Science.gov

Sample records for 5-aza-2 deoxycytidine treatment

  1. 5-AZA-2'-DEOXYCYTIDINE-INDUCED DYSMORPHOGENESIS IN THE RAT

    EPA Science Inventory

    5-AZA-2'-deoxycytidine-induced dysmorphogenesis in the rat.

    Branch S, Chernoff N, Brownie C, Francis BM.

    Department of Toxicology, North Carolina State University, Raleigh, North Carolina 27695, USA. S_Branch@ncsu.edu

    5-aza-2'-deoxycytidine (d-AZA) causes tem...

  2. Inhibition of histone deacetylation does not block resilencing of p16 after 5-aza-2'-deoxycytidine treatment.

    PubMed

    Egger, Gerda; Aparicio, Ana M; Escobar, Sonia G; Jones, Peter A

    2007-01-01

    Epigenetic drugs are in use in clinical trials of various human cancers and are potent at reactivating genes silenced by DNA methylation and chromatin modifications. We report here the analysis of a set of normal fibroblast and cancer cell lines after combination treatment with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-aza-CdR) and the histone deacetylase inhibitor 4-phenylbutyric acid (PBA). Low doses of the drug combination caused cell cycle arrest, whereas high doses induced apoptosis in T24 bladder carcinoma cells. Both p16 (CDKN2A/INK4) and p21 (CIP1/SDI1/WAF1) expression were induced to similar levels in normal and cancer cells in a dose-dependent fashion after combination treatments. We detected a distinct increase of histone H3 acetylation at lysine 9/14 near the transcription start sites, in both LD419 normal fibroblasts and T24 bladder carcinoma cells, whereas the acetylation changes in the p21 locus were less apparent. Interestingly, the levels of trimethylation of histone H3 on lysine 9, which usually marks inactive chromatin regions and was associated with the p16 promoter in silenced T24 cells, did not change after drug treatments. Furthermore, we provide evidence that the remethylation of the p16 promoter CpG island in T24 cells after 5-aza-CdR treatment cannot be halted by subsequent continuous PBA treatment. The p16 gene is resilenced with kinetics similar to 5-aza-CdR only-treated cells, which is also marked by a localized loss of histone acetylation at the transcription start site. Altogether, our data provide new insights into the mechanism of epigenetic drugs and have important implications for epigenetic therapy. PMID:17210717

  3. Synergistic anti-breast cancer effect of a combined treatment with the methyl donor S-adenosyl methionine and the DNA methylation inhibitor 5-aza-2'-deoxycytidine.

    PubMed

    Chik, Flora; Machnes, Ziv; Szyf, Moshe

    2014-01-01

    DNA-demethylating agents activate tumor suppressor genes that are silenced by DNA methylation in cancer and are therefore emerging as a novel approach to cancer therapy. 5-azacytidine (VIDAZA), the first representative of this class of drugs was approved for treatment of myelodysplastic syndromes and is currently being tested on other cancers including solid tumors. However, 5-azacytidine or its deoxy-analog, 5-aza-2'-deoxycytidine (5-azaCdR) could also induce methylated prometastatic genes by DNA demethylation and induce cancer cell invasiveness. Since 5-azacytidine is a potent cancer growth inhibitor, we tested whether combining it with a DNA-methylating agent, the methyl donor S-adenosyl methionine (SAM), would block the adverse demethylating activity of 5-azaCdR while maintaining its growth suppression effects. We show here using several invasive and non-invasive breast cancer cell lines that SAM inhibits global- and gene-specific demethylation induced by 5-azaCdR, prevents 5-azaCdR activation of prometastatic genes uPA and MMP2, resulting in inhibition of cell invasiveness while augmenting the growth inhibitory effects of 5-azaCdR and its effects on tumor suppressor genes. Combination of drugs acting on the DNA methylation machinery at different levels is proposed as a new strategy for epigenetic therapy of cancer.

  4. Effects of cellular differentiation, chromosomal integration and 5-aza-2'-deoxycytidine treatment on human papillomavirus-16 DNA methylation in cultured cell lines.

    PubMed

    Kalantari, Mina; Lee, Denis; Calleja-Macias, Itzel E; Lambert, Paul F; Bernard, Hans-Ulrich

    2008-05-10

    Human papillomavirus-16 (HPV-16) genomes in cell culture and in situ are affected by polymorphic methylation patterns, which can repress the viral transcription. In order to understand some of the underlying mechanisms, we investigated changes of the methylation of HPV-16 DNA in cell cultures in response to cellular differentiation, to recombination with cellular DNA, and to an inhibitor of methylation. Undifferentiated W12E cells, derived from a precancerous lesion, contained extrachromosomal HPV-16 DNA with a sporadically methylated enhancer-promoter segment. Upon W12E cell differentiation, the viral DNA was demethylated, suggesting a link between differentiation and the epigenetic state of HPV-16 DNA. The viral genomes present in two W12I clones, in which individual copies of the HPV-16 genome have integrated into cellular DNA (type 1 integrants), were unmethylated, akin to that seen in the cervical carcinoma cell line SiHa (also a type 1 integrant). This finding is consistent with hypomethylation being necessary for continued viral gene expression. In contrast, two of three type 2 integrant W12I clones, containing concatemers of HPV-16 genomes integrated into the cellular DNA contained hypermethylated viral DNA, as observed in the cervical carcinoma cell line CaSki (also a type 2 integrant). A third, type 2, W12I clone, interestingly with fewer copies of the viral genome, contained unmethylated HPV-16 genomes. Epithelial differentiation of W12I clones did not lead to demethylation of chromosomally integrated viral genomes as was seen for extrachromosomal HPV-16 DNA in W12E clones. Hypomethylation of CaSki cells in the presence of the DNA methylation inhibitor 5-aza-2'-deoxycytidine reduced the cellular viability, possibly as a consequence of toxic effects of an excess of HPV-16 gene products. Our data support a model wherein (i) the DNA methylation state of extrachromosomal HPV16 replicons and epithelial differentiation are inversely coupled during the viral

  5. 5-AZA-2'-DEOXYCYTIDINE INDUCED CYTOTOXICITY AND LONG BONE REDUCTION DEFECTS IN THE MURINE LIMB

    EPA Science Inventory

    The antineoplastic drug 5-aza-2'-deoxycytidine (dAZA) is a DNA hypomethylating agent that can be used to induce hind limb phocomelia in the offspring of CD-1 Swiss Webster mice. Previously, our laboratory investigated the possibility that dAZA induced alterations in gene express...

  6. Human Leukocyte Antigen-G Is Frequently Expressed in Glioblastoma and May Be Induced in Vitro by Combined 5-Aza-2′-Deoxycytidine and Interferon-γ Treatments

    PubMed Central

    Wastowski, Isabela J.; Simões, Renata T.; Yaghi, Layale; Donadi, Eduardo A.; Pancoto, João T.; Poras, Isabelle; Lechapt-Zalcman, Emmanuèle; Bernaudin, Myriam; Valable, Samuel; Carlotti, Carlos G.; Flajollet, Sébastien; Jensen, Stine S.; Ferrone, Soldano; Carosella, Edgardo D.; Kristensen, Bjarne W.; Moreau, Philippe

    2014-01-01

    Human leukocyte antigen-G (HLA-G) is a nonclassical major histocompatibility complex (MHC) class I molecule involved in immune tolerance processes, playing an important role in the maintenance of the semi-allogeneic fetus. Although HLA-G expression is restricted in normal tissues, it is broadly expressed in malignant tumors and may favor tumor immune escape. We analyzed HLA-G protein and mRNA expression in tumor samples from patients with glioblastoma collected in France, Denmark, and Brazil. We found HLA-G protein expression in 65 of 108 samples and mRNA in 20 of 21 samples. The absence of HLA-G protein expression was associated with a better long-term survival rate. The mechanisms underlying HLA-G gene expression were investigated in glioma cell lines U251MG, D247MG, and U138MG. Induction of HLA-G transcriptional activity was dependent of 5-aza-2′-deoxycytidine treatment and enhanced by interferon-γ. HLA-G protein expression was observed in U251MG cells only. These cells exhibited a permissive chromatin state at the HLA-G gene promoter and the highest levels of induced HLA-G transcriptional activity following 5-aza-2′-deoxycytidine treatment. Several antigen-presenting machinery components were up-regulated in U251MG cells after demethylating and IFN-γ treatments, suggesting an effect on the up-regulation of HLA-G cell surface expression. Therefore, because of its role in tumor tolerance, HLA-G found to be expressed in glioblastoma samples should be taken into consideration in clinical studies on the pathology and in the design of therapeutic strategies to prevent its expression in HLA-G–negative tumors. PMID:23219427

  7. Consequences of combining siRNA-mediated DNA methyltransferase 1 depletion with 5-aza-2′-deoxycytidine in human leukemic KG1 cells

    PubMed Central

    Vispé, Stéphane; Deroide, Arthur; Davoine, Emeline; Desjobert, Cécile; Lestienne, Fabrice; Fournier, Lucie; Novosad, Natacha; Bréand, Sophie; Besse, Jérôme; Busato, Florence; Tost, Jörg; De Vries, Luc; Cussac, Didier; Riond, Joëlle; Arimondo, Paola B.

    2015-01-01

    5-azacytidine and 5-aza-2′-deoxycytidine are clinically used to treat patients with blood neoplasia. Their antileukemic property is mediated by the trapping and the subsequent degradation of a family of proteins, the DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B) leading to DNA demethylation, tumor suppressor gene re-expression and DNA damage. Here we studied the respective role of each DNMT in the human leukemia KG1 cell line using a RNA interference approach. In addition we addressed the role of DNA damage formation in DNA demethylation by 5-aza-2′-deoxycytidine. Our data show that DNMT1 is the main DNMT involved in DNA methylation maintenance in KG1 cells and in mediating DNA damage formation upon exposure to 5-aza-2′-deoxycytidine. Moreover, KG1 cells express the DNMT1 protein at a level above the one required to ensure DNA methylation maintenance, and we identified a threshold for DNMT1 depletion that needs to be exceeded to achieve DNA demethylation. Most interestingly, by combining DNMT1 siRNA and treatment with low dose of 5-aza-2′-deoxycytidine, it is possible to uncouple DNA damage formation from DNA demethylation. This work strongly suggests that a direct pharmacological inhibition of DNMT1, unlike the use of 5-aza-2′-deoxycytidine, should lead to tumor suppressor gene hypomethylation and re-expression without inducing major DNA damage in leukemia. PMID:25948775

  8. Vitamin C increases viral mimicry induced by 5-aza-2′-deoxycytidine

    PubMed Central

    Liu, Minmin; Ohtani, Hitoshi; Zhou, Wanding; Ørskov, Andreas Due; Charlet, Jessica; Zhang, Yang W.; Shen, Hui; Baylin, Stephen B.; Liang, Gangning; Grønbæk, Kirsten; Jones, Peter A.

    2016-01-01

    Vitamin C deficiency is found in patients with cancer and might complicate various therapy paradigms. Here we show how this deficiency may influence the use of DNA methyltransferase inhibitors (DNMTis) for treatment of hematological neoplasias. In vitro, when vitamin C is added at physiological levels to low doses of the DNMTi 5-aza-2′-deoxycytidine (5-aza-CdR), there is a synergistic inhibition of cancer-cell proliferation and increased apoptosis. These effects are associated with enhanced immune signals including increased expression of bidirectionally transcribed endogenous retrovirus (ERV) transcripts, increased cytosolic dsRNA, and activation of an IFN-inducing cellular response. This synergistic effect is likely the result of both passive DNA demethylation by DNMTi and active conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) by ten–eleven translocation (TET) enzymes at LTR regions of ERVs, because vitamin C acts as a cofactor for TET proteins. In addition, TET2 knockout reduces the synergy between the two compounds. Furthermore, we show that many patients with hematological neoplasia are markedly vitamin C deficient. Thus, our data suggest that correction of vitamin C deficiency in patients with hematological and other cancers may improve responses to epigenetic therapy with DNMTis. PMID:27573823

  9. 5-Aza-2'-deoxycytidine reactivates gene expression via degradation of pRb pocket proteins.

    PubMed

    Zheng, Zhixing; Li, Lian; Liu, Xiangyu; Wang, Donglai; Tu, Bo; Wang, Lina; Wang, Haiying; Zhu, Wei-Guo

    2012-01-01

    Not only does 5-aza-2'-deoxycytidine (5-aza-CdR) induce the reexpression of silenced genes through the demethylation of CpG islands, but it increases the expression of unmethylated genes. However, the mechanism by which 5-aza-CdR activates the expression of genes is not completely understood. Here, we report that the pRb pocket proteins pRb, p107, and p130 were degraded in various cancer cell lines in response to 5-aza-CdR treatment, and this effect was dependent on the proteasome pathway. Mouse double minute 2 (MDM2) played a critical role in this 5-aza-CdR-induced degradation of pRb. Furthermore, PP2A phosphatase-induced MDM2 dephosphorylation at S260 was found to be essential for MDM2 binding to pRb in the presence of 5-aza-CdR. pRb degradation resulted in the significant reexpression of several genes, including methylated CDKN2A, RASFF1A, and unmethylated CDKN2D. Finally, knockdown of pRb pocket proteins by either RNAi or 5-aza-CdR treatment induced a significant decrease in the recruitment of SUV39H1 and an increase in the enrichment of KDM3B and KDM4A to histones around the promoter of RASFF1A and thus reduced H3K9 di- and trimethylation, by which RASFF1A expression is activated. Our data reveal a novel mechanism by which 5-aza-CdR induces the expression of both methylated and unmethylated genes by degrading pRb pocket proteins.

  10. DNA methylation in 5-aza-2'-deoxycytidine-resistant variants of C3H 10T1/2 C18 cells.

    PubMed Central

    Flatau, E; Gonzales, F A; Michalowsky, L A; Jones, P A

    1984-01-01

    A cell line (T17) was derived from C3H 10T1/2 C18 cells after 17 treatments with increasing concentrations of 5-aza-2'-deoxycytidine. The T17 cell line was very resistant to the cytotoxic effects of 5-aza-2'-deoxycytidine, and the 50% lethal dose for 5-aza-2'-deoxycytidine was ca. 3 microM, which was 30-fold greater than that of the parental C3H 10T1/2 C18 cells. Increased drug resistance was not due to a failure of the T17 cell line to incorporate 5-aza-2'-deoxycytidine into DNA. The cells were also slightly cross-resistant to 5-azacytidine. The percentage of cytosines modified to 5-methylcytosine in T17 cells was 0.7%, a 78% decrease from the level of 3.22% in C3H 10T1/2 C18 cells. The DNA cytosine methylation levels in several clones isolated from the treated lines were on the order of 0.7%, and clones with methylation levels lower than 0.45% were not obtained even after further drug treatments. These highly decreased methylation levels appeared to be unstable, and DNA modification increased as the cells divided in the absence of further drug treatment. The results suggest that it may not be possible to derive mouse cells with vanishingly low levels of 5-methylcytosine and that considerable de novo methylation can occur in cultured lines. PMID:6209556

  11. DNA demethylation caused by 5-Aza-2′-deoxycytidine induces mitotic alterations and aneuploidy

    PubMed Central

    Lentini, Laura; Cilluffo, Danilo; Di Leonardo, Aldo

    2016-01-01

    Aneuploidy, the unbalanced number of chromosomes in a cell, is considered a prevalent form of genetic instability and is largely acknowledged as a condition implicated in tumorigenesis. Epigenetic alterations like DNA hypomethylation have been correlated with cancer initiation/progression. Furthermore, a growing body of evidence suggests the involvement of epigenome-wide disruption as a cause of global DNA hypomethylation in aneuploidy generation. Here, we report that the DNA hypomethylating drug 5-aza-2′-deoxycytidine (DAC), affects the correct ploidy of nearly diploid HCT-116 human cells by altering the methylation pattern of the chromosomes. Specifically, we show that a DAC-induced reduction of 5-Methyl Cytosine at the pericentromeric region of chromosomes correlates with aneuploidy and mitotic defects. Our results suggest that DNA hypomethylation leads to aneuploidy by altering the DNA methylation landscape at the centromere that is necessary to ensure proper chromosomes segregation by recruiting the proteins necessary to build up a functional kinetochore. PMID:26771138

  12. High-performance liquid chromatographic analysis of chemical stability of 5-aza-2'-deoxycytidine.

    PubMed

    Lin, K T; Momparler, R L; Rivard, G E

    1981-11-01

    The chemical stability of 5-aza-2'-deoxycytidine (I) in acidic, neutral, and alkaline solutions was analyzed by high-performance liquid chromatography. In alkaline solution, I underwent rapid reversible decomposition to N-(formylamidino)-N'-beta-D-2-deoxyribofuranosylurea (II), which decomposed irreversibly to form 1-beta-D-2'-deoxyribofuranosyl-3-guanylurea (III). The pseudo-first-order rate constants for this reaction were determined. The decomposition of I in alkaline solution was identical to that reported previously for the related analog, 5-aza-cytidine. However, in neutral solution (or water), there was a marked difference in the decomposition of I and 5-azacytidine. The same decomposition products were formed from 5-azacytidine in neutral solution as in alkaline solution. However, in neutral solution, I decomposed to II and three unknown compounds that were chromophoric at 254 nm. Compound I was most stable when stored in neutral solution at low temperature.

  13. Potentiation of growth inhibition and epigenetic modulation by combination of green tea polyphenol and 5-aza-2'-deoxycytidine in human breast cancer cells.

    PubMed

    Tyagi, Tulika; Treas, Justin N; Mahalingaiah, Prathap Kumar S; Singh, Kamaleshwar P

    2015-02-01

    Epigenetic therapy by DNA demethylating agent 5-aza-2'-deoxycytidine (5-aza 2'dC) is clinically effective in acute myeloid leukemia; however, it has shown limited results in treatment of breast cancer and has significant toxicity to normal cells. Green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) has anti-cancer and DNA demethylating properties with no significant toxicity toward normal cells. Therefore, the objective of this study was to evaluate the therapeutic efficacy of a combination of non-toxic, low dose of 5-aza 2' dC with EGCG, on growth inhibition of breast cancer cells. Human breast cancer cell lines (MCF-7, MDA-MB 231) and non-tumorigenic MCF-10A breast epithelial cells were treated with either 5-aza 2' dC, EGCG, or their combination for 7 days. Cell growth inhibition was determined by cell count, cell viability, cell cycle, and soft agar assay, whereas genes expression changes were determined by quantitative real-time PCR and/or Western blot analysis. Histone modifications and global DNA methylation changes were determined by Western blot and RAPD-PCR, respectively. The results revealed significantly greater inhibition of growth of breast cancer cells by co-treatment with 5-aza 2' dC and EGCG compared to individual treatments, whereas it has no significant toxicity to MCF-10A cells. This was further confirmed by gene expression analysis. Changes in DNA methylation and histone modifications were also greater in cells with combination treatment. Findings of this study suggest that potentiation of growth inhibition of breast cancer cells by 5-aza 2' dC and EGCG combination treatment, at least in part, is mediated by epigenetic mechanism.

  14. Plasma and cerebrospinal fluid pharmacokinetics of 5-Aza-2'-deoxycytidine in rabbits and dogs.

    PubMed

    Chabot, G G; Rivard, G E; Momparler, R L

    1983-02-01

    5-Aza-2'-deoxycytidine (5-aza-dCyd) is an effective antileukemic agent. In view of the importance for an antileukemic agent to cross effectively the blood-brain-barrier, we studied the plasma and cerebrospinal fluid (CSF) pharmacokinetics of this drug in rabbits and dogs. The 5-aza-dCyd concentrations in biological fluids were determined by bioassay and high-performance liquid chromatography. 5-Aza-dCyd was administered either as an i.v. bolus or as a continuous i.v. infusion following a loading dose. Blood and CSF samples were collected at various time intervals. After an i.v. bolus, the plasma disappearance of 5-aza-dCyd was biphasic with half-lives of 5 and 43 min in rabbits and of 5 and 75 min in dogs. The apparent volume of distribution at steady state was in the order of 800 ml/kg for both species. The total plasma clearance of the drug was 15 ml/min/kg in rabbits and 9 ml/min/kg in dogs. After a 180 min i.v. infusion, 5-aza-dCyd slow disappearance half-lives were of 39 min in rabbits and of 144 min in dogs. The 5-aza-dCyd concentrations attained in the CSF were 27 and 58% of the plateau plasma concentration in rabbits and dogs, respectively. The drug disparition from the CSF followed closely the plasma profile after an i.v. infusion with a somewhat longer half-life. These results showed that 5-aza-dCyd can cross the blood-CSF barrier effectively, producing cytotoxic concentrations in the CSF when given by i.v. infusion.

  15. The epigenetic modifiers 5-aza-2'-deoxycytidine and trichostatin A influence adipocyte differentiation in human mesenchymal stem cells.

    PubMed

    Zych, J; Stimamiglio, M A; Senegaglia, A C; Brofman, P R S; Dallagiovanna, B; Goldenberg, S; Correa, A

    2013-05-01

    Epigenetic mechanisms such as DNA methylation and histone modification are important in stem cell differentiation. Methylation is principally associated with transcriptional repression, and histone acetylation is correlated with an active chromatin state. We determined the effects of these epigenetic mechanisms on adipocyte differentiation in mesenchymal stem cells (MSCs) derived from bone marrow (BM-MSCs) and adipose tissue (ADSCs) using the chromatin-modifying agents trichostatin A (TSA), a histone deacetylase inhibitor, and 5-aza-2'-deoxycytidine (5azadC), a demethylating agent. Subconfluent MSC cultures were treated with 5, 50, or 500 nM TSA or with 1, 10, or 100 µM 5azadC for 2 days before the initiation of adipogenesis. The differentiation was quantified and expression of the adipocyte genes PPARG and FABP4 and of the anti-adipocyte gene GATA2 was evaluated. TSA decreased adipogenesis, except in BM-MSCs treated with 5 nM TSA. Only treatment with 500 nM TSA decreased cell proliferation. 5azadC treatment decreased proliferation and adipocyte differentiation in all conditions evaluated, resulting in the downregulation of PPARG and FABP4 and the upregulation of GATA2. The response to treatment was stronger in ADSCs than in BM-MSCs, suggesting that epigenetic memories may differ between cells of different origins. As epigenetic signatures affect differentiation, it should be possible to direct the use of MSCs in cell therapies to improve process efficiency by considering the various sources available.

  16. The epigenetic modifiers 5-aza-2'-deoxycytidine and trichostatin A influence adipocyte differentiation in human mesenchymal stem cells

    PubMed Central

    Zych, J.; Stimamiglio, M.A.; Senegaglia, A.C.; Brofman, P.R.S.; Dallagiovanna, B.; Goldenberg, S.; Correa, A.

    2013-01-01

    Epigenetic mechanisms such as DNA methylation and histone modification are important in stem cell differentiation. Methylation is principally associated with transcriptional repression, and histone acetylation is correlated with an active chromatin state. We determined the effects of these epigenetic mechanisms on adipocyte differentiation in mesenchymal stem cells (MSCs) derived from bone marrow (BM-MSCs) and adipose tissue (ADSCs) using the chromatin-modifying agents trichostatin A (TSA), a histone deacetylase inhibitor, and 5-aza-2′-deoxycytidine (5azadC), a demethylating agent. Subconfluent MSC cultures were treated with 5, 50, or 500 nM TSA or with 1, 10, or 100 µM 5azadC for 2 days before the initiation of adipogenesis. The differentiation was quantified and expression of the adipocyte genes PPARG and FABP4 and of the anti-adipocyte gene GATA2 was evaluated. TSA decreased adipogenesis, except in BM-MSCs treated with 5 nM TSA. Only treatment with 500 nM TSA decreased cell proliferation. 5azadC treatment decreased proliferation and adipocyte differentiation in all conditions evaluated, resulting in the downregulation of PPARG and FABP4 and the upregulation of GATA2. The response to treatment was stronger in ADSCs than in BM-MSCs, suggesting that epigenetic memories may differ between cells of different origins. As epigenetic signatures affect differentiation, it should be possible to direct the use of MSCs in cell therapies to improve process efficiency by considering the various sources available. PMID:23797495

  17. 5-Aza-2′'-deoxycytidine inhibits retinoblastoma cell by reactivating epigenetically silenced RASSF1A gene

    PubMed Central

    Liu, Ru; Zhang, Xiao-Huan; Zhang, Kun; Li, Wei; Wang, Wen-Jun; Luo, Di-Xian; Gao, Ling

    2014-01-01

    AIM To investigate the effect of 5-Aza-2′-deoxycytidine (5-Aza-CdR), a DNA methyltransferase (DNMT) inhibitor, on the growth and survival of the Chinese retinoblastoma (RB) cell line HXO-RB44. METHODS The DNA methylation status of the Ras association domain family (RASSF1A) promoter in the presence of 5-Aza-CdR at different concentrations was analyzed by methylation-specific polymerase chain reaction (MSP). RASSF1A mRNA and protein levels were measured by semiquantitative RT-PCR and immunohistochemistry staining, respectively, when cells were treated with 5.0µmol/L of 5-Aza-CdR. The effect of 5.0µmol/L 5-Aza-CdR on the proliferation and viability of HXO-RB44 cells was examined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry. RESULTS 5-Aza-CdR efficiently induced cell cycle arrest at G0/G1 and apoptotic death in HXO-RB44 cells. MSP analysis showed that unmethylated RASSF1A DNA increased and methylated RASSF1A decreased in a dose-dependent manner in a range of 0.5-5.0µmol/L 5-Aza-CdR. Accordingly, RASSF1A expression was reactivated at both mRNA and protein levels. Incubation time of 5-Aza-CdR treatment also functioned as a factor for the demethylation status of RASSF1A promoter DNA, with a plateau on day four. 5-Aza-CdR at 5.0µmol/L completely demethylated the RASSF1A promoter in HXO-RB44 cells on day four, and as a result, RASSF1A expression increased significantly from day 4 to day 7. CONCLUSION 5-Aza-CdR inhibits the growth of the HXO-RB44 RB cell line and induces apoptosis by demethylating the RASSF1A gene. PMID:24634863

  18. Human DNA methyltransferase gene-transformed yeasts display an inducible flocculation inhibited by 5-aza-2'-deoxycytidine.

    PubMed

    Sugiyama, Kei-Ichi; Takamune, Makiko; Furusawa, Hiroko; Honma, Masamitsu

    2015-01-01

    Mammalian DNA methyltransferases (DNMTs) play an important role in establishing and maintaining the proper regulation of epigenetic information. However, it remains unclear whether mammalian DNMTs can be functionally expressed in yeasts, which probably lack endogenous DNMTs. We cotransformed the budding yeast Saccharomyces cerevisiae with the human DNMT1 gene, which encodes a methylation maintenance enzyme, and the DNMT3A/3B genes, which encode de novo methylation enzymes, in an expression vector also containing the GAL1 promoter, which is induced by galactose, and examined the effects of the DNMT inhibitor 5-aza-2'-deoxycytidine (5AZ) on cell growth. Transformed yeast strains grown in galactose- and glucose-containing media showed growth inhibition, and their growth rate was unaffected by 5AZ. Conversely, 5AZ, but not 2'-deoxycytidine, dose-dependently interfered with the flocculation exhibited by DNMT-gene transformants grown in glucose-containing medium. Further investigation of the properties of this flocculation indicated that it may be dependent on the expression of a Flocculin-encoding gene, FLO1. Taken together, these findings suggest that DNMT-gene transformed yeast strains functionally express these enzymes and represent a useful tool for in vivo screening for DNMT inhibitors.

  19. 5-Aza-2'-deoxycytidine acts as a modulator of chondrocyte hypertrophy and maturation in chick caudal region chondrocytes in culture

    PubMed Central

    2016-01-01

    This study was carried out to explore the effect of DNA hypomethylation on chondrocytes phenotype, in particular the effect on chondrocyte hypertrophy, maturation, and apoptosis. Chondrocytes derived from caudal region of day 17 embryonic chick sterna were pretreated with hypomethylating drug 5-aza-2'-deoxycytidine for 48 hours and then maintained in the normal culture medium for up to 14 days. Histological studies showed distinct morphological changes occurred in the pretreated cultures when compared to the control cultures. The pretreated chondrocytes after 7 days in culture became bigger in size and acquired more flattened fibroblastic phenotype as well as a loss of cartilage specific extracellular matrix. Scanning electron microscopy at day 7 showed chondrocytes to have increased in cell volume and at day 14 in culture the extracellular matrix of the pretreated cultures showed regular fibrillar structure heavily embedded with matrix vesicles, which is the characteristic feature of chondrocyte hypertrophy. Transmission electron microscopic studies indicated the terminal fate of the hypertrophic cells in culture. The pretreated chondrocytes grown for 14 days in culture showed two types of cells: dark cells which had condense chromatin in dark patches and dark cytoplasm. The other light chondrocytes appeared to be heavily loaded with endoplasmic reticulum indicative of very active protein and secretory activity; their cytoplasm had large vacuoles and disintegrating cytoplasm. The biosynthetic profile showed that the pretreated cultures were actively synthesizing and secreting type X collagen and alkaline phosphatase as a major biosynthetic product. PMID:27382512

  20. Chemical decomposition of 5-aza-2'-deoxycytidine (Decitabine): kinetic analyses and identification of products by NMR, HPLC, and mass spectrometry.

    PubMed

    Rogstad, Daniel K; Herring, Jason L; Theruvathu, Jacob A; Burdzy, Artur; Perry, Christopher C; Neidigh, Jonathan W; Sowers, Lawrence C

    2009-06-01

    The nucleoside analogue 5-aza-2'-deoxycytidine (Decitabine, DAC) is one of several drugs in clinical use that inhibit DNA methyltransferases, leading to a decrease of 5-methylcytosine in newly replicated DNA and subsequent transcriptional activation of genes silenced by cytosine methylation. In addition to methyltransferase inhibition, DAC has demonstrated toxicity and potential mutagenicity, and can induce a DNA-repair response. The mechanisms accounting for these events are not well understood. DAC is chemically unstable in aqueous solutions, but there is little consensus between previous reports as to its half-life and corresponding products of decomposition at physiological temperature and pH, potentially confounding studies on its mechanism of action and long-term use in humans. Here, we have employed a battery of analytical methods to estimate kinetic rates and to characterize DAC decomposition products under conditions of physiological temperature and pH. Our results indicate that DAC decomposes into a plethora of products, formed by hydrolytic opening and deformylation of the triazine ring, in addition to anomerization and possibly other changes in the sugar ring structure. We also discuss the advantages and problems associated with each analytical method used. The results reported here will facilitate ongoing studies and clinical trials aimed at understanding the mechanisms of action, toxicity, and possible mutagenicity of DAC and related analogues.

  1. Transbuccal delivery of 5-aza-2 -deoxycytidine: effects of drug concentration, buffer solution, and bile salts on permeation.

    PubMed

    Mahalingam, Ravichandran; Ravivarapu, Harish; Redkar, Sanjeev; Li, Xiaoling; Jasti, Bhaskara R

    2007-07-13

    Delivery of 5-aza-2 -deoxycytidine (decitabine) across porcine buccal mucosa was evaluated as an alternative to the complex intravenous infusion regimen currently used to administer the drug. A reproducible high-performance liquid chromatography method was developed and optimized for the quantitative determination of this drug. Decitabine showed a concentration-dependent passive diffusion process across porcine buccal mucosa. An increase in the ionic strength of the phosphate buffer from 100 to 400 mM decreased the flux from 3.57 +/- 0.65 to 1.89 +/- 0.61 microg/h/cm2. Trihydroxy bile salts significantly enhanced the flux of decitabine at a 100 mM concentration (P > .05). The steady-state flux of decitabine in the presence of 100 mM of sodium taurocholate and sodium glycocholate was 52.65 +/- 9.48 and 85.22 +/- 7.61 microg/cm2/h, respectively. Two dihydroxy bile salts, sodium deoxytaurocholate and sodium deoxyglycocholate, showed better enhancement effect than did trihydroxy bile salts. A 38-fold enhancement in flux was achieved with 10 mM of sodium deoxyglycocholate.

  2. 5-aza-2'-deoxycytidine impairs mouse spermatogenesis at multiple stages through different usage of DNA methyltransferases.

    PubMed

    Song, Ning; Endo, Daisuke; Song, Bin; Shibata, Yasuaki; Koji, Takehiko

    2016-06-15

    Mammalian spermatogenesis is a progressive process comprising spermatogonial proliferation, spermatocytic meiosis, and later spermiogenesis, which is considered to be under the regulation of epigenetic parameters. To gain insights into the significance of DNA methylation in early spermatogenesis, 5-azadC was used as a molecular biological tool to mimic the level of DNA methylation in vivo. Since the drug is incorporated into DNA during the S-phase, spermatogonia and spermatocytes would be affected primarily in mouse spermatogenesis. Adult male ICR mice were intraperitoneally injected with 5-azadC at a dose of 0.25mg/kg/day for 10 consecutive days, allowing us to examine its maximum effect on the kinetics of spermatogonia and spermatocytes. In this short-term protocol, 5-azadC induced significant histological abnormalities, such as a marked increase in apoptosis of spermatogonia and spermatocytes, followed by severe loss of spermatids, while after termination of 5-azadC treatment, normal histology was restored in the testis within 35days. Quantification of the methylation level of CCGG sites as well as whole DNA showed spermatogonial hypomethylation, which correlated with increased apoptosis of spermatogonia. Interestingly, the hypomethylated cells were simultaneously positive for tri-methylated histone H3 at K4. On the other hand, no changes in methylation level were found in spermatocytes, but PCNA staining clearly showed disordered accumulation of S-phase spermatocytes, which increased their apoptosis in stage XII. In addition, different immunohistochemical staining pattern was found for DNA methyltransferases (DNMTs); DNMT1was expressed in the majority of all germ cells, but DNMT3a and b were only expressed in spermatogonia. Our results indicate that 5-azadC caused DNA hypomethylation in spermatogonia, but induced prolongation of S-phase in spermatocytes, resulting in the induction of apoptosis in both cases. Thus, 5-azadC affects spermatogenesis at more than

  3. 5-Azacytidine Enhances the Mutagenesis of HIV-1 by Reduction to 5-Aza-2′-Deoxycytidine

    PubMed Central

    Rawson, Jonathan M. O.; Daly, Michele B.; Xie, Jiashu; Clouser, Christine L.; Landman, Sean R.; Reilly, Cavan S.; Bonnac, Laurent; Kim, Baek; Patterson, Steven E.

    2016-01-01

    5-Azacytidine (5-aza-C) is a ribonucleoside analog that induces the lethal mutagenesis of human immunodeficiency virus type 1 (HIV-1) by causing predominantly G-to-C transversions during reverse transcription. 5-Aza-C could potentially act primarily as a ribonucleotide (5-aza-CTP) or as a deoxyribonucleotide (5-aza-2′-deoxycytidine triphosphate [5-aza-dCTP]) during reverse transcription. In order to determine the primary form of 5-aza-C that is active against HIV-1, Illumina sequencing was performed using proviral DNA from cells treated with 5-aza-C or 5-aza-dC. 5-Aza-C and 5-aza-dC were found to induce highly similar patterns of mutation in HIV-1 in terms of the types of mutations observed, the magnitudes of effects, and the distributions of mutations at individual sequence positions. Further, 5-aza-dCTP was detected by liquid chromatography–tandem mass spectrometry in cells treated with 5-aza-C, demonstrating that 5-aza-C was a substrate for ribonucleotide reductase. Notably, levels of 5-aza-dCTP were similar in cells treated with equivalent effective concentrations of 5-aza-C or 5-aza-dC. Lastly, HIV-1 reverse transcriptase was found to incorporate 5-aza-CTP in vitro at least 10,000-fold less efficiently than 5-aza-dCTP. Taken together, these data support the model that 5-aza-C enhances the mutagenesis of HIV-1 primarily after reduction to 5-aza-dC, which can then be incorporated during reverse transcription and lead to G-to-C hypermutation. These findings may have important implications for the design of new ribonucleoside analogs directed against retroviruses. PMID:26833151

  4. Progressive stages of "transdifferentiation" from epidermal to mesenchymal phenotype induced by MyoD1 transfection, 5-aza-2'- deoxycytidine treatment, and selection for reduced cell attachment in the human keratinocyte line HaCaT

    PubMed Central

    1992-01-01

    The ability of the myogenic determination gene (MyoD1) to convert differentiating human keratinocytes (HaCaT cell-line) to the myogenic pathway and the effect of MyoD1 on the epidermal phenotype was studied in culture and in surface transplants on nude mice. MyoD1 transfection induced the synthesis of myosin, desmin, and vimentin without substantially altering the epidermal differentiation properties (morphology, keratin profile) in vitro nor epidermal morphogenesis (formation of a complex stratified squamous epithelium) in surface transplants, demonstrating the stability of the keratinocyte phenotype. 5-Aza-CdR treatment of these MyoD1-transfected cells had little effect on the cultured cells but a morphologically unstructured epithelium was formed with no indications of typical cell layers including cornification. Since prevention of epidermal strata in transplants was not accompanied by blocked epidermal differentiation markers (keratins K1 and K10, involucrin, and filaggrin), the dissociation of morphogenesis and expression of these markers argues for independently controlled processes. A subpopulation of less adhesive cells, isolated from the 5-aza-CdR treated MyoD1-transfectants, had lost most epithelial characteristics in culture (epidermal keratins, desmosomal proteins, and surface-glycoprotein Gp90) and had shifted to a mesenchymal/myogenic phenotype (fibroblastic morphology, transactivation of Myf3 and myogenin, expression of myosin, desmin, vimentin, and Gp130). Moreover, the cells had lost the ability to stratify and remained as a monolayer of flat elongated cells in transplants. These subsequent changes from a fully differentiated keratinocyte to a mesenchymal/myogenic phenotype strongly argue for a complex "transdifferentiation" process which occurred in the original monoclonal human epidermal HaCaT cells. PMID:1371288

  5. Identification of a class of human cancer germline genes with transcriptional silencing refractory to the hypomethylating drug 5-aza-2′-deoxycytidine.

    PubMed Central

    Almatrafi, Ahmed; Feichtinger, Julia; Vernon, Ellen G.; Escobar, Natalia Gomez; Wakeman, Jane A.; Larcombe, Lee D.; McFarlane, Ramsay J.

    2014-01-01

    Bona fide germline genes have expression restricted to the germ cells of the gonads. Testis-specific germline development-associated genes can become activated in cancer cells and can potentially drive the oncogenic process and serve as therapeutic/biomarker targets; such germline genes are referred to as cancer/testis genes. Many cancer/testis genes are silenced via hypermethylation of CpG islands in their associated transcriptional control regions and become activated upon treatment with DNA hypomethylating agents; such hypomethylation-induced activation of cancer/testis genes provides a potential combination approach to augment immunotherapeutics. Thus, understanding cancer/testis gene regulation is of increasing clinical importance. Previously studied cancer/testis gene activation has focused on X chromosome encoded cancer/testis genes. Here we find that a sub-set of non-X encoded cancer/testis genes are silenced in non-germline cells via a mechanism that is refractory to epigenetic dysregulation, including treatment with the hypomethylating agent 5-aza-2′-deoxycytidine and the histone deacetylase inhibitor tricostatin A. These findings formally indicate that there is a sub-group of the clinically important cancer/testis genes that are unlikely to be activated in clinical therapeutic approaches using hypomethylating agents and it indicates a unique transcriptional silencing mechanism for germline genes in non-germline cells that might provide a target mechanism for new clinical therapies. PMID:25594001

  6. Histone H3 lysine 27 and 9 hypermethylation within the Bad promoter region mediates 5-Aza-2'-deoxycytidine-induced Leydig cell apoptosis: implications of 5-Aza-2'-deoxycytidine toxicity to male reproduction.

    PubMed

    Choi, Ji-Young; Lee, Sangmi; Hwang, Soojin; Jo, Sangmee Ahn; Kim, Miji; Kim, Young Ju; Pang, Myung-Geol; Jo, Inho

    2013-01-01

    5-Aza-2'-deoxycitidine (5-Aza), an anticancer agent, results in substantial toxicity to male reproduction, causing a decline in sperm quality associated with reduced testosterone. Here, we report that 5-Aza increased the apoptotic protein Bad epigenetically in the testosterone-producing mouse TM3 Leydig cell line. 5-Aza decreased cell viability in a dose- and time-dependent manner with concomitant increase in Bad protein. This increase is accompanied by increased cleavages of both poly ADP ribose polymerase and caspase-3. Flow cytometric analysis further supported 5-Aza-derived apoptosis in TM3 cells. Bisulfite sequencing analysis failed to identify putative methylcytosine site(s) in CpG islands of the Bad promoter. A chromatin immunoprecipitation assay revealed decreased levels of trimethylation at lysine 27 of histone H3 (H3K27-3me) and H3K9-3me in the Bad promoter region in response to 5-Aza treatment. Knock-down by siRNA of enhancer of zeste homologue 2 (EZH2), a histone methyltransferase responsible for H3K27-3me, or demethylation of H3K9-3me by BIX-01294 showed significantly increased levels in Bad expression and consequent Leydig cell apoptosis. In conclusion, our results demonstrate for the first time that Bad expression is regulated at least by EZH2-mediated H3K27-3me or G9a-like protein/euchromatic histone methyltransferase 1 (GLP/Eu-HMTase1)-mediated H3K9-3me in mouse TM3 Leydig cells, which may be implicated in 5-Aza-derived toxicity to male reproduction.

  7. Safety and clinical activity of 5-aza-2'-deoxycytidine (decitabine) with or without Hyper-CVAD in relapsed/refractory acute lymphocytic leukaemia.

    PubMed

    Benton, Christopher B; Thomas, Deborah A; Yang, Hui; Ravandi, Farhad; Rytting, Michael; O'Brien, Susan; Franklin, Anna R; Borthakur, Gautam; Dara, Samuel; Kwari, Monica; Pierce, Sherry R; Jabbour, Elias; Kantarjian, Hagop; Garcia-Manero, Guillermo

    2014-11-01

    To test the safety and activity of 5-aza-2'-deoxycytidine (decitabine) in patients with relapsed/refractory acute lymphocytic leukaemia (ALL), we conducted a phase 1 study with two parts: administering decitabine alone or in combination with Hyper-CVAD (fractionated cyclophosphamide, vincristine, doxorubicin and dexamethasone alternating with high-dose methotrexate and cytarabine). Patients participated in either part of the study or in both parts sequentially. In the initial part, decitabine was administered intravenously at doses of 10-120 mg/m(2) per d for 5 d every other week in cycles of 28 d. In the combination part, patients were treated on the first 5 d of Hyper-CVAD with intravenous decitabine at 5-60 mg/m(2) per d. A total of 39 patients received treatment in the study: 14 in the first part only, 16 sequentially in both parts and 9 in the second part only. Decitabine was tolerated at all doses administered, and grade 3 or 4 toxic effects included non-life-threatening hepatotoxicity and hyperglycaemia. Induction of DNA hypomethylation was observed at doses of decitabine up to 80 mg/m(2) . Some patients who had previously progressed on Hyper-CVAD alone achieved a complete response when decitabine was added. Decitabine alone or given with Hyper-CVAD is safe and has clinical activity in patients with advanced ALL.

  8. The depletion of DNA methyltransferase-1 and the epigenetic effects of 5-aza-2deoxycytidine (decitabine) are differentially regulated by cell cycle progression

    PubMed Central

    Yu, Margaret; Burnett, David M; Alexander, Amanda; Samlowski, Wolfram; Fitzpatrick, Frank A

    2011-01-01

    5-Aza-2′-deoxycytidine (decitabine) is a drug targeting the epigenetic abnormalities of tumors. The basis for its limited efficacy in solid tumors is unresolved, but may relate to their indolent growth, their p53 genotype or both. We report that the primary molecular mechanism of decitabine—depletion of DNA methyltransferase-1 following its “suicide” inactivation—is not absolutely associated with cell cycle progression in HCT 116 colon cancer cells, but is associated with their p53 genotype. Control experiments affirmed that the secondary molecular effects of decitabine on global and promoter-specific CpG methylation and MAGE-A1 mRNA expression were S-phase dependent, as expected. Secondary changes in CpG methylation occurred only in growing cells ∼24–48 h after decitabine treatment; these epigenetic changes coincided with p53 accumulation, an index of DNA damage. Conversely, primary depletion of DNA methyltransferase-1 began immediately after a single exposure to 300 nM decitabine and it progressed to completion within ∼8 h, even in confluent cells arrested in G1 and G2/M. Our results suggest that DNA repair and remodeling activity in arrested, confluent cells may be sufficient to support the primary molecular action of decitabine, while its secondary, epigenetic effects require cell cycle progression through S-phase. PMID:21725200

  9. Epigenetic modulation of AR gene expression in prostate cancer DU145 cells with the combination of sodium butyrate and 5'-Aza-2'-deoxycytidine.

    PubMed

    Fialova, Barbora; Luzna, Petra; Gursky, Jan; Langova, Katerina; Kolar, Zdenek; Trtkova, Katerina Smesny

    2016-10-01

    The androgen receptor (AR) plays an essential role in the development and progression of prostate cancer. Castration-resistant prostate cancer (CRPC) is a consequence of androgen deprivation therapy. Unchecked CRPC followed by metastasis is lethal. Some CRPCs show decreased AR gene expression due to epigenetic mechanisms such as DNA methylation and histone deacetylation. The aim of this study was to epigenetically modulate the methylated state of the AR gene leading to targeted demethylation and AR gene expression in androgen-independent human prostate cancer DU145 cell line, representing the CRPC model with very low or undetectable AR levels. The cell treatment was based on single and combined applications of two epigenetic inhibitors, sodium butyrate (NaB) as histone deacetylases inhibitor and 5'-Aza-2'-deoxycytidine (Aza-dC) as DNA methyltransferases inhibitor. We found that the Aza-dC in combination with NaB may help reduce the toxicity of higher NaB concentrations in cancer cells. In normal RWPE-1 cells and even stronger in cancer DU145 cells, the combined treatment induced both AR gene expression on the mRNA level and increased histone H4 acetylation in AR gene promoter. Also activation and maintenance of G2/M cell cycle arrest and better survival in normal RWPE-1 cells compared to cancer DU145 cells were observed after the treatments. These results imply the selective toxicity effect of both inhibitors used and their potentially more effective combined use in the epigenetic therapy of prostate cancer patients.

  10. A Systematic Assessment of Radiation Dose Enhancement by 5-Aza-2'-Deoxycytidine and Histone Deacetylase Inhibitors in Head-and-Neck Squamous Cell Carcinoma

    SciTech Connect

    Schutter, Harlinde de; Kimpe, Marlies; Isebaert, Sofie; Nuyts, Sandra

    2009-03-01

    Purpose: Investigations of epigenetic drugs have shown that radiotherapy can be successfully combined with histone deacetylase inhibitors (HDAC-Is) for the treatment of head-and-neck squamous cell carcinoma (HNSCC). Whether the reversal of epigenetic silencing by demethylating agents with or without HDAC-Is can also act as radiosensitizing remains unclear. This study therefore aimed to investigate whether 5-aza-2'-deoxycytidine (DAC) alone or in combination with the HDAC-Is trichostatin A, LBH589, or MGCD0103 could radiosensitize HNSCC tumor cell lines. Methods and Materials: Histone acetylation status and expression of epigenetically silenced genes at the DNA, RNA, and protein levels were assessed as measures of drug effectiveness in six HNSCC cell lines. Based on their colony-forming capacity, colony assays were performed in four of six cell lines to evaluate the radiosensitizing potential of DAC with or without HDAC-Is. Additional assays of cell survival, apoptosis, cell proliferation, and DNA damage were performed. Results: Radiosensitization was observed in two HNSCC cell lines treated with noncytotoxic doses of DAC with or without HDAC-Is before irradiation. The radiosensitizing doses induced histone hyperacetylation and reversal of gene silencing to variable extents and increased radiation-induced cell-cycle arrest. Conclusions: A role for low-dose DAC with or without HDAC-Is as radiosensitizers in HNSCC seems promising and is supportive of future clinical use, especially for combinations of DAC with LBH589 or MGCD0103, although the mechanisms by which they work will require further study.

  11. Treating Cloned Embryos, But Not Donor Cells, with 5-aza-2’-deoxycytidine Enhances the Developmental Competence of Porcine Cloned Embryos

    PubMed Central

    HUAN, Yan Jun; ZHU, Jiang; XIE, Bing Teng; WANG, Jian Yu; LIU, Shi Chao; ZHOU, Yang; KONG, Qing Ran; HE, Hong Bin; LIU, Zhong Hua

    2013-01-01

    The efficiency of cloning by somatic cell nuclear transfer (SCNT) has remained low. In most cloned embryos, epigenetic reprogramming is incomplete, and usually the genome is hypermethylated. The DNA methylation inhibitor 5-aza-2’-deoxycytidine (5-aza-dC) could improve the developmental competence of cow, pig, cat and human SCNT embryos in previous studies. However, the parameters of 5-aza-dC treatment among species are different, and whether 5-aza-dC could enhance the developmental competence of porcine cloned embryos has still not been well studied. Therefore, in this study, we treated porcine fetal fibroblasts (PFF) that then were used as donor nuclei for nuclear transfer or fibroblast-derived reconstructed embryos with 5-aza-dC, and the concentration- and time-dependent effects of 5-aza-dC on porcine cloned embryos were investigated by assessing pseudo-pronucleus formation, developmental potential and pluripotent gene expression of these reconstructed embryos. Our results showed that 5-aza-dC significantly reduced the DNA methylation level in PFF (0 nM vs. 10 nM vs. 25 nM vs. 50 nM, 58.70% vs. 37.37% vs. 45.43% vs. 39.53%, P<0.05), but did not improve the blastocyst rate of cloned embryos derived from these cells. Treating cloned embryos with 25 nM 5-aza-dC for 24 h significantly enhanced the blastocyst rate compared with that of the untreated group. Furthermore, treating cloned embryos, but not donor cells, significantly promoted pseudo-pronucleus formation at 4 h post activation (51% for cloned embryos treated, 34% for donor cells treated and 36% for control, respectively, P<0.05) and enhanced the expression levels of pluripotent genes (Oct4, Nanog and Sox2) up to those of in vitro fertilized embryos during embryo development. In conclusion, treating cloned embryos, but not donor cells, with 5-aza-dC enhanced the developmental competence of porcine cloned embryos by promotion of pseudo-pronucleus formation and improvement of pluripotent gene expression. PMID

  12. 5-Aza-2′-deoxycytidine Sensitizes Busulfan-resistant Myeloid Leukemia Cells By Regulating Expression of Genes Involved in Cell Cycle Checkpoint and Apoptosis

    PubMed Central

    Valdez, Benigno C.; Li, Yang; Murray, David; Corn, Paul; Champlin, Richard E.; Andersson, Borje S.

    2009-01-01

    Busulfan (Bu) is a DNA-alkylating drug used in myeloablative pretransplant conditioning therapy for patients with myeloid leukemia (ML). A major obstacle to successful treatment is cellular Bu-resistance. To investigate the possible contribution of DNA hypermethylation to Bu-resistance, we examined the cytotoxic activity of combined 5-aza-2′-deoxycytidine (DAC) and Bu. Exposure of Bu-resistant B5/Bu2506 ML cells to 0.5 μM DAC resulted in G2-arrest and apoptosis. The observed G2-arrest was associated with hypomethylation and subsequent expression of epigenetically controlled genes including p16INK4A, activation of the p53 pathway, and phosphorylation of CDC2. The DAC-mediated apoptosis was partly due to hypomethylation and up-regulation of XAF1, which resulted in down-regulation of the anti-apoptotic proteins XIAP, cIAP1 and cIAP2. The pro-apoptotic PUMA and BNIP3 proteins were up-regulated while pro-survival STAT3 and c-MYC were suppressed. Combination of 0.05 μM DAC and 5 μg/ml Bu resulted in synergistic cytotoxicity, which was associated with PARP1 cleavage and activation of caspases 3 and 8, suggesting induction of an apoptotic response. P53 inhibition in B5/Bu2506 cells using pifithrin-α alleviated these effects, suggesting a role for p53 therein; this observation was supported by the relative resistance of p53-null K562 cells to [DAC+Bu] combinations and by the effects of an anti-p53 shRNA on the OCI-AML3 cell line. We conclude that the synergistic effects of [DAC+Bu] are p53-dependent and involve cell-cycle arrest, apoptosis induction and down-regulation of pro-survival genes. Our results suggest that, depending on tumor p53 status, incorporation of DAC might synergistically improve the cytoreductive efficacy of Bu-based pre-transplant regimen in patients with ML. PMID:19732952

  13. The Chemical Decomposition of 5-aza-2′-deoxycytidine (Decitabine): Kinetic Analyses and Identification of Products by NMR, HPLC, and Mass Spectrometry

    PubMed Central

    Rogstad, Daniel K.; Herring, Jason L.; Theruvathu, Jacob A.; Burdzy, Artur; Perry, Christopher C.; Neidigh, Jonathan W.; Sowers, Lawrence C.

    2014-01-01

    The nucleoside analog 5-aza-2′-deoxycytidine (Decitabine, DAC) is one of several drugs in clinical use that inhibit DNA methyltransferases, leading to a decrease of 5-methylcytosine in newly replicated DNA and subsequent transcriptional activation of genes silenced by cytosine methylation. In addition to methyltransferase inhibition, DAC has demonstrated toxicity and potential mutagenicity, and can induce a DNA-repair response. The mechanisms accounting for these events are not well understood. DAC is chemically unstable in aqueous solutions, but there is little consensus between previous reports as to its half-life and corresponding products of decomposition at physiological temperature and pH, potentially confounding studies on its mechanism of action and long-term use in humans. Here we have employed a battery of analytical methods to estimate kinetic rates and to characterize DAC decomposition products under conditions of physiological temperature and pH. Our results indicate that DAC decomposes into a plethora of products, formed by hydrolytic opening and deformylation of the triazine ring, in addition to anomerization and possibly other changes in the sugar ring structure. We also discuss the advantages and problems associated with each analytical method used. The results reported here will facilitate ongoing studies and clinical trials aimed at understanding the mechanisms of action, toxicity, and possible mutagenicity of DAC and related analogs. PMID:19480391

  14. Differential induction of apoptosis and senescence by the DNA methyltransferase inhibitors 5-azacytidine and 5-aza-2'-deoxycytidine in solid tumor cells.

    PubMed

    Venturelli, Sascha; Berger, Alexander; Weiland, Timo; Essmann, Frank; Waibel, Michaela; Nuebling, Tina; Häcker, Sabine; Schenk, Martin; Schulze-Osthoff, Klaus; Salih, Helmut R; Fulda, Simone; Sipos, Bence; Johnstone, Ricky W; Lauer, Ulrich M; Bitzer, Michael

    2013-10-01

    Epigenetic alterations are a hallmark of cancer that govern the silencing of genes. Up to now, 5-azacytidine (5-aza-CR, Vidaza) and 5-aza-2'-deoxycytidine (5-aza-dC, Dacogen) are the only clinically approved DNA methyltransferase inhibitors (DNMTi). Current effort tries to exploit DNMTi application beyond acute leukemia or myelodysplastic syndrome, especially to solid tumors. Although both drugs only differ by a minimal structural difference, they trigger distinct molecular mechanisms that are highly relevant for a rational choice of new combination therapies. Therefore, we investigated cell death pathways in vitro in human hepatoma, colon, renal, and lung cancer cells and in vivo in chorioallantoic membrane and xenograft models. Real-time cancer cell monitoring and cytokine profiling revealed a profoundly distinct response pattern to both drugs. 5-aza-dC induced p53-dependent tumor cell senescence and a high number of DNA double-strand breaks. In contrast, 5-aza-CR downregulated p53, induced caspase activation and apoptosis. These individual response patterns of tumor cells could be verified in vivo in chorioallantoic membrane assays and in a hepatoma xenograft model. Although 5-aza-CR and 5-aza-dC are viewed as drugs with similar therapeutic activity, they induce a diverse molecular response in tumor cells. These findings together with other reported differences enable and facilitate a rational design of new combination strategies to further exploit the epigenetic mode of action of these two drugs in different areas of clinical oncology. PMID:23924947

  15. Gelatinases-stimuli nanoparticles encapsulating 5-fluorouridine and 5-aza-2'-deoxycytidine enhance the sensitivity of gastric cancer cells to chemical therapeutics.

    PubMed

    Wu, Feng-lei; Li, Ru-Tian; Yang, Mi; Yue, Guo-Feng; Wang, Hui-yu; Liu, Qin; Cui, Fang-bo; Wu, Pu-yuan; Ding, Hui; Yu, Li-Xia; Qian, Xiao-Ping; Liu, Bao-Rui

    2015-07-10

    Aberrant methylation of the transcription factor AP-2 epsilon (TFAP2E) has been attributed to 5-fluorouridine (5-FU) sensitivity. 5-Aza-2'-deoxycytidine (DAC), an epigenetic drug that inhibits DNA methylation, is able to cause reactive expression of TFAP2E by demethylating activity. This property might be useful in enhancing the sensitivity of cancer cells to 5-FU. However, the effect of DAC is transient because of its instability. Here, we report the use of intelligent gelatinases-stimuli nanoparticles (NPs) to coencapsulate and deliver DAC and 5-FU to gastric cancer (GC) cells. The results showed that NPs encapsulating DAC, 5-FU, or both could be effectively internalized by GC cells. Furthermore, we found that the NPs enhanced the stability of DAC, resulting in improved re-expression of TFAP2E. Thus, the incorporation of DAC into NPs significantly enhanced the sensitivity of GC cells to 5-FU by inhibiting cell growth rate and inducing cell apoptosis. In conclusion, the results of this study clearly demonstrated that the gelatinases-stimuli NPs are an efficient means to simultaneously deliver epigenetic and chemotherapeutic drugs that may effectively inhibit cancer cell proliferation.

  16. Gelatinases-stimuli nanoparticles encapsulating 5-fluorouridine and 5-aza-2'-deoxycytidine enhance the sensitivity of gastric cancer cells to chemical therapeutics.

    PubMed

    Wu, Feng-lei; Li, Ru-Tian; Yang, Mi; Yue, Guo-Feng; Wang, Hui-yu; Liu, Qin; Cui, Fang-bo; Wu, Pu-yuan; Ding, Hui; Yu, Li-Xia; Qian, Xiao-Ping; Liu, Bao-Rui

    2015-07-10

    Aberrant methylation of the transcription factor AP-2 epsilon (TFAP2E) has been attributed to 5-fluorouridine (5-FU) sensitivity. 5-Aza-2'-deoxycytidine (DAC), an epigenetic drug that inhibits DNA methylation, is able to cause reactive expression of TFAP2E by demethylating activity. This property might be useful in enhancing the sensitivity of cancer cells to 5-FU. However, the effect of DAC is transient because of its instability. Here, we report the use of intelligent gelatinases-stimuli nanoparticles (NPs) to coencapsulate and deliver DAC and 5-FU to gastric cancer (GC) cells. The results showed that NPs encapsulating DAC, 5-FU, or both could be effectively internalized by GC cells. Furthermore, we found that the NPs enhanced the stability of DAC, resulting in improved re-expression of TFAP2E. Thus, the incorporation of DAC into NPs significantly enhanced the sensitivity of GC cells to 5-FU by inhibiting cell growth rate and inducing cell apoptosis. In conclusion, the results of this study clearly demonstrated that the gelatinases-stimuli NPs are an efficient means to simultaneously deliver epigenetic and chemotherapeutic drugs that may effectively inhibit cancer cell proliferation. PMID:25592042

  17. The DNA Methyltransferase DNMT1 and Tyrosine-Protein Kinase KIT Cooperatively Promote Resistance to 5-Aza-2'-deoxycytidine (Decitabine) and Midostaurin (PKC412) in Lung Cancer Cells.

    PubMed

    Yan, Fei; Shen, Na; Pang, Jiuxia; Molina, Julian R; Yang, Ping; Liu, Shujun

    2015-07-24

    Lung cancer cells are sensitive to 5-aza-2'-deoxycytidine (decitabine) or midostaurin (PKC412), because decitabine restores the expression of methylation-silenced tumor suppressor genes, whereas PKC412 inhibits hyperactive kinase signaling, which is essential for cancer cell growth. Here, we demonstrated that resistance to decitabine (decitabine(R)) or PKC412 (PKC412(R)) eventually results from simultaneously remethylated DNA and reactivated kinase cascades. Indeed, both decitabine(R) and PKC412(R) displayed the up-regulation of DNA methyltransferase DNMT1 and tyrosine-protein kinase KIT, the enhanced phosphorylation of KIT and its downstream effectors, and the increased global and gene-specific DNA methylation with the down-regulation of tumor suppressor gene epithelial cadherin CDH1. Interestingly, decitabine(R) and PKC412(R) had higher capability of colony formation and wound healing than parental cells in vitro, which were attributed to the hyperactive DNMT1 or KIT, because inactivation of KIT or DNMT1 reciprocally blocked decitabine(R) or PKC412(R) cell proliferation. Further, DNMT1 knockdown sensitized PKC412(R) cells to PKC412; conversely, KIT depletion synergized with decitabine in eliminating decitabine(R). Importantly, when engrafted into nude mice, decitabine(R) and PKC412(R) had faster proliferation with stronger tumorigenicity that was caused by the reactivated KIT kinase signaling and further CDH1 silencing. These findings identify functional cross-talk between KIT and DNMT1 in the development of drug resistance, implying the reciprocal targeting of protein kinases and DNA methyltransferases as an essential strategy for durable responses in lung cancer.

  18. Dose- and schedule-dependent activation and drug synergism between thymidine and 5-aza-2'-deoxycytidine in a human promyelocytic leukemia cell line.

    PubMed

    Grant, S; Rauscher, F; Margolin, J; Cadman, E

    1982-02-01

    The ability of thymidine (dThd) to enhance the metabolism and cytotoxicity of subsequent administered 5-aza-2'-deoxycytidine (5-aza-dCyd) was studied in L1210 cells and in the human promyelocytic leukemic cell line, HL-60. Exposure of L1210 cells to 0.1 mM dThd for 5 h resulted in an increase in the total intracellular and acid-precipitable accumulation of 5-aza-dCyd. Higher dThd concentrations and longer exposure intervals resulted in smaller increments in 5-aza-dCyd accumulation. In contrast, in HL-60 cells, a 24-hr exposure in 1 mM dThd resulted in the greatest intracellular accumulation of 5-aza-dCyd, 3.3 times more accumulation than in control cells. There was also a 4-fold increase in the acid-precipitable accumulation and nearly a 3-fold increase in DNA incorporation of 5-aza-dCyd in HL-60 cells exposed to the same dThd schedule. High-pressure liquid chromatographic analysis demonstrated a greater than 3-fold increase in the intracellular amounts of 5-aza-dCyd metabolites eluting in the triphosphate region in these human cells under identical conditions. Shorter dThd incubation exposure intervals (6 hr) and lower dThd concentration (0.1 mM) produced smaller increments in these studies. Both growth and clonogenic assays of HL-60 cells demonstrated a dose- and schedule sequence-dependent synergism between dThd and 5-aza-dCyd.

  19. The DNA Methyltransferase DNMT1 and Tyrosine-Protein Kinase KIT Cooperatively Promote Resistance to 5-Aza-2′-deoxycytidine (Decitabine) and Midostaurin (PKC412) in Lung Cancer Cells*

    PubMed Central

    Yan, Fei; Shen, Na; Pang, Jiuxia; Molina, Julian R.; Yang, Ping; Liu, Shujun

    2015-01-01

    Lung cancer cells are sensitive to 5-aza-2′-deoxycytidine (decitabine) or midostaurin (PKC412), because decitabine restores the expression of methylation-silenced tumor suppressor genes, whereas PKC412 inhibits hyperactive kinase signaling, which is essential for cancer cell growth. Here, we demonstrated that resistance to decitabine (decitabineR) or PKC412 (PKC412R) eventually results from simultaneously remethylated DNA and reactivated kinase cascades. Indeed, both decitabineR and PKC412R displayed the up-regulation of DNA methyltransferase DNMT1 and tyrosine-protein kinase KIT, the enhanced phosphorylation of KIT and its downstream effectors, and the increased global and gene-specific DNA methylation with the down-regulation of tumor suppressor gene epithelial cadherin CDH1. Interestingly, decitabineR and PKC412R had higher capability of colony formation and wound healing than parental cells in vitro, which were attributed to the hyperactive DNMT1 or KIT, because inactivation of KIT or DNMT1 reciprocally blocked decitabineR or PKC412R cell proliferation. Further, DNMT1 knockdown sensitized PKC412R cells to PKC412; conversely, KIT depletion synergized with decitabine in eliminating decitabineR. Importantly, when engrafted into nude mice, decitabineR and PKC412R had faster proliferation with stronger tumorigenicity that was caused by the reactivated KIT kinase signaling and further CDH1 silencing. These findings identify functional cross-talk between KIT and DNMT1 in the development of drug resistance, implying the reciprocal targeting of protein kinases and DNA methyltransferases as an essential strategy for durable responses in lung cancer. PMID:26085088

  20. Characterization of decomposition products and preclinical and low dose clinical pharmacokinetics of decitabine (5-aza-2'-deoxycytidine) by a new liquid chromatography/tandem mass spectrometry quantification method.

    PubMed

    Liu, Zhongfa; Marcucci, Guido; Byrd, John C; Grever, Michael; Xiao, Jim; Chan, Kenneth K

    2006-01-01

    Aberrant DNA methylation patterns resulting in gene transcriptional repression are observed in numerous cancers. Decitabine, a DNA methyltransferase inhibitor, is being clinically evaluated in patients with hematologic malignancies and solid tumors. Decitabine is rather unstable and decomposes to 1-beta-D-2'-deoxyribofuranosyl-3-guanylurea under basic conditions and several additional unknown products under neutral conditions. This has greatly limited application of pharmacokinetic assays to clinical development of decitabine. In this paper, a high-performance liquid chromatography/ultraviolet multi-stage mass spectrometry (HPLC-UV-MSn) study of the decomposition of decitabine in water and human plasma revealed that these previously unknown products are isomers of the intermediates formyl-1-beta-D-2'-deoxyribofuranosyl-3-guanylurea and 1-beta-D-2'-deoxyribofuranosyl-3-guanylurea. A HPLC tandem mass spectrometry (MS/MS) method for the determination of decitabine concentrations in human and rat plasma has been developed. This method was based on a specific fragmentation pathway of the molecular ion of decitabine at m/z 229 to generate a unique fragment ion at m/z 113 under collision-induced dissociation. Separation of decitabine and the stable internal standard dihydro-5-aza-cytidine from the endogenous interfering substance in plasma extract was carried out on a C18 Aquasil column under an isocratic elution with a mobile phase consisting of 5% water/acetonitrile and 10 mM ammonium formate. The detection of decitabine was via selected reaction monitoring (SRM, 229 > 113), and its ionization was enhanced by post-column addition of acetonitrile. Effects of sample preparation and handling parameters on the stability of decitabine were also evaluated in human plasma at various temperatures. The accuracy and precision of this assay showed a coefficient of variation of <15% over the range of 0.5-25 ng for rat plasma and 0.1-25 ng for human plasma injected on-column. Pharmacokinetics of decitabine in rats following intravenous doses of 1.0 and 5.0 mg/kg were characterized. In the rat, plasma concentration-time profiles were found to follow a biexponential decline and the pharmacokinetics was dose-independent. Application of this decitabine pharmacokinetic assay to human studies is therefore justified and ongoing.

  1. Scriptaid and 5-aza-2'deoxycytidine enhanced expression of pluripotent genes and in vitro developmental competence in interspecies Black-footed cat cloned embryos

    USGS Publications Warehouse

    Gómez, M. C.; Biancardi, M.N.; Jenkins, J.A.; Dumas, C.; Galiguis, J.; Wang, G.; Earle Pope, C.

    2012-01-01

    Somatic cell nuclear transfer offers the possibility of preserving endangered species including the black-footed cat, which is threatened with extinction. The effectiveness and efficiency of somatic cell nuclear transfer (SCNT) depends on a variety of factors, but 'inappropriate epigenetic reprogramming of the transplanted nucleus is the primary cause of the developmental failure of cloned embryos. Abnormal epigenetic events such as DNA methylation and histone modifications during SCNT perturb the expression of imprinted and pluripotent-related genes that, consequently, may result in foetal and neonatal abnormalities. We have demonstrated that pregnancies can be established after transfer of black-footed cat cloned embryos into domestic cat recipients, but none of the implanted embryos developed to term and the foetal failure has been associated to aberrant reprogramming in cloned embryos. There is growing evidence that modifying the epigenetic pattern of the chromatin template of both donor cells and reconstructed embryos with a combination of inhibitors of histone deacetylases and DNA methyltransferases results in enhanced gene reactivation and improved in vitro and in vivo developmental competence. Epigenetic modifications of the chromatin template of black-footed cat donor cells and reconstructed embryos with epigenetic-modifying compounds enhanced in vitro development, and regulated the expression of pluripotent genes, but these epigenetic modifications did not improve in vivo developmental competence.

  2. All-trans retinoic acid combined with 5-Aza-2 Prime -deoxycitidine induces C/EBP{alpha} expression and growth inhibition in MLL-AF9-positive leukemic cells

    SciTech Connect

    Fujiki, Atsushi; Imamura, Toshihiko; Sakamoto, Kenichi; Kawashima, Sachiko; Yoshida, Hideki; Hirashima, Yoshifumi; Miyachi, Mitsuru; Yagyu, Shigeki; Nakatani, Takuya; Sugita, Kanji; Hosoi, Hajime

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer We tested whether ATRA and 5-Aza affect AML cell differentiation and growth. Black-Right-Pointing-Pointer Cell differentiation and growth arrest were induced in MLL-AF9-expressing cells. Black-Right-Pointing-Pointer Increased expression of C/EBP{alpha}, C/EBP{epsilon}, and PU.1 were also observed. Black-Right-Pointing-Pointer MLL-AF4/AF5q31-expressing cells are less sensitive to ATRA and 5-Aza. Black-Right-Pointing-Pointer Different MLL fusion has distinct epigenetic properties related to RA pathway. -- Abstract: The present study tested whether all-trans retinoic acid (ATRA) and 5-Aza-2 Prime -deoxycitidine (5-Aza) affect AML cell differentiation and growth in vitro by acting on the CCAAT/enhancer binding protein {alpha} (C/EBP{alpha}) and c-Myc axis. After exposure to a combination of these agents, cell differentiation and growth arrest were significantly higher in human and murine MLL-AF9-expressing cells than in MLL-AF4/AF5q31-expressing cells, which were partly associated with increased expression of C/EBP{alpha}, C/EBP{epsilon}, and PU.1, and decreased expression of c-Myc. These findings indicate that MLL-AF9-expressing cells are more sensitive to ATRA and 5-Aza, indicating that different MLL fusion proteins possess different epigenetic properties associated with retinoic acid pathway inactivation.

  3. Deoxycytidine in human plasma: potential for protecting leukemic cells during chemotherapy.

    PubMed

    Cohen, J D; Strock, D J; Teik, J E; Katz, T B; Marcel, P D

    1997-06-24

    Degradation of DNA produces deoxycytidine. Metabolism of deoxycytidine to dCTP inhibits phosphorylation of cytosine arabinoside (araC), fludarabine (FaraA) and 2-chlorodeoxyadenosine (CdA) by deoxycytidine kinase. This study measured plasma deoxycytidine in healthy adults and two leukemia patients and then determined how clinically relevant deoxycytidine levels would affect drug toxicity in human leukemia and lymphoma cells. Deoxycytidine was well below 0.05 microM in ten healthy persons. In the leukemia patients it was <0.05 and 0.44 microM before chemotherapy, rising to 10.3 and 5.5 microM during treatment. A broad range of clinically relevant deoxycytidine levels were high enough to profoundly decrease araC, FaraA and CdA toxicity in MOLT3, CA46 and HL60 leukemia/lymphoma cells and to change dCTP, DNA synthesis and drug incorporation into DNA in a manner consistent with prior mechanistic studies. Varying deoxycytidine levels could be an important factor influencing leukemia therapy.

  4. Treatment of nuclear-donor cells or cloned zygotes with chromatin-modifying agents increases histone acetylation but does not improve full-term development of cloned cattle.

    PubMed

    Sangalli, Juliano Rodrigues; De Bem, Tiago Henrique Camara; Perecin, Felipe; Chiaratti, Marcos Roberto; Oliveira, Lilian de Jesus; de Araújo, Reno Roldi; Valim Pimentel, José Rodrigo; Smith, Lawrence Charles; Meirelles, Flávio Vieira

    2012-06-01

    Although somatic cell nuclear transfer (SCNT) is a promising tool, its potential use is hampered by the high mortality rates during the development to term of cloned offspring. Abnormal epigenetic reprogramming of donor nuclei after SCNT is thought to be the main cause of this low efficiency. We hypothesized that chromatin-modifying agents (CMAs) targeting chromatin acetylation and DNA methylation could alter the chromatin configuration and turn them more amenable to reprogramming. Thus, bovine fibroblasts were treated with 5-aza-2'-deoxycytidine (AZA) plus trichostatin (TSA) or hydralazine (HH) plus valproic acid (VPA) whereas, in another trial, cloned bovine zygotes were treated with TSA. The treatment of fibroblasts with either AZA+TSA or HH+VPA increased histone acetylation, but did not affect the level of DNA methylation. However, treatment with HH+VPA decreased cellular viability and proliferation. The use of these cells as nuclear donors showed no positive effect on pre- and postimplantation development. Regarding the treatment of cloned zygotes with TSA, treated one-cell embryos showed an increase in the acetylation patterns, but not in the level of DNA methylation. Moreover, this treatment revealed no positive effect on pre- and postimplantation development. This work provides evidence the treatment of either nuclear donor cells or cloned zygotes with CMAs has no positive effect on pre- and postimplantation development of cloned cattle.

  5. Continuous Zebularine Treatment Effectively Sustains Demethylation in Human Bladder Cancer Cells

    PubMed Central

    Cheng, Jonathan C.; Weisenberger, Daniel J.; Gonzales, Felicidad A.; Liang, Gangning; Xu, Guo-Liang; Hu, Ye-Guang; Marquez, Victor E.; Jones, Peter A.

    2004-01-01

    During tumorigenesis, tumor suppressor and cancer-related genes are commonly silenced by aberrant DNA methylation in their promoter regions. Recently, we reported that zebularine [1-(β-d-ribofuranosyl)-1,2-dihydropyrimidin-2-one] acts as an inhibitor of DNA methylation and exhibits chemical stability and minimal cytotoxicity both in vitro and in vivo. Here we show that continuous application of zebularine to T24 cells induces and maintains p16 gene expression and sustains demethylation of the 5′ region for over 40 days, preventing remethylation. In addition, continuous zebularine treatment effectively and globally demethylated various hypermethylated regions, especially CpG-poor regions. The drug caused a complete depletion of extractable DNA methyltransferase 1 (DNMT1) and partial depletion of DNMT3a and DNMT3b3. Last, sequential treatment with 5-aza-2′-deoxycytidine followed by zebularine hindered the remethylation of the p16 5′ region and gene resilencing, suggesting the possible combination use of both drugs as a potential anticancer regimen. PMID:14729971

  6. Quantitative Targeted Proteomics of Pancreatic Cancer: Deoxycytidine Kinase Protein Level Correlates to Progression-Free Survival of Patients Receiving Gemcitabine Treatment.

    PubMed

    Ohmine, Ken; Kawaguchi, Kei; Ohtsuki, Sumio; Motoi, Fuyuhiko; Ohtsuka, Hideo; Kamiie, Junichi; Abe, Takaaki; Unno, Michiaki; Terasaki, Tetsuya

    2015-09-01

    The purpose of the present study is to identify the determinant(s) of gemcitabine (dFdC)-sensitivity in pancreatic cancer tissues of patients treated with dFdC alone and in pancreatic cancer cell lines exposed to dFdC in vitro. Protein expression levels of 12 enzymes and 13 transporters potentially involved in transport and metabolism of dFdC in pancreatic cancer cell lines and tissues were quantified by means of our LC-MS/MS-based quantitative targeted proteomics technology. Protein expression levels of deoxycytidine kinase (dCK), uridine monophosphate-cytidine monophosphate (UMP-CMP) kinase, cytosolic nucleotidase III (cN-III), and equilibrative nucleoside transporter 1 (ENT1) were significantly correlated with IC50 or 1/IC50 in five cell lines with different sensitivities to dFdC (p < 0.05). Expression levels of the selected proteins in pancreatic cancer tissues of 10 patients with different progression-free survival (PFS) (49-955 days) were quantified, and their relationship with PFS was examined. Only the protein expression level of dCK was significantly correlated with PFS (p < 0.05). Multiple regression analysis was also performed, and combinations of ENT1, UMP-CMP kinase, CTPS1, and dCK were highly correlated with PFS. Our results indicate that the protein expression level of dCK in pancreatic cancer tissue is a good predictor of PFS, and thus dCK may be the best biomarker of dFdC sensitivity in pancreatic cancer patients treated with dFdC, although other proteins would also contribute to dFdC-sensitivity at the cellular level in vivo and in vitro.

  7. Quantification of 5-methyl-2'-deoxycytidine in the DNA.

    PubMed

    Giel-Pietraszuk, Małgorzata; Insińska-Rak, Małgorzata; Golczak, Anna; Sikorski, Marek; Barciszewska, Mirosława; Barciszewski, Jan

    2015-01-01

    Methylation at position 5 of cytosine (Cyt) at the CpG sequences leading to formation of 5-methyl-cytosine (m(5)Cyt) is an important element of epigenetic regulation of gene expression. Modification of the normal methylation pattern, unique to each organism, leads to the development of pathological processes and diseases, including cancer. Therefore, quantification of the DNA methylation and analysis of changes in the methylation pattern is very important from a practical point of view and can be used for diagnostic purposes, as well as monitoring of the treatment progress. In this paper we present a new method for quantification of 5-methyl-2'deoxycytidine (m(5)C) in the DNA. The technique is based on conversion of m(5)C into fluorescent 3,N(4)-etheno-5-methyl-2'deoxycytidine (εm(5)C) and its identification by reversed-phase high-performance liquid chromatography (RP-HPLC). The assay was used to evaluate m(5)C concentration in DNA of calf thymus and peripheral blood of cows bred under different conditions. This approach can be applied for measuring of 5-methylcytosine in cellular DNA from different cells and tissues. PMID:26098716

  8. Chemical synthesis of 2'-deoxyoligonucleotides containing 5-fluoro-2'-deoxycytidine.

    PubMed Central

    Schmidt, S; Pein, C D; Fritz, H J; Cech, D

    1992-01-01

    2'-Deoxyoligonucleotides with 5-fluorocytosine residues incorporated at specific positions of the nucleotide sequence are tools of great potential in the study of the catalytic mechanism by which DNA cytosine methyltransferases methylate the 5-position of DNA cytosine residues in specific sequence contexts. Chemical synthesis of such oligonucleotides is described. Two alternative approaches have been developed, one of which proceeds via a fully protected phosphoramidite of 5-fluoro-4-methylmercapto-2'-deoxyuridine 2, the other via a fully protected phosphoramidite of 5-fluoro-2'-deoxycytidine 3. Either building block can be used in automated oligonucleotide synthesis applying standard elongation cycles and deprotection procedures exclusively. The methylmercapto function of 2 is replaced by an amino group in the final ammonia treatment used for cleavage from support and base deprotection. PMID:1598200

  9. Sequential treatment of CD34+ cells from patients with primary myelofibrosis with chromatin-modifying agents eliminate JAK2V617F-positive NOD/SCID marrow repopulating cells.

    PubMed

    Wang, Xiaoli; Zhang, Wei; Tripodi, Joseph; Lu, Min; Xu, Mingjiang; Najfeld, Vesna; Li, Yan; Hoffman, Ronald

    2010-12-23

    Because primary myelofibrosis (PMF) originates at the level of the pluripotent hematopoietic stem cell (HSC), we examined the effects of various therapeutic agents on the in vitro and in vivo behavior of PMF CD34(+) cells. Treatment of PMF CD34(+) cells with chromatin-modifying agents (CMAs) but not hydroxyurea, Janus kinase 2 (JAK2) inhibitors, or low doses of interferon-α led to the generation of greater numbers of CD34(+) chemokine (C-X-C motif) receptor (CXCR)4(+) cells, which were capable of migrating in response to chemokine (C-X-C motif) ligand (CXCL)12 and resulted in a reduction in the proportion of hematopoietic progenitor cells (HPCs) that were JAK2V617F(+). Furthermore, sequential treatment of PMF CD34(+) cells but not normal CD34(+) cells with decitabine (5-aza-2'-deoxycytidine [5azaD]), followed by suberoylanilide hydroxamic acid (SAHA; 5azaD/SAHA), or trichostatin A (5azaD/TSA) resulted in a higher degree of apoptosis. Two to 6 months after the transplantation of CMAs treated JAK2V617F(+) PMF CD34(+) cells into nonobese diabetic/severe combined immunodeficient (SCID)/IL-2Rγ(null) mice, the percentage of JAK2V617F/JAK2(total) in human CD45(+) marrow cells was dramatically reduced. These findings suggest that both PMF HPCs, short-term and long-term SCID repopulating cells (SRCs), are JAK2V617F(+) and that JAK2V617F(+) HPCs and SRCs can be eliminated by sequential treatment with CMAs. Sequential treatment with CMAs, therefore, represents a possible effective means of treating PMF at the level of the malignant SRC.

  10. Radioimmunoassays of plasma thymidine, uridine, deoxyuridine, and cytidine/deoxycytidine

    SciTech Connect

    Dudman, N.P.B.; Deveski, W.B.; Tattersall, M.H.N.

    1981-08-01

    Radioimmunoassay techniques have been developed for the assay of thymidine, uridine, deoxyuridine, and deoxycytidine. Plasma levels of the first three nucleosides have been measured, and an upper limit has been determined for the plasma concentration of deoxycytidine. The assays involve displacement of a (3H)pyrimidine nucleoside from the appropriate labeled rabbit immunoglobulin. By assaying a mixture of uridine and deoxyuridine in the presence and absence of borax, the concentrations of both nucleosides have been measured. In seven healthy adults, plasma levels of uridine were 21.1 +/- 8.4 ..mu..M (mean +/- SD) and of deoxyuridine were 0.62 +/- 0.39 ..mu..M. In cancer patients, thymidine levels were 7.5 +/- 2.7 x 10/sup -7/M. The upper limit for plasma deoxycytidine levels in six healthy adults was 0.71 +/- 0.1 ..mu..M.

  11. Remodeling of DNA Methylation and Phenotypic and Transcriptional Changes in Synthetic Arabidopsis Allotetraploids1

    PubMed Central

    Madlung, Andreas; Masuelli, Ricardo W.; Watson, Brian; Reynolds, Steve H.; Davison, Jerry; Comai, Luca

    2002-01-01

    The joining of different genomes in allotetraploids played a major role in plant evolution, but the molecular implications of this event are poorly understood. In synthetic allotetraploids of Arabidopsis and Cardaminopsis arenosa, we previously demonstrated the occurrence of frequent gene silencing. To explore the involvement of epigenetic phenomena, we investigated the occurrence and effects of DNA methylation changes. Changes in DNA methylation patterns were more frequent in synthetic allotetraploids than in the parents. Treatment with 5-aza-2′-deoxycytidine, an inhibitor of DNA methyltransferase, resulted in the development of altered morphologies in the synthetic allotetraploids, but not in the parents. We profiled mRNAs in control and 5-aza-2′-deoxycytidine-treated parents and allotetraploids by amplified fragment length polymorphism-cDNA. We show that DNA demethylation induced and repressed two different transcriptomes. Our results are consistent with the hypothesis that synthetic allotetraploids have compromised mechanisms of epigenetic gene regulation. PMID:12068115

  12. Preclinical studies of 5-fluoro-2'-deoxycytidine and tetrahydrouridine in pediatric brain tumors.

    PubMed

    Morfouace, Marie; Nimmervoll, Birgit; Boulos, Nidal; Patel, Yogesh T; Shelat, Anang; Freeman, Burgess B; Robinson, Giles W; Wright, Karen; Gajjar, Amar; Stewart, Clinton F; Gilbertson, Richard J; Roussel, Martine F

    2016-01-01

    Chemotherapies active in preclinical studies frequently fail in the clinic due to lack of efficacy, which limits progress for rare cancers since only small numbers of patients are available for clinical trials. Thus, a preclinical drug development pipeline was developed to prioritize potentially active regimens for pediatric brain tumors spanning from in vitro drug screening, through intracranial and intra-tumoral pharmacokinetics to in vivo efficacy studies. Here, as an example of the pipeline, data are presented for the combination of 5-fluoro-2'-deoxycytidine and tetrahydrouridine in three pediatric brain tumor models. The in vitro activity of nine novel therapies was tested against tumor spheres derived from faithful mouse models of Group 3 medulloblastoma, ependymoma, and choroid plexus carcinoma. Agents with the greatest in vitro potency were then subjected to a comprehensive series of in vivo pharmacokinetic (PK) and pharmacodynamic (PD) studies culminating in preclinical efficacy trials in mice harboring brain tumors. The nucleoside analog 5-fluoro-2'-deoxycytidine (FdCyd) markedly reduced the proliferation in vitro of all three brain tumor cell types at nanomolar concentrations. Detailed intracranial PK studies confirmed that systemically administered FdCyd exceeded concentrations in brain tumors necessary to inhibit tumor cell proliferation, but no tumor displayed a significant in vivo therapeutic response. Despite promising in vitro activity and in vivo PK properties, FdCyd is unlikely to be an effective treatment of pediatric brain tumors, and therefore was deprioritized for the clinic. Our comprehensive and integrated preclinical drug development pipeline should reduce the attrition of drugs in clinical trials. PMID:26518542

  13. 3'-Azido-2',3'-dideoxythymidine induced deficiency of thymidine kinases 1, 2 and deoxycytidine kinase in H9 T-lymphoid cells.

    PubMed

    Gröschel, Bettina; Kaufmann, Andreas; Höver, Gerold; Cinatl, Jaroslav; Doerr, Hans Wilhelm; Noordhuis, Paul; Loves, Willem J P; Peters, Godefridus J; Cinatl, Jindrich

    2002-07-15

    Continuous cultivation of T-lymphoid H9 cells in the presence of 3'-azido-2',3'-dideoxythymidine (AZT) resulted in a cell variant cross-resistant to both thymidine and deoxycytidine analogs. Cytotoxic effects of AZT, 2',3'-didehydro-3'-deoxythymidine as well as different deoxycytidine analogs such as 2',3'-dideoxycytidine, 2',2'-difluoro-2'-deoxycytidine (dFdC) and 1-ss-D-arabinofuranosylcytosine (Ara-C) were strongly reduced in H9 cells continuously exposed to AZT when compared to parental cells (>8.3-, >6.6-, >9.1-, 5 x 10(4)-, 5 x 10(3)-fold, respectively). Moreover, anti-HIV-1 effects of AZT, d4T, ddC and 2',3'-dideoxy-3'-thiacytidine (3TC) were significantly diminished (>222-, >25-, >400-, >200-fold, respectively) in AZT-resistant H9 cells. Study of cellular mechanisms responsible for cross-resistance to pyrimidine analogs in AZT-resistant H9 cells revealed decreased mRNA levels of thymidine kinase 1 (TK1) and lack of deoxycytidine kinase (dCK) mRNA expression. The loss of dCK gene expression was confirmed by western blot analysis of dCK protein as well as dCK enzyme activity assay. Moreover, enzyme activity of TK1 and TK2 was reduced in AZT-resistant cells. In order to determine whether lack of dCK affected the formation of the active triphosphate of the deoxycytidine analog dFdC, dFdCTP accumulation and retention was measured in H9 parental and AZT-resistant cells after exposure to 1 and 10 microM dFdC. Parental H9 cells accumulated about 30 and 100 pmol dFdCTP/10(6) cells after 4hr, whereas in AZT-resistant cells no dFdCTP accumulation was detected. These results demonstrate that continuous treatment of H9 cells in the presence of AZT selected for a thymidine analog resistant cell variant with cross-resistance to deoxycytidine analogs, due to deficiency in TK1, TK2, and dCK.

  14. [18F]CFA as a clinically translatable probe for PET imaging of deoxycytidine kinase activity

    PubMed Central

    Kim, Woosuk; Le, Thuc M.; Wei, Liu; Poddar, Soumya; Bazzy, Jimmy; Wang, Xuemeng; Uong, Nhu T.; Abt, Evan R.; Capri, Joseph R.; Austin, Wayne R.; Van Valkenburgh, Juno S.; Steele, Dalton; Gipson, Raymond M.; Slavik, Roger; Cabebe, Anthony E.; Taechariyakul, Thotsophon; Yaghoubi, Shahriar S.; Lee, Jason T.; Sadeghi, Saman; Lavie, Arnon; Faull, Kym F.; Witte, Owen N.; Donahue, Timothy R.; Phelps, Michael E.; Herschman, Harvey R.; Herrmann, Ken; Czernin, Johannes; Radu, Caius G.

    2016-01-01

    Deoxycytidine kinase (dCK), a rate-limiting enzyme in the cytosolic deoxyribonucleoside (dN) salvage pathway, is an important therapeutic and positron emission tomography (PET) imaging target in cancer. PET probes for dCK have been developed and are effective in mice but have suboptimal specificity and sensitivity in humans. To identify a more suitable probe for clinical dCK PET imaging, we compared the selectivity of two candidate compounds—[18F]Clofarabine; 2-chloro-2′-deoxy-2′-[18F]fluoro-9-β-d-arabinofuranosyl-adenine ([18F]CFA) and 2′-deoxy-2′-[18F]fluoro-9-β-d-arabinofuranosyl-guanine ([18F]F-AraG)—for dCK and deoxyguanosine kinase (dGK), a dCK-related mitochondrial enzyme. We demonstrate that, in the tracer concentration range used for PET imaging, [18F]CFA is primarily a substrate for dCK, with minimal cross-reactivity. In contrast, [18F]F-AraG is a better substrate for dGK than for dCK. [18F]CFA accumulation in leukemia cells correlated with dCK expression and was abrogated by treatment with a dCK inhibitor. Although [18F]CFA uptake was reduced by deoxycytidine (dC) competition, this inhibition required high dC concentrations present in murine, but not human, plasma. Expression of cytidine deaminase, a dC-catabolizing enzyme, in leukemia cells both in cell culture and in mice reduced the competition between dC and [18F]CFA, leading to increased dCK-dependent probe accumulation. First-in-human, to our knowledge, [18F]CFA PET/CT studies showed probe accumulation in tissues with high dCK expression: e.g., hematopoietic bone marrow and secondary lymphoid organs. The selectivity of [18F]CFA for dCK and its favorable biodistribution in humans justify further studies to validate [18F]CFA PET as a new cancer biomarker for treatment stratification and monitoring. PMID:27035974

  15. Synthesis and spectral characterization of environmentally responsive fluorescent deoxycytidine analogs

    PubMed Central

    Elmehriki, Adam AH; Suchý, Mojmír; Chicas, Kirby J; Wojciechowski, Filip; Hudson, Robert HE

    2014-01-01

    Herein, we describe the synthesis and spectroscopic properties of five novel pyrrolodeoxycytidine analogs, and the related 5-(1-pyrenylethynyl)-2’-deoxycytidine analog; as well as fluorescence characterization of 5-(p-methoxyphenylethynyl)-2’-deoxyuridine. Within this series of compounds, rigidification of the structure from 6-phenylpyrrolodeoxycytidine to 5,6-benzopyrroldeoxycytidine made remarkable improvement of the fluorescence quantum yield (Φ ~1, EtOH) and substantially increased the Stokes shift. Exchange of the phenyl group of 6-phenylpyrrolodeoxycytidine for other heterocycles (benzofuryl or indolyl) produced an increase in the extinction coefficient at the excitation wavelength while preserving high quantum yields. The steady-state fluorescence response to the environment was determined by sensitivity of Stokes shift to solvent polarity. The effect of solvent polarity on fluorescence emission intensity was concurrently examined and showed that 5,6-benzopyrrolodeoxycytidine is highly sensitive to the presence of water. On the other hand, the previously synthesized 5-(p-methoxyphenylethynyl)-2’-deoxyuridine was found to be sensitive to solvent viscosity indicating molecular rotor behavior. PMID:25483932

  16. Zebrafish AID is capable of deaminating methylated deoxycytidines

    PubMed Central

    Abdouni, Hala; King, Justin J.; Suliman, Mussa; Quinlan, Matthew; Fifield, Heather; Larijani, Mani

    2013-01-01

    Activation-induced cytidine deaminase (AID) deaminates deoxycytidine (dC) to deoxyuracil (dU) at immunoglobulin loci in B lymphocytes to mediate secondary antibody diversification. Recently, AID has been proposed to also mediate epigenetic reprogramming by demethylating methylated cytidines (mC) possibly through deamination. AID overexpression in zebrafish embryos was shown to promote genome demethylation through G:T lesions, implicating a deamination-dependent mechanism. We and others have previously shown that mC is a poor substrate for human AID. Here, we examined the ability of bony fish AID to deaminate mC. We report that zebrafish AID was unique among all orthologs in that it efficiently deaminates mC. Analysis of domain-swapped and mutant AID revealed that mC specificity is independent of the overall high-catalytic efficiency of zebrafish AID. Structural modeling with or without bound DNA suggests that efficient deamination of mC by zebrafish AID is likely not due to a larger catalytic pocket allowing for better fit of mC, but rather because of subtle differences in the flexibility of its structure. PMID:23585279

  17. DNA hypomethylation upregulates expression of the MGAT3 gene in HepG2 cells and leads to changes in N-glycosylation of secreted glycoproteins

    PubMed Central

    Klasić, Marija; Krištić, Jasminka; Korać, Petra; Horvat, Tomislav; Markulin, Dora; Vojta, Aleksandar; Reiding, Karli R.; Wuhrer, Manfred; Lauc, Gordan; Zoldoš, Vlatka

    2016-01-01

    Changes in N-glycosylation of plasma proteins are observed in many types of cancer, nevertheless, few studies suggest the exact mechanism involved in aberrant protein glycosylation. Here we studied the impact of DNA methylation on the N-glycome in the secretome of the HepG2 cell line derived from hepatocellular carcinoma (HCC). Since the majority of plasma glycoproteins originate from the liver, the HepG2 cells represent a good model for glycosylation changes in HCC that are detectable in blood, which is an easily accessible analytic material in a clinical setting. Two different concentrations of 5-aza-2′-deoxycytidine (5-aza-2dC) differentially affected global genome methylation and induced different glycan changes. Around twenty percent of 84 glyco-genes analysed changed expression level after the 5-aza-2dC treatment as a result of global genome hypomethylation. A correlation study between the changes in glyco-gene expression and the HepG2 glycosylation profile suggests that the MGAT3 gene might be responsible for the glycan changes consistently induced by both doses of 5-aza-2dC. Core-fucosylated tetra-antennary structures were decreased in quantity likely as a result of hypomethylated MGAT3 gene promoter followed by increased expression of this gene. PMID:27073020

  18. Resistance to gemcitabine in a human follicular lymphoma cell line is due to partial deletion of the deoxycytidine kinase gene

    PubMed Central

    Galmarini, Carlos María; Clarke, Marilyn L; Jordheim, Lars; Santos, Cheryl L; Cros, Emeline; Mackey, John R; Dumontet, Charles

    2004-01-01

    Background Gemcitabine is an analogue of deoxycytidine with activity against several solid tumors. In order to elucidate the mechanisms by which tumor cells become resistant to gemcitabine, we developed the resistant subline RL-G from the human follicular lymphoma cell line RL-7 by prolonged exposure of parental cells to increasing concentrations of gemcitabine. Results In vitro, the IC50 increased from 0.015 μM in parental RL-7 cells to 25 μM in the resistant variant, RL-G. Xenografts of both cell lines developed in nude mice were treated with repeated injections of gemcitabine. Under conditions of gemcitabine treatment which totally inhibited the development of RL-7 tumors, RL-G derived tumors grew similarly to those of untreated animals, demonstrating the in vivo resistance of RL-G cells to gemcitabine. HPLC experiments showed that RL-G cells accumulated and incorporated less gemcitabine metabolites into DNA and RNA than RL-7 cells. Gemcitabine induced an S-phase arrest in RL-7 cells but not in RL-G cells. Exposure to gemcitabine induced a higher degree of apoptosis in RL-7 than in RL-G cells, with poly-(ADP-ribose) polymerase cleavage in RL-7 cells. No modifications of Bcl-2 nor of Bax expression were observed in RL-7 or RL-G cells exposed to gemcitabine. These alterations were associated with the absence of the deoxycytidine kinase mRNA expression observed by quantitative RT-PCR in RL-G cells. PCR amplification of désoxycytidine kinase gene exons showed a partial deletion of the dCK gene in RL-G cells. Conclusions These results suggest that partial deletion of the dCK gene observed after selection in the presence of gemcitabine is involved with resistance to this agent both in vitro and in vivo. PMID:15157282

  19. Characterization of a novel resistance-related deoxycytidine deaminase from Brassica oleracea var. capitata.

    PubMed

    Shibu, Marthandam Asokan; Yang, Hsueh-Hui; Lo, Chaur-Tsuen; Lin, Hong-Shin; Liu, Shu-Ying; Peng, Kou-Cheng

    2014-02-26

    Brassica oleracea deoxycytidine deaminase (BoDCD), a deoxycytidine deaminase (DCD, EC 3.5.4.14) enzyme, is known to play an important role in the Trichoderma harzianum ETS 323 mediated resistance mechanism in young leaves of B. oleracea var. capitata during Rhizoctonia solani infection. BoDCD potentially neutralizes cytotoxic products of host lipoxygenase activity, and thereby BoDCD restricts the hypersensitivity-related programmed cell death induced in plants during the initial stages of infection. To determine the biochemical characteristics and to partially elucidate the designated functional properties of BoDCD, the enzyme was cloned into an Escherichia coli expression system, and its potential to neutralize the toxic analogues of 2'-deoxycytidine (dC) was examined. BoDCD transformants of E. coli cells were found to be resistant to 2'-deoxycytidine analogues at all of the concentrations tested. The BoDCD enzyme was also overexpressed as a histidine-tagged protein and purified using nickel chelating affinity chromatography. The molecular weight of BoDCD was determined to be 20.8 kDa as visualized by SDS-PAGE. The substrate specificity and other kinetic properties show that BoDCD is more active in neutralizing cytotoxic cytosine β-d-arabinofuranoside than in deaminating 2'-deoxycytinde to 2'-deoxyuridine in nucleic acids or in metabolizing cytidine to uridine. The optimal temperature and pH of the enzyme were 27 °C and 7.5. The Km and Vmax values of BoDCD were, respectively, 91.3 μM and 1.475 mM for its natural substrate 2'-deoxycytidine and 63 μM and 2.072 mM for cytosine β-d-arabinofuranoside. The phenomenon of neutralization of cytotoxic dC analogues by BoDCD is discussed in detail on the basis of enzyme biochemical properties.

  20. Potent Sensitisation of Cancer Cells to Anticancer Drugs by a Quadruple Mutant of the Human Deoxycytidine Kinase

    PubMed Central

    Winter, Flore; Kretzschmar, Franziska K.; Brayé, Mélanie; Martin, Darren P.; Lener, Daniela; Negroni, Matteo

    2015-01-01

    Identifying enzymes that, once introduced in cancer cells, lead to an increased efficiency of treatment constitutes an important goal for biomedical applications. Using an original procedure whereby mutant genes are generated based on the use of conditional lentivector genome mobilisation, we recently described, for the first time, the identification of a human deoxycytidine kinase (dCK) mutant (G12) that sensitises a panel of cancer cell lines to treatment with the dCK analogue gemcitabine. Here, starting from the G12 variant itself, we generated a new library and identified a mutant (M36) that triggers even greater sensitisation to gemcitabine than G12. With respect to G12, M36 presents an additional mutation located in the region that constitutes the interface of the dCK dimer. The simple presence of this mutation halves both the IC50 and the proportion of residual cells resistant to the treatment. Furthermore, the use of vectors with self-inactivating LTRs leads to an increased sensitivity to treatment, a result compatible with a relief of the transcriptional interference exerted by the U3 promoter on the internal promoter that drives the expression of M36. Importantly, a remarkable effect is also observed in treatments with the anticancer compound cytarabine (AraC), for which a 10,000 fold decrease in IC50 occurred. By triggering the sensitisation of various cancer cell types with poor prognosis to two commonly used anticancer compounds M36 is a promising candidate for suicide gene approaches. PMID:26485161

  1. DNA containing 4'-thio-2'-deoxycytidine inhibits methylation by HhaI methyltransferase.

    PubMed Central

    Kumar, S; Horton, J R; Jones, G D; Walker, R T; Roberts, R J; Cheng, X

    1997-01-01

    4'-Thio-2'-deoxycytidine was synthesized as a 5'- protected phosphoramidite compatible with solid phase DNA synthesis. When incorporated as the target cytosine (C*) in the GC*GC recognition sequence for the DNA methyltransferase M. HhaI, methyl transfer was strongly inhibited. In contrast, these same oligonucleotides were normal substrates for the cognate restriction endonuclease R. HhaI and its isoschizomer R. Hin P1I. M. HhaI was able to bind both 4'-thio-modified DNA and unmodified DNA to equivalent extents under equilibrium conditions. However, the presence of 4'-thio-2'-deoxycytidine decreased the half-life of the complex by >10-fold. The crystal structure of a ternary complex of M. HhaI, AdoMet and DNA containing 4'-thio-2'-deoxycytidine was solved at 2.05 A resolution with a crystallographic R-factor of 0.186 and R-free of 0.231. The structure is not grossly different from previously solved ternary complexes containing M. HhaI, DNA and AdoHcy. The difference electron density suggests partial methylation at C5 of the flipped target 4'-thio-2'-deoxycytidine. The inhibitory effect of the 4'sulfur atom on enzymatic activity may be traced to perturbation of a step in the methylation reaction after DNA binding but prior to methyl transfer. This inhibitory effect can be partially overcome after a considerably long time in the crystal environment where the packing prevents complex dissociation and the target is accurately positioned within the active site. PMID:9207024

  2. Novel DNA methyltransferase-1 (DNMT1) depleting anticancer nucleosides, 4′-thio-2′-deoxycytidine and 5-aza-4′-thio-2′-deoxycytidine

    PubMed Central

    Sambandam, Vijaya; Allan, Paula W.; Maddry, Joseph A.; Maxuitenko, Yulia Y.; Tiwari, Kamal; Hollingshead, Melinda

    2014-01-01

    Purpose Currently approved DNA hypomethylating nucleosides elicit their effects in part by depleting DNA methyltransferase I (DNMT1). However, their low response rates and adverse effects continue to drive the discovery of newer DNMT1 depleting agents. Herein, we identified two novel 2′-deoxycytidine (dCyd) analogs, 4′-thio-2′-deoxycytidine (T-dCyd) and 5-aza-4′-thio-2′-deoxycytidine (aza-T-dCyd) that potently deplete DNMT1 in both in vitro and in vivo models of cancer and concomitantly inhibit tumor growth. Methods DNMT1 protein levels in in vitro and in vivo cancer models were determined by Western blotting and antitumor efficacy was evaluated using xenografts. Effects on CpG methylation were evaluated using methylation-specific PCR. T-dCyd metabolism was evaluated using radiolabeled substrate. Results T-dCyd markedly depleted DNMT1 in CCRF-CEM and Kg1a leukemia and nCI-H23 lung carcinoma cell lines, while it was ineffective in the HCt-116 colon or IgrOV-1 ovarian tumor lines. On the other hand, aza-T-dCyd potently depleted DNMT1 in all of these lines indicating that dCyd analogs with minor structural dissimilarities induce different DNMT1 turnover mechanisms. Although T-dCyd was deaminated to 4′-thio-2′-deoxyuridine, very little was converted to 4′-thio-thymidine nucleotides, suggesting that inhibition of thymidylate synthase would be minimal with 4′-thio dCyd analogs. Both T-dCyd and aza-T-dCyd also depleted DNMT1 in human tumor xenografts and markedly reduced in vivo tumor growth. Interestingly, the selectivity index of aza-T-dCyd was at least tenfold greater than that of decitabine. Conclusions Collectively, these data show that 4′-thio modified dCyd analogs, such as T-dCyd or aza-T-dCyd, could be a new source of clinically effective DNMT1 depleting anticancer compounds with less toxicity. PMID:24908436

  3. Fingerprinting DNA oxidation processes: IR characterization of the 5-methyl-2'-deoxycytidine radical cation.

    PubMed

    Bucher, Dominik B; Pilles, Bert M; Pfaffeneder, Toni; Carell, Thomas; Zinth, Wolfgang

    2014-02-24

    Methylated cytidine plays an important role as an epigenetic signal in gene regulation. Its oxidation products are assumed to be involved in active demethylation processes but also in damaging DNA. Here, we report the photochemical production of the 5-methyl-2'-deoxycytidine radical cation via a two-photon ionization process. The radical cation is detected by time-resolved IR spectroscopy and identified by band assignment using density functional theory calculations. Two final oxidation products are characterized with liquid chromatography coupled to mass spectrometry.

  4. Novel monoclonal antibody recognition of oxidative DNA damage adduct, deoxycytidine-glyoxal.

    PubMed

    Mistry, Nalini; Podmore, Ian; Cooke, Marcus; Butler, Paul; Griffiths, Helen; Herbert, Karl; Lunec, Joseph

    2003-02-01

    Glyoxal, a reactive aldehyde, is a decomposition product of lipid hydroperoxides, oxidative deoxyribose breakdown, or autoxidation of sugars, such as glucose. It readily forms DNA adducts, generating potential carcinogens such as glyoxalated deoxycytidine (gdC). A major drawback in assessing gdC formation in cellular DNA has been methodologic sensitivity. We have developed an mAb that specifically recognizes gdC. Balb/c mice were immunized with DNA, oxidatively modified by UVC/hydrogen peroxide in the presence of endogenous metal ions. Although UVC is not normally considered an oxidizing agent, a UVC/hydrogen peroxide combination may lead to glyoxalated bases arising from hydroxyl radical damage to deoxyribose. This damaging system was used to induce numerous oxidative lesions including glyoxal DNA modifications, from which resulted a number of clones. Clone F3/9/H2/G5 showed increased reactivity toward glyoxal-modified DNA greater than that of the immunizing antigen. ELISA unequivocally showed Ab recognition toward gdC, which was confirmed by gas chromatography-mass spectrometry of the derivatized adduct after formic acid hydrolysis to the modified base. Binding of Ab F3/9 with glyoxalated and untreated oligomers containing deoxycytidine, deoxyguanosine, thymidine, and deoxyadenosine assessed by ELISA produced significant recognition (p > 0.0001) of glyoxal-modified deoxycytidine greater than that of untreated oligomer. Additionally, inhibition ELISA studies using the glyoxalated and native deoxycytidine oligomer showed increased recognition for gdC with more than a 5-fold difference in IC(50) values. DNA modified with increasing levels of iron (II)/EDTA produced a dose-dependent increase in Ab F3/9 binding. This was reduced in the presence of catalase or aminoguanidine. We have validated the potential of gdC as a marker of oxidative DNA damage and showed negligible cross-reactivity with 8-oxo-2'-deoxyguanosine or malondialdehyde-modified DNA as well as its

  5. Indoxyl Sulfate Enhance the Hypermethylation of Klotho and Promote the Process of Vascular Calcification in Chronic Kidney Disease

    PubMed Central

    Chen, Jing; Zhang, Xiaoyan; Zhang, Han; Liu, Tongqiang; Zhang, Hui; Teng, Jie; Ji, Jun; Ding, Xiaoqiang

    2016-01-01

    Chronic kidney disease (CKD) is a state of Klotho deficiency. The Klotho expression may be suppressed due to DNA hypermethylation in cancer cells so we have investigated the effects and possible mechanisms by which Klotho expression is regulated in human aortic smooth muscle cells (HASMCs). The vascular Klotho hypermethylation in radial arteries of patients with end-stage renal disease was described. Cultured HASMCs and 5/6-nephrectomized Sprague Dawley (SD) rats treated with indoxyl sulfate (IS) were used as in vitro and in vivo models, respectively. IS increased CpG hypermethylation of the Klotho gene and decreased Klotho expression in HASMCs, and potentiated HASMCs calcification. The expression of DNA methyltransferase (DNMT) 1 and 3a in HASMCs treated with IS was significantly increased and specific inhibition of DNA methyltransferase 1 by 5-aza-2'-deoxycytidine(5Aza-2dc) caused demethylation of the Klotho gene and increased Klotho expression. In rats, injection of IS potentiated vascular calcification, increased CpG hypermethylation of the Klotho gene and decreased Klotho expression in the aortic medial layer and all of these changes could be reverted by 5Aza-2dc treatment. Transcriptional suppression of vascular Klotho gene expression by IS and epigenetic modification of Klotho by IS may be an important pathological mechanism of vascular calcification in CKD. PMID:27766038

  6. Identification by UV resonance Raman spectroscopy of an imino tautomer of 5-hydroxy-2′-deoxycytidine, a powerful base analog transition mutagen with a much higher unfavored tautomer frequency than that of the natural residue 2′-deoxycytidine

    PubMed Central

    Suen, Wu; Spiro, Thomas G.; Sowers, Lawrence C.; Fresco, Jacques R.

    1999-01-01

    UV resonance Raman spectroscopy was used to detect and estimate the frequency of the unfavored imino tautomer of the transition mutagen 5-hydroxy-2′-deoxycytidine (HO5dCyt) in its anionic form. In DNA, this 2′-deoxycytidine analog arises from the oxidation of 2′-deoxycytidine and induces C → T transitions with 102 greater frequency than such spontaneous transitions. An imino tautomer marker carbonyl band (≈1650 cm−1) is enhanced at ≈65°C against an otherwise stable spectrum of bands associated with the favored amino tautomer. This band is similarly present in the UV resonance Raman spectra of the imino cytidine analogs N3-methylcytidine at high pH and N4-methoxy-2′-deoxycytidine at pH 7 and displays features attributable to the imino form of C residues and their derivatives. The fact that the imino tautomer of HO5dCyt occurs at a frequency consistent with its high mutagenic enhancement lends strong support to the hypothesis that unfavored base tautomers play important roles in the mispair intermediates of replication leading to substitution mutations. PMID:10200291

  7. Protection of leukemic cells by deoxycytidine: in vitro measures of protection against cytosine arabinoside.

    PubMed

    Cohen, J D; Strock, D J; LaGuardia, E A; Mao, Z; Teik, J E

    1998-05-01

    Plasma deoxycytidine levels can be very high in leukemia patients. Such levels strongly protected leukemia cell lines against cytosine arabinoside (araC), fludarabine and 2-chlorodeoxyadenosine when using clonogenic survival as the endpoint. This endpoint is not easily used when studying protection in clinical leukemia cell samples. Therefore, we tested other ways to quantify protection based on biochemical measures of viability or drug metabolism. The estimates of the strength of protection based on rates of DNA synthesis, cellular araC uptake and incorporation of araC into DNA were much lower than the estimates using clonogenic survival. The MTT viability assay gave excellent estimates and appears promising for studying protection in primary leukemia cell samples.

  8. Identification of Novel HLA-A*24:02-Restricted Epitope Derived from a Homeobox Protein Expressed in Hematological Malignancies

    PubMed Central

    Matsushita, Maiko; Otsuka, Yohei; Tsutsumida, Naoya; Tanaka, Chiaki; Uchiumi, Akane; Ozawa, Koji; Suzuki, Takuma; Ichikawa, Daiju; Aburatani, Hiroyuki; Okamoto, Shinichiro; Kawakami, Yutaka; Hattori, Yutaka

    2016-01-01

    The homeobox protein, PEPP2 (RHOXF2), has been suggested as a cancer/testis (CT) antigen based on its expression pattern. However, the peptide epitope of PEPP2 that is recognized by cytotoxic T cells (CTLs) is unknown. In this study, we revealed that PEPP2 gene was highly expressed in myeloid leukemia cells and some other hematological malignancies. This gene was also expressed in leukemic stem-like cells. We next identified the first reported epitope peptide (PEPP2271-279). The CTLs induced by PEPP2271-279 recognized PEPP2-positive target cells in an HLA-A*24:02-restricted manner. We also found that a demethylating agent, 5-aza-2’-deoxycytidine, could enhance PEPP2 expression in leukemia cells but not in blood mononuclear cells from healthy donors. The cytotoxic activity of anti-PEPP2 CTL against leukemic cells treated with 5-aza-2’-deoxycytidine was higher than that directed against untreated cells. These results suggest a clinical rationale that combined treatment with this novel antigen-specific immunotherapy together with demethylating agents might be effective in therapy-resistant myeloid leukemia patients. PMID:26784514

  9. DNA methylation and histone acetylation regulate the expression of MGMT and chemosensitivity to temozolomide in malignant melanoma cell lines.

    PubMed

    Chen, Ya-Ping; Hou, Xiao-Yang; Yang, Chun-Sheng; Jiang, Xiao-Xiao; Yang, Ming; Xu, Xi-Feng; Feng, Shou-Xin; Liu, Yan-Qun; Jiang, Guan

    2016-08-01

    Malignant melanoma is an aggressive, highly lethal dermatological malignancy. Chemoresistance and rapid metastasis limit the curative effect of multimodal therapies like surgery or chemotherapy. The suicide enzyme O6-methylguanine-DNA methyltransferase (MGMT) removes adducts from the O6-position of guanine to repair DNA damage. High MGMT expression is associated with resistance to therapy in melanoma. However, it is unknown if MGMT is regulated by DNA methylation or histone acetylation in melanoma. We examined the effects of the DNA methylation inhibitor 5-Aza-2'-deoxycytidine and histone deacetylase inhibitor Trichostatin A alone or in combination on MGMT expression and promoter methylation and histone acetylation in A375, MV3, and M14 melanoma cells. This study demonstrates that MGMT expression, CpG island methylation, and histone acetylation vary between melanoma cell lines. Combined treatment with 5-Aza-2'-deoxycytidine and Trichostatin A led to reexpression of MGMT, indicating that DNA methylation and histone deacetylation are associated with silencing of MGMT in melanoma. This study provides information on the role of epigenetic modifications in malignant melanoma that may enable the development of new strategies for treating malignant melanoma. PMID:26943799

  10. Cardiomyocyte marker expression in a human lymphocyte cell line using mouse cardiomyocyte extract.

    PubMed

    Vojdani, Zahra; Tavakolinejad, Sima; Talaei-Khozani, Tahereh; Esmaeilpour, Tahereh; Rasooli, Manuchehr

    2011-03-01

    Cell transplantation shows potential for the treatment of cardiac diseases. Embryonic stem cells, cord blood and mesenchymal stem cells have been suggested as sources for transplantation therapy. Because of some technical limitations with the use of stem cells, transdifferentiation of fully differentiated cells is a potentially useful alternative. We investigated whether human peripheral blood cells could transdifferentiate into cardiomyocyte. Transdifferentiation was induced in a human B lymphocyte cell line (Raji). Cardiomyocyte extract was prepared from adult mouse cardiomyocytes. The cells were treated with 5-aza-2-deoxycytidine and trichostatin A, permeabilized with streptolysin O, and exposed to the mouse cardiomyocyte extract. They were cultured for 10 days, 3 weeks and 4 weeks. Cardiomyocyte markers were detected with immunohistochemistry and flow cytometry. Immunocytochemistry revealed that some cells expressed myosin heavy chain, α-actinin and cardiac troponin T after 3 and 4 weeks. Flow cytometry confirmed these data. In cells exposed to trichostatin A and 5-aza-2-deoxycytidine and permeabilized in the presence of the cardiomyocyte extract, troponin T expression was seen in 3.53% of the cells and 3.11% of them expressed α-actinin. After exposure to the cardiomyocyte extract, some permeabilized cells adhered to the plate loosely; however, the morphology did not change significantly, and they continued to show a rounded shape after 4 weeks. Our treated lymphocytes expressed cardiomyocyte markers. Our results suggest that lymphocytes may be useful in future research as a source of cells for reprogramming procedures.

  11. DNA methylation and histone acetylation regulate the expression of MGMT and chemosensitivity to temozolomide in malignant melanoma cell lines.

    PubMed

    Chen, Ya-Ping; Hou, Xiao-Yang; Yang, Chun-Sheng; Jiang, Xiao-Xiao; Yang, Ming; Xu, Xi-Feng; Feng, Shou-Xin; Liu, Yan-Qun; Jiang, Guan

    2016-08-01

    Malignant melanoma is an aggressive, highly lethal dermatological malignancy. Chemoresistance and rapid metastasis limit the curative effect of multimodal therapies like surgery or chemotherapy. The suicide enzyme O6-methylguanine-DNA methyltransferase (MGMT) removes adducts from the O6-position of guanine to repair DNA damage. High MGMT expression is associated with resistance to therapy in melanoma. However, it is unknown if MGMT is regulated by DNA methylation or histone acetylation in melanoma. We examined the effects of the DNA methylation inhibitor 5-Aza-2'-deoxycytidine and histone deacetylase inhibitor Trichostatin A alone or in combination on MGMT expression and promoter methylation and histone acetylation in A375, MV3, and M14 melanoma cells. This study demonstrates that MGMT expression, CpG island methylation, and histone acetylation vary between melanoma cell lines. Combined treatment with 5-Aza-2'-deoxycytidine and Trichostatin A led to reexpression of MGMT, indicating that DNA methylation and histone deacetylation are associated with silencing of MGMT in melanoma. This study provides information on the role of epigenetic modifications in malignant melanoma that may enable the development of new strategies for treating malignant melanoma.

  12. Involvement of aberrant DNA methylation on reduced expression of lysophosphatidic acid receptor-1 gene in rat tumor cell lines

    SciTech Connect

    Tsujiuchi, Toshifumi . E-mail: ttujiuch@life.kindai.ac.jp; Shimizu, Kyoko; Onishi, Mariko; Sugata, Eriko; Fujii, Hiromasa; Mori, Toshio; Honoki, Kanya; Fukushima, Nobuyuki

    2006-10-27

    Lysophosphatidic acid (LPA) is a bioactive phospholipid that stimulates cell proliferation, migration, and protects cells from apoptosis. It interacts with specific G protein-coupled transmembrane receptors. Recently, it has been reported that alterations of LPA receptor expression might be important in the malignant transformation of tumor cells. Therefore, to assess an involvement of DNA methylation in reduced expression of the LPA receptor-1 (lpa1) gene, we investigated the expression of the lpa1 gene and its DNA methylation patterns in rat tumor cell lines. Both rat brain-derived neuroblastoma B103 and liver-derived hepatoma RH7777 cells used in this study indicated no expression of lpa1. For the analysis of methylation status, bisulfite sequencing was performed with B103 and RH7777 cells, comparing with other lpa1 expressed cells and normal tissues of brain and liver. The lpa1 expressed cells and tissues were all unmethylated in this region of lpa1. In contrast, both B103 and RH7777 cells were highly methylated, correlating with reduced expression of the lpa1. Treatment with 5-aza 2'-deoxycytidine induced expression of lpa1 gene in B103 and RH7777 cells after 24 h. In RH7777 cells treated with 5-aza 2'-deoxycytidine, stress fiber formation was also observed in response to LPA in RH7777 cells, but not in untreated RH7777 cells. These results suggest that aberrant DNA methylation of the lpa1 gene may be involved in its reduced expression in rat tumor cells.

  13. Epigenetic silencing of S100A2 in bladder and head and neck cancers

    PubMed Central

    Lee, Juna; Wysocki, Piotr T.; Topaloglu, Ozlem; Maldonado, Leonel; Brait, Mariana; Begum, Shahnaz; Moon, David; Kim, Myoung Sook; Califano, Joseph A.; Sidransky, David; Hoque, Mohammad O.; Moon, Chulso

    2015-01-01

    S100A2, a member of the S100 protein family, is known to be downregulated in a number of human cancers, leading to its designation as a potential tumor suppressor gene. Here, we investigated the expression and methylation status of S100A2 in head&neck and bladder cancer. Reduced mRNA and protein expression was observed in 8 head&neck and bladder cancer cell lines. To explore the mechanism responsible for the downregulation of S100A2, we treated six cell lines with 5-aza-2′-deoxycytidine. We found S100A2 is silenced in association with aberrant promoter-region methylation and its expression is restored with 5-aza-2′-deoxycytidine treatment. Of 31 primary head&neck cancer cases and 31 bladder cancer cases, promoter methylation was detected in 90% and 80% of cases, respectively. Interestingly, only 1/9 of normal head&neck tissues and 2/6 of normal bladder tissues showed promoter methylation. S100A2 promoter methylation can be detected in urine and is more frequent in bladder cancer patients than in healthy subjects (96% vs 48% respectively). Moreover, increased methylation of S100A2 is linked to the progression of the tumor in bladder cancer (p<0.01). Together, this data shows that methylation-associated inactivation of S100A2 is frequent and may be an important event in the tumorigenesis of head&neck and bladder cancer. PMID:26097874

  14. Clinically relevant deoxycytidine levels are high enough to profoundly alter 9-beta-D-arabinofuranosylguanine cytotoxicity for human T-cell acute leukemia cells in vitro.

    PubMed

    Cohen, J D; Strock, D J; Teik, J E; LaGuardia, E A; Katz, T B

    1999-01-01

    Plasma deoxycytidine levels can vary markedly during chemotherapy, from < 0.05 microM to at least 10.3 microM in T-cell acute lymphoblastic leukemia (T-ALL). This study demonstrates that clinically relevant deoxycytidine levels can dramatically protect human T-ALL cells against 9-beta-D-arabinofuranosylguanine (araG), a promising drug in this leukemia. At 0.4, 1.2, 3.6, and 10.8 microM deoxycytidine, the dose of araG required to kill 50% of MOLT3 T-ALL cells increased 4.23 +/- 1.95-(mean +/- SEM), 23.1 +/- 5.42-, 39.3 +/- 19.3-, and 67.0 +/- 11.5-fold compared to araG without deoxycytidine. Such deoxycytidine concentrations sharply reduced intracellular araG levels and blocked inhibition of DNA synthesis even in the presence of 160 and 640 microM araG. These data offer the first evidence that clinically relevant deoxycytidine levels could profoundly modulate araG toxicity in T-ALL.

  15. Development of new deoxycytidine kinase inhibitors and non-invasive in vivo evaluation using Positron Emission Tomography

    PubMed Central

    Murphy, Jennifer M.; Armijo, Amanda L.; Nomme, Julian; Lee, Chi Hang; Smith, Quentin A.; Li, Zheng; Campbell, Dean O.; Liao, Hsiang-I; Nathanson, David A.; Austin, Wayne R.; Lee, Jason T.; Darvish, Ryan; Wei, Liu; Wang, Jue; Su, Ying; Damoiseaux, Robert; Sadeghi, Saman; Phelps, Michael E.; Herschman, Harvey R.; Czernin, Johannes; Alexandrova, Anastassia N.; Jung, Michael E.; Lavie, Arnon; Radu, Caius G.

    2013-01-01

    Combined inhibition of ribonucleotide reductase and deoxycytidine kinase (dCK) in multiple cancer cell lines depletes deoxycytidine triphosphate pools leading to DNA replication stress, cell cycle arrest and apoptosis. Evidence implicating dCK in cancer cell proliferation and survival stimulated our interest in developing small molecule dCK inhibitors. Following a high throughput screen of a diverse chemical library, a structure-activity relationship study was carried out. Positron Emission Tomography (PET) using 18F-L-1-(2′-deoxy-2′-FluoroArabinofuranosyl) Cytosine (18F-L-FAC), a dCK-specific substrate, was used to rapidly rank lead compounds based on their ability to inhibit dCK activity in vivo. Evaluation of a subset of the most potent compounds in cell culture (IC50 = ∼1 – 12 nM) using the 18F-L-FAC PET pharmacodynamic assay identified compounds demonstrating superior in vivo efficacy. PMID:23947754

  16. Activation-induced deoxycytidine deaminase (AID) co-transcriptional scanning at single-molecule resolution

    NASA Astrophysics Data System (ADS)

    Senavirathne, Gayan; Bertram, Jeffrey G.; Jaszczur, Malgorzata; Chaurasiya, Kathy R.; Pham, Phuong; Mak, Chi H.; Goodman, Myron F.; Rueda, David

    2015-12-01

    Activation-induced deoxycytidine deaminase (AID) generates antibody diversity in B cells by initiating somatic hypermutation (SHM) and class-switch recombination (CSR) during transcription of immunoglobulin variable (IgV) and switch region (IgS) DNA. Using single-molecule FRET, we show that AID binds to transcribed dsDNA and translocates unidirectionally in concert with RNA polymerase (RNAP) on moving transcription bubbles, while increasing the fraction of stalled bubbles. AID scans randomly when constrained in an 8 nt model bubble. When unconstrained on single-stranded (ss) DNA, AID moves in random bidirectional short slides/hops over the entire molecule while remaining bound for ~5 min. Our analysis distinguishes dynamic scanning from static ssDNA creasing. That AID alone can track along with RNAP during transcription and scan within stalled transcription bubbles suggests a mechanism by which AID can initiate SHM and CSR when properly regulated, yet when unregulated can access non-Ig genes and cause cancer.

  17. Elucidation of Different Binding Modes of Purine Nucleosides to Human Deoxycytidine Kinase

    SciTech Connect

    Sabini, Elisabetta; Hazra, Saugata; Konrad, Manfred; Lavie, Arnon

    2008-07-30

    Purine nucleoside analogues of medicinal importance, such as cladribine, require phosphorylation by deoxycytidine kinase (dCK) for pharmacological activity. Structural studies of ternary complexes of human dCK show that the enzyme conformation adjusts to the different hydrogen-bonding properties between dA and dG and to the presence of substituent at the 2-position present in dG and cladribine. Specifically, the carbonyl group in dG elicits a previously unseen conformational adjustment of the active site residues Arg104 and Asp133. In addition, dG and cladribine adopt the anti conformation, in contrast to the syn conformation observed with dA. Kinetic analysis reveals that cladribine is phosphorylated at the highest efficiency with UTP as donor. We attribute this to the ability of cladribine to combine advantageous properties from dA (favorable hydrogen-bonding pattern) and dG (propensity to bind to the enzyme in its anti conformation), suggesting that dA analogues with a substituent at the 2-position are likely to be better activated by human dCK.

  18. Activation-induced deoxycytidine deaminase (AID) co-transcriptional scanning at single-molecule resolution.

    PubMed

    Senavirathne, Gayan; Bertram, Jeffrey G; Jaszczur, Malgorzata; Chaurasiya, Kathy R; Pham, Phuong; Mak, Chi H; Goodman, Myron F; Rueda, David

    2015-01-01

    Activation-induced deoxycytidine deaminase (AID) generates antibody diversity in B cells by initiating somatic hypermutation (SHM) and class-switch recombination (CSR) during transcription of immunoglobulin variable (IgV) and switch region (IgS) DNA. Using single-molecule FRET, we show that AID binds to transcribed dsDNA and translocates unidirectionally in concert with RNA polymerase (RNAP) on moving transcription bubbles, while increasing the fraction of stalled bubbles. AID scans randomly when constrained in an 8 nt model bubble. When unconstrained on single-stranded (ss) DNA, AID moves in random bidirectional short slides/hops over the entire molecule while remaining bound for ∼ 5 min. Our analysis distinguishes dynamic scanning from static ssDNA creasing. That AID alone can track along with RNAP during transcription and scan within stalled transcription bubbles suggests a mechanism by which AID can initiate SHM and CSR when properly regulated, yet when unregulated can access non-Ig genes and cause cancer. PMID:26681117

  19. Role of Genetic Polymorphisms of Deoxycytidine Kinase and Cytidine Deaminase to Predict Risk of Death in Children with Acute Myeloid Leukemia

    PubMed Central

    Medina-Sanson, Aurora; Ramírez-Pacheco, Arturo; Moreno-Guerrero, Silvia Selene; Dorantes-Acosta, Elisa María; Sánchez-Preza, Metzeri; Reyes-López, Alfonso

    2015-01-01

    Cytarabine is one of the most effective antineoplastic agents among those used for the treatment of acute myeloid leukemia. However, some patients develop resistance and/or severe side effects to the drug, which may interfere with the efficacy of the treatment. The polymorphisms of some Ara-C metabolizing enzymes seem to affect outcome and toxicity in AML patients receiving cytarabine. We conducted this study in a cohort of Mexican pediatric patients with AML to investigate whether the polymorphisms of the deoxycytidine kinase and cytidine deaminase enzymes are implicated in clinical response and toxicity. Bone marrow and/or peripheral blood samples obtained at diagnosis from 27 previously untreated pediatric patients with de novo AML were processed for genotyping and in vitro chemosensitivity assay, and we analyzed the impact of genotypes and in vitro sensitivity on disease outcome and toxicity. In the multivariate Cox regression analysis, we found that age at diagnosis, wild-type genotype of the CDA A79C polymorphism, and wild-type genotype of the dCK C360G polymorphism were the most significant prognostic factors for predicting the risk of death. PMID:26090398

  20. Extending Thymidine Kinase Activity to the Catalytic Repertoire of Human Deoxycytidine Kinase

    SciTech Connect

    Hazra, Saugata; Sabini, Eliszbetta; Ort, Stephan; Konrad, Manfred; Lavie, Arnon

    2009-03-04

    Salvage of nucleosides in the cytosol of human cells is carried out by deoxycytidine kinase (dCK) and thymidine kinase 1 (TK1). Whereas TK1 is only responsible for thymidine phosphorylation, dCK is capable of converting dC, dA, and dG into their monophosphate forms. Using structural data on dCK, we predicted that select mutations at the active site would, in addition to making the enzyme faster, expand the catalytic repertoire of dCK to include thymidine. Specifically, we hypothesized that steric repulsion between the methyl group of the thymine base and Arg104 is the main factor preventing the phosphorylation of thymidine by wild-type dCK. Here we present kinetic data on several dCK variants where Arg104 has been replaced by select residues, all performed in combination with the mutation of Asp133 to an alanine. We show that several hydrophobic residues at position 104 endow dCK with thymidine kinase activity. Depending on the exact nature of the mutations, the enzyme's substrate preference is modified. The R104M-D133A double mutant is a pyrimidine-specific enzyme due to large K{sub m} values with purines. The crystal structure of the double mutant R104M-D133A in complex with the L-form of thymidine supplies a structural explanation for the ability of this variant to phosphorylate thymidine and thymidine analogs. The replacement of Arg104 by a smaller residue allows L-dT to bind deeper into the active site, making space for the C5-methyl group of the thymine base. The unique catalytic properties of several of the mutants make them good candidates for suicide-gene/protein-therapy applications.

  1. Activation of an imprinted Igf 2 gene in mouse somatic cell cultures.

    PubMed Central

    Eversole-Cire, P; Ferguson-Smith, A C; Sasaki, H; Brown, K D; Cattanach, B M; Gonzales, F A; Surani, M A; Jones, P A

    1993-01-01

    The mouse insulin-like growth factor II gene (Igf 2), located on distal chromosome 7, is parentally imprinted such that the paternal allele is expressed while the maternal allele is transcriptionally silent. We derived a cell line from a mouse embryo maternally disomic and paternally deficient for distal chromosome 7 (MatDi7) to determine the stability of gene repression in culture. MatDi7 cells maintained Igf2 in a repressed state even after immortalization, except for one randomly picked clone which spontaneously expressed the gene. Igf 2 was expressed in a cell culture derived from a normal littermate; this expression was growth regulated, with Igf 2 mRNA levels increasing in the stationary phase of growth. Analysis of the methylation status of 28 sites distributed over 10 kb of the gene did not show consistent differences associated with expression level in the normal and MatDi7 cell lines, and the CpG island in the Igf 2 promoter remained unmethylated in all of the cell lines. Only with an oncogenically transformed cell line did the promoter become extensively methylated. We attempted to derepress the imprinted gene in MatDi7 cells by treatments known to alter gene expression. Expression of the Igf 2 allele in MatDi7 cells was increased in a dose-dependent manner by treatment with 5-aza-2'-deoxycytidine or bromodeoxyuridine, agents known to change DNA methylation patterns or chromatin conformation. Treatment of the cells with 1-beta-D-arabinofuranosylcytosine, 2'-deoxycytidine, calcium ionophore, heat shock, cold shock, or sodium butyrate did not result in increases in the levels of Igf 2 expression. It seems likely that the mechanism of the Igf 2 imprint involves subtle changes in the methylation or chromatin conformation of the gene which are affected by 5-aza-2'-deoxycytidine and bromodeoxyuridine. Images PMID:8336727

  2. Deoxycytidine kinase and deoxyguanosine kinase of Lactobacillus acidophilus R-26 are colinear products of a single gene.

    PubMed

    Ma, N; Ikeda, S; Guo, S; Fieno, A; Park, I; Grimme, S; Ikeda, T; Ives, D H

    1996-12-10

    Three of the four deoxynucleoside kinases required for growth of Lactobacillus acidophilus R-26 exist as heterodimeric pairs specific for deoxyadenosine (dAK) and deoxycytidine (dCK) or dAK and deoxyguanosine (dGK). However, only two tandem genes, dak/dgk, are found, and are expressed only as dAK/dGK in transformed Escherichia coli. Sequencing peptides spanning 63% of the native dCK subunit revealed a sequence identical to that deduced from dgk (beginning MTVIVL...), except that dCK lacks residues 2 and 3 (dCK is M..IVL; dGK is .TVIVL). Also, mass spectrometry indicates that native dCK and dGK subunits are identical in mass adjusted for the first three residues. Furthermore, the native enzymes have identical isoelectric pH values, indicating an equal number of charged residues. To enable E. coli to express peptide having the native dCK sequence, codons 2 and 3 were deleted from the dgk portion of the tandem genes, resulting in expression of protein having the specificities and regulatory properties of native dAK/dCK, including heterotropic stimulation of dAK activity by deoxycytidine or dCTP (not deoxyguanosine or dGTP) and end-product inhibition of the respective activities by dATP and dCTP. Subcloning normal and mutant dgk yielded homodimeric dGK and dCK, respectively. The dCK homodimer strongly resembles human dCK, with a low K(m) for deoxycytidine, the ability to phosphorylate deoxyadenosine and deoxyguanosine at much higher K(m) values, and end-product inhibition by dCTP. Thus two distinct and specific enzymes evidently are derived from a single Lactobacillus gene. The mechanism by which this occurs in vivo has yet to be elucidated.

  3. Mechanisms of uptake and resistance to troxacitabine, a novel deoxycytidine nucleoside analogue, in human leukemic and solid tumor cell lines.

    PubMed

    Gourdeau, H; Clarke, M L; Ouellet, F; Mowles, D; Selner, M; Richard, A; Lee, N; Mackey, J R; Young, J D; Jolivet, J; Lafrenière, R G; Cass, C E

    2001-10-01

    Troxacitabine (Troxatyl; BCH-4556; (-)-2'-deoxy-3'-oxacytidine), a deoxycytidine analogue with an unusual dioxolane structure and nonnatural L-configuration, has potent antitumor activity in animal models and is in clinical trials against human malignancies. The current work was undertaken to identify potential biochemical mechanisms of resistance to troxacitabine and to determine whether there are differences in resistance mechanisms between troxacitabine, gemcitabine, and cytarabine in human leukemic and solid tumor cell lines. The CCRF-CEM leukemia cell line was highly sensitive to the antiproliferative effects of troxacitabine, gemcitabine, and cytarabine with inhibition of proliferation by 50% observed at 160, 20, and 10 nM, respectively, whereas a deoxycytidine kinase (dCK)-deficient variant (CEM/dCK(-)) was resistant to all three drugs. In contrast, a nucleoside transport-deficient variant (CEM/ARAC8C) exhibited high levels of resistance to cytarabine (1150-fold) and gemcitabine (432-fold) but only minimal resistance to troxacitabine (7-fold). Analysis of troxacitabine transportability by the five molecularly characterized human nucleoside transporters [human equilibrative nucleoside transporters 1 and 2, human concentrative nucleoside transporter (hCNT) 1, hCNT2, and hCNT3] revealed that short- and long-term uptake of 10-30 microM [(3)H]troxacitabine was low and unaffected by the presence of either nucleoside transport inhibitors or high concentrations of nonradioactive troxacitabine. These results, which suggested that the major route of cellular uptake of troxacitabine was passive diffusion, demonstrated that deficiencies in nucleoside transport were unlikely to impart resistance to troxacitabine. A troxacitabine-resistant prostate cancer subline (DU145(R); 6300-fold) that exhibited reduced uptake of troxacitabine was cross-resistant to both gemcitabine (350-fold) and cytarabine (300-fold). dCK activity toward deoxycytidine in DU145(R) cell lysates was

  4. Cell cycle dependent regulation of deoxycytidine kinase, deoxyguanosine kinase, and cytosolic 5'-nucleotidase I activity in MOLT-4 cells.

    PubMed

    Fyrberg, A; Mirzaee, S; Lotfi, K

    2006-01-01

    Activation of nucleoside analogues is dependent on kinases and 5'-nucleotidases and the balance between the activity of these enzymes. The purpose of this study was to analyze deoxycytidine kinase, deoxyguanosine kinase, and 4 different 5'-nucleotidases during cell cycle progression in MOLT-4 cells. The activity of both kinases was cell cycle dependent and increased during proliferation while the activity of cytosolic 5'-nucleotidase I decreased. We could show that the kinase activity was higher than the total nucleotidase activity, which was unchanged or decreased during cell cycle progression. These data may be important in designing modern combination therapy with nucleoside analogues.

  5. Flexible double-headed cytosine-linked 2'-deoxycytidine nucleotides. Synthesis, polymerase incorporation to DNA and interaction with DNA methyltransferases.

    PubMed

    Kielkowski, Pavel; Cahová, Hana; Pohl, Radek; Hocek, Michal

    2016-03-15

    New types of double-headed 2'-deoxycytidine 5'-O-triphosphates (dC(XC)TPs) bearing another cytosine or 5-fluorocytosine linked through a flexible propargyl, homopropargyl or pent-1-ynyl linker to position 5 were prepared by the aqueous Sonogashira cross-coupling reactions of 5-iodo-dCTP with the corresponding (fluoro)cytosine-alkynes. The modified dC(XC)TPs were good substrates for DNA polymerases and were used for enzymatic synthesis of cytosine-functionalized DNA by primer extension or PCR. The cytosine- or fluorocytosine-linked DNA probes did not significantly inhibit DNA methyltransferases and did not cross-link to these proteins.

  6. HPCE quantification of 5-methyl-2'-deoxycytidine in genomic DNA: methodological optimization for chestnut and other woody species.

    PubMed

    Hasbún, Rodrigo; Valledor, Luís; Rodríguez, José L; Santamaria, Estrella; Ríos, Darcy; Sanchez, Manuel; Cañal, María J; Rodríguez, Roberto

    2008-01-01

    Quantification of deoxynucleosides using micellar high-performance capillary electrophoresis (HPCE) is an efficient, fast and inexpensive evaluation method of genomic DNA methylation. This approach has been demonstrated to be more sensitive and specific than other methods for the quantification of DNA methylation content. However, effective detection and quantification of 5-methyl-2'-deoxycytidine depend of the sample characteristics. Previous works have revealed that in most woody species, the quality and quantity of RNA-free DNA extracted that is suitable for analysis by means of HPCE varies among species of the same gender, among tissues taken from the same tree, and vary in the same tissue depending on the different seasons of the year. The aim of this work is to establish a quantification method of genomic DNA methylation that lends itself to use in different Castanea sativa Mill. materials, and in other angiosperm and gymnosperm woody species. Using a DNA extraction kit based in silica membrane has increased the resolutive capacity of the method. Under these conditions, it can be analyzed different organs or tissues of angiosperms and gymnosperms, regardless of their state of development. We emphasized the importance of samples free of nucleosides, although, in the contrary case, the method ensures the effective separation of deoxynucleosides and identification of 5-methyl-2'-deoxycytidine. PMID:18538578

  7. Potent methyl oxidation of 5-methyl-2'-deoxycytidine by halogenated quinoid carcinogens and hydrogen peroxide via a metal-independent mechanism.

    PubMed

    Shao, Jie; Huang, Chun-Hua; Kalyanaraman, Balaraman; Zhu, Ben-Zhan

    2013-07-01

    Halogenated quinones are a class of carcinogenic intermediates and are newly identified chlorination disinfection by-products in drinking water. We found recently that the highly reactive and biologically important hydroxyl radical ((•)OH) can be produced by halogenated quinones and H2O2 independent of transition metal ions. However, it is not clear whether these quinoid carcinogens and H2O2 can oxidize the nucleoside 5-methyl-2'-deoxycytidine (5mdC) to its methyl oxidation products and, if so, what the underlying molecular mechanism is. Here we show that three methyl oxidation products, 5-(hydroperoxymethyl)-, 5-(hydroxymethyl)-, and 5-formyl-2'-deoxycytidine, could be produced when 5mdC was treated with tetrachloro-1,4-benzoquinone (TCBQ) and H2O2. The formation of the oxidation products was markedly inhibited by typical (•)OH scavengers and under anaerobic conditions. Analogous effects were observed with other halogenated quinones and the classic Fenton system. Based on these data, we propose that the oxidation of 5mdC by TCBQ/H2O2 might be through the following mechanism: (•)OH produced by TCBQ/H2O2 may first abstract hydrogen from the methyl group of 5mdC, leading to the formation of 5-(2'-deoxycytidylyl)methyl radical, which may combine with O2 to form the peroxyl radical. The unstable peroxyl radical transforms into the corresponding hydroperoxide 5-(hydroperoxymethyl)-2'-deoxycytidine, which reacts with TCBQ and results in the formation of 5-(hydroxymethyl)-2'-deoxycytidine and 5-formyl-2'-deoxycytidine. This is the first report that halogenated quinoid carcinogens and H2O2 can induce potent methyl oxidation of 5mdC via a metal-independent mechanism, which may partly explain their potential carcinogenicity.

  8. [Intramolecular hygrogen bonds in conformers of 2'-deoxycytidine: results of quantum-chemical analysis of electron density topology].

    PubMed

    Zhurakivs'kyĭ, R O; Hovorun, D M

    2006-01-01

    As many as 13 types of intramolecular hygrogen bonds are determined in 89 conformers of 2'-deoxycytidine nucleoside by means of quantum-chemical analysis (at DFT B3LYP/6-31G(d,p) theory level) of electron density topology with Atoms-in-Molecules (AIM) theory. The total number of H-bonds is 168 and their types are C1'H...O2, C2'H2...O5', C2'H2...O2, C3'H...O2, C5'H1...O2, C5'H2...O2, C6H...O4', C6H...O5', C3'H...HC6, O3'H...O5', O5'H...O3', O5'H...O4' and O5'H...O2. Conformational, geometric and electron-topological properties of H-bonds are presented.

  9. Reactions of an osmium-hexahydride complex with cytosine, deoxycytidine, and cytidine: the importance of the minor tautomers.

    PubMed

    Esteruelas, Miguel A; García-Raboso, Jorge; Oliván, Montserrat

    2012-09-01

    Complex OsH(6)(P(i)Pr(3))(2) (1) deprotonates cytosine to give molecular hydrogen and the d(4)-trihydride derivative OsH(3)(cytosinate)(P(i)Pr(3))(2) (2), which in solution exists as a mixture of isomers containing κ(2)-N1,O (2a) and κ(2)-N3,O (2b) amino-oxo and κ(2)-N3,N4 (2c) imino-oxo tautomers. The major isomer 2b associates with the minor one 2c through N-H···N and N-H···O hydrogen bonds to form [2b·2c](2) dimers, which crystallize from saturated pentane solutions of 2. Complex 1 is also able to perform the double deprotonation of cytosine (cytosinate') to afford the dinuclear derivative (P(i)Pr(3))(2)H(3)Os(cytosinate')OsH(3)(P(i)Pr(3))(2) (3), where the anion is coordinated κ(2)-N1,O and κ(2)-N3,N4 to two different OsH(3)(P(i)Pr(3))(2) metal fragments. The deprotonation of deoxycytidine and cytidine leads to OsH(3)(deoxycytidinate)(P(i)Pr(3))(2) (4) and OsH(3)(cytidinate)(P(i)Pr(3))(2) (5), respectively, containing the anion κ(2)-N3,N4 coordinated. Dimer [2b·2c](2) and dinuclear complex 3 have been characterized by X-ray diffraction analysis.

  10. Downregulation of glutathione S-transferase M1 protein in N-butyl-N-(4-hydroxybutyl)nitrosamine-induced mouse bladder carcinogenesis

    SciTech Connect

    Chuang, Jing-Jing; Dai, Yuan-Chang; Lin, Yung-Lun; Chen, Yang-Yi; Lin, Wei-Han; Chan, Hong-Lin; Liu, Yi-Wen

    2014-09-15

    Bladder cancer is highly recurrent following specific transurethral resection and intravesical chemotherapy, which has prompted continuing efforts to develop novel therapeutic agents and early-stage diagnostic tools. Specific changes in protein expression can provide a diagnostic marker. In our present study, we investigated changes in protein expression during urothelial carcinogenesis. The carcinogen BBN was used to induce mouse bladder tumor formation. Mouse bladder mucosa proteins were collected and analyzed by 2D electrophoresis from 6 to 20 weeks after commencing continuous BBN treatment. By histological examination, the connective layer of the submucosa showed gradual thickening and the number of submucosal capillaries gradually increased after BBN treatment. At 12-weeks after the start of BBN treatment, the urothelia became moderately dysplastic and tumors arose after 20-weeks of treatment. These induced bladder lesions included carcinoma in situ and connective tissue invasive cancer. In protein 2D analysis, the sequentially downregulated proteins from 6 to 20 weeks included GSTM1, L-lactate dehydrogenase B chain, keratin 8, keratin 18 and major urinary proteins 2 and 11/8. In contrast, the sequentially upregulated proteins identified were GSTO1, keratin 15 and myosin light polypeptide 6. Western blotting confirmed that GSTM1 and NQO-1 were decreased, while GSTO1 and Sp1 were increased, after BBN treatment. In human bladder cancer cells, 5-aza-2′-deoxycytidine increased the GSTM1 mRNA and protein expression. These data suggest that the downregulation of GSTM1 in the urothelia is a biomarker of bladder carcinogenesis and that this may be mediated by DNA CpG methylation. - Highlights: • GSTM1 and NQO-1 proteins decreased in the mouse bladder mucosa after BBN treatment. • BBN induced GSTO1 and Sp1 protein expression in the mouse bladder mucosa. • 5-Aza-2′-deoxycytidine increased GSTM1 mRNA and protein in human bladder cancer cell. • GSTM1

  11. Pathway landscapes and epigenetic regulation in breast cancer and melanoma cell lines

    PubMed Central

    2014-01-01

    Background Epigenetic variation is a main regulation mechanism of gene expression in various cancer histotypes, and due to its reversibility, the potential impact in therapy can be very relevant. Methods Based on a selected pair, breast cancer (BC) and melanoma, we conducted inference analysis in parallel on a few cell lines (MCF-7 for BC and A375 for melanoma). Starting from differential expression after treatment with a demethylating agent, the 5-Aza-2'-deoxycytidine (DAC), we provided pathway enrichment analysis and gene regulatory maps with cross-linked microRNAs and transcription factors. Results Several oncogenic signaling pathways altered upon DAC treatment were detected with significant enrichment. We represented the association between these cancers by depicting the landscape of common and specific variation affecting them. PMID:25077705

  12. Immunoproteasome deficiency is a feature of non-small cell lung cancer with a mesenchymal phenotype and is associated with a poor outcome

    PubMed Central

    Tripathi, Satyendra C.; Peters, Haley L.; Taguchi, Ayumu; Katayama, Hiroyuki; Wang, Hong; Momin, Amin; Jolly, Mohit Kumar; Celiktas, Muge; Rodriguez-Canales, Jaime; Liu, Hui; Behrens, Carmen; Wistuba, Ignacio I.; Ben-Jacob, Eshel; Levine, Herbert; Molldrem, Jeffrey J.; Hanash, Samir M.; Ostrin, Edwin J.

    2016-01-01

    The immunoproteasome plays a key role in generation of HLA peptides for T cell-mediated immunity. Integrative genomic and proteomic analysis of non-small cell lung carcinoma (NSCLC) cell lines revealed significantly reduced expression of immunoproteasome components and their regulators associated with epithelial to mesenchymal transition. Low expression of immunoproteasome subunits in early stage NSCLC patients was associated with recurrence and metastasis. Depleted repertoire of HLA class I-bound peptides in mesenchymal cells deficient in immunoproteasome components was restored with either IFNγ or 5-aza-2′-deoxycytidine (5-aza-dC) treatment. Our findings point to a mechanism of immune evasion of cells with a mesenchymal phenotype and suggest a strategy to overcome immune evasion through induction of the immunoproteasome to increase the cellular repertoire of HLA class I-bound peptides. PMID:26929325

  13. Direct differentiation of hepatic stem-like WB cells into insulin-producing cells using small molecules.

    PubMed

    Liu, Jianping; Liu, Yanmei; Wang, Honggang; Hao, Haojie; Han, Qingwang; Shen, Jing; Shi, Jun; Li, Chunlin; Mu, Yiming; Han, Weidong

    2013-01-01

    Recent evidence suggests that experimental induction of hepatocytes into pancreatic cells provides new cell transplantation therapy prospects for type 1 diabetes mellitus. Stepwise differentiation from rat liver epithelial stem-like WB-F344 cells (WB cells) into functional insulin-secreting cells will identify key steps in β-cell development and may yet prove useful for transplantation therapy for diabetic patients. An essential step in this protocol was the generation of pancreatic precursor cell that express Pdx1 based on induction by a combination of 5-aza-2'-deoxycytidine, trichostatin A, retinoic acid, and a mix of insulin, transferrin and selenite. The Pdx1-expressing cells express other pancreatic markers and contribute to endocrine cells in vitro and in vivo. This study indicates an efficient chemical protocol for differentiating WB cells into functional insulin-producing cells using small molecules, and represents a promising hepatocyte-based treatment for diabetes mellitus.

  14. Gene Body Methylation can alter Gene Expression and is a Therapeutic Target in Cancer

    PubMed Central

    Yang, Xiaojing; Han, Han; De Carvalho, Daniel D.; Lay, Fides D.; Jones, Peter A.; Liang, Gangning

    2014-01-01

    SUMMARY DNA methylation in promoters is well known to silence genes and is the presumed therapeutic target of methylation inhibitors. Gene body methylation is positively correlated with expression yet its function is unknown. We show that 5-aza-2'-deoxycytidine treatment not only reactivates genes but decreases the over-expression of genes, many of which are involved in metabolic processes regulated by c-MYC. Down-regulation is caused by DNA demethylation of the gene bodies and restoration of high levels of expression requires remethylation by DNMT3B. Gene body methylation may therefore be an unexpected therapeutic target for DNA methylation inhibitors, resulting in the normalization of gene over-expression induced during carcinogenesis. Our results provide direct evidence for a causal relationship between gene body methylation and transcription. PMID:25263941

  15. Oxidized low-density lipoprotein inhibits THP-1-derived macrophage autophagy via TET2 down-regulation.

    PubMed

    Li, Guohua; Peng, Juan; Liu, Yanhui; Li, Xiaohong; Yang, Qin; Li, Yongqing; Tang, Zhihan; Wang, Zuo; Jiang, Zhisheng; Wei, Dangheng

    2015-02-01

    Oxidized low-density lipoprotein (ox-LDL) is an independent risk factor of atherosclerosis. However, the mechanism underlying its pro-atherosclerosis roles has not yet been well explored. DNA demethylation modification, via DNA methyltransferases or ten-eleven-translocation (TET) family, is a crisis epigenetic regulation for various biological and pathological processes. This study aimed to investigate the effects of ox-LDL on macrophage autophagy and its potential epigenetic mechanism. Results showed that after treatment with 0, 10, 20, 40 or 80 mg/L ox-LDL for 24 h, the autophagy markers Beclin 1 and LC3 expression were obviously decreased at protein levels (P < 0.05). The mRNA and protein expression of TET2 was evidently decreased (P < 0.05). After pre-treatment with TET2 siRNA, the mRNA and protein levels of Beclin 1 and LC3 decreased compared with the 80 mg/L treatment group (P < 0.01). The mRNA and protein levels of Beclin 1 and LC3-II were up-regulated (P < 0.05) in the 5-aza-2'-deoxycytidine (a DNA methyltransferase inhibitor) of pretreatment group. Consistent with the Western blot results, cell immunofluorescence showed that the protein concentration of LC3-II decreased in the TET2 siRNA group and increased in the 5-aza-2'-deoxycytidine group. Taken together, these results showed that DNA demethylation modifications regulate ox-LDL-treated THP-1 macrophages autophagy and TET2 might be a novel regulator.

  16. Deoxycytidine kinase-mediated toxicity of deoxyadenosine analogs toward malignant human lymphoblasts in vitro and toward murine L1210 leukemia in vivo.

    PubMed Central

    Carson, D A; Wasson, D B; Kaye, J; Ullman, B; Martin, D W; Robins, R K; Montgomery, J A

    1980-01-01

    An inherited deficiency of adenosine deaminase (adenosine aminohydrolase, EC 3.5.4.4) produces selective lymphopenia and immunodeficiency disease in humans. Previous experiments have suggested that lymphospecific toxicity in this condition might result from the selective accumulation of toxic deoxyadenosine nucleotides by lymphocytes with high deoxycytidine kinase, levels and low deoxynucleotide dephosphorylating activity. The present experiments were designed to determine if deoxyadenosine analogs which are not substrates for adenosine deaminase might similarly be toxic toward lymphocytes and lymphoid tumors. Two such compounds, 2-chlorodeoxyadenosine and 2-fluorodeoxyadenosine, at concentrations of 3 nM and 0.15 microM, respectively, inhibited by 50% the growth of human CCRF-CEM malignant lymphoblasts in vitro. Each was phosphorylated in intact cells by deoxycytidine kinase accumulated as the nucleoside triphosphate, and inhibited DNA synthesis more than RNA synthesis. Both deoxynucleosides had significant chemotherapeutic activity against lymphoid leukemia L1210 in mice. PMID:6256765

  17. Epigenetic Repression of miR-218 Promotes Esophageal Carcinogenesis by Targeting ROBO1

    PubMed Central

    Yang, Miao; Liu, Ran; Li, Xiajun; Liao, Juan; Pu, Yuepu; Pan, Enchun; Wang, Yi; Yin, Lihong

    2015-01-01

    miR-218, consisting of miR-218-1 at 4p15.31 and miR-218-2 at 5q35.1, was significantly decreased in esophageal squamous cell carcinoma (ESCC) in our previous study. The aim of this study was to determine whether aberrant methylation is associated with miR-218 repression. Bisulfite sequencing analysis (BSP), methylation specific PCR (MSP), and 5-aza-2′-deoxycytidine treatment assay were applied to determine the methyaltion status of miR-218 in cells and clinical samples. In vitro assays were performed to explore the role of miR-218. Results showed that miR-218-1 was significantly CpG hypermethylated in tumor tissues (81%, 34/42) compared with paired non-tumor tissues (33%, 14/42) (p < 0.05). However, no statistical difference was found in miR-218-2. Accordingly, expression of miR-218 was negatively correlated with miR-218-1 methylation status (p < 0.05). After demethylation treatment by 5-aza-2′-deoxycytidine, there was a 2.53- and 2.40-fold increase of miR-218 expression in EC109 and EC9706, respectively. miR-218 suppressed cell proliferation and arrested cells at G1 phase by targeting 3′ untranslated region (3′UTR) of roundabout guidance receptor 1 (ROBO1). A negative correlation was found between miR-218 and ROBO1 mRNA expression in clinical samples. In conclusion, our results support that aberrant CpG hypermethylation at least partly accounts for miR-218 silencing in ESCC, which impairs its tumor-suppressive function. PMID:26610476

  18. Protection of the organism with 2'-deoxycytidine hydrochloride encapsulated in liposomes, in the process of experimental radioprotective chemotherapy with cytosine arabinoside

    SciTech Connect

    Bukhman, V.M.; Bekman, E.M.; Koval'skaya, N.I.

    1986-03-01

    The development of methods of selective protection of the organism from the toxic and immunodepressive effect of cytostatics is directed toward improvement of the results of the therapy of malignant neoplasms. In this work, the authors demonstrate the promise of the use of liposomes as a phagocytizable carrier for the protector substance, on the model of developing T-cell lymphoma EL4 of mice. The production of liposomes and 2'-Deoxycytidine hydrochloride encapsulated in liposomes is discussed.

  19. Molecular modeling and molecular dynamics studies of hydralazine with human DNA methyltransferase 1.

    PubMed

    Singh, Narender; Dueñas-González, Alfonso; Lyko, Frank; Medina-Franco, Jose L

    2009-05-01

    DNA methyltransferases (DNMTs) are a family of enzymes that methylate DNA at the C5 position of cytosine residues, and their inhibition is a promising strategy for the treatment of various developmental and proliferative diseases, particularly cancers. In the present study, a binding model for hydralazine, with a validated homology model of human DNMT, was developed by the use of automated molecular docking and molecular dynamics simulations. The docking protocol was validated by predicting the binding mode of 2'-deoxycytidine, 5-azacytidine, and 5-aza-2'-deoxycytidine. The inhibitory activity of hydralazine toward DNMT may be rationalized at the molecular level by similar interactions within the binding pocket (e.g., by a similar pharmacophore) as established by substrate-like deoxycytidine analogues. These interactions involve a complex network of hydrogen bonds with arginine and glutamic acid residues that also play a major role in the mechanism of DNA methylation. Despite the different scaffolds of other non-nucleoside DNMT inhibitors such as procaine and procainamide, the current modeling work reveals that these drugs exhibit similar interactions within the DNMT1 binding site. These findings are valuable in guiding the rational design and virtual screening of novel DNMT inhibitors.

  20. The nucleotidohydrolases DCTPP1 and dUTPase are involved in the cellular response to decitabine.

    PubMed

    Requena, Cristina E; Pérez-Moreno, Guiomar; Horváth, András; Vértessy, Beáta G; Ruiz-Pérez, Luis M; González-Pacanowska, Dolores; Vidal, Antonio E

    2016-09-01

    Decitabine (5-aza-2'-deoxycytidine, aza-dCyd) is an anti-cancer drug used clinically for the treatment of myelodysplastic syndromes and acute myeloid leukaemia that can act as a DNA-demethylating or genotoxic agent in a dose-dependent manner. On the other hand, DCTPP1 (dCTP pyrophosphatase 1) and dUTPase are two 'house-cleaning' nucleotidohydrolases involved in the elimination of non-canonical nucleotides. In the present study, we show that exposure of HeLa cells to decitabine up-regulates the expression of several pyrimidine metabolic enzymes including DCTPP1, dUTPase, dCMP deaminase and thymidylate synthase, thus suggesting their contribution to the cellular response to this anti-cancer nucleoside. We present several lines of evidence supporting that, in addition to the formation of aza-dCTP (5-aza-2'-deoxycytidine-5'-triphosphate), an alternative cytotoxic mechanism for decitabine may involve the formation of aza-dUMP, a potential thymidylate synthase inhibitor. Indeed, dUTPase or DCTPP1 down-regulation enhanced the cytotoxic effect of decitabine producing an accumulation of nucleoside triphosphates containing uracil as well as uracil misincorporation and double-strand breaks in genomic DNA. Moreover, DCTPP1 hydrolyses the triphosphate form of decitabine with similar kinetic efficiency to its natural substrate dCTP and prevents decitabine-induced global DNA demethylation. The data suggest that the nucleotidohydrolases DCTPP1 and dUTPase are factors involved in the mode of action of decitabine with potential value as enzymatic targets to improve decitabine-based chemotherapy.

  1. Reprogramming of Pancreatic Exocrine Cells AR42J Into Insulin-producing Cells Using mRNAs for Pdx1, Ngn3, and MafA Transcription Factors

    PubMed Central

    Koblas, Tomas; Leontovyc, Ivan; Loukotova, Sarka; Kosinova, Lucie; Saudek, Frantisek

    2016-01-01

    Direct reprogramming of pancreatic nonendocrine cells into insulin-producing β-cells represents a promising approach for the treatment of insulin-dependent diabetes. However, its clinical application is limited by the potential for insertional mutagenesis associated with the viral vectors currently used for cell reprogramming. With the aim of developing a nonintegrative reprogramming strategy for derivation of insulin-producing cells, here, we evaluated a new approach utilizing synthetic messenger RNAs encoding reprogramming transcription factors. Administration of synthetic mRNAs encoding three key transcription regulators of β-cell differentiation—Pdx1, Neurogenin3, and MafA—efficiently reprogrammed the pancreatic exocrine cells into insulin-producing cells. In addition to the insulin genes expression, the synthetic mRNAs also induced the expressions of genes important for proper pancreatic β-cell function, including Sur1, Kir6.2, Pcsk1, and Pcsk2. Pretreating cells with the chromatin-modifying agent 5-Aza-2′-deoxycytidine further enhanced reprogramming efficiency, increasing the proportion of insulin-producing cells from 3.5 ± 0.9 to 14.3 ± 1.9% (n = 4). Moreover, 5-Aza-2′-deoxycytidine pretreatment enabled the reprogrammed cells to respond to glucose challenge with increased insulin secretion. In conclusion, our results support that the reprogramming of pancreatic exocrine cells into insulin-producing cells, induced by synthetic mRNAs encoding pancreatic transcription factors, represents a promising approach for cell-based diabetes therapy. PMID:27187823

  2. Tumor Specific Epigenetic Silencing of Corticotropin Releasing Hormone -Binding Protein in Renal Cell Carcinoma: Association of Hypermethylation and Metastasis

    PubMed Central

    Tezval, Hossein; Dubrowinskaja, Natalia; Peters, Inga; Reese, Christel; Serth, Katrin; Atschekzei, Faranaz; Hennenlotter, Jörg; Stenzl, Arnulf; Kuczyk, Markus A.; Serth, Jürgen

    2016-01-01

    The relevance of Corticotropin Releasing Hormone (CRH)-system in human malignancies is a question of growing interest. Here we investigated hypermethylation and epigenetic silencing of the CRH-Binding Protein (CRHBP) gene in clear cell renal cell cancer (ccRCC). Relative methylation of the CRHBP CpG island (CGI) was determined in 17 tumor cell lines as well as 86 ccRCC samples and 66 paired normal tissues using pyrosequencing and quantitative methylation specific PCR of bisulfite converted DNA. Results were statistically compared with relative mRNA expression levels of CRHBP and clinicopathological parameters of patients. Re-expression of CRHBP following 5-aza-2´-deoxycytidine treatment was investigated by quantitative mRNA expression analysis. Real-time impedance analysis was applied for analysis of invasiveness of renal tumor cells following si-RNA knockdown of CRHBP expression or ectopic expression of CRHBP. We found the CRHBP CGI to be frequently methylated in tumor cell lines of renal, prostatic, and bladder cancer. Comparison of methylation in normal and paired renal cancer tissue specimens revealed hypermethylation of the CRHBP CGI in tumors (p<1*10−12). DNA methylation and decreased mRNA expression were correlated (R = 0.83, p<1*10−12). Tumor cell lines showed 5-aza-2´-deoxycytidine dependent reduction of methylation and re-expression of CRHBP was associated with altered cellular invasiveness of renal cancer cells in real-time impedance invasion assays. Hypermethylation and inverse relationship with mRNA expression were validated in silico using the TCGA network data. We describe for the first time tumor specific epigenetic silencing of CRHBP and statistical association with aggressive tumors thus suggesting the CRH system to contribute to the development of kidney cancer. PMID:27695045

  3. Antiproliferative effects of sapacitabine (CYC682), a novel 2′-deoxycytidine-derivative, in human cancer cells

    PubMed Central

    Serova, M; Galmarini, C M; Ghoul, A; Benhadji, K; Green, S R; Chiao, J; Faivre, S; Cvitkovic, E; Le Tourneau, C; Calvo, F; Raymond, E

    2007-01-01

    This study assessed the antiproliferative activity of sapacitabine (CYC682, CS-682) in a panel of 10 human cancer cell lines with varying degrees of resistance or sensitivity to the commonly used nucleoside analogues ara-C and gemcitabine. Growth inhibition studies using sapacitabine and CNDAC were performed in the panel of cell lines and compared with both nucleoside analogues and other anticancer compounds including oxaliplatin, doxorubicin, docetaxel and seliciclib. Sapacitabine displayed antiproliferative activity across a range of concentrations in a variety of cell lines, including those shown to be resistant to several anticancer drugs. Sapacitabine is biotransformed by plasma, gut and liver amidases into CNDAC and causes cell cycle arrest predominantly in the G2/M phase. No clear correlation was observed between sensitivity to sapacitabine and the expression of critical factors involved in resistance to nucleoside analogues such as deoxycytidine kinase (dCK), human equilibrative nucleoside transporter 1, cytosolic 5′-nucleotidase and DNA polymerase-α. However, sapacitabine showed cytotoxic activity against dCK-deficient L1210 cells indicating that in some cells, a dCK-independent mechanism of action may be involved. In addition, sapacitabine showed a synergistic effect when combined with gemcitabine and sequence-specific synergy with doxorubicin and oxaliplatin. Sapacitabine is therefore a good candidate for further evaluation in combination with currently used anticancer agents in tumour types with unmet needs. PMID:17637678

  4. A phase I, pharmacokinetic, and pharmacodynamic evaluation of the DNA methyltransferase inhibitor 5-fuoro-2′-deoxycytidine, administered with tetrahydrouridine

    PubMed Central

    Morgan, Robert J.; Kummar, Shivaani; Beumer, Jan H.; Blanchard, M. Suzette; Ruel, Christopher; El-Khoueiry, Anthony B.; Carroll, Mary I.; Hou, Jessie M.; Li, Chun; Lenz, Heinz J.; Eiseman, Julie L.; Doroshow, James H.

    2015-01-01

    Purpose Inhibitors of DNA (cytosine-5)-methyltransferases (DNMT) are active antineoplastic agents. We conducted the first-in-human phase I trial of 5-fluoro-2′-deoxycytidine (FdCyd), a DNMT inhibitor stable in aqueous solution, in patients with advanced solid tumors. Objectives were to establish the safety, maximum tolerated dose (MTD), pharmacokinetics, and pharmacodynamics of FdCyd + tetrahydrouridine (THU). Methods FdCyd + THU were administered by 3 h IV infusion on days 1–5 every 3 weeks, or days 1–5 and 8–12 every 4 weeks. FdCyd was administered IV with a fixed 350 mg/m2/day dose of THU to inhibit deamination of FdCyd. Pharmacokinetics of FdCyd, downstream metabolites and THU were assessed by LC–MS/MS. RBC γ-globin expression was evaluated as a pharmacodynamics biomarker. Results Patients were enrolled on the 3-week schedule at doses up to 80 mg/m2/day without dose-limiting toxicity (DLT) prior to transitioning to the 4-week schedule, which resulted in an MTD of 134 mg/m2/day; one of six patients had a first-cycle DLT (grade 3 colitis). FdCyd ≥40 mg/m2/day produced peak plasma concentrations >1 μM. Although there was inter-patient variability, γ-globin mRNA increased during the first two treatment cycles. One refractory breast cancer patient experienced a partial response (PR) of >90 % decrease in tumor size, lasting over a year. Conclusions The MTD was established at 134 mg/m2 FdCyd + 350 mg/m2 THU days 1–5 and 8–12 every 4 weeks. Based on toxicities observed over multiple cycles, good plasma exposures, and the sustained PR observed at 67 mg/m2/day, the phase II dose for our ongoing multi-histology trial is 100 mg/m2/day FdCyd with 350 mg/m2/day THU. PMID:25567350

  5. Dr Jekyll and Mr Hyde: a strange case of 5-ethynyl-2'-deoxyuridine and 5-ethynyl-2'-deoxycytidine.

    PubMed

    Ligasová, Anna; Liboska, Radek; Friedecký, David; Mičová, Kateřina; Adam, Tomáš; Oždian, Tomáš; Rosenberg, Ivan; Koberna, Karel

    2016-01-01

    5-Ethynyl-2'-deoxyuridine (EdU) and 5-ethynyl-2'-deoxycytidine (EdC) are mainly used as markers of cellular replicational activity. Although EdU is employed as a replicational marker more frequently than EdC, its cytotoxicity is commonly much higher than the toxicity of EdC. To reveal the reason of the lower cytotoxicity of EdC, we performed a DNA analysis of five EdC-treated human cell lines. Surprisingly, not a single one of the tested cell lines contained a detectable amount of EdC in their DNA. Instead, the DNA of all the cell lines contained EdU. The content of incorporated EdU differed in particular cells and EdC-related cytotoxicity was directly proportional to the content of EdU. The results of experiments with the targeted inhibition of the cytidine deaminase (CDD) and dCMP deaminase activities indicated that the dominant role in the conversion pathway of EdC to EdUTP is played by CDD in HeLa cells. Our results also showed that the deamination itself was not able to effectively prevent the conversion of EdC to EdCTP, the conversion of EdC to EdCTP occurs with much lesser effectivity than the conversion of EdU to EdUTP and the EdCTP is not effectively recognized by the replication complex as a substrate for the synthesis of nuclear DNA. PMID:26740587

  6. Fused-core silica column ultra-performance liquid chromatography-ion trap tandem mass spectrometry for determination of global DNA methylation status.

    PubMed

    Yang, Ill; Fortin, Marie C; Richardson, Jason R; Buckley, Brian

    2011-02-01

    Epigenetic modifications, such as DNA methylation, play key roles in transcriptional regulation of gene expression. More recently, global DNA methylation levels have been documented to be altered in several diseases, including cancer, and as the result of exposure to environmental toxicants. Based on the potential use of global DNA methylation status as a biomarker of disease status and exposure to environmental toxicants, we sought to develop a rapid, sensitive, and precise analytical method for the quantitative measurement of global DNA methylation status using ultra-performance liquid chromatography with detection by ion trap tandem mass spectrometry. Using a fused-core silica column, 2'-deoxyguanosine (2dG) and 5-methyl-2'-deoxycytidine (5mdC) were resolved in less than 1 min with detection limits of 0.54 and 1.47 fmol for 5mdC and 2dG, respectively. The accuracy of detection was 95% or higher, and the day-to-day coefficient of variation was found to be 3.8%. The method was validated by quantification of global DNA methylation status following treatment of cells with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine, which reduced DNA methylation from 3.1% in control cells to 1.1% in treated cells. The sensitivity and high throughput of this method rend it suitable for large-scale analysis of epidemiological and clinical DNA samples.

  7. High-performance capillary electrophoretic method for the quantification of 5-methyl 2'-deoxycytidine in genomic DNA: application to plant, animal and human cancer tissues.

    PubMed

    Fraga, Mario F; Uriol, Esther; Borja Diego, L; Berdasco, María; Esteller, Manel; Cañal, María Jesús; Rodríguez, Roberto

    2002-06-01

    A new approach to the evaluation of the relative degree of genomic DNA methylation through the quantification of 2'-deoxynucleosides is proposed. Detection and quantification of 5-methyl 2'-deoxycytidine in genomic DNA has been performed using micellar high-performance capillary electrophoresis (HPCE) with UV-Vis detection. This approach has been demonstrated to be more sensitive and specific than other HPCE methods for the quantification of DNA methylation degree and also to be faster than other HPLC-based methods. The detection and quantification of nucleosides through enzymatic hydrolyses notably increases the specificity of the technique and allows its exploitation in the analysis of poorly purified and/or concentrated DNA samples such as those obtained from meristematic plant regions and paraffin-embedded tissues.

  8. Irmpd Action Spectroscopy and Computational Approaches to Elucidate Gas-Phase Structures and Energetics of 2'-DEOXYCYTIDINE and Cytidine Sodium Complexes

    NASA Astrophysics Data System (ADS)

    Zhu, Yanlong; Hamlow, Lucas; He, Chenchen; Gao, Juehan; Oomens, Jos; Rodgers, M. T.

    2016-06-01

    The local structures of DNA and RNA are influenced by protonation, deprotonation and noncovalent interactions with cations. In order to determine the effects of Na+ cationization on the gas-phase structures of 2'-deoxycytidine, [dCyd+Na]+, and cytidine, [Cyd+Na]+, infrared multiple photon dissociation (IRMPD) action spectra of these sodium cationized nucleosides are measured over the range extending from 500 to 1850 wn using the FELIX free electron laser. Complementary electronic structure calculations are performed to determine the stable low-energy conformations of these complexes. Geometry optimizations, frequency analyses, and IR spectra of these species are determined at the B3LYP/6-311+G(d,p) level of theory. Single-point energies are calculated at the B3LYP/6-311+G(2d,2p) level of theory to determine the relative stabilities of these conformations. Comparison of the measure IRMPD action spectra and computed linear IR spectra enable the conformations accessed in the experiments to be elucidated. For both cytosine nucleosides, tridentate binding of the Na+ cation to the O2, O4' and O5' atoms of the nucleobase and sugar is observed. Present results for the sodium cationized nucleosides are compared to results for the analogous protonated forms of these nucleosides to elucidate the effects of multiple chelating interactions with the sodium cation vs. hydrogen bonding interactions in the protonated systems on the structures and stabilities of these nucleosides.

  9. Relationship Between Chromatin Structure and Sensitivity to Molecularly Targeted Auger Electron Radiation Therapy

    SciTech Connect

    Terry, Samantha Y.A.

    2012-07-15

    Purpose: The open structure of euchromatin renders it susceptible to DNA damage by ionizing radiation (IR) compared with compact heterochromatin. The effect of chromatin configuration on the efficacy of Auger electron radiotherapy was investigated. Methods and Materials: Chromatin structure was altered in MDA-MB-468 and 231-H2N human breast cancer cells by suberoylanilide hydroxamic acid (SAHA), 5-aza-2-deoxycytidine, or hypertonic treatment. The extent and duration of chromatin structural changes were evaluated using the micrococcal nuclease assay. DNA damage ({gamma}H2AX assay) and clonogenic survival were evaluated after exposure to {sup 111}In-DTPA-hEGF, an Auger electron-emitting radiopharmaceutical, or IR. The intracellular distribution of {sup 111}In-DTPA-hEGF after chromatin modification was investigated in cell fractionation experiments. Results: Chromatin remained condensed for up to 20 minutes after NaCl and in a relaxed state 24 hours after SAHA treatment. The number of {gamma}H2AX foci per cell was greater in MDA-MB-468 and 231-H2N cells after IR (0.5 Gy) plus SAHA (1 {mu}M) compared with IR alone (16 {+-} 0.6 and 14 {+-} 0.3 vs. 12 {+-} 0.4 and 11 {+-} 0.2, respectively). More {gamma}H2AX foci were observed in MDA-MB-468 and 231-H2N cells exposed to {sup 111}In-DTPA-hEGF (6 MBq/{mu}g) plus SAHA vs. {sup 111}In-DTPA-hEGF alone (11 {+-} 0.3 and 12 {+-} 0.7 vs. 9 {+-} 0.4 and 7 {+-} 0.3, respectively). 5-aza-2-deoxycytidine enhanced the DNA damage caused by IR and {sup 111}In-DTPA-hEGF. Clonogenic survival was reduced in MDA-MB-468 and 231-H2N cells after IR (6 Gy) plus SAHA (1 {mu}M) vs. IR alone (0.6% {+-} 0.01 and 0.3% {+-} 0.2 vs. 5.8% {+-} 0.2 and 2% {+-} 0.1, respectively) and after {sup 111}In-DTPA-hEGF plus SAHA compared to {sup 111}In-DTPA-hEGF alone (21% {+-} 0.4% and 19% {+-} 4.6 vs. 33% {+-} 2.3 and 32% {+-} 3.7). SAHA did not affect {sup 111}In-DTPA-hEGF nuclear localization. Hypertonic treatment resulted in fewer {gamma}H2AX foci per cell

  10. Global identification of genes regulated by estrogen signaling and demethylation in MCF-7 breast cancer cells

    SciTech Connect

    Putnik, Milica; Zhao, Chunyan; Gustafsson, Jan-Ake; Dahlman-Wright, Karin

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Estrogen signaling and demethylation can both control gene expression in breast cancers. Black-Right-Pointing-Pointer Cross-talk between these mechanisms is investigated in human MCF-7 breast cancer cells. Black-Right-Pointing-Pointer 137 genes are influenced by both 17{beta}-estradiol and demethylating agent 5-aza-2 Prime -deoxycytidine. Black-Right-Pointing-Pointer A set of genes is identified as targets of both estrogen signaling and demethylation. Black-Right-Pointing-Pointer There is no direct molecular interplay of mediators of estrogen and epigenetic signaling. -- Abstract: Estrogen signaling and epigenetic modifications, in particular DNA methylation, are involved in regulation of gene expression in breast cancers. Here we investigated a potential regulatory cross-talk between these two pathways by identifying their common target genes and exploring underlying molecular mechanisms in human MCF-7 breast cancer cells. Gene expression profiling revealed that the expression of approximately 140 genes was influenced by both 17{beta}-estradiol (E2) and a demethylating agent 5-aza-2 Prime -deoxycytidine (DAC). Gene ontology (GO) analysis suggests that these genes are involved in intracellular signaling cascades, regulation of cell proliferation and apoptosis. Based on previously reported association with breast cancer, estrogen signaling and/or DNA methylation, CpG island prediction and GO analysis, we selected six genes (BTG3, FHL2, PMAIP1, BTG2, CDKN1A and TGFB2) for further analysis. Tamoxifen reverses the effect of E2 on the expression of all selected genes, suggesting that they are direct targets of estrogen receptor. Furthermore, DAC treatment reactivates the expression of all selected genes in a dose-dependent manner. Promoter CpG island methylation status analysis revealed that only the promoters of BTG3 and FHL2 genes are methylated, with DAC inducing demethylation, suggesting DNA methylation directs repression of

  11. Tautomerism provides a molecular explanation for the mutagenic properties of the anti-HIV nucleoside 5-aza-5,6-dihydro-2'-deoxycytidine.

    PubMed

    Li, Deyu; Fedeles, Bogdan I; Singh, Vipender; Peng, Chunte Sam; Silvestre, Katherine J; Simi, Allison K; Simpson, Jeffrey H; Tokmakoff, Andrei; Essigmann, John M

    2014-08-12

    Viral lethal mutagenesis is a strategy whereby the innate immune system or mutagenic pool nucleotides increase the error rate of viral replication above the error catastrophe limit. Lethal mutagenesis has been proposed as a mechanism for several antiviral compounds, including the drug candidate 5-aza-5,6-dihydro-2'-deoxycytidine (KP1212), which causes A-to-G and G-to-A mutations in the HIV genome, both in tissue culture and in HIV positive patients undergoing KP1212 monotherapy. This work explored the molecular mechanism(s) underlying the mutagenicity of KP1212, and specifically whether tautomerism, a previously proposed hypothesis, could explain the biological consequences of this nucleoside analog. Establishing tautomerism of nucleic acid bases under physiological conditions has been challenging because of the lack of sensitive methods. This study investigated tautomerism using an array of spectroscopic, theoretical, and chemical biology approaches. Variable temperature NMR and 2D infrared spectroscopic methods demonstrated that KP1212 existed as a broad ensemble of interconverting tautomers, among which enolic forms dominated. The mutagenic properties of KP1212 were determined empirically by in vitro and in vivo replication of a single-stranded vector containing a single KP1212. It was found that KP1212 paired with both A (10%) and G (90%), which is in accord with clinical observations. Moreover, this mutation frequency is sufficient for pushing a viral population over its error catastrophe limit, as observed before in cell culture studies. Finally, a model is proposed that correlates the mutagenicity of KP1212 with its tautomeric distribution in solution.

  12. Tautomerism provides a molecular explanation for the mutagenic properties of the anti-HIV nucleoside 5-aza-5,6-dihydro-2'-deoxycytidine.

    PubMed

    Li, Deyu; Fedeles, Bogdan I; Singh, Vipender; Peng, Chunte Sam; Silvestre, Katherine J; Simi, Allison K; Simpson, Jeffrey H; Tokmakoff, Andrei; Essigmann, John M

    2014-08-12

    Viral lethal mutagenesis is a strategy whereby the innate immune system or mutagenic pool nucleotides increase the error rate of viral replication above the error catastrophe limit. Lethal mutagenesis has been proposed as a mechanism for several antiviral compounds, including the drug candidate 5-aza-5,6-dihydro-2'-deoxycytidine (KP1212), which causes A-to-G and G-to-A mutations in the HIV genome, both in tissue culture and in HIV positive patients undergoing KP1212 monotherapy. This work explored the molecular mechanism(s) underlying the mutagenicity of KP1212, and specifically whether tautomerism, a previously proposed hypothesis, could explain the biological consequences of this nucleoside analog. Establishing tautomerism of nucleic acid bases under physiological conditions has been challenging because of the lack of sensitive methods. This study investigated tautomerism using an array of spectroscopic, theoretical, and chemical biology approaches. Variable temperature NMR and 2D infrared spectroscopic methods demonstrated that KP1212 existed as a broad ensemble of interconverting tautomers, among which enolic forms dominated. The mutagenic properties of KP1212 were determined empirically by in vitro and in vivo replication of a single-stranded vector containing a single KP1212. It was found that KP1212 paired with both A (10%) and G (90%), which is in accord with clinical observations. Moreover, this mutation frequency is sufficient for pushing a viral population over its error catastrophe limit, as observed before in cell culture studies. Finally, a model is proposed that correlates the mutagenicity of KP1212 with its tautomeric distribution in solution. PMID:25071207

  13. Dr Jekyll and Mr Hyde: a strange case of 5-ethynyl-2′-deoxyuridine and 5-ethynyl-2′-deoxycytidine

    PubMed Central

    Ligasová, Anna; Liboska, Radek; Friedecký, David; Mičová, Kateřina; Adam, Tomáš; Oždian, Tomáš; Rosenberg, Ivan; Koberna, Karel

    2016-01-01

    5-Ethynyl-2′-deoxyuridine (EdU) and 5-ethynyl-2′-deoxycytidine (EdC) are mainly used as markers of cellular replicational activity. Although EdU is employed as a replicational marker more frequently than EdC, its cytotoxicity is commonly much higher than the toxicity of EdC. To reveal the reason of the lower cytotoxicity of EdC, we performed a DNA analysis of five EdC-treated human cell lines. Surprisingly, not a single one of the tested cell lines contained a detectable amount of EdC in their DNA. Instead, the DNA of all the cell lines contained EdU. The content of incorporated EdU differed in particular cells and EdC-related cytotoxicity was directly proportional to the content of EdU. The results of experiments with the targeted inhibition of the cytidine deaminase (CDD) and dCMP deaminase activities indicated that the dominant role in the conversion pathway of EdC to EdUTP is played by CDD in HeLa cells. Our results also showed that the deamination itself was not able to effectively prevent the conversion of EdC to EdCTP, the conversion of EdC to EdCTP occurs with much lesser effectivity than the conversion of EdU to EdUTP and the EdCTP is not effectively recognized by the replication complex as a substrate for the synthesis of nuclear DNA. PMID:26740587

  14. Synthesis and characterization of oligodeoxyribonucleotides containing a site-specifically incorporated N6-carboxymethyl-2′-deoxyadenosine or N4-carboxymethyl-2′-deoxycytidine

    PubMed Central

    Wang, Jianshuang; Wang, Yinsheng

    2010-01-01

    Humans are exposed to both endogenous and exogenous N-nitroso compounds (NOCs), and many NOCs can be metabolically activated to generate a highly reactive species, diazoacetate, which is capable of inducing carboxymethylation of nucleobases in DNA. Here we report, for the first time, the chemical syntheses of authentic N6-carboxymethyl-2′-deoxyadenosine (N6-CMdA) and N4-carboxymethyl-2′-deoxycytidine (N4-CMdC), liquid chromatography–ESI tandem MS confirmation of their formation in calf thymus DNA upon diazoacetate exposure, and the preparation of oligodeoxyribonucleotides containing a site-specifically incorporated N6-CMdA or N4-CMdC. Additionally, thermodynamic studies showed that the substitutions of a dA with N6-CMdA and dC with N4-CMdC in a 12-mer duplex increased Gibbs free energy for duplex formation at 25°C by 5.3 and 6.8 kcal/mol, respectively. Moreover, primer extension assay revealed that N4-CMdC was a stronger blockade to Klenow fragment-mediated primer extension than N6-CMdA. The polymerase displayed substantial frequency of misincorporation of dAMP opposite N6-CMdA and, to a lesser extent, misinsertion of dAMP and dTMP opposite N4-CMdC. The formation and the mutagenic potential of N6-CMdA and N4-CMdC suggest that these lesions may bear important implications in the etiology of NOC-induced tumor development. PMID:20507914

  15. Ubiquitous and tenacious methylation of the CpG site in codon 248 of the p53 gene may explain its frequent appearance as a mutational hot spot in human cancer.

    PubMed Central

    Magewu, A N; Jones, P A

    1994-01-01

    Cytosine methylation at CpG dinucleotides is thought to cause more than one-third of all transition mutations responsible for human genetic diseases and cancer. We investigated the methylation status of the CpG dinucleotide at codon 248 in exon 7 of the p53 gene because this codon is a hot spot for inactivating mutations in the germ line and in most human somatic tissues examined. Codon 248 is contained within an HpaII site (CCGG), and the methylation status of this and flanking CpG sites was analyzed by using the methylation-sensitive enzymes CfoI (GCGC) and HpaII. Codon 248 and the CfoI and HpaII sites in the flanking introns were methylated in every tissue and cell line examined, indicating extensive methylation of this region in the p53 gene. Exhaustive treatment of an osteogenic sarcoma cell line, TE85, with the hypomethylating drug 5-aza-2'-deoxycytidine did not demethylate codon 248 or the CfoI sites in intron 6, although considerable global demethylation of the p53 gene was induced. Constructs containing either exon 7 alone or exon 7 and the flanking introns were transfected into TE85 cells to determine whether de novo methylation would occur. The presence of exon 7 alone caused some de novo methylation to occur at codon 248. More extensive de novo methylation of the CfoI sites in intron 6, which contains an Alu sequence, occurred in cells transfected with a vector containing exon 7 and flanking introns. With longer time in culture, there was increased methylation at the CfoI sites, and de novo methylation of codon 248 and its flanking HpaII sites was observed. These de novo-methylated sites were also resistant to 5-aza-2'-deoxycytidine-induced demethylation. The frequent methylation of codon 248 and adjacent Alu sequence may explain the enhanced mutability of this site as a result of the deamination of the 5-methylcytosine. Images PMID:8196660

  16. Human Leukocyte Antigen (HLA) Peptides Derived from Tumor Antigens Induced by Inhibition of DNA Methylation for Development of Drug-facilitated Immunotherapy.

    PubMed

    Shraibman, Bracha; Kadosh, Dganit Melamed; Barnea, Eilon; Admon, Arie

    2016-09-01

    Treatment of cancer cells with anticancer drugs often fails to achieve complete remission. Yet, such drug treatments may induce alteration in the tumor's gene expression patterns, including those of Cancer/Testis Antigens (CTA). The degradation products of such antigens can be presented as HLA peptides on the surface of the tumor cells and be developed into anticancer immunotherapeutics. For example, the DNA methyl transferase inhibitor, 5-aza-2'-deoxycytidine (Decitabine) has limited antitumor efficacy, yet it induces the expression of many genes, including CTAs that are normally silenced in the healthy adult tissues. In this study, the presentation of many new HLA peptides derived from CTAs and induced by Decitabine was demonstrated in three human Glioblastoma cell lines. Such presentation of CTA-derived HLA peptides can be exploited for development of new treatment modalities, combining drug treatment with anti-CTA targeted immunotherapy. The Decitabine-induced HLA peptidomes include many CTAs that are not normally detected in healthy tissues or in cancer cells, unless treated with the drug. In addition, the study included large-scale analyses of the simultaneous effects of Decitabine on the transcriptomes, proteomes and HLA peptidomes of the human Glioblastoma cells. It demonstrates the poor correlations between these three levels of gene expression, both in their total levels and in their response to the drug. The proteomics and HLA peptidomics data are available via ProteomeXchange with identifier PXD003790 and the transcriptomics data are available via GEO with identifier GSE80137.

  17. Longitudinal Analysis of DNA Methylation in CD34+ Hematopoietic Progenitors in Myelodysplastic Syndrome.

    PubMed

    Wong, Yan-Fung; Micklem, Chris N; Taguchi, Masataka; Itonaga, Hidehiro; Sawayama, Yasushi; Imanishi, Daisuke; Nishikawa, Shinichi; Miyazaki, Yasushi; Jakt, Lars Martin

    2014-10-01

    Myelodysplastic syndrome (MDS) is a disorder of hematopoietic stem cells (HSCs) that is often treated with DNA methyltransferase 1 (DNMT1) inhibitors (5-azacytidine [AZA], 5-aza-2'-deoxycytidine), suggesting a role for DNA methylation in disease progression. How DNMT inhibition retards disease progression and how DNA methylation contributes to MDS remain unclear. We analyzed global DNA methylation in purified CD34+ hematopoietic progenitors from MDS patients undergoing multiple rounds of AZA treatment. Differential methylation between MDS phenotypes was observed primarily at developmental regulators not expressed within the hematopoietic compartment and was distinct from that observed between healthy hematopoietic cell types. After AZA treatment, we observed only limited DNA demethylation at sites that varied between patients. This suggests that a subset of the stem cell population is resistant to AZA and provides a basis for disease relapse. Using gene expression data from patient samples and an in vitro AZA treatment study, we identified differentially methylated genes that can be activated following treatment and that remain silent in the CD34+ stem cell compartment of high-risk MDS patients. Haploinsufficiency in mice of one of these genes (NR4A2) has been shown to lead to excessive HSC proliferation, and our data suggest that suppression of NR4A2 by DNA methylation may be involved in MDS progression.

  18. Role of PTCH1 gene methylation in gastric carcinogenesis.

    PubMed

    Zuo, Yun; Song, Yu; Zhang, Min; Xu, Zhen; Qian, Xiaolan

    2014-08-01

    The present study aimed to investigate the role of PTCH1 methylation in gastric carcinogenesis and the therapeutic effect of the methylation inhibitor, 5-aza-2'-deoxycytidine (5-aza-dC), in the treatment of gastric cancer. Total RNA was extracted from 20 gastric cancer tissues, their corresponding adjacent normal tissues and a gastric cancer AGS cell line. PTCH1 mRNA expression was detected by quantitative PCR, and the PTCH1 methylation of the promoter was examined by methylation-specific PCR. The AGS cells were treated with 5-Aza-dC; apoptosis and the cell cycle were examined by flow cytometry, and the PTCH1 methylation level was observed. PTCH1 expression was negatively correlated with promoter methylation in the gastric cancer tissues, their corresponding adjacent normal tissues and the gastric cancer AGS cell line (r=-0.591, P=0.006). 5-Aza-dC treatment caused apoptosis and the G0/G1 phase arrest of the AGS cells, and also induced the demethylation and increased expression of PTCH1. In conclusion, the study found that the hypermethylation of the PTCH1 gene promoter region is one of the main causes of low PTCH1 expression in AGS cells. Demethylation agent 5-Aza-dC can reverse the methylation status of PTCH1 and regulate the expression of PTCH1, indicating its potential role in gastric cancer treatment. PMID:25013484

  19. Prolonged re-expression of the hypermethylated gene EPB41L3 using artificial transcription factors and epigenetic drugs

    PubMed Central

    Huisman, Christian; van der Wijst, Monique GP; Falahi, Fahimeh; Overkamp, Juul; Karsten, Gellért; Terpstra, Martijn M; Kok, Klaas; van der Zee, Ate GJ; Schuuring, Ed; Wisman, G Bea A; Rots, Marianne G

    2015-01-01

    Epigenetic silencing of tumor suppressor genes (TSGs) is considered a significant event in the progression of cancer. For example, EPB41L3, a potential biomarker in cervical cancer, is often silenced by cancer-specific promoter methylation. Artificial transcription factors (ATFs) are unique tools to re-express such silenced TSGs to functional levels; however, the induced effects are considered transient. Here, we aimed to improve the efficiency and sustainability of gene re-expression using engineered zinc fingers fused to VP64 (ZF-ATFs) or DNA methylation modifiers (ZF-Tet2 or ZF-TDG) and/or by co-treatment with epigenetic drugs [5-aza-2′-deoxycytidine or Trichostatin A (TSA)]. The EPB41L3-ZF effectively bound its methylated endogenous locus, as also confirmed by ChIP-seq. ZF-ATFs reactivated the epigenetically silenced target gene EPB41L3 (∼10-fold) in breast, ovarian, and cervical cancer cell lines. Prolonged high levels of EPB41L3 (∼150-fold) induction could be achieved by short-term co-treatment with epigenetic drugs. Interestingly, for otherwise ineffective ZF-Tet2 or ZF-TDG treatments, TSA facilitated re-expression of EPB41L3 up to twofold. ATF-mediated re-expression demonstrated a tumor suppressive role for EPB41L3 in cervical cancer cell lines. In conclusion, epigenetic reprogramming provides a novel way to improve sustainability of re-expression of epigenetically silenced promoters. PMID:25830725

  20. IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo

    PubMed Central

    Zorn, Emmanuel; Nelson, Erik A.; Mohseni, Mehrdad; Porcheray, Fabrice; Kim, Haesook; Litsa, Despina; Bellucci, Roberto; Raderschall, Elke; Canning, Christine; Soiffer, Robert J.; Frank, David A.; Ritz, Jerome

    2006-01-01

    IL-2 plays a critical role in the maintenance of CD4+CD25+ FOXP3+ regulatory T cells (Tregs) in vivo. We examined the effects of IL-2 signaling in human Tregs. In vitro, IL-2 selectively up-regulated the expression of FOXP3 in purified CD4+CD25+ T cells but not in CD4+CD25- cells. This regulation involved the binding of STAT3 and STAT5 proteins to a highly conserved STAT-binding site located in the first intron of the FOXP3 gene. We also examined the effects of low-dose IL-2 treatment in 12 patients with metastatic cancer and 9 patients with chronic myelogenous leukemia after allogeneic hematopoietic stem cell transplantation. Overall, IL-2 treatment resulted in a 1.9 median fold increase in the frequency of CD4+CD25+ cells in peripheral blood as well as a 9.7 median fold increase in FOXP3 expression in CD3+ T cells. CD56+CD3- natural killer (NK) cells also expanded during IL-2 therapy but did not express FOXP3. In vitro treatment of NK cells with 5-aza-2′-deoxycytidine restored the IL-2 signaling pathway leading to FOXP3 expression, suggesting that this gene was constitutively repressed by DNA methylation in these cells. Our findings support the clinical evaluation of low-dose IL-2 to selectively modulate CD4+CD25+ Tregs and increase expression of FOXP3 in vivo. PMID:16645171

  1. Time-course gene profiling and networks in demethylated retinoblastoma cell line

    PubMed Central

    Malusa, Federico; Taranta, Monia; Zaki, Nazar; Cinti, Caterina; Capobianco, Enrico

    2015-01-01

    Retinoblastoma, a very aggressive cancer of the developing retina, initiatiates by the biallelic loss of RB1 gene, and progresses very quickly following RB1 inactivation. While its genome is stable, multiple pathways are deregulated, also epigenetically. After reviewing the main findings in relation with recently validated markers, we propose an integrative bioinformatics approach to include in the previous group new markers obtained from the analysis of a single cell line subject to epigenetic treatment. In particular, differentially expressed genes are identified from time course microarray experiments on the WERI-RB1 cell line treated with 5-Aza-2′-deoxycytidine (decitabine; DAC). By inducing demethylation of CpG island in promoter genes that are involved in biological processes, for instance apoptosis, we performed the following main integrative analysis steps: i) Gene expression profiling at 48h, 72h and 96h after DAC treatment; ii) Time differential gene co-expression networks and iii) Context-driven marker association (transcriptional factor regulated protein networks, master regulatory paths). The observed DAC-driven temporal profiles and regulatory connectivity patterns are obtained by the application of computational tools, with support from curated literature. It is worth emphasizing the capacity of networks to reconcile multi-type evidences, thus generating testable hypotheses made available by systems scale predictive inference power. Despite our small experimental setting, we propose through such integrations valuable impacts of epigenetic treatment in terms of gene expression measurements, and then validate evidenced apoptotic effects. PMID:26143641

  2. A Potential New Therapeutic Approach for Friedreich Ataxia: Induction of Frataxin Expression With TALE Proteins.

    PubMed

    Chapdelaine, Pierre; Coulombe, Zoé; Chikh, Amina; Gérard, Catherine; Tremblay, Jacques P

    2013-09-03

    TALEs targeting a promoter sequence and fused with a transcription activation domain (TAD) may be used to specifically induce the expression of a gene as a potential treatment for haploinsufficiency. This potential therapeutic approach was applied to increase the expression of frataxin in fibroblasts of Friedreich ataxia (FRDA) patients. FRDA fibroblast cells were nucleofected with a pCR3.1 expression vector coding for TALEFrat#8 fused with VP64. A twofold increase of the frataxin mRNA (detected by quantitative reverse transcription-PCR (qRT-PCR)) associated with a similar increase of the mature form of the frataxin protein was observed. The frataxin mRNA and protein were also increased by this TALE in the fibroblasts of the YG8R mouse model. The addition of 5-aza-2'-deoxycytidine (5-Aza-dC) or of valproic acid (VPA) to the TALE treatment did not produce significant improvement. Other TADs (i.e., p65, TFAP2α, SRF, SP1, and MyoD) fused with the TALEFrat#8 gene did not produce a significant increase in the frataxin protein. Thus the TALEFrat#8-VP64 recombinant protein targeting the frataxin promoter could eventually be used to increase the frataxin expression and alleviate the FRDA symptoms.Molecular Therapy-Nucleic Acids (2013) 2, e119; doi:10.1038/mtna.2013.41; published online 3 September 2013.

  3. Maintenance of DNA methylation level in SV40-infected human fibroblasts during their in vitro limited proliferative life span.

    PubMed

    Matsumura, T; Hunter, J L; Farooq, M; Holliday, R

    1989-09-01

    Methylation level as expressed by the molar ratio of 5-methylcytosine content to the combined content of cytosine and 5-methylcytosine was determined by HPLC and uv adsorption of cellular DNA extracted from SV40-infected and pretransformed MRC-5 human diploid fibroblasts (HDFs) during their limited in vitro life span. The level decreased slightly during early passages, and then was maintained within a certain range in the subsequent pretransformed stage of serial passages. When HDFs were treated with 5-aza-2'-deoxycytidine (5-aza-CdR) at an effective concentration shortly after the SV40 infection, the level decreased and then increased or was maintained again within a certain range in the subsequent pretransformed state. The proliferative life span potential of SV40-infected HDFs was not significantly decreased by the 5-aza-CdR treatment. These results are in contrast to the established observations for uninfected HDFs, that methylation level decreases during serial passages, and that, after treatment with 5-aza-CdR, the level, as well as the proliferative life span, is decreased in comparison to untreated populations. These results show that SV40-infected pretransformed HDFs are in an intermediate state between normal finite growth and an established permanent line, in that they retain limited in vitro cell proliferation, while acquiring the ability to maintain methylation levels.

  4. Epigenetic regulation of aortic remodeling in hyperhomocysteinemia

    PubMed Central

    Narayanan, Nithya; Pushpakumar, Sathnur Basappa; Givvimani, Srikanth; Kundu, Sourav; Metreveli, Naira; James, Dexter; Bratcher, Adrienne P.; Tyagi, Suresh C.

    2014-01-01

    Hyperhomocysteinemia (HHcy) is prevalent in patients with hypertension and is an independent risk factor for aortic pathologies. HHcy is known to cause an imbalance between matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs), leading to the accumulation of collagen in the aorta and resulting in stiffness and development of hypertension. Although the exact mechanism of extracellular matrix (ECM) remodeling is unclear, emerging evidence implicates epigenetic regulation involving DNA methylation. Our purpose was to investigate whether 5-aza-2′-deoxycytidine (Aza), a DNA methyltransferase (DNMT1) inhibitor, reduces high blood pressure (BP) by regulating aortic ECM remodeling in HHcy. Wild-type and cystathionine β-synthase (CBS)+/− HHcy mice were treated with Aza (0.5 mg/kg body weight). In HHcy mice, Aza treatment normalized the plasma homocysteine (Hcy) level and BP. Thoracic and abdominal aorta ultrasound revealed a reduction in the resistive index and wall-to-lumen ratio. Vascular response to phenylephrine, acetylcholine, and sodium nitroprusside improved after Aza in HHcy mice. Histology showed a marked reduction in collagen deposition in the aorta. Aza treatment decreased the expression of DNMT1, MMP9, TIMP1, and S-adenosyl homocysteine hydrolase (SAHH) and upregulated methylene tetrahydrofolate reductase (MTHFR). We conclude that reduction of DNA methylation by Aza in HHcy reduces adverse aortic remodeling to mitigate hypertension.—Narayanan, N., Pushpakumar, S. B., Givvimani, S., Kundu, S., Metreveli, N., James, D., Bratcher, A. P., Tyagi, S. C. Epigenetic regulation of aortic remodeling in hyperhomocysteinemia. PMID:24739303

  5. Epigenetic inactivation of SLIT2 in human hepatocellular carcinomas.

    PubMed

    Jin, Jie; You, Haiyan; Yu, Bin; Deng, Yun; Tang, Ning; Yao, Genfu; Shu, Huiqun; Yang, Shengli; Qin, Wenxin

    2009-01-30

    Recent findings have shown that SLIT2 appears to function as a novel tumor suppressor gene. In addition, hypermethylation of its promoter region has been detected in various cancers, including breast and lung cancer, colorectal carcinoma, and gliomas. Here, we report for the first time that there is epigenetic silencing of SLIT2 in human hepatocellular carcinoma (HCC). Downregulation of SLIT2 was detected in 6 of 8 (75%) HCC cell lines by quantitative real-time RT-PCR (qRT-PCR), and the downregulation of SLIT2 was generally dependent on the degree of methylation at the promoter region. Furthermore, expression of SLIT2 was restored in relatively low-expressing cell lines after treatment with 5-aza-2-deoxycytidine (5-Aza-dC). Downregulation of SLIT2 expression was also detected in 45 of 54 primary HCC samples (83.3%), and the decrease in expression was significantly correlated with CpG island hypermethylation. This decrease of SLIT2 expression was also associated with lymph node metastasis in HCC. Moreover, overexpression of SLIT2 in SMMC-7721 cells induced by recombinant adenovirus suppressed cell growth, migration, and invasion, These results suggest that epigenetic inactivation of SLIT2 in HCC may be important in the development and progression of HCC. Thus, SLIT2 may be useful as a therapeutic target in the treatment of HCC.

  6. CXorf61 is a target for T cell based immunotherapy of triple-negative breast cancer

    PubMed Central

    Paret, Claudia; Simon, Petra; Vormbrock, Kirsten; Bender, Christian; Kölsch, Anne; Breitkreuz, Andrea; Yildiz, Özlem; Omokoko, Tana; Hubich-Rau, Stefanie; Hartmann, Christoph; Häcker, Sabine; Wagner, Meike; Roldan, Diana Barea; Selmi, Abderaouf

    2015-01-01

    Triple-negative breast cancer (TNBC) is a high medical need disease with limited treatment options. CD8+ T cell-mediated immunotherapy may represent an attractive approach to address TNBC. The objectives of this study were to assess the expression of CXorf61 in TNBCs and healthy tissues and to evaluate its capability to induce T cell responses. We show by transcriptional profiling of a broad comprehensive set of normal human tissue that CXorf61 expression is strictly restricted to testis. 53% of TNBC patients express this antigen in at least 30% of their tumor cells. In CXorf61-negative breast cancer cell lines CXorf61 expression is activated by treatment with the hypomethylating agent 5-aza-2′-deoxycytidine. By vaccination of HLA-A*02-transgenic mice with CXorf61 encoding RNA we obtained high frequencies of CXorf61-specific T cells. Cloning and characterization of T cell receptors (TCRs) from responding T cells resulted in the identification of the two HLA-A*0201-restricted T cell epitopes CXorf6166–74 and CXorf6179–87. Furthermore, by in vitro priming of human CD8+ T cells derived from a healthy donor recognizing CXorf6166–74 we were able to induce a strong antigen-specific immune response and clone a human TCR recognizing this epitope. In summary, our data confirms this antigen as promising target for T cell based therapies. PMID:26327325

  7. Expression Profiles of SIRT1 and APP Genes in Human Neuroblastoma SK-N-SH Cells Treated with Two Epigenetic Agents.

    PubMed

    Hou, Yaping; Wang, Fanghua; Cheng, Linping; Luo, Tao; Xu, Jie; Wang, Huaqiao

    2016-10-01

    In our previous studies, significant hypermethylation of the sirtuin 1 (SIRT1) gene and demethylation of the β-amyloid precursor protein (APP) gene were found in patients with Alzheimer's disease (AD) compared with the normal population. Moreover, the expression of SIRT1 was significantly decreased while that of APP was increased in AD patients. These results indicated a correlation of DNA methylation with gene expression levels in AD patients. To further investigate the epigenetic mechanism of gene modulation in AD, we used two epigenetic drugs, the DNA methylation inhibitor 5-aza-2'-deoxycytidine (DAC) and the histone deacetylase inhibitor trichostatin A (TSA), to treat human neuroblastoma SK-N-SH cells in the presence of amyloid β-peptide Aβ25-35(Aβ25-35). We found that DAC and TSA had different effects on the expression trends of SIRT1 and APP in the cell model of amyloid toxicity. Although other genes, such as microtubule-associated protein τ, presenilin 1, presenilin 2, and apolipoprotein E, were up-regulated after Aβ25-35 treatment, no significant differences were found after DAC and/or TSA treatment. These results support the evidence in AD patients and reveal a strong correlation of SIRT1/APP expression with DNA methylation and/or histone modification, which may help understand the pathogenesis of AD.

  8. Methylated BNIP3 gene in colorectal cancer prognosis

    PubMed Central

    SHIMIZU, SAYAKA; IIDA, SATORU; ISHIGURO, MEGUMI; UETAKE, HIROYUKI; ISHIKAWA, TOSHIAKI; TAKAGI, YOKO; KOBAYASHI, HIROTOSHI; HIGUCHI, TETSURO; ENOMOTO, MASAYUKI; MOGUSHI, KAORU; MIZUSHIMA, HIROSHI; TANAKA, HIROSHI; SUGIHARA, KENICHI

    2010-01-01

    The DNA methylation of apoptosis-related genes in various cancers contributes to the disruption of the apoptotic pathway and results in resistance to chemotherapeutic agents. Irinotecan (CPT-11) is one of the key chemotherapy drugs used to treat metastatic colorectal cancer (CRC). However, a number of metastatic CRC patients do not benefit from this drug. Thus, the identification of molecular genetic parameters associated with the response to CPT-11 is of interest. To identify apoptosis-related genes that may contribute to CPT-11 resistance, microarray analysis was conducted using colon cancer cells in which 5-aza-2deoxycytidine (DAC) enhanced sensitivity to CPT-11. Microarray analysis identified 10 apoptosis-related genes that were up-regulated following treatment with DAC. Among the genes, Bcl-2/adenovirus E1B 19 kDa protein interacting protein 3 (BNIP3), a Bcl-2 family pro-apoptotic protein, was identified as being involved in CPT-11 resistance following methylation of its promoter. An analysis of 112 primary CRC cases revealed that approximately 58% of cases showed BNIP3 methylation, and that patients with methylation exhibited a poorer outcome compared to those without methylation. In addition, in 30 patients who received first-line CPT-11 chemotherapy, patients with methylation exhibited resistance to chemotherapy compared to patients with no methylation. The results suggest that methylation of BNIP3 is a predictive factor in the prognosis and response to CPT-11 treatment in CRC patients. PMID:22966396

  9. Gene structure and transcription in mouse cells with extensively demethylated DNA.

    PubMed Central

    Michalowsky, L A; Jones, P A

    1989-01-01

    In previous work, three clonal cell lines with extremely low DNA methylation levels were derived by multiple consecutive treatments of C3H 10T1/2 C18 (10T1/2) cells with 5-aza-2'-deoxycytidine (5-aza-CdR). In this study we examined the methylation status of genes in these three methyl-deficient clones to assess the specificity of the induced hypomethylation. Complete demethylation of virtually all 5'-CCGG-3' sites was observed in four genes examined, but some sites common to all three clones were persistently methylated even after further exhaustive 5-aza-CdR treatment. Thus, there is a subset of methylation sites within these cells which can never be stably demethylated. The extensive demethylation was not always associated with changes in the level of RNA expression of the genes examined but was strongly correlated with an altered chromatin structure of the unexpressed alpha 1-globin gene and the muscle determination gene MyoD1. These results provide a direct correlation between hypomethylation and the induction of a transcriptionally competent chromatin state. Images PMID:2471061

  10. Promoter methylation status of tumor suppressor genes and inhibition of expression of DNA methyltransferase 1 in non-small cell lung cancer.

    PubMed

    Liu, Bangqing; Song, Jianfei; Luan, Jiaqiang; Sun, Xiaolin; Bai, Jian; Wang, Haiyong; Li, Angui; Zhang, Lifei; Feng, Xiaoyan; Du, Zhenzong

    2016-08-01

    DNA methylation is an epigenetic DNA modification catalyzed by DNA methyltransferase 1 (DNMT1). The purpose of this study was to investigate DNMT1 gene and protein expression and the effects of methylation status on tumor suppressor genes in human non-small cell lung cancer (NSCLC) cell lines grown in vitro and in vivo Human lung adenocarcinoma cell lines, A549 and H838, were grown in vitro and inoculated subcutaneously into nude mice to form tumors and were then treated with the DNA methylation inhibitor, 5-aza-2'-deoxycytidine, with and without treatment with the benzamide histone deacetylase inhibitor, entinostat (MS-275). DNMT1 protein expression was quantified by Western blot. Promoter methylation status of tumor suppressor genes (RASSF1A, ASC, APC, MGMT, CDH13, DAPK, ECAD, P16, and GATA4) was evaluated by methylation-specific polymerase chain reaction. Methylation status of the tumor suppressor genes was regulated by the DNMT1 gene, with the decrease of DNMT1 expression following DNA methylation treatment. Demethylation of tumor suppressor genes (APC, ASC, and RASSF1A) restored tumor growth in nude mice. The results of this study support a role for methylation of DNA as a potential epigenetic clinical biomarker of prognosis or response to therapy and for DNMT1 as a potential therapeutic target in NSCLC. PMID:27190263

  11. Expression Profiles of SIRT1 and APP Genes in Human Neuroblastoma SK-N-SH Cells Treated with Two Epigenetic Agents.

    PubMed

    Hou, Yaping; Wang, Fanghua; Cheng, Linping; Luo, Tao; Xu, Jie; Wang, Huaqiao

    2016-10-01

    In our previous studies, significant hypermethylation of the sirtuin 1 (SIRT1) gene and demethylation of the β-amyloid precursor protein (APP) gene were found in patients with Alzheimer's disease (AD) compared with the normal population. Moreover, the expression of SIRT1 was significantly decreased while that of APP was increased in AD patients. These results indicated a correlation of DNA methylation with gene expression levels in AD patients. To further investigate the epigenetic mechanism of gene modulation in AD, we used two epigenetic drugs, the DNA methylation inhibitor 5-aza-2'-deoxycytidine (DAC) and the histone deacetylase inhibitor trichostatin A (TSA), to treat human neuroblastoma SK-N-SH cells in the presence of amyloid β-peptide Aβ25-35(Aβ25-35). We found that DAC and TSA had different effects on the expression trends of SIRT1 and APP in the cell model of amyloid toxicity. Although other genes, such as microtubule-associated protein τ, presenilin 1, presenilin 2, and apolipoprotein E, were up-regulated after Aβ25-35 treatment, no significant differences were found after DAC and/or TSA treatment. These results support the evidence in AD patients and reveal a strong correlation of SIRT1/APP expression with DNA methylation and/or histone modification, which may help understand the pathogenesis of AD. PMID:27522594

  12. Upregulation of p27Kip1 by demethylation sensitizes cisplatin-resistant human ovarian cancer SKOV3 cells.

    PubMed

    Zhao, Yan; Li, Qiaoyan; Wu, Xiaoying; Chen, Puxiang

    2016-08-01

    Ovarian cancer has a poor prognosis due to its chemoresistance, and p27Kip1 (p27) has been implicated in tumor prognosis and drug-resistance. However, the regulatory mechanisms of p27 in drug‑resistance in ovarian cancer remain unknown. The current study successfully established chemoresistant cell lines using paclitaxel (TAX), cisplatin (DDP) and carboplatin (CBP) in SKOV3 ovarian cancer cells. The results indicated that the expression levels of p27 were dramatically downregulated in chemoresistant cells. However, 5-aza-2'-deoxycytidine (5-aza) treatment restored p27 expression in DDP-resistant cells, and increased their sensitivity to DDP. In addition, it was observed that the methylation of DDP‑resistant cells, which was downregulated by 5‑aza treatment, was significantly higher compared with SKOV3 cells. Additionally, the overexpression of p27 arrested the cell cycle in S phase and promoted an apoptotic response to DDP. In conclusion, p27 was involved in chemoresistance of SKOV3 cells. Upregulated p27 expression induced by demethylation may enhance sensitivity to DDP through the regulation of the cell cycle. PMID:27314502

  13. Antenatal hypoxia induces epigenetic repression of glucocorticoid receptor and promotes ischemic-sensitive phenotype in the developing heart.

    PubMed

    Xiong, Fuxia; Lin, Thant; Song, Minwoo; Ma, Qingyi; Martinez, Shannalee R; Lv, Juanxiu; MataGreenwood, Eugenia; Xiao, Daliao; Xu, Zhice; Zhang, Lubo

    2016-02-01

    Large studies in humans and animals have demonstrated a clear association of an adverse intrauterine environment with an increased risk of cardiovascular disease later in life. Yet mechanisms remain largely elusive. The present study tested the hypothesis that gestational hypoxia leads to promoter hypermethylation and epigenetic repression of the glucocorticoid receptor (GR) gene in the developing heart, resulting in increased heart susceptibility to ischemia and reperfusion injury in offspring. Hypoxic treatment of pregnant rats from day 15 to 21 of gestation resulted in a significant decrease of GR exon 14, 15, 16, and 17 transcripts, leading to down-regulation of GR mRNA and protein in the fetal heart. Functional cAMP-response elements (CREs) at -4408 and -3896 and Sp1 binding sites at -3425 and -3034 were identified at GR untranslated exon 1 promoters. Hypoxia significantly increased CpG methylation at the CREs and Sp1 binding sites and decreased transcription factor binding to GR exon 1 promoter, accounting for the repression of the GR gene in the developing heart. Of importance, treatment of newborn pups with 5-aza-2'-deoxycytidine reversed hypoxia-induced promoter methylation, restored GR expression and prevented hypoxia-mediated increase in ischemia and reperfusion injury of the heart in offspring. The findings demonstrate a novel mechanism of epigenetic repression of the GR gene in fetal stress-mediated programming of ischemic-sensitive phenotype in the heart. PMID:26779948

  14. Identification of genes specifically methylated in Epstein-Barr virus-associated gastric carcinomas.

    PubMed

    Okada, Toshiyuki; Nakamura, Munetaka; Nishikawa, Jun; Sakai, Kouhei; Zhang, Yibo; Saito, Mari; Morishige, Akihiro; Oga, Atsunori; Sasaki, Kosuke; Suehiro, Yutaka; Hinoda, Yuji; Sakaida, Isao

    2013-10-01

    We studied the comprehensive DNA methylation status in the naturally derived gastric adenocarcinoma cell line SNU-719, which was infected with the Epstein-Barr virus (EBV) by methylated CpG island recovery on chip assay. To identify genes specifically methylated in EBV-associated gastric carcinomas (EBVaGC), we focused on seven genes, TP73, BLU, FSD1, BCL7A, MARK1, SCRN1, and NKX3.1, based on the results of methylated CpG island recovery on chip assay. We confirmed DNA methylation of the genes by methylation-specific PCR and bisulfite sequencing in SNU-719. The expression of the genes, except for BCL7A, was upregulated by a combination of 5-Aza-2'-deoxycytidine and trichostatin A treatment in SNU-719. After the treatment, unmethylated DNA became detectable in all seven genes by methylation-specific PCR. We verified DNA methylation of the genes in 75 primary gastric cancer tissues from 25 patients with EBVaGC and 50 EBV-negative patients who were controls. The methylation frequencies of TP73, BLU, FSD1, BCL7A, MARK1, SCRN1, and NKX3.1 were significantly higher in EBVaGC than in EBV-negative gastric carcinoma. We identified seven genes with promoter regions that were specifically methylated in EBVaGC. Inactivation of these genes may suppress their function as tumor suppressor genes or tumor-associated antigens and help to develop and maintain EBVaGC. PMID:23829175

  15. Regulatory T Cell DNA Methyltransferase Inhibition Accelerates Resolution of Lung Inflammation

    PubMed Central

    Singer, Benjamin D.; Mock, Jason R.; Aggarwal, Neil R.; Garibaldi, Brian T.; Sidhaye, Venkataramana K.; Florez, Marcus A.; Chau, Eric; Gibbs, Kevin W.; Mandke, Pooja; Tripathi, Ashutosh; Yegnasubramanian, Srinivasan; King, Landon S.

    2015-01-01

    Acute respiratory distress syndrome (ARDS) is a common and often fatal inflammatory lung condition without effective targeted therapies. Regulatory T cells (Tregs) resolve lung inflammation, but mechanisms that enhance Tregs to promote resolution of established damage remain unknown. DNA demethylation at the forkhead box protein 3 (Foxp3) locus and other key Treg loci typify the Treg lineage. To test how dynamic DNA demethylation affects lung injury resolution, we administered the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine (DAC) to wild-type (WT) mice beginning 24 hours after intratracheal LPS-induced lung injury. Mice that received DAC exhibited accelerated resolution of their injury. Lung CD4+CD25hiFoxp3+ Tregs from DAC-treated WT mice increased in number and displayed enhanced Foxp3 expression, activation state, suppressive phenotype, and proliferative capacity. Lymphocyte-deficient recombinase activating gene-1–null mice and Treg-depleted (diphtheria toxin-treated Foxp3DTR) mice did not resolve their injury in response to DAC. Adoptive transfer of 2 × 105 DAC-treated, but not vehicle-treated, exogenous Tregs rescued Treg-deficient mice from ongoing lung inflammation. In addition, in WT mice with influenza-induced lung inflammation, DAC rescue treatment facilitated recovery of their injury and promoted an increase in lung Treg number. Thus, DNA methyltransferase inhibition, at least in part, augments Treg number and function to accelerate repair of experimental lung injury. Epigenetic pathways represent novel manipulable targets for the treatment of ARDS. PMID:25295995

  16. Short Hairpin RNA Causes the Methylation of Transforming Growth Factor-β Receptor II Promoter and Silencing of the Target Gene in Rat Hepatic Stellate Cells

    PubMed Central

    Kim, Jin-Wook; Zhang, Yan-Hong; Zern, Mark A; Rossi, John J.; Wu, Jian

    2008-01-01

    Small interfering RNA (siRNA) induces transcriptional gene silencing (TGS) in plant and animal cells. RNA dependent DNA methylation (RdDM) accounts for TGS in plants, but it is unclear whether siRNA induces RdDM in mammalian cells. To determine whether stable expression of short hairpin siRNA (shRNA) induces DNA methylation in mammalian cells, we transduced rat hepatic stellate SBC10 cells with lentiviral vectors which encode an U6 promoter-driven shRNA expression cassette homologous to the transforming growth factor-β receptor (TGFβRII) promoter region. Sequencing analysis of bisulfite-modified genomic DNA showed the methylation of cytosine residues both in CpG dinucleotides and non-CpG sites around the target region of the TGFβRII promoter in SBC10 cells transduced with the promoter-targeting lentiviral vector. In these cells, real-time RT-PCR showed a decrease in TGFβRII mRNA levels which were reversed by treatment with 5-aza-2-deoxycytidine. Our results demonstrate that recombinant lentivirus-mediated shRNA delivery resulted in the methylation of the homologous promoter area in mammalian cells, and this approach may be used as a tool for transcriptional gene silencing by epigenetic modification of mammalian cell promoters. PMID:17533113

  17. Colon cancer cell apoptosis is induced by combined exposure to the n-3 fatty acid docosahexaenoic acid and butyrate through promoter methylation.

    PubMed

    Cho, Youngmi; Turner, Nancy D; Davidson, Laurie A; Chapkin, Robert S; Carroll, Raymond J; Lupton, Joanne R

    2014-03-01

    DNA methylation and histone acetylation contribute to the transcriptional regulation of genes involved in apoptosis. We have demonstrated that docosahexaenoic acid (DHA, 22:6 n-3) and butyrate enhance colonocyte apoptosis. To determine if DHA and/or butyrate elevate apoptosis through epigenetic mechanisms thereby restoring the transcription of apoptosis-related genes, we examined global methylation; gene-specific promoter methylation of 24 apoptosis-related genes; transcription levels of Cideb, Dapk1, and Tnfrsf25; and global histone acetylation in the HCT-116 colon cancer cell line. Cells were treated with combinations of (50 µM) DHA or linoleic acid (18:2 n-6), (5 mM) butyrate or an inhibitor of DNA methyltransferases, and 5-aza-2'-deoxycytidine (5-Aza-dC, 2 µM). Among highly methylated genes, the combination of DHA and butyrate significantly reduced methylation of the proapoptotic Bcl2l11, Cideb, Dapk1, Ltbr, and Tnfrsf25 genes compared to untreated control cells. DHA treatment reduced the methylation of Cideb, Dapk1, and Tnfrsf25. These data suggest that the induction of apoptosis by DHA and butyrate is mediated, in part, through changes in the methylation state of apoptosis-related genes.

  18. Oncogene regulation of tumor suppressor genes in tumorigenesis.

    PubMed

    Sung, Jimmy; Turner, Joel; McCarthy, Susan; Enkemann, Steve; Li, Chan Gong; Yan, Perally; Huang, Timothy; Yeatman, Timothy J

    2005-02-01

    We attempted to demonstrate whether there is an epigenetic link between oncogenes and tumor suppression genes in tumorigenesis. We designed a high throughput model to identify a candidate group of tumor suppressor genes potentially regulated by oncogenes. Gene expression profiling of mock-transfected versus v-src-transfected 3Y1 rat fibroblasts identified significant overexpression of DNA methyltransferase 1, the enzyme responsible for aberrant genome methylation, in v-src-transfected fibroblasts. Secondary microarray analyses identified a number of candidate tumor suppressor genes that were down-regulated by v-src but were also re-expressed following treatment with 5-aza-2'-deoxycytidine, a potent demethylating agent. This candidate group included both tumor suppressor genes that are known to be silenced by DNA hypermethylation and those that have not been previously identified with promoter hypermethylation. To further validate our model, we identified tsg, a tumor suppressor gene that was shown to be down-regulated by v-src and found to harbor dense promoter hypermethylation. Our model demonstrates a cooperative relationship between oncogenes and tumor suppressor genes mediated through promoter hypermethylation.

  19. PCFT/SLC46A1 promoter methylation and restoration of gene expression in human leukemia cells

    SciTech Connect

    Gonen, Nitzan; Bram, Eran E.; Assaraf, Yehuda G.

    2008-11-28

    The proton-coupled folate transporter (PCFT/SLC46A1) displays optimal and prominent folate and antifolate transport activity at acidic pH in human carcinoma cells but poor activity in leukemia cells. Consistently herein, human leukemia cell lines expressed poor PCFT transcript levels, whereas various carcinoma cell lines showed substantial PCFT gene expression. We identified a CpG island with high density at nucleotides -200 through +100 and explored its role in PCFT promoter silencing. Leukemia cells with barely detectable PCFT transcripts consistently harbored 85-100% methylation of this CpG island, whereas no methylation was found in carcinoma cells. Treatment with 5-Aza-2'-deoxycytidine which induced demethylation but not with the histone deacetylase inhibitor trichostatin A, restored 50-fold PCFT expression only in leukemia cells. These findings constitute the first demonstration of the dominant epigenetic silencing of the PCFT gene in leukemia cells. The potential translational implications of the restoration of PCFT expression in chemotherapy of leukemia are discussed.

  20. Combined analysis of DNA methylation and cell cycle in cancer cells

    PubMed Central

    Desjobert, Cécile; El Maï, Mounir; Gérard-Hirne, Tom; Guianvarc'h, Dominique; Carrier, Arnaud; Pottier, Cyrielle; Arimondo, Paola B; Riond, Joëlle

    2015-01-01

    DNA methylation is a chemical modification of DNA involved in the regulation of gene expression by controlling the access to the DNA sequence. It is the most stable epigenetic mark and is widely studied for its role in major biological processes. Aberrant DNA methylation is observed in various pathologies, such as cancer. Therefore, there is a great interest in analyzing subtle changes in DNA methylation induced by biological processes or upon drug treatments. Here, we developed an improved methodology based on flow cytometry to measure variations of DNA methylation level in melanoma and leukemia cells. The accuracy of DNA methylation quantification was validated with LC-ESI mass spectrometry analysis. The new protocol was used to detect small variations of cytosine methylation occurring in individual cells during their cell cycle and those induced by the demethylating agent 5-aza-2'-deoxycytidine (5AzadC). Kinetic experiments confirmed that inheritance of DNA methylation occurs efficiently in S phase and revealed a short delay between DNA replication and completion of cytosine methylation. In addition, this study suggests that the uncoupling of 5AzadC effects on DNA demethylation and cell proliferation might be related to the duration of the DNA replication phase. PMID:25531272

  1. An Ultrasensitive High Throughput Screen for DNA Methyltransferase 1-Targeted Molecular Probes

    PubMed Central

    Fagan, Rebecca L.; Wu, Meng; Chédin, Frédéric; Brenner, Charles

    2013-01-01

    DNA methyltransferase 1 (DNMT1) is the enzyme most responsible for epigenetic modification of human DNA and the intended target of approved cancer drugs such as 5-aza-cytidine and 5-aza-2′-deoxycytidine. 5-aza nucleosides have complex mechanisms of action that require incorporation into DNA, and covalent trapping and proteolysis of DNMT isozymes. Direct DNMT inhibitors are needed to refine understanding of the role of specific DNMT isozymes in cancer etiology and, potentially, to improve cancer prevention and treatment. Here, we developed a high throughput pipeline for identification of direct DNMT1 inhibitors. The components of this screen include an activated form of DNMT1, a restriction enzyme-coupled fluorigenic assay performed in 384 well plates with a z-factor of 0.66, a counter screen against the restriction enzyme, a screen to eliminate DNA intercalators, and a differential scanning fluorimetry assay to validate direct binders. Using the Microsource Spectrum collection of 2320 compounds, this screen identified nine compounds with dose responses ranging from 300 nM to 11 µM, representing at least two different pharmacophores with DNMT1 inhibitory activity. Seven of nine inhibitors identified exhibited two to four-fold selectivity for DNMT1 versus DNMT3A. PMID:24236046

  2. Variable DNA methylation changes during differentiation of human melanoma cells.

    PubMed

    Steigerwald, S D; Pfeifer, G P

    1988-09-01

    The DNA 5-methylcytosine content has been analyzed in the human melanoma cell line M21 at several time points after induction of differentiation by a variety of inducers. 5-Aza-2'-deoxycytidine reduces DNA methylation to about 50% of the control level and this demethylation occurs prior to the establishment of the differentiated phenotype. The DNA synthesis inhibitors cytosine arabinoside, aphidicolin, and hydroxyurea exert different effects on DNA methylation in these cells. Cytosine arabinoside induces an early DNA hypermethylation, which is however reversible and drops to the original level after 24 h. Hydroxyurea induces DNA hypermethylation after a lag period of more than 48 h and the DNA polymerase alpha inhibitor aphidicolin has no effect on the DNA methylation level. Treatment of cells with phorbol 12-myristate 13-acetate, another potent inducer of melanoma cell differentiation, does not result in a change of total DNA methylation over a period of 96 h. These results indicate that differentiation of human melanoma cells can be accompanied by variable changes of the DNA methylation pattern. These changes can be neither generally related to the differentiation process itself nor related to the effects of DNA synthesis inhibition on DNA methylation, but may more likely reflect a direct or indirect particular effect of the inducer on the DNA methylation process.

  3. DNA demethylation of the TIM-3 promoter is critical for its stable expression on T cells.

    PubMed

    Chou, F-C; Kuo, C-C; Chen, H-Y; Chen, H-H; Sytwu, H-K

    2016-04-01

    The T-cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) is selectively expressed on terminally differentiated T helper 1 (Th1) cells and acts as a negative regulator that terminates Th1 responses. The dysregulation of TIM-3 expression on T cells is associated with several autoimmune phenotypes and with chronic viral infections; however, the mechanism of this regulation is unclear. In this study, we investigated the effect of DNA methylation on the expression of TIM-3. By analyzing the sequences of TIM-3 promoter regions in human and mouse, we identified a CpG island within the TIM-3 promoter and demonstrated that the promoter activity was controlled by DNA methylation. Furthermore, treatment with 5-aza-2'-deoxycytidine enhanced TIM-3 expression on mouse primary CD4(+) T cells under Th0-, Th1- or Th2-polarizing conditions. Finally, pyrosequencing analysis revealed that the methylation level of the TIM-3 promoter gradually decreased after each round of T-cell polarization, and this decrease was inversely correlated with TIM-3 expression. These data suggest that the DNA methylation of the TIM-3 promoter cooperates with lineage-specific transcription factors in the control of Th-cell development. In conclusion, DNA methylation-based regulation of TIM-3 may provide novel insights into understanding the dysregulation of TIM-3 expression under pathogenic conditions.

  4. The effect of chemotherapeutic agents on telomere length maintenance in breast cancer cell lines.

    PubMed

    Motevalli, Azadeh; Yasaei, Hemad; Virmouni, Sara Anjomani; Slijepcevic, Predrag; Roberts, Terry

    2014-06-01

    Mammalian telomeric DNA consists of tandem repeats of the sequence TTAGGG associated with a specialized set of proteins, known collectively as Shelterin. These telosomal proteins protect the ends of chromosomes against end-to-end fusion and degradation. Short telomeres in breast cancer cells confer telomere dysfunction and this can be related to Shelterin proteins and their level of expression in breast cancer cell lines. This study investigates whether expression of Shelterin and Shelterin-associated proteins are altered, and influence the protection and maintenance of telomeres, in breast cancer cells. 5-aza-2'-deoxycytidine (5-aza-CdR) and trichostatin A (TSA) were used in an attempt to reactivate the expression of silenced genes. Our studies have shown that Shelterin and Shelterin-associated genes were down-regulated in breast cancer cell lines; this may be due to epigenetic modification of DNA as the promoter region of POT1 was found to be partially methylated. Shelterin genes expression was up-regulated upon treatment of 21NT breast cancer cells with 5-aza-CdR and TSA. The telomere length of treated 21NT cells was measured by q-PCR showed an increase in telomere length at different time points. Our studies have shown that down-regulation of Shelterin genes is partially due to methylation in some epithelial breast cancer cell lines. Removal of epigenetic silencing results in up-regulation of Shelterin and Shelterin-associated genes which can then lead to telomere length elongation and stability. PMID:24807106

  5. Arabidopsis RPT2a, 19S proteasome subunit, regulates gene silencing via DNA methylation.

    PubMed

    Sako, Kaori; Maki, Yuko; Kanai, Tomoyuki; Kato, Eriko; Maekawa, Shugo; Yasuda, Shigetaka; Sato, Takeo; Watahiki, Masaaki K; Yamaguchi, Junji

    2012-01-01

    The ubiquitin/proteasome pathway plays a crucial role in many biological processes. Here we report a novel role for the Arabidopsis 19S proteasome subunit RPT2a in regulating gene activity at the transcriptional level via DNA methylation. Knockout mutation of the RPT2a gene did not alter global protein levels; however, the transcriptional activities of reporter transgenes were severely reduced compared to those in the wild type. This transcriptional gene silencing (TGS) was observed for transgenes under control of either the constitutive CaMV 35S promoter or the cold-inducible RD29A promoter. Bisulfite sequencing analysis revealed that both the transgene and endogenous RD29A promoter regions were hypermethylated at CG and non-CG contexts in the rpt2a mutant. Moreover, the TGS of transgenes driven by the CaMV 35S promoters was released by treatment with the DNA methylation inhibitor 5-aza-2'-deoxycytidine, but not by application of the inhibitor of histone deacetylase Trichostatin A. Genetic crosses with the DNA methyltransferase met1 single or drm1drm2cmt3 triple mutants also resulted in a release of CaMV 35S transgene TGS in the rpt2a mutant background. Increased methylation was also found at transposon sequences, suggesting that the 19S proteasome containing AtRPT2a negatively regulates TGS at transgenes and at specific endogenous genes through DNA methylation. PMID:22615900

  6. TROP2 is epigenetically inactivated and modulates IGF-1R signalling in lung adenocarcinoma.

    PubMed

    Lin, Jau-Chen; Wu, Yi-Ying; Wu, Jing-Yi; Lin, Tzu-Chieh; Wu, Chen-Tu; Chang, Yih-Leong; Jou, Yuh-Shan; Hong, Tse-Ming; Yang, Pan-Chyr

    2012-06-01

    Trop-2, a cell surface glycoprotein, contains both extracellular epidermal growth factor-like and thyroglobulin type-1 repeat domains. Low TROP2 expression was observed in lung adenocarcinoma tissues as compared with their normal counterparts. The lack of expression could be due to either the loss of heterozygosity (LOH) or hypermethylation of the CpG island DNA of TROP2 upstream promoter region as confirmed by bisulphite sequencing and methylation-specific (MS) polymerase chain reaction (PCR). 5-Aza-2'-deoxycytidine treatment on lung cancer cell (CL) lines, CL1-5 and A549, reversed the hypermethylation status and elevated both TROP2 mRNA and protein expression levels. Enforced expression of TROP2 in the lung CL line H1299 reduced AKT as well as ERK activation and suppressed cell proliferation and colony formation. Conversely, silencing TROP2 with shRNA transfection in the less efficiently tumour-forming cell line H322M enhanced AKT activation and increased tumour growth. Trop-2 could attenuate IGF-1R signalling-mediated AKT/β-catenin and ERK activation through a direct binding of IGF1. In conclusion, inactivation of TROP2 due to LOH or by DNA methylation may play an important role in lung cancer tumourigenicity through losing its suppressive effect on IGF-1R signalling and tumour growth. PMID:22419550

  7. E-cadherin expression is commonly downregulated by CpG island hypermethylation in esophageal carcinoma cells.

    PubMed

    Si, H X; Tsao, S W; Lam, K Y; Srivastava, G; Liu, Y; Wong, Y C; Shen, Z Y; Cheung, A L

    2001-11-01

    E-cadherin, a cell adhesion molecule, is regarded as an invasion-suppressor molecule and a prognostic marker in many types of human cancers. Downregulation of E-cadherin is common in esophageal carcinoma and is associated with an increase in invasive and metastatic potential. To study the mechanisms responsible for inactivation of this gene in esophageal squamous cell carcinoma (ESCC), we investigated the methylation status around the 5' promoter region of E-cadherin gene of six ESCC cell lines by methylation-specific polymerase chain reaction, and compared it with E-cadherin protein and mRNA expression. We also studied the methylation status of 20 ESCC clinical specimens. Methylation was noted in four of the six cell lines (one fully methylated and three partially methylated). The completely methylated cell line lacked E-cadherin protein expression and mRNA transcription. E-cadherin expression and transcription were reduced in a partially methylated cell line but preserved in the other partially methylated cell lines. Treatment of E-cadherin-negative carcinoma cells with the demethylating agent, 5-aza-2'-deoxycytidine, induced re-expression of the gene. A high frequency of methylation (16/20, 80%) was also noted in the 20 ESCC clinical samples. Our results indicate that 5' CpG island methylation is common in esophageal carcinoma and may play an important role in downregulation of E-cadherin.

  8. DNA Hypomethylation-Mediated Overexpression of Carbonic Anhydrase 9 Induces an Aggressive Phenotype in Ovarian Cancer Cells

    PubMed Central

    Sung, Hye Youn

    2014-01-01

    Purpose Both genetic and epigenetic alterations can lead to abnormal expression of metastasis-regulating genes in tumor cells. Recent studies suggest that aberrant epigenetic alterations, followed by differential gene expression, leads to an aggressive cancer cell phenotype. We examined epigenetically regulated genes that are involved in ovarian cancer metastasis. Materials and Methods We developed SK-OV-3 human ovarian carcinoma cell xenografts in mice. We compared the mRNA expression and DNA methylation profiles of metastatic tissues to those of the original SK-OV-3 cell line. Results Metastatic implants showed increased mRNA expression of the carbonic anhydrase 9 (CA9) gene and hypomethylation at CpG sites in the CA9 promoter. Treatment of wild-type SK-OV-3 cells with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine reduced methylation of the CA9 promoter and increased CA9 mRNA expression. Eight CpGs, which were located at positions -197, -74, -19, -6, +4, +13, +40, and +86, relative to the transcription start site, were hypomethylated in metastatic tumor implants, compared to that of wild-type SK-OV-3. Overexpression of CA9 induced an aggressive phenotype, including increased invasiveness and migration, in SK-OV-3 cells. Conclusion Alterations in the DNA methylation profile of the CA9 promoter were correlated with a more aggressive phenotype in ovarian cancer cells. PMID:25323905

  9. Tissue Factor Regulation by miR-520g in Primitive Neuronal Brain Tumor Cells: A Possible Link between Oncomirs and the Vascular Tumor Microenvironment.

    PubMed

    D'Asti, Esterina; Huang, Annie; Kool, Marcel; Meehan, Brian; Chan, Jennifer A; Jabado, Nada; Korshunov, Andrey; Pfister, Stefan M; Rak, Janusz

    2016-02-01

    Pediatric embryonal brain tumors with multilayered rosettes demonstrate a unique oncogenic amplification of the chromosome 19 miRNA cluster, C19MC. Because oncogenic lesions often cause deregulation of vascular effectors, including procoagulant tissue factor (TF), this study explores whether there is a link between C19MC oncogenic miRNAs (oncomirs) and the coagulant properties of cancer cells, a question previously not studied. In a pediatric embryonal brain tumor tissue microarray, we observed an association between C19MC amplification and reduced fibrin content and TF expression, indicative of reduced procoagulant activity. In medulloblastoma cell lines (DAOY and UW228) engineered to express miR-520g, a biologically active constituent of the C19MC cluster, we observed reduced TF expression, procoagulant and TF signaling activities (responses to factor VIIa stimulation), and diminished TF emission as cargo of extracellular vesicles. Antimir and luciferase reporter assays revealed a specific and direct effect of miR-520g on the TF 3' untranslated region. Although the endogenous MIR520G locus is methylated in differentiated cells, exposure of DAOY cells to 5-aza-2'-deoxycytidine or their growth as stem cell-like spheres up-regulated endogenous miR-520g with a coincident reduction in TF expression. We propose that the properties of tumors harboring oncomirs may include unique alterations of the vascular microenvironment, including deregulation of TF, with a possible impact on the biology, therapy, and hemostatic adverse effects of both disease progression and treatment. PMID:26687818

  10. Increased methylation of the MOR gene proximal promoter in primary sensory neurons plays a crucial role in the decreased analgesic effect of opioids in neuropathic pain

    PubMed Central

    2014-01-01

    Background The analgesic potency of opioids is reduced in neuropathic pain. However, the molecular mechanism is not well understood. Results The present study demonstrated that increased methylation of the Mu opioid receptor (MOR) gene proximal promoter (PP) in dorsal root ganglion (DRG) plays a crucial role in the decreased morphine analgesia. Subcutaneous (s.c.), intrathecal (i.t.) and intraplantar (i.pl.), not intracerebroventricular (i.c.v.) injection of morphine, the potency of morphine analgesia was significantly reduced in nerve-injured mice compared with control sham-operated mice. After peripheral nerve injury, we observed a decreased expression of MOR protein and mRNA, accompanied by an increased methylation status of MOR gene PP, in DRG. However, peripheral nerve injury could not induce a decreased expression of MOR mRNA in the spinal cord. Treatment with 5-aza-2′-deoxycytidine (5-aza-dC), inhibited the increased methylation of MOR gene PP and prevented the decreased expression of MOR in DRG, thereby improved systemic, spinal and periphery morphine analgesia. Conclusions Altogether, our results demonstrate that increased methylation of the MOR gene PP in DRG is required for the decreased morphine analgesia in neuropathic pain. PMID:25118039

  11. Epigenetic silencing of microRNA-373 plays an important role in regulating cell proliferation in colon cancer.

    PubMed

    Tanaka, Takeshi; Arai, Makoto; Wu, Shuang; Kanda, Tatsuo; Miyauchi, Hideaki; Imazeki, Fumio; Matsubara, Hisahiro; Yokosuka, Osamu

    2011-11-01

    microRNAs (miRNA) are non-coding RNAs that negatively control gene expression by cleaving or inhibiting the translation of target gene mRNAs. We used a microarray-based transcriptomic analysis to identify miRNA expression levels that changed in response to epigenetic factors. Specifically, we searched for increased expression of miRNAs prepared from colon cancer cell line DLD-1 after a 96-h treatment with 5 µM of 5-aza-2'-deoxycytidine (DAC). Among those identified, transient transfection of miRNA hsa-miR-373 resulted in cytostasis. In addition, bisulfate sequence analysis of the promoter regions of these miRNAs showed aberrant methylation in the cancer cells. In clinical colon samples, hsa-miR-373 was down-regulated in colon cancers (29/40, 72.5%) relative to control samples, whereas the purported oncogene RAB22A (a target gene of hsa-miR-373) was up-regulated (24/40, 60%). Using methylation-specific PCR, we also observed aberrant methylation of hsa-miR-373 in colon cancers (35/40, 87.5%) relative to controls (8/40, 20%). Based on these results, we conclude that expression of hsa-miR-373 is down-regulated by aberrant methylation in colon cancer and that this miRNA may function by regulating expression of the oncogene RAB22A.

  12. Identification and functional analysis of epigenetically silenced microRNAs in colorectal cancer cells.

    PubMed

    Yan, Hongli; Choi, Ae-Jin; Lee, Byron H; Ting, Angela H

    2011-01-01

    Abnormal microRNA (miRNA) expression has been linked to the development and progression of several human cancers, and such dysregulation can result from aberrant DNA methylation. While a small number of miRNAs is known to be regulated by DNA methylation, we postulated that such epigenetic regulation is more prevalent. By combining MBD-isolated Genome Sequencing (MiGS) to evaluate genome-wide DNA methylation patterns and microarray analysis to determine miRNA expression levels, we systematically searched for candidate miRNAs regulated by DNA methylation in colorectal cancer cell lines. We found 64 miRNAs to be robustly methylated in HCT116 cells; eighteen of them were located in imprinting regions or already reported to be regulated by DNA methylation. For the remaining 46 miRNAs, expression levels of 18 were consistent with their DNA methylation status. Finally, 8 miRNAs were up-regulated by 5-aza-2'-deoxycytidine treatment and identified to be novel miRNAs regulated by DNA methylation. Moreover, we demonstrated the functional relevance of these epigenetically silenced miRNAs by ectopically expressing select candidates, which resulted in inhibition of growth and migration of cancer cells. In addition to reporting these findings, our study also provides a reliable, systematic strategy to identify DNA methylation-regulated miRNAs by combining DNA methylation profiles and expression data.

  13. Methylation subtypes and large-scale epigenetic alterations in gastric cancer.

    PubMed

    Zouridis, Hermioni; Deng, Niantao; Ivanova, Tatiana; Zhu, Yansong; Wong, Bernice; Huang, Dan; Wu, Yong Hui; Wu, Yingting; Tan, Iain Beehuat; Liem, Natalia; Gopalakrishnan, Veena; Luo, Qin; Wu, Jeanie; Lee, Minghui; Yong, Wei Peng; Goh, Liang Kee; Teh, Bin Tean; Rozen, Steve; Tan, Patrick

    2012-10-17

    Epigenetic alterations are fundamental hallmarks of cancer genomes. We surveyed the landscape of DNA methylation alterations in gastric cancer by analyzing genome-wide CG dinucleotide (CpG) methylation profiles of 240 gastric cancers (203 tumors and 37 cell lines) and 94 matched normal gastric tissues. Cancer-specific epigenetic alterations were observed in 44% of CpGs, comprising both tumor hyper- and hypomethylation. Twenty-five percent of the methylation alterations were significantly associated with changes in tumor gene expression. Whereas most methylation-expression correlations were negative, several positively correlated methylation-expression interactions were also observed, associated with CpG sites exhibiting atypical transcription start site distances and gene body localization. Methylation clustering of the tumors revealed a CpG island methylator phenotype (CIMP) subgroup associated with widespread hypermethylation, young patient age, and adverse patient outcome in a disease stage-independent manner. CIMP cell lines displayed sensitivity to 5-aza-2'-deoxycytidine, a clinically approved demethylating drug. We also identified long-range regions of epigenetic silencing (LRESs) in CIMP tumors. Combined analysis of the methylation, gene expression, and drug treatment data suggests that certain LRESs may silence specific genes within the region, rather than all genes. Finally, we discovered regions of long-range tumor hypomethylation, associated with increased chromosomal instability. Our results provide insights into the epigenetic impact of environmental and biological agents on gastric epithelial cells, which may contribute to cancer.

  14. Demethylation of a LINE-1 antisense promoter in the cMet locus impairs Met signalling through induction of illegitimate transcription.

    PubMed

    Weber, B; Kimhi, S; Howard, G; Eden, A; Lyko, F

    2010-10-28

    The cytosine analogues 5-azacytidine and 5-aza-2'-deoxycytidine are currently the most advanced drugs for epigenetic cancer therapy. Both drugs function as DNA methyltransferase (DNMT) inhibitors and lead to the reactivation of epigenetically silenced tumour suppressor genes. However, not much is known about their target sequence specificity and their possible side effects on normally methylated sequences such as long interspersed nuclear element (LINE)-1 retroelements. It has been shown that demethylation and activation of the LINE-1 antisense promoter can drive the transcription of neighbouring sequences. In this study, we show that demethylation of the colon carcinoma cell line HCT116, either by treatment with DNMT inhibitors or by genetic disruption of the major DNMTs, induces the expression of an illegitimate fusion transcript between an intronic LINE-1 element and the proto-oncogene cMet (L1-cMet). Similar findings were also obtained with myeloid leukaemia cells, an established cellular model for the approved indication of azacytidine and decitabine. Interestingly, upregulation of L1-cMet transcription resulted in reduced cMet expression, which in turn led to decreased cMet receptor signalling. Our results thus provide an important paradigm for demethylation-dependent modulation of gene expression, even if the promoter of the corresponding gene is unmethylated.

  15. Frequent epigenetic inactivation of KIBRA, an upstream member of the Salvador/Warts/Hippo (SWH) tumor suppressor network, is associated with specific genetic event in B-cell acute lymphocytic leukemia.

    PubMed

    Hill, Victoria K; Dunwell, Thomas L; Catchpoole, Daniel; Krex, Dietmar; Brini, Anna T; Griffiths, Mike; Craddock, Charles; Maher, Eamonn R; Latif, Farida

    2011-03-01

    The WW-domain containing protein KIBRA has recently been identified as a new member of the Salvador/Warts/Hippo (SWH) pathway in Drosophila and is shown to act as a tumor suppressor gene in Drosophila. This pathway is conserved in humans and members of the pathway have been shown to act as tumor suppressor genes in mammalian systems. We determined the methylation status of the 5' CpG island associated with the KIBRA gene in human cancers. In a large panel of cancer cell lines representing common epithelial cancers KIBRA was unmethylated. But in pediatric acute lymphocytic leukemia (ALL) cell lines KIBRA showed frequent hypermethylation and silencing of gene expression, which could be reversed by treatment with 5-aza-2'-deoxycytidine. In ALL patient samples KIBRA was methylated in 70% B-ALL but was methylated in < 20% T-ALL leukemia (p = 0.0019). In B-ALL KIBRA methylation was associated with ETV6/RUNX1 [t(12;21) (p13;q22)] chromosomal translocation (p = 0.0082) phenotype, suggesting that KIBRA may play an important role in t(12;21) leukemogenesis. In ALL paired samples at diagnosis and remission KIBRA methylation was seen in diagnostic but not in any of the remission samples accompanied by loss of KIBRA expression in disease state compared to patients in remission. Hence KIBRA methylation occurs frequently in B-cell acute lymphocytic leukemia but not in epithelial cancers and is linked to specific genetic event in B-ALL.

  16. Identification of cis- and trans-acting elements regulating calretinin expression in mesothelioma cells.

    PubMed

    Kresoja-Rakic, Jelena; Kapaklikaya, Esra; Ziltener, Gabriela; Dalcher, Damian; Santoro, Raffaella; Christensen, Brock C; Johnson, Kevin C; Schwaller, Beat; Weder, Walter; Stahel, Rolf A; Felley-Bosco, Emanuela

    2016-04-19

    Calretinin (CALB2) is a diagnostic marker for epithelioid mesothelioma. It is also a prognostic marker since patients with tumors expressing high calretinin levels have better overall survival. Silencing of calretinin decreases viability of epithelioid mesothelioma cells. Our aim was to elucidate mechanisms regulating calretinin expression in mesothelioma. Analysis of calretinin transcript and protein suggested a control at the mRNA level. Treatment with 5-aza-2'-deoxycytidine and analysis of TCGA data indicated that promoter methylation is not likely to be involved. Therefore, we investigated CALB2 promoter by analyzing ~1kb of genomic sequence surrounding the transcription start site (TSS) + 1 using promoter reporter assay. Deletion analysis of CALB2 proximal promoter showed that sequence spanning the -161/+80bp region sustained transcriptional activity. Site-directed analysis identified important cis-regulatory elements within this -161/+80bp CALB2 promoter. EMSA and ChIP assays confirmed binding of NRF-1 and E2F2 to the CALB2 promoter and siRNA knockdown of NRF-1 led to decreased expression of calretinin. Cell synchronization experiment showed that calretinin expression was cell cycle regulated with a peak of expression at G1/S phase. This study provides the first insight in the regulation of CALB2 expression in mesothelioma cells.

  17. ABCB4 is frequently epigenetically silenced in human cancers and inhibits tumor growth

    PubMed Central

    Kiehl, Steffen; Herkt, Stefanie C.; Richter, Antje M.; Fuhrmann, Liesa; El-Nikhely, Nefertiti; Seeger, Werner; Savai, Rajkumar; Dammann, Reinhard H.

    2014-01-01

    Epigenetic silencing through promoter hypermethylation is an important hallmark for the inactivation of tumor-related genes in carcinogenesis. Here we identified the ATP-binding cassette sub-family B member 4 (ABCB4) as a novel epigenetically silenced target gene. We investigated the epigenetic regulation of ABCB4 in 26 human lung, breast, skin, liver, head and neck cancer cells lines and in primary cancers by methylation and expression analysis. Hypermethylation of the ABCB4 CpG island promoter occurred in 16 out of 26 (62%) human cancer cell lines. Aberrant methylation of ABCB4 was also revealed in 39% of primary lung cancer and in 20% of head and neck cancer tissues. In 37% of primary lung cancer samples, ABCB4 expression was absent. For breast cancer a significant hypermethylation occurred in tumor tissues (41%) compared to matching normal samples (0%, p = 0.002). Silencing of ABCB4 was reversed by 5-aza-2'-deoxycytidine and zebularine treatments leading to its reexpression in cancer cells. Overexpression of ABCB4 significantly suppressed colony formation and proliferation of lung cancer cells. Hypermethylation of Abcb4 occurred also in murine cancer, but was not found in normal tissues. Our findings suggest that ABCB4 is a frequently silenced gene in different cancers and it may act tumor suppressivly in lung cancer. PMID:25367630

  18. Recruitment of the de novo DNA methyltransferase Dnmt3a by Kaposi's sarcoma-associated herpesvirus LANA.

    PubMed

    Shamay, Meir; Krithivas, Anita; Zhang, Jun; Hayward, S Diane

    2006-09-26

    The Kaposi's sarcoma-associated herpesvirus LANA protein is expressed in all Kaposi's sarcoma-associated herpesvirus-infected cells, including the tumor cells of endemic and AIDS-associated Kaposi sarcoma, primary effusion lymphoma, and Castleman disease. LANA modulates cell gene expression, but the mechanisms of LANA-mediated transcriptional reprogramming are poorly understood. LANA-repressed cell genes were identified by using retroviral-transduced telomerase-immortalized microvascular endothelial cells. Transciptional repression of targeted genes was relieved by treatment with the methyltransferase inhibitor 5-aza-2'-deoxycytidine, suggesting a role for DNA methylation in repression. We found that LANA coprecipitated with DNA methyltransferases (Dnmts) and recruited endogenous DNA methyltransferase activity from the cell extract. LANA preferentially relocalized Dnmt3a from the nuclear matrix into the chromatin fraction. Further, LANA associated with repressed cellular promoters, recruited Dnmt3a to DNA, and facilitated de novo promoter methylation of a down-regulated gene, cadherin 13 (H-cadherin). The data provide an example of promoter-specific epigenetic DNA modification through viral protein recruitment of de novo Dnmt activity. PMID:16983096

  19. Genome-Wide Demethylation Promotes Triplet Repeat Instability Independently of Homologous Recombination

    PubMed Central

    Dion, Vincent; Lin, Yunfu; Price, Brandee A.; Fyffe, Sharyl L.; Seluanov, Andrei; Gorbunova, Vera; Wilson, John H.

    2008-01-01

    Trinucleotide repeat instability is intrinsic to a family of human neurodegenerative diseases. The mechanism leading to repeat length variation is unclear. We previously showed that treatment with the demethylating agent 5-aza-2′-deoxycytidine (5-aza-CdR) dramatically increases triplet repeat instability in mammalian cells. Based on previous reports that demethylation increases homologous recombination (HR), and our own observations that HR destabilizes triplet repeats, we hypothesized that demethylation alters repeat stability by stimulating HR. Here, we test that hypothesis at the Aprt (adenosine phosphoribosyl transferase) locus in CHO cells, where CpG demethylation and HR have both been shown to increase CAG repeat instability. We find that the rate of HR at the Aprt locus is not altered by demethylation. The spectrum of recombinants, however, was shifted from the usual 6:1 ratio of conversions to crossovers to more equal proportions in 5-aza-CdR-treated cells. The subtle influences of demethylation on HR at the Aprt locus are not sufficient to account for its dramatic effects on repeat instability. We conclude that 5-aza-CdR promotes triplet repeat instability independently of HR. PMID:18083071

  20. A dual amplification fluorescent strategy for sensitive detection of DNA methyltransferase activity based on strand displacement amplification and DNAzyme amplification.

    PubMed

    Cui, Wanling; Wang, Lei; Jiang, Wei

    2016-03-15

    DNA methyltransferase (MTase) plays a critical role in many biological processes and has been regarded as a predictive cancer biomarker and a therapeutic target in cancer treatment. Sensitive detection of DNA MTase activity is essential for early cancer diagnosis and therapeutics. Here, we developed a dual amplification fluorescent strategy for sensitive detection of DNA MTase activity based on strand displacement amplification (SDA) and DNAzyme amplification. A trifunctional double-stranded DNA (dsDNA) probe was designed including a methylation site for DNA MTase recognition, a complementary sequence of 8-17 DNAzyme for synthesizing DNAzyme, and a nicking site for nicking enzyme cleavage. Firstly, the trifunctional dsDNA probe was methylated by DNA MTase to form the methylated dsDNA. Subsequently, HpaII restriction endonuclease specifically cleaved the residue of unmethylated dsDNA. Next, under the action of polymerase and nicking enzyme, the methylared dsDNA initiated SDA, releasing numbers of 8-17 DNAzymes. Finally, the released 8-17 DNAzymes triggered DNAzyme amplification reaction to induce a significant fluorescence enhancement. This strategy could detect DNA MTase activity as low as 0.0082U/mL. Additionally, the strategy was successfully applied for evaluating the inhibitions of DNA MTase using two anticancer drugs, 5-azacytidine and 5-aza-2'-deoxycytidine. The results indicate the proposed strategy has a potential application in early cancer diagnosis and therapeutics.

  1. RA induces the neural-like cells generated from epigenetic modified NIH/3T3 cells.

    PubMed

    Zhang, Xi-Mei; Li, Qiu-Ming; Su, Dong-Ju; Wang, Ning; Shan, Zhi-Yan; Jin, Lian-Hong; Lei, Lei

    2010-03-01

    Recently, differentiated somatic cells had been reprogrammed to pluripotential state in vitro, and various tissue cells had been elicited from those cells. Epigenetic modifications allow differentiated cells to perpetuate the molecular memory needed for the cells to retain their identity. DNA methylation and histone deacetylation are important patterns involved in epigenetic modification, which take critical roles in regulating DNA expression. In this study, we dedifferentiated NIH/3T3 fibroblasts by 5-aza-2-deoxycytidine (5-aza-dC) and Trichstatin A (TSA) combination, and detected gene expression pattern, DNA methylation level, and differentiation potential of reprogrammed cells. As the results, embryonic marker Sox2, klf4, c-Myc and Oct4 were expressed in reprogrammed NIH/3T3 fibroblasts. Total DNA methylation level was significant decreased after the treatment. Moreover, exposure of the reprogrammed cells to all trans-retinoic acid (RA) medium elicited the generation of neuronal class IIIbeta-tubulin-positive, neuron-specific enolase (NSE)-positive, nestin-positive, and neurofilament light chain (NF-L)-positive neural-like cells. PMID:19263240

  2. CMTM5 exhibits tumor suppressor activity through promoter methylation in oral squamous cell carcinoma

    SciTech Connect

    Zhang, Heyu; Nan, Xu; Li, Xuefen; Chen, Yan; Zhang, Jianyun; Sun, Lisha; Han, Wenlin; Li, Tiejun

    2014-05-02

    Highlights: • Down-regulation of CMTM5 expression in OSCC tissues was found. • The promoter methylation status of CMTM5 was measured. • CMTM5-v1 inhibited cell proliferation and migration and induced apoptosis. • CMTM5 might act as a putative tumor suppressor gene in OSCC. - Abstract: Oral squamous cell carcinoma (OSCC) is one of the most common types of malignancies in the head and neck region. CKLF-like MARVEL transmembrane domain-containing member 5 (CMTM5) has been recently implicated as a tumor suppressor gene in several cancer types. Herein, we examined the expression and function of CMTM5 in oral squamous cell carcinoma. CMTM5 was down-regulated in oral squamous cell lines and tumor samples from patients with promoter methylation. Treatment with the demethylating agent 5-aza-2′-deoxycytidine restored CMTM5 expression. In the OSCC cell lines CAL27 and GNM, the ectopic expression of CMTM5-v1 strongly inhibited cell proliferation and migration and induced apoptosis. In addition, CMTM5-v1 inhibited tumor formation in vivo. Therefore, CMTM5 might act as a putative tumor suppressor gene through promoter methylation in oral squamous cell carcinoma.

  3. Downregulation of ADAMTS8 by DNA Hypermethylation in Gastric Cancer and Its Clinical Significance

    PubMed Central

    Zhang, Jiakui; Li, Xin; Zhang, Chundong; Zhang, Hongbin; Jin, Junzhe; Dai, Dongqiu

    2016-01-01

    A disintegrin and metallopeptidase with thrombospondin motif type 8 (ADAMTS8), a member of the ADAMTS family, was discovered as a novel angiogenesis inhibitor. We analyzed the expression and methylation of ADAMTS8 in primary gastric tumors and gastric cancer cell lines. We also examined the relationship between ADAMTS8 expression and methylation and clinicopathologic features. The results showed that the significant downregulation of ADAMTS8 mRNA expression was observed in gastric cancer cell lines and tissues, and its expression was related to invasive depth and lymph node metastasis. CpG was hypermethylated in gastric cancer cell lines MKN45, MGC803, and BGC823, as well as primary gastric cancer specimens. ADAMTS8 mRNA expression was significantly lower in methylated primary gastric tumors. A significant association was found between ADAMTS8 methylation status and lymph node metastasis in primary gastric cancer. Moreover, ADAMTS8 expression was upregulated in the gastric cancer cell lines MGC803, BGC823, and MKN45 after treatment with 5-aza-2′-deoxycytidine. Thus, our results demonstrate that expression of ADAMTS8 mRNA is significantly decreased and DNA methylation is frequent in gastric cancer. ADAMTS8 hypermethylation is associated with decreased expression in gastric cancer and may play an important role in the invasion and metastasis of gastric cancer. PMID:27493958

  4. Silencing of RASSF3 by DNA Hypermethylation Is Associated with Tumorigenesis in Somatotroph Adenomas

    PubMed Central

    Zhao, Shuwei; Wu, Jian; Fan, Jingping; Liao, Jianchun

    2013-01-01

    The pathogenic mechanisms underlying pituitary somatotroph adenoma formation, progression are poorly understood. To identify candidate tumor suppressor genes involved in pituitary somatotroph adenoma tumorigenesis, we used HG18 CpG plus Promoter Microarray in 27 human somatotroph adenomas and 4 normal human adenohypophyses. RASSF3 was found with frequent methylation of CpG island in its promoter region in somatotroph adenomas but rarely in adenohypophyses. This result was confirmed by pyrosequencing analysis. We also found that RASSF3 mRNA level correlated negatively to its gene promoter methylation level. RASSF3 hypermethylation and downregulation was also observed in rat GH3 and mouse GT1.1 somatotroph adenoma cell lines. 5-Aza-2deoxycytidine and trichostatin-A treatment induced RASSF3 promoter demethylation, and restored its expression in GH3 and GT1.1 cell lines. RASSF3 overexpression in GH3 and GT1.1 cells inhibited proliferation, induced apoptosis accompanied by increased Bax, p53, and caspase-3 protein and decreased Bcl-2 protein expression. We also found that the antitumor effect of RASSF3 was p53 dependent, and p53 knockdown blocked RASSF3-induced apoptosis and growth inhibition. Taken together, our results suggest that hypermethylation-induced RASSF3 silencing plays an important role in the tumorigenesis of pituitary somatotroph adenomas. PMID:23555615

  5. Identification of cis- and trans-acting elements regulating calretinin expression in mesothelioma cells

    PubMed Central

    Kresoja-Rakic, Jelena; Kapaklikaya, Esra; Ziltener, Gabriela; Dalcher, Damian; Santoro, Raffaella; Christensen, Brock C.; Johnson, Kevin C.; Schwaller, Beat; Weder, Walter; Stahel, Rolf A.; Felley-Bosco, Emanuela

    2016-01-01

    Calretinin (CALB2) is a diagnostic marker for epithelioid mesothelioma. It is also a prognostic marker since patients with tumors expressing high calretinin levels have better overall survival. Silencing of calretinin decreases viability of epithelioid mesothelioma cells. Our aim was to elucidate mechanisms regulating calretinin expression in mesothelioma. Analysis of calretinin transcript and protein suggested a control at the mRNA level. Treatment with 5-aza-2′-deoxycytidine and analysis of TCGA data indicated that promoter methylation is not likely to be involved. Therefore, we investigated CALB2 promoter by analyzing ~1kb of genomic sequence surrounding the transcription start site (TSS) + 1 using promoter reporter assay. Deletion analysis of CALB2 proximal promoter showed that sequence spanning the −161/+80bp region sustained transcriptional activity. Site-directed analysis identified important cis-regulatory elements within this −161/+80bp CALB2 promoter. EMSA and ChIP assays confirmed binding of NRF-1 and E2F2 to the CALB2 promoter and siRNA knockdown of NRF-1 led to decreased expression of calretinin. Cell synchronization experiment showed that calretinin expression was cell cycle regulated with a peak of expression at G1/S phase. This study provides the first insight in the regulation of CALB2 expression in mesothelioma cells. PMID:26848772

  6. Promoter Methylation of SFRP3 Is Frequent in Hepatocellular Carcinoma

    PubMed Central

    Shih, Yu-Lueng; Lien, Gi-Shih; Suk, Fat-Moon; Hsieh, Chung-Bao; Yan, Ming-De

    2014-01-01

    Oncogenic activation of the Wnt/β-catenin signaling pathway is common in human cancers. The secreted frizzled-related proteins (SFRPs) function as negative regulators of Wnt signaling and have important implications in carcinogenesis. Because there have been no reports about the role of SFRP3 in hepatocellular carcinoma (HCC), we investigated the level of methylation and transcription of SFRP3. Four HCC cell lines, 60 HCCs, 23 cirrhosis livers, 37 chronic hepatitis livers, and 30 control livers were prescreened for SFRP3 promoter methylation by methylation-specific polymerase chain reaction (MS-PCR) and bisulfite sequencing. SFRP3 promoter methylation was observed in 100%, 60%, 39.1%, 16.2%, and 0% in HCC cell lines, primary HCCs, cirrhosis livers, chronic hepatitis livers, and control livers, respectively. Demethylation treatment with 5-aza-2′-deoxycytidine in HCC cells restored or increased the SFRP3 mRNA expression. We next used quantitative MS-PCR (QMSP) to analyze the methylation level of SFRP3 in 60 HCCs and their corresponding nontumor tissues. Methylation of SFRP3 promoter region in HCCs increased significantly compared with control tissues. There is a positive correlation between promoter hypermethylation and SFRP3 mRNA downregulation. Our data suggest that promoter hypermethylation of SFRP3 is a common event in HCCs and plays an important role in regulation of SFRP3 mRNA expression. PMID:24591760

  7. Overexpression of Ribosomal RNA in the Development of Human Cervical Cancer Is Associated with rDNA Promoter Hypomethylation

    PubMed Central

    Zhou, Hong; Wang, Yapei; Lv, Qiongying; Zhang, Juan; Wang, Qing; Gao, Fei; Hou, Haoli; Zhang, Hao; Zhang, Wei; Li, Lijia

    2016-01-01

    The ribosomal RNA (rRNA) gene encodes rRNA for protein synthesis. Aberrant expression of the rRNA gene has been generally observed in tumor cells and levels of its promoter methylation as an epigenetic regulator affect rRNA gene transcription. The possible relationship between expression and promoter methylation of rDNA has not been examined in human clinical cervical cancer. Here we investigate rRNA gene expression by quantitative real time PCR, and promoter methylation levels by HpaII/MspI digestion and sodium bisulfite sequencing in the development of human cervical cancer. We find that indeed rRNA levels are elevated in most of cervical intraepithelial neoplasia (CIN) specimens as compared with non-cancer tissues. The rDNA promoter region in cervical intraepithelial neoplasia (CIN) tissues reveals significant hypomethylation at cytosines in the context of CpG dinucleotides, accompanied with rDNA chromatin decondensation. Furthermore treatment of HeLa cells with the methylation inhibitor drug 5-aza-2’-deoxycytidine (DAC) demonstrates the negative correlation between the expression of 45S rDNA and the methylation level in the rDNA promoter region. These data suggest that a decrease in rDNA promoter methylation levels can result in an increase of rRNA synthesis in the development of human cervical cancer. PMID:27695092

  8. Suprabasin Is Hypomethylated and Associated with Metastasis in Salivary Adenoid Cystic Carcinoma

    PubMed Central

    Shao, Chunbo; Tan, Marietta; Bishop, Justin A.; Liu, Jia; Bai, Weiliang; Gaykalova, Daria A.; Ogawa, Takenori; Vikani, Ami R.; Agrawal, Yuri; Li, Ryan J.; Kim, Myoung Sook; Westra, William H.; Sidransky, David; Califano, Joseph A.; Ha, Patrick K.

    2012-01-01

    Background Salivary gland adenoid cystic carcinoma (ACC) is a rare cancer, accounting for only 1% of all head and neck malignancies. ACC is well known for perineural invasion and distant metastasis, but its underlying molecular mechanisms of carcinogenesis are still unclear. Principal Findings Here, we show that a novel oncogenic candidate, suprabasin (SBSN), plays important roles in maintaining the anchorage-independent and anchorage-dependent cell proliferation in ACC by using SBSN shRNA stably transfected ACC cell line clones. SBSN is also important in maintaining the invasive/metastatic capability in ACC by Matrigel invasion assay. More interestingly, SBSN transcription is significantly upregulated by DNA demethylation induced by 5-aza-2′-deoxycytidine plus trichostatin A treatment and the DNA methylation levels of the SBSN CpG island located in the second intron were validated to be significantly hypomethylated in primary ACC samples versus normal salivary gland tissues. Conclusions/Significance Taken together, these results support SBSN as novel oncogene candidate in ACC, and the methylation changes could be a promising biomarker for ACC. PMID:23144906

  9. DNMT1-mediated PTEN hypermethylation confers hepatic stellate cell activation and liver fibrogenesis in rats

    SciTech Connect

    Bian, Er-Bao; Huang, Cheng; Ma, Tao-Tao; Tao, Hui; Zhang, Hui; Cheng, Chang; Lv, Xiong-Wen; Li, Jun

    2012-10-01

    Hepatic stellate cell (HSC) activation is an essential event during liver fibrogenesis. Phosphatase and tension homolog deleted on chromosome 10 (PTEN), a tumor suppressor, is a negative regulator of this process. PTEN promoter hypermethylation is a major epigenetic silencing mechanism in tumors. The present study aimed to investigate whether PTEN promoter methylation was involved in HSC activation and liver fibrosis. Treatment of activated HSCs with the DNA methylation inhibitor 5-aza-2′-deoxycytidine (5-azadC) decreased aberrant hypermethylation of the PTEN gene promoter and prevented the loss of PTEN expression that occurred during HSC activation. Silencing DNA methyltransferase 1 (DNMT1) gene also decreased the PTEN gene promoter methylation and upregulated the PTEN gene expression in activated HSC-T6 cells. In addition, knockdown of DNMT1 inhibited the activation of both ERK and AKT pathways in HSC-T6 cells. These results suggest that DNMT1-mediated PTEN hypermethylation caused the loss of PTEN expression, followed by the activation of the PI3K/AKT and ERK pathways, resulting in HSC activation. Highlights: ► PTEN methylation status and loss of PTEN expression ► DNMT1 mediated PTEN hypermethylation. ► Hypermethylation of PTEN contributes to the activation of ERK and AKT pathways.

  10. Epigenetic modification suppresses proliferation, migration and invasion of urothelial cancer cell lines

    PubMed Central

    Brockmeyer, Phillipp; Hemmerlein, Bernhard

    2016-01-01

    Epigenetic approaches offer additional therapeutic options, including apoptosis induction, modification of cell cycle regulating proteins and the re-expression of pharmaceutical targets, such as hormone receptors. The present study analyzed the effect of the epigenetic modifiers 5-aza-2′-deoxycytidine and Trichostatin A on the proliferative, migratory and invasive behavior of four urinary bladder cancer cell lines (RT-4, RT-112, VMCUB-1 and T-24), and the expression of various matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs). Cell proliferation, migration and invasion assays revealed that treatment with the two epigenetic modifiers resulted in proliferation inhibition in all cell lines, and migration and invasion inhibition in RT-4, RT-112 and T-24 cell lines. Quantitative polymerase chain reaction demonstrated that the mRNA expression of a broad selection of MMPs and their TIMPs was induced in all cell lines, and MMP-14 mRNA expression was suppressed in all cell lines, with the exception of RT-4. In conclusion, epigenetic modifications suppressed the motility and invasiveness of three out of four urothelial cancer cell lines. The inhibitory effect on cell motility appears to be crucial for reduced invasive properties. However, even a broad spectrum of mRNA analysis does not sufficiently explain the loss of invasiveness, as it does not allow for functional conclusions. Further complex urothelial tumour models should be applied to investigate whether epigenetic therapeutic approaches may be an option in urothelial cancer.

  11. Epigenetic modification suppresses proliferation, migration and invasion of urothelial cancer cell lines

    PubMed Central

    Brockmeyer, Phillipp; Hemmerlein, Bernhard

    2016-01-01

    Epigenetic approaches offer additional therapeutic options, including apoptosis induction, modification of cell cycle regulating proteins and the re-expression of pharmaceutical targets, such as hormone receptors. The present study analyzed the effect of the epigenetic modifiers 5-aza-2′-deoxycytidine and Trichostatin A on the proliferative, migratory and invasive behavior of four urinary bladder cancer cell lines (RT-4, RT-112, VMCUB-1 and T-24), and the expression of various matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs). Cell proliferation, migration and invasion assays revealed that treatment with the two epigenetic modifiers resulted in proliferation inhibition in all cell lines, and migration and invasion inhibition in RT-4, RT-112 and T-24 cell lines. Quantitative polymerase chain reaction demonstrated that the mRNA expression of a broad selection of MMPs and their TIMPs was induced in all cell lines, and MMP-14 mRNA expression was suppressed in all cell lines, with the exception of RT-4. In conclusion, epigenetic modifications suppressed the motility and invasiveness of three out of four urothelial cancer cell lines. The inhibitory effect on cell motility appears to be crucial for reduced invasive properties. However, even a broad spectrum of mRNA analysis does not sufficiently explain the loss of invasiveness, as it does not allow for functional conclusions. Further complex urothelial tumour models should be applied to investigate whether epigenetic therapeutic approaches may be an option in urothelial cancer. PMID:27602104

  12. Expression of human histo-blood group ABO genes is dependent upon DNA methylation of the promoter region.

    PubMed

    Kominato, Y; Hata, Y; Takizawa, H; Tsuchiya, T; Tsukada, J; Yamamoto, F

    1999-12-24

    We have investigated the regulatory role of DNA methylation in the expression of the human histo-blood group ABO genes. The ABO gene promoter region contains a CpG island whose methylation status correlates well with gene expression in the cell lines tested. The CpG island was found hypomethylated in some cell lines that expressed ABO genes, whereas the other cell lines that did not express ABO genes were hypermethylated. Whereas constitutive transcriptional activity of the ABO gene promoter was demonstrated in both expressor and nonexpressor cell lines by transient transfection of reporter constructs containing the ABO gene promoter sequence, HhaI methylase-catalyzed in vitro methylation of the promoter region prior to DNA transfection suppressed the promoter activity when introduced into the expressor gastric cancer cell line KATOIII cells. On the other hand, in the nonexpressor gastric cancer cell line MKN28 cells, treatment with DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine resulted in demethylation of the ABO gene promoter and appearance of A-transferase messages, as well as A-antigens synthesized by A-transferase. Taken together, these studies suggest that DNA methylation of the ABO gene promoter may play an important role in the regulation of ABO gene expression. PMID:10601288

  13. Absence of cyclin D2 expression is associated with promoter hypermethylation in gastric cancer.

    PubMed

    Yu, J; Leung, W K; Ebert, M P A; Leong, R W L; Tse, P C H; Chan, M W Y; Bai, A H C; To, K F; Malfertheiner, P; Sung, J J Y

    2003-05-19

    Expression of cyclin D2 is absent in 30-70% of gastric cancers. We investigated the role of promoter hypermethylation in the transcriptional silencing of cyclin D2 in five gastric cell lines and 47 primary gastric carcinomas. CpG island methylation status of the cyclin D2 gene was studied by methylation-specific polymerase chain reaction and bisulphite sequencing. RNA and protein expression was analysed by reverse transcription-PCR and Western blot, respectively. Dense methylation of cyclin D2 was detected in three cell lines (KATOIII, AGS and NCI-N87), which also lacked cyclin D2 mRNA and protein expression. Bisulphite DNA sequencing revealed that loss of cyclin D2 expression was closely associated with the density of methylation in the promoter region. Treatment with DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine, restored the cyclin D2 expression level in methylated gastric cells. Among the 47 primary gastric cancers, cyclin D2 hypermethylation was detected in 23 (48.9%) cases. None of the 23 normal gastric biopsies from noncancer patients showed hypermethylation. Hypermethylation was associated with loss of mRNA (P&<0.001) and protein (P=0.006) expressions. Our study showed that cyclin D2 hypermethylation is associated with loss of cyclin D2 expression in a subset of gastric cancers, which may suggest an alternative gastric carcinogenesis pathway in the absence of cyclin D2 expression. PMID:12771922

  14. DNA methylation-mediated silencing of PU.1 in leukemia cells resistant to cell differentiation.

    PubMed

    Fernández-Nestosa, María José; Monturus, Estefanía; Sánchez, Zunilda; Torres, Francisco S; Fernández, Agustín F; Fraga, Mario F; Hernández, Pablo; Schvartzman, Jorge B; Krimer, Dora B

    2013-01-01

    In mice, the proviral integration of the Friend Spleen Focus Forming Virus (SFFV) within the PU.1 locus of erythroid precursors results in the development of erythroleukemia. SFFV integrates several kilobases upstream of the PU.1 transcription initiation start site leading to the constitutive activation of the gene which in turn results in a block of erythroid differentiation. In this study we have mapped and sequenced the exact location of the retroviral integration site. We have shown that SFFV integrates downstream of a previously described upstream regulatory element (URE), precisely 2,976 bp downstream of the URE-distal element. We have also found that SFFV persists integrated within the same location in resistant cell lines that have lost their differentiation capacity and in which case PU.1 remains silent. We have examined the methylation status of PU.1 and found that in resistant cells the nearby CpG islands remained methylated in contrast to a non-methylated status of the parental cell lines. Treatment with 5-aza-2'-deoxycytidine caused resistant cells to differentiate yet only when combined with HMBA. Altogether these results strongly suggest that methylation plays a crucial role with regard to PU.1 silencing. However, although demethylation is required, it is not sufficient to overcome the differentiation impasse. We have also showed that activation blockage of the Epo/Epo-R pathway remains despite of the absence of PU.1.

  15. Epigenetic Repression of PDZ-LIM Domain-containing Protein 2

    PubMed Central

    Qu, Zhaoxia; Fu, Jing; Yan, Pengrong; Hu, Jing; Cheng, Shi-Yuan; Xiao, Gutian

    2010-01-01

    The NF-κB transcription factor plays a pivotal role in breast cancer progression and therapy resistance. However, the mechanisms by which the tightly regulated NF-κB becomes constitutively activated during breast cancer pathogenesis remain obscure. Here, we report that PDZ-LIM domain-containing protein 2 (PDLIM2), an essential terminator of NF-κB activation, is repressed in both estrogen receptor-positive and estrogen receptor-negative breast cancer cells, suggesting one important mechanism for the constitutive activation of NF-κB. Indeed, PDLIM2 reexpression inhibited constitutive NF-κB activation and expression of NF-κB-targeted genes in those breast cancer cells. Importantly, PDLIM2, but not its mutants defective in NF-κB termination, could suppress in vitro anchorage-independent growth and in vivo tumor formation of those malignant breast cells. In addition, we have shown that PDLIM2 repression involves promoter methylation. Accordingly, treatment of the breast cancer cells with the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine reverses the methylation of the PDLIM2 promoter, restored PDLIM2 expression, and suppressed tumorigenicities of human breast cancer cells both in vitro and in vivo. These studies thus provide important mechanistic insights into breast cancer pathogenesis. These studies also suggest a tumor suppression function of PDLIM2 and a therapeutic strategy for breast cancer. PMID:20185823

  16. Inhibition of DNA Methylation Impairs Synaptic Plasticity during an Early Time Window in Rats

    PubMed Central

    Díaz, Paula; Ardiles, Álvaro O.

    2016-01-01

    Although the importance of DNA methylation-dependent gene expression to neuronal plasticity is well established, the dynamics of methylation and demethylation during the induction and expression of synaptic plasticity have not been explored. Here, we combined electrophysiological, pharmacological, molecular, and immunohistochemical approaches to examine the contribution of DNA methylation and the phosphorylation of Methyl-CpG-binding protein 2 (MeCP2) to synaptic plasticity. We found that, at twenty minutes after theta burst stimulation (TBS), the DNA methylation inhibitor 5-aza-2-deoxycytidine (5AZA) impaired hippocampal long-term potentiation (LTP). Surprisingly, after two hours of TBS, when LTP had become a transcription-dependent process, 5AZA treatment had no effect. By comparing these results to those in naive slices, we found that, at two hours after TBS, an intergenic region of the RLN gene was hypomethylated and that the phosphorylation of residue S80 of MeCP2 was decreased, while the phosphorylation of residue S421 was increased. As expected, 5AZA affected only the methylation of the RLN gene and exerted no effect on MeCP2 phosphorylation patterns. In summary, our data suggest that tetanic stimulation induces critical changes in synaptic plasticity that affects both DNA methylation and the phosphorylation of MeCP2. These data also suggest that early alterations in DNA methylation are sufficient to impair the full expression of LTP. PMID:27493805

  17. DNMT (DNA methyltransferase) inhibitors radiosensitize human cancer cells by suppressing DNA repair activity

    PubMed Central

    2012-01-01

    Background Histone modifications and DNA methylation are two major factors in epigenetic phenomenon. Unlike the histone deacetylase inhibitors, which are known to exert radiosensitizing effects, there have only been a few studies thus far concerning the role of DNA methyltransferase (DNMT) inhibitors as radiosensitizers. The principal objective of this study was to evaluate the effects of DNMT inhibitors on the radiosensitivity of human cancer cell lines, and to elucidate the mechanisms relevant to that process. Methods A549 (lung cancer) and U373MG (glioblastoma) cells were exposed to radiation with or without six DNMT inhibitors (5-azacytidine, 5-aza-2'-deoxycytidine, zebularine, hydralazine, epigallocatechin gallate, and psammaplin A) for 18 hours prior to radiation, after which cell survival was evaluated via clonogenic assays. Cell cycle and apoptosis were analyzed via flow cytometry. Expressions of DNMT1, 3A/3B, and cleaved caspase-3 were detected via Western blotting. Expression of γH2AX, a marker of radiation-induced DNA double-strand break, was examined by immunocytochemistry. Results Pretreatment with psammaplin A, 5-aza-2'-deoxycytidine, and zebularine radiosensitized both A549 and U373MG cells. Pretreatment with psammaplin A increased the sub-G1 fraction of A549 cells, as compared to cells exposed to radiation alone. Prolongation of γH2AX expression was observed in the cells treated with DNMT inhibitors prior to radiation as compared with those treated by radiation alone. Conclusions Psammaplin A, 5-aza-2'-deoxycytidine, and zebularine induce radiosensitivity in both A549 and U373MG cell lines, and suggest that this effect might be associated with the inhibition of DNA repair. PMID:22429326

  18. Treatment

    MedlinePlus

    ... Prevention Treatment 2003 U.S. Outbreak African Rodent Importation Ban For Clinicians Clinical Recognition Specimen Collection Treatment Smallpox ... Examining Animals with Suspected Monkeypox African Rodent Importation Ban Resources Related Links Poxvirus Molluscum Contagiosum Orf Virus ( ...

  19. Heat shock protein 70 (Hsp70)-stimulated deoxycytidine deaminases from a human lymphoma cell but not the activation-induced cytidine deaminase (AID) from Ramos 6.4 human Burkitt's lymphoma cells.

    PubMed

    Bases, Robert

    2011-01-01

    Deoxycytidine deaminase enzyme activity was reduced in lysates of human leukemic THP1 cells 24 h after transfection with siRNA designed to inhibit cell synthesis of heat shock protein 70 (Hsp70)1a and Hsp701b. The cytidine deaminase enzyme activity from the cell lysates was purified from an affinity column which contained bound single-stranded oligodeoxycytidylic acid. Deficient enzyme activity in certain elution fractions from the siRNA-transfected cells was restored by including recombinant HSP 70 in the assays. Enzyme activity in some other fractions was increased after siRNA transfection. Activation-induced cytidine deaminase (AID) is a central factor in the immune response. A more specific assay for AID was used to study the influence of Hsp70 on AID activity. Unlike Hsp70's ability to stimulate certain enzymes of DNA base excision repair and other cytidine deaminases, it had little effect on AID activity in vitro, or was weakly inhibitory.

  20. Prevention of Helicobacter pylori-induced gastric cancers in gerbils by a DNA demethylating agent.

    PubMed

    Niwa, Tohru; Toyoda, Takeshi; Tsukamoto, Tetsuya; Mori, Akiko; Tatematsu, Masae; Ushijima, Toshikazu

    2013-04-01

    Suppression of aberrant DNA methylation is a novel approach to cancer prevention, but, so far, the efficacy of the strategy has not been evaluated in cancers associated with chronic inflammation. Gastric cancers induced by Helicobacter pylori infection are known to involve aberrant DNA methylation and associated with severe chronic inflammation in their early stages. Here, we aimed to clarify whether suppression of aberrant DNA methylation can prevent H. pylori-induced gastric cancers using a Mongolian gerbil model. Administration of a DNA demethylating agent, 5-aza-2'-deoxycytidine (5-aza-dC), to gerbils (0.125 mg/kg for 50-55 weeks) decreased the incidence of gastric cancers induced by H. pylori infection and N-methyl-N-nitrosourea (MNU) treatment from 55.2% to 23.3% (P < 0.05). In gastric epithelial cells, DNA methylation levels of six CpG islands (HE6, HG2, SB1, SB5, SF12, and SH6) decreased to 46% to 68% (P < 0.05) of gerbils without 5-aza-dC treatment. Also, the global DNA methylation level decreased from 83.0% ± 4.5% to 80.3% ± 4.4% (mean ± SD) by 5-aza-dC treatment (P < 0.05). By 5-aza-dC treatment, Il1b and Nos2 were downregulated (42% and 58% of gerbils without, respectively) but Tnf was upregulated (187%), suggesting that 5-aza-dC treatment induced dysregulation of inflammatory responses. No obvious adverse effect of 5-aza-dC treatment was observed, besides testicular atrophy. These results showed that 5-aza-dC treatment can prevent H. pylori-induced gastric cancers and suggested that removal of induced DNA methylation and/or suppression of DNA methylation induction can become a target for prevention of chronic inflammation-associated cancers. PMID:23559452

  1. Sustained Epigenetic Drug Delivery Depletes Cholesterol-Sphingomyelin Rafts from Resistant Breast Cancer Cells, Influencing Biophysical Characteristics of Membrane Lipids.

    PubMed

    Raghavan, Vijay; Vijayaraghavalu, Sivakumar; Peetla, Chiranjeevi; Yamada, Masayoshi; Morisada, Megan; Labhasetwar, Vinod

    2015-10-27

    Cell-membrane lipid composition can greatly influence biophysical properties of cell membranes, affecting various cellular functions. We previously showed that lipid synthesis becomes altered in the membranes of resistant breast cancer cells (MCF-7/ADR); they form a more rigid, hydrophobic lipid monolayer than do sensitive cell membranes (MCF-7). These changes in membrane lipids of resistant cells, attributed to epigenetic aberration, significantly affected drug transport and endocytic function, thus impacting the efficacy of anticancer drugs. The present study's objective was to determine the effects of the epigenetic drug, 5-aza-2'-deoxycytidine (DAC), delivered in sustained-release nanogels (DAC-NGs), on the composition and biophysical properties of membrane lipids of resistant cells. Resistant and sensitive cells were treated with DAC in solution (DAC-sol) or DAC-NGs, and cell-membrane lipids were isolated and analyzed for lipid composition and biophysical properties. In resistant cells, we found increased formation of cholesterol-sphingomyelin (CHOL-SM) rafts with culturing time, whereas DAC treatment reduced their formation. In general, the effect of DAC-NGs was greater in changing the lipid composition than with DAC-sol. DAC treatment also caused a rise in levels of certain phospholipids and neutral lipids known to increase membrane fluidity, while reducing the levels of certain lipids known to increase membrane rigidity. Isotherm data showed increased lipid membrane fluidity following DAC treatment, attributed to decrease levels of CHOL-SM rafts (lamellar beta [Lβ] structures or ordered gel) and a corresponding increase in lipids that form lamellar alpha-structures (Lα, liquid crystalline phase). Sensitive cells showed marginal or insignificant changes in lipid profile following DAC-treatment, suggesting that epigenetic changes affecting lipid biosynthesis are more specific to resistant cells. Since membrane fluidity plays a major role in drug transport

  2. Programming of the macronucleus of Paramecium during asexual and sexual reproduction: A further study with cytidine analogues, dimethylsulfoxide, L-ethionine and N-butyric acid.

    PubMed

    Au, K Y; Yao, C M; Cowan, R; Ng, S F

    1990-08-31

    The control of the function of the macronucleus of Paramecium is studied, in connection with its role in the compensation for the asexual somatic function of the micronucleus. Following removal of the micronuclei, amicronucleate cell lines as a rule suffer a transient period of growth and developmental depression in the initial phase of asexual propagation. But they gradually recover to near-normal. Previous studies of treatment of amicronucleate cells with cytidine analogues have implicated the macronucleus in compensating for the somatic function of the micronucleus following the loss of the micronucleus, and the activation of this macronuclear function probably involves DNA-demethylation. The present study further tests this notion, by treating micronucleate cells with agents known to promote demethylation of 5-methylcytosine. After treatment, the cells were vegetatively propagated, and then enucleated to give rise to amicronucleate cell lines. Treatments with dimethylsulfoxide, L-ethionine, and 5-aza-2'-deoxycytidine promoted recovery in amicronucleate cell lines thus derived. Cells treated with 6-azacytidine did not produce such an effect. Hence, the compensatory mechanism, presumably residing in a repressed state in the macronucleus, can be activated or primed to activate by demethylating agents even before the loss of the micronucleus, and once established the new macronuclear programme perpetuates in succeeding asexual cell generations. This shows that during asexual propagation the macronuclear programme can be altered to 'pre-adapt' the cells for amicronuclearity. Treatment of micronucleate conjugants with 5-azacytidine, when the macronuclear anlagen develop, produced clones that had become similarly pre-adapted. There were also some indication of persistence of such effects of the analogue into the next clonal cycle following autogamy. The notion of macronuclear DNA-demethylation as a basis for the activation and maintenance of the compensatory mechanism

  3. Programming of the macronucleus of Paramecium during asexual and sexual reproduction: A further study with cytidine analogues, dimethylsulfoxide, L-ethionine and N-butyric acid.

    PubMed

    Au, K Y; Yao, C M; Cowan, R; Ng, S F

    1990-08-31

    The control of the function of the macronucleus of Paramecium is studied, in connection with its role in the compensation for the asexual somatic function of the micronucleus. Following removal of the micronuclei, amicronucleate cell lines as a rule suffer a transient period of growth and developmental depression in the initial phase of asexual propagation. But they gradually recover to near-normal. Previous studies of treatment of amicronucleate cells with cytidine analogues have implicated the macronucleus in compensating for the somatic function of the micronucleus following the loss of the micronucleus, and the activation of this macronuclear function probably involves DNA-demethylation. The present study further tests this notion, by treating micronucleate cells with agents known to promote demethylation of 5-methylcytosine. After treatment, the cells were vegetatively propagated, and then enucleated to give rise to amicronucleate cell lines. Treatments with dimethylsulfoxide, L-ethionine, and 5-aza-2'-deoxycytidine promoted recovery in amicronucleate cell lines thus derived. Cells treated with 6-azacytidine did not produce such an effect. Hence, the compensatory mechanism, presumably residing in a repressed state in the macronucleus, can be activated or primed to activate by demethylating agents even before the loss of the micronucleus, and once established the new macronuclear programme perpetuates in succeeding asexual cell generations. This shows that during asexual propagation the macronuclear programme can be altered to 'pre-adapt' the cells for amicronuclearity. Treatment of micronucleate conjugants with 5-azacytidine, when the macronuclear anlagen develop, produced clones that had become similarly pre-adapted. There were also some indication of persistence of such effects of the analogue into the next clonal cycle following autogamy. The notion of macronuclear DNA-demethylation as a basis for the activation and maintenance of the compensatory mechanism

  4. Identification of coexistence of DNA methylation and H3K27me3 specifically in cancer cells as a promising target for epigenetic therapy.

    PubMed

    Takeshima, Hideyuki; Wakabayashi, Mika; Hattori, Naoko; Yamashita, Satoshi; Ushijima, Toshikazu

    2015-02-01

    Alterations of epigenetic modifications are promising targets for cancer therapy, and several epigenetic drugs are now being clinically utilized. At the same time, individual epigenetic modifications have physiological functions in normal cells, and cancer cell specificity is considered difficult to achieve using a drug against a single epigenetic modification. To overcome this limitation, a combination of epigenetic modifications specifically or preferentially present in cancer cells is a candidate target. In this study, we aimed to demonstrate (i) the presence of a cancer cell-specific combination of epigenetic modifications by focusing on DNA methylation and trimethylation of histone H3 lysine 27 (H3K27me3) and (ii) the therapeutic efficacy of a combination of DNA demethylation and EZH2 inhibition. Analyses of DNA methylation and H3K27me3 in human colon, breast and prostate cancer cell lines revealed that 24.7±4.1% of DNA methylated genes had both DNA methylation and H3K27me3 (dual modification) in cancer cells, while it was 11.8±7.1% in normal cells. Combined treatment with a DNA demethylating agent, 5-aza-2'-deoxycytidine (5-aza-dC) and an EZH2 inhibitor, GSK126, induced marked re-expression of genes with the dual modification, including known tumor-suppressor genes such as IGFBP7 and SFRP1, and showed an additive inhibitory effect on growth of cancer cells in vitro. Finally, an in vivo combined treatment with 5-aza-dC and GSK126 inhibited growth of xenograft tumors more efficiently than a single treatment with 5-aza-dC. These results showed that the dual modification exists specifically in cancer cells and is a promising target for cancer cell-specific epigenetic therapy. PMID:25477340

  5. Influence of DNA-methylation on zinc homeostasis in myeloid cells: Regulation of zinc transporters and zinc binding proteins.

    PubMed

    Kessels, Jana Elena; Wessels, Inga; Haase, Hajo; Rink, Lothar; Uciechowski, Peter

    2016-09-01

    The distribution of intracellular zinc, predominantly regulated through zinc transporters and zinc binding proteins, is required to support an efficient immune response. Epigenetic mechanisms such as DNA methylation are involved in the expression of these genes. In demethylation experiments using 5-Aza-2'-deoxycytidine (AZA) increased intracellular (after 24 and 48h) and total cellular zinc levels (after 48h) were observed in the myeloid cell line HL-60. To uncover the mechanisms that cause the disturbed zinc homeostasis after DNA demethylation, the expression of human zinc transporters and zinc binding proteins were investigated. Real time PCR analyses of 14 ZIP (solute-linked carrier (SLC) SLC39A; Zrt/IRT-like protein), and 9 ZnT (SLC30A) zinc transporters revealed significantly enhanced mRNA expression of the zinc importer ZIP1 after AZA treatment. Because ZIP1 protein was also enhanced after AZA treatment, ZIP1 up-regulation might be the mediator of enhanced intracellular zinc levels. The mRNA expression of ZIP14 was decreased, whereas zinc exporter ZnT3 mRNA was also significantly increased; which might be a cellular reaction to compensate elevated zinc levels. An enhanced but not significant chromatin accessibility of ZIP1 promoter region I was detected by chromatin accessibility by real-time PCR (CHART) assays after demethylation. Additionally, DNA demethylation resulted in increased mRNA accumulation of zinc binding proteins metallothionein (MT) and S100A8/S100A9 after 48h. MT mRNA was significantly enhanced after 24h of AZA treatment also suggesting a reaction of the cell to restore zinc homeostasis. These data indicate that DNA methylation is an important epigenetic mechanism affecting zinc binding proteins and transporters, and, therefore, regulating zinc homeostasis in myeloid cells.

  6. Roles of Cell Division and Gene Transcription in the Methylation of CpG Islands

    PubMed Central

    Bender, Christina M.; Gonzalgo, Mark L.; Gonzales, Felicidad A.; Nguyen, Carvell T.; Robertson, Keith D.; Jones, Peter A.

    1999-01-01

    De novo methylation of CpG islands within the promoters of eukaryotic genes is often associated with their transcriptional repression, yet the methylation of CpG islands located downstream of promoters does not block transcription. We investigated the kinetics of mRNA induction, demethylation, and remethylation of the p16 promoter and second-exon CpG islands in T24 cells after 5-aza-2′-deoxycytidine (5-Aza-CdR) treatment to explore the relationship between CpG island methylation and gene transcription. The rates of remethylation of both CpG islands were associated with time but not with the rate of cell division, and remethylation of the p16 exon 2 CpG island occurred at a higher rate than that of the p16 promoter. We also examined the relationship between the remethylation of coding sequence CpG islands and gene transcription. The kinetics of remethylation of the p16 exon 2, PAX-6 exon 5, c-ABL exon 11, and MYF-3 exon 3 loci were examined following 5-Aza-CdR treatment because these genes contain exonic CpG islands which are hypermethylated in T24 cells. Remethylation occurred most rapidly in the p16, PAX-6, and c-ABL genes, shown to be transcribed prior to drug treatment. These regions also exhibited higher levels of remethylation in single-cell clones and subclones derived from 5-Aza-CdR-treated T24 cells. Our data suggest that de novo methylation is not restricted to the S phase of the cell cycle and that transcription through CpG islands does not inhibit their remethylation. PMID:10490608

  7. Epigenetic Regulation of Vitamin D 24-Hydroxylase/CYP24A1 in Human Prostate Cancer

    PubMed Central

    Luo, Wei; Karpf, Adam R.; Deeb, Kristin K.; Muindi, Josephia R.; Morrison, Carl D.; Johnson, Candace S.; Trump, Donald L.

    2010-01-01

    Calcitriol, a regulator of calcium homeostasis with antitumor properties, is degraded by the product of the CYP24A1 gene which is downregulated in human prostate cancer by unknown mechanisms. We found that CYP24A1 expression is inversely correlated with promoter DNA methylation in prostate cancer cell lines. Treatment with the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine (DAC) activates CYP24A1 expression in prostate cancer cells. In vitro methylation of the CYP24A1 promoter represses its promoter activity. Furthermore, inhibition of histone deacetylases by trichostatin A (TSA) enhances the expression of CYP24A1 in prostate cancer cells. ChIP-qPCR reveals that specific histone modifications are associated with the CYP24A1 promoter region. Treatment with TSA increases H3K9ac and H3K4me2 and simultaneously decreases H3K9me2 at the CYP24A1 promoter. ChIP-qPCR assay reveals that treatment with DAC and TSA increases the recruitment of VDR to the CYP24A1 promoter. RT-PCR analysis of paired human prostate samples reveals that CYP24A1 expression is down-regulated in prostate malignant lesions compared to adjacent histologically benign lesions. Bisulfite pyrosequencing shows that CYP24A1 gene is hypermethylated in malignant lesions compared to matched benign lesions. Our findings indicate that repression of CYP24A1 gene expression in human prostate cancer cells is mediated in part by promoter DNA methylation and repressive histone modifications. PMID:20587525

  8. Hypermethylation of the Keap1 gene inactivates its function, promotes Nrf2 nuclear accumulation, and is involved in arsenite-induced human keratinocyte transformation.

    PubMed

    Wang, Dapeng; Ma, Yuan; Yang, Xu; Xu, Xiguo; Zhao, Yingying; Zhu, Zhen; Wang, Xiaojuan; Deng, Hanyi; Li, Chunchun; Gao, Fenfang; Tong, Jian; Yamanaka, Kenzo; An, Yan

    2015-12-01

    It is well known that long-term exposure to arsenite leads to human skin cancer, but the underlying mechanisms of carcinogenesis remain obscure. The transcription factor Nrf2-mediated antioxidant response represents a critical cellular defense mechanism; however, emerging data suggest that constitutive activation of Nrf2 is associated with cancer development and chemotherapy resistance. The reasons Nrf2 continuously accumulates in cancer cells remain to be fully understood. By establishing transformed human keratinocyte cells via chronic arsenite treatment, we observed a continuous reduction in reactive oxygen species levels and enhanced levels of Nrf2 and its target antioxidant enzymes in the later stage of arsenite-induced cell transformation. We also revealed that hypermethylation of the Keap1 gene promoter region induced by DNA methyltransferase-3 leading to inactivation of its function was responsible for constitutive activation of Nrf2 and its target enzymes. To validate these observations, the expression of Keap1 protein was restored in arsenite-transformed cells by treatment with a DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (5-Aza-dC), and protein levels of Nrf2 and colony formation were then determined after these treatments. Results showed that enhancement of Keap1 expression by 5-Aza-dC significantly reduced Nrf2 and its target antioxidant enzyme levels, and that in turn suppressed cell proliferation and colony formation of the transformed cells. Taken together, the present study strongly suggests that loss of Keap1 function by hypermethylation of its promoter region leading to Nrf2 nuclear accumulation appears to play a role in arsenite-induced human keratinocyte transformation.

  9. Glycolic Acid Silences Inflammasome Complex Genes, NLRC4 and ASC, by Inducing DNA Methylation in HaCaT Cells.

    PubMed

    Tang, Sheau-Chung; Yeh, Jih-I; Hung, Sung-Jen; Hsiao, Yu-Ping; Liu, Fu-Tong; Yang, Jen-Hung

    2016-03-01

    AHAs (α-hydroxy acids), including glycolic acid (GA), have been widely used in cosmetic products and superficial chemical peels. Inflammasome complex has been shown to play critical roles in inflammatory pathways in human keratinocytes. However, the anti-inflammatory mechanism of GA is still unknown. The aim of this study is to investigate the relationship between the expression of the inflammasome complex and epigenetic modification to elucidate the molecular mechanism of the anti-inflammatory effect of GA in HaCaT cells. We evaluated NLRP3, NLRC4, AIM2, and ASC inflammasome complex gene expression on real-time polymerase chain reaction (PCR). Methylation changes were detected in these genes following treatment with DNA methyltransferase (DNMT) inhibitor 5-aza-2'-deoxycytidine (5-Aza) with or without the addition of GA using methylation-specific PCR (MSP). GA inhibited the expressions of these inflammasome complex genes, and the decreases in the expressions of mRNA were reversed by 5-Aza treatment. Methylation was detected in NLRC4 and ASC on MSP, but not in NLRP3 or AIM2. GA decreased NLRC4 and ASC gene expression by increasing not only DNA methyltransferase 3B (DNMT-3B) protein level, but also total DNMT activity. Furthermore, silencing of DNMT-3B (shDNMT-3B) increased the expressions of NLRC4 and ASC. Our data demonstrated that GA treatment induces hypermethylation of promoters of NLRC4 and ASC genes, which may subsequently lead to the hindering of the assembly of the inflammasome complex in HaCaT cells. These results highlight the anti-inflammatory potential of GA-containing cosmetic agents in human skin cells and demonstrate for the first time the role of aberrant hypermethylation in this process.

  10. Methylation of Adjacent CpG Sites Affects Sp1/Sp3 Binding and Activity in the p21Cip1 Promoter

    PubMed Central

    Zhu, Wei-Guo; Srinivasan, Kanur; Dai, Zunyan; Duan, Wenrui; Druhan, Lawrence J.; Ding, Haiming; Yee, Lisa; Villalona-Calero, Miguel A.; Plass, Christoph; Otterson, Gregory A.

    2003-01-01

    DNA methylation in the promoter of certain genes is associated with transcriptional silencing. Methylation affects gene expression directly by interfering with transcription factor binding and/or indirectly by recruiting histone deacetylases through methyl-DNA-binding proteins. In this study, we demonstrate that the human lung cancer cell line H719 lacks p53-dependent and -independent p21Cip1 expression. p53 response to treatment with gamma irradiation or etoposide is lost due to a mutation at codon 242 of p53 (C→W). Treatment with depsipeptide, an inhibitor of histone deacetylase, was unable to induce p53-independent p21Cip1 expression because the promoter of p21Cip1 in these cells is hypermethylated. By analyzing luciferase activity of transfected p21Cip1 promoter vectors, we demonstrate that depsipeptide functions on Sp1-binding sites to induce p21Cip1 expression. We hypothesize that hypermethylation may interfere with Sp1/Sp3 binding. By using an electrophoretic mobility shift assay, we show that, although methylation within the consensus Sp1-binding site did not reduce Sp1/Sp3 binding, methylation outside of the consensus Sp1 element induced a significant decrease in Sp1/Sp3 binding. Depsipeptide induced p21Cip1 expression was reconstituted when cells were pretreated with 5-aza-2′-deoxycytidine. Our data suggest, for the first time, that hypermethylation around the consensus Sp1-binding sites may directly reduce Sp1/Sp3 binding, therefore leading to a reduced p21Cip1 expression in response to depsipeptide treatment. PMID:12773551

  11. Downregulation of thrombospondin-1 by DNA hypermethylation is associated with tumor progression in laryngeal squamous cell carcinoma.

    PubMed

    Huang, Chuang; Zhou, Xiaohong; Li, Zhenhua; Liu, Hong; He, Yun; Ye, Guo; Huang, Kun

    2016-09-01

    Thrombospondin‑1 (THBS‑1) has been demonstrated to have a complicated role in human cancer and to exert stimulatory and inhibitory effects in different types of tumors. DNA methylation, as the most frequent mechanism for gene silencing, has been widely investigated in regards to the development of tumors. However, the expression levels and methylation status of THBS‑1, and their roles in laryngeal squamous cell carcinoma (LSCC) remain to be elucidated. The present study detected downregulated THBS‑1 mRNA and protein expression levels in LSCC by using reverse transcription-quantitative polymerase chain reaction (PCR) and western blotting, while decreased expression levels of THBS‑1 mRNA and protein were significantly associated with lymph node metastasis and tumor‑node‑metastasis (TNM) stage. Furthermore, aberrant methylation of THBS‑1 was frequently observed in LSCC by methylation‑specific PCR, particularly in tumor tissues from lymph node metastasis or samples from cancer with advanced TNM stage. Furthermore, the current study demonstrated that downregulated expression of THBS‑1 in LSCC was consistent with aberrant methylation of this gene. Treatment with the DNA methyltransferase inhibitor 5-aza-2'-deoxy-cytidine in Hep‑2 cells induced demethylation of THBS-1, enhanced THBS‑1 expression, and inhibited the proliferative and invasive ability of Hep‑2 cells. Collectively, the results of the present study suggest that THBS‑1 may exert an inhibitory effect in the development of LSCC. Aberrant methylation was an important reason for the downregulation of THBS‑1 and was involved in the invasion and metastasis of LSCC. Demethylating agents may be effective candidates for the treatment of LSCC.

  12. Novel Epigenetic Target Therapy for Prostate Cancer: A Preclinical Study

    PubMed Central

    Gherardini, Lisa; Pelosi, Gualtiero; Viglione, Federica; Grimaldi, Settimio; Pani, Luca; Cinti, Caterina

    2014-01-01

    Epigenetic events are critical contributors to the pathogenesis of cancer, and targeting epigenetic mechanisms represents a novel strategy in anticancer therapy. Classic demethylating agents, such as 5-Aza-2′-deoxycytidine (Decitabine), hold the potential for reprograming somatic cancer cells demonstrating high therapeutic efficacy in haematological malignancies. On the other hand, epigenetic treatment of solid tumours often gives rise to undesired cytotoxic side effects. Appropriate delivery systems able to enrich Decitabine at the site of action and improve its bioavailability would reduce the incidence of toxicity on healthy tissues. In this work we provide preclinical evidences of a safe, versatile and efficient targeted epigenetic therapy to treat hormone sensitive (LNCap) and hormone refractory (DU145) prostate cancers. A novel Decitabine formulation, based on the use of engineered erythrocyte (Erythro-Magneto-Hemagglutinin Virosomes, EMHVs) drug delivery system (DDS) carrying this drug, has been refined. Inside the EMHVs, the drug was shielded from the environment and phosphorylated in its active form. The novel magnetic EMHV DDS, endowed with fusogenic protein, improved the stability of the carried drug and exhibited a high efficiency in confining its delivery at the site of action in vivo by applying an external static magnetic field. Here we show that Decitabine loaded into EMHVs induces a significant tumour mass reduction in prostate cancer xenograft models at a concentration, which is seven hundred times lower than the therapeutic dose, suggesting an improved pharmacokinetics/pharmacodynamics of drug. These results are relevant for and discussed in light of developing personalised autologous therapies and innovative clinical approach for the treatment of solid tumours. PMID:24851905

  13. Novel epigenetic target therapy for prostate cancer: a preclinical study.

    PubMed

    Naldi, Ilaria; Taranta, Monia; Gherardini, Lisa; Pelosi, Gualtiero; Viglione, Federica; Grimaldi, Settimio; Pani, Luca; Cinti, Caterina

    2014-01-01

    Epigenetic events are critical contributors to the pathogenesis of cancer, and targeting epigenetic mechanisms represents a novel strategy in anticancer therapy. Classic demethylating agents, such as 5-Aza-2'-deoxycytidine (Decitabine), hold the potential for reprograming somatic cancer cells demonstrating high therapeutic efficacy in haematological malignancies. On the other hand, epigenetic treatment of solid tumours often gives rise to undesired cytotoxic side effects. Appropriate delivery systems able to enrich Decitabine at the site of action and improve its bioavailability would reduce the incidence of toxicity on healthy tissues. In this work we provide preclinical evidences of a safe, versatile and efficient targeted epigenetic therapy to treat hormone sensitive (LNCap) and hormone refractory (DU145) prostate cancers. A novel Decitabine formulation, based on the use of engineered erythrocyte (Erythro-Magneto-Hemagglutinin Virosomes, EMHVs) drug delivery system (DDS) carrying this drug, has been refined. Inside the EMHVs, the drug was shielded from the environment and phosphorylated in its active form. The novel magnetic EMHV DDS, endowed with fusogenic protein, improved the stability of the carried drug and exhibited a high efficiency in confining its delivery at the site of action in vivo by applying an external static magnetic field. Here we show that Decitabine loaded into EMHVs induces a significant tumour mass reduction in prostate cancer xenograft models at a concentration, which is seven hundred times lower than the therapeutic dose, suggesting an improved pharmacokinetics/pharmacodynamics of drug. These results are relevant for and discussed in light of developing personalised autologous therapies and innovative clinical approach for the treatment of solid tumours.

  14. Identification of the collagen type 1 alpha 1 gene (COL1A1) as a candidate survival-related factor associated with hepatocellular carcinoma

    PubMed Central

    2014-01-01

    Background Hepatocellular carcinoma (HCC) is one of the major causes of cancer-related death especially among Asian and African populations. It is urgent that we identify carcinogenesis-related genes to establish an innovative treatment strategy for this disease. Methods Triple-combination array analysis was performed using one pair each of HCC and noncancerous liver samples from a 68-year-old woman. This analysis consists of expression array, single nucleotide polymorphism array and methylation array. The gene encoding collagen type 1 alpha 1 (COL1A1) was identified and verified using HCC cell lines and 48 tissues from patients with primary HCC. Results Expression array revealed that COL1A1 gene expression was markedly decreased in tumor tissues (log2 ratio –1.1). The single nucleotide polymorphism array showed no chromosomal deletion in the locus of COL1A1. Importantly, the methylation value in the tumor tissue was higher (0.557) than that of the adjacent liver tissue (0.008). We verified that expression of this gene was suppressed by promoter methylation. Reactivation of COL1A1 expression by 5-aza-2′-deoxycytidine treatment was seen in HCC cell lines, and sequence analysis identified methylated CpG sites in the COL1A1 promoter region. Among 48 pairs of surgical specimens, 13 (27.1%) showed decreased COL1A1 mRNA expression in tumor sites. Among these 13 cases, 10 had promoter methylation at the tumor site. The log-rank test indicated that mRNA down-regulated tumors were significantly correlated with a poor overall survival rate (P = 0.013). Conclusions Triple-combination array analysis successfully identified COL1A1 as a candidate survival-related gene in HCCs. Epigenetic down-regulation of COL1A1 mRNA expression might have a role as a prognostic biomarker of HCC. PMID:24552139

  15. Rescued expression of WIF-1 in gallbladder cancer inhibits tumor growth and induces tumor cell apoptosis with altered expression of proteins

    PubMed Central

    Huang, Yan; Du, Qiang; Wu, Weibao; She, Feifei; Chen, Yanling

    2016-01-01

    As a highly conserved metabolic pathway, the Wnt signaling pathway is involved in cell differentiation, proliferation and several other processes. In normal cells, this pathway is suppressed, and abnormal activation is often associated with tumor occurrence and development. In certain types of tumor, Wnt inhibitory factor 1 (WIF-1), an inhibitor of the Wnt pathway, inhibits tumor growth. However, the effect of the expression of WIF-1 on gallbladder cancer remains to be fully elucidated. In the current study, reverse transcription-quantitative polymerase chain reaction and western blotting were conducted. The present study demonstrated that, in gallbladder cancer, WIF-1 generally exhibited low levels of expression as a result of gene promoter methylation. Treatment with the drug, 5-aza-2-deoxycytidine, increased the expression of WIF-1 in the GBC-SD gallbladder cell line. In addition, a WIF-1-expression plasmid was transfected into GBC-SD cells, and it was found that cell proliferation, invasion and metastasis declined significantly, whereas the apoptotic rate increased. A nude mouse tumor transplantation experiment showed that the oncogenicity of the GBC-SD cells expressing WIF-1 was substantially lower, compared with that of the untransfected GBC-SD cells and of GBD-SD cells expressing the control plasmid. A fluorescent protein chip experiment showed that the restored expression of WIF-1 affected the expression of several cellular proteins. These alterations may explain the different biological behavior of the tumor cells expressing WIF-1. As an effective inhibitory factor of the Wnt signaling pathway, WIF-1 modulated the expression of proteins controlling the proliferation, apoptosis and metastasis of gallbladder tumor cells, thus suppressing the tumor. Therefore, WIF-1 may be an effective treatment target for gallbladder cancer. PMID:27430608

  16. Carcinogen exposure differentially modulates RAR-beta promoter hypermethylation, an early and frequent event in mouse lung carcinogenesis.

    PubMed

    Vuillemenot, Brian R; Pulling, Leah C; Palmisano, William A; Hutt, Julie A; Belinsky, Steven A

    2004-04-01

    The retinoic acid receptor beta (RAR-beta) gene encodes one of the primary receptors for retinoic acid, an important signaling molecule in lung growth, differentiation and carcinogenesis. RAR-beta has been shown to be down-regulated by methylation in human lung cancer. We have used previously lung tumors induced in mice to evaluate the timing and effect of specific carcinogen exposures on targeting genes altered in human lung cancer. These studies were extended to characterize the role of methylation of the RAR-beta gene in murine lung cancers. After treatment with the demethylating agent 5-aza-2'-deoxycytidine (DAC), RAR-beta was re-expressed in silenced cell lines or expressed at a higher rate than without DAC, supporting methylation as the inactivating mechanism. Bisulfite sequencing detected dense methylation in the area of the CpG island that contained the 5' untranslated region and the first translated exon in non-expressing cell lines, compared with minimal and heterogeneous methylation in normal mouse lung. Methylation-specific PCR revealed that this gene is targeted differentially by carcinogen exposures with the detection of methylated alleles in virtually all primary tumors associated with cigarette smoke or 4-methylnitrosamino-1-(3-pyridyl)-butanone (NNK) in contrast to half of tumors induced by methylene chloride or vinyl carbamate. RAR-beta methylation was also detected in 54% of preneoplastic hyperplasias induced by treatment with NNK. Bisulfite sequencing of both premalignant and malignant lesions detected dense methylation in the same area observed in cell lines, substantiating that this gene is functionally inactivated at the earliest histologic stage of adenocarcinoma development. These studies demonstrate that aberrant methylation of RAR-beta is an early and common alteration in murine lung tumors induced by several environmentally relevant exposures. PMID:14656941

  17. Absence of Metallothionein 3 Expression in Breast Cancer is a Rare, But Favorable Marker of Outcome that is Under Epigenetic Control

    PubMed Central

    Somji, Seema; Garrett, Scott H.; Zhou, Xu Dong; Zheng, Yun; Sens, Donald A.; Sens, Mary Ann

    2010-01-01

    Cadmium (Cd+2), a known carcinogen mimics the effects of estrogen in the uterus and mammary gland suggesting its possible involvement in the development and progression of breast cancer. This lab showed through analysis of a small set of archival human diagnostic specimens that the third isoform of the classic Cd+2 binding protein metallothionein (MT-3), is not expressed in normal breast tissue, but is expressed in some breast cancers and that expression tends to correlate with a poor disease outcome. The goals of the present study were to verify that overexpression of MT-3 in a large set of archival human diagnostic specimens tends to correlate with poor disease outcome and define the mechanism of MT-3 gene regulation in the normal breast epithelial cell. The results showed that MT-3 was expressed in approximately 90% of all breast cancers and was absent in normal breast epithelium. The lack of MT-3 staining in some cancers correlated with a favorable patient outcome. High frequency of MT-3 staining was also found for in situ breast cancer suggesting that MT-3 might be an early biomarker for breast cancer. The study also demonstrated that the MCF-10A cell line, an immortalized, non-tumorigenic model of human breast epithelial cells, displayed no basal expression of MT-3, nor was it induced by Cd+2. Treatment of the MCF-10A cells with the demethylation agent, 5-Aza-2′-deoxycytidine, or the histone deacetylase inhibitor, MS-275, restored MT-3 mRNA expression. It was also shown that the MT-3 metal regulatory elements are potentially active binders of protein factors following treatment with these inhibitors suggesting that MT-3 expression may be subject to epigenetic regulation. PMID:21170156

  18. Sensitization for death receptor- or drug-induced apoptosis by re-expression of caspase-8 through demethylation or gene transfer.

    PubMed

    Fulda, S; Küfer, M U; Meyer, E; van Valen, F; Dockhorn-Dworniczak, B; Debatin, K M

    2001-09-13

    Resistance of tumors to treatment with cytotoxic drugs, irradiation or immunotherapy may be due to disrupted apoptosis programs. Here, we report in a variety of different tumor cells including Ewing tumor, neuroblastoma, malignant brain tumors and melanoma that caspase-8 expression acts as a key determinant of sensitivity for apoptosis induced by death-inducing ligands or cytotoxic drugs. In tumor cell lines resistant to TRAIL, anti-CD95 or TNFalpha, caspase-8 protein and mRNA expression was decreased or absent without caspase-8 gene loss. Methylation-specific PCR revealed hypermethylation of caspase-8 regulatory sequences in cells with impaired caspase-8 expression. Treatment with the demethylation agent 5-Aza-2'-deoxycytidine (5-dAzaC) reversed hypermethylation of caspase-8 resulting in restoration of caspase-8 expression and recruitment and activation of caspase-8 at the CD95 DISC upon receptor cross-linking thereby sensitizing for death receptor-, and importantly, also for drug-induced apoptosis. Inhibition of caspase-8 activity also inhibited apoptosis sensitization by 5-dAzaC. Similar to demethylation, introduction of caspase-8 by gene transfer sensitized for apoptosis induction. Hypermethylation of caspase-8 was linked to reduced caspase-8 expression in different tumor cell lines in vitro and, most importantly, also in primary tumor samples. Thus, these findings indicate that re-expression of caspase-8, e.g. by demethylation or caspase-8 gene transfer, might be an effective strategy to restore sensitivity for chemotherapy- or death receptor-induced apoptosis in various tumors in vivo.

  19. Expression and regulation of B7-H3 immunoregulatory receptor, in human mesothelial and mesothelioma cells: immunotherapeutic implications.

    PubMed

    Calabrò, Luana; Sigalotti, Luca; Fonsatti, Ester; Bertocci, Erica; Di Giacomo, Anna Maria; Danielli, Riccardo; Cutaia, Ornella; Colizzi, Francesca; Covre, Alessia; Mutti, Luciano; Natali, Pier Giorgio; Maio, Michele

    2011-10-01

    No treatment prolongs the survival of malignant mesothelioma (MM) patients. Since MM elicits anti-tumor host's immune responses, immunotherapy represents a promising strategy for its control. Immunomodulatory antibodies against components of the B7 family of immunomodulatory molecules that regulate T cell activation are being investigated in human malignancies including MM. The expression of B7-H3, a new component of the B7 family was investigated in primary cultures of human mesothelial cells (HMC) and in MM cell lines by flow cytometry and molecular analyses, and in MM tissues by immunohistochemistry. The role of DNA hypomethylating agents in modulating levels of B7-H3 expression in MM cells was also studied. Reverse transcriptase-polymerase chain reaction (RT-PCR) demonstrated that B7-H3 mRNA was consistently detectable in mesothelial and MM cells investigated; however, real-time quantitative RT-PCR analyses showed highly heterogeneous levels of B7-H3 mRNA among investigated MM cells. The analysis of B7-H3 protein expression indicated that comparable levels of B7-H3 were expressed on both cell types. Treatment with the DNA hypomethylating agent 5-aza-2'-deoxycytidine did not significantly affect the expression of B7-H3 mRNA in MM cells. In vivo, while B7-H3 was expressed in all 13 tumor biopsies of the epithelial variant, with high levels in 54% of cases, it was rarely detectable in spindle type MM in which 1/5 biopsies weakly expressed B7-H3. These findings suggest that B7-H3 is a promising target for new immunotherapeutic strategies in MM, with particular emphasis in the epithelial variant.

  20. Enhanced memory persistence is blocked by a DNA methyltransferase inhibitor in the snail Lymnaea stagnalis.

    PubMed

    Lukowiak, Ken; Heckler, Benjamin; Bennett, Thomas E; Schriner, Ellen K; Wyrick, Kathryn; Jewett, Cynthia; Todd, Ryan P; Sorg, Barbara A

    2014-08-15

    Lymnaea stagnalis provides an excellent model system for studying memory because these snails have a well-described set of neurons, a single one of which controls expression of long-term memory of operantly conditioned respiratory behavior. We have shown that several different manipulations, including pre-training exposure to serotonin (5-HT) or methamphetamine, submersion of snails after training to prevent memory interference, and exposure to effluent from predatory crayfish (CE), enhance memory persistence. Changes in DNA methylation underlie formation of strong memories in mammals and 5-HT-enhanced long-term facilitation in Aplysia. Here we determined the impact of the DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (5-AZA; 87 μmol l(-1)), on enhanced memory persistence by all four manipulations. We found that 5-HT (100 μmol l(-1)) enhanced memory persistence, which was blocked by 5-AZA pretreatment. Snails pre-exposed to 3.3 μmol l(-1) Meth 4 h prior to training demonstrated memory 72 h later, which was not present in controls. This memory-enhancing effect was blocked by pre-treatment with 87 μmol l(-1) 5-AZA. Similarly, submersion to prevent interference learning as well as training in CE produced memory that was not present in controls, and these effects were blocked by pre-treatment with 87 μmol l(-1) 5-AZA. In contrast, 5-AZA injection did not alter expression of normal (non-enhanced) memory, suggesting that these four stimuli enhance memory persistence by increasing DNA methyltransferase activity, which, in turn, increases expression of memory-enhancing genes and/or inhibits memory suppressor genes. These studies lay important groundwork for delineating gene methylation changes that are common to persistent memory produced by different stimuli.

  1. Ras-induced epigenetic inactivation of the RRAD (Ras-related associated with diabetes) gene promotes glucose uptake in a human ovarian cancer model.

    PubMed

    Wang, Yan; Li, Guiling; Mao, Fengbiao; Li, Xianfeng; Liu, Qi; Chen, Lin; Lv, Lu; Wang, Xin; Wu, Jinyu; Dai, Wei; Wang, Guan; Zhao, Enfeng; Tang, Kai-Fu; Sun, Zhong Sheng

    2014-05-16

    RRAD (Ras-related associated with diabetes) is a small Ras-related GTPase that is frequently inactivated by DNA methylation of the CpG island in its promoter region in cancer tissues. However, the role of the methylation-induced RRAD inactivation in tumorigenesis remains unclear. In this study, the Ras-regulated transcriptome and epigenome were profiled by comparing T29H (a Ras(V12)-transformed human ovarian epithelial cell line) with T29 (an immortalized but non-transformed cell line) through reduced representation bisulfite sequencing and digital gene expression. We found that Ras(V12)-mediated oncogenic transformation was accompanied by RRAD promoter hypermethylation and a concomitant loss of RRAD expression. In addition, we found that the RRAD promoter was hypermethylated, and its transcription was reduced in ovarian cancer versus normal ovarian tissues. Treatment with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine resulted in demethylation in the RRAD promoter and restored RRAD expression in T29H cells. Additionally, treatment with farnesyltransferase inhibitor FTI277 resulted in restored RRAD expression and inhibited DNA methytransferase expression and activity in T29H cells. By employing knockdown and overexpression techniques in T29 and T29H, respectively, we found that RRAD inhibited glucose uptake and lactate production by repressing the expression of glucose transporters. Finally, RRAD overexpression in T29H cells inhibited tumor formation in nude mice, suggesting that RRAD is a tumor suppressor gene. Our results indicate that Ras(V12)-mediated oncogenic transformation induces RRAD epigenetic inactivation, which in turn promotes glucose uptake and may contribute to ovarian cancer tumorigenesis.

  2. Global identification of genes regulated by estrogen signaling and demethylation in MCF-7 breast cancer cells.

    PubMed

    Putnik, Milica; Zhao, Chunyan; Gustafsson, Jan-Åke; Dahlman-Wright, Karin

    2012-09-14

    Estrogen signaling and epigenetic modifications, in particular DNA methylation, are involved in regulation of gene expression in breast cancers. Here we investigated a potential regulatory cross-talk between these two pathways by identifying their common target genes and exploring underlying molecular mechanisms in human MCF-7 breast cancer cells. Gene expression profiling revealed that the expression of approximately 140 genes was influenced by both 17β-estradiol (E2) and a demethylating agent 5-aza-2'-deoxycytidine (DAC). Gene ontology (GO) analysis suggests that these genes are involved in intracellular signaling cascades, regulation of cell proliferation and apoptosis. Based on previously reported association with breast cancer, estrogen signaling and/or DNA methylation, CpG island prediction and GO analysis, we selected six genes (BTG3, FHL2, PMAIP1, BTG2, CDKN1A and TGFB2) for further analysis. Tamoxifen reverses the effect of E2 on the expression of all selected genes, suggesting that they are direct targets of estrogen receptor. Furthermore, DAC treatment reactivates the expression of all selected genes in a dose-dependent manner. Promoter CpG island methylation status analysis revealed that only the promoters of BTG3 and FHL2 genes are methylated, with DAC inducing demethylation, suggesting DNA methylation directs repression of these genes in MCF-7 cells. In a further analysis of the potential interplay between estrogen signaling and DNA methylation, E2 treatment showed no effect on the methylation status of these promoters. Additionally, we show that the ERα recruitment occurs at the FHL2 promoter in an E2- and DAC-independent fashion. In conclusion, we identified a set of genes regulated by both estrogen signaling and DNA methylation. However, our data does not support a direct molecular interplay of mediators of estrogen and epigenetic signaling at promoters of regulated genes.

  3. Involvement of Epigenetic Mechanisms in the Regulation of Secreted Phospholipase A2 Expressions in Jurkat Leukemia Cells

    PubMed Central

    Menschikowski, Mario; Hagelgans, Albert; Kostka, Heike; Eisenhofer, Graeme; Siegert, Gabriele

    2008-01-01

    Epigenetic changes provide a frequent mechanism for transcriptional silencing of genes in cancer cells. We previously established that epigenetic mechanisms are important for control of group IIA phospholipase A2 (PLA2G2A) gene transcription in human DU-145 prostate cells. In this study, we analyzed the involvement of such mechanisms in the regulation of five sPLA2 isozymes and the M-type receptor of sPLA2 (sPLA2-R) in human leukemic Jurkat cells. These cells constitutively expressed sPLA2-IB, sPLA2-III, sPLA2-X, and sPLA2-R but not sPLA2-IIA and sPLA2-V. Transcription of sPLA2-IIA and sPLA2-V was, however, detected after exposure of cells to the DNA demethylating agent, 5-aza-2′-deoxycytidine (5-aza-dC). Expression of sPLA2-IIA was further enhanced by additional exposure to interferon-γ and blocked by inhibitors of specificity protein 1, nuclear factor κB, and Janus kinase/signal transducer and activator of transcription-dependent pathways. Sequence analysis and methylation-specific polymerase chain reaction of bisulfite-modified genomic DNA revealed two 5′-CpG sites (-111 and -82) in the sPLA2-IIA proximal promoter that were demethylated after 5-aza-dC treatment. These sites may be involved in the DNA binding of specificity protein 1 and other transcription factors. Similar findings after treatment of human U937 leukemia cells with 5-aza-dC indicate that this mechanism of PLA2G2A gene silencing is not restricted to Jurkat and DU-145 cells. These data establish that regulation of sPLA2-IIA and sPLA2-V in Jurkat and other cells involves epigenetic silencing by DNA hypermethylation. PMID:18953428

  4. Epigenetic modification and preliminary investigation of the mechanism of the immune evasion of HL-60 cells.

    PubMed

    Liu, Jin Hong; Bian, Yong Mei; Xie, Yi; Lu, Dao Pei

    2015-07-01

    The aim of the present study was to explore the effect of epigenetic modification of class II transactivator (CIITA) methylation on histocompatibility complex (MHC) class II expression and the immune evasion of leukemia HL-60 cells. HL-60 cells were treated with various concentrations of 5-aza-2'deoxycytidine (5-Aza-CdR) and 0.5 µmol/l suberoylanilide hydroxamic acid (SAHA) for 24 h and then stimulated by interferon γ (IFN-γ) for 48 h. The mRNA levels of MHC class I, II and co-stimulatory molecules were quantified by reverse transcription polymerase chain reaction (RT-PCR). The levels of CIITA protein were determined by western blot analysis, and the CpG island methylation ratios in the CIITA promoter IV (CIITApIV) were analyzed by bisulfite-sequencing PCR (BSP). MHC I as well as the co-stimulatory molecules CD40 and CD80 were significantly increased following treatment with 5-Aza-CdR + SAHA + IFN-γ (epigenetic groups) compared with those in the control group and IFN-γ group (P<0.05). The expression of MHC class II and CIITA was restored and increased in an 5-Aza-CdR concentration-dependent manner in the three epigenetic groups. The results of the BSP assay showed that the methylation rate of CIITApIV CpG sites decreased with the treatment of epigenetic modification and negatively correlated to the 5-Aza-CdR concentration. This demonstrated that the negative expression of CIITA protein was the key reason for the loss of MHC II expression in HL-60 cells. The results of the present study may help to illustrate the mechanism of immune evasion in HL-60 cells. PMID:25815463

  5. Expression and regulation of B7-H3 immunoregulatory receptor, in human mesothelial and mesothelioma cells: immunotherapeutic implications.

    PubMed

    Calabrò, Luana; Sigalotti, Luca; Fonsatti, Ester; Bertocci, Erica; Di Giacomo, Anna Maria; Danielli, Riccardo; Cutaia, Ornella; Colizzi, Francesca; Covre, Alessia; Mutti, Luciano; Natali, Pier Giorgio; Maio, Michele

    2011-10-01

    No treatment prolongs the survival of malignant mesothelioma (MM) patients. Since MM elicits anti-tumor host's immune responses, immunotherapy represents a promising strategy for its control. Immunomodulatory antibodies against components of the B7 family of immunomodulatory molecules that regulate T cell activation are being investigated in human malignancies including MM. The expression of B7-H3, a new component of the B7 family was investigated in primary cultures of human mesothelial cells (HMC) and in MM cell lines by flow cytometry and molecular analyses, and in MM tissues by immunohistochemistry. The role of DNA hypomethylating agents in modulating levels of B7-H3 expression in MM cells was also studied. Reverse transcriptase-polymerase chain reaction (RT-PCR) demonstrated that B7-H3 mRNA was consistently detectable in mesothelial and MM cells investigated; however, real-time quantitative RT-PCR analyses showed highly heterogeneous levels of B7-H3 mRNA among investigated MM cells. The analysis of B7-H3 protein expression indicated that comparable levels of B7-H3 were expressed on both cell types. Treatment with the DNA hypomethylating agent 5-aza-2'-deoxycytidine did not significantly affect the expression of B7-H3 mRNA in MM cells. In vivo, while B7-H3 was expressed in all 13 tumor biopsies of the epithelial variant, with high levels in 54% of cases, it was rarely detectable in spindle type MM in which 1/5 biopsies weakly expressed B7-H3. These findings suggest that B7-H3 is a promising target for new immunotherapeutic strategies in MM, with particular emphasis in the epithelial variant. PMID:21792917

  6. Methylation of IRAK3 is a novel prognostic marker in hepatocellular carcinoma

    PubMed Central

    Kuo, Chih-Chi; Shih, Yu-Lueng; Su, Her-Young; Yan, Ming-De; Hsieh, Chung-Bao; Liu, Chin-Yu; Huang, Wei-Ting; Yu, Mu-Hsien; Lin, Ya-Wen

    2015-01-01

    AIM: To examine the methylation levels of interleukin-1 receptor-associated kinase 3 (IRAK3) and GLOXD1 and their potential clinical applications in hepatocellular carcinoma (HCC). METHODS: mRNA expression and promoter methylation of IRAK3 and GLOXD1 in HCC cells were analyzed by reverse transcription-polymerase chain reaction (RT-PCR) and methylation-specific PCR (MSP), respectively. Using pyrosequencing results, we further established a quantitative MSP (Q-MSP) system for the evaluation of IRAK3 and GLOXD1 methylation in 29 normal controls and 160 paired HCC tissues and their adjacent nontumor tissues. We also calculated Kaplan-Meier survival curves to determine the applications of gene methylation in the prognosis of HCC. RESULTS: IRAK3 and GLOXD1 expression was partially restored in several HCC cell lines after treatment with 5-aza-2′-deoxycytidine (DNA methyltransferase inhibitor; 5DAC). A partial decrease in the methylated band was also observed in the HCC cell lines after 5DAC treatment. Using GLOXD1 as an example, we found a significant correlation between the data obtained from the methylation array and from pyrosequencing. The methylation frequency of IRAK3 and GLOXD1 in HCC tissues was 46.9% and 63.8%, respectively. Methylation of IRAK3 was statistically associated with tumor stage. Moreover, HCC patients with IRAK3 methylation had a trend toward poor 3-year disease-free survival (P < 0.05). CONCLUSION: IRAK3 and GLOXD1 were frequently methylated in HCC tissues compared to normal controls and nontumor tissues. IRAK3 methylation was associated with tumor stage and poor prognosis of patients. These data suggest that IRAK3 methylation is a novel prognostic marker in HCC. PMID:25852282

  7. Sensitization for death receptor- or drug-induced apoptosis by re-expression of caspase-8 through demethylation or gene transfer.

    PubMed

    Fulda, S; Küfer, M U; Meyer, E; van Valen, F; Dockhorn-Dworniczak, B; Debatin, K M

    2001-09-13

    Resistance of tumors to treatment with cytotoxic drugs, irradiation or immunotherapy may be due to disrupted apoptosis programs. Here, we report in a variety of different tumor cells including Ewing tumor, neuroblastoma, malignant brain tumors and melanoma that caspase-8 expression acts as a key determinant of sensitivity for apoptosis induced by death-inducing ligands or cytotoxic drugs. In tumor cell lines resistant to TRAIL, anti-CD95 or TNFalpha, caspase-8 protein and mRNA expression was decreased or absent without caspase-8 gene loss. Methylation-specific PCR revealed hypermethylation of caspase-8 regulatory sequences in cells with impaired caspase-8 expression. Treatment with the demethylation agent 5-Aza-2'-deoxycytidine (5-dAzaC) reversed hypermethylation of caspase-8 resulting in restoration of caspase-8 expression and recruitment and activation of caspase-8 at the CD95 DISC upon receptor cross-linking thereby sensitizing for death receptor-, and importantly, also for drug-induced apoptosis. Inhibition of caspase-8 activity also inhibited apoptosis sensitization by 5-dAzaC. Similar to demethylation, introduction of caspase-8 by gene transfer sensitized for apoptosis induction. Hypermethylation of caspase-8 was linked to reduced caspase-8 expression in different tumor cell lines in vitro and, most importantly, also in primary tumor samples. Thus, these findings indicate that re-expression of caspase-8, e.g. by demethylation or caspase-8 gene transfer, might be an effective strategy to restore sensitivity for chemotherapy- or death receptor-induced apoptosis in various tumors in vivo. PMID:11593392

  8. Ras-induced epigenetic inactivation of the RRAD (Ras-related associated with diabetes) gene promotes glucose uptake in a human ovarian cancer model.

    PubMed

    Wang, Yan; Li, Guiling; Mao, Fengbiao; Li, Xianfeng; Liu, Qi; Chen, Lin; Lv, Lu; Wang, Xin; Wu, Jinyu; Dai, Wei; Wang, Guan; Zhao, Enfeng; Tang, Kai-Fu; Sun, Zhong Sheng

    2014-05-16

    RRAD (Ras-related associated with diabetes) is a small Ras-related GTPase that is frequently inactivated by DNA methylation of the CpG island in its promoter region in cancer tissues. However, the role of the methylation-induced RRAD inactivation in tumorigenesis remains unclear. In this study, the Ras-regulated transcriptome and epigenome were profiled by comparing T29H (a Ras(V12)-transformed human ovarian epithelial cell line) with T29 (an immortalized but non-transformed cell line) through reduced representation bisulfite sequencing and digital gene expression. We found that Ras(V12)-mediated oncogenic transformation was accompanied by RRAD promoter hypermethylation and a concomitant loss of RRAD expression. In addition, we found that the RRAD promoter was hypermethylated, and its transcription was reduced in ovarian cancer versus normal ovarian tissues. Treatment with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine resulted in demethylation in the RRAD promoter and restored RRAD expression in T29H cells. Additionally, treatment with farnesyltransferase inhibitor FTI277 resulted in restored RRAD expression and inhibited DNA methytransferase expression and activity in T29H cells. By employing knockdown and overexpression techniques in T29 and T29H, respectively, we found that RRAD inhibited glucose uptake and lactate production by repressing the expression of glucose transporters. Finally, RRAD overexpression in T29H cells inhibited tumor formation in nude mice, suggesting that RRAD is a tumor suppressor gene. Our results indicate that Ras(V12)-mediated oncogenic transformation induces RRAD epigenetic inactivation, which in turn promotes glucose uptake and may contribute to ovarian cancer tumorigenesis. PMID:24648519

  9. Epigenetic Regulation of HYAL-1 Hyaluronidase Expression

    PubMed Central

    Lokeshwar, Vinata B.; Gomez, Pablo; Kramer, Mario; Knapp, Judith; McCornack, Melissa A.; Lopez, Luis E.; Fregien, Nevis; Dhir, Neetika; Scherer, Steve; Klumpp, David J.; Manoharan, Murugesan; Soloway, Mark S.; Lokeshwar, Bal L.

    2008-01-01

    HYAL-1 (hyaluronoglucosaminidase-1) belongs to the hyaluronidase family of enzymes that degrade hyaluronic acid. HYAL-1 is a marker for cancer diagnosis and a molecular determinant of tumor growth, invasion, and angiogenesis. The regulation of HYAL-1 expression is unknown. Real time reverse transcription-PCR using 11 bladder and prostate cancer cells and 69 bladder tissues showed that HYAL-1 mRNA levels are elevated 10–30-fold in cells/tissues that express high hyaluronidase activity. Although multiple transcription start sites (TSS) for HYAL-1 mRNA were detected in various tissues, the major TSS in many tissues, including bladder and prostate, was at nucleotide 27274 in the cosmid clone LUCA13 (AC002455). By analyzing the 1532 base sequence 5′ to this TSS, using cloning and luciferase reporter assays, we identified a TACAAA sequence at position -31 and the minimal promoter region between nucleotides -93 and -38. Mutational analysis identified that nucleotides -73 to -50 (which include overlapping binding consensus sites for SP1, Egr-1, and AP-2), bases C-71 and C-59, and an NFκB-binding site (at position -15) are necessary for promoter activity. The chromatin immunoprecipitation assay identified that Egr-1, AP-2, and NFκB bind to the promoter in HYAL-1-expressing cells, whereas SP1 binds to the promoter in non-HYAL-1-expressing cells. 5-Aza-2′-deoxycytidine treatment, bisulfite DNA sequencing, and methylation-specific PCR revealed that HYAL-1 expression is regulated by methylation at C-71 and C-59; both Cs are part of the SP1/Egr-1-binding sites. Thus, HYAL-1 expression is epigenetically regulated by the binding of different transcription factors to the methylated and unmethylated HYAL-1 promoter. PMID:18718911

  10. Metabolomic Profiling Reveals Potential Markers and Bioprocesses Altered in Bladder Cancer Progression

    PubMed Central

    Putluri, Nagireddy; Shojaie, Ali; Vasu, Vihas T; Vareed, Shaiju K.; Nalluri, Srilatha; Putluri, Vasanta; Thangjam, Gagan Singh; Panzitt, Katrin; Tallman, Christopher T.; Butler, Charles; Sana, Theodore R.; Fischer, Steven M.; Sica, Gabriel; Brat, Daniel J.; Shi, Huidong; Palapattu, Ganesh S; Lotan, Yair; Weizer, Alon Z.; Terris, Martha K.; Shariat, Shahrokh F.; Michailidis, George; Sreekumar, Arun

    2011-01-01

    While alterations in xenobiotic metabolism are considered causal in the development of bladder cancer (BCa), the precise mechanisms involved are poorly understood. In this study, we used high-throughput mass spectrometry to measure over 2,000 compounds in 58 clinical specimens, identifying 35 metabolites which exhibited significant changes in BCa. This metabolic signature distinguished both normal and benign bladder from BCa. Exploratory analyses of this metabolomic signature in urine showed promise in distinguishing BCa from controls, and also non-muscle from muscle-invasive BCa. Subsequent enrichment-based bioprocess mapping revealed alterations in phase I/II metabolism and suggested a possible role for DNA methylation in perturbing xenobiotic metabolism in BCa. In particular, we validated tumor-associated hypermethylation in the CYP1A1 and CYP1B1 promoters of BCa tissues by bisulfite sequence analysis and methylation-specific PCR, and also by in vitro treatment of T-24 BCa cell line with the DNA demethylating agent 5-aza-2′-deoxycytidine. Further, we showed that expression of CYP1A1 and CYP1B1 was reduced significantly in an independent cohort of BCa specimens compared to matched benign adjacent tissues. In summary, our findings identified candidate diagnostic and prognostic markers and highlighted mechanisms associated with the silencing of xenobiotic metabolism. The metabolomic signature we describe offers potential as a urinary biomarker for early detection and staging of BCa, highlighting the utility of evaluating metabolomic profiles of cancer to gain insights into bioprocesses perturbed during tumor development and progression. PMID:21990318

  11. Metabolomic profiling reveals potential markers and bioprocesses altered in bladder cancer progression.

    PubMed

    Putluri, Nagireddy; Shojaie, Ali; Vasu, Vihas T; Vareed, Shaiju K; Nalluri, Srilatha; Putluri, Vasanta; Thangjam, Gagan Singh; Panzitt, Katrin; Tallman, Christopher T; Butler, Charles; Sana, Theodore R; Fischer, Steven M; Sica, Gabriel; Brat, Daniel J; Shi, Huidong; Palapattu, Ganesh S; Lotan, Yair; Weizer, Alon Z; Terris, Martha K; Shariat, Shahrokh F; Michailidis, George; Sreekumar, Arun

    2011-12-15

    Although alterations in xenobiotic metabolism are considered causal in the development of bladder cancer, the precise mechanisms involved are poorly understood. In this study, we used high-throughput mass spectrometry to measure over 2,000 compounds in 58 clinical specimens, identifying 35 metabolites which exhibited significant changes in bladder cancer. This metabolic signature distinguished both normal and benign bladder from bladder cancer. Exploratory analyses of this metabolomic signature in urine showed promise in distinguishing bladder cancer from controls and also nonmuscle from muscle-invasive bladder cancer. Subsequent enrichment-based bioprocess mapping revealed alterations in phase I/II metabolism and suggested a possible role for DNA methylation in perturbing xenobiotic metabolism in bladder cancer. In particular, we validated tumor-associated hypermethylation in the cytochrome P450 1A1 (CYP1A1) and cytochrome P450 1B1 (CYP1B1) promoters of bladder cancer tissues by bisulfite sequence analysis and methylation-specific PCR and also by in vitro treatment of T-24 bladder cancer cell line with the DNA demethylating agent 5-aza-2'-deoxycytidine. Furthermore, we showed that expression of CYP1A1 and CYP1B1 was reduced significantly in an independent cohort of bladder cancer specimens compared with matched benign adjacent tissues. In summary, our findings identified candidate diagnostic and prognostic markers and highlighted mechanisms associated with the silencing of xenobiotic metabolism. The metabolomic signature we describe offers potential as a urinary biomarker for early detection and staging of bladder cancer, highlighting the utility of evaluating metabolomic profiles of cancer to gain insights into bioprocesses perturbed during tumor development and progression. PMID:21990318

  12. Aberrantly methylated genes in human papillary thyroid cancer and their association with BRAF/RAS mutation

    PubMed Central

    Kikuchi, Yasuko; Tsuji, Eiichi; Yagi, Koichi; Matsusaka, Keisuke; Tsuji, Shingo; Kurebayashi, Junichi; Ogawa, Toshihisa; Aburatani, Hiroyuki; Kaneda, Atsushi

    2013-01-01

    Cancer arises through accumulation of epigenetic and genetic alteration. Aberrant promoter methylation is a common epigenetic mechanism of gene silencing in cancer cells. We here performed genome-wide analysis of DNA methylation of promoter regions by Infinium HumanMethylation27 BeadChip, using 14 clinical papillary thyroid cancer samples and 10 normal thyroid samples. Among the 14 papillary cancer cases, 11 showed frequent aberrant methylation, but the other three cases showed no aberrant methylation at all. Distribution of the hypermethylation among cancer samples was non-random, which implied existence of a subset of preferentially methylated papillary thyroid cancer. Among 25 frequently methylated genes, methylation status of six genes (HIST1H3J, POU4F2, SHOX2, PHKG2, TLX3, HOXA7) was validated quantitatively by pyrosequencing. Epigenetic silencing of these genes in methylated papillary thyroid cancer cell lines was confirmed by gene re-expression following treatment with 5-aza-2′-deoxycytidine and trichostatin A, and detected by real-time RT-PCR. Methylation of these six genes was validated by analysis of additional 20 papillary thyroid cancer and 10 normal samples. Among the 34 cancer samples in total, 26 cancer samples with preferential methylation were significantly associated with mutation of BRAF/RAS oncogene (P = 0.04, Fisher's exact test). Thus, we identified new genes with frequent epigenetic hypermethylation in papillary thyroid cancer, two subsets of either preferentially methylated or hardly methylated papillary thyroid cancer, with a concomitant occurrence of oncogene mutation and gene methylation. These hypermethylated genes may constitute potential biomarkers for papillary thyroid cancer. PMID:24367375

  13. Consistent transcriptional silencing of 35S-driven transgenes in gentian.

    PubMed

    Mishiba, Kei-ichiro; Nishihara, Masahiro; Nakatsuka, Takashi; Abe, Yoshiko; Hirano, Hiroshi; Yokoi, Takahide; Kikuchi, Akiko; Yamamura, Saburo

    2005-11-01

    In this study, no transgenic gentian (Gentiana triflora x Gentiana scabra) plants produced via Agrobacterium-mediated transformation exhibited transgene (GtMADS, gentian-derived MADS-box genes or sGFP, green fluorescent protein) expression in their leaf tissues, despite the use of constitutive Cauliflower mosaic virus (CaMV) 35S promoter. Strikingly, no expression of the selectable marker gene (bar) used for bialaphos selection was observed. To investigate the possible cause of this drastic transgene silencing, methylation-specific sequences were analysed by bisulfite genomic sequencing using tobacco transformants as a control. Highly methylated cytosine residues of CpG and CpWpG (W contains A or T) sites were distinctively detected in the promoter and 5' coding regions of the transgenes 35S-bar and 35S-GtMADS in all gentian lines analysed. These lines also exhibited various degrees of cytosine methylation in asymmetrical sequences. The methylation frequencies in the other transgene, nopaline synthase (NOS) promoter-driven nptII, and the endogenous GtMADS gene coding region, were much lower and were variable compared with those in the 35S promoter regions. Transgene methylation was observed in the bialaphos-selected transgenic calluses expressing the transgenes, and methylation sequences were distributed preferentially around the as-1 element in the 35S promoter. Calluses derived from leaf tissues of silenced transgenic gentian also exhibited transgene suppression, but expression was recovered by treatment with the methylation inhibitor 5-aza-2'-deoxycytidine (aza-dC). These results indicated that cytosine methylation occurs exclusively in the 35S promoter regions of the expressed transgenes during selection of gentian transformants, causing transcriptional gene silencing. PMID:16262705

  14. Aberrant promoter hypermethylation of the death-associated protein kinase gene is early and frequent in murine lung tumors induced by cigarette smoke and tobacco carcinogens.

    PubMed

    Pulling, Leah C; Vuillemenot, Brian R; Hutt, Julie A; Devereux, Theodora R; Belinsky, Steven A

    2004-06-01

    Loss of expression of the death-associated protein (DAP)-kinase gene by aberrant promoter methylation may play an important role in cancer development and progression. The purpose of this investigation was to determine the commonality for inactivation of the DAP-kinase gene in adenocarcinomas induced in mice by chronic exposure to mainstream cigarette smoke, the tobacco carcinogens 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and vinyl carbamate, and the occupational carcinogen methylene chloride. The timing for inactivation was also determined in alveolar hyperplasias that arise in lung cancer induced in the A/J mouse by NNK. The DAP-kinase gene was not expressed in three of five NNK-induced lung tumor-derived cell lines or in a spontaneously arising lung tumor-derived cell line. Treatment with 5-aza-2'-deoxycytidine restored expression; dense methylation throughout the DAP-kinase CpG island detected by bisulfite sequencing supported methylation as the inactivating event in these cell lines. Methylation-specific PCR detected inactivation of the DAP-kinase gene in 43% of tumors associated with cigarette smoke, a frequency similar to those reported in human non-small cell lung cancer. In addition, DAP-kinase methylation was detected in 52%, 60%, and 50% of tumors associated with NNK, vinyl carbamate, and methylene chloride, respectively. Methylation was observed at similar prevalence in both NNK-induced hyperplasias and adenocarcinomas (46% versus 52%), suggesting that inactivation of this gene is one pathway for tumor development in the mouse lung. Bisulfite sequencing of both premalignant and malignant lesions revealed dense methylation, substantiating that this gene is functionally inactivated at the earliest histological stages of adenocarcinoma development. This study is the first to use a murine model of cigarette smoke-induced lung cancer and demonstrate commonality for inactivation by promoter hypermethylation of a gene implicated in the development

  15. Frequent inactivation of MCC/CTNNBIP1 and overexpression of phospho-beta-catenin(Y654) are associated with breast carcinoma: Clinical and prognostic significance.

    PubMed

    Mukherjee, Nupur; Dasgupta, Hemantika; Bhattacharya, Rittwika; Pal, Debolina; Roy, Rituparna; Islam, Saimul; Alam, Neyaz; Biswas, Jaydip; Roy, Anup; Roychoudhury, Susanta; Panda, Chinmay Kumar

    2016-09-01

    Transcriptional activation of β-catenin is a hallmark of Wnt/β-catenin pathway activation. The MCC (Mutated in colorectal cancers) and CTNNBIP1 (catenin, beta interacting protein 1) are two candidate genes which inhibit the transcriptional activity of nuclear β-catenin. The importance of MCC and CTNNBIP1 in breast cancer (BC) development has not yet been studied in detail. For this reason, in present study, the alterations (deletion/methylation/mutation/expression) of MCC and CTNNBIP1 were analyzed in BC of Indian patients (N=120) followed by expression/mutation analysis of β-catenin. Then transcriptional activity of β-catenin was checked by expression analysis of its target genes (EGFR, C-MYC and CCND1) in the same set of samples. Frequent methylation (44-45%) than deletion (20-32%) with overall alterations of 52-55% was observed in MCC/CTNNBIP1 in the BC samples. The alterations of MCC/CTNNBIP1 showed significant correlation with increased nuclear β-catenin/p-β-catenin(Y654) expression. Also, a significant correlation was seen between nuclear β-catenin expression and overexpression of its target genes like EGFR, MYC and CCND1 in the BC samples (P<0.0001). An upregulation of MCC and CTNNBIP1 expression by 5-Aza-2'-deoxycytidine treatment of MCF7 and MDA-MB-231 cell lines lead to downregulation of β-catenin and its target genes. The expression of nuclear p-β-catenin(Y654), EGFR, MYC and CCND1 were significantly high in TNBC (Triple negative BC) and Her2+ compared to Luminal A/B+ subtypes. The TNBC patients in stage III/IV having reduced expression of MCC in the tumors showed poor prognosis. Thus, our data suggests that inactivation of MCC/CTNNBIP1 could be an important event in activation of β-catenin mediated transcription of target genes in BC. PMID:27208794

  16. The activation of human gene MAGE-1 in tumor cells is correlated with genome-wide demethylation.

    PubMed Central

    De Smet, C; De Backer, O; Faraoni, I; Lurquin, C; Brasseur, F; Boon, T

    1996-01-01

    Human gene MAGE-1 encodes tumor-specific antigens that are recognized on melanoma cells by autologous cytolytic T lymphocytes. This gene is expressed in a significant proportion of tumors of various histological types, but not in normal tissues except male germ-line cells. We reported previously that reporter genes driven by the MAGE-1 promoter are active not only in the tumor cell lines that express MAGE-1 but also in those that do not. This suggests that the critical factor causing the activation of MAGE-1 in certain tumors is not the presence of the appropriate transcription factors. The two major MAGE-1 promoter elements have an Ets binding site, which contains a CpG dinucleotide. We report here that these CpG are demethylated in the tumor cell lines that express MAGE-1, and are methylated in those that do not express the gene. Methylation of these CpG inhibits the binding of transcription factors, as seen by mobility shift assay. Treatment with the demethylating agent 5-aza-2'-deoxycytidine activated gene MAGE-1 not only in tumor cell lines but also in primary fibroblasts. Finally, the overall level of CpG methylation was evaluated in 20 different tumor cell lines. It was inversely correlated with the expression of MAGE-1. We conclude that the activation of MAGE-1 in cancer cells is due to the demethylation of the promoter. This appears to be a consequence of a genome-wide demethylation process that occurs in many cancers and is correlated with tumor progression. Images Fig. 1 Fig. 2 Fig. 3 PMID:8692960

  17. Comprehensive DNA Methylation Analysis Reveals a Common Ten-Gene Methylation Signature in Colorectal Adenomas and Carcinomas

    PubMed Central

    Patai, Árpád V.; Valcz, Gábor; Hollósi, Péter; Kalmár, Alexandra; Péterfia, Bálint; Patai, Árpád; Wichmann, Barnabás; Spisák, Sándor; Barták, Barbara Kinga; Leiszter, Katalin; Tóth, Kinga; Sipos, Ferenc; Kovalszky, Ilona; Péter, Zoltán; Miheller, Pál; Tulassay, Zsolt; Molnár, Béla

    2015-01-01

    Microarray analysis of promoter hypermethylation provides insight into the role and extent of DNA methylation in the development of colorectal cancer (CRC) and may be co-monitored with the appearance of driver mutations. Colonic biopsy samples were obtained endoscopically from 10 normal, 23 adenoma (17 low-grade (LGD) and 6 high-grade dysplasia (HGD)), and 8 ulcerative colitis (UC) patients (4 active and 4 inactive). CRC samples were obtained from 24 patients (17 primary, 7 metastatic (MCRC)), 7 of them with synchronous LGD. Field effects were analyzed in tissues 1 cm (n = 5) and 10 cm (n = 5) from the margin of CRC. Tissue materials were studied for DNA methylation status using a 96 gene panel and for KRAS and BRAF mutations. Expression levels were assayed using whole genomic mRNA arrays. SFRP1 was further examined by immunohistochemistry. HT29 cells were treated with 5-aza-2deoxycytidine to analyze the reversal possibility of DNA methylation. More than 85% of tumor samples showed hypermethylation in 10 genes (SFRP1, SST, BNC1, MAL, SLIT2, SFRP2, SLIT3, ALDH1A3, TMEFF2, WIF1), whereas the frequency of examined mutations were below 25%. These genes distinguished precancerous and cancerous lesions from inflamed and healthy tissue. The mRNA alterations that might be caused by systematic methylation could be partly reversed by demethylation treatment. Systematic changes in methylation patterns were observed early in CRC carcinogenesis, occuring in precursor lesions and CRC. Thus we conclude that DNA hypermethylation is an early and systematic event in colorectal carcinogenesis, and it could be potentially reversed by systematic demethylation therapy, but it would need more in vitro and in vivo experiments to support this theory. PMID:26291085

  18. Thrombomodulin Is Silenced in Malignant Mesothelioma by a Poly(ADP-ribose) Polymerase-1-mediated Epigenetic Mechanism*

    PubMed Central

    Nocchi, Linda; Tomasetti, Marco; Amati, Monica; Neuzil, Jiri; Santarelli, Lory; Saccucci, Franca

    2011-01-01

    Malignant mesothelioma (MM) is often complicated by thromboembolic episodes, with thrombomodulin (TM) playing a critical role in the anticoagulant process. Heterogeneous expression of TM has been observed in cancer, and low or no TM expression in cancer cells is associated with poor prognosis. In this study, we analyzed TM expression in biopsies of MM patients and compared them with normal mesothelial tissue. The role of DNA methylation-associated gene silencing in TM expression was investigated. To evaluate poly(ADP-ribose) polymerase-1 (PARP1) as responsible for gene promoter epigenetic modifications, nonmalignant mesothelial cells (Met-5A) and MM cells (H28) were silenced for PARP1 and the DNA methylation/acetylation-associated TM expression evaluated. A correlation between low TM expression and high level of TM promoter methylation was found in MM biopsies. Low expression of TM was restored in MM cells by their treatment with 5-aza-2′-deoxycytidine and, to a lesser extent, with trichostatin, whereas the epigenetic agents did not affect TM expression in Met-5A cells. Silencing of PARP1 resulted in a strong down-regulation of TM expression in Met-5A cells, while restoring TM expression in H28 cells. PARP1 silencing induced TM promoter methylation in Met-5A cells and demethylation in MM cells, and this was paralleled by corresponding changes in the DNA methyltransferase activity. We propose that methylation of the TM promoter is responsible for silencing of TM expression in MM tissue, a process that is regulated by PARP1. PMID:21489980

  19. Effect of Chromatin-Remodeling Agents in Hepatic Differentiation of Rat Bone Marrow-Derived Mesenchymal Stem Cells In Vitro and In Vivo.

    PubMed

    Ye, Danna; Li, Tong; Heraud, Philip; Parnpai, Rangsun

    2016-01-01

    Epigenetic events, including covalent histone modifications and DNA methylation, play fundamental roles in the determination of lineage-specific gene expression and cell fates. The aim of this study was to determine whether the DNA methyltransferase inhibitor (DNMTi) 5-aza-2'-deoxycytidine (5-aza-dC) and the histone deacetylase inhibitor (HDACi) trichostatin A (TSA) promote the hepatic differentiation of rat bone marrow-derived mesenchymal stem cells (rBM-MSCs) and their therapeutic effect on liver damage. 1 μM TSA and 20 μM 5-aza-dC were added to standard hepatogenic medium especially at differentiation and maturation steps and their potential function on hepatic differentiation in vitro and in vivo was determined. Exposure of rBM-MSCs to 1 μM TSA at both the differentiation and maturation steps considerably improved hepatic differentiation. TSA enhanced the development of the hepatocyte shape, promoted the chronological expression of hepatocyte-specific markers, and improved hepatic functions. In contrast, treatment of rBM-MSCs with 20 μM 5-aza-dC alone or in combination with TSA was ineffective in improving hepatic differentiation in vitro. TSA and/or 5-aza-dC derived hepatocytes-like cells failed to improve the therapeutic potential in liver damage. We conclude that HDACis enhance hepatic differentiation in a time-dependent manner, while DNMTis do not induce the hepatic differentiation of rBM-MSCs in vitro. Their in vivo function needs further investigation. PMID:27242905

  20. Effect of Chromatin-Remodeling Agents in Hepatic Differentiation of Rat Bone Marrow-Derived Mesenchymal Stem Cells In Vitro and In Vivo

    PubMed Central

    Ye, Danna; Li, Tong; Heraud, Philip; Parnpai, Rangsun

    2016-01-01

    Epigenetic events, including covalent histone modifications and DNA methylation, play fundamental roles in the determination of lineage-specific gene expression and cell fates. The aim of this study was to determine whether the DNA methyltransferase inhibitor (DNMTi) 5-aza-2′-deoxycytidine (5-aza-dC) and the histone deacetylase inhibitor (HDACi) trichostatin A (TSA) promote the hepatic differentiation of rat bone marrow-derived mesenchymal stem cells (rBM-MSCs) and their therapeutic effect on liver damage. 1 μM TSA and 20 μM 5-aza-dC were added to standard hepatogenic medium especially at differentiation and maturation steps and their potential function on hepatic differentiation in vitro and in vivo was determined. Exposure of rBM-MSCs to 1 μM TSA at both the differentiation and maturation steps considerably improved hepatic differentiation. TSA enhanced the development of the hepatocyte shape, promoted the chronological expression of hepatocyte-specific markers, and improved hepatic functions. In contrast, treatment of rBM-MSCs with 20 μM 5-aza-dC alone or in combination with TSA was ineffective in improving hepatic differentiation in vitro. TSA and/or 5-aza-dC derived hepatocytes-like cells failed to improve the therapeutic potential in liver damage. We conclude that HDACis enhance hepatic differentiation in a time-dependent manner, while DNMTis do not induce the hepatic differentiation of rBM-MSCs in vitro. Their in vivo function needs further investigation. PMID:27242905

  1. Epigenetic regulation of COL15A1 in smooth muscle cell replicative aging and atherosclerosis

    PubMed Central

    Connelly, Jessica J.; Cherepanova, Olga A.; Doss, Jennifer F.; Karaoli, Themistoclis; Lillard, Travis S.; Markunas, Christina A.; Nelson, Sarah; Wang, Tianyuan; Ellis, Peter D.; Langford, Cordelia F.; Haynes, Carol; Seo, David M.; Goldschmidt-Clermont, Pascal J.; Shah, Svati H.; Kraus, William E.; Hauser, Elizabeth R.; Gregory, Simon G.

    2013-01-01

    Smooth muscle cell (SMC) proliferation is a hallmark of vascular injury and disease. Global hypomethylation occurs during SMC proliferation in culture and in vivo during neointimal formation. Regardless of the programmed or stochastic nature of hypomethylation, identifying these changes is important in understanding vascular disease, as maintenance of a cells' epigenetic profile is essential for maintaining cellular phenotype. Global hypomethylation of proliferating aortic SMCs and concomitant decrease of DNMT1 expression were identified in culture during passage. An epigenome screen identified regions of the genome that were hypomethylated during proliferation and a region containing Collagen, type XV, alpha 1 (COL15A1) was selected by ‘genomic convergence’ for characterization. COL15A1 transcript and protein levels increased with passage-dependent decreases in DNA methylation and the transcript was sensitive to treatment with 5-Aza-2′-deoxycytidine, suggesting DNA methylation-mediated gene expression. Phenotypically, knockdown of COL15A1 increased SMC migration and decreased proliferation and Col15a1 expression was induced in an atherosclerotic lesion and localized to the atherosclerotic cap. A sequence variant in COL15A1 that is significantly associated with atherosclerosis (rs4142986, P = 0.017, OR = 1.434) was methylated and methylation of the risk allele correlated with decreased gene expression and increased atherosclerosis in human aorta. In summary, hypomethylation of COL15A1 occurs during SMC proliferation and the consequent increased gene expression may impact SMC phenotype and atherosclerosis formation. Hypomethylated genes, such as COL15A1, provide evidence for concomitant epigenetic regulation and genetic susceptibility, and define a class of causal targets that sit at the intersection of genetic and epigenetic predisposition in the etiology of complex disease. PMID:23912340

  2. Epigenetic repression of Krüppel-like factor 4 through Dnmt1 contributes to EMT in renal fibrosis.

    PubMed

    Xiao, Xiangcheng; Tang, Wenbin; Yuan, Qiongjing; Peng, Ling; Yu, Pingping

    2015-06-01

    Krüppel-like factor 4 (KLF4) is a transcription factor which plays divergent roles in a number of physiological or pathological process. However, the expression and role of KLF4 in renal fibrosis remain undetermined. The aim of the present study was to determine the epigenetic alterations of KLF4 and its potential role and mechanisms of action in epithelial-to-mesenchymal transition (EMT) in renal fibrosis. The hypermethylation of the KLF4 promoter accompanied by a decrease in KLF4 expression were observed in mice subjected to unilateral ureteral obstruction (UUO) and in HK-2 cells stimulated with transforming growth factor (TGF)-β1. However, treatment with 5-aza-2'-deoxycytidine attenuated the TGF-β1-induced downregulation of KLF4 and E-cadherin and the upregulation of α-smooth muscle actin (α-SMA) in the HK-2 cells. DNA methyltransferase 1 (Dnmt1) participated in the TGF-β1-mediated hypermethylation of the KLF4 promoter in the HK-2 cells. In addition, functional analysis demonstrated that the overexpression of KLF4 led to an increase in the expression of E-cadherin and zonula occludens-l (ZO-1), and a decrease in the expression of α-SMA and fibroblast-specific protein 1 (FSP-1), thus reversing the effects of the suppression of KLF4. These data suggest that KLF4 inhibits the progression of EMT in renal epithelial cells. In conclusion, our findings demonstrate that KLF4 is downregulated during EMT in renal fibrosis in vivo and in vitro; thus, KLF4 functions as a suppressor of renal fibrogenesis. The hypermethylation of KLF4 directly mediated by Dnmt1 contributes to the progression of EMT in renal epithelial cells. KLF4 promoter methylation may thus be a promising diagnostic marker or therapeutic target in renal fibrosis. PMID:25892014

  3. Association of NDRG1 gene promoter methylation with reduced NDRG1 expression in gastric cancer cells and tissue specimens.

    PubMed

    Chang, Xiaojing; Zhang, Shuanglong; Ma, Jinguo; Li, Zhenhua; Zhi, Yu; Chen, Jing; Lu, Yao; Dai, Dongqiu

    2013-05-01

    NDRG1 (N-myc downstream-regulated gene 1) plays a role in cell differentiation and suppression of tumor metastasis. This study aims to determine the expression of NDRG1 mRNA and protein in gastric cancer cell lines and tissue specimens and then assess the possible cause of its aberrant expression. Six gastric cancer cell lines and 20 pairs of normal and gastric cancer tissue samples were used to assess NDRG1 expression using Real-time PCR and Western blot. High-resolution melting analysis (HRM) and methylation-specific PCR (MSP) were performed to detect gene mutation and methylation, respectively, in cell lines and tissues samples. Expression of NDRG1 mRNA and protein was downregulated in gastric cancer cell lines and tissues. Specifically, expression of NDRG1 mRNA and protein was lower in all six gastric cancer cell lines than that of normal gastric cells, while 15 out of 20 cases of gastric cancer tissues had the reduced levels of NDRG1 mRNA and protein. HRM data showed that there was no mutation in NDRG1 gene, but MSP data showed high levels of NDRG1 gene promoter methylation in the CpG islands in both cell lines and tissue samples. Moreover, treatment with the DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine upregulated NDRG1 expression in gastric cancer HGC27 cells, but not in the histone deacetylase inhibitor trichostatin A-treated HGC27 cells. In conclusion, this study has shown that expression of NDRG1 mRNA and protein was reduced in gastric cancer cell lines and tissues, which is due to methylation of NDRG1 gene promoter. Further study will unearth the clinical significance of the reduced NDRG1 protein in gastric cancer.

  4. Transcription factor activating protein 2 beta (TFAP2B) mediates noradrenergic neuronal differentiation in neuroblastoma.

    PubMed

    Ikram, Fakhera; Ackermann, Sandra; Kahlert, Yvonne; Volland, Ruth; Roels, Frederik; Engesser, Anne; Hertwig, Falk; Kocak, Hayriye; Hero, Barbara; Dreidax, Daniel; Henrich, Kai-Oliver; Berthold, Frank; Nürnberg, Peter; Westermann, Frank; Fischer, Matthias

    2016-02-01

    Neuroblastoma is an embryonal pediatric tumor that originates from the developing sympathetic nervous system and shows a broad range of clinical behavior, ranging from fatal progression to differentiation into benign ganglioneuroma. In experimental neuroblastoma systems, retinoic acid (RA) effectively induces neuronal differentiation, and RA treatment has been therefore integrated in current therapies. However, the molecular mechanisms underlying differentiation are still poorly understood. We here investigated the role of transcription factor activating protein 2 beta (TFAP2B), a key factor in sympathetic nervous system development, in neuroblastoma pathogenesis and differentiation. Microarray analyses of primary neuroblastomas (n = 649) demonstrated that low TFAP2B expression was significantly associated with unfavorable prognostic markers as well as adverse patient outcome. We also found that low TFAP2B expression was strongly associated with CpG methylation of the TFAP2B locus in primary neuroblastomas (n = 105) and demethylation with 5-aza-2'-deoxycytidine resulted in induction of TFAP2B expression in vitro, suggesting that TFAP2B is silenced by genomic methylation. Tetracycline inducible re-expression of TFAP2B in IMR-32 and SH-EP neuroblastoma cells significantly impaired proliferation and cell cycle progression. In IMR-32 cells, TFAP2B induced neuronal differentiation, which was accompanied by up-regulation of the catecholamine biosynthesizing enzyme genes DBH and TH, and down-regulation of MYCN and REST, a master repressor of neuronal genes. By contrast, knockdown of TFAP2B by lentiviral transduction of shRNAs abrogated RA-induced neuronal differentiation of SH-SY5Y and SK-N-BE(2)c neuroblastoma cells almost completely. Taken together, our results suggest that TFAP2B is playing a vital role in retaining RA responsiveness and mediating noradrenergic neuronal differentiation in neuroblastoma. PMID:26598443

  5. Van-Gogh-like 2 antagonises the canonical WNT pathway and is methylated in colorectal cancers

    PubMed Central

    Piazzi, G; Selgrad, M; Garcia, M; Ceccarelli, C; Fini, L; Bianchi, P; Laghi, L; D'Angelo, L; Paterini, P; Malfertheiner, P; Chieco, P; Boland, C R; Bazzoli, F; Ricciardiello, L

    2013-01-01

    Background: Aberrant activation of the canonical WNT signaling is a feature of colorectal cancer (CRC). Van-Gogh-like 2 (VANGL2) belongs to the non-canonical WNT pathway whose activation inhibits canonical WNT signaling. In this study, we investigated the role of VANGL2 and its epigenetic regulation in CRC. Methods: Van-Gogh-like 2 expression and promoter methylation after 5-aza-2′-deoxycytidine (5-aza) treatment were evaluated in CRC cells. DNA samples from 418 sporadic CRCs were tested for VANGL2 promoter methylation and microsatellite instability (MSI). Proliferation, colony formation and activation of the WNT pathway were tested in cells after VANGL2 overexpression. Results: Van-Gogh-like 2 mRNA was significantly higher in 5-aza-treated RKO, LOVO and SW48, whereas no differences were found in SW480. Van-Gogh-like 2 was fully methylated in RKO, SW48, HCT116, DLD1 and Caco2; partially methylated in LOVO, LS174T and SW837; and unmethylated in SW480, SW620 and HT29. Higher expression of VANGL2 mRNA was found in the unmethylated cell lines. In CRC specimens (8.93% MSI), methylated VANGL2 was associated with MSI, higher grade, proximal colon location and BRAF mutation. Van-Gogh-like 2 overexpression in SW480 significantly decreased proliferation, colony formation and β-catenin levels. Conclusion: Van-Gogh-like 2 is frequently methylated in MSI-CRCs with BRAF mutation and may act as a tumour suppressor gene, counteracting WNT/β-catenin signaling. PMID:23579212

  6. The Human ARF Cell Cycle Regulatory Gene Promoter Is a CpG Island Which Can Be Silenced by DNA Methylation and Down-Regulated by Wild-Type p53

    PubMed Central

    Robertson, Keith D.; Jones, Peter A.

    1998-01-01

    The INK4a/ARF locus encodes two proteins involved in tumor suppression in a manner virtually unique in mammalian cells. Distinct first exons, driven from separate promoters, splice onto a common exon 2 and 3 but utilize different reading frames to produce two completely distinct proteins, both of which play roles in cell cycle control. INK4a, a critical element of the retinoblastoma gene pathway, binds to and inhibits the activities of CDK4 and CDK6, while ARF, a critical element of the p53 pathway, increases the level of functional p53 via interaction with MDM2. Here we clone and characterize the promoter of the human ARF gene and show that it is a CpG island characteristic of a housekeeping gene which contains numerous Sp1 sites. Both ARF and INK4a are coordinately expressed in cells except when their promoter regions become de novo methylated. In one of these situations, ARF transcription could be reactivated by treatment with the DNA methylation inhibitor 5-aza-2′-deoxycytidine, and the reactivation kinetics of ARF and INK4a were found to differ slightly in a cell line in which both genes were silenced by methylation. The ARF promoter was also found to be highly responsive to E2F1 expression, in keeping with previous results at the RNA level. Lastly, transcription from the ARF promoter was down-regulated by wild-type p53 expression, and the magnitude of the effect correlated with the status of the endogenous p53 gene. This finding points to the existence of an autoregulatory feedback loop between p53, MDM2, and ARF, aimed at keeping p53 levels in check. PMID:9774662

  7. Change in gene expression profiles of secreted frizzled-related proteins (SFRPs) by sodium butyrate in gastric cancers: induction of promoter demethylation and histone modification causing inhibition of Wnt signaling.

    PubMed

    Shin, Hyunsoo; Kim, Jie-Hyun; Lee, Yeo Song; Lee, Yong Chan

    2012-05-01

    Activation of Wnt signaling without mutation of β-catenin or APC occurs frequently in human gastric cancers. Secreted frizzled-related protein (SFRP), a negative modulator of the Wnt signaling pathway, are frequently inactivated in human gastric cancers. Inhibition of SFRP gene expression may account for the Wnt/β-catenin activation in human gastric cancer. However, the molecular mechanisms of silencing of SFRP genes are not fully understood. Sodium butyrate, a histone deacetylase (HDAC) inhibitor, is known to exhibit anti-cancer effects partly through the differentiation of various cancer cells. In the present study, we investigated: i) the relationship between the silencing of SFRP genes and Wnt signaling; ii) the mechanism of sodium butyrate mediated epigenetic regulation of SFRPs expression in human gastric cancer. We observed that nuclear β-catenin was significantly increased in gastric cancer tissues as compared to adjacent non-cancerous tissues. Nuclear β-catenin accumulation and SFRP promoter methylation in human gastric cancer cells were noted. Treatment with the DNA methyltransferase inhibitor, 5'-Aza-2-deoxycytidine (5'-Aza-dC) rapidly restored SFRPs expression. Sodium butyrate (NaB) induced demethylation and histone modification at the promoter region of SFRP1/2 restoring the SFRP expression in human gastric cancer cells. Analysis of general expression revealed that overexpression of SFRPs repressed Wnt target gene expression and induced changes in the proliferation and apoptosis related genes in human gastric cancer cells. These data suggest that aberrant epigenetic modification of SFRP genes is one of the major mechanisms by which Wnt signaling is activated in human gastric cancer cells and sodium butyrate may modulate the SFRP1/2 expression through histone modification and promoter demethylation causing anti-tumor effects.

  8. Integrated, genome-wide screening for hypomethylated oncogenes in salivary gland adenoid cystic carcinoma

    PubMed Central

    Shao, Chunbo; Sun, Wenyue; Tan, Marietta; Glazer, Chad A.; Bhan, Sheetal; Zhong, Xiaoli; Fakhry, Carole; Sharma, Rajni; Westra, William H.; Hoque, Mohammad O.; Moskaluk, Christopher A.; Sidransky, David; Califano, Joseph A.; Ha, Patrick K.

    2011-01-01

    Purpose Salivary gland adenoid cystic carcinoma (ACC) is a rare malignancy that is poorly understood. In order to look for relevant oncogene candidates under the control of promoter methylation, an integrated, genome-wide screen was performed. Experimental Design Global demethylation of normal salivary gland cell strains using 5-aza-2′-deoxycytidine (5-Aza dC) and Trichostatin A (TSA), followed by expression array analysis was performed. ACC-specific expression profiling was generated using expression microarray analysis of primary ACC and normal samples. Next, the two profiles were integrated to identify a subset of genes for further validation of promoter demethylation in ACC versus normal. Finally, promising candidates were further validated for mRNA, protein, and promoter methylation levels in larger ACC cohorts. Functional validation was then performed in cancer cell lines. Results We found 159 genes that were significantly re-expressed after 5-Aza dC/TSA treatment and overexpressed in ACC. After initial validation, eight candidates showed hypomethylation in ACC: AQP1, CECR1, C1QR1, CTAG2, P53AIP1, TDRD12, BEX1, and DYNLT3. Aquaporin 1 (AQP1) showed the most significant hypomethylation and was further validated. AQP1 hypomethylation in ACC was confirmed with two independent cohorts. Of note, there was significant overexpression of AQP1 in both mRNA and protein in the paraffin-embedded ACC cohort. Furthermore, AQP1 was up-regulated in 5-Aza dC/TSA treated SACC83. Lastly, AQP1 promoted cell proliferation and colony formation in SACC83. Conclusions Our integrated, genome-wide screening method proved to be an effective strategy for detecting novel oncogenes in ACC. AQP1 is a promising oncogene candidate for ACC and is transcriptionally regulated by promoter hypomethylation. PMID:21551254

  9. DNA hypermethylation in hyperhomocysteinemia contributes to abnormal extracellular matrix metabolism in the kidney

    PubMed Central

    Pushpakumar, Sathnur; Kundu, Sourav; Narayanan, Nithya; Sen, Utpal

    2015-01-01

    Hyperhomocysteinemia (HHcy) is prevalent in patients with chronic kidney disease (CKD) and end-stage renal disease (ESRD). Emerging studies suggest that epigenetic mechanisms contribute to the development and progression of fibrosis in CKD. HHcy and its intermediates are known to alter the DNA methylation pattern, which is a critical regulator of epigenetic information. In this study, we hypothesized that HHcy causes renovascular remodeling by DNA hypermethylation, leading to glomerulosclerosis. We also evaluated whether the DNA methylation inhibitor, 5-aza-2′-deoxycytidine (5-Aza) could modulate extracellular matrix (ECM) metabolism and reduce renovascular fibrosis. C57BL/6J (wild-type) and cystathionine-β-synthase (CBS+/−) mice, treated without or with 5-Aza (0.5 mg/kg body weight, i.p.), were used. CBS+/− mice showed high plasma Hcy levels, hypertension, and significant glomerular and arteriolar injury. 5-Aza treatment normalized blood pressure and reversed renal injury. CBS+/− mice showed global hypermethylation and up-regulation of DNA methyltransferase-1 and -3a. Methylation-specific PCR showed an imbalance between matrix metalloproteinase (MMP)-9 and tissue inhibitor of metalloproteinase (TIMP)-1 and -2 and also increased collagen and galectin-3 expression. 5-Aza reduced abnormal DNA methylation and restored the MMP-9/TIMP-1, -2 balance. In conclusion, our data suggest that during HHcy, abnormal DNA methylation and an imbalance between MMP-9 and TIMP-1 and -2 lead to ECM remodeling and renal fibrosis.—Pushpakumar, S., Kundu, S., Narayanan, N., Sen, U. DNA hypermethylation in hyperhomocysteinemia contributes to abnormal extracellular matrix metabolism in the kidney. PMID:26224753

  10. Epigenetic inactivation of Wnt inhibitory factor-1 in human esophageal squamous cell carcinoma.

    PubMed

    Yang, Song-Hua; Li, Sheng-Lei; Dong, Zi-Ming; Kan, Quan-Cheng

    2012-01-01

    Wnt inhibitory factor-1 (WIF1), as one of most important Wnt antagonists, has been detected frequently silenced by promoter hypermethylation in various types of cancer. In this study, we aimed to investigate the promoter methylation profiles of WIF1 in human esophageal squamous cell carcinoma (ESCC) tissues and cell lines, as well as the functional roles of WIF1 in the human ESCC metastatic behavior. WIF1 mRNA levels and promoter methylation status in ESCC tissues and cell lines were detected using RT-PCR and methylation-specific PCR (MS-PCR), respectively. WIF1 protein levels were assessed by Western blot. Stable ESCC cell line with restoration of WIF1 was generated in EC109 cells, which naturally do not express detectable WIF1 mRNA. The effects of reexpressed WIF1 on EC109 cell proliferation and migration were investigated using crystal violet and wound healing assay, respectively. Also the effects of WIF1 reexpression on the beta-catenin/T-cell factor-dependent transcription activity was measured by luciferase assay. WIF1 promoter methylation was frequently observed in ESCC tissues (46%, 23/50) and cell lines (50%, 2/4). Treatment with demethylating agent, 5-aza-2'-deoxycytidine (5-aza-dC), increased or restored WIF1 expression in these ESCC cell lines. Restoration of the WIF1 in EC109 cells resulted in a significant inhibition on both cell proliferation and migration. Moreover, reexpression of WIF1 caused significant decrease of beta-catenin/T-cell factor-dependent transcription activity. These findings demonstrated that WIF1 silencing due to promoter hypermethylation is a major mechanism during carcinogenesis of ESCC. This would be an opportunity to prevent the development and progression of HCC through modulation of WIF1.

  11. Small Activating RNA Restores the Activity of the Tumor Suppressor HIC-1 on Breast Cancer

    PubMed Central

    Gu, Yan; Guo, Shanyu; Dai, Qiancheng; Yu, Yingyan; Zhang, Wei

    2014-01-01

    HIC-1 is a gene that is hypermethylated in cancer, and commonly downregulated in human breast cancer. However, the precise mechanisms and molecular pathways regulated by HIC-1 remain unclear. We assessed HIC-1 expression on a tissue microarray containing 80 cases of breast cancer. We also analyzed its biological function by restoring HIC-1 expression using 5-aza-2deoxycytidine (5-CdR) and small-activating RNAs for the reversal of HIC-1 tumor suppressive effects on MCF-7 and MDA-MB-231 cell lines. An Agilent Q44h global expressing microarray was probed after restoring the expression of HIC-1. Data demonstrated that HIC-1 expression was reduced significantly in breast cancer tissues. HIC-1 immunohistochemistry resulted in mean staining scores in cancer tissue and normal ductal epithelia of 3.54 and 8.2, respectively (p<0.01). 5-CdR partially reversed HIC-1 expression, and modulated cell growth and apoptosis. dsHIC1-2998, an saRNA, showed activating efficacy in breast cancer cells. A group of differentially expressed genes were characterized by cDNA microarray. Upon saRNA treatment, genes upregulated included those involved in immune activation, cell cycle interference, the induction of apoptosis, anti-metastasis, and cell differentiation. Downregulated genes included oncogenes and those that play roles in cell invasion, cell growth, and cell division. Our findings may provide valuable resources not only for gene functional studies, but also for potential clinical applications to develop novel drug targets. PMID:24489730

  12. Development of TRAIL Resistance by Radiation-Induced Hypermethylation of DR4 CpG Island in Recurrent Laryngeal Squamous Cell Carcinoma

    SciTech Connect

    Lee, Jong Cheol; Lee, Won Hyeok; Min, Young Joo; Cha, Hee Jeong; Han, Myung Woul; Chang, Hyo Won; Kim, Sun-A; Choi, Seung-Ho; Kim, Seong Who; Kim, Sang Yoon

    2014-04-01

    Purpose: There are limited therapeutic options for patients with recurrent head and neck cancer after radiation therapy failure. To assess the use of tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) as a salvage chemotherapeutic agent for recurrent cancer after radiation failure, we investigated the effect of clinically relevant cumulative irradiation on TRAIL-induced apoptosis. Methods and Materials: Using a previously established HN3 cell line from a laryngeal carcinoma patient, we generated a chronically irradiated HN3R isogenic cell line. Viability and apoptosis in HN3 and HN3R cells treated with TRAIL were analyzed with MTS and PI/annexin V-FITC assays. Western blotting and flow cytometry were used to determine the underlying mechanism of TRAIL resistance. DR4 expression was semiquantitatively scored in a tissue microarray with 107 laryngeal cancer specimens. Methylation-specific polymerase chain reaction and bisulfite sequencing for DR4 were performed for genomic DNA isolated from each cell line. Results: HN3R cells were more resistant than HN3 cells to TRAIL-induced apoptosis because of significantly reduced levels of the DR4 receptor. The DR4 staining score in 37 salvage surgical specimens after radiation failure was lower in 70 surgical specimens without radiation treatment (3.03 ± 2.75 vs 5.46 ± 3.30, respectively; P<.001). HN3R cells had a methylated DR4 CpG island that was partially demethylated by the DNA demethylating agent 5-aza-2′-deoxycytidine. Conclusion: Epigenetic silencing of the TRAIL receptor by hypermethylation of a DR4 CpG island might be an underlying mechanism for TRAIL resistance in recurrent laryngeal carcinoma treated with radiation.

  13. SOCS1 hypermethylation mediated by DNMT1 is associated with lipopolysaccharide-induced inflammatory cytokines in macrophages.

    PubMed

    Cheng, Chang; Huang, Cheng; Ma, Tao-Tao; Bian, Er-Bao; He, Yong; Zhang, Lei; Li, Jun

    2014-03-21

    Macrophages activation which releases the pro-inflammatory cytokines is an essential event in the process of inflammation. SOCS1 has been shown to act as a negative regulator of cytokine signals and plays a key role in the suppression of tissue injury and inflammatory diseases. DNA methylation mediated by specific DNA methyltransferases1 (DNMT1) which contributes to the epigenetic silencing of multiple genes. SOCS1 promoter hypermethylation is by far the best categorized epigenetic change in tumors. Our study with a view to investigate whether the loss of SOCS1 due to SOCS1 promoter methylation was involved in the course of inflammatory cytokines released from lipopolysaccharide (LPS)-stimulated macrophages. Here, we found that treatment of LPS-induced RAW264.7 macrophage cells with the DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-azadC) reduced aberrant promoter hypermethylation of SOCS1 and prevented the loss of the expression of SOCS1 in macrophages which secret inflammatory cytokines. Knockdown of DNMT1 gene not only attenuated the SOCS1 gene promoter methylation but also up-regulated the expression of SOCS1 in activated RAW264.7 cells. Furthermore, silencing of DNMT1 prevented the activation of JAK2/STAT3 pathway in LPS-induced RAW264.7 cells. These studies demonstrated that DNMT1-mediated SOCS1 hypermethylation caused the loss of SOCS1 expression results in negative regulation of activation of the JAK2/STAT3 pathway, and enhanced the release of LPS-induced pro-inflammatory cytokines such as TNF-α and IL-6 in macrophages. PMID:24440346

  14. MicroRNA profiling of novel African American and Caucasian Prostate Cancer cell lines reveals a reciprocal regulatory relationship of miR-152 and DNA methyltranferase 1

    PubMed Central

    Theodore, Shaniece C.; Davis, Melissa; Zhao, Fu; Wang, Honghe; Chen, Dongquan; Rhim, Johng; Dean-Colomb, Windy; Turner, Timothy; Ji, Weidong; Zeng, Guohua; Grizzle, William; Yates, Clayton

    2014-01-01

    miRNA expression in African American compared to Caucasian PCa patients has not been widely explored. Herein, we probed the miRNA expression profile of novel AA and CA derived prostate cancer cell lines. We found a unique miRNA signature associated with AA cell lines, independent of tumor status. Evaluation of the most differentially expressed miRNAs showed that miR-132, miR-367b, miR-410, and miR-152 were decreased in more aggressive cells, and this was reversed after treatment of the cells with 5-aza-2′-deoxycytidine. Sequencing of the miR-152 promoter confirmed that it was highly methylated. Ectopic expression of miR-152 resulted in decreased growth, migration, and invasion. Informatics analysis of a large patient cohort showed that decreased miR-152 expression correlated with increased metastasis and a decrease in biochemical recurrence free survival. Analysis of 39 prostate cancer tissues with matched controls (20 AA and 19 CA), showed that 50% of AA patients had statistically significant lower miR-152 expression compared to only 35% of CA patients. Ectopic expression of miR-152 in LNCaP, PC-3, and MDA-PCa-2b cells down-regulated DNA (cytosine-5)-methyltransferase 1 (DNMT1) through direct binding in the DNMT1 3'UTR. There appeared to be a reciprocal regulatory relationship of miR-152/DNMT1 expression, as cells treated with siRNA DNMT1 caused miR-152 to be re-expressed in all cell lines. In summary, these results demonstrate that epigenetic regulation of miR-152/DNMT1 may play an important role in multiple events that contribute to the aggressiveness of PCa tumors, with an emphasis on AA PCa patients. PMID:25004396

  15. HPP1: A transmembrane protein-encoding gene commonly methylated in colorectal polyps and cancers

    PubMed Central

    Young, Joanne; Biden, Kelli G.; Simms, Lisa A.; Huggard, Phillip; Karamatic, Rozemary; Eyre, Helen J.; Sutherland, Grant R.; Herath, Nirmitha; Barker, Melissa; Anderson, Gregory J.; Fitzpatrick, David R.; Ramm, Grant A.; Jass, Jeremy R.; Leggett, Barbara A.

    2001-01-01

    Adenomas are the precursors of most colorectal cancers. Hyperplastic polyps have been linked to the subset of colorectal cancers showing DNA microsatellite instability, but little is known of their underlying genetic etiology. Using a strategy that isolates differentially methylated sequences from hyperplastic polyps and normal mucosa, we identified a 370-bp sequence containing the 5′ untranslated region and the first exon of a gene that we have called HPP1. Rapid amplification of cDNA ends was used to isolate HPP1 from normal mucosa. Using reverse transcription–PCR, HPP1 was expressed in 28 of 30 (93%) normal colonic samples but in only seven of 30 (23%) colorectal cancers (P < 0.001). The 5′ region of HPP1 included a CpG island containing 49 CpG sites, of which 96% were found to be methylated by bisulfite sequencing of DNA from colonic tumor samples. By COBRA analysis, methylation was detected in six of nine (66%) adenomas, 17 of 27 (63%) hyperplastic polyps, and 46 of 55 (84%) colorectal cancers. There was an inverse relationship between methylation level and mRNA expression in cancers (r = −0.67; P < 0.001), and 5-aza-2-deoxycytidine treatment restored HPP1 expression in two colorectal cancer cell lines. In situ hybridization of HPP1 indicated that expression occurs in epithelial and stromal elements in normal mucosa but is silenced in both cell types in early colonic neoplasia. HPP1 is predicted to encode a transmembrane protein containing follistatin and epidermal growth factor-like domains. Silencing of HPP1 by methylation may increase the probability of neoplastic transformation. PMID:11120884

  16. Expression and immunotherapeutic targeting of the SSX family of cancer-testis antigens in prostate cancer.

    PubMed

    Smith, Heath A; Cronk, Robert J; Lang, Joshua M; McNeel, Douglas G

    2011-11-01

    Recent U.S. Food and Drug Administration approval of the first immunotherapy for prostate cancer encourages efforts to improve immune targeting of this disease. The synovial sarcoma X chromosome breakpoint (SSX) proteins comprise a set of cancer-testis antigens that are upregulated in MHC class I-deficient germline cells and in various types of advanced cancers with a poor prognosis. Humoral and cell-mediated immune responses to the SSX family member SSX2 can arise spontaneously in prostate cancer patients. Thus, SSX2 and other proteins of the SSX family may offer useful targets for tumor immunotherapy. In this study, we evaluated the expression of SSX family members in prostate cancer cell lines and tumor biopsies to identify which members might be most appropriate for immune targeting. We found that SSX2 was expressed most frequently in prostate cell lines, but that SSX1 and SSX5 were also expressed after treatment with the DNA demethylating agent 5-aza-2'-deoxycytidine. Immunohistochemical analysis of microarrayed tissue biopsies confirmed a differential level of SSX protein expression in human prostate cancers. Notably, SSX expression in patient tumor samples was restricted to metastatic lesions (5/22; 23%) and no expression was detected in primary prostate tumors examined (0/73; P < 0.001). We determined that cross-reactive immune responses to a dominant HLA-A2-specific SSX epitope (p103-111) could be elicited by immunization of A2/DR1 transgenic mice with SSX vaccines. Our findings suggest that multiple SSX family members are expressed in metastatic prostate cancers which are amenable to simultaneous targeting. PMID:21880588

  17. Impacts of TCDD and MeHg on DNA methylation in zebrafish (Danio rerio) across two generations.

    PubMed

    Olsvik, Pål A; Williams, Timothy D; Tung, Hui-shan; Mirbahai, Leda; Sanden, Monica; Skjaerven, Kaja H; Ellingsen, Ståle

    2014-09-01

    This study aimed to investigate whether dioxin (TCDD) and methylmercury (MeHg) pose a threat to offspring of fish exposed to elevated concentrations of these chemicals via epigenetic-based mechanisms. Adult female zebrafish were fed diets added either 20 μg/kg 2,3,7,8 TCDD or 10 mg/kg MeHg for 47 days, or 10 mg/kg 5-aza-2'-deoxycytidine (5-AZA), a hypomethylating agent, for 32 days, and bred with unexposed males in clean water to produce F1 and F2 offspring. Global DNA methylation, promoter CpG island methylation and target gene transcription in liver of adult females and in 3 days post fertilization (dpf) F1 and F2 embryos were determined with HPLC, a novel CpG island tiling array containing 54,933 different probes and RT-qPCR, respectively. The results showed that chemical treatment had no significant effect on global DNA methylation levels in F1 (MeHg and TCDD) and F2 (MeHg) embryos and only a limited number of genes were identified with altered methylation levels at their promoter regions. CYP1A1 transcription, an established marker of TCDD exposure, was elevated 27-fold in F1 embryos compared to the controls, matching the high levels of CYP1A1 expression observed in F0 TCDD-treated females. This suggests that maternal transfer of TCDD is a significant route of exposure for the F1 offspring. In conclusion, the selected doses of TCDD and MeHg, two chemicals often found in high concentrations in fish, appear to have only modest effects on DNA methylation in F1 (MeHg and TCDD) and F2 (MeHg) embryos of treated F0 females. PMID:24878852

  18. Synergistic reduction of HIV-1 infectivity by 5-azacytidine and inhibitors of ribonucleotide reductase.

    PubMed

    Rawson, Jonathan M O; Roth, Megan E; Xie, Jiashu; Daly, Michele B; Clouser, Christine L; Landman, Sean R; Reilly, Cavan S; Bonnac, Laurent; Kim, Baek; Patterson, Steven E; Mansky, Louis M

    2016-06-01

    Although many compounds have been approved for the treatment of human immunodeficiency type-1 (HIV-1) infection, additional anti-HIV-1 drugs (particularly those belonging to new drug classes) are still needed due to issues such as long-term drug-associated toxicities, transmission of drug-resistant variants, and development of multi-class resistance. Lethal mutagenesis represents an antiviral strategy that has not yet been clinically translated for HIV-1 and is based on the use of small molecules to induce excessive levels of deleterious mutations within the viral genome. Here, we show that 5-azacytidine (5-aza-C), a ribonucleoside analog that induces the lethal mutagenesis of HIV-1, and multiple inhibitors of the enzyme ribonucleotide reductase (RNR) interact in a synergistic fashion to more effectively reduce the infectivity of HIV-1. In these drug combinations, RNR inhibitors failed to significantly inhibit the conversion of 5-aza-C to 5-aza-2'-deoxycytidine, suggesting that 5-aza-C acts primarily as a deoxyribonucleoside even in the presence of RNR inhibitors. The mechanism of antiviral synergy was further investigated for the combination of 5-aza-C and one specific RNR inhibitor, resveratrol, as this combination improved the selectivity index of 5-aza-C to the greatest extent. Antiviral synergy was found to be primarily due to the reduced accumulation of reverse transcription products rather than the enhancement of viral mutagenesis. To our knowledge, these observations represent the first demonstration of antiretroviral synergy between a ribonucleoside analog and RNR inhibitors, and encourage the development of additional ribonucleoside analogs and RNR inhibitors with improved antiretroviral activity. PMID:27117260

  19. Aberrant methylation of the Wnt antagonist SFRP1 in breast cancer is associated with unfavourable prognosis.

    PubMed

    Veeck, J; Niederacher, D; An, H; Klopocki, E; Wiesmann, F; Betz, B; Galm, O; Camara, O; Dürst, M; Kristiansen, G; Huszka, C; Knüchel, R; Dahl, E

    2006-06-01

    The canonical Wnt signalling pathway plays a key role during embryogenesis and defects in this pathway have been implicated in the pathogenesis of various types of tumours, including breast cancer. The gene for secreted frizzled-related protein 1 (SFRP1) encodes a soluble Wnt antagonist and is located in a chromosomal region (8p22-p12) that is often deleted in breast cancer. In colon, lung, bladder and ovarian cancer SFRP1 expression is frequently inactivated by promoter methylation. We have previously shown that loss of SFRP1 protein expression is a common event in breast tumours that is associated with poor overall survival in patients with early breast cancer. To investigate the cause of SFRP1 loss in breast cancer, we performed mutation, methylation and expression analysis in human primary breast tumours and breast cell lines. No SFRP1 gene mutations were detected. However, promoter methylation of SFRP1 was frequently observed in both primary breast cancer (61%, n=130) and cell lines analysed by methylation-specific polymerase chain reaction (MSP). We found a tight correlation (P<0.001) between methylation and loss of SFRP1 expression in primary breast cancer tissue. SFRP1 expression was restored after treatment of tumour cell lines with the demethylating agent 5-aza-2'-deoxycytidine. Most interestingly, SFRP1 promoter methylation was an independent factor for adverse patient survival in Kaplan-Meier analysis. Our results indicate that promoter hypermethylation is the predominant mechanism of SFRP1 gene silencing in human breast cancer and that SFRP1 gene inactivation in breast cancer is associated with unfavourable prognosis. PMID:16449975

  20. Upregulation of adenylate cyclase 3 (ADCY3) increases the tumorigenic potential of cells by activating the CREB pathway

    PubMed Central

    Lee, Sang Jin; Hwang, Jung-Ah; Lee, Jieun; Choi, Il-Ju; Seo, Hyehyun; Park, Jong-Hoon; Suzuki, Hiromu; Yamamoto, Eiichiro; Kim, In-Hoo; Jeong, Jin Sook; Ju, Mi Ha; Lee, Dong-Hee; Lee, Yeon-Su

    2013-01-01

    Adenylate cyclase 3 (ADCY3) is a widely expressed membrane-associated protein in human tissues, which catalyzes the formation of cyclic adenosine-3′,5′-monophosphate (cAMP). However, our transcriptome analysis of gastric cancer tissue samples (NCBI GEO GSE30727) revealed that ADCY3 expression was specifically altered in cancer samples. Here we investigated the tumor-promoting effects of ADCY3 overexpression and confirmed a significant correlation between the upregulation of ADCY3 and Lauren's intestinal-type gastric cancers. ADCY3 overexpression increased cell migration, invasion, proliferation, and clonogenicity in HEK293 cells; conversely, silencing ADCY3 expression in SNU-216 cells reduced these phenotypes. Interestingly, ADCY3 overexpression increased both the mRNA level and activity of matrix metalloproteinase 2 (MMP2) and MMP9 by increasing the levels of cAMP and phosphorylated cAMP-responsive element-binding protein (CREB). Consistent with these findings, treatment with a protein kinase A (PKA) inhibitor decreased MMP2 and MMP9 expression levels in ADCY3-overexpressing cells. Knockdown of ADCY3 expression by stable shRNA in human gastric cancer cells suppressed tumor growth in a tumor xenograft model. Thus, ADCY3 overexpression may exert its tumor-promoting effects via the cAMP/PKA/CREB pathway. Additionally, bisulfite sequencing of the ADCY3 promoter region revealed that gene expression was reduced by hypermethylation of CpG sites, and increased by 5-Aza-2′-deoxycytidine (5-Aza-dC)-induced demethylation. Our study is the first to report an association of ADCY3 with gastric cancer as well as its tumorigenic potentials. In addition, we demonstrate that the expression of ADCY3 is regulated through an epigenetic mechanism. Further study on the mechanism of ADCY3 in tumorigenesis will provide the basis as a new molecular target of gastric cancer. PMID:24113161

  1. Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers.

    PubMed

    Bultmann, Sebastian; Morbitzer, Robert; Schmidt, Christine S; Thanisch, Katharina; Spada, Fabio; Elsaesser, Janett; Lahaye, Thomas; Leonhardt, Heinrich

    2012-07-01

    Specific control of gene activity is a valuable tool to study and engineer cellular functions. Recent studies uncovered the potential of transcription activator-like effector (TALE) proteins that can be tailored to activate user-defined target genes. It remains however unclear whether and how epigenetic modifications interfere with TALE-mediated transcriptional activation. We studied the activity of five designer TALEs (dTALEs) targeting the oct4 pluripotency gene. In vitro assays showed that the five dTALEs that target distinct sites in the oct4 promoter had the expected DNA specificity and comparable affinities to their corresponding DNA targets. In contrast to their similar in vitro properties, transcriptional activation of oct4 by these distinct dTALEs varied up to 25-fold. While dTALEs efficiently upregulated transcription of the active oct4 promoter in embryonic stem cells (ESCs) they failed to activate the silenced oct4 promoter in ESC-derived neural stem cells (NSCs), indicating that as for endogenous transcription factors also dTALE activity is limited by repressive epigenetic mechanisms. We therefore targeted the activity of epigenetic modulators and found that chemical inhibition of histone deacetylases by valproic acid or DNA methyltransferases by 5-aza-2'-deoxycytidine facilitated dTALE-mediated activation of the epigenetically silenced oct4 promoter in NSCs. Notably, demethylation of the oct4 promoter occurred only if chemical inhibitors and dTALEs were applied together but not upon treatment with inhibitors or dTALEs only. These results show that dTALEs in combination with chemical manipulation of epigenetic modifiers facilitate targeted transcriptional activation of epigenetically silenced target genes.

  2. Mucin2 is Required for Probiotic Agents-Mediated Blocking Effects on Meningitic E. coli-Induced Pathogenicities.

    PubMed

    Yu, Jing-Yi; He, Xiao-Long; Puthiyakunnon, Santhosh; Peng, Liang; Li, Yan; Wu, Li-Sha; Peng, Wen-Ling; Zhang, Ya; Gao, Jie; Zhang, Yao-Yuan; Boddu, Swapna; Long, Min; Cao, Hong; Huang, Sheng-He

    2015-10-01

    Mucin2 (MUC2), an important regulatory factor in the immune system, plays an important role in the host defense system against bacterial translocation. Probiotics known to regulate MUC2 gene expression have been widely studied, but the interactions among probiotic, pathogens, and mucin gene are still not fully understood. The aim of this study was to investigate the role of MUC2 in blocking effects of probiotics on meningitic E. coli-induced pathogenicities. In this study, live combined probiotic tablets containing living Bifidobacterium, Lactobacillus bulgaricus, and Streptococcus thermophilus were used. MUC2 expression was knocked down in Caco-2 cells by RNA interference. 5-Aza-2'-deoxycytidine (5-Aza-CdR), which enhances mucin-promoted probiotic effects through inducing production of Sadenosyl- L-methionine (SAMe), was used to up-regulate MUC2 expression in Caco-2 cells. The adhesion to and invasion of meningitic E. coli were detected by competition assays. Our studies showed that probiotic agents could block E. coli-caused intestinal colonization, bacteremia, and meningitis in a neonatal sepsis and meningitis rat model. MUC2 gene expression in the neonatal rats given probiotic agents was obviously higher than that of the infected and uninfected control groups without probiotic treatment. The prohibitive effects of probiotic agents on MUC2-knockdown Caco-2 cells infected with E44 were significantly reduced compared with nontransfected Caco-2 cells. Moreover, the results also showed that 5- Aza-CdR, a drug enhancing the production of SAMe that is a protective agent of probiotics, was able to significantly suppress adhesion and invasion of E44 to Caco-2 cells by upregulation of MUC2 expression. Taken together, our data suggest that probiotic agents can efficiently block meningitic E. coli-induced pathogenicities in a manner dependent on MUC2.

  3. Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers

    PubMed Central

    Bultmann, Sebastian; Morbitzer, Robert; Schmidt, Christine S.; Thanisch, Katharina; Spada, Fabio; Elsaesser, Janett; Lahaye, Thomas; Leonhardt, Heinrich

    2012-01-01

    Specific control of gene activity is a valuable tool to study and engineer cellular functions. Recent studies uncovered the potential of transcription activator-like effector (TALE) proteins that can be tailored to activate user-defined target genes. It remains however unclear whether and how epigenetic modifications interfere with TALE-mediated transcriptional activation. We studied the activity of five designer TALEs (dTALEs) targeting the oct4 pluripotency gene. In vitro assays showed that the five dTALEs that target distinct sites in the oct4 promoter had the expected DNA specificity and comparable affinities to their corresponding DNA targets. In contrast to their similar in vitro properties, transcriptional activation of oct4 by these distinct dTALEs varied up to 25-fold. While dTALEs efficiently upregulated transcription of the active oct4 promoter in embryonic stem cells (ESCs) they failed to activate the silenced oct4 promoter in ESC-derived neural stem cells (NSCs), indicating that as for endogenous transcription factors also dTALE activity is limited by repressive epigenetic mechanisms. We therefore targeted the activity of epigenetic modulators and found that chemical inhibition of histone deacetylases by valproic acid or DNA methyltransferases by 5-aza-2′-deoxycytidine facilitated dTALE-mediated activation of the epigenetically silenced oct4 promoter in NSCs. Notably, demethylation of the oct4 promoter occurred only if chemical inhibitors and dTALEs were applied together but not upon treatment with inhibitors or dTALEs only. These results show that dTALEs in combination with chemical manipulation of epigenetic modifiers facilitate targeted transcriptional activation of epigenetically silenced target genes. PMID:22387464

  4. Identification of Novel Tumor Markers in Prostate, Colon and Breast Cancer by Unbiased Methylation Profiling

    PubMed Central

    Chung, Woonbok; Kwabi-Addo, Bernard; Ittmann, Michael; Jelinek, Jaroslav; Shen, Lanlan; Yu, Yinhua; Issa, Jean-Pierre J.

    2008-01-01

    DNA hypermethylation is a common epigenetic abnormality in cancer and may serve as a useful marker to clone cancer-related genes as well as a marker of clinical disease activity. To identify CpG islands methylated in prostate cancer, we used methylated CpG island amplification (MCA) coupled with representational difference analysis (RDA) on prostate cancer cell lines. We isolated 34 clones that corresponded to promoter CpG islands, including 5 reported targets of hypermethylation in cancer. We confirmed the data for 17 CpG islands by COBRA and/or pyrosequencing. All 17 genes were methylated in at least 2 cell lines of a 21-cancer cell line panel containing prostate cancer, colon cancer, leukemia, and breast cancer. Based on methylation in primary tumors compared to normal adjacent tissues, NKX2-5, CLSTN1, SPOCK2, SLC16A12, DPYS and NSE1 are candidate biomarkers for prostate cancer (methylation range 50%–85%). The combination of NSE1 or SPOCK2 hypermethylation showed a sensitivity of 80% and specificity of 95% in differentiating cancer from normal. Similarly NKX2-5, SPOCK2, SLC16A12, DPYS and GALR2 are candidate biomarkers for colon cancer (methylation range 60%–95%) and GALR2 hypermethylation showed a sensitivity of 85% and specificity of 95%. Finally, SLC16A12, GALR2, TOX, SPOCK2, EGFR5 and DPYS are candidate biomarkers for breast cancer (methylation range 33%–79%) with the combination of EGFR5 or TOX hypermethylation showing a sensitivity of 92% and specificity of 92%. Expression analysis for eight genes that had the most hypermethylation confirmed the methylation associated silencing and reactivation with 5-aza-2′-deoxycytidine treatment. Our data identify new targets of transcriptional silencing in cancer, and provide new biomarkers that could be useful in screening for prostate cancer and other cancers. PMID:18446232

  5. FT-IR Microspectrometry Reveals the Variation of Membrane Polarizability due to Epigenomic Effect on Epithelial Ovarian Cancer

    PubMed Central

    Hsu, Morris M. H.; Huang, Pei-Yu; Lee, Yao-Chang; Fang, Yuang-Chuen; Chan, Michael W. Y.; Lee, Cheng-I

    2014-01-01

    Ovarian cancer, as well as other cancers, is primarily caused by methylation at cytosines in CpG islands, but the current marker for ovarian cancer is low in sensitivity and failed in early-stage detection. Fourier transform infrared (FT-IR) spectroscopy is powerful in analysis of functional groups within molecules, and infrared microscopy illustrates the location of specific groups within single cells. In this study, we applied HPLC and FT-IR microspectrometry to study normal epithelial ovarian cell line immortalized ovarian surface epithelium (IOSE), two epithelial ovarian cell lines (A2780 and CP70) with distinct properties, and the effect of a cancer drug 5-aza-2'-deoxycytidine (5-aza) without labeling. Our results reveal that inhibition of methylation on cytosine with 5-aza initiates the protein expression. Furthermore, paraffin-adsorption kinetic study allows us to distinguish hypermethylated and hypomethyated cells, and this assay can be a potential diagnosis method for cancer screening. PMID:25299694

  6. FT-IR microspectrometry reveals the variation of membrane polarizability due to epigenomic effect on epithelial ovarian cancer.

    PubMed

    Hsu, Morris M H; Huang, Pei-Yu; Lee, Yao-Chang; Fang, Yuang-Chuen; Chan, Michael W Y; Lee, Cheng-I

    2014-10-08

    Ovarian cancer, as well as other cancers, is primarily caused by methylation at cytosines in CpG islands, but the current marker for ovarian cancer is low in sensitivity and failed in early-stage detection. Fourier transform infrared (FT-IR) spectroscopy is powerful in analysis of functional groups within molecules, and infrared microscopy illustrates the location of specific groups within single cells. In this study, we applied HPLC and FT-IR microspectrometry to study normal epithelial ovarian cell line immortalized ovarian surface epithelium (IOSE), two epithelial ovarian cell lines (A2780 and CP70) with distinct properties, and the effect of a cancer drug 5-aza-2'-deoxycytidine (5-aza) without labeling. Our results reveal that inhibition of methylation on cytosine with 5-aza initiates the protein expression. Furthermore, paraffin-adsorption kinetic study allows us to distinguish hypermethylated and hypomethyated cells, and this assay can be a potential diagnosis method for cancer screening.

  7. Mutation allele burden remains unchanged in chronic myelomonocytic leukaemia responding to hypomethylating agents.

    PubMed

    Merlevede, Jane; Droin, Nathalie; Qin, Tingting; Meldi, Kristen; Yoshida, Kenichi; Morabito, Margot; Chautard, Emilie; Auboeuf, Didier; Fenaux, Pierre; Braun, Thorsten; Itzykson, Raphael; de Botton, Stéphane; Quesnel, Bruno; Commes, Thérèse; Jourdan, Eric; Vainchenker, William; Bernard, Olivier; Pata-Merci, Noemie; Solier, Stéphanie; Gayevskiy, Velimir; Dinger, Marcel E; Cowley, Mark J; Selimoglu-Buet, Dorothée; Meyer, Vincent; Artiguenave, François; Deleuze, Jean-François; Preudhomme, Claude; Stratton, Michael R; Alexandrov, Ludmil B; Padron, Eric; Ogawa, Seishi; Koscielny, Serge; Figueroa, Maria; Solary, Eric

    2016-01-01

    The cytidine analogues azacytidine and 5-aza-2'-deoxycytidine (decitabine) are commonly used to treat myelodysplastic syndromes, with or without a myeloproliferative component. It remains unclear whether the response to these hypomethylating agents results from a cytotoxic or an epigenetic effect. In this study, we address this question in chronic myelomonocytic leukaemia. We describe a comprehensive analysis of the mutational landscape of these tumours, combining whole-exome and whole-genome sequencing. We identify an average of 14±5 somatic mutations in coding sequences of sorted monocyte DNA and the signatures of three mutational processes. Serial sequencing demonstrates that the response to hypomethylating agents is associated with changes in DNA methylation and gene expression, without any decrease in the mutation allele burden, nor prevention of new genetic alteration occurence. Our findings indicate that cytosine analogues restore a balanced haematopoiesis without decreasing the size of the mutated clone, arguing for a predominantly epigenetic effect.

  8. Mutation allele burden remains unchanged in chronic myelomonocytic leukaemia responding to hypomethylating agents

    PubMed Central

    Merlevede, Jane; Droin, Nathalie; Qin, Tingting; Meldi, Kristen; Yoshida, Kenichi; Morabito, Margot; Chautard, Emilie; Auboeuf, Didier; Fenaux, Pierre; Braun, Thorsten; Itzykson, Raphael; de Botton, Stéphane; Quesnel, Bruno; Commes, Thérèse; Jourdan, Eric; Vainchenker, William; Bernard, Olivier; Pata-Merci, Noemie; Solier, Stéphanie; Gayevskiy, Velimir; Dinger, Marcel E.; Cowley, Mark J.; Selimoglu-Buet, Dorothée; Meyer, Vincent; Artiguenave, François; Deleuze, Jean-François; Preudhomme, Claude; Stratton, Michael R.; Alexandrov, Ludmil B.; Padron, Eric; Ogawa, Seishi; Koscielny, Serge; Figueroa, Maria; Solary, Eric

    2016-01-01

    The cytidine analogues azacytidine and 5-aza-2'-deoxycytidine (decitabine) are commonly used to treat myelodysplastic syndromes, with or without a myeloproliferative component. It remains unclear whether the response to these hypomethylating agents results from a cytotoxic or an epigenetic effect. In this study, we address this question in chronic myelomonocytic leukaemia. We describe a comprehensive analysis of the mutational landscape of these tumours, combining whole-exome and whole-genome sequencing. We identify an average of 14±5 somatic mutations in coding sequences of sorted monocyte DNA and the signatures of three mutational processes. Serial sequencing demonstrates that the response to hypomethylating agents is associated with changes in DNA methylation and gene expression, without any decrease in the mutation allele burden, nor prevention of new genetic alteration occurence. Our findings indicate that cytosine analogues restore a balanced haematopoiesis without decreasing the size of the mutated clone, arguing for a predominantly epigenetic effect. PMID:26908133

  9. Mutation allele burden remains unchanged in chronic myelomonocytic leukaemia responding to hypomethylating agents.

    PubMed

    Merlevede, Jane; Droin, Nathalie; Qin, Tingting; Meldi, Kristen; Yoshida, Kenichi; Morabito, Margot; Chautard, Emilie; Auboeuf, Didier; Fenaux, Pierre; Braun, Thorsten; Itzykson, Raphael; de Botton, Stéphane; Quesnel, Bruno; Commes, Thérèse; Jourdan, Eric; Vainchenker, William; Bernard, Olivier; Pata-Merci, Noemie; Solier, Stéphanie; Gayevskiy, Velimir; Dinger, Marcel E; Cowley, Mark J; Selimoglu-Buet, Dorothée; Meyer, Vincent; Artiguenave, François; Deleuze, Jean-François; Preudhomme, Claude; Stratton, Michael R; Alexandrov, Ludmil B; Padron, Eric; Ogawa, Seishi; Koscielny, Serge; Figueroa, Maria; Solary, Eric

    2016-01-01

    The cytidine analogues azacytidine and 5-aza-2'-deoxycytidine (decitabine) are commonly used to treat myelodysplastic syndromes, with or without a myeloproliferative component. It remains unclear whether the response to these hypomethylating agents results from a cytotoxic or an epigenetic effect. In this study, we address this question in chronic myelomonocytic leukaemia. We describe a comprehensive analysis of the mutational landscape of these tumours, combining whole-exome and whole-genome sequencing. We identify an average of 14±5 somatic mutations in coding sequences of sorted monocyte DNA and the signatures of three mutational processes. Serial sequencing demonstrates that the response to hypomethylating agents is associated with changes in DNA methylation and gene expression, without any decrease in the mutation allele burden, nor prevention of new genetic alteration occurence. Our findings indicate that cytosine analogues restore a balanced haematopoiesis without decreasing the size of the mutated clone, arguing for a predominantly epigenetic effect. PMID:26908133

  10. Progression of Prostate Carcinogenesis and Dietary Methyl Donors: Temporal Dependence

    PubMed Central

    Shabbeer, Shabana; Williams, Simon A.; Simons, Brian W.; Herman, James G.; Carducci, Michael A.

    2011-01-01

    Insufficient dose of dietary methyl groups are associated with a host of conditions ranging from neural tube defects to cancer. On the other hand, it is not certain what effect excess dietary methyl groups could have on cancer. This is especially true for prostate cancer (PCa), a disease that is characterized by increasing DNA methylation changes with increasing grade of the cancer. In this three-part study in animals, we look at (i) the effect of excess methyl donors on the growth rate of PCa in vivo, (ii) the ability of 5-aza-2'-deoxycytidine, a demethylating agent, to demethylate in the presence of excess dietary methyl donors and (iii) the effect of in utero feeding of excess methyl donors to the later onset of PCa. The results show that when mice are fed a dietary excess of methyl donors, we do not see (i) an increase in the growth rate of DU-145 and PC-3 xenografts in vivo, or (ii) interference in the ability of 5-aza-2'-deoxycytidine to demethylate the promoters of Androgen Receptor or Reprimo of PCa xenografts but (iii) a protective effect on the development of higher grades of PCa in the “Hi-myc” mouse model of PCa which were fed the increased methyl donors in utero. We conclude that the impact of dietary methyl donors on PCa progression depends upon the timing of exposure to the dietary agents. When fed before the onset of cancer, i.e. in utero, excess methyl donors can have a protective effect on the progression of cancer. PMID:22139053

  11. Cross talk between poly(ADP-ribose) polymerase 1 methylation and oxidative stress involved in the toxic effect of anatase titanium dioxide nanoparticles.

    PubMed

    Bai, Wenlin; Chen, Yujiao; Gao, Ai

    2015-01-01

    Given the tremendous growth in the application of titanium dioxide nanoparticles (TNPs), concerns about the potential health hazards of TNPs to humans have been raised. Poly(ADP-ribose) polymerase 1 (PARP-1), a highly conserved DNA-binding protein, is involved in many molecular and cellular processes. Limited data demonstrated that certain nanomaterials induced the aberrant hypermethylation of PARP-1. However, the mechanism involved in TNP-induced PARP-1 abnormal methylation has not been studied. A549 cells were incubated with anatase TNPs (22.1 nm) for 24 hours pretreatment with or without methyltransferase inhibitor 5-aza-2'-deoxycytidine and the reactive oxygen species (ROS) scavenger α-lipoic acid to assess the possible role of methylation and ROS in the toxic effect of TNPs. After TNPs characterization, a battery of assays was performed to evaluate the toxic effect of TNPs, PARP-1 methylation status, and oxidative damage. Results showed that TNPs decreased the cell viability in a dose-dependent manner, in accordance with the increase of lactate dehydrogenase activity, which indicated membrane damage of cells. Similar to the high level of PARP-1 methylation, the generation of ROS was significantly increased after exposure to TNPs for 24 hours. Furthermore, α-lipoic acid decreased TNP-induced ROS generation and then attenuated TNP-triggered PARP-1 hypermethylation. Meanwhile, 5-aza-2'-deoxycytidine simultaneously decreased the ROS generation induced by TNPs, resulting in the decline of PARP-1 methylation. In summary, TNPs triggered the aberrant hypermethylation of the PARP-1 promoter and there was a cross talk between oxidative stress and PARP-1 methylation in the toxic effect of TNPs.

  12. Cross talk between poly(ADP-ribose) polymerase 1 methylation and oxidative stress involved in the toxic effect of anatase titanium dioxide nanoparticles

    PubMed Central

    Bai, Wenlin; Chen, Yujiao; Gao, Ai

    2015-01-01

    Given the tremendous growth in the application of titanium dioxide nanoparticles (TNPs), concerns about the potential health hazards of TNPs to humans have been raised. Poly(ADP-ribose) polymerase 1 (PARP-1), a highly conserved DNA-binding protein, is involved in many molecular and cellular processes. Limited data demonstrated that certain nanomaterials induced the aberrant hypermethylation of PARP-1. However, the mechanism involved in TNP-induced PARP-1 abnormal methylation has not been studied. A549 cells were incubated with anatase TNPs (22.1 nm) for 24 hours pretreatment with or without methyltransferase inhibitor 5-aza-2′-deoxycytidine and the reactive oxygen species (ROS) scavenger α-lipoic acid to assess the possible role of methylation and ROS in the toxic effect of TNPs. After TNPs characterization, a battery of assays was performed to evaluate the toxic effect of TNPs, PARP-1 methylation status, and oxidative damage. Results showed that TNPs decreased the cell viability in a dose-dependent manner, in accordance with the increase of lactate dehydrogenase activity, which indicated membrane damage of cells. Similar to the high level of PARP-1 methylation, the generation of ROS was significantly increased after exposure to TNPs for 24 hours. Furthermore, α-lipoic acid decreased TNP-induced ROS generation and then attenuated TNP-triggered PARP-1 hypermethylation. Meanwhile, 5-aza-2′-deoxycytidine simultaneously decreased the ROS generation induced by TNPs, resulting in the decline of PARP-1 methylation. In summary, TNPs triggered the aberrant hypermethylation of the PARP-1 promoter and there was a cross talk between oxidative stress and PARP-1 methylation in the toxic effect of TNPs. PMID:26366077

  13. A Novel Combinatorial Epigenetic Therapy Using Resveratrol and Pterostilbene for Restoring Estrogen Receptor-α (ERα) Expression in ERα-Negative Breast Cancer Cells

    PubMed Central

    Kala, Rishabh; Tollefsbol, Trygve O.

    2016-01-01

    Breast cancer is the second most common cancer and a leading cause of cancer death in women. Specifically, estrogen receptor-α (ERα)-negative breast cancers are clinically more aggressive and normally do not respond to conventional hormone-directed therapies such as tamoxifen. Although epigenetic-based therapies such as 5-aza-2’-deoxycytidine and/or trichostatin A as DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors, respectively, can regulate the expression of ERα, this can often lead to a number of side effects. Plant-based dietary compounds such as resveratrol and pterostilbene in novel combinatorial therapy provides new avenues to target these side effects and provide similar results with a higher level of safety. Here, we report that combinatorial resveratrol and pterostilbene leads to the reactivation of ERα expression in ERα-negative breast cancer cells in a time-dependent manner. Chromatin immunoprecipitation analysis of the ERα promoter in each cell type revealed an increase in enrichment of acetyl-H3, acetyl-H3lysine9 (H3K9) and acetyl-H4 active chromatin markers in the ERα promoter region after combinatorial treatment. This treatment also resulted in a significant change in HDAC and histone acetyl transferase (HAT) enzyme activity in these cells after 3 days of treatments. The combination resulted in a significant decrease in DNMT enzyme activity and 5-methylcytosine levels in MDA-MB-157 breast cancer cells. Moreover, reactivation of ERα expression by resveratrol combined with pterostilbene was found to sensitize ERα-dependent response to 17β-estradiol (E2)-mediated cellular proliferation and antagonist 4-hydroxytamoxifen (4-OHT)-mediated inhibition of cellular proliferation in ERα-negative breast cancer cells. E2 and 4-OHT further affected the ERα-responsive downstream progesterone receptor (PGR) gene in ERα reactivated MDA-MB-157 cells. Collectively, our findings provide a new and safer way of restoring ER

  14. Involvement of B-cell CLL/lymphoma 2 promoter methylation in cigarette smoke extract-induced emphysema

    PubMed Central

    Zeng, Huihui; Shi, Zhihui; Kong, Xianglong; Chen, Yan; Zhang, Hongliang; Peng, Hong; Luo, Hong

    2016-01-01

    Abnormal apoptotic events play an important role in the pathogenesis of emphysema. The B-cell CLL/lymphoma 2 (Bcl-2) family proteins are essential and critical regulators of apoptosis. We determined whether the anti-apoptotic Bcl-2 play a role in the cigarette smoke extract (CSE)-induced emphysema. Furthermore, given the involvement of epigenetics in chronic obstructive pulmonary disease, we hypothesized that the deregulation of Bcl-2 might be caused by gene methylation. The emphysema in BALB/C mice was established by intraperitoneally injection of CSE. 5-aza-2′-deoxycytidine (AZA; a demethylation reagent) and phosphate-buffered saline were also administered intraperitoneally as CSE. TUNEL assay was used to assess apoptotic index of pulmonary cells. The methylation status of CpG dinucleotides within the Bcl-2 promoter was observed in all groups by bisulfite sequencing PCR. Pulmonary expression of Bcl-2, Bax, and cytochrome C were measured after four weeks of treatment. The apoptotic index of pulmonary cells in CSE injection group was much higher than control ((25.88 ± 7.55)% vs. (6.28 ± 2.96)%). Compared to control mice, decreased expression of Bcl-2 and high methylation of Bcl-2 promoter was observed in CSE injected mice (0.88 ± 0.08 vs. 0.49 ± 0.11, (3.82 ± 1.34)% vs. (35.68 ± 5.99)%, P < 0.01).CSE treatment induced lung cell apoptosis and decreased lung function. AZA treatment increased Bcl-2 expression with Bcl-2 promoter demethylation. AZA also alleviated the lung cell apoptosis and function failure caused by CSE treatment. The decreased expression of anti-apoptotic Bcl-2 might account for the increased apoptosis in CSE induced-emphysema. Apparently, epigenetic alternation played a role in this deregulation of Bcl-2 expression, and it might support the involvement of epigenetic events in the pathogenesis of emphysema. PMID:26924842

  15. Elevation of Soluble Guanylate Cyclase Suppresses Proliferation and Survival of Human Breast Cancer Cells

    PubMed Central

    Chen, Chen-Yu; Shiah, Shine-Gwo; Kung, Hsing-Jien; King, Kuang-Liang; Su, Liang-Chen; Chang, Shi-Chuan; Chang, Chung-Ho

    2015-01-01

    Nitric oxide (NO) is an essential signaling molecule in biological systems. Soluble guanylate cyclase (sGC), composing of α1 and β1 subunit, is the receptor for NO. Using radioimmunoassay, we discovered that activation of sGC by treatment with bradykinin or sodium nitroprusside (SNP) is impaired in MCF-7 and MDA-MB-231 breast cancer cells as compared to normal breast epithelial 184A1 cells. The 184A1 cells expressed both sGC α1 and sGCβ1 mRNAs. However, levels of sGCβ1 mRNAs were relatively lower in MCF-7 cells while both mRNA of sGC subunits were absent in MDA-MB-231 cells. Treatment with DNA methyltransferase inhibitor 5-aza-2’-deoxycytidine (5-aza-dC) increased mRNA levels of both sGCα1 and sGCβ1 in MDA-MB-231 cells but only sGCβ1 mRNAs in MCF-7 cells. The 5-aza-dC treatment increased the SNP-induced cGMP production in MCF-7 and MDA-MB-231, but not in 184A1 cells. Bisulfite sequencing revealed that the promoter of sGCα1 in MDA-MB-231 cells and promoter of sGCβ1 in MCF-7 cells were methylated. Promoter hypermethylation of sGCα1 and sGCβ1 was found in 1 out of 10 breast cancer patients. Over-expression of both sGC subunits in MDA-MB-231 cells induced apoptosis and growth inhibition in vitro as well as reduced tumor incidence and tumor growth rate of MDA-MB-231 xenografts in nude mice. Elevation of sGC reduced protein abundance of Bcl-2, Bcl-xL, Cdc2, Cdc25A, Cyclin B1, Cyclin D1, Cdk6, c-Myc, and Skp2 while increased protein expression of p53. Our study demonstrated that down-regulation of sGC, partially due to promoter methylation, provides growth and survival advantage in human breast cancer cells. PMID:25928539

  16. Differential Regulation of the Dioxin-Induced Cyp1a1 and Cyp1b1 Genes in Mouse Hepatoma and Fibroblast cell lines

    PubMed Central

    Beedanagari, Sudheer R.; Taylor, Robert T.; Hankinson, Oliver

    2010-01-01

    The xenobiotic metabolizing enzymes Cyp1a1 and Cyp1b1 can be induced by the environmental contaminant 2,3,7,8-tetrachlorodibenzo-ρ-dioxin (dioxin) via the Aryl Hydrocarbon Receptor (AhR). These genes are differentially induced by dioxin in different mouse cell lines. In the mouse hepatoma cell line Hepa1c1c7 (Hepa-1), the Cyp1a1 gene is induced to very high levels by dioxin, but the levels of Cyp1b1 mRNA are extremely low and are not inducible by dioxin. The reverse is the case for the mouse embryonic fibroblast cell line C3H10T1/2, in which Cyp1b1 is induced to very high levels by dioxin, but the levels of Cyp1a1 mRNA are extremely low and not inducible by dioxin. However, dioxin treatment leads to the recruitment of AhR to the enhancer regions of both genes in both cell lines. Somatic cell hybrid clones generated between the two cell lines display high levels of induction of both genes in response to dioxin. Strong reactivation of the Cyp1a1 gene was also observed in C3H10T1/2 cell line after treatment with the DNA methyl transferase inhibitor, 5-aza-2′-deoxycytidine (5-AzadC) and the histone deacetylase inhibitor, trichostatin-A (TSA). However, only modest reactivation of Cyp1b1 was observed in Hepa-1 cells after 5-AzadC or TSA treatment. These data demonstrate that the presence or absence of binding of AhR to regulatory regions is not responsible for determining the differences in levels of induction of the two genes in these cell lines, and indicate that DNA methylation plays a major role in silencing of Cyp1a1 gene expression in C3H10T1/2 cells, but appears to play only a minor role in silencing Cyp1b1 gene expression in Hepa-1 cells, which likely occurs principally because Hepa-1 cells lack a factor required for high levels of induction of this gene. PMID:20116417

  17. Genome-wide DNA methylation profiling of recurrent and non-recurrent chordomas

    PubMed Central

    Alholle, A; Brini, A T; Bauer, J; Gharanei, S; Niada, S; Slater, A; Gentle, D; Maher, E R; Jeys, L; Grimer, R; Sumathi, V P; Latif, F

    2015-01-01

    Chordomas are an aggressive rare type of malignant bone tumors arising from the remnant of the notochord. Chordomas occur mainly in vertebral bones and account for 1–4% of malignant bone tumors. Management and treatment of chordomas are difficult as they are resistant to conventional chemotherapy; therefore, they are mainly treated with surgery and radiation therapy. In this study, we performed DNA methylation profiling of 26 chordomas and normal nucleus pulposus samples plus UCH-1 chordoma cell line using the Illumina Infinium HumanMethylation450 BeadChips. Combined bisulfite restriction analysis and bisulfite sequencing was used to confirm the methylation data. Gene expression was analyzed using RT-PCR before and after 5-aza-2’-deoxycytidine (5-azaDC) treatment of chordoma cell lines. Analysis of the HumanMethylation450 BeadChip data led to the identification of 8,819 loci (2.9%) that were significantly differentially methylated (>0.2 average β-value difference) between chordomas and nucleus pulposus samples (adjusted P < 0.05). Among these, 5,868 probes (66.5%) were hypomethylated, compared to 2,951 (33.5%) loci that were hypermethylated in chordomas compared to controls. From the 2,951 differentially hypermethylated probes, 33.3% were localized in the promoter region (982 probes) and, among these, 104 probes showed cancer-specific hypermethylation. Ingenuity Pathway Analysis indicates that the cancer-specific differentially methylated loci are involved in various networks including cancer disease, nervous system development and function, cell death and survival, cellular growth, cellular development, and proliferation. Furthermore, we identified a subset of probes that were differentially methylated between recurrent and non-recurrent chordomas. BeadChip methylation data was confirmed for these genes and gene expression was shown to be upregulated in methylated chordoma cell lines after treatment with 5-azaDC. Understanding epigenetic changes in chordomas

  18. Expression of Placental Members of the Human Growth Hormone Gene Family Is Increased in Response to Sequential Inhibition of DNA Methylation and Histone Deacetylation

    PubMed Central

    Ganguly, Esha; Bock, Margaret E.; Cattini, Peter A.

    2015-01-01

    Abstract The genes coding for human (h) chorionic somatomammotropin (CS), hCS-A and hCS-B, and placental growth hormone (GH-V), hGH-V, are located at a single locus on chromosome 17. Efficient expression of these placental genes has been linked to local regulatory (5′ P and 3′ enhancer) sequences and a remote locus control region (LCR), in part, through gene transfer in placental and nonplacental tumor cells. However, low levels of endogenous hCS/GH-V transcripts are reported in the same cells compared with term placenta, suggesting that chromatin structure, or regulatory region accessibility, versus transcription factor availability contributes to the relatively low levels. To assess individual hCS-A, CS-B, and GH-V gene expression in placental and nonplacental tumor cells and the effect of increasing chromatin accessibility by inhibiting DNA methylation and histone deacetylation using 5-aza-2′-deoxycytidine (azadC) and trichostatin A (TSA). Low levels of hCS-A, CS-B, and GH-V were detected in placental and nonplacental tumor cells compared with term placenta. A significant >5-fold increase in activity was seen in placental, but not nonplacental, cells transfected with hybrid hCS promoter luciferase genes containing 3′ enhancer sequences. Pretreatment of placental JEG-3 cells with azadC resulted in a >10-fold increase in hCS-A, CS-B, and GH-V RNA levels with TSA treatment compared with TSA treatment alone. This effect was specific as reversing the treatment regimen did not have the same effect. An assessment of hyperacetylated H3/H4 in JEG-3 cells treated with azadC and TSA versus TSA alone revealed significant increases consistent with a more open chromatin structure, including the hCS 3′ enhancer sequences and LCR. These observations suggest that accessibility of remote and local regulatory regions required for efficient placental hGH/CS expression can be restricted by DNA methylation and histone acetylation status. This includes restricting access of

  19. Grape seed proanthocyanidins reactivate silenced tumor suppressor genes in human skin cancer cells by targeting epigenetic regulators

    SciTech Connect

    Vaid, Mudit; Prasad, Ram; Singh, Tripti; Jones, Virginia; Katiyar, Santosh K.

    2012-08-15

    Grape seed proanthocyanidins (GSPs) have been shown to have anti-skin carcinogenic effects in in vitro and in vivo models. However, the precise epigenetic molecular mechanisms remain unexplored. This study was designed to investigate whether GSPs reactivate silenced tumor suppressor genes following epigenetic modifications in skin cancer cells. For this purpose, A431 and SCC13 human squamous cell carcinoma cell lines were used as in vitro models. The effects of GSPs on DNA methylation, histone modifications and tumor suppressor gene expressions were studied in these cell lines using enzyme activity assays, western blotting, dot-blot analysis and real-time polymerase chain reaction (RT-PCR). We found that treatment of A431 and SCC13 cells with GSPs decreased the levels of: (i) global DNA methylation, (ii) 5-methylcytosine, (iii) DNA methyltransferase (DNMT) activity and (iv) messenger RNA (mRNA) and protein levels of DNMT1, DNMT3a and DNMT3b in these cells. Similar effects were noted when these cancer cells were treated identically with 5-aza-2′-deoxycytidine, an inhibitor of DNA methylation. GSPs decreased histone deacetylase activity, increased levels of acetylated lysines 9 and 14 on histone H3 (H3-Lys 9 and 14) and acetylated lysines 5, 12 and 16 on histone H4, and reduced the levels of methylated H3-Lys 9. Further, GSP treatment resulted in re-expression of the mRNA and proteins of silenced tumor suppressor genes, RASSF1A, p16{sup INK4a} and Cip1/p21. Together, this study provides a new insight into the epigenetic mechanisms of GSPs and may have significant implications for epigenetic therapy in the treatment/prevention of skin cancers in humans. -- Highlights: ►Epigenetic modulations have been shown to have a role in cancer risk. ►Proanthocyanidins decrease the levels of DNA methylation and histone deacetylation. ►Proanthocyanidins inhibit histone deacetylase activity in skin cancer cells. ►Proanthocyanidins reactivate tumor suppressor genes in skin

  20. Epigenetic regulation of the 1,25-dihydroxyvitamin D3 24-hydroxylase (CYP24A1) in colon cancer cells

    PubMed Central

    Höbaus, Julia; Fetahu, Irfete Sh.; Khorchide, Maya; Manhardt, Teresa; Kallay, Enikö

    2013-01-01

    Calcitriol is the hormonally active form of vitamin D and has anti-proliferative and pro-apoptotic effects. Calcitriol and its precursor calcidiol (25(OH)D3) are degraded by the 1,25-dihydroxyvitamin D3 24-hydroxylase (CYP24A1). This enzyme is overexpressed in colorectal tumors, however, the mechanisms of this overexpression remain to be elucidated. CYP24A1 mRNA level differs among colorectal cancer cell lines and range from almost undetectable to high. Since DNA methylation and histone acetylation regulate CYP24A1 gene expression in prostate cancer cell lines, we investigated whether epigenetic mechanisms could explain the differences in basal expression of CYP24A1 in colon cancer cells. Methyltransferase inhibitor 5-aza-2′-deoxycytidine (DAC) treatment resulted in an over 50-fold induction of CYP24A1 mRNA expression in Coga1A and HT-29 cells but in no response in Caco2/AQ and Coga13 cells. This finding is supported by a strong increase in CYP24A1 activity after DAC treatment in Coga1A (35%). In addition, calcitriol and DAC had synergistic effects on CYP24A1 gene transcription. Interestingly, the CYP24A1 promoter was not methylated in Coga1A and HT-29 (<5%), while in Caco2/AQ it was 62% methylated. This suggests that DNA demethylation must activate genes upstream of CYP24A1 rather than act on the gene itself. However, transcriptional regulators of CYP24A1 such as vitamin D receptor (VDR), retinoid X receptor (RXR), specificity protein 1 (SP1), or mediator complex subunit 1 (MED1) were not upregulated. We conclude that in colon cancer cells, CYP24A1 gene expression is inducible by methyltransferase and some histone deacetylase inhibitors in a cell line-dependent manner. This effect does not correlate with the methylation state of the promoter and therefore must affect genes upstream of CYP24A1. This article is part of a Special Issue ‘Vitamin D Workshop’. PMID:22940288

  1. Cotreatment with Smac mimetics and demethylating agents induces both apoptotic and necroptotic cell death pathways in acute lymphoblastic leukemia cells.

    PubMed

    Gerges, Steve; Rohde, Katharina; Fulda, Simone

    2016-05-28

    Treatment resistance in acute lymphoblastic leukemia (ALL) is often caused by defects in programmed cell death, e.g. by overexpression of Inhibitor of Apoptosis (IAP) proteins. Here, we report that small-molecule Smac mimetics (i.e. BV6, LCL161, birinapant) that neutralize x-linked IAP (XIAP), cellular IAP (cIAP)1 and cIAP2 cooperate with demethylating agents (i.e. 5-azacytidine (5AC) or 5-aza-2'-deoxycytidine (DAC)) to induce cell death in ALL cells. Molecular studies reveal that induction of cell death is preceded by BV6-mediated depletion of cIAP1 protein and involves tumor necrosis factor (TNF)α autocrine/paracrine signaling, since the TNFα-blocking antibody Enbrel significantly reduces BV6/5AC-induced cell death. While BV6/5AC cotreatment induces caspase-3 activation, the broad-range caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) only partly rescues ALL cells from BV6/5AC-induced cell death. This indicates that BV6/5AC cotreatment engages non-apoptotic cell death upon caspase inhibition. Indeed, genetic silencing of key components of necroptosis such as Receptor-Interacting Protein (RIP)3 or mixed lineage kinase domain-like (MLKL) in parallel with administration of zVAD.fmk provides a significantly better protection against BV6/5AC-induced cell death compared to the use of zVAD.fmk alone. Similarly, concomitant administration of pharmacological inhibitors of necroptosis (i.e. necrostatin-1s, GSK'872, dabrafenib, NSA) together with zVAD.fmk is superior in rescuing cells from BV6/5AC-induced cell death compared to the use of zVAD.fmk alone. These findings demonstrate that in ALL cells BV6/5AC-induced cell death is mediated via both apoptotic and necroptotic pathways. Importantly, BV6/5AC cotreatment triggers necroptosis in ALL cells that are resistant to apoptosis due to caspase inhibition. This opens new perspectives to overcome apoptosis resistance with important implications for the development of new treatment strategies

  2. DNA methylation in Cosmc promoter region and aberrantly glycosylated IgA1 associated with pediatric IgA nephropathy.

    PubMed

    Sun, Qiang; Zhang, Jianqian; Zhou, Nan; Liu, Xiaorong; Shen, Ying

    2015-01-01

    IgA nephropathy (IgAN) is one of the most common glomerular diseases leading to end-stage renal failure. Elevation of aberrantly glycosylated IgA1 is a key feature of it. The expression of the specific molecular chaperone of core1ß1, 3galactosyl transferase (Cosmc) is known to be reduced in IgAN. We aimed to investigate whether the methylation of CpG islands of Cosmc gene promoter region could act as a possible mechanism responsible for down-regulation of Cosmc and related higher secretion of aberrantly glycosylated IgA1in lymphocytes from children with IgA nephropathy. Three groups were included: IgAN children (n = 26), other renal diseases (n = 11) and healthy children (n = 13). B-lymphocytes were isolated and cultured, treated or not with IL-4 or 5-Aza-2'-deoxycytidine (AZA). The levels of DNA methylation of Cosmc promotor region were not significantly different between the lymphocytes of the three children populations (P = 0.113), but there were significant differences between IgAN lymphocytes and lymphocytes of the other two children populations after IL-4 (P<0.0001) or AZA (P<0.0001). Cosmc mRNA expression was low in IgAN lymphocytes compared to the other two groups (P<0.0001). The level of aberrantly glycosylated IgA1 was markedly higher in IgAN group compared to the other groups (P<0.0001). After treatment with IL-4, the levels of Cosmc DNA methylation and aberrantly glycosylated IgA1 in IgAN lymphocytes were remarkably higher than the other two groups (P<0.0001) with more markedly decreased Cosmc mRNA content (P<0.0001). After treatment with AZA, the levels in IgAN lymphocytes were decreased, but was still remarkably higher than the other two groups (P<0.0001), while Cosmc mRNA content in IgAN lymphocytes were more markedly increased than the other two groups (P<0.0001). The alteration of DNA methylation by IL-4 or AZA specifically correlates in IgAN lymphocytes with alterations in Cosmc mRNA expression and with the level of aberrantly glycosylated IgA1

  3. Amyloid Beta-Mediated Epigenetic Alteration of Insulin-Like Growth Factor Binding Protein 3 Controls Cell Survival in Alzheimer's Disease

    PubMed Central

    Sung, Hye Youn; Choi, Eun Nam; Lyu, Dahyun; Mook-Jung, Inhee; Ahn, Jung-Hyuck

    2014-01-01

    Swedish double mutation (KM670/671NL) of amyloid precursor protein (APP) is reported to increase toxic amyloid β (Aβ) production via aberrant cleavage at the β-secretase site and thereby cause early-onset Alzheimer's disease (AD). However, the underlying molecular mechanisms leading to AD pathogenesis remains largely unknown. Previously, our transcriptome sequence analyses revealed global expressional modifications of over 600 genes in APP-Swedish mutant-expressing H4 (H4-sw) cells compared to wild type H4 cells. Insulin-like growth factor binding protein 3 (IGFBP3) is one gene that showed significantly decreased mRNA expression in H4-sw cells. In this study, we investigated the functional role of IGFBP3 in AD pathogenesis and elucidated the mechanisms regulating its expression. We observed decreased IGFBP3 expression in the H4-sw cell line as well as the hippocampus of AD model transgenic mice. Treatment with exogenous IGFBP3 protein inhibited Aβ1–42- induced cell death and caspase-3 activity, whereas siRNA-mediated suppression of IGFBP3 expression induced cell death and caspase-3 cleavage. In primary hippocampal neurons, administration of IGFBP3 protein blocked apoptotic cell death due to Aβ1–42 toxicity. These data implicate a protective role for IGFBP3 against Aβ1–42-mediated apoptosis. Next, we investigated the regulatory mechanisms of IGFBP3 expression in AD pathogenesis. We observed abnormal IGFBP3 hypermethylation within the promoter CpG island in H4-sw cells. Treatment with the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine restored IGFBP3 expression at both the mRNA and protein levels. Chronic exposure to Aβ1–42 induced IGFBP3 hypermethylation at CpGs, particularly at loci −164 and −173, and subsequently suppressed IGFBP3 expression. Therefore, we demonstrate that expression of anti-apoptotic IGFBP3 is regulated by epigenetic DNA methylation, suggesting a mechanism that contributes to AD pathogenesis. PMID:24964199

  4. Histone deacetylase inhibitors promote the expression of ATP2A3 gene in breast cancer cell lines.

    PubMed

    Contreras-Leal, Erika; Hernández-Oliveras, Andrés; Flores-Peredo, Lucía; Zarain-Herzberg, Ángel; Santiago-García, Juan

    2016-10-01

    Recent studies have shown that expression of Sarco(endo)plasmic Reticulum Ca(2+) -ATPase 2 (SERCA2) is decreased in oral cancer; whereas expression of SERCA3 is considerably decreased or absent in human colon, gastric, breast, and lung cancers. The ATP2A2 and ATP2A3 genes encode SERCA2 and SERCA3 isoforms, respectively. Promoter methylation on CpG islands was responsible for the repression of ATP2A2 gene in human oral cancer samples. On the other hand, histone deacetylase inhibitors (HDACi) up-regulate ATP2A3 expression in gastric, colon, and lung cancer cells in culture, however, the molecular mechanism is unknown. In this study, we investigate whether HDACi and DNA methylation regulate ATP2A2 and ATP2A3 expression in human breast cancer cell lines. Results show a marked induction of SERCA3a and pan-SERCA3 mRNA expression in human MCF-7 and MDA-MB-231 cells treated with sodium butyrate (NaB) or trichostatin A (TSA); whereas SERCA2b mRNA expression did not change significantly. ChIP assays show that NaB or TSA treatment of MDA-MB-231 cells increases H3K9 acetylation on ATP2A3 promoter. NaB also decreases H3K9 trimethylation; suggesting that these modifications stimulate ATP2A3 gene expression, through a chromatin remodeling mechanism. In contrast, NaB or TSA do not increase H3K9-acetylation of ATP2A2 proximal promoter. In addition, treatment with 5-aza-2'-deoxycytidine did not affect SERCA2b and SERCA3a expression, suggesting that promoter methylation status does not alter their expression in these cell lines. We propose that alteration of SERCA2b/SERCA3a isoform expression ratio could affect calcium management within the cell, and thus, the cellular pathways regulated by calcium could be compromised, such as cellular proliferation or apoptosis. © 2015 Wiley Periodicals, Inc.

  5. Aberrant gene promoter methylation of p16, FHIT, CRBP1, WWOX, and DLC-1 in Epstein-Barr virus-associated gastric carcinomas.

    PubMed

    He, Dan; Zhang, Yi-wang; Zhang, Na-na; Zhou, Lu; Chen, Jian-ning; Jiang, Ye; Shao, Chun-kui

    2015-04-01

    Alterations in global DNA methylation and specific regulatory gene methylation are frequently found in cancer, but the significance of these epigenetic changes in EBV-associated gastric carcinoma (EBVaGC) remains unclear. We evaluated global DNA methylation status in 49 EBVaGC and 45 EBV-negative gastric carcinoma (EBVnGC) tissue samples and cell lines by 5-methylcytosine immunohistochemical staining and methylation quantification. We determined promoter methylation status and protein expression for the p16, FHIT, CRBP1, WWOX, and DLC-1 genes in tissues and studied the correlation between CpG island methylator phenotype (CIMP) class and clinicopathological characteristics. Changes in gene methylation and mRNA expression in EBVaGC cell line SNU-719 and in EBVnGC cell lines SGC-7901, BGC-823, and AGS were assessed after treatment with 5-aza-2'-deoxycytidine (5-aza-dC), trichostatin A (TSA), or a combination of both, by methylation-specific PCR and quantitative real-time RT-PCR. Global genomic DNA hypomethylation was more pronounced in EBVnGC than in EBVaGC. Promoter methylation of all five genes was more frequent in EBVaGC than in EBVnGC (p < 0.05). p16 and FHIT methylation was reversely correlated with protein expression in EBVaGC. Most (41/49) EBVaGC exhibited CIMP-high (CIMP-H), and the prognosis of CIMP-H patients was significantly worse than that of CIMP-low (p = 0.027) and CIMP-none (p = 0.003) patients. Treatment with 5-aza-dC and/or TSA induced upregulation of RNA expression of all five genes in SNU-719; meanwhile, individual gene expression increased in EBVnGC cell lines. In summary, EBV-induced hypermethylation of p16, FHIT, CRBP1, WWOX, and DLC-1 may contribute to EBVaGC development. Demethylation therapy may represent a novel therapeutic strategy for EBVaGC.

  6. Valproic Acid Increases CD133 Positive Cells that Show Low Sensitivity to Cytostatics in Neuroblastoma

    PubMed Central

    Khalil, Mohamed Ashraf; Hraběta, Jan; Groh, Tomáš; Procházka, Pavel; Doktorová, Helena; Eckschlager, Tomáš

    2016-01-01

    Valproic acid (VPA) is a well-known antiepileptic drug that exhibits antitumor activities through its action as a histone deacetylase inhibitor. CD133 is considered to be a cancer stem cell marker in several tumors including neuroblastoma. CD133 transcription is strictly regulated by epigenetic modifications. We evaluated the epigenetic effects of treatment with 1mM VPA and its influence on the expression of CD133 in four human neuroblastoma cell lines. Chemoresistance and cell cycle of CD133+ and CD133− populations were examined by flow cytometry. We performed bisulfite conversion followed by methylation-sensitive high resolution melting analysis to assess the methylation status of CD133 promoters P1 and P3. Our results revealed that VPA induced CD133 expression that was associated with increased acetylation of histones H3 and H4. On treatment with VPA and cytostatics, CD133+ cells were mainly detected in the S and G2/M phases of the cell cycle and they showed less activated caspase-3 compared to CD133− cells. UKF-NB-3 neuroblastoma cells which express CD133 displayed higher colony and neurosphere formation capacities when treated with VPA, unlike IMR-32 which lacks for CD133 protein. Induction of CD133 in UKF-NB-3 was associated with increased expression of phosphorylated Akt and pluripotency transcription factors Nanog, Oct-4 and Sox2. VPA did not induce CD133 expression in cell lines with methylated P1 and P3 promoters, where the CD133 protein was not detected. Applying the demethylating agent 5-aza-2’-deoxycytidine to the cell lines with methylated promoters resulted in CD133 re-expression that was associated with a drop in P1 and P3 methylation level. In conclusion, CD133 expression in neuroblastoma can be regulated by histone acetylation and/or methylation of its CpG promoters. VPA can induce CD133+ cells which display high proliferation potential and low sensitivity to cytostatics in neuroblastoma. These results give new insight into the possible

  7. Valproic Acid Increases CD133 Positive Cells that Show Low Sensitivity to Cytostatics in Neuroblastoma.

    PubMed

    Khalil, Mohamed Ashraf; Hraběta, Jan; Groh, Tomáš; Procházka, Pavel; Doktorová, Helena; Eckschlager, Tomáš

    2016-01-01

    Valproic acid (VPA) is a well-known antiepileptic drug that exhibits antitumor activities through its action as a histone deacetylase inhibitor. CD133 is considered to be a cancer stem cell marker in several tumors including neuroblastoma. CD133 transcription is strictly regulated by epigenetic modifications. We evaluated the epigenetic effects of treatment with 1mM VPA and its influence on the expression of CD133 in four human neuroblastoma cell lines. Chemoresistance and cell cycle of CD133+ and CD133- populations were examined by flow cytometry. We performed bisulfite conversion followed by methylation-sensitive high resolution melting analysis to assess the methylation status of CD133 promoters P1 and P3. Our results revealed that VPA induced CD133 expression that was associated with increased acetylation of histones H3 and H4. On treatment with VPA and cytostatics, CD133+ cells were mainly detected in the S and G2/M phases of the cell cycle and they showed less activated caspase-3 compared to CD133- cells. UKF-NB-3 neuroblastoma cells which express CD133 displayed higher colony and neurosphere formation capacities when treated with VPA, unlike IMR-32 which lacks for CD133 protein. Induction of CD133 in UKF-NB-3 was associated with increased expression of phosphorylated Akt and pluripotency transcription factors Nanog, Oct-4 and Sox2. VPA did not induce CD133 expression in cell lines with methylated P1 and P3 promoters, where the CD133 protein was not detected. Applying the demethylating agent 5-aza-2'-deoxycytidine to the cell lines with methylated promoters resulted in CD133 re-expression that was associated with a drop in P1 and P3 methylation level. In conclusion, CD133 expression in neuroblastoma can be regulated by histone acetylation and/or methylation of its CpG promoters. VPA can induce CD133+ cells which display high proliferation potential and low sensitivity to cytostatics in neuroblastoma. These results give new insight into the possible

  8. Valproic Acid Increases CD133 Positive Cells that Show Low Sensitivity to Cytostatics in Neuroblastoma.

    PubMed

    Khalil, Mohamed Ashraf; Hraběta, Jan; Groh, Tomáš; Procházka, Pavel; Doktorová, Helena; Eckschlager, Tomáš

    2016-01-01

    Valproic acid (VPA) is a well-known antiepileptic drug that exhibits antitumor activities through its action as a histone deacetylase inhibitor. CD133 is considered to be a cancer stem cell marker in several tumors including neuroblastoma. CD133 transcription is strictly regulated by epigenetic modifications. We evaluated the epigenetic effects of treatment with 1mM VPA and its influence on the expression of CD133 in four human neuroblastoma cell lines. Chemoresistance and cell cycle of CD133+ and CD133- populations were examined by flow cytometry. We performed bisulfite conversion followed by methylation-sensitive high resolution melting analysis to assess the methylation status of CD133 promoters P1 and P3. Our results revealed that VPA induced CD133 expression that was associated with increased acetylation of histones H3 and H4. On treatment with VPA and cytostatics, CD133+ cells were mainly detected in the S and G2/M phases of the cell cycle and they showed less activated caspase-3 compared to CD133- cells. UKF-NB-3 neuroblastoma cells which express CD133 displayed higher colony and neurosphere formation capacities when treated with VPA, unlike IMR-32 which lacks for CD133 protein. Induction of CD133 in UKF-NB-3 was associated with increased expression of phosphorylated Akt and pluripotency transcription factors Nanog, Oct-4 and Sox2. VPA did not induce CD133 expression in cell lines with methylated P1 and P3 promoters, where the CD133 protein was not detected. Applying the demethylating agent 5-aza-2'-deoxycytidine to the cell lines with methylated promoters resulted in CD133 re-expression that was associated with a drop in P1 and P3 methylation level. In conclusion, CD133 expression in neuroblastoma can be regulated by histone acetylation and/or methylation of its CpG promoters. VPA can induce CD133+ cells which display high proliferation potential and low sensitivity to cytostatics in neuroblastoma. These results give new insight into the possible

  9. Temozolomide Resistance in Glioblastoma Cell Lines: Implication of MGMT, MMR, P-Glycoprotein and CD133 Expression

    PubMed Central

    Prados, Jose; Caba, Octavio; Cabeza, Laura; Berdasco, Maria; Gónzalez, Beatriz; Melguizo, Consolación

    2015-01-01

    Background The use of temozolomide (TMZ) has improved the prognosis for glioblastoma multiforme patients. However, TMZ resistance may be one of the main reasons why treatment fails. Although this resistance has frequently been linked to the expression of O6-methylguanine-DNA methyltransferase (MGMT) it seems that this enzyme is not the only molecular mechanism that may account for the appearance of drug resistance in glioblastoma multiforme patients as the mismatch repair (MMR) complex, P-glycoprotein, and/or the presence of cancer stem cells may also be implicated. Methods Four nervous system tumor cell lines were used to analyze the modulation of MGMT expression and MGMT promoter methylation by TMZ treatment. Furthermore, 5-aza-2’-deoxycytidine was used to demethylate the MGMT promoter and O(6)-benzylguanine to block GMT activity. In addition, MMR complex and P-glycoprotein expression were studied before and after TMZ exposure and correlated with MGMT expression. Finally, the effect of TMZ exposure on CD133 expression was analyzed. Results Our results showed two clearly differentiated groups of tumor cells characterized by low (A172 and LN229) and high (SF268 and SK-N-SH) basal MGMT expression. Interestingly, cell lines with no MGMT expression and low TMZ IC50 showed a high MMR complex expression, whereas cell lines with high MGMT expression and high TMZ IC50 did not express the MMR complex. In addition, modulation of MGMT expression in A172 and LN229 cell lines was accompanied by a significant increase in the TMZ IC50, whereas no differences were observed in SF268 and SK-N-SH cell lines. In contrast, P-glycoprotein and CD133 was found to be unrelated to TMZ resistance in these cell lines. Conclusions These results may be relevant in understanding the phenomenon of TMZ resistance, especially in glioblastoma multiforme patients laking MGMT expression, and may also aid in the design of new therapeutic strategies to improve the efficacy of TMZ in glioblastoma

  10. Expression of the chemokine CXCL14 and cetuximab-dependent tumour suppression in head and neck squamous cell carcinoma.

    PubMed

    Kondo, T; Ozawa, S; Ikoma, T; Yang, X-Y; Kanamori, K; Suzuki, K; Iwabuchi, H; Maehata, Y; Miyamoto, C; Taguchi, T; Kiyono, T; Kubota, E; Hata, R-I

    2016-01-01

    Cetuximab, a monoclonal antibody against the epidermal growth factor receptor (EGFR), has been successfully used to treat some patients with colorectal cancer and those with head and neck squamous cell carcinoma (HNSCC). For the effective treatment, it is essential to first identify cetuximab-responsive patients. The level of EGFR expression and/or the presence of mutations in signalling molecules downstream of the EGFR pathway have been reported to be determining factors for cetuximab responsiveness in colorectal cancer patients; however, limited data have been reported for HNSCC patients. We previously reported that the chemokine CXCL14 exhibits tumour-suppressive effects against xenografted HNSCC cells, which may be classified into two groups, CXCL14-expressing and non-expressing cells under serum-starved culture conditions. Here we employed CXCL14-expressing HSC-3 cells and CXCL14-non-expressing YCU-H891 cells as representatives of the two groups and compared their responses to cetuximab and their CXCL14 expression under various conditions. The growth of xenografted tumours initiated by HSC-3 cells, which expressed CXCL14 in vivo and in vitro, was suppressed by the injection of cetuximab into tumour-bearing mice; however, neither the expression of the chemokine nor the cetuximab-dependent suppression of xenograft tumour growth was observed for YCU-H891 cells. Both types of cells expressed EGFR and neither type harboured mutations in signalling molecules downstream of EGFR that have been reported in cetuximab-resistant colon cancer patients. The inhibition of the extracellular signal-regulated kinase (ERK) signalling increased the levels of CXCL14 messenger RNA (mRNA) in HSC-3 cells, but not in YCU-H891 cells. We also observed that the CXCL14 promoter region in YCU-H891 cells was hypermethylated, and that demethylation of the promoter by treatment with 5-aza-2'-deoxycytidine restored CXCL14 mRNA expression and in vivo cetuximab-mediated tumour growth suppression

  11. A carrier-mediated prodrug approach to improve the oral absorption of antileukemic drug decitabine.

    PubMed

    Zhang, Youxi; Sun, Jin; Gao, Yikun; Jin, Ling; Xu, Youjun; Lian, He; Sun, Yongbing; Sun, Yinghua; Liu, Jianyu; Fan, Rui; Zhang, Tianhong; He, Zhonggui

    2013-08-01

    Decitabine (5-aza-2'-deoxycytidine, DAC) is a novel DNA methyltransferase (DNMT) inhibitor for the treatment of myelodysplastic syndrome, acute and chronic myeloid leukemia. However, it exhibits a low oral bioavailability (only 9% in mice), because of low permeability across the intestine membrane and rapid metabolism to inactive metabolite. To utilize the carrier-mediated prodrug approach for improved absorption of decitabine, a series of amino acid-decitabine conjugates were synthesized to target the intestinal membrane transporter, hPepT1. The Caco-2 permeability of the prodrugs was screened, and two l-val (aliphatic, compound 4a) and l-phe (aromatic, compound 4c) prodrugs with higher permeability were selected for further studies. The uptake of Gly-Sar by Caco-2 cells could be competitively inhibited by compounds 4a and 4c, with IC50 being 2.20 ± 0.28 mM and 3.46 ± 0.16 mM, respectively. The uptake of compounds 4a and 4c was markedly increased in the leptin-treated Caco-2 cells compared with the control Caco-2 cells, suggesting that hPepT1-mediated transport contributes to oral absorption of compounds 4a and 4c. The prodrugs were evaluated for their stability in various phosphate buffers, rat plasma, tissue homogenates, and gastrointestinal fluids. Compounds 4a and 4c were stable in gastrointestinal tract at pH 6.0 but could be quickly converted into DAC in plasma and tissue homogenates after absorption. The oral absolute bioavailability of DAC was 46.7%, 50.9%, and 26.9% after compounds 4a, 4c, and DAC were orally administered to rats at a dose of 15 mg/kg, respectively. The bioavailability of compounds 4a and 4c in rats was both reduced to about 32% when orally coadministrated with typical hPepT1 substrate Gly-Sar (150 mg/kg). Overall, compounds 4a and 4c can significantly enhance the intestinal membrane permeability of DAC, followed by rapid and mostly bioactivation to parent drug in intestinal and hepatic tissues before entry into systemic circulation

  12. Co-expression of laminin β3 and γ2 chains and epigenetic inactivation of laminin α3 chain in gastric cancer.

    PubMed

    Ii, Masanori; Yamamoto, Hiroyuki; Taniguchi, Hiroaki; Adachi, Yasushi; Nakazawa, Mayumi; Ohashi, Hirokazu; Tanuma, Tokuma; Sukawa, Yasutaka; Suzuki, Hiromu; Sasaki, Shigeru; Imai, Kohzoh; Shinomura, Yasuhisa

    2011-09-01

    Laminin-332 (LM-332, formerly termed laminin-5) is a heterotrimeric glycoprotein that regulates cell adhesion and migration. Molecular alterations of LM-332 are involved in cancer progression. The aim of this study was to clarify alterations of LM-332 in gastric carcinoma. The expression of LM-332 subunits in 10 gastric carcinoma cell lines was investigated by RT-PCR, Western blotting, and immuno-cytochemical/immunofluorescent analyses. The promoter methylation status of LM-332-encoding genes (LAMA3, LAMB3 and LAMC2) was analyzed by methylation-specific PCR (MSP). The relationship between cell migration and LM-332 expression was assessed by the scratch assay. The expression of LM-332 was analyzed immunohistochemically in 90 gastric cancer tissues. Co-expression of laminin β3 and γ2 chains was often observed in gastric carcinoma cell lines at mRNA and protein levels. In contrast, there was no expression of laminin α3 at either the mRNA or protein levels. Extra-cellular secretion of laminin β3 and γ2 chains was found in 2 of the 10 cell lines. The LAMA3 gene was transcriptionally silenced by methylation of the promoter CpG islands in all of the cell lines, while the LAMB3 and LAMC2 genes were silenced in several cell lines. Treatment with a demethylating agent, 5-aza-2'-deoxycytidine (5-aza-dC), restored expression of the LM-332-encoding genes. Methylation frequency of LAMA3 was higher than those of the LAMB2 and LAMC2 genes in gastric cancer tissues. Migration distances were significantly correlated with cytoplasmic laminin γ2 chain expression. Immunohistochemistry showed frequent co-expression of laminin β3 and γ2 chains in gastric carcinoma cells, which was significantly correlated with depth of invasion and advanced tumor stage. The results suggest that the laminin β3 and γ2 chains accumulate intracellularly and play a role in gastric cancer progression, while epigenetic silencing of the laminin α3 chain may lead to inability to synthesize the basement

  13. Amyloid Beta-Mediated Hypomethylation of Heme Oxygenase 1 Correlates with Cognitive Impairment in Alzheimer’s Disease

    PubMed Central

    Sung, Hye Youn; Choi, Byung-Ok; Jeong, Jee Hyang; Kong, Kyoung Ae; Hwang, Jinha; Ahn, Jung-Hyuck

    2016-01-01

    To identify epigenetically regulated genes involved in the pathogenesis of Alzheimer’s disease (AD) we analyzed global mRNA expression and methylation profiles in amyloid precursor protein (APP)-Swedish mutant-expressing AD model cells, H4-sw and selected heme oxygenase-1 (HMOX1), which is associated with pathological features of AD such as neurofibrillary tangles and senile plaques. We examined the epigenetic regulatory mechanism of HMOX1 and its application as a diagnostic and prognostic biomarker for AD. Our results show that HMOX1 mRNA and protein expression was approximately 12.2-fold and 7.9-fold increased in H4-sw cells, respectively. Increased HMOX1 expression was also detected in the brain, particularly the hippocampus, of AD model transgenic mice. However, the methylation of specific CpG sites within its promoter, particularly at CpG located −374 was significantly decreased in H4-sw cells. Treatment of neuroglioma cells with the demethylating agent 5-aza-2′-deoxycytidine resulted in reduced methylation of HMOX1 promoter accompanied by enhanced HMOX1 expression strongly supporting DNA methylation-dependent transcriptional regulation of HMOX1. Toxic Aβ-induced aberrant hypomethylation of HMOX1 at −374 promoter CpG site was correlated with increased HMOX1expression. In addition to neuroglioma cells, we also found Aβ-induced epigenetic regulation of HMOX1 in human T lymphocyte Jurkat cells. We evaluated DNA methylation status of HMOX1 at −374 promoter CpG site in blood samples from AD patients, patients with mild cognitive impairment (MCI), and control individuals using quantitative methylation-specific polymerase chain reaction. We observed lower methylation of HMOX1 at the −374 promoter CpG site in AD patients compared to MCI and control individuals, and a correlation between Mini-Mental State Examination score and demethylation level. Receiver operating characteristics analysis revealed good discrimination of AD patients from MCI patients and

  14. The epigenetically regulated effects of Wnt antagonists on the expression of genes in the apoptosis pathway in human bladder cancer cell line (T24).

    PubMed

    Varol, Nuray; Konac, Ece; Onen, Ilke Hacer; Gurocak, Serhat; Alp, Ebru; Yilmaz, Akin; Menevse, Sevda; Sozen, Sinan

    2014-07-01

    The epigenetic suppression of Wnt antagonists (sFRPs, DKKs, and WIF-1) causes the activation of both β-catenin and target genes, which play an important role in cell proliferation, metastasis, and angiogenesis. This study is aimed to investigate, on transcriptional and protein levels, the synergic effects of unaccompanied and/or combined use of 5-aza-2'-deoxycytidine (DAC, 5-aza-dC), trichostatin A (TSA), and gemcitabine+cisplatin chemotherapeutic agents on the apoptotic pathway of human bladder cancer cell line T24. The anti-tumor effects of gemcitabine (0-500 nM), cisplatin (0-10 μM), DAC (10 μM), and TSA (300 nM) alone and/or together on T24 cells were determined by WST-1. ELISA method was used to analyze the effects of unaccompanied and combined use of gemcitabine+cisplatin, DAC, and TSA on cell proliferation and determine the cytotoxic and apoptotic dosages at the level of H3 histone acetylation. Methylation-specific PCR was used to evaluate methylation profiles of Wnt antagonist gene (WIF-1). In the case of unaccompanied and/or combined use of specified drugs, the variations in the expression levels of CTNNB1, GSK3β, c-MYC, CCND1, CASP-3, CASP-8, CASP-9, BCL2L1, and WIF-1 genes were determined by quantitative real-time PCR. Our results indicate that through inhibition of DNA methylation, expression of β-catenin and Wnt antagonist re-activation and expressions of canonical Wnt/β-catenin pathway target genes, c-myc and cyclin D1 (CCND1), have decreased. In addition, DAC, TSA, and gemcitabine+cisplatin combination caused an increase in GSK3β mRNA levels, which in turn significantly decreased CCND1 mRNA levels. Moreover, BCL2L1, an anti-apoptotic gene, was downregulated significantly. Meanwhile, both CASP-3 mRNA and active caspase-3 protein levels increased with respect to control (p<0.01). The results revealed that use of quadruplicate gemcitabine+cisplatin+DAC+TSA combination led to a reduced inhibition of canonical Wnt/β-catenin pathway and reduced

  15. MAGE-A1, MAGE-A3, and NY-ESO-1 can be upregulated on neuroblastoma cells to facilitate cytotoxic T lymphocyte-mediated tumor cell killing.

    PubMed

    Bao, Lei; Dunham, Kimberly; Lucas, Kenneth

    2011-09-01

    Approximately half of patients with stage IV neuroblastoma are expected to relapse despite current therapy, and when this occurs, there is little likelihood of achieving a cure. Very few clinical trials have been conducted to determine whether cellular immune responses could be harnessed to fight this tumor, largely because potential tumor antigens for cytotoxic T lymphocytes (CTL) are limited. MAGE-A1, MAGE-A3, and NY-ESO-1 are cancer-testis (CT) antigens expressed on a number of malignant solid tumors, including neuroblastoma, but many tumor cell lines down-regulate the expression of CT antigens as well as major histocompatibility (MHC) antigens, precluding recognition by antigen-specific T cells. If expression of cancer antigens on neuroblastoma could be enhanced pharmacologically, CT antigen-specific immunotherapy could be considered for this tumor. We have demonstrated that the expression of MAGE-A1, MAGE-A3, and NY-ESO-1 can be upregulated on neuroblastoma cells following exposure to pharmacologic levels of the demethylating agent 5-aza-2'-deoxycytidine (decitabine, DAC). Expression of NY-ESO-1, MAGE-A1, or MAGE-A3 was induced in 10/10 neuroblastoma cell lines after 5 days of exposure to DAC. Culture of neuroblastoma cell lines with IFN-γ was also associated with an increased expression of either MHC Class I or II by cytofluorometry, as reported by other groups. MAGE-A1, MAGE-A3, and NY-ESO-1-specific CTL were cultured from volunteer donors by stimulating peripheral blood mononuclear cells with dendritic cells pulsed with overlapping peptide mixes derived from full-length proteins, and these CTL preferentially lysed HLA partially matched, DAC-treated neuroblastoma and glioblastoma cell lines. These studies show that demethylating chemotherapy can be combined with IFN-γ to increase the expression of CT antigens and MHC molecules on neuroblastoma cells, and pre-treatment with these agents makes tumor cell lines more susceptible to CTL-mediated killing. These

  16. Epigenetics and miRNA as predictive markers and targets for lung cancer chemotherapy

    PubMed Central

    El-Awady, Raafat A; Hersi, Fatema; Al-Tunaiji, Hala; Saleh, Ekram M; Abdel-Wahab, Abdel-Hady A; Al Homssi, Amer; Suhail, Mousa; El-Serafi, Ahmed; Al-Tel, Taleb

    2015-01-01

    Lung cancer cells show inherent and acquired resistance to chemotherapy. The lack of good predictive markers/novel targets and the incomplete understanding of the mechanisms of resistance limit the success of lung cancer response to chemotherapy. In the present study, we used an isogenic pair of lung adenocarcinoma cell lines; A549 (wild-type) and A549DOX11 (doxorubicin resistant) to study the role of epigenetics and miRNA in resistance/response of non-small cell lung cancer (NSCLC) cells to doxorubicin. Our results demonstrate differential expression of epigenetic markers whereby the level of HDACs 1, 2, 3 and4, DNA methyltransferase, acetylated H2B and acetylated H3 were lower in A549DOX11 compared to A549 cells. Fourteen miRNAs were dys-regulated in A549DOX11 cells compared to A549 cells, of these 14 miRNAs, 4 (has-mir-1973, 494, 4286 and 29b-3p) have shown 2.99 – 4.44 fold increase in their expression. This was associated with reduced apoptosis and higher resistance of A549DOX11cells to doxorubicin and etoposide. Sequential treatment with the epigenetic modifiers trichostatin A or 5-aza-2'-deoxycytidine followed by doxorubicin resulted in: (i) enhanced sensitivity of both cell lines to doxorubicin especially at low concentrations, (ii) enhanced doxorubicin-induced DNA damage in both cell lines, (iii) dysregulation of some miRNAs in A549 cells. In conclusion, A549DOX11 cells resistant to DNA damaging drugs have epigenetic profile and miRNA expression different from the sensitive cells. Moreover, epigenetic modifiers may reverse the resistance of certain NSCLC cells to DNA damaging agents by enhancing induction of DNA damage. This may open the door for using epigenetic profile/miRNA expression of some cancer cells as resistance markers/targets to improve response of resistant cells to doxorubicin and for the use of combination doxorubicin/epigenetic modifiers to reduce doxorubicin toxicity. PMID:25962089

  17. Epigenetic Control of the Vasopressin Promoter Explains Physiological Ability to Regulate Vasopressin Transcription in Dehydration and Salt Loading States in the Rat.

    PubMed

    Greenwood, M P; Greenwood, M; Gillard, B T; Loh, S Y; Paton, J F R; Murphy, D

    2016-04-01

    The synthesis of arginine vasopressin (AVP) in the supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus is sensitive to increased plasma osmolality and a decreased blood volume, and thus is robustly increased by both dehydration (increased plasma osmolality and decreased blood volume) and salt loading (increased plasma osmolality). Both stimuli result in functional remodelling of the SON and PVN, a process referred to as functional-related plasticity. Such plastic changes in the brain have recently been associated with altered patterns of DNA methylation at CpG (cytosine-phosphate-guanine) residues, a process considered to be important for the regulation of gene transcription. In this regard, the proximal Avp promoter contains a number of CpG sites and is recognised as one of four CpG islands for the Avp gene, suggesting that methylation may be regulating Avp transcription. In the present study, we show that, in an immortalised hypothalamic cell line 4B, the proximal Avp promoter is highly methylated, and treatment of these cells with the DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine to demethylate DNA dramatically increases basal and stimulated Avp biosynthesis. We report no changes in the expression of DNA methyltransferases, Dnmt1 and Dnmt3a, whereas there is decreased expression of the demethylating enzyme ten-eleven-translocation 2, Tet2, in the SON by dehydration and salt loading. We found higher methylation of the SON Avp promoter in dehydrated but not salt-loaded rats. By analysis of individual CpG sites, we observed hypomethylation, hypermethylation and no change in methylation of specific CpGs in the SON Avp promoter of the dehydrated rat. Using reporter gene assays, we show that mutation of individual CpGs can result in altered Avp promoter activity. We propose that methylation of the SON Avp promoter is necessary to co-ordinate the duel inputs of increased plasma osmolality and decreased blood volume on Avp

  18. A novel isoform of the 8p22 tumor suppressor gene DLC1 suppresses tumor growth and is frequently silenced in multiple common tumors.

    PubMed

    Low, J S W; Tao, Q; Ng, K M; Goh, H K; Shu, X-S; Woo, W L; Ambinder, R F; Srivastava, G; Shamay, M; Chan, A T C; Popescu, N C; Hsieh, W-S

    2011-04-21

    The critical 8p22 tumor suppressor deleted in liver cancer 1 (DLC1) is frequently inactivated by aberrant CpG methylation and/or genetic deletion and implicated in tumorigeneses of multiple tumor types. Here, we report the identification and characterization of its new isoform, DLC1 isoform 4 (DLC1-i4). This novel isoform encodes an 1125-aa (amino acid) protein with distinct N-terminus as compared with other known DLC1 isoforms. Similar to other isoforms, DLC1-i4 is expressed ubiquitously in normal tissues and immortalized normal epithelial cells, suggesting a role as a major DLC1 transcript. However, differential expression of the four DLC1 isoforms is found in tumor cell lines: Isoform 1 (longest) and 3 (short thus probably nonfunctional) share a promoter and are silenced in almost all cancer and immortalized cell lines, whereas isoform 2 and 4 utilize different promoters and are frequently downregulated. DLC1-i4 is significantly downregulated in multiple carcinoma cell lines, including 2/4 nasopharyngeal, 8/16 (50%) esophageal, 4/16 (25%) gastric, 6/9 (67%) breast, 3/4 colorectal, 4/4 cervical and 2/8(25%) lung carcinoma cell lines. The functional DLC1-i4 promoter is within a CpG island and is activated by wild-type p53. CpG methylation of the DLC1-i4 promoter is associated with its silencing in tumor cells and was detected in 38-100% of multiple primary tumors. Treatment with 5-aza-2'-deoxycytidine or genetic double knockout of DNMT1 and DNMT3B led to demethylation of the promoter and reactivation of its expression, indicating a predominantly epigenetic mechanism of silencing. Ectopic expression of DLC1-i4 in silenced tumor cells strongly inhibited their growth and colony formation. Thus, we identified a new isoform of DLC1 with tumor suppressive function. The differential expression of various DLC1 isoforms suggests interplay in modulating the complex activities of DLC1 during carcinogenesis. PMID:21217778

  19. CHST11 gene expression and DNA methylation in breast cancer

    PubMed Central

    HERMAN, DAMIR; LEAKEY, TATIANA I.; BEHRENS, ALICE; YAO-BORENGASSER, AIWEI; COONEY, CRAIG A.; JOUSHEGHANY, FARIBA; PHANAVANH, BOUNLEUT; SIEGEL, ERIC R.; SAFAR, A. MAZIN; KOROURIAN, SOHEILA; KIEBER-EMMONS, THOMAS; MONZAVI-KARBASSI, BEHJATOLAH

    2015-01-01

    Our previously published data link P-selectin-reactive chondroitin sulfate structures on the surface of breast cancer cells to metastatic behavior of cells. We have shown that a particular sulfation pattern mediated by the expression of carbohydrate (chondroitin 4) sulfotransferase-11 (CHST11) correlates with P-selectin binding and aggressiveness of human breast cancer cell lines. The present study was performed to evaluate the prognostic value of CHST11 expression and determine whether aberrant DNA methylation controls CHST11 expression in breast cancer. Publicly available datasets were used to examine the association of CHST11 expression to aggressiveness and progression of breast cancer. Methylation status was analyzed using bisulfite genomic sequencing. 5-aza-2′-deoxycytidine (5AzadC) was used for DNA demethylation. Reduced representation bisulfite sequencing was performed in the CpG island of CHST11 with a minimum coverage of 10. Quantitative real-time RT-PCR was employed to confirm the expression profile of CHST11 in breast cancer cell lines. Flow cytometry was also used to confirm the expression of the CHST11 product, chondroitin sulfate A (CS-A). The expression of CHST11 was significantly higher in basal-like and Her2-amplified cell lines compared to luminal cell lines. CHST11 was also highly expressed in cancer tissues compared to normal tissues and the expression levels were significantly associated with tumor progression. We observed very low levels of DNA methylation in a CpG island of CHST11 in basal-like cells but very high levels in the same region in luminal cells. Treatment of MCF7 cells, a luminal cell line with very low expression of CHST11, with 5AzadC increased the expression of CHST11 and its immediate product, CS-A, in a dose-dependent manner. These results suggest that CHST11 may play a direct role in progression of breast cancer and that its expression is controlled by DNA methylation. Therefore, in addition to CHST11 mRNA levels, the

  20. Amyloid Beta-Mediated Hypomethylation of Heme Oxygenase 1 Correlates with Cognitive Impairment in Alzheimer's Disease.

    PubMed

    Sung, Hye Youn; Choi, Byung-Ok; Jeong, Jee Hyang; Kong, Kyoung Ae; Hwang, Jinha; Ahn, Jung-Hyuck

    2016-01-01

    To identify epigenetically regulated genes involved in the pathogenesis of Alzheimer's disease (AD) we analyzed global mRNA expression and methylation profiles in amyloid precursor protein (APP)-Swedish mutant-expressing AD model cells, H4-sw and selected heme oxygenase-1 (HMOX1), which is associated with pathological features of AD such as neurofibrillary tangles and senile plaques. We examined the epigenetic regulatory mechanism of HMOX1 and its application as a diagnostic and prognostic biomarker for AD. Our results show that HMOX1 mRNA and protein expression was approximately 12.2-fold and 7.9-fold increased in H4-sw cells, respectively. Increased HMOX1 expression was also detected in the brain, particularly the hippocampus, of AD model transgenic mice. However, the methylation of specific CpG sites within its promoter, particularly at CpG located -374 was significantly decreased in H4-sw cells. Treatment of neuroglioma cells with the demethylating agent 5-aza-2'-deoxycytidine resulted in reduced methylation of HMOX1 promoter accompanied by enhanced HMOX1 expression strongly supporting DNA methylation-dependent transcriptional regulation of HMOX1. Toxic Aβ-induced aberrant hypomethylation of HMOX1 at -374 promoter CpG site was correlated with increased HMOX1 expression. In addition to neuroglioma cells, we also found Aβ-induced epigenetic regulation of HMOX1 in human T lymphocyte Jurkat cells. We evaluated DNA methylation status of HMOX1 at -374 promoter CpG site in blood samples from AD patients, patients with mild cognitive impairment (MCI), and control individuals using quantitative methylation-specific polymerase chain reaction. We observed lower methylation of HMOX1 at the -374 promoter CpG site in AD patients compared to MCI and control individuals, and a correlation between Mini-Mental State Examination score and demethylation level. Receiver operating characteristics analysis revealed good discrimination of AD patients from MCI patients and control

  1. Amyloid protein-mediated differential DNA methylation status regulates gene expression in Alzheimer's disease model cell line

    SciTech Connect

    Sung, Hye Youn; Choi, Eun Nam; Ahn Jo, Sangmee; Oh, Seikwan; Ahn, Jung-Hyuck

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Genome-wide DNA methylation pattern in Alzheimer's disease model cell line. Black-Right-Pointing-Pointer Integrated analysis of CpG methylation and mRNA expression profiles. Black-Right-Pointing-Pointer Identify three Swedish mutant target genes; CTIF, NXT2 and DDR2 gene. Black-Right-Pointing-Pointer The effect of Swedish mutation on alteration of DNA methylation and gene expression. -- Abstract: The Swedish mutation of amyloid precursor protein (APP-sw) has been reported to dramatically increase beta amyloid production through aberrant cleavage at the beta secretase site, causing early-onset Alzheimer's disease (AD). DNA methylation has been reported to be associated with AD pathogenesis, but the underlying molecular mechanism of APP-sw-mediated epigenetic alterations in AD pathogenesis remains largely unknown. We analyzed genome-wide interplay between promoter CpG DNA methylation and gene expression in an APP-sw-expressing AD model cell line. To identify genes whose expression was regulated by DNA methylation status, we performed integrated analysis of CpG methylation and mRNA expression profiles, and identified three target genes of the APP-sw mutant; hypomethylated CTIF (CBP80/CBP20-dependent translation initiation factor) and NXT2 (nuclear exporting factor 2), and hypermethylated DDR2 (discoidin domain receptor 2). Treatment with the demethylating agent 5-aza-2 Prime -deoxycytidine restored mRNA expression of these three genes, implying methylation-dependent transcriptional regulation. The profound alteration in the methylation status was detected at the -435, -295, and -271 CpG sites of CTIF, and at the -505 to -341 region in the promoter of DDR2. In the promoter region of NXT2, only one CpG site located at -432 was differentially unmethylated in APP-sw cells. Thus, we demonstrated the effect of the APP-sw mutation on alteration of DNA methylation and subsequent gene expression. This epigenetic regulatory mechanism may

  2. Silencing of glutathione peroxidase 3 through DNA hypermethylation is associated with lymph node metastasis in gastric carcinomas.

    PubMed

    Peng, Dun-Fa; Hu, Tian-Ling; Schneider, Barbara G; Chen, Zheng; Xu, Ze-Kuan; El-Rifai, Wael

    2012-01-01

    Gastric cancer remains the second leading cause of cancer-related death in the world. H. pylori infection, a major risk factor for gastric cancer, generates high levels of reactive oxygen species (ROS). Glutathione peroxidase 3 (GPX3), a plasma GPX member and a major scavenger of ROS, catalyzes the reduction of hydrogen peroxide and lipid peroxides by reduced glutathione. To study the expression and gene regulation of GPX3, we examined GPX3 gene expression in 9 gastric cancer cell lines, 108 primary gastric cancer samples and 45 normal gastric mucosa adjacent to cancers using quantitative real-time RT-PCR. Downregulation or silencing of GPX3 was detected in 8 of 9 cancer cell lines, 83% (90/108) gastric cancers samples, as compared to non-tumor adjacent normal gastric samples (P<0.0001). Examination of GPX3 promoter demonstrated DNA hypermethylation (≥ 10% methylation level determined by Bisulfite Pyrosequencing) in 6 of 9 cancer cell lines and 60% of gastric cancer samples (P = 0.007). We also detected a significant loss of DNA copy number of GPX3 in gastric cancers (P<0.001). Treatment of SNU1 and MKN28 cells with 5-Aza-2' Deoxycytidine restored the GPX3 gene expression with a significant demethylation of GPX3 promoter. The downregulation of GPX3 expression and GPX3 promoter hypermethylation were significantly associated with gastric cancer lymph node metastasis (P = 0.018 and P = 0.029, respectively). We also observed downregulation, DNA copy number losses, and promoter hypermethylation of GPX3 in approximately one-third of tumor-adjacent normal gastric tissue samples, suggesting the presence of a field defect in areas near tumor samples. Reconstitution of GPX3 in AGS cells reduced the capacity of cell migration, as measured by scratch wound healing assay. Taken together, the dysfunction of GPX3 in gastric cancer is mediated by genetic and epigenetic alterations, suggesting impairment of mechanisms that regulate ROS and its possible involvement in gastric

  3. Myxoid Liposarcoma-Associated EWSR1-DDIT3 Selectively Represses Osteoblastic and Chondrocytic Transcription in Multipotent Mesenchymal Cells

    PubMed Central

    Suzuki, Kayo; Matsui, Yoshito; Higashimoto, Mami; Kawaguchi, Yoshiharu; Seki, Shoji; Motomura, Hiraku; Hori, Takeshi; Yahara, Yasuhito; Kanamori, Masahiko; Kimura, Tomoatsu

    2012-01-01

    Background Liposarcomas are the most common class of soft tissue sarcomas, and myxoid liposarcoma is the second most common liposarcoma. EWSR1-DDIT3 is a chimeric fusion protein generated by the myxoid liposarcoma-specific chromosomal translocation t(12;22)(q13;q12). Current studies indicate that multipotent mesenchymal cells are the origin of sarcomas. The mechanism whereby EWSR1-DDIT3 contributes to the phenotypic selection of target cells during oncogenic transformation remains to be elucidated. Methodology/Principal Findings Reporter assays showed that the EWSR1-DDIT3 myxoid liposarcoma fusion protein, but not its wild-type counterparts EWSR1 and DDIT3, selectively repressed the transcriptional activity of cell lineage-specific marker genes in multipotent mesenchymal C3H10T1/2 cells. Specifically, the osteoblastic marker Opn promoter and chondrocytic marker Col11a2 promoter were repressed, while the adipocytic marker Ppar-γ2 promoter was not affected. Mutation analyses, transient ChIP assays, and treatment of cells with trichostatin A (a potent inhibitor of histone deacetylases) or 5-Aza-2′-deoxycytidine (a methylation-resistant cytosine homolog) revealed the possible molecular mechanisms underlying the above-mentioned selective transcriptional repression. The first is a genetic action of the EWSR1-DDIT3 fusion protein, which results in binding to the functional C/EBP site within Opn and Col11a2 promoters through interaction of its DNA-binding domain and subsequent interference with endogenous C/EBPβ function. Another possible mechanism is an epigenetic action of EWSR1-DDIT3, which enhances histone deacetylation, DNA methylation, and histone H3K9 trimethylation at the transcriptional repression site. We hypothesize that EWSR1-DDIT3-mediated transcriptional regulation may modulate the target cell lineage through target gene-specific genetic and epigenetic conversions. Conclusions/Significance This study elucidates the molecular mechanisms underlying EWSR1

  4. Epigenetic Inactivation of Heparan Sulfate (Glucosamine) 3-O-Sulfotransferase 2 in Lung Cancer and Its Role in Tumorigenesis

    PubMed Central

    Hwang, Jung-Ah; Kim, Yujin; Hong, Seung-Hyun; Lee, Jieun; Cho, Yong Gu; Han, Ji-Youn; Kim, Young-Ho; Han, Joungho; Shim, Young Mog; Lee, Yeon-Su; Kim, Duk-Hwan

    2013-01-01

    Background This study was aimed at investigating the functional significance of heparan sulfate (glucosamine) 3-O-sulfotransferase 2 (HS3ST2) hypermethylation in non-small cell lung cancer (NSCLC). Methodology/ Principal Findings HS3ST2 hypermethylation was characterized in six lung cancer cell lines, and its clinical significance was analyzed using 298 formalin-fixed paraffin-embedded tissues and 26 fresh-frozen tissues from 324 NSCLC patients. MS-HRM (methylation-specific high-resolution melting) and EpiTYPERTM assays showed substantial hypermethylation of CpG island at the promoter region of HS3ST2 in six lung cancer cell lines. The silenced gene was demethylated and re-expressed by treatment with 5-aza-2′-deoxycytidine (5-Aza-dC). A promoter assay also showed the core promoter activity of HS3ST2 was regulated by methylation. Exogenous expression of HS3ST2 in lung cancer cells H460 and H23 inhibited cell migration, invasion, cell proliferation and whereas knockdown of HS3ST2 in NHBE cells induced cell migration, invasion, and cell proliferation in vitro. A negative correlation was observed between mRNA and methylation levels of HS3ST2 in 26 fresh-frozen tumors tissues (ρ = -0.51, P = 0.009; Spearman’s rank correlation). HS3ST2 hypermethylation was found in 95 (32%) of 298 primary NSCLCs. Patients with HS3ST2 hypermethylation in 193 node-negative stage I-II NSCLCs with a median follow-up period of 5.8 years had poor overall survival (hazard ratio = 2.12, 95% confidence interval = 1.25–3.58, P = 0.005) compared to those without HS3ST2 hypermethylation, after adjusting for age, sex, tumor size, adjuvant therapy, recurrence, and differentiation. Conclusions/ Significance The present study suggests that HS3ST2 hypermethylation may be an independent prognostic indicator for overall survival in node-negative stage I-II NSCLC. PMID:24265783

  5. Epigenetic inactivation of DLX4 is associated with disease progression in chronic myeloid leukemia.

    PubMed

    Zhou, Jing-Dong; Wang, Yu-Xin; Zhang, Ting-Juan; Yang, Dong-qin; Yao, Dong-Ming; Guo, Hong; Yang, Lei; Ma, Ji-Chun; Wen, Xiang-Mei; Yang, Jing; Lin, Jiang; Qian, Jun

    2015-08-01

    Aberrant DNA methylation of various genes has been identified to be associated with disease progression in chronic myeloid leukemia (CML). Our study was intended to investigate DLX4 methylation pattern in different clinical stages of CML and further determine its role in regulating DLX4 expression. Real-time quantitative methylation-specific PCR and bisulfite sequencing PCR were applied to detect DLX4 methylation. 5-aza-2'-deoxycytidine (5-aza-dC) was used for demethylation studies. DLX4 was significantly hypermethylated in CML patients (P = 0.002) especially in blastic phase (BC) stage (P < 0.001) as compared with controls. Moreover, DLX4 methylation level in BC stage was significantly higher than in chronic phase (CP) stage (P < 0.001). DLX4 methylation density was significantly increased during the progression of CML among the tested two patients (P < 0.001). DLX4 hypermethylation occurred with the highest incidence in BC stage (83%), lower incidence in acute phase (AP) stage (43%), and the lowest incidence in CP stage (26%) (P = 0.001). Moreover, t(9; 22) with additional alteration cases had significantly higher frequency of DLX4 hypermethylation compared with the other cytogenetics (P = 0.010). Significantly negative correlation was observed between DLX4 methylation and DLX4-TV2 (the shorter DLX4 isoform) expression (R = -0.382, P = 0.001, n = 78) but not between DLX4 methylation and BP1 (the longer DLX4 isoform) expression (R = 0.134, P = 0.244, n = 78) in CML patients. Both DLX4-TV2 and BP1 mRNA were significantly increased after 5-aza-dC treatment in K562 cell line (P < 0.001). Our study indicated that hypermethylation of DLX4 correlated with disease progression of CML. Moreover, DLX4 expression was regulated by its methylation in CML.

  6. MicroRNA-152 targets DNA methyltransferase 1 in NiS-transformed cells via a feedback mechanism.

    PubMed

    Ji, Weidong; Yang, Lei; Yuan, Jianhui; Yang, Linqing; Zhang, Mei; Qi, Defeng; Duan, Xiaolu; Xuan, Aiguo; Zhang, Wenjuan; Lu, Jiachun; Zhuang, Zhixiong; Zeng, Guohua

    2013-02-01

    Nickel (Ni) compounds are well-recognized human carcinogens, yet the molecular mechanisms by which they cause human cancer are still not well understood. MicroRNAs (miRNAs), which are small non-coding RNAs, are involved in diverse biological functions and carcinogenesis. In previous study, we identified upregulation of DNA methyltransferase 1 (DNMT1) expression in nickel sulfide (NiS)-transformed human bronchial epithelial (16HBE) cells. Here, we investigated whether some miRNAs are aberrantly expressed and targets DNMT1 in NiS-transformed cells. Our results showed that the expression of miRNA-152 (miR-152) was specifically downregulated in NiS-transformed cells via promoter DNA hypermethylation, whereas ectopic expression of miR-152 in NiS-transformed cells resulted in a marked reduction of DNMT1 expression. Further experiments revealed that miR-152 directly downregulated DNMT1 expression by targeting the 3' untranslated regions of its transcript. Interestingly, treatment of DNMT inhibitor, 5-aza-2-deoxycytidine, or depletion of DNMT1 led to increased miR-152 expression by reversion of promoter hypermethylation, DNMT1 and MeCP2 binding to miR-152 promoter in NiS-transformed cells. Moreover, inhibition of miR-152 expression in 16HBE cells could increase DNMT1 expression and result in an increase in DNA methylation, DNMT1 and MeCP2 binding to miR-152 promoter, indicating an interaction between miR-152 and DNMT1 is regulated by a double-negative circuit. Furthermore, ectopic expression of miR-152 in NiS-transformed cells led to a significant decrease of cell growth. Conversely, inhibition of miR-152 expression in 16HBE cells significantly increased cell growth. Taken together, these observations demonstrate a crucial functional crosstalk between miR-152 and the DNMT1 via a feedback loop involved in NiS-induced malignant transformation. PMID:23125218

  7. MicroRNA-152 modulates the canonical Wnt pathway activation by targeting DNA methyltransferase 1 in arthritic rat model.

    PubMed

    Miao, Cheng-Gui; Yang, Ying-Ying; He, Xu; Huang, Cheng; Huang, Yan; Qin, Dan; Du, Chuan-Lai; Li, Jun

    2014-11-01

    Rheumatoid arthritis (RA) is an autoimmune and progressive systemic disease of unknown etiology. Research shows that fibroblast-like synoviocytes (FLS) participate in the cartilage erosion, synovial hyperplasia, inflammatory cytokine secretion and suggests that fibroblast-like synoviocytes (FLS) display a crucial role in RA pathogenesis. Recent studies have suggested the role of the Wnt signaling pathway in the pathogenesis of RA. In previous study, we identified that increased methyl-CpG-binding protein 2 (MeCP2) reduced the secreted frizzled-related protein 4 (SFRP4) expression in FLS in Arthritic rat model and the DNA methyltransferase (DNMT) inhibitor 5-Aza-2'-deoxycytidine (5-azadC) could induce the SFRP4 expression, indicating that DNMT has a key role in the differential expression of SFRP4. MicroRNAs (MiRNAs), which are small non-coding RNAs, are involved in diverse biological functions, regulation of gene expression, pathogenesis of autoimmune disease and carcinogenesis. In light of the directly down-regulation of miR-152 on DNMT1 expression by targeting the 3' untranslated regions of its transcript in nickel sulfide (NiS)-transformed human bronchial epithelial cells, we investigated whether miR-152 is aberrantly expressed and targets DNMT1 in FLS in Arthritic rat model. Our results demonstrated that the expression of miR-152 was specifically down-regulated in Arthritic rat model, whereas up-regulation of miR-152 in FLS resulted in a marked reduction of DNMT1 expression. Further experiments revealed that increased miR-152 indirectly up-regulated the SFRP4 expression, a negative regulator of WNT signaling pathway, by targeting the DNMT1. Moreover, activation of miR-152 expression in FLS could inhibit the canonical Wnt pathway activation and result in a significant decrease of FLS proliferation. MiR-152 and DNA methylation may provide molecular mechanisms for the activation of canonical Wnt pathway in RA. Combination of miR-152 and DNMT1 may be a promising

  8. Alteration of the DNA methylation status of donor cells impairs the developmental competence of porcine cloned embryos

    PubMed Central

    HUAN, Yan Jun; WU, Zhan Feng; ZHANG, Ji Guang; ZHU, Jiang; XIE, Bing Teng; WANG, Jian Yu; LI, Jing Yu; XUE, Bing Hua; KONG, Qing Ran; LIU, Zhong Hua

    2015-01-01

    Nuclear reprogramming induced by somatic cell nuclear transfer is an inefficient process, and donor cell DNA methylation status is thought to be a major factor affecting cloning efficiency. Here, the role of donor cell DNA methylation status regulated by 5-aza-2'-deoxycytidine (5-aza-dC) or 5-methyl-2'-deoxycytidine-5'-triphosphate (5-methyl-dCTP) in the early development of porcine cloned embryos was investigated. Our results showed that 5-aza-dC or 5-methyl-dCTP significantly reduced or increased the global methylation levels and altered the methylation and expression levels of key genes in donor cells. However, the development of cloned embryos derived from these cells was reduced. Furthermore, disrupted pseudo-pronucleus formation and transcripts of early embryo development-related genes were observed in cloned embryos derived from these cells. In conclusion, our results demonstrated that alteration of the DNA methylation status of donor cells by 5-aza-dC or 5-methyl-dCTP disrupted nuclear reprogramming and impaired the developmental competence of porcine cloned embryos. PMID:26537205

  9. Demethylation treatment restores erectile function in a rat model of hyperhomocysteinemia

    PubMed Central

    Zhang, Zheng; Zhu, Lei-Lei; Jiang, He-Song; Chen, Hai; Chen, Yun; Dai, Yu-Tian

    2016-01-01

    Methylation modification is an important cellular mechanism of gene expression regulation. Dimethylarginine dimethylaminohydrolase-2 (DDAH-2) protein is a pivotal molecular for endothelium function. To explore the effects of 5-aza-deoxycytidine (5-aza), a demethylation agent, in hyperhomocysteinemia (hhcy)-related erectile dysfunction (ED) rats, 5-aza (1 mg kg−1) was administrated to Sprague-Dawley hhcy-rats induced by supplemented methionine chow diet. Erectile function, nitric oxide-cyclic guanosine monophosphate (NO-cGMP) levels, expression of DDAH-2 protein and promoter methylation status of DDAH-2 were studied in the corpora cavernosa. We found that supplemented methionine diet induced a high homocysteine level after 6 weeks of treatment. DDAH-2 protein was down-regulated in the corpora cavernosa while the administration of 5-aza up-regulated DDAH-2 expression and restored erectile function. The methionine-fed rats showed high methylation levels of DDAH-2 promoter region while the group treated with 5-aza demonstrated lower-methylation levels when compared to the methionine-fed group. Besides, the administration of 5-aza improved NO and cGMP levels in methionine-fed rats. Therefore, the methylation mechanism involves in ED pathogenesis, and demethylation offers a potential new strategy for ED treatment. PMID:26585696

  10. p53 independent epigenetic-differentiation treatment in xenotransplant models of acute myeloid leukemia

    PubMed Central

    Ng, Kwok Peng; Ebrahem, Quteba; Negrotto, Soledad; Mahfouz, Reda Z.; Link, Kevin A.; Hu, Zhenbo; Gu, Xiaorong; Advani, Anjali; Kalaycio, Matt; Sobecks, Ronald; Sekeres, Mikkael; Copelan, Edward; Radivoyevitch, Tomas; Maciejewski, Jaroslaw; Mulloy, James C.; Saunthararajah, Yogen

    2013-01-01

    Suppression of apoptosis by TP53 mutation contributes to resistance of acute myeloid leukemia (AML) to conventional cytotoxic treatment. Using differentiation to induce irreversible cell cycle exit in AML cells could be a p53-independent treatment alternative, however, this possibility requires evaluation. In vitro and in vivo regimens of the deoxycytidine analogue decitabine that deplete the chromatin modifying enzyme DNA methyl-transferase 1 (DNMT1) without phosphorylating p53 or inducing early apoptosis were determined. These decitabine regimens but not equimolar DNA-damaging cytarabine up regulated the key late differentiation factors CEBPε and p27/CDKN1B, induced cellular differentiation, and terminated AML cell-cycle, even in cytarabine-resistant p53- and p16/CDKN2A-null AML cells. Leukemia initiation by xeno-transplanted AML cells was abrogated but normal hematopoietic stem cell (HSC) engraftment was preserved. In vivo, the low toxicity allowed frequent drug administration to increase exposure, an important consideration for S-phase specific decitabine therapy. In xeno-transplant models of p53-null and relapsed/refractory AML, the non-cytotoxic regimen significantly extended survival compared to conventional cytotoxic cytarabine. Modifying in vivo dose and schedule to emphasize this pathway of decitabine action can bypass a mechanism of resistance to standard therapy. PMID:21701495

  11. Incontinence Treatment: Surgical Treatments

    MedlinePlus

    ... Incontinence Managing Incontinence: A Survey The Patient's Perspective Barriers on Diagnosis and Treatment Personal Stories Contact Us ... Incontinence Managing Incontinence: A Survey The Patient's Perspective Barriers on Diagnosis and Treatment Personal Stories Contact Us ...

  12. Epigenetic Regulation of TNFA Expression in Periodontal Disease

    PubMed Central

    Zhang, Shaoping; Barros, Silvana P.; Moretti, Antonio J.; Yu, Ning; Zhou, Jing; Preisser, John S.; Offenbacher, Steven

    2014-01-01

    Background Tumor necrosis factor-alpha (TNF-α) plays a central role in the molecular pathogenesis of periodontal disease. However, the epigenetic regulation attributable to microbial and inflammatory signals at the biofilm gingival interface are poorly understood. In this study, we investigated the DNA methylation alteration within the TNFA promoter in human gingival biopsies from different stages of periodontal disease, and explored the regulatory mechanism of TNFA transcription by DNA methylation. Methods Gingival biopsies were harvested from 17 chronic periodontitis patients and 18 subjects with periodontal health. Another 11 subjects participated in an experimentally induced gingivitis study, and gingival biopsies were collected at the baseline, induction, and resolution phase. To confirm that TNFA promoter methylation modulated TNFA transcription we treated THP.1 cells with a DNA methyltransferase inhibitor, 5-aza-2-deoxycytidine and used a RAW 294.7 cell line transfected with a TNFA promoter-specific luciferase reporter system with or without methlyaiton, Results In gingival biopsies from subjects with severe chronic periodontitis two individual CpG sites within the TNFA promoter (at -163bp and -161bp) displayed increased methylation in periodontitis samples as compared to gingival health (16.1±5.1% vs. 11.0±4.6%, p=0.02, 19.8±4.1% vs. 15.4±3.6%, p=0.04, respectively). The methylation level at -163bp was inversely associated with the transcription level of TNFA (p=0.018). However, no significant difference in the TNFA promoter methylation pattern was observed in samples biopsied during the induction or resolution phase of experimentally induced gingivitis, which represented a reversible periodontal lesion. THP.1 cells treated with 5-aza-2-deoxycytidine demonstrated a time-dependent increase in TNFA messenger level. We also found that the luciferase activity decreased 2.6 fold in a construct containing an in vitro methylated TNFA promoter as compared to

  13. Hyperbaric treatment

    NASA Technical Reports Server (NTRS)

    Amoroso, Michael T.

    1990-01-01

    Viewgraphs on hyperbaric treatment are presented. Topics covered include: hyperbaric treatment - purpose; decompression sickness; sources of decompression sickness; physical description; forms of decompression sickness; hyperbaric treatment of decompression sickness; and duration of treatment.

  14. LARG at chromosome 11q23 has functional characteristics of a tumor suppressor in human breast cancer

    SciTech Connect

    Ong, Danny C.T.; Rudduck, Christina; Chin, Koei; Kuo, Wen-Lin; Lie, Daniel K.H.; Chua, Constance L.M.; Wong, Chow Yin; Hong, Ga Sze; Gray, Joe; Lee, Ann S.G.

    2008-05-06

    Deletion of 11q23-q24 is frequent in a diverse variety of malignancies, including breast and colorectal carcinoma, implicating the presence of a tumor suppressor gene at that chromosomal region. We show here that LARG, from 11q23, has functional characteristics of a tumor suppressor. We examined a 6-Mb region on 11q23 by high-resolution deletion mapping, utilizing both loss of heterozygosity (LOH) analysis and microarray comparative genomic hybridization (CGH). LARG (also called ARHGEF12), identified from the analyzed region, was underexpressed in 34% of primary breast carcinomas and 80% of breast cancer cell lines including the MCF-7 line. Multiplex ligation-dependent probe amplification on 30 primary breast cancers and six breast cancer cell lines showed that LARG had the highest frequency of deletion compared to the BCSC-1 and TSLC1 genes, two known candidate tumor suppressor genes from 11q. In vitro analysis of breast cancer cell lines that underexpress LARG showed that LARG could be reactivated by trichostatin A, a histone deacetylase inhibitor, but not by 5-Aza-2{prime}-deoxycytidine, a demethylating agent. Bisulfite sequencing and quantitative high-throughput analysis of DNA methylation confirmed the lack of CpG island methylation in LARG in breast cancer. Restoration of LARG expression in MCF-7 cells by stable transfection resulted in reduced proliferation and colony formation, suggesting that LARG has functional characteristics of a tumor suppressor gene.

  15. DNA methylation is associated with transcription of Snail and Slug genes

    PubMed Central

    Chen, Ying; Wang, Kai; Qian, Chao-Nan; Leach, Richard

    2012-01-01

    Snail and Slug play critical roles in the epithelial to mesenchymal transition (EMT), the mesenchymal to epithelial transition (MET) and in the maintenance of mesenchymal morphology. In this research, we investigated the correlation of DNA methylation with the transcriptional level of these two genes during the EMT/MET process. First, we used several cell lines associated with EMT/MET processes of induced pluripotent stem cell generation and differentiation, trophoblast invasion, as well as cancer progression to examine the association between DNA methylation and transcription levels of these two genes. We found an inverse correlation between DNA methylation of first intron regions and transcription levels of Snail and Slug genes in these EMT/METs. To further verify the results, we treated two trophoblast cell line BeWo and HTR8/SVneo and one induced pluripotent stem cell line with 5-aza-2′-deoxycytidine (5-aza-dC), an inhibitor of DNA methyltransferase, which caused increased expression of these two genes. Lastly, we cloned the promoters of both Snail and Slug into pGL3-Basic vector, after in vitro DNA methylation and transfection into IMR90 and HTR8/SVneo cells; we observed the significant reduction of their promoter activity due to DNA methylation. In summary, based on these results, DNA methylation is one of the molecular mechanisms regulating Snail and Slug genes during EMT/MET process. PMID:23261445

  16. Prognostic significance of aberrantly silenced ANPEP expression in prostate cancer

    PubMed Central

    Sørensen, K D; Abildgaard, M O; Haldrup, C; Ulhøi, B P; Kristensen, H; Strand, S; Parker, C; Høyer, S; Borre, M; Ørntoft, T F

    2013-01-01

    Background: Novel biomarkers for prostate cancer (PC) are urgently needed. This study investigates the expression, epigenetic regulation, and prognostic potential of ANPEP in PC. Methods: Aminopeptidase N (APN; encoded by ANPEP) expression was analysed by immunohistochemistry using tissue microarrays representing 267 radical prostatectomy (RP) and 111 conservatively treated (CT) PC patients. Clinical end points were recurrence-free survival (RFS) and cancer-specific survival (CSS), respectively. The ANPEP promoter methylation levels were determined by bisulphite sequencing or MethyLight analysis in 278 nonmalignant and PC tissue samples, and in cell lines. Results: The APN expression was significantly downregulated in PC compared with nonmalignant prostate tissue samples. Aberrant promoter hypermethylation was frequently observed in PC tissue samples, and 5-aza-2′-deoxycytidine induced ANPEP expression in three hypermethylated prostate cell lines, suggesting epigenetic silencing. Negative APN immunoreactivity was significantly associated with short RFS and short CSS in the RP and CT cohort, respectively, independently of routine clinicopathological predictors. Combining APN with a known angiogenesis marker (vascular endothelial growth factor or microvessel density) improved risk prediction significantly in both cohorts. Conclusion: Our results suggest negative APN immunoreactivity as a new independent adverse prognostic factor for patients with clinically localised PC and, furthermore, that epigenetic mechanisms are involved in silencing of ANPEP in PC. PMID:23322201

  17. Quantitative determination of decitabine incorporation into DNA and its effect on mutation rates in human cancer cells.

    PubMed

    Öz, Simin; Raddatz, Günter; Rius, Maria; Blagitko-Dorfs, Nadja; Lübbert, Michael; Maercker, Christian; Lyko, Frank

    2014-10-29

    Decitabine (5-aza-2'-deoxycytidine) is a DNA methyltransferase inhibitor and an archetypal epigenetic drug for the therapy of myeloid leukemias. The mode of action of decitabine strictly depends on the incorporation of the drug into DNA. However, DNA incorporation and ensuing genotoxic effects of decitabine have not yet been investigated in human cancer cell lines or in models related to the approved indication of the drug. Here we describe a robust assay for the quantitative determination of decitabine incorporation rates into DNA from human cancer cells. Using a panel of human myeloid leukemia cell lines we show appreciable amounts of decitabine incorporation that closely correlated with cellular drug uptake. Decitabine incorporation was also detectable in primary cells from myeloid leukemia patients, indicating that the assay is suitable for biomarker analyses to predict drug responses in patients. Finally, we also used next-generation sequencing to comprehensively analyze the effects of decitabine incorporation on the DNA sequence level. Interestingly, this approach failed to reveal significant changes in the rates of point mutations and genome rearrangements in myeloid leukemia cell lines. These results indicate that standard rates of decitabine incorporation are not genotoxic in myeloid leukemia cells.

  18. The effect of 5-azacytidine (5-aza-CR) and its analogue on cell differentiation and DNA methylation of HL-60 cells.

    PubMed

    He, Z X; Rao, H

    1993-04-01

    The effect of 5-aza-CR and 5-aza-2'-deoxycytidine (5-aza-CdR) on cell differentiation and DNA methylation of HL-60 cells was studied. The differentiation index of HL-60 cells was measured after being treated with drugs by using the NBT stain method. DNA methylase activities of HL-60 cells treated with the drugs were assayed by using 3H-methyl-S-adenosylmethionine (3H-SAM) as a methyl donor. The DNA methylation level of HL-60 cells treated with the drugs was measured by HPLC. The results showed that the HL-60 cell differentiation index was increased after being treated with 5-aza-CR or 5-aza-CdR at a certain concentration for 4 days. But, at the same time, DNA methylase activity and the DNA methylation level were decreased. And all these changes were related to the concentration of the drugs. 5-Aza-CdR was more efficient than 5-aza-CR. We also assayed the E. coli RNA polymerase activity in vitro by using different DNA templets different in DNA methylation level. We found that the transcriptional activity of RNA polymerase was increased with the decrease of the DNA methylation level of HL-60 cells.

  19. Ultra-performance liquid chromatography/tandem mass spectrometry for accurate quantification of global DNA methylation in human sperms.

    PubMed

    Wang, Xiaoli; Suo, Yongshan; Yin, Ruichuan; Shen, Heqing; Wang, Hailin

    2011-06-01

    Aberrant DNA methylation in human sperms has been proposed to be a possible mechanism associated with male infertility. We developed an ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) method for rapid, sensitive, and specific detection of global DNA methylation level in human sperms. Multiple-reaction monitoring (MRM) mode was used in MS/MS detection for accurate quantification of DNA methylation. The intra-day and inter-day precision values of this method were within 1.50-5.70%. By using 2-deoxyguanosine as an internal standard, UPLC-MS/MS method was applied for the detection of global DNA methylation levels in three cultured cell lines. DNA methyltransferases inhibitor 5-aza-2'-deoxycytidine can significantly reduce global DNA methylation levels in treated cell lines, showing the reliability of our method. We further examined global DNA methylation levels in human sperms, and found that global methylation values varied from 3.79% to 4.65%. The average global DNA methylation level of sperm samples washed only by PBS (4.03%) was relatively lower than that of sperm samples in which abnormal and dead sperm cells were removed by density gradient centrifugation (4.25%), indicating the possible aberrant DNA methylation level in abnormal sperm cells. Clinical application of UPLC-MS/MS method in global DNA methylation detection of human sperms will be useful in human sperm quality evaluation and the study of epigenetic mechanisms responsible for male infertility.

  20. Laccaic Acid A Is a Direct, DNA-competitive Inhibitor of DNA Methyltransferase 1*

    PubMed Central

    Fagan, Rebecca L.; Cryderman, Diane E.; Kopelovich, Levy; Wallrath, Lori L.; Brenner, Charles

    2013-01-01

    Methylation of cytosines in CpG dinucleotides is the predominant epigenetic mark on vertebrate DNA. DNA methylation is associated with transcriptional repression. The pattern of DNA methylation changes during development and with disease. Human DNA methyltransferase 1 (Dnmt1), a 1616-amino acid multidomain enzyme, is essential for maintenance of DNA methylation in proliferating cells and is considered an important cancer drug target. Using a fluorogenic, endonuclease-coupled DNA methylation assay with an activated form of Dnmt1 engineered to lack the replication foci targeting sequence domain, we discovered that laccaic acid A (LCA), a highly substituted anthraquinone natural product, is a direct inhibitor with a 310 nm Ki. LCA is competitive with the DNA substrate in in vitro methylation assays and alters the expression of methylated genes in MCF-7 breast cancer cells synergistically with 5-aza-2′-deoxycytidine. LCA represents a novel class of Dnmt-targeted molecular probes, with biochemical properties that allow it to distinguish between non DNA-bound and DNA-bound Dnmt1. PMID:23839987

  1. Simultaneous determination of decitabine and vorinostat (Suberoylanalide hydroxamic acid, SAHA) by liquid chromatography tandem mass spectrometry for clinical studies.

    PubMed

    Patel, Katan; Guichard, Sylvie M; Jodrell, Duncan I

    2008-02-15

    A reverse-phase high-performance liquid chromatography method with electrospray ionization and detection by tandem mass spectrometry is described for the simultaneous quantitative determination of decitabine (5-aza-2'-deoxycytidine) and vorinostat (Suberoylanalide hydroxamic acid, SAHA) in human plasma. The method involves a simple acetonitrile precipitation step and centrifugation followed by injection of the supernatant onto a C18 150mmx2.1mm I.D., 3microm HPLC column at 36 degrees C. Separation of decitabine, SAHA and their respective internal standards was achieved with a gradient elution and detection was via the mass spectrometer operated in selected reaction monitoring mode. The method was within the defined validation parameters for linearity, repeatability, reproducibility and stability. The limit of detection was determined as 1.0 and 0.125ngml(-1) and lower limits of quantitation were 10 and 1ngml(-1) for decitabine and SAHA, respectively. Effects of sample preparation on stability were also evaluated in human plasma. For clinical sample handling tetrahydrouridine, an inhibitor of cytidine deaminase was found to help prevent decitabine degradation. The method is currently being used in clinical pharmacokinetic studies for the evaluation of decitabine and SAHA combination therapies.

  2. Epigenetic silencing of RNA polymerase I transcription: a role for DNA methylation and histone modification in nucleolar dominance.

    PubMed

    Chen, Z J; Pikaard, C S

    1997-08-15

    Nucleolar dominance is an epigenetic phenomenon that describes nucleolus formation around rRNA genes inherited from only one progenitor of an interspecific hybrid or allopolyploid. The phenomenon is widespread, occurring in plants, insects, amphibians, and mammals, yet its molecular basis remains unclear. We have demonstrated nucleolar dominance in three allotetraploids of the plant genus Brassica. In Brassica napus, accurately initiated pre-rRNA transcripts from one progenitor, Brassica rapa are detected readily, whereas transcripts from the approximately 3000 rRNA genes inherited from the other progenitor, Brassica oleracea, are undetectable. Nuclear run-on confirmed that dominance is controlled at the level of transcription. Growth of B. napus seedlings on 5-aza-2'-deoxycytidine to inhibit cytosine methylation caused the normally silent, under-dominant B. oleracea rRNA genes to become expressed to high levels. The histone deacetylase inhibitors sodium butyrate and trichostatin A also derepressed silent rRNA genes. These results reveal an enforcement mechanism for nucleolar dominance in which DNA methylation and histone modifications combine to regulate rRNA gene loci spanning tens of megabase pairs of DNA.

  3. Oncovirus Kaposi sarcoma herpesvirus (KSHV) represses tumor suppressor PDLIM2 to persistently activate nuclear factor κB (NF-κB) and STAT3 transcription factors for tumorigenesis and tumor maintenance.

    PubMed

    Sun, Fan; Xiao, Yadong; Qu, Zhaoxia

    2015-03-20

    Kaposi sarcoma herpesvirus (KSHV) is the most common cause of malignancies among AIDS patients. However, how KSHV induces tumorigenesis remains largely unknown. Here, we demonstrate that one important mechanism underlying the tumorigenesis of KSHV is through transcriptional repression of the tumor suppressor gene PDZ-LIM domain-containing protein 2 (PDLIM2). PDLIM2 expression is repressed in KSHV-transformed human umbilical vascular endothelial cells as well as in KSHV-associated cancer cell lines and primary tumors. Importantly, PDLIM2 repression is essential for KSHV-induced persistent activation of nuclear factor κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) and subsequent tumorigenesis and tumor maintenance. Our mechanistic studies indicate that PDLIM2 repression by KSHV involves DNA methylation. Notably, the epigenetic repression of PDLIM2 can be reversed by 5-aza-2-deoxycytidine and vitamin D to suppress KSHV-associated cancer cell growth. These studies not only improve our understanding of KSHV pathogenesis but also provide immediate therapeutic strategies for KSHV-mediated cancers, particularly those associated with AIDS.

  4. NPM-ALK oncogenic tyrosine kinase controls T-cell identity by transcriptional regulation and epigenetic silencing in lymphoma cells.

    PubMed

    Ambrogio, Chiara; Martinengo, Cinzia; Voena, Claudia; Tondat, Fabrizio; Riera, Ludovica; di Celle, Paola Francia; Inghirami, Giorgio; Chiarle, Roberto

    2009-11-15

    Transformed cells in lymphomas usually maintain the phenotype of the postulated normal lymphocyte from which they arise. By contrast, anaplastic large cell lymphoma (ALCL) is a T-cell lymphoma with aberrant phenotype because of the defective expression of the T-cell receptor and other T-cell-specific molecules for still undetermined mechanisms. The majority of ALCL carries the translocation t(2;5) that encodes for the oncogenic tyrosine kinase NPM-ALK, fundamental for survival, proliferation, and migration of transformed T cells. Here, we show that loss of T-cell-specific molecules in ALCL cases is broader than reported previously and involves most T-cell receptor-related signaling molecules, including CD3epsilon, ZAP70, LAT, and SLP76. We further show that NPM-ALK, but not the kinase-dead NPM-ALK(K210R), downregulated the expression of these molecules by a STAT3-mediated gene transcription regulation and/or epigenetic silencing because this downregulation was reverted by treating ALCL cells with 5-aza-2-deoxycytidine or by knocking down STAT3 through short hairpin RNA. Finally, NPM-ALK increased the methylation of ZAP70 intron 1-exon 2 boundary region, and both NPM-ALK and STAT3 regulated the expression levels of DNA methyltransferase 1 in transformed T cells. Thus, our data reveal that oncogene-deregulated tyrosine kinase activity controls the expression of molecules that determine T-cell identity and signaling.

  5. Densely ionizing radiation affects DNA methylation of selective LINE-1 elements.

    PubMed

    Prior, Sara; Miousse, Isabelle R; Nzabarushimana, Etienne; Pathak, Rupak; Skinner, Charles; Kutanzi, Kristy R; Allen, Antiño R; Raber, Jacob; Tackett, Alan J; Hauer-Jensen, Martin; Nelson, Gregory A; Koturbash, Igor

    2016-10-01

    Long Interspersed Nucleotide Element 1 (LINE-1) retrotransposons are heavily methylated and are the most abundant transposable elements in mammalian genomes. Here, we investigated the differential DNA methylation within the LINE-1 under normal conditions and in response to environmentally relevant doses of sparsely and densely ionizing radiation. We demonstrate that DNA methylation of LINE-1 elements in the lungs of C57BL6 mice is dependent on their evolutionary age, where the elder age of the element is associated with the lower extent of DNA methylation. Exposure to 5-aza-2'-deoxycytidine and methionine-deficient diet affected DNA methylation of selective LINE-1 elements in an age- and promoter type-dependent manner. Exposure to densely IR, but not sparsely IR, resulted in DNA hypermethylation of older LINE-1 elements, while the DNA methylation of evolutionary younger elements remained mostly unchanged. We also demonstrate that exposure to densely IR increased mRNA and protein levels of LINE-1 via the loss of the histone H3K9 dimethylation and an increase in the H3K4 trimethylation at the LINE-1 5'-untranslated region, independently of DNA methylation. Our findings suggest that DNA methylation is important for regulation of LINE-1 expression under normal conditions, but histone modifications may dictate the transcriptional activity of LINE-1 in response to exposure to densely IR.

  6. TMEM196 acts as a novel functional tumour suppressor inactivated by DNA methylation and is a potential prognostic biomarker in lung cancer.

    PubMed

    Liu, Wen-bin; Han, Fei; Jiang, Xiao; Chen, Hong-qiang; Zhao, Huan; Liu, Yong; Li, Yong-hong; Huang, Chuanshu; Cao, Jia; Liu, Jin-yi

    2015-08-28

    Epigenetic silencing of tumour suppressors contributes to the development and progression of lung cancer. We recently found that TMEM196 was hypermethylated in lung cancer. This study aimed to clarify its epigenetic regulation, possible roles and clinical significance. TMEM196 methylation correlated with loss of protein expression in chemical-induced rat lung pathologic lesions and human lung cancer tissues and cell lines. 5-aza-2'-deoxycytidine restored TMEM196 expression. Moreover, TMEM196 hypermethylation was detected in 61.2% of primary lung tumours and found to be associated with poor differentiation and pathological stage of lung cancer. Functional studies showed that ectopic re-expression of TMEM196 in lung cancer cells inhibited cell proliferation, clonogenicity, cell motility and tumour formation. However, TMEM196 knockdown increased cell proliferation and inhibited apoptosis and cell-cycle arrest. These effects were associated with upregulation of p21 and Bax, and downregulation of cyclin D1, c-myc, CD44 and β-catenin. Kaplan-Meier survival curves showed that TMEM196 downregulation was significantly associated with shortened survival in lung cancer patients. Multivariate analysis showed that patients with TMEM196 expression had a better overall survival. Our results revealed for the first time that TMEM196 acts as a novel functional tumour suppressor inactivated by DNA methylation and is an independent prognostic factor of lung cancer. PMID:26056045

  7. Clone-derived human AF-amniotic fluid stem cells are capable of skeletal myogenic differentiation in vitro and in vivo.

    PubMed

    Ma, Xiaorong; Zhang, Shengli; Zhou, Junmei; Chen, Baisong; Shang, Yafeng; Gao, Tongbing; Wang, Xue; Xie, Hua; Chen, Fang

    2012-08-01

    Stem cell-based therapy may be the most promising method to cure skeletal muscle degenerative diseases such as Duchenne muscular dystrophy (DMD) and trauma in the future. Human amniotic fluid is enriched with early-stage stem cells from developing fetuses and these cells have cardiomyogenic potential both in vitro and in vivo. In the present study, we investigated the characteristics of human amniotic fluid-derived AF-type stem (HAF-AFS) cells by flow cytometry, immunofluorescence staining, reverse-transcription polymerase chain reaction, and osteogenic and adipogenic differentiation analysis. After confirming the stemness of HAF-AFS cells, we tested whether HAF-AFS cells could differentiate into skeletal myogenic cells in vitro and incorporate into regenerating skeletal muscle in vivo. By temporary exposure to the DNA demethylation agent 5-aza-2'-deoxycytidine (5-Aza dC) or co-cultured with C2C12 myoblasts, HAF-AFS cells differentiated into skeletal myogenic cells, expressing skeletal myogenic cell-specific markers such as Desmin, Troponin I (Tn I) and α-Actinin. Four weeks after transplantation into cardiotoxin-injured and X-ray-irradiated tibialis anterior (TA) muscles of NOD/SCID mice, HAF-AFS cells survived, differentiated into myogenic precursor cells and fused with host myofibres. The findings that HAF-AFS cells differentiate into myogenic cells in vitro and incorporate in skeletal muscle regeneration in vivo hold the promise of HAF-AFS cell-based therapy for skeletal muscle degenerative diseases.

  8. Involvement of gene methylation changes in the differentiation of human amniotic epithelial cells into islet-like cell clusters.

    PubMed

    Peng, Lin; Wang, Jian; Lu, Guangxiu

    2014-09-01

    Insulin-dependent diabetes results from destruction of the insulin-producing β-cells of the pancreas. Islet cell transplantation is a promising cure for diabetes. Here, we induced human amniotic epithelial cells (hAECs) to differentiate into islet-like cell clusters by nicotinamide plus betacellulin in vitro, and further investigated the DNA methylation status by a Nimble MeDIP microarray before and after cell differentiation to shed light on the molecular mechanisms of this differentiation. In addition, 5-Aza-2'-deoxycytidine was used to investigate whether the differentiation of hAECs into islet-like cells occurred through demethylation. Purified hAECs (CK18(+)/E-cadherin(+)/CD29(+)/CD90(-)/CD34(-)/CD45(-)) were isolated from human amnia. After induction, hAECs were found to be insulin positive and sensitive to glucose, indicating successful induction to islet-like cells. The methylation status of cell cytoskeleton-related genes was down-regulated and that of negative regulation of cell adhesion-related genes was up-regulated. The methylation status of pancreas development-related genes such as HNF1α and DGAT1 was decreased in hAECs after induction. After brief demethylation, INS gene expression was up-regulated in islet-like cell clusters, suggesting that DNA methylation changes were associated with the differentiation of hAECs into islet-like cell clusters. PMID:24945458

  9. Targeting the Sonic Hedgehog-Gli1 Pathway as a Potential New Therapeutic Strategy for Myelodysplastic Syndromes

    PubMed Central

    Zou, Jixue; Zhou, Zhigang; Wan, Liping; Tong, Yin; Qin, Youwen; Wang, Chun; Zhou, Kun

    2015-01-01

    The complex mechanistic array underlying the pathogenesis of myelodysplastic syndrome (MDS) is still unclear. Although dysregulations of different signaling pathways involved in MDS have been described, the identification of specific biomarkers and therapy targets remains an important task in order to establish novel therapeutic approaches. Here, we demonstrated that the Shh signaling pathway is active in MDS and correlated it with disease progression. Additionally, the knockdown of Gli1 significantly inhibited cell proliferation in vitro and in vivo. Gli1 silencing also induced apoptosis and G0/G1 phase arrest. Furthermore, Gli1 silencing enhanced the demethylating effect of 5-aza-2'-deoxycytidine on the p15 gene promoter and subsequently promoted its expression by inhibiting DNA methyltransferase 1(DNMT1). Our findings show that the Shh signaling pathway plays a role in the pathogenesis and disease progression of MDS, and proceeds by modulating DNA methylation. This pathway may prove to be a potential therapeutic target for enhancing the therapeutic effects of 5-azacytidine on malignant transformation of MDS. PMID:26317501

  10. Downregulation of GLS2 in glioblastoma cells is related to DNA hypermethylation but not to the p53 status.

    PubMed

    Szeliga, Monika; Bogacińska-Karaś, Małgorzata; Kuźmicz, Katarzyna; Rola, Radosław; Albrecht, Jan

    2016-09-01

    Human phosphate-activated glutaminase (GA) is encoded by two genes: GLS and GLS2. Glioblastomas (GB) usually lack GLS2 transcripts, and their reintroduction inhibits GB growth. The GLS2 gene in peripheral tumors may be i) methylation- controlled and ii) a target of tumor suppressor p53 often mutated in gliomas. Here we assessed the relation of GLS2 downregulation in GB to its methylation and TP53 status. DNA demethylation with 5-aza-2'-deoxycytidine restored GLS2 mRNA and protein content in human GB cell lines with both mutated (T98G) and wild-type (U87MG) p53 and reduced the methylation of CpG1 (promoter region island), and CpG2 (first intron island) in both cell lines. In cell lines and clinical GB samples alike, methylated CpG islands were detected both in the GLS2 promoter (as reported earlier) and in the first intron of this gene. CpG methylation of either island was absent in GLS2-expressing non-tumoros brain tissues. Screening for mutation in the exons 5-8 of TP53 revealed a point mutation in only one out of seven GB examined. In conclusion, aberrant methylation of CpG islands, appear to contribute to silencing of GLS2 in GB by a mechanism bypassing TP53 mutations. © 2015 Wiley Periodicals, Inc. PMID:26258493

  11. Protection against telomeric position effects by the chicken cHS4 beta-globin insulator.

    PubMed

    Rincón-Arano, Héctor; Furlan-Magaril, Mayra; Recillas-Targa, Félix

    2007-08-28

    Epigenetic silencing of genes relocated near telomeres, termed telomeric position effect, has been extensively studied in yeast and more recently in vertebrates. However, protection of a transgene against telomeric position effects by chromatin insulators has not yet been addressed. In this work we investigated the capacity of the chicken beta-globin insulator cHS4 to shield a transgene against silencing by telomeric heterochromatin. Using telomeric repeats, we targeted transgene integration into telomeres of the chicken cell line HD3. When the chicken cHS4 insulator is incorporated to the transgene, we observe a sustained gene expression of single-copy integrants that can be maintained for >100 days of continuous culture. However, uninsulated single-copy clones showed an accelerated gene expression extinction profile. Unexpectedly, telomeric silencing was not reversed with trichostatin A or nicotidamine. In contrast, significant reactivation was obtained with 5-aza-2'-deoxycytidine, consistent with the subtelomeric DNA methylation status. Strikingly, insulated transgenes integrated into telomeric regions were enriched in histone methylation, such as H3K4me2 and H3K79me2, but not in histone acetylation. Furthermore, the cHS4 insulator counteracts telomeric position effects in an upstream stimulatory factor-independent manner. Our results suggest that this insulator has the capacity to adapt to different chromatin propagation signals in distinct insertional epigenome environments.

  12. Spina bifida in fetus is associated with an altered pattern of DNA methylation in placenta.

    PubMed

    Zhang, Xiaojuan; Pei, Lijun; Li, Runting; Zhang, Wei; Yang, Hua; Li, Yongchao; Guo, Yu; Tan, Pingping; Han, Jingdong J; Zheng, Xiaoying; Ma, Runlin Z

    2015-10-01

    Failure in closure of neural tube leads to neural tube defects (NTDs), which are among the most common symptoms of human birth defects. Although epigenetic status in placenta is linked to fetal development, the mechanism behind this remains unknown. Because of the importance of DNA methylation in gene function, we set to explore whether or not DNA methylation in human placenta is also linked to fetal NTDs. Here we show for the first time that alteration of DNA methylation in placenta is closely associated with the phenotypes of fetal spina bifida (Sb). We found that patterns of DNA methylation for genes in neurological system process were differentially altered in the Sb placenta. In particular, the transcription regulatory regions of TRIM26 and GANS were kept at the hypomethylation status in Sb placenta alone. Accordingly, the protein levels of TRIM26 and GNAS were significantly elevated only in the Sb placenta but not in the Sb-affected fetuses. In cellular model of CHO cells deficient in Dihydrofolate reductase and treated with 5-aza-2'-deoxycytidine, the protein levels of GNAS and TRIM26 were significantly higher than those in normal control cells. These findings suggested that epigenetic status of genes in placenta have profound impacts on the development of NTDs.

  13. Inactivation of the MAL gene in breast cancer is a common event that predicts benefit from adjuvant chemotherapy

    PubMed Central

    Horne, Hisani N.; Lee, Paula S.; Murphy, Susan K.; Alonso, Miguel A.; Olson, John A.; Marks, Jeffrey R.

    2009-01-01

    Dis-regulation of MAL (myelin and lymphocyte protein) has been implicated in several malignancies including esophageal, ovarian, and cervical cancers. The MAL protein functions in apical transport in polarized-epithelial cells, therefore its disruption may lead to loss of organized polarity characteristic of most solid malignancies. Bisulfite sequencing of the MAL promoter CpG island revealed hypermethylation in breast cancer cell lines and 69% of primary tumors analyzed compared to normal breast epithelial cells. Differential methylation between normal and cancer DNA was confined to the proximal promoter region. In a subset of breast cancer cell lines including T47D and MCF7 cells, promoter methylation correlated with transcriptional silencing that was reversible with the methylation inhibitor 5-Aza-2'-deoxycytidine. In addition, expression of MAL reduced motility and resulted in a redistribution of lipid raft components in MCF10A cells. MAL protein expression measured by immunohistochemistry revealed no significant correlation with clinico-pathologic features. However, in patients who did not receive adjuvant chemotherapy, reduced MAL expression was a significant predictive factor for disease-free survival. These data implicate MAL as a commonly altered gene in breast cancer with implications for response to chemotherapy. PMID:19208741

  14. DNA demethylation and invasive cancer: implications for therapeutics.

    PubMed

    Cheishvili, David; Boureau, Lisa; Szyf, Moshe

    2015-06-01

    One of the hallmarks of cancer is aberrant DNA methylation, which is associated with abnormal gene expression. Both hypermethylation and silencing of tumour suppressor genes as well as hypomethylation and activation of prometastatic genes are characteristic of cancer cells. As DNA methylation is reversible, DNA methylation inhibitors were tested as anticancer drugs with the idea that such agents would demethylate and reactivate tumour suppressor genes. Two cytosine analogues, 5-azacytidine (Vidaza) and 5-aza-2'-deoxycytidine, were approved by the Food and Drug Administration as antitumour agents in 2004 and 2006 respectively. However, these agents might cause activation of a panel of prometastatic genes in addition to activating tumour suppressor genes, which might lead to increased metastasis. This poses the challenge of how to target tumour suppressor genes and block cancer growth with DNA-demethylating drugs while avoiding the activation of prometastatic genes and precluding the morbidity of cancer metastasis. This paper reviews current progress in using DNA methylation inhibitors in cancer therapy and the potential promise and challenges ahead.

  15. Mutation allele burden remains unchanged in chronic myelomonocytic leukaemia responding to hypomethylating agents

    DOE PAGESBeta

    Merlevede, Jane; Droin, Nathalie; Qin, Tingting; Meldi, Kristen; Yoshida, Kenichi; Morabito, Margot; Chautard, Emilie; Auboeuf, Didier; Fenaux, Pierre; Braun, Thorsten; et al

    2016-02-24

    The cytidine analogues azacytidine and 5-aza-2’-deoxycytidine (decitabine) are commonly used to treat myelodysplastic syndromes, with or without a myeloproliferative component. It remains unclear whether the response to these hypomethylating agents results from a cytotoxic or an epigenetic effect. In this study, we address this question in chronic myelomonocytic leukaemia. We describe a comprehensive analysis of the mutational landscape of these tumours, combining whole-exome and whole-genome sequencing. We identify an average of 14 ± 5 somatic mutations in coding sequences of sorted monocyte DNA and the signatures of three mutational processes. Serial sequencing demonstrates that the response to hypomethylating agents ismore » associated with changes in DNA methylation and gene expression, without any decrease in the mutation allele burden, nor prevention of new genetic alteration occurence. Lastly, our findings indicate that cytosine analogues restore a balanced haematopoiesis without decreasing the size of the mutated clone, arguing for a predominantly epigenetic effect.« less

  16. Involvement of gene methylation changes in the differentiation of human amniotic epithelial cells into islet-like cell clusters.

    PubMed

    Peng, Lin; Wang, Jian; Lu, Guangxiu

    2014-09-01

    Insulin-dependent diabetes results from destruction of the insulin-producing β-cells of the pancreas. Islet cell transplantation is a promising cure for diabetes. Here, we induced human amniotic epithelial cells (hAECs) to differentiate into islet-like cell clusters by nicotinamide plus betacellulin in vitro, and further investigated the DNA methylation status by a Nimble MeDIP microarray before and after cell differentiation to shed light on the molecular mechanisms of this differentiation. In addition, 5-Aza-2'-deoxycytidine was used to investigate whether the differentiation of hAECs into islet-like cells occurred through demethylation. Purified hAECs (CK18(+)/E-cadherin(+)/CD29(+)/CD90(-)/CD34(-)/CD45(-)) were isolated from human amnia. After induction, hAECs were found to be insulin positive and sensitive to glucose, indicating successful induction to islet-like cells. The methylation status of cell cytoskeleton-related genes was down-regulated and that of negative regulation of cell adhesion-related genes was up-regulated. The methylation status of pancreas development-related genes such as HNF1α and DGAT1 was decreased in hAECs after induction. After brief demethylation, INS gene expression was up-regulated in islet-like cell clusters, suggesting that DNA methylation changes were associated with the differentiation of hAECs into islet-like cell clusters.

  17. Induced Human Decidual NK-Like Cells Improve Utero-Placental Perfusion in Mice

    PubMed Central

    Pernicone, Elizabeth; Korkes, Henri A.; Burke, Suzanne D.; Rajakumar, Augustine; Thadhani, Ravi I.; Roberts, Drucilla J.; Bhasin, Manoj; Karumanchi, S. Ananth

    2016-01-01

    Decidual NK (dNK) cells, a distinct type of NK cell, are thought to regulate uterine spiral artery remodeling, a process that allows for increased blood delivery to the fetal-placental unit. Impairment of uterine spiral artery remodeling is associated with decreased placental perfusion, increased uterine artery resistance, and obstetric complications such as preeclampsia and intrauterine growth restriction. Ex vivo manipulation of human peripheral blood NK (pNK) cells by a combination of hypoxia, TGFß-1 and 5-aza-2’-deoxycytidine yields cells with phenotypic and in vitro functional similarities to dNK cells, called idNK cells. Here, gene expression profiling shows that CD56Bright idNK cells derived ex vivo from human pNK cells, and to a lesser extent CD56Dim idNK cells, are enriched in the gene expression signature that distinguishes dNK cells from pNK cells. When injected into immunocompromised pregnant mice with elevated uterine artery resistance, idNK cells homed to the uterus and reduced the uterine artery resistance index, suggesting improved placental perfusion. PMID:27736914

  18. A genome-wide search for eigenetically regulated genes in zebra finch using MethylCap-seq and RNA-seq

    PubMed Central

    Steyaert, Sandra; Diddens, Jolien; Galle, Jeroen; De Meester, Ellen; De Keulenaer, Sarah; Bakker, Antje; Sohnius-Wilhelmi, Nina; Frankl-Vilches, Carolina; Van der Linden, Annemie; Van Criekinge, Wim; Vanden Berghe, Wim; De Meyer, Tim

    2016-01-01

    Learning and memory formation are known to require dynamic CpG (de)methylation and gene expression changes. Here, we aimed at establishing a genome-wide DNA methylation map of the zebra finch genome, a model organism in neuroscience, as well as identifying putatively epigenetically regulated genes. RNA- and MethylCap-seq experiments were performed on two zebra finch cell lines in presence or absence of 5-aza-2′-deoxycytidine induced demethylation. First, the MethylCap-seq methodology was validated in zebra finch by comparison with RRBS-generated data. To assess the influence of (variable) methylation on gene expression, RNA-seq experiments were performed as well. Comparison of RNA-seq and MethylCap-seq results showed that at least 357 of the 3,457 AZA-upregulated genes are putatively regulated by methylation in the promoter region, for which a pathway analysis showed remarkable enrichment for neurological networks. A subset of genes was validated using Exon Arrays, quantitative RT-PCR and CpG pyrosequencing on bisulfite-treated samples. To our knowledge, this study provides the first genome-wide DNA methylation map of the zebra finch genome as well as a comprehensive set of genes of which transcription is under putative methylation control. PMID:26864856

  19. Efficient Readout of Post-translational Codes on the 50-Residue Tail of Histone H3 by High-Resolution MS/MS

    PubMed Central

    Siuti, Nertila; Kelleher, Neil L.

    2009-01-01

    Histone modifications are highly linked to DNA methylation and together they exert epigenetic control over many activities in the cell including gene transcription. Using a streamlined mass spectrometric approach to determine changes in modification states in the first 50 residues of histone H3, we found a decrease in the global methylation states of H3.1 at Lys 9, Lys 14 and Lys 27 after inhibition of DNA methyltransferases by 5-aza-2′-deoxycytidine. Collisional ion dissociation methods proved adequate to determine site-specific H3 PTMs because ample backbone bonds are cleaved between each modification site and PTMs were stable to MS/MS using threshold fragmentation in a linear ion trap (LTQ). Our assay allows for a quick profiling and site-specific interrogation of modification states on the first 50 residues of H3 and is directly applicable to H3.1, H3.2 or H3.3 using most OrbiTrap, FT ICR, or TOF mass spectrometers. PMID:19761750

  20. DNA Demethylation Rescues the Impaired Osteogenic Differentiation Ability of Human Periodontal Ligament Stem Cells in High Glucose

    PubMed Central

    Liu, Zhi; Chen, Tian; Sun, Wenhua; Yuan, Zongyi; Yu, Mei; Chen, Guoqing; Guo, Weihua; Xiao, Jingang; Tian, Weidong

    2016-01-01

    Diabetes mellitus, characterized by abnormally high blood glucose levels, gives rise to impaired bone remodeling. In response to high glucose (HG), the attenuated osteogenic differentiation capacity of human periodontal ligament stem cells (hPDLSCs) is associated with the loss of alveolar bone. Recently, DNA methylation was reported to affect osteogenic differentiation of stem cells in pathological states. However, the intrinsic mechanism linking DNA methylation to osteogenic differentiation ability in the presence of HG is still unclear. In this study, we found that diabetic rats with increased DNA methylation levels in periodontal ligaments exhibited reduced bone mass and density. In vitro application of 5-aza-2′-deoxycytidine (5-aza-dC), a DNA methyltransferase inhibitor, to decrease DNA methylation levels in hPDLSCs, rescued the osteogenic differentiation capacity of hPDLSCs under HG conditions. Moreover, we demonstrated that the canonical Wnt signaling pathway was activated during this process and, under HG circumstances, the 5-aza-dC-rescued osteogenic differentiation capacity was blocked by Dickkopf-1, an effective antagonist of the canonical Wnt signaling pathway. Taken together, these results demonstrate for the first time that suppression of DNA methylation is able to facilitate the osteogenic differentiation capacity of hPDLSCs exposed to HG, through activation of the canonical Wnt signaling pathway. PMID:27273319

  1. FOXO1 downregulation contributes to the oncogenic program of primary mediastinal B-cell lymphoma.

    PubMed

    Xie, Linka; Ritz, Olga; Leithäuser, Frank; Guan, Hanfeng; Färbinger, Johanna; Weitzer, Clarissa D; Gehringer, Franziska; Bruederlein, Silke; Holzmann, Karlheinz; Vogel, Marion J; Möller, Peter; Wirth, Thomas; Ushmorov, Alexey

    2014-07-30

    Recently we have shown that the transcription factor FOXO1, highly expressed in B cells, is downregulated in classical Hodgkin lymphoma (cHL). As primary mediastinal B cell lymphoma (PMBL) has similarities with the cHL transcription program we investigated FOXO1 expression in this entity. By using immunohistochemistry we found that FOXO1 was absent or expressed at low levels in 19 of 20 primary PMBL cases. PMBL cell lines reproduce the low FOXO1 expression observed in primary cases. By analyzing gene expression profiling data we found that FOXO1 expression inversely correlated with JAK2 in PMBL cases. Targeting JAK2 activity by the small molecular weight inhibitor TG101348 resulted in upregulation of FOXO1 mRNA and protein expression in MedB-1 and U2940 cell lines, and the MYC inhibitor 10058-F4 increased FOXO1 mRNA in MedB-1 cells. Moreover, in MedB-1 cells FOXO1 expression was strongly upregulated by the inhibitor of DNA methylation 5-aza-2-deoxycytidine and by the histone deacetylase inhibitor trichostatin A. Since FOXO1 promoter was unmethylated, this effect is most likely indirect. FOXO1 activation in the FOXO1-negative Med-B1 cell line led to growth arrest and apoptosis, which was accompanied by repression of MYC and BCL2L1/BCLxL. Thus, FOXO1 repression might contribute to the oncogenic program and phenotype of PMBL. PMID:24977668

  2. FOXO1 downregulation contributes to the oncogenic program of primary mediastinal B-cell lymphoma

    PubMed Central

    Leithäuser, Frank; Guan, Hanfeng; Färbinger, Johanna; Weitzer, Clarissa D.; Gehringer, Franziska; Brüderlein, Silke; Holzmann, Karlheinz; Vogel, Marion J.; Möller, Peter; Wirth, Thomas; Ushmorov, Alexey

    2014-01-01

    Recently we have shown that the transcription factor FOXO1, highly expressed in B cells, is downregulated in classical Hodgkin lymphoma (cHL). As primary mediastinal B cell lymphoma (PMBL) has similarities with the cHL transcription program we investigated FOXO1 expression in this entity. By using immunohistochemistry we found that FOXO1 was absent or expressed at low levels in 19 of 20 primary PMBL cases. PMBL cell lines reproduce the low FOXO1 expression observed in primary cases. By analyzing gene expression profiling data we found that FOXO1 expression inversely correlated with JAK2 in PMBL cases. Targeting JAK2 activity by the small molecular weight inhibitor TG101348 resulted in upregulation of FOXO1 mRNA and protein expression in MedB-1 and U2940 cell lines, and the MYC inhibitor 10058-F4 increased FOXO1 mRNA in MedB-1 cells. Moreover, in MedB-1 cells FOXO1 expression was strongly upregulated by the inhibitor of DNA methylation 5-aza-2-deoxycytidine and by the histone deacetylase inhibitor trichostatin A. Since FOXO1 promoter was unmethylated, this effect is most likely indirect. FOXO1 activation in the FOXO1-negative MedB-1 cell line led to growth arrest and apoptosis, which was accompanied by repression of MYC and BCL2L1/BCLxL. Thus, FOXO1 repression might contribute to the oncogenic program and phenotype of PMBL. PMID:24977668

  3. Flow-Dependent Epigenetic DNA Methylation in Endothelial Gene Expression and Atherosclerosis.

    PubMed

    Dunn, Jessilyn; Thabet, Salim; Jo, Hanjoong

    2015-07-01

    Epigenetic mechanisms that regulate endothelial cell gene expression are now emerging. DNA methylation is the most stable epigenetic mark that confers persisting changes in gene expression. Not only is DNA methylation important in rendering cell identity by regulating cell type-specific gene expression throughout differentiation, but it is becoming clear that DNA methylation also plays a key role in maintaining endothelial cell homeostasis and in vascular disease development. Disturbed blood flow causes atherosclerosis, whereas stable flow protects against it by differentially regulating gene expression in endothelial cells. Recently, we and others have shown that flow-dependent gene expression and atherosclerosis development are regulated by mechanisms dependent on DNA methyltransferases (1 and 3A). Disturbed blood flow upregulates DNA methyltransferase expression both in vitro and in vivo, which leads to genome-wide DNA methylation alterations and global gene expression changes in a DNA methyltransferase-dependent manner. These studies revealed several mechanosensitive genes, such as HoxA5, Klf3, and Klf4, whose promoters were hypermethylated by disturbed blood flow, but rescued by DNA methyltransferases inhibitors such as 5Aza-2-deoxycytidine. These findings provide new insight into the mechanism by which flow controls epigenomic DNA methylation patterns, which in turn alters endothelial gene expression, regulates vascular biology, and modulates atherosclerosis development. PMID:25953647

  4. Stromal cells expressing hedgehog-interacting protein regulate the proliferation of myeloid neoplasms

    PubMed Central

    Kobune, M; Iyama, S; Kikuchi, S; Horiguchi, H; Sato, T; Murase, K; Kawano, Y; Takada, K; Ono, K; Kamihara, Y; Hayashi, T; Miyanishi, K; Sato, Y; Takimoto, R; Kato, J

    2012-01-01

    Aberrant reactivation of hedgehog (Hh) signaling has been described in a wide variety of human cancers including cancer stem cells. However, involvement of the Hh-signaling system in the bone marrow (BM) microenvironment during the development of myeloid neoplasms is unknown. In this study, we assessed the expression of Hh-related genes in primary human CD34+ cells, CD34+ blastic cells and BM stromal cells. Both Indian Hh (Ihh) and its signal transducer, smoothened (SMO), were expressed in CD34+ acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS)-derived cells. However, Ihh expression was relatively low in BM stromal cells. Remarkably, expression of the intrinsic Hh-signaling inhibitor, human Hh-interacting protein (HHIP) in AML/MDS-derived stromal cells was markedly lower than in healthy donor-derived stromal cells. Moreover, HHIP expression levels in BM stromal cells highly correlated with their supporting activity for SMO+ leukemic cells. Knockdown of HHIP gene in stromal cells increased their supporting activity although control cells marginally supported SMO+ leukemic cell proliferation. The demethylating agent, 5-aza-2′-deoxycytidine rescued HHIP expression via demethylation of HHIP gene and reduced the leukemic cell-supporting activity of AML/MDS-derived stromal cells. This indicates that suppression of stromal HHIP could be associated with the proliferation of AML/MDS cells. PMID:22961059

  5. Downregulation of the long noncoding RNA GAS5-AS1 contributes to tumor metastasis in non-small cell lung cancer

    PubMed Central

    Wu, Ying; Lyu, Hui; Liu, Hongbing; Shi, Xuefei; Song, Yong; Liu, Bolin

    2016-01-01

    Long noncoding RNA (lncRNA) plays pivotal roles in cancer development. To date, only a small number of lncRNAs have been characterized at functional level. Here, we discovered a novel lncRNA termed GAS5-AS1 as a tumor suppressor in non-small cell lung cancer (NSCLC). The expression of GAS5-AS1 in NSCLC tumors was much lower than that in the adjacent normal lung tissues. The reduced GAS5-AS1 was significantly correlated with larger tumors, higher TNM stages, and lymph node metastasis in NSCLC patients. While ectopic expression or specific knockdown of GAS5-AS1 had no effect on proliferation, cell cycle progression, and apoptosis, it dramatically decreased or increased, respectively, NSCLC cell migration and invasion. Overexpression of GAS5-AS1 in NSCLC cells reduced a cohort of molecules (ZEB1, N-cadherin, Vimentin, and/or Snail1) critical for epithelial-mesenchymal transition (EMT). Furthermore, the DNA demethylating agent 5-aza-2-deoxycytidine failed to upregulate GAS5-AS1 in NSCLC cells, whereas the pan-HDAC inhibitors panobinostat and SAHA significantly induced GAS5-AS1 in a dose-dependent manner. In addition, GAS5-AS1 can be upregulated by specific knockdown of HDAC1 or HDAC3. Collectively, our data suggest that histone modifications play a major role leading to epigenetic silencing of GAS5-AS1 in NSCLC and subsequently promote tumor metastasis via upregulation of several key EMT markers. PMID:27489122

  6. Role of DNA methylation in the adaptive responses induced in a human B lymphoblast cell line by long-term low-dose exposures to γ-rays and cadmium.

    PubMed

    Ye, Shuang; Yuan, Dexiao; Xie, Yuexia; Pan, Yan; Shao, Chunlin

    2014-10-01

    The possible involvement of epigenetic factors in health risks due to exposures to environmental toxicants and ionizing radiation is poorly understood. We have tested the hypothesis that DNA methylation contributes to the adaptive response (AR) to ionizing radiation or Cd. Human B lymphoblast cells HMy2.CIR were irradiated (0.032 Gy γ-rays) three times per week for 4 weeks or exposed to CdCl2 (0.005, 0.01, or 0.1 μM) for 3 months, and then challenged with a high dose of Cd (50 or 100 μM) or γ-rays (2 Gy). Long-term low-dose radiation (LDR) or long-term low-dose Cd exposure induced AR against challenging doses of Cd and irradiation, respectively. When the primed cells were treated with 5-aza-2'-deoxycytidine (5-aza-dC), a DNA methyltransferase inhibitor, the ARs were eliminated. These results indicate that DNA methylation is involved in the induction of AR in HMy2.CIR cells.

  7. Differential involvement of RASSF2 hypermethylation in breast cancer subtypes and their prognosis

    PubMed Central

    Perez-Janices, Noemi; Blanco-Luquin, Idoia; Torrea, Natalia; Liechtenstein, Therese; Escors, David; Cordoba, Alicia; Vicente-Garcia, Francisco; Jauregui, Isabel; De La Cruz, Susana; Illarramendi, José Juan; Coca, Valle; Berdasco, Maria; Kochan, Grazyna; Ibañez, Berta; Lera, José Miguel; Guerrero-Setas, David

    2015-01-01

    Breast cancer is a heterogeneous disease that can be subdivided into clinical, histopathological and molecular subtypes (luminal A-like, luminal B-like/HER2-negative, luminal B-like/HER2-positive, HER2-positive, and triple-negative). The study of new molecular factors is essential to obtain further insights into the mechanisms involved in the tumorigenesis of each tumor subtype. RASSF2 is a gene that is hypermethylated in breast cancer and whose clinical value has not been previously studied. The hypermethylation of RASSF1 and RASSF2 genes was analyzed in 198 breast tumors of different subtypes. The effect of the demethylating agent 5-aza-2′-deoxycytidine in the re-expression of these genes was examined in triple-negative (BT-549), HER2 (SK-BR-3), and luminal cells (T-47D). Different patterns of RASSF2 expression for distinct tumor subtypes were detected by immunohistochemistry. RASSF2 hypermethylation was much more frequent in luminal subtypes than in non-luminal tumors (p = 0.001). The re-expression of this gene by lentiviral transduction contributed to the differential cell proliferation and response to antineoplastic drugs observed in luminal compared with triple-negative cell lines. RASSF2 hypermethylation is associated with better prognosis in multivariate statistical analysis (P = 0.039). In conclusion, RASSF2 gene is differently methylated in luminal and non-luminal tumors and is a promising suppressor gene with clinical involvement in breast cancer. PMID:26284587

  8. Sensitivity of human prostate cancer cells to chemotherapeutic drugs depends on EndoG expression regulated by promoter methylation

    PubMed Central

    Wang, Xiaoying; Tryndyak, Volodymyr; Apostolov, Eugene O.; Yin, Xiaoyan; Shah, Sudhir V.; Pogribny, Igor P.; Basnakian, Alexei G.

    2016-01-01

    Analysis of promoter sequences of all known human cytotoxic endonucleases showed that endonuclease G (EndoG) is the only endonuclease that contains a CpG island, a segment of DNA with high G+C content and a site for methylation, in the promoter region. A comparison of three human prostate cancer cell lines showed that EndoG is highly expressed in 22Rv1 and LNCaP cells. In PC3 cells, EndoG was not expressed and the EndoG CpG island was hypermethylated. The expression of EndoG correlated positively with sensitivity to cisplatin and etoposide, and the silencing of EndoG by siRNA decreased the sensitivity of the cells to the chemotherapeutic agents in the two EndoG-expressing cell lines. 5-aza-2′-deoxycytidine caused hypomethylation of the EndoG promoter in PC3 cells, induced EndoG mRNA and protein expression, and made the cells sensitive to both cisplatin and etoposide. The acetylation of histones by trichostatin A, the histone deacetylase inhibitor, induced EndoG expression in 22Rv1 cells, while it had no such effect in PC3 cells. These data are the first indication that EndoG may be regulated by methylation of its gene promoter, and partially by histone acetylation, and that EndoG is essential for prostate cancer cell death in the used models. PMID:18565644

  9. Gene expression profiling of replicative and induced senescence.

    PubMed

    Purcell, Maggie; Kruger, Adele; Tainsky, Michael A

    2014-01-01

    Cellular senescence is a cell cycle arrest accompanied by high expression of cyclin dependent kinase inhibitors which counteract overactive growth signals, which serves as a tumor suppressive mechanism. Senescence can be a result of telomere shortening (natural or replicative senescence) or DNA damage resulting from exogenous stressors (induced senescence). Here, we performed gene expression profiling through RNA-seq of replicative senescence, adriamycin-induced senescence, H2O2-induced senescence, and 5-aza-2-deoxycytidine-induced senescence in order to profile the pathways controlling various types of senescence. Overall, the pathways common to all 4 types of senescence were related to inflammation and the innate immune system. It was also evident that 5-aza-induced senescence mirrors natural replicative senescence due to telomere shortening. We also examined the prevalence of senescence-associated secretory phenotype (SASP) factors in the RNA-seq data, showing that it is a common characteristic of all 4 types of senescence. In addition, we could discriminate changes in gene expression due to quiescence during cellular senescence from those that were specific to senescence. PMID:25483067

  10. DNA methyltransferase I is a mediator of doxorubicin-induced genotoxicity in human cancer cells

    SciTech Connect

    Tan, Hwee Hong; Porter, Alan George

    2009-05-01

    Doxorubicin can induce the formation of extra-nuclear bodies during mitosis termed micronuclei but the underlying causes remain unknown. Here, we show that sub-lethal exposure to doxorubicin-induced micronuclei formation in human cancer cells but not in non-tumorigenic cells. Occurrence of micronuclei coincided with stability of DNMT1 upon doxorubicin assault, and DNMT1 was localized to the micronuclei structures. Furthermore, 5-aza-2'-deoxycytidine-mediated DNMT1 depletion or siDNMT1 knock-down attenuated the frequency of doxorubicin-induced micronucleated cells. Human DNMT1{sup -/-} cells displayed significantly fewer micronuclei compared to DNMT1{sup +/+} cells when challenged with doxorubicin, providing additional evidence for the involvement of DNMT1 in mediating such chromosomal aberrations. Collectively, our results demonstrate a role for DNMT1 in promoting DNA damage-induced genotoxicity in human cancer cells. DNMT1, recently identified as a candidate for doxorubicin-mediated cytotoxicity, is over-expressed in various cancer cell types. We propose that DNMT1 levels in tumor cells may determine the effectiveness of doxorubicin in chemotherapy.

  11. MeCP2 binds to nucleosome free (linker DNA) regions and to H3K9/H3K27 methylated nucleosomes in the brain

    PubMed Central

    Thambirajah, Anita A.; Ng, Marlee K.; Frehlick, Lindsay J.; Li, Andra; Serpa, Jason J.; Petrotchenko, Evgeniy V.; Silva-Moreno, Begonia; Missiaen, Kristal K.; Borchers, Christoph H.; Adam Hall, J.; Mackie, Ryan; Lutz, Frank; Gowen, Brent E.; Hendzel, Michael; Georgel, Philippe T.; Ausió, Juan

    2012-01-01

    Methyl-CpG-binding protein 2 (MeCP2) is a chromatin-binding protein that mediates transcriptional regulation, and is highly abundant in brain. The nature of its binding to reconstituted templates has been well characterized in vitro. However, its interactions with native chromatin are less understood. Here we show that MeCP2 displays a distinct distribution within fractionated chromatin from various tissues and cell types. Artificially induced global changes in DNA methylation by 3-aminobenzamide or 5-aza-2′-deoxycytidine, do not significantly affect the distribution or amount of MeCP2 in HeLa S3 or 3T3 cells. Most MeCP2 in brain is chromatin-bound and localized within highly nuclease-accessible regions. We also show that, while in most tissues and cell lines, MeCP2 forms stable complexes with nucleosome, in brain, a fraction of it is loosely bound to chromatin, likely to nucleosome-depleted regions. Finally, we provide evidence for novel associations of MeCP2 with mononucleosomes containing histone H2A.X, H3K9me2 and H3K27me3 in different chromatin fractions from brain cortex and in vitro. We postulate that the functional compartmentalization and tissue-specific distribution of MeCP2 within different chromatin types may be directed by its association with nucleosomes containing specific histone variants, and post-translational modifications. PMID:22144686

  12. Methylation of a CpG Island within the Uroplakin Ib Promoter: A Possible Mechanism for Loss of Uroplakin Ib Expression in Bladder Carcinoma1

    PubMed Central

    Varga, Andrea E; Leonardos, Lefta; Jackson, Paul; Marreiros, Alexandra; Cowled, Prue A

    2004-01-01

    Abstract Uroplakin Ib is a structural protein on the surface of urothelial cells. Expression of uroplakin Ib mRNA is reduced or absent in many transitional cell carcinomas (TCCs) but molecular mechanisms underlying loss of expression remain to be determined. Analysis of the uroplakin Ib promoter identified a weak CpG island spanning the proximal promoter, exon 1, and the beginning of intron 1. This study examined the hypothesis that methylation of this CpG island regulates uroplakin Ib expression. Uroplakin Ib mRNA levels were determined by reverse transcription polymerase chain reaction and CpG methylation was assessed by bisulfite modification of DNA, PCR, and sequencing. A correlation was demonstrated in 15 TCC lines between uroplakin Ib mRNA expression and lack of CpG methylation. In support of a regulatory role for methylation, incubating uroplakin Ib-negative lines with 5-aza-2′-deoxycytidine reactivated uroplakin Ib mRNA expression. A trend between uroplakin Ib mRNA expression and CpG methylation was also observed in normal urothelium and bladder carcinomas. In particular, loss of uroplakin Ib expression correlated with methylation of a putative Sp1/NFκB binding motif. The data are consistent with the hypothesis that methylation of specific sites within the uroplakin Ib promoter may be an important factor in the loss of uroplakin Ib expression in TCCs. PMID:15140401

  13. Epigenetic silencing of RNA polymerase I transcription: a role for DNA methylation and histone modification in nucleolar dominance

    PubMed Central

    Chen, Z. Jeffrey; Pikaard, Craig S.

    1997-01-01

    Nucleolar dominance is an epigenetic phenomenon that describes nucleolus formation around rRNA genes inherited from only one progenitor of an interspecific hybrid or allopolyploid. The phenomenon is widespread, occurring in plants, insects, amphibians, and mammals, yet its molecular basis remains unclear. We have demonstrated nucleolar dominance in three allotetraploids of the plant genus Brassica. In Brassica napus, accurately initiated pre-rRNA transcripts from one progenitor, Brassica rapa are detected readily, whereas transcripts from the ∼3000 rRNA genes inherited from the other progenitor, Brassica oleracea, are undetectable. Nuclear run-on confirmed that dominance is controlled at the level of transcription. Growth of B. napus seedlings on 5-aza-2′-deoxycytidine to inhibit cytosine methylation caused the normally silent, under-dominant B. oleracea rRNA genes to become expressed to high levels. The histone deacetylase inhibitors sodium butyrate and trichostatin A also de-epressed silent rRNA genes. These results reveal an enforcement mechanism for nucleolar dominance in which DNA methylation and histone modifications combine to regulate rRNA gene loci spanning tens of megabase pairs of DNA. PMID:9284051

  14. Functional modulation of insulin-like growth factor binding protein-3 expression in melanoma

    PubMed Central

    Dar, Altaf A; Majid, Shahana; Nosrati, Mehdi; deSemir, David; Federman, Scot; Kashani-Sabet, Mohammed

    2011-01-01

    Insulin-like growth factor binding protein-3 (IGFBP3) is a member of the IGFBP family, which regulates mitogenic and anti-apoptotic effects of insulin-like growth factors. In this report we evaluated the role of IGFBP3 in melanoma. Quantitative real-time PCR (qRT-PCR), western and ELISA analysis indicated a significant downregulation of IGFBP3 expression in melanoma cell lines as compared to a normal melanocyte cell line. Melanoma cell lines treated with the demethylating agent 5-AZA-2deoxycytidine re-expressed IGFBP3 at the mRNA and protein level. Chromatin immunoprecipitation assays revealed enrichment of acetylated histone H3, H4, H3 di- and tri-methylated lysine 4 on the unmethylated IGFBP3 promoter. The IGFBP3 promoter region was highly methylated in human melanoma samples as compared to normal nevi. Overexpression of IGFBP3 in melanoma cells in vitro suppressed tumor cell survival, induced apoptosis, reduced colony formation and invasion, and induced expression of the pro-apoptotic genes p21, PUMA, and BAX. IGFBP3 overexpression also resulted in cleavage of caspase 3 and reduced expression of phosphorylated-AKT. Stable overexpression of IGFBP3 suppressed tumor cell growth in vivo. Our results indicate that silencing of IGFBP3 in melanoma is due to the methylation of its promoter, and that overexpression of IGFBP3 induces apoptosis and suppresses cell survival and growth. PMID:20357812

  15. Aberrant silencing of the endocrine peptide gene tachykinin-1 in gastric cancer

    SciTech Connect

    David, Stefan; Kan, Takatsugu; Cheng, Yulan; Agarwal, Rachana; Jin, Zhe; Mori, Yuriko

    2009-01-16

    Tachykinin-1 (TAC1) is the precursor protein for neuroendocrine peptides, including substance P, and is centrally involved in gastric secretion, motility, mucosal immunity, and cell proliferation. Here we report aberrant silencing of TAC1 in gastric cancer (GC) by promoter hypermethylation. TAC1 methylation and mRNA expression in 47 primary GCs and 41 noncancerous gastric mucosae (NLs) were analyzed by utilizing real-time quantitative PCR-based assays. TAC1 methylation was more prevalent in GCs than in NLs: 21 (45%) of 47 GCs versus 6 (15%) of 41 NLs (p < 0.01). Microsatellite instability was also associated with TAC1 methylation in GCs. There was no significant association between TAC1 methylation and age, gender, stage, histological differentiation, or the presence of Helicobacter pylori. TAC1 mRNA was markedly downregulated in GCs relative to NLs. 5-Aza-2'-deoxycytidine-induced demethylation of the TAC1 promoter resulted in TAC1 mRNA upregulation. Further studies are indicated to elucidate the functional involvement of TAC1 in gastric carcinogenesis.

  16. The differentiation effect of low-dose cytosine arabinoside is disturbed in PU.1-knockdown K562 cells.

    PubMed

    Nakano, Hiroko; Yanagita, Akane; Takahashi, Shinichiro

    2014-07-01

    We recently demonstrated by using PU.1-knockdown K562 (K562 PU.1KD) cells stably expressing PU.1 short inhibitory RNAs and PU.1-overexpressing K562 (K562 PU.1OE) cells, that therapeutic concentrations of 5-aza-2'-deoxycytidine (5-azadC) induce erythroid differentiation of these cells and that the PU.1 expression level is closely associated with the differentiating and apoptotic effects of 5-azadC on K562 cells. In this study, we investigated whether the effects of low-dose cytosine arabinoside (Ara-C), which is another erythroid differentiation inducer in K562 cells, is associated with the expression level of PU.1 in these cells. As a result, we demonstrated that the effect of Ara-C on cell viability and differentiation, as determined by the WST-8 assay and β-globin mRNA expression analysis, respectively, was suppressed in K562 PU.1KD cells compared to their controls. Collectively, these findings suggest that sufficient expression of PU.1 is indispensable for the erythroid differentiation of K562 cells.

  17. XIST repression in the absence of DNMT1 and DNMT3B.

    PubMed

    Vasques, Luciana R; Stabellini, Raquel; Xue, Fei; Tian, X Cindy; Soukoyan, Marina; Pereira, Lygia V

    2005-01-01

    X chromosome inactivation (XCI) in human and mice involves XIST/Xist gene expression from the inactive X (Xi) and repression from the active X (Xa). Repression of the XIST/Xist gene on the Xa has been associated with methylation of its 5' region. In mice, Dnmt1 has been shown to be involved in the methylation and transcriptional repression of Xist on Xa. We examined maintenance of XIST gene repression on Xa in HCT116 cell lines knockout for either DNMT1 or DNMT3B and for DNMT1 and DNMT3B simultaneously. Methylation of the XIST promoter and XIST transcriptional repression is sustained in DNMT1-, DNMT3B- and DNMT1/DNMT3B knockout cells. Despite global DNA demethylation, the double knockout cells present only partial demethylation of the XIST promoter, which is not sufficient for gene reactivation. In contrast, global DNA demethylation with 5-aza-2'-deoxycytidine leads to XIST expression. Therefore, in these human cells maintenance of XIST methylation is controlled differently than global genomic methylation and in the absence of both DNMT1 and DNMT3B.

  18. Loss-of-function screening to identify miRNAs involved in senescence: tumor suppressor activity of miRNA-335 and its new target CARF

    PubMed Central

    Yu, Yue; Gao, Ran; Kaul, Zeenia; Li, Ling; Kato, Yoshio; Zhang, Zhenya; Groden, Joanna; Kaul, Sunil C; Wadhwa, Renu

    2016-01-01

    Significance of microRNAs (miRs), small non-coding molecules, has been implicated in a variety of biological processes. Here, we recruited retroviral insertional mutagenesis to obtain induction of an arbitrary noncoding RNAs, and coupled it with a cell based loss-of-function (5-Aza-2′-deoxycytidine (5Aza-dC)-induced senescence bypass) screening system. Cells that escaped 5-Aza-dC-induced senescence were subjected to miR-microarray analysis with respect to the untreated control. We identified miR-335 as one of the upregulated miRs. In order to characterize the functional significance, we overexpressed miR-335 in human cancer cells and found that it caused growth suppression. We demonstrate that the latter accounted for inhibition of 5-Aza-dC incorporation into the cell genome, enabling them to escape from induction of senescence. We also report that CARF (Collaborator of ARF) is a new target of miR-335 that regulates its growth suppressor function by complex crosstalk with other proteins including p16INK4A, pRB, HDM2 and p21WAF1. PMID:27457128

  19. Inhibiting DNA methylation switches adipogenesis to osteoblastogenesis by activating Wnt10a

    PubMed Central

    Chen, Yii-Shyuan; Wu, Rui; Yang, Xiaosong; Kou, Shuping; MacDougald, Ormond A.; Yu, Liqing; Shi, Hang; Xue, Bingzhong

    2016-01-01

    Both adipocytes and osteoblasts share the mesodermal lineage that derives from mesenchymal stem cells. Most studies investigating the mechanisms underlying the regulation of adipogenic or osteoblastogenic development focus on transcriptional pathways; little is known about the epigenetic mechanisms in this process. We thus determined the role of 5-aza-2′-deoxycytidine (5-Aza-dC), an inhibitor of DNA methylation, in the lineage determination between adipogenesis and osteoblastogenesis. Inhibiting DNA methylation in 3T3-L1 preadipocytes by 5-Aza-dC significantly inhibited adipogenesis whereas promoted osteoblastogenesis. This dual effect of 5-Aza-dC was associated with up-regulation of Wnt10a, a key factor determining the fate of the mesenchymal lineage towards osteoblasts. Consistently, IWP-2, an inhibitor of Wnt proteins, was found to prevent the anti-adipogenic effect of 5-Aza-dC in 3T3-L1 preadipocytes and block the osteoblastogenic effect of 5-Aza-dC in ST2 mesenchymal stem cell line. Finally, the Wnt10a 5′-region is enriched with CpG sites, whose methylation levels were markedly reduced by 5-Aza-dC. Thus we conclude that inhibiting DNA methylation by 5-Aza-dC mutual-exclusively regulates the lineage determination of adipogenesis and osteoblastogenesis by demethylating Wnt10a gene and upregulating its expression. Our study defines DNA methylation as a novel mechanism underlying adipocyte and bone cell development. PMID:27136753

  20. DNA Methylation and Sex Allocation in the Parasitoid Wasp Nasonia vitripennis.

    PubMed

    Cook, Nicola; Pannebakker, Bart A; Tauber, Eran; Shuker, David M

    2015-10-01

    The role of epigenetics in the control and evolution of behavior is being increasingly recognized. Here we test whether DNA methylation influences patterns of adaptive sex allocation in the parasitoid wasp Nasonia vitripennis. Female N. vitripennis allocate offspring sex broadly in line with local mate competition (LMC) theory. However, recent theory has highlighted how genomic conflict may influence sex allocation under LMC, conflict that requires parent-of-origin information to be retained by alleles through some form of epigenetic signal. We manipulated whole-genome DNA methylation in N. vitripennis females using the hypomethylating agent 5-aza-2'-deoxycytidine. Across two replicated experiments, we show that disruption of DNA methylation does not ablate the facultative sex allocation response of females, as sex ratios still vary with cofoundress number as in the classical theory. However, sex ratios are generally shifted upward when DNA methylation is disrupted. Our data are consistent with predictions from genomic conflict over sex allocation theory and suggest that sex ratios may be closer to the optimum for maternally inherited alleles. PMID:26655574

  1. Incontinence Treatment: Newer Treatment Options

    MedlinePlus

    ... Incontinence Managing Incontinence: A Survey The Patient's Perspective Barriers on Diagnosis and Treatment Personal Stories Contact Us ... Incontinence Managing Incontinence: A Survey The Patient's Perspective Barriers on Diagnosis and Treatment Personal Stories Contact Us ...

  2. Sewage Treatment

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A million gallon-a-day sewage treatment plant in Huntington Beach, CA converts solid sewage to activated carbon which then treats incoming waste water. The plant is scaled up 100 times from a mobile unit NASA installed a year ago; another 100-fold scale-up will be required if technique is employed for widespread urban sewage treatment. This unique sewage-plant employed a serendipitous outgrowth of a need to manufacture activated carbon for rocket engine insulation. The process already exceeds new Environmental Protection Agency Standards Capital costs by 25% compared with conventional secondary treatment plants.

  3. Wastewater Treatment.

    ERIC Educational Resources Information Center

    Zoltek, J., Jr.; Melear, E. L.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers: (1) process application; (2) coagulation and solids separation; (3) adsorption; (4) ion exchange; (5) membrane processes; and (6) oxidation processes. A list of 123 references is also presented. (HM)

  4. Treatment & Coping

    MedlinePlus

    ... Patient gender Curve worsening Associated symptoms such as back pain or shortness of breath What are treatment options ... problems in addition to your scoliosis (such as back pain), your doctor may prescribe physical therapy to address ...

  5. [Home Treatment].

    PubMed

    Widmann, F; Bachhuber, G; Riedelsheimer, A; Schiele, A; Ullrich, S; Kilian, R; Becker, T; Frasch, K

    2016-01-01

    Home Treatment (HT) means acute psychiatric treatment in the patient's usual environment. Conceptually, HT is to be differentiated from other home-based services: It is limited with regard to duration and multiprofessional (e. g. psychiatrist plus psychiatric nursing staff plus social worker); the "24/7"-accessibility is frequently provided by the corresponding background hospital infrastructure. Target group are acutely mentally ill persons with an indication to inpatient treatment, who are willing to cooperate, and absence of endangerment to self and others. In contrast to the Scandinavian and many Anglophone countries where nationwide HT services are delivered, there are not many HT sites in Germany so far. Consequently, empirical data concerning HT in Germany is scarce. In summary, international studies show equivalent effects on psychopathological measures compared to inpatient treatment, reductions with regard to inpatient days, higher patient satisfaction and a trend towards cost-effectivity. PMID:26878432

  6. Stroke Treatments

    MedlinePlus

    ... weakened blood vessels that also cause hemorrhagic stroke: aneurysms and arteriovenous malformations (AVMs). Treatment differs depending on ... the leg or arm, then guided to the aneurysm or AVM ; it then deposits a mechanical agent, ...

  7. Sewage Treatment

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Stennis Space Center's aquaculture research program has led to an attractive wastewater treatment for private homes. The system consists of a septic tank or tanks for initial sewage processing and a natural secondary treatment facility for further processing of septic tanks' effluent, consisting of a narrow trench, which contains marsh plants and rocks, providing a place for microorganisms. Plants and microorganisms absorb and digest, thus cleansing partially processed wastewater. No odors are evident and cleaned effluent may be discharged into streams or drainage canals. The system is useful in rural areas, costs about $1,900, and requires less maintenance than mechanical systems.

  8. WATER TREATMENT

    DOEpatents

    Pitman, R.W.; Conley, W.R. Jr.

    1962-12-01

    An automated system for adding clarifying chemicals to water in a water treatment plant is described. To a sample of the floc suspension polyacrylamide or similar filter aid chemicals are added, and the sample is then put through a fast filter. The resulting filtrate has the requisite properties for monitoring in an optical turbidimeter to control the automated system. (AEC)

  9. PARACOCCIDIOIDOMYCOSIS TREATMENT

    PubMed Central

    SHIKANAI-YASUDA, Maria Aparecida

    2015-01-01

    SUMMARY Considered to be an emerging endemic mycosis in Latin America, paracoccidioidomycosis is characterized by a chronic course and involvement of multiple organs in immunocompromised hosts. Infection sequelae are mainly related to pulmonary and adrenal insufficiency. The host-parasite interaction results in different expressions of the immune response depending on parasite pathogenicity, fungal load and genetic characteristics of the host. A few controlled and case series reports have shown that azoles and fast-acting sulfa derivatives are useful treatment alternatives in milder forms of the disease. For moderate/severe cases, more prolonged treatments or even parenteral routes are required especially when there is involvement of the digestive tract mucosa, resulting in poor drug absorption. Although comparative studies have reported that shorter treatment regimens with itraconazole are able to induce cure in chronically-infected patients, there are still treatment challenges such as the need for more controlled studies involving acute cases, the search for new drugs and combinations, and the search for compounds capable of modulating the immune response in severe cases as well as the paradoxical reactions. PMID:26465367

  10. Surface Treatment

    NASA Technical Reports Server (NTRS)

    Park, Cheol (Inventor); Lowther, Sharon E. (Inventor); St.Clair, Terry L. (Inventor)

    2003-01-01

    A simple surface treatment process is provided which offers a high performance surface for a variety of applications at low cost. This novel surface treatment, which is particularly useful for Ti-6Al-4V alloys, is achieved by forming oxides on the surface with a two-step chemical process and without mechanical abrasion. First, after solvent degreasing, sulfuric acid is used to generate a fresh titanium surface. Next, an alkaline perborate solution is used to form an oxide on the surface. This acid-followed-by-base treatment is cost effective and relatively safe to use in commercial applications. In addition, it is chromium-free, and has been successfully used with a sol-gel coating to afford a strong adhesive bond that exhibits excellent durability after the bonded specimens have been subjected to a harsh 72 hour water boil immersion. Phenylethynyl containing adhesives were used to evaluate this surface treatment with a novel coupling agent containing both trialkoxysilane and phenylethynyl groups. 8 Claims, 16 Drawing Sheets

  11. Rotavirus Treatment

    MedlinePlus

    ... Rotavirus Vaccine Program American Academy of Pediatrics Treatment Language: English Español (Spanish) Recommend on Facebook Tweet Share Compartir ... PATH's Rotavirus Vaccine Program American Academy of Pediatrics Language: English Español (Spanish) File Formats Help: How do I ...

  12. Myelodysplastic/ Myeloproliferative Neoplasms Treatment

    MedlinePlus

    ... Myeloproliferative Neoplasms Treatment Myelodysplastic/ Myeloproliferative Neoplasms Treatment Myelodysplastic/ Myeloproliferative Neoplasms Treatment (PDQ®)–Patient Version General Information About Myelodysplastic/ ...

  13. Chronic Myeloproliferative Neoplasms Treatment

    MedlinePlus

    ... Myeloproliferative Neoplasms Treatment Myelodysplastic/ Myeloproliferative Neoplasms Treatment Chronic Myeloproliferative Neoplasms Treatment (PDQ®)–Patient Version General Information About Chronic ...

  14. Antimicrobials Treatment

    NASA Astrophysics Data System (ADS)

    Drosinos, Eleftherios H.; Skandamis, Panagiotis N.; Mataragas, Marios

    The use of antimicrobials is a common practice for preservation of foods. Incorporation, in a food recipe, of chemical antimicrobials towards inhibition of spoilage and pathogenic micro-organisms results in the compositional modification of food. This treatment is nowadays undesirable for the consumer, who likes natural products. Scientific community reflecting consumers demand for natural antimicrobials has made efforts to investigate the possibility to use natural antimicrobials such us bacteriocins and essential oils of plant origin to inhibit microbial growth.

  15. Sewage Treatment

    NASA Technical Reports Server (NTRS)

    1984-01-01

    In the early 1970's, National Space Technology Laboratories discovered that water hyacinths literally thrive on sewage; they absorb and digest nutrients and minerals from wastewater, converting sewage effluents to clean water. They offer a means of purifying water at a fraction of the cost of a conventional sewage treatment plant, and provide a bonus value in byproducts. Hyacinths must be harvested at intervals; the harvested plants are used as fertilizers, high-protein animal feed and a source of energy. Already serving a number of small towns, the "aquaculture" technique has significantly advanced with its adoption by a major U.S. city.

  16. Selective detection of 5-formyl-2'-deoxycytidine in DNA using a fluorogenic hydroxylamine reagent.

    PubMed

    Guo, Pu; Yan, Shengyong; Hu, Jianlin; Xing, Xiwen; Wang, Changcheng; Xu, Xiaowei; Qiu, Xiaoyu; Ma, Wen; Lu, Chunjiang; Weng, Xiaocheng; Zhou, Xiang

    2013-07-01

    Fluorogenic hydroxylamine reagents were used for detecting 5-fC through a labeling pathway. Chemical synthesis, HPLC, denaturing PAGE, and DNA MS were applied to testify that the probe reacted with 5-fC with oligodeoxynucleotide selectivity to achieve 5-fC detection conveniently and quantificationally with the method of fluorescence. The feasibility of fluorescently detecting 5-fC in a genome was also investigated.

  17. Quantitative determination of 2'-deoxycytidine-5'-triphosphate in cell extracts by radioimmunoassay

    SciTech Connect

    Piall, E.M.; Aherne, G.W.; Marks, V.

    1986-04-01

    A radioimmunoassay (RIA) capable of quantitating dCTP in femtomolar amounts in cell extracts has been developed, and applied to human fibroblast cells lines and L5178Y mouse lymphoma lines. Cross reactivity of the antibody with CTP, though low (2.7%) has necessitated pre-RIA removal of CTP by either boronate affinity gel chromatography or sodium periodate oxidation. Fractions from the boronate gel column or aliquots of NaIO/sub 4/-treated cell extract are quantitated directly by the RIA. Recovery of extracted dCTP standard taken through the entire procedure is quantitative and results are reproductive. Due to the high sensitivity of the quantitation step, dCTP can be accurately measured in relatively small numbers of cells-about 10/sup 4/ cells.

  18. Structure-Guided Development of Deoxycytidine Kinase Inhibitors with Nanomolar Affinity and Improved Metabolic Stability

    PubMed Central

    2015-01-01

    Recently, we have shown that small molecule dCK inhibitors in combination with pharmacological perturbations of de novo dNTP biosynthetic pathways could eliminate acute lymphoblastic leukemia cells in animal models. However, our previous lead compound had a short half-life in vivo. Therefore, we set out to develop dCK inhibitors with favorable pharmacokinetic properties. We delineated the sites of the inhibitor for modification, guided by crystal structures of dCK in complex with the lead compound and with derivatives. Crystal structure of the complex between dCK and the racemic mixture of our new lead compound indicated that the R-isomer is responsible for kinase inhibition. This was corroborated by kinetic analysis of the purified enantiomers, which showed that the R-isomer has >60-fold higher affinity than the S-isomer for dCK. This new lead compound has significantly improved metabolic stability, making it a prime candidate for dCK-inhibitor based therapies against hematological malignancies and, potentially, other cancers. PMID:25341194

  19. Deoxycytidine monophosphate deaminase in Acetabularia: properties and regulation in the early generative phase.

    PubMed

    Bannwarth, H; Ikehara, N; Schweiger, H G

    1982-06-01

    The occurrence of a dCMP deaminase in Acetabularia mediterranea has been demonstrated. The enzyme which is found in a particulate fraction is substantially stimulated by the addition of dCTP. The activity of the enzyme is increased at the beginning of the generative phase in nucleate as well as in anucleate cells. This regulation is due to de novo synthesis of the enzyme. By means of inhibitor studies, it has been shown that the enzyme is translated on 70S ribosomes of and coced for in cell organelles.

  20. Anaerobic treatment

    SciTech Connect

    Witt, E.R.; Humphrey, W.J.; Cave, J.P.

    1982-12-28

    This invention provides for the anaerobic treatment of acidic petrochemical wastes in an anaerobic filter at high loadings and high recycle rates. The effluent from the top of the filter passes into a gas-disengaging/solids-settling zone containing a quiescent body of the effluent liquid. The settled solids are withdrawn and recycled to the base of the filter together with fresh acidic waste and an inorganic alkaline material (preferably magnesium oxide or carbonate) to maintain a neutral pH. The liquid portion of the effluent is sent to an aerobic digester to remove the rest of the organic material, which is used to support the growth of bacteria and fed back to the anaerobic system.

  1. Psychological treatments.

    PubMed

    Barlow, David H

    2004-12-01

    Psychology has recently identified itself as a health care profession and codified this change in the bylaws of the American Psychological Association. Although psychologists make a number of contributions to the nation's health--and mental health--the most identifiable activity focuses on treating physical or psychological pathology with psychological interventions. Recently, health care policymakers have established that evidence supporting the efficacy of these interventions is more than sufficient for their inclusion in health care systems around the world. To promote faster and more widespread dissemination of these interventions specifically targeting problems severe enough to be included in health care systems and to solidify the identification of psychology as a health care profession, perhaps it is time for a change in terminology. It is proposed that psychologists label these procedures psychological treatments so as to differentiate them from more generic psychotherapy, which is often used outside of the scope of health care systems.

  2. Chemiluminescence Immunoassay for S-Adenosylhomocysteine Detection and Its Application in DNA Methyltransferase Activity Evaluation and Inhibitors Screening.

    PubMed

    Li, Xiaogang; Meng, Meng; Zheng, Lei; Xu, Zhihuan; Song, Pei; Yin, Yongmei; Eremin, Sergei A; Xi, Rimo

    2016-09-01

    Aberrant methylation by DNA transferase is associated with cancer initiation and progression. For high-throughput screening of DNA methyltransferase (MTase) activity and its inhibitors, a novel chemiluminescence immunoassay (CLIA) was established to detect S-adenosylhomocysteine (SAH), the product of S-adenosylmethionine (SAM) transmethylation reactions. We synthesized two kinds of immunogens for SAH and characterized the polyclonal antibodies in each group. The antibody with higher titer was used to develop a competitive CLIA for SAH, in which SAH in samples would compete with SAH coated on microplate in binding with SAH antibodies. Successively, horseradish peroxidase labeled goat antirabbit IgG (HRP-IgG) was conjugated with SAH antibodies on the microplate. In substrate solution containing luminol and H2O2, HRP-IgG catalyzed luminol oxidation by H2O2, generating a high chemiluminescence signal. The method could detect as low as 9.8 ng mL(-1) SAH with little cross-reaction (3.8%) to SAM. Since higher DNA MTase activity leads to more production of SAH, a correlation between the chemiluminescence intensity and DNA MTase activity was obtained in the range from 0.1 to 8.0 U/mL of DNA MTase. The inhibition study showed that, in the presence of SAM as methyl donor, Lomeguatrib, 5-Azacytidine, and 5-Aza-2'-deoxycytidine could inhibit the DNA MTase activity with IC50 values of 40.57 nM, 2.26 μM, and 0.48 μM, respectively. These results are consistent with the published studies. The proposed assay does not depend on recognizing methylated cytosines in oligonucleotides (methyl acceptor) and showed the potential as an accessible platform for sensitive detection of DNA MTase activity and screening its inhibitors. PMID:27464505

  3. Analysis of aberrant methylation in DNA repair genes during malignant transformation of human bronchial epithelial cells induced by cadmium.

    PubMed

    Zhou, Zhi-heng; Lei, Yi-xiong; Wang, Cai-xia

    2012-02-01

    Cadmium (Cd) and its compounds are well-known human carcinogens, but the mechanisms underlying the carcinogenesis are not entirely understood yet. Aberrant methylation was investigated in order to obtain insight into the DNA repair-related epigenetic mechanisms underlying CdCl(2)-induced malignant transformation of human bronchial epithelial cells (16HBE). Gene expression and DNA methylation were assessed in untreated control cells; 5th, 15th, and 35th passage of CdCl2-treated cells and tumorigenic cells (TCs) from nude mice by using high-performance liquid chromatography, real-time PCR, Western blot analysis, and methylation-specific PCR assay. During Cd-induced malignant transformation, global DNA methylation progressively increased and was associated with the overexpression of the DNA methyltransferase genes DNMT1 and DNMT3a but not DNMT3b. Expression of both the messenger RNA and proteins of the DNA repair genes (hMSH2, ERCC1, XRCC1, and hOGG1) progressively reduced and DNA damage increased with Cd-induced transformation. The promoter regions of hMSH2, ERCC1, XRCC1, and hOGG1 were heavily methylated in the 35th passage transformed cells and the TCs. The DNA demethylating agent 5-aza-2'-deoxycytidine could reverse the Cd-induced global DNA hypermethylation, DNMT hyperactivity, and the silencing of hMSH2, ERCC1, XRCC1, and hOGG1 in a time-dependent manner. The results indicate that DNMT1 and DNMT3a overexpression can result in global DNA hypermethylation and silencing of the hMSH2, ERCC1, XRCC1, and hOGG1 genes. They may partly explain the epigenetic mechanisms underlying the carcinogenesis due to Cd.

  4. Cancer chemoprevention by targeting the epigenome.

    PubMed

    Huang, Joseph; Plass, Christoph; Gerhauser, Clarissa

    2011-12-01

    The term "epigenetics" refers to modifications in gene expression caused by heritable, but potentially reversible, changes in DNA methylation and chromatin structure. Given the fact that epigenetic modifications occur early in carcinogenesis and represent potentially initiating events in cancer development, they have been identified as promising new targets for prevention strategies. The present review will give a comprehensive overview of the current literature on chemopreventive agents and their influence on major epigenetic mechanisms, that is DNA methylation, histone acetylation and methylation, and microRNAs, both in vitro and in rodent and human studies, taking into consideration specific mechanisms of action, target sites, concentrations, methods used for analysis, and outcome. Chemopreventive agents with reported mechanisms targeting the epigenome include micronutrients (folate, selenium, retinoic acid, Vit. E), butyrate, polyphenols (from green tea, apples, coffee, and other dietary sources), genistein and soy isoflavones, parthenolide, curcumin, ellagitannin, indol-3-carbinol (I3C) and diindolylmethane (DIM), mahanine, nordihydroguaiaretic acid (NDGA), lycopene, sulfur-containing compounds from Allium and cruciferous vegetables (sulforaphane, phenylethyl isothiocyanate (PEITC), phenylhexyl isothiocyanate (PHI), diallyldisulfide (DADS), allyl mercaptan (AM)), antibiotics (mithramycin A, apicidin), pharmacological agents (celecoxib, DFMO, 5-aza-2'-deoxycytidine and zebularine), compounds affecting sirtuin activity (resveratrol, dihydrocoumarin, cambinol), inhibitors of histone acetyl transferases (anacardic acid, garcinol, ursodeoxycholic acid), and relatively unexplored modulators of histone lysine methylation (chaetocin, polyamine analogues, n-3 polyunsaturated fatty acids). Their effects on global DNA methylation, tumor suppressor genes silenced by promoter methylation, histone modifications, and miRNAs deregulated during carcinogenesis have potential

  5. Kaiso, a transcriptional repressor, promotes cell migration and invasion of prostate cancer cells through regulation of miR-31 expression.

    PubMed

    Wang, Honghe; Liu, Wei; Black, ShaNekkia; Turner, Omari; Daniel, Juliet M; Dean-Colomb, Windy; He, Qinghua P; Davis, Melissa; Yates, Clayton

    2016-02-01

    Kaiso, a member of the BTB/POZ zinc finger protein family, functions as a transcriptional repressor by binding to sequence-specific Kaiso binding sites or to methyl-CpG dinucleotides. Previously, we demonstrated that Kaiso overexpression and nuclear localization correlated with the progression of prostate cancer (PCa). Therefore, our objective was to explore the molecular mechanisms underlying Kaiso-mediated PCa progression. Comparative analysis of miRNA arrays revealed that 13 miRNAs were significantly altered (> 1.5 fold, p < 0.05) in sh-Kaiso PC-3 compared to sh-Scr control cells. Real-time PCR validated that three miRNAs (9, 31, 636) were increased in sh-Kaiso cells similar to cells treated with 5-aza-2'-deoxycytidine. miR-31 expression negatively correlated with Kaiso expression and with methylation of the miR-31 promoter in a panel of PCa cell lines. ChIP assays revealed that Kaiso binds directly to the miR-31 promoter in a methylation-dependent manner. Over-expression of miR-31 decreased cell proliferation, migration and invasiveness of PC-3 cells, whereas cells transfected with anti-miR-31 restored proliferation, migration and invasiveness of sh-Kaiso PC-3 cells. In PCa patients, Kaiso high/miR-31 low expression correlated with worse overall survival relative to each marker individually. In conclusion, these results demonstrate that Kaiso promotes cell migration and invasiveness through regulation of miR-31 expression.

  6. Characterization of baculovirus Autographa californica multiple nuclear polyhedrosis virus infection in mammalian cells.

    PubMed

    Kitajima, Masayuki; Hamazaki, Hiroyuki; Miyano-Kurosaki, Naoko; Takaku, Hiroshi

    2006-05-01

    The baculovirus Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) is used as a vector in many gene therapy studies. Wild-type AcMNPV infects many mammalian cell types in vitro, but does not replicate. We investigated the dynamics of AcMNPV genomic DNA in infected mammalian cells and used flow cytometric analysis to demonstrate that recombinant baculovirus containing a cytomegalovirus immediate early promoter/enhancer with green fluorescent protein (GFP) expressed high levels of GFP in Huh-7 cells, but not B16, Raw264.7, or YAC-1 cells. The addition of butyrate, a deacetylase inhibitor, markedly enhanced the percentage of GFP-expressing Huh-7 and B16 cells, but not Raw264.7 and YAC-1 cells. The addition of 5-aza-2'-deoxycytidine, a DNA methylation inhibitor, had no enhancing effect. Polymerase chain reaction analysis using AcMNPV-gp64-specific primers indicated that AcMNPV infected not only Huh-7 and B16 cells, but also Raw264.7 and YAC-1 cells in vitro. The genomic DNA was detected in Huh-7 and B16 cells 96 h after infection. Genomic AcMNPV DNA in YAC-1 cells was not transported to the nucleus. Luciferase assay indicated that AcMNPV p35 gene mRNA and p35 promoter activity were clearly expressed only in Huh-7 and B16 cells. These results suggest that viral genomic DNA expression is restricted by different host cell factors, such as degradation, deacetylation, and inhibition of nuclear transport, depending on the mammalian cell type. PMID:16545777

  7. miR-196b Is Epigenetically Silenced during the Premalignant Stage of Lung Carcinogenesis.

    PubMed

    Tellez, Carmen S; Juri, Daniel E; Do, Kieu; Picchi, Maria A; Wang, Teresa; Liu, Gang; Spira, Avrum; Belinsky, Steven A

    2016-08-15

    miRNA silencing by promoter hypermethylation may represent a mechanism by which lung cancer develops and progresses, but the miRNAs involved during malignant transformation are unknown. We previously established a model of premalignant lung cancer wherein we treated human bronchial epithelial cells (HBEC) with low doses of tobacco carcinogens. Here, we demonstrate that next-generation sequencing of carcinogen-transformed HBECs treated with the demethylating agent 5-aza-2'deoxycytidine revealed miR-196b and miR-34c-5p to be epigenetic targets. Bisulfite sequencing confirmed dense promoter hypermethylation indicative of silencing in multiple malignant cell lines and primary tumors. Chromatin immunoprecipitation studies further demonstrated an enrichment in repressive histone marks on the miR-196b promoter during HBEC transformation. Restoration of miR-196b expression by transfecting transformed HBECs with specific mimics led to cell-cycle arrest mediated in part through transcriptional regulation of the FOS oncogene, and miR-196b reexpression also significantly reduced the growth of tumor xenografts. Luciferase assays demonstrated that forced expression of miR-196b inhibited the FOS promoter and AP-1 reporter activity. Finally, a case-control study revealed that methylation of miR-196b in sputum was strongly associated with lung cancer (OR = 4.7, P < 0.001). Collectively, these studies highlight miR-196b as a tumor suppressor whose silencing early in lung carcinogenesis may provide a selective growth advantage to premalignant cells. Targeted delivery of miR-196b could therefore serve as a preventive or therapeutic strategy for the management of lung cancer. Cancer Res; 76(16); 4741-51. ©2016 AACR. PMID:27302168

  8. Coordinate regulation of microenvironmental stimuli and role of methylation in bone metastasis from breast carcinoma.

    PubMed

    Matteucci, Emanuela; Maroni, Paola; Disanza, Andrea; Bendinelli, Paola; Desiderio, Maria Alfonsina

    2016-01-01

    The pathogenesis of bone metastasis is unclear, and much focus in metastatic biology and therapy relays on epigenetic alterations. Since DNA-methyltransferase blockade with 5-aza-2'-deoxycytidine (dAza) counteracts tumour growth, here we utilized dAza to clarify whether molecular events undergoing epigenetic control were critical for bone metastatization. In particular, we investigated the patterns of secreted-protein acidic and rich in cysteine (SPARC) and of Endothelin 1, affected by DNA methyltransferases in tumours, with the hypothesis that in bone metastasis a coordinate function of SPARC and Endothelin 1, if any occurs, was orchestrated by DNA methylation. To this purpose, we prepared a xenograft model with the clone 1833, derived from human-MDA-MB231 cells, and dAza administration slowed-down metastasis outgrowth. This seemed consequent to the reductions of SPARC and Endothelin 1 at invasive front and in the bone marrow, mostly due to loss of Twist. In the metastasis bulk Snail, partly reduced by dAza, might sustain Endothelin 1-SPARC cooperativity. Both SPARC and Endothelin 1 underwent post-translational control by miRNAs, a molecular mechanism that might explain the in vivo data. Ectopic miR29a reduced SPARC expression also under long-term dAza exposure, while Endothelin 1 down-regulation occurred in the presence of endogenous-miR98 expression. Notably, dAza effects differed depending on in vivo and in vitro conditions. In 1833 cells exposed to 30-days dAza, SPARC-protein level was practically unaffected, while Endothelin 1 induction depended on the 3'-UTR functionality. The blockade of methyltransferases leading to SPARC reduction in vivo, might represent a promising strategy to hamper early steps of the metastatic process affecting the osteogenic niche.

  9. Hypermethylation of Hippocampal Synaptic Plasticity-Related genes is Involved in Neonatal Sevoflurane Exposure-Induced Cognitive Impairments in Rats.

    PubMed

    Ju, Ling-sha; Jia, Min; Sun, Jie; Sun, Xiao-ru; Zhang, Hui; Ji, Mu-huo; Yang, Jian-jun; Wang, Zhong-yun

    2016-02-01

    General anesthetics given to immature rodents cause delayed neurobehavioral abnormalities via incompletely understood mechanisms. DNA methylation, one of the epigenetic modifications, is essential for the modulation of hippocampal synaptic plasticity through regulating the related genes. Therefore, we investigated whether abnormalities in the hippocampal DNA methylation of synaptic plasticity-related genes are involved in neonatal sevoflurane exposure-induced cognitive impairments in rats. Male Sprague-Dawley rats were exposed to 3 % sevoflurane or 30 % oxygen/air for 2 h daily from postnatal day 7 (P7) to P9 and were treated with DNA methyltransferases (DNMTs) inhibitor 5-aza-2-deoxycytidine (5-AZA) or vehicle 1 h before the first sevoflurane exposure on P7. The rats were euthanized 1, 6, 24 h, and 30 days after the last sevoflurane exposure, and the brain tissues were harvested for biochemical analysis. Cognitive functions were evaluated by the open field, fear conditioning, and Morris water maze (MWM) tests on P39, P41-43, and P50-57, respectively. In the present study, repeated neonatal sevoflurane exposure resulted in hippocampus-dependent cognitive impairments as assessed by fear conditioning and MWM tests. The cognitive impairments were associated with the increased DNMTs and hypermethylation of brain-derived neurotrophic factor (BDNF) and Reelin genes, and subsequent down-regulation of BDNF and Reelin genes, which finally led to the decrease of dendritic spines in the hippocampal pyramidal neurons in adolescent rats. Notably, pretreatment with 5-AZA reversed these sevoflurane-induced abnormalities. In conclusion, our results suggest that hypermethylation of hippocampal BDNF and Reelin is involved in neonatal sevoflurane exposure-induced cognitive impairments.

  10. Overexpression of EGFR in Head and Neck Squamous Cell Carcinoma Is Associated with Inactivation of SH3GL2 and CDC25A Genes

    PubMed Central

    Maiti, Guru Prasad; Mondal, Pinaki; Mukherjee, Nupur; Ghosh, Amlan; Ghosh, Susmita; Dey, Sanjib; Chakrabarty, Jayanta; Roy, Anup; Biswas, Jaydip; Roychoudhury, Susanta; Panda, Chinmay Kumar

    2013-01-01

    The aim of this study is to understand the mechanism of EGFR overexpression in head and neck squamous cell carcinoma (HNSCC). For this reason, expression/mutation of EGFR were analyzed in 30 dysplastic head and neck lesions and 148 HNSCC samples of Indian patients along with 3 HNSCC cell lines. In addition, deletion/methylation/mutation/expression of SH3GL2 (associated with EGFR degradation) and CDC25A (associated with dephosphorylation of EGFR) were analyzed in the same set of samples. Our study revealed high frequency of EGFR overexpression (66–84%), low frequency of gene amplification (10–32.5%) and absence of functional mutation in the dysplastic lesions and HNSCC samples. No correlation was found between protein overexpression and mRNA expression/gene amplification status of EGFR. On the other hand, frequent alterations (deletion/methylation) of SH3GL2 (63–77%) and CDC25A (37–64%) were seen in the dysplastic and HNSCC samples. Two novel single nucleotide polymorphism (SNPs) were found in the promoter region of SH3GL2. Reduced expression of these genes showed concordance with their alterations. Overexpression of EGFR and p-EGFR were significantly associated with reduced expression and alterations of SH3GL2 and CDC25A respectively. In-vitro demethylation experiment by 5-aza-2′-deoxycytidine (5-aza-dC) showed upregulation of SH3GL2 and CDC25A and downregulation of EGFR expression in Hep2 cell line. Poor patient outcome was predicted in the cases with alterations of SH3GL2 and CDC25A in presence of human papilloma virus (HPV) infection. Also, low SH3GL2 and high EGFR expression was a predictor of poor patient survival. Thus, our data suggests that overexpression of EGFR due to its reduced degradation and dephosphorylation is needed for development of HNSCC. PMID:23675485

  11. Diffuse large B-cell lymphoma with combined TP53 mutation and MIR34A methylation: Another “double hit” lymphoma with very poor outcome?

    PubMed Central

    Kulosman, Gorjan; Treppendahl, Marianne Bach; Nielsen, Helene Myrtue; Ralfkiaer, Ulrik; Pedersen, Anja; Møller, Michael Boe; Ralfkiaer, Elisabeth; de Nully Brown, Peter; Grønbæk, Kirsten

    2014-01-01

    MiR34A, B and C have been implicated in lymphomagenesis, but information on their role in normal CD19+ B-cells (PBL-B) and de novo diffuse large B-cell lymphoma (DLBCL) is limited. We show that in normal and activated B-cells miR34A-5p plays a dominant role compared to other miR34 family members. Only miR34A-5p is expressed in PBL-B, and significantly induced in activated B-cells and reactive lymph nodes. In PBL-B, the MIR34A and MIR34B/C promoters are unmethylated, but the latter shows enrichment for the H3K4me3/H3K27me3 silencing mark. Nine de novo DLBCL cases (n=150) carry both TP53 mutation and MIR34A methylation (“double hit”) and these patients have an exceedingly poor prognosis with a median survival of 9.4 months (P<0.0001), while neither TP53 mutation, MIR34A or MIR34B/C promoter methylation alone (“single hit”) influence on survival. The TP53/MIR34A “double-hit” is an independent negative prognostic factor for survival (P=0.0002). In 2 DLBCL-cell lines with both TP53 mutation and promoter methylation of MIR34A, miR34A-5p is upregulated by 5-aza-2'deoxycytidine. Thus, the TP53/MIR34A “double hit” characterizes a very aggressive subgroup of DLBCL, which may be treatable with epigenetic therapy prior to or in combination with conventional immunochemotherapy. PMID:24722400

  12. DNA damage, homology-directed repair, and DNA methylation.

    PubMed

    Cuozzo, Concetta; Porcellini, Antonio; Angrisano, Tiziana; Morano, Annalisa; Lee, Bongyong; Di Pardo, Alba; Messina, Samantha; Iuliano, Rodolfo; Fusco, Alfredo; Santillo, Maria R; Muller, Mark T; Chiariotti, Lorenzo; Gottesman, Max E; Avvedimento, Enrico V

    2007-07-01

    To explore the link between DNA damage and gene silencing, we induced a DNA double-strand break in the genome of Hela or mouse embryonic stem (ES) cells using I-SceI restriction endonuclease. The I-SceI site lies within one copy of two inactivated tandem repeated green fluorescent protein (GFP) genes (DR-GFP). A total of 2%-4% of the cells generated a functional GFP by homology-directed repair (HR) and gene conversion. However, approximately 50% of these recombinants expressed GFP poorly. Silencing was rapid and associated with HR and DNA methylation of the recombinant gene, since it was prevented in Hela cells by 5-aza-2'-deoxycytidine. ES cells deficient in DNA methyl transferase 1 yielded as many recombinants as wild-type cells, but most of these recombinants expressed GFP robustly. Half of the HR DNA molecules were de novo methylated, principally downstream to the double-strand break, and half were undermethylated relative to the uncut DNA. Methylation of the repaired gene was independent of the methylation status of the converting template. The methylation pattern of recombinant molecules derived from pools of cells carrying DR-GFP at different loci, or from an individual clone carrying DR-GFP at a single locus, was comparable. ClustalW analysis of the sequenced GFP molecules in Hela and ES cells distinguished recombinant and nonrecombinant DNA solely on the basis of their methylation profile and indicated that HR superimposed novel methylation profiles on top of the old patterns. Chromatin immunoprecipitation and RNA analysis revealed that DNA methyl transferase 1 was bound specifically to HR GFP DNA and that methylation of the repaired segment contributed to the silencing of GFP expression. Taken together, our data support a mechanistic link between HR and DNA methylation and suggest that DNA methylation in eukaryotes marks homologous recombined segments. PMID:17616978

  13. DNA Damage, Homology-Directed Repair, and DNA Methylation

    PubMed Central

    Angrisano, Tiziana; Morano, Annalisa; Lee, Bongyong; Pardo, Alba Di; Messina, Samantha; Iuliano, Rodolfo; Fusco, Alfredo; Santillo, Maria R; Muller, Mark T; Chiariotti, Lorenzo; Gottesman, Max E; Avvedimento, Enrico V

    2007-01-01

    To explore the link between DNA damage and gene silencing, we induced a DNA double-strand break in the genome of Hela or mouse embryonic stem (ES) cells using I-SceI restriction endonuclease. The I-SceI site lies within one copy of two inactivated tandem repeated green fluorescent protein (GFP) genes (DR-GFP). A total of 2%–4% of the cells generated a functional GFP by homology-directed repair (HR) and gene conversion. However, ~50% of these recombinants expressed GFP poorly. Silencing was rapid and associated with HR and DNA methylation of the recombinant gene, since it was prevented in Hela cells by 5-aza-2′-deoxycytidine. ES cells deficient in DNA methyl transferase 1 yielded as many recombinants as wild-type cells, but most of these recombinants expressed GFP robustly. Half of the HR DNA molecules were de novo methylated, principally downstream to the double-strand break, and half were undermethylated relative to the uncut DNA. Methylation of the repaired gene was independent of the methylation status of the converting template. The methylation pattern of recombinant molecules derived from pools of cells carrying DR-GFP at different loci, or from an individual clone carrying DR-GFP at a single locus, was comparable. ClustalW analysis of the sequenced GFP molecules in Hela and ES cells distinguished recombinant and nonrecombinant DNA solely on the basis of their methylation profile and indicated that HR superimposed novel methylation profiles on top of the old patterns. Chromatin immunoprecipitation and RNA analysis revealed that DNA methyl transferase 1 was bound specifically to HR GFP DNA and that methylation of the repaired segment contributed to the silencing of GFP expression. Taken together, our data support a mechanistic link between HR and DNA methylation and suggest that DNA methylation in eukaryotes marks homologous recombined segments. PMID:17616978

  14. Perinatal nicotine exposure suppresses PPARγ epigenetically in lung alveolar interstitial fibroblasts.

    PubMed

    Gong, M; Liu, J; Sakurai, R; Corre, A; Anthony, S; Rehan, V K

    2015-04-01

    Due to the active inhibition of the adipogenic programming, the default destiny of the developing lung mesenchyme is to acquire a myogenic phenotype. We have previously shown that perinatal nicotine exposure, by down-regulating PPARγ expression, accentuates this property, culminating in myogenic pulmonary phenotype, though the underlying mechanisms remained incompletely understood. We hypothesized that nicotine-induced PPARγ down-regulation is mediated by PPARγ promoter methylation, controlled by DNA methyltransferase 1 (DNMT1) and methyl CpG binding protein 2 (MeCP2), two known key regulators of DNA methylation. Using cultured alveolar interstitial fibroblasts and an in vivo perinatal nicotine exposure rat model, we found that PPARγ promoter methylation is strongly correlated with inhibition of PPARγ expression in the presence of nicotine. Methylation inhibitor 5-aza-2'-deoxycytidine restored the nicotine-induced down-regulation of PPARγ expression and the activation of its downstream myogenic marker fibronectin. With nicotine exposure, a specific region of PPARγ promoter was significantly enriched with antibodies against chromatin repressive markers H3K9me3 and H3K27me3, dose-dependently. Similar data were observed with antibodies against DNA methylation regulatory factors DNMT1 and MeCP2. The knock down of DNMT1 and MeCP2 abolished nicotine-mediated increases in DNMT1 and MeCP2 protein levels, and PPARγ promoter methylation, restoring nicotine-induced down regulation of PPARγ and upregulation of the myogenic protein, fibronectin. The nicotine-induced alterations in DNA methylation modulators DNMT1 and MeCP2, PPARγ promoter methylation, and its down-stream targets, were also validated in perinatally nicotine exposed rat lung tissue. These data provide novel mechanistic insights into nicotine-induced epigenetic silencing of PPARγ that could be exploited to design novel targeted molecular interventions against the smoke exposed lung injury in general and

  15. Comparison of the cytotoxicity of cladribine and clofarabine when combined with fludarabine and busulfan in AML cells: Enhancement of cytotoxicity with epigenetic modulators.

    PubMed

    Valdez, Benigno C; Li, Yang; Murray, David; Ji, Jie; Liu, Yan; Popat, Uday; Champlin, Richard E; Andersson, Borje S

    2015-06-01

    Clofarabine (Clo), fludarabine (Flu), and busulfan (Bu) combinations are efficacious in hematopoietic stem cell transplantation for myeloid leukemia. We sought to determine whether the more affordable drug cladribine (Clad) can provide a viable alternative to Clo, with or without panobinostat (Pano) and 5-aza-2'-deoxycytidine (DAC). Both Clad+Flu+Bu and Clo+Flu+Bu combinations showed synergistic cytotoxicity in KBM3/Bu250(6), HL60, and OCI-AML3 cell lines. Cell exposure to these drug combinations resulted in 60%-80% inhibition of proliferation; activation of the ATM pathway; increase in histone modifications; decrease in HDAC3, HDAC4, HDAC5 and SirT7 proteins; decrease in mitochondrial membrane potential; activation of apoptosis and stress signaling pathways; and downregulation of the AKT pathway. These drug combinations activated DNA-damage response and apoptosis in primary cell samples from AML patients. At lower concentrations of Clad/Clo, Flu, and Bu, inclusion of Pano and DAC enhanced cell killing, increased histone modifications and DNA demethylation, and increased the levels of P16/INK4a, P15/INK4b and P21/Waf1/Cip1 proteins. The observed DNA demethylating activity of Clad and Clo may complement DAC activity; increase demethylation of the gene promoters for SFRP1, DKK3, and WIF1; and cause degradation of β-catenin in cells exposed to Clad/Clo+Flu+Bu+DAC+Pano. The overlapping activities of Clad/Clo+Flu+Bu, Pano, and DAC in DNA-damage formation and repair, histone modifications, DNA demethylation, and apoptosis may underlie their synergism. Our results provide a basis for supplanting Clo with Clad and for including epigenetic modifiers in the pre-hematopoietic stem cell transplantation conditioning regimen for myeloid leukemia patients. PMID:25704054

  16. Somatic Cell-Induced Hyperacetylation, But Not Hypomethylation, Positively and Reversibly Affects the Efficiency of In Vitro Cloned Blastocyst Production in Cattle

    PubMed Central

    Jafarpour, Farnoosh; Hosseini, Sayed Morteza; Hajian, Mehdi; Forouzanfar, Mohsen; Ostadhosseini, Somayyeh; Abedi, Parvaneh; Gholami, Soghra; Ghaedi, Kamran; Gourabi, Hamid; Shahverdi, Abdol Hossein; Vosough, Ahmad Dizaj Taghi

    2011-01-01

    Abstract 5-Aza-2′-deoxycytidine (AzC), trichostatin A (TSA), and its natural mimetic, sodium butyrate (NaB), are antineoplastic drugs that can modify the epigenetic status of donor cells prior to somatic cell nuclear transfer (SCNT). In this study, we used fibroblast cells treated with these drugs to investigate the direct and indirect effects of induced changes in DNA methylation and acetylation of the lysine 9 residue of histone H3 (H3K9). Additionally, we assayed cellular characteristics (cell growth, cell proliferation, cell cycle progression, and apoptosis) and SCNT efficiency in response to these drugs as well as monitoring these effects 24 h after removing the drugs. We observed the following: (1) AzC, TSA, and NaB all showed dose-dependent effects on different cellular characteristics; (2) TSA and NaB induced H3K9 hyperacetylation accompanied by DNA hypermethylation, whereas AzC induced DNA hypomethylation with no effect on H3K9 hyperacetylation; (3) TSA and NaB improved cloning efficiency, whereas AzC reduced it; and (4) unlike AzC, the effects of TSA and NaB on cellular characteristics and SCNT efficiency were reversed following drug removal. Our results indicate that somatic cells treated with TSA and NaB show better survival and recovery rates following the removal of these drugs. Moreover, H3K9 hyperacetylation (induced with TSA and NaB), but not DNA hypomethylation (induced with AzC), favors cloning efficiency. PMID:21919704

  17. Increased expression of ApoE and protection from amyloid-beta toxicity in transmitochondrial cybrids with haplogroup K mtDNA.

    PubMed

    Thaker, Kunal; Chwa, Marilyn; Atilano, Shari R; Coskun, Pinar; Cáceres-Del-Carpio, Javier; Udar, Nitin; Boyer, David S; Jazwinski, S Michal; Miceli, Michael V; Nesburn, Anthony B; Kuppermann, Baruch D; Kenney, M Cristina

    2016-09-01

    Mitochondrial (mt) DNA haplogroups, defined by specific single nucleotide polymorphism (SNP) patterns, represent populations of diverse geographic origins and have been associated with increased risk or protection of many diseases. The H haplogroup is the most common European haplogroup while the K haplogroup is highly associated with the Ashkenazi Jewish population. Transmitochondrial cybrids (cell lines with identical nuclei, but mtDNA from either H (n=8) or K (n=8) subjects) were analyzed by the Seahorse flux analyzer, quantitative polymerase chain reaction (Q-PCR) and immunohistochemistry (IHC). Cybrids were treated with amyloid-β peptides and cell viabilities were measured. Other cybrids were demethylated with 5-aza-2'-deoxycytidine (5-aza-dC) and expression levels for APOE and NFkB2 were measured. Results show K cybrids have (a) significantly lower mtDNA copy numbers, (b) higher expression levels for MT-DNA encoded genes critical for oxidative phosphorylation, (c) lower Spare Respiratory Capacity, (d) increased expression of inhibitors of the complement pathway and important inflammasome-related genes; and (e) significantly higher levels of APOE transcription that were independent of methylation status. After exposure to amyloid-β1-42 peptides (active form), H haplogroup cybrids demonstrated decreased cell viability compared to those treated with amyloid-β42-1 (inactive form) (p<0.0001), while this was not observed in the K cybrids (p=0.2). K cybrids had significantly higher total global methylation levels and differences in expression levels for two acetylation genes and four methylation genes. Demethylation with 5-aza-dC altered expression levels for NFkB2, while APOE transcription patterns were unchanged. Our findings support the hypothesis that mtDNA-nuclear retrograde signaling may mediate expression levels of APOE, a key factor in many age-related diseases. Future studies will focus on identification of the mitochondrial-nuclear retrograde signaling

  18. A lincRNA connected to cell mortality and epigenetically-silenced in most common human cancers.

    PubMed

    Vrba, Lukas; Garbe, James C; Stampfer, Martha R; Futscher, Bernard W

    2015-01-01

    Immortality is an essential characteristic of human carcinoma cells. We recently developed an efficient, reproducible method that immortalizes human mammary epithelial cells (HMEC) in the absence of gross genomic changes by targeting 2 critical senescence barriers. Consistent transcriptomic changes associated with immortality were identified using microarray analysis of isogenic normal finite pre-stasis, abnormal finite post-stasis, and immortal HMECs from 4 individuals. A total of 277 genes consistently changed in cells that transitioned from post-stasis to immortal. Gene ontology analysis of affected genes revealed biological processes significantly altered in the immortalization process. These immortalization-associated changes showed striking similarity to the gene expression changes seen in The Cancer Genome Atlas (TCGA) clinical breast cancer data. The most dramatic change in gene expression seen during the immortalization step was the downregulation of an unnamed, incompletely annotated transcript that we called MORT, for mortality, since its expression was closely associated with the mortal, finite lifespan phenotype. We show here that MORT (ZNF667-AS1) is expressed in all normal finite lifespan human cells examined to date and is lost in immortalized HMEC. MORT gene silencing at the mortal/immortal boundary was due to DNA hypermethylation of its CpG island promoter. This epigenetic silencing is also seen in human breast cancer cell lines and in a majority of human breast tumor tissues. The functional importance of DNA hypermethylation in MORT gene silencing is supported by the ability of 5-aza-2'-deoxycytidine to reactivate MORT expression. Analysis of TCGA data revealed deregulation of MORT expression due to DNA hypermethylation in 15 out of the 17 most common human cancers. The epigenetic silencing of MORT in a large majority of the common human cancers suggests a potential fundamental role in cellular immortalization during human carcinogenesis.

  19. A lincRNA connected to cell mortality and epigenetically-silenced in most common human cancers

    PubMed Central

    Vrba, Lukas; Garbe, James C; Stampfer, Martha R; Futscher, Bernard W

    2015-01-01

    Immortality is an essential characteristic of human carcinoma cells. We recently developed an efficient, reproducible method that immortalizes human mammary epithelial cells (HMEC) in the absence of gross genomic changes by targeting 2 critical senescence barriers. Consistent transcriptomic changes associated with immortality were identified using microarray analysis of isogenic normal finite pre-stasis, abnormal finite post-stasis, and immortal HMECs from 4 individuals. A total of 277 genes consistently changed in cells that transitioned from post-stasis to immortal. Gene ontology analysis of affected genes revealed biological processes significantly altered in the immortalization process. These immortalization-associated changes showed striking similarity to the gene expression changes seen in The Cancer Genome Atlas (TCGA) clinical breast cancer data. The most dramatic change in gene expression seen during the immortalization step was the downregulation of an unnamed, incompletely annotated transcript that we called MORT, for mortality, since its expression was closely associated with the mortal, finite lifespan phenotype. We show here that MORT (ZNF667-AS1) is expressed in all normal finite lifespan human cells examined to date and is lost in immortalized HMEC. MORT gene silencing at the mortal/immortal boundary was due to DNA hypermethylation of its CpG island promoter. This epigenetic silencing is also seen in human breast cancer cell lines and in a majority of human breast tumor tissues. The functional importance of DNA hypermethylation in MORT gene silencing is supported by the ability of 5-aza-2′-deoxycytidine to reactivate MORT expression. Analysis of TCGA data revealed deregulation of MORT expression due to DNA hypermethylation in 15 out of the 17 most common human cancers. The epigenetic silencing of MORT in a large majority of the common human cancers suggests a potential fundamental role in cellular immortalization during human carcinogenesis. PMID

  20. Optimization of Streptomyces bacteriophage phi C31 integrase system to prevent post integrative gene silencing in pulmonary type II cells.

    PubMed

    Aneja, Manish Kumar; Geiger, Johannes; Imker, Rabea; Uzgun, Senta; Kormann, Michael; Hasenpusch, Guenther; Maucksch, Christof; Rudolph, Carsten

    2009-12-31

    phi C31 integrase has emerged as a potent tool for achieving long-term gene expression in different tissues. The present study aimed at optimizing elements of phi C31 integrase system for alveolar type II cells. Luciferase and beta-galactosidase activities were measured at different time points post transfection. 5-Aza-2'deoxycytidine (AZA) and trichostatin A (TSA) were used to inhibit DNA methyltransferase and histone deacetylase complex (HDAC) respectively. In A549 cells, expression of the integrase using a CMV promoter resulted in highest integrase activity, whereas in MLE12 cells, both CAG and CMV promoter were equally effective. Effect of polyA site was observed only in A549 cells, where replacement of SV40 polyA by bovine growth hormone (BGH) polyA site resulted in an enhancement of integrase activity. Addition of a C-terminal SV40 nuclear localization signal (NLS) did not result in any significant increase in integrase activity. Long-term expression studies with AZA and TSA, provided evidence for post-integrative gene silencing. In MLE12 cells, both DNA methylases and HDACs played a significant role in silencing, whereas in A549 cells, it could be attributed majorly to HDAC activity. Donor plasmids comprising cellular promoters ubiquitin B (UBB), ubiquitin C (UCC) and elongation factor 1 alpha (EF1 alpha) in an improved backbone prevented post-integrative gene silencing. In contrast to A549 and MLE12 cells, no silencing could be observed in human bronchial epithelial cells, BEAS-2B. Donor plasmid coding for murine erythropoietin under the EF1 alpha promoter when combined with phi C31 integrase resulted in higher long-term erythropoietin expression and subsequently higher hematocrit levels in mice after intravenous delivery to the lungs. These results provide evidence for cell specific post integrative gene silencing with C31 integrase and demonstrate the pivotal role of donor plasmid in long-term expression attained with this system.

  1. Epigenetic regulation of cyclooxygenase-2 by methylation of c8orf4 in pulmonary fibrosis.

    PubMed

    Evans, Iona C; Barnes, Josephine L; Garner, Ian M; Pearce, David R; Maher, Toby M; Shiwen, Xu; Renzoni, Elisabetta A; Wells, Athol U; Denton, Christopher P; Laurent, Geoffrey J; Abraham, David J; McAnulty, Robin J

    2016-04-01

    Fibroblasts derived from the lungs of patients with idiopathic pulmonary fibrosis (IPF) and systemic sclerosis (SSc) produce low levels of prostaglandin (PG) E2, due to a limited capacity to up-regulate cyclooxygenase-2 (COX-2). This deficiency contributes functionally to the fibroproliferative state, however the mechanisms responsible are incompletely understood. In the present study, we examined whether the reduced level of COX-2 mRNA expression observed in fibrotic lung fibroblasts is regulated epigenetically. The DNA methylation inhibitor, 5-aza-2'-deoxycytidine (5AZA) restored COX-2 mRNA expression by fibrotic lung fibroblasts dose dependently. Functionally, this resulted in normalization of fibroblast phenotype in terms of PGE2 production, collagen mRNA expression and sensitivity to apoptosis. COX-2 methylation assessed by bisulfite sequencing and methylation microarrays was not different in fibrotic fibroblasts compared with controls. However, further analysis of the methylation array data identified a transcriptional regulator, chromosome 8 open reading frame 4 (thyroid cancer protein 1, TC-1) (c8orf4), which is hypermethylated and down-regulated in fibrotic fibroblasts compared with controls. siRNA knockdown of c8orf4 in control fibroblasts down-regulated COX-2 and PGE2 production generating a phenotype similar to that observed in fibrotic lung fibroblasts. Chromatin immunoprecipitation demonstrated that c8orf4 regulates COX-2 expression in lung fibroblasts through binding of the proximal promoter. We conclude that the decreased capacity of fibrotic lung fibroblasts to up-regulate COX-2 expression and COX-2-derived PGE2 synthesis is due to an indirect epigenetic mechanism involving hypermethylation of the transcriptional regulator, c8orf4.

  2. Characterization of baculovirus Autographa californica multiple nuclear polyhedrosis virus infection in mammalian cells

    SciTech Connect

    Kitajima, Masayuki; Hamazaki, Hiroyuki; Miyano-Kurosaki, Naoko; Takaku, Hiroshi . E-mail: hiroshi.takaku@it-chiba.ac.jp

    2006-05-05

    The baculovirus Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) is used as a vector in many gene therapy studies. Wild-type AcMNPV infects many mammalian cell types in vitro, but does not replicate. We investigated the dynamics of AcMNPV genomic DNA in infected mammalian cells and used flow cytometric analysis to demonstrate that recombinant baculovirus containing a cytomegalovirus immediate early promoter/enhancer with green fluorescent protein (GFP) expressed high levels of GFP in Huh-7 cells, but not B16, Raw264.7, or YAC-1 cells. The addition of butyrate, a deacetylase inhibitor, markedly enhanced the percentage of GFP-expressing Huh-7 and B16 cells, but not Raw264.7 and YAC-1 cells. The addition of 5-aza-2'-deoxycytidine, a DNA methylation inhibitor, had no enhancing effect. Polymerase chain reaction analysis using AcMNPV-gp64-specific primers indicated that AcMNPV infected not only Huh-7 and B16 cells, but also Raw264.7 and YAC-1 cells in vitro. The genomic DNA was detected in Huh-7 and B16 cells 96 h after infection. Genomic AcMNPV DNA in YAC-1 cells was not transported to the nucleus. Luciferase assay indicated that AcMNPV p35 gene mRNA and p35 promoter activity were clearly expressed only in Huh-7 and B16 cells. These results suggest that viral genomic DNA expression is restricted by different host cell factors, such as degradation, deacetylation, and inhibition of nuclear transport, depending on the mammalian cell type.

  3. Mitochondrial DNA Polymerase POLG1 Disease Mutations and Germline Variants Promote Tumorigenic Properties.

    PubMed

    Singh, Bhupendra; Owens, Kjerstin M; Bajpai, Prachi; Desouki, Mohamed Mokhtar; Srinivasasainagendra, Vinodh; Tiwari, Hemant K; Singh, Keshav K

    2015-01-01

    Germline mutations in mitochondrial DNA polymerase gamma (POLG1) induce mitochondrial DNA (mtDNA) mutations, depletion, and decrease oxidative phosphorylation. Earlier, we identified somatic mutations in POLG1 and the contribution of these mutations in human cancer. However, a role for germline variations in POLG1 in human cancers is unknown. In this study, we examined a role for disease associated germline variants of POLG1, POLG1 gene expression, copy number variation and regulation in human cancers. We analyzed the mutations, expression and copy number variation in POLG1 in several cancer databases and validated the analyses in primary breast tumors and breast cancer cell lines. We discovered 5-aza-2'-deoxycytidine led epigenetic regulation of POLG1, mtDNA-encoded genes and increased mitochondrial respiration. We conducted comprehensive race based bioinformatics analyses of POLG1 gene in more than 33,000 European-Americans and 5,000 African-Americans. We identified a mitochondrial disease causing missense variation in polymerase domain of POLG1 protein at amino acid 1143 (E1143G) to be 25 times more prevalent in European-Americans (allele frequency 0.03777) when compared to African-American (allele frequency 0.00151) population. We identified T251I and P587L missense variations in exonuclease and linker region of POLG1 also to be more prevalent in European-Americans. Expression of these variants increased glucose consumption, decreased ATP production and increased matrigel invasion. Interestingly, conditional expression of these variants revealed that matrigel invasion properties conferred by these germline variants were reversible suggesting a role of epigenetic regulators. Indeed, we identified a set of miRNA whose expression was reversible after variant expression was turned off. Together, our studies demonstrate altered genetic and epigenetic regulation of POLG1 in human cancers and suggest a role for POLG1 germline variants in promoting tumorigenic

  4. DNA methylation in nasal epithelial cells from smokers: identification of ULBP3-related effects

    PubMed Central

    Rager, Julia E.; Bauer, Rebecca N.; Müller, Loretta L.; Smeester, Lisa; Carson, Johnny L.; Brighton, Luisa E.; Fry, Rebecca C.

    2013-01-01

    We previously demonstrated that, in nasal epithelial cells (NECs) from smokers, methylation of an antiviral gene was associated with impaired antiviral defense responses. To expand these findings and better understand biological mechanisms underlying cigarette smoke (CS)-induced modifications of host defense responses, we aimed to compare DNA methylation of genes that may play a role in antiviral response. We used a two-tiered analytical approach, where we first implemented a genome-wide strategy. NECs from smokers differed in the methylation levels of 390 genes, the majority (84%) of which showed decreased methylation in smokers. Secondly, we generated an a priori set of 161 antiviral response-related genes, of which five were differentially methylated in NEC from smokers (CCL2, FDPS, GSK3B, SOCS3, and ULBP3). Assessing these genes at the systems biology level revealed a protein interaction network associated with CS-induced epigenetic modifications involving SOCS3 and ULBP3 signaling, among others. Subsequent confirmation studies focused on SOCS3 and ULBP3, which were hypomethylated and hypermethylated, respectively. Expression of SOCS3 was increased, whereas ULBP3 expression was decreased in NECs from smokers. Addition of the demethylating agent 5-Aza-2-deoxycytidine enhanced ULBP3 expression in NECs from smokers. Furthermore, infection of differentiated NECs with influenza virus resulted in significantly lower levels of ULBP3 in cells from smokers. Taken together, our findings show that genomic DNA methylation profiles are altered in NECs from smokers and that these changes are associated with decreased antiviral host defense responses, indicating that epigenenic dysregulation of genes such as SOCS3 and ULBP3 likely impacts immune responses in the epithelium. PMID:23831618

  5. DNA methylation in nasal epithelial cells from smokers: identification of ULBP3-related effects.

    PubMed

    Rager, Julia E; Bauer, Rebecca N; Müller, Loretta L; Smeester, Lisa; Carson, Johnny L; Brighton, Luisa E; Fry, Rebecca C; Jaspers, Ilona

    2013-09-15

    We previously demonstrated that, in nasal epithelial cells (NECs) from smokers, methylation of an antiviral gene was associated with impaired antiviral defense responses. To expand these findings and better understand biological mechanisms underlying cigarette smoke (CS)-induced modifications of host defense responses, we aimed to compare DNA methylation of genes that may play a role in antiviral response. We used a two-tiered analytical approach, where we first implemented a genome-wide strategy. NECs from smokers differed in the methylation levels of 390 genes, the majority (84%) of which showed decreased methylation in smokers. Secondly, we generated an a priori set of 161 antiviral response-related genes, of which five were differentially methylated in NEC from smokers (CCL2, FDPS, GSK3B, SOCS3, and ULBP3). Assessing these genes at the systems biology level revealed a protein interaction network associated with CS-induced epigenetic modifications involving SOCS3 and ULBP3 signaling, among others. Subsequent confirmation studies focused on SOCS3 and ULBP3, which were hypomethylated and hypermethylated, respectively. Expression of SOCS3 was increased, whereas ULBP3 expression was decreased in NECs from smokers. Addition of the demethylating agent 5-Aza-2-deoxycytidine enhanced ULBP3 expression in NECs from smokers. Furthermore, infection of differentiated NECs with influenza virus resulted in significantly lower levels of ULBP3 in cells from smokers. Taken together, our findings show that genomic DNA methylation profiles are altered in NECs from smokers and that these changes are associated with decreased antiviral host defense responses, indicating that epigenenic dysregulation of genes such as SOCS3 and ULBP3 likely impacts immune responses in the epithelium.

  6. Kaiso, a transcriptional repressor, promotes cell migration and invasion of prostate cancer cells through regulation of miR-31 expression

    PubMed Central

    Wang, Honghe; Liu, Wei; Black, ShaNekkia; Turner, Omari; Daniel, Juliet M.; Dean-Colomb, Windy; He, Qinghua P.; Davis, Melissa; Yates, Clayton

    2016-01-01

    Kaiso, a member of the BTB/POZ zinc finger protein family, functions as a transcriptional repressor by binding to sequence-specific Kaiso binding sites or to methyl-CpG dinucleotides. Previously, we demonstrated that Kaiso overexpression and nuclear localization correlated with the progression of prostate cancer (PCa). Therefore, our objective was to explore the molecular mechanisms underlying Kaiso-mediated PCa progression. Comparative analysis of miRNA arrays revealed that 13 miRNAs were significantly altered (> 1.5 fold, p < 0.05) in sh-Kaiso PC-3 compared to sh-Scr control cells. Real-time PCR validated that three miRNAs (9, 31, 636) were increased in sh-Kaiso cells similar to cells treated with 5-aza-2′-deoxycytidine. miR-31 expression negatively correlated with Kaiso expression and with methylation of the miR-31 promoter in a panel of PCa cell lines. ChIP assays revealed that Kaiso binds directly to the miR-31 promoter in a methylation-dependent manner. Over-expression of miR-31 decreased cell proliferation, migration and invasiveness of PC-3 cells, whereas cells transfected with anti-miR-31 restored proliferation, migration and invasiveness of sh-Kaiso PC-3 cells. In PCa patients, Kaiso high/miR-31 low expression correlated with worse overall survival relative to each marker individually. In conclusion, these results demonstrate that Kaiso promotes cell migration and invasiveness through regulation of miR-31 expression. PMID:26734997

  7. Interrupted E2F1-miR-34c-SCF negative feedback loop by hyper-methylation promotes colorectal cancer cell proliferation

    PubMed Central

    Yang, Shu; Wu, Bo; Sun, Haimei; Ji, Fengqing; Sun, Tingyi; Zhao, Yan; Zhou, Deshan

    2015-01-01

    Tumour suppressor miR-34c deficiency resulted from hyper-methylation in its promoter is believed to be one of the main causes of colorectal cancer (CRC). Till date, miR-34c has been validated as a direct target of p53; but previous evidence suggested other transcription factor(s) must be involved in miR-34c transcription. In the present study, we in the first place identified a core promoter region (−1118 to −883 bp) of pre-miR-34c which was embedded within a hyper-methylated CpG island. Secondly, E2F1 promoted miR-34c transcription by physical interaction with the miR-34c promoter at site −897 to −889 bp. The transcriptional activating effect of E2F1 on miR-34c was in a p53 independent manner but profoundly promoted in the presence of p53 with exposure to 5-aza-2′-deoxycytidine (DAC). Thirdly, stem cell factor (SCF), a miR-34c target, was specifically reduced upon an introduction of E2F1 which lead to suppression of CRC cell proliferation. The E2F1-suppressed cell proliferation was partially abrogated by additional miR-34c inhibitor, indicating that the anti-proliferation effect of E2F1 was probably through activating miR-34c-SCF axis. Finally, SCF/KIT signalling increased E2F1 production by reducing its proteosomal degradation dependent on PI3K/Akt-GSK3β pathway. In conclusion, our results suggested the existence of E2F1-miR-34c-SCF negative feedback loop which was interrupted by the hyper-methylation of miR-34c promoter in CRC cells and increased cell proliferation. PMID:26704889

  8. IRF-8 Controls Melanoma Progression by Regulating the Cross Talk between Cancer and Immune Cells within the Tumor Microenvironment12

    PubMed Central

    Mattei, Fabrizio; Schiavoni, Giovanna; Sestili, Paola; Spadaro, Francesca; Fragale, Alessandra; Sistigu, Antonella; Lucarini, Valeria; Spada, Massimo; Sanchez, Massimo; Scala, Stefania; Battistini, Angela; Belardelli, Filippo; Gabriele, Lucia

    2012-01-01

    The transcription factor interferon regulatory factor-8 (IRF-8) is crucial for myeloid cell development and immune response and also acts as a tumor suppressor gene. Here, we analyzed the role of IRF-8 in the cross talk between melanoma cells and tumor-infiltrating leukocytes. B16-F10 melanoma cells transplanted into IRF-8-deficient (IRF-8-/-) mice grow more rapidly, leading to higher numbers of lung metastasis, with respect to control animals. These events correlated with reduced dendritic cell and T cell infiltration, accumulation of myeloid-derived suppressor cells and a chemokine/chemokine receptor expression profile within the tumor microenvironment supporting tumor growth, angiogenesis, and metastasis. Noticeably, primary tumors developing in IRF-8-/- mice displayed a clear-cut inhibition of IRF-8 expression in melanoma cells. Injection of the demethylating agent 5-aza-2′-deoxycytidine into melanoma-bearing IRF-8-/- animals induced intratumoral IRF-8 expression and resulted in the re-establishment of a chemokine/ chemokine receptor pattern favoring leukocyte infiltration and melanoma growth arrest. Importantly, intrinsic IRF-8 expression was progressively down-modulated during melanoma growth in mice and in human metastatic melanoma cells with respect to primary tumors. Lastly, IRF-8 expression in melanoma cells was directly modulated by soluble factors, among which interleukin-27 (IL-27), released by immune cells from tumor-bearing mice. Collectively, these results underscore a key role of IRF-8 in the cross talk between melanoma and immune cells, thus revealing its critical function within the tumor microenvironment in regulating melanoma progression and invasiveness. PMID:23308054

  9. IRF-8 controls melanoma progression by regulating the cross talk between cancer and immune cells within the tumor microenvironment.

    PubMed

    Mattei, Fabrizio; Schiavoni, Giovanna; Sestili, Paola; Spadaro, Francesca; Fragale, Alessandra; Sistigu, Antonella; Lucarini, Valeria; Spada, Massimo; Sanchez, Massimo; Scala, Stefania; Battistini, Angela; Belardelli, Filippo; Gabriele, Lucia

    2012-12-01

    The transcription factor interferon regulatory factor-8 (IRF-8) is crucial for myeloid cell development and immune response and also acts as a tumor suppressor gene. Here, we analyzed the role of IRF-8 in the cross talk between melanoma cells and tumor-infiltrating leukocytes. B16-F10 melanoma cells transplanted into IRF-8-deficient (IRF-8(-/-)) mice grow more rapidly, leading to higher numbers of lung metastasis, with respect to control animals. These events correlated with reduced dendritic cell and T cell infiltration, accumulation of myeloid-derived suppressor cells and a chemokine/chemokine receptor expression profile within the tumor microenvironment supporting tumor growth, angiogenesis, and metastasis. Noticeably, primary tumors developing in IRF-8(-/-) mice displayed a clear-cut inhibition of IRF-8 expression in melanoma cells. Injection of the demethylating agent 5-aza-2'-deoxycytidine into melanoma-bearing IRF-8(-/-) animals induced intratumoral IRF-8 expression and resulted in the re-establishment of a chemokine/ chemokine receptor pattern favoring leukocyte infiltration and melanoma growth arrest. Importantly, intrinsic IRF-8 expression was progressively down-modulated during melanoma growth in mice and in human metastatic melanoma cells with respect to primary tumors. Lastly, IRF-8 expression in melanoma cells was directly modulated by soluble factors, among which interleukin-27 (IL-27), released by immune cells from tumor-bearing mice. Collectively, these results underscore a key role of IRF-8 in the cross talk between melanoma and immune cells, thus revealing its critical function within the tumor microenvironment in regulating melanoma progression and invasiveness. PMID:23308054

  10. Epigenetic regulation of ANKRD18B in lung cancer.

    PubMed

    Liu, Wen-Bin; Han, Fei; Jiang, Xiao; Yin, Li; Chen, Hong-Qiang; Li, Yong-Hong; Liu, Yong; Cao, Jia; Liu, Jin-Yi

    2015-04-01

    The identification of the key genetic and epigenetic changes underlying lung carcinogenesis would aid effective early diagnosis and targeted therapies for lung cancer. In this study, we screened a novel hypermethylated gene ankyrin repeat domain 18B (ANKRD18B), to determine whether it is regulated by DNA methylation and clarify its biological and clinical implications in lung cancer. Methylation status and expression level were analyzed by methylation-specific PCR, bisulfite genomic sequencing, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). We detected ANKRD18B hypermethylation in 52 of 98 (53.1%) primary lung cancer tissues and in nine of 10 (90%) cell lines, whereas no methylation was seen in 10 normal lung tissue samples. ANKRD18B methylation was more frequently observed in patients with poor differentiation (P < 0.05). Notably, 62 pairs of samples from patients whose tumor tissue showed hypermethylation of ANKRD18B exhibited the same aberrant methylation in 72.7% and 69.7% of their corresponding plasma and sputum samples, respectively; whereas no hypermethylation of ANKRD18B was detected in the sputum and plasma from patients whose tumor sample lacked this alteration. In addition, ANKRD18B mRNA expression was significantly decreased or silenced in lung cancer tissues and cell lines associated with hypermethylation of the ANKRD18B region. Demethylation agent 5-aza-2'-deoxycytidine significantly increased ANKRD18B mRNA expression in lung cancer cell lines. Furthermore, overexpression of ANKRD18B suppressed lung cancer cell growth. These results suggest that the expression of ANKRD18B is regulated by CpG island hypermethylation in lung cancer. Our findings confirm the importance of the identification of new markers of epigenetic dysregulation in cancer.

  11. Inhibition of methylation decreases osteoblast differentiation via a non-DNA-dependent methylation mechanism.

    PubMed

    Vaes, Bart L T; Lute, Carolien; van der Woning, Sebastian P; Piek, Ester; Vermeer, Jenny; Blom, Henk J; Mathers, John C; Müller, Michael; de Groot, Lisette C P G M; Steegenga, Wilma T

    2010-02-01

    S-adenosylmethionine (SAM)-dependent methylation of biological molecules including DNA and proteins is rapidly being uncovered as a critical mechanism for regulation of cellular processes. We investigated the effects of reduced SAM-dependent methylation on osteoblast differentiation by using periodate oxidized adenosine (ADOX), an inhibitor of SAM-dependent methyltransferases. The capacity of this agent to modulate osteoblast differentiation was analyzed under non-osteogenic control conditions and during growth factor-induced differentiation and compared with the effect of inhibition of DNA methylation by 5-Aza-2'-deoxycytidine (5-Aza-CdR). Without applying specific osteogenic triggers, both ADOX and 5-Aza-CdR induced mRNA expression of the osteoblast markers Alp, Osx, and Ocn in murine C2C12 cells. Under osteogenic conditions, ADOX inhibited differentiation of both human mesenchymal stem cells and C2C12 cells. Gene expression analysis of early (Msx2, Dlx5, Runx2) and late (Alp, Osx, Ocn) osteoblast markers during bone morphogenetic protein 2-induced C2C12 osteoblast differentiation revealed that ADOX only reduced expression of the late phase Runx2 target genes. By using a Runx2-responsive luciferase reporter (6xOSE), we showed that ADOX reduced the activity of Runx2, while 5-Aza-CdR had no effect. Taken together, our data suggest that decreased SAM-dependent methyltransferase activity leads to impaired osteoblast differentiation via non-DNA-dependent methylation mechanisms and that methylation is a regulator of Runx2-controlled gene expression.

  12. A lincRNA connected to cell mortality and epigenetically-silenced in most common human cancers

    DOE PAGESBeta

    Vrba, Lukas; Garbe, James C.; Stampfer, Martha R.; Futscher, Bernard W.

    2015-10-19

    Immortality is an essential characteristic of human carcinoma cells. We recently developed an efficient, reproducible method that immortalizes human mammary epithelial cells (HMEC) in the absence of gross genomic changes by targeting 2 critical senescence barriers. Consistent transcriptomic changes associated with immortality were identified using microarray analysis of isogenic normal finite pre-stasis, abnormal finite post-stasis, and immortal HMECs from 4 individuals. A total of 277 genes consistently changed in cells that transitioned from post-stasis to immortal. Gene ontology analysis of affected genes revealed biological processes significantly altered in the immortalization process. These immortalization-associated changes showed striking similarity to the genemore » expression changes seen in The Cancer Genome Atlas (TCGA) clinical breast cancer data. The most dramatic change in gene expression seen during the immortalization step was the downregulation of an unnamed, incompletely annotated transcript that we called MORT, for mortality, since its expression was closely associated with the mortal, finite lifespan phenotype. We show here that MORT (ZNF667-AS1) is expressed in all normal finite lifespan human cells examined to date and is lost in immortalized HMEC. MORT gene silencing at the mortal/immortal boundary was due to DNA hypermethylation of its CpG island promoter. This epigenetic silencing is also seen in human breast cancer cell lines and in a majority of human breast tumor tissues. The functional importance of DNA hypermethylation in MORT gene silencing is supported by the ability of 5-aza-2'- deoxycytidine to reactivate MORT expression. Analysis of TCGA data revealed deregulation of MORT expression due to DNA hypermethylation in 15 out of the 17 most common human cancers. In conclusion, the epigenetic silencing of MORT in a large majority of the common human cancers suggests a potential fundamental role in cellular immortalization during human

  13. A lincRNA connected to cell mortality and epigenetically-silenced in most common human cancers

    SciTech Connect

    Vrba, Lukas; Garbe, James C.; Stampfer, Martha R.; Futscher, Bernard W.

    2015-10-19

    Immortality is an essential characteristic of human carcinoma cells. We recently developed an efficient, reproducible method that immortalizes human mammary epithelial cells (HMEC) in the absence of gross genomic changes by targeting 2 critical senescence barriers. Consistent transcriptomic changes associated with immortality were identified using microarray analysis of isogenic normal finite pre-stasis, abnormal finite post-stasis, and immortal HMECs from 4 individuals. A total of 277 genes consistently changed in cells that transitioned from post-stasis to immortal. Gene ontology analysis of affected genes revealed biological processes significantly altered in the immortalization process. These immortalization-associated changes showed striking similarity to the gene expression changes seen in The Cancer Genome Atlas (TCGA) clinical breast cancer data. The most dramatic change in gene expression seen during the immortalization step was the downregulation of an unnamed, incompletely annotated transcript that we called MORT, for mortality, since its expression was closely associated with the mortal, finite lifespan phenotype. We show here that MORT (ZNF667-AS1) is expressed in all normal finite lifespan human cells examined to date and is lost in immortalized HMEC. MORT gene silencing at the mortal/immortal boundary was due to DNA hypermethylation of its CpG island promoter. This epigenetic silencing is also seen in human breast cancer cell lines and in a majority of human breast tumor tissues. The functional importance of DNA hypermethylation in MORT gene silencing is supported by the ability of 5-aza-2'- deoxycytidine to reactivate MORT expression. Analysis of TCGA data revealed deregulation of MORT expression due to DNA hypermethylation in 15 out of the 17 most common human cancers. In conclusion, the epigenetic silencing of MORT in a large majority of the common human cancers suggests a potential fundamental role in cellular immortalization during human

  14. The Role of DNA Methylation in the Metabolic Memory Phenomenon Associated With the Continued Progression of Diabetic Retinopathy

    PubMed Central

    Mishra, Manish; Kowluru, Renu A.

    2016-01-01

    Purpose Clinical and experimental studies have shown that diabetic retinopathy progression does not halt after termination of hyperglycemia, suggesting a “metabolic memory” phenomenon. DNA is highly dynamic, and cytosine methylation changes can last for several years. In diabetes, DNA methylation regulates expression of many genes associated with retinal mitochondrial homeostasis. Our aim was to investigate the role of DNA methylation in the metabolic memory. Methods Reversal of 4 days of 20 mM glucose by 4 to 8 days of 5 mM glucose, in the presence/absence of Dnmt inhibitor (5-aza-2′-deoxycytidine), was investigated on DNA methylation and its machinery in human retinal endothelial cells. The key parameters were confirmed in the retina from diabetic rats maintained in good glycemic control (glycated hemoglobin ∼6%) for 3 months after 3 months of poor control (glycated hemoglobin >10%). Results DNA methyltransferase 1 (Dnmt 1) remained active after 4 days of normal glucose that followed 4 days of high glucose, and mtDNA stayed hypermethylated with impaired transcription. Hydroxymethylating enzyme Tet2, and matrix metalloproteinase-9 (regulated by hydroxymethylation) also remained upregulated. But, 8 days of normal glucose after 4 days of high glucose ameliorated mtDNA methylation and MMP-9 hydroxymethylation. Direct Dnmt targeting by Aza during the reversal period benefited methylation status of mtDNA and MMP-9 DNA. Similarly, reinstitution of good control after 3 months of poor control in rats did not reverse diabetes-induced increase in retinal Dnmt1 and Tet2, and alter the methylation status of mtDNA and MMP-9. Conclusions Retinal DNA methylation-hydroxymethylation machinery does not benefit immediately from reversal of hyperglycemia. Maintenance of good glycemic control for longer duration, and/or direct targeting DNA methylation ameliorates continuous mitochondrial damage, and could retard/halt diabetic retinopathy progression. PMID:27787562

  15. Chronic oxidative stress causes estrogen-independent aggressive phenotype, and epigenetic inactivation of estrogen receptor alpha in MCF-7 breast cancer cells.

    PubMed

    Mahalingaiah, Prathap Kumar S; Ponnusamy, Logeswari; Singh, Kamaleshwar P

    2015-08-01

    The role of chronic oxidative stress in the development and aggressive growth of estrogen receptor (ER)-positive breast cancer is well known; however, the mechanistic understanding is not clear. Estrogen-independent growth is one of the features of aggressive subtype of breast cancer. Therefore, the objective of this study was to evaluate the effect of oxidative stress on estrogen sensitivity and expression of nuclear estrogen receptors in ER-positive breast cancer cells. MCF-7 cells chronically exposed to hydrogen peroxide were used as a cell model in this study, and their growth in response to 17-β estradiol was evaluated by cell viability, cell cycle, and cell migration analysis. Results were further confirmed at molecular level by analysis of gene expressions at transcript and protein levels. Histone H3 modifications, expression of epigenetic regulatory genes, and the effect of DNA demethylation were also analyzed. Loss of growth in response to estrogen with a decrease in ERα expression was observed in MCF-7 cells adapted to chronic oxidative stress. Increases in mtTFA and NRF1 in these cells further suggested the role of mitochondria-dependent redox-sensitive growth signaling as an alternative pathway to estrogen-dependent growth. Changes in expression of epigenetic regulatory genes, levels of histone H3 modifications as well as significant restorations of both ERα expression and estrogen response by 5-Aza-2'-deoxycytidine further confirmed the epigenetic basis for estrogen-independent growth in these cells. In conclusion, results of this study suggest that chronic oxidative stress can convert estrogen-dependent nonaggressive breast cancer cells into estrogen-independent aggressive form potentially by epigenetic mechanism.

  16. Hepatitis C: Treatment

    MedlinePlus

    ... Public Home » Hepatitis C » Hepatitis C Treatment Viral Hepatitis Menu Menu Viral Hepatitis Viral Hepatitis Home For ... Enter ZIP code here Enter ZIP code here Hepatitis C Treatment for Veterans and the Public Treatment ...

  17. Treatment of acute gout.

    PubMed

    Schlesinger, Naomi

    2014-05-01

    This article presents an overview of the treatment of acute gout. Nonpharmacologic and pharmacologic treatments, monotherapy versus combination therapy, suggested recommendations, guidelines for treatment, and drugs under development are discussed.

  18. Hyperprolactinemia Diagnosis and Treatment

    MedlinePlus

    ... may receive treatment with estrogen (for women) or testosterone (for men). Hypothyroidism. An underactive thyroid most often needs treatment with synthetic (laboratory- made) thyroid hormone. Most often this treatment ...

  19. Symptoms, Diagnosis & Treatment

    MedlinePlus

    ... three types of standard treatment for leukemia: chemotherapy, radiation, and stem cell transplant. Chemotherapy uses drugs to stop the growth ... three types of standard treatment for leukemia: chemotherapy, radiation, and stem cell transplant. Latest Treatment Over the past 10 years, ...

  20. Body Lice Treatment

    MedlinePlus

    ... Treatment FAQs Malathion FAQs Epidemiology & Risk Factors Disease Biology Diagnosis Treatment Prevention & Control Resources for Health Professionals ... Frequently Asked Questions (FAQs) Epidemiology & Risk Factors Disease Biology Diagnosis Treatment Prevention & Control Resources for Health Professionals ...

  1. Assertive Community Treatment (ACT)

    MedlinePlus

    ... community treatment? Assertive community treatment (ACT) is a model of psychiatric care that can be very effective ... it the most. Similar to the “treatment team” model of an inpatient psychiatric unit, which includes nurses, ...

  2. Pharmacological treatment of schizophrenia.

    PubMed

    Leucht, S; Heres, S; Kissling, W; Davis, J M

    2013-05-01

    We present the pharmacological treatment of schizophrenia based on a simple algorithm that starts with the most important decisions starting from the choice of an antipsychotic drug for an acutely ill patient and ends with maintenance treatment. It represents experts opinions, a formal guideline development process was not followed. Concerning acute treatment we present recommendations for the choice of drug in acutely patients, the treatment of agitated patients, persistent depression, negative symptoms and treatment resistance. Concerning maintenance treatment with antipsychotics we discuss indication, choice of drug, continuous versus intermittent treatment, duration of relapse prevention and dose.

  3. Treatment Option Overview (Myelodysplastic Syndromes)

    MedlinePlus

    ... Patient Myelo-proliferative Neoplasms Patient Myelodysplastic Syndromes Treatment Myeloproliferative Neoplasms Treatment Myelodysplastic/ Myeloproliferative Neoplasms Treatment Health Professional Myelodysplastic ...

  4. Treatment Options for Myelodysplastic Syndromes

    MedlinePlus

    ... Patient Myelo-proliferative Neoplasms Patient Myelodysplastic Syndromes Treatment Myeloproliferative Neoplasms Treatment Myelodysplastic/ Myeloproliferative Neoplasms Treatment Health Professional Myelodysplastic ...

  5. Pharmacologic treatment of paraphilias.

    PubMed

    Assumpção, Alessandra Almeida; Garcia, Frederico Duarte; Garcia, Heloise Delavenne; Bradford, John M W; Thibaut, Florence

    2014-06-01

    The treatment of paraphilias remains a challenge in the mental health field. Combined pharmacologic and psychotherapeutic treatment is associated with better efficacy. The gold standard treatment of severe paraphilias in adult males is antiandrogen treatment with cognitive behavioral therapy. Selective serotonin reuptake inhibitors have been used in mild types of paraphilia and in cases of sexual compulsions and juvenile paraphilias. Antiandrogen treatments seem to be effective in severe paraphilic subjects committing sexual offenses. In particular, gonadotropin-releasing hormone analogs have shown high efficacy working in a similar way to physical castration but being reversible at any time. Treatment recommendations, side effects, and contraindications are discussed.

  6. Land Treatment Digital Library

    USGS Publications Warehouse

    Pilliod, David S.; Welty, Justin L.

    2013-01-01

    The Land Treatment Digital Library (LTDL) was created by the U.S. Geological Survey to catalog legacy land treatment information on Bureau of Land Management lands in the western United States. The LTDL can be used by federal managers and scientists for compiling information for data-calls, producing maps, generating reports, and conducting analyses at varying spatial and temporal scales. The LTDL currently houses thousands of treatments from BLM lands across 10 states. Users can browse a map to find information on individual treatments, perform more complex queries to identify a set of treatments, and view graphs of treatment summary statistics.

  7. Research Areas: Treatment

    Cancer.gov

    The development of more effective and less toxic treatments is fundamental to improving outcomes for patients with cancer. NCI is leading efforts on several fronts to develop and evaluate new cancer treatments.

  8. Breast Cancer: Treatment Options

    MedlinePlus

    ... Cancer - Treatment Options Request Permissions Print to PDF Breast Cancer - Treatment Options Approved by the Cancer.Net Editorial ... recommendations for ovarian ablation . Hormonal therapy for metastatic breast cancer Hormonal therapies are also commonly used to treat ...

  9. Teens and Acne Treatment

    MedlinePlus

    ... Types of treatments Benzoyl peroxide Benzoyl peroxide wash, lotion, or gel—the most effective acne treatment you ... and make it redder than the wash or lotion, so try the wash or lotion first. How ...

  10. Cancer Terms: After Treatment

    MedlinePlus

    ... Statistics Cancer Terms: Treatment Cancer Terms: After Treatment Online Medical Dictionaries Diagnosing Cancer Managing Your Care Financial Considerations How Cancer is Treated Side Effects Dating, Sex, and Reproduction Advanced Cancer For Children For ...

  11. Medical Treatments for Fibroids

    MedlinePlus

    ... Clinical Trials Resources and Publications Medical Treatments for Fibroids Skip sharing on social media links Share this: ... suggest medical treatments to reduce the symptoms of fibroids or to stop the growth of fibroids. These ...

  12. Surgical Treatments for Fibroids

    MedlinePlus

    ... Clinical Trials Resources and Publications Surgical Treatments for Fibroids Skip sharing on social media links Share this: ... If you have moderate or severe symptoms of fibroids, surgery may be the best treatment for you. ...

  13. Fertility Treatments for Women

    MedlinePlus

    ... Assisted Reproductive Technology (ART) Medication Treatments for Female Infertility The most common medications used to treat infertility ... cabergoline ovulate. 1 [top] Surgical Treatments for Female Infertility If disease of the fallopian tubes is the ...

  14. Antimicrobial Treatments and Efficacy

    EPA Science Inventory

    To limit exposure to indoor biological contamination a risk-management approach which employs various antimicrobial treatments can effectively control contaminants and reduce exposure. Antimicrobial treatment of biological contaminants, especially mold in buildings, it is often n...

  15. Treatments for Alzheimer's Disease

    MedlinePlus

    ... 3900 Find your chapter: search by state Home > Alzheimer's Disease > Treatments Overview What Is Dementia? What Is Alzheimer's? ... and move closer to a cure. Treatments for Alzheimer's disease Currently, there is no cure for Alzheimer's. But ...

  16. Advances in Alcoholism Treatment

    PubMed Central

    Huebner, Robert B.; Kantor, Lori Wolfgang

    2011-01-01

    Researchers are working on numerous and varied approaches to improving the accessibility, quality, effectiveness, and cost-effectiveness of treatment for alcohol use disorders (AUDs). This overview article summarizes the approaches reviewed in this issue, including potential future developments for alcoholism treatment, such as medications development, behavioral therapy, advances in technology that are being used to improve treatment, integrated care of patients with AUDs and co-occurring disorders, the role of 12-step programs in the broader realm of treatment, treating patients with recurring and chronic alcohol dependence, strategies to close the gap between treatment need and treatment utilization, and how changes in the health care system may affect the delivery of treatment. This research will not only reveal new medications and behavioral therapies but also will contribute to new ways of approaching current treatment problems. PMID:23580014

  17. Treatments for Sleep Changes

    MedlinePlus

    ... Contributing medical factors Non-drug strategies Medications Common sleep changes Many people with Alzheimer’s experience changes in ... at night. Subscribe now Non-drug treatments for sleep changes Non-drug treatments aim to improve sleep ...

  18. HIV Treatment: The Basics

    MedlinePlus

    HIV Treatment HIV Treatment: The Basics (Last updated 3/1/2016; last reviewed 3/1/2016) Key Points Antiretroviral therapy (ART) ... reduces the risk of HIV transmission . How do HIV medicines work? HIV attacks and destroys the infection- ...

  19. Incontinence Treatment: Medication

    MedlinePlus

    ... Incontinence Managing Incontinence: A Survey The Patient's Perspective Barriers on Diagnosis and Treatment Personal Stories Contact Us ... Incontinence Managing Incontinence: A Survey The Patient's Perspective Barriers on Diagnosis and Treatment Personal Stories Contact Us ...

  20. Bell's Palsy Treatment

    MedlinePlus

    ... Stories Español Eye Health / Eye Health A-Z Bell's Palsy Sections What Is Bell's Palsy? Bell's Palsy Symptoms ... Bell's Palsy? Bell's Palsy Diagnosis Bell's Palsy Treatment Bell's Palsy Treatment Reviewed by: Philip R Rizzuto, MD FACS ...

  1. Treatment of internet addiction.

    PubMed

    Huang, Xui-qin; Li, Meng-chen; Tao, Ran

    2010-10-01

    Internet addiction (IA) is a prevalent, highly comorbid, and significantly impairing disorder. Although many psychotherapeutic approaches and psychotropic medications have been recommended and some of the psychotherapeutic approaches and a few pharmacotherapy strategies have been studied, treatment of IA is generally in its early stages. This article reviews theoretical descriptions of psychotherapy and the effects of psychosocial treatment and pharmacologic treatment. We also outline our own treatment model of IA.

  2. Treatment of Pediculosis Capitis

    PubMed Central

    Verma, Prashant; Namdeo, Chaitanya

    2015-01-01

    An endeavour to delineate the salient details of the treatment of head lice infestation has been made in the present article. Treatment modalities including over the counter permethrin and pyrethrin, and prescription medicines, including malathion, lindane, benzyl alcohol, spinosad are discussed. Salient features of alternative medicine and physical treatment modalities are outlined. The problem of resistance to treatment has also been taken cognizance of. PMID:26120148

  3. Just call it "treatment".

    PubMed

    Friedmann, Peter D; Schwartz, Robert P

    2012-01-01

    Although many in the addiction treatment field use the term "medication-assisted treatment" to describe a combination of pharmacotherapy and counseling to address substance dependence, research has demonstrated that opioid agonist treatment alone is effective in patients with opioid dependence, regardless of whether they receive counseling. The time has come to call pharmacotherapy for such patients just "treatment". An explicit acknowledgment that medication is an essential first-line component in the successful management of opioid dependence. PMID:23186149

  4. Guideline 3: Psychosocial Treatment.

    ERIC Educational Resources Information Center

    American Journal on Mental Retardation, 2000

    2000-01-01

    The third in seven sets of guidelines based on the consensus of experts in the treatment of psychiatric and behavioral problems in mental retardation (MR) focuses on psychosocial treatment. Guidelines cover general principles, choosing among psychosocial treatments, severity of MR and psychiatric/behavior symptoms, diagnosable disorders, target…

  5. The Treatment Philosophy Snowballs.

    ERIC Educational Resources Information Center

    Hern, Matt

    1998-01-01

    Students who respond to the ludicrous environments of schooling with behaviors and demeanor that do not fit school criteria frequently are given a medical label and drug treatment. The fact that Ritalin is given to 2.8% of all American children reflects a "treatment philosophy" in which professionals define problems and prescribe treatments for a…

  6. [Treatment of tuberculosis].

    PubMed

    Ben Amar, J; Dhahri, B; Aouina, H; Azzabi, S; Baccar, M A; El Gharbi, L; Bouacha, H

    2015-01-01

    The aim of this article is to give practicing physicians a practical approach to the treatment of latent and active tuberculosis. Most patients follow TB standard treatment recommended by WHO that depend on category of patient. It is a combination of four essential tuberculosis drugs of the first group: isoniazid, rifampicin, pyrazinamid and ethambutol; in some cases streptomycin can replace ethambutol. This initial phase of intensive treatment is followed by a consolidation phase. Drugs should be administered in the morning on an empty stomach one hour before meals. Treatment of latent tuberculosis (TB) infection is an important component of TB control programs. Preventive treatment can reduce the risk of developing active TB.

  7. Wetlands for Wastewater Treatment.

    PubMed

    Jiang, Yi; Martinez-Guerra, Edith; Gnaneswar Gude, Veera; Magbanua, Benjamin; Truax, Dennis D; Martin, James L

    2016-10-01

    An update on the current research and development of the treatment technologies, which utilize natural processes or passive components in wastewater treatment, is provided in this paper. The main focus is on wetland systems and their applications in wastewater treatment (as an advanced treatment unit or decentralized system), nutrient and pollutant removal (metals, industrial and emerging pollutants including pharmaceutical compounds). A summary of studies involving the effects of vegetation, wetland design and modeling, hybrid and innovative systems, storm water treatment and pathogen removal is also included. PMID:27620086

  8. Experimental treatments of endometriosis.

    PubMed

    Attar, Rukset; Attar, Erkut

    2015-08-01

    Endometriosis is defined as the presence of endometrial gland and stroma outside the uterine cavity. It is an estrogen-dependent disease and is associated with chronic pelvic pain, dysmenorrhea, dyspareunia and infertility. The treatment of endometriosis is conservative or radical surgery, medical therapies or their combination. All currently used hormonally active treatments are effective in the treatment of endometriosis; however, the adverse effects of these hormonal treatments limit their long-term use. Moreover, recurrence rates are high after cessation of therapy, and the treatments have no benefit in endometriosis-associated infertility. Therefore, researchers are working on new treatment modalities with improved side effects, mainly focusing on the molecular targets involved in etiopathogenesis of endometriosis. Here we summarized these novel treatments modalities.

  9. Treatment of bipolar disorder.

    PubMed

    Geddes, John R; Miklowitz, David J

    2013-05-11

    We review recent developments in the acute and long-term treatment of bipolar disorder and identify promising future routes to therapeutic innovation. Overall, advances in drug treatment remain quite modest. Antipsychotic drugs are effective in the acute treatment of mania; their efficacy in the treatment of depression is variable with the clearest evidence for quetiapine. Despite their widespread use, considerable uncertainty and controversy remains about the use of antidepressant drugs in the management of depressive episodes. Lithium has the strongest evidence for long-term relapse prevention; the evidence for anticonvulsants such as divalproex and lamotrigine is less robust and there is much uncertainty about the longer term benefits of antipsychotics. Substantial progress has been made in the development and assessment of adjunctive psychosocial interventions. Long-term maintenance and possibly acute stabilisation of depression can be enhanced by the combination of psychosocial treatments with drugs. The development of future treatments should consider both the neurobiological and psychosocial mechanisms underlying the disorder. We should continue to repurpose treatments and to recognise the role of serendipity. We should also investigate optimum combinations of pharmacological and psychotherapeutic treatments at different stages of the illness. Clarification of the mechanisms by which different treatments affect sleep and circadian rhythms and their relation with daily mood fluctuations is likely to help with the treatment selection for individual patients. To be economically viable, existing psychotherapy protocols need to be made briefer and more efficient for improved scalability and sustainability in widespread implementation. PMID:23663953

  10. Treatment of social phobias.

    PubMed

    Agras, W S

    1990-10-01

    Social phobia, despite a prevalence in the general population of 1.5% denoting a common disorder, has been relatively neglected from the viewpoints of psychopathology and of treatment. Two subtypes of social phobia have been differentiated: specific (characterized by anxiety in one situation, e.g., public speaking) and generalized (characterized by anxiety in several social situations). The syndrome is frequently complicated by alcohol abuse or dependence. Among the treatment targets are symptoms of anxiety, avoidance behavior, negative cognitions concerning the reactions of others, and, less frequently, social skills deficits. Both pharmacologic and cognitive-behavioral treatments have been found effective in this disorder, and it seems likely that the two treatments will complement each other. The treatment literature is reviewed, and recommendations concerning a state-of-the-art treatment approach to both specific and generalized social phobia are made. Potential complications and limitations are discussed.

  11. Demystifying water treatment

    SciTech Connect

    Hairston, D.

    1994-09-01

    Increasingly accountable for the environmental quality and cost of managing their waste and process water streams, customers require more precise data about the constituents in their water. This has forced suppliers to unlock some of the secrets of water treatment. In the open exchange of information, users are trading in esoteric formulations for products that are more chemical efficient and environmentally benign. Factoring more prominently in the water treatment equation are service and supply. This paper reviews some of these simpler treatments.

  12. [Pollinosis: drug treatments].

    PubMed

    Harf, R

    2013-06-01

    The medical treatment of allergic rhino-conjunctivitis involves different classes of drugs administered locally or by general route. They belong to three main classes, antihistamines, steroids and mast cell stabilizers. Since it is a relatively benign and also highly common disease, treatment options are limited by possible, even mild, side effects and by cost efficacy restriction. In the more severe forms of the condition, treatment efficacy remains unsatisfactory.

  13. Treatment of ankylosing spondylitis.

    PubMed

    Sari, İsmail; Öztürk, Mehmet Akif; Akkoç, Nurullah

    2015-01-01

    Ankylosing spondylitis is a chronic, inflammatory, rheumatic disease that can reduce the quality of life and increase the risk of disability and mortality. It also causes direct and indirect economic losses due to health expenses and as a result of workforce loss. Management of this disease consists of pharmacological and nonpharmacological modalities. Until recently, pharmacological treatment options have been very limited. However, development of novel biological drugs revolutionized the management of this disease. The aim of this review article is to present an updated overview of the pharmacologic treatment of ankylosing spondylitis. Nonpharmacological treatment modalities including physiotherapy and exercise are only briefly mentioned and surgical treatment is not discussed.

  14. 21 CFR 312.320 - Treatment IND or treatment protocol.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Treatment IND or treatment protocol. 312.320... for Treatment Use § 312.320 Treatment IND or treatment protocol. Under this section, FDA may permit an investigational drug to be used for widespread treatment use. (a) Criteria. The criteria in § 312.305(a) must...

  15. 21 CFR 312.320 - Treatment IND or treatment protocol.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Treatment IND or treatment protocol. 312.320... for Treatment Use § 312.320 Treatment IND or treatment protocol. Under this section, FDA may permit an investigational drug to be used for widespread treatment use. (a) Criteria. The criteria in § 312.305(a) must...

  16. 21 CFR 312.320 - Treatment IND or treatment protocol.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Treatment IND or treatment protocol. 312.320... for Treatment Use § 312.320 Treatment IND or treatment protocol. Under this section, FDA may permit an investigational drug to be used for widespread treatment use. (a) Criteria. The criteria in § 312.305(a) must...

  17. 21 CFR 312.320 - Treatment IND or treatment protocol.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Treatment IND or treatment protocol. 312.320... for Treatment Use § 312.320 Treatment IND or treatment protocol. Under this section, FDA may permit an investigational drug to be used for widespread treatment use. (a) Criteria. The criteria in § 312.305(a) must...

  18. Biological activity of N(4)-boronated derivatives of 2'-deoxycytidine, potential agents for boron-neutron capture therapy.

    PubMed

    Nizioł, Joanna; Uram, Łukasz; Szuster, Magdalena; Sekuła, Justyna; Ruman, Tomasz

    2015-10-01

    Boron-neutron capture therapy (BNCT) is a binary anticancer therapy that requires boron compound for nuclear reaction during which high energy alpha particles and lithium nuclei are formed. Unnatural, boron-containing nucleoside with hydrophobic pinacol moiety was investigated as a potential BNCT boron delivery agent. Biological properties of this compound are presented for the first time and prove that boron nucleoside has low cytotoxicity and that observed apoptotic effects suggest alteration of important functions of cancer cells. Mass spectrometry analysis of DNA from cancer cells proved that boron nucleoside is inserted into nucleic acids as a functional nucleotide derivative. NMR studies present very high degree of similarity of natural dG-dC base pair with dG-boron nucleoside system.

  19. Psychological Treatments to Avoid

    ERIC Educational Resources Information Center

    Thomason, Timothy C.

    2010-01-01

    Certain psychological treatments should be avoided, and a list of such treatments would provide valuable guidance for counselors, as well as potential clients. It is well established that some therapies are potentially dangerous, and some fringe therapies are highly unlikely to help clients beyond a placebo effect. This article provides an…

  20. Treatment of Evolution Inconsistent

    ERIC Educational Resources Information Center

    Cavanagh, Sean

    2005-01-01

    State standards for academic content vary enormously in how well they cover the topic of evolution, with many of those documents either ignoring or giving scant treatment to the core principles of that established scientific theory. This article presents the analysis of Education Week on state's standards treatment of evolution. Nearly all the…

  1. "Psychotherapy" Versus "Treatment"

    ERIC Educational Resources Information Center

    Arkowitz, Hal

    2005-01-01

    This paper presents comments on "Psychological treatments" by D. H. Barlow. Barlow proposed that we distinguish between the terms "treatment" and "psychotherapy." The author believes that not only is the distinction unnecessary, but that its implications could have negative consequences for the field of clinical psychology. It is the proposed…

  2. Treatment adherence in psychoses.

    PubMed

    David, Anthony S

    2010-12-01

    A well-conducted randomised controlled trial of an intervention to improve treatment adherence in psychosis published in this issue shows beneficial effects on self- and observer-rated adherence and trends towards fewer hospital readmissions. Partial adherence is the single most important barrier to optimal treatment. National Institute for Health and Clinical Excellence guidelines on adherence need to be revised.

  3. Coping – After Treatment

    Cancer.gov

    Many cancer survivors say that once treatment ended, it was hard to make a transition to a new way of life. Learn about this phase of your care and how to adjust to the new feelings and issues that come after cancer treatment.

  4. Seed Treatment. Bulletin 760.

    ERIC Educational Resources Information Center

    Lowery, Harvey C.

    This manual gives a definition of seed treatment, the types of seeds normally treated, diseases and insects commonly associated with seeds, fungicides and insecticides used, types of equipment used for seed treatment, and information on labeling and coloring of treated seed, pesticide carriers, binders, stickers, and safety precautions. (BB)

  5. Assessment, Diagnosis, and Treatment.

    ERIC Educational Resources Information Center

    Mullis, Thomas

    The purpose of this paper is to provide an overview of assessment, diagnosis, and treatment planning for individuals with substance abuse problems. The intent is to provide information to professional counselors in school, rehabilitation, school psychology, social work, public mental health, and private treatment settings. Information to be…

  6. Treatment of Rape Victims.

    ERIC Educational Resources Information Center

    Foa, Edna B.; And Others

    1993-01-01

    Highlights the methodological issues pertinent in the design of studies to evaluate the treatment outcome of rape-related posttraumatic stress disorder. The wide range of interventions for the treatment of postrape sequelae are reviewed, and special attention is given to cognitive-behavioral interventions because they have been subjected to more…

  7. Against Preferential Treatment.

    ERIC Educational Resources Information Center

    Kekes, John

    1997-01-01

    Argues that preferential treatment of women and minorities in the selection of college faculty elevates a form of corruption to standard administrative practice by including people in academic life on the basis of characteristics irrelevant to teaching and research; and previous unjust treatment is inadequate justification for preferential…

  8. Invisalign in TMD treatment.

    PubMed

    Miller, David B

    2009-01-01

    The objectives of functional orthodontic treatment include creating a broad smile, pleasing facial profile, and healthy, functional occlusions and temporomandibular joints. Removable orthodontic appliances have long been used in the treatment of some temporomandibular disorders. Invisalign aligners are removable orthodontic appliances. Certain TMJ case types can be treated successfully with Invisalign.

  9. Eosinophilic esophagitis: current treatment.

    PubMed

    Redd, Matthew; Schey, Ron

    2013-03-01

    Eosinophilic esophagitis (EoE) is a relatively new entity with a significant amount of increased recognition over the last decade. The mainstay treatments of EoE are designed to eliminate the causative allergens or to reduce their effects on the esophageal mucosa. Common treatments include dietary modification, proton pump inhibitors, systemic and topical corticosteroids, and endoscopic treatments. As the pathogenesis of EoE is explored, new and novel treatments are being studied that target specific pathways and chemokines identified in as precipitating agents of EoE. This is a rapidly evolving field with significant ongoing research and clinical studies. Our review will therefore focus on current and novel treatment approaches to the disease.

  10. [Treatment of cluster headache].

    PubMed

    Fabre, N

    2005-07-01

    Remarkable therapeutic improvements have come forward recently for trigemino-autonomic cephalalgias. Attack treatment in cluster headache is based on sumatriptan and oxygen. Non-vasoconstrictive treatments are opening a new post-triptan era but are not yet applicable. Prophylactic treatment of cluster headache is based on verapamil and lithium. The efficacy of anti-epileptic drugs in cluster headache remains to be demonstrated. Surgical treatment aimed at the parasympathetic pathways and at the trigeminal nerve demonstrates a high rate of recurrence and adverse events and questions about the relevance of a "peripheral" target in cluster headache. The efficacy of continuous hypothalamic stimulation in patients with intractable headache constitutes a breakthrough, but must be demonstrated at a larger scale and the benefice/risk ratio must be carefully evaluated. Indomethacin still remains the gold standard in paroxysmal hemicrania treatment. Until recently SUNCT was considered an intractable condition. However there are some reports of complete relief with lamotrigine, topiramate and gabapentin.

  11. Treatment of West syndrome.

    PubMed

    Sakakihara, Yoichi

    2011-03-01

    West syndrome is one of the most refractory epileptic syndromes in infancy, and many researchers have made great effort to find optimal treatment modalities for this syndrome. In this review, previous literature on optimal treatments of West syndrome and its refractory nature were briefly presented, followed by an introduction of recent publication of expert opinions from the US and Europe. An Asian expert opinion generated by a short questionnaire survey was then presented. It was shown that medically proven optimal treatment of West syndrome is not always the practical treatment of choice in Asian countries. Cost and geographical regions should also be taken into account in making practical choices for treatment of West syndrome. PMID:21196092

  12. Contemporary Treatment of APL

    PubMed Central

    Cull, Elizabeth H.; Altman, Jessica K.

    2014-01-01

    Acute promyelocytic leukemia (APL) is characterized by coagulopathy, leukopenic presentation and sensitivity to anthracyclines, all-trans retinoic acid (ATRA) and arsenic trioxide (ATO). For the last 25 years, APL has been treated with a combination of ATRA and chemotherapy for induction followed by consolidation and maintenance therapy. This general treatment approach has resulted in cure rates of 80–90%. ATO, originally approved in relapsed APL, has been incorporated into contemporary upfront treatment regimens with excellent response rates. Recent studies show that most patients with APL can be cured with ATRA and ATO alone, eliminating cytotoxic chemotherapy and resulting in superior outcomes compared to standard treatment. We will herein review historical treatment of APL, treatment considerations in specific patient populations, and therapeutic updates. PMID:24643310

  13. Nonpharmacological treatment of epilepsy.

    PubMed

    Saxena, V S; Nadkarni, V V

    2011-07-01

    Nonpharmacological treatment of epilepsy includes surgery, vagal nerve stimulation, ketogenic diet, and other alternative/complementary therapies, e.g., yoga, Ayurveda, electroencephalography (EEG) biofeedback technique, aerobic exercise, music therapy, transcranial magnetic stimulation, acupuncture, and herbal remedies (traditional Chinese medicine). Alternative therapies, despite the term, should not be considered as an alternative to antiepileptic medication; they complement accepted drug treatment. Alternative therapies like yoga, through techniques that relax the body and mind, reduce stress, improve seizure control, and also improve quality of life. Ketogenic diet is a safe and effective treatment for intractable epilepsies; it has been recommended since 1921. The diet induces ketosis, which may control seizures. The most successful treatment of epilepsy is with modern antiepileptic drugs, which can achieve control of seizures in 70-80% cases. Patients opt for alternative therapies because they may be dissatisfied with antiepileptic drugs due to their unpleasant side effects, the long duration of treatment, failure to achieve control of seizures, cultural beliefs and, in the case of women, because they wish to get pregnant Surgical treatment may lead to physical and psychological sequelae and is an option only for a minority of patients. This article presents supportive evidence from randomized controlled trials done to assess the benefit of non-pharmacological treatment. PMID:22028523

  14. Treatment of Thoracolumbar Fracture

    PubMed Central

    Kim, Byung-Guk; Shin, Dong-Eun

    2015-01-01

    The most common fractures of the spine are associated with the thoracolumbar junction. The goals of treatment of thoracolumbar fracture are leading to early mobilization and rehabilitation by restoring mechanical stability of fracture and inducing neurologic recovery, thereby enabling patients to return to the workplace. However, it is still debatable about the treatment methods. Neurologic injury should be identified by thorough physical examination for motor and sensory nerve system in order to determine the appropriate treatment. The mechanical stability of fracture also should be evaluated by plain radiographs and computed tomography. In some cases, magnetic resonance imaging is required to evaluate soft tissue injury involving neurologic structure or posterior ligament complex. Based on these physical examinations and imaging studies, fracture stability is evaluated and it is determined whether to use the conservative or operative treatment. The development of instruments have led to more interests on the operative treatment which saves mobile segments without fusion and on instrumentation through minimal invasive approach in recent years. It is still controversial for the use of these treatments because there have not been verified evidences yet. However, the morbidity of patients can be decreased and good clinical and radiologic outcomes can be achieved if the recent operative treatments are used carefully considering the fracture pattern and the injury severity. PMID:25705347

  15. Personalized treatment planning.

    PubMed

    Pitts, N B; Richards, D

    2009-01-01

    This chapter aims to outline a flexible framework which the dental team can use to bring together key elements of information about their patients and their patients' teeth in order to plan appropriate, patient-centred, caries management based on the application of best current evidence and practice. This framework can be enabled by the use of the International Caries Detection and Assessment System (ICDAS) clinical visual scoring systems for caries detection and activity, but also needs additional information about lesions and the patient to plan and then monitor the effectiveness of personalized caries care. The treatment planning process has evolved from restorative treatment decisions being largely made during clinical assessment as an examination of wet teeth proceeds, with limited charting and a minor role for patient factors. Best practice now involves a comprehensive examination being made systematically of clean dry teeth using sharp eyes and blunt probes. The ICDAS-enabled framework provides for information to be collected at the tooth/surface level (clinical visual lesion detection, lesion detection aids and lesion activity assessment) and at the patient level (patient caries risk assessment, dentition and lesion history and patient behavioural assessment). This information is then synthesized to inform integrated, personalized treatment planning which involves the choice of appropriate treatment options (background level care, preventive treatment options, operative treatment options) and then recall, reassessment and monitoring. Examples of international moves towards using integrated, personalized treatment planning for caries control are given, drawing on experiences in the UK, the USA and from the ICDAS Committee.

  16. [Chronic migraine: treatment].

    PubMed

    Pascual, Julio

    2012-04-10

    We define chronic migraine as that clinical situation in which migraine attacks appear 15 or more days per month. Until recently, and in spite of its negative impact, patients with chronic migraine were excluded of the clinical trials. This manuscript revises the current treatment of chronic migraine. The first step should include the avoidance of potential precipitating/aggravating factors for chronic migraine, mainly analgesic overuse and the treatment of comorbid disorders, such as anxiety and depression. The symptomatic treatment should be based on the use of nonsteroidal anti-inflammatory agents and triptans (in this case < 10 days per month). It is necessary to avoid the use of combined analgesics, opioids and ergotamine-containing medications. Preventive treatment includes a 'transitional' treatment with nonsteroidal anti-inflammatory agents or steroids, while preventive treatment exerts its actions. Even though those medications efficacious in episodic migraine prevention are used, the only drugs with demonstrated efficacy in the preventive treatment of chronic migraine are topiramate and pericranial infiltrations of Onabotulinumtoxin A.

  17. Nonpharmacological treatment of epilepsy

    PubMed Central

    Saxena, V. S.; Nadkarni, V. V.

    2011-01-01

    Nonpharmacological treatment of epilepsy includes surgery, vagal nerve stimulation, ketogenic diet, and other alternative/complementary therapies, e.g., yoga, Ayurveda, electroencephalography (EEG) biofeedback technique, aerobic exercise, music therapy, transcranial magnetic stimulation, acupuncture, and herbal remedies (traditional Chinese medicine). Alternative therapies, despite the term, should not be considered as an alternative to antiepileptic medication; they complement accepted drug treatment. Alternative therapies like yoga, through techniques that relax the body and mind, reduce stress, improve seizure control, and also improve quality of life. Ketogenic diet is a safe and effective treatment for intractable epilepsies; it has been recommended since 1921. The diet induces ketosis, which may control seizures. The most successful treatment of epilepsy is with modern antiepileptic drugs, which can achieve control of seizures in 70–80% cases. Patients opt for alternative therapies because they may be dissatisfied with antiepileptic drugs due to their unpleasant side effects, the long duration of treatment, failure to achieve control of seizures, cultural beliefs and, in the case of women, because they wish to get pregnant Surgical treatment may lead to physical and psychological sequelae and is an option only for a minority of patients. This article presents supportive evidence from randomized controlled trials done to assess the benefit of non-pharmacological treatment. PMID:22028523

  18. Treatment Modalities for Acne.

    PubMed

    Fox, Lizelle; Csongradi, Candice; Aucamp, Marique; du Plessis, Jeanetta; Gerber, Minja

    2016-01-01

    Acne is a common inflammatory skin disease which affects the pilosebaceous units of the skin. It can have severe psychological effects and can leave the patient with severe skin scarring. There are four well-recognized pathological factors responsible for acne which is also the target for acne therapy. In this review, different treatment options are discussed, including topical (i.e., retinoids, and antibiotics) and systemic (i.e., retinoids, antibiotics, and hormonal) treatments. Since the general public has been showing an increasing interest in more natural and generally safer treatment options, the use of complementary and alternative medicines (CAM) for treating acne was also discussed. The use of physical therapies such as comedone extraction, cryoslush therapy, cryotherapy, electrocauterization, intralesional corticosteroids and optical treatments are also mentioned. Acne has been extensively researched with regards to the disease mechanism as well as treatment options. However, due to the increasing resistance of Propionibacterium acnes towards the available antibiotics, there is a need for new treatment methods. Additionally, the lack of necessary evidence on the efficacy of CAM therapies makes it necessary for researchers to investigate these treatment options further. PMID:27529209

  19. Land Treatment Digital Library

    USGS Publications Warehouse

    Pilliod, David S.

    2009-01-01

    Across the country, public land managers make hundreds of decisions each year that influence landscapes and ecosystems within the lands they manage. Many of these decisions involve vegetation manipulations known as land treatments. Land treatments include activities such as removal or alteration of plant biomass, seeding burned areas, and herbicide applications. Data on these land treatments are usually stored at local offices, and gathering information across large spatial areas can be difficult. There is a need to centralize and store treatment data for Federal agencies involved in land treatments because these data are useful to land managers for policy and management and to scientists for developing sampling designs and studies. The Land Treatment Digital Library (LTDL) was created by the U.S. Geological Survey (USGS) to catalog information about land treatments on Federal lands in the western United States for all interested parties. The flexible framework of the library allows for the storage of a wide variety of data in different formats. The LTDL currently stores previously established land treatments or what often are called legacy data. The project was developed and has been refined based on feedback from partner agencies and stakeholders, with opportunity for the library holdings to expand as new information becomes available. The library contains data in text, tabular, spatial, and image formats. Specific examples include project plans and implementation reports, monitoring data, spatial data files from geographic information systems, digitized paper maps, and digital images of land treatments. The data are entered by USGS employees and are accessible through a searchable web site. The LTDL can be used to respond to information requests, conduct analyses and other forms of information syntheses, produce maps, and generate reports for DOI managers and scientists and other authorized users.

  20. Treatment Success in Cancer

    PubMed Central

    Djulbegovic, Benjamin; Kumar, Ambuj; Soares, Heloisa P.; Hozo, Iztok; Bepler, Gerold; Clarke, Mike; Bennett, Charles L.

    2009-01-01

    Background The evaluation of research output, such as estimation of the proportion of treatment successes, is of ethical, scientific, and public importance but has rarely been evaluated systematically. We assessed how often experimental cancer treatments that undergo testing in randomized clinical trials (RCTs) result in discovery of successful new interventions. Methods We extracted data from all completed (published and unpublished) phase 3 RCTs conducted by the National Cancer Institute cooperative groups since their inception in 1955. Therapeutic successes were determined by (1) assessing the proportion of statistically significant trials favoring new or standard treatments, (2) determining the proportion of the trials in which new treatments were considered superior to standard treatments according to the original researchers, and (3) quantitatively synthesizing data for main clinical outcomes (overall and event-free survival). Results Data from 624 trials (781 randomized comparisons) involving 216 451 patients were analyzed. In all, 30% of trials had statistically significant results, of which new interventions were superior to established treatments in 80% of trials. The original researchers judged that the risk-benefit profile favored new treatments in 41% of comparisons (316 of 766). Hazard ratios for overall and event-free survival, available for 614 comparisons, were 0.95 (99% confidence interval [CI], 0.93-0.98) and 0.90 (99% CI, 0.87- 0.93), respectively, slightly favoring new treatments. Breakthrough interventions were discovered in 15% of trials. Conclusions Approximately 25% to 50% of new cancer treatments that reach the stage of assessment in RCTs will prove successful. The pattern of successes has become more stable over time. The results are consistent with the hypothesis that the ethical principle of equipoise defines limits of discoverability in clinical research and ultimately drives therapeutic advances in clinical medicine. PMID:18362256

  1. [Neurosurgical treatment of pain].

    PubMed

    Siegfried, J

    1981-12-12

    Chronic pain may be considered a disease and its treatment a necessity. Neurosurgical treatment of chronic pain is justified in cases where conservative treatment is no longer effective or causes excessive side effects. The new percutaneous methods involve no stress, minimal risk and short hospitalization. Destructive neurosurgical procedures are mainly used for cancer pain, with the exception of trigeminal neuralgia. Non-destructive neurostimulating methods to control pain are well on the way to achieving their optimum clinical potential and preserve the integrity of the nervous system. PMID:7330647

  2. Heat treatment study 2

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1990-01-01

    The microstructural variations in nickel based superalloys that result from modifications in processing were examined. These superalloys include MAR-M246(HF) and PWA1480. Alternate heat treatments for equiaxed as-cast specimens were studied and a sample matrix of 42 variations in the heat treatments were processed, as well as different directional solidification parameters. Variation in temperature and times for both solution and aging were performed. Photomicrographs were made of the microstructure and volume fraction analysis of primary gamma-prime and aged gamma-prime precipitates were performed. The results of the heat treatment, cooling rate, and directional solidification experiments are discussed.

  3. Surgical treatment of osteomyelitis.

    PubMed

    Cierny, George

    2011-01-01

    Chronic osteomyelitis is refractory to nonsurgical treatment due to a resilient, infective nidus that harbors sessile, matrix-protected pathogens bound to substrate surfaces within the wound. Curative treatment mandates physical (surgical) removal of the biofilm colony, adjunctive use of antibiotics to eliminate residual phenotypes, and efforts to optimize the host response throughout therapy. Patient selection, therapeutic options, and the treatment format are determined by the Cierny/Mader staging system, while reconstruction is governed by the integrity/stability of the affected bone(s) and quality/quantity parameters of the soft-tissue envelope.

  4. Optical treatments for acne.

    PubMed

    Ross, E Victor

    2005-01-01

    Light-based treatments for acne are becoming increasingly commonplace in dermatology. This article reviews various light approaches in acne therapy. Methods are discussed from an anatomical and a functional perspective. The emphasis is on the practicality of treatment as well as the pros and cons of various devices. Also, a review of the recent literature is presented. The article is intended to give the reader a panoramic view of this still-young and developing area. Most likely, light-based acne treatment will receive more popularity as dermatologists learn how to integrate this type of therapy within the context of more established drug agents. PMID:16229726

  5. Treatment of dentin hypersensitivity.

    PubMed

    Trushkowsky, Richard D; Oquendo, Anabella

    2011-07-01

    Dentinal hypersensitivity is exemplified by brief, sharp, well-localized pain in response to thermal, evaporative, tactile, osmotic, or chemical stimuli that cannot be ascribed to any other form of dental defect or pathology. Pulpal pain is usually more prolonged, dull, aching, and poorly localized and lasts longer than the applied stimulus. Up to 30% of adults have dentinal hypersensitivity at some time. Current techniques for treatment may be only transient in nature and results are not always predictable. Two methods of treatment of dentin hypersensitivity are tubular occlusion and blockage of nerve activity. A differential diagnosis needs to be accomplished before any treatment. PMID:21726693

  6. Pharmacological Treatment of Insomnia.

    PubMed

    Lie, Janette D; Tu, Kristie N; Shen, Diana D; Wong, Bonnie M

    2015-11-01

    Up to 70 million U.S. adults have chronic sleep and wakefulness disorders. Therapies may include prescription medications approved by the Food and Drug Administration, off-label treatments, over-the-counter drugs, and herbal therapies.

  7. Treatment of myofascial pain.

    PubMed

    Desai, Mehul J; Bean, Matthew C; Heckman, Thomas W; Jayaseelan, Dhinu; Moats, Nick; Nava, Andrew

    2013-01-01

    SUMMARY The objective of this article was to perform a narrative review regarding the treatment of myofascial pain syndrome and to provide clinicians with treatment recommendations. This paper reviews the efficacy of various myofascial pain syndrome treatment modalities, including pharmacological therapy, injection-based therapies and physical therapy interventions. Outcomes evaluated included pain (visual analog scale), pain pressure threshold and range of motion. The evidence found significant benefit with multiple treatments, including diclofenac patch, thiocolchicoside and lidocaine patches. Trigger point injections, ischemic compression therapy, transcutaneous electrical nerve stimulation, spray and stretch, and myofascial release were also efficacious. The authors recommend focusing on treating underlying pathologies, including spinal conditions, postural abnormalities and underlying behavioral issues. To achieve maximum pain reduction and improve function, we recommend physicians approach myofascial pain syndrome with a multimodal plan, which includes a combination of pharmacologic therapies, various physical therapeutic modalities and injection therapies.

  8. Muscle strain treatment

    MedlinePlus

    Treatment - muscle strain ... Question: How do you treat a muscle strain ? Answer: Rest the strained muscle and apply ice for the first few days after the injury. Anti-inflammatory medicines or acetaminophen ( ...

  9. Osteopathic Manipulative Treatment

    MedlinePlus

    ... what patients really need is a healing touch. Osteopathic physicians haven't forgotten. Osteopathic manipulative treatment, or OMT, ... and prevent illness or injury. Using OMT, your osteopathic physician will move your muscles and joints using techniques ...

  10. Porphyria Treatment Options

    MedlinePlus

    ... only. For treatment options for Porphyria Cutanea Tarda (PCT) , Congenital Erythropoietic Protoporphyria (CEP) and Hepatoerythropoietic Porphyria (HEP) ... Contact Us About Porphyria AIP VP HCP ADP PCT EPP CEP HEP Diet and Nutrition History of ...

  11. [Treatment of recurrent furunculosis].

    PubMed

    Engelhard, Esther A N; Spanjaard, Lodewijk; Stijnis, C Kees

    2013-01-01

    The management of recurrent furunculosis is difficult, and often disappointing. We present the case of a 23-year-old female patient suffering from recurrent furunculosis. The furunculosis persisted after treatment with mupirocin nasal ointment, chlorhexidine soap and instructions for washing clothes, towels and bed sheets for a period of 7 days. Treatment with low-dose clindamycin for three months ultimately proved successful. We propose a structural approach for recurrent furunculosis in which extensive history-taking is followed by appropriate tests. Before prescribing an oral antibiotic (preferably low-dose clindamycin or a macrolide for 3 months), the patient should use an antimicrobial nasal ointment and soap and follow hygienic instructions as mentioned above. Members of the household who also have signs of the infection should be treated. Hygienic education is an essential component of treatment. We believe that this approach will lead to a treatment that is more effective and efficient.

  12. Packaged Waste Treatment

    NASA Technical Reports Server (NTRS)

    1977-01-01

    This Jacksonville, Florida, apartment complex has a wastewater treatment system which clears the water, removes harmful microorganisms and reduces solid residue to ash. It is a spinoff from spacecraft waste management and environmental control technology.

  13. Finding Treatment Centers

    MedlinePlus

    ... Lodge® Lodging Rides To Treatment Online Support Communities ACS Events Making Strides Against Breast Cancer Walks Coaches ... For Life Relay Recess Donate a Car About ACS About Us Contact Us Local Offices Volunteer Employment ...

  14. Lasers in Cancer Treatment

    MedlinePlus

    ... Cancer Treatment On This Page What is laser light? What is laser therapy, and how is it ... future hold for laser therapy? What is laser light? The term “ laser ” stands for light amplification by ...

  15. IV treatment at home

    MedlinePlus

    ... home; PICC line - home; Infusion therapy - home; Home health care - IV treatment ... Often, home health care nurses will come to your home to give you the medicine. Sometimes, a family member, a friend, or ...

  16. Stator hub treatment study

    NASA Technical Reports Server (NTRS)

    Wisler, D. C.; Hilvers, D. E.

    1974-01-01

    The results of an experimental research program to investigate the potential of improving compressor stall margin by the application of hub treatment are presented. Extensive tuft probing showed that the two-stage, 0.5 radius ratio compressor selected for the test was indeed hub critical. Circumferential groove and baffled wide blade angle slot hub treatments under the stators were tested. Performance measurements were made with total and static pressure probes, wall static pressure taps, flow angle measuring instrumentation and hot film anemometers. Stator hub treatment was not found to be effective in improving compressor stall margin by delaying the point of onset of rotating stall or in modifying compressor performance for any of the configurations tested. Extensive regions of separated flow were observed on the suction surface of the stators near the hub. However, the treatment did not delay the point where flow separation in the stator hub region becomes apparent.

  17. Medical Actinium Therapeutic Treatment

    SciTech Connect

    2011-01-01

    Learn how INL researchers are increasing world supplies of Bismuth 213 to help with cancer treatments. For more information about INL research projects, visit http://www.facebook.com/idahonationallaboratory.

  18. Intracranial Vascular Treatments

    MedlinePlus

    ... most commonly used in the treatment of intracranial aneurysms. Mechanical retrievers/aspiration systems: used to remove clots ... passageway between an artery and a vein. intracranial aneurysms, a ballooning out of the wall of an ...

  19. Getting Treatment for ADHD

    MedlinePlus

    ... My Profile Publications Donate My Cart About AACAP ADHD - A Guide for Families Skip breadcrumb navigation Getting Treatment Quick Links Family Resources ADHD Resource Center Resource Centers Youth Resources Child and ...

  20. Treatment of myofascial pain.

    PubMed

    Desai, Mehul J; Bean, Matthew C; Heckman, Thomas W; Jayaseelan, Dhinu; Moats, Nick; Nava, Andrew

    2013-01-01

    SUMMARY The objective of this article was to perform a narrative review regarding the treatment of myofascial pain syndrome and to provide clinicians with treatment recommendations. This paper reviews the efficacy of various myofascial pain syndrome treatment modalities, including pharmacological therapy, injection-based therapies and physical therapy interventions. Outcomes evaluated included pain (visual analog scale), pain pressure threshold and range of motion. The evidence found significant benefit with multiple treatments, including diclofenac patch, thiocolchicoside and lidocaine patches. Trigger point injections, ischemic compression therapy, transcutaneous electrical nerve stimulation, spray and stretch, and myofascial release were also efficacious. The authors recommend focusing on treating underlying pathologies, including spinal conditions, postural abnormalities and underlying behavioral issues. To achieve maximum pain reduction and improve function, we recommend physicians approach myofascial pain syndrome with a multimodal plan, which includes a combination of pharmacologic therapies, various physical therapeutic modalities and injection therapies. PMID:24645933