Science.gov

Sample records for 5-cm centrifugal contactor

  1. Temperature control in a 30 stage, 5-cm Centrifugal Contactor Pilot Plant

    SciTech Connect

    Jack D. Law; Troy G. Garn; David H. Meikrantz

    2009-09-01

    Temperature profile testing was performed using a 30 stage 5-cm centrifugal contactor pilot plant. These tests were performed to evaluate the ability to control process temperature by adjusting feed solution temperatures. This would eliminate the need for complex jacketed heat exchanger installation on the centrifugal contactors. Thermocouples were installed on the inlet and outlets of each stage, as well as directly in the mixing zone of several of the contactor stages. Lamp oil, a commercially available alkane mixture of C14 to C18 chains, and tap water adjusted to pH 2 with nitric acid were the solution feeds for the temperature profile testing. Temperature data profiles for an array of total throughputs and contactor rpm values for both single-phase and two-phase systems were collected with selected profiles. The total throughput ranged from 0.5-1.4 L/min with rotor speeds from 3500-4000 rpm. Inlet solution temperatures ranging from ambient up to 50 °C were tested. Results of the two-phase temperature profile testing are detailed

  2. Temperature Profile Measurements in a Newly Constructed 30-Stage 5 cm Centrifugal Contactor pilot Plant

    SciTech Connect

    Troy G. Garn; Dave H. Meikrantz; Mitchell R. Greenhalgh; Jack D. Law

    2008-09-01

    An annular centrifugal contactor pilot plant incorporating 30 stages of commercial 5 cm CINC V-02 units has been built and operated at INL during the past year. The pilot plant includes an automated process control and data acquisitioning system. The primary purpose of the pilot plant is to evaluate the performance of a large number of inter-connected centrifugal contactors and obtain temperature profile measurements within a 30-stage cascade. Additional solvent extraction flowsheet testing using stable surrogates is also being considered. Preliminary hydraulic testing was conducted with all 30 contactors interconnected for continuous counter-current flow. Hydraulic performance and system operational tests were conducted successfully but with higher single-stage rotor speeds found necessary to maintain steady interstage flow at flowrates of 1 L/min and higher. Initial temperature profile measurements were also completed in this configuration studying the performance during single aqueous and two-phase counter-current flow at ambient and elevated inlet solution temperatures. Temperature profile testing of two discreet sections of the cascade required additional feed and discharge connections. Lamp oil, a commercially available alkane mixture of C14 to C18 chains, and tap water adjusted to pH 2 were the solution feeds for all the testing described in this report. Numerous temperature profiles were completed using a newly constructed 30-stage centrifugal contactor pilot plant. The automated process control and data acquisition system worked very well throughout testing. Temperature data profiles for an array of total flowrates (FT) and contactor rpm values for both single-phase and two-phase systems have been collected with selected profiles and comparisons reported. Total flowrates (FT) ranged from 0.5-1.4 L/min with rotor speeds from 3500-4000 rpm. Solution inlet temperatures ranging from ambient up to 50° C were tested. Ambient temperature testing shows that a

  3. Mass Transfer Testing of a 12.5-cm Rotor Centrifugal Contactor

    SciTech Connect

    D. H. Meikrantz; T. G. Garn; J. D. Law; N. R. Mann; T. A. Todd

    2008-09-01

    TRUEX mass transfer tests were performed using a single stage commercially available 12.5 cm centrifugal contactor and stable cerium (Ce) and europium (Eu). Test conditions included throughputs ranging from 2.5 to 15 Lpm and rotor speeds of 1750 and 2250 rpm. Ce and Eu extraction forward distribution coefficients ranged from 13 to 19. The first and second stage strip back distributions were 0.5 to 1.4 and .002 to .004, respectively, throughout the dynamic test conditions studied. Visual carryover of aqueous entrainment in all organic phase samples was estimated at < 0.1 % and organic carryover into all aqueous phase samples was about ten times less. Mass transfer efficiencies of = 98 % for both Ce and Eu in the extraction section were obtained over the entire range of test conditions. The first strip stage mass transfer efficiencies ranged from 75 to 93% trending higher with increasing throughput. Second stage mass transfer was greater than 99% in all cases. Increasing the rotor speed from 1750 to 2250 rpm had no significant effect on efficiency for all throughputs tested.

  4. Hydraulic and Clean-in-Place Evaluations for a 12.5-cm Annular Centrifugal Contactor at INL

    SciTech Connect

    Troy G. Garn; David H. Meikrantz; Nick R. Mann; Jack D. Law; Terry A. Todd

    2008-09-01

    Hydraulic and Clean-in-Place Evaluations for a 12.5 cm Annular Centrifugal Contactor at the INL Troy G. Garn, Dave H. Meikrantz, Nick R. Mann, Jack D. Law, Terry A. Todd Idaho National Laboratory Commercially available, Annular Centrifugal Contactors (ACC) are currently being evaluated for processing dissolved nuclear fuel solutions to selectively partition integrated elements using solvent extraction technologies. These evaluations include hydraulic and clean-in-place (CIP) testing of a commercially available 12.5 cm unit. Data from these evaluations is used to support design of future nuclear fuel reprocessing facilities. Hydraulic testing provides contactor throughput performance data on two-phase systems for a wide range of operating conditions. Hydraulic testing results on a simple two-phase oil and water system followed by a 30 % Tributyl phosphate in N-dodecane / nitric acid pair are reported. Maximum total throughputs for this size contactor ranged from 20 to 32 liters per minute without significant other phase carryover. A relatively new contactor design enhancement providing Clean-in-Place capability for ACCs was also investigated. Spray nozzles installed into the central rotor shaft allow the rotor internals to be cleaned, offline. Testing of the solids capture of a diatomaceous earth/water slurry feed followed by CIP testing was performed. Solids capture efficiencies of >95% were observed for all tests and short cold water cleaning pulses proved successful at removing solids from the rotor.

  5. Evaluation of 5-cm Centrifugal Contactor Hydraulic and Mass Transfer Performance for Caustic-Side Solvent Extraction of Cesium

    SciTech Connect

    Birdwell, J.F.

    2001-09-12

    A test program has been conducted in which the use of pilot-scale centrifugal solvent extraction contactors for cesium removal from an alkaline waste stream has been successfully demonstrated. The program was designed specifically to evaluate the use of centrifugal contactors having 5-cm-diam rotors for the removal of cesium from alkaline high-level waste (HLW) that was generated and is being stored at the U.S. Department of Energy's Savannah River Site (SRS). The removal of cesium from this waste is highly desirable because it will reduce the volume of waste that must be treated and disposed of as HLW. The parameters applied in the test effort are those that have been established for the Caustic-Side Solvent Extraction (CSSX) process, a multistage extraction operation that has been designed by researchers at Oak Ridge National Laboratory (ORNL) and Argonne National Laboratory (ANL). In the CSSX process, cesium is extracted by calix(4)arene-bis-(fert-octylbenzo-crown-6), commonly referred to as BOBCalixC6. The extract is scrubbed with dilute (0.05 M) nitric acid, both to remove coextracted elements (primarily potassium and sodium) and to adjust the pH of the extract to facilitate recovery of the cesium. The scrubbed solvent is contacted with 0.001 M HNO{sub 3}, which results in the stripping of the cesium from the solvent into the aqueous acid. The CSSX process flow rates have been established so to produce a cesium concentration in the strip effluent that is 12 to 15 times the concentration in the waste stream that enters the extraction section of the cascade. Results from initial hydraulic testing of a commercially available 5-cm contactor under CSSX conditions indicated that the mixing of feed solutions within the unit (which is critical to efficient solute transfer) was limited by a feature of the contactor that was designed to increase throughput and improve separation performance. In the design, phase separation is improved by reducing turbulence within the

  6. Evaluation of Mass Transfer Performance for Caustic-Side Solvent Extraction of Cesium in a Conventional 5-cm Centrifugal Contactor

    SciTech Connect

    Birdwell, Jr. J.F.

    2002-02-19

    Tests have been conducted to determine if satisfactory mass transfer performance is achieved using a fully pumping 5-cm centrifugal contactor under conditions present in the Caustic-Side Solvent Extraction (CSSX) process. Tests utilized a commercially available contactor that had been modified by installation of a rotor housing bottom that had straight radial vanes on the process side. As received from the vendor, the housing bottom was equipped with curved (impeller-type) vanes that were intended to promote phase separation by minimizing mixing of influent solutions. Stage efficiencies exceeding 85% were obtained under conditions, present in the extraction section of the CSSX flowsheet. Under CSSX stripping conditions the stage efficiency exceeded 90%. In both cases, the efficiencies obtained exceed the minimum requirement for acceptable transfer of cesium in the CSSX process.

  7. Clean-in-Place and Reliability Testing of a Commercial 12.5 cm Annular Centrifugal Contactor at the INL

    SciTech Connect

    N. R. Mann; T. G. Garn; D. H. Meikrantz; J. D. Law; T. A. Todd

    2007-09-01

    The renewed interest in advancing nuclear energy has spawned the research of advanced technologies for recycling nuclear fuel. A significant portion of the advanced fuel cycle includes the recovery of selected actinides by solvent extraction methods utilizing centrifugal contactors. Although the use of centrifugal contactors for solvent extraction is widely known, their operation is not without challenges. Solutions generated from spent fuel dissolution contain unknown quantities of undissolved solids. A majority of these solids will be removed via various methods of filtration. However, smaller particles are expected to carry through to downstream solvent extraction processes and equipment. In addition, solids/precipitates brought about by mechanical or chemical upsets are another potential area of concern. During processing, particulate captured in the rotor assembly by high centrifugal forces eventually forms a cake-like structure on the inner wall introducing balance problems and negatively affecting phase separations. One of the features recently developed for larger engineering scale Annular Centrifugal Contactors (ACCs) is the Clean-In-Place (CIP) capability. Engineered spray nozzles were installed into the hollow central rotor shaft in all four quadrants of the rotor assembly. This arrangement allows for a very convenient and effective method of solids removal from within the rotor assembly.

  8. Clean-in-Place and Reliability Testing of a Commercial 12.5-cm Annular Centrifugal Contactor at the INL

    SciTech Connect

    N. R. Mann; T. G. Garn; D. H. Meikrantz; J. D. Law; T. A. Todd

    2007-09-01

    The renewed interest in advancing nuclear energy has spawned the research of advanced technologies for recycling nuclear fuel. A significant portion of the advanced fuel cycle includes the recovery of selected actinides by solvent extraction methods utilizing centrifugal contactors. Although the use of centrifugal contactors for solvent extraction is widely known, their operation is not without challenges. Solutions generated from spent fuel dissolution contain unknown quantities of undissolved solids. A majority of these solids will be removed via various methods of filtration. However, smaller particles are expected to carry through to downstream solvent extraction processes and equipment. In addition, solids/precipitates brought about by mechanical or chemical upsets are another potential area of concern. During processing, particulate captured in the rotor assembly by high centrifugal forces eventually forms a cake-like structure on the inner wall introducing balance problems and negatively affecting phase separations. One of the features recently developed for larger engineering scale Annular Centrifugal Contactors (ACCs) is the Clean-In-Place (CIP) capability. Engineered spray nozzles were installed into the hollow central rotor shaft in all four quadrants of the rotor assembly. This arrangement allows for a very convenient and effective method of solids removal from within the rotor assembly.

  9. Evaluation of the Hydraulic Capacity and Mass Transfer Efficiency of the CSSX Process with the Optimized Solvent in a Single Stage of 5.5-cm-Diameter Centrifugal Contactor

    SciTech Connect

    Law, Jack Douglas; Tillotson, Richard Dean; Todd, Terry Allen

    2002-09-01

    The Caustic-Side Solvent Extraction (CSSX) process has been selected for the separation of cesium from Savannah River Site high-level waste. The solvent composition used in the CSSX process was recently optimized so that the solvent is no longer supersaturated with respect to the calixarene crown ether extractant. Hydraulic performance and mass transfer efficiency testing of a single stage of 5.5-cm ORNL-designed centrifugal contactor has been performed for the CSSX process with the optimized solvent. Maximum throughputs of the 5.5-cm centrifugal contactor, as a function of contactor rotor speed, have been measured for the extraction, scrub, strip, and wash sections of the CSSX flowsheet at the baseline organic/aqueous flow ratios (O/A) of the process, as well as at O/A’s 20% higher and 20% lower than the baseline. Maximum throughputs are comparable to the design throughput of the contactor, as well as with throughputs obtained previously in a 5-cm centrifugal contactor with the non-optimized CSSX solvent formulation. The 20% variation in O/A had minimal effect on contactor throughput. Additionally, mass transfer efficiencies have been determined for the extraction and strip sections of the flowsheet. Efficiencies were lower than the process goal of greater than or equal to 80%, ranging from 72 to 75% for the extraction section and from 36 to 60% in the strip section. Increasing the mixing intensity and/or the solution level in the mixing zone of the centrifugal contactor (residence time) could potentially increase efficiencies. Several methods are available to accomplish this including (1) increasing the size of the opening in the bottom of the rotor, resulting in a contactor which is partially pumping instead of fully pumping, (2) decreasing the number of vanes in the contactor, (3) increasing the vane height, or (4) adding vanes on the rotor and baffles on the housing of the contactor. The low efficiency results obtained stress the importance of proper design

  10. Evaluation of the Hydraulic Performance and Mass Transfer Efficiency of the CSSX Process with the Optimized Solvent in a Single Stage of 5.5-Cm Diameter Centrifugal Contactor

    SciTech Connect

    Law, J.D.; Tillotson, R.D.; Todd, T.A.

    2002-09-19

    The Caustic-Side Solvent Extraction (CSSX) process has been selected for the separation of cesium from Savannah River Site high-level waste. The solvent composition used in the CSSX process was recently optimized so that the solvent is no longer supersaturated with respect to the calixarene crown ether extractant. Hydraulic performance and mass transfer efficiency testing of a single stage of 5.5-cm ORNL-designed centrifugal contactor has been performed for the CSSX process with the optimized solvent. Maximum throughputs of the 5.5-cm centrifugal contactor, as a function of contactor rotor speed, have been measured for the extraction, scrub, strip, and wash sections of the CSSX flowsheet at the baseline organic/aqueous flow ratios (O/A) of the process, as well as at O/A's 20% higher and 20% lower than the baseline. Maximum throughputs are comparable to the design throughput of the contactor, as well as with throughputs obtained previously in a 5-cm centrifugal contactor with the non-optimized CSSX solvent formulation. The 20% variation in O/A had minimal effect on contactor throughput. Additionally, mass transfer efficiencies have been determined for the extraction and strip sections of the flowsheet. Efficiencies were lower than the process goal of greater than or equal to 80%, ranging from 72 to 75% for the extraction section and from 36 to 60% in the strip section. Increasing the mixing intensity and/or the solution level in the mixing zone of the centrifugal contactor (residence time) could potentially increase efficiencies. Several methods are available to accomplish this including (1) increasing the size of the opening in the bottom of the rotor, resulting in a contactor which is partially pumping instead of fully pumping, (2) decreasing the number of vanes in the contactor, (3) increasing the vane height, or (4) adding vanes on the rotor and baffles on the housing of the contactor. The low efficiency results obtained stress the importance of proper design of

  11. Centrifugal Contactor Efficiency Measurements

    SciTech Connect

    Mincher, Bruce Jay; Tillotson, Richard Dean; Grimes, Travis Shane

    2017-01-01

    The contactor efficiency of a 2-cm acrylic centrifugal contactor, fabricated by ANL using 3D printer technology was measured by comparing a contactor test run to 5-min batch contacts. The aqueous phase was ~ 3 ppm depleted uranium in 3 M HNO3, and the organic phase was 1 M DAAP/dodecane. Sampling during the contactor run showed that equilibrium was achieved within < 3 minutes. The contactor efficiency at equilibrium was 95% to 100 %, depending on flowrate.

  12. Testing of pyrochemical centrifugal contactors

    SciTech Connect

    Chow, L.S.; Carls, E.L.; Basco, J.K.; Johnson, T.R.

    1996-08-01

    A centrifugal contactor that performs oxidation and reduction exchange reactions between molten metals and salts at 500 degrees Centigrade has been tested successfully at Argonne National Laboratory (ANL). The design is based on contactors for aqueous- organic systems operation near room temperature. In tests to demonstrate the performance of the pyrocontactor, cadmium and LICl- KCl eutectic salt were the immiscible solvent phases, and rare earths were the distributing solutes. The tests showed that the pyrocontactor mixed and separated the phases well, with stage efficiencies approaching 99% at rotor speeds near 2700 rpm. The contactor ran smoothly and reliably over the entire range of speeds that was tested.

  13. THE TESTING OF COMMERCIALLY AVAILABLE ENGINEERING AND PLANT SCALE ANNULAR CENTRIFUGAL CONTACTORS FOR THE PROCESSING OF SPENT NUCLEAR FUEL

    SciTech Connect

    Jack D. Law; David Meikrantz; Troy Garn; Nick Mann; Scott Herbst

    2006-10-01

    Annular centrifugal contactors are being evaluated for process scale solvent extraction operations in support of United State Advanced Fuel Cycle Initiative goals. These contactors have the potential for high stage efficiency if properly employed and optimized for the application. Commercially available centrifugal contactors are being tested at the Idaho National Laboratory to support this program. Hydraulic performance and mass transfer efficiency have been measured for portions of an advanced nuclear fuel cycle using 5-cm diameter annular centrifugal contactors. Advanced features, including low mix sleeves and clean-in-place rotors, have also been evaluated in 5-cm and 12.5-cm contactors.

  14. Mass Transfer in 12-CM Centrifugal Contactors

    SciTech Connect

    Chesna, J.C.

    2001-06-26

    One eight-stage unit (8-pack) of centrifugal contactors was tested in both extraction and stripping modes. Efficiencies approaching 100 percent were obtained in both modes. The contactors were operated successfully at a wide range of combined flow rates, including the HEF conditions. This report discusses the results of that test.

  15. Liquid–Liquid Mixing Studies in Annular Centrifugal Contactors Comparing Stationary Mixing Vane Options

    SciTech Connect

    Wardle, Kent E.

    2015-11-10

    Comparative studies of multiphase operation of annular centrifugal contactors showing the impact of housing stationary mixing vane configuration. A number of experimental results for several different mixing vane options are reported with selected measurements in a lab-scale 5 cm contactor and 12.5 cm engineering-scale unit. Fewer straight vanes give greater mixingzone hold-up compared to curved vanes. Quantitative comparison of droplet size distribution also showed a significant decrease in mean diameter for four straight vanes versus eight curved vanes. This set of measurements gives a compelling case for careful consideration of mixing vane geometry when evaluating hydraulic operation and extraction process efficiency of annular centrifugal contactors.

  16. Liquid–liquid mixing studies in annular centrifugal contactors comparing stationary mixing vane options

    SciTech Connect

    Wardle, Kent E.

    2015-09-11

    Comparative studies of multiphase operation of an annular centrifugal contactor show the impact of housing stationary mixing vane configuration. A number of experimental results for several different mixing vane options are reported for operation of a 12.5 cm engineering-scale contactor unit. Fewer straight vanes give greater mixing-zone hold-up compared to curved vanes. Quantitative comparison of droplet size distribution also showed a significant decrease in mean diameter for four straight vanes versus eight curved vanes. This set of measurements gives a compelling case for careful consideration of mixing vane geometry when evaluating hydraulic operation and extraction process efficiency of annular centrifugal contactors.

  17. Thirty Stage Annular Centrifugal Contactor Thermal Profile Measurements

    SciTech Connect

    David H. Meikrantz; Troy G. Garn; Jack D. Law

    2010-02-01

    A thirty stage 5 cm annular centrifugal contactor cascade has been assembled and tested to obtain thermal profiles during both ambient and heated input conditions of operation. Thermocouples were installed on every stage as well as feed inputs and Real-time data was taken during experiments lasting from two to eight hours at total flow rates of 0.5 to 1.4 liters per minute. Ambient temperature profile results show that only a small amount of heat is generated by the mechanical energy of the contactors. Steady state temperature profiles mimic the ambient temperature of the lab but are higher toward the middle of the cascade. Heated inlet solutions gave temperature profiles with smaller temperature gradients, more driven by the temperature of the inlet solutions than ambient lab temperature. Temperature effects of solution mixing, even at rotor speeds of 4000 rpm, were not measurable.

  18. Development of Centrifugal Contactor with High Reliability

    SciTech Connect

    Okamura, Nobuo; Takeuchi, Masayuki; Ogino, Hideki; Kase, Takeshi; Koizumi, Tsutomu

    2007-07-01

    In Japan Atomic Energy Agency (JAEA), an innovative centrifugal contactor system has been developed for a future reprocessing plant. It was confirmed that it had a higher extraction capacity through the uranium test already. But it was necessary that it had the higher mechanical reliability to be applied in a reprocessing plant. In this study, two types of driving units that use a ball bearing or a magnetic bearing have been developed for it. It was confirmed that they had enough abilities trough endurance tests. The driving unit with ball bearing could be operated continuously for 5000 hours that was equal to a term of an annual operation. It was found that it could be operated for a year without maintenance. JAEA will continue to improve them and select more advantageous one on the basis of economy and lifetime in near future. (authors)

  19. Liquid–liquid mixing studies in annular centrifugal contactors comparing stationary mixing vane options

    DOE PAGES

    Wardle, Kent E.

    2015-09-11

    Comparative studies of multiphase operation of an annular centrifugal contactor show the impact of housing stationary mixing vane configuration. A number of experimental results for several different mixing vane options are reported for operation of a 12.5 cm engineering-scale contactor unit. Fewer straight vanes give greater mixing-zone hold-up compared to curved vanes. Quantitative comparison of droplet size distribution also showed a significant decrease in mean diameter for four straight vanes versus eight curved vanes. This set of measurements gives a compelling case for careful consideration of mixing vane geometry when evaluating hydraulic operation and extraction process efficiency of annular centrifugalmore » contactors.« less

  20. Design Attributes and Scale Up Testing of Annular Centrifugal Contactors

    SciTech Connect

    David H. Meikrantz; Jack D. Law

    2005-04-01

    Annular centrifugal contactors are being used for rapid yet efficient liquid- liquid processing in numerous industrial and government applications. Commercialization of this technology began eleven years ago and now units with throughputs ranging from 0.25 to 700 liters per minute are readily available. Separation, washing, and extraction processes all benefit from the use of this relatively new commercial tool. Processing advantages of this technology include: low in-process volume per stage, rapid mixing and separation in a single unit, connection-in-series for multi-stage use, and a wide operating range of input flow rates and phase ratios without adjustment. Recent design enhancements have been added to simplify maintenance, improve inspection ability, and provide increased reliability. Cartridge-style bearing and mechanical rotary seal assemblies that can include liquid-leak sensors are employed to enhance remote operations, minimize maintenance downtime, prevent equipment damage, and extend service life. Clean-in-place capability eliminates the need for disassembly, facilitates the use of contactors for feed clarification, and can be automated for continuous operation. In nuclear fuel cycle studies, aqueous based separations are being developed that efficiently partition uranium, actinides, and fission products via liquid-liquid solvent extraction. Thus, annular centrifugal contactors are destined to play a significant role in the design of such new processes. Laboratory scale studies using mini-contactors have demonstrated feasibility for many such separation processes but validation at an engineering scale is needed to support actual process design.

  1. Modelling of nitric acid and U(VI) Co-extraction in annular centrifugal contactors

    NASA Astrophysics Data System (ADS)

    Gaubert, E. T.; Jobson, M.; Birket, J. E.; Denniss, I. S.; May, I.

    2000-07-01

    British Nuclear Fuels Limited (BNFL) is currently developing novel flow sheets for an advanced PUREX process using centrifugal contactors. This technology provides two major advantages. Firstly, centrifugal contactors can process high throughputs of liquid, while being an equipment of small size, compared to pulsed columns for example. Secondly, during the reprocessing of actinides with diluted tributyl phosphate (TBP) solutions, centrifugal contactors also minimize solvent hydrolysis and radiolysis because of the very short contact times involved.

  2. Evaluation of Argonne 9-cm and 10-cm Annular Centrifugal Contactors for SHINE Solution Processing

    SciTech Connect

    Wardle, Kent E.; Pereira, Candido; Vandegrift, George

    2015-02-01

    Work is in progress to evaluate the SHINE Medical Technologies process for producing Mo-99 for medical use from the fission of dissolved low-enriched uranium (LEU). This report addresses the use of Argonne annular centrifugal contactors for periodic treatment of the process solution. In a letter report from FY 2013, Pereira and Vandegrift compared the throughput and physical footprint for the two contactor options available from CINC Industries: the V-02 and V-05, which have rotor diameters of 5 cm and 12.7 cm, respectively. They suggested that an intermediately sized “Goldilocks” contactor might provide a better balance between throughput and footprint to meet the processing needs for the uranium extraction (UREX) processing of the SHINE solution to remove undesired fission products. Included with the submission of this letter report are the assembly drawings for two Argonne-design contactors that are in this intermediate range—9-cm and 10-cm rotors, respectively. The 9-cm contactor (drawing number CE-D6973A, stamped February 15, 1978) was designed as a single-stage unit and built and tested in the late 1970s along with other size units, both smaller and larger. In subsequent years, a significant effort to developed annular centrifugal contactors was undertaken to support work at Hanford implementing the transuranic extraction (TRUEX) process. These contactors had a 10-cm rotor diameter and were fully designed as multistage units with four stages per assembly (drawing number CMT-E1104, stamped March 14, 1990). From a technology readiness perspective, these 10-cm units are much farther ahead in the design progression and, therefore, would require significantly less re-working to make them ready for UREX deployment. Additionally, the overall maximum throughput of ~12 L/min is similar to that of the 9-cm unit (10 L/min), and the former could be efficiently operated over much of the same range of throughput. As a result, only the 10-cm units are considered here

  3. Centrifugal contactor operations for UREX process flowsheet. An update

    SciTech Connect

    Pereira, Candido; Vandegrift, George F.

    2014-08-01

    The uranium extraction (UREX) process separates uranium, technetium, and a fraction of the iodine from the other components of the irradiated fuel in nitric acid solution. In May 2012, the time, material, and footprint requirements for treatment of 260 L batches of a solution containing 130 g-U/L were evaluated for two commercial annular centrifugal contactors from CINC Industries. These calculated values were based on the expected volume and concentration of fuel arising from treatment of a single target solution vessel (TSV). The general conclusions of that report were that a CINC V-2 contactor would occupy a footprint of 3.2 m 2 (0.25 m x 15 m) if each stage required twice the nominal footprint of an individual stage, and approximately 1,131 minutes or nearly 19 hours is required to process all of the feed solution. A CINC V-5 would require approximately 9.9 m 2 (0.4 m x 25 m) of floor space but would require only 182 minutes or ~ 3 hours to process the spent target solution. Subsequent comparison with the Modular Caustic Side Solvent Extraction Unit (MCU) at Savannah River Site (SRS) in October 2013 suggested that a more compact arrangement is feasible, and the linear dimension for the CINC V-5 may be reduced to about 8 m; a comparable reduction for the CINC V-2 yields a length of 5 m. That report also described an intermediate-scale (10 cm) contactor design developed by Argonne in the early 1980s that would better align with the SHINE operations as they stood in May 2012. In this report, we revisit the previous evaluation of contactor operations after discussions with CINC Industries and analysis of the SHINE process flow diagrams for the cleanup of the TSV, which were not available at the time of the first assessment.

  4. Extended residence time centrifugal contactor design modification and centrifugal contactor vane plate valving apparatus for extending mixing zone residence time

    DOEpatents

    Wardle, Kent E.

    2017-06-06

    The present invention provides an annular centrifugal contactor, having a housing adapted to receive a plurality of flowing liquids; a rotor on the interior of the housing; an annular mixing zone, wherein the annular mixing zone has a plurality of fluid retention reservoirs with ingress apertures near the bottom of the annular mixing zone and egress apertures located above the ingress apertures of the annular mixing zone; and an adjustable vane plate stem, wherein the stem can be raised to restrict the flow of a liquid into the rotor or lowered to increase the flow of the liquid into the rotor.

  5. Extraction of phenol in wastewater with annular centrifugal contactors.

    PubMed

    Xu, Jin-Quan; Duan, Wu-Hua; Zhou, Xiu-Zhu; Zhou, Jia-Zhen

    2006-04-17

    Solvent extraction is an effective way to treat and recover the phenolic compounds from the high content phenolic wastewater at present. The experimental study on treating the wastewater containing phenol has been carried out with QH-1extractant (the amine mixture) and annular centrifugal contactors. The distribution ratio of phenol was 108.6 for QH-1-phenol system. The mass-transfer process of phenol for the system was mainly controlled by diffusion. When the flow ratio (aqueous/organic) was changed from 1/1 to 4/1, the rotor speed was changed from 2500 to 4000 r/min, and the total flow of two phases was changed from 20 to 70 mL/min, the mass-transfer efficiency E of the single-stage centrifugal contactor was more than 95%. When the flow ratio was changed from 4.4/1 to 4.9/1, the rotor speed was 3000 r/min, and the total flow of two phases was changed from 43.0 to 47.0 mL/min, the extraction rate rho of the three-stage cascade was more than 99%. When 15% NaOH was used for stripping of phenol in QH-1, the stripping efficiency of the three-stage cascade was also more than 99% under the experimental conditions.

  6. Cost/performance comparison between pulse columns and centrifugal contactors designed to process Clinch River Breeder Reactor fuel

    SciTech Connect

    Ciucci, J.A. Jr.

    1983-12-01

    A comparison between pulse columns and centrifugal contactors was made to determine which type of equipment was more advantageous for use in the primary decontamination cycle of a remotely operated fuel reprocessing plant. Clinch River Breeder Reactor (CRBR) fuel was chosen as the fuel to be processed in the proposed 1 metric tonne/day reprocessing facility. The pulse columns and centrifugal contactors were compared on a performance and total cost basis. From this comparison, either the pulse columns or the centrifugal contactors will be recommended for use in a fuel reprocessing plant built to reprocess CRBR fuel. The reliability, solvent exposure to radiation, required time to reach steady state, and the total costs were the primary areas of concern for the comparison. The pulse column units were determined to be more reliable than the centrifugal contactors. When a centrifugal contactor motor fails, it can be remotely changed in less than one eight hour shift. Pulse columns expose the solvent to approximately five times as much radiation dose as the centrifugal contactor units; however, the proposed solvent recovery system adequately cleans the solvent for either case. The time required for pulse columns to reach steady state is many times longer than the time required for centrifugal contactors to reach steady state. The cost comparison between the two types of contacting equipment resulted in centrifugal contactors costing 85% of the total cost of pulse columns when the contactors were stacked on three levels in the module. If the centrifugal contactors were all positioned on the top level of a module with the unoccupied volume in the module occupied by other equipment, the centrifugal contactors cost is 66% of the total cost of pulse columns. Based on these results, centrifugal contactors are recommended for use in a remotely operated reprocessing plant built to reprocess CRBR fuel.

  7. Evaluation of a New Remote Handling Design for High Throughput Annular Centrifugal Contactors

    SciTech Connect

    David H. Meikrantz; Troy G. Garn; Jack D. Law; Lawrence L. Macaluso

    2009-09-01

    Advanced designs of nuclear fuel recycling plants are expected to include more ambitious goals for aqueous based separations including; higher separations efficiency, high-level waste minimization, and a greater focus on continuous processes to minimize cost and footprint. Therefore, Annular Centrifugal Contactors (ACCs) are destined to play a more important role for such future processing schemes. Previous efforts defined and characterized the performance of commercial 5 cm and 12.5 cm single-stage ACCs in a “cold” environment. The next logical step, the design and evaluation of remote capable pilot scale ACCs in a “hot” or radioactive environment was reported earlier. This report includes the development of remote designs for ACCs that can process the large throughput rates needed in future nuclear fuel recycling plants. Novel designs were developed for the remote interconnection of contactor units, clean-in-place and drain connections, and a new solids removal collection chamber. A three stage, 12.5 cm diameter rotor module has been constructed and evaluated for operational function and remote handling in highly radioactive environments. This design is scalable to commercial CINC ACC models from V-05 to V-20 with total throughput rates ranging from 20 to 650 liters per minute. The V-05R three stage prototype was manufactured by the commercial vendor for ACCs in the U.S., CINC mfg. It employs three standard V-05 clean-in-place (CIP) units modified for remote service and replacement via new methods of connection for solution inlets, outlets, drain and CIP. Hydraulic testing and functional checks were successfully conducted and then the prototype was evaluated for remote handling and maintenance suitability. Removal and replacement of the center position V-05R ACC unit in the three stage prototype was demonstrated using an overhead rail mounted PaR manipulator. This evaluation confirmed the efficacy of this innovative design for interconnecting and cleaning

  8. Hydraulic Performance and Mass Transfer Efficiency of Engineering Scale Centrifugal Contactors

    SciTech Connect

    David Meikrantz; Troy Garn; Nick Mann; Jack Law; Terry Todd

    2007-09-01

    Annular centrifugal contactors (ACCs) are being evaluated for process-scale solvent extraction operations in support of Advanced Fuel Cycle Initiative (AFCI) separations goals. Process-scale annular centrifugal contactors have the potential for high stage efficiency if properly employed and optimized for the application. Hydraulic performance issues related to flow instability and classical flooding are likely unimportant, especially for units with high throughputs. However, annular mixing increases rapidly with increasing rotor diameter while maintaining a fixed g force at the rotor wall. In addition, for engineering/process-scale contactors, elevated rotor speeds and/or throughput rates, can lead to organic phase foaming at the rotor discharge collector area. Foam buildup in the upper rotor head area can aspirate additional vapor from the contactor housing resulting in a complete loss of separation equilibrium. Variable speed drives are thus desirable to optimize and balance the operating parameters to help ensure acceptable performance. Proper venting of larger contactors is required to balance pressures across individual stages and prevent vapor lock due to foam aspiration.

  9. Hybrid multiphase CFD simulation for liquid-liquid interfacial area prediction in annular centrifugal contactors

    SciTech Connect

    Wardle, K.E.

    2013-07-01

    Liquid-liquid contacting equipment used in solvent extraction processes has the dual purpose of mixing and separating two immiscible fluids. Consequently, such devices inherently encompass a wide variety of multiphase flow regimes. A hybrid multiphase computational fluid dynamics (CFD) solver which combines the Eulerian multi-fluid method with VOF (volume of fluid) sharp interface capturing has been developed for application to annular centrifugal contactors. This solver has been extended to enable prediction of mean droplet size and liquid-liquid interfacial area through a single moment population balance method. Simulations of liquid-liquid mixing in a simplified geometry and a model annular centrifugal contactor are reported with droplet breakup/coalescence models being calibrated versus available experimental data. Quantitative comparison is made for two different housing vane geometries and it is found that the predicted droplet size is significantly smaller for vane geometries which result in higher annular liquid holdup.

  10. Drop mass transfer in a microfluidic chip compared to a centrifugal contactor

    DOE PAGES

    Nemer, Martin B.; Roberts, Christine C.; Hughes, Lindsey G.; ...

    2014-06-13

    A model system was developed for enabling a multiscale understanding of centrifugal-contactor liquid–liquid extraction.The system consisted of Nd(III) + xylenol orange in the aqueous phase buffered to pH =5.5 by KHP, and dodecane + thenoyltrifluroroacetone (HTTA) + tributyphosphate (TBP) in the organic phase. Diffusion constants were measured for neodymium in both the organic and aqueous phases, and the Nd(III) partition coefficients were measured at various HTTA and TBP concentrations. A microfluidic channel was used as a high-shear model environment to observe mass-transfer on a droplet scale with xylenol orange as the aqueous-phase metal indicator; mass-transfer rates were measured quantitatively inmore » both diffusion and reaction limited regimes on the droplet scale. Lastly, the microfluidic results were comparable to observations made for the same system in a laboratory scale liquid–liquid centrifugal contactor, indicating that single drop microfluidic experiments can provide information on mass transfer in complicated flows and geometries.« less

  11. Drop mass transfer in a microfluidic chip compared to a centrifugal contactor

    SciTech Connect

    Nemer, Martin B.; Roberts, Christine C.; Hughes, Lindsey G.; Wyatt, Nicholas B.; Brooks, Carlton F.; Rao, Rekha

    2014-06-13

    A model system was developed for enabling a multiscale understanding of centrifugal-contactor liquid–liquid extraction.The system consisted of Nd(III) + xylenol orange in the aqueous phase buffered to pH =5.5 by KHP, and dodecane + thenoyltrifluroroacetone (HTTA) + tributyphosphate (TBP) in the organic phase. Diffusion constants were measured for neodymium in both the organic and aqueous phases, and the Nd(III) partition coefficients were measured at various HTTA and TBP concentrations. A microfluidic channel was used as a high-shear model environment to observe mass-transfer on a droplet scale with xylenol orange as the aqueous-phase metal indicator; mass-transfer rates were measured quantitatively in both diffusion and reaction limited regimes on the droplet scale. Lastly, the microfluidic results were comparable to observations made for the same system in a laboratory scale liquid–liquid centrifugal contactor, indicating that single drop microfluidic experiments can provide information on mass transfer in complicated flows and geometries.

  12. Turbulent dispersion results from gel-sphere processes and application to centrifugal contactors

    SciTech Connect

    Haas, P.A.

    1986-07-01

    Three different devices using controlled velocities of organic liquids were applied to disperse aqueous solutions as drops. One consisted of simple tubes of small diameters. A second contained motionless mixer units inside large tubes. The third employed couette flow of the organic liquid between a cylindrical rotor and a stationary cylinder. These devices were applied to gel-sphere processes in which the liquid drops are converted into solid gel spheres of hydrated metal oxides. The gel-sphere products are good, strong spheres and allow good measurement of the sphere and the drop-size distributions. The drop diameters must be controlled and predictable to allow preparation of product spheres of the desired sizes. Empirical correlations were determined for application to the gel-sphere processes. The theory of turbulent dispersion based on eddy velocities has been developed by Kolmorogoff, Hinze, and others. Davies reviewed this theory and the agreement of theory with four types of dispersion devices for energy dissipation rates of 6 to 400,000 W/g. The gel-sphere results for drop-size distribution are for energy dissipation rates of 10/sup -3/ to 1.5 W/g. Those combined results support the theory of turbulence as the dispersion mechanism over a range of 10/sup 9/ for the rate of energy dissipation. The turbulent dispersion with Couette flow is the mechanism for mixing in an advanced design of centrifugal contactors for solvent extraction. The theory of turbulence is applied to predict drop sizes and mixing power for centrifugal contactors as developed at Oak Ridge National Laboratory (ORNL). 14 refs., 7 figs., 6 tabs.

  13. Accomplishing Equilibrium in ALSEP: Demonstrations of Modified Process Chemistry on 3-D Printed Enhanced Annular Centrifugal Contactors

    SciTech Connect

    Brown, M. Alex; Wardle, Kent E.; Lumetta, Gregg; Gelis, Artem V.

    2016-12-01

    Here, the major components of the modified ALSEP process have been demonstrated on a modified 2-cm annular centrifugal contactor with an enhanced mixing zone using stable fission products and radiotracers. The results show that by decreasing the pH of the minor actinide stripping solution, using HEDTA instead of DTPA, and increasing contact time, the process is very effective in separating americium from the lanthanides and the fission products.

  14. Accomplishing Equilibrium in ALSEP: Demonstrations of Modified Process Chemistry on 3-D Printed Enhanced Annular Centrifugal Contactors

    DOE PAGES

    Brown, M. Alex; Wardle, Kent E.; Lumetta, Gregg; ...

    2016-01-01

    The major components of the modified ALSEP process have been demonstrated on a modified 2-cm annular centrifugal contactor with an enhanced mixing zone using stable fission products and radiotracers. The results show that by decreasing the pH of the minor actinide stripping solution, using HEDTA instead of DTPA, and increasing contact time, the process is very effective in separating americium from the lanthanides and the fission products.

  15. Centrifugal contactor with liquid mixing and flow control vanes and method of mixing liquids of different phases

    DOEpatents

    Jubin, Robert T.; Randolph, John D.

    1991-01-01

    The invention is directed to a centrifugal contactor for solvent extraction systems. The centrifugal contactor is provided with an annular vertically oriented mixing chamber between the rotor housing and the rotor for mixing process liquids such as the aqueous and organic phases of the solvent extraction process used for nuclear fuel reprocessing. A set of stationary helically disposed vanes carried by the housing is in the lower region of the mixing chamber at a location below the process-liquid inlets for the purpose of urging the liquids in an upward direction toward the inlets and enhancing the mixing of the liquids and mass transfer between the liquids. The upper region of the mixing vessel above the inlets for the process liquids is also provided with a set helically disposed vanes carried by the housing for urging the process liquids in a downward direction when the liquid flow rates through the inlets are relatively high and the liquids contact the vane set in the upper region. The use of these opposing vane sets in the mixing zone maintains the liquid in the mixing zone at suitable levels.

  16. 3D printed modular centrifugal contactors and method for separating moieties using 3D printed optimized surfaces

    DOEpatents

    Wardle, Kent E.

    2017-08-29

    The present invention provides an annular centrifugal contactor, having a housing to receive a plurality of liquids; a rotor inside the housing; an annular mixing zone, with a plurality of fluid retention reservoirs; and an adjustable stem that can be raised to restrict the flow of a liquid into the rotor or lowered to increase the flow of liquid into the rotor. The invention also provides a method for transferring moieties from a first liquid to a second liquid, the method having the steps of combining the fluids in a housing whose interior has helically shaped first channels; subjecting the fluids to a spinning rotor to produce a mixture, whereby the channels simultaneously conduct the mixture downwardly and upwardly; and passing the mixture through the rotor to contact second channels, whereby the channels pump the second liquid through a first aperture while the first fluid exits a second aperture.

  17. Application of annular centrifugal contactors in the hot test of the improved total partitioning process for high level liquid waste.

    PubMed

    Duan, Wuhua; Chen, Jing; Wang, Jianchen; Wang, Shuwei; Feng, Xiaogui; Wang, Xinghai; Li, Shaowei; Xu, Chao

    2014-08-15

    High level liquid waste (HLLW) produced from the reprocessing of the spent nuclear fuel still contains moderate amounts of uranium, transuranium (TRU) actinides, (90)Sr, (137)Cs, etc., and thus constitutes a permanent hazard to the environment. The partitioning and transmutation (P&T) strategy has increasingly attracted interest for the safe treatment and disposal of HLLW, in which the partitioning of HLLW is one of the critical technical issues. An improved total partitioning process, including a TRPO (tri-alkylphosphine oxide) process for the removal of actinides, a CESE (crown ether strontium extraction) process for the removal of Sr, and a CECE (calixcrown ether cesium extraction) process for the removal of Cs, has been developed to treat Chinese HLLW. A 160-hour hot test of the improved total partitioning process was carried out using 72-stage 10-mm-dia annular centrifugal contactors (ACCs) and genuine HLLW. The hot test results showed that the average DFs of total α activity, Sr and Cs were 3.57 × 10(3), 2.25 × 10(4) and 1.68 × 10(4) after the hot test reached equilibrium, respectively. During the hot test, 72-stage 10-mm-dia ACCs worked stable, continuously with no stage failing or interruption of the operation.

  18. Collaborative flowsheet development studies using cobalt dicarbollide and phosphine oxide for the partitioning of radionuclides from Idaho Chemical Processing Plant high-activity liquid waste with centrifugal contactors

    SciTech Connect

    Law, J.D.; Herbst, R.S.; Todd, T.A.

    1996-12-31

    Two solvent extraction technologies under development in Russia for the partitioning of radionuclides from radioactive wastes were tested at the Idaho Chemical Processing Plant (ICPP) with simulated high-activity liquid waste (HAW) on a continuous basis using 24 stages of 2-cm diameter centrifugal contactors. Two flowsheet tests were conducted with chlorinated cobalt dicarbollide (ChCoDiC) to evaluate the separation of cesium and strontium from ICPP HAW. Also, a flowsheet test was performed with a derivative of phosphine oxide (POR) to evaluate the separation of actinides, rare earths, and technetium from ICPP HAW. All experiments utilized a non-radioactive HAW simulant prepared to emulate the macro (or matrix) constituents of actual ICPP HAW at their average tank composition. The behavior of the species of interest was monitored using the stable forms of Sr and Cs, europium as a surrogate for americium, and rhenium as a surrogate for technetium. Removal efficiencies and distribution coefficients were determined for each flowsheet at steady-state conditions. Results of this testing indicate the POR and ChCoDiC processes can be used to effectively treat ICPP HAW. This series of tests is a continuation of ongoing efforts to evaluate the applicability of these Russian developed technologies to U.S. nuclear wastes under the auspices of a joint program between the U.S. Department of Energy and the Russian Ministry of Atomic Energy.

  19. Experimental and Model Studies on Continuous Separation of 2-Phenylpropionic Acid Enantiomers by Enantioselective Liquid-Liquid Extraction in Centrifugal Contactor Separators.

    PubMed

    Feng, Xiaofeng; Tang, Kewen; Zhang, Pangliang; Yin, Shuangfeng

    2016-03-01

    Multistage enantioselective liquid-liquid extraction (ELLE) of 2-phenylpropionic acid (2-PPA) enantiomers using hydroxypropyl-β-cyclodextrin (HP-β-CD) as extractant was studied experimentally in a counter-current cascade of centrifugal contactor separators (CCSs). Performance of the process was evaluated by purity (enantiomeric excess, ee) and yield (Y). A multistage equilibrium model was established on the basis of single-stage model for chiral extraction of 2-PPA enantiomers and the law of mass conservation. A series of experiments on the extract phase/washing phase ratio (W/O ratio), extractant concentration, the pH value of aqueous phase, and the number of stages was conducted to verify the multistage equilibrium model. It was found that model predictions were in good agreement with the experimental results. The model was applied to predict and optimize the symmetrical separation of 2-PPA enantiomers. The optimal conditions for symmetric separation involves a W/O ratio of 0.6, pH of 2.5, and HP-β-CD concentration of 0.1 mol L(-1) at a temperature of 278 K, where eeeq (equal enantiomeric excess) can reach up to 37% and Yeq (equal yield) to 69%. By simulation and optimization, the minimum number of stages was evaluated at 98 and 106 for eeeq > 95% and eeeq > 97%.

  20. Centrifugal pyrocontactor

    DOEpatents

    Chow, L.S.; Leonard, R.A.

    1993-10-19

    A method is described for mixing and separating immiscible liquid salts and liquid metals in a centrifugal contractor. The method includes introducing the liquids into an annular mixing zone and intensely mixing the liquids using vertical vanes attached to a rotor cooperating with vertical baffles, a horizontal baffle, and bottom vanes attached to the contactor housing. The liquids enter the contactor in the range of 700-800 degrees Celsius. The liquids are separated in the rotor into a dense phase and a light phase which are discharged from the contactor. 6 figures.

  1. Centrifugal pyrocontactor

    DOEpatents

    Chow, Lorac S.; Leonard, Ralph A.

    1993-01-01

    A method for mixing and separating immiscible liquid salts and liquid metals in a centrifugal contractor. The method includes introducing the liquids into an annular mixing zone and intensely mixing the liquids using vertical vanes attached to a rotor cooperating with vertical baffles, a horizontal baffle, and bottom vanes attached to the contactor housing. The liquids enter the contactor in the range of 700-800 degrees Celsius. The liquids are separated in the rotor into a dense phase and a light phase which are discharged from the contactor.

  2. TRUEX flowsheet testing for the removal of the actinides from dissolved ICPP zirconium calcine using centrifugal contactors

    SciTech Connect

    Herbst, R.S.; Law, J.D.; Brewer, K.N.; Todd, T.A.

    1997-12-01

    Solid calcine is one of the wastes under evaluation for TRU removal by the TRUEX process. The calcine must first be dissolved in nitric acid prior to the removal of TRUs and fission products. Zirconium type calcine (generated from zirconium fuel reprocessing raffinates) comprises the majority of the calcine currently stored at the ICPP. The zirconium calcines average 18.3 wt% ZrO{sub 2} and are anticipated to be the most challenging to treat with regards to TRU removal because of the large zirconium content. This paper reports the results from a countercurrent flowsheet test performed with a dissolved calcine simulant in a 2-cm centrifugal contractor pilot plant. The simulant was spiked with radioactive {sup 241}Am and {sup 95}Zr to facilitate analysis and evaluate the behavior of the actinides. Flooding and precipitate formation were observed in the strip section during the flowsheet testing. It is postulated that the flooding occurred as a result of precipitate formation. The precipitate was determined to be ZrPO{sub 4} and was likely formed due the excessive amount of Zr carried into the strip section with the organic phase. Roughly 65% of the Zr in the feed was extracted. Of the extracted Zr, 15.6% reported to the strip product and 15.1% ended up in the organic effluent, indicating the strip section was ineffective at re-extracting Zr. The poor strip section performance was probably due to the precipitation and concomitant flooding problems encountered in the test, resulting in the strip section never achieving steady state operating conditions. Despite the obvious problems encountered during the test, > 99.18% of the americium was removed from the feed in the extraction section. This may be slightly lower than the anticipated 99.9% Am removal efficiency necessary to insure the < 10 nCi/g TRU content in the LLW raffinate.

  3. CENTRIFUGE

    DOEpatents

    Rushing, F.C.

    1960-09-01

    A vibration damping mechanism for damping vibration forces occurring during the operation of a centrifuge is described. The vibration damping mechanism comprises a plurality of nested spaced cylindrical elements surrounding the rotating shaft of the centrifuge. Some of the elements are held substantially stationary while the others are held with respect to a pair of hearings spaced along the rotating shaft. A fluid is retained about the cylindrical elements.

  4. Plasma contactor research, 1990

    NASA Technical Reports Server (NTRS)

    Williams, John D.; Wilbur, Paul J.

    1991-01-01

    Emissive and Langmuir probes were used to measure plasma potential profiles, plasma densities, electron energy distributions, and plasma noise levels near a hollow cathode-based plasma contactor emitting electrons. The effects of electron emission current (100 to 1500 mA) and contactor flowrate (2 to 10 sccm (Xenon)) on these data are examined. Retarding potential analyzer (RPA) measurements showing that high energy ions generally stream from a contactor along with the electrons being emitted are also presented, and a mechanism by which this occurs is postulated. This mechanism, which involves a high rate of ionization induced between electrons and atoms flowing together from the hollow cathode orifice, results in a region of high positive space charge and high positive potential. Langmuir and RPA probe data suggests that both electrons and ions expand spherically from this potential hill region. In addition to experimental observations, a simple one-dimensional model which describes the electron emission process and predicts the phenomena just mentioned is presented and is shown to agree qualitatively with these observations. Experimental results of the first stage of bilateral cooperation with the Italian Institute of Interplanetary Space Physics (IFSI CNR) are presented. Sharp, well-defined double layers were observed downstream of a contactor collecting electrons from an ambient plasma created in the IFSI Facility. The voltage drop across these double layers was observed to increase with the current drawn from the ambient plasma. This observation, which was not as clear in previous IFSI tests conducted at higher neutral pressures, is in agreement with previous experimental observations made at both Colorado State University and NASA Lewis Research Center. Greater double layer voltage drops, multiple double layers, and higher noise levels in the region near the double layers were also observed when a magnetic field was imposed and oriented perpendicular to the

  5. Plasma contactors for electrodynamic tether

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Wilbur, Paul J.

    1986-01-01

    The role plasma contactors play in effective electrodynamic tether operation is discussed. Hollow cathodes and hollow cathode-based plasma sources have been identified as leading candidates for the electrodynamic tether plasma contactor. Present experimental efforts to evaluate the suitability of these devices as plasma contactors, conducted concurrently at NASA Lewis Research Center and Colorado State University, are reviewed. These research programs include the definition of preliminary plasma contactor designs, and the characterization of their operation both as electron emitters and electron collectors to and from a simulated space plasma. Results indicate that ampere-level electron currents, sufficient for electrodynamic tether operation, can be exchanged between hollow cathode-based plasma contactors and a dilute plasma.

  6. Identification And Characterization Of The Solids Found In Extraction Contactor SEP-401 In June 2012

    SciTech Connect

    Fondeur, F. F.; Fink, S. D.

    2012-12-10

    The Modular Caustic-Side Solvent Extraction Unit (MCU) recently conducted an outage that included maintenance on the centrifugal contactors. Operations personnel observed solids or deposits in two contactors and attempted to collect samples for analyses by Savannah River National Laboratory (SRNL). The residues found in Extraction Contactor SEP-401 are a mixture of amorphous silica, aluminosilicate, titanium, and debris from low alloy steel. The solids contain low concentrations of plutonium and strontium. These isotopes are associated with the titanium that came from the monosodium titanate (MST) added in the Actinide Removal Process (ARP) most likely as leached Ti from the MST that precipitated subsequently in MCU. An attempt was also made to obtain samples from the contents of Wash Contactor SEP-702. However, sampling provide ineffective.

  7. Piezo-Operated Shutter Mechanism Moves 1.5 cm

    NASA Technical Reports Server (NTRS)

    Glaser, Robert; Bamford, Robert

    2005-01-01

    The figure shows parts of a shutter mechanism designed to satisfy a number of requirements specific to its original intended application as a component of an atomic clock to be flown in outer space. The mechanism may also be suitable for use in laboratory and industrial vacuum systems on Earth for which there are similar requirements. The requirements include the following: a) To alternately close, then open, a 1.5-cm-diameter optical aperture twice per second, with a stroke time of no more than 15 ms, during a total operational lifetime of at least a year; b) To attenuate light by a factor of at least 1012 when in the closed position; c) To generate little or no magnetic field; d) To be capable of withstanding bakeout at a temperature of 200 C to minimize outgassing during subsequent operation in an ultrahigh vacuum; and e) To fit within a diameter of 12 in. (=305 mm) a size limit dictated by the size of an associated magnetic shield. The light-attenuation requirement is satisfied by use of overlapping shutter blades. The closure of the aperture involves, among other things, insertion of a single shutter blade between a pair of shutter blades. The requirement to minimize the magnetic field is satisfied by use of piezoelectric actuators. Because piezoelectric actuators cannot withstand bakeout, they must be mounted outside the vacuum chamber, and, hence, motion must be transmitted from the actuators to the shutter levers via a vacuum-chamber-wall diaphragm.

  8. Isolation contactor state control system

    DOEpatents

    Bissontz, Jay E.

    2017-05-16

    A controller area network (CAN) installed on a hybrid electric vehicle provides one node with control of high voltage power distribution system isolation contactors and the capacity to energize a secondary electro-mechanical relay device. The output of the secondary relay provides a redundant and persistent backup signal to the output of the node. The secondary relay is relatively immune to CAN message traffic interruptions and, as a result, the high voltage isolation contactor(s) are less likely to transition open in the event that the intelligent output driver should fail.

  9. Plasma contactor research - 1991

    NASA Technical Reports Server (NTRS)

    Buchholtz, Brett; Williams, John D.; Wilbur, Paul J.

    1992-01-01

    A report describing the operating principles of hollow-cathode-based plasma contactors emitting or collecting electrons from an ambient plasma is summarized. Preliminary experiments conducted to determine the noise generated by these plasma contactors in the emission-current return line and in the plasma near it are described. These noise data are measured as current fluctuations in the return line and to the Langmuir probe and then analyzed using a fast Fourier transform technique. The spectral compositions of the data are characterized using power spectral density plots which are examined to identify possible noise source(s) and production mechanism(s). The precautions taken in the construction and calibration of the instrumentation to assure adequate frequency response are described. Experimental results show that line-current noise levels are typically 2 percent of the electron current being emitted or collected. However, noise levels increase to as much as 20 percent of the electron current at a few electron-collection operating conditions. The frequencies associated with most of the noise were harmonics of the 60 Hz input to system power supplies. Plasma noise had characteristics similar in magnitude and frequency to those for the return-line noise, but they contained additional features at frequencies considered to be related to ion-acoustic instabilities. Also discussed is a new probe positioning system built to facilitate future plasma-contractor research.

  10. FLUID CONTACTOR APPARATUS

    DOEpatents

    Spence, R.; Streeton, R.J.W.

    1956-04-17

    The fluid contactor apparatus comprises a cylindrical column mounted co- axially and adapted to rotate within a cylindrical vessel, for the purpose of extracting a solute from am aqueous solution by means of an organic solvent. The column is particularly designed to control the vortex pattern so as to reduce the height of the vortices while, at the same time, the width of the annular radius in the radial direction between the vessel and column is less than half the radius of the column. A plurality of thin annular fins are spaced apart along the rotor approximately twice the radial dimension of the column such that two contrarotating substantially circular vortices are contained within each pair of fins as the column is rotated.

  11. Contactor/filter improvements

    DOEpatents

    Stelman, D.

    1988-06-30

    A contactor/filter arrangement for removing particulate contaminants from a gaseous stream is described. The filter includes a housing having a substantially vertically oriented granular material retention member with upstream and downstream faces, a substantially vertically oriented microporous gas filter element, wherein the retention member and the filter element are spaced apart to provide a zone for the passage of granular material therethrough. A gaseous stream containing particulate contaminants passes through the gas inlet means as well as through the upstream face of the granular material retention member, passing through the retention member, the body of granular material, the microporous gas filter element, exiting out of the gas outlet means. A cover screen isolates the filter element from contact with the moving granular bed. In one embodiment, the granular material is comprised of porous alumina impregnated with CuO, with the cover screen cleaned by the action of the moving granular material as well as by backflow pressure pulses. 6 figs.

  12. Plasma contactor development for Space Station

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Hamley, John A.; Sarmiento, Charles J.; Manzella, David H.; Sarver-Verhey, Timothy; Soulas, George C.; Nelson, Amy

    1993-01-01

    Plasma contactors have been baselined for the Space Station (SS) to control the electrical potentials of surfaces to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and, in particular, the technology development effort on ion thrustor systems. The plasma contactor subsystems include the plasma contactor unit, a power electronics unit, and an expellant management unit. Under this pre-flight development program these will all be brought to breadboard or engineering model status. Development efforts for the plasma contactor include optimizing the design and configuration of the contactor, validating its required lifetime, and characterizing the contactor plume and electromagnetic interference. The plasma contactor unit design selected for the SS is an enclosed keeper, xenon hollow cathode plasma source. This paper discusses the test results and development status of the plasma contactor unit subsystem for the SS.

  13. Contactor/filter improvements

    DOEpatents

    Stelman, David

    1989-01-01

    A contactor/filter arrangement for removing particulate contaminants from a gaseous stream includes a housing having a substantially vertically oriented granular material retention member with upstream and downstream faces, a substantially vertically oriented microporous gas filter element, wherein the retention member and the filter element are spaced apart to provide a zone for the passage of granular material therethrough. The housing further includes a gas inlet means, a gas outlet means, and means for moving a body of granular material through the zone. A gaseous stream containing particulate contaminants passes through the gas inlet means as well as through the upstream face of the granular material retention member, passing through the retention member, the body of granular material, the microporous gas filter element, exiting out of the gas outlet means. Disposed on the upstream face of the filter element is a cover screen which isolates the filter element from contact with the moving granular bed and collects a portion of the particulates so as to form a dust cake having openings small enough to exclude the granular material, yet large enough to receive the dust particles. In one embodiment, the granular material is comprised of prous alumina impregnated with CuO, with the cover screen cleaned by the action of the moving granular material as well as by backflow pressure pulses.

  14. Electric vehicle drive train with contactor protection

    DOEpatents

    Konrad, C.E.; Benson, R.A.

    1994-11-29

    A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor. 3 figures.

  15. Electric vehicle drive train with contactor protection

    DOEpatents

    Konrad, Charles E.; Benson, Ralph A.

    1994-01-01

    A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor.

  16. Space plasma contactor research, 1987

    NASA Technical Reports Server (NTRS)

    Wilbur, Paul J.

    1988-01-01

    A simple model describing the process of electron collection from a low pressure ambient plasma in the absence of magnetic field and contactor velocity effects is presented. Experimental measurments of the plasma surrounding the contactor are used to demonstrate that a double-sheath generally develops and separates the ambient plasma from a higher density, anode plasma located adjacent to the contactor. Agreement between the predictions of the model and experimental measurements obtained at the electron collection current levels ranging to 1 A suggests the surface area at the ambient plasma boundary of the double-sheath is equal to the electron current being collected divided by the ambient plasma random electron current density; the surface area of the higher density anode plasma boundary of the double-sheath is equal to the ion current being emitted across this boundary divided by the ion current density required to sustain a stable sheath; and the voltage drop across the sheath is determined by the requirement that the ion and electron currents counterflowing across the boundaries be at space-charge limited levels. The efficiency of contactor operation is shown to improve when significant ionization and excitation is induced by electrons that stream from the ambient plasma through the double-sheath and collide with neutral atoms being supplied through the hollow cathode.

  17. ENGINEERING BULLETIN: ROTATING BIOLOGICAL CONTACTORS

    EPA Science Inventory

    Rotating biological contactors employ aerobic fixed-film treatment to degrade either organic and/or nitrogenous (ammonia-nitrogen) constituents present in aqueous waste streams. ixed-film systems provide a surface to which the biomass can adhere. Treatment is achieved as the wast...

  18. LER Lattice with IP B b*x/b*y = 100/1.5 cm and 25/1.5 cm

    SciTech Connect

    Nosochkov, Yuri

    1999-02-26

    In this note we briefly describe two versions of the LER lattice with IP beta functions of beta*x/beta*y = 100/1.5 cm and 25/1.5 cm, based on the current commissioning lattice (rev. 1.55). These lattices can be used to analyze beam-beam collisions as a function of beam size ratio at IP during the PEP-II commissioning.

  19. TESTING AND PERFORMANCE ANALYSIS OF NASA 5 CM BY 5 CM BI-SUPPORTED SOLID OXIDE ELECTROLYSIS CELLS OPERATED IN BOTH FUEL CELL AND STEAM ELECTROLYSIS MODES

    SciTech Connect

    R. C. O'Brien; J. E. O'Brien; C. M. Stoots; X. Zhang; S. C. Farmer; T. L. Cable; J. A. Setlock

    2011-11-01

    A series of 5 cm by 5 cm bi-supported Solid Oxide Electrolysis Cells (SOEC) were produced by NASA for the Idaho National Laboratory (INL) and tested under the INL High Temperature Steam Electrolysis program. The results from the experimental demonstration of cell operation for both hydrogen production and operation as fuel cells is presented. An overview of the cell technology, test apparatus and performance analysis is also provided. The INL High Temperature Steam Electrolysis laboratory has developed significant test infrastructure in support of single cell and stack performance analyses. An overview of the single cell test apparatus is presented. The test data presented in this paper is representative of a first batch of NASA's prototypic 5 cm by 5 cm SOEC single cells. Clearly a significant relationship between the operational current density and cell degradation rate is evident. While the performance of these cells was lower than anticipated, in-house testing at NASA Glenn has yielded significantly higher performance and lower degradation rates with subsequent production batches of cells. Current post-test microstructure analyses of the cells tested at INL will be published in a future paper. Modification to cell compositions and cell reduction techniques will be altered in the next series of cells to be delivered to INL with the aim to decrease the cell degradation rate while allowing for higher operational current densities to be sustained. Results from the testing of new batches of single cells will be presented in a future paper.

  20. CENTRIFUGE APPARATUS

    DOEpatents

    Skarstrom, C.; Urey, H.C.; Cohen, K.

    1960-08-01

    A high-speed centrifuge for the separation of gaseous isotopes is designed comprising a centrifugal pump mounted on the outlet of a centrifuge bowl and arranged to pump the heavy and light fractions out of the centrifuge bowl in two separate streams.

  1. Plasma contactor technology for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Hamley, John A.; Sarver-Verhey, Timothy; Soulas, George C.; Parkes, James; Ohlinger, Wayne L.; Schaffner, Michael S.; Nelson, Amy

    1993-01-01

    Hollow cathode plasma contactors were baselined for Space Station Freedom (SSF) to control the electrical potentials of surfaces to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and in particular the technology development effort on ion thruster systems. Specific efforts include optimizing the design and configuration of the contactor, validating its required lifetime, and characterizing the contactor plume and electromagnetic interference. The plasma contact or subsystems include the plasma contact or unit, a power electronics unit, and an expellant management unit. Under this program these will all be brought to breadboard and engineering model development status. New test facilities were developed, and existing facilities were augmented, to support characterizations and life testing of contactor components and systems. The magnitude, scope, and status of the plasma contactor hardware development program now underway and preliminary test results on system components are discussed.

  2. Superhydrophobic Membrane Contactor for Acid Gas Removal

    NASA Astrophysics Data System (ADS)

    Faiqotul Himma, Nurul; Gede Wenten, I.

    2017-07-01

    Gas-liquid membrane contactor has gained a great attention as an alternative to conventional absorption columns in acid gas removal from natural gas or post-combustion. The membrane contactor offers high mass transfer area and excellent operational flexibility. However, hydrophobic microporous membranes commonly used are still susceptible to wetting by liquid absorbents, leading to the deterioration of absorption performance in long-term operation. Therefore, many studies were recently directed to improve the membrane wetting resistant by endowing superhydrophobicity. This article then presents a review on superhydrophobic membrane development and its application for acid gas removal using membrane contactor. An overview of gas-liquid membrane contactor is firstly presented, followed by the preparation of superhydrophobic membranes. The performances of superhydrophobic membranes in acid gas absorption are then discussed, and the recommendation for future research is finally outlined. This review may provide an insight into the further development of superhydrophobic membrane contactor.

  3. Availability assessment of a centrifugal contactor solvent extraction system

    SciTech Connect

    Haire, M J; Grady, M S; Jubin, R T

    1985-08-01

    A systematic and detailed reliability, availability, and maintainability assessment was made of the preconceptual design of the Breeder Reprocessing Engineering Test solvent extraction system. Initially, the computed availability for the five cycles of solvent extraction was less than the goal for the facility. Contributions to the downtime were identified. Improvements in specifications, design, and equipment configurations that raise the predicted availability are recommended.

  4. 3.5 cm artificial urinary sphincter cuff erosion occurs predominantly in irradiated patients.

    PubMed

    Simhan, Jay; Morey, Allen F; Singla, Nirmish; Tausch, Timothy J; Scott, J Francis; Lemack, Gary E; Roehrborn, Claus G

    2015-02-01

    We analyzed our initial 100-case experience with the 3.5 cm artificial urinary sphincter cuff to identify risk factors for cuff erosion. We reviewed the records of a single surgeon, consecutive series of patients treated with 3.5 cm artificial urinary sphincter cuff placement from September 2009 to August 2013. Each patient underwent single perineal cuff placement via standardized technique. Preoperative characteristics, technical considerations and postoperative outcomes were analyzed and compared to those in a cohort of patients in whom a larger (4.0 cm or greater) artificial urinary sphincter cuff was placed during the same period. We identified clinical factors associated with an increased risk of 3.5 cm artificial urinary sphincter cuff erosion. Of the 176 men who met study inclusion criteria during the 4-year period 100 (57%) received the 3.5 cm artificial urinary sphincter cuff and 76 (43%) received a larger cuff (4.0 cm or greater). The continence rate (83% vs 80%, p = 0.65) and mean followup (32 vs 25 months, p = 0.14) were similar in the 2 groups. Erosion developed in 16 of the 176 patients (9%) during the study period, of whom 13 had the 3.5 cm cuff. Of the 100 patients with the 3.5 cm cuff 52 (52%) had a history of radiation, including 11 (21%) with erosion. Cuff erosion developed only rarely in nonirradiated men (2 of 48 or 4%, p = 0.01). A history of radiation was the only significant risk factor associated with 3.5 cm cuff erosion (OR 6.2, 95% CI 1.3-29.5). Men with a history of radiation who underwent placement of a 3.5 cm artificial urinary sphincter cuff experienced an increased (21%) risk of cuff erosion. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  5. Research on the displacement control method of asynchronous modular contactor

    NASA Astrophysics Data System (ADS)

    He, Gong; Ming, Zong

    2017-01-01

    Ac contactor is a kind of low voltage electrical appliances with large usage and wide application. Because of the frequent operation, contactor life must be long enough to ensure the reliable operation of power system. The electrical life of the contactor, as the key to affect the service life of the contactor, is mainly affected by the arc developed in the breaking and closing course. This paper concentrates on a new type of asynchronous modular contactor. To get the contactor movement characteristics, the dynamic model of the electromagnetic system is established by MATLAB/SIMULINK. Then, according to the displacement curve of contactor, the breaking process and closing process is planned. The thought of closed loop control, by adjusting the parameters of PID controller, enables the contactor to operate as the planning displacement curve. In addition, to achieve no arc or micro arc breaking and no bounce or micro bounce closing , a displacement closed loop control system for contactor is designed.

  6. A Scale for Rating Fire-Prevention Contactors

    Treesearch

    M.L. Doolittle

    1979-01-01

    A scale is constructed to help fire-prevention program administrators determine if an individual contactor is effective at influencing people. The 24 items in the scale indicate the qualities that an effective contactor should have.

  7. Operating experience with advanced centrifugal contractors in the integrated equipment test facility

    SciTech Connect

    Singh, S.P.; Welesko, P.

    1988-01-01

    As part of the Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL), advanced design centrifugal contactors for nuclear fuel reprocessing have been operated for several years in the Integrated Equipment Test (IET) facility using depleted uranium. The mixing of the aqueous and organic phases in these contactors is achieved in the annular zone between the stationary housing and the rotor. Mass transfer tests with these contactors using depleted uranium have shown stage efficiencies in excess of 90%. Clarification of the feed to remove particles down to 2 ..mu..m was found to be necessary to prevent operational problems with the extraction bank. The status of the contactor drive system has been monitored using vibration analysis to increase the reliability of the solvent extraction system. 5 refs., 8 figs.

  8. CENTRIFUGAL SEPARATORS

    DOEpatents

    Skarstrom, C.

    1959-03-10

    A centrifugal separator is described for separating gaseous mixtures where the temperature gradients both longitudinally and radially of the centrifuge may be controlled effectively to produce a maximum separation of the process gases flowing through. Tbe invention provides for the balancing of increases and decreases in temperature in various zones of the centrifuge chamber as the result of compression and expansions respectively, of process gases and may be employed effectively both to neutralize harmful temperature gradients and to utilize beneficial temperaturc gradients within the centrifuge.

  9. Multiphase Multi-Detector Row Computed Tomography Imaging Characteristics of Large (>5 cm) Focal Hepatocellular Carcinoma.

    PubMed

    Blaschke, Eric M; Rao, Vijaya L; Xiong, Lingyun; Te, Helen S; Hart, John; Reddy, K Gautham; Oto, Aytekin

    2016-01-01

    The aim of this study was to describe the multiphase multi-detector row computed tomography (MDCT) imaging findings of large (>5 cm) focal hepatocellular carcinoma (HCC). Following review of the medical records of 321 patients with newly diagnosed HCC who underwent MDCT within the radiology database from January 2007 to November 2014, 27 patients (20 men and 7 women; mean age, 69 [SD, 10.1] years [range, 49-87 years]) with histologically confirmed HCC greater than 5 cm were included in this institutional review board-approved study. Multiphase, dedicated liver MDCT images of these cases were retrospectively reviewed by 2 radiologists in consensus to describe the enhancement characteristics of these lesions. Mean tumor diameter was 8.4 (SD, 2.4) cm (range, 5.2-13.5 cm). Cirrhosis was present in 16 (59%) of 27 patients. Seventeen (85%) of 20 patients with available laboratory data presented with elevated alpha-fetoprotein (median, 97 ng/mL). Twenty-three (85%) of 27 demonstrated either heterogeneous enhancement with gradual fill-in (14/27 [52%]) or peripheral enhancement with centripetal fill-in (9/27 [33%]). Twenty-two (81%) of 27 lacked washout on delayed phase images, and 21 (78%) of 27 demonstrated a pseudocapsule. Twenty-seven of 27 lesions were well defined, 8 (30%) of 27 were exophytic, 15 (56%) of 27 were unifocal, 5 (25%) of 20 cases demonstrated vascular invasion, and 7 (26%) of 27 cases presented with extrahepatic metastases. Large (>5 cm) focal HCC may present as a dominant mass with a pseudocapsule and initial heterogeneous or peripheral enhancement with gradual or centripetal fill-in without washout on multiphase MDCT. Awareness of this variant is important to allow distinction from other benign (eg, hemangioma) and malignant (eg, cholangiocarcinoma) focal liver lesions.

  10. High-current plasma contactor neutralizer system

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.; Williamson, W. S.; Matossian, J. N.; Vourgourakis, E. J.; Burch, J. L.

    1989-01-01

    A plasma-contactor neutralizer system is described, for the stabilizing the Orbiter's potential during flights of the Atmospheric Laboratory for Applications and Science missions. The plasma contactor neutralizer will include a Xe plasma source that can provide steady-state ion-emission currents of up to 1.5 A. The Orbiter's potential will be maintained near that of the surrounding space plasma during electron-beam accelerator firings through a combination of ion emission from the Xe plasma source and electron collection from the ambient space plasma. Configuration diagrams and block diagrams are presented along with the performance characteristics of the system.

  11. NASA-ARC 91.5-cm airborne infrared telescope. [tracking mechanism

    NASA Technical Reports Server (NTRS)

    Mobley, R. E.; Brown, T. M.

    1979-01-01

    A 91.5 cm aperture telescope installed aboard NASA-Lockheed C-141A aircraft for the performance of infrared astronomy is described. A unique feature of the telescope is that its entire structure is supported by a 41 cm spherical air bearing which effectively uncouples it from aircraft angular motion, and with inertial stabilization and star tracking, limits tracking errors to less than 1 arc second in most applications. A general description of the system, a summary of its performance, and a detailed description of an offset tracking mechanism is presented.

  12. Centrifuge apparatus

    DOEpatents

    Sartory, Walter K.; Eveleigh, John W.

    1976-01-01

    A method and apparatus for operating a continuous flow blood separation centrifuge are provided. The hematocrit of the entrant whole blood is continuously maintained at an optimum constant value by the addition of plasma to the entrant blood. The hematocrit of the separated red cells is monitored to indicate the degree of separation taking place, thereby providing a basis for regulating the flow through the centrifuge.

  13. Micro contactor based on isotachophoretic sample transport.

    PubMed

    Goet, Gabriele; Baier, Tobias; Hardt, Steffen

    2009-12-21

    It is demonstrated how isotachophoresis (ITP) in a microfluidic device may be utilized to bring two small sample volumes into contact in a well-controlled manner. The ITP contactor serves a similar purpose as micromixers that are designed to mix two species rapidly in a microfluidic channel. In contrast to many micromixers, the ITP contactor does not require complex channel architectures and allows a sample processing in the spirit of "digital microfluidics", i.e. the samples always remain in a compact volume. It is shown that the ITP zone transport through microchannels proceeds in a reproducible and predictable manner, and that the sample trajectories follow simple relationships obtained from Ohm's law. Firstly, the micro contactor can be used to synchronize two ITP zones having reached a channel at different points in time. Secondly, fulfilling its actual purpose it is capable of bringing two samples in molecular contact via an interpenetration of ITP zones. It is demonstrated that the contacting time is proportional to the ITP zone extension. This opens up the possibility of using that type of device as a special type of micromixer with "mixing times" significantly below one second and an option to regulate the duration of contact through specific parameters such as the sample volume. Finally, it is shown how the micro contactor can be utilized to conduct a hybridization reaction between two ITP zones containing complementary DNA strands.

  14. Hollow cathode-based plasma contactor experiments for electrodynamic tether

    NASA Astrophysics Data System (ADS)

    Patterson, Michael J.

    1987-01-01

    The role plasma contactors play in effective electrodynamic tether operation is discussed. Hollow cathodes and hollow cathode-based plasma sources have been identified as leading candidates for the electrodynamic tether plasma contactor. Present experimental efforts to evaluate the suitability of these devices as plasma contactors are reviewed. This research includes the definition of preliminary plasma contactor designs, and the characterization of their operation as electron collectors from a simulated space plasma. The discovery of an 'ignited mode' regime of high contactor efficiency and low impedance is discussed, as well as is the application of recent models of the plasma coupling process to contactor operation. Results indicate that ampere-level electron currents can be exchanged between hollow cathode-based plasma contactors and a dilute plasma in this regime. A discussion of design considerations for plasma contactors is given which includes expressions defining the total mass flow rate and power requirements of plasma contactors operating in both the cathodic and anodic regimes, and correlation of this to the tether current. Finally, future ground and spaceflight experiments are proposed to resolve critical issues of plasma contactor operation.

  15. Hollow cathode-based plasma contactor experiments for electrodynamic tether

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.

    1987-01-01

    The role plasma contactors play in effective electrodynamic tether operation is discussed. Hollow cathodes and hollow cathode-based plasma sources have been identified as leading candidates for the electrodynamic tether plasma contactor. Present experimental efforts to evaluate the suitability of these devices as plasma contactors are reviewed. This research includes the definition of preliminary plasma contactor designs, and the characterization of their operation as electron collectors from a simulated space plasma. The discovery of an 'ignited mode' regime of high contactor efficiency and low impedance is discussed, as well as is the application of recent models of the plasma coupling process to contactor operation. Results indicate that ampere-level electron currents can be exchanged between hollow cathode-based plasma contactors and a dilute plasma in this regime. A discussion of design considerations for plasma contactors is given which includes expressions defining the total mass flow rate and power requirements of plasma contactors operating in both the cathodic and anodic regimes, and correlation of this to the tether current. Finally, future ground and spaceflight experiments are proposed to resolve critical issues of plasma contactor operation.

  16. Design and Operation of the NASA 91.5-cm Airborne Telescope.

    PubMed

    Cameron, R M; Bader, M; Mobley, R E

    1971-09-01

    A 91.5-cm aperture telescope is being built for ir and submillimeter observations at altitudes of 12 km to 14 km aboard a StarLifter (Lockheed C-141A) aircraft. The main optics will be totally reflecting, and aerodynamic boundary layer control will permit open-port operation (no material window). The elevation will be adjustable in flight between 35 degrees and 75 degrees . Westward flying will permit several hours' observation of an object near transit at constant bearing (azimuth) and with little change in elevation. An air bearing support with inertial stabilization and star tracking will give a net line-of-sight stability of better than 2-sec of arc rms in the open-port mode.

  17. Analysis of the primary experimental results on a 5 cm diameter ECR ion thruster

    NASA Astrophysics Data System (ADS)

    Ke, Yujun; Sun, Xinfeng; Chen, Xuekang; Tian, Licheng; Zhang, Tianping; Zheng, Maofan; Jia, Yanhui; Jiang, Haocheng

    2017-09-01

    An ECR ion thruster with a diameter of 5 cm has been developed and tested. Four different antenna positions were experimentally and numerically investigated, and the results suggest that the optimal location for the antenna is where it is perfectly surrounded by the electron cyclotron resonance layer. We also evaluated two different antenna configurations, and found that the star configuration is preferable to the circular configuration, and also that the circular antenna is only 40% as efficient as the star antenna. The experimental curve of the ion beam current and voltage agrees with the fitting results from the analytic solution. The simulation of the magnetic topology in the discharging chamber with different back yoke heights indicates that it needs to be further verified.

  18. Short Term Clinical Outcome after Laparoscopic Cryoablation of the Renal Tumor < or = 3.5 cm.

    PubMed

    Polascik, T J; Nosnik, I; Mayes, J M; Mouraviev, V

    2007-12-01

    Between September 2000 and September 2006, 26 patients underwent primary laparoscopic cryosurgical procedures (28) for an organ-confined renal tumor(s). In one case, cryosurgery was done sequentially on both kidneys. All patients had been carefully selected based on the following criteria: tumor size < or = 3.5 cm, the absence of local and systemic spread on cross-sectional computed tomography (CT) or magnetic resonance imaging (MRI), and the ability to tolerate general anesthesia. A pure laparoscopic approach was employed using third generation cryotechnology (Galil Medical Inc., Plymouth Meeting, USA). Patients were followed by serial CT or MRI scan, creatinine level, and physical examination at least every six months after cryotherapy. The mean patient age was 64 years (range: 44-79) and the mean follow-up was 20.9 +/- 17.2 months. The median tumor size was 2.0 cm (range: 1-3.5 cm). Only one patient required a blood transfusion and one patient developed a transient ileus. The median length of stay was 2.0 days (range: 0-9 days). The median change in creatinine was 0.1 mg/dl (range:-0.4 to 1.8). No patient was converted to open surgery. No evidence of recurrence or progression was found in all patients, and overall survival rate was 100%. Laparoscopic renal cryoablation of the small renal tumor is a safe procedure with minimal complications. Although there were no recurrences with short term follow-up, further long term study is needed to verify its efficacy.

  19. Continuous fluidized-bed contactor with recycle of sorbent

    DOEpatents

    Scott, Charles D.; Petersen, James N.; Davison, Brian H.

    1996-01-01

    A continuous fluidized-bed contactor containing sorbent particles is used to remove solutes from liquid solvents. As the sorbent particles, for example gel beads, sorb the solute, for example metal ion species, the sorbent particles tend to decrease in diameter. These smaller loaded sorbent particles rise to the top of the contactor, as larger sorbent particles remain at the bottom of the contactor as a result of normal hydraulic forces. The smaller loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor. Alternatively, the loaded sorbent particles may also slightly increase in diameter, or exhibit no change in diameter but an increase in density. As a result of normal hydraulic forces the larger loaded sorbent particles fall to the bottom of the contactor. The larger loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor.

  20. Continuous fluidized-bed contactor with recycle of sorbent

    DOEpatents

    Scott, C.D.; Petersen, J.N.; Davison, B.H.

    1996-07-09

    A continuous fluidized-bed contactor containing sorbent particles is used to remove solutes from liquid solvents. As the sorbent particles, for example gel beads, sorb the solute, for example metal ion species, the sorbent particles tend to decrease in diameter. These smaller loaded sorbent particles rise to the top of the contactor, and larger sorbent particles remain at the bottom of the contactor as a result of normal hydraulic forces. The smaller loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor. Alternatively, the loaded sorbent particles may also slightly increase in diameter, or exhibit no change in diameter but an increase in density. As a result of normal hydraulic forces the larger loaded sorbent particles fall to the bottom of the contactor. The larger loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor. 8 figs.

  1. ROV seafloor surveys combining 5-cm lateral resolution multibeam bathymetry with color stereo photographic imagery

    NASA Astrophysics Data System (ADS)

    Caress, D. W.; Hobson, B.; Thomas, H. J.; Henthorn, R.; Martin, E. J.; Bird, L.; Rock, S. M.; Risi, M.; Padial, J. A.

    2013-12-01

    The Monterey Bay Aquarium Research Institute is developing a low altitude, high-resolution seafloor mapping capability that combines multibeam sonar with stereo photographic imagery. The goal is to obtain spatially quantitative, repeatable renderings of the seafloor with fidelity at scales of 5 cm or better from altitudes of 2-3 m. The initial test surveys using this sensor system are being conducted from a remotely operated vehicle (ROV). Ultimately we intend to field this survey system from an autonomous underwater vehicle (AUV). This presentation focuses on the current sensor configuration, methods for data processing, and results from recent test surveys. Bathymetry data are collected using a 400-kHz Reson 7125 multibeam sonar. This configuration produces 512 beams across a 135° wide swath; each beam has a 0.5° acrosstrack by 1.0° alongtrack angular width. At a 2-m altitude, the nadir beams have a 1.7-cm acrosstrack and 3.5 cm alongtrack footprint. Dual Allied Vision Technology GX1920 2.8 Mpixel color cameras provide color stereo photography of the seafloor. The camera housings have been fitted with corrective optics achieving a 90° field of view through a dome port. Illumination is provided by dual 100J xenon strobes. Position, depth, and attitude data are provided by a Kearfott SeaDevil Inertial Navigation System (INS) integrated with a 300 kHz RDI Doppler velocity log (DVL). A separate Paroscientific pressure sensor is mounted adjacent to the INS. The INS Kalman filter is aided by the DVL velocity and pressure data, achieving navigational drift rates less than 0.05% of the distance traveled during surveys. The sensors are mounted onto a toolsled fitted below MBARI's ROV Doc Ricketts with the sonars, cameras and strobes all pointed vertically down. During surveys the ROV flies at a 2-m altitude at speeds of 0.1-0.2 m/s. During a four-day R/V Western Flyer cruise in June 2013, we successfully collected multibeam and camera survey data from a 2-m altitude

  2. Aluminum-made 5-cm reflecting telescope for Nano-JASMINE

    NASA Astrophysics Data System (ADS)

    Suganuma, Masahiro; Kobayashi, Yukiyasu; Gouda, Naoteru; Yano, Taihei; Yamada, Yoshiyuki; Takato, Naruhisa; Yamauchi, Masahiro

    2006-06-01

    We report an outline and a current status of developing a small, all-aluminum made telescope for Nano-JASMINE. Nano-JASMINE is a nano-size astrometry satellite that will demonstrate some key technologies required for JASMINE (Japan Astrometry Satellite Mission for Infrared Exploration) in a real space environment and will measure absolute positions of bright stars (z <= 8 mag) with accuracies about 1 milli-arcsecond in a few years mission. It has a Ritchey-Chretien type telescope with a 5-cm effective aperture, a 167-cm focal length and a field of view of 0.5x0.5 degree. The telescope only occupies a volume about 15x12x12 cm, and weighs two kilograms or less. Almost all of the structures and the optical elements of the telescope, including two aspherical mirrors three flat mirrors and a dual-angled flat mirror that combines the beam from a relative angle of 99.5 degrees into the primary mirror, are made out of aluminum alloy, being figured by diamond turning machines. The Bread Board Model (BBM) of the telescope was now measured to be achieving a diffraction-limited performance at room temperature.

  3. Single Stage Contactor Testing Of The Next Generation Solvent Blend

    SciTech Connect

    Herman, D. T.; Peters, T. B.; Duignan, M. R.; Williams, M. R.; Poirier, M. R.; Brass, E. A.; Garrison, A. G.; Ketusky, E. T.

    2014-01-06

    The Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) facility at the Savannah River Site (SRS) is actively pursuing the transition from the current BOBCalixC6 based solvent to the Next Generation Solvent (NGS)-MCU solvent to increase the cesium decontamination factor. To support this integration of NGS into the MCU facility the Savannah River National Laboratory (SRNL) performed testing of a blend of the NGS (MaxCalix based solvent) with the current solvent (BOBCalixC6 based solvent) for the removal of cesium (Cs) from the liquid salt waste stream. This testing utilized a blend of BOBCalixC6 based solvent and the NGS with the new extractant, MaxCalix, as well as a new suppressor, tris(3,7dimethyloctyl) guanidine. Single stage tests were conducted using the full size V-05 and V-10 liquid-to-liquid centrifugal contactors installed at SRNL. These tests were designed to determine the mass transfer and hydraulic characteristics with the NGS solvent blended with the projected heel of the BOBCalixC6 based solvent that will exist in MCU at time of transition. The test program evaluated the amount of organic carryover and the droplet size of the organic carryover phases using several analytical methods. The results indicate that hydraulically, the NGS solvent performed hydraulically similar to the current solvent which was expected. For the organic carryover 93% of the solvent is predicted to be recovered from the stripping operation and 96% from the extraction operation. As for the mass transfer, the NGS solvent significantly improved the cesium DF by at least an order of magnitude when extrapolating the One-stage results to actual Seven-stage extraction operation with a stage efficiency of 95%.

  4. Corrosion abatement in sulfuric acid alkylation unit horizontal contactors

    SciTech Connect

    Schutt, H.U.

    1997-09-01

    The need to increase throughput in alkylation plants has resulted in higher operating temperatures and higher water levels in alkylation acids than projected by design. Combined with higher flow rates, the more severe process environment causes carbon steel to corrode at increased rates. Carbon steel is the main material of construction for horizontal contactors (Stratco reactors). A leak to the atmosphere in the hydraulic end cone of one contactor and the realization that basic corrosion data are not available for high throughput process conditions in alkylation units prompted a laboratory study to develop the lacking expertise. Corrosion in alkylation unit horizontal contactors is successfully mitigated by saturating fresh alkylation acid with ferrous sulfate.

  5. Modeling the expansion of a contactor plasma

    NASA Astrophysics Data System (ADS)

    Hogan, E. A.; Delzanno, G.; Camporeale, E.; Borovsky, J. E.; MacDonald, E.; Thomsen, M. F.

    2012-12-01

    Plasma contactor technology is widely used on board spacecraft to keep spacecraft charging levels under control. On the International Space Station, for instance, it is used to prevent high current discharges between differently charged surfaces. It consists of emitting a neutral plasma to create a plasma reservoir near the spacecraft in order to balance the currents collected by the spacecraft from the magnetospheric environment. One approach to modeling the contactor plasma plume applies a self-similar solution in order to gain insight into the plume dynamics without requiring expensive numerical simulations [1, 2]. Typically, hydrodynamic fluid equations are used to model the plasma behavior. We present a comparison of different self-similar plume models existing in the literature [1, 2] and compare these with our Particle-In-Cell simulations in the near-field to assess their validity. We will consider both the unmagnetized and the magnetized limit, treating the magnitude and angle (relative to the plasma injection velocity) of the magnetic field as a parameter. [1] F. F. Gabdullin, A. G. Korsun, E. M. Tverdokhlebova, 'The plasma plume emitted onboard the international space station under the effect of the geomagnetic field', IEEE Trans. Plasma Science 36(5) 2207 (2008). [2] M. Merino, E. Ahedo, C. Bombardelli, H. Urrutxua, J. Pelaez, 'Hypersonic plasma plume expansion in space', 32nd International Electric Propulsion Conference, IEPC-2011-086, Wiesbaden, Germany, 2011.

  6. Model of electron collecting plasma contactors

    NASA Technical Reports Server (NTRS)

    Davis, V. A.; Katz, I.; Mandell, M. J.; Parks, D. E.

    1991-01-01

    In laboratory experiments, plasma contactors are observed to collect ampere-level electron currents with low impedance. In order to extend the laboratory experience to the low-earth-orbit environment, a model of plasma contactors is being developed. Laboratory results are being used to support and validate the model development. The important physical processes observed in the laboratory are that the source plasma is separated from the background plasma by a double layer and that ionization of the expellant gas by the collected electrons creates the bulk of the ions that leave the source plasma. The model, which uses Poisson's equation with a physical charge density that includes the ion and electron components of both the source and the ambient plasmas, reproduces this phenomenon for typical experimental parameters. The calculations, in agreement with the laboratory results, show little convergence of the accelerated electrons. The angular momentum of the incoming electrons dramatically reduces the peak electron density. These electrons ionize enough gas to generate the source plasma. Calculations show that the increase in ionization rate with potential produces a steep rise in collected current with increasing potential as seen in the laboratory.

  7. Modeling the expansion of a contactor plasma

    NASA Astrophysics Data System (ADS)

    Hogan, Erik; Delzanno, Gian Luca; Camporeale, Enrico; Borovsky, Joseph; MacDonald, Elizabeth; Thomsen, Michelle

    2012-10-01

    Plasma contactor technology is widely used on board spacecraft to keep spacecraft charging levels under control. On the International Space Station, for instance, it is used to prevent high current discharges between differently charged surfaces. It consists of emitting a neutral plasma to create a plasma reservoir near the spacecraft in order to balance the currents collected by the spacecraft from the magnetospheric environment. One approach to modeling the contactor plasma plume applies a self-similar solution in order to gain insight into the plume dynamics without requiring expensive numerical simulations [1, 2]. Typically, hydrodynamic fluid equations are used to model the plasma behavior. We present a comparison of different self-similar plume models existing in the literature [1, 2] and compare these with our Particle-In-Cell simulations in the near-field to assess their validity. We will consider both the unmagnetized and the magnetized limit. [4pt] [1] F. F. Gabdullin, A. G. Korsun, E. M. Tverdokhlebova, IEEE Trans. Plasma Science 36(5) 2207 (2008). [2] M. Merino, E. Ahedo, C. Bombardelli, H. Urrutxua, J. Pelaez, ``Hypersonic plasma plume expansion in space,'' 32nd International Electric Propulsion Conference, IEPC-2011-086, Wiesbaden, Germany, 2011.

  8. Low cost membrane contactors based on hollow fibres

    NASA Astrophysics Data System (ADS)

    Dohnal, Mirko; Vesely, Tomas; Raudensky, Miroslav

    2012-04-01

    Membrane contactors are used to solve different chemical engineering tasks (e.g. water saturation with gases). Such elements are traditionally used for bubble less oxidation of blood. However, their industrial applications are rather limited by their high investment costs. This is probably the main reason why membrane contactors are not used so widely, e.g. classical absorbers, etc. If potted bundles of hollow fibres are available, then it is a relatively simple task to design an ad hoc membrane contactor. However, it must be emphasised that to achieve the highest mass transfer efficiency requires a rather time-consuming tuning of each ad hoc designed contactor. To check the differences by water evaporation were aligned two modes, the water inside the hollow fibre membrane and fan air outside, next with the water outsides and flowing pressure air inside the membrane.

  9. Plasma contactors for use with electodynamic tethers for power generation

    NASA Technical Reports Server (NTRS)

    Hastings, D. E.; Gatsonis, N. A.

    1988-01-01

    Plasma contactors are proposed as a means of making good electrical contact between biased surfaces such as found at the ends of an electrodynamic tether and the space environment. The plasma contactor emits a plasma cloud which facilitates the electrical connection. The physics of this plasma cloud is investigated for contactors used as electron collectors. The central question addressed is whether the electrons collected by a plasma contactor come from the far field or by ionization of local neutral gas. This question is important because the system implications are different for the two mechanisms. It is shown that contactor clouds in space will consist of a spherical core possibly containing a shock wave. Outside of the core the cloud will expand anisotropically across the magnetic field leading to a turbulent cigar shape structure along the field. This outer region is itself divided into two regions by the ion response to the electric field. A two-dimensional theory for the outer regions of the cloud is developed. The current voltage characteristic of an Argon plasma contactor cloud is estimated for several ion currents in the range of 1 to 100 Amperes. It is suggested that the major source of collected electrons comes by ionization of neutral gas while collection of electrons from the far field is relatively small.

  10. Use of Stereotactic Ablative Radiotherapy (SABR) in Non-Small Cell Lung Cancer Measuring More Than 5 cm.

    PubMed

    Tekatli, Hilâl; van 't Hof, Saar; Nossent, Esther J; Dahele, Max; Verbakel, Wilko F A R; Slotman, Ben J; Senan, Suresh

    2017-06-01

    Stereotactic ablative radiotherapy (SABR) is currently not the guideline-recommended treatment for lung tumors measuring more than 5 cm. However, improvements in radiotherapy techniques have led to increasing use of SABR for larger tumors. We analyzed the clinical outcomes in patients with a primary or recurrent NSCLC measuring more than 5 cm and treated with five or eight fractions of SABR at our center. Patients who had prior thoracic radiotherapy were excluded. A total of 63 consecutive patients with a median tumor diameter of 5.8 cm (range 5.1-10.4) were identified; 81% had T2N0 disease and 18% had T3N0 disease. The median Charlson comorbidity index was 2 (range 0-6). After a median follow-up of 54.7 months, median survival was 28.3 months. Disease-free survival at 2 years was 82.1%, and the local, regional, and distant control rates at 2 years were 95.8%, 93.7%, and 83.6%, respectively. An out-of-field distant recurrence at one or more sites was the most common pattern of failure (10%). Grade 3 or higher toxicity was recorded in 30% of patients, with radiation pneumonitis being the most common toxicity (19%). A likely (n = 4) or possible (n = 8) treatment-related death was scored in 19% of patients. There was preexisting interstitial lung disease in eight patients (13%), with fatal toxicity developing in five of them (63%). Lung SABR in tumors larger than 5 cm resulted in high local control rates and acceptable survival outcomes in a patient population with appreciable comorbidity. Patients with interstitial lung disease should be considered a very high-risk population for SABR. Copyright © 2017 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  11. Comparison of Positive End-Expiratory Pressure of 8 versus 5 cm H2O on Outcome After Cardiac Operations.

    PubMed

    Hansen, Jennifer K; Anthony, David G; Li, Liang; Wheeler, David; Sessler, Daniel I; Bashour, C Allen

    2015-09-01

    Postoperative positive end-expiratory pressure (PEEP) selection in patients who are mechanically ventilated after cardiac operations often seems random. The aim of this investigation was to compare the 2 most common postoperative initial PEEP settings at our institution, 8 and 5 cm H2O, on postoperative initial tracheal intubation time (primary outcome); cardiovascular intensive care unit (CVICU); hospital length of stay (LOS); occurrence of pneumonia; and hospital mortality (secondary outcomes). The electronic medical records of patients who were mechanically ventilated after isolated coronary artery bypass grafting (CABG) or combined CABG and valve operations were reviewed. Propensity score matching was used to compare patients with an initial postoperative PEEP setting of 8 cm H2O (n = 4722 [25.9%]) with those who had PEEP of 5 cm H2O (n = 13 535 [74.1%]) on the primary and secondary outcomes listed earlier. There was no difference in initial postoperative intubation time between the PEEP of 8 cm H2O and the PEEP of 5 cm H2O patient groups (mean 11.9 vs 12.0 hours [median 8.2 vs 8.8 hours], P = .89). The groups did not differ on the occurrence of pneumonia (0.43% vs 0.60%, P = .25) nor on hospital mortality (0.47% vs 0.43%, P = .76). Aspiration pneumonia occurrence approached a significant difference (0.06% vs 0.21%, P value = .052), as did CVICU LOS (mean: 47.9 vs 49.8 hours [median: 28.5 vs 28.4 hours], P = .057), but were not statistically different. There was a slight but likely clinically unimportant difference in hospital LOS (7.7 vs 7.4 days, PEEP = 8 vs 5, P < .001). Patients being mechanically ventilated after cardiac operations with an initial postoperative PEEP setting of 8 versus 5 cm H2O differed significantly only on hospital LOS but the difference was likely clinically unimportant. Thus, use of 8 cm H2O PEEP in these patients without a clinical indication, although likely not harmful, does not seem beneficial. © The Author(s) 2014.

  12. Evaporation Rates of Chemical Warfare Agents using 5 CM Wind Tunnels. 5. VX From Sand and Concrete

    DTIC Science & Technology

    2010-12-01

    S ? J8 S ? gi op r^ co eft eft en eft -I 1——H 1- a E E s > Eg y 8 u> s ID in «~ • CM c o 1 c...AGENTS USING 5 CM WIND TUNNELS V. VX FROM SAND AND CONCRETE Carol A. S . Brevett Christopher V. Giannaras John J. Pence Joseph P. Myers Robert G...Wind Tunnels V. VX from Sand and Concrete 5a. CONTRACT NUMBER DAAD13-03-D-0017 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S

  13. Examination of Organic Carryover from 2-cm Contactors to Support the Modular CSSX Unit

    SciTech Connect

    Nash, Charles A.; Norato, Michael A.; Walker; D. Douglas; Pierce, Robert A.; Eubanks, Ronnye A.; Clark, James D.; Smith, Wilson M. Jr.; Crump, Stephen L.; Nelson, D. Zane; Fink, Samuel D.; Peters, Thomas B.; May, Cecil G.; Herman, David T.; Bolton, Henry L.

    2005-04-29

    A bank of four 2-cm centrifugal contactors was operated in countercurrent fashion to help address questions about organic carryover for the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU). The contactors, having weirs sized for strip operation, were used to examine carryover for both strip effluent (SE) and decontaminated salt solution (DSS). Since only one bank of contactors was available in the short time frame of this work, the organic phase and only one aqueous phase were present in the flow loops at a time. Personnel maintained flowsheet-typical organic phase to aqueous phase (O:A) flow ratios when varying flow rates. Solvent from two different batches were tested with strip solution. In addition, potential mitigations of pH adjustment and coalescing media were examined. The experiment found that organic carryover after decanting averaged 220 ppm by mass with a range of 74 to 417 ppm of Isopar{reg_sign} L for strip effluent (SE)/organic solvent contacts. These values are based on measured modifier. Values were bounded by a value of 95 ppm based upon Isopar{reg_sign} L values as reported. The higher modifier-based numbers are considered more reliable at this time. Carryover of Isopar{reg_sign} L in DSS simulant averaged 77 ppm by mass with a range of 70 to 88 ppm of Isopar{reg_sign} L based on modifier content. The carryover was bounded by a value of 19 ppm based upon Isopar{reg_sign} L values as reported. More work is needed to resolve the discrepancy between modifier and Isopar{reg_sign} L values. The work did not detect organic droplets greater than 18 microns in SE. Strip output contained droplets down to 0.5 micron in size. Droplets in DSS were almost monodisperse by comparison, having a size range 4.7 +/- 1.6 micron in one test and 5.2 +/- 0.8 micron in the second demonstration. Optical microscopy provided qualitative results confirming the integrity of droplet size measurements in this work. Acidic or basic adjustments of aqueous strip solution

  14. Solid deuterium centrifuge pellet injector

    SciTech Connect

    Foster, C.A.

    1982-01-01

    Pellet injectors are needed to fuel long pulse tokamak plasmas and other magnetic confinement devices. For this purpose, an apparatus has been developed that forms 1.3-mm-diam pellets of frozen deuterium at a rate of 40 pellets per second and accelerates them to a speed of 1 km/s. Pellets are formed by extruding a billet of solidified deuterium through a 1.3-mm-diam nozzle at a speed of 5 cm/s. The extruding deuterium is chopped with a razor knife, forming 1.3-mm right circular cylinders of solid deuterium. The pellets are accelerated by synchronously injecting them into a high speed rotating arbor containing a guide track, which carries them from a point near the center of rotation to the periphery. The pellets leave the wheel after 150/sup 0/ of rotation at double the tip speed. The centrifuge is formed in the shape of a centrifugal catenary and is constructed of high strength KEVLAR/epoxy composite. This arbon has been spin-tested to a tip speed of 1 km/s.

  15. Centrifugal reciprocating compressor

    NASA Technical Reports Server (NTRS)

    High, W. H.

    1980-01-01

    Efficient compressor uses centrifugal force to compress gas. System incorporates two coupled dc motors, each driving separate centrifugal reciprocating-compressor assembly. Motors are synchronized to accelerate and decelerate alternately.

  16. Modeling of rotating disc contactor (RDC) column

    NASA Astrophysics Data System (ADS)

    Ismail, Wan Nurul Aiffah; Zakaria, Siti Aisyah; Noor, Nor Fashihah Mohd; Sulong, Ibrahim; Arshad, Khairil Anuar

    2014-12-01

    Liquid-liquid extraction is one of the most important separation processes. Different kinds of liquid-liquid extractor such as Rotating Disc Contactor (RDC) Column being used in industries. The study of liquid-liquid extraction in an RDC column has become a very important subject to be discussed not just among chemical engineers but mathematician as well. In this research, the modeling of small diameter RDC column using the chemical system involving cumene/isobutryric asid/water are analyzed by the method of Artificial Neural Network (ANN). In the previous research, we begin the process of analyzed the data using methods of design of the experiments (DOE) to identify which factor and their interaction factor are significant and to determine the percentage of contribution of the variance for each factor. From the result obtained, we continue the research by discussed the development and validation of an artificial neural network model in estimating the concentration of continuous and concentration of dispersed outlet for an RDC column. It is expected that an efficient and reliable model will be formed to predict RDC column performance as an alternative to speed up the simulation process.

  17. CENTRIFUGE END CAP

    DOEpatents

    Beams, J.W.; Snoddy, L.B.

    1960-08-01

    An end cap for ultra-gas centrifuges is designed to impart or remove angular momentum to or from the gas and to bring the entering gas to the temperature of the gas inside the centrifuge. The end cap is provided with slots or fins for adjusting the temperature and the angular momentum of the entering gas to the temperature and momentum of the gas in the centrifuge and is constructed to introduce both the inner and the peripheral stream into the centrifuge.

  18. Physical processes associated with current collection by plasma contactors

    NASA Technical Reports Server (NTRS)

    Katz, Ira; Davis, Victoria A.

    1990-01-01

    Recent flight data confirms laboratory observations that the release of neutral gas increases plasma sheath currents. Plasma contactors are devices which release a partially ionized gas in order to enhance the current flow between a spacecraft and the space plasma. Ionization of the expellant gas and the formation of a double layer between the anode plasma and the space plasma are the dominant physical processes. A theory is presented of the interaction between the contactor plasma and the background plasma. The conditions for formation of a double layer between the two plasmas are derived. Double layer formation is shown to be a consequence of the nonlinear response of the plasmas to changes in potential. Numerical calculations based upon this model are compared with laboratory measurements of current collection by hollow cathode-based plasma contactors.

  19. Membrane contactors for CO2 capture processes - critical review

    NASA Astrophysics Data System (ADS)

    Nogalska, Adrianna; Trojanowska, Anna; Garcia-Valls, Ricard

    2017-07-01

    The use of membrane contactor in industrial processes is wide, and lately it started to be used in CO2 capture process mainly for gas purification or to reduce the emission. Use of the membrane contactor provides high contact surface area so the size of the absorber unit significantly decreases, which is an important factor for commercialization. The research has been caried out regarding the use of novel materials for the membrane production and absorbent solution improvements. The present review reveals the progress in membrane contactor systems for CO2 capture processes concerning solution for ceramic membrane wetting, comparison study of different polymers used for fabrication and methods of enzyme immobilization for biocomposite membrane. Also information about variety of absorbent solutions is described.

  20. Development of novel contactor for nuclear solvent extraction

    SciTech Connect

    Kumar, Shekhar; Kumar, Rajnish; Sivakumar, D.; Balamurugan, M.; Koganti, S.B.

    2008-07-01

    For current designs of radiochemical plants, solvent-extraction contactors with no periodic maintenance like pulse column are the first choice. In addition, as costs of specialty solvents for nuclear extraction are quite high, there is a demand for operation at extreme phase ratios. Recently a novel mixer-settler was visualized and developed for this kind of service. The mixer of the novel contactor is based on rotated helical tubes and does not involve any mechanical moving part. Mass-transfer runs were carried out with aqueous nitric acid and 30% TBP solvent at A/O of 0.25-200 (in extraction) and A/O of 0.25-10 (in back-extraction mode). The developed contactor exhibited nearly 100% efficiency for all the cases. (authors)

  1. Prognostic and Diagnostic Technology for DC Actuated Contactors and Motor Starters

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Zou, Lian; Briggs, Roger

    Unpredicted contactor failure can interrupt production and affect the uptime and throughput of manufacturing. Usually the life of a contactor is based on the manufacturers' life test data. However, due to the way of how the contactor is operated and the environment it is operated in, the working life of a contactor can vary significantly. In this paper, a novel technology has been investigated to predict potential failures of DC actuated contactors by monitoring their DC coil current and contactor currents. Three parameters are derived from this set of data to monitor the health of contactors: contact over-travel, armature pull-in time and coil current differential. Contact over-travel provides information on the remaining life of contacts and coil current differential provides indication of contact weld and carrier jam due to debris. The armature pull-in time provides information on contactor closing speed. Prototype contactors have been built and AC4 tests have been carried out for evaluation. Test results show that the contact over-travel parameter agrees well with contact mass loss data taken after contactors failed. The derived armature pull-in time agrees well with that measured by a laser displacement sensor. The defined parameters provide effective monitoring and prediction of potential contactor failures.

  2. Applicability of hydroxylamine nitrate reductant in pulse-column contactors

    SciTech Connect

    Reif, D.J.

    1983-05-01

    Uranium and plutonium separations were made from simulated breeder reactor spent fuel dissolver solution with laboratory-sized pulse column contactors. Hydroxylamine nitrate (HAN) was used for reduction of plutonium (1V). An integrated extraction-partition system, simulating a breeder fuel reprocessing flowsheet, carried out a partial partition of uranium and plutonium in the second contactor. Tests have shown that acceptable coprocessing can be ontained using HAN as a plutonium reductant. Pulse column performance was stable even though gaseous HAN oxidation products were present in the column. Gas evolution rates up to 0.27 cfm/ft/sup 2/ of column cross section were tested and found acceptable.

  3. Cathodes Delivered for Space Station Plasma Contactor System

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.

    1999-01-01

    The International Space Station's (ISS) power system is designed with high-voltage solar arrays that typically operate at output voltages of 140 to 160 volts (V). The ISS grounding scheme electrically ties the habitat modules, structure, and radiators to the negative tap of the solar arrays. Without some active charge control method, this electrical configuration and the plasma current balance would cause the habitat modules, structure, and radiators to float to voltages as large as -120 V with respect to the ambient space plasma. With such large negative floating potentials, the ISS could have deleterious interactions with the space plasma. These interactions could include arcing through insulating surfaces and sputtering of conductive surfaces as ions are accelerated by the spacecraft plasma sheath. A plasma contactor system was baselined on the ISS to prevent arcing and sputtering. The sole requirement for the system is contained within a single directive (SSP 30000, paragraph 3.1.3.2.1.8): "The Space Station structure floating potential at all points on the Space Station shall be controlled to within 40 V of the ionospheric plasma potential using a plasma contactor." NASA is developing this plasma contactor as part of the ISS electrical power system. For ISS, efficient and rapid emission of high electron currents is required from the plasma contactor system under conditions of variable and uncertain current demand. A hollow cathode plasma source is well suited for this application and was, therefore, selected as the design approach for the station plasma contactor system. In addition to the plasma source, which is referred to as a hollow cathode assembly, or HCA, the plasma contactor system includes two other subsystems. These are the power electronics unit and the xenon gas feed system. The Rocketdyne Division of Boeing North American is responsible for the design, fabrication, assembly, test, and integration of the plasma contactor system. Because of

  4. Polynomial coefficients for calculating O2 Schumann-Runge cross sections at 0.5/cm resolution

    NASA Technical Reports Server (NTRS)

    Minschwaner, K.; Anderson, G. P.; Hall, L. A.; Yoshino, K.

    1992-01-01

    O2 cross sections from 49,000 to 57,000/cm have been fitted with temperature dependent polynomial expressions, providing an accurate and efficient means of determining Schumann-Runge band cross sections for temperatures between 130 and 500 K. The least squares fits were carried out on a 0.5/cm spectral grid, using cross sections obtained from a Schumann-Runge line-by-line model that incorporates the most recent spectroscopic data. The O2 cross sections do not include the underlying Herzberg continuum, but they do contain contributions from the temperature dependent Schumann-Runge continuum. The cross sections are suitable for use in UV transmission calculations at high spectral resolution. They should also prove useful for updating existing parameterizations of ultraviolet transmission and O2 photolysis.

  5. Polynomial coefficients for calculating O2 Schumann-Runge cross sections at 0.5/cm resolution

    NASA Technical Reports Server (NTRS)

    Minschwaner, K.; Anderson, G. P.; Hall, L. A.; Yoshino, K.

    1992-01-01

    O2 cross sections from 49,000 to 57,000/cm have been fitted with temperature dependent polynomial expressions, providing an accurate and efficient means of determining Schumann-Runge band cross sections for temperatures between 130 and 500 K. The least squares fits were carried out on a 0.5/cm spectral grid, using cross sections obtained from a Schumann-Runge line-by-line model that incorporates the most recent spectroscopic data. The O2 cross sections do not include the underlying Herzberg continuum, but they do contain contributions from the temperature dependent Schumann-Runge continuum. The cross sections are suitable for use in UV transmission calculations at high spectral resolution. They should also prove useful for updating existing parameterizations of ultraviolet transmission and O2 photolysis.

  6. Carbon Dioxide Absorption in a Membrane Contactor with Color Change

    ERIC Educational Resources Information Center

    Pantaleao, Ines; Portugal, Ana F.; Mendes, Adelio; Gabriel, Joaquim

    2010-01-01

    A pedagogical experiment is described to examine the physical absorption of gases, in this case carbon dioxide, in a hollow fiber membrane contactor (HFMC) where the absorption concentration profile can be followed by a color change. The HFMC is used to teach important concepts and can be used in interesting applications for students, such as…

  7. Rotating Biological Contactors (RBC's). Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Zickefoose, Charles S.

    This student manual provides the textual material for a unit on rotating biological contactors (RBC's). Topic areas considered include: (1) flow patterns of water through RBC installations; (2) basic concepts (shaft and stage); (3) characteristics of biomass; (4) mechanical features (bearings, mechanical drive systems, and air drive systems); (5)…

  8. Effectiveness of Forestry Agency Personnel as Fire Prevention Contactors

    Treesearch

    M.L. Doolittle

    1980-01-01

    A major responsibility of county forest rangers in North Carolina is fire prevention. Personal contact with the public is essential to the successful performance of this function. A survey of 50 North Carolina rangers revealed that the degree of success for each ranger was directly related to the specific effort put forth as a contactor.

  9. Carbon Dioxide Absorption in a Membrane Contactor with Color Change

    ERIC Educational Resources Information Center

    Pantaleao, Ines; Portugal, Ana F.; Mendes, Adelio; Gabriel, Joaquim

    2010-01-01

    A pedagogical experiment is described to examine the physical absorption of gases, in this case carbon dioxide, in a hollow fiber membrane contactor (HFMC) where the absorption concentration profile can be followed by a color change. The HFMC is used to teach important concepts and can be used in interesting applications for students, such as…

  10. Advanced electric propulsion and space plasma contactor research

    NASA Technical Reports Server (NTRS)

    Wilbur, Paul J.

    1987-01-01

    A theory of the plasma contacting process is described and experimental results obtained using three different hollow cathode-based plasma contactors are presented. The existence of a sheath across which the bulk of the voltage drop associated with the contacting process occurs is demonstrated. Test results are shown to agree with a model of a spherical, space-charge-limited double sheath. The concept of ignited mode contactor operation is discussed, which is shown to enhance contactor efficiency when it is collecting electrons. An investigation of the potentials in the plasma plumes downstream of contactors operating at typical conditions is presented. Results of tests performed on hollow cathodes operating at high interelectrode pressures (up to about 1000 Torr) on ammonia are presented and criteria that are necessary to ensure that the cathode will operate properly in this regime are presented. These results suggest that high pressure hollow cathode operation is difficult to achieve and that special care must be taken to assure that the electron emission region remains diffuse and attached to the low work function insert. Experiments conducted to verify results obtained previously using a ring cusp ion source equipped with a moveable anode are described and test results are reported. A theoretical study of hollow cathode operation at high electron emission currents is presented. Preliminary experiments using the constrained sheath optics concept to achieve ion extraction under conditions of high beam current density, low net accelerating voltage and well columniated beamlet formation are discussed.

  11. Surgical tip: Repair of acute Achilles rupture with Krackow suture through a 1.5 cm medial wound.

    PubMed

    Lui, T H

    2010-03-01

    Acute Achilles tendon ruptures is one of the commonest tendon injury of the foot and ankle. The management of this problem is still controversial. Treatment can be classified into non-surgical and surgical types. Surgical management can be subdivided into open repair, percutaneous with or without adjunct of arthroscopy. In compare with non-surgical management, surgical management will decrease the tendon re-rupture rate. However, the possible surgical complications including wound breakdown and sural nerve injury are still quite significant. Percutaneous repair technique has the advantage of less chance of wound breakdown, but the rate of tendon re-rupture is higher than that after open tendon repair, because the repair is usually weaker than that achieved in open repair. Lui have described an endoscopic assisted repair with the Krackow locking suture. However, the technique is complicated and six portal wounds are needed. A simpler way of applying the Krackow suture through the portal wound has been described for reattachment of Achilles tendon insertion after endoscopic calcaneoplasty. We describe a mini-open approach of Achilles tendon repair with the Krackow locking suture. By means of release of the medial edge of the investing fascia, the Achilles tendon can be mobilized easily and the Krackow locking suture can be applied through a 1.5cm medial wound. Hopefully, this can improve the strength of repair and maintaining the advantage of minimally invasive tendon repair.

  12. Combination Therapies in the Management of Large (≥ 5 cm) Hepatocellular Carcinoma: Microwave Ablation Immediately Followed by Transarterial Chemoembolization.

    PubMed

    Si, Zeng-Mei; Wang, Guang-Zhi; Qian, Sheng; Qu, Xu-Dong; Yan, Zhi-Ping; Liu, Rong; Wang, Jian-Hua

    2016-10-01

    To evaluate the safety and efficacy of microwave (MW) ablation combined with transarterial chemoembolization in a single stage for the treatment of large (≥ 5 cm) hepatocellular carcinoma (HCC). From March 2013 to January 2015, 66 patients (54 men and 12 women; mean age, 54 y; range, 29-83 y) with 72 large HCC lesions were included in this study. Eighteen (27.3%) had Barcelona Clinic Liver Cancer class B disease, and 48 (72.7%) had class C disease. Seventy-nine percent of patients (n = 52) had hepatitis B virus infection. The average tumor size was 9.0 cm ± 3.9, ranging from 5 to 19 cm. MW ablation was performed under ultrasound guidance, immediately followed by chemoembolization. Local tumor response, progression-free survival (PFS), and overall survival (OS) were assessed. The technique was successfully performed in all patients. Complete response (CR) was achieved in 28 cases (42.4%), and partial response (PR) was achieved in 34 cases (51.5%) at 1 month after the procedure. The objective response rate (ie, CR plus PR) was 93.9%. Median PFS and OS times were 9 months and 21 months, respectively. The 6-, 12-, and 18-month OS rates were 93.9%, 85.3%, and 66.6%, respectively. Hemorrhage was detected in three patients and arteriovenous fistula in two patients after MW ablation; all were promptly treated with embolization. There were no liver abscesses, bile-duct injuries, or other major procedure-related complications. MW ablation immediately followed by chemoembolization is safe and effective in the treatment of large HCC lesions. Copyright © 2016 SIR. Published by Elsevier Inc. All rights reserved.

  13. High Current 270 VDC Contactor and Current Sensor System Design and Development

    DTIC Science & Technology

    1998-09-01

    HVDC contactor. Eaton Corporation has developed a design, completed a critical design review, developed a test plan, constructed the prototype test...4 DISCUSSIONS AND RECOMMENDATIONS, CONCLUSIONS 4.1 Discussions and Recommendations The HVDC contactor incorporates an arc chute with a permanent...power supply failed and required repair. The dielectric withstands voltage of the HVDC contactor was reduced below the acceptable limits of the

  14. Valve for gas centrifuges

    DOEpatents

    Hahs, C.A.; Rurbage, C.H.

    1982-03-17

    The invention is pneumatically operated valve assembly for simulatenously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two on the lines so closed. The value assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  15. A biological safety centrifuge.

    PubMed

    Hall, C V

    1975-04-01

    The Washington State Public Health Laboratories has devised a metho to capture and remove aerosols produced during centrifugation. The method to adapt any centrifuge having an enclosed chamber with an air intake hole in the lid, and an exhaust hole in the bottom of the chamber, is discussed.

  16. METHOD OF CENTRIFUGE OPERATION

    DOEpatents

    Cohen, K.

    1960-05-10

    A method of isotope separation is described in which two streams are flowed axially of, and countercurrently through, a cylindrical centrifuge bowl. Under the influence of a centrifugal field, the light fraction is concentrated in a stream flowing through the central portion of the bowl, whereas the heavy fraction is concentrated in a stream at the periphery thereof.

  17. Biological Treatment of Composition B Wastewaters. 1. Rotating Biological Contactor

    DTIC Science & Technology

    1986-09-01

    Hazardous Materials Agency ATTN: AMXTH-TE-D Aberdeen Proving Ground, MD 21010-5401 2 Commander Holston Army Ammunition Plant ATTN: SMCHO-EN Kingsport ...NA pilot-scale rotating biological contactor (RBC) was used to treat wastewaters from explosives production at Holston Army Ammunition Plant . At...waters will be similar to those from Holston Army kimunition Plant (HSAAP), presently the sole domestic source of RDX and S...... Aithoiigh more than

  18. Membrane contactor assisted extraction/reaction process employing ionic liquids

    DOEpatents

    Lin, Yupo J [Naperville, IL; Snyder, Seth W [Lincolnwood, IL

    2012-02-07

    The present invention relates to a functionalized membrane contactor extraction/reaction system and method for extracting target species from multi-phase solutions utilizing ionic liquids. One preferred embodiment of the invented method and system relates to an extraction/reaction system wherein the ionic liquid extraction solutions act as both extraction solutions and reaction mediums, and allow simultaneous separation/reactions not possible with prior art technology.

  19. Corrosion abatement in sulfuric acid alkylation unit horizontal contactors

    SciTech Connect

    Schutt, H.U.

    1999-03-01

    A leak to the atmosphere in the hydraulic end cone of a horizontal contactor and the realization that basic corrosion data are not available for high-throughput process conditions in alkylation units prompted a laboratory study to develop the lacking expertise. Corrosion in the horizontal contractor of an alkylation unit was mitigated successfully by saturating fresh alkylation acid with ferrous sulfate (FeSO{sub 4}).

  20. Hollow cathode heater development for the Space Station plasma contactor

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    1993-01-01

    A hollow cathode-based plasma contactor has been selected for use on the Space Station. During the operation of the plasma contactor, the hollow cathode heater will endure approximately 12000 thermal cycles. Since a hollow cathode heater failure would result in a plasma contactor failure, a hollow cathode heater development program was established to produce a reliable heater design. The development program includes the heater design, process documents for both heater fabrication and assembly, and heater testing. The heater design was a modification of a sheathed ion thruster cathode heater. Three heaters have been tested to date using direct current power supplies. Performance testing was conducted to determine input current and power requirements for achieving activation and ignition temperatures, single unit operational repeatability, and unit-to-unit operational repeatability. Comparisons of performance testing data at the ignition input current level for the three heaters show the unit-to-unit repeatability of input power and tube temperature near the cathode tip to be within 3.5 W and 44 degrees C, respectively. Cyclic testing was then conducted to evaluate reliability under thermal cycling. The first heater, although damaged during assembly, completed 5985 ignition cycles before failing. Two additional heaters were subsequently fabricated and have completed 3178 cycles to date in an on-going test.

  1. Integration issues of a plasma contactor Power Electronics Unit

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; York, Kenneth W.; Bowers, Glen E.

    1995-01-01

    A hollow cathode-based plasma contactor is baselined on International Space Station Alpha (ISSA) for spacecraft charge control. The plasma contactor system consists of a hollow cathode assembly (HCA), a power electronics unit (PEU), and an expellant management unit (EMU). The plasma contactor has recently been required to operate in a cyclic mode to conserve xenon expellant and extend system life. Originally, a DC cathode heater converter was baselined for a continuous operation mode because only a few ignitions of the hollow cathode were expected. However, for cyclic operation, a DC heater supply can potentially result in hollow cathode heater component failure due to the DC electrostatic field. This can prevent the heater from attaining the proper cathode tip temperature for reliable ignition of the hollow cathode. To mitigate this problem, an AC cathode heater supply was therefore designed, fabricated, and installed into a modified PEU. The PEU was tested using resistive loads and then integrated with an engineering model hollow cathode to demonstrate stable steady-state operation. Integration issues such as the effect of line and load impedance on the output of the AC cathode heater supply and the characterization of the temperature profile of the heater under AC excitation were investigated.

  2. Integration issues of a plasma contactor Power Electronics Unit

    NASA Astrophysics Data System (ADS)

    Pinero, Luis R.; York, Kenneth W.; Bowers, Glen E.

    1995-06-01

    A hollow cathode-based plasma contactor is baselined on International Space Station Alpha (ISSA) for spacecraft charge control. The plasma contactor system consists of a hollow cathode assembly (HCA), a power electronics unit (PEU), and an expellant management unit (EMU). The plasma contactor has recently been required to operate in a cyclic mode to conserve xenon expellant and extend system life. Originally, a DC cathode heater converter was baselined for a continuous operation mode because only a few ignitions of the hollow cathode were expected. However, for cyclic operation, a DC heater supply can potentially result in hollow cathode heater component failure due to the DC electrostatic field. This can prevent the heater from attaining the proper cathode tip temperature for reliable ignition of the hollow cathode. To mitigate this problem, an AC cathode heater supply was therefore designed, fabricated, and installed into a modified PEU. The PEU was tested using resistive loads and then integrated with an engineering model hollow cathode to demonstrate stable steady-state operation. Integration issues such as the effect of line and load impedance on the output of the AC cathode heater supply and the characterization of the temperature profile of the heater under AC excitation were investigated.

  3. Functional testing of the space station plasma contactor

    NASA Astrophysics Data System (ADS)

    Patterson, Michael J.; Hamley, John A.; Sarver-Verhey, Timothy R.; Soulas, George C.

    1995-03-01

    A plasma contactor system has been baselined for the International Space Station Alpha (ISSA) to control the electrical potentials of surfaces to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and, in particular, the technology development effort on ion thruster systems. The plasma contactor subsystems include a hollow cathode assembly, a power electronics unit, and an expellant management unit. Under a pre-flight development program these subsystems are being developed to the level of maturity appropriate for transfer to U.S. industry for final development. Development efforts for the hollow cathode assembly include design selection and refinement, validating its required lifetime, and quantifying the cathode performance and interface specifications. To date, cathode components have demonstrated over 10,000 hours lifetime, and a hollow cathode assembly has demonstrated over 3,000 ignitions. Additionally, preliminary integration testing of a hollow cathode assembly with a breadboard power electronics unit has been completed. This paper discusses test results and the development status of the plasma contactor subsystems for ISSA, and in particular, the hollow cathode assembly.

  4. Integration issues of a plasma contactor power electronics unit

    SciTech Connect

    Pinero, L.R.; York, K.W.; Bowers, G.E.

    1995-12-31

    A hollow cathode-based plasma contactor is baselined on International Space Station Alpha (ISSA) for spacecraft charge control. The plasma contactor system consists of a hollow cathode assembly (HCA), a power electronics unit (PEU), and an expellant management unit (EMU). The plasma contactor has recently been required to operate in a cyclic mode to conserve xenon expellant and extend system life. Originally, a DC cathode heater converter was baselined for a continuous operation mode because only a few ignitions of the hollow cathode were expected. However, for cyclic operation, a DC heater supply can potentially result in hollow cathode heater component failure due to the DC electrostatic field. This can prevent the heater from attaining the proper cathode tip temperature for reliable ignition of the hollow cathode. To mitigate this problem, an AC cathode heater supply was therefore designed, fabricated, and installed into a modified PEU. The PEU was tested using resistive loads and then integrated with an engineering model hollow cathode to demonstrate stable steady-state operation. Integration issues such as the effect of line and load impedance on the output of the AC cathode heater supply and the characterization of the temperature profile of the heater under AC excitation were investigated.

  5. Centrifuge for SLS-1

    NASA Image and Video Library

    1981-01-16

    S81-25565 (Feb 1981) --- Expected to be a busy item of flight hardware on the Spacelab Life Sciences (SLS-1) mission is this low-gravity centrifuge. To be flown onboard Columbia for STS-40, the centrifuge is able to simulate several gravity levels (0.5 g, 1.0 g, 1.5 g. and 2.0 g). Blood samples, taken during the flight, will be placed in the centrifuge, fixed for post flight analysis and transferred to a freezer.

  6. A Computer Model for Teaching the Dynamic Behavior of AC Contactors

    ERIC Educational Resources Information Center

    Ruiz, J.-R. R.; Espinosa, A. G.; Romeral, L.

    2010-01-01

    Ac-powered contactors are extensively used in industry in applications such as automatic electrical devices, motor starters, and heaters. In this work, a practical session that allows students to model and simulate the dynamic behavior of ac-powered electromechanical contactors is presented. Simulation is carried out using a rigorous parametric…

  7. Valve for gas centrifuges

    DOEpatents

    Hahs, Charles A.; Burbage, Charles H.

    1984-01-01

    The invention is a pneumatically operated valve assembly for simultaneously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two of the lines so closed. The valve assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  8. Plasma contactor modeling with NASCAP/LEO - Extending laboratory results to space systems

    NASA Technical Reports Server (NTRS)

    Davis, V. A.; Katz, I.; Mandell, M. J.

    1990-01-01

    In the laboratory, hollow cathode-based plasma contactors have been observed to both emit and collect ampere-level electron currents with low impedance. The laboratory behavior of hollow cathode-based plasma contactors and the limited space experience with hollow cathodes suggest that, for many applications, a hollow cathode-based plasma contactor is the ideal device to provide electrical connection with the space plasma. In order to confidently extend the laboratory experience to the low-earth-orbit environment, a series of plasma contactor computer models has been developed. Calculations show that a hollow cathode plasma contactor that collects 0.5 A in the laboratory will only collect 2.4 mA in space. The simplest way to boost the collected current is to increase the gas flow. A mole of gas is enough to collect ampere level currents for 5-1/2 hours.

  9. An electrically driven gas-liquid-liquid contactor for bioreactor and other applications

    SciTech Connect

    Tsouris, C.; Borole, A.P.; Kaufman, E.N.; DePaoli, D.W.

    1999-05-01

    An electrically driven gas-liquid-liquid bioreactor is described here, in which an aqueous medium containing a biocatalyst is introduced as a discontinuous phase into an organic-continuous liquid phase containing a substrate to be converted by the biocatalyst. A gas discontinuous phase, which may be needed to provide oxygen or a gaseous substrate to the biocatalyst, is also introduced into the bioreactor. In contrast to previous work on electrically driven contactors, it was found that the electroconvection generated by the electric field between parallel-plate electrodes may be employed to increase the volume fraction of the discontinuous gas phase in the bioreactor, providing the means for enhanced mass transfer. The electrically driven bioreactor was utilized for oil desulfurization experiments with Rhodococcus sp. IGTS8 bacteria as the biocatalyst. The organic phase used in the experiments was hexadecane containing dibenzothiophene, a model sulfur compound, that is oxidatively desulfurized to 2-hydroxybiphenyl (2-HBP) by the bacteria in the presence of air or oxygen. The gas volume fraction was increased by 60% by the application of a pulsed electric field, thus providing a means for increased transport of oxygen needed for oxidative desulfurization. The velocity of droplets and bubbles was measured by a phase Doppler velocimeter. The average rising velocity of bubbles was decreased from 13 to less than 3 cm/s and the average horizontal velocity was increased from 0 to 5 cm/s as the field strength was increased from 0 to 4 kV/cm. Desulfurization rates ranged from 1.0 to 5.50 mg of 2-HBP/g of dry cells/h. The desulfurization rate with aeration was doubled under the electric field as compared to the zero-field desulfurization under the same conditions.

  10. Centrifugal main fuel pump

    SciTech Connect

    Cole, E.F.

    1986-08-26

    For a gas turbine power plant having a fuel supply and a fuel metering valve and variable geometry for the power plant including servo actuating mechanisms for the fuel metering valve and variable geometry, a fuel pumping system, is described to supply pressurized fuel for the servo actuating mechanisms and for the engine working fluid medium. The pumping system includes a centrifugal pump solely supplying the fuel to the fuel metering valve to be delivered to the power plant for its working fluid medium, a positive displacement pump in parallel with the centrifugal pump and solely to supply pressurized fuel to the servo actuating mechanisms for the fuel metering valve and for the variable geometry, and a boost pump means disposed in serial relationship with the positive displacement pump and the centrifugal pump for augmenting the pressure supplied by the positive displacement pump and the centrifugal pump during predetermined operating conditions of the power plant. The combined boost pump and centrifugal pump capability is sufficient to satisfy the vapor to liquid ratio requirements of the power during its entire operating envelope.

  11. Attack on centrifugal costs

    SciTech Connect

    Murray, P.F.

    1986-03-01

    The Monsanto Chocolate Bayou plant has had an aggressive and successful energy conservation program. The combined efforts have resulted in a 80% reduction in unit energy consumption compared to 1972. The approach of using system audits to optimize fluid systems was developed. Since most of the fluid movers are centrifugal, the name Centrifugal Savings Task Force was adopted. There are three tools that are particularly valuable in optimizing fluid systems. First, a working level understanding of the Affinity Laws seems a must. In addition, the performance curves for the fluid movers is needed. The last need is accurate system field data. Systems effectively managed at the Chocolate Bayou plant were process air improvement, feed-water pressure reduction, combustion air blower turbine speed control, and cooling tower pressure reduction. Optimization of centrifugal systems is an often-overlooked opportunity for energy savings. The basic guidelines are to move only the fluid needed, and move it at as low a pressure as possible.

  12. SEAL FOR HIGH SPEED CENTRIFUGE

    DOEpatents

    Skarstrom, C.W.

    1957-12-17

    A seal is described for a high speed centrifuge wherein the centrifugal force of rotation acts on the gasket to form a tight seal. The cylindrical rotating bowl of the centrifuge contains a closure member resting on a shoulder in the bowl wall having a lower surface containing bands of gasket material, parallel and adjacent to the cylinder wall. As the centrifuge speed increases, centrifugal force acts on the bands of gasket material forcing them in to a sealing contact against the cylinder wall. This arrangememt forms a simple and effective seal for high speed centrifuges, replacing more costly methods such as welding a closure in place.

  13. Geotechnical centrifuge under construction

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    Modifications are underway at the National Aeronautics and Space Administration (NASA) Ames Research Center in California to transform a centrifuge used in the Apollo space program to the largest geotechnical centrifuge in the free world. The centrifuge, to be finished in August and opened next January, following check out and tuning, will enable geoscientists to model stratigraphic features down to 275 m below the earth's surface. Scientists will be able to model processes that are coupled with body force loading, including earthquake response of earth structures and soil structure interaction; rubbled-bed behavior during in situ coal gasification or in oil shale in situ retorts; behavior of frozen soil; frost heave; behavior of offshore structures; wave-seabed interactions; explosive cratering; and blast-induced liquefaction.The centrifuge will have a load capacity of 900-g-tons (short); that is, it will be able to carry a net soil load of 3 short tons to a centripetal acceleration of 300 times the acceleration caused by gravity. Modified for a total cost of $2.4 million, the centrifuge will have an arm with a 7.6-m radius and a swinging platform or bucket at its end that will be able to carry a payload container measuring 2.1×2.1 m. An additional future input of $500,000 would enable the purchase of a larger bucket that could accommodate a load of up to 20 tons, according to Charles Babendreier, program director for geotechnical engineering at the National Science Foundation. Additional cooling for the motor would also be required. The centrifuge has the capability of accelerating the 20-ton load to 100 g.

  14. Centrifugal projectile launchers

    NASA Astrophysics Data System (ADS)

    Felber, F. S.

    1982-01-01

    The concept of a centrifugal projectile launcher as an alternative to both chemical and electromagnetic launchers for anti-tank and air defence systems is discussed. It is shown that centrifugal projectile launchers can provide reliable, efficient, compact systems that will accelerate projectiles to 2-3 km/s with energies up to one megajoule. State-of-the-art composite rotors can be modified to launch projectiles of tens of grams to the order of 1 km/s. A demonstration rotor with reasonable energy density can be designed to accelerate 60 gram projectiles to 3 km/s repetitively.

  15. Indicators for technological, environmental and economic sustainability of ozone contactors.

    PubMed

    Zhang, Jie; Tejada-Martinez, Andres E; Lei, Hongxia; Zhang, Qiong

    2016-09-15

    Various studies have attempted to improve disinfection efficiency as a way to improve the sustainability of ozone disinfection which is a critical unit process for water treatment. Baffling factor, CT10, and log-inactivation are commonly used indicators for quantifying disinfection credits. However the applicability of these indicators and the relationship between these indicators have not been investigated in depth. This study simulated flow, tracer transport, and chemical species transport in a full-scale ozone contactor operated by the City of Tampa Water Department and six other modified designs using computational fluid dynamics (CFD). Through analysis of the simulation results, we found that baffling factor and CT10 are not optimal indicators of disinfection performance. We also found that the relationship between effluent CT obtained from CT transport simulation and baffling factor depends on the location of ozone release. In addition, we analyzed the environmental and economic impacts of ozone contactor designs and upgrades and developed a composite indicator to quantify the sustainability in technological, environmental and economic dimensions.

  16. Ammonia recovery from landfill leachate using hydrophobic membrane contactors.

    PubMed

    Amaral, Míriam C S; Magalhães, Nátalie C; Moravia, Wagner G; Ferreira, Carolina D

    2016-11-01

    This article aims to evaluate membrane contactors capability to remove and recover ammonia from landfill leachate (LFL). A hydrophobic hollow fiber membrane module was used to achieve such purpose. A sulfuric acid diluted solution was used as extraction solution to speed up ammonia content removal. Several factors that have influence on ammonia removal and recovery capability such as ammonia solution pH, concentration of sulfuric acid solutions and flow rate of liquid phases have been examined. Microfiltration was the method used as pretreatment. The results have shown that membrane contactor operated with LFL (pH 10), 0.1 M acid solution and liquid flow rate up to 0.5 L min(-1) achieved 99.9% of ammonia removal, which corresponds to 79.1% of ammonia recovery from the extraction solution, and it is capable to produce highly purified ammonium sulfate solutions (41.2%, wt wt(-1)) to be used as fertilizer. The concentration of total ammonia nitrogen (TAN) in the residual LFL complies with Brazilian law requirements of 20.0 mg L(-1) of TAN, regarding the disposal of effluents.

  17. Development of an implantable centrifugal blood pump.

    PubMed

    Goldstein, A H; Pacella, J J; Trumble, D R; Clark, R E

    1992-01-01

    The efficacy of centrifugal pumps for short-term (0-30 days) ventricular support has been widely reported and favorably compared with pulsatile systems. A small, durable, implantable centrifugal blood pump is being developed for medium-term use (up to 6 months). The pump is based on the Medtronic Hemadyne system that has existed in multiple forms over the past 30 years. The pump is approximately the size of a tennis ball, weighs 240 g, and is comprised of a 2.5 cm plastic impeller driven by a radially coupled brushless DC motor. In vitro hydraulic performance was recorded over a wide range of flow conditions on a mock circulatory loop. The pump generated 7 L/min flow against an afterload of 100 mmHg pressure, with a maximum power draw of 10.4 watts. Pulsatile flow was preserved when placed in conjunction with a simulated left ventricle. In vivo testing was performed in 10 healthy sheep for 10-292 hr. Heparin was used to facilitate cannulation, and no anticoagulation was administered after pump implantation. Blood chemistries reflecting hematologic, pulmonary, renal, and hepatic functions were recorded and demonstrated no adverse effects with normal pump operation. Complications were related to kinking of blood conduits and thrombus formation within the cannulae. These results are encouraging and warrant further studies to prove feasibility of this pump as a medium-term implantable ventricular assist device.

  18. Lightweight Shield for Centrifuge

    NASA Technical Reports Server (NTRS)

    Luper, C.

    1982-01-01

    Centrifuge bowl composed of laminated aluminum offers required combination of high strength at reduced weight. Around outside wall of bowl core of 1/16 inch thick spun aluminum are wrapped two layers of aluminum, each also one-sixteenth inch thick. Layered structure prevents cracks from propagating through wall.

  19. Centrifuge pump selection

    SciTech Connect

    Buehler, M.W.

    1985-12-01

    Selection of a centrifuge pump is addressed. The problem of assessing pump needs based on system design is broken down into a step-by-step approach. Topics included are designing the pump system, calculating such pressure NPSH, and building in a safety factor.

  20. Human Powered Centrifuge

    NASA Technical Reports Server (NTRS)

    Mulenburg, Gerald M. (Inventor); Vernikos, Joan (Inventor)

    1997-01-01

    A human powered centrifuge has independently established turntable angular velocity and human power input. A control system allows excess input power to be stored as electric energy in a battery or dissipated as heat through a resistors. In a mechanical embodiment, the excess power is dissipated in a friction brake.

  1. Centrifugal Gas Compression Cycle

    NASA Astrophysics Data System (ADS)

    Fultun, Roy

    2002-11-01

    A centrifuged gas of kinetic, elastic hard spheres compresses isothermally and without flow of heat in a process that reverses free expansion. This theorem follows from stated assumptions via a collection of thought experiments, theorems and other supporting results, and it excludes application of the reversible mechanical adiabatic power law in this context. The existence of an isothermal adiabatic centrifugal compression process makes a three-process cycle possible using a fixed sample of the working gas. The three processes are: adiabatic mechanical expansion and cooling against a piston, isothermal adiabatic centrifugal compression back to the original volume, and isochoric temperature rise back to the original temperature due to an influx of heat. This cycle forms the basis for a Thomson perpetuum mobile that induces a loop of energy flow in an isolated system consisting of a heat bath connectable by a thermal path to the working gas, a mechanical extractor of the gas's internal energy, and a device that uses that mechanical energy and dissipates it as heat back into the heat bath. We present a simple experimental procedure to test the assertion that adiabatic centrifugal compression is isothermal. An energy budget for the cycle provides a criterion for breakeven in the conversion of heat to mechanical energy.

  2. Enhancing Centrifugal Separation With Electrophoresis

    NASA Technical Reports Server (NTRS)

    Herrmann, F. T.

    1986-01-01

    Separation of biological cells by coil-planet centrifuge enhanced by electrophoresis. By itself, coil-planet centrifuge offers relatively gentle method of separating cells under low centrifugal force in physiological medium that keeps cells alive. With addition of voltage gradient to separation column of centrifuge, separation still gentle but faster and more complete. Since separation apparatus contains no rotary seal, probability of leakage, contamination, corrosion, and short circuits reduced.

  3. The Human Centrifuge

    NASA Astrophysics Data System (ADS)

    van Loon, Jack J. W. A.

    2009-01-01

    Life on Earth has developed at unit gravity, 9.81 m/s2, which was a major factor especially when vertebrates emerged from water onto land in the late Devonian, some 375 million years ago. But how would nature have evolved on a larger planet? We are able to address this question simply in experiments using centrifuges. Based on these studies we have gained valuable insights in the physiological process in plants and animals. They adapt to a new steady state suitable for the high-g environments applied. Information on mammalian adaptations to hyper-g is interesting or may be even vital for human space exploration programs. It has been shown in long duration animal hypergravity studies, ranging from snails, rats to primates, that various structures like muscles, bones, neuro-vestibular, or the cardio-vascular system are affected. However, humans have never been exposed to a hyper-g environment for long durations. Centrifuge studies involving humans are mostly in the order of hours. The current work on human centrifuges are all focused on short arm systems to apply short periods of artificial gravity in support of long duration space missions in ISS or to Mars. In this paper we will address the possible usefulness of a large human centrifuge on Earth. In such a centrifuge a group of humans can be exposed to hypergravity for, in principle, an unlimited period of time like living on a larger planet. The input from a survey under scientists working in the field of gravitational physiology, but also other disciplines, will be discussed.

  4. Solution-processed small molecule-polymer blend organic thin-film transistors with hole mobility greater than 5 cm2/Vs.

    PubMed

    Smith, Jeremy; Zhang, Weimin; Sougrat, Rachid; Zhao, Kui; Li, Ruipeng; Cha, Dongkyu; Amassian, Aram; Heeney, Martin; McCulloch, Iain; Anthopoulos, Thomas D

    2012-05-08

    Using phase-separated organic semiconducting blends containing a small molecule, as the hole transporting material, and a conjugated amorphous polymer, as the binder material, we demonstrate solution-processed organic thin-film transistors with superior performance characteristics that include; hole mobility >5 cm(2) /Vs, current on/off ratio ≥10(6) and narrow transistor parameter spread. These exceptional characteristics are attributed to the electronic properties of the binder polymer and the advantageous nanomorphology of the blend film.

  5. Hollow fiber gas-liquid membrane contactors for acid gas capture: a review.

    PubMed

    Mansourizadeh, A; Ismail, A F

    2009-11-15

    Membrane contactors using microporous membranes for acid gas removal have been extensively reviewed and discussed. The microporous membrane acts as a fixed interface between the gas and the liquid phase without dispersing one phase into another that offers a flexible modular and energy efficient device. The gas absorption process can offer a high selectivity and a high driving force for transport even at low concentrations. Using hollow fiber gas-liquid membrane contactors is a promising alternative to conventional gas absorption systems for acid gas capture from gas streams. Important aspects of membrane contactor as an efficient energy devise for acid gas removal including liquid absorbents, membrane characteristics, combination of membrane and absorbent, mass transfer, membrane modules, model development, advantages and disadvantages were critically discussed. In addition, current status and future potential in research and development of gas-liquid membrane contactors for acid gas removal were also briefly discussed.

  6. OZONE CONTACTOR FLOW VISUALIZATION AND CHARACTERIZATION USING 3-DIMENSIONAL LASER INDUCED FLUORESCENCE

    EPA Science Inventory

    Hydrodynamics of ozone contactors have a crucial impact on efficient inactivation of pathogens such as Cryptosporidium as well as control of disinfection byproducts such as bromate. Improper mixing behaviors including short-circuiting, internal recirculation and presence...

  7. OZONE CONTACTOR FLOW VISUALIZATION AND CHARACTERIZATION USING 3-DIMENSIONAL LASER INDUCED FLUORESCENCE

    EPA Science Inventory

    Hydrodynamics of ozone contactors have a crucial impact on efficient inactivation of pathogens such as Cryptosporidium as well as control of disinfection byproducts such as bromate. Improper mixing behaviors including short-circuiting, internal recirculation and presence...

  8. Rotating arc cutoff with a Fluarc switch or a Rollarc contactor in SF6

    NASA Astrophysics Data System (ADS)

    Duplay, C.

    1983-05-01

    The principles of rotating arc cutoff are reviewed, and applications to circuit breakers and contactors are indicated. The Rollarc (trademark) contactor offers high cutoff power (10 KA at 7.2 KV) and an extremely low level of overvoltage. The Fluorarc (trademark) circuit breaker is similar to the Rollarc, using a magnetic coil to shift the arc, but uses knife switches which are separated from the coil/arc assembly. Fluorarc is sealed for life, and requires no maintenance.

  9. Centrifugal unbalance detection system

    DOEpatents

    Cordaro, Joseph V.; Reeves, George; Mets, Michael

    2002-01-01

    A system consisting of an accelerometer sensor attached to a centrifuge enclosure for sensing vibrations and outputting a signal in the form of a sine wave with an amplitude and frequency that is passed through a pre-amp to convert it to a voltage signal, a low pass filter for removing extraneous noise, an A/D converter and a processor and algorithm for operating on the signal, whereby the algorithm interprets the amplitude and frequency associated with the signal and once an amplitude threshold has been exceeded the algorithm begins to count cycles during a predetermined time period and if a given number of complete cycles exceeds the frequency threshold during the predetermined time period, the system shuts down the centrifuge.

  10. Centrifugally decoupling touchdown bearings

    DOEpatents

    Post, Richard F

    2014-06-24

    Centrifugally decoupling mechanical bearing systems provide thin tensioned metallic ribbons contained in a support structure. This assembly rotates around a stationary shaft being centered at low speeds by the action of the metal ribbons. Tension springs are connected on one end to the ribbons and on the other end to the support structure. The ribbons pass through slots in the inner ring of the support structure. The spring preloading thus insures contact (or near-contact) between the ribbons and the shaft at rotation speeds below the transition speed. Above this speed, however, the centrifugal force on the ribbons produces a tensile force on them that exceeds the spring tensile force so that the ribbons curve outward, effectively decoupling them from mechanical contact with the shaft. They still remain, however, in position to act as a touchdown bearing in case of abnormally high transverse accelerations.

  11. Centrifugal pump fuel system

    SciTech Connect

    McGlone, M.E.; Larkins, L.J.; Johnson, R.O.; Moeller, K.A.

    1993-06-22

    A centrifugal pump fuel system for an engine driven fuel pump for an aircraft gas turbine engine is described comprising: a centrifugal pump having at constant speed rising head/flow characteristic at low flows; a plumbing system receiving flow from the pump, and having at least one control valve located down stream of and defining a discrete volume of the plumbing system; a plumbing resonant frequency defined by the discrete volume, the geometry of the plumbing system, and the bulk modulus of the fuel; a pressure difference regulating valve located adjacent to the discharge of the pump, up stream of the vast majority of the discrete volume; and the frequency response of the regulating valve being significantly less than the frequency response of the plumbing system such that the response of the regulating valve is attenuated at the resonant frequency of the plumbing system.

  12. Status of Hollow Cathode Heater Development for the Space Station Plasma Contactor

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    1994-01-01

    A hollow cathode-based plasma contactor has been selected for use on the Space Station. During the operation of the plasma contactor, the hollow cathode heater will endure approximately 12000 thermal cycles. Since a hollow cathode heater failure would result in a plasma contactor failure, a hollow cathode heater development program was established to produce a reliable heater. The development program includes the heater design, process documents for both heater fabrication and assembly, and heater testing. The heater design was a modification of a sheathed ion thruster cathode heater. Heater tests included testing of the heater unit alone and plasma contactor and ion thruster testing. To date, eight heaters have been or are being processed through heater unit testing, two through plasma contactor testing and three through ion thruster testing, all using direct current power supplies. Comparisons of data from heater unit performance tests before cyclic testing, plasma contactor tests, and ion thruster tests at the ignition input current level show the average deviation of input power and tube temperature near the cathode tip to be +/-0.9 W and +/- 21 C, respectively. Heater unit testing included cyclic testing to evaluate reliability under thermal cycling. The first heater, although damaged during assembly, completed 5985 ignition cycles before failing. Four additional heaters successfully completed 6300, 6300, 700, and 700 cycles. Heater unit testing is currently ongoing for three heaters which have to date accumulated greater than 7250, greater than 5500, and greater than 5500 cycles, respectively.

  13. An investigation of conducted and radiated emissions from a hollow-cathode plasma contactor

    NASA Technical Reports Server (NTRS)

    Buchholtz, Brett W.; Wilbur, Paul J.

    1993-01-01

    An investigation conducted on the electrical interference induced by the operation of a hollow-cathode plasma contractor in a ground-based facility is described. The types of electrical interference, or noise, which are important to Space Station Freedom designers are classified as either conducted or radiated emissions. The procedures required to perform conducted and radiated emission measurements on a plasma contactor are examined. The experimental data obtained are typically examined in the frequency domain (i.e. amplitudes of the noise fluctuations versus frequency). Results presented indicate the conducted emissions, which are the current fluctuations from the contactor into the space station wiring, are affected by operating parameters such as expellant flow rate and discharge current. The radiated emissions, which are the electromagnetic waves induced and emitted by the contactor, appear to be influenced by the contactor emission current. Other experimental results suggest possible sources which are responsible for the observed noise. For example, the influence of the plasma environment downstream from the contactor on noise emission levels is described. In addition, a brief discussion is given on the correlation between conducted and radiated emissions and the mechanisms through which both are influenced by the plasma downstream of the contactor.

  14. Stripping of acetone from water with microfabricated and membrane gas-liquid contactors.

    PubMed

    Constantinou, Achilleas; Ghiotto, Francesco; Lam, Koon Fung; Gavriilidis, Asterios

    2014-01-07

    Stripping of acetone from water utilizing nitrogen as a sweeping gas in co-current flow was conducted in a microfabricated glass/silicon gas-liquid contactor. The chip consisted of a microchannel divided into a gas and a liquid chamber by 10 μm diameter micropillars located next to one of the channel walls. The channel length was 35 mm, the channel width was 220 μm and the microchannel depth 100 μm. The micropillars were wetted by the water/acetone solution and formed a 15 μm liquid film between them and the nearest channel wall, leaving a 195 μm gap for gas flow. In addition, acetone stripping was performed in a microchannel membrane contactor, utilizing a hydrophobic PTFE membrane placed between two microstructured acrylic plates. Microchannels for gas and liquid flows were machined in the plates and had a depth of 850 μm and 200 μm respectively. In both contactors the gas/liquid interface was stabilized: in the glass/silicon contactor by the hydrophilic micropillars, while in the PTFE/acrylic one by the hydrophobic membrane. For both contactors separation efficiency was found to increase by increasing the gas/liquid flow rate ratio, but was not affected when increasing the inlet acetone concentration. Separation was more efficient in the microfabricated contactor due to the very thin liquid layer employed.

  15. Pumps, Centrifugal and Reciprocating

    DTIC Science & Technology

    2011-04-27

    reciprocating pumps. 15. SUBJECT TERMS Centrifugal pump Total discharge head Reciprocating pump Total suction head Head 16. SECURITY ... CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF PAGES 40 19a. NAME OF RESPONSIBLE PERSON a. REPORT B...Satisfy the needs of MIL-STD-4612. High-Altitude Electromagnetic Pulse ( HEMP ) Test Facility Satisfy the needs of MIL-STD-461. Rail Impact Test

  16. Centrifugal adsorption system

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R. (Inventor); Tsao, Yow-Min D. (Inventor); Lee, Wenshan (Inventor)

    2006-01-01

    A gas-liquid separator uses a helical passageway to impart a spiral motion to a fluid passing therethrough. The centrifugal force generated by the spiraling motion urges the liquid component of the fluid radially outward which forces the gas component radially inward. The gas component is then separated through a gas-permeable, liquid-impervious membrane and discharged through a central passageway. A filter material captures target substances contained in the fluid.

  17. Discharge ignition behavior of the Space Station plasma contactor

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.; Hamley, John A.

    1995-01-01

    Ignition testing of hollow cathode assemblies being developed for the Space Station plasma contactor system has been initiated to validate reliable multiple restart capability. An ignition approach was implemented that was derived from an earlier arcjet program that successfully demonstrated over 11,600 ignitions. For this, a test profile was developed to allow accelerated cyclic testing at expected operating conditions. To date, one hollow cathode assembly has been used to demonstrate multiple ignitions. A prototype hollow cathode assembly has achieved 3,615 successful ignitions at a nominal anode voltage of 18.0 V. During the ignition testing several parameters were investigated, of which the heater power and pre-heat time were the only parameters found to significantly impact ignition rate.

  18. Simulation of citric acid production by rotating disk contactor.

    PubMed

    Sakurai, A; Imai, H; Takenaka, Y; Sakakibara, M

    1997-12-20

    A simple model was presented to describe the time courses of citric acid production by a rotating disc contactor (RDC) using Aspergillus niger. The model is expressed by Monod-type cell growth, Luedeking-Piret-type citric acid production rate equations, and the diffusion equation for oxygen in the biofilm. The model contains five parameters which were determined by the nonlinear least squares method by fitting the numerical solution to the experimental data. In solving the equations, the cell density of the biofilm was estimated from the value of cellular mass per unit of biofilm area using an empirical equation. The experimental time courses in citric acid production period were well simulated with this model. The relation between the specific biofilm surface area and the rate of citric acid production was also explained by the simulation using the average values of five parameters of twelve runs. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 689-696, 1997.

  19. Performance analysis of rotating disc contactor (RDC) column

    NASA Astrophysics Data System (ADS)

    Aiffah, Wan Nurul; Aisyah, Siti; Fashihah, Nor; Anuar, Khairil

    2014-06-01

    Liquid-liquid extraction is one of the most important separation processes. Different kinds of liquid-liquid extrator such as Rotating Disc Contactor (RDC) Column being used in industries. The study of liquid-liquid extraction in an RDC column has be come a very important subject to be discussed not just amongst chemical engineers but mathematicans as well. In this study, the performance of small diameter column RDC using the chemical system involving cumene/isobutryric asid/water are analyzed by the method of design of the experiments (DOE). DOE are applied to estimated the effect of four independent variable; protor speed, flow rate, concentration of continuous inlet and dispersed inlet and their interaction factor to detemine the most significant factor that effect the concentration of continuous and dispersed outlet as output parameters.

  20. Gas Centrifuges and Nuclear Proliferation

    SciTech Connect

    Albright, David

    2004-09-15

    Gas centrifuges have been an ideal enrichment method for a wide variety of countries. Many countries have built gas centrifuges to make enriched uranium for peaceful nuclear purposes. Other countries have secretly sought centrifuges to make highly enriched uranium for nuclear weapons. In more recent times, several countries have secretly sought or built gas centrifuges in regions of tension. The main countries that have been of interest in the last two decades have been Pakistan, Iraq, Iran, and North Korea. Currently, most attention is focused on Iran, Pakistan, and North Korea. These states did not have the indigenous abilities to make gas centrifuges, focusing instead on illicit and questionable foreign procurement. The presentation covered the following main sections: Spread of centrifuges through illicit procurement; Role of export controls in stopping proliferation; Increasing the transparency of gas centrifuge programs in non-nuclear weapon states; and, Verified dismantlement of gas centrifuge programs. Gas centrifuges are important providers of low enriched uranium for civil nuclear power reactors. They also pose special nuclear proliferation risks. We all have special responsibilities to prevent the spread of gas centrifuges into regions of tension and to mitigate the consequences of their spread into the Middle East, South Asia, and North Asia.

  1. Bilateral single-session retrograde intra-renal surgery: A safe option for renal stones up to 1.5 cm

    PubMed Central

    Bansal, Punit; Bansal, Neeru; Sehgal, Anand; Singla, Subhash

    2016-01-01

    Introduction: Assessment of treatment outcomes in patients undergoing bilateral single-session retrograde intra-renal surgery (RIRS) for bilateral renal stones up to 1.5 cm. Materials and Methods: Retrospective analysis of 74 patients was done with bilateral renal calculi, who underwent bilateral single-session RIRS at our stone referral hospital from December 2011 to May 2014. The selection criteria for this intervention were patient's preference, failure of other treatments and stone up to 1.5 cm. Patients with creatinine more than 2, pyonephrosis sepsis, bilateral impacted pelviureteric junction calculi were excluded from study. All patients were evaluated with serum biochemistry, urinalysis, urine culture, plain radiography of kidney-ureter-bladder, intravenous urography, renal ultrasonography (USG) and/or computed tomography (CT). Follow-up evaluation included serum biochemistry and postoperative plain film and renal USG. The success rate was defined as patients who were stone-free or only had a residual fragment of less than 4 mm. CT was conducted only in patients with residual stones, which were present in seven patients. Results: A total of 74 patients (50 male, 24 female) with a mean age 39.2 ± 15.2 were included in the present study. The mean stone size was 11.7 ± 2.4 mm. The stone-free rates were 86.84% and 97.29% after the first and second procedures, respectively. In eight patients (10.8%), minor complications were observed, whereas no major complications were noted in the studied group. There was no significant difference in pre- and post-operative serum creatinine levels. Conclusion: In patients with bilateral renal stones up to 1.5 cm bilateral single-session RIRS with flexible ureteroscope can be safely performed with low complication rate. PMID:26834403

  2. Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic Membrane Contactor Process

    SciTech Connect

    Meyer, Howard; Zhou, S James; Ding, Yong; Bikson, Ben

    2012-03-31

    This report summarizes progress made during Phase I and Phase II of the project: "Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic Membrane Contactor Process," under contract DE-FE-0000646. The objective of this project is to develop a practical and cost effective technology for CO{sub 2} separation and capture for pre-combustion coal-based gasification plants using a membrane contactor/solvent absorption process. The goals of this technology development project are to separate and capture at least 90% of the CO{sub 2} from Integrated Gasification Combined Cycle (IGCC) power plants with less than 10% increase in the cost of energy services. Unlike conventional gas separation membranes, the membrane contactor is a novel gas separation process based on the gas/liquid membrane concept. The membrane contactor is an advanced mass transfer device that operates with liquid on one side of the membrane and gas on the other. The membrane contactor can operate with pressures that are almost the same on both sides of the membrane, whereas the gas separation membranes use the differential pressure across the membrane as driving force for separation. The driving force for separation for the membrane contactor process is the chemical potential difference of CO{sub 2} in the gas phase and in the absorption liquid. This process is thus easily tailored to suit the needs for pre-combustion separation and capture of CO{sub 2}. Gas Technology Institute (GTI) and PoroGen Corporation (PGC) have developed a novel hollow fiber membrane technology that is based on chemically and thermally resistant commercial engineered polymer poly(ether ether ketone) or PEEK. The PEEK membrane material used in the membrane contactor during this technology development program is a high temperature engineered plastic that is virtually non-destructible under the operating conditions encountered in typical gas absorption applications. It can withstand contact with most of the common treating

  3. CENTRIFUGAL MEMBRANE FILTRATION

    SciTech Connect

    Daniel J. Stepan; Bradley G. Stevens; Melanie D. Hetland

    1999-10-01

    The overall project consists of several integrated research phases related to the applicability, continued development, demonstration, and commercialization of the SpinTek centrifugal membrane filtration process. Work performed during this reporting period consisted of Phase 2 evaluation of the SpinTek centrifugal membrane filtration technology and Phase 3, Technology Partnering. During Phase 1 testing conducted at the EERC using the SpinTek ST-IIL unit operating on a surrogate tank waste, a solids cake developed on the membrane surface. The solids cake was observed where linear membrane velocities were less than 17.5 ft/s and reduced the unobstructed membrane surface area up to 25%, reducing overall filtration performance. The primary goal of the Phase 2 research effort was to enhance filtration performance through the development and testing of alternative turbulence promoter designs. The turbulence promoters were designed to generate a shear force across the entire membrane surface sufficient to maintain a self-cleaning membrane capability and improve filtration efficiency and long-term performance. Specific Phase 2 research activities included the following: System modifications to accommodate an 11-in.-diameter, two-disk rotating membrane assembly; Development and fabrication of alternative turbulence promoter designs; Testing and evaluation of the existing and alternative turbulence promoters under selected operating conditions using a statistically designed test matrix; and Data reduction and analysis; The objective of Phase 3 research was to demonstrate the effectiveness of SpinTek's centrifugal membrane filtration as a pretreatment to remove suspended solids from a liquid waste upstream of 3M's WWL cartridge technology for the selective removal of technetium (Tc).

  4. National geotechnical centrifuge

    NASA Technical Reports Server (NTRS)

    Hallam, J. A.; Kunz, N.; Vallotton, W. C.

    1982-01-01

    A high G-ton centrifuge, able to take a 2700 kg (6000 lb) payload up to 300 G, is described. The stability of dams and embankments, the bearing capacity of soil foundations, and the dynamic behavior of foundations due to vibration of machinery are examples of applications. A power rating of 6,000 kW (9,000 hp) was established for the motor. An acceptable maximum speed of 70 rpm was determined. A speed increase with a ratio of 1:3 is discussed. The isolated tension straps, the anti-spreader bar and the flexwall bucket, and safety precautions are also discussed.

  5. National geotechnical centrifuge

    NASA Astrophysics Data System (ADS)

    Hallam, J. A.; Kunz, N.; Vallotton, W. C.

    1982-05-01

    A high G-ton centrifuge, able to take a 2700 kg (6000 lb) payload up to 300 G, is described. The stability of dams and embankments, the bearing capacity of soil foundations, and the dynamic behavior of foundations due to vibration of machinery are examples of applications. A power rating of 6,000 kW (9,000 hp) was established for the motor. An acceptable maximum speed of 70 rpm was determined. A speed increase with a ratio of 1:3 is discussed. The isolated tension straps, the anti-spreader bar and the flexwall bucket, and safety precautions are also discussed.

  6. Pea Chaperones under Centrifugation

    NASA Astrophysics Data System (ADS)

    Talalaiev, Oleksandr

    2008-06-01

    Etiolated Pisum sativum seedlings were subjected to altered g-forces by centrifugation (3-14g). By using semiquantitative RT-PCR, we studied transcripts of pea genes coding for chaperones that are representatives of small heat shock proteins (sHsps) family. Four members from the different classes of sHsps: cytosolic Hsp17.7 and Hsp18.1 (class I and class II accordingly), chloroplast Hsp21 (class III) and endoplasmic reticulum Hsp22.7 (class IV) were investigated. We conclude that exposure to 3, 7, 10 and 14g for 1h did not affect the level of sHsp transcripts.

  7. Centrifugal Adsorption Cartridge System

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Tsao, Yow-Min D.; Lee, Wenshan

    2004-01-01

    The centrifugal adsorption cartridge system (CACS) is an apparatus that recovers one or more bioproduct(s) from a dilute aqueous solution or suspension flowing from a bioreactor. The CACS can be used both on Earth in unit gravity and in space in low gravity. The CACS can be connected downstream from the bioreactor; alternatively, it can be connected into a flow loop that includes the bioreactor so that the liquid can be recycled. A centrifugal adsorption cartridge in the CACS (see figure) includes two concentric cylinders with a spiral ramp between them. The volume between the inner and outer cylinders, and between the turns of the spiral ramp is packed with an adsorbent material. The inner cylinder is a sieve tube covered with a gas-permeable, hydrophobic membrane. During operation, the liquid effluent from the bioreactor is introduced at one end of the spiral ramp, which then constrains the liquid to flow along the spiral path through the adsorbent material. The spiral ramp also makes the flow more nearly uniform than it would otherwise be, and it minimizes any channeling other than that of the spiral flow itself. The adsorbent material is formulated to selectively capture the bioproduct(s) of interest. The bioproduct(s) can then be stored in bound form in the cartridge or else eluted from the cartridge. The centrifugal effect of the spiral flow is utilized to remove gas bubbles from the liquid. The centrifugal effect forces the bubbles radially inward, toward and through the membrane of the inner cylinder. The gas-permeable, hydrophobic membrane allows the bubbles to enter the inner cylinder while keeping the liquid out. The bubbles that thus enter the cylinder are vented to the atmosphere. The spacing between the ramps determines rate of flow along the spiral, and thereby affects the air-bubble-removal efficiency. The spacing between the ramps also determines the length of the fluid path through the cartridge adsorbent, and thus affects the bioproduct

  8. Centrifugal-reciprocating compressor

    NASA Technical Reports Server (NTRS)

    Higa, W. H. (Inventor)

    1984-01-01

    A centrifugal compressor is described which includes at least one pair of cylinders arranged in coaxial alignment and supported for angular displacement about a common axis of rotation normally disecting a common longitudinal axis of symmetry for the cylinders. The cylinders are characterized by ported closures located at the mutually remote ends thereof through which the cylinders are charged and discharged, and a pair of piston heads seated within the cylinders and supported for floating displacement in compressive strokes in response to unidirectional angular displacement imparted to the cylinders.

  9. Robotic Versus Laparoscopic Gastric Resection for Primary Gastrointestinal Stromal Tumors >5 cm: A Size-Matched and Location-Matched Comparison.

    PubMed

    de'Angelis, Nicola; Genova, Pietro; Amiot, Aurelien; Charpy, Cecile; Disabato, Mara; Belgaumkar, Ajay P; Chahrour, Ali; Legou, Francois; Azoulay, Daniel; Brunetti, Francesco

    2017-02-01

    This study compared robotic (RR) and laparoscopic resection (LR) for primary gastrointestinal stromal tumors (GISTs) of the stomach >5 cm. Twelve consecutive patients who underwent RR from 2012 to 2015 were matched for tumor size and location with 24 patients who underwent LR from 2000 to 2012. The median tumor size was 7.1 cm (range, 5.5 to 11.5). GISTs were resected by wedge resection (91.7%) or distal gastrectomy. The median RR operative time was longer than that of LR (162.5 vs. 130 min, respectively; P=0.004). Only 1 LR patient required conversion. The time to flatus and hospital stay were similar between groups. Overall, 3 patients developed minor postoperative complications that were medically treated. Mortality was nil. All resections were R0. No difference was observed in the incidence of recurrence. RR was significantly more expensive (+21.6%) than LR. RR appears to be safe and feasible for GISTs>5 cm, but is associated with longer operative times and greater costs.

  10. Centrifuge impact cratering experiment 5

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Transient crates motions, cratering flow fields, crates dynamics, determining impact conditions from total crater welt, centrifuge quarter-space cratering, and impact cratering mechanics research is documented.

  11. ISS And Space Environment Interactions Without Operating Plasma Contactor

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.; Ferguson, Dale; Suggs,Rob; McCollum, Matt

    2001-01-01

    The International Space Station (ISS) will be the largest, highest power spacecraft placed in orbit. Because of this the design of the electrical power system diverged markedly from previous systems. The solar arrays will operate at 160 V and the power distribution voltage will be 120 V. The structure is grounded to the negative side of the solar arrays so under the right circumstances it is possible to drive the ISS potential very negative. A plasma contactor has been added to the ISS to provide control of the ISS structure potential relative to the ambient plasma. The ISS requirement is that the ISS structure not be greater than 40 V positive or negative of local plasma. What are the ramifications of operating large structures with such high voltage power systems? The application of a plasma contactor on ISS controls the potential between the structure and the local plasma, preventing degrading effects. It is conceivable that there can be situations where the plasma contactor might be non-functional. This might be due to lack of power, the need to turn it off during some of the build-up sequences, the loss of functionality for both plasma contactors before a replacement can be installed, similar circumstances. A study was undertaken to understand how important it is to have the contactor functioning and how long it might be off before unacceptable degradation to ISS could occur. The details of interaction effects on spacecraft have not been addressed until driven by design. This was true for ISS. If the structure is allowed to float highly negative impinging ions can sputter exposed conductors which can degrade the primary surface and also generate contamination due to the sputtered material. Arcing has been known to occur on solar arrays that float negative of the ambient plasma. This can also generate electromagnetic interference and voltage transients. Much of the ISS structure and pressure module surfaces exposed to space is anodized aluminum. The anodization

  12. ISS And Space Environment Interactions Without Operating Plasma Contactor

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.; Ferguson, Dale; Suggs,Rob; McCollum, Matt

    2001-01-01

    The International Space Station (ISS) will be the largest, highest power spacecraft placed in orbit. Because of this the design of the electrical power system diverged markedly from previous systems. The solar arrays will operate at 160 V and the power distribution voltage will be 120 V. The structure is grounded to the negative side of the solar arrays so under the right circumstances it is possible to drive the ISS potential very negative. A plasma contactor has been added to the ISS to provide control of the ISS structure potential relative to the ambient plasma. The ISS requirement is that the ISS structure not be greater than 40 V positive or negative of local plasma. What are the ramifications of operating large structures with such high voltage power systems? The application of a plasma contactor on ISS controls the potential between the structure and the local plasma, preventing degrading effects. It is conceivable that there can be situations where the plasma contactor might be non-functional. This might be due to lack of power, the need to turn it off during some of the build-up sequences, the loss of functionality for both plasma contactors before a replacement can be installed, similar circumstances. A study was undertaken to understand how important it is to have the contactor functioning and how long it might be off before unacceptable degradation to ISS could occur. The details of interaction effects on spacecraft have not been addressed until driven by design. This was true for ISS. If the structure is allowed to float highly negative impinging ions can sputter exposed conductors which can degrade the primary surface and also generate contamination due to the sputtered material. Arcing has been known to occur on solar arrays that float negative of the ambient plasma. This can also generate electromagnetic interference and voltage transients. Much of the ISS structure and pressure module surfaces exposed to space is anodized aluminum. The anodization

  13. Centrifugal shot blast system

    SciTech Connect

    1998-02-01

    This report describes a demonstration of Concrete cleaning, Inc., modified centrifugal shot blast technology to remove the paint coating from concrete flooring. This demonstration is part of the Chicago Pile-5 (CP-5) Large-Scale Demonstration Project (LSDP) sponsored by the US Department of Energy (DOE), office of Science and Technology (OST), Deactivation and Decommissioning Focus Area (DDFA). The objective of the LSDP is to select and demonstrate potentially beneficial technologies at the Argonne National Laboratory-East (ANL) CP-5 Research Reactor. The purpose of the LSDP is to demonstrate that using innovative and improved decontamination and decommissioning (D and D) technologies from various sources can result in significant benefits, such as decreased cost and increased health and safety, as compared with baseline D and D technologies. Potential markets exist for the innovative centrifugal shot blast system at the following sites: Fernald Environmental Management Project, Los Alamos, Nevada, Oak Ridge Y-12 and K-25, Paducah, Portsmouth Gaseous Diffusion site, and the Savannah River Site. This information is based on a revision to the OST Linkage Tables dated August 4, 1997.

  14. Centrifugal precipitation chromatography.

    PubMed

    Ito, Yoichiro; Qi, Lin

    2010-01-15

    Centrifugal precipitation chromatography separates analytes according their solubility in ammonium sulfate (AS) solution and other precipitants. The separation column is made from a pair of long spiral channels partitioned with a semipermeable membrane. In a typical separation, concentrated ammonium sulfate is eluted through one channel while water is eluted through the other channel in the opposite direction. This countercurrent process forms an exponential AS concentration gradient through the water channel. Consequently, protein samples injected into the water channel is subjected to a steadily increasing AS concentration and at the critical AS concentration they are precipitated and deposited in the channel bed by the centrifugal force. Then the chromatographic separation is started by gradually reducing the AS concentration in the AS channel which lowers the AS gradient concentration in the water channel. This results in dissolution of deposited proteins which are again precipitated at an advanced critical point as they move through the channel. Consequently, proteins repeat precipitation and dissolution through a long channel and finally eluted out from the column in the order of their solubility in the AS solution. The present method has been successfully applied to a number of analytes including human serum proteins, recombinant ketosteroid isomerase, carotenoid cleavage enzymes, plasmid DNA, polysaccharide, polymerized pigments, PEG-protein conjugates, etc. The method is capable to single out the target species of proteins by affinity ligand or immunoaffinity separation.

  15. Membrane contactor assisted water extraction system for separating hydrogen peroxide from a working solution, and method thereof

    DOEpatents

    Snyder, Seth W.; Lin, Yupo J.; Hestekin' Jamie A.; Henry, Michael P.; Pujado, Peter; Oroskar, Anil; Kulprathipanja, Santi; Randhava, Sarabjit

    2010-09-21

    The present invention relates to a membrane contactor assisted extraction system and method for extracting a single phase species from multi-phase working solutions. More specifically one preferred embodiment of the invention relates to a method and system for membrane contactor assisted water (MCAWE) extraction of hydrogen peroxide (H.sub.2O.sub.2) from a working solution.

  16. Evaluating hydraulic and disinfection efficiencies of a full-scale ozone contactor using a RANS-based modeling framework.

    PubMed

    Zhang, Jie; Tejada-Martínez, Andrés E; Zhang, Qiong; Lei, Hongxia

    2014-04-01

    The capability of predicting hydraulic and disinfection efficiencies of ozone disinfection contactors is essential for evaluating existing contactors and improving future designs. Previous attempts based on ideal and non-ideal models for the hydraulics and simplified mechanisms for chemical reaction modeling have resulted in low accuracy and are restricted to contactors with simple geometries. This manuscript develops a modeling framework for the ozonation process by combining computational fluid dynamics (CFD) with a kinetics-based reaction modeling for the first time. This computational framework has been applied to the full-scale ozone contactor operated by the City of Tampa Water Department. Flow fields, residence time distribution, ozone concentration distribution, and concentration-contact time (CT) distribution within the contactor have been predicted via the computational framework. The predictions of ozone and bromate concentrations at sample points agree well with physical experimental data measured in the contactor. The predicted CT values at the contactor outlet demonstrate that the disinfection performance of the ozone contactor operated by the City of Tampa Water Department is sufficient to meet regulation requirements. The impact of seasonal flow rate change on disinfection performance is found to be significant and deserves attention during the management and operation of a water treatment plant.

  17. Development of a Power Electronics Unit for the Space Station Plasma Contactor

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Hill, Gerald M.; Patterson, Michael J.; Saggio, Joseph, Jr.; Terdan, Fred; Mansell, Justin D.

    1994-01-01

    A hollow cathode plasma contactor has been baselined as a charge control device for the Space Station (SS) to prevent deleterious interactions of coated structural components with the ambient plasma. NASA LeRC Work Package 4 initiated the development of a plasma contactor system comprised of a Power Electronics Unit (PEU), an Expellant Management Unit (EMU), a command and data interface, and a Plasma Contactor Unit (PCU). A breadboard PEU was designed and fabricated. The breadboard PEU contains a cathode heater and discharge power supply, which were required to operate the PCU, a control and auxiliary power converter, an EMU interface, a command and telemetry interface, and a controller. The cathode heater and discharge supplies utilized a push-pull topology with a switching frequency of 20 kHz and pulse-width-modulated (PWM) control. A pulse ignition circuit derived from that used in arcjet power processors was incorporated in the discharge supply for discharge ignition. An 8088 based microcontroller was utilized in the breadboard model to provide a flexible platform for controller development with a simple command/data interface incorporating a direct connection to SS Mulitplexer/Demultiplexer (MDM) analog and digital I/O cards. Incorporating this in the flight model would eliminate the hardware and software overhead associated with a 1553 serial interface. The PEU autonomously operated the plasma contactor based on command inputs and was successfully integrated with a prototype plasma contactor unit demonstrating reliable ignition of the discharge and steady-state operation.

  18. Emulsion-liquid-membrane extraction of copper using a hollow-fiber contactor

    SciTech Connect

    Hu, S.Y.B.; Wiencek, J.M.

    1998-03-01

    A novel extraction technique using an emulsion liquid membrane within a hollow-fiber contactor was developed and utilized to extract copper using LIX 84 extractant. Emulsion liquid membranes are capable of extracting metals from dilute waste streams to levels much below those possible by equilibrium-limited solvent extraction. Utilizing an emulsion liquid membrane within a hollow-fiber contactor retains the advantages of emulsion-liquid-membrane extraction, namely, simultaneous extraction and stripping, while eliminating problems encountered in dispersive contacting methods, such as swelling and leakage of the liquid membrane. Mathematical models for extraction in hollow-fiber contactors were developed. The models satisfactorily predict the outcome of both simple solvent extraction and emulsion-liquid-membrane extraction of copper by LIX 84 in a hollow-fiber contactor over a wide range of conditions. Emulsion-liquid-membrane extraction performs exceptionally well when the extraction is close to equilibrium limit. It is also capable of extracting a solute f/rom very dilute solutions. Stability of the liquid membrane is not crucial when used in hollow-fiber contactors; the surfactant in liquid membrane can be reduced or even eliminated without severely impairing the performance.

  19. Centrifuge treatment of coal tar

    SciTech Connect

    L.A. Kazak; V.Z. Kaidalov; L.F. Syrova; O.S. Miroshnichenko; A.S. Minakov

    2009-07-15

    New technology is required for the removal of water and heavy fractions from regular coal tar. Centrifuges offer the best option. Purification of coal tar by means of centrifuges at OAO NLMK permits the production of pitch coke or electrode pitch that complies with current standards.

  20. Hyperfine polarization and its normal gradient coefficient of (87)Rb atoms in the vicinity (approximately 10(-5) cm) of coated and uncoated Pyrex glass surfaces.

    PubMed

    Zhao, K; Wu, Z

    2003-09-12

    We have made regionally specific measurement of the hyperfine polarization of 87Rb atoms in the vicinity ( approximately 10(-5) cm) of coated and uncoated Pyrex glass surfaces. We find that the polarization near an uncoated surface decreases rapidly with decreasing distance from the surface whereas for a silicone-coated surface the polarization is independent of the distance from the surface. We have also determined the normal gradient coefficient micro (S.I) of the hyperfine polarization in uncoated cells. In a representative uncoated cell, at a Rb density 7.35 x 10(13) cm(-3) and a pump beam intensity 1.3 W/cm(2), we find micro(S.I)=24+/-7 microm(-1).

  1. Unshrouded Centrifugal Turbopump Impeller

    NASA Technical Reports Server (NTRS)

    Prueger, George; Williams, Morgan; Chen, Wei; Paris, John; Stewart, Eric; Williams, Robert

    1999-01-01

    The ratio of rocket engine thrust to weight is a limiting constraint in placing more payload into orbit at a low cost. A key component of an engine's overall weight is the turbopump weight, Reducing the turbopump weight can result in significant engine weight reduction and hence, increased delivered payload. There are two main types of pumps: centrifugal and axial pumps. These types of pumps can be further sub-divided into those with shrouds and those without shrouds (unshrouded pumps). Centrifugal pumps can achieve the same pump discharge pressure as an axial pump and it requires fewer pump stages and lower pump weight than an axial pump. Also, with unshrouded centrifugal pumps (impeller), the number of stages and weight can be further reduced. However. there are several issues with regard to using an unshrouded impeller: 1) there is a pump performance penalty due to the front open face recirculation flow; 2) there is a potential pump axial thrust problem from the unbalanced front open face and the back shroud face; and, 3) since test data is very linu'ted for this configuration, there is uncertainty in the magnitude and phase of the rotordynamics forces due to the front impeller passage. The purpose of the paper is to discuss the design of an unshrouded impeller and to examine the design's hydrodynamic performance, axial thrust, and rotordynamics performance. The design methodology will also be discussed. This work will help provide some guidelines for unshrouded impeller design. In particular, the paper will discuss the design of three unshrouded impellers - one with 5 full and 5 partial blades (5+5). one with 6+6 blades and one with 8+8 blades. One of these designs will be selected for actual fabrication and flow test. Computational fluid dynamics (CFD) is used to help design and optimize the unshrouded impeller. The relative pump performance penalty is assessed by comparing the CFD results of the unshrouded impeller with the equivalent shrouded impeller for a

  2. Radiofrequency Ablation Combined with Renal Arterial Embolization for the Treatment of Unresectable Renal Cell Carcinoma Larger Than 3.5 cm: Initial Experience

    SciTech Connect

    Yamakado, Koichiro Nakatsuka, Atsuhiro; Kobayashi, Shigeki; Akeboshi, Masao; Takaki, Haruyuki; Kariya, Zentaro; Kinbara, Hiroyuki; Arima, Kiminobu; Yanagawa, Makoto; Hori, Yasuhide; Kato, Hiromi; Sugimura, Yoshiki; Takeda, Kan

    2006-06-15

    The purpose of the study was to evaluate the feasibility, safety, and therapeutic effects of the combination of renal arterial embolization and radiofrequency (RF) ablation to reinforce the anticancer effect on renal cell carcinomas (RCCs) measuring 3.5 cm or larger. This study was undertaken to evaluate this combined therapy on large RCCs-based tumor geometry. Eleven patients with 12 RCCs 3.5 cm or larger in diameter (3.5-9.0 cm) underwent combined therapy. Two were exophytic tumors, and the remaining 10 tumors had components extending into the renal sinus fat. Tumor vessels were selectively embolized in nine patients and the renal artery was completely embolized in two patients with polyvinyl alcohol or ethanol mixed with iodized oil. RF ablation was percutaneously done under the computed tomographic (CT)-fluoroscopic guidance. Response to treatment was evaluated by dynamic contrast-enhanced CT and magnetic resonance (MR) imaging. Tumor enhancement was eliminated after a single RF session in nine tumors (75%), after two sessions in two tumors (17%), and after four sessions in one tumor (8%). Both exophytic tumors (100%) and 7 of 10 tumors having components in the renal sinus fat (70%) were completely ablated with a single RF session. All tumors remained controlled during a mean follow-up period of 13 months and showed significant reduction in tumor sizes (5.2 {+-} 1.7 cm to 3.6 {+-} 1.4 cm, p < 0.001). A delayed abscess developed in the ablated lesion in a patient, which was percutaneously drainaged. Combined therapy as described in this report is a feasible, relatively safe, and promising treatment method for large RCCs regardless of tumor geometry.

  3. Rat growth during chronic centrifugation

    NASA Technical Reports Server (NTRS)

    Pitts, G. C.; Oyama, J.

    1978-01-01

    Female weanling rats were chronically centrifuged at 4.15 G with controls at terrestrial gravity. Samples were sacrificed for body composition studies at 0, 28, 63, 105 and 308 days of centrifugation. The centrifuged group approached a significantly lower mature body mass than the controls (251 and 318g) but the rate of approach was the same in both groups. Retirement to 1G on the 60th day resulted in complete recovery. Among individual components muscle, bone, skin, CNS, heart, kidneys, body water and body fat were changed in the centrifuged group. However, an analysis of the growth of individual components relative to growth of the total fat-free compartment revealed that only skin (which increased in mass) was responding to centrifugation per se.

  4. Rat growth during chronic centrifugation

    NASA Technical Reports Server (NTRS)

    Pitts, G. C.; Oyama, J.

    1978-01-01

    Female weanling rats were chronically centrifuged at 4.15 G with controls at terrestrial gravity. Samples were sacrificed for body composition studies at 0, 28, 63, 105 and 308 days of centrifugation. The centrifuged group approached a significantly lower mature body mass than the controls (251 and 318g) but the rate of approach was the same in both groups. Retirement to 1G on the 60th day resulted in complete recovery. Among individual components muscle, bone, skin, CNS, heart, kidneys, body water and body fat were changed in the centrifuged group. However, an analysis of the growth of individual components relative to growth of the total fat-free compartment revealed that only skin (which increased in mass) was responding to centrifugation per se.

  5. [Galileo and centrifugal force].

    PubMed

    Vilain, Christiane

    This work intends to focus on Galileo's study of what is now called "centrifugal force," within the framework of the Second Day of his Dialogo written in 1632, rather than on the previously published commentaries on the topic. Galileo proposes three geometrical demonstrations in order to prove that gravity will always overcome centrifugalforce, and that the potential rotation of the Earth, whatever its speed, cannot in any case project objects beyond it. Each of these demonstrations must consequently contain an error and it has seemed to us that the first one had not been understood up until now. Our analysis offers an opportunity to return to Galileo's geometrical representation of dynamical questions; actually, we get an insight into the sophistication of Galileo's practices more than into his mistakes. Our second point, concerning the historiography of the problem, shows an evolution from anachronic critics to more contextual considerations, in the course of the second half of the twentieth century.

  6. Gas centrifuge purge method

    DOEpatents

    Theurich, Gordon R.

    1976-01-01

    1. In a method of separating isotopes in a high speed gas centrifuge wherein a vertically oriented cylindrical rotor bowl is adapted to rotate about its axis within an evacuated chamber, and wherein an annular molecular pump having an intake end and a discharge end encircles the uppermost portion of said rotor bowl, said molecular pump being attached along its periphery in a leak-tight manner to said evacuated chamber, and wherein end cap closure means are affixed to the upper end of said rotor bowl, and a process gas withdrawal and insertion system enters said bowl through said end cap closure means, said evacuated chamber, molecular pump and end cap defining an upper zone at the discharge end of said molecular pump, said evacuated chamber, molecular pump and rotor bowl defining a lower annular zone at the intake end of said molecular pump, a method for removing gases from said upper and lower zones during centrifuge operation with a minimum loss of process gas from said rotor bowl, comprising, in combination: continuously measuring the pressure in said upper zone, pumping gas from said lower zone from the time the pressure in said upper zone equals a first preselected value until the pressure in said upper zone is equal to a second preselected value, said first preselected value being greater than said second preselected value, and continuously pumping gas from said upper zone from the time the pressure in said upper zone equals a third preselected value until the pressure in said upper zone is equal to a fourth preselected value, said third preselected value being greater than said first, second and fourth preselected values.

  7. Immunoaffinity centrifugal precipitation chromatography.

    PubMed

    Qi, Lin; Ito, Yoichiro

    2007-06-01

    Purification of proteins based on immunoaffinity has been performed using a solid support coated with antibody against the target proteins. The method requires immobilizing the antibody onto the solid support using protein A or G, and has a risk of adsorptive loss of target proteins onto the solid support. Centrifugal precipitation chromatography has been successfully used to purify enzymes, such as ketosteroid isomerase and hyaluronidase without the use of solid support. The purpose of this study is to demonstrate that immunoaffinity centrifugal precipitation chromatography is capable of isolating an antigen by exploiting antigen-antibody binding. The separation was initiated by filling both channels with 40% saturated ammonium sulfate (AS) of pH 4-4.5 followed by loading 20 microl of human plasma (National Institutes of Health blood bank) mixed with 2 mg of rabbit anti-HSA (human serum protein) antibody (Sigma). Then, the sample channel was eluted with water at 0.03 ml/min and AS channel with 40% AS solution of pH 4-4.5 at 1 ml/min until all non-binding components were eluted. Then, the releasing reagent (50% AS solution containing 0.5 M glycine and 10% ammonium hydroxide at pH 10) was introduced through the AS channel to release the target protein (HSA). The retained antibody was recovered by eluting the sample channel with water at 1 ml/min. A hollow fiber membrane device at the outlet (MicroKros, Spectrum, New Brunswick, NJ, USA) was provided on-line dialysis of the eluent before fractions were collected, so that the fractions could be analyzed by SDS-PAGE (sodium dodecyl sulfate - polyacrylamide gel electrophoresis) without further dialysis. The current method does not require immobilizing the antibody onto a matrix, which is used by the conventional immunoaffinity chromatography. This method ensures full recovery of the antigen and antibody, and it may be applied to purification of other proteins.

  8. ISS Plasma Contactor Units Operations During Strong Geomagnetic Activity

    NASA Astrophysics Data System (ADS)

    Alred, J.; Mikatarian, R.; Barsamian, H.; Minow, J.; Koontz, S.

    2003-12-01

    The large structure and high voltage arrays of the ISS represent a complex system that interacts with the Earth's ionosphere. To mitigate spacecraft charging problems on the ISS, two Plasma Contactor Units discharge ionized xenon gas to "clamp" the potential of the ISS with respect to the low Earth orbit plasma. The Plasma Interaction Model, a model of ISS plasma interaction developed from the basic physics of the interaction phenomena, includes magnetic induction effects, plasma temperature and density effects, interaction of the high voltage solar arrays with ionospheric plasma, and accounts for other conductive areas on the ISS. To augment this model, the PCU discharge current has been monitored for the ISS in a variety of flight attitudes as well as during the annual seasons. A review of the PCU discharge currents shows a correlation to the geomagnetic activity. The variation in the PCU discharge current during strong geomagnetic activity will be presented. Also, the PCU discharge currents during periods of low geomagnetic activity will be discussed. The presentation will conclude with a comparison of satellite plasma measurements during different stages of geomagnetic activity.

  9. Advanced electric propulsion and space plasma contactor research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1986-01-01

    A series of experiments performed on an 8 cm dia. ring cusp magnetic field ion thruster are described. The results show the effects of anode and cathode position and size, ring cusp axial location and discharge chamber length on plasma ion energy cost and extracted ion fraction. Thruster performance is shown to be improved substantially when optimum values of these parameters are used. Investigations into the basic plasma phenomena associated with the process of plasma contacting are described. The results show the process of electron collection from a background plasma to a hollow cathode plasma contactor exhibits a higher impedance than the process of electron emission from the hollow cathode. The importance of having cold ions present to facilitate the plasma contacting process is shown. Results of experiments into the behavior of hollow cathodes operating at high interelectrode pressures (up to approx. 100 Torr) on nitrogen and ammonia are presented. They suggest that diffuse emission from the insert of a hollow cathode can be sustained at high interelectrode pressures if the cathode is made of non-conducting material and the cathode internal pressure is reduced by evacuating the cathode interior. A theoretical model of discharge chamber operation developed for inert gas thrusters is extended so it can be used to evaluste the performance of mercury ion thrusters. Predictions of the model are compared to experimental results obtained on two 30 cm dia. thrusters.

  10. Groundwater treatment in a field pilot methanotrophic rotating biological contactor

    SciTech Connect

    Belcher, D.M.; Vira, A.; Dooley, M.A.; Johnson, J.C.

    1995-12-31

    A pilot-scale rotating biological contactor (RBC) was operated under field conditions for approximately 1 month to remove chlorinated and nonchlorinated organic compounds from groundwater. Methanotrophic conditions were successfully established and maintained in the RBC during the field program. Results of the pilot program indicated that low concentrations of cis-1,2-dichloroethene (cis-DCE) and vinyl chloride could be treated to below the maximum contaminant levels (MCLs) of 70 ad 2 {micro}g/L, respectively. Maximum removal rates for cis-DCE and vinyl chloride measured during the pilot study were 2.14 {micro}g cis-DCE/ft{sup 2} disc media-minute (952 {micro}g cis-DCE/mg volatile solids [VS]-day) and 0.3 {micro}g vinyl chloride/ft{sup 2}-minute (143 {micro}g vinyl chloride/mg VS-day), respectively. Chlorinated ethene removal efficiencies decreased after the first 2 weeks of operation. Low concentrations of toluene, ethylbenzene, and total xylenes (TEX) were effectively removed from groundwater throughout the course of the pilot study. The maximum observed TEX removal rate was 3.0 {micro}g TEX/ft{sup 2}-minute.

  11. Life Cycle Tests on a Hollow Cathode Based Plasma Contactor

    NASA Technical Reports Server (NTRS)

    Vaughn, Jason A.; Schneider, Todd A.; Munafo, Paul (Technical Monitor)

    2001-01-01

    The propulsive Small Expendable Deployer System (ProSEDS) mission is designed to provide an on-orbit demonstration of the electrodynamic propulsion capabilities of tethers in space. The ProSEDS experiment will be a secondary payload on a Delta II unmanned expendable booster with a mission duration of 12 days. A 5-km conductive tether is attached to the Delta II second stage and collects current from the low Earth orbit (LEO) plasma, and a Hollow Cathode Plasma Contactor (HCPC) emits the collected electrons from the Delta II, completing the electrical circuit to the ambient plasma. The HCPC for the ProSEDS mission have made it necessary to turn off the HCPC once a minute throughout the entire mission. Because of the unusual operating requirements by the ProSEDS mission, an engineering development unit of the HCPC was built to demonstrate the HCPC design would start reliably for the life of the ProSEDS mission. During the life test the engineering unit cycled for over 10,000 on/off cycles without missing a single start, and during that same test the HCPC unit demonstrated the capability to emit 0 to 5 A electron emission current. The performance of the HCPC unit during this life test will be discussed.

  12. Life Cycle Tests on a Hollow Cathode Based Plasma Contactor

    NASA Technical Reports Server (NTRS)

    Vaughn, Jason A.; Schneider, Todd A.; Munafo, Paul (Technical Monitor)

    2001-01-01

    The propulsive Small Expendable Deployer System (ProSEDS) mission is designed to provide an on-orbit demonstration of the electrodynamic propulsion capabilities of tethers in space. The ProSEDS experiment will be a secondary payload on a Delta II unmanned expendable booster with a mission duration of 12 days. A 5-km conductive tether is attached to the Delta II second stage and collects current from the low Earth orbit (LEO) plasma, and a Hollow Cathode Plasma Contactor (HCPC) emits the collected electrons from the Delta II, completing the electrical circuit to the ambient plasma. The HCPC for the ProSEDS mission have made it necessary to turn off the HCPC once a minute throughout the entire mission. Because of the unusual operating requirements by the ProSEDS mission, an engineering development unit of the HCPC was built to demonstrate the HCPC design would start reliably for the life of the ProSEDS mission. During the life test the engineering unit cycled for over 10,000 on/off cycles without missing a single start, and during that same test the HCPC unit demonstrated the capability to emit 0 to 5 A electron emission current. The performance of the HCPC unit during this life test will be discussed.

  13. Mass Transfer And Hydraulic Testing Of The V-05 And V-10 Contactors With The Next Generation Solvent

    SciTech Connect

    Herman, D. T.; Duignan, M. R.; Williams, M. R.; Peters, T. B.; Poirier, M. R.; Fondeur, F. F.

    2013-07-31

    The Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) facility is actively pursuing the transition from the current BOBCalixC6 based solvent to the Next Generation Solvent (NGS)-MCU solvent. To support this integration of NGS into the MCU facilities, Savannah River Remediation (SRR) requested that Savannah River National Laboratory (SRNL) perform testing of a blend of the NGS (MaxCalix based solvent) with the current solvent (BOBCalixC6 based solvent) for the removal of cesium (Cs) from the liquid salt waste stream. This testing differs from prior testing by utilizing a blend of BOBCalixC6 based solvent and the NGS with the full (0.05 M) concentration of the MaxCalix as well as a new suppressor, tris(3,7dimethyloctyl) guanidine. Single stage tests were conducted using the full size V-05 and V-10 centrifugal contactors installed at SRNL. These tests were designed to determine the mass transfer and hydraulic characteristics with the NGS solvent blended with the projected heel of the BOBCalixC6 based solvent that will exist in MCU at time of transition. The test program evaluated the amount of organic carryover and the droplet size of the organic carryover phases using several analytical methods. Stage efficiency and mass distribution ratios were determined by measuring Cs concentration in the aqueous and organic phases during single contactor testing. The nominal cesium distribution ratio, D(Cs) measured for extraction ranged from 37-60. The data showed greater than 96% stage efficiency for extraction. No significant differences were noted for operations at 4, 8 or 12 gpm aqueous salt simulant feed flow rates. The first scrub test (contact with weak caustic solution) yielded average scrub D(Cs) values of 3.3 to 5.2 and the second scrub test produced an average value of 1.8 to 2.3. For stripping behavior, the “first stage” D Cs) values ranged from 0.04 to 0.08. The efficiency of the low flow (0.27 gpm aqueous) was calculated to be 82.7%. The Spreadsheet

  14. Extended test of a xenon hollow cathode for a space plasma contactor

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.

    1994-01-01

    Implementation of a hollow cathode plasma contactor for charge control on the Space Station has required validation of long-life hollow cathodes. A test series of hollow cathodes and hollow cathode plasma contactors was initiated as part of the plasma contactor development program. An on-going wear-test of a hollow cathode has demonstrated cathode operation in excess of 4700 hours with small changes in operating parameters. The discharge experienced 4 shutdowns during the test, all of which were due to test facility failures or expellant replenishment. In all cases, the cathode was reignited at approximately 42 volts and resumed typical operation. This test represents the longest demonstrated stable operation of a high current (greater than 1A) xenon hollow cathode reported to date.

  15. Continuing life test of a xenon hollow cathode for a space plasma contactor

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.

    1994-01-01

    Implementation of a hollow cathode plasma contactor for charge control on the Space Station has required validation of long-life hollow cathodes. A test series of hollow cathodes and hollow cathode plasma contactors was initiated as part of the plasma contactor development program. An on-going wear-test of a hollow cathode has demonstrated cathode operation in excess of 10,000 hours with small changes in operating parameters. The discharge has experienced 10 shutdowns during the test, all of which were due to test facility failures or expellant replenishment. In all cases, the cathode was re-ignited at approximately 42 volts and resumed typical operation. This test represents the longest demonstrated stable operation of a high current (greater than 1 A) xenon hollow cathode reported to date.

  16. Application of PTFE membrane for ammonia removal in a membrane contactor.

    PubMed

    Ahn, Y T; Hwang, Y H; Shin, H S

    2011-01-01

    The feasibility of a membrane contactor system for ammonia removal was studied. The mass transfer coefficient was used to quantitatively compare the effect of various operation conditions on ammonia removal efficiency. Effective removal of ammonia was possible with a Polytetrafluoroethylene (PTFE) membrane contactor system at all tested conditions. Among the various operation parameters, contact time and solution pH showed significant effect on the ammonia removal mechanism. The overall ammonia removal rate was not affected by influent suspended solution concentration unlike other pressure driven membrane filtration processes. Also the osmotic distillation phenomena which deteriorate the mass transfer efficiency can be minimized by preheating of influent wastewater. A membrane contactor system can be a possible alternative to treat high strength nitrogen wastewater by optimizing operation conditions such as stripping solution flow rate, influent wastewater temperature, and influent pH.

  17. Apparatus for supporting contactors used in extracting nuclear materials from liquids

    DOEpatents

    Leonard, Ralph A.; Frank, Robert C.

    1991-01-01

    Apparatus is provided for supporting one or more contactor stages used to remove radioactive materials from aqueous solutions. The contactor stages include a housing having an internal rotor, a motor secured to the top of the housing for rotating the rotor, and a drain in the bottom of the housing. The support apparatus includes two or more vertical members each secured to a ground support that is horizontal and perpendicular to the frame member, and a horizontally disposed frame member. The frame member may be any suitable shape, but is preferably a rectangular tube having substantially flat, spaced top and bottom surfaces separated by substantially vertical side surfaces. The top and bottom surfaces each have an opening through which the contactor housing is secured so that the motor is above the frame and the drain is below the frame during use.

  18. Separation of boric acid in liquid waste with anion exchange membrane contactor

    SciTech Connect

    Park, J.K.; Lee, K.J.

    1995-12-31

    In order to separate boric acid in liquid waste, some possible technologies were investigated and the membrane contactor without dispersion and density differences was selected. The separation experiments on a Celgard 3401{reg_sign} hydrophilic microporous membrane contactor were first performed to obtain the basic data and to determine the properties of the contactor. The experimental conditions were as follows: boric acid concentrations up to 2.0 M, pH 7.0, temperatures of 25 and 55 C, and flow rates of 100, 300, 500, and 800 cm{sup 3}/min. Secondly, an AFN{reg_sign} anion exchange membrane contactor was tested at temperatures of 40 and 55 C and flow rate 400 cm{sup 3}/min. Boric acid solutions were prepared by the same method as that for Celgard 3401{reg_sign} but contained 5.0{times}10{sup {minus}4} M cobalt chloride (CoCl{sub 2}). To simulate membrane contractors, parameters such as the differential diffusion coefficients of boric acid and the mass transfer coefficients in the AFN membrane were measured, and regression models estimating the diffusion coefficient at several conditions were developed. The Celgard 3401{reg_sign} membrane contactor was simulated and compared with experimental data. Simulation results agreed with the experimental data well when a proper correction factor was utilized. The correction factor was independent of the solution temperature and was 8.75 at the flow rates of 300--800 cm{sup 3}/min. This correction factor was also applied to simulate the AFN{reg_sign} resulted in a good agreement with experiment at 40 C, but not 55 C. The retention on cobalt was also better at 40 c than 55 C. The simulating computer program was also applied to a life size contactor designed conceptually.

  19. Reliability Optimization Design for Contact Springs of AC Contactors Based on Adaptive Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Zhao, Sheng; Su, Xiuping; Wu, Ziran; Xu, Chengwen

    The paper illustrates the procedure of reliability optimization modeling for contact springs of AC contactors under nonlinear multi-constraint conditions. The adaptive genetic algorithm (AGA) is utilized to perform reliability optimization on the contact spring parameters of a type of AC contactor. A method that changes crossover and mutation rates at different times in the AGA can effectively avoid premature convergence, and experimental tests are performed after optimization. The experimental result shows that the mass of each optimized spring is reduced by 16.2%, while the reliability increases to 99.9% from 94.5%. The experimental result verifies the correctness and feasibility of this reliability optimization designing method.

  20. Design, performance, and evaluation of a direct-current contactor for space nuclear electrical systems

    NASA Technical Reports Server (NTRS)

    Mueller, L. A.; Medwid, D. W.; Koutnik, E. A.; Powell, A. H.

    1972-01-01

    A direct-current contactor for use in large space power systems was designed, built, and tested. It was developed to be operational in an environment of 540 C and at a pressure of 0.0001 N/sq m or lower. The contactor is rated to pass 10 A continuously and to interrupt a 20-A current at 10,000 V. It was tested to determine the corona threshold level and the leakage current at different temperatures. Also, it was tested for its closing and interruption ability.

  1. Waves in Strong Centrifugal Field

    NASA Astrophysics Data System (ADS)

    Bogovalov, S. V.; Kislov, V. A.; Tronin, I. V.

    Dynamics of waves generated by scopes in gas centrifuges (GC) for isotope separation is considered. The centrifugal acceleration in the GC reaches values of the order of 106g. The centrifugal and Coriolis forces modify essentially the conventional sound waves. Three families of the waves with different polarization and dispersion exist in these conditions. Dynamics of the flow in the model GC Iguasu is investigated numerically. Comparison of the results of the numerical modeling of the wave dynamics with the analytical predictions is performed. New phenomena of the resonances in the GC is found. The resonances occur for the waves polarized along the rotational axis having the smallest dumping due to the viscosity.

  2. An optical amplifier having 5 cm long silica-clad erbium doped phosphate glass fiber fabricated by "core-suction" technique

    NASA Astrophysics Data System (ADS)

    Goel, Nitin K.; Pickrell, Gary; Stolen, Roger

    2014-08-01

    We have fabricated an erbium-doped phosphate glass fiber with a silica cladding and used 5 cm length of it to form an optical amplifier. A bulk erbium phosphate glass called MM2 was used as a core glass in a silica cladding tube to prepare a preform using "core-suction" technique. This MM2 glass preform was drawn to a fiber and the resultant fiber was of good optical quality, free from air bubbles and major defects. The fiber was mechanically strong enough to allow for ease of handling and could be spliced to conventional silica fiber using commercial fusion splicer. This fiber was then used to setup an EDFA. Our work demonstrates the potential to form silica clad optical fibers with phosphate cores doped with very high levels of rare-earth ions. It is demonstrated that the core suction technique can be used to make a high-gain erbium phosphate fiber amplifier that is compatible with conventional silica fibers.

  3. Change in transmittance of fused silica as a means of detecting material sputtered from components on a 5-cm ion thruster

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.; Mirtich, M. J.

    1972-01-01

    Two endurance tests of a 5-cm mercury bombardment thruster are reported. Both tests used a translational screen-grid system with the beam vectored 10 degrees. The first test lasted 141 hours and the second test operated for 2026 hours. In each test two fused silica samples (solar cell covers), 2.0 cm by 2.1 cm, were placed in shielded holders to detect materials sputtered from the thruster. Spectral optical properties between 0.398 and 2.16 microns were measured on each sample, both before and after the endurance tests. The deposition on each sample was spectrographically analyzed to determine the type of materials sputtered from the thruster. It was found that sputtering from the neutralizer is highly dependent on its position with respect to the beam edge. The sputtering from the accelerator grid of the translational screen-grid system of the 2026 hour test was sufficient to form an opaque film on the sample located in the direction opposite to the vectored beam.

  4. Centrifugal pump impeller

    SciTech Connect

    Lovisetto, P.

    1988-01-19

    An impeller for a centrifugal pump is described comprising: a rotatable impeller shaft; circumferentially spaced vanes mounted for rotation with the impeller shaft, the vanes extending outwardly relative to the impeller shaft and each including first and second axially-spaced edges; first and second axially-spaced cover members for vanes, the cover members being mounted for rotation with the impeller shaft and extending outwardly relative to the axial direction of the impeller shaft, the first cover member being disposed adjacent to the first edges of the vanes and the second cover member being disposed adjacent to the second edges of the vanes so as to provide an impeller chamber between the first and second cover members which is divided into subchambers by the vanes. One of the first and second cover members has a centrally disposed inlet opening therethrough for admitting fluid into the impeller chamber to then be conducted outwardly upon rotation of the impeller shaft; and the fist cover member being so constructed and mounted relative to the vanes that a portion thereof is free to flex axially away from respective portions of the first edges of the vanes in response to fluid pressure pulsations within the impeller chamber to temporarily increase the distance between the portion of the first cover and the respective portions of the first edges of the vanes.

  5. HOUSINGS AND MOUNTINGS FOR CENTRIFUGES

    DOEpatents

    Rushing, F.C.

    1960-08-16

    A protective housing for a gas centrifuge comprises a slidable connection between flanges and framework portions for absorbing rotational energy in case of bursting of the rotor and a sealing means for sealing the rotor chamber.

  6. Modeling multicomponent gas separation using hollow-fiber membrane contactors

    SciTech Connect

    Coker, D.T.; Freeman, B.D.; Fleming, G.K.

    1998-06-01

    A model developed for multicomponent gas separation using hollow-fiber contactors permits simulation of cocurrent, countercurrent, and crossflow contacting patterns with permeate purging (or sweep). The numerical approach proposed permits simulation to much higher stage cuts than previously published work and provides rapid and stable solutions for cases with many components, with widely varying permeability coefficients. This new approach also permits the rational and straightforward incorporation of effects such as permeate sweep, pressure-dependent permeability coefficients, and bore side pressure gradients. Simulation results are presented for separation of commercially significant multicomponent gas mixtures using polymer permeation properties similar to those of polysulfone. The effect of permeate purging on separation performance is explored for air separation. The influence of pressure ratio on hydrogen separation performance for a refinery stream is presented. Air is modeled as a four-component mixture of O{sub 2}, N{sub 2}, CO{sub 2}, and H{sub 2}O and the refinery stream contains five components: H{sub 2}, CH{sub 4}, C{sub 2}H{sub 4}, C{sub 2}H{sub 6}, and C{sub 3}H{sub 8}. In air separation, permeate purging with a small fraction of the residue stream provides a very effective method for improving module efficiency for drying but is not efficient for improving nitrogen purity or recovery. In multicomponent mixtures, maxima in the compositions of components of intermediate permeability may be observed as a function of distance along the hollow fiber. This result suggests the use of membrane staging to capture these components at their maximum concentration.

  7. Centrifugal dryers keep pace with the market

    SciTech Connect

    Fiscor, S.

    2008-03-15

    New plant design and upgrades create a shift in dewatering strategies. The article describes recent developments. Three major manufacturers supply centrifugal dryers - TEMA, Centrifugal & Mechanical Industries (CMI) and Ludowici. CMI introduced a line of vertical centrifugal dryers. TEMA improved the techniques by developing a horizontal vibratory centrifuge (HVC) which simplified maintenance. 3 figs., 1 photo.

  8. Microwave assisted centrifuge and related methods

    DOEpatents

    Meikrantz, David H [Idaho Falls, ID

    2010-08-17

    Centrifuge samples may be exposed to microwave energy to heat the samples during centrifugation and to promote separation of the different components or constituents of the samples using a centrifuge device configured for generating microwave energy and directing the microwave energy at a sample located in the centrifuge.

  9. Variable-Speed Instrumented Centrifuges

    NASA Technical Reports Server (NTRS)

    Chapman, David K.; Brown, Allan H.

    1991-01-01

    Report describes conceptual pair of centrifuges, speed of which varied to produce range of artificial gravities in zero-gravity environment. Image and data recording and controlled temperature and gravity provided for 12 experiments. Microprocessor-controlled centrifuges include video cameras to record stop-motion images of experiments. Potential applications include studies of effect of gravity on growth and on production of hormones in corn seedlings, experiments with magnetic flotation to separate cells, and electrophoresis to separate large fragments of deoxyribonucleic acid.

  10. Variable-Speed Instrumented Centrifuges

    NASA Technical Reports Server (NTRS)

    Chapman, David K.; Brown, Allan H.

    1991-01-01

    Report describes conceptual pair of centrifuges, speed of which varied to produce range of artificial gravities in zero-gravity environment. Image and data recording and controlled temperature and gravity provided for 12 experiments. Microprocessor-controlled centrifuges include video cameras to record stop-motion images of experiments. Potential applications include studies of effect of gravity on growth and on production of hormones in corn seedlings, experiments with magnetic flotation to separate cells, and electrophoresis to separate large fragments of deoxyribonucleic acid.

  11. Centrifugal Compressor Aeroelastic Analysis Code

    NASA Astrophysics Data System (ADS)

    Keith, Theo G., Jr.; Srivastava, Rakesh

    2002-01-01

    Centrifugal compressors are very widely used in the turbomachine industry where low mass flow rates are required. Gas turbine engines for tanks, rotorcraft and small jets rely extensively on centrifugal compressors for rugged and compact design. These compressors experience problems related with unsteadiness of flowfields, such as stall flutter, separation at the trailing edge over diffuser guide vanes, tip vortex unsteadiness, etc., leading to rotating stall and surge. Considerable interest exists in small gas turbine engine manufacturers to understand and eventually eliminate the problems related to centrifugal compressors. The geometric complexity of centrifugal compressor blades and the twisting of the blade passages makes the linear methods inapplicable. Advanced computational fluid dynamics (CFD) methods are needed for accurate unsteady aerodynamic and aeroelastic analysis of centrifugal compressors. Most of the current day industrial turbomachines and small aircraft engines are designed with a centrifugal compressor. With such a large customer base and NASA Glenn Research Center being, the lead center for turbomachines, it is important that adequate emphasis be placed on this area as well. Currently, this activity is not supported under any project at NASA Glenn.

  12. The efficacy of performing shockwave lithotripsy before retrograde intrarenal surgery in the treatment of multiple or large (≥1.5 cm) nephrolithiasis: A propensity score matched analysis

    PubMed Central

    Shim, Myungsun; Park, Myungchan

    2017-01-01

    Purpose To investigate the effect of performing shockwave lithotripsy (SWL) before retrograde intrarenal surgery (RIRS) on the treatment outcomes of patients with nephrolithiasis. Materials and Methods The data of 189 patients with renal stones who underwent RIRS from July 2007 to July 2014 was reviewed retrospectively. Patients with stones larger than 1.5 cm were recommended to undergo SWL before RIRS. Patients were divided into 2 groups based on whether the preoperative SWL was performed (group 1, n=68) or not (group 2, n=121). The cohorts of the 2 groups cohorts were matched 1:1 using propensity score analysis. Patient, stone characteristics, operative parameters, and stone-free rates were compared. Results Patients in groups 1 and 2 were matched with respect to stone size, number, and location, leaving 57 patients in each group. After matching, no differences were identified between the 2 groups regarding age, body mass index, sex, stone composition, density and multiplicity. Compared to group 2 patients, patients in group 1 had fewer number of procedures performed (1.10 vs. 1.26, p=0.045) and higher stone-free rate (89.4% vs.73.6%, p=0.039). In multivariate analysis, Non lower calyceal location (odd ratio [OR], 8.215; 95% confidence interval [CI], 1.782–21.982; p=0.041), stone size (OR, 6.932; 95% CI, 1.022–18.283; p<0.001), and preoperative SWL (OR, 2.210; 95% CI, 1.058–7.157; p=0.019) were independent factors predicting a stone-free state after RIRS. Conclusions Performing SWL before RIRS may favor stone eliminations during surgery and increase the stone-free rate in selected patients. PMID:28097265

  13. Porcine skin damage thresholds for 0.6 to 9.5 cm beam diameters from 1070-nm continuous-wave infrared laser radiation.

    PubMed

    Vincelette, Rebecca; Noojin, Gary D; Harbert, Corey A; Schuster, Kurt J; Shingledecker, Aurora D; Stolarski, Dave; Kumru, Semih S; Oliver, Jeffrey W

    2014-03-01

    There is an increasing use of high-power fiber lasers in manufacturing and telecommunications industries operating in the infrared spectrum between 1000 and 2000 nm, which are advertised to provide as much as 10 kW continuous output power at 1070 nm. Safety standards have traditionally been based on experimental and modeling investigations with scant data available for these wavelengths. A series of studies using 1070-nm infrared lasers to determine the minimum visible lesion damage thresholds in skin using the Yucatan miniature pig (Sus scrofa domestica) for a range of beam diameters (0.6, 1.1, 1.9, 2.4, 4.7, and 9.5 cm) and a range of exposure durations (10 ms to 10 s) is presented. Experimental peak temperatures associated with each damage threshold were measured using thermal imaging. Peak temperatures at damage threshold for the 10-s exposures were ∼10°C lower than those at shorter exposures. The lowest and highest experimental minimum visible lesion damage thresholds were found to have peak radiant exposures of 19 and 432  J/cm2 for the beam diameter-exposure duration pairs of 2.4 cm, 25 ms and 0.6 cm, 10 s, respectively. Thresholds for beam diameters >2.5  cm had a weak to no effect on threshold radiant exposure levels for exposure times ≤0.25  s, but may have a larger effect on thresholds for exposures ≥10  s.

  14. Quality assurance for a multicenter Phase II study of stereotactic ablative radiotherapy for hepatocellular carcinoma ≤5 cm: a planning dummy run.

    PubMed

    Bae, Sun Hyun; Kim, Mi-Sook; Jang, Won Il; Kim, Kum Bae; Cho, Kwang Hwan; Kim, Woo Chul; Lee, Chang Yeol; Kim, Eun Seog; Choi, Chul Won; Chang, A Ram; Jo, Sunmi; Kim, Jin-Young

    2017-06-01

    The Korean Radiation Oncology Group (12-02) investigated the outcome of stereotactic ablative radiotherapy for hepatocellular carcinoma ≤5 cm using 60 Gy in three fractions. To evaluate dosimetric differences and compliance in a multicenter trial, a planning dummy run procedure was performed. All six participating institutions were provided the contours of two dummy run cases. Plans were performed following the study protocol to cover the planning target volume with a minimum of 90% of the prescription dose and to satisfy the constraints for organs at risk. We assessed the institutional variations in plans using dose-volume histograms. Different planning techniques were applied: static intensity-modulated radiotherapy in two institutions, CyberKnife in two institutions and RapidArc in two institutions. The conformity index of all 12 plans was ≤1.2. In terms of the planning target volume coverage, all participants followed our study protocol. For the second dummy run case, located in Segment 8 near the heart, the minimum dose of the planning target volume (D99%: dose covering 99% of the planning target volume) was variable because there was no mention of constraints of D99% of the planning target volume in the study protocol. As an important organ at risk, the normal liver volumes receiving <17 Gy in all 12 plans were >700 ml. Dosimetric parameters showed acceptable compliance with the study protocol. However, we found the possibility of underdose to the planning target volume if the hepatocellular carcinoma lesion was located near organs at risk such as the heart. Based on this dummy run, we will conduct individual case reviews to minimize the effects of study protocol deviation.

  15. Surface-Roughness-Based Virtual Textiles: Evaluation Using a Multi-Contactor Display.

    PubMed

    Philpott, Matthew; Summers, Ian R

    2015-01-01

    Virtual textiles, generated in response to exploratory movements, are presented to the fingertip via a 24-contactor vibrotactile array. Software models are based on surface-roughness profiles from real textiles. Results suggest that distinguishable "textile-like" surfaces are produced, but these lack the necessary accuracy for reliable matching to real textiles.

  16. An experimental investigation of hollow cathode-based plasma contactors. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Williams, John D.

    1991-01-01

    Experimental results are presented which describe operation of the plasma environment associated with a hollow cathod-based plasma contactor collecting electrons from or emitting them to an ambient, low density Maxwellian plasma. A one-dimensional, phenomenological model of the near-field electron collection process, which was formulated from experimental observations, is presented. It considers three regions, namely, a plasma cloud adjacent to the contactor, an ambient plasma from which electrons are collected, and a double layer region that develops between the contactor plasma cloud and the ambient plasma regions. Results of the electron emission experiments are also presented. An important observation is made using a retarding potential analyzer (RPA) which shows that high energy ions generally stream from a contactor along with the electrons being emitted. A mechanism for this phenomenon is presented and it involves a high rate of ionization induced between electrons and atoms flowing together from the hollow cathode orifice. This can result in the development of a region of high positive potential. Langmuir and RPA probe data suggest that both electrons and ions expand spherically from this hill region. In addition to experimental observations, a one-dimensional model which describes the electron emission process and predicts the phenomena just mentioned is presented and shown to agree qualitatively with these observations.

  17. Using 3D LIF to Investigate and Improve Performance of a Multichamber Ozone Contactor

    EPA Science Inventory

    Three-dimensional laser-induced fluorescence (3DLIF) was applied to visualize and quantitatively analyze hydrodynamics and mixing in a multi-chamber ozone contactor, the most widely used design for water disinfection. The results suggested that the mixing was characterized by ext...

  18. Validation of a simple method for predicting the disinfection performance in a flow-through contactor.

    PubMed

    Pfeiffer, Valentin; Barbeau, Benoit

    2014-02-01

    Despite its shortcomings, the T10 method introduced by the United States Environmental Protection Agency (USEPA) in 1989 is currently the method most frequently used in North America to calculate disinfection performance. Other methods (e.g., the Integrated Disinfection Design Framework, IDDF) have been advanced as replacements, and more recently, the USEPA suggested the Extended T10 and Extended CSTR (Continuous Stirred-Tank Reactor) methods to improve the inactivation calculations within ozone contactors. To develop a method that fully considers the hydraulic behavior of the contactor, two models (Plug Flow with Dispersion and N-CSTR) were successfully fitted with five tracer tests results derived from four Water Treatment Plants and a pilot-scale contactor. A new method based on the N-CSTR model was defined as the Partially Segregated (Pseg) method. The predictions from all the methods mentioned were compared under conditions of poor and good hydraulic performance, low and high disinfectant decay, and different levels of inactivation. These methods were also compared with experimental results from a chlorine pilot-scale contactor used for Escherichia coli inactivation. The T10 and Extended T10 methods led to large over- and under-estimations. The Segregated Flow Analysis (used in the IDDF) also considerably overestimated the inactivation under high disinfectant decay. Only the Extended CSTR and Pseg methods produced realistic and conservative predictions in all cases. Finally, a simple implementation procedure of the Pseg method was suggested for calculation of disinfection performance.

  19. Theory of plasma contactors in ground-based experiments and low Earth orbit

    NASA Technical Reports Server (NTRS)

    Gerver, M. J.; Hastings, Daniel E.; Oberhardt, M. R.

    1990-01-01

    Previous theoretical work on plasma contactors as current collectors has fallen into two categories: collisionless double layer theory (describing space charge limited contactor clouds) and collisional quasineutral theory. Ground based experiments at low current are well explained by double layer theory, but this theory does not scale well to power generation by electrodynamic tethers in space, since very high anode potentials are needed to draw a substantial ambient electron current across the magnetic field in the absence of collisions (or effective collisions due to turbulence). Isotropic quasineutral models of contactor clouds, extending over a region where the effective collision frequency upsilon sub e exceeds the electron cyclotron frequency omega sub ce, have low anode potentials, but would collect very little ambient electron current, much less than the emitted ion current. A new model is presented, for an anisotropic contactor cloud oriented along the magnetic field, with upsilon sub e less than omega sub ce. The electron motion along the magnetic field is nearly collisionless, forming double layers in that direction, while across the magnetic field the electrons diffuse collisionally and the potential profile is determined by quasineutrality. Using a simplified expression for upsilon sub e due to ion acoustic turbulence, an analytic solution has been found for this model, which should be applicable to current collection in space. The anode potential is low and the collected ambient electron current can be several times the emitted ion current.

  20. Rotating biological contactors: Wastewater treatment. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1995-10-01

    The bibliography contains citations concerning wastewater treatment using rotating biological contactors (RBC). Citations focus on reaction kinetics, operational modeling, and removal efficiencies. Biological oxygen demand (BOD) and nitrogen removal are discussed. Citations examine performance of RBCs in industrial and municipal applications. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  1. Membrane contactors in the beverage industry for controlling the water gas composition.

    PubMed

    Criscuoli, Alessandra; Drioli, Enrico; Moretti, Ugo

    2003-03-01

    In the work described here, membrane contactors are used for coupling the removal of species (oxygen and hydrogen sulfide) present in the water with the water carbonation process. We include both experiments and a theoretical study devoted to the analysis of the transport phenomena that occur in the membrane contactor. The main resistance to mass transport was located at the liquid side. Correlations between Sherwood and Reynolds numbers on the shell side that are suitable for the membrane contactor used to carry out our experiments have been determined. In particular, for Re > 1.6, the expression proposed by Yang and Cussler in 1986: Sh = 0.90 Re(0.40) Sc(0.33) describes the behavior of the system; whereas, for Re between 0.03 and 0.3, a new expression is proposed: Sh = 0.435 Re(1.2)Sc(0.33). A comparison with traditional equipment is also furnished. Membrane contactors offer reduced size, CO(2) consumption, and capital costs.

  2. Research News: Emulsion Liquid Membrane Extraction in a Hollow-Fiber Contactor

    NASA Technical Reports Server (NTRS)

    Wiencek, John M.; Hu, Shih-Yao

    2000-01-01

    This article describes how ELMs (emulsion liquid membranes) can be used for extraction. The article addresses the disadvantages of ELM extraction in a stirred contactor, and the advantages of SELMs (supported emulsion liquid membranes). The introduction of the article provides background information on liquid-liquid solvent extraction and dispersion-free solvent extraction.

  3. Evaluation of high-efficiency gas liquid contactors for natural gas processing

    SciTech Connect

    Palla, N.; Lee, A.L.

    1995-06-01

    The objectives of this program are to develop and evaluate advanced processing technologies that can reduce the cost of upgrading sub quality natural gas to pipeline standards. The successful application of cost-effective, new technologies will facilitate the production of sub quality natural gas that otherwise would be too expensive to produce. The overall program is focused on the following activities: evaluation of the potential of structured packing for the removal of acid gases from natural gases, and expansion of the currently available database of the fluid dynamics of rotating gas liquid contactors. The natural gas sweetening, structured packing field tests are scheduled to be conducted in calendar year 1995. Design, procurement and construction of the field test unit. Expansion of the available data base on the hydraulic characteristics of a rotating gas-liquid contactor is being pursued through a series of laboratory experiments. A 100 GPM, low pressure rotary contactor system has been assembled at IGT`s Energy Development Center to examine the fluid dynamic behavior of this type of contactor. The studies are determining the effects of liquid viscosity, liquid surface tension and operating conditions on liquid residence times and flooding limits.

  4. Using 3D LIF to Investigate and Improve Performance of a Multichamber Ozone Contactor

    EPA Science Inventory

    Three-dimensional laser-induced fluorescence (3DLIF) was applied to visualize and quantitatively analyze hydrodynamics and mixing in a multi-chamber ozone contactor, the most widely used design for water disinfection. The results suggested that the mixing was characterized by ext...

  5. International Space Station (ISS) Plasma Contactor Unit (PCU) Utilization Plan Assessment Update

    NASA Technical Reports Server (NTRS)

    Hernandez-Pellerano, Amri; Iannello, Christopher J.; Wollack, Edward J.; Wright, Kenneth H.; Garrett, Henry B.; Ging, Andrew T.; Katz, Ira; Keith, R. Lloyd; Minow, Joseph I.; Willis, Emily M.; Schneider, Todd A.; Whittlesey, Albert C.

    2014-01-01

    The NASA Engineering and Safety Center (NESC) received a request to support the Assessment of the International Space Station (ISS) Plasma Contactor Unit (PCU) Utilization Update. The NESC conducted an earlier assessment of the use of the PCU in 2009. This document contains the outcome of the assessment update.

  6. Research News: Emulsion Liquid Membrane Extraction in a Hollow-Fiber Contactor

    NASA Technical Reports Server (NTRS)

    Wiencek, John M.; Hu, Shih-Yao

    2000-01-01

    This article describes how ELMs (emulsion liquid membranes) can be used for extraction. The article addresses the disadvantages of ELM extraction in a stirred contactor, and the advantages of SELMs (supported emulsion liquid membranes). The introduction of the article provides background information on liquid-liquid solvent extraction and dispersion-free solvent extraction.

  7. CENTRIFUGAL MEMBRANE FILTRATION

    SciTech Connect

    William A. Greene; Patricia A. Kirk; Richard Hayes; Joshua Riley

    2005-10-28

    SpinTek Membrane Systems, Inc., the developer of a centrifugal membrane filtration technology, has engineered and developed a system for use within the U.S. Department of Energy (DOE) Environmental Management (EM) Program. The technology uses supported microporous membranes rotating at high rpm, under pressure, to separate suspended and colloidal solids from liquid streams, yielding a solids-free permeate stream and a highly concentrated solids stream. This is a crosscutting technology that falls under the Efficient Separations and Processing Crosscutting Program, with potential application to tank wastes, contaminated groundwater, landfill leachate, and secondary liquid waste streams from other remediation processes, including decontamination and decommissioning systems. SpinTek II High Shear Rotary Membrane Filtration System is a unique compact crossflow membrane system that has large, demonstrable advantages in performance and cost compared to currently available systems: (1) High fluid shear prevents membrane fouling even with very high solids content; hazardous and radioactive components can be concentrated to the consistency of a pasty slurry without fouling. (2) Induced turbulence and shear across the membrane increases membrane flux by a factor of ten over existing systems and allows operation on fluids not otherwise treatable. (3) Innovative ceramic membrane and mechanical sealing technology eliminates compatibility problems with aggressive DOE waste streams. (4) System design allows rapid, simple disassembly for inspection or complete decontamination. (5) Produces colloidal- and suspended-solids-free filtrate without the addition of chemicals. The first phase of this project (PRDA maturity stage 5) completed the physical scale-up of the SpinTek unit and verified successful scale-up with surrogate materials. Given successful scale-up and DOE concurrence, the second phase of this project (PRDA maturity stage 6) will provide for the installation and

  8. Perceived radial translation during centrifugation.

    PubMed

    Bos, Jelte E; Correia Grácio, Bruno J

    2015-01-01

    Linear acceleration generally gives rise to translation perception. Centripetal acceleration during centrifugation, however, has never been reported giving rise to a radial, inward translation perception. To study whether centrifugation can induce a radial translation perception in the absence of visual cues. To that end, we exposed 12 subjects to a centripetal acceleration with eyes closed. To avoid confounding with angular motion perception, subjects were fist rotated on-axis, and were shifted out fast and slow only after rotation sensation had vanished. They were asked for translation direction and velocity right after the shift-out, as well as after about 60 seconds of constant centrifugation. Independent of fast or slow shift-out, the vast statistically significant majority of trials yielded an inward radial translation perception, which velocity was constant after 60 seconds of constant centrifugation. We therefore conclude that during centrifugation, an inward radial translation perception does exist in humans, which perception reaches a constant, non-zero value during constant rotation, lasting for at least one minute. These results can be understood by high-pass filtering of otolith afferents to make a distinction between inertial and gravitational acceleration, followed by a mere integration over time to reach a constant velocity perception.

  9. Hydrodynamic drive of tubular centrifuges

    SciTech Connect

    Tsybul'nik, A.P.

    1986-07-01

    A drive has been developed for a tubular centrifuge having a 10 kW ASTs-10-504 high-frequency electric motor with a synchronous rotation speed of 15,000 rpm. Despite a few demerits, the drive met the basic production requirements; simplicity and reliability of design, admissable rotation speed, and explosion resistance. However, this drive for tubular centrifuges had to be abandoned because experimental prototypes of high-frequency motors were used for the industrial tests and lot production of such motors is not probable in the near future. Industrial tests of a new hydrodynamic drive were performed, and the schematic diagram is shown. The hydrodrive was tested during centrifuge operation with polyester lac. It was found that the hydodynamic drive is distinguished by operational reliability and easy serviceability, holds promise for increased centrifuge speed, ensures smooth start of the centrifuge and satisfactory stability of the rotor rotation speed in the steady regime, reliably protects the motor from overloading and is fully explosion-proof.

  10. Centrifuge-Based Fluidic Platforms

    NASA Astrophysics Data System (ADS)

    Zoval, Jim; Jia, Guangyao; Kido, Horacio; Kim, Jitae; Kim, Nahui; Madou, Marc

    In this chapter centrifuge-based microfluidic platforms are reviewed and compared with other popular microfluidic propulsion methods. The underlying physical principles of centrifugal pumping in microfluidic systems are presented and the various centrifuge fluidic functions such as valving, decanting, calibration, mixing, metering, heating, sample splitting, and separation are introduced. Those fluidic functions have been combined with analytical measurements techniques such as optical imaging, absorbance and fluorescence spectroscopy and mass spectrometry to make the centrifugal platform a powerful solution for medical and clinical diagnostics and high-throughput screening (HTS) in drug discovery. Applications of a compact disc (CD)-based centrifuge platform analyzed in this review include: two-point calibration of an optode-based ion sensor, an automated immunoassay platform, multiple parallel screening assays and cellular-based assays. The use of modified commercial CD drives for high-resolution optical imaging is discussed as well. From a broader perspective, we compare the technical barriers involved in applying microfluidics for sensing and diagnostic as opposed to applying such techniques to HTS. The latter poses less challenges and explains why HTS products based on a CD fluidic platform are already commercially available, while we might have to wait longer to see commercial CD-based diagnostics.

  11. Hemolysis in different centrifugal pumps.

    PubMed

    Kawahito, K; Nosé, Y

    1997-04-01

    Different types of centrifugal pumps cause different amounts of hemolysis based on shear stress and blood exposure time. However, the hemolytic characteristics of centrifugal pumps in each clinical condition are not always clear. We compared the hemolytic characteristics of one cone-type centrifugal pump (Medtronic BioMedicus BP-80) and 2 impeller-type centrifugal pumps (Nikkiso HMS-12 and Terumo Capiox) under experimental conditions simulating their use in cardiopulmonary bypass (CPB), extracorporeal membrane oxygenation (ECMO), and percutaneous cardiopulmonary support (PCPS) as well as their use as left ventricular assist devices (LVADs). The normalized indexes of hemolysis (NIHs; grams free plasma hemoglobin per 100 L blood pumped) during use as LVADs were not significantly different among the 3 pumps. The BP-80 pump produced almost 3-fold more hemolysis than the HMS-12 and Capiox pumps during CPB, 3- to 4-fold more hemolysis during ECMO, and 5.5-fold more hemolysis during PCPS. The 2 impeller-type centrifugal pumps will therefore cause less hemolysis under high flow, high pressure difference (as in CPB) and low flow, high pressure difference (as in ECMO and PCPS) conditions than the cone-type pump.

  12. Centrifugal slip casting of components

    SciTech Connect

    Steinlage, G.A.; Roeder, R.K.; Trumble, K.P.; Bowman, K.J.

    1996-05-01

    Research in layered and functionally gradient materials has emerged because of the increasing demand for high-performance engineering materials. Many techniques have been used to produce layered and functionally gradient components. Common examples include thermal spray processing, powder processing, chemical and physical vapor deposition, high-temperature or combustion synthesis, diffusion treatments, microwave processing and infiltration. Of these techniques, powder processing routes offer excellent microstructural control and product quality, and they are capable of producing large components. Centrifugal slip casting is a powder-processing technique combining the effects of slip casting and centrifugation. In slip casting, consolidation takes place as fluid is removed by the porous mold. Particles within the slip move with the suspending fluid until reaching the mold wall, at which point they are consolidated. In centrifugation, particles within the slip move through the fluid at a rate dependent upon the gravitational force and particle drag.

  13. Centrifugation and the Manhattan Project

    NASA Astrophysics Data System (ADS)

    Reed, Cameron

    2009-05-01

    A study of U. S. Army Manhattan Engineer District documents reveals that consideration of centrifugation as a means of uranium enrichment during World War II was considerably more extensive than is commonly appreciated. By the time the centrifuge project was abandoned in early 1944 a full-scale prototype unit had been fabricated and tested at near-production speeds, enrichments of close to theoretically-expected levels had been demonstrated with pilot-plant units, and plans for production plants had been developed. This paper will review the history of this little-known aspect of the Project and examine the circumstances of how it came to be discontinued.

  14. Centrifugation and the Manhattan Project

    NASA Astrophysics Data System (ADS)

    Reed, Cameron

    2009-04-01

    A study of U. S. Army Manhattan Engineer District documents reveals that consideration of centrifugation as a means of uranium enrichment during World War II was considerably more extensive than is commonly appreciated. By the time the centrifuge project was abandoned in early 1944 a full-scale prototype unit had been fabricated and tested at near-production speeds, enrichments of close to theoretically-expected levels had been demonstrated with pilot-plant units, and plans for production plants had been developed. This paper will review the history of this little-known aspect of the Project and examine the circumstances of how it came to be discontinued.

  15. MEANS FOR DETERMINING CENTRIFUGE ALIGNMENT

    DOEpatents

    Smith, W.Q.

    1958-08-26

    An apparatus is presented for remotely determining the alignment of a centrifuge. The centrifage shaft is provided with a shoulder, upon which two followers ride, one for detecting radial movements, and one upon the shoulder face for determining the axial motion. The followers are attached to separate liquid filled bellows, and a tube connects each bellows to its respective indicating gage at a remote location. Vibrations produced by misalignment of the centrifuge shaft are transmitted to the bellows, and tbence through the tubing to the indicator gage. This apparatus is particularly useful for operation in a hot cell where the materials handled are dangerous to the operating personnel.

  16. Evaluation of high-efficiency gas-liquid contactors for natural gas processing. Semi-annual report, April--September 1994

    SciTech Connect

    1994-11-01

    Objective was to ensure reliable supply of high-quality natural gas by reducing the cost of treating subquality natural gas containing H{sub 2}O, CO{sub 2}, H{sub 2}S and/or trace quantities of other gaseous impurities by applying high-efficiency rotating and structured packing gas liquid contactors. The work included analysis of base case residence time, viscosity studies on low pressure rotary contactor system, and surface tension studies on the contactor.

  17. Centrifugal contractors for laboratory-scale solvent extraction tests

    SciTech Connect

    Leonard, R.A.; Chamberlain, D.B.; Conner, C.

    1995-12-31

    A 2-cm contactor (minicontactor) was developed and used at Argonne National Laboratory for laboratory-scale testing of solvent extraction flowsheets. This new contactor requires only 1 L of simulated waste feed, which is significantly less than the 10 L required for the 4-cm unit that had previously been used. In addition, the volume requirements for the other aqueous and organic feeds are reduced correspondingly. This paper (1) discusses the design of the minicontactor, (2) describes results from having applied the minicontactor to testing various solvent extraction flowsheets, and (3) compares the minicontactor with the 4-cm contactor as a device for testing solvent extraction flowsheets on a laboratory scale.

  18. Centrifugal pumps for rocket engines

    NASA Technical Reports Server (NTRS)

    Campbell, W. E.; Farquhar, J.

    1974-01-01

    The use of centrifugal pumps for rocket engines is described in terms of general requirements of operational and planned systems. Hydrodynamic and mechanical design considerations and techniques and test procedures are summarized. Some of the pump development experiences, in terms of both problems and solutions, are highlighted.

  19. Life Sciences Centrifuge Facility assessment

    NASA Technical Reports Server (NTRS)

    Benson, Robert H.

    1994-01-01

    This report provides an assessment of the status of the Centrifuge Facility being developed by ARC for flight on the International Space Station Alpha. The assessment includes technical status, schedules, budgets, project management, performance of facility relative to science requirements, and identifies risks and issues that need to be considered in future development activities.

  20. Laser and gas centrifuge enrichment

    SciTech Connect

    Heinonen, Olli

    2014-05-09

    Principles of uranium isotope enrichment using various laser and gas centrifuge techniques are briefly discussed. Examples on production of high enriched uranium are given. Concerns regarding the possibility of using low end technologies to produce weapons grade uranium are explained. Based on current assessments commercial enrichment services are able to cover the global needs of enriched uranium in the foreseeable future.

  1. Life Sciences Centrifuge Facility review

    NASA Technical Reports Server (NTRS)

    Young, Laurence R.

    1994-01-01

    The Centrifuge Facility Project at ARC was reviewed by a code U team to determine appropriateness adequacy for the ISSA. This report represents the findings of one consultant to this team and concentrates on scientific and technical risks. This report supports continuation of the project to the next phase of development.

  2. Laser and gas centrifuge enrichment

    NASA Astrophysics Data System (ADS)

    Heinonen, Olli

    2014-05-01

    Principles of uranium isotope enrichment using various laser and gas centrifuge techniques are briefly discussed. Examples on production of high enriched uranium are given. Concerns regarding the possibility of using low end technologies to produce weapons grade uranium are explained. Based on current assessments commercial enrichment services are able to cover the global needs of enriched uranium in the foreseeable future.

  3. 77 FR 9273 - USEC Inc. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Direct...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ... COMMISSION USEC Inc. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Direct Transfer of Licenses In the Matter of USEC INC. (American Centrifuge Lead Cascade Facility and American... holder of materials licenses SNM-7003 and SNM-2011 for the American Centrifuge Lead Cascade Facility...

  4. The use of emulsions, microemulsions, and hollow fiber contactors as liquid membranes

    SciTech Connect

    Wiencek, J.M.; Hu, S.Y.; Raghuraman, B.

    1995-12-01

    Liquid membranes as a generic concept have primarily involved the use of either porous solid film impregnated with a liquid carrier or emulsified systems employed in a stirred contactor. Although such systems can display high selectivities and reasonable flux, the stability of the liquid membrane to rupture (i.e. leakage) and unwanted water transport (i.e. swell) have limited their commercial application. Our lab has focused on developing improved emulsion liquid membranes. In particular, we have investigated the possibility of employing microemulsions as liquid membranes to separate metals (especially mercury) from contaminated water. Our most current work on the use of hollow fiber contactors as a means of minimizing swell and leakage in emulsion liquid membrane systems will also be presented.

  5. Theory of plasma contactors in ground-based experiments and low earth orbit

    NASA Technical Reports Server (NTRS)

    Gerver, M. J.; Hastings, D. E.; Oberhardt, M. R.

    1990-01-01

    An examination of several models of electron collection by plasma contactors leads to a definition of the range of validity and applicability for each model. It is noted that most present ground-based experiments are of limited relevance to space applications of plasma contactors, since they operate in a regime where the magnetic field and effective collisions are at most only marginally important. An exception is the experiment of Stenzel and Urrutia (1986), which examined a plasma whose electron Larmor radius was small by comparison to the scale of the potential, and in which the anomalous transport of electrons across the magnetic field was important. The enhanced electron current was not continuous in time, but occurred in periodic bursts as the instabilities periodically emerged, saturated, and decayed.

  6. Numerical simulation of reactive extraction of benzoic acid from wastewater via membrane contactors.

    PubMed

    Ghadiri, Mehdi; Shirazian, Saeed

    2017-04-01

    Membrane-based non-dispersive solvent extraction is used in many chemical processes due to its significant benefits such as straightforward scale-up and low energy consumption. A mechanistic model was developed to predict recovery of benzoic acid (BA) from wastewater using membrane contactors. Model equations were derived for benzoic acid transport in the membrane module, and solved using FEM. The model findings were compared with experimental results, and an average deviation of 4% was observed between experimental and simulation results. Simulations showed that change in organic phase flowrate and initial concentration of BA does not have considerable effect on the removal efficiency of benzoic acid. In addition, increasing feed flowrate leads to the enhancement of convective mass transfer flux in the tube side of membrane contactor which decreases removal efficiency of benzoic acid.

  7. Measurement of Noise Produced by a Plasma Contactor Operating in Ground Based Facilities

    NASA Technical Reports Server (NTRS)

    Snyder, Steve

    1996-01-01

    Methods to measure electric field fluctuations accurately in a plasma with an active monopole antenna are described. It is shown that the conductive surfaces of the antenna must be adequately isolated from the ambient plasma and that the monopole must be sufficiently short to avoid antenna amplifier saturation. Experimental results illustrate that the noise produced by plasma contactor operation and sensed by the antenna is due to plasma phenomena and is not induced by laboratory power supplies. A good correlation is shown between the current fluctuations in the contactor electrical circuit and the noise detected by the antenna. A large body of experimental data support the conclusion that the majority of noise sensed by the antenna at frequencies less than 1 MHz is due to current fluctuations (electrostatic waves) in the plasma adjacent to the antenna and not to electromagnetic wave radiation. Caution is suggested when comparing antenna noise measurements to conventional specifications for radiated emissions.

  8. 21 CFR 864.5350 - Microsedimentation centrifuge.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Microsedimentation centrifuge. 864.5350 Section 864.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... § 864.5350 Microsedimentation centrifuge. (a) Identification. A microsedimentation centrifuge is a...

  9. 21 CFR 864.5350 - Microsedimentation centrifuge.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Microsedimentation centrifuge. 864.5350 Section 864.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... § 864.5350 Microsedimentation centrifuge. (a) Identification. A microsedimentation centrifuge is a...

  10. 21 CFR 864.5350 - Microsedimentation centrifuge.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Microsedimentation centrifuge. 864.5350 Section 864.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... § 864.5350 Microsedimentation centrifuge. (a) Identification. A microsedimentation centrifuge is a...

  11. 21 CFR 864.5350 - Microsedimentation centrifuge.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Microsedimentation centrifuge. 864.5350 Section 864.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... § 864.5350 Microsedimentation centrifuge. (a) Identification. A microsedimentation centrifuge is a...

  12. Liposome and niosome preparation using a membrane contactor for scale-up.

    PubMed

    Pham, Thi Thuy; Jaafar-Maalej, Chiraz; Charcosset, Catherine; Fessi, Hatem

    2012-06-01

    The scaling-up ability of liposome and niosome production, from laboratory scale using a syringe-pump device to a pilot scale using the membrane contactor module, was investigated. For this aim, an ethanol injection-based method was applied for liposome and niosome preparation. The syringe-pump device was used for laboratory scale batches production (30 ml for liposomes, 20 ml for niosomes) then a pilot scale (750 ml for liposomes, 1000 ml for niosomes) were obtained using the SPG membrane contactor. Resulted nanovesicles were characterized in terms of mean vesicles size, polydispersity index (PdI) and zeta potential. The drug encapsulation efficiency (E.E.%) was evaluated using two drug-models: caffeine and spironolactone, a hydrophilic and a lipophilic molecule, respectively. As results, nanovectors mean size using the syringe-pump device was comprised between 82 nm and 95 nm for liposomes and between 83 nm and 127 nm for niosomes. The optimal E.E. of caffeine within niosomes, was found around 9.7% whereas the spironolactone E.E. reached 95.6% which may be attributed to its lipophilic properties. For liposomes these values were about 9.7% and 86.4%, respectively. It can be clearly seen that the spironolactone E.E. was slightly higher within niosomes than liposomes. Optimized formulations, which offered smaller size and higher E.E., were selected for pilot scale production using the SPG membrane. It has been found that vesicles characteristics (size and E.E.%) were reproducible using the membrane contactor module. Thus, the current study demonstrated the usefulness of the membrane contactor as a device for scaling-up both liposome and niosome preparations with small mean sizes. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Extraction with emulsion liquid membranes in a hollow-fiber contactor

    SciTech Connect

    Raghuraman, B.; Wiencek, J. . Dept. of Chemical and Biochemical Engineering)

    1993-11-01

    Aqueous streams contaminated with heavy metal ions may be produced as effluents from industrial plants or during attempts to remediate solids loaded with heavy metals, such as contaminated soils. Metals of particular concern include copper, zinc, cadmium, nickel, mercury, lead, and chromium. An extraction system for heavy metals recovery from dilute waste streams, which can accomplish both extraction and stripping in one step, is an emulsion liquid membrane (ELM). The ELM extraction in a stirred contactor has two main disadvantages. On prolonged contact with the feed stream (greater than 10 min), the emulsion swells with water, increasing the internal-phase volume and in a stirred contactor the internal-phase contents leak into the feed stream because of membrane rupture. This work focuses on the use of microporous hollow-fiber contactors (HFC) as an alternate contacting method to direct batch/continuous dispersion of emulsion liquid membranes. This method of contact will retain the primary advantage that emulsion liquid membrane separations offer, namely, extraction and stripping in a single processing step which circumvents the limits of equilibrium inherent in conventional solvent extraction. However, because hollow-fiber membranes, by their design, allow for high surface area contacting without the high shear rates typically encountered with an agitator, this will result in improved efficiency of extraction by reducing membrane swelling and leakage.

  14. Design of a centrifugal blood pump: Heart Turcica Centrifugal.

    PubMed

    Demir, Onur; Biyikli, Emre; Lazoglu, Ismail; Kucukaksu, Suha

    2011-07-01

    A prototype of a new implantable centrifugal blood pump system named Heart Turcica Centrifugal (HTC) was developed as a left ventricular assist device (LVAD) for the treatment of end-stage cardiac failure. In the development of HTC, effects of blade height and volute tongue profiles on the hydraulic and hemolytic performances of the pump were investigated. As a result, the prototype was manufactured using the best blade height and volute tongue profiles. Performance of the prototype model was experimentally evaluated in a closed-loop flow system using water as the medium. The hydraulic performance requirement of an LVAD (5 L/min flow rate against a pressure difference of 100 mm Hg) was attained at 2800 rpm rotational speed.

  15. Centrifugal separator devices, systems and related methods

    DOEpatents

    Meikrantz, David H [Idaho Falls, ID; Law, Jack D [Pocatello, ID; Garn, Troy G [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Macaluso, Lawrence L [Carson City, NV

    2012-03-20

    Centrifugal separator devices, systems and related methods are described. More particularly, fluid transfer connections for a centrifugal separator system having support assemblies with a movable member coupled to a connection tube and coupled to a fixed member, such that the movable member is constrained to movement along a fixed path relative to the fixed member are described. Also, centrifugal separator systems including such fluid transfer connections are described. Additionally, methods of installing, removing and/or replacing centrifugal separators from centrifugal separator systems are described.

  16. Impact testing with a centrifuge

    NASA Astrophysics Data System (ADS)

    Foglietta, Jim; Olin, Malcolm; Venturi, Richard

    A test program intended to verify an aircraft wing armor protection system is described, focusing on testing methodologies, the centrifuge release system design, and aiming and system controls. Two armor impact tests were conducted which used a centrifuge to propel a large irregular projectile into a target surface. The first test was performed on the armor protected side of the simulated fuel tank. The impactor was deflected off the armored surface, damaging the armor slightly and causing a small leak in the tank. The impactor broke into three pieces. The second test was performed on the reverse side of the simulated fuel tank. The impactor penetrated the tank and remained lodged inside, causing a massive leak.

  17. Performance of a centrifugal phytotron

    NASA Astrophysics Data System (ADS)

    Tani, A.; Nishiura, Y.; Kiyota, M.; Murase, H.; Honami, N.; Aiga, I.

    1996-01-01

    It is possible to cultivate plants under an artificial gravity field generated by a centrifugal device in space. In order to determine an optimal magnitude of gravity, there is a need to investigate the relationship between plant growth and gravity, including not only reduced gravity but also gravity greater than 1G. A prototype centrifugal phytotron was designed and fabricated in order to investigate the relationship between plant growth and increased gravity. This device enables us to cultivate plants over the long term by controlling environmental conditions in the phytotron such as temperature, relative humidity, CO_2 concentration and light intensity. The results of our experiment indicate that plant seeds can germinate and grow even under an artificial gravity which changes sinusoidally from 2G to 4G.

  18. Waves in a gas centrifuge

    NASA Astrophysics Data System (ADS)

    Bogovalov, S. V.; Kislov, V. A.; Tronin, I. V.

    2016-09-01

    Impact of the pulsed braking force on the axial gas circulation and gas content in centrifuges for uranium isotope separation was investigated by the method of numerical simulation. Pulsed brake of the rotating gas by the momentum source results into generation of the waves which propagate along the rotor of the centrifuge. The waves almost doubles the axial circulation flux in the working camera in compare with the case of the steady state breaking force with the same average power in the model under the consideration. Flux through the hole in the bottom baffle on 15% exceeds the flux in the stationary case for the same pressure and temperature in the model. We argue that the waves reduce the pressure in the GC on the same 15%.

  19. When to maintain centrifugal pumps

    SciTech Connect

    Karassik, I.J.

    1993-04-01

    Centrifugal pumps comprise critical maintenance equipment. The rationale of when to maintain them relates to a spreading tendency to contain costs in the face of tight money. Plant managers are thus entitled to a thorough analysis of whether reduced expenditures truly lower costs or actually hinder maintenance and increase costs. Absence of such an analysis hides the fact that proper and timely maintenance has a double effect: it not only reduces power consumption but also extends equipment life, and thus reduces the frequency of labor and material expenditures for scheduled or crisis maintenance. Centrifugal pump maintenance can demonstrate well the validity of this observation. The paper discusses: restoring internal clearances; real cost of renewing clearances; and monitoring clearances and pump performance.

  20. Development of Advanced Centrifugal Pumps

    SciTech Connect

    Rohatgi, U.

    2009-09-30

    A CRADA project was performed between BNL and Flowserve, California, under the auspices of Initiative for Proliferation Prevention (IPP) with the DOE support. The purpose was to jointly support a team of Russian institutes led by Kurchatov Institute to develop technology to increase operating life of centrifugal pumps. The work was performed from March 1, 2002 to September 30, 2009. The project resulted in development and validation the total cost of the sub-contract with Kurchatov Institute was $700,000, with matching fund from the industrial partner, Flowserve. The technical objective of this project is to develop advanced centrifugal pumps for the power, petroleum, chemical and water services industries by increasing the reliability of pumping equipment without a corresponding increase in life cycle cost. This major market need can be served by developing centrifugal pumps that generate only modest forces on the mechanical system even when operating under significant off-design conditions. This project is focused towards understanding the origin of hydraulic forces (both radial and axial, steady and time-dependent) and to develop design options, which reduce these forces over a broad flow range. This focus will include the force generation due to cavitation inside the pump as the operating conditions extend to low suction pressures. The results of research will reduce the inception of cavitation that leads to surface erosion and to find passive method of reducing peaks in axial thrust during whole range of flow rates.

  1. Entrainment of Solvent in Aqueous Stream from CINC V-5 Contactor

    SciTech Connect

    Fink, S. D.; Restivo, M. L.; Peters, T. B.; Fowley, M. D.; Burns, D. B.; Smith, W. M. Jr.; Fondeur, F. F.; Crump, S. L.; Norato, M. A.; Herman, D. T.; Nash, C. A.

    2005-04-29

    Personnel completed a rapid study of organic entrainment during operation of a CINC V-5 contactor under prototypical conditions covering the range of expected MCU operation. The study only considered the entrainment of organic into the strip acid effluent destined for the Defense Waste Processing Facility. Based on this work, the following observations are noted: (1) Concentrations of total organic from the contactor discharge, based upon modifier measurements, in the acid typically averaged 330 ppm{sub m}, for a range to 190-610 ppm{sub m}. (2) Entrained droplet sizes remained below 18 microns for samples collected at the decanter outlet and below 11 microns for samples taken from the contactor discharge. (3) Scouting tests showed that a vendor coalescer material promotes coalescence of smaller size droplets from the decanter effluent. (4) Personnel observed a previously unreported organic impurity in the solvent used for this study. Additional efforts are needed to ascertain the source of the impurity and its implication on the overall process. (5) Process throughputs and planned operating conditions result in very stable hydraulics, suggesting that the MCU stripping stages will have spare operating capacity. (6) The V-5 contactors show operated with relatively cool surfaces under the planned operating conditions. (7) If operating conditions result in an imbalance of the relative mixing and separation conditions within the contactor, a very stable emulsion may result. In this instance, the emulsion remained stable for weeks. The imbalance in this study resulted from use of improperly sized weir plates. (8) Personnel demonstrated an effective means of recovering emulsified solvent following a non-optimal equipment configuration. The protocols developed may offer benefit for MCU and SWPF operations. (9) This study developed and demonstrated the effectiveness of several analytical methods for support of the Caustic-Side Solvent Extraction process including infrared

  2. Characterization of full-scale carbon contactors for siloxane removal from biogas using online Fourier transform infrared spectroscopy.

    PubMed

    Hepburn, C A; Martin, B D; Simms, N; McAdam, E J

    2015-01-01

    In this study, online Fourier transform infrared (FTIR) spectroscopy has been used to generate the first comprehensive characterization of full-scale carbon contactors for siloxane removal from biogas. Using FTIR, two clear operational regions within the exhaustion cycle were evidenced: an initial period of pseudo-steady state where the outlet siloxane concentration was consistently below the proposed siloxane limits; and a second period characterized by a progressive rise in outlet siloxane concentration during and after breakthrough. Due to the sharp breakthrough front identified, existing detection methods (which comprise field sampling coupled with laboratory-based chromatographic determination) are insufficiently responsive to define breakthrough, thus carbon contactors currently remain in service while providing limited protection to the combined heat and power engine. Integration of the exhaustion cycle to breakthrough identified average specific media capacities of 8.5-21.5 gsiloxane kg(-1)GAC, which are lower than that has been reported for vapour phase granular activated carbon (GAC). Further speciation of the biogas phase identified co-separation of organic compounds (alkanes and aromatics), which will inevitably reduce siloxane capacity. However, comparison of the five full-scale contactors identified that greater media capacity was accessible through operating contactors at velocities sufficient to diminish axial dispersion effects. In addition to enabling significant insight into gas phase GAC contactors, the use of FTIR for online control of GAC for siloxane removal is also presented.

  3. PUMA - a new mathematical model for the rapid calculation of steady-state concentration profiles in mixer-settler extraction, partitioning, and stripping contactors using the Purex process

    SciTech Connect

    Geldard, J.F.

    1986-11-01

    The mathematical basis for a computer code PUMA (Plutonium-Uranium-Matrix-Algorithm) is described. The code simulates steady-state concentration profiles of solvent extraction contactors used in the Purex process, directly without first generating the transient behavior. The computational times are reduced, with no loss of accuracy, by about tenfold over those required by codes that generate the steady-state profiles via transient state conditions. Previously developed codes that simulate the steady-state conditions directly are not applicable to partitioning contactors, whereas PUMA is applicable to all contactors in the Purex process. Since most difficulties are encountered with partitioning contactors when simulating steady-state profiles via transient state conditions, it is with these contactors that the greatest saving in computer times is achieved.

  4. Twinning of amphibian embryos by centrifugation

    NASA Technical Reports Server (NTRS)

    Black, S. D.

    1984-01-01

    In the frog Xenopus laevis, the dorsal structures of the embryonic body axis normally derive from the side of the egg opposite the side of sperm entry. However, if the uncleaved egg is inclined at lg or centrifuged in an inclined position, this topographic relationship is overridden: the egg makes its dorsal axial structures according to its orientation in the gravitational/centrifugal field, irrespective of the position of sperm entry. Certain conditions of centrifugation cause eggs to develop into conjoined twins with two sets of axial structures. A detailed analysis of twinning provided some insight into experimental axis orientation. First, as with single-axis embryos, both axes in twins are oriented according to the direction of centrifugation. One axis forms at the centripetal side of the egg and the other forms at the centrifugal side, even when the side of sperm entry is normal to the centrifugal force vector. Second, if eggs are centrifuged to give twins, but are inclined at lg to prevent post-centrifugation endoplasmic redistributions, only single-axis embryos develop. Thus, a second redistribution is required for high-frequency secondary axis formation. This can be accomplished by lg (as in the single centrifugations) or by a second centrifugation directed along the egg's animal-vegetal axis.

  5. Twinning of amphibian embryos by centrifugation

    NASA Technical Reports Server (NTRS)

    Black, S. D.

    1984-01-01

    In the frog Xenopus laevis, the dorsal structures of the embryonic body axis normally derive from the side of the egg opposite the side of sperm entry. However, if the uncleaved egg is inclined at lg or centrifuged in an inclined position, this topographic relationship is overridden: the egg makes its dorsal axial structures according to its orientation in the gravitational/centrifugal field, irrespective of the position of sperm entry. Certain conditions of centrifugation cause eggs to develop into conjoined twins with two sets of axial structures. A detailed analysis of twinning provided some insight into experimental axis orientation. First, as with single-axis embryos, both axes in twins are oriented according to the direction of centrifugation. One axis forms at the centripetal side of the egg and the other forms at the centrifugal side, even when the side of sperm entry is normal to the centrifugal force vector. Second, if eggs are centrifuged to give twins, but are inclined at lg to prevent post-centrifugation endoplasmic redistributions, only single-axis embryos develop. Thus, a second redistribution is required for high-frequency secondary axis formation. This can be accomplished by lg (as in the single centrifugations) or by a second centrifugation directed along the egg's animal-vegetal axis.

  6. Effects of centrifugal force and centrifugation time on the sedimentation of plant organelles.

    PubMed

    Nagahashi, J; Hiraike, K

    1982-02-01

    The effect of centrifugal force and length of centrifugation time on the sedimentation of plant organelles was determined for corn (Zea mays L.) root homogenates. A centrifugal force of 6000g for at least 20 minutes was necessary to pellet 90% of the mitochondrial marker (cytochrome c oxidase). This initial centrifugation step is optimal for separating mitochondria from microsomes, since cross-contamination of endoplasmic reticulum and plasma membrane vesicles with mitochondria is minimized. Centrifugal forces of 8000g or 10,000g for 20 minutes and 13,000g for 15 minutes pellet 90% of the mitochondrial marker; however, these centrifugation conditions also sediment more plasma membrane and endoplasmic reticulum.

  7. CENTRIFUGES

    DOEpatents

    Beams, J.W.; Snoddy, L.B.

    1960-08-01

    Damping bearings for use on the shafts of an ultracentrifuge were designed which are capable of passing through critical angular speeds. The shaft extending from one end of the rotor is journaled in fixed-plain bearings mounted on annular resilient shock-absorbing elements to dampen small vibrations. The shaft at the other end of the rotor is journaled in two damper-bearing assemblies which are so spaced on the shaft that a vibration node can at no time exist at both bearing assemblies. These bearings are similar to the other bearings except that the bearing housings are slidably mounted on the supporting structure for movement transverse to the rotational axis of the rotor.

  8. ORNL centrifuge pellet fueling system

    SciTech Connect

    Foster, C.A.; Houlberg, W.A.; Gouge, M.J.; Grapperhaus, M.J.; Milora, S.L. ); Drawin, H.; Geraud, A.; Chatelier, M.; Gros, G. )

    1992-01-01

    A centrifuge pellet injecter designed and built at Oak Ridge National Laboratory (ORNL) is in operation on Tore Supra. This injector has the capability of injecting up to 100 pellets at speeds up to 800 M/s. The solid deuterium pellets can be formed with a variable mass from 3 to 10 torr-L and are fired at a rate of up to 10 pellets per second. The experimental program that is under way combines repetitive pellet fueling with the ergodic divertor and pump limiters to establish and understand long-pulse plasmas in which the pellet fuel source is in balance with the particle exhaust. With lower hybrid current drive, pulse lengths of up to 2 min might be achieved. To prepare for these extended pulse lengths, the pellet source on the centrifuge will be extended to provide a 300- to 500-pellet capability. A similar system extended to steady-state pellet fabrication technology and designed for a radiation and tritium environment would be a candidate for a fueling system for the International Thermonuclear Experimental Reactor (ITER). Analysis of pellet-fueled ITER discharges using the WHIST code shows the potential for controlling the radial fuel deposition point to achieve the desired core density while maintaining the edge density and temperatures so as to minimize the diverter plate erosion. A centrifuge fueling system would have the capability of taking the D-T exhaust directly from the cryopumping systems, recondensing and purifying the fuel, and injecting the reconstituted pellets into the plasma, thereby minimizing the tritium inventory.

  9. ORNL centrifuge pellet fueling system

    SciTech Connect

    Foster, C.A.; Houlberg, W.A.; Gouge, M.J.; Grapperhaus, M.J.; Milora, S.L.; Drawin, H.; Geraud, A.; Chatelier, M.; Gros, G.

    1992-11-01

    A centrifuge pellet injecter designed and built at Oak Ridge National Laboratory (ORNL) is in operation on Tore Supra. This injector has the capability of injecting up to 100 pellets at speeds up to 800 M/s. The solid deuterium pellets can be formed with a variable mass from 3 to 10 torr-L and are fired at a rate of up to 10 pellets per second. The experimental program that is under way combines repetitive pellet fueling with the ergodic divertor and pump limiters to establish and understand long-pulse plasmas in which the pellet fuel source is in balance with the particle exhaust. With lower hybrid current drive, pulse lengths of up to 2 min might be achieved. To prepare for these extended pulse lengths, the pellet source on the centrifuge will be extended to provide a 300- to 500-pellet capability. A similar system extended to steady-state pellet fabrication technology and designed for a radiation and tritium environment would be a candidate for a fueling system for the International Thermonuclear Experimental Reactor (ITER). Analysis of pellet-fueled ITER discharges using the WHIST code shows the potential for controlling the radial fuel deposition point to achieve the desired core density while maintaining the edge density and temperatures so as to minimize the diverter plate erosion. A centrifuge fueling system would have the capability of taking the D-T exhaust directly from the cryopumping systems, recondensing and purifying the fuel, and injecting the reconstituted pellets into the plasma, thereby minimizing the tritium inventory.

  10. CARBON DIOXIDE REDUCTION CONTACTORS IN SPACE VEHICLES AND OTHER ENCLOSED STRUCTURES,

    DTIC Science & Technology

    CONTROLLED ATMOSPHERES, CARBON DIOXIDE , REMOVAL, LIFE SUPPORT SYSTEMS, SPACE ENVIRONMENTS, CONFINED ENVIRONMENTS, OXYGEN CONSUMPTION, REGENERATION(ENGINEERING), CHEMISORPTION, MASS TRANSFER, FLUID MECHANICS, CENTRIFUGES.

  11. Operational Status of the International Space Station Plasma Contactor Hollow Cathode Assemblies July 2001 to May 2013

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Yim, John T.; Patterson, Michael J.; Dalton, Penni J.

    2013-01-01

    The International Space Station has onboard two Aerojet Rocketdyne developed plasma contactor units that perform the function of charge control. The plasma contactor units contain NASA Glenn Research Center developed hollow cathode assemblies. NASA Glenn Research Center monitors the on-orbit operation of the flight hollow cathode assemblies. As of May 31, 2013, HCA.001-F has been ignited and operated 123 times and has accumulated 8072 hours of operation, whereas, HCA.003-F has been ignited and operated 112 times and has accumulated 9664 hours of operation. Monitored hollow cathode ignition times and anode voltage magnitudes indicate that they continue to operate nominally.

  12. Operational Status of the International Space Station Plasma Contactor Hollow Cathode Assemblies from July 2011 to May 2013

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Yim, John T.; Patterson, Michael J.; Dalton, Penni J.

    2014-01-01

    The International Space Station has onboard two Aerojet Rocketdyne developed plasma contactor units that perform the function of charge control. The plasma contactor units contain NASA Glenn Research Center developed hollow cathode assemblies. NASA Glenn Research Center monitors the onorbit operation of the flight hollow cathode assemblies. As of May 31, 2013, HCA.001-F has been ignited and operated 123 times and has accumulated 8072 hours of operation, whereas, HCA.003-F has been ignited and operated 112 times and has accumulated 9664 hours of operation. Monitored hollow cathode ignition times and anode voltage magnitudes indicate that they continue to operate nominally.

  13. DETERMINATION OF LIQUID FILM THICKNESS FOLLOWING DRAINING OF CONTACTORS, VESSELS, AND PIPES IN THE MCU PROCESS

    SciTech Connect

    Poirier, M; Fernando Fondeur, F; Samuel Fink, S

    2006-06-06

    The Department of Energy (DOE) identified the caustic side solvent extraction (CSSX) process as the preferred technology to remove cesium from radioactive waste solutions at the Savannah River Site (SRS). As a result, Washington Savannah River Company (WSRC) began designing and building a Modular CSSX Unit (MCU) in the SRS tank farm to process liquid waste for an interim period until the Salt Waste Processing Facility (SWPF) begins operations. Both the solvent and the strip effluent streams could contain high concentrations of cesium which must be removed from the contactors, process tanks, and piping prior to performing contactor maintenance. When these vessels are drained, thin films or drops will remain on the equipment walls. Following draining, the vessels will be flushed with water and drained to remove the flush water. The draining reduces the cesium concentration in the vessels by reducing the volume of cesium-containing material. The flushing, and subsequent draining, reduces the cesium in the vessels by diluting the cesium that remains in the film or drops on the vessel walls. MCU personnel requested that Savannah River National Laboratory (SRNL) researchers conduct a literature search to identify models to calculate the thickness of the liquid films remaining in the contactors, process tanks, and piping following draining of salt solution, solvent, and strip solution. The conclusions from this work are: (1) The predicted film thickness of the strip effluent is 0.010 mm on vertical walls, 0.57 mm on horizontal walls and 0.081 mm in horizontal pipes. (2) The predicted film thickness of the salt solution is 0.015 mm on vertical walls, 0.74 mm on horizontal walls, and 0.106 mm in horizontal pipes. (3) The predicted film thickness of the solvent is 0.022 mm on vertical walls, 0.91 mm on horizontal walls, and 0.13 mm in horizontal pipes. (4) The calculated film volume following draining is: (a) Salt solution receipt tank--1.6 gallons; (b) Salt solution feed

  14. Centrifugal separators and related devices and methods

    DOEpatents

    Meikrantz, David H [Idaho Falls, ID; Law, Jack D [Pocatello, ID; Garn, Troy G [Idaho Falls, ID; Macaluso, Lawrence L [Carson City, NV; Todd, Terry A [Aberdeen, ID

    2012-03-06

    Centrifugal separators and related methods and devices are described. More particularly, centrifugal separators comprising a first fluid supply fitting configured to deliver fluid into a longitudinal fluid passage of a rotor shaft and a second fluid supply fitting sized and configured to sealingly couple with the first fluid supply fitting are described. Also, centrifugal separator systems comprising a manifold having a drain fitting and a cleaning fluid supply fitting are described, wherein the manifold is coupled to a movable member of a support assembly. Additionally, methods of cleaning centrifugal separators are described.

  15. Extraction and quantification of SO2 content in wines using a hollow fiber contactor.

    PubMed

    Plaza, Andrea; Romero, Julio; Silva, Wladimir; Morales, Elizabeth; Torres, Alejandra; Aguirre, María J

    2014-10-01

    Sulfites [Formula: see text] or sulfur dioxide (SO2) is a preservative widely used in fruits and fruit-derived products. This study aims to propose a membrane contactor process for the selective removal and recovery of SO2 from wines in order to obtain its reliable quantification. Currently, the aspiration and Ripper methods offer a difficult quantification of the sulfite content in red wines because they involve evaporation steps of diluted compounds and a colorimetric assay, respectively. Therefore, an inexpensive and accurate methodology is not currently available for continuous monitoring of SO2 in the liquids food industry. Red wine initially acidified at pH < 1 was treated by membrane extraction at 25 ℃. This operation is based on a hydrophobic Hollow Fiber Contactor, which separates the acidified red wine in the shell side and a diluted aqueous sodium hydroxide solution as receiving solution into the lumenside in countercurrent. Sulfite and bisulfite in the acidified red wine become molecular SO2, which is evaporated through the membrane pores filled with gas. Thus, SO2 is trapped in a colorless solution and the membrane contactor controls its transfer, decreasing experimental error induced in classical methods. Experimental results using model solutions with known concentration values of [Formula: see text] show an average extraction percentage of 98.91 after 4 min. On the other hand, two types of Chilean Cabernet Sauvignon wines were analyzed with the same system to quantify the content of free and total sulfites. Results show a good agreement between these methods and the proposed technique, which shows a lower experimental variability.

  16. Vacuum contactor retrofit of a low-voltage power circuit breaker

    SciTech Connect

    Fischer, J.D.

    1995-12-31

    Due to a misapplication of low-voltage power circuit breakers on high-cycling motor-starting services, the electrically operated mechanisms failed due to the large number of spring-charging, closing and opening cycles. Various options for correcting the problem were evaluated, and a vacuum contactor retrofit of the circuit breaker was selected for some of them. The vacuum starter units are electrically and mechanically interchangeable with the power circuit breakers. The paper discusses the design considerations and operating differences resulting from the technology conversion. It also discusses the differences in rating, function, and application.

  17. High-Performance, Air-Stable Field-Effect Transistors Based on Heteroatom-Substituted Naphthalenediimide-Benzothiadiazole Copolymers Exhibiting Ultrahigh Electron Mobility up to 8.5 cm V(-1) s(-1).

    PubMed

    Zhao, Zhiyuan; Yin, Zhihong; Chen, Huajie; Zheng, Liping; Zhu, Chunguang; Zhang, Long; Tan, Songting; Wang, Hanlin; Guo, Yunlong; Tang, Qingxin; Liu, Yunqi

    2017-01-01

    Rational heteroatom engineering is applied to develop high-performance electron-transporting naphthalenediimide copolymers. Top-gate field-effect transistors fabricated from selenophene-containing polymers achieve an ultrahigh electron mobility of 8.5 cm(2) V(-1) s(-1) and excellent air-stability. The results demonstrate that the incorporation of selenophene heterocycles into the polymers can improve the film-forming ability, intermolecular interaction, and carrier transport significantly.

  18. Apparatus for centrifugal separation of coal particles

    SciTech Connect

    Dickie, William; Cavallaro, Joseph A.; Killmeyer, Richard P.

    1991-01-01

    A gravimetric cell for centrifugal separation of fine coal by density has a cylindrical body and a butterfly valve or other apparatus for selectively sealing the body radially across the approximate center of the cylinder. A removable top is provided which seals the cylinder in the centrifuge and in unvented areas.

  19. Isotopic enrichment in a plasma centrifuge

    SciTech Connect

    Del Bosco, E.; Dallaqua, R.S.; Ludwig, G.O.; Bittencourt, J.A.

    1987-06-15

    High rotational velocity and centrifugal isotopic separation of carbon in a vacuum-arc plasma centrifuge are presented. Enrichments of up to 390% for /sup 13/C are measured at 6 cm radius with angular rotation frequencies in excess of 1.0 x 10/sup 5/ rad/s in an axial magnetic field of 0.12 T.

  20. Correlation of Hollow Cathode Assembly and Plasma Contactor Data from Ground Testing and In-Space Operation on the International Space Station

    NASA Technical Reports Server (NTRS)

    Kovalkeski, Scott D.; Patterson, Michael J.; Soulas, George C.

    2001-01-01

    Charge control on the International Space Station (ISS) is currently being provided by two plasma contactor units (PCUs). The plasma contactor includes a hollow cathode assembly (HCA), power processing unit and Xe gas feed system. The hollow cathode assemblies in use in the ISS plasma contactors were designed and fabricated at the NASA Glenn Research Center. Prequalification testing of development HCAs as well as acceptance testing of the flight HCAs is presented. Integration of the HCAs into the Boeing North America built PCU and acceptance testing of the PCU are summarized in this paper. Finally, data from the two on-orbit PCUs is presented.

  1. A Review of Testing of Hollow Cathodes for the International Space Station Plasma Contactor

    NASA Technical Reports Server (NTRS)

    Kovaleski, S. D.; Patterson, M. J.; Soulas, G. C.; Sarver-Verhey, T. R.

    2001-01-01

    Since October 2000, two plasma contactors have been providing charge control on the International Space Station (ISS). At the heart of each of the two plasma contactors is a hollow cathode assembly (HCA) that produces the contacting xenon plasma. The HCA is the result of 9 years of design and testing at the NASA Glenn Research Center. This paper summarizes HCA testing that has been performed to date. As of this time, one cathode has demonstrated approximately 28,000 hr of lifetime during constant, high current use. Another cathode, HCA.014. has demonstrated 42,000 ignitions before cathode heater failure. In addition to these cathodes, four cathodes. HCA.006, HCA.003, HCA.010, and HCA.013 have undergone cyclic testing to simulate the variable current demand expected on the ISS. HCA.006 accumulated 8,000 hr of life test operation prior to being voluntarily stopped for analysis before the flight units were fabricated. HCA.010 has accumulated 15,876 hr of life testing, and 4,424 ignitions during ignition testing. HCA.003 and HCA.0 13 have accumulated 12,415 and 18,823 hr of life testing respectively.

  2. Calibrating and deriving physical parameters using plasma contactor data from the international space station

    NASA Astrophysics Data System (ADS)

    Bering, Edgar A.; Koontz, Steven L.; Evans, David S.; Katz, Ira; Gardner, Barbara M.; Suggs, Robert M.; Minow, Joseph I.; Dalton, Penni J.; Feruson, Dale C.; Hillard, G. Barry; Counts, Jerry L.; Barsamian, Hagop; Kern, John; Mikatarian, Ronald

    2003-12-01

    The International Space Station (ISS) regularly passes through the southern auroral oval south of Australia. The ISS has two plasma contactors that emit the electron currents needed to balance electron collection by surfaces such as the lattice of bare rods on the solar array masts. These electron currents exceed 0.1 A at times. The largest currents are observed in the auroral oval south of Australia. On the space station, the solar array 40 m long masts each have over 400 m of stainless steel tensioning rods. When subject to orbital v × B· l induced potentials, the rods collect substantial currents from the ionosphere. Maximum v × B· l potentials are generated near the magnetic poles. The plasma contactor emission current can be converted to an estimate of plasma density and calibrated using Floating Potential Probe (FPP) and other data. These measurements show that the plasma density in the nighttime auroral ionosphere is frequently several times that predicted by the International Reference Ionosphere (IRI)-90 and IRI2001 models.

  3. Emergency membrane contactor based absorption system for ammonia leaks in water treatment plants.

    PubMed

    Shao, Jiahui; Fang, Xuliang; He, Yiliang; Jin, Qiang

    2008-01-01

    Abstract Because of the suspected health risks of trihalomethanes (THMs), more and more water treatment plants have replaced traditional chlorine disinfection process with chloramines but often without the proper absorption system installed in the case of ammonia leaks in the storage room. A pilot plant membrane absorption system was developed and installed in a water treatment plant for this purpose. Experimentally determined contact angle, surface tension, and corrosion tests indicated that the sulfuric acid was the proper choice as the absorbent for leaking ammonia using polypropylene hollow fiber membrane contactor. Effects of several operating conditions on the mass transfer coefficient, ammonia absorption, and removal efficiency were examined, including the liquid concentration, liquid velocity, and feed gas concentration. Under the operation conditions investigated, the gas absorption efficiency over 99.9% was achieved. This indicated that the designed pilot plant membrane absorption system was effective to absorb the leaking ammonia in the model storage room. The removal rate of the ammonia in the model storage room was also experimentally and theoretically found to be primarily determined by the ammonia suction flow rate from the ammonia storage room to the membrane contactor. The ammonia removal rate of 99.9% was expected to be achieved within 1.3 h at the ammonia gas flow rate of 500 m3/h. The success of the pilot plant membrane absorption system developed in this study illustrated the potential of this technology for ammonia leaks in water treatment plant, also paved the way towards a larger scale application.

  4. Calibrating and deriving physical parameters using plasma contactor data from the International Space Station

    NASA Astrophysics Data System (ADS)

    Bering, E.

    The International Space Station (ISS) regularly passes through the southern auroral oval south of Australia. The ISS has two plasma contactors that emit the electron currents needed to balance electron collection by surfaces such as the lattice of bare rods on the solar array masts. These electron currents exceed 0.1 A at times. The largest currents are observed in the auroral oval south of Australia. On the space station, the solar array 40 m long masts each have over 400 m of stainless steel tensioning rods. When subject to orbital v×B-l induced potentials, the rods collect substantial currents from the ionosphere. Maximum v×B-l potentials are generated near the magnetic poles. The plasma contactor emission current can be converted to an estimate of plasma density and calibrated using Floating potential Probe (FPP) and other data. These measurements show that the plasma density in the nighttime auroral ionosphere is frequently several times that predicted by the International Reference Ionosphere (IRI)-90 and IRI-2001 models.

  5. A new process for drug loaded nanocapsules preparation using a membrane contactor.

    PubMed

    Charcosset, Catherine; Fessi, Hatem

    2005-12-01

    In this paper, we describe a new process for the preparation of drug loaded nanocapsules using a membrane contactor which may be scaled up for industrial applications. Nanocapsules are prepared according to the nanoprecipitation method. The organic phase (solvent, polymer, oil, and drug) is pressed through the pores of an ultrafiltration membrane via the filtrate side. The aqueous phase (water and surfactant) circulates inside the membrane module, and sweeps away the nanocaspules forming at the pore outlets. Two model drugs are selected for the preparation of drug loaded nanocapsules: indomethacin and vitamin E. It is shown that indomethacin loaded nanocapsules with a mean diameter of 240 nm and vitamin E loaded nanocapsules with a mean diameter of 230 nm are obtained with a 150,000 daltons ultrafiltration membrane, a transmembrane pressure of 3 bar, and a crossflow rate of 1.7 m.s(- 1). High fluxes are also obtained (around 0.6 m3/h.m2), leading to the preparation of 1.8 10(- 3) m3 drug loaded nanocapsules in 8 min. The advantage of this membrane contactor compared to other processes for drug loaded nanocapsules preparation is shown to be its scale-up ability.

  6. Analysis of ammonia separation from purge gases in microporous hollow fiber membrane contactors.

    PubMed

    Karami, M R; Keshavarz, P; Khorram, M; Mehdipour, M

    2013-09-15

    In this study, a mathematical model was developed to analyze the separation of ammonia from the purge gas of ammonia plants using microporous hollow fiber membrane contactors. A numerical procedure was proposed to solve the simultaneous linear and non linear partial differential equations in the liquid, membrane and gas phases for non-wetted or partially wetted conditions. An equation of state was applied in the model instead of Henry's law because of high solubility of ammonia in water. The experimental data of CO₂-water system in the literature was used to validate the model due to the lack of data for ammonia-water system. The model showed that the membrane contactor can separate ammonia very effectively and with recoveries higher than 99%. SEM images demonstrated that ammonia caused some micro-cracks on the surfaces of polypropylene fibers, which could be an indication of partial wetting of membrane in long term applications. However, the model results revealed that the membrane wetting did not have significant effect on the absorption of ammonia because of very high solubility of ammonia in water. It was also found that the effect of gas velocity on the absorption flux was much more than the effect of liquid velocity. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water

    SciTech Connect

    Chan, Wai Kit; Joueet, Justine; Heng, Samuel; Yeung, King Lun; Schrotter, Jean-Christophe

    2012-05-15

    An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface charges from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation. - Graphical abstract: Advanced ozone membrane reactor synergistically combines membrane distributor for ozone, membrane contactor for sorption and reaction and membrane separator for clean water production to achieve an order of magnitude enhancement in treatment performance compared to traditional ozone reactor. Highlights: Black-Right-Pointing-Pointer Novel reactor using membranes for ozone distributor, reaction contactor and water separator. Black-Right-Pointing-Pointer Designed to achieve an order of magnitude enhancement over traditional reactor. Black-Right-Pointing-Pointer Al{sub 2}O{sub 3} and hydrotalcite coatings capture and trap pollutants giving additional 30% TOC removal. Black-Right-Pointing-Pointer High surface area coating prevents polarization and improves membrane separation and life.

  8. INACTIVATION OF CRYPTOSPORIDIUM OOCYSTS IN A PILOT-SCALE OZONE BUBBLE-DIFFUSER CONTACTOR - II: MODEL VALIDATION AND APPLICATION

    EPA Science Inventory

    The ADR model developed in Part I of this study was successfully validated with experimenta data obtained for the inactivation of C. parvum and C. muris oocysts with a pilot-scale ozone-bubble diffuser contactor operated with treated Ohio River water. Kinetic parameters, required...

  9. Rotor for centrifugal fast analyzers

    DOEpatents

    Lee, N.E.

    1984-01-01

    The invention is an improved photometric analyzer of the rotary cuvette type, the analyzer incorporating a multicuvette rotor of novel design. The rotor (a) is leaktight, (b) permits operation in the 90/sup 0/ and 180/sup 0/ excitation modes, (c) is compatible with extensively used Centrifugal Fast Analyzers, and (d) can be used thousands of times. The rotor includes an assembly comprising a top plate, a bottom plate, and a central plate, the rim of the central plate being formed with circumferentially spaced indentations. A uv-transmitting ring is sealably affixed to the indented rim to define with the indentations an array of cuvettes. The ring serves both as a sealing means and an end window for the cuvettes.

  10. Sound generation in centrifugal compressors

    NASA Astrophysics Data System (ADS)

    Raitor, Till; Neise, Wolfgang

    2008-07-01

    An experimental study is described to explore the dominant sound generation mechanisms of the spectral components governing the overall noise level of centrifugal compressors. At the design speed with supersonic flow conditions in the rotor blade channels, blade tone noise and buzz-saw noise are the main contributors. On the inlet, rotor-alone noise is the main source while rotor-stator interaction noise dominates on the outlet side in case of vaned outlet diffusers. Over a large range of rotor speeds with subsonic flow conditions, radial compressor noise is dominated by tip clearance noise which is produced by the secondary flow through the gap between rotor blade tips and the casing wall which in turn gives rise to the rotating instability phenomena observed earlier in axial-flow machines.

  11. Rotor for centrifugal fast analyzers

    DOEpatents

    Lee, Norman E.

    1985-01-01

    The invention is an improved photometric analyzer of the rotary cuvette type, the analyzer incorporating a multicuvette rotor of novel design. The rotor (a) is leaktight, (b) permits operation in the 90.degree. and 180.degree. excitation modes, (c) is compatible with extensively used Centrifugal Fast Analyzers, and (d) can be used thousands of times. The rotor includes an assembly comprising a top plate, a bottom plate, and a central plate, the rim of the central plate being formed with circumferentially spaced indentations. A UV-transmitting ring is sealably affixed to the indented rim to define with the indentations an array of cuvettes. The ring serves both as a sealing means and an end window for the cuvettes.

  12. Centrifuges in gravitational physiology research

    NASA Technical Reports Server (NTRS)

    Ballard, Rodney W.; Davies, Phil; Fuller, Charles A.

    1993-01-01

    Data from space flight and ground based experiments have clearly demonstrated the importance of Earth gravity for normal physiological function in man and animals. Gravitational Physiology is concerned with the role and influence of gravity on physiological systems. Research in this field examines how we perceive and respond to gravity and the mechanisms underlying these responses. Inherent in our search for answers to these questions is the ability to alter gravity, which is not physically possible without leaving Earth. However, useful experimental paradigms have been to modify the perceived force of gravity by changing either the orientation of subjects to the gravity vector (i.e., postural changes) or by applying inertial forces to augment the magnitude of the gravity vector. The later technique has commonly been used by applying centripetal force via centrifugation.

  13. Centrifugal membrane filtration -- Task 9

    SciTech Connect

    1996-08-01

    The Energy and Environmental Research Center (EERC) has teamed with SpinTek Membrane Systems, Inc., the developer of a centrifugal membrane filtration technology, to demonstrate applications for the SpinTek technology within the US Department of Energy (DOE) Environmental management (EM) Program. The technology uses supported microporous membranes rotating at high rpm, under pressure, to separate suspended and colloidal solids from liquid streams, yielding a solids-free permeate stream and a highly concentrated solids stream. This is a crosscutting technology that falls under the Efficient Separations and Processing Crosscutting Program, with potential application to tank wastes, contaminated groundwater, landfill leachate, and secondary liquid waste streams from other remediation processes, including decontamination and decommissioning systems. Membrane-screening tests were performed with the SpinTek STC-X4 static test cell filtration unit, using five ceramic membranes with different pore size and composition. Based on permeate flux, a 0.25-{micro}m TiO{sub 2}/Al{sub 2}O{sub 3} membrane was selected for detailed performance evaluation using the SpinTek ST-IIL centrifugal membrane filtration unit with a surrogate tank waste solution. An extended test run of 100 hr performed on a surrogate tank waste solution showed some deterioration in filtration performance, based on flux, apparently due to the buildup of solids near the inner portion of the membrane where relative membrane velocities were low. Continued testing of the system will focus on modifications to the shear pattern across the entire membrane surface to affect improved long-term performance.

  14. Design and evaluation of hydraulic baffled-channel PAC contactor for taste and odor removal from drinking water supplies.

    PubMed

    Kim, Young-Il; Bae, Byung-Uk

    2007-05-01

    Based on the concept of hydraulic flocculator, a baffled-channel powdered activated carbon (PAC) contactor, placed before the rapid-mixing basin, was designed and evaluated for removal of taste and odor (T&O) in drinking water. PAC adsorption kinetic tests for raw water samples were conducted for selection of design parameters related to contact time and degree of mixing. Within the tested range of velocity gradient (G) from 18 to 83s(-1), mixing had a relatively minor effect on the adsorption kinetics of the PAC. The hydrodynamic characteristics of the pilot-scale horizontally and vertically baffled-channel PAC contactor were investigated by tracer tests. It was found that the plug flow fractions of vertically baffled-channel PAC contactor (vBPC) were higher than those of the horizontally baffled-channel PAC contactor (hBPC) for the same bend width or bend height. However, the hBPC seems to be more appropriate than the vBPC in terms of construction and maintenance. The geosmin and MIB removal rate increased with the number of baffles, PAC dose and contact time increased regardless of bend width in the pilot-scale hBPC. The pair of full-scale hBPCs at Pohang water treatment plant, having a design capacity of 6.5x10(4)m(3)/d with 20min of hydraulic retention time with a safety factor of 2, was designed based on lab- and pilot-scale experimental results. Under a velocity gradient of 20s(-1), the number of baffles to be installed was calculated to be 20 with a space of about 2m between each baffle, resulting in a hydraulic head loss through the contactor of about 0.056m. The successful application of hBPC for T&O removal from drinking water supplies should provide momentum for developing more effective treatment methods.

  15. Compact type-I coil planet centrifuge for counter-current chromatography

    PubMed Central

    Yang, Yi; Gu, Dongyu; Liu, Yongqiang; Aisa, Haji Akber; Ito, Yoichiro

    2009-01-01

    A compact type-I coil planet centrifuge has been developed for performing counter-current chromatography. It has a revolution radius of 10 cm and a column holder height of 5 cm compared with 37 cm and 50 cm in the original prototype, respectively. The reduction in the revolution radius and column length permits application of higher revolution speed and more stable balancing of the rotor which leads us to learn more about its performance and the future potential of type-I coil planet centrifuge. The chromatographic performance of this apparatus was evaluated in terms of retention of the stationary phase (Sf), peak resolution (Rs), theoretical plate (N) and peak retention time (tR). The results of the experiment indicated that increasing the revolution speed slightly improved both the retention of the stationary phase and the peak resolution while the separation time is remarkably shortened to yield an excellent peak resolution at a revolution speed of 800 rpm. With a 12 ml capacity coiled column, DNP-glu, DNP-β-ala and DNP-ala were resolved at Rs of 2.75 and 2.16 within 90 min at a flow rate of 0.4 ml/min. We believe that the compact type-I coil planet centrifuge has a high analytical potential. PMID:20060979

  16. Compact type-I coil planet centrifuge for counter-current chromatography.

    PubMed

    Yang, Yi; Gu, Dongyu; Liu, Yongqiang; Aisa, Haji Akber; Ito, Yoichiro

    2010-02-19

    A compact type-I coil planet centrifuge has been developed for performing counter-current chromatography. It has a revolution radius of 10 cm and a column holder height of 5 cm compared with 37 and 50 cm in the original prototype, respectively. The reduction in the revolution radius and column length permits application of higher revolution speed and more stable balancing of the rotor which leads us to learn more about its performance and the future potential of type-I coil planet centrifuge. The chromatographic performance of this apparatus was evaluated in terms of retention of the stationary phase (S(f)), peak resolution (R(s)), theoretical plate (N) and peak retention time (t(R)). The results of the experiment indicated that increasing the revolution speed slightly improved both the retention of the stationary phase and the peak resolution while the separation time is remarkably shortened to yield an excellent peak resolution at a revolution speed of 800 rpm. With a 12 ml capacity coiled column, DNP-DL-glu, DNP-beta-ala and DNP-l-ala were resolved at R(s) of 2.75 and 2.16 within 90 min at a flow rate of 0.4 ml/min. We believe that the compact type-I coil planet centrifuge has a high analytical potential. Published by Elsevier B.V.

  17. A real-time dynamic imaging system for centrifugal microflow platforms

    NASA Astrophysics Data System (ADS)

    Chang, Hsing-Cheng; Tsou, Chingfu; Lai, Chi-Chih; Wun, Guo-Hong

    2008-07-01

    Based on the operational concept of quasi-static state and optoelectronic measurement technology, this research develops a real-time dynamic imaging system for centrifugal microfluidic platforms. Unlike the conventional centrifugal inspection system, which can only be used for examination of the final steady stage in microflow analysis, the developed system with a multi-speed controller and object tracking design is fabricated with low cost to recognize dynamic microflow patterns for different kinds of compact disc-type centrifugal microstructures. The characteristics of rotational control efficiency and image acquisition quality are obtained from fluidic microvalve experiments that are achieved in measuring microflow dynamic responses and in visualizing transient microflow patterns. A man-machine interface was connected with a computer to perform the control and alignment adjustments to catch exact image data for following analysis. The rotation stability of the system has been evaluated, and the rotation speed up to 4500 rpm with vertical vibration less than ±0.2 mm is achieved measured at radial distance of 5 cm. The image acquisition is transferred via USB 2.0 at a speed of up to 30 images per second to the display and memory module.

  18. Centrifuge workers study. Phase II, completion report

    SciTech Connect

    Wooten, H.D.

    1994-09-01

    Phase II of the Centrifuge Workers Study was a follow-up to the Phase I efforts. The Phase I results had indicated a higher risk than expected among centrifuge workers for developing bladder cancer when compared with the risk in the general population for developing this same type of cancer. However, no specific agent could be identified as the causative agent for these bladder cancers. As the Phase II Report states, Phase I had been limited to workers who had the greatest potential for exposure to substances used in the centrifuge process. Phase II was designed to expand the survey to evaluate the health of all employees who had ever worked in Centrifuge Program Departments 1330-1339 but who had not been interviewed in Phase I. Employees in analytical laboratories and maintenance departments who provided support services for the Centrifuge Program were also included in Phase II. In December 1989, the Oak Ridge Associated Universities (ORAU), now known as Oak Ridge Institute for Science and Education (ORISE), was contracted to conduct a follow-up study (Phase II). Phase H of the Centrifuge Workers Study expanded the survey to include all former centrifuge workers who were not included in Phase I. ORISE was chosen because they had performed the Phase I tasks and summarized the corresponding survey data therefrom.

  19. Poster — Thur Eve — 21: Off-axis dose perturbation effects in water in a 5 × 5 cm{sup 2} 18 MV photon beam for the PTW microLion and Exradin A1SL ionization chambers

    SciTech Connect

    O'Grady, K; Davis, S D; Papaconstadopoulos, P; Seuntjens, J

    2014-08-15

    A PTW microLion liquid ionization chamber and an Exradin A1SL air-filled ionization chamber have been modeled using the egs-chamber user code of the EGSnrc system to determine their perturbation effects in water in a 5 × 5 cm{sup 2} 18 MV photon beam. A model of the Varian CL21EX linear accelerator was constructed using the BEAMnrc Monte Carlo code, and was validated by comparing measured PDDs and profiles from the microLion and A1SL chambers to calculated results that included chamber models. Measured PDDs for a 5 × 5 cm{sup 2} field for the microLion chamber agreed with calculations to within 1.5% beyond a depth of 0.5 cm, and the A1SL PDDs agreed within 1.0% beyond 1.0 cm. Measured and calculated profiles at 10 cm depth agreed within 1.0% for both chambers inside the field, and within 4.0% near the field edge. Local percent differences increased up to 15% at 4 cm outside the field. The ratio of dose to water in the absence of the chamber relative to dose in the chamber's active volume as a function of off-axis distance was calculated using the egs-chamber correlated sampling technique. The dose ratio was nearly constant inside the field and consistent with the stopping power ratios of water to detector material, but varied up to 3.3% near the field edge and 5.2% at 4 cm outside the field. Once these perturbation effects are fully characterized for more field sizes and detectors, they could be applied to clinical water tank measurements for improved dosimetric accuracy.

  20. Influence of Fractionation Scheme and Tumor Location on Toxicities After Stereotactic Body Radiation Therapy for Large (≥5 cm) Non-Small Cell Lung Cancer: A Multi-institutional Analysis.

    PubMed

    Verma, Vivek; Shostrom, Valerie K; Zhen, Weining; Zhang, Mutian; Braunstein, Steve E; Holland, John; Hallemeier, Christopher L; Harkenrider, Matthew M; Iskhanian, Adrian; Jabbour, Salma K; Attia, Albert; Lee, Percy; Wang, Kyle; Decker, Roy H; McGarry, Ronald C; Simone, Charles B

    2017-03-15

    To describe the impact of fractionation scheme and tumor location on toxicities in stereotactic body radiation therapy (SBRT) for ≥5-cm non-small cell lung cancer (NSCLC), as part of a multi-institutional analysis. Patients with primary ≥5-cm N0 M0 NSCLC who underwent ≤5-fraction SBRT were examined across multiple high-volume SBRT centers. Collected data included clinical/treatment parameters; toxicities were prospectively assessed at each institution according to the Common Terminology Criteria for Adverse Events. Patients treated daily were compared with those treated every other day (QOD)/other nondaily regimens. Stratification between central and peripheral tumors was also performed. Ninety-two patients from 12 institutions were evaluated (2004-2016), with median follow-up of 12 months. In total there were 23 (25%) and 6 (7%) grade ≥2 and grade ≥3 toxicities, respectively. Grades 2 and 3 pulmonary toxicities occurred in 9% and 4%, respectively; 1 patient treated daily experienced grade 5 radiation pneumonitis. Of the entire cohort, 46 patients underwent daily SBRT, and 46 received QOD (n=40)/other nondaily (n=6) regimens. Clinical/treatment parameters were similar between groups; the QOD/other group was more likely to receive 3-/4-fraction schemas. Patients treated QOD/other experienced significantly fewer grade ≥2 toxicities as compared with daily treatment (7% vs 43%, P<.001). Patients treated daily also had higher rates of grade ≥2 pulmonary toxicities (P=.014). Patients with peripheral tumors (n=66) were more likely to receive 3-/4-fraction regimens than those with central tumors (n=26). No significant differences in grade ≥2 toxicities were identified according to tumor location (P>.05). From this multi-institutional study, toxicity of SBRT for ≥5-cm lesions is acceptable, and daily treatment was associated with a higher rate of toxicities. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Fast gradient screening of pharmaceuticals with 5 cm long, narrow bore reversed-phase columns packed with sub-3 μm core-shell and sub-2 μm totally porous particles.

    PubMed

    Fekete, Szabolcs; Fekete, Jeno

    2011-04-15

    The performance of 5 cm long narrow-bore columns packed with 2.6-2.7 μm core-shell particles and a column packed with 1.7 μm totally porous particles was compared in very fast gradient separations of polar neutral active pharmaceutical compounds. Peak capacities as a function of flow-rate and gradient time were measured. Peak capacities around 160-170 could be achieved within 25 min with these 5 cm long columns. The highest peak capacity was obtained with the Kinetex column however it was found that as the flow-rate increases, the peak capacity of the new Poroshell-120 column is getting closer to that obtained with the Kinetex column. Considering the column permeability, peak capacity per unit time and per unit pressure was also calculated. In this comparison the advantage of sub-3 μm core-shell particles is more significant compared to sub-2 μm totally porous particles. Moreover it was found that the very similar sized (d(p)=2.7 μm) and structured (ρ=0.63) new Poroshell-120 and the earlier introduced Ascentis Express particles showed different efficiency. Results obtained showed that the 5 cm long narrow bore columns packed with sub-3 μm core-shell particles offer the chance of very fast and efficient gradient separations, thus these columns can be applied for fast screening measurements of routine pharmaceutical analysis such as cleaning validation. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Growth of ˜5 cm2V-1s-1 mobility, p-type Copper(I) oxide (Cu2O) films by fast atmospheric atomic layer deposition (AALD) at 225°C and below

    NASA Astrophysics Data System (ADS)

    Muñoz-Rojas, D.; Jordan, M.; Yeoh, C.; Marin, A. T.; Kursumovic, A.; Dunlop, L. A.; Iza, D. C.; Chen, A.; Wang, H.; MacManus Driscoll, J. L.

    2012-12-01

    Phase pure, dense Cu2O thin films were grown on glass and polymer substrates at 225°C by rapid atmospheric atomic layer deposition (AALD). Carrier mobilities of 5 cm2V-1s-1 and carrier concentrations of ˜1016 cm-3 were achieved in films of thickness 50 - 120 nm, over a >10 cm2 area. Growth rates were ˜1 nm.min-1 which is two orders of magnitude faster than conventional ALD.. The high mobilities achieved using the atmospheric, low temperature method represent a significant advance for flextronics and flexible solar cells which require growth on plastic substrates.

  3. Gas dynamics in strong centrifugal fields

    SciTech Connect

    Bogovalov, S.V.; Kislov, V.A.; Tronin, I.V.

    2015-03-10

    Dynamics of waves generated by scopes in gas centrifuges (GC) for isotope separation is considered. The centrifugal acceleration in the GC reaches values of the order of 106g. The centrifugal and Coriolis forces modify essentially the conventional sound waves. Three families of the waves with different polarisation and dispersion exist in these conditions. Dynamics of the flow in the model GC Iguasu is investigated numerically. Comparison of the results of the numerical modelling of the wave dynamics with the analytical predictions is performed. New phenomena of the resonances in the GC is found. The resonances occur for the waves polarized along the rotational axis having the smallest dumping due to the viscosity.

  4. Properties of the Auroral Zone Ionosphere Inferred Using Plasma Contactor Data From the International Space Station

    NASA Astrophysics Data System (ADS)

    Koontz, S. L.; Bering, E. A.; Evans, D. S.; Katz, I.; Gardner, B. M.; Suggs, R. M.; Minow, J. I.; Dalton, P. J.; Ferguson, D. C.; Hillard, G. B.; Counts, J. L.; Barsamian, H.; Kern, J.; Mikatarian, R.

    2001-12-01

    Comparison of the auroral electron precipitation maps produced by the NOAA POES satellite constellation with the flight path of the International Space Station (ISS) reveals that ISS regularly passes through the southern auroral oval south of Australia. During the first few months of 2001, ISS configuration and flight attitude were such that tensioning rods on the space station solar array masts could collect current from the ionosphere in the same way as a bare wire antenna or electrodynamic tether. The ISS has two plasma contactors that emit the electron currents needed to balance electron collection by surfaces such as the lattice of bare rods on the solar array masts. During this period, these electron currents exceeded 0.1 A at times. The largest currents were observed in the auroral oval south of Australia, often after orbital sunset. On the space station, the solar array 40 m long masts each have over 400 m of stainless steel tensioning rods. When subject to orbital vxBṡl induced potentials, the rods collect substantial currents from the ionosphere. Models of the mast collection processes based upon J. R. Sanmartin's bare wire collection theory have been incorporated into computer codes that integrate models of the station geometry, orbital motion, earth's magnetic field, and ionosphere to obtain plasma contactor emission currents. During the period being analyzed, the station flew in an orientation such that the masts were perpendicular to the orbital velocity vector, and parallel to the earth's surface. Maximum vxBṡl potentials are generated near the magnetic poles. The current drawn by the masts is linearly proportional to the plasma density. The plasma contactor emission current can be converted to an estimate of plasma density. These measurements show that the plasma density in the nighttime auroral ionosphere is frequently several times that predicted by the International Reference Ionosphere (IRI)-90 and IRI-2001 models. We will discuss how the

  5. Modeling of Centrifugal Force Field and the Effect on Filling and Solidification in Centrifugal Casting

    NASA Astrophysics Data System (ADS)

    Sheng, Wenbin; Ma, Chunxue; Gu, Wanli

    2011-06-01

    Based on the steady flow in a tube, a mathematical model has been established for the consideration of centrifuging force field by combining the equations of continuity, conservation of momentum and general energy. Effects of centrifugal field on the filling and solidification are modeled by two accessional terms: centrifugal force and Chorios force. In addition, the transfer of heat by convection is considered to achieve a coupling calculation of velocity field and temperature field. The solution of pressure item is avoided by introducing the stream function ψ(x,y) and the eddy function ξ(x,y). Corresponding difference formats for the simultaneous equations of centrifugal filling, the accessional terms and the solidifying latent heat have been established by the finite difference technique. Furthermore, the centrifugal filling and solidification processes in a horizontal tube are summarized to interpret the mechanism by which internal defects are formed in centrifugal castings.

  6. Effects of Centrifugal Force and Centrifugation Time on the Sedimentation of Plant Organelles 1

    PubMed Central

    Nagahashi, Jerry; Hiraike, Kathleen

    1982-01-01

    The effect of centrifugal force and length of centrifugation time on the sedimentation of plant organelles was determined for corn (Zea mays L.) root homogenates. A centrifugal force of 6000g for at least 20 minutes was necessary to pellet 90% of the mitochondrial marker (cytochrome c oxidase). This initial centrifugation step is optimal for separating mitochondria from microsomes, since cross-contamination of endoplasmic reticulum and plasma membrane vesicles with mitochondria is minimized. Centrifugal forces of 8000g or 10,000g for 20 minutes and 13,000g for 15 minutes pellet 90% of the mitochondrial marker; however, these centrifugation conditions also sediment more plasma membrane and endoplasmic reticulum. PMID:16662245

  7. Gas centrifuge with driving motor

    DOEpatents

    Dancy, Jr., William H.

    1976-01-01

    1. A centrifuge for separating gaseous constituents of different masses comprising a vertical tubular rotor, means for introducing a gas mixture of different masses into said rotor and means for removing at least one of the gas components from the rotor, a first bearing means supporting said rotor at one end for rotational movement, a support, a damping bearing mounted on said support, a shaft fixed to said rotor at the opposite end and mechanically connecting said rotor to said damping bearing, a cup-shaped tube of electrically conductive, non-magnetic material in coaxial relationship with said shaft, the open end of said tube extending away from said rotor and the closed end of said tube being directly secured to the adjacent end of the rotor, an annular core of magnetic material fixedly mounted on said support so as to be disposed within said tube and around said shaft, and a second annular magnetic core with coils arranged thereon to receive polyphase current to produce a rotating magnetic field traversing the circumference of said tube, fixedly mounted on said support so as to surround said tube, the size of said first annular core and said second annular core being such as to permit limited radial displacement of said shaft and said tube.

  8. Two-Stage Centrifugal Fan

    NASA Technical Reports Server (NTRS)

    Converse, David

    2011-01-01

    Fan designs are often constrained by envelope, rotational speed, weight, and power. Aerodynamic performance and motor electrical performance are heavily influenced by rotational speed. The fan used in this work is at a practical limit for rotational speed due to motor performance characteristics, and there is no more space available in the packaging for a larger fan. The pressure rise requirements keep growing. The way to ordinarily accommodate a higher DP is to spin faster or grow the fan rotor diameter. The invention is to put two radially oriented stages on a single disk. Flow enters the first stage from the center; energy is imparted to the flow in the first stage blades, the flow is redirected some amount opposite to the direction of rotation in the fixed stators, and more energy is imparted to the flow in the second- stage blades. Without increasing either rotational speed or disk diameter, it is believed that as much as 50 percent more DP can be achieved with this design than with an ordinary, single-stage centrifugal design. This invention is useful primarily for fans having relatively low flow rates with relatively high pressure rise requirements.

  9. ROTATIONAL INSTABILITIES AND CENTRIFUGAL HANGUP

    SciTech Connect

    K. NEW; J. CENTRELLA

    2000-12-01

    One interesting class of gravitational radiation sources includes rapidly rotating astrophysical objects that encounter dynamical instabilities. We have carried out a set of simulations of rotationally induced instabilities in differentially rotating polytropes. An n=1.5 polytrope with the Maclaurin rotation law will encounter the m=2 bar instability at T/{vert_bar}W{vert_bar} {ge} 0.27. Our results indicate that the remnant of this in-stability is a persistent bar-like structure that emits a long-lived gravitational radiation signal. Furthermore, dynamical instability is shown to occur in n=3.33 polytropes with the j-constant rotation law at T/{vert_bar}W{vert_bar} {ge} 0:14. In this case, the dominant mode of instability is m=1. Such instability may allow a centrifugally-hung core to begin collapsing to neutron star densities on a dynamical timescale. If it occurs in a supermassive star, it may produce gravitational radiation detectable by LISA.

  10. Safety aspects of gas centrifuge enrichment plants

    SciTech Connect

    Hansen, A.H.

    1987-01-01

    Uranium enrichment by gas centrifuge is a commercially proven, viable technology. Gas centrifuge enrichment plant operations pose hazards that are also found in other industries as well as unique hazards as a result of processing and handling uranium hexafluoride and the handling of enriched uranium. Hazards also found in other industries included those posed by the use of high-speed rotating equipment and equipment handling by use of heavy-duty cranes. Hazards from high-speed rotating equipment are associated with the operation of the gas centrifuges themselves and with the operation of the uranium hexafluoride compressors in the tail withdrawal system. These and related hazards are discussed. It is included that commercial gas centrifuge enrichment plants have been designed to operate safely.

  11. Centrifuge advances using HTS magnetic bearings

    NASA Astrophysics Data System (ADS)

    Werfel, F. N.; Flögel-Delor, U.; Rothfeld, R.; Wippich, D.; Riedel, T.

    2001-05-01

    Passive magnetic bearings are of increasing technical interest. We performed experiments with centrifugal rotors to analyze gyroscopic forces in terms imbalance, rotor elasticity and damping. Centrifuge rotors need to be operated soft and stable without whirling the sediments. In order to evaluate optimal parameters critical and resonance behaviors are investigated. Eccentricities up 2 mm are safely passed by accelerating test wheels. In a simple model we describe the effect of passing critical rotational speeds. Measurements of bearing properties and wheel performance are presented. We have constructed a first prototype centrifuge designed with a HTS double bearing which operates a titanium rotor safely up to 30 000 rpm. A 15 W Stirling cooler serves cryogenics of the YBCO stators. From the experiments design guidelines for centrifugal applications with HTS bearings are given.

  12. Optical detection strategies for centrifugal microfluidic platforms

    NASA Astrophysics Data System (ADS)

    King, Damien; O'Sullivan, Mary; Ducrée, Jens

    2014-01-01

    Centrifugal microfluidic systems have become one of the principal platforms for implementing bioanalytical assays, most notably for biomedical point-of-care diagnostics. These so-called 'lab-on-a-disc' systems primarily utilise the rotationally controlled centrifugal field in combination with capillary forces to automate a range of laboratory unit operations (LUOs) for sample preparation, such as metering, aliquoting, mixing and extraction for biofluids as well as sorting, isolation and counting of bioparticles. These centrifugal microfluidic LUOs have been regularly surveyed in the literature. However, even though absolutely essential to provide true sample-to-answer functionality of lab-on-a-disc platforms, systematic examination of associated, often optical, read-out technologies has been so far neglected. This review focusses on the history and state-of-the-art of optical read-out strategies for centrifugal microfluidic platforms, arising (commercial) application potential and future opportunities.

  13. Crew Training - Apollo 8 (Centrifuge) - MSC

    NASA Image and Video Library

    1968-11-05

    S68-53186 (1 Nov. 1968) --- Astronaut Frank Borman, Apollo 8 commander, egresses the gondola in Building 29 after centrifuge training in the Manned Spacecraft Center's (MSC) Flight Acceleration Facility (FAF).

  14. Combination Of Investment And Centrifugal Casting

    NASA Technical Reports Server (NTRS)

    Creeger, Gordon A.

    1994-01-01

    Modifications, including incorporation of centrifugal casting, made in investment-casting process reducing scrap rate. Used to make first- and second-stage high-pressure-fuel-turbopump nozzles, containing vanes with thin trailing edges and other thin sections. Investment mold spun for short time while being filled, and stopped before solidification occurs. Centrifugal force drives molten metal into thin trailing edges, ensuring they are filled. With improved filling, preheat and pour temperatures reduced and solidification hastened so less hot tearing.

  15. Renal Response to Chronic Centrifugation in Rats

    NASA Technical Reports Server (NTRS)

    Ortiz, Rudy M.; Wang, T. J.; Corbin, B. J.; Wade, C. E.; Hargens, Alan R. (Technical Monitor)

    1996-01-01

    Previously reported effects of chronic centrifugation on renal function in mammals are contradictory. The present study was conducted as an effort to provide a comprehensive analysis of renal response to chronic centrifugation (12 days at +2 Gz). Sixteen male Sprague-Dawley rats (210-230 g) were used: eight centrifuged (EC) and eight off centrifuge controls (OCC). During centrifugation EC had lower body weight and food consumption. EC showed a decrease (72%) in water intake for the first two days (T1 and T2) followed by significant increases from T4-T6. EC urine output increased two-fold over the first four days, returning to baseline by T9. EC urea excretion was elevated on T3 through T5. Creatinine, Na(+), K(+), and osmolar excretion were lower than OCC over the last four days of the study. Assuming constant plasma osmolarity and creatinine levels, EC free water clearance (C(sub H2O)) was elevated significantly on T4 when the peak urine output was exhibited. EC also had a greater C(sub H2O) over the last four days, associated with a significantly lower osmolar clearance and GFR. The initial diuresis exhibited during centrifugation can be attributed to a reduced water resorption and increased urea excretion. This diuresis was mediated independent of changes in GFR over the first eight days. However, differences in excretion seen after eight days of centrifugation are probably GFR mediated which would imply animals established a new homeostatic setpoint by that time. Centrifugation elicites an acute alteration in fluid homeostasis followed by adaptation within a week.

  16. Combination Of Investment And Centrifugal Casting

    NASA Technical Reports Server (NTRS)

    Creeger, Gordon A.

    1994-01-01

    Modifications, including incorporation of centrifugal casting, made in investment-casting process reducing scrap rate. Used to make first- and second-stage high-pressure-fuel-turbopump nozzles, containing vanes with thin trailing edges and other thin sections. Investment mold spun for short time while being filled, and stopped before solidification occurs. Centrifugal force drives molten metal into thin trailing edges, ensuring they are filled. With improved filling, preheat and pour temperatures reduced and solidification hastened so less hot tearing.

  17. Renal Response to Chronic Centrifugation in Rats

    NASA Technical Reports Server (NTRS)

    Ortiz, Rudy M.; Wang, T. J.; Corbin, B. J.; Wade, C. E.; Hargens, Alan R. (Technical Monitor)

    1996-01-01

    Previously reported effects of chronic centrifugation on renal function in mammals are contradictory. The present study was conducted as an effort to provide a comprehensive analysis of renal response to chronic centrifugation (12 days at +2 Gz). Sixteen male Sprague-Dawley rats (210-230 g) were used: eight centrifuged (EC) and eight off centrifuge controls (OCC). During centrifugation EC had lower body weight and food consumption. EC showed a decrease (72%) in water intake for the first two days (T1 and T2) followed by significant increases from T4-T6. EC urine output increased two-fold over the first four days, returning to baseline by T9. EC urea excretion was elevated on T3 through T5. Creatinine, Na(+), K(+), and osmolar excretion were lower than OCC over the last four days of the study. Assuming constant plasma osmolarity and creatinine levels, EC free water clearance (C(sub H2O)) was elevated significantly on T4 when the peak urine output was exhibited. EC also had a greater C(sub H2O) over the last four days, associated with a significantly lower osmolar clearance and GFR. The initial diuresis exhibited during centrifugation can be attributed to a reduced water resorption and increased urea excretion. This diuresis was mediated independent of changes in GFR over the first eight days. However, differences in excretion seen after eight days of centrifugation are probably GFR mediated which would imply animals established a new homeostatic setpoint by that time. Centrifugation elicites an acute alteration in fluid homeostasis followed by adaptation within a week.

  18. Isolation of symbiotic dinoflagellates by centrifugal elutriation

    SciTech Connect

    Bird, A.E.; Quinn, R.J.

    1986-01-01

    Centrifugal elutriation, a method combining centripetal liquid flow with centrifugal force, has been used to isolate symbiotic dinoflagellates from a cnidarian host. The elutriated cells were shown to be viable by photosynthetic incorporation of /sup 14/CO/sub 2/ and low release of photosynthetic products into the incubation medium. The level of contamination by clinging debris was low and by host solids was negligible.

  19. On the Operational Status of the ISS Plasma Contactor Hollow Cathodes

    NASA Technical Reports Server (NTRS)

    Burke, Thomas P. (Technical Monitor); Carpenter, Christian B.

    2004-01-01

    The Plasma Contactor Unit (PCU) was developed by the Rocketdyne division of The Boeing Company to control charging of the International Space Station (ISS). Each PCU contains a Hollow Cathode Assembly (HCA), which emits the charge control electrons. The HCAs were designed and fabricated at NASA s Glenn Research Center (GRC). GRC's HCA development program included manufacture of engineering, qualification, and flight model HCAs as well as qualification and wear tests. GRC tracks the on-orbit data for the flight HCAs in order to ascertain their overall health. As of April 5, 2004, 43 ignitions and over 6000 hours have been accumulated on a single unit. The flight HCAs continue to operate flawlessly. This paper will discuss the operation of the HCAs during ground tests and on-orbit operation from initial startup to April 30, 2004.

  20. Bioaugmentation for treating transient 4-fluorocinnamic acid shock loads in a rotating biological contactor.

    PubMed

    Amorim, Catarina L; Duque, Anouk F; Afonso, Carlos M M; Castro, Paula M L

    2013-09-01

    A rotating biological contactor (RBC) was used to treat shock loadings of 4-fluorocinnamic acid (4-FCA). Intermittent 4-FCA shocks of 35 mg L(-1) were applied (ca. 3 months) with only limited mineralization occurring and accumulation of 4-fluorobenzoate (4-FBA) as an intermediate. After bioaugmentation with a degrading bacterium the RBC was able to deal with 4-FCA intermittent loading of 80 mg L(-1) however, a gradual decline in RBC performance occurred, leading to 4-FBA accumulation. The degrading strain was recovered from the biofilm during 2 months but intermittent feeding may have led to diminishing strain numbers. Distinct bacterial communities in the 1st and the 5th and 10th stages of the RBC were revealed by denaturating gradient gel electrophoresis. Several isolates retrieved from the RBC transformed 4-FCA into 4-FBA but only two strains mineralized the compound. Bioaugmentation allowed removal of the fluorinated compound however intermittent feeding may have compromised the bioreactor efficiency.

  1. Hollow cathodes as electron emitting plasma contactors Theory and computer modeling

    NASA Technical Reports Server (NTRS)

    Davis, V. A.; Katz, I.; Mandell, M. J.; Parks, D. E.

    1987-01-01

    Several researchers have suggested using hollow cathodes as plasma contactors for electrodynamic tethers, particularly to prevent the Shuttle Orbiter from charging to large negative potentials. Previous studies have shown that fluid models with anomalous scattering can describe the electron transport in hollow cathode generated plasmas. An improved theory of the hollow cathode plasmas is developed and computational results using the theory are compared with laboratory experiments. Numerical predictions for a hollow cathode plasma source of the type considered for use on the Shuttle are presented, as are three-dimensional NASCAP/LEO calculations of the emitted ion trajectories and the resulting potentials in the vicinity of the Orbiter. The computer calculations show that the hollow cathode plasma source makes vastly superior contact with the ionospheric plasma compared with either an electron gun or passive ion collection by the Orbiter.

  2. Thermal Analysis of AC Contactor Using Thermal Network Finite Difference Analysis Method

    NASA Astrophysics Data System (ADS)

    Niu, Chunping; Chen, Degui; Li, Xingwen; Geng, Yingsan

    To predict the thermal behavior of switchgear quickly, the Thermal Network Finite Difference Analysis method (TNFDA) is adopted in thermal analysis of AC contactor in the paper. The thermal network model is built with nodes, thermal resistors and heat generators, and it is solved using finite difference method (FDM). The main circuit and the control system are connected by thermal resistors network, which solves the problem of multi-sources interaction in the application of TNFDA. The temperature of conducting wires is calculated according to the heat transfer process and the fundamental equations of thermal conduction. It provides a method to solve the problem of boundary conditions in applying the TNFDA. The comparison between the results of TNFDA and measurements shows the feasibility and practicability of the method.

  3. Bacterial Cellulose Production by Gluconacetobacter sp. RKY5 in a Rotary Biofilm Contactor

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Jun; Kim, Jin-Nam; Wee, Young-Jung; Park, Don-Hee; Ryu, Hwa-Won

    A rotary biofilm contactor (RBC) inoculated with Gluconacetobacter sp. RKY5 was used as a bioreactor for improved bacterial cellulose production. The optimal number of disk for bacterial cellulose production was found to be eight, at which bacterial cellulose and cell concentrations were 5.52 and 4.98 g/L. When the aeration rate was maintained at 1.25 vvm, bacterial cellulose and cell concentrations were maximized (5.67 and 5.25 g/L, respectively). The optimal rotation speed of impeller in RBC was 15 rpm. When the culture pH in RBC was not controlled during fermentation, the maximal amount of bacterial cellulose (5.53 g/L) and cells (4.91 g/L) was obtained. Under the optimized culture conditions, bacterial cellulose and cell concentrations in RBC reached to 6.17 and 5.58 g/L, respectively.

  4. Recovery of volatile fatty acids via membrane contactor using flat membranes: experimental and theoretical analysis.

    PubMed

    Tugtas, Adile Evren

    2014-07-01

    Volatile fatty acid (VFA) separation from synthetic VFA solutions and leachate was investigated via the use of a membrane contactor. NaOH was used as a stripping solution to provide constant concentration gradient of VFAs in both sides of a membrane. Mass flux (12.23 g/m(2)h) and selectivity (1.599) observed for acetic acid were significantly higher than those reported in the literature and were observed at feed pH of 3.0, flow rate of 31.5 ± 0.9 mL/min, and stripping solution concentration of 1.0 N. This study revealed that the flow rate, stripping solution strength, and feed pH affect the mass transfer of VFAs through the PTFE membrane. Acetic and propionic acid separation performances observed in the present study provided a cost effective and environmental alternative due to elimination of the use of extractants.

  5. The use of the fungus Dichomitus squalens for degradation in rotating biological contactor conditions.

    PubMed

    Novotný, Ceněk; Trošt, Nina; Šlušla, Martin; Svobodová, Kateřina; Mikesková, Hana; Válková, Hana; Malachová, Kateřina; Pavko, Aleksander

    2012-06-01

    Biodegradation potential of Dichomitus squalens in biofilm cultures and rotating biological contactor (RBC) was investigated. The fungus formed thick biofilms on inert and lignocellulosic supports and exhibited stable activities of laccase and manganese peroxidase to reach 40-62 and 25-32% decolorization of anthraquinone Remazol Brilliant Blue R and heterocyclic phthalocyanine dyes, respectively. The decolorization ceased when glucose concentration dropped to 1 mmol l(-1). In RBC reactor, respective decolorizations of Remazol Brilliant Blue R and heterocyclic Methylene Blue and Azure B dyes (50 mg l(-1)) attained 99%, 93%, and 59% within 7, 40 and 200 h. The fungus exhibited tolerance to coliform and non-coliform bacteria on rich organic media, the inhibition occurred only on media containing tryptone and NaCl. The degradation efficiency in RBC reactor, capability to decolorize a wide range of dye structures and tolerance to bacterial stress make D. squalens an organism applicable to remediation of textile wastewaters.

  6. Tube-side mass transfer for hollow fibre membrane contactors operated in the low Graetz range.

    PubMed

    Wang, C Y; Mercer, E; Kamranvand, F; Williams, L; Kolios, A; Parker, A; Tyrrel, S; Cartmell, E; McAdam, E J

    2017-02-01

    Transformation of the tube-side mass transfer coefficient derived in hollow fibre membrane contactors (HFMC) of different characteristic length scales (equivalent diameter and fibre length) has been studied when operated in the low Graetz range (Gz<10). Within the low Gz range, mass transfer is generally described by the Graetz problem (Sh=3.67) which assumes that the concentration profile comprises a constant shape over the fibre radius. In this study, it is experimentally evidenced that this assumption over predicts mass transfer within the low Graetz range. Furthermore, within the low Gz range (below 2), a proportional relationship between the experimentally determined mass transfer coefficient (Kov ) and the Graetz number has been identified. For Gz numbers below 2, the experimental Sh number approached unity, which suggests that mass transfer is strongly dependent upon diffusion. However, within this diffusion controlled region of mass transfer, tube-side fluid velocity remained important. For Gz numbers above 2, Sh could be satisfactorily described by extension to the Lévêque solution, which can be ascribed to the constrained growth of the concentration boundary layer adjacent to the fibre wall. Importantly this study demonstrates that whilst mass transfer in the low Graetz range does not explicitly conform to either the Graetz problem or classical Lévêque solution, it is possible to transform the experimentally derived overall mass transfer coefficient (Kov ) between characteristic length scales (dh and L). T h is was corroborated by comparison of the empirical relationship determined in this study (Sh=0.36Gz) with previously published studies operated in the low Gz range. This analysis provides important insight for process design when slow tube-side flows, or low Schmidt numbers (coincident with gases) constrain operation of hollow fibre membrane contactors to the low Gz range.

  7. Stability study and lyophilization of vitamin E-loaded nanocapsules prepared by membrane contactor.

    PubMed

    Khayata, N; Abdelwahed, W; Chehna, M F; Charcosset, C; Fessi, H

    2012-12-15

    In this research, we studied the accelerated stability of vitamin E-loaded nanocapsules (NCs) prepared by the nanoprecipitation method. Vitamin E-loaded NCs were optimized firstly at the laboratory scale and then scaled up using the membrane contactor technique. The optimum conditions of the membrane contactor preparation (pilot scale) produced vitamin E-loaded NCs with an average size of 253 nm, polydispersity index 0.19 and a zeta potential -16 mV. The average size, polydispersity index and zeta potential values were 185 nm, 0.12 and -15 mV, respectively for the NCs prepared at laboratory scale. No significant changes were noticed in these values after 3 and 6 months of storage at high temperature (40±2 °C) and relative humidity (75±5%) in spite of vitamin E sensitivity to light, heat and oxygen. The entrapment efficiency of NCs prepared at pilot scale was 97% at the beginning of the stability study, and became (95%, 59%) after 3 and 6 months of storage, respectively. These values at lab-scale were (98%, 96%, and 89%) at time zero and after 3 and 6 months of storage, respectively. This confirms the ability of vitamin E encapsulation to preserve its stability, which is one major goal of our work. Lyophilization of the optimized formula at lab-scale was also performed. Four types of cryoprotectants were tested (poly(vinyl pyrrolidone), sucrose, mannitol, and glucose). Freeze-dried NCs prepared with sucrose were found acceptable. The other lyophilized NCs obtained at different conditions presented large aggregates. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Liquid-liquid extraction of uranium(VI) in the system with a membrane contactor.

    PubMed

    Biełuszka, Paweł; Zakrzewska, Grażyna; Chajduk, Ewelina; Dudek, Jakub

    Raising role of the nuclear power industry, including governmental plans for the construction of first nuclear power plant in Poland, creates increasing demand for the uranium-based nuclear fuels. The project implemented by Institute of Nuclear Chemistry and Technology concerns the development of effective methods for uranium extraction from low-grade ores and phosphorites for production of yellow cake-U3O8. The Liqui-Cel(®) Extra-Flow 2.5 × 8 Membrane Contactor produced by CELGARD LLC (Charlotte, NC) company is the main component of the installation for liquid-liquid extraction applied for processing of post leaching liquors. In the process of membrane extraction the uranyl ions from aqueous phase are transported through the membrane into organic phase. The flow of two phases in the system was arranged in co-current mode. The very important element of the work was a selection of extracting agents appropriate for the membrane process. After preliminary experiments comprising tests of membrane resistivity and determination of extraction efficiency, di(2-ethylhexyl)phosphoric acid was found to be most favourable. An important aspect of the work was the adjustment of hydrodynamic conditions in the capillary module. To avoid the membrane wettability by organic solvent and mixing two phases equal pressure drops along the membrane module to minimize the transmembrane pressure, were assumed. Determination of pressure drop along the module was conducted using Bernoulli equation. The integrated process of extraction/re-extraction conducted in continuous mode with application of two contactors was designed.

  9. Sliding-cavity fluid contactors in low-gravity fluids, materials, and biotechnology research.

    PubMed

    Todd, Paul; Vellinger, John C; Sengupta, Shramik; Sportiello, Michael G; Greenberg, Alan R; Krantz, William B

    2002-10-01

    The well-known method of sliding-cavity fluid contactors used by Gosting for diffusion measurements and by Tiselius in electrophoresis has found considerable use in low-gravity research. To date, sliding-cavity contactors have been used in liquid diffusion experiments, interfacial transport experiments, biomolecular crystal growth, biphasic extraction, multistage extraction, microencapsulation, seed germination, invertebrate development, and thin-film casting. Sliding-cavity technology has several advantages for spaceflight: it is simple, it accommodates small samples, samples can be fully enclosed, phases can be combined, multiple samples can be processed at high sample density, real-time observations can be made, and mixed and diffused samples can be compared. An analysis of the transport phenomena that govern the sliding-cavity method is offered. During sliding of one liquid over another flow rates between 0.001 and 0.1m/sec are developed, giving Reynolds numbers in the range 0.1-100. Assuming no slip at liquid-solid boundaries shear rates are of the order 1sec(-1). The measured consequence is the transfer of 2-5% of the content of a cavity to the opposite cavity. In the absence of gravity, buoyancy-driven transport is assumed absent. Transport processes are limited to (1) molecular diffusion, in which reactants diffuse toward one another at rates that depend on their diffusion coefficient and concentration gradient (Fick's second law), (2) solutocapillary (Marangoni) flow driven by surface-tension gradients, (3) capillary flow (drop spreading) at liquid-solid three-phase lines leading to immiscible phase demixing, and (4) vapor-phase diffusive mass transfer in evaporative processes. Quantitative treatment of these phenomena has been accomplished over the past few years in low-gravity research in space and on aircraft.

  10. Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water

    NASA Astrophysics Data System (ADS)

    Kit Chan, Wai; Jouët, Justine; Heng, Samuel; Lun Yeung, King; Schrotter, Jean-Christophe

    2012-05-01

    An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface charges from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation.

  11. Operation of a breadboard liquid-sorbent/membrane-contactor system for removing carbon dioxide and water vapor from air

    NASA Technical Reports Server (NTRS)

    Mccray, Scott B.; Ray, Rod; Newbold, David D.; Millard, Douglas L.; Friesen, Dwayne T.; Foerg, Sandra

    1992-01-01

    Processes to remove and recover carbon dioxide (CO2) and water vapor from air are essential for successful long-duration space missions. This paper presents results of a developmental program focused on the use of a liquid-sorbent/membrane-contactor (LSMC) system for removal of CO2 and water vapor from air. In this system, air from the spacecraft cabin atmosphere is circulated through one side of a hollow-fiber membrane contactor. On the other side of the membrane contactor is flowed a liquid sorbent, which absorbs the CO2 and water vapor from the feed air. The liquid sorbent is then heated to desorb the CO2 and water vapor. The CO2 is subsequently removed from the system as a concentrated gas stream, whereas the water vapor is condensed, producing a water stream. A breadboard system based on this technology was designed and constructed. Tests showed that the LSMC breadboard system can produce a CO2 stream and a liquid-water stream. Details are presented on the operation of the system, as well as the effects on performance of variations in feed conditions.

  12. Future beam experiments in the magnetosphere with plasma contactors: How do we get the charge off the spacecraft?

    NASA Astrophysics Data System (ADS)

    Delzanno, G. L.; Borovsky, J. E.; Thomsen, M. F.; Moulton, J. D.; MacDonald, E. A.

    2015-05-01

    The idea of using a high-voltage electron beam with substantial current to actively probe magnetic field line connectivity in space has been discussed since the 1970s. However, its experimental realization onboard a magnetospheric spacecraft has never been accomplished because the tenuous magnetospheric plasma cannot provide the return current necessary to keep spacecraft charging under control. In this work, we perform Particle-In-Cell simulations to investigate the conditions under which a high-voltage electron beam can be emitted from a spacecraft and explore solutions that can mitigate spacecraft charging. The electron beam cannot simply be compensated for by an ion beam of equal current, because the Child-Langmuir space charge limit is violated under conditions of interest. On the other hand, releasing a high-density neutral contactor plasma prior and during beam emission is critical in aiding beam emission. We show that after an initial transient controlled by the size of the contactor cloud where the spacecraft potential rises, the spacecraft potential can settle into conditions that allow for electron beam emission. A physical explanation of this result in terms of ion emission into spherical geometry from the surface of the plasma cloud is presented, together with scaling laws of the peak spacecraft potential varying the ion mass and beam current. These results suggest that a strategy where the contactor plasma and the electron beam operate simultaneously might offer a pathway to perform beam experiments in the magnetosphere.

  13. Wet air oxidation of formic acid using nanoparticle-modified polysulfone hollow fibers as gas-liquid contactors.

    PubMed

    Hogg, Seth R; Muthu, Satish; O'Callaghan, Michael; Lahitte, Jean-Francois; Bruening, Merlin L

    2012-03-01

    Catalytic wet air oxidation (CWAO) using membrane contactors is attractive for remediation of aqueous pollutants, but previous studies of even simple reactions such as formic acid oxidation required multiple passes through tubular ceramic membrane contactors to achieve high conversion. This work aims to increase single-pass CWAO conversions by using polysulfone (PS) hollow fibers as contactors to reduce diffusion distances in the fiber lumen. Alternating adsorption of polycations and citrate-stabilized platinum colloids in fiber walls provides catalytically active PS hollow fibers. Using a single PS fiber, 50% oxidation of a 50 mM formic acid feed solution results from a single pass through the fiber lumen (15 cm length) with a solution residence time of 40 s. Increasing the number of PS fibers to five while maintaining the same volumetric flow rate leads to over 90% oxidation, suggesting that further scale up in the number of fibers will facilitate high single pass conversions at increased flow rates. The high conversion compared to prior studies with ceramic fibers stems from shorter diffusion distances in the fiber lumen. However, the activity of the Pt catalyst is 20-fold lower than in previous ceramic fibers. Focusing the Pt deposition near the fiber lumen and limiting pore wetting to this region might increase the activity of the catalyst. © 2012 American Chemical Society

  14. Operation of a breadboard liquid-sorbent/membrane-contactor system for removing carbon dioxide and water vapor from air

    NASA Technical Reports Server (NTRS)

    Mccray, Scott B.; Ray, Rod; Newbold, David D.; Millard, Douglas L.; Friesen, Dwayne T.; Foerg, Sandra

    1992-01-01

    Processes to remove and recover carbon dioxide (CO2) and water vapor from air are essential for successful long-duration space missions. This paper presents results of a developmental program focused on the use of a liquid-sorbent/membrane-contactor (LSMC) system for removal of CO2 and water vapor from air. In this system, air from the spacecraft cabin atmosphere is circulated through one side of a hollow-fiber membrane contactor. On the other side of the membrane contactor is flowed a liquid sorbent, which absorbs the CO2 and water vapor from the feed air. The liquid sorbent is then heated to desorb the CO2 and water vapor. The CO2 is subsequently removed from the system as a concentrated gas stream, whereas the water vapor is condensed, producing a water stream. A breadboard system based on this technology was designed and constructed. Tests showed that the LSMC breadboard system can produce a CO2 stream and a liquid-water stream. Details are presented on the operation of the system, as well as the effects on performance of variations in feed conditions.

  15. Effect of polymer concentration on the structure and performance of PEI hollow fiber membrane contactor for CO2 stripping.

    PubMed

    Naim, R; Ismail, A F

    2013-04-15

    A series of polyetherimide (PEI) hollow fiber membranes with various polymer concentrations (13-16 wt.%) for CO2 stripping process in membrane contactor application was fabricated via wet phase inversion method. The PEI membranes were characterized in terms of liquid entry pressure, contact angle, gas permeation and morphology analysis. CO2 stripping performance was investigated via membrane contactor system in a stainless steel module with aqueous diethanolamine as liquid absorbent. The hollow fiber membranes showed decreasing patterns in gas permeation, contact angle, mean pore size and effective surface porosity with increasing polymer concentration. On the contrary, wetting pressure of PEI membranes has enhanced significantly with polymer concentration. Various polymer concentrations have different effects on the CO2 stripping flux in which membrane with 14 wt.% polymer concentration showed the highest stripping flux of 2.7 × 10(-2)mol/m(2)s. From the performance comparison with other commercial membrane, it is anticipated that the PEI membrane has a good prospect in CO2 stripping via membrane contactor. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. MHD Stability of Centrifugally Confined Plasmas

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Min

    2003-10-01

    Centrifugally confined plasmas utilize centrifugal forces from plasma rotation to augment magnetic confinement, as an alternative approach to fusion. One magnetic geometry is mirror-type, with rotation about the axis induced from a central, biased core conductor. The outward centrifugal forces from the rotation have a component along the field lines, thus confining ions to the center. The immediate concern, of course, is that the system could be flute unstable to the interchange. The antidote here is that the radial shear in the rotation could stabilize the flute. Our 2D simulations show, first, that plasma pressure is highly peaked at the center away from the mirror end coils. Next, 3D simulations show unequivocally that velocity shear is providing the stability. Further study indicates that the flute stability is sensitive to the density profile. A favorable density profile could be achieved by judiciously placing the particle source, also necessary for a steady state centrifuge. As flows approach the Alfven speed, electromagnetic modes could be involved. The latter is motivated by the question of whether magnetorotational instability, thought to be an angular momentum transporter in accretion disks, could be found in centrifugal plasmas, since all the ingredients are there. We show that the MRI as understood should be stable; however, a related astrophysical instability, the Parker instability, could arise. The Parker instability results in plasma accumulating in regions of bent field lines, further accentuating the bending.

  17. Centrifugal techniques for measuring saturated hydraulic conductivity

    USGS Publications Warehouse

    Nimmo, John R.; Mello, Karen A.

    1991-01-01

    Centrifugal force is an alternative to large pressure gradients for the measurement of low values of saturated hydraulic conductivity (Ksat). With a head of water above a porous medium in a centrifuge bucket, both constant-head and falling-head measurements are practical at forces up to at least 1800 times normal gravity. Darcy's law applied to the known centrifugal potential leads to simple formulas for Ksat that are analogous to those used in the standard gravity-driven constant- and falling-head methods. Both centrifugal methods were tested on several fine-textured samples of soil and ceramic with Ksat between about 10−10 and 10−9 m/s. The results were compared to falling-head gravity measurements. The comparison shows most measurements agreeing to within 20% for a given sample, much of the variation probably resulting from run-to-run changes in sample structure. The falling-head centrifuge method proved to be especially simple in design and operation and was more accurate than the constant-head method. With modified apparatus, Ksat measurements less than 10−10 m/s should be attainable.

  18. Liquid centrifugation for nuclear waste partitioning

    SciTech Connect

    Bowman, C.D.

    1992-03-11

    The performance of liquid centrifugation for nuclear waste partitioning is examined for the Accelerator Transmutation of Waste Program currently under study at the Los Alamos National Laboratory. Centrifugation might have application for the separation of the LiF-BeF{sub 2} salt from heavier radioactive materials fission product and actinides in the separation of fission product from actinides, in the isotope separation of fission-product cesium before transmutation of the {sup 137}Cs and {sup 135}Cs, and in the removal of spallation product from the liquid lead target. It is found that useful chemical separations should be possible using existing materials for the centrifuge construction for all four cases with the actinide fraction in fission product perhaps as low as 1 part in 10{sup 7} and the fraction of {sup 137}CS in {sup 133}Cs being as low as a few parts in 10{sup 5}. A centrifuge cascade has the advantage that it can be assembled and operated as a completely closed system without a waste stream except that associated with maintenance or replacement of centrifuge components.

  19. Cardiopulmonary Responses to Supine Cycling during Short-Arm Centrifugation

    NASA Technical Reports Server (NTRS)

    Vener, J. M.; Simonson, S. R.; Stocks, J.; Evettes, S.; Bailey, K.; Biagini, H.; Jackson, C. G. R.; Greenleaf, J. E.; Dalton, Bonnie P. (Technical Monitor)

    2001-01-01

    The purpose of this study was to investigate cardiopulmonary responses to supine cycling with concomitant +G(sub z) acceleration using the NASA/Ames Human Powered Short-Arm Centrifuge (HPC). Subjects were eight consenting males (32+/-5 yrs, 178+/-5 cm, 86.1+/- 6.2 kg). All subjects completed two maximal exercise tests on the HPC (with and without acceleration) within a three-day period. A two tailed t-test with statistical significance set at p less than or equal to 0.05 was used to compare treatments. Peak acceleration was 3.4+/-0.1 G(sub z), (head to foot acceleration). Peak oxygen uptake (VO2(sub peak) was not different between treatment groups (3.1+/-0.1 Lmin(exp -1) vs. 3.2+/-0.1 Lmin(exp -1) for stationary and acceleration trials, respectively). Peak HR and pulmonary minute ventilation (V(sub E(sub BTPS))) were significantly elevated (p less than or equal to 0.05) for the acceleration trial (182+/-3 BPM (Beats per Minute); 132.0+/-9.0 Lmin(exp -1)) when compared to the stationary trial (175+/-3 BPM; 115.5+/-8.5 Lmin(exp -1)). Ventilatory threshold expressed as a percent of VO2(sub peak) was not different for acceleration and stationary trials (72+/-2% vs. 68+/-2% respectively). Results suggest that 3.4 G(sub z) acceleration does not alter VO2(sub peak) response to supine cycling. However, peak HR and V(sub E(sub BTPS)) response may be increased while ventilatory threshold response expressed as a function of percent VO2(sub peak) is relatively unaffected. Thus, traditional exercise prescription based on VO2 response would be appropriate for this mode of exercise. Prescriptions based on HR response may require modification.

  20. Cardiopulmonary Responses to Supine Cycling during Short-Arm Centrifugation

    NASA Technical Reports Server (NTRS)

    Vener, J. M.; Simonson, S. R.; Stocks, J.; Evettes, S.; Bailey, K.; Biagini, H.; Jackson, C. G. R.; Greenleaf, J. E.; Dalton, Bonnie P. (Technical Monitor)

    2001-01-01

    The purpose of this study was to investigate cardiopulmonary responses to supine cycling with concomitant +G(sub z) acceleration using the NASA/Ames Human Powered Short-Arm Centrifuge (HPC). Subjects were eight consenting males (32+/-5 yrs, 178+/-5 cm, 86.1+/- 6.2 kg). All subjects completed two maximal exercise tests on the HPC (with and without acceleration) within a three-day period. A two tailed t-test with statistical significance set at p less than or equal to 0.05 was used to compare treatments. Peak acceleration was 3.4+/-0.1 G(sub z), (head to foot acceleration). Peak oxygen uptake (VO2(sub peak) was not different between treatment groups (3.1+/-0.1 Lmin(exp -1) vs. 3.2+/-0.1 Lmin(exp -1) for stationary and acceleration trials, respectively). Peak HR and pulmonary minute ventilation (V(sub E(sub BTPS))) were significantly elevated (p less than or equal to 0.05) for the acceleration trial (182+/-3 BPM (Beats per Minute); 132.0+/-9.0 Lmin(exp -1)) when compared to the stationary trial (175+/-3 BPM; 115.5+/-8.5 Lmin(exp -1)). Ventilatory threshold expressed as a percent of VO2(sub peak) was not different for acceleration and stationary trials (72+/-2% vs. 68+/-2% respectively). Results suggest that 3.4 G(sub z) acceleration does not alter VO2(sub peak) response to supine cycling. However, peak HR and V(sub E(sub BTPS)) response may be increased while ventilatory threshold response expressed as a function of percent VO2(sub peak) is relatively unaffected. Thus, traditional exercise prescription based on VO2 response would be appropriate for this mode of exercise. Prescriptions based on HR response may require modification.

  1. Possible segregation caused by centrifugal titanium casting.

    PubMed

    Watanabe, K; Okawa, S; Kanatani, M; Nakano, S; Miyakawa, O; Kobayashi, M

    1996-12-01

    The possibility of the segregation under solidification process using a centrifugal casting machine was investigated using an electron probe microanalyzer with elemental distribution map, line analysis and quantitative analysis. When a very small quantity of platinum was added to local molten titanium during the casting process, macroscopic segregation was observed under conditions of density difference of 0.1 g/cm3 at the most, confirming that the centrifugal force of the casting machine is extremely strong. When a Ti-6Al-4V alloy was cast, however, no macroscopic segregation was observed. The centrifugal force of the casting machine examined in the present study hardly results in the body-force segregation in this titanium alloy.

  2. Effects of chronic centrifugation on mice

    NASA Technical Reports Server (NTRS)

    Janer, L.; Duke, J.

    1984-01-01

    Previous studies have shown that exposure to excess gravity in vitro alters the developmental sequence in embryonic mouse limbs and palates (Duke, Janer and Campbell, 1984; Duke, 1983). The effects of excess gravity on in vivo mammalian development was investigated using a small animal centrifuge. Four-week old female mice exposed to excess gravities of 1.8-3.5 G for eight weeks weighed significantly less than controls. Mice were mated after five weeks of adaptation to excess G, and sacrificed either at gestational day 12 or 18. There were fewer pregnancies in the centrifuged group (4/36) than in controls (9/31), and crown rump lengths (CRL) of embryos developing in the centrifuge were less than CRLs of 1-G embryos. These results show that although immersed in amniotic fluid, embryos are responsive to Delta-G.

  3. Centrifugal compressor design for electrically assisted boost

    NASA Astrophysics Data System (ADS)

    Y Yang, M.; Martinez-Botas, R. F.; Zhuge, W. L.; Qureshi, U.; Richards, B.

    2013-12-01

    Electrically assisted boost is a prominent method to solve the issues of transient lag in turbocharger and remains an optimized operation condition for a compressor due to decoupling from turbine. Usually a centrifugal compressor for gasoline engine boosting is operated at high rotational speed which is beyond the ability of an electric motor in market. In this paper a centrifugal compressor with rotational speed as 120k RPM and pressure ratio as 2.0 is specially developed for electrically assisted boost. A centrifugal compressor including the impeller, vaneless diffuser and the volute is designed by meanline method followed by 3D detailed design. Then CFD method is employed to predict as well as analyse the performance of the design compressor. The results show that the pressure ratio and efficiency at design point is 2.07 and 78% specifically.

  4. Effects of chronic centrifugation on mice

    NASA Technical Reports Server (NTRS)

    Janer, L.; Duke, J.

    1984-01-01

    Previous studies have shown that exposure to excess gravity in vitro alters the developmental sequence in embryonic mouse limbs and palates (Duke, Janer and Campbell, 1984; Duke, 1983). The effects of excess gravity on in vivo mammalian development was investigated using a small animal centrifuge. Four-week old female mice exposed to excess gravities of 1.8-3.5 G for eight weeks weighed significantly less than controls. Mice were mated after five weeks of adaptation to excess G, and sacrificed either at gestational day 12 or 18. There were fewer pregnancies in the centrifuged group (4/36) than in controls (9/31), and crown rump lengths (CRL) of embryos developing in the centrifuge were less than CRLs of 1-G embryos. These results show that although immersed in amniotic fluid, embryos are responsive to Delta-G.

  5. 26. RW Meyer Sugar Mill: 18761889. Centrifugals, 1879, 1881. Manufacturer, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. RW Meyer Sugar Mill: 1876-1889. Centrifugals, 1879, 1881. Manufacturer, unknown. Supplied by Honolulu Ironworks, Honolulu, Hawaii, 1879, 1881. View: Historical view, 1934, from T. T. Waterman collection, Hawaiian Sugar Planters' Association. Once the molasses was separated from the sugar crystals it flowed through the spouts in the base of the centrifugals. The centrifugals' pulleys can be seen underneath the centrifugal. The centrifugal on the right has been reinforced with seven metal bands. The handles for the clutch mechanism are located above the centrifugal. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  6. Effects of Centrifuge Diameter and Operation on Rodent Adaptation to Chronic Centrifugation

    NASA Technical Reports Server (NTRS)

    Fuller, Charles A.

    1997-01-01

    This study examined the responses of rats to centrifugation in a constant acceleration field (1.5 G). Centrifuge diameter (1.8m, 2.5m or 6.0m) and schedule of operation (Daily or weekly stop) varied between groups. Body mass, food consumption, water consumption and neurovestibular function were measured weekly. Body temperature and activity were continuously monitored using telemetry. A subset of subjects were videotaped (50 minutes per day) to allow for movement analysis. Exposure to a hyperdynamic field of this magnitude did cause the expected depression in the physiological variables monitored. Recovery was accomplished within a relatively rapid time frame; all variables returned to precentrifugation levels. In general, the magnitudes of the changes and the rate of recovery were similar at different centrifuge diameters and stopping frequency. There were cases, however, in which the magnitude of the response and/or the rate of recovery to a new steady-state were altered as a result of centrifuge diameter. In summary, these results indicate that stopping frequency has little, if any, effect on adaptation to chronic centrifugation. However, the angular velocity (omega), and therefore centrifuge diameter is an important consideration in the adaptation of an organism to chronic centrifugation.

  7. Effects of Centrifuge Diameter and Operation on Rodent Adaptation to Chronic Centrifugation

    NASA Technical Reports Server (NTRS)

    Fuller, Charles A.

    1992-01-01

    This study examined the responses of rats to centrifugation in a constant acceleration field (1.5 G). Centrifuge diameter (1.8m, 2.5m or 6.0m) and schedule of operation (Daily or weekly stop) varied between groups. Body mass, food consumption, water consumption and neurovestibular function were measured weekly. Body temperature and activity were continuously monitored using telemetry. A subset of subjects were videotaped (50 minutes per day) to allow for movement analysis. Exposure to a hyperdynamic field of this magnitude did cause the expected depression in the physiological variables monitored. Recovery was accomplished within a relatively rapid time frame; all variables returned to precentrifugation levels. In general, the magnitudes of the changes and the rate of recovery were similar at different centrifuge diameters and stopping frequency. There were cases, however, in which the magnitude of the response and/or the rate of recovery to a new steady-state were altered as a result of centrifuge diameter. In summary, these results indicate that stopping frequency has little, if any, effect on adaptation to chronic centrifugation. However, the angular velocity (omega), and therefore centrifuge diameter is an important consideration in the adaptation of an organism to chronic centrifugation.

  8. Detection and characterization of small focal hepatic lesions (≤2.5 cm in diameter): a comparison of diffusion-weighted images before and after administration of gadoxetic acid disodium at 3.0T.

    PubMed

    Song, Kyoung Doo; Kim, Young Kon; Lee, Won Jae; Lee, Min Woo; Park, Min Jung; Hwang, Jiyoung; Lee, Mi Hee

    2012-06-01

    As diffusion-weighted imaging (DWI) is routinely incorporated into the standard clinical protocol, it is clinically relevant to determine whether DWI after gadoxetic acid is comparable to pre-contrast DWI, with regard to the detection and characterization of focal liver lesions. To compare DWI before and after administration of gadoxetic acid in the detection and characterization of small (≤2.5 cm) focal hepatic lesions. One hundred and fifty-eight patients with 237 focal hepatic lesions (≤2.5 cm) (124 HCCs, 50 metastases, 2 cholangiocarcinomas, 43 hemangiomas, and 18 cysts) were included. DWIs were obtained before and after administration of gadoxetic acid. Non-breath-hold DWI was performed with b values of 0, 100, and 800 s/mm(2). Signal-to-noise ratio (SNR), lesion-liver contrast-to-noise ratio (CNR), and apparent diffusion coefficients (ADCs) of the liver and lesion were calculated. Lesion detection with each DWI was evaluated with alternative free-response receiver-operating characteristic analysis by two observers. The sensitivity of the characterization of focal hepatic lesions as solid (malignancy) or non-solid (benignity) with each DWI was calculated using a five-point confidence scale. Inter-observer agreement regarding lesion detection and characterization was evaluated using kappa statistics. SNRs of the liver on post-contrast DWI were significantly lower than on unenhanced DWI at b = 800 s/mm(2) (P < 0.05). SNRs, CNRs, and ADCs of focal hepatic lesions were not significantly different between two DWIs (P > 0.05). The diagnostic accuracy (Az) for lesion detection and the sensitivity for lesion characterization did not show significant difference between two DWIs (P > 0.05). With regard to the detection and characterization of focal hepatic lesions, the kappa values for two DWIs indicated good and excellent inter-observer agreement, respectively. Gadoxetic acid-enhanced DWI showed comparable diagnostic capability to unenhanced DWI for the detection

  9. Critique of ``Centrifugal Gas Compression Cycle''

    NASA Astrophysics Data System (ADS)

    Wheeler, John C.

    2002-11-01

    In a paper in this volume, "Centrifugal Gas Compression Cycle," a thermodynamic cycle is introduced that the author claims will convert heat from a reservoir at fixed temperature entirely into work. His analysis suffers from a fatal flaw that invalidates his conclusion, namely, a failure to correctly account for the work and heat flux involved in an isothermal centrifugal compression of a gas. We give a correct accounting here that demonstrates that this process is not simultaneously isothermal and adiabatic, as the author claims, but rather involves the evolution of heat. This invalidates the author's analysis.

  10. System analysis of plasma centrifuges and sputtering

    NASA Technical Reports Server (NTRS)

    Hong, S. H.

    1978-01-01

    System analyses of cylindrical plasma centrifuges are presented, for which the velocity field and electromagnetic fields are calculated. The effects of different electrode geometrics, induced magnetic fields, Hall-effect, and secondary flows are discussed. It is shown that speeds of 10000 m/sec can be achieved in plasma centrifuges, and that an efficient separation of U238 and U235 in uranium plasmas is feasible. The external boundary-value problem for the deposition of sputtering products is reduced to a Fredholm integral equation, which is solved analytically by means of the method of successive approximations.

  11. Centrifuge for separating helium from natural gas

    SciTech Connect

    Theyse, F.H.; Kelling, F.E.T.

    1980-01-08

    Ultra Centrifuge Nederland N.V.'s improved centrifuge for separating helium from natural gas comprises a hollow cylindrical rotor, designated as a separating drum, within a stationary housing. Natural gas liquids that condense under pressure in the separating drum pass through openings in the drum into the space between the drum and housing. In this space, a series of openings, or throttling restrictors, allows the liquids to expand and return to gas. The gaseous component that does not liquefy in the drum remains separate for drawing off.

  12. Wave-Driven Rotation In Centrifugal Mirrors

    SciTech Connect

    Abraham J. Fetterman and Nathaniel J. Fisch

    2011-03-28

    Centrifugal mirrors use supersonic rotation to provide axial confinement and enhanced stability. Usually the rotation is produced using electrodes, but these electrodes have limited the rotation to the Alfven critical ionization velocity, which is too slow to be useful for fusion. Instead, the rotation could be produced using radio frequency waves. A fixed azimuthal ripple is a simple and efficient wave that could produce rotation by harnessing alpha particle energy. This is an extension of the alpha channeling effect. The alpha particle power and efficiency in a simulated devices is sufficient to produce rotation without external energy input. By eliminating the need for electrodes, this opens new opportunities for centrifugal traps.

  13. Detection methods for centrifugal microfluidic platforms.

    PubMed

    Burger, Robert; Amato, Letizia; Boisen, Anja

    2016-02-15

    Centrifugal microfluidics has attracted much interest from academia as well as industry, since it potentially offers solutions for affordable, user-friendly and portable biosensing. A wide range of so-called fluidic unit operations, e.g. mixing, metering, liquid routing, and particle separation, have been developed and allow automation and integration of complex assay protocols in lab-on-a-disc systems. Besides liquid handling, the detection strategy for reading out the assay is crucial for developing a fully integrated system. In this review, we focus on biosensors and readout methods for the centrifugal microfluidics platform and cover optical as well as mechanical and electrical detection principles.

  14. Performance of polydimethylsiloxane membrane contactor process for selective hydrogen sulfide removal from biogas.

    PubMed

    Tilahun, Ebrahim; Bayrakdar, Alper; Sahinkaya, Erkan; Çalli, Bariş

    2017-03-01

    H2S in biogas affects the co-generation performance adversely by corroding some critical components within the engine and it has to be removed in order to improve the biogas quality. This work presents the use of polydimethylsiloxane (PDMS) membrane contactor for selective removal of H2S from the biogas. Experiments were carried out to evaluate the effects of different pH of absorption liquid, biogas flowrate and temperature on the absorption performances. The results revealed that at the lowest loading rate (91mg H2S/m(2)·h) more than 98% H2S and 59% CO2 absorption efficiencies were achieved. The CH4 content in the treated gas increased from 60 to 80% with nearly 5% CH4 loss. Increasing the pH (7-10) and loading rate (91-355mg H2S/m(2)·h) enhanced the H2S absorption capacity, and the maximum H2S/CO2 and H2S/CH4 selectivity factors were 2.5 and 58, respectively. Temperature played a key role in the process and lower temperature was beneficial for intensifying H2S absorption performance. The highest H2S fluxes at pH 10 and 7 were 3.4g/m(2)·d and 1.8g/m(2)·d with overall mass transfer coefficients of 6.91×10(-6) and 4.99×10(-6)m/s, respectively. The results showed that moderately high H2S fluxes with low CH4 loss may be achieved by using a robust and cost-effective membrane based absorption process for desulfurization of biogas. A tubular PDMS membrane contactor was tested for the first time to remove H2S from biogas under slightly alkaline conditions and the suggested process could be a promising for real scale applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Life Testing of the Hollow Cathode Plasma Contactor for the ProSEDS Mission

    NASA Technical Reports Server (NTRS)

    Vaughn, Jason A.; Schneider, Todd A.; Finckenor, Miria M.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    The Propulsive Small Expendable Deployer System (ProSEDS) mission is designed to provide an on-orbit demonstration of the electrodynamic propulsion capabilities of tethers in space. The ProSEDS experiment will be a secondary payload on a Delta 11 unmanned expendable booster. A 5-km conductive tether is attached to the Delta 11 second stage and collects current from the low Earth orbit (LEO) plasma. A hollow cathode plasma contactor emits the collected electrons from the Delta II, completing the electrical circuit with the ambient plasma. The current flowing through the tether generates thrust based on the Lorentz Force Law. The thrust will be generated opposite to the velocity vector, slowing down the spacecraft and causing it to de-orbit in approximately 14 days compared to the normal 6 months. A 10-km non-conductive tether is between the conductive tether and an endmass containing several scientific instruments. The ProSEDS mission lifetime was set at I day because most of the primary objectives can be met in that time. The extended ProSEDS mission will be for as many days as possible, until the Delta 11 second stage burns up or the tether is severed by a micrometeoroid or space debris particle. The Hollow Cathode Plasma Contactor (HCPC) unit has been designed for a 12-day mission. Because of the science requirements to measure the background ambient plasma, the HCPC must operate on a duty cycle. Later in the ProSEDS mission, the HCPC is operated in a manner to allow charging of the secondary battery. Due to the unusual operating requirements by the ProSEDS mission, a development unit of the HCPC was built for thorough testing. This developmental unit was tested for a simulated ProSEDS mission, with measurements of the ability to start and stop during the duty cycle. These tests also provided valuable data for the ProSEDS software requirements. Qualification tests of the HCPC flight hardware are also discussed.

  16. Chemical oxygen-iodine laser with a centrifugal spray generator of singlet oxygen

    NASA Astrophysics Data System (ADS)

    Špalek, Otomar; Jirásek, Vít; Čenský, Miroslav; Kodymová, Jarmila

    2010-09-01

    A chemical oxygen-iodine laser driven by the centrifugal spray generator of singlet oxygen was developed and experimentally studied. Modeling and experimental studies showed that the designed generator can produce singlet oxygen, O2(1Δg), with a high efficiency (chlorine utilization 0.68 - 0.87 and O2(1Δg) yield 0.35 - 0.7) even at very high generator pressures (25 - 70 kPa), which cannot be attained by other O2(1Δg) generators. This high-pressure operation should be beneficial for a pressure recovery system of the laser. Another specific feature of the generator is a very high BHP utilization (0.24-0.6). The developed separator can effectively remove even small droplets (> 1 μm) from gas at the generator exit. Preliminary experiments on the COIL driven the centrifugal spray generator provided the small signal gain up to 0.5 % cm-1.

  17. Vacuum chamber-free centrifuge with magnetic bearings.

    PubMed

    Park, Cheol Hoon; Kim, Soohyun; Kim, Kyung-Soo

    2013-09-01

    Centrifuges are devices that separate particles of different densities and sizes through the application of a centrifugal force. If a centrifuge could be operated under atmospheric conditions, all vacuum-related components such as the vacuum chamber, vacuum pump, diffusion pump, and sealing could be removed from a conventional centrifuge system. The design and manufacturing procedure for centrifuges could then be greatly simplified to facilitate the production of lightweight centrifuge systems of smaller volume. Furthermore, the maintenance costs incurred owing to wear and tear due to conventional ball bearings would be eliminated. In this study, we describe a novel vacuum chamber-free centrifuge supported by magnetic bearings. We demonstrate the feasibility of the vacuum chamber-free centrifuge by presenting experimental results that verify its high-speed support capability and motoring power capacity.

  18. Astronaut Virgil Grissom - Training Prep - Centrifuge - Johnsonville, PA

    NASA Image and Video Library

    1959-01-01

    B59-00586 (1959) --- Astronaut Virgil (Gus) Grissom is seen preparing for training in the centrifuge at Johnsville. A Navy corpsman attaches sensors to Grissom to monitor his body's reaction to the centrifuge. Photo credit: NASA

  19. Research centrifuge accommodations on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Arno, Roger D.; Horkachuk, Michael J.

    1990-01-01

    Life sciences research using plants and animals on the Space Station Freedom requires the ability to maintain live subjects in a safe and low stress environment for long durations at microgravity and at one g. The need for a centrifuge to achieve these accelerations is evident. Programmatic, technical, and cost considerations currently favor a 2.5 meter diameter centrifuge located either in the end cone of a Space Station Freedom node or in a separate module. A centrifuge facility could support a mix of rodent, plant, and small primate habitats. An automated cage extractor could be used to remove modular habitats in pairs without stopping the main rotor, minimizing the disruption to experiment protocols. The accommodation of such a centrifuge facility on the Space Station represents a significant demand on the crew time, power, data, volume, and logistics capability. It will contribute to a better understanding of the effects of space flight on humans, an understanding of plant growth in space for the eventual production of food, and an understanding of the role of gravity in biological processes.

  20. Evaluation of an improved centrifugal casting machine.

    PubMed

    Donovan, T E; White, L E

    1985-05-01

    A Type III gold alloy, a silver-palladium alloy, and a base metal alloy were cast in two different centrifugal casting machines. With the number of complete cast mesh squares as an indicator of castability, the Airspin casting machine produced superior castings with all three alloys. The base metal alloy produced the greatest number of complete squares with both casting machines.

  1. Pressure distribution in centrifugal dental casting.

    PubMed

    Nielsen, J P

    1978-02-01

    Equations are developed for liquid metal pressure in centrifugal dental casting, given the instantaneous rotational velocity, density, and certain dimensions of the casting machine and casting pattern. A "reference parabola" is introduced making the fluid pressure concept more understandable. A specially designed specimen demonstrates experimentally the reference parabola at freezing.

  2. 21 CFR 864.5350 - Microsedimentation centrifuge.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Microsedimentation centrifuge. 864.5350 Section 864.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Automated and Semi-Automated Hematology...

  3. Centrifuge in space fluid flow visualization experiment

    NASA Technical Reports Server (NTRS)

    Arnold, William A.; Wilcox, William R.; Regel, Liya L.; Dunbar, Bonnie J.

    1993-01-01

    A prototype flow visualization system is constructed to examine buoyancy driven flows during centrifugation in space. An axial density gradient is formed by imposing a thermal gradient between the two ends of the test cell. Numerical computations for this geometry showed that the Prandtl number plays a limited part in determining the flow.

  4. Centrifugal Pump Experiment for Chemical Engineering Undergraduates

    ERIC Educational Resources Information Center

    Vanderslice, Nicholas; Oberto, Richard; Marrero, Thomas R.

    2012-01-01

    The purpose of this paper is to describe a Centrifugal Pump Experiment that provided an experiential learning experience to chemical engineering undergraduates at the University of Missouri in the spring of 2010 in the Unit Operations Laboratory course. Lab equipment was used by senior students with computer-based data and control technology. In…

  5. APPLICATION ANALYSIS REPORT: RETECH PLASMA CENTRIFUGAL FURNACE

    EPA Science Inventory

    This document is an evaluation of the performance of the Retech, Inc. Plasma Centrifugal Furnace (PCF) and its applicability as a treatment for soils contaminated with organic and/or inorganic compounds. Both the technical and economic aspectsof the technology were examined. A...

  6. Predicting Droplet Formation on Centrifugal Microfluidic Platforms

    NASA Astrophysics Data System (ADS)

    Moebius, Jacob Alfred

    Centrifugal microfluidics is a widely known research tool for biological sample and water quality analysis. Currently, the standard equipment used for such diagnostic applications include slow, bulky machines controlled by multiple operators. These machines can be condensed into a smaller, faster benchtop sample-to-answer system. Sample processing is an important step taken to extract, isolate, and convert biological factors, such as nucleic acids or proteins, from a raw sample to an analyzable solution. Volume definition is one such step. The focus of this thesis is the development of a model predicting monodispersed droplet formation and the application of droplets as a technique for volume definition. First, a background of droplet microfluidic platforms is presented, along with current biological analysis technologies and the advantages of integrating such technologies onto microfluidic platforms. Second, background and theories of centrifugal microfluidics is given, followed by theories relevant to droplet emulsions. Third, fabrication techniques for centrifugal microfluidic designs are discussed. Finally, the development of a model for predicting droplet formation on the centrifugal microfluidic platform are presented for the rest of the thesis. Predicting droplet formation analytically based on the volumetric flow rates of the continuous and dispersed phases, the ratios of these two flow rates, and the interfacial tension between the continuous and dispersed phases presented many challenges, which will be discussed in this work. Experimental validation was completed using continuous phase solutions of different interfacial tensions. To conclude, prospective applications are discussed with expected challenges.

  7. Differential white cell count by centrifugal microfluidics.

    SciTech Connect

    Sommer, Gregory Jon; Tentori, Augusto M.; Schaff, Ulrich Y.

    2010-07-01

    We present a method for counting white blood cells that is uniquely compatible with centrifugation based microfluidics. Blood is deposited on top of one or more layers of density media within a microfluidic disk. Spinning the disk causes the cell populations within whole blood to settle through the media, reaching an equilibrium based on the density of each cell type. Separation and fluorescence measurement of cell types stained with a DNA dye is demonstrated using this technique. The integrated signal from bands of fluorescent microspheres is shown to be proportional to their initial concentration in suspension. Among the current generation of medical diagnostics are devices based on the principle of centrifuging a CD sized disk functionalized with microfluidics. These portable 'lab on a disk' devices are capable of conducting multiple assays directly from a blood sample, embodied by platforms developed by Gyros, Samsung, and Abaxis. [1,2] However, no centrifugal platform to date includes a differential white blood cell count, which is an important metric complimentary to diagnostic assays. Measuring the differential white blood cell count (the relative fraction of granulocytes, lymphocytes, and monocytes) is a standard medical diagnostic technique useful for identifying sepsis, leukemia, AIDS, radiation exposure, and a host of other conditions that affect the immune system. Several methods exist for measuring the relative white blood cell count including flow cytometry, electrical impedance, and visual identification from a stained drop of blood under a microscope. However, none of these methods is easily incorporated into a centrifugal microfluidic diagnostic platform.

  8. Flow Pattern Characterization for a Centrifugal Impeller

    NASA Astrophysics Data System (ADS)

    Benavides, Efrén M.

    2014-08-01

    This paper proposes a model for characterizing the flow pattern of a centrifugal impeller attending to the severity of the reverse flow. The model assumes 1) a definition of an escaping particle as the one that flows in every operational point from the trailing edge towards the leading edge of the impeller blades, and 2) a characterization of flow where an operational point is said to have a theoretical flow pattern if it is not possible to establish a fully-reversed escaping particle on it. Therefore, the first part of the article is focused on defining an escaping particle for a centrifugal compressor. The model locates over the map of a centrifugal impeller the line that splits the map in two regions: the region on the right hand side, where a theoretical flow pattern can exist, and the region on the left, where a theoretical flow pattern cannot exist. Therefore, the locus of this line marks a frontier where the expected performance of the impeller cannot be sustained as high as expected. The second part of the article uses a high-performance commercial centrifugal impeller wheel for contrasting the model. A qualitative characterization of the surge line, conclusions and discussions are presented.

  9. Centrifugal Pump Experiment for Chemical Engineering Undergraduates

    ERIC Educational Resources Information Center

    Vanderslice, Nicholas; Oberto, Richard; Marrero, Thomas R.

    2012-01-01

    The purpose of this paper is to describe a Centrifugal Pump Experiment that provided an experiential learning experience to chemical engineering undergraduates at the University of Missouri in the spring of 2010 in the Unit Operations Laboratory course. Lab equipment was used by senior students with computer-based data and control technology. In…

  10. Research centrifuge accommodations on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Arno, Roger D.; Horkachuk, Michael J.

    1990-01-01

    Life sciences research using plants and animals on the Space Station Freedom requires the ability to maintain live subjects in a safe and low stress environment for long durations at microgravity and at one g. The need for a centrifuge to achieve these accelerations is evident. Programmatic, technical, and cost considerations currently favor a 2.5 meter diameter centrifuge located either in the end cone of a Space Station Freedom node or in a separate module. A centrifuge facility could support a mix of rodent, plant, and small primate habitats. An automated cage extractor could be used to remove modular habitats in pairs without stopping the main rotor, minimizing the disruption to experiment protocols. The accommodation of such a centrifuge facility on the Space Station represents a significant demand on the crew time, power, data, volume, and logistics capability. It will contribute to a better understanding of the effects of space flight on humans, an understanding of plant growth in space for the eventual production of food, and an understanding of the role of gravity in biological processes.

  11. SCHIRRA, WALTER, JR., ASTRONAUT - TRAINING - CENTRIFUGE - PA

    NASA Image and Video Library

    1960-11-22

    G60-02461 (1960) --- Astronaut Walter M. Schirra Jr. prepares to enter gondola of centrifuge which is used to test gravitational stress on astronauts training for spaceflight. Schirra became the pilot of the Mercury-Atlas 8 (MA-8) six-orbit space mission. Photo credit: NASA

  12. Crew Training - Apollo 8 (Centrifuge) - MSC

    NASA Image and Video Library

    1968-11-06

    S68-53283 (1 Nov. 1968) --- The Apollo 8 prime crew is seen inside the gondola during centrifuge training in MSC's Flight Acceleration Facility, Building 29. Left to right, are astronauts William A. Anders, lunar module pilot, James A. Lovell Jr., command module pilot; and Frank Borman, commander. Photo credit: NASA

  13. Extracting hydrocarbons from water using a centrifuge

    NASA Astrophysics Data System (ADS)

    Ryabov, A. Yu.; Ilyina, A. A.; Chuikin, A. V.; Velikov, A. A.

    2014-09-01

    An original method for the solid-phase microextraction of hydrocarbons from water using a centrifuge is proposed. Comparative results from the chromatographic elution of substances after liquid-phase and solid-phase microextraction are presented. The percentage of the extraction of substances from aqueous solutions and the minimum detection limit for aromatic and aliphatic compounds are calculated.

  14. APPLICATION ANALYSIS REPORT: RETECH PLASMA CENTRIFUGAL FURNACE

    EPA Science Inventory

    This document is an evaluation of the performance of the Retech, Inc. Plasma Centrifugal Furnace (PCF) and its applicability as a treatment for soils contaminated with organic and/or inorganic compounds. Both the technical and economic aspectsof the technology were examined. A...

  15. Engineering design of centrifugal casting machine

    NASA Astrophysics Data System (ADS)

    Kusnowo, Roni; Gunara, Sophiadi

    2017-06-01

    Centrifugal casting is a metal casting process in which metal liquid is poured into a rotating mold at a specific temperature. Given round will generate a centrifugal force that will affect the outcome of the casting. Casting method is suitable in the manufacture of the casting cylinder to obtain better results. This research was performed to design a prototype machine by using the concept of centrifugal casting. The design method was a step-by-step systematic approach in the process of thinking to achieve the desired goal of realizing the idea and build bridges between idea and the product. Design process was commenced by the conceptual design phase and followed by the embodiment design stage and detailed design stage. With an engineering design process based on the method developed by G. E. Dieter, draft prototype of centrifugal casting machine with dimension of 550×450×400 mm, ¼ HP motor power, pulley and belt mechanism, diameter of 120-150mm, simultaneously with the characteristics of simple casting product, easy manufacture and maintenance, and relatively inexpensive, was generated.

  16. Centrifugal blood pumps for various clinical needs.

    PubMed

    Ichikawa, Seiji; Nosé, Yukihiko

    2002-11-01

    During the past 10 years, different types of blood pumps were developed to address various clinical needs. The Nikkiso centrifugal blood pump was developed for cardiopulmonary bypass application. This blood pump has been widely used in Japan in more than 20% of the cardiopulmonary bypass procedures. The Kyocera C1E3 Gryo pump was developed for short-term circulatory assistance and extracorporeal membrane oxygenation application for up to 2 weeks. This blood pump has been clinically used for up to 28 days without any blood clot formation. Through Phase I of the Japanese government New Energy and Industrial Technology Development Organization (NEDO) program, a chronically implanted centrifugal pump for left ventricular assistance was developed. This pump has already demonstrated its effectiveness, safety, and durability as a 2 year blood pump through in vitro and in vivo experiments. Currently, it is in the process of being converted from an experimental to a clinical device. Through Phase II of the NEDO program, a permanently implantable biventricular assist centrifugal blood pump system is under development. It has demonstrated that the previously mentioned left ventricular assist device blood pump is easily converted into a right ventricular assist pump by simply adding a spacer between the pump and the actuator. This communication discusses the historical development strategies for centrifugal blood pumps and their current status for different clinical needs.

  17. 76 FR 9613 - USEC Inc. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Order...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-18

    ... use source and special nuclear material at the Lead Cascade at the Portsmouth Gaseous Diffusion Plant... operate a gas centrifuge uranium enrichment facility (the ACP) at the Portsmouth Gaseous Diffusion...

  18. Multiple Hollow Cathode Wear Testing for the Space Station Plasma Contactor

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    1994-01-01

    A wear test of four hollow cathodes was conducted to resolve issues associated with the Space Station plasma contactor. The objectives of this test were to evaluate unit-to-unit dispersions, verify the transportability of contamination control protocols developed by the project, and to evaluate cathode contamination control and activation procedures to enable simplification of the gas feed system and heater power processor. These objectives were achieved by wear testing four cathodes concurrently to 2000 hours. Test results showed maximum unit-to-unit deviations for discharge voltages and cathode tip temperatures to be +/-3 percent and +/-2 percent, respectively, of the nominal values. Cathodes utilizing contamination control procedures known to increase cathode lifetime showed no trends in their monitored parameters that would indicate a possible failure, demonstrating that contamination control procedures had been successfully transferred. Comparisons of cathodes utilizing and not utilizing a purifier or simplified activation procedure showed similar behavior during wear testing and pre- and post-test performance characterizations. This behavior indicates that use of simplified cathode systems and procedures is consistent with long cathode lifetimes.

  19. Innovative use of membrane contactor as condenser for heat recovery in carbon capture.

    PubMed

    Yan, Shuiping; Zhao, Shuaifei; Wardhaugh, Leigh; Feron, Paul H M

    2015-02-17

    The gas-liquid membrane contactor generally used as a nonselective gas absorption enhancement device is innovatively proposed as a condenser for heat recovery in liquid-absorbent-based carbon capture. The membrane condenser is used as a heat exchanger to recover the latent heat of the exiting vapor from the desorber, and it can help achieve significant energy savings when proper membranes with high heat-transfer coefficients are used. Theoretical thermodynamic analysis of mass and heat transfer in the membrane condensation system shows that heat recovery increases dramatically as inlet gas temperature rises and outlet gas temperature falls. The optimal split mass flow rate is determined by the inlet gas temperature and the overall heat-transfer coefficient in the condensation system. The required membrane area is also strongly dependent on the overall heat-transfer coefficient, particularly at higher inlet gas temperatures. Mass transfer across the membrane has an insignificant effect on heat transfer and heat recovery, suggesting that membrane wetting may not be an issue when a membrane condenser is used for heat recovery. Our analysis provides important insights into the energy recovery performance of the membrane condensation system as well as selection of operational parameters, such as split mass flow rate and membrane area, thickness, and thermal conductivity.

  20. Surface Charging Controlling of the Chinese Space Station with Hollow Cathode Plasma Contactor

    NASA Astrophysics Data System (ADS)

    Jiang, Kai; Wang, Xianrong; Qin, Xiaogang; Yang, Shengsheng; Yang, Wei; Zhao, Chengxuan; Chen, Yifeng; Shi, Liang; Tang, Daotan; Xie, Kan

    2016-07-01

    A highly charged manned spacecraft threatens the life of an astronaut and extravehicular activity, which can be effectively reduced by controlling the spacecraft surface charging. In this article, the controlling of surface charging on Chinese Space Station (CSS) is investigated, and a method to reduce the negative potential to the CSS is the emission electron with a hollow cathode plasma contactor. The analysis is obtained that the high voltage (HV) solar array of the CSS collecting electron current can reach 4.5 A, which can be eliminated by emitting an adequate electron current on the CSS. The theoretical analysis and experimental results are addressed, when the minimum xenon flow rate of the hollow cathode is 4.0 sccm, the emission electron current can neutralize the collected electron current, which ensures that the potential of the CSS can be controlled in a range of less than 21 V, satisfied with safety voltage. The results can provide a significant reference value to define a flow rate to the potential controlling programme for CSS.

  1. Energy-efficient treatment of organic wastewater streams using a rotatable bioelectrochemical contactor (RBEC).

    PubMed

    Cheng, Ka Yu; Ho, Goen; Cord-Ruwisch, Ralf

    2012-12-01

    A membraneless bioelectrochemical system - rotatable bio-electrochemical contactor (RBEC) consists of an array of rotatable electrode disks was developed to convert the chemical energy from wastewater organics (acetate) directly into electricity. Each rotatable electrode disk had an upper-air exposing and a lower-water submerging halves. Intermittent rotation (180°) enabled each halve to alternately serve as anode and cathode. Removal of chemical oxygen demand (COD) was increased by 15% (from 0.79 to 0.91 kg COD m(-3) d(-1)) by allowing electron flow from the lower to the upper disk halves. Coupling with a potentiostat could alleviate cathodic limitation and increased COD removal to 1.32 kg COD m(-3) day(-1) (HRT 5h). About 40% of the COD removed was via current, indicating that the biofilm could use the lower half disk as electron acceptor. The RBEC removed COD more energy-efficiently than conventional activated sludge processes as active aeration is not required (0.47 vs. 0.7-2.0 kW h kg COD(-1)).

  2. Continuous treatment of coloured industry wastewater using immobilized Phanerochaete chrysosporium in a rotating biological contactor reactor.

    PubMed

    Pakshirajan, Kannan; Kheria, Sumeet

    2012-06-30

    Coloured industry wastewaters often contain dyes and other toxic ingredients, and, therefore, pose serious threat to the receiving environment. Among the available methods the eco-friendly biological method has gained maximum attention due to its many advantages over the traditional methods. In the present study, continuous biological treatment of coloured wastewater from a textile dyeing industry was investigated using the white rot fungus Phanerochaete chrysosporium in a rotating biological contactor (RBC) reactor. The raw wastewater was diluted with an equal volume of either distilled water or media containing glucose at varying concentrations to study its effect on the decolourization process. Results revealed that the wastewater could be decolourized to an extent of more than 64% when diluted with media containing glucose; and, a maximum decolourization efficiency of 83% was obtained with 10 g/l glucose concentration. COD removal efficiencies were also found to be consistent with the decolourization efficiencies of the wastewaters. Further, the results were correlated with the enzyme activities of manganese peroxidase (MnP) and lignin peroxidase (LiP) by the fungus, which were found to play some significant role in decolourization of the wastewater. Results of replacing the costly carbon source glucose in the decolourization media with the more cheap molasses, however, revealed very high COD removal efficiency, but low decolourization efficiency of the industry wastewater. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. A portable membrane contactor sampler for analysis of noble gases in groundwater.

    PubMed

    Matsumoto, Takuya; Han, Liang-Feng; Jaklitsch, Manfred; Aggarwal, Pradeep K

    2013-01-01

    To enable a wider use of dissolved noble gas concentrations and isotope ratios in groundwater studies, we have developed an efficient and portable sampling device using a commercially available membrane contactor. The device separates dissolved gases from a stream of water and collects them in a small copper tube (6 mm in diameter and 100 mm in length with two pinch-off clamps) for noble gas analysis by mass spectrometry. We have examined the performance of the sampler using a tank of homogeneous water prepared in the laboratory and by field testing. We find that our sampling device can extract heavier noble gases (Ar, Kr, and Xe) more efficiently than the lighter ones (He and Ne). An extraction time of about 60 min at a flow rate of 3 L/min is sufficient for all noble gases extracted in the sampler to attain equilibrium with the dissolved phase. The extracted gas sample did not indicate fractionation of helium ((3) He/(4) He) isotopes or other noble gas isotopes. Field performance of the sampling device was tested using a groundwater well in Vienna and results were in excellent agreement with those obtained from the conventional copper tube sampling method. © 2012, National Ground Water Association.

  4. Microbial degradation of phenol in high-salinity solutions in suspensions and hollow fiber membrane contactors.

    PubMed

    Juang, Ruey-Shin; Wu, Cheng-Ying

    2007-01-01

    A microporous polypropylene (PP) hollow fiber membrane contactor was used as a bioreactor to degrade phenol in aqueous solutions by Pseudomonas putida BCRC 14365 at 30 degrees C. The fibers were pre-wetted by ethanol to make them more hydrophilic. The initial cell density was fixed at 0.025 gl(-1). The effects of added NaCl concentration (0-1.78 M) and pH (3-8) in substrate solution on the biodegradation were studied. The experimental results by suspended cells were discussed. It was shown that the cells in microporous hollow fibers were unable to tolerate substrate solution pH to a larger range than those in suspensions. The suspended cells grew well on 100 mg l(-1) of phenol only at NaCl concentrations below 0.44 M. However, the cells in microporous hollow fibers could completely degrade 500 mg l(-1) of phenol in solutions containing NaCl concentration up to 1.52 M, which was due to the enhanced tolerance limit to salinity effect by the membrane-attached biofilms and the sufficiently slow mass transfer of NaCl through the membrane pores.

  5. Experimental design and statistical analysis in Rotating Disc Contactor (RDC) column

    NASA Astrophysics Data System (ADS)

    Ismail, Wan Nurul Aiffah; Zakaria, Siti Aisyah; Noor, Nor Fashihah Mohd; Ariffin, Wan Nor Munirah

    2015-12-01

    The purpose of this paper is to examine the performance of the liquid-liquid extraction in Rotating Disc Contactor (RDC) Column that being used in industries. In this study, the performance of small diameter column RDC using the chemical system involving cumene/isobutryric asid/water are analyzed by the method of design of the experiments (DOE) and also Multiple Linear Regression (MLR). The DOE method are used to estimated the effect of four independent. Otherwise, by using Multiple Linear Regression (MLR) is to justify the relationship between the input variables and output variables and also to determine which variable are more influence for both output variable. The input variables for both method include rotor speed (Nr); ratio of flow (Fd); concentration of continuous inlet (Ccin); concentration of dispersed inlet (Cdin); interaction between Nr with Fd; interaction between Nr with Ccin; interaction Nr with Cdin. Meanwhile the output variables are concentration of continuous outlet (Ccout) and concentration of dispersed outlet (Cdout) on RDC column performance. By using this two method, we have two linear model represent two output of Ccout and Cdout for MLR. Lastly, the researcher want to determine which input variable that give more influence to output variable by using this two method. Based on the result, we obtained that rotor speed (Nr) more influence to dependent variable, Ccout and concentration of continuous inlet (Ccin) more influence to dependent variable, Cdout according the two method that was used.

  6. Experimental and modeling study on removal of pharmaceutically active compounds in rotating biological contactors.

    PubMed

    Vasiliadou, I A; Molina, R; Martínez, F; Melero, J A

    2014-06-15

    The aim of this work was to study the biological removal of pharmaceutical compounds in rotating biological contactors (RBCs) under continuous operation. A two-stage RBC was used, providing a total surface area of 1.41 m(2). Four pharmaceuticals of different therapeutic classes; caffeine, sulfamethoxazole, ranitidine and carbamazepine, were studied. Six experimental scenarios were applied to the RBC-system by varying substrates' loadings (12-54 gCOD/d), volumetric flow rate (2-5L/d), and pharmaceuticals' concentration (20-50 μg/L). The different conditions resulted to different solid retention times (SRT: 7-21 d) in each scenario. The increase of SRT due to variations of the operating conditions seemed to have a positive effect on pharmaceuticals' removal. Likewise, a negative correlation was observed between substrates' loading and pharmaceuticals' removal. An increase of initial pharmaceuticals' concentration resulted to decrease of SRT and pharmaceuticals' removal, suggesting a toxic effect to the biofilm. The maximum removals achieved were greater than 85% for all pharmaceuticals. Finally, a mathematical model which includes biofilm growth, substrates' utilization and pharmaceuticals' elimination was developed. The model predicts the contribution of sorption and biodegradation on pharmaceuticals' elimination taking into account the diffusion of pharmaceuticals inside biofilm.

  7. Hydraulic characteristics of an anoxic rotating biological contactor: influence of biofilm.

    PubMed

    Teixeira, P; Alves, M; Oliveira, R

    2001-10-01

    The hydraulic characteristics of an anoxic rotating biological contactor were studied under different flow rates. The experiments were carried out with the reactor clean (without biomass) and containing denitrifying biofilm (Alcaligenes denitrificans) covering the disks. Residence Time Distribution (RTD) experiments were performed by the stimulus-response technique using lithium chloride as tracer. Experiments without biomass revealed the existence of hydraulic dead volumes (around 40% for hydraulic residence time of 0.94 and 2 hours) that occur in corners, where stagnant eddies form. When in normal operation, with the disks covered by biofilm and with biogas production, these values decreased significantly. For hydraulic residence time (HRT) of 2 hours a minimum dead volume was observed, being appropriate to run the reactor under this condition, from the hydraulic viewpoint. The Dispersion number decreased with increasing HRT from 0.94 h on, for both types of experiment, without, and in the presence of biomass. For this HRT the dispersion number was maximal in both situations. A considerable diffusion of tracer into the biofilm was detected, being faster in the more hydrated biofilm, and Justifying the long tails observed in the RTD experimental curves.

  8. Rotating biological contactor reactor with biofilm promoting mats for treatment of benzene and xylene containing wastewater.

    PubMed

    Sarayu, K; Sandhya, S

    2012-12-01

    A novel rotating biological contactor (RBC) bioreactor immobilized with microorganisms was designed to remove volatile organic compounds (VOC), such as benzene and xylene from emissions, and its performance was investigated. Gas-phase VOCs stripped by air injection were 98 % removed in the RBC when the superficial air flow rate was 375 ml/h (1,193 and 1,226 mg/l of benzene and xylene, respectively). The maximum removal rate was observed to be 1,007 and 1,872 mg/m(3)/day for benzene and xylene, respectively. The concentration profile of benzene and xylene along the RBC was dependent on the air flow rate and the degree of microbial adaptation. Air flow rate and residence time were found to be the most important operational parameters for the RBC reactor. By manipulating these operational parameters, the removal efficiency and capacity of the bioreactor could be enhanced. The kinetic constant K (s) demonstrated a linear relationship that indicated the maximum removal of benzene and xylene in RBC reactor. The phylogenic profile shows the presence of bacterium like Pseudomonas sp., Bacillus sp., and Enterococcus sp., which belonged to the phylum Firmicutes, and Proteobacteria that were responsible for the 98 % organic removal in the RBC.

  9. Recovery of methane from anaerobic process effluent using poly-di-methyl-siloxane membrane contactors.

    PubMed

    Cookney, J; Cartmell, E; Jefferson, B; McAdam, E J

    2012-01-01

    This paper demonstrates the potential for recovering dissolved methane from low temperature anaerobic processes treating domestic wastewater. In the absence of methane recovery, ca. 45% of the produced methane is released as a fugitive emission which results in a net carbon footprint of -0.47 kg CO(2e) m(-3). A poly-di-methyl-siloxane (PDMS) membrane contactor was applied to support sweep gas desorption of dissolved methane using nitrogen. The dense membrane structure controlled gaseous mass transfer thus recovery was maximised at low liquid velocities. At the lowest liquid velocity, V(L), of 0.0025 m s(-1), 72% of the dissolved methane was recovered. A vacuum was also trialled as an alternative to sweep-gas operation. At vacuum pressures below 30 mbar, reasonable methane recovery was observed at an intermediate V(L) of 0.0056 m s(-1). Results from this study demonstrate that dissolved methane recovery could increase net electrical production from low temperature anaerobic processes by ca. +0.043 kWh(e) m(-3) and reduce the net carbon footprint to +0.01 kg CO(2e) m(-3). However, further experimental work to optimise the gas-side hydrodynamics is required as well as validation of the long-term impacts of biofouling on process performance.

  10. Mechanisms of Sensorimotor Adaptation to Centrifugation

    NASA Technical Reports Server (NTRS)

    Paloski, W. H.; Wood, S. J.; Kaufman, G. D.

    1999-01-01

    We postulate that centripetal acceleration induced by centrifugation can be used as an inflight sensorimotor countermeasure to retain and/or promote appropriate crewmember responses to sustained changes in gravito-inertial force conditions. Active voluntary motion is required to promote vestibular system conditioning, and both visual and graviceptor sensory feedback are critical for evaluating internal representations of spatial orientation. The goal of our investigation is to use centrifugation to develop an analog to the conflicting visual/gravito-inertial force environment experienced during space flight, and to use voluntary head movements during centrifugation to study mechanisms of adaptation to altered gravity environments. We address the following two hypotheses: (1) Discordant canal-otolith feedback during head movements in a hypergravity tilted environment will cause a reorganization of the spatial processing required for multisensory integration and motor control, resulting in decreased postural stability upon return to normal gravity environment. (2) Adaptation to this "gravito-inertial tilt distortion" will result in a negative after-effect, and readaptation will be expressed by return of postural stability to baseline conditions. During the third year of our grant we concentrated on examining changes in balance control following 90-180 min of centrifugation at 1.4 9. We also began a control study in which we exposed subjects to 90 min of sustained roll tilt in a static (non-rotating) chair. This allowed us to examine adaptation to roll tilt without the hypergravity induced by centrifugation. To these ends, we addressed the question: Is gravity an internal calibration reference for postural control? The remainder of this report is limited to presenting preliminary findings from this study.

  11. Centrifugal Modelling of Soil Structures. Part I. Centrifugal Modelling of Slope Failures.

    DTIC Science & Technology

    1979-03-01

    section of the clay itself, which was visible to the camera. This latter set of stripes was applied using a variety of trial materials: kaolin powder...investigated slope instability of open cast sulphur and manganese mine waste embankments in the Ukraine, over six years, using the centrifugal modelling...model MW21, and altering the model soil interface with f the centrifuge strongbox by introducing an underlayer of preconsolidated kaolin in two models

  12. Reliability of utricular function testing sinusoidal translation profile during unilateral centrifugation.

    PubMed

    Buytaert, K I; Vanspauwen, R; Van de Heyning, P H; Wuyts, F L

    2010-01-01

    The unilateral centrifugation test is one of the few vestibular tests that evaluate the utricles side by side. During this test, a subject is rotated about an earth vertical axis at high rotation speeds (e.g. 400 degrees/s) and translated sideways along the interaural axis to align the axis of rotation consecutively with the right and the left utricle. The combined rotation and translation induces ocular counter rolling (OCR), which is measured using three-dimensional video-oculography. Recently, a new model has been proposed to analyse the OCR. The model is based on contributions from both the semicircular canals and the utricles. Concomitant with the new model a new stimulation profile using a sinusoidal translation profile during the unilateral centrifugation has been introduced [1]. The current study presents the test-retest reliability as well as the robustness of the new stimulation method, based on data of 67 healthy subjects. Test-retest reliability was based on repeated measurements of a group of subjects. To test the robustness of the new sinusoidal translation paradigm, we investigated the effect of a different amplitude of the sinusoidal translation (6 cm instead of 4 cm) and of an offset in translation (from -3 to +5 cm, instead of from -4 to +4 cm) on the parameters. Several statistical measures were used to reflect the reliability: intraclass correlation coefficient (ICC), the "coefficient of variation of the method error" and the "minimal difference" (MD). All relevant variables from the physiological model for the OCR induced by unilateral centrifugation show a good to excellent reliability during the test-retest study and the relevant parameters remain unaffected by the changes applied to the translation profile (p > 0.05) as predicted by the model. Additionally, all observed differences are smaller than the MD values calculated in the test-retest part of the study.

  13. Absorption of sparingly soluble gases by reactive media in self-aerated gas-liquid contactors: A scale-up procedure

    SciTech Connect

    Zundelevich, Y.

    1995-01-01

    Absorption of sparingly soluble gases, such as NO or O{sub 2}, is greatly enhanced if the latter react with the media. Among a dozen of reactive solvents for NO{sub x} abatement, aqueous acidic urea appears the most economically and environmentally attractive because urea is a cheap reagent and because products of reaction of urea with nitrous acid, formed in the liquid phase via absorption of NO and NO{sub 2}, are carbon dioxide and nitrogen, which can be directly released into the atmosphere. That makes urea process unique among other wet scrubbing processes that routinely produce secondary waste. Its full potential has never been realized, perhaps due to the lack of an efficient gas-liquid contactor to overcome low solubility of NO in aqueous solutions. LLNL has recently designed and built a bench scale gas-liquid contactor for nitric acid regeneration with oxygen. The contactor proved very effective in overcoming the problem of low solubility of oxygen converting back to nitric acid approximately 99% of nitrous acid formed at the cathode (which would otherwise convert to NO{sub x}). The bench scale contactor consists of a 12 inch diameter tank with self-inducting impeller/aerator of very high gas capacity. The aerator represents a 3.5 inch turbine mounted on a vertical shaft inside the draft tube equipped with a stator. During operation the lower half of the turbine induces liquid and the upper half induces gas from the draft tube. The new contactor offers two approaches to solving the NO{sub x} pollution problem. Where full recovery of nitric acid is desired, oxygen can be fed into the contactor to convert nitrous acid into nitric. This approach was demonstrated at LLNL. Alternately, in the proposed acidic urea process nitrous acid, as it forms from NO{sub x}, would be converted to nitrogen, water and carbon dioxide.

  14. Distribution of fluids in the body of the centrifuged rat

    NASA Technical Reports Server (NTRS)

    Pitts, G. C.

    1983-01-01

    The effects of exposure to an elevated g-level throughout the period of rapid growth is investigated in a comparison of a group of female Sprague-Dawley rats centrifuged as adults with other groups centrifuged for prolonged intervals starting shortly after weaning. The fluid-solid composition of total body, heart, liver, gut, skin, and muscle for both study groups is compared with that of a control group. None of the changes as a result of centrifugation were truly persistent. The only increases in mass associated with centrifugation and the only responses to centrifugation per se were observed in the skin values.

  15. Preparation of Bovine Serum Albumin (BSA) nanoparticles by desolvation using a membrane contactor: a new tool for large scale production.

    PubMed

    Yedomon, B; Fessi, H; Charcosset, C

    2013-11-01

    Albumin nanoparticles are attractive drug delivery systems as they can be prepared under soft conditions and incorporate several kinds of molecules. The aim of this study was to upscale the desolvation process for preparing Bovine Serum Albumin (BSA) nanoparticles using a membrane contactor. At a first step, the BSA nanoparticles were prepared at small scale using a syringe pump. BSA nanoparticles of 139 nm in size, with a polydispersity index of 0.046, were obtained at the optimal conditions: pH 8.2, 100 mg mL(-1) BSA albumin solution (2 mL), and 1 mL min(-1) flow rate of ethanol addition (8 mL). The upscaling with a membrane contactor was achieved by permeating ethanol through the pores of a Shirasu Porous Glass (SPG Technology Co., Japan) membrane and circulating the aqueous phase tangentially to the membrane surface. By increasing the pressure of the ethanol from 1 to 2.7 bars, a progressive decrease in nanoparticle size was obtained with a high nanoparticles yield (around 94-96%). In addition, the flow rate of the circulating phase did not affect the BSA nanoparticle characteristics. At the optimal conditions (pH 8.2, 100 mg mL(-1) BSA albumin solution, pressure of ethanol 2.7 bars, flow rate of the circulating phase 30.7 mL s(-1)), the BSA nanoparticles showed similar characteristics to those obtained with the syringe pump. Large batches of BSA nanoparticles were prepared up to 10 g BSA. The BSA nanoparticles were stable at least during 2 months at 4 °C, and their characteristics were reproducible. It was then concluded that the membrane contactor technique could be a suitable method for the preparation of albumin nanoparticles at large scale with properties similar to that obtained at small scale.

  16. Identification of similarity of skeletal structures in the range 10-5 cm - 1023 cm and the probable role of skeletal assemblies of carbon nanotube-like dust in the large-scale structure of the Universe

    NASA Astrophysics Data System (ADS)

    Kukushkin, A. B.; Rantsev-Kartinov, V. A.

    The role of the dust in astrophysics is analyzed from viewpoint of the hypothesis [1] (and respective proof-of-concept studies [2]) for the self-assembling of a fractal dust in laboratory electric discharges. The presence of skeletal structures of the same distinctive topology (namely, tubules and cartwheels, and their simple combinations) in the range 10-5cm - 1023cm, and a trend toward self-similarity (i.e. assembling of bigger structures from similar smaller ones), are found [3]. These evidences come from the electron micrography of dust deposits in tokamak (10-6cm - 10-3cm) [4], the images of plasma taken in laboratory electric discharges -- tokamaks, Z-pinches, plasma focus and vacuum spark (10-2cm - 10 cm) [2], hail particles (1cm - 10cm), the images of tornado (103cm - 105cm) and of a wide class of objects in space (1011cm - 1023 cm), including the solar coronal mass ejection, supernova remnants, and some galaxies [3]. The similarity of, and a trend toward self-similarity in, these skeletal structures (especially, cartwheels as the structures of essentially non-hydrodynamic nature) suggest all them to possess, similarly to skeletons in the particles of dust and hail, a fractal condensed matter of particular topology of the fractal. Specifically, this matter may be assembled from nanotubular blocks in a way similar to that in the skeletons found [4] in the submicron dust particles. An analysis of the redshift surveys of galaxies and quasars suggests the possibility to draw the above similarity up to 1026cm. This hints at the presence of a baryonic cold dark skeleton (BCDS) of the Universe [5]. The hypothesis of BCDS is shown to have no conflict with major cosmological facts (Hubble expansion and cosmic microwave background's isotropy). REFERENCES: [1] Fusion Energy 1998 (IAEA, Vienna, 1999), Vol. 3, p. 1131. [2] Advances in Plasma Phys. Research, Vol. 2 (Ed. F. Gerard, Nova Science Publishers, New York, 2002), pp. 1-22. [3] Phys. Lett. A 306, 175 (2002). [4

  17. Spaceborne centrifugal relays for spacecraft propulsion

    NASA Technical Reports Server (NTRS)

    Ouzidane, Malika

    1991-01-01

    Acceleration using centrifugal relays is a recently discovered method for the acceleration of spaceborne payloads to high velocity at high thrust. Centrifugal relays are moving rotors which progressively accelerate reaction mass to higher velocities. One important engineering problem consists of accurately tracking the position of the projectiles and rotors and guiding each projectile exactly onto the appropriate guide tracks on each rotor. The topics of this research are the system kinematics and dynamics and the computerized guidance system which will allow the projectile to approach each rotor with exact timing with respect to the rotor rotation period and with very small errors in lateral positions. Kinematics studies include analysis of rotor and projectile positions versus time and projectile/rotor interactions. Guidance studies include a detailed description of the tracking mechanism (interrupt of optical beams) and the aiming mechanism (electromagnetic focusing) including the design of electromagnetic deflection coils and the switching circuitry.

  18. Continuous centrifuge decelerator for polar molecules.

    PubMed

    Chervenkov, S; Wu, X; Bayerl, J; Rohlfes, A; Gantner, T; Zeppenfeld, M; Rempe, G

    2014-01-10

    Producing large samples of slow molecules from thermal-velocity ensembles is a formidable challenge. Here we employ a centrifugal force to produce a continuous molecular beam with a high flux at near-zero velocities. We demonstrate deceleration of three electrically guided molecular species, CH3F, CF3H, and CF3CCH, with input velocities of up to 200  m s(-1) to obtain beams with velocities below 15  m s(-1) and intensities of several 10(9)  mm(-2) s(-1). The centrifuge decelerator is easy to operate and can, in principle, slow down any guidable particle. It has the potential to become a standard technique for continuous deceleration of molecules.

  19. High stability design for new centrifugal compressor

    NASA Technical Reports Server (NTRS)

    Kanki, H.; Katayama, K.; Morii, S.; Mouri, Y.; Umemura, S.; Ozawa, U.; Oda, T.

    1989-01-01

    It is essential that high-performance centrifugal compressors be free of subsynchronous vibrations. A new high-performance centrifugal compressor has been developed by applying the latest rotordynamics knowledge and design techniques: (1) To improve the system damping, a specially designed oil film seal was developed. This seal attained a damping ratio three times that of the conventional design. The oil film seal contains a special damper ring in the seal cartridge. (2) To reduce the destabilizing effect of the labyrinth seal, a special swirl canceler (anti-swirl nozzle) was applied to the balance piston seal. (3) To confirm the system damping margin, the dynamic simulation rotor model test and the full load test applied the vibration exciting test in actual load conditions.

  20. Dynamic centrifugal compressor model for system simulation

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Khan, Jamil; Dougal, Roger A.

    A dynamic model of a centrifugal compressor capable of system simulation in the virtual test bed (VTB) computational environment is presented. The model is based on first principles, i.e. the dynamic performance including the losses is determined from the compressor geometry and not from the experimentally determined characteristic performance curves. In this study, the compressor losses, such as incidence and friction losses, etc., are mathematically modeled for developing compressor characteristics. For easy implementation in the VTB platform, the non-linear governing equations are discretized in resistive companion (RC) form. The developed simulation model can be applied to virtually any centrifugal compressor. By interfacing with a composite system, such as a Brayton cycle gas turbine, or a fuel cell, the compressor dynamic performance can be evaluated. The surge line for the compressor can also be determined from the simulation results. Furthermore, the model presented here provides a valuable tool for evaluating the system performance as a function of various operating parameters.

  1. A centrifugal pump used as a turbine

    SciTech Connect

    Yap, F.U.; Lasnier, F. )

    1990-06-01

    Due to the high cost of putting up conventional turbines for micro-hydropower installations, Inversin (1986) mentioned the use of pumps being run in reverse to function as turbines. Typical performance characteristics of a centrifugal pump running as a turbine are shown in a figure. Pump/turbine maximum efficiencies tend to occur over a wide range of capacity. This study is concerned with the use of non-conventional hydro equipment, locally and readily available for small rural electricity applications. Here, the operation of a small centrifugal pump, used as a turbine and coupled with a conventional car alternator, was investigated. The article reveals a method for evaluating not only this but other small generating systems for appropriateness to the conditions of the site.

  2. Fractal structures in centrifugal flywheel governor system

    NASA Astrophysics Data System (ADS)

    Rao, Xiao-Bo; Chu, Yan-Dong; Lu-Xu; Chang, Ying-Xiang; Zhang, Jian-Gang

    2017-09-01

    The global structure of nonlinear response of mechanical centrifugal governor, forming in two-dimensional parameter space, is studied in this paper. By using three kinds of phases, we describe how responses of periodicity, quasi-periodicity and chaos organize some self-similarity structures with parameters varying. For several parameter combinations, the regular vibration shows fractal characteristic, that is, the comb-shaped self-similarity structure is generated by alternating periodic response with intermittent chaos, and Arnold's tongues embedded in quasi-periodic response are organized according to Stern-Brocot tree. In particular, a new type of mixed-mode oscillations (MMOs) is found in the periodic response. These unique structures reveal the natural connection of various responses between part and part, part and the whole in parameter space based on self-similarity of fractal. Meanwhile, the remarkable and unexpected results are to contribute a valid dynamic reference for practical applications with respect to mechanical centrifugal governor.

  3. Optimum design for LRE centrifugal pumps

    NASA Astrophysics Data System (ADS)

    Zhu, Zuchao; Zhang, Guoqian; Sun, Jiren

    1995-05-01

    We set up a mathematical model to predict low specific speed liquid rocket engine (LRE) centrifugal pump unit performance. Using the model in question, performance predictions were carried out for 10 types of LRE centrifugal pumps. Relative errors between experimental values and predicted values associated with efficiency and lift were all within 4%. Using the model in question, design optimization with efficiency as the target function was carried out on AM-7H and O pumps as well as AM-1R pumps and AM-50 pumps. Results clearly show that, with a presupposition of surety systems possessing high vapor corrosion characteristics, the efficiencies of these four types of pumps can be respectively raised 6.5%, 5.22%, 5.2%, and 4.41%.

  4. Preparative isolation and purification of celastrol from Celastrus orbiculatus Thunb. by a new counter-current chromatography method with an upright coil planet centrifuge.

    PubMed

    Wu, Shihua; Sun, Cuirong; Wang, Kuiwu; Pan, Yuanjiang

    2004-02-27

    A new counter-current chromatography (CCC) method with an upright coil planet centrifuge, which holds four identical multilayer coil columns in the symmetrical positions around the centrifuge axis, was applied to the isolation and purification of celastrol from the roots of Celastrus orbiculatus Thunb. The crude celastrol was obtained by elution with light petroleum from ethanol extracts using 15 cm x 5 cm i.d. silica gel flash chromatography. Preparative CCC with a two-phase system composed of light petroleum (bp 60-90 degrees C)-ethyl acetate-tetrachloromethane-methanol-water (1:1:8:6:1, v/v) was successfully performed, yielding 798 mg celastrol at 99.5% purity from 1020 mg of the crude sample in one step separation.

  5. Mathematical simulation of centrifugal casting of pipes

    SciTech Connect

    Minosyan, Ya.P.; Gerasimov, V.G.; Ryadno, A.A.; Solov'yev, Yu.G.

    1983-01-01

    A mathematical description of centrifugal casting of long pipes in rapidly-rotating ingot molds is given. The effect of gravity force is neglected. A numerical solution is obtained for the solidification of a steel casting in a thermally insulated mold. The effect of the rate of metal pouring on the motion of the solidification interface is investigated. The disagreement with experimental data is less then 7 percent.

  6. Operating and maintenance guidelines for screenbowl centrifuges

    SciTech Connect

    Jahnig, W.S.R.; Bratton, R.; Luttrell, G.

    2009-01-15

    Plant dewatering circuits equipped with screenbowl centrifuges need to be well designed, properly operated, and adequately maintained to maximize the dewatering performance. The most important 'feed variables' are particle size, dry solids feed rate and slurry flow rate. The most important 'machine variables' include pool depth, rotational speed and gearbox ratio. The article discusses the effect of these parameters and offers some maintenance guidelines. The article was adapted from a paper presented at CoalPrep 2008. 6 refs., 2 figs., 2 tabs.

  7. Axial forces in centrifugal compressor couplings

    NASA Astrophysics Data System (ADS)

    Ivanov, A. N.; Ivanov, N. M.; Yun, V. K.

    2017-08-01

    The article presents the results of the theoretical and experimental investigation of axial forces arising in the toothed and plate couplings of centrifugal compressor shaft lines. Additional loads on the thrust bearing are considered that can develop in the toothed couplings as a result of coupled rotors misalignment. Design relationships to evaluate the level of axial forces and recommendations for their reduction in the operating conditions are given.

  8. Centrifugal shot blasting. Innovative technology summary report

    SciTech Connect

    Not Available

    1999-07-01

    At the US Department of Energy (DOE) Fernald Environmental Management Project (FEMP), the Facilities Closure and Demolition Projects Integrated Remedial Design/Remedial Action (RD/RA) work plan calls for the removal of one inch (1 in) depth of concrete surface in areas where contamination with technetium-99 has been identified. This report describes a comparative demonstration between two concrete removal technologies: an innovative system using Centrifugal Shot Blasting (CSB) and a modified baseline technology called a rotary drum planer.

  9. Potential flow through centrifugal pumps and turbines

    NASA Technical Reports Server (NTRS)

    Sorensen, E

    1941-01-01

    The methods of conformal transformation up to the present have been applied to the potential flows in the rotation of solid bodies only to a limited extent. This report deals with aspects of centrifugal pumps and turbines such as: the complex potential for rotation, potential for the flow due to the blade rotation, velocities at the blade tip, comparison with "infinite number of blades," and a variable number of blades.

  10. Wave-driven Countercurrent Plasma Centrifuge

    SciTech Connect

    A.J. Fetterman and N.J. Fisch

    2009-03-20

    A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the α channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided.

  11. Shallow water model for horizontal centrifugal casting

    NASA Astrophysics Data System (ADS)

    Boháček, J.; Kharicha, A.; Ludwig, A.; Wu, M.

    2012-07-01

    A numerical model was proposed to simulate the solidification process of an outer shell of work roll made by the horizontal centrifugal casting technique. Shallow water model was adopted to solve the 2D average flow dynamics of melt spreading and the average temperature distribution inside the centrifugal casting mould by considering the centrifugal force, Coriolis force, viscous force due to zero velocity on the mould wall, gravity, and energy transport by the flow. Additionally, a 1D sub-model was implemented to consider the heat transfer in the radial direction from the solidifying shell to the mould. The solidification front was tracked by fulfilling the Stefan condition. Radiative and convective heat losses were included from both, the free liquid surface and the outer wall of the mould. Several cases were simulated with the following assumed initial conditions: constant height of the liquid metal (10, 20, and 30 mm), uniform temperature of the free liquid surface (1755 K). The simulation results have shown that while the solidification front remained rather flat, the free surface was disturbed by waves. The amplitude of waves increased with the liquid height. Free surface waves diminished as the solidification proceeded.

  12. In-vivo centrifugation of Drosophila embryos.

    PubMed

    Tran, Susan L; Welte, Michael A

    2010-06-23

    A major strategy for purifying and isolating different types of intracellular organelles is to separate them from each other based on differences in buoyant density. However, when cells are disrupted prior to centrifugation, proteins and organelles in this non-native environment often inappropriately stick to each other. Here we describe a method to separate organelles by density in intact, living Drosophila embryos. Early embryos before cellularization are harvested from population cages, and their outer egg shells are removed by treatment with 50% bleach. Embryos are then transferred to a small agar plate and inserted, posterior end first, into small vertical holes in the agar. The plates containing embedded embryos are centrifuged for 30 min at 3000 g. The agar supports the embryos and keeps them in a defined orientation. Afterwards, the embryos are dug out of the agar with a blunt needle. Centrifugation separates major organelles into distinct layers, a stratification easily visible by bright-field microscopy. A number of fluorescent markers are available to confirm successful stratification in living embryos. Proteins associated with certain organelles will be enriched in a particular layer, demonstrating colocalization. Individual layers can be recovered for biochemical analysis or transplantation into donor eggs. This technique is applicable for organelle separation in other large cells, including the eggs and oocytes of diverse species.

  13. Research opportunities with the Centrifuge Facility

    NASA Technical Reports Server (NTRS)

    Funk, Glenn A.

    1992-01-01

    The Centrifuge Facility on Space Station Freedom will consist of a 2.5-meter diameter Centrifuge accommodating two concentric rings of habitats and providing variable g-forces between 0.01 g and 2.0 g; modular habitats providing housing and lifesupport for rats, mice, and plants; a habitat holding system providing power, water, airflow and other utilities to several modular habitats; and a life sciences glovebox, an isolated work volume accommodating simultaneous operations by at least two scientists and providing lighting, airflow, video and data access, and other experiment support functions. The centrifuge facility will enable long-duration animal and plant microgravity research not previously possible in the NASA flight research program. It will offer unprecedented opportunities for use of on-board 1-g control populations and statistically significant numbers of specimens. On orbit 1-g controls will allow separation of the effects of microgravity from other environmental factors. Its selectable-g and simultaneous multiple-g capabilities will enable studies of gravitational thresholds, the use of artificial gravity as a countermeasure to the effects of microgravity, and ready simulation of Lunar and Martian gravities.

  14. Research opportunities with the Centrifuge Facility

    NASA Astrophysics Data System (ADS)

    Funk, Glenn A.

    The Centrifuge Facility on Space Station Freedom will consist of a 2.5-meter diameter Centrifuge accommodating two concentric rings of habitats and providing variable g-forces between 0.01 g and 2.0 g; modular habitats providing housing and lifesupport for rats, mice, and plants; a habitat holding system providing power, water, airflow and other utilities to several modular habitats; and a life sciences glovebox, an isolated work volume accommodating simultaneous operations by at least two scientists and providing lighting, airflow, video and data access, and other experiment support functions. The centrifuge facility will enable long-duration animal and plant microgravity research not previously possible in the NASA flight research program. It will offer unprecedented opportunities for use of on-board 1-g control populations and statistically significant numbers of specimens. On orbit 1-g controls will allow separation of the effects of microgravity from other environmental factors. Its selectable-g and simultaneous multiple-g capabilities will enable studies of gravitational thresholds, the use of artificial gravity as a countermeasure to the effects of microgravity, and ready simulation of Lunar and Martian gravities.

  15. Compact, Automated Centrifugal Slide-Staining System

    NASA Technical Reports Server (NTRS)

    Feeback, Daniel L.; Clarke, Mark S. F.

    2004-01-01

    The Directional Acceleration Vector-Driven Displacement of Fluids (DAVD-DOF) system, under development at the time of reporting the information for this article, would be a relatively compact, automated, centrifugally actuated system for staining blood smears and other microbiological samples on glass microscope slides in either a microgravitational or a normal Earth gravitational environment. The DAVD-DOF concept is a successor to the centrifuge-operated slide stainer (COSS) concept, which was reported in Slide-Staining System for Microgravity or Gravity (MSC-22949), NASA Tech Briefs, Vol. 25, No. 1 (January, 2001), page 64. The COSS includes reservoirs and a staining chamber that contains a microscope slide to which a biological sample is affixed. The staining chamber is sequentially filled with and drained of staining and related liquids from the reservoirs by use of a weighted plunger to force liquid from one reservoir to another at a constant level of hypergravity maintained in a standard swing-bucket centrifuge. In the DAVD-DOF system, a staining chamber containing a sample would also be sequentially filled and emptied, but with important differences. Instead of a simple microscope slide, one would use a special microscope slide on which would be fabricated a network of very small reservoirs and narrow channels connected to a staining chamber (see figure). Unlike in the COSS, displacement of liquid would be effected by use of the weight of the liquid itself, rather than the weight of a plunger.

  16. Avoid self-priming centrifugal pump

    SciTech Connect

    Reeves, G.G.

    1987-01-01

    The self-priming horizontal centrifugal pump becomes known to its operator either as a good pump or a bad pump. The latter is usually replaced by another type of pump, even though a properly specified self-priming centrifugal pump might have been a good choice. Use of the guidelines described in this article are intended to help in the purchase and installation of a good pump. Self-priming centrifugal pumps are used for removing liquids from below grade sumps or pits that may also contain solids, fibers and/or muck. Alternate pumps for this service include submersible pumps, vertical turbine pumps and positive displacement pumps. These alternate pumps do not pass solid particles as large as self-priming pumps do without damage. Positive displacement pumps are not normally cost-effective when pumping liquid at rates in excess of 500 gallons per minute in low-head applications. Vertical and submersible pumps must be removed when cleaning of the pump is required. Self-priming pumps are easily cleaned by opening the access plates without moving the pump; and they cost less than the other types.

  17. Effects of scaling on centrifugal blood pumps.

    PubMed

    Wong, Yew Wah; Chan, Weng Kong; Yu, S C M; Chua, Leok Poh

    2002-11-01

    Experimental studies on the effects of scaling on the performance of centrifugal blood pumps were conducted in a closed-loop test rig. For the prototype, eight different impellers of the same outer diameter of 25 mm were tested at 1,500, 2,000, and 2,500 revolutions per minute (rpm) using blood analog as fluid medium. This corresponds to Reynolds numbers (Re) of 25,900, 34,500, and 43,200, respectively. The results indicated that the nondimensional pump characteristic is a function of Re. This is understandable since the typical operating Re for centrifugal blood pumps is less than 100,000. Thus, the effects of scaling cannot be ignored for centrifugal blood pumps. Experiments on a 5x scaled-up model have also indicated that the scaled-up model is more efficient than the prototype model. Our results showed that in the range of Re tested, the nondimensional head versus flow curve is a function of Re to the power of approximately 0.25. It is observed that the nondimensional head versus flow is a function of diameter ratio to the power of 0.2.

  18. Femoral development in chronically centrifuged rats

    NASA Technical Reports Server (NTRS)

    Smith, S. D.

    1977-01-01

    Groups of 30-d-old male and female rats were centrifuged at 2.00 G (RE, Rotation Experimental), 1.05 G (RC, Rotation Control) or exposed to the noise and wind of the centrifuge at 1.00 G (EC, Earth Control) for periods of 1, 2, 4, 8, and 16 weeks. Measurements of their femurs indicated that exposure to centrifugation a) decreased femoral length in RE animals, b) increased femoral length in RC animals, c) reduced femoral diameter in RE and RC animals, d) increased L/D ratios in RC animals, e) decreased L/D ratios in RE animals, f) increased femur length/body weight in RE animals, g) decreased cortical thickness (CT) in RE animals, h) increased relative CT in RE animals, and decreased it in RC animals, i) accelerated ossification in RC femoral heads, j) thinned and distorted RE epiphyseal plates, and k) thickened condylar cartilage in RE females. The effects tended to be strongly sexually dimorphic, with females more severely affected by the stress than males.

  19. Packed cage rotating biological contactor system for treatment of cyanide wastewater.

    PubMed

    Sirianuntapiboon, Suntud; Chuamkaew, Chollada

    2007-01-01

    The aim of this work was to study the efficiency of the packed cage rotating biological contactor (RBC) system with synthetic wastewater (SWW) containing 800 mg/l BOD(5) with various cyanide residue concentrations and hydraulic loading time. The results showed that cyanide had a negative effect to both the system's efficiency and bio-film quality. An increase in cyanide concentration led to a decrease in bio-film growth and the consequent reduction in the removal efficiency of the system. Also, the effluent suspended solids (SS) of the system was increased with increasing cyanide concentrations because the bio-film detached from the media due to the toxicity of the cyanide residue. The system showed the highest COD, BOD(5), TKN and cyanide removal efficiencies of 94.0 +/- 1.6%, 94.8 +/- 0.9%, 59.1 +/- 2.8% and 95.5 +/- 0.6%, respectively, with SWW containing 5 mg/l cyanide under HRT of 8 days, while they were only 88.8 +/- 0.7%, 89.5 +/- 0.5%, 40.3 +/- 1.1% and 93.60 +/- 0.09%, respectively, with SWW containing 40 mg/l cyanide. In addition, the effluent ammonia, nitrite and nitrate were increased with increases in cyanide concentration or loading. However, the system with SWW containing the highest cyanide concentration of 40 mg/l showed almost constant COD and BOD(5) removal efficiencies of 89% and 90%, even when the system was controlled under the lowest HRT of 8 h.

  20. Application of hollow fiber membrane contactors for catalyst recovery in the WPO process.

    PubMed

    Ortiz, Inmaculada; Urtiaga, Ane; Abellán, M José; San Román, Fresnedo

    2003-03-01

    In this work the use of a membrane based liquid extraction process for recovery of the homogeneous catalyst employed in the wet peroxide oxidation process (WPO) is studied. In the WPO process the oxidation agent is the hydroxyl radical that is obtained by using a combination of hydrogen peroxide and a mixture of Fe(II), Cu(II), and Mn(II) in aqueous solution. The mixture of metallic cations permits the almost total degradation of the refractory organic compounds, but the use of metallic salts as catalysts induces additional pollution. To recover the homogeneous catalyst of the WPO process by means of non-dispersive solvent extraction (NDSX) two hollow fiber membrane contactors are employed, one for the extraction step and the second for the back-extraction step. From the initial assays, the extractant LIX 622N was selected for Cu(II) recovery and Cyanex 272 for Fe(II) and Mn(II) recovery. Selective separation of Fe(II) and Mn(II) can be obtained by adjusting the pH of the feed aqueous phase. The three metals are stripped using sulfuric acid to give concentrated solutions of CuSO(4), FeSO(4), and MnSO(4) that can be recycled to the formulation of the catalyst solution of the WPO process. A mathematical model has been proposed to describe the recovery of Cu. Two design parameters are required: the membrane mass transport coefficient of the extraction and stripping modules (k(m) = 3.07 x 10(-7) m/sec) and the equilibrium parameter of the extraction reaction (K(Ex) = 0.0832).

  1. Biofilm growth of Chlorella sorokiniana in a rotating biological contactor based photobioreactor.

    PubMed

    Blanken, W; Janssen, M; Cuaresma, M; Libor, Z; Bhaiji, T; Wijffels, R H

    2014-12-01

    Microalgae biofilms could be used as a production platform for microalgae biomass. In this study, a photobioreactor design based on a rotating biological contactor (RBC) was used as a production platform for microalgae biomass cultivated in biofilm. In the photobioreactor, referred to as Algadisk, microalgae grow in biofilm on vertical rotating disks partially submerged in a growth medium. The objective is to evaluate the potential of the Algadisk photobioreactor with respect to the effects of disk roughness, disk rotation speed and CO2 concentration. These objectives where evaluated in relationship to productivity, photosynthetic efficiency, and long-term cultivation stability in a lab-scale Algadisk system. Although the lab-scale Algadisk system is used, operation parameters evaluated are relevant for scale-up. Chlorella Sorokiniana was used as model microalgae. In the lab-scale Algadisk reactor, productivity of 20.1 ± 0.7 g per m(2) disk surface per day and a biomass yield on light of 0.9 ± 0.04 g dry weight biomass per mol photons were obtained. Different disk rotation speeds did demonstrate minimal effects on biofilm growth and on the diffusion of substrate into the biofilm. CO2 limitation, however, drastically reduced productivity to 2-4 g per m(2) disk surface per day. Productivity could be maintained over a period of 21 weeks without re-inoculation of the Algadisk. Productivity decreased under extreme conditions such as pH 9-10, temperature above 40°C, and with low CO2 concentrations. Maximal productivity, however, was promptly recovered when optimal cultivation conditions were reinstated. These results exhibit an apparent opportunity to employ the Algadisk photobioreactor at large scale for microalgae biomass production if diffusion does not limit the CO2 supply. © 2014 Wiley Periodicals, Inc.

  2. Ammonia removal in the carbon contactor of a hybrid membrane process.

    PubMed

    Stoquart, Céline; Servais, Pierre; Barbeau, Benoit

    2014-12-15

    The hybrid membrane process (HMP) coupling powdered activated carbon (PAC) and low-pressure membrane filtration is emerging as a promising new option to remove dissolved contaminants from drinking water. Yet, defining optimal HMP operating conditions has not been confirmed. In this study, ammonia removal occurring in the PAC contactor of an HMP was simulated at lab-scale. Kinetics were monitored using three PAC concentrations (1-5-10 g L(-1)), three PAC ages (0-10-60 days), two temperatures (7-22 °C), in ambient influent condition (100 μg N-NH4 L(-1)) as well as with a simulated peak pollution scenario (1000 μg N-NH4L(-1)). The following conclusions were drawn: i) Using a colonized PAC in the HMP is essential to reach complete ammonia removal, ii) an older PAC offers a higher resilience to temperature decrease as well as lower operating costs; ii) PAC concentration inside the HMP reactor is not a key operating parameter as under the conditions tested, PAC colonization was not limited by the available surface; iii) ammonia flux limited biomass growth and iv) hydraulic retention time was a critical parameter. In the case of a peak pollution, the process was most probably phosphate-limited but a mixed adsorption/nitrification still allowed reaching a 50% ammonia removal. Finally, a kinetic model based on these experiments is proposed to predict ammonia removal occurring in the PAC reactor of the HMP. The model determines the relative importance of the adsorption and biological oxidation of ammonia on colonized PAC, and demonstrates the combined role of nitrification and residual adsorption capacity of colonized PAC. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Effect of relative centrifugal force and centrifugation time on sedimentation of mycobacteria in clinical specimens.

    PubMed

    Ratnam, S; March, S B

    1986-03-01

    Optimum relative centrifugal force (RCF) and centrifugation time to concentrate mycobacteria in clinical specimens were determined by processing split samples of sputa and urines containing mycobacteria with combinations of different RCFs and centrifugation times. Although individual test results showed considerable variation in the recovery rates of mycobacteria in the sediment, the data indicated that higher recovery rates occurred as centrifugation speed and time were increased. With a 15- to 20-min centrifugation time, on the average, 67 to 71% of mycobacteria were recovered at an RCF of 2,074 X g, and 76 to 80% were recovered at 3,005 or 3,895 X g at maximum radius. The remainder of mycobacteria was mostly recovered from the supernatant, but culturing of supernatant was not profitable. Increasing RCF had a negligible effect on acid-fast bacillus smear sensitivity. The smear sensitivity for about 25,000 clinical specimens processed with an RCF of 3,800 X g for 20 min was 71% compared with 69% as determined for over 30,000 specimens processed in a similar manner but an RCF of 2,000 X g. An RCF of 3,000 X g applied for 15 min, or an RCF of about 2,000 to 2,500 X g applied for 20 min, is considered adequate to concentrate mycobacteria in clinical specimens.

  4. Effect of relative centrifugal force and centrifugation time on sedimentation of mycobacteria in clinical specimens.

    PubMed Central

    Ratnam, S; March, S B

    1986-01-01

    Optimum relative centrifugal force (RCF) and centrifugation time to concentrate mycobacteria in clinical specimens were determined by processing split samples of sputa and urines containing mycobacteria with combinations of different RCFs and centrifugation times. Although individual test results showed considerable variation in the recovery rates of mycobacteria in the sediment, the data indicated that higher recovery rates occurred as centrifugation speed and time were increased. With a 15- to 20-min centrifugation time, on the average, 67 to 71% of mycobacteria were recovered at an RCF of 2,074 X g, and 76 to 80% were recovered at 3,005 or 3,895 X g at maximum radius. The remainder of mycobacteria was mostly recovered from the supernatant, but culturing of supernatant was not profitable. Increasing RCF had a negligible effect on acid-fast bacillus smear sensitivity. The smear sensitivity for about 25,000 clinical specimens processed with an RCF of 3,800 X g for 20 min was 71% compared with 69% as determined for over 30,000 specimens processed in a similar manner but an RCF of 2,000 X g. An RCF of 3,000 X g applied for 15 min, or an RCF of about 2,000 to 2,500 X g applied for 20 min, is considered adequate to concentrate mycobacteria in clinical specimens. PMID:3082926

  5. Kinetically limited differential centrifugation as an inexpensive and readily available alternative to centrifugal elutriation.

    PubMed

    Tan, Jinwang; Lee, Byung-Doo; Polo-Parada, Luis; Sengupta, Shramik

    2012-08-01

    When separating two species with similar densities but differing sedimentation velocities (because of differences in size), centrifugal elutriation is generally the method of choice. However, a major drawback to this approach is the requirement for specialized equipment. Here, we present a new method that achieves similar separations using standard benchtop centrifuges by loading the seperands as a layer on top of a dense buffer of a specified length, and running the benchtop centrifugation process for a calculated amount of time, thereby ensuring that all faster moving species are collected at the bottom, while all slower moving species remain in the buffer. We demonstrate the use of our procedure to isolate bacteria from blood culture broth (a mixture of bacterial growth media, blood, and bacteria).

  6. A system for field gas-extraction of 85Kr, 39Ar and 81Kr using SuperPhobic membrane contactors

    NASA Astrophysics Data System (ADS)

    Burk, L.; Suckow, A.; Cook, P.; Mathouchanh, E.

    2013-12-01

    Radioactive noble gas isotopes are established tools for assessing groundwater movement and transport processes on time scales of decades (85Kr), centuries (39Ar) and many millenia (81Kr). While the atomic trap trace analysis (ATTA) technology promises small sample sizes for these isotopes, field gas extraction will remain the method of choice for several years to come. Recently CSIRO obtained decommissioned radiocarbon gas proportional counters and targets to use them for 85Kr. We aim for a sample size of 50μL Kr corresponding to the gas extracted from 500-1000L water. Flinders University and CSIRO have developed a field-deployable extraction system for large volume gas-extraction in the field. It uses two membrane contactors (MEMBRANA SuperPhobic 4x13) allowing flow rates of up to 50L/min in serial mode. Switching to parallel flow through both contactors is possible, allowing even higher water flow rates. The system automatically logs water temperature, water pressure, water flow rate, gas pressure of the sample, vacuum pressure at the contactor and all valve states, using an Endress + Hauser RSG40 Memograph M. The use of SuperPhobic contactors results in ten times less water in the gas fraction than reported for earlier systems. With the two contactors in serial configuration, gas extraction efficiencies, determined for O2, N2 and Ar, are better than 95% at 5L/min water flow. They are still above 80% for flow rates up to 20L/min in parallel configuration for O2, N2 and Ar. No measurable isotopic fractionation of the target isotope ratios of argon and krypton is to be expected at these high extraction efficiencies.

  7. Subjective stress factors in centrifuge training for military aircrews.

    PubMed

    Lin, Pei-Chun; Wang, Jenhung; Li, Shih-Chin

    2012-07-01

    This study investigates stress-influence factors perceived by military aircrews undergoing centrifuge training, which lowers the incidence of G-induced loss of consciousness (G-LOC) for the crews of high-performance combat aircrafts. We used questionnaires to assess the subjective stress-influence factors of crews undergoing centrifuge training. Professionals in aviation physiology identified attributes measuring the perceived stress induced by centrifuge training, which were segmented into three constructs by factor analysis, theory lecture, centrifuge equipment, and physical fitness. Considerable interpenetration was discernible between these factors and military rank, age, length of service, flight hours accrued, and type of aircraft piloted. Identifying and quantifying the perceived stressors experienced in human-use centrifuge training enables aviators, astronauts, and air forces of the world to determine which constructs perceptibly increase or alleviate the perceived stress undergone by trainees when partaking in centrifuge training. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  8. [Rapid centrifugation assay standarization for dengue virus isolation].

    PubMed

    Palomino, Miryam; Gutierrez, Victoria; Salas, Ramses

    2010-03-01

    The plate centrifugation assay was standardized for dengue virus isolation from serum samples. C6/36-HT cells were used determining the optimal values for centrifugation spin speed, inoculum, sera dilution, and incubation time. Then, 22 positive serum samples with viral isolation and viral strains of the four reference dengue virus serotypes were tested simultaneously by the standardized plate centrifugation method and the conventional tube culture. The isolations were typified by indirect immunofluorescent test using monoclonal antibodies. The plate centrifugation method was optimized to 200 μL of inoculum, dilution of sera 1/20, centrifugation speed at 1600 rpm/30 min, and sensitivity of 95,5% after 5 days post-inoculation. We concluded that the plate centrifugation method increased dengue virus isolation, with a significant reduction of the time of isolation for dengue virus.

  9. Monitoring the centrifugal recovery of recombinant protein inclusion bodies.

    PubMed

    Middelberg, A P; O'Neill, B K

    1991-04-01

    The industrial processing of proteins expressed as insoluble inclusion bodies employs a reasonably standard sequence of unit operations. One of these is centrifugation, which serves to concentrate the inclusion bodies after disruption of the host microorganism, and also separates the inclusion bodies from other cellular debris. Monitoring the performance of the centrifuge is essential if excessive product and hence financial loss is to be avoided and a reasonable separation obtained. The analytical disc centrifuge may be used to monitor the centrifugation. This instrument returns the sample size distribution with high resolution and without fouling. By obtaining size distributions of the centrifuge feed, supernatant and concentrate, the fractional collection efficiency of the centrifuge may be determined as a function of the Stokes diameter, and a mass balance constructed.

  10. Effects of Prolonged Centrifugation on Orthostasis

    NASA Technical Reports Server (NTRS)

    Cohen, Malcolm M..; Hargens, A. R.; Yates, B. J.; Bowley, Susan M. (Technical Monitor)

    2000-01-01

    A feasibility study conducted on the Ames 20-G Human Centrifuge examined how well humans can maintain orthostatic tolerance during and after prolonged exposures to hypergravity. Three adult males lived for periods of 22 hours in the centrifuge while it was at rest (1.00 G), and while it rotated at 9.38 RPM to provide 1.25 G-total at the mean radius of 7.62 m. Two participants also experienced 22-hour habitation sessions at 11.46 RPM, which provided 1.50 G-total. Both before and after each habitation session, the participants were given gradual onset rate (GOR) acceleration profiles at 0.067 G/sec to determine their Gz tolerance. In addition, cardiovascular responses were compared while subjects were supine, siting, and standing at various times during the habitation (stand test), and cardiovascular responsiveness was determined using a lower body negative pressure tilt table (LBNPTT) at the beginning of the experiment and after each session. Post-Pre changes in G tolerance were -0.33 (mean) +/- 0.11 (std. error) Gz for habitation at 1.00 G, -0.02 +/- 0.12 Gz for habitation at 1.25 G, and +0.41 +/- 0.13 Gz for habitation at 1.50 G. Performance on the stand test generally improved with duration of habitation in hypergravity. Our results suggest that habitation in a confined chamber at 1.00 G reduces G tolerance and leads to lowered LBNPTT tolerance. Exposure to increased G in the centrifuge leads to enhanced performance on the stand test, and to increased GOR acceleration tolerance, but only when fluid balance is maintained; when motion sickness and negative fluid balance were observed, G tolerance was reduced. The data indicate that enhanced G tolerance can result from prolonged exposure to hypergravity, but that these changes are complex and depend on multiple underlying physiological processes.

  11. Laminar flow effects in the coil planet centrifuge

    NASA Technical Reports Server (NTRS)

    Herrmann, F. T.

    1984-01-01

    The coil planet centrifuge designed by Ito employs flow of a single liquid phase, through a rotating coiled tube in a centrifugal force field, to provide a separation of particles based on sedimentation rates. Mathematical solutions are derived for the linear differential equations governing particle behavior in the coil planet centrifuge device. These solutions are then applied as the basis of a model for optimizing particle separations.

  12. The total containment of a batch-type zonal centrifuge.

    PubMed

    Webb, N L; Richards, B M; Gooders, A P

    1975-09-01

    A batch-type zonal centrifuge has been modified and totally contained for use with biologically hazardous materials. A sealed cabinet encloses the centrifuge and the ancilliary equipment. It is operated with a flow of filtered air when the zonal system is on, decontaminated with ethylene oxide, and maintained at a negative pressure throughout. The centrifuge subsystems can be drained, flushed, and decontaminated with ethylene oxide before an engineer services the machine. The sample handling system within the cabinet is remotely controlled.

  13. Laminar flow effects in the coil planet centrifuge

    NASA Technical Reports Server (NTRS)

    Herrmann, F. T.

    1984-01-01

    The coil planet centrifuge designed by Ito employs flow of a single liquid phase, through a rotating coiled tube in a centrifugal force field, to provide a separation of particles based on sedimentation rates. Mathematical solutions are derived for the linear differential equations governing particle behavior in the coil planet centrifuge device. These solutions are then applied as the basis of a model for optimizing particle separations.

  14. Modeling Platform Dynamics and Physiological Response to Short Arm Centrifugation

    DTIC Science & Technology

    1994-03-01

    parametric design study for a small radius centrifuge revealed such a centrifuge could fit on the NASA Space Shuttle and provide artificial gravity and...the heart are modelled as variable capacitances separated by one-way valves. The pulmonic and aortic valves are also modelled as one-way valves. The...1992 June. 10. Halstead, TW; Brown, AH; Fuller, CA; Oyama, J. Artificial gravity studies and design considerations for space station centrifuges

  15. Theory and experiments on centrifuge cratering

    NASA Astrophysics Data System (ADS)

    Schmidt, R. M.; Holsapple, K. A.

    1980-01-01

    Centrifuge experimental techniques provide possibilities for laboratory simulation of ground motion and cratering effects due to explosive loadings. The results of a similarity analysis for the thermomechanical response of a continuum show that increased gravity is a necessary condition for subscale testing when identical materials for both model and prototype are being used. The general similarity requirements for this type of subscale testing are examined both theoretically and experimentally. The similarity analysis is used to derive the necessary and sufficient requirements due to the general balance and jump equations and gives relations among all the scale factors for size, density, stress, body forces, internal energy, heat supply, heat conduction, heat of detonation, and time. Additional constraints due to specific choices of material constitutive equations are evaluated separately. The class of constitutive equations that add no further requirements is identified. For this class of materials, direct simulation of large-scale cratering events at small scale on the centrifuge is possible and independent of the actual constitutive equations. For a rate-independent soil it is shown that a small experiment at gravity g and energy E is similar to a large event at 1 G but with energy equal to g3E. Consequently, experiments at 500 G with 8 grams of explosives can be used to simulate a kiloton in the field. A series of centrifuge experiments was performed to validate the derived similarity requirements and to determine the practicality of applying the technique to dry granular soils having little or no cohesion. Ten shots using Ottawa sand at various gravities confirmed reproducibility of results in the centrifuge environment, provided information on particle size effects, and demonstrated the applicability of the derived similitude requirements. These experiments used 0.5-4 grams of pentaerythritol-tetranitrate (PETN) and 1.7 grams of lead-azide explosives. They

  16. Impeller blade design method for centrifugal compressors

    NASA Technical Reports Server (NTRS)

    Jansen, W.; Kirschner, A. M.

    1974-01-01

    The design of a centrifugal impeller with blades that are aerodynamically efficient, easy to manufacture, and mechanically sound is discussed. The blade design method described here satisfies the first two criteria and with a judicious choice of certain variables will also satisfy stress considerations. The blade shape is generated by specifying surface velocity distributions and consists of straight-line elements that connect points at hub and shroud. The method may be used to design radially elemented and backward-swept blades. The background, a brief account of the theory, and a sample design are described.

  17. Anion-exchange displacement centrifugal partition chromatography.

    PubMed

    Maciuk, Alexandre; Renault, Jean-Hugues; Margraff, Rodolphe; Trébuchet, Philippe; Zèches-Hanrot, Monique; Nuzillard, Jean-Marc

    2004-11-01

    Ion-exchange displacement chromatography has been adapted to centrifugal partition chromatography. The use of an ionic liquid, benzalkonium chloride, as a strong anion-exchanger has proven to be efficient for the preparative separation of phenolic acid regioisomers. Multigram quantities of a mixture of three hydroxycinnamic acid isomers were separated using iodide as a displacer. The displacement process was characterized by a trapezoidal profile of analyte concentration in the eluate with narrow transition zones. By taking advantage of the partition rules involved in support-free liquid-liquid chromatography, a numerical separation model is proposed as a tool for preliminary process validation and further optimization.

  18. Rotational spectroscopy with an optical centrifuge.

    PubMed

    Korobenko, Aleksey; Milner, Alexander A; Hepburn, John W; Milner, Valery

    2014-03-07

    We demonstrate a new spectroscopic method for studying electronic transitions in molecules with extremely broad range of angular momentum. We employ an optical centrifuge to create narrow rotational wave packets in the ground electronic state of (16)O2. Using the technique of resonance-enhanced multi-photon ionization, we record the spectrum of multiple ro-vibrational transitions between X(3)Σg(-) and C(3)Πg electronic manifolds of oxygen. Direct control of rotational excitation, extending to rotational quantum numbers as high as N ≳ 120, enables us to interpret the complex structure of rotational spectra of C(3)Πg beyond thermally accessible levels.

  19. Design and prototyping of micro centrifugal compressor

    NASA Astrophysics Data System (ADS)

    Mizuki, Shimpei; Minorikawa, Gaku; Hirano, Toshiyuki; Asaga, Yuichiro; Yamaguchi, Naoki; Ohta, Yutaka; Outa, Eisuke

    2003-02-01

    In order to establish the design methodology of ultra micro centrifugal compressor, which is the most important component of ultra micro gas turbine unit, a 10 times of the final target size model was designed, prototyped and tested. The problems to be solved for downsizing were examined and 2-dimensional impeller was chosen as the first model due to its productivity. The conventional 1D prediction method, CFD and the inverse design were attempted. The prototyped compressor was driven by using a turbocharger and the performance characteristics were measured.

  20. V5 AND V10 CONTACTOR TESTING WITH THE NEXT GENERATION (CSSX) SOLVENT FOR THE SAVANNAH RIVER SITE INTEGRATED SALT DISPOSITION PROCESS

    SciTech Connect

    Restivo, M.; Peters, T.; Pierce, R.; Fondeur, F.; Steeper, T.; Williams, M.; Giddings, B.; Hickman, B.; Fink, S.

    2012-01-17

    program to test the full size strip (V5) and extraction (V10) centrifugal contactors and the associated strip and extraction effluent coalescers to determine the hydraulic and mass transfer characteristics with the NGS. The test program evaluated the amount of organic carryover and the droplet size of the carryover phases using several analytical methods. Provisions were also made to enable an evaluation of coalescer performance. Stage efficiency and mass distribution ratios were determined using Cs mass transfer measurements. Using 20 millimolar (mM) extractant (instead of 50 mM), the nominal D(Cs) measured was 16.0-17.5. The data indicate that equilibrium is achieved rapidly and maintained throughout sampling. The data showed good stage efficiency for extraction (Tests 1A-1D), ranging from 98.2% for Test 1A to 90.5% for Test 1D. No statistically-significant differences were noted for operations at 12 gpm aqueous flow when compared with either 4 gpm or 8 gpm of aqueous flow. The stage efficiencies equal or exceed those previously measured using the baseline CSSX solvent system. The nominal target for scrub Cs distribution values are {approx}1.0-2.5. The first scrub test yielded an average scrub value of 1.21 and the second scrub test produced an average value of 0.78. Both values are considered acceptable. Stage efficiency was not calculated for the scrub tests. For stripping behavior, six tests were completed in a manner to represent the first strip stage. For three tests at the baseline flow ratios (O:A of 3.75:1) but at different total flow rates, the D(Cs) values were all similar at {approx}0.052. Similar behavior was observed for two tests performed at an O:A ratio of 7:1 instead of 3.75:1. The data for the baseline strip tests exhibited acceptable stage efficiency, ranging from 82.0% for low flow to 89-90% for medium and high flow. The difference in efficiency may be attributable to the low volume in the contactor housing at lower flow rates. The concentrations of

  1. CaBr{sub 2} hydrolysis for HBr production using a direct sparging contactor.

    SciTech Connect

    Yang, J.; Panchal, C. B.; Doctor, R. D.; Energy Systems

    2009-09-01

    The calcium-bromine cycle being investigated is a novel continuous hybrid cycle for hydrogen production employing both heat and electricity. Calcium bromide (CaBr{sub 2}) hydrolysis generates hydrogen bromide (HBr) which is electrolyzed to produce hydrogen. The CaBr{sub 2} hydrolysis at 1050 K (777 C) is endothermic with the heat of reaction {delta}G{sub T} = 181.5 KJ/mol (43.38 kcal/mol) and the Gibbs free energy change is positive at 99.6 kJ/mol (23.81 kcal/mol). What makes this hydrolysis reaction attractive is both its rate and that well over half the thermodynamic requirements for water-splitting heat of reaction of {delta}G{sub T} = 285.8 KJ/mol (68.32 kcal/mol) are supplied at this stage using heat rather than electricity. Molten-phase calcium bromide reactors may overcome the technical barriers associated with earlier hydrolysis approaches using supported solid-phase calcium bromide studied in the Japanese UT-3 cycle. Before constructing the experiment two design concepts were evaluated using COMSOL{trademark} multi-physics models; (1) the first involved sparging steam into a calcium-bromide melt, while (2) the second considered a 'spray-dryer' contactor spraying molten calcium bromide counter-currently to upward-flowing steam. A recent paper describes this work. These studies indicated that sparging steam into a calcium-bromide melt is more feasible than spraying molten calcium bromide droplets into steam. Hence, an experimental sparging hydrolysis reactor using a mullite tube (ID 70 mm) was constructed capable of holding 0.3-0.5 kg (1.5-2.5 x 10{sup -3} kg mol) CaBr{sub 2} forming a melt with a maximum 0.08 m (8 cm) depth. Sparging steam at a steam rate of 0.02 mol/mol of CaBr{sub 2} per minute (1.2-2.3 x 10{sup -5} kg/s), into this molten bath promptly yielded HBr in a stable operation that converted up to 25% of the calcium bromide. The kinetic constant derived from the experimental data was 2.17 x 10{sup -12} kmol s{sup -1} m{sup -2} MPa{sup -1} for

  2. Autobalancing and FDIR for a space-based centrifuge prototype

    NASA Technical Reports Server (NTRS)

    Wilson, Edward; Mah, Robert W.

    2005-01-01

    This report summarizes centrifuge-related work performed at the Smart Systems Research Laboratory at NASA Ames Research Center's Computational Sciences Division from 1995 through 2003. The goal is to develop an automated system that will sense an imbalance (both static and dynamic3) in a centrifuge and issue control commands to drive counterweights to eliminate the effects of the imbalance. This autobalancing development began when the ISS centrifuge design was not yet finalized, and was designed to work with the SSRL Centrifuge laboratory prototype, constructed in 1993-1995. Significant differences between that prototype and the current International Space Station (ISS) Centrifuge design are that: the spin axis for the SSRL Centrifuge prototype can translate freely in x and y, but not wobble, whereas the ISS centrifuge spin axis has 3 translational and two rotational degrees of freedom, supported by a vibration 34. The imbalance sensors are strained gauges both in the rotor and the stator, measuring the imbalance forces, whereas the ISS centrifuge uses eddy current displacement sensors to measure the displacements resulting from imbalance. High fidelity autobalancing and FDIR systems (for both counterweights and strain gauges) are developed and tested in MATLAB simulation, for the SSRL Centrifuge configuration. Hardware implementation of the autobalancing technology was begun in 1996, but was terminated due to lack of funding. The project lay dormant until 2001-2002 when the FDIR capability was added.

  3. Effects of centrifugation on gonadal and adrenocortical steroids in rats

    NASA Technical Reports Server (NTRS)

    Kakihana, R.; Butte, J. C.

    1980-01-01

    Many endocrine systems are sensitive to external changes in the environment. Both the pituitary adrenal and pituitary gonadal systems are affected by stress including centrifugation stress. The effect of centrifugation on the pituitary gonadal and pituitary adrenocortical systems was examined by measuring the gonadal and adrenal steroids in the plasma and brain following different duration and intensity of centrifugation stress in rats. Two studies were completed and the results are presented. The second study was carried out to describe the developmental changes of brain, plasma and testicular testosterone and dihydrotestosterone in Sprague Dawley rats so that the effect of centrifugation stress on the pituitary gonadal syatem could be better evaluated in future studies.

  4. Development of a 3D circular microfluidic centrifuge for the separation of mixed particles by using their different centrifuge times

    NASA Astrophysics Data System (ADS)

    Jeon, H. J.; Kim, D. I.; Kim, M. J.; Nguyen, X. D.; Park, D. H.; Go, J. S.

    2015-11-01

    This paper presents a circular microfluidic centrifuge with two inlets and two outlets to separate mixed microparticles with a specially designed sample injection hole. To separate the mixed particles, it uses a rotational flow, generated in a chamber by counter primary flows in the microchannels. The shape and sizes of the circular microfluidic centrifuge have been designed through numerical evaluation to have a large relative centrifugal force. The difference of centrifuge times of the mixed particles of 1 μm and 6 μm was determined to be 8.2 s at an inlet Reynolds number of 500 and a sample Reynolds number of 20. In the experiment, this was measured to be about 10 s. From the separation of the two polymer particles analogous to the representative sizes of platelets and red blood cells, the circular microfluidic centrifuge shows a potential to separate human blood cells size-selectively by using the difference of centrifuge times.

  5. Twisting microfluidics in a planetary centrifuge.

    PubMed

    Yasuda, Shoya; Hayakawa, Masayuki; Onoe, Hiroaki; Takinoue, Masahiro

    2017-03-15

    This paper reports a twisting microfluidic method utilising a centrifuge-based fluid extruding system in a planetary centrifuge which simultaneously generates an orbital rotation and an axial spin. In this method, fluid extrusion from a micro-scale capillary to an 'open-space' solution or air enables release of the fluid from the capillary-based microchannel, which physically means that there is a release of fluids from a confined low-Reynolds-number environment to an open non-low-Reynolds-number environment. As a result, the extruded fluids are separated from the axial spin of the capillary, and the difference in the angular rates of the axial spin between the capillary and the extruded fluids produces the 'twisting' of the fluid. In this study, we achieve control of the twist of highly viscous fluids, and we construct a simple physical model for the fluid twist. In addition, we demonstrate the formation of twisted hydrogel microstructures (stripe-patterned microbeads and multi-helical microfibres) with control over the stripe pattern and the helical pitch length. We believe that this method will enable the generation of more sophisticated microstructures which cannot easily be formed by usual channel-based microfluidic devices. This method can also provide advanced control of microfluids, as in the case of rapid mixing of highly viscous fluids. This method can contribute to a wide range of applications in materials science, biophysics, biomedical science, and microengineering in the future.

  6. Design, Development and Analysis of Centrifugal Blower

    NASA Astrophysics Data System (ADS)

    Baloni, Beena Devendra; Channiwala, Salim Abbasbhai; Harsha, Sugnanam Naga Ramannath

    2017-05-01

    Centrifugal blowers are widely used turbomachines equipment in all kinds of modern and domestic life. Manufacturing of blowers seldom follow an optimum design solution for individual blower. Although centrifugal blowers are developed as highly efficient machines, design is still based on various empirical and semi empirical rules proposed by fan designers. There are different methodologies used to design the impeller and other components of blowers. The objective of present study is to study explicit design methodologies and tracing unified design to get better design point performance. This unified design methodology is based more on fundamental concepts and minimum assumptions. Parametric study is also carried out for the effect of design parameters on pressure ratio and their interdependency in the design. The code is developed based on a unified design using C programming. Numerical analysis is carried out to check the flow parameters inside the blower. Two blowers, one based on the present design and other on industrial design, are developed with a standard OEM blower manufacturing unit. A comparison of both designs is done based on experimental performance analysis as per IS standard. The results suggest better efficiency and more flow rate for the same pressure head in case of the present design compared with industrial one.

  7. Experimental Investigation of Centrifugal Compressor Stabilization Techniques

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    2003-01-01

    Results from a series of experiments to investigate techniques for extending the stable flow range of a centrifugal compressor are reported. The research was conducted in a high-speed centrifugal compressor at the NASA Glenn Research Center. The stabilizing effect of steadily flowing air-streams injected into the vaneless region of a vane-island diffuser through the shroud surface is described. Parametric variations of injection angle, injection flow rate, number of injectors, injector spacing, and injection versus bleed were investigated for a range of impeller speeds and tip clearances. Both the compressor discharge and an external source were used for the injection air supply. The stabilizing effect of flow obstructions created by tubes that were inserted into the diffuser vaneless space through the shroud was also investigated. Tube immersion into the vaneless space was varied in the flow obstruction experiments. Results from testing done at impeller design speed and tip clearance are presented. Surge margin improved by 1.7 points using injection air that was supplied from within the compressor. Externally supplied injection air was used to return the compressor to stable operation after being throttled into surge. The tubes, which were capped to prevent mass flux, provided 9.3 points of additional surge margin over the baseline surge margin of 11.7 points.

  8. Centrifugally Stimulated Exospheric Ion Escape at Mercury

    NASA Technical Reports Server (NTRS)

    Delcourt, Dominique; Seki, K.; Terada, N.; Moore, Thomas E.

    2012-01-01

    We investigate the transport of ions in the low-altitude magnetosphere magnetosphere of Mercury. We show that, because of small spatial scales, the centrifugal effect due to curvature of the E B drift paths can lead to significant particle energization in the parallel direction. We demonstrate that because of this effect, ions with initial speed smaller than the escape speed such as those produced via thermal desorption can overcome gravity and escape into the magnetosphere. The escape route of this low-energy exosphere originating material is largely controlled by the magnetospheric convection rate. This escape route spreads over a narrower range of altitudes when the convection rate increases. Bulk transport of low-energy planetary material thus occurs within a limited region of space once moderate magnetospheric convection is established. These results suggest that, via release of material otherwise gravitationally trapped, the E B related centrifugal acceleration is an important mechanism for the net supply of plasma to the magnetosphere of Mercury.

  9. Wave Augmented Diffusers for Centrifugal Compressors

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Skoch, Gary J.

    1998-01-01

    A conceptual device is introduced which would utilize unsteady wave motion to slow and turn flows in the diffuser section of a centrifugal compressor. The envisioned device would substantially reduce the size of conventional centrifugal diffusers by eliminating the relatively large ninety degree bend needed to turn the flow from the radial/tangential to the axial direction. The bend would be replaced by a wall and the flow would instead exit through a series of rotating ports located on a disk, adjacent to the diffuser hub, and fixed to the impeller shaft. The ports would generate both expansion and compression waves which would rapidly transition from the hub/shroud (axial) direction to the radial/tangential direction. The waves would in turn induce radial/tangential and axial flow. This paper presents a detailed description of the device. Simplified cycle analysis and performance results are presented which were obtained using a time accurate, quasi-one-dimensional CFD code with models for turning, port flow conditions, and losses due to wall shear stress. The results indicate that a periodic wave system can be established which yields diffuser performance comparable to a conventional diffuser. Discussion concerning feasibility, accuracy, and integration follow.

  10. Centrifugation of coal-derived liquids

    SciTech Connect

    Weintraub, Murray; Weiss, Milton L.; Akhtar, Sayeed

    1980-06-01

    The application of the continuous solid bowl centrifuge to the removal of solids from coal liquefaction products was investigated. The centrifuge removed from 23 to 88% of the input ash from 8 to 73% of the input organic benzene insolubles while flow rates, viscosities, and dam heights were varied. Viscosity ..mu.., effluent liquid rate Q/sub e/, and Ambler's geometric parameter ..sigma.. were graphically correlated with attained separations. The separation was relatively insensitive to the variables, as a 50-fold increase in Q/sub e//..sigma.. corresponded to a decrease in ash removal only from 84% to 60% and to a decrease in organic solids removal only from 77% to 22%. Organic solids removal was poorer and more erratic than ash removal because of the lesser density differences and greater size variability of the organics. Ancillary studies demonstrated that coal liquefaction products may behave as a Bingham Plastic fluid, and that this results in an absolute limit on the attainable solids separation. Additional studies showed that little difference in density may exist between the organic solids and liquids, and that effects of aging may threaten the validity of viscosity measurements.

  11. Some aversive characteristics of centrifugally generated gravity.

    NASA Technical Reports Server (NTRS)

    Altman, F.

    1973-01-01

    The effective weight of rats was manipulated by centrifugation. Two effective weight levels were obtained. In three escape avoidance conditions a lever press produced a change from a base level of 2.1 g to a response level of 1.1 g. In a punishment condition a response produced a change from a 1.1 g level to a 2.1 g level and in an extinction condition responses had no effect on the 2.1 g effective weight level present. All changes took 30 sec and were maintained for an additional 10 sec before a return to base level was initiated. When responses occurred closer together than the 40 sec, they delayed the return to base level by 40 sec. This 40 sec interval is referred to as response-contingent-time. The response rate and amount of response-contingent-time served as the data. The results confirmed previous data that centrifugation is aversive. The results are interpreted as indicating that the aversiveness is attributable to the increase in effective weight, and that rats can discriminate the different angular velocity-radius of rotation combinations used.

  12. Centrifugal acceleration of the polar wind

    NASA Technical Reports Server (NTRS)

    Horwitz, J. L.; Ho, C. W.; Scarbro, H. D.; Wilson, G. R.; Moore, T. E.

    1994-01-01

    The effect of parallel ion acceleration associated with convection was first applied to energization of test particle polar ions by Cladis (1986). However, this effect is typically neglected in 'self-consistent' models of polar plasma outflow, apart from the fluid simulation by Swift (1990). Here we include approximations for this acceleration, which we broadly characterize as centrifugal in nature, in our time-dependent, semikinetic model of polar plasma outflow and describe the effects on the bulk parameter profiles and distribution functions of H+ and O+. For meridional convection across the pole the approximate parallel force along a polar magnetic field line may be written as F(sub cent, pole) = 1.5m(E(sub i))/B(sub i))squared (r(squared)/r(sup 3)(sub i)) where m is ion mass, r is geometric distance; and E(sub i), B(sub i) and r(sub i) refer to the electric and magnetic field magnitudes and geocentric distance at the ionosphere, respectively. For purely longitudinal convection along a constant L shell the parallel force is F(cent. long) = F(sub cent, pole)(1 - (r/(r(sub i)L))(sup 3/2)/(1 - 3r/(4 r(sub i)L))(sup 5/2). For high latitudes the difference between these two cases is relatively unimportant below approximately 5 R(sub E). We find that the steady state O+ bulk velocities and parallel temperatures strongly increase and decrease, respectively, with convection strength. In particular, the bulk velocities increase from near 0 km/s at 4000 km altitude to approximately 10 km/s at 5 R(sub E) geocentric distance for 50-mV/m ionospheric convection electric field. However, the centrifugal effect on the steady O+ density profiles depends on the exobase ion and electron temperatures: for low-base temperatures (T(sub i) = T(sub e) = 3000 K) the O+ density at high altitudes increases greatly with convection, while for higher base temperatures (T(sub i) = 5000 K, T(sub e) = 9000 K), the high-altitude O+ density decreases somewhat as convection is enhanced. The

  13. Fluid Flow through a High Cell Density Fluidized-Bed during Centrifugal Bioreactor Culture

    PubMed Central

    Detzel, Christopher J.; Van Wie, Bernard J.; Ivory, Cornelius F.

    2010-01-01

    An increasing demand for products such as tissues, proteins, and antibodies from mammalian cell suspension cultures is driving interest in increasing production through high-cell density bioreactors. The centrifugal bioreactor (CCBR) retains cells by balancing settling forces with surface drag forces due to medium throughput and is capable of maintaining cell densities above 108 cells/mL. This article builds on a previous study where the fluid mechanics of an empty CCBR were investigated showing fluid flow is nonuniform and dominated by Coriolis forces, raising concerns about nutrient and cell distribution. In this article, we demonstrate that the previously reported Coriolis forces are still present in the CCBR, but masked by the presence of cells. Experimental dye injection observations during culture of 15 μm hybridoma cells show a continual uniform darkening of the cell bed, indicating the region of the reactor containing cells is well mixed. Simulation results also indicate the cell bed is well mixed during culture of mammalian cells ranging in size from 10 to 20 μm. However, simulations also allow for a slight concentration gradient to be identified and attributed to Coriolis forces. Experimental results show cell density increases from 0.16 to 0.26 when centrifugal force is doubled by increasing RPM from 650 to 920 at a constant inlet velocity of 6.5 cm/s; an effect also observed in the simulation. Results presented in this article indicate cells maintained in the CCBR behave as a high-density fluidized bed of cells providing a homogeneous environment to ensure optimal growth conditions. PMID:20205172

  14. Fluid flow through a high cell density fluidized-bed during centrifugal bioreactor culture.

    PubMed

    Detzel, Christopher J; Van Wie, Bernard J; Ivory, Cornelius F

    2010-01-01

    An increasing demand for products such as tissues, proteins, and antibodies from mammalian cell suspension cultures is driving interest in increasing production through high-cell density bioreactors. The centrifugal bioreactor (CCBR) retains cells by balancing settling forces with surface drag forces due to medium throughput and is capable of maintaining cell densities above 10(8) cells/mL. This article builds on a previous study where the fluid mechanics of an empty CCBR were investigated showing fluid flow is nonuniform and dominated by Coriolis forces, raising concerns about nutrient and cell distribution. In this article, we demonstrate that the previously reported Coriolis forces are still present in the CCBR, but masked by the presence of cells. Experimental dye injection observations during culture of 15 microm hybridoma cells show a continual uniform darkening of the cell bed, indicating the region of the reactor containing cells is well mixed. Simulation results also indicate the cell bed is well mixed during culture of mammalian cells ranging in size from 10 to 20 microm. However, simulations also allow for a slight concentration gradient to be identified and attributed to Coriolis forces. Experimental results show cell density increases from 0.16 to 0.26 when centrifugal force is doubled by increasing RPM from 650 to 920 at a constant inlet velocity of 6.5 cm/s; an effect also observed in the simulation. Results presented in this article indicate cells maintained in the CCBR behave as a high-density fluidized bed of cells providing a homogeneous environment to ensure optimal growth conditions.

  15. Power transmission mechanism equipped with fluid and centrifugal clutch

    SciTech Connect

    Tamura, K.; Takeshita, S.; Fukunaga, T.

    1986-12-30

    This patent describes a power transmission mechanism equipped with a fluid coupling, an input shaft thereof interconnected to a power source being interconnected through the fluid coupling to an output shaft, and the output shaft being interconnected to a forward-rearward changeover mechanism including a speed changer. It is characterized in that the fluid coupling includes a shell, an impeller in the shell and a centrifugal clutch means in the shell for engaging the impeller and for driving the impeller when the shell is rotated by the input shaft at a speed above idle speed and for disengaging the impeller and the driving of the impeller when the shell is rotated by the input shaft at the idle speed. A turbine is included in the shell for standing idle in the shell when the centrifugal clutch means is disengaged and for drive by the impeller when the centrifugal clutch means is engaged and for driving the output shaft. The centrifugal clutch means comprises a support member fixed to the shell, a centrifugal shoe mounted on the support member for radial movement outwardly of the support member by centrifugal force and radial movement inwardly toward the support member. It also comprises spring means for moving the shoe inwardly toward the support member when the shell is rotated at idle speed, a cylindrical casing fixed to the impeller radially outward from the shoe and having an engaging surface for engagement by the centrifugal shoe when the shell is rotated at a speed above idle speed and the centrifugal shoe is moved radially outward by centrifugal force. The forward-rearward changeover mechanism, including the speed changer, is driven by the turbine when the centrifugal clutch means is engaged with the engaging surface and standing idle when the centrifugal clutch means is disengaged from the engaging surface and the turbine is standing idle.

  16. High Efficiency Centrifugal Compressor for Rotorcraft Applications

    NASA Technical Reports Server (NTRS)

    Medic, Gorazd; Sharma, Om P.; Jongwook, Joo; Hardin, Larry W.; McCormick, Duane C.; Cousins, William T.; Lurie, Elizabeth A.; Shabbir, Aamir; Holley, Brian M.; Van Slooten, Paul R.

    2014-01-01

    The report "High Efficiency Centrifugal Compressor for Rotorcraft Applications" documents the work conducted at UTRC under the NRA Contract NNC08CB03C, with cost share 2/3 NASA, and 1/3 UTRC, that has been extended to 4.5 years. The purpose of this effort was to identify key technical barriers to advancing the state-of-the-art of small centrifugal compressor stages; to delineate the measurements required to provide insight into the flow physics of the technical barriers; to design, fabricate, install, and test a state-of-the-art research compressor that is representative of the rear stage of an axial-centrifugal aero-engine; and to acquire detailed aerodynamic performance and research quality data to clarify flow physics and to establish detailed data sets for future application. The design activity centered on meeting the goal set outlined in the NASA solicitation-the design target was to increase efficiency at higher work factor, while also reducing the maximum diameter of the stage. To fit within the existing Small Engine Components Test Facility at NASA Glenn Research Center (GRC) and to facilitate component re-use, certain key design parameters were fixed by UTRC, including impeller tip diameter, impeller rotational speed, and impeller inlet hub and shroud radii. This report describes the design effort of the High Efficiency Centrifugal Compressor stage (HECC) and delineation of measurements, fabrication of the compressor, and the initial tests that were performed. A new High-Efficiency Centrifugal Compressor stage with a very challenging reduction in radius ratio was successfully designed, fabricated and installed at GRC. The testing was successful, with no mechanical problems and the running clearances were achieved without impeller rubs. Overall, measured pressure ratio of 4.68, work factor of 0.81, and at design exit corrected flow rate of 3 lbm/s met the target requirements. Polytropic efficiency of 85.5 percent and stall margin of 7.5 percent were

  17. Modeling the Transverse Shell-side Mass Transfer in Hollow Fiber Membrane Contactors at Low Reynolds Numbers

    NASA Astrophysics Data System (ADS)

    Kirsch, V. A.; Volkov, V. V.; Bildukevich, A. V.

    A method for calculating the external mass transfer in a contactor with a transverse confined flow of a viscous incompressible liquid (gas) past hollow fibers at low Reynolds numbers is proposed. The method is based on the concept of regular arrays of parallel fibers with a well-defined flowfield. As a simplest model system, a row of parallel fibers is considered, for which dependences of a drag force and an efficiency of a solute retention on the inter-fiber distance, membrane mass transfer coefficient, Peclet and Reynolds numbers are computed. The influence of the fluid inertia on the mass transport is studied. It is shown that a linear Stokes equations can be used for as higher Re numbers, as denser is the fiber array. In this case the flow field is independent on the Re number, and analytical solutions for the flowfield and fiber sorption efficiency (fiber Sherwood number) can be used.

  18. Use of the electrically driven emulsion-phase contactor for a biphasic liquid-liquid enzyme system

    SciTech Connect

    Scott, T.C.; Cosgrove, J.M.; DePaoli, D.W.

    1995-12-31

    An alternative approach to the operation of bioprocessing systems within non-aqueous environments would require the development of reaction systems that would provide effective interfacial contact between the biocatalyst, contained within an aqueous phase, and the organic phase containing the substrate. A biphasic liquid-liquid (BLL) reactor that provides for intimate liquid-liquid contact would be the most probable approach for this application. For the BLL reactions considered in this work, the overall effectiveness of the system will depend on both compatibility of the biocatalyst with the chemical species present and intrinsic reaction and interfacial transport phenomena typically involved with liquid-liquid operations. The focus of this article is to investigate the removal and oxidation of p-cresol dissolved in toluene by aqueous-phase horseradish peroxidase. Contacting of the liquid-liquid biphasic enzyme system is carried out in an advanced solvent extraction contacting device, the electrically driven emulsion-phase contactor (EPC).

  19. Control of nitratation in an oxygen-limited autotrophic nitrification/denitrification rotating biological contactor through disc immersion level variation.

    PubMed

    Courtens, Emilie N P; Boon, Nico; De Clippeleir, Haydée; Berckmoes, Karla; Mosquera, Mariela; Seuntjens, Dries; Vlaeminck, Siegfried E

    2014-03-01

    With oxygen supply playing a crucial role in an oxygen-limited autotrophic nitrification/denitrification (OLAND) rotating biological contactor (RBC), its controlling factors were investigated in this study. Disc rotation speeds (1.8 and 3.6rpm) showed no influence on the process performance of a lab-scale RBC, although abiotic experiments showed a significant effect on the oxygenation capacity. Estimations of the biological oxygen uptake rate revealed that 85-89% of the oxygen was absorbed by the microorganisms during the air exposure of the discs. Indeed, increasing the disc immersion (50 to 75-80%) could significantly suppress undesired nitratation, on the short and long term. The presented results demonstrated that nitratation could be controlled by the immersion level and revealed that oxygen control in an OLAND RBC should be predominantly based on the atmospheric exposure percentage of the discs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Centrifugal Barrel Finishing Of Turbine-Blade "Fir Trees"

    NASA Technical Reports Server (NTRS)

    Mandel, Johnny L.

    1990-01-01

    Modified centrifugal barrel-finishing machine imparts desired residual compressive stresses to "fir trees" of turbine blades. Centrifugal forces generate compressive stresses, which are transmitted to turbine blades through abrasive slurries in which suspended. Eliminates need for shot peening, rounding of edges and burrs caused by shot peening and, consequently, need for mass finishing operations to remove burrs. Improves surface finish of "fir trees".

  1. Centrifugal Barrel Finishing Of Turbine-Blade "Fir Trees"

    NASA Technical Reports Server (NTRS)

    Mandel, Johnny L.

    1990-01-01

    Modified centrifugal barrel-finishing machine imparts desired residual compressive stresses to "fir trees" of turbine blades. Centrifugal forces generate compressive stresses, which are transmitted to turbine blades through abrasive slurries in which suspended. Eliminates need for shot peening, rounding of edges and burrs caused by shot peening and, consequently, need for mass finishing operations to remove burrs. Improves surface finish of "fir trees".

  2. View of new centrifuge at Flight Acceleration Facility

    NASA Technical Reports Server (NTRS)

    1966-01-01

    View of the new centrifuge at the Manned Spacecraft Center (MSC), located in the Flight Acceleration Facility, bldg 29. The 50-ft. arm can swing the three man gondola to create g-forces astronauts will experience during controlled flight and during reentry. The centrifuge was designed primarily for training Apollo astronauts.

  3. The plasma centrifuge (A compact, low cost, stable isotope separator)

    SciTech Connect

    Not Available

    1992-01-01

    The Mark-I centrifuge assembly includes an electromagnet, a vacuum chamber, and a Nd:YAG laser. Three tasks have been completed: design, component order, and laboratory test cell preparation. Two task are being pursued: design plasma diagnostics/collection hardware/mass analyzers, and assemble Mark I centrifuge. Experiments with rotation of C plasmas will be conducted. 4 figs.

  4. 14 CFR 35.35 - Centrifugal load tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Centrifugal load tests. 35.35 Section 35.35 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS Tests and Inspections § 35.35 Centrifugal load tests. The applicant must demonstrate...

  5. 14 CFR 35.35 - Centrifugal load tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Centrifugal load tests. 35.35 Section 35.35 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS Tests and Inspections § 35.35 Centrifugal load tests. The applicant must demonstrate...

  6. 14 CFR 35.35 - Centrifugal load tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Centrifugal load tests. 35.35 Section 35.35 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS Tests and Inspections § 35.35 Centrifugal load tests. The applicant must demonstrate...

  7. Damping of Sound Waves in Strong Centrifugal Field

    NASA Astrophysics Data System (ADS)

    Bogovalov, S. V.; Kislov, V. A.; Tronin, I. V.

    A method for numerical calculation of the sound wave damping and dispersion law in a strong centrifugal field of the order of 106 g is considered. The damping is defined from the width of the resonance peak for different wave vectors. In the strong centrifugal field damping of the sound waves essentially exceeds the damping in the quiescent gas.

  8. Coil planet centrifugation as a means for small particle separation

    NASA Technical Reports Server (NTRS)

    Herrmann, F. T.

    1983-01-01

    The coil planet centrifuge uses a centrifugal force field to provide separation of particles based on differences in sedimentation rates by flow through a rotating coiled tube. Three main separations are considered: (1) single phase fresh sheep and human erythrocytes, (2) single phase fixed heep and human erythrocytes, and (3) electrophoretically enhanced single phase fresh sheep and human erythrocytes.

  9. Purification of mitochondria by sucrose step density gradient centrifugation.

    PubMed

    Clayton, David A; Shadel, Gerald S

    2014-10-01

    Mitochondrial fractions isolated from tissue culture cells or tissue such as liver after differential centrifugation can be purified further by density gradient centrifugation. Here we describe the use of sucrose for this purpose because it is commonly used and inexpensive and the resulting mitochondria preparations are useful for many purposes. © 2014 Cold Spring Harbor Laboratory Press.

  10. Parameter Study of Melt Spun Polypropylene Fibers by Centrifugal Spinning

    DTIC Science & Technology

    2014-07-01

    including drawing, template synthesis, phase separation, self- assembly, and electrospinning . Most methods are only relevant on a laboratory scale...attention as an alternative to electrospinning , the most common nanofiber formation method. Fibers of low dielectric constants and insoluble polymers that...generally cannot be used in electrospinning can be produced through centrifugal spinning. The centrifugal spinning process has several key

  11. Centrifugal Blower for Personal Air Ventilation System (PAVS) - Phase 1

    DTIC Science & Technology

    2015-02-01

    To) May 2007 – November 2007 4. TITLE AND SUBTITLE CENTRIFUGAL BLOWER FOR PERSONAL AIR VENTILATION SYSTEM (PAVS) – PHASE I 5a. CONTRACT NUMBER...Contract. A Personal Air Ventilation System (PAVS) blower was designed beginning with an analytical design based on aerodynamic similarity. A radial...18    1 CENTRIFUGAL BLOWER FOR THE PERSONAL AIR VENTILATION SYSTEM (PAVS) – PHASE I 1

  12. Supersonic rotation in the Maryland Centrifugal Experiment

    NASA Astrophysics Data System (ADS)

    Messer, Sarah

    The Maryland Centrifugal Experiment (MCX) has been built to study the confinement of supersonically-rotating plasmas and velocity shear stabilization of MHD instabilities. Theory predicts improved stability and confinement when a strong radial electric field is introduced into a magnetic-mirror geometry. The resulting radial currents establish a stable highly sheared plasma rotating at supersonic velocities in the azimuthal direction under the influence of J x B forces. This arrangement leads to increased confinement because the supersonic rotation creates an artificial radial gravity which draws the plasma away from the mirrors, closing the mirror loss cone. The large vφ shear stabilizes the plasma and enforces laminar flow. Based on these concepts, we have designed and constructed a machine to produce supersonically rotating highly-ionized plasmas. It typically does this by introducing a radial voltage of 7 kV in a magnetic-mirror geometry, 2 kG at the midplane and 19 kG at each mirror. MCX has completed its main construction phase and is acquiring data, here analyzed primarily in terms of a circuit model which infers plasma characteristics from the radial voltage across the plasma and the total radial current. The theory and simulations supporting the MCX centrifugal confinement scheme are presented here with the data and analysis from its first nine months of operation, including a description of basic plasma characteristics and evidence for both stability and confinement. Theory simulation, and initial experimental data all indicate that this centrifugal confinement scheme provides good stability and confinement at the temperatures and densities under study, as well as at the larger temperatures, fields, and dimensions expected for a fusion reactor. In particular, spectroscopic and circuit-model data indicate rotational velocities in MCX of up to 100 km/s, ion temperatures of approximately 30 eV, and ion densities upwards of 1020m-3. These parameters give

  13. Bubble Eliminator Based on Centrifugal Flow

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Tsao, Yow-Min D.; Lee, Wenshan

    2004-01-01

    The fluid bubble eliminator (FBE) is a device that removes gas bubbles from a flowing liquid. The FBE contains no moving parts and does not require any power input beyond that needed to pump the liquid. In the FBE, the buoyant force for separating the gas from the liquid is provided by a radial pressure gradient associated with a centrifugal flow of the liquid and any entrained bubbles. A device based on a similar principle is described in Centrifugal Adsorption Cartridge System (MSC- 22863), which appears on page 48 of this issue. The FBE was originally intended for use in filtering bubbles out of a liquid flowing relatively slowly in a bioreactor system in microgravity. Versions that operate in normal Earth gravitation at greater flow speeds may also be feasible. The FBE (see figure) is constructed as a cartridge that includes two concentric cylinders with flanges at the ends. The outer cylinder is an impermeable housing; the inner cylinder comprises a gas-permeable, liquid-impermeable membrane covering a perforated inner tube. Multiple spiral disks that collectively constitute a spiral ramp are mounted in the space between the inner and outer cylinders. The liquid enters the FBE through an end flange, flows in the annular space between the cylinders, and leaves through the opposite end flange. The spiral disks channel the liquid into a spiral flow, the circumferential component of which gives rise to the desired centrifugal effect. The resulting radial pressure gradient forces the bubbles radially inward; that is, toward the inner cylinder. At the inner cylinder, the gas-permeable, liquid-impermeable membrane allows the bubbles to enter the perforated inner tube while keeping the liquid in the space between the inner and outer cylinders. The gas thus collected can be vented via an endflange connection to the inner tube. The centripetal acceleration (and thus the radial pressure gradient) is approximately proportional to the square of the flow speed and

  14. Infiltration of fibrous preform in the centrifugal force field

    SciTech Connect

    Nishida, Yoshinori; Shirayanagi, Itaru; Sakai, Yoshibumi; Tozawa, Yasuhisa

    1994-12-31

    The pressure to infiltrate molten aluminum into alumina short fiber preform was generated by centrifugal force, and the start pressure for the infiltration was measured. The fundamental equation of infiltration phenomenon was derived from the equation of the conservation of momentum of fluid flow in the porous media in the centrifugal force field. One-dimensional solution of the equation was obtained to discuss the characteristics of fluid flow in a centrifugal force field. It was made clear that centrifugal force is effective as a motive force to infiltrate molten metal into fibrous preform, the pressure distribution of molten metal in the preform is different from that predicted by D`Arcy`s law and the infiltration is enhanced by centrifugal force.

  15. Effect of science laboratory centrifuge of space station environment

    NASA Technical Reports Server (NTRS)

    Searby, Nancy

    1990-01-01

    It is argued that it is essential to have a centrifuge operating during manned space station operations. Background information and a rationale for the research centrifuge are given. It is argued that we must provide a controlled acceleration environment for comparison with microgravity studies. The lack of control groups in previous studies throws into question whether the obseved effects were the result of microgravity or not. The centrifuge could be used to provide a 1-g environment to supply specimens free of launch effects for long-term studies. With the centrifuge, the specimens could be immediately transferred to microgravity without undergoing gradual acclimation. Also, the effects of artificial gravity on humans could be investigated. It is also argued that the presence of the centrifuge on the space station will not cause undo vibrations or other disturbing effects.

  16. Measuring and balancing dynamic unbalance of precision centrifuge

    NASA Astrophysics Data System (ADS)

    Yang, Yafei; Huo, Xin

    2008-10-01

    A precision centrifuge is used to test and calibrate accelerometer model parameters. Its dynamic unbalance may cause the perturbation of the centrifuge to deteriorate the test and calibration accuracy of an accelerometer. By analyzing the causes of dynamic unbalance, the influences on precision centrifuge from static unbalance and couple unbalance are developed. It is considered measuring and balancing of static unbalance is a key to resolving a dynamic unbalance problem of precision centrifuge with a disk in structure. Measuring means and calculating formulas of static unbalance amount are given, and balancing principle and method are provided. The correctness and effectiveness of this method are confirmed by experiments on a device under tuning, thereby the accurate and high-effective measuring and balancing method of dynamic unbalance of this precision centrifuge was provided.

  17. Centrifugal regulator for control of deployment rates of deployable elements

    NASA Technical Reports Server (NTRS)

    Vermalle, J. C.

    1980-01-01

    The requirements, design, and performance of a centrifugal regulator aimed at limiting deployment rates of deployable elements are discussed. The overall mechanism is comprised of four distinct functional parts in a machined housing: (1) the centrifugal brake device, which checks the payout of a deployment cable; (2) the reducing gear, which produces the spin rate necesary for the braking device; (3) the payout device, which allows the unwinding of the cable; and (4) the locking device, which prevents untimely unwinding. The centrifugal regulator is set into operation by a threshold tension of the cable which unlocks the mechanism and allows unwinding. The pulley of the windout device drives the centrifugal brake with the help of the reducing gear. The centrifugal force pushes aside weights that produce friction of the studs in a cylindrical housing. The mechanism behaved well at qualification temperature and vibrations.

  18. Closed continuous-flow centrifuge rotor

    DOEpatents

    Breillatt, Jr., Julian P.; Remenyik, Carl J.; Sartory, Walter K.; Thacker, Louis H.; Penland, William Z.

    1976-01-01

    A blood separation centrifuge rotor having a generally parabolic core disposed concentrically and spaced apart within a housing having a similarly shaped cavity. Blood is introduced through a central inlet and into a central passageway enlarged downwardly to decrease the velocity of the entrant blood. Septa are disposed inside the central passageway to induce rotation of the entrant blood. A separation chamber is defined between the core and the housing wherein the whole blood is separated into red cell, white cell, and plasma zones. The zones are separated by annular splitter blades disposed within the separation chamber. The separated components are continuously removed through conduits communicating through a face seal to the outside of the rotor.

  19. Numerical simulation of centrifugal casting of pipes

    NASA Astrophysics Data System (ADS)

    Kaschnitz, E.

    2012-07-01

    A numerical simulation model for the horizontal centrifugal pipe casting process was developed with the commercial simulation package Flow3D. It considers - additionally to mass, energy and momentum conservation equations and free surface tracking - the fast radial and slower horizontal movement of the mold. The iron inflow is not steady state but time dependent. Of special importance is the friction between the liquid and the mold in connection with the viscosity and turbulence of the iron. Experiments with the mold at controlled revolution speeds were carried out using a high-speed camera. From these experiments friction coefficients for the description of the interaction between mold and melt were obtained. With the simulation model, the influence of typical process parameters (e.g. melts inflow, mold movement, melt temperature, cooling media) on the wall thickness of the pipes can be studied. The comparison to results of pipes from production shows a good agreement between simulation and reality.

  20. A modeling study of a centrifugal compressor

    SciTech Connect

    Popovic, P.; Shapiro, H.N.

    1998-12-31

    A centrifugal compressor, which is part of a chlorofluorocarbon R-114 chiller installation, was investigated, operating with a new refrigerant, hydrofluorocarbon R-236ea, a proposed alternative to R-114. A large set of R-236ea operating data, as well as a limited amount of R-114 data, were available for this study. A relatively simple analytical compressor model was developed to describe compressor performance. The model was built upon a thorough literature search, experimental data, and some compressor design parameters. Two original empirical relations were developed, providing a new approach to the compressor modeling. The model was developed in a format that would permit it to be easily incorporated into a complete chiller simulation. The model was found to improve somewhat on the quantitative and physical aspects of a compressor model of the same format found in the literature. It was found that the compressor model is specific to the particular refrigerant.

  1. [Hemodynamic analysis of a centrifugal blood pump].

    PubMed

    Wang, Yang; Yang, Ming; Xu, Zihao; Zhuang, Xiaoqi; Li, Qilei; Xu, Liang

    2015-01-01

    This paper built the mathematical model of a centrifugal blood pump, which was designed by ourselves, combined it with that of the human cardiovascular system and simulated the coupling system using Matlab. Then we set up the experiment platform, linked the blood pump to mock human cardiovascular system in case of three-stage heart failure, and measured aortic pressure and flow under different speed. The comparison between experiment results and simulation results not only indicates the coupling model is correct and the blood pump works well, but also shows that with the increase of blood pump speed, the pulsation of aortic pressure and flow will be reduced, this situation will affect the structure and function of blood vessels.

  2. Implantable centrifugal pump with hybrid magnetic bearings.

    PubMed

    Bearnson, G B; Olsen, D B; Khanwilkar, P S; Long, J W; Sinnott, M; Kumar, A; Allaire, P E; Baloh, M; Decker, J

    1998-01-01

    Test methods and results of in vitro assessment of a centrifugal pump with a magnetically suspended impeller are provided. In vitro blood tests have been completed with a resulting normalized milligram index of hemolysis (NmIH) of 12.4 +/- 4.1, indicating that hemolysis is not a problem. Hydraulic characterization of the system with water has shown that a nominal pumping condition of 6 L/min at 100 mmHg was met at 2,200 rpm. Maximum clinically usable cardiac output is predicted be 10 L/min. The magnetic bearing supported impeller did not contact the housing and was shown to be stable under a variety of pumping conditions. The driving motor efficiency is 75% at the nominal condition. Finally, a description of the clinical version of the pump under development is provided.

  3. Rotordynamic forces on centrifugal pump impellers

    NASA Technical Reports Server (NTRS)

    Franz, R.; Arndt, N.; Caughey, T. K.; Brennen, C. E.; Acosta, A. J.

    1987-01-01

    The asymmetric flow around an impeller in a volute exerts a force upon the impeller. To study the rotordynamic force on an impeller which is vibrating around its machine axis of rotation, the impeller, mounted on a dynamometer, is made to whirl in a circular orbit within the volute. The measured force is expressed as the sum of a steady radial force and an unsteady force due to the eccentric motion of the impeller. These forces were measured in separate tests on a centrifugal pump with radically increased shroud clearance, a two-dimensional impeller, and an impeller with an inducer, the impeller of the HPOTP (High Pressure Oxygen Turbopump) of the SSME (Space Shuttle Main Engine). In each case, a destabilizing force was observed over a region of positive whirl.

  4. Rotordynamic forces on centrifugal pump impellers

    NASA Technical Reports Server (NTRS)

    Franz, R.; Arndt, N.; Caughey, T. K.; Brennen, C. E.; Acosta, A. J.

    1987-01-01

    The asymmetric flow around an impeller in a volute exerts a force upon the impeller. To study the rotordynamic force on an impeller which is vibrating around its machine axis of rotation, the impeller, mounted on a dynamometer, is made to whirl in a circular orbit within the volute. The measured force is expressed as the sum of a steady radial force and an unsteady force due to the eccentric motion of the impeller. These forces were measured in separate tests on a centrifugal pump with radically increased shroud clearance, a two-dimensional impeller, and an impeller with an inducer, the impeller of the HPOTP (High Pressure Oxygen Turbopump) of the SSME (Space Shuttle Main Engine). In each case, a destabilizing force was observed over a region of positive whirl.

  5. Head pulsations in a centrifugal pump

    NASA Astrophysics Data System (ADS)

    Boiko, V. S.; Sotnyk, M. I.; Moskalenko, V. V.

    2017-08-01

    This article investigated the factors, which affect to the character of the head pulsations of a centrifugal pump. We investigated the dependence of the shape and depth of these pulsations from the operation mode of the pump. Was determined, that the head pulsations at the outlet of the impeller (pulsations on the blade passing frequency) cause head pulsations at the outlet of the pump, that have the same frequency, but differ in shape and depth. These pulsations depend on the design features of the flow-through part of the pump (from the ratio of hydraulic losses on the friction and losses on the vortex formation). A feature of the researches that were conducted is also the using of not only hydraulic but also electric modeling methods. It allows determining the values of the components of hydraulic losses.

  6. Centrifugal governor for internal combustion engines

    SciTech Connect

    Ohnishi, M.

    1986-09-23

    A centrifugal governor is described for use with an internal combustion engine which consists of: a control rack for regulating the quantity of fuel to be supplied to the engine; flyweights radially displaceable in response to the rotational speed of the engine; a tension lever pivotable through an angle dependent upon the amount of radial displacement of the flyweights; an idling spring for urging the tension lever against radially outward displacement of the flyweights; a torque cam having a cam surface determining a fuel increment to be applied at the start of the engine; a sensor lever having one end engaged by the control rack, and another end adapted to engage with the cam surface of the torque cam; a cancelling spring interposed between the torque cam and the tension lever; a control lever; a floating lever interlocking with the control lever; and spring force adjusting means arranged at one end of the idling spring.

  7. International Space Station (ISS) Plasma Contactor Unit (PCU) Utilization Plan Assessment Update

    NASA Technical Reports Server (NTRS)

    Hernandez-Pellerano, Amri; Iannello, Christopher J.; Garrett, Henry B.; Ging, Andrew T.; Katz, Ira; Keith, R. Lloyd; Minow, Joseph I.; Willis, Emily M.; Schneider, Todd A.; Whittlesey, Edward J.; Wollack, Edward J.; Wright, Kenneth H.

    2014-01-01

    The International Space Station (ISS) vehicle undergoes spacecraft charging as it interacts with Earth's ionosphere and magnetic field. The interaction can result in a large potential difference developing between the ISS metal chassis and the local ionosphere plasma environment. If an astronaut conducting extravehicular activities (EVA) is exposed to the potential difference, then a possible electrical shock hazard arises. The control of this hazard was addressed by a number of documents within the ISS Program (ISSP) including Catastrophic Safety Hazard for Astronauts on EVA (ISS-EVA-312-4A_revE). The safety hazard identified the risk for an astronaut to experience an electrical shock in the event an arc was generated on an extravehicular mobility unit (EMU) surface. A catastrophic safety hazard, by the ISS requirements, necessitates mitigation by a two-fault tolerant system of hazard controls. Traditionally, the plasma contactor units (PCUs) on the ISS have been used to limit the charging and serve as a "ground strap" between the ISS structure and the surrounding ionospheric plasma. In 2009, a previous NASA Engineering and Safety Center (NESC) team evaluated the PCU utilization plan (NESC Request #07-054-E) with the objective to assess whether leaving PCUs off during non-EVA time periods presented risk to the ISS through assembly completion. For this study, in situ measurements of ISS charging, covering the installation of three of the four photovoltaic arrays, and laboratory testing results provided key data to underpin the assessment. The conclusion stated, "there appears to be no significant risk of damage to critical equipment nor excessive ISS thermal coating damage as a result of eliminating PCU operations during non- EVA times." In 2013, the ISSP was presented with recommendations from Boeing Space Environments for the "Conditional" Marginalization of Plasma Hazard. These recommendations include a plan that would keep the PCUs off during EVAs when the

  8. Reciprocating flow-based centrifugal microfluidics mixer

    NASA Astrophysics Data System (ADS)

    Noroozi, Zahra; Kido, Horacio; Micic, Miodrag; Pan, Hansheng; Bartolome, Christian; Princevac, Marko; Zoval, Jim; Madou, Marc

    2009-07-01

    Proper mixing of reagents is of paramount importance for an efficient chemical reaction. While on a large scale there are many good solutions for quantitative mixing of reagents, as of today, efficient and inexpensive fluid mixing in the nanoliter and microliter volume range is still a challenge. Complete, i.e., quantitative mixing is of special importance in any small-scale analytical application because the scarcity of analytes and the low volume of the reagents demand efficient utilization of all available reaction components. In this paper we demonstrate the design and fabrication of a novel centrifugal force-based unit for fast mixing of fluids in the nanoliter to microliter volume range. The device consists of a number of chambers (including two loading chambers, one pressure chamber, and one mixing chamber) that are connected through a network of microchannels, and is made by bonding a slab of polydimethylsiloxane (PDMS) to a glass slide. The PDMS slab was cast using a SU-8 master mold fabricated by a two-level photolithography process. This microfluidic mixer exploits centrifugal force and pneumatic pressure to reciprocate the flow of fluid samples in order to minimize the amount of sample and the time of mixing. The process of mixing was monitored by utilizing the planar laser induced fluorescence (PLIF) technique. A time series of high resolution images of the mixing chamber were analyzed for the spatial distribution of light intensities as the two fluids (suspension of red fluorescent particles and water) mixed. Histograms of the fluorescent emissions within the mixing chamber during different stages of the mixing process were created to quantify the level of mixing of the mixing fluids. The results suggest that quantitative mixing was achieved in less than 3 min. This device can be employed as a stand alone mixing unit or may be integrated into a disk-based microfluidic system where, in addition to mixing, several other sample preparation steps may be

  9. Method and centrifugal apparatus for slurry testing

    SciTech Connect

    Tuzson, J.J.

    1984-04-17

    In accordance with the centrifugal erosion testing method of the invention, a material specimen is rotated with a flat surface facing the direction of rotation and a narrow stream of an abrasive particle slurry is concurrently flowed at a preselected rate in a radial direction across the flat surface, the rotating step being at sufficiently high angular velocity to urge the abrasive particles by Coriolis acceleration into a compacted mass against the flat surface and erode material therefrom by scouring type action as the particles flow radially outward. The rotating and flowing steps are continued for a sufficient preselected duration to erode material to a measurable depth, and the depth to which the flat surface is worn by the abrasive particles is measured as an indication of the erosion resistance of the specimen material. The centrifugal slurry erosion testing apparatus includes a rotatable cylindrical vessel into the interior of which the abrasive slurry is fed and a specimen holder extending radially from the vessel having a cavity for receiving the specimen and a radial slurry flow passage communicating with the interior of the vessel. One of the radial passage longitudinal walls is defined by the flat surface of the specimen. Preferably the specimen holder comprises mating semicylindrical halves one of which has a specimen-receiving cavity in its abutting surface and the other has a narrow rectangular-in-cross section groove in its abutting surface which communicates with the interior of the vessel and together with the flat surface of the specimen defines the radial slurry flow passage. The mating semicylindrical halves are enclosed by a sleeve having an annular rim disposed interiorly of the vessel to prevent radially outward movement of the specimen holder.

  10. Multiphase flow modeling in centrifugal partition chromatography.

    PubMed

    Adelmann, S; Schwienheer, C; Schembecker, G

    2011-09-09

    The separation efficiency in Centrifugal Partition Chromatography (CPC) depends on selection of a suitable biphasic solvent system (distribution ratio, selectivity factor, sample solubility) and is influenced by hydrodynamics in the chambers. Especially the stationary phase retention, the interfacial area for mass transfer and the flow pattern (backmixing) are important parameters. Their relationship with physical properties, operating parameters and chamber geometry is not completely understood and predictions are hardly possible. Experimental flow visualization is expensive and two-dimensional only. Therefore we simulated the flow pattern using a volume-of-fluid (VOF) method, which was implemented in OpenFOAM®. For the three-dimensional simulation of a rotating FCPC®-chamber, gravitational centrifugal and Coriolis forces were added to the conservation equation. For experimental validation the flow pattern of different solvent systems was visualized with an optical measurement system. The amount of mobile phase in a chamber was calculated from gray scale values of videos recorded by an image processing routine in ImageJ®. To visualize the flow of the stationary phase polyethylene particles were used to perform a qualitative particle image velocimetry (PIV) analysis. We found a good agreement between flow patterns and velocity profiles of experiments and simulations. By using the model we found that increasing the chamber depth leads to higher specific interfacial area. Additionally a circular flow in the stationary phase was identified that lowers the interfacial area because it pushes the jet of mobile phase to the chamber wall. The Coriolis force alone gives the impulse for this behavior. As a result the model is easier to handle than experiments and allows 3D prediction of hydrodynamics in the chamber. Additionally it can be used for optimizing geometry and operating parameters for given physical properties of solvent systems. Copyright © 2011 Elsevier B

  11. Reciprocating flow-based centrifugal microfluidics mixer.

    PubMed

    Noroozi, Zahra; Kido, Horacio; Micic, Miodrag; Pan, Hansheng; Bartolome, Christian; Princevac, Marko; Zoval, Jim; Madou, Marc

    2009-07-01

    Proper mixing of reagents is of paramount importance for an efficient chemical reaction. While on a large scale there are many good solutions for quantitative mixing of reagents, as of today, efficient and inexpensive fluid mixing in the nanoliter and microliter volume range is still a challenge. Complete, i.e., quantitative mixing is of special importance in any small-scale analytical application because the scarcity of analytes and the low volume of the reagents demand efficient utilization of all available reaction components. In this paper we demonstrate the design and fabrication of a novel centrifugal force-based unit for fast mixing of fluids in the nanoliter to microliter volume range. The device consists of a number of chambers (including two loading chambers, one pressure chamber, and one mixing chamber) that are connected through a network of microchannels, and is made by bonding a slab of polydimethylsiloxane (PDMS) to a glass slide. The PDMS slab was cast using a SU-8 master mold fabricated by a two-level photolithography process. This microfluidic mixer exploits centrifugal force and pneumatic pressure to reciprocate the flow of fluid samples in order to minimize the amount of sample and the time of mixing. The process of mixing was monitored by utilizing the planar laser induced fluorescence (PLIF) technique. A time series of high resolution images of the mixing chamber were analyzed for the spatial distribution of light intensities as the two fluids (suspension of red fluorescent particles and water) mixed. Histograms of the fluorescent emissions within the mixing chamber during different stages of the mixing process were created to quantify the level of mixing of the mixing fluids. The results suggest that quantitative mixing was achieved in less than 3 min. This device can be employed as a stand alone mixing unit or may be integrated into a disk-based microfluidic system where, in addition to mixing, several other sample preparation steps may be

  12. Modification of Otolith-Ocular Reflexes, Motion Perception and Manual Control During Variable Radius Centrifugation Following Space Flight

    NASA Technical Reports Server (NTRS)

    Wood, Scott J.; Clarke, A. H.; Rupert, A. H.; Harm, D. L.; Clement, G. R.

    2009-01-01

    Two joint ESA-NASA studies are examining changes in otolith-ocular reflexes and motion perception following short duration space flights, and the operational implications of post-flight tilt-translation ambiguity for manual control performance. Vibrotactile feedback of tilt orientation is also being evaluated as a countermeasure to improve performance during a closed-loop nulling task. Data is currently being collected on astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation is utilized to elicit otolith reflexes in the lateral plane without concordant roll canal cues. Unilateral centrifugation (400 deg/s, 3.5 cm radius) stimulates one otolith positioned off-axis while the opposite side is centered over the axis of rotation. During this paradigm, roll-tilt perception is measured using a subjective visual vertical task and ocular counter-rolling is obtained using binocular video-oculography. During a second paradigm (216 deg/s, less than 20 cm radius), the effects of stimulus frequency (0.15 - 0.6 Hz) are examined on eye movements and motion perception. A closed-loop nulling task is also performed with and without vibrotactile display feedback of chair radial position. Data collection is currently ongoing. Results to date suggest there is a trend for perceived tilt and translation amplitudes to be increased at the low and medium frequencies on landing day compared to pre-flight. Manual control performance is improved with vibrotactile feedback. One result of this study will be to characterize the variability (gain, asymmetry) in both otolith-ocular responses and motion perception during variable radius centrifugation, and measure the time course of post-flight recovery. This study will also address how adaptive changes in otolith-mediated reflexes correspond to one's ability to perform closed-loop nulling tasks following G-transitions, and whether manual control performance can be improved

  13. Modification of Otolith-Ocular Reflexes, Motion Perception and Manual Control During Variable Radius Centrifugation Following Space Flight

    NASA Technical Reports Server (NTRS)

    Wood, Scott J.; Clarke, A. H.; Rupert, A. H.; Harm, D. L.; Clement, G. R.

    2009-01-01

    Two joint ESA-NASA studies are examining changes in otolith-ocular reflexes and motion perception following short duration space flights, and the operational implications of post-flight tilt-translation ambiguity for manual control performance. Vibrotactile feedback of tilt orientation is also being evaluated as a countermeasure to improve performance during a closed-loop nulling task. Data is currently being collected on astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation is utilized to elicit otolith reflexes in the lateral plane without concordant roll canal cues. Unilateral centrifugation (400 deg/s, 3.5 cm radius) stimulates one otolith positioned off-axis while the opposite side is centered over the axis of rotation. During this paradigm, roll-tilt perception is measured using a subjective visual vertical task and ocular counter-rolling is obtained using binocular video-oculography. During a second paradigm (216 deg/s, less than 20 cm radius), the effects of stimulus frequency (0.15 - 0.6 Hz) are examined on eye movements and motion perception. A closed-loop nulling task is also performed with and without vibrotactile display feedback of chair radial position. Data collection is currently ongoing. Results to date suggest there is a trend for perceived tilt and translation amplitudes to be increased at the low and medium frequencies on landing day compared to pre-flight. Manual control performance is improved with vibrotactile feedback. One result of this study will be to characterize the variability (gain, asymmetry) in both otolith-ocular responses and motion perception during variable radius centrifugation, and measure the time course of post-flight recovery. This study will also address how adaptive changes in otolith-mediated reflexes correspond to one's ability to perform closed-loop nulling tasks following G-transitions, and whether manual control performance can be improved

  14. Evaluation of high-efficiency gas-liquid contactors for natural gas processing. Second semiannual technical progress report, April 1, 1993--September 30, 1993

    SciTech Connect

    Not Available

    1993-12-01

    The objective of this proposed program is to evaluate the potential of rotating gas-liquid contactors for natural gas processing by expanding the currently available database. This expansion will focus on application of this technology to environments representative of those typically encountered in natural gas processing plants. Operational and reliability concerns will be addressed while generating pertinent engineering data relating to the mass-transfer process. Work to be performed this reporting period are: complete all negotiations and processing of agreements; complete assembly, modifications, shakedown, and conduct fluid dynamic studies using the plastic rotary contactor unit; confirmation of project test matrix; and locate, and transport an amine plant and dehydration plant. Accomplishment for this period are presented.

  15. Liquid-phase membrane extraction of targeted pesticides from manufacturing wastewaters in a hollow fibre contactor with feed-stream recycle.

    PubMed

    Đorđević, Jelena; Vladisavljević, Goran T; Trtić-Petrović, Tatjana

    2017-01-01

    A two-phase membrane extraction in a hollow fibre contactor with feed-stream recycle was applied to remove selected pesticides (tebufenozide, linuron, imidacloprid, acetamiprid and dimethoate) from their mixed aqueous solutions. The contactor consisted of 50 polypropylene hollow fibres impregnated with 5% tri-n-octylphosphine oxide in di-n-hexyl ether. For low-polar pesticides with log P ≥ 2 (tebufenozide and linuron), the maximum removal efficiency increased linearly from 85% to 96% with increasing the feed flow rate. The maximum removal efficiencies of more polar pesticides were significantly higher under feed recirculation (86%) than in a continuous single-pass operation (30%). It was found from the Wilson's plot that the mass transfer resistance of the liquid membrane can be neglected for low-polar pesticides. The pesticide removals from commercial formulations were similar to those from pure pesticide solutions, indicating that built-in adjuvants did not affect the extraction process.

  16. Mathematical modeling of liquid/liquid hollow fiber membrane contactor accounting for interfacial transport phenomena: Extraction of lanthanides as a surrogate for actinides

    SciTech Connect

    Rogers, J.D.

    1994-08-04

    This report is divided into two parts. The second part is divided into the following sections: experimental protocol; modeling the hollow fiber extractor using film theory; Graetz model of the hollow fiber membrane process; fundamental diffusive-kinetic model; and diffusive liquid membrane device-a rigorous model. The first part is divided into: membrane and membrane process-a concept; metal extraction; kinetics of metal extraction; modeling the membrane contactor; and interfacial phenomenon-boundary conditions-applied to membrane transport.

  17. Centrifuge separation effect on bacterial indicator reduction in dairy manure.

    PubMed

    Liu, Zong; Carroll, Zachary S; Long, Sharon C; Roa-Espinosa, Aicardo; Runge, Troy

    2017-04-15

    Centrifugation is a commonly applied separation method for manure processing on large farms to separate solids and nutrients. Pathogen reduction is also an important consideration for managing manure. Appropriate treatment reduces risks from pathogen exposure when manure is used as soil amendments or the processed liquid stream is recycled to flush the barn. This study investigated the effects of centrifugation and polymer addition on bacterial indicator removal from the liquid fraction of manure slurries. Farm samples were taken from a manure centrifuge processing system. There were negligible changes of quantified pathogen indicator concentrations in the low-solids centrate compared to the influent slurry. To study if possible improvements could be made to the system, lab scale experiments were performed investigating a range of g-forces and flocculating polymer addition. The results demonstrated that polymer addition had a negligible effect on the indicator bacteria levels when centrifuged at high g forces. However, the higher g force centrifugation was capable of reducing bacterial indicator levels up to two-log10 in the liquid stream of the manure, although at speeds higher than typical centrifuge operations currently used for manure processing applications. This study suggests manure centrifuge equipment could be redesigned to provide pathogen reduction to meet emerging issues, such as zoonotic pathogen control. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. The electrocardiographic response to high +Gz centrifuge training.

    PubMed

    Whinnery, J E

    1990-08-01

    The electrocardiographic (ECG) responses of 59 asymptomatic, healthy flight surgeons to the acceleration profiles included in current U.S. Air Force and U.S. Navy high-G centrifuge training programs are documented. ECG dysrhythmias were frequently observed during exposure to both gradual and rapid onset training profiles. Short self-limited episodes of ventricular tachycardia occurred in 5 subjects. Advanced Lown grade ventricular ectopy occurred in 13 subjects. The type of cardiac ectopy and the frequency of occurrence for each of the training profiles is described. The results suggest that significant ectopy frequently occurs during exposure of healthy, asymptomatic individuals to centrifuge training profiles. Since aircrew are expected to undergo high +Gz as part of their usual flying duties, ECG monitoring during high-G centrifuge training has not universally been a required part of the training exposures. Aircrew have not always accepted ECG monitoring during centrifuge training, fearing detection of certain cardiac dysrhythmias, which current aeromedical standards consider disqualifying for continued flying duties without clinical aeromedical evaluation. Based on the results of this study, and previous documentation of the occurrence of significant +Gz-induced cardiac dysrhythmias (both in flight and on the centrifuge), ECG monitoring might be considered appropriate to ensure optimum medical safety during high-G centrifuge training. The current inconsistency between 1) not monitoring ECG because of the aeromedical standards for flying qualification relating to the ECG response to +Gz stress, and 2) the need to monitor ECG to assure optimum safety during centrifuge training, deserves resolution.

  19. Gravitropism in Phycomyces: threshold determination on a clinostat centrifuge.

    PubMed

    Galland, Paul; Finger, Heike; Wallacher, Yvonne

    2004-06-01

    The absolute sensitivity of sporangiophores of Phycomyces blakesleeanus to centrifugal acceleration was determined on a clinostat centrifuge. The centrifuge provides centrifugal accelerations ranging from 10(-4) to 6 x g. The rotor of the centrifuge, which accommodates 96 culture vials with single sporangiophores, is clinostatted, that is, turning "head over", at slow speed (1 rev min(-1)) while it is running. The negative gravitropism of sporangiophores is characterized by two components: a polar angle, which is measured in the plane of bending, and an aiming-error angle, which indicates the deviation of the plane of bending from the vector of the centrifugal acceleration. Dose-response curves were generated for both angles with centrifugations lasting 3, 5, and 8 h. The threshold for the polar angle depends on the presence of statoliths, so-called octahedral protein crystals in the vacuoles. The albino strain C171 carAcarR (with crystals) has a threshold near 10(-2) x g while the albino strain C2 carAgeo-3 (without crystals) has a threshold of about 2 x 10(-1) x g. The threshold for the aiming error angle is ill defined and is between 10(-2) and 10(-1) x g. The threshold for the polar angle of the wild type NRRL 1555 (with crystals) is near 8 x 10(-2) x g.

  20. Tropic Responses of Phycomyces Sporangiophores to Gravitational and Centrifugal Stimuli

    PubMed Central

    Dennison, David S.

    1961-01-01

    A low-speed centrifuge was used to study the tropic responses of Phycomyces sporangiophores in darkness to the stimulus of combined gravitational and centrifugal forces. If this stimulus is constant the response is a relatively slow tropic reaction, which persists for up to 12 hours. The response is accelerated by increasing the magnitude of the gravitational-centrifugal force. A wholly different tropic response, the transient response, is elicited by an abrupt change in the gravitational-centrifugal stimulus. The transient response has a duration of only about 6 min. but is characterized by a high bending speed (about 5°/min.). An analysis of the distribution of the transient response along the growing zone shows that the active phase of the response has a distribution similar to that of the light sensitivity for the light-growth and phototropic responses. Experiments in which sporangiophores are centrifuged in an inert dense fluid indicate that the sensory mechanism of the transient response is closely related to the physical deformation of the growing zone caused by the action of the gravitational-centrifugal force on the sporangiophore as a whole. However, the response to a steady gravitational-centrifugal force is most likely not connected with this deformation, but is probably triggered by the shifting of regions or particles of differing density relative to one another inside the cell. PMID:13721903