and examined their physiological effect on glycogen synthase activity. The GSK-3 mutants included mutation at serine-9 either to alanine (S9A) or glutamic acid (S9E) and an inactive mutant, K85,86MA. Expression of WT and the various mutants in a cell-free system indicated that S9A and S9E exhibit increased kinase activity as compared with WT. Subsequently, 293 cells were transiently transfected with WT GSK-3 and mutants. Cells expressing the S9A mutant exhibited higher kinase activity (2.6-fold of control cells) as compared with cells expressing WT and S9E (1.8- and 2.0-fold, respectively, of control cells). Combined, these results suggest serine-9 as a key regulatory site of GSK-3 inactivation, and indicate that glutamic acid cannot mimic the function of the phosphorylated residue. The GSK-3-expressing cell system enabled us to examine whether GSK-3 can induce changes in the endogenous glycogen synthase activity. A decrease in glycogen synthase activity (50%) was observed in cells expressing the S9A mutant. Similarly, glycogen synthase activity was suppressed in cells expressing WT and the S9E mutant (20-30%, respectively). These studies indicate that activation of GSK-3 is sufficient to inhibit glycogen synthase in intact cells, and provide evidence supporting a physiological role for GSK-3 in regulating glycogen synthase and glycogen metabolism. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8816781

  6. Conversion of anthranilate synthase into isochorismate synthase: implications for the evolution of chorismate-utilizing enzymes.

    PubMed

    Plach, Maximilian G; Löffler, Patrick; Merkl, Rainer; Sterner, Reinhard

    2015-09-14

    Chorismate-utilizing enzymes play a vital role in the biosynthesis of metabolites in plants as well as free-living and infectious microorganisms. Among these enzymes are the homologous primary metabolic anthranilate synthase (AS) and secondary metabolic isochorismate synthase (ICS). Both catalyze mechanistically related reactions by using ammonia and water as nucleophiles, respectively. We report that the nucleophile specificity of AS can be extended from ammonia to water by just two amino acid exchanges in a channel leading to the active site. The observed ICS/AS bifunctionality demonstrates that a secondary metabolic enzyme can readily evolve from a primary metabolic enzyme without requiring an initial gene duplication event. In a general sense, these findings add to our understanding how nature has used the structurally predetermined features of enzyme superfamilies to evolve new reactions.

  7. Identification of cystathionine γ-synthase and threonine synthase from Cicer arietinum and Lens culinaris.

    PubMed

    Morneau, Dominique J K; Jaworski, Allison F; Aitken, Susan M

    2013-04-01

    In plants, cystathionine γ-synthase (CGS) and threonine synthase (TS) compete for the branch-point metabolite O-phospho-L-homoserine. These enzymes are potential targets for metabolic engineering studies, aiming to alter the flux through the competing methionine and threonine biosynthetic pathways, with the goal of increasing methionine production. Although CGS and TS have been characterized in the model organisms Escherichia coli and Arabidopsis thaliana, little information is available on these enzymes in other, particularly plant, species. The functional CGS and TS coding sequences from the grain legumes Cicer arietinum (chickpea) and Lens culinaris (lentil) identified in this study share approximately 80% amino acid sequence identity with the corresponding sequences from Glycine max. At least 7 active-site residues of grain legume CGS and TS are conserved in the model bacterial enzymes, including the catalytic base. Putative processing sites that remove the targeting sequence and result in functional TS were identified in the target species.

  8. Engineering of chimeric class II polyhydroxyalkanoate synthases.

    PubMed

    Niamsiri, Nuttawee; Delamarre, Soazig C; Kim, Young-Rok; Batt, Carl A

    2004-11-01

    PHA synthase is a key enzyme involved in the biosynthesis of polyhydroxyalkanoates (PHAs). Using a combinatorial genetic strategy to create unique chimeric class II PHA synthases, we have obtained a number of novel chimeras which display improved catalytic properties. To engineer the chimeric PHA synthases, we constructed a synthetic phaC gene from Pseudomonas oleovorans (phaC1Po) that was devoid of an internal 540-bp fragment. Randomly amplified PCR products (created with primers based on conserved phaC sequences flanking the deleted internal fragment) were generated using genomic DNA isolated from soil and were substituted for the 540-bp internal region. The chimeric genes were expressed in a PHA-negative strain of Ralstonia eutropha, PHB(-)4 (DSM 541). Out of 1,478 recombinant clones screened for PHA production, we obtained five different chimeric phaC1Po genes that produced more PHA than the native phaC1Po. Chimeras S1-71, S4-8, S5-58, S3-69, and S3-44 exhibited 1.3-, 1.4-, 2.0-, 2.1-, and 3.0-fold-increased levels of in vivo activity, respectively. All of the mutants mediated the synthesis of PHAs with a slightly increased molar fraction of 3-hydroxyoctanoate; however, the weight-average molecular weights (Mw) of the PHAs in all cases remained almost the same. Based upon DNA sequence analyses, the various phaC fragments appear to have originated from Pseudomonas fluorescens and Pseudomonas aureofaciens. The amino acid sequence analyses showed that the chimeric proteins had 17 to 20 amino acid differences from the wild-type phaC1Po, and these differences were clustered in the same positions in the five chimeric clones. A threading model of PhaC1Po, developed based on homology of the enzyme to the Burkholderia glumae lipase, suggested that the amino acid substitutions found in the active chimeras were located mostly on the protein model surface. Thus, our combinatorial genetic engineering strategy proved to be broadly useful for improving the catalytic

  9. β-Carboline alkaloids from Galianthe ramosa inhibit malate synthase from Paracoccidioides spp.

    PubMed

    de Freitas, Carla S; Kato, Lucilia; de Oliveira, Cecília M A; Queiroz, Luiz H K; Santana, Mábio J; Schuquel, Ivânia T; Delprete, Piero G; da Silva, Roosevelt A; Quintino, Guilherme O; da Silva Neto, Benedito R; Soares, Célia M A; Pereira, Maristela

    2014-12-01

    As part of our continuing chemical and biological analyses of Rubiaceae species from Cerrado, we isolated novel alkaloids 1 and 2, along with known compounds epicatechin, ursolic acid, and oleanolic acid, from Galianthe ramosa. Alkaloid 2 inhibited malate synthase from the pathogenic fungus Paracoccidioides spp. This enzyme is considered an important molecular target because it is not found in humans. Molecular docking simulations were used to describe the interactions between the alkaloids and malate synthase.

  10. Homocysteine homeostasis in the rat is maintained by compensatory changes in cystathionine β-synthase, betaine-homocysteine methyltransferase, and phosphatidylethanolamine N-methyltransferase gene transcription occurring in response to maternal protein and folic acid intake during pregnancy and fat intake after weaning.

    PubMed

    Chmurzynska, Agata; Malinowska, Anna M

    2011-07-01

    The reactions of the methionine/homocysteine pathway are mediated by several enzymes, including phosphatidylethanolamine N-methyltransferase, cystathionine β-synthase, and betaine-homocysteine methyltransferase. Homocysteine homeostasis is regulated by these enzymes. We hypothesized here that the protein and folic acid content in the maternal diet affects methionine/homocysteine metabolism in the progeny. To test this hypothesis, pregnant rats were fed a diet with normal protein and normal folic acid levels (a modified casein-based AIN-93G diet), a protein-restricted and normal folic acid diet, a protein-restricted and folic acid-supplemented diet, or a normal protein and folic acid-supplemented diet. The progeny were fed either the modified AIN-93G diet or a high-fat lard-based diet. Progeny were analyzed for expression of the phosphatidylethanolamine N-methyltransferase, cystathionine β-synthase, and betaine-homocysteine methyltransferase genes in the liver and for serum homocysteine concentration. Interactions between prenatal and postnatal nutrition were also determined. The progeny of the dams fed the diets supplemented with folic acid showed decreased expression of all 3 genes (P < .001). An interaction effect between the protein and folic acid content in the maternal diet contributed to this down-regulation (P < .001), and the postweaning diet modified these effects. Serum homocysteine concentrations were approximately 15% higher in the male rats (P < .01), but neither prenatal nutrition nor the postweaning diet affected it significantly. We conclude that maternal diet during gestation has an important effect on the transcription level of these 3 genes, but changes in gene expression were not associated with significant changes in progeny homocysteine concentrations.

  11. Assessing the allelotypic effect of two aminocyclopropane carboxylic acid synthase-encoding genes MdACS1 and MdACS3a on fruit ethylene production and softening in Malus.

    PubMed

    Dougherty, Laura; Zhu, Yuandi; Xu, Kenong

    2016-01-01

    Phytohormone ethylene largely determines apple fruit shelf life and storability. Previous studies demonstrated that MdACS1 and MdACS3a, which encode 1-aminocyclopropane-1-carboxylic acid synthases (ACS), are crucial in apple fruit ethylene production. MdACS1 is well-known to be intimately involved in the climacteric ethylene burst in fruit ripening, while MdACS3a has been regarded a main regulator for ethylene production transition from system 1 (during fruit development) to system 2 (during fruit ripening). However, MdACS3a was also shown to have limited roles in initiating the ripening process lately. To better assess their roles, fruit ethylene production and softening were evaluated at five time points during a 20-day post-harvest period in 97 Malus accessions and in 34 progeny from 2 controlled crosses. Allelotyping was accomplished using an existing marker (ACS1) for MdACS1 and two markers (CAPS866 and CAPS870) developed here to specifically detect the two null alleles (ACS3a-G289V and Mdacs3a) of MdACS3a. In total, 952 Malus accessions were allelotyped with the three markers. The major findings included: The effect of MdACS1 was significant on fruit ethylene production and softening while that of MdACS3a was less detectable; allele MdACS1-2 was significantly associated with low ethylene and slow softening; under the same background of the MdACS1 allelotypes, null allele Mdacs3a (not ACS3a-G289V) could confer a significant delay of ethylene peak; alleles MdACS1-2 and Mdacs3a (excluding ACS3a-G289V) were highly enriched in M. domestica and M. hybrid when compared with those in M. sieversii. These findings are of practical implications in developing apples of low and delayed ethylene profiles by utilizing the beneficial alleles MdACS1-2 and Mdacs3a. PMID:27231553

  12. Assessing the allelotypic effect of two aminocyclopropane carboxylic acid synthase-encoding genes MdACS1 and MdACS3a on fruit ethylene production and softening in Malus

    PubMed Central

    Dougherty, Laura; Zhu, Yuandi; Xu, Kenong

    2016-01-01

    Phytohormone ethylene largely determines apple fruit shelf life and storability. Previous studies demonstrated that MdACS1 and MdACS3a, which encode 1-aminocyclopropane-1-carboxylic acid synthases (ACS), are crucial in apple fruit ethylene production. MdACS1 is well-known to be intimately involved in the climacteric ethylene burst in fruit ripening, while MdACS3a has been regarded a main regulator for ethylene production transition from system 1 (during fruit development) to system 2 (during fruit ripening). However, MdACS3a was also shown to have limited roles in initiating the ripening process lately. To better assess their roles, fruit ethylene production and softening were evaluated at five time points during a 20-day post-harvest period in 97 Malus accessions and in 34 progeny from 2 controlled crosses. Allelotyping was accomplished using an existing marker (ACS1) for MdACS1 and two markers (CAPS866 and CAPS870) developed here to specifically detect the two null alleles (ACS3a-G289V and Mdacs3a) of