Science.gov

Sample records for 5-day carbonaceous biochemical

  1. Biochemical transformation of solid carbonaceous material

    DOEpatents

    Lin, Mow S.; Premuzic, Eugene T.

    2001-09-25

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed.

  2. Biochemical changes in rat liver after 18.5 days of spaceflight (41566)

    NASA Technical Reports Server (NTRS)

    Abraham, S.; Lin, C.Y.; Volkmann, C. M.; Klein, H. P.

    1983-01-01

    The effect of weightlessness on liver metabolism was investigated using tissue from rats flown in earth orbit for 18.5 days on the Soviet Cosmos 936 biosatellite and the changes in the activities of 28 carbohydrate and lipid enzymes were determined. The activities of two enzymes, palmitoyl-CoA desaturase and lactate dehydrogenase, increased, while the activities of five, glycogen phosphorylase, 6-phosphogluconate dehydrogenase, both acyltransferases which act on alpha-glycerolphosphate and diglycerides, and and aconitate hydratase decreased. The other enzyme activities were found to be unchanged. In addition, increased levels of liver glycogen and palmitoleate were detected which probably resulted from the lowered glycogen phosphorylase and increased palmitoyl-CoA desaturase activities, respectively, in those animals that experienced weightlessness. All of the changes observed in the rats after 18.5 days of spaceflight disappear by 25 days after the flight.

  3. Biochemical transformation of coals

    DOEpatents

    Lin, Mow S.; Premuzic, Eugene T.

    1999-03-23

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed.

  4. Biochemical transformation of coals

    DOEpatents

    Lin, M.S.; Premuzic, E.T.

    1999-03-23

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed. 7 figs.

  5. Methods of ultimate carbonaceous BOD determination

    USGS Publications Warehouse

    Stamer, J.K.; McKenzie, S.W.; Cherry, R.N.

    1979-01-01

    Studies were conducted to provide an accurate and practical technique for determining the concentration of ultimate carbonaceous biochemical oxygen demand and the rate at which this demand is exerted. The three methods evaluated were carbon derived, nitrification adjusted, and nitrification inhibited. The studies indicate that comparable concentrations and reaction rates can be determined from either non-nitrified samples using no chemical nitrifying inhibitor, or from partially nitrified samples using the chemical inhibitors, 1-allyl-2 thiourea or nitrapyrin, and that the combined use of time-series analysis and Lee's graphical method provide a reliable and accurate technique for determining ultimate biochemical oxygen demand concentration and reaction rate in 5 to 7 days.

  6. Carbonaceous film coating

    DOEpatents

    Maya, L.

    1988-04-27

    A method of making a carbonaceous film comprising heating tris(1,3,2-benzodiazaborolo)borazine or dodecahydro tris(1,3,2)diazaborine(1,2-a:1'2'-c:1''2''-e)borazine in an inert atmosphere in the presence of a substrate to a temperature at which the borazine compound decomposes, and the decomposition products deposit onto the substrate to form a thin, tenacious, highly reflective conductive coating having a narrow band gap which is susceptible of modification and a relatively low coefficient of friction.

  7. Carbonaceous film coating

    DOEpatents

    Maya, Leon

    1989-01-01

    A method of making a carbonaceous film comprising heating tris(1,3,2-benzodiazaborolo)borazine or dodecahydro tris[1,3,2]diazaborine[1,2-a:1'2'-c:1"2"-e]borazine in an inert atmosphere in the presence of a substrate to a temperature at which the borazine compound decomposes, and the decomposition products deposit onto the substrate to form a thin, tenacious, highly reflective conductive coating having a narrow band gap which is susceptible of modification and a relatively low coefficient of friction.

  8. Observations of the 5-day wave in the mesosphere and lower thermosphere

    NASA Technical Reports Server (NTRS)

    Wu, D. L.; Hays, P. B.; Skinner, W. R.

    1994-01-01

    The 5-day planetary wave has been detected in the winds measured by the High Resolution Doppler Imager (HRDI) on the Upper Atmosphere Research Satellite (UARS) in the mesosphere and lower thermosphere (50-110 km). The appearances of the 5-day wave are transient, with a lifetime of 10-20 days in the two-year data set. The structures of selected 5-day wave events are in generally good agreement with the (1,1) Rossby normal mode for both zonal and meridional components. A climatology of the 5-day wave is presented for an altitude of 95 km and latitudes mainly between 40 deg S and 40 deg N.

  9. The Magnetization of Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Herndon, James Herndon

    1974-01-01

    Alternating field demagnetization experiments have been conducted on representative samples of the carbonaceous meteorites (carbonaceous chondrites and ureilites). The results indicate that many, if not all, of these meteorites possess an intense and stable magnetic moment of extraterrestrial origin. Thermomagnetic analyses have been conducted on samples of all known carbonaceous meteorites. In addition to yielding quantitative magnetite estimates, these studies indicate the presence of a thermally unstable component, troilite, which reacts with gaseous oxygen to form magnetite. It is proposed that the magnetite found in some carbonaceous chondrites resulted from the oxidation of troilite during the early history of the solar system. The formation of pyrrhotite is expected as a natural consequence of magnetite formation via this reaction. Consideration is given to the implications of magnetite formation on paleointensity studies.

  10. Microfossils in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2009-01-01

    Microfossils of large filamentous trichomic prokaryotes have been detected during in-situ investigations of carbonaceous meteorites. This research has been carried out using the Field Emission Scanning Electron Microscope (FESEM) to examine freshly fractured interior surfaces of the meteorites. The images obtained reveal that many of these remains are embedded in the meteorite rock matrix. Energy Dispersive X-Ray Spectroscopy (EDS) studies establish that the filamentous microstructures have elemental compositions consistent with the meteorite matrix, but are often encased within carbon-rich electron transparent sheath-like structures infilled with magnesium sulfate. This is consistent with the taphonomic modes of fossilization of cyanobacteria and sulphur bacteria, since the life habits and processes of these microorganisms frequently result in distinctive chemical biosignatures associated with the properties of their cell-walls, trichomes, and the extracellular polymeric substances (EPS) of the sheath. In this paper the evidence for biogenicity presented includes detailed morphological and morphometric data consistent with known characteristics of uniseriate and multiseriate cyanobacteria. Evidence for indigeneity includes the embedded nature of the fossils and elemental compositions inconsistent with modern biocontaminants.

  11. Carbonaceous Survivability on Impact

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.; Becker, Luann; Morrison, David (Technical Monitor)

    1994-01-01

    In order to gain knowledge about the potential contributions of comets and cosmic dust to the origin of life on Earth, we need to explore the survivability of their potential organic compounds on impact and the formation of secondary products that may have arisen from the chaotic events sustained by the carriers as they fell to Earth. We have performed a series of hypervelocity impact experiments using carbon-bearing impactors (diamond, graphite, kerogens, PAH crystals, and Murchison and Nogoya meteorites) into Al plate targets at velocities - 6 km/s. Estimated peak shock pressures probably did not exceed 120 GPa and peak shock temperatures were probably less than 4000 K for times of nano- to microsecs. Nominal crater dia. are less than one mm. The most significant results of these experiments are the preservation of the higher mass PAHs (e. g., pyrene relative to napthalene) and the formation of additional alkylated PAHs. We have also examined the residues of polystyrene projectiles impacted by a microparticle accelerator into targets at velocities up to 15 km/s. This talk will discuss the results of these experiments and their implications with respect to the survival of carbonaceous deliverables to early Earth. The prospects of survivability of organic molecules on "intact" capture of cosmic dust in space via soft: and hard cosmic dust collectors will also be discussed.

  12. Gasification of carbonaceous solids

    DOEpatents

    Coates, Ralph L.

    1976-10-26

    A process and apparatus for converting coal and other carbonaceous solids to an intermediate heating value fuel gas or to a synthesis gas. A stream of entrained pulverized coal is fed into the combustion stage of a three-stage gasifier along with a mixture of oxygen and steam at selected pressure and temperature. The products of the combustion stage pass into the second or quench stage where they are partially cooled and further reacted with water and/or steam. Ash is solidified into small particles and the formation of soot is suppressed by water/steam injections in the quench stage. The design of the quench stage prevents slag from solidifying on the walls. The products from the quench stage pass directly into a heat recovery stage where the products pass through the tube, or tubes, of a single-pass, shell and tube heat exchanger and steam is generated on the shell side and utilized for steam feed requirements of the process.

  13. Microfossils in carbonaceous meteorites

    NASA Astrophysics Data System (ADS)

    Hoover, Richard B.

    2009-08-01

    Microfossils of large filamentous trichomic prokaryotes have been detected during in-situ investigations of carbonaceous meteorites. This research has been carried out using the Field Emission Scanning Electron Microscope (FESEM) to examine freshly fractured interior surfaces of the meteorites. The images obtained reveal that many of these remains are embedded in the meteorite rock matrix. Energy Dispersive X-Ray Spectroscopy (EDS) studies establish that the filamentous microstructures have elemental compositions consistent with the meteorite matrix, but are often encased within carbon-rich electron transparent sheath-like structures infilled with magnesium sulfate. This is consistent with the taphonomic modes of fossilization of cyanobacteria and sulphur bacteria, since the life habits and processes of these microorganisms frequently result in distinctive chemical biosignatures associated with the properties of their cell-walls, trichomes, and the extracellular polymeric substances (EPS) of the sheath. In this paper the evidence for biogenicity presented includes detailed morphological and morphometric data consistent with known characteristics of uniseriate and multiseriate cyanobacteria. Evidence for indigeneity includes the embedded nature of the fossils and elemental compositions inconsistent with modern bio-contaminants.

  14. Shock metamorphism of carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Scott, Edward R. D.; Keil, Klaus; Stoeffler, Dieter

    1992-01-01

    Shock effects were studied in 69 carbonaceous chondrites, including CM2, CO3, CV3, ungrouped C2-C4, and CK4-6 chondrites, using optical microscopy of thin sections. It is shown that the classification scheme of Stoeffler et al. (1991) for the progressive stages of shock metamorphism in ordinary chondrites is also applicable to carbonaceous chondrites. On the basis of shock effects in olivine, the 69 carbonaceous chondrites could be assigned to four shock stage, S1 to S4. The CM2 and CO3 groups were found to be the least shocked chondrite groups, whereas the CK4-6 and CV3 were the most strongly shocked groups.

  15. Method for heating nongaseous carbonaceous material

    DOEpatents

    Lumpkin, Jr., Robert E.

    1978-01-01

    Nongaseous carbonaceous material is heated by a method comprising introducing tangentially a first stream containing a nongaseous carbonaceous material and carbon monoxide into a reaction zone; simultaneously and separately introducing a second stream containing oxygen into the reaction zone such that the oxygen enters the reaction zone away from the wall thereof and reacts with the first stream thereby producing a gaseous product and heating the nongaseous carbonaceous material; forming an outer spiralling vortex within the reaction zone to cause substantial separation of gases, including the gaseous product, from the nongaseous carbonaceous material; removing a third stream from the reaction zone containing the gaseous product which is substantially free of the nongaseous carbonaceous material before a major portion of the gaseous product can react with the nongaseous carbonaceous material; and removing a fourth stream containing the nongaseous carbonaceous material from the reaction zone.

  16. Catalyst for hydrotreating carbonaceous liquids

    DOEpatents

    Berg, Lloyd; McCandless, Frank P.; Ramer, Ronald J.

    1982-01-01

    A catalyst for denitrogenating and desulfurating carbonaceous liquid such as solvent refined coal includes catalytic metal oxides impregnated within a porous base of mostly alumina with relatively large pore diameters, surface area and pore volume. The base material includes pore volumes of 0.7-0.85 ml/g, surface areas of 200-350 m.sup.2 /g and pore diameters of 85-200 Angstroms. The catalytic metals impregnated into these base materials include the oxides of Group VI metals, molybdenum and tungsten, and the oxides of Group VIII metals, nickel and cobalt, in various combinations. These catalysts and bases in combination have effectively promoted the removal of chemically combined sulfur and nitrogen within a continuous flowing mixture of carbonaceous liquid and hydrogen gas.

  17. 5-Day repeated inhalation and 28-day post-exposure study of graphene.

    PubMed

    Shin, Jae Hoon; Han, Sung Gu; Kim, Jin Kwon; Kim, Boo Wook; Hwang, Joo Hwan; Lee, Jong Seong; Lee, Ji Hyun; Baek, Jin Ee; Kim, Tae Gyu; Kim, Keun Soo; Lee, Heon Sang; Song, Nam Woong; Ahn, Kangho; Yu, Il Je

    2015-01-01

    Graphene has recently been attracting increasing attention due to its unique electronic and chemical properties and many potential applications in such fields as semiconductors, energy storage, flexible electronics, biosensors and medical imaging. However, the toxicity of graphene in the case of human exposure has not yet been clarified. Thus, a 5-day repeated inhalation toxicity study of graphene was conducted using a nose-only inhalation system for male Sprague-Dawley rats. A total of three groups (20 rats per group) were compared: (1) control (ambient air), (2) low concentration (0.68 ± 0.14 mg/m(3) graphene) and (3) high concentration (3.86 ± 0.94 mg/m(3) graphene). The rats were exposed to graphene for 6 h/day for 5 days, followed by recovery for 1, 3, 7 or 28 days. The bioaccumulation and macrophage ingestion of the graphene were evaluated in the rat lungs. The exposure to graphene did not change the body weights or organ weights of the rats after the 5-day exposure and during the recovery period. No statistically significant difference was observed in the levels of lactate dehydrogenase, protein and albumin between the exposed and control groups. However, graphene ingestion by alveolar macrophages was observed in the exposed groups. Therefore, these results suggest that the 5-day repeated exposure to graphene only had a minimal toxic effect at the concentrations and time points used in this study.

  18. An Uncontrolled Examination of a 5-Day Intensive Treatment for Pediatric OCD

    ERIC Educational Resources Information Center

    Whiteside, Stephen P.; Jacobsen, Amy Brown

    2010-01-01

    This study examined the feasibility of a 5-day intensive treatment for pediatric obsessive-compulsive disorder (OCD). Fifteen children with OCD received a week-long treatment based on exposure and response prevention (ERP). The intervention also emphasized teaching children and parents how to conduct ERP independently at home. All families…

  19. Zonal Wave Number 2 Rossby Wave (3.5-day oscillation) Over The Martian Lower Atmosphere

    NASA Astrophysics Data System (ADS)

    Ghosh, P.; Thokuluwa, R. K.

    2013-12-01

    Over the Mars, height (800-50 Pascal pressure coordinate) profiles of temperature (K), measured by radio occultation technique during the MGS (Mars Global Surveyor) mission, obtained for the period of 1-10 January 2006 at the Martian latitude of ~63N in almost all the longitudes are analyzed to study the characteristics of the 3.5-day oscillation. To avoid significant data gaps in a particular longitude sector, we selected a set of 7 Mars longitude regions with ranges of 0-30E, 35-60E, 65-95E, 190-230E, 250-280E, 290-320E, and 325-360E to study the global characteristics of the 3.5-day oscillation. The 3.5-day oscillation is not selected as a-priori but observed as a most significant oscillation during this period of 1-10 January 2006. It is observed that in the longitude of 0-30E, the 3.5-day oscillation shows statistically significant power (above the 95% confidence level white noise) from the lowest height (800 Pascal, 8 hPa) itself and up to the height of 450 Pascal level with the maximum power of ~130 K^2 at the 600 & 650 Pascal levels. It started to grow from the power of ~ 50 K^2 at the lowest height of 800 Pascal level and reached the maximum power in the height of 600-650 Pascal level and then it started to get lessened monotonously up to the height of 450 Pascal level where its power is ~ 20 K^2. Beyond this height and up to the height of 50 Pascal level, the wave amplitude is below the white noise level. As the phase of the wave is almost constant at all the height levels, it seems that the observed 3.5-day oscillation is a stationary wave with respect to the height. In the 35-60 E longitude sector, the vertical structure of the 3.5-day oscillation is similar to what observed for the 0-30 E longitude region but the power is statistically insignificant at all the heights. However in the 65-95E longitude sector, the wave grows from the lowest level (70 K^2) of 800 Pascal to its maximum power of 280 K^2 in the height of 700 Pascal level and then it started

  20. Carbonaceous Matter in Growing Nanoparticles

    NASA Astrophysics Data System (ADS)

    Johnston, M. V.; Stangl, C. M.; Horan, A. J.

    2015-12-01

    Atmospheric nanoparticles constitute the greatest portion of ambient aerosol loading by number. A major source of atmospheric nanoparticles is new particle formation (NPF), a gas to particle conversion process whereby clusters nucleate from gas phase precursors to form clusters on the order of one or a few nanometers and then grow rapidly to climatically relevant sizes. A substantial fraction of cloud condensation nuclei (CCN) are thought to arise from NPF. In order to better predict the frequency, growth rates, and climatic impacts of NPF, knowledge of the chemical mechanisms by which nucleated nanoparticles grow is needed. The two main contributors to particle growth are (neutralized) sulfate and carbonaceous matter. Particle growth by sulfuric acid condensation is generally well understood, though uncertainty remains about the extent of base neutralization and the relative roles of ammonia and amines. Much less is known about carbonaceous matter, and field measurements suggest that nitrogen-containing species are important. In this presentation, recent work by our group will be described that uses a combination of ambient measurements, laboratory experiments and computational work to study carbonaceous matter in growing nanoparticles. These studies span a range of particle sizes from the initial adsorption of molecules onto a nanometer-size ammonium bisulfate seed cluster to reactions in particles that are large enough to support condensed-phase chemistry.

  1. Bleeding Outcomes in Patients Given Clopidogrel Within 5 Days of Robotic Coronary Artery Bypass Graft Procedure

    PubMed Central

    Vainrub, Sophia; Patanwala, Asad E.; Cosgrove, Richard; Poston, Robert; Nolan, Paul E.

    2014-01-01

    Background Current guidelines recommend that clopidogrel should be held for 5 days prior to coronary artery bypass graft (CABG) procedure. However, it is unknown if this recommendation should apply to robotic-assisted (rCABG), which is less invasive because it does not involve sternotomy and thus reduces the risk of bleeding. Objective To compare postoperative bleeding for rCABG patients who were taking clopidogrel within 5 days of the procedure with those who were not taking clopidogrel. Methods This was a retrospective cohort study conducted between January 1, 2012 and December 31, 2012 of consecutive patients undergoing rCABG. Patients were categorized into 2 groups based on whether or not clopidogrel was administered within 5 days prior to the date of surgery. The primary outcome measure was the occurrence of the Bleeding Academic Research Consortium (BARC) definition for CABG-related bleeding. The secondary outcome measure was a comparison of chest tube output during the first 24-hour postoperative period. Results A total of 136 rCABG patients were included in the final analyses. Of these, 39 (29%) received clopidogrel within 5 days of surgery. CABG-related bleeding using the BARC definition occurred in 26% of patients who received clopidogrel and 8% of patients who did not (P = .011). Median chest tube output during the first 24-hour postoperative period was also greater in patients who received clopidogrel (900 vs 735 mL, P = .002). Conclusions The use of clopidogrel within 5 days of rCABG is associated with greater postoperative bleeding and chest tube output, as defined by the BARC criteria. PMID:24259636

  2. Carbonaceous Material in Extraterrestrial Matter

    NASA Astrophysics Data System (ADS)

    Martins, Zita

    2015-08-01

    Comets, asteroids and their fragments (i.e. meteorite, micrometeorites and interplanetary dust particles (IDPs)) are known to contain carbonaceous material. IDPs have ~10% of carbon by mass [1-3], while both micrometeorites and IDPs contain organic molecules. However, it is not certain whether these molecules are indigenous or terrestrial contamination [4-7]. On the other hand, ultra-carbonaceous Antarctic micrometeorites (UCAMMs) contain 50-80% of carbonaceous material, which is one of the highest organic matter contents detected in an extraterrestrial body [8]. Comets also have several extraterrestrial organic molecules [9, 10], including the simplest amino acid glycine [11]. In addition, the impact-shock of a typical comet ice mixture produces several amino acids from simple precursors [12]. Carbonaceous meteorites contain up to 5wt% of organic carbon [13], which is either locked in an insoluble kerogen-like polymer, or in a rich organic inventory of soluble organic compounds [14-16]. Bulk analysis of the meteoritic soluble organic fraction has revealed a high molecular diversity of tens of thousands of different molecular compositions [17]. The analysis of the carbonaceous content of comets, asteroids and their fragments provides a window into the resources delivered to the early Earth.[1] Brownlee (1985) Ann. Rev. Earth and Plan. Sci. 13, 147. [2] Schramm et al. (1989) Meteoritics 24, 99. [3] Messenger (2002) MAPS 37, 1491. [4] Clemett et al. (1993) Science 262, 721. [5] Brinton et al. (1998) OLEB 28, 413. [6] Flynn (2003) GCA 67, 4791. [7] Matrajt et al. (2004) MAPS 39, 1849. [8] Duprat et al. (2010) Science 328, 742-745. [9] Bockelée-Morvan et al. (2004) in: Comets II. pp. 391-423. [10] Mumma and Charnley (2011) ARAA 49, 471. [11] Elsila et al. (2009) MAPS 44, 1323. [12] Martins et al. (2013) Nature Geoscience 6, 1045. [13] Alexander et al. (2013) GCA 123, 244. [14] Cronin and Chang (1993) in: The Chemistry of Life’s Origin. pp. 209-258. [15] Cody and

  3. Alterations in erythrocyte survival parameters in rats after 19.5 days aboard Cosmos 782

    NASA Technical Reports Server (NTRS)

    Leon, H. A.; Serova, L. V.; Cummins, J.; Landaw, S. A.

    1978-01-01

    Rats were subjected to 19.5 days of weightless space flight aboard the Soviet biosatellite, Cosmos 782. Based on the output of CO-14, survival parameters of a cohort of erythrocytes labeled 15.5 days preflight were evaluated upon return from orbit. These were compared to vivarium control rats injected at the same time. Statistical evaluation indicates that all survival factors were altered by the space flight. The mean potential lifespan, which was 63.0 days in the control rats, was decreased to 59.0 days in the flight rats, and random hemolysis was increased three-fold in the flight rats. The measured size of the cohort was decreased, lending further support to the idea that hemolysis was accelerated during some portion of the flight. A number of factors that might be contributory to these changes are discussed, including forces associated with launch and reentry, atmospheric and environmental parameters, dietary factors, radiation, and weightlessness.

  4. Hydrocarbon components in carbonaceous meteorites

    NASA Astrophysics Data System (ADS)

    Kissin, Y. V.

    2003-05-01

    Currently, the presence of free n-alkanes and isoprenoid alkanes in carbonaceous meteorites is usually explained either by microbial contamination during the period between the meteorite fall and collection or by contamination from the environment of analytical laboratories and museums. The goal of this research was to repeat analysis of hydrocarbon components in meteorites and to investigate possible meteorite contamination routes discussed in the literature. Experimental analysis of free organic constituents in five carbonaceous meteorites by infrared spectroscopy (IR) and gas chromatographic (GC) methods confirmed the presence of extractable aliphatic components, n-alkanes in the C 15H 32-C 27H 56 range and isoprenoid alkanes (phytane, pristane, and norpristane), in some of these meteorites. The contents of these compounds vary depending on the source. Insoluble organic components of two meteorites (meteorite kerogens) were isolated, and their composition was analyzed by IR and cracking/GC methods. Comparison with the data on several terrestrial contamination sources proposed in the literature shows that the presence of free saturated hydrocarbons in meteorites and the composition of the meteorite kerogen could not be explained either by microbial contamination or by contamination from the laboratory environment. The types of the hydrocarbons in meteorites resemble those typical of ancient terrestrial deposits of organic-rich sediments, except for the absence of lighter hydrocarbons, which apparently slowly evaporated in space, and multi-ring naphthenic compounds of the biologic origin, steranes, terpanes, etc. The prevailing current explanation for the presence of free linear saturated hydrocarbons in carbonaceous meteorites, apart from contamination, is the abiotic route from hydrogen and carbon monoxide. However, the data on the structure of meteorite kerogens require a search for different routes that initially produce complex polymeric structures containing

  5. Synthetic carbonaceous fuels and feedstocks

    DOEpatents

    Steinberg, Meyer

    1980-01-01

    This invention relates to the use of a three compartment electrolytic cell in the production of synthetic carbonaceous fuels and chemical feedstocks such as gasoline, methane and methanol by electrolyzing an aqueous sodium carbonate/bicarbonate solution, obtained from scrubbing atmospheric carbon dioxide with an aqueous sodium hydroxide solution, whereby the hydrogen generated at the cathode and the carbon dioxide liberated in the center compartment are combined thermocatalytically into methanol and gasoline blends. The oxygen generated at the anode is preferably vented into the atmosphere, and the regenerated sodium hydroxide produced at the cathode is reused for scrubbing the CO.sub.2 from the atmosphere.

  6. Conversion of raw carbonaceous fuels

    DOEpatents

    Cooper, John F.

    2007-08-07

    Three configurations for an electrochemical cell are utilized to generate electric power from the reaction of oxygen or air with porous plates or particulates of carbon, arranged such that waste heat from the electrochemical cells is allowed to flow upwards through a storage chamber or port containing raw carbonaceous fuel. These configurations allow combining the separate processes of devolatilization, pyrolysis and electrochemical conversion of carbon to electric power into a single unit process, fed with raw fuel and exhausting high BTU gases, electric power, and substantially pure CO.sub.2 during operation.

  7. Organic Compounds in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Cooper, Grorge

    2001-01-01

    Carbonaceous meteorites are relatively enriched in soluble organic compounds. To date, these compounds provide the only record available to study a range of organic chemical processes in the early Solar System chemistry. The Murchison meteorite is the best-characterized carbonaceous meteorite with respect to organic chemistry. The study of its organic compounds has related principally to aqueous meteorite parent body chemistry and compounds of potential importance for the origin of life. Among the classes of organic compounds found in Murchison are amino acids, amides, carboxylic acids, hydroxy acids, sulfonic acids, phosphonic acids, purines and pyrimidines (Table 1). Compounds such as these were quite likely delivered to the early Earth in asteroids and comets. Until now, polyhydroxylated compounds (polyols), including sugars (polyhydroxy aldehydes or ketones), sugar alcohols, sugar acids, etc., had not been identified in Murchison. Ribose and deoxyribose, five-carbon sugars, are central to the role of contemporary nucleic acids, DNA and RNA. Glycerol, a three-carbon sugar alcohol, is a constituent of all known biological membranes. Due to the relative lability of sugars, some researchers have questioned the lifetime of sugars under the presumed conditions on the early Earth and postulated other (more stable) compounds as constituents of the first replicating molecules. The identification of potential sources and/or formation mechanisms of pre-biotic polyols would add to the understanding of what organic compounds were available, and for what length of time, on the ancient Earth.

  8. The relationship between overactivity and opioid use in chronic pain: a 5-day observational study.

    PubMed

    Andrews, Nicole Emma; Strong, Jenny; Meredith, Pamela Joy; Fleming, Julia Ann

    2016-02-01

    With increasing concerns about the potential harm of long-term opioid therapy, there is a need for the development and implementation of alternative treatment strategies for patients with chronic pain who have been using opioids for a prolonged period of time. Based on the findings from a recent qualitative investigation that suggested there may be a bidirectional association between opioid reliance and habitual overactivity behaviour (activity engagement that significantly exacerbates pain), this study was designed to quantitatively investigate the association between opioid use and habitual overactivity over a 5-day period in a group of chronic pain patients. Participants provided a list of their prescribed pain medication, completed a self-report measure of habitual overactivity, and then commenced 5 days of data collection. Data collection required participants to wear an activity monitor and to complete a diary that detailed their daily activities and the time at which they took medication. Individuals reporting higher levels of habitual overactivity were more likely to be prescribed opioids. In addition, higher levels of habitual overactivity were associated with more frequent pro re nata ("as needed") opioid use over the 5 days, and with a discrepancy between the prescribed and actual oral morphine-equivalent daily dose, where more medication was taken than was prescribed. There was no predominant context for pro re nata use. The results of this study support the idea that habitual overactivity behaviour may play a role in the development of reliance on opioid medication and that such an association may provide a potential treatment target for opioid therapy rationalisation.

  9. Delayed Brain Infarction due to Bilateral Vertebral Artery Occlusion Which Occurred 5 Days after Cervical Trauma.

    PubMed

    Jang, Donghwan; Kim, Choonghyo; Lee, Seung Jin; Kim, Jiha

    2014-08-01

    Vertebral artery (VA) injuries usually accompany cervical trauma. Although these injuries are commonly asymptomatic, some result in vertebrobasilar infarction. The symptoms of VA occlusion have been reported to usually manifest within 24 hours after trauma. The symptoms of bilateral VA occlusions seem to be more severe and seem to occur with shorter latencies than those of unilateral occlusions. A 48-year-old man had a C3-4 fracture-dislocation with spinal cord compression that resulted from a traffic accident. After surgery, his initial quadriparesis gradually improved. However, he complained of sudden headache and dizziness on the 5th postoperative day. His motor weakness was abruptly aggravated. Radiologic evaluation revealed an infarction in the occipital lobe and cerebellum. Cerebral angiography revealed complete bilateral VA occlusion. We administered anticoagulation therapy. After 6 months, his weakness had only partially improved. This case demonstrates that delayed infarction due to bilateral VA occlusion can occur at latencies as long as 5 days. Thus, we recommend that patients with cervical traumas that may be accompanied by bilateral VA occlusion should be closely observed for longer than 5 days.

  10. An uncontrolled examination of a 5-day intensive treatment for pediatric OCD.

    PubMed

    Whiteside, Stephen P; Jacobsen, Amy Brown

    2010-09-01

    This study examined the feasibility of a 5-day intensive treatment for pediatric obsessive-compulsive disorder (OCD). Fifteen children with OCD received a week-long treatment based on exposure and response prevention (ERP). The intervention also emphasized teaching children and parents how to conduct ERP independently at home. All families completed the week-long treatment and symptoms improved significantly as measured by self- and parent-report forms, as well as the Children's Yale-Brown Obsessive-Compulsive Scale, F(2, 22)=45.67, p<.05. Total CY-BOCS scores decreased significantly from pretreatment (M=28.00, SD=4.24) to posttreatment [M=16.00, SD=6.0, F(1, 11)=34.38, p<.05] and from posttreatment to 5-month follow-up [M=11.5, SD=7.3; F(1, 11)=12.94, p<.05]. This level of improvement was consistent with other intensive treatments for pediatric OCD. The study suggests that the 5-day program is a promising treatment for children with OCD who do not have access to local providers.

  11. Extraterrestrial Nucleobases in Carbonaceous Chondrites

    NASA Astrophysics Data System (ADS)

    Martins, Z.; Botta, O.; Fogel, M.; Sephton, M.; Glavin, D.; Watson, J.; Dworkin, J.; Schwartz, A.; Ehrenfreund, P.

    Nucleobases in Carbonaceous Chondrites Z. Martins (1), O. Botta (2), M. L. Fogel (3), M. A. Sephton (4), D. P. Glavin (2), J. S. Watson (5), J. P. Dworkin (2), A. W. Schwartz (6) and P. Ehrenfreund (1,6). (1) Astrobiology Laboratory, Leiden Institute of Chemistry, Leiden, The Netherlands, (2) NASA Goddard Space Flight Center, Goddard Center for Astrobiology, Greenbelt, MD, USA, (3) GL, Carnegie Institution of Washington, Washington DC, USA, (4) Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, South Kensington Campus, Imperial College, London, UK, (5) Planetary and Space Sciences Research Institute, The Open University, Walton Hall, Milton Keynes, UK, (6) Radboud University Nijmegen, Nijmegen, The Netherlands. E-mail: z.martins@chem.leidenuniv.nl/Phone:+31715274440 Nucleobases are crucial compounds in terrestrial biochemistry, because they are key components of DNA and RNA. Carbonaceous meteorites have been analyzed for nucleobases by different research groups [1-5]. However, significant quantitative and qualitative differences were observed, leading to the controversial about the origin of these nucleobases. In order to establish the origin of these compounds in carbonaceous chondrites and to assess the plausibility of their exogenous delivery to the early Earth, we have performed formic acid extraction of samples of the Murchison meteorite [6], followed by an extensive purification procedure, analysis and quantification by high-performance liquid chromatography with UV absorption detection and gas chromatography-mass spectrometry. Our results were qualitatively consistent with previous results [3, 4], but showed significant quantitative differences. Compound specific carbon isotope values were obtained, using gas chromatography-combustion- isotope ratio mass spectrometry. A soil sample collected in the proximity of the Murchison meteorite fall site was subjected to the same extraction, purification and analysis procedure

  12. Organic Chemistry of Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Cronin, John R.

    2001-01-01

    Chiral and carbon-isotopic analyses of isovaline have been carried out on numerous samples of the Murchison and one sample of the Murray carbonaceous chondrite. The isovaline was found to be heterogeneous with regard to enantiomeric excess (ee) both between samples and within a single Murchison sample. L-Excesses ranging from 0 to 15% were observed. The isovaline delta(sup 13) C was found to be about +18%. No evidence was obtained suggesting terrestrial contamination in the more abundant L-enantiomer. A correlation was observed between isovaline (also alpha - aminoisobutyric acid) concentration and PCP content of five CM chondrites. It is suggested that isovaline, along with other meteoritic a-methyl amino acids with ee, are of presolar origin. The possible formation of ee in extraterrestrial amino acids by exposure to circularly polarized light or by magnetochiral photochemistry is discussed. Key words: Murchison meteorite, Murray meteorite, amino acids, isovaline, chirality, carbon isotopes, PCP.

  13. Urethral triplication and urethrovasal reflux in 5-day-old male infant.

    PubMed

    Kajbafzadeh, Abdol-Mohammad; Taleb, Shayandokht; Montaser-Kouhsari, Laleh; Tanhaeivash, Roozbeh; Monajemzadeh, Maryam; Mehdizadeh, Mehrzad

    2011-07-01

    To present the case of a 5-day-old male infant referred to our clinic with complaints of huge swollen testes, recurrent urinary tract infection, and diarrhea. The imaging studies and surgical assessments revealed a urethrorectal fistula and 2 nonfunctional urethras. Cutaneous vesicostomy was performed urgently to avoid additional renal infection. At the age of 6 months, the anterior anal insertion was repaired by perineal access. Eventually, urethral reconstruction was performed when the boy was 3 years old. The patient was asymptomatic at the last follow-up examination without additional urinary tract infections. The combination of urethrovasal reflux and congenital urethral triplication, consisting of urethrorectal fistula, has not been previously reported. PMID:21131033

  14. Playback Station #2 for Cal Net and 5-day-recorder tapes

    USGS Publications Warehouse

    Eaton, Jerry P.

    1978-01-01

    A second system (Playback Station #2) has been set up to play back Cal Net 1" tapes and 5-day-recorder 1/2" tapes. As with the first playback system (Playback Station #1) the tapes are played back on a Bell and Howell VR3700B tape deck and the records are written out on a 16-channel direct-writing Siemens "0scillomink." Separate reproduce heads, tape guides, and tape tension sensor rollers are required for playing back 111 tapes and 1/2" tapes, but changing these tape deck components is a simple task that requires only a few minutes. The discriminators, patch panels, selector switches, filters, time code translators, and signal conditioning circuits for the time code translators and for the tape-speed-compensation signal are all mounted in an equipment rack that stands beside the playback tape deck. Changing playback speeds (15/16 ips or 3 3/4 ips) or changing from Cal Net tapes to 5-day-recorder tapes requires only flipping a few switches and/or changing a few patch cables on the patch panel (in addition to changing the reproduce heads, etc., to change from 1" tape to 1/2" tape). For the Cal Net tapes, the system provides for playback of 9 data channels (680 Hz thru 3060 Hz plus 400 Hz) and 3 time signals (IRIG-E, IRIG-C, and WWVB) at both 15/16 ips (x1 speed) and 3 3/4 ips (x4 speed). Available modes of compensation (using either a 4688 Hz reference or a 3125 Hz reference) are subtractive, capstan, capstan plus subtractive, or no compensation.

  15. Fluorescent organic matter in carbonaceous chondrites.

    PubMed

    Murae, T

    1999-01-01

    Fluorescent organic matter in carbonaceous chondrites was investigated using a microscope equipped with a fluorescence spectrophotometer. Fluorescent particles were observed in powdered CM2 carbonaceous chondrites (Y-74662, Y-7791198, and Murchison) without carbon enrichment by acid treatments. Although it was difficult to find fluorescent particles in powdered sample of C3 chondrites (ALH-77307, Y-791717, and Allende) without acid treatments, many fluorescent particles were observed after carbon enrichment by acid treatments. Fluorescence of coronene and shock-altered graphite were observed using the same microscope and the same conditions as those for carbonaceous chondrites.

  16. Carbonaceous Aerosols in the Industrial Era

    NASA Astrophysics Data System (ADS)

    Hansen, James; Bond, Tami; Cairns, Brian; Gaeggler, Heinz; Liepert, Beate; Novakov, Tica; Schichtel, Bret

    2004-06-01

    Carbonaceous aerosols are increasingly recognized as an important atmospheric constituent. These small atmospheric particles are predominately soot produced by incomplete combustion of fossil fuels, biofuels, and outdoor biomass that generally form through condensation of vaporized organic matter. However, biogenic emissions from trees, other vegetation, and animals are also sources of carbonaceous aerosols. Elemental carbon, in the form of graphite, is the main cause of the blackness of soot; it absorbs sunlight strongly and almost uniformly across the solar spectrum. However, the graphite seldom is pure carbon, instead involving varying proportions of other atoms. Furthermore, the carbonaceous aerosols include an enormous variety of organic compounds of carbon.

  17. Keto-Acids in Carbonaceous Meteorites

    NASA Astrophysics Data System (ADS)

    Cooper, G.; Dugas, A.; Byrd, A.; Chang, P. M.; Washington, N.

    2005-03-01

    Keto-acids (pyruvic acid homologs) have been identified in carbonaceous chondrites by GC-MS. All compounds were identified as their trimethylsilyl (TMS), isopropyl ester (ISP), and tert-butyldimethylsilyl (tBDMS) derivatives.

  18. Staged heating by oxidation of carbonaceous material

    DOEpatents

    Knell, Everett W.; Green, Norman W.

    1978-01-31

    A carbonaceous material is pyrolyzed in the presence of a particulate source of heat obtained by the partial oxidation of a carbon containing solid residue of the carbonaceous material. The heat obtained from the oxidation of the carbon containing solid residue is maximized by preheating the carbon containing solid residue with a hot gas stream obtained by oxidizing the gaseous combustion products of the carbon containing solid residue.

  19. The 6.5-day wave and its seasonal variability in the middle and upper atmosphere

    NASA Astrophysics Data System (ADS)

    Liu, H.-L.; Talaat, E. R.; Roble, R. G.; Lieberman, R. S.; Riggin, D. M.; Yee, J.-H.

    2004-11-01

    The zonal wave number 1 planetary wave of period near 6.5 days is a robust feature in the mesosphere and lower thermosphere (MLT) region with prominent seasonal variability as revealed by ground based and satellite observations. This wave and its seasonal variability are well reproduced in a recent one model year run of the National Center for Atmospheric Research thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM) with its lower boundary specified according to the National Centers for Environmental Prediction analysis (year 1993). Wavelet analysis of the model output shows that in the MLT region the wave maximizes before and after the equinoxes and minimizes at solstices. The wave amplitudes at the equinoxes are smaller than the peaks before and after but are still larger than the wave amplitudes at solstices. However, at the lower boundary near 30 km the wave peaks are predominantly between fall and the following spring. By examining the episodes of maximum and minimum wave amplitude and by conducting additional control experiments using the TIME-GCM, the structure of this planetary wave and the factors determining the wave characteristics and seasonal variability are studied in detail. It is found that the wave source, mean wind structure, instability, and the critical layers of the wave can all affect the wave response in the MLT region and can have a strong seasonal dependence. Before and after equinox, the wave follows the waveguide and propagates from the stratosphere to the summer mesosphere/mesopause, where it may amplify due to baroclinic/barotropic instability. Such instability is usually absent from the equinoctial atmosphere, so that there is no wave amplification at equinox. At solstice the wave decays significantly when propagating away from its winter source due to the strong eastward winter stratospheric jet. In the summer side the westward jet is also strong, and the meridional and vertical extension of the

  20. Preosteoblast production 55 hours after a 12.5-day spaceflight on Cosmos 1887

    NASA Technical Reports Server (NTRS)

    Garetto, L. P.; Gonsalves, M. R.; Morey, E. R.; Durnova, G.; Roberts, W. E.; Morey-Holton, E. (Principal Investigator)

    1990-01-01

    The influence of 12.5 days of spaceflight and a 55 h stressful recovery period (at 1 g) on fibroblastlike osteoblast precursor cells was assessed in the periodontal ligament (PDL) of rats that were 91 days old at launch. Nuclear morphometry was used as a marker for precursor cell differentiation in 3 microns sections cut in the midsagittal plane from the maxillary first molar. According to nuclear volume, cells were classified as preosteoblasts (C + D cells, greater than or equal to 120 microns 3) and less differentiated progenitor cells (A + A' cells, 40-79 microns 3). Compared with synchronous controls (simulated flight conditions), the 55 h postflight recovery period at 1 g resulted in a 40% decrease in the A + A' cell population, a 42% increase in the C + D cells, and a 39% increase in the number of PDL fibroblastlike cells near the bone surface. These results are consistent with a postflight osteogenic response in PDL. This recovery response occurred despite physiological stress in the flight animals that resulted in a highly significant (P less than or equal to 0.001) increase in adrenal weight. The data suggest that after spaceflight there is a strong and rapid recovery mechanism for osteoblast differentiation that is not suppressed by physiological stress.

  1. Interhemispheric structure and variability of the 5-day planetary wave from meteor radar wind measurements

    NASA Astrophysics Data System (ADS)

    Iimura, H.; Fritts, D. C.; Janches, D.; Singer, W.; Mitchell, N. J.

    2015-11-01

    A study of the quasi-5-day wave (5DW) was performed using meteor radars at conjugate latitudes in the Northern and Southern hemispheres. These radars are located at Esrange, Sweden (68° N) and Juliusruh, Germany (55° N) in the Northern Hemisphere, and at Tierra del Fuego, Argentina (54° S) and Rothera Station, Antarctica (68° S) in the Southern Hemisphere. The analysis was performed using data collected during simultaneous measurements by the four radars from June 2010 to December 2012 at altitudes from 84 to 96 km. The 5DW was found to exhibit significant short-term, seasonal, and interannual variability at all sites. Typical events had planetary wave periods that ranged between 4 and 7 days, durations of only a few cycles, and infrequent strongly peaked variances and covariances. Winds exhibited rotary structures that varied strongly among sites and between events, and maximum amplitudes up to ~ 20 m s-1. Mean horizontal velocity covariances tended to be largely negative at all sites throughout the interval studied.

  2. Indigenous microfossils in carbonaceous meteorites

    NASA Astrophysics Data System (ADS)

    Hoover, Richard B.; Jerman, Gregory; Rozanov, Alexei Y.; Sipiera, Paul P.

    2004-11-01

    Indigenous embedded microbial filaments, bacterial cells and other microfossils were found in the Orgueil, Ivuna (CI1), Murchison, and Bells (CM2) carbonaceous meteorites. Biominerals, biofilms, framboids, magnetite platelets, and curious elemental iron ovoids covered with minute fibrils and carbon sheaths were also found. The S-4100 Hitachi Field Emission Scanning Electron Microscope (FESEM) and Energy Dispersive X-ray Analysis (EDAX) were used for in situ investigations of freshly fractured interior meteorite surfaces. EDAX x-ray spectra shows the microfossils bear signatures of the meteorite matrix and possess elemental ratios indicating they are indigenous and not recent microbial contaminants. Many of the well-preserved biogenic remains in the meteorites are encased within carbon-rich, sometimes electron transparent, sheaths. Their size, morphology and ultra microstructure are comparable to microfossils known from the phosphorites of Khubsughul, Mongolia and to some of the living cyanobacteria and other sulfur- and sulfate-reducing bacteria known from the halophilic Microcoleus mats of Sivash Lagoon, Crimea and from Mono Lake in California.

  3. Shoot growth in aseptically cultivated daylily and haplopappus plantlets after a 5-day spaceflight.

    PubMed

    Levine, H G; Krikorian, A D

    1992-01-01

    Plantlets of daylily (Hemerocallis cv. Autumn Blaze) regenerated from cell suspensions, and 4 clonal populations of Haplopappus gracilis were aseptically cultivated aboard the Shuttle "Discovery" during a 5-day mission within NASA's Plant Growth Unit (PGU) apparatus. Daylily was selected as a representative herbaceous perennial monocotyledon and the haplopappus clones represented an annual dicotyledon. The latter included 4 strains with different physiological and morphological characteristics: two aseptic seedling clones (each generated from a single seedling) and two tissue culture-derived lines. Mean daily growth rates for the primary shoots of all plantlets averaged 4.13 mm day-1 (SD = 2.20) for the flight experiment and 4.68 mm day-1 (SD = 2.59) for the ground control. Comparable growth rates calculated by summing both the primary and secondary shoots for all plantlets were 5.94 mm day-1 (SD = 2.89) for the flight experiment and 6.38 mm day-1 (SD = 3.71) for the control. Statistically significant differences existed between: (1) flight vs control primary shoot growth (the controls growing more than plantlets subjected to spaceflight conditions), (2) the different populations (the daylily gaining more shoot material than any of the haplopappus populations and the haplopappus seedling clones outperforming the tissue culture-derived haplopappus lines), and (3) the individual Plant Growth Chambers contained within the PGU. The data suggest that some spaceflight-associated factor(s) increased the tendency for primary shoot apices to degrade or senesce, resulting in the release of apical dominance and permitting the emergence of axillary branches, which subsequently partially compensated for the reduced primary axis growth. In addition to spaceflight-associated factors, the physiologically diverse nature of the experimental material as well as environmental heterogeneities within the culture apparatus contributed to the variation in growth results. The findings

  4. Task Specific Frequencies of Neck Motion Measured in Healthy Young Adults over a 5 Day Period

    PubMed Central

    Cobian, Daniel G.; Sterling, Andrew C.; Anderson, Paul A.; Heiderscheit, Bryan C.

    2010-01-01

    Study Design Observational cohort design. Objective To quantify the frequencies and magnitudes of neck motion during daily activities in healthy subjects. Summary of Background Data Previous studies have measured the maximum excursions during re-created ADLs in lab settings, but there is a lack of information available on frequencies and excursions of neck motion with ADLs in non-artificial settings. Methods Ten healthy young adults were fitted with a portable motion measurement device that recorded movement about each primary axis. Participants were instructed to wear the unit continuously over a 5-day period and record their daily activities with corresponding times. After the collection period, subjects' activity logs were analyzed and data were partitioned into five categories which provided the most primary representation of ADLs: athletics, work, travel, sleep, and miscellaneous. Each category was further divided into increasingly specific activities (e.g. running and walking). Frequency of motions within 5° increments was determined and an hourly rate was calculated for each activity. Median motion about each axis for each activity was also determined. Results The total number of movements per hour for all axes, regardless of amplitude, was highest during athletic activity and lowest during sleeping. The majority of movements (92% of athletic activity, 90% of work) required less than 25° of lateral bending, while greater range of movement requirements were observed for flexion-extension and axial rotation. The median range of motion along all axes was highest for athletic activity and lowest for sleeping. Conclusions The results of this study provide a baseline of the frequency and magnitude of neck motion during normal ADLs for the specified population. These findings can assist physicians and physical therapists in determining the extent of disability and identifying activities that will likely be problematic for patients with limited cervical motion

  5. Shoot growth in aseptically cultivated daylily and haplopappus plantlets after a 5-day spaceflight

    NASA Technical Reports Server (NTRS)

    Levine, H. G.; Krikorian, A. D.

    1992-01-01

    Plantlets of daylily (Hemerocallis cv. Autumn Blaze) regenerated from cell suspensions, and 4 clonal populations of Haplopappus gracilis were aseptically cultivated aboard the Shuttle "Discovery" during a 5-day mission within NASA's Plant Growth Unit (PGU) apparatus. Daylily was selected as a representative herbaceous perennial monocotyledon and the haplopappus clones represented an annual dicotyledon. The latter included 4 strains with different physiological and morphological characteristics: two aseptic seedling clones (each generated from a single seedling) and two tissue culture-derived lines. Mean daily growth rates for the primary shoots of all plantlets averaged 4.13 mm day-1 (SD = 2.20) for the flight experiment and 4.68 mm day-1 (SD = 2.59) for the ground control. Comparable growth rates calculated by summing both the primary and secondary shoots for all plantlets were 5.94 mm day-1 (SD = 2.89) for the flight experiment and 6.38 mm day-1 (SD = 3.71) for the control. Statistically significant differences existed between: (1) flight vs control primary shoot growth (the controls growing more than plantlets subjected to spaceflight conditions), (2) the different populations (the daylily gaining more shoot material than any of the haplopappus populations and the haplopappus seedling clones outperforming the tissue culture-derived haplopappus lines), and (3) the individual Plant Growth Chambers contained within the PGU. The data suggest that some spaceflight-associated factor(s) increased the tendency for primary shoot apices to degrade or senesce, resulting in the release of apical dominance and permitting the emergence of axillary branches, which subsequently partially compensated for the reduced primary axis growth. In addition to spaceflight-associated factors, the physiologically diverse nature of the experimental material as well as environmental heterogeneities within the culture apparatus contributed to the variation in growth results. The findings

  6. Carbonaceous Chondrite Clasts in HED Achondrites

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Weisberg, M. K.; Buchanan, P. C.; Mittlefehldt, David W.

    1996-01-01

    Since carbonaceous chondrite planetesimals are attractive candidates for the progenitors of HED asteroid(s), we have performed a survey of HED meteorites in order to locate and characterize the mineralogy, chemistry, and petrography of the oft-reported carbonaceous chondrite clasts by microprobe, SEM-EDX. and TEM techniques. We examined samples of all HEDs we could lay our gloved hands on, and found carbonaceous chondrite clasts in the howardites Kapoeta, Jodzie, EET 87513, Y 793497, LEW 85441, LEW 87015, and G'Day, the polymict eucrites LEW 97295 and LEW 95300, and the diogenite Ellemeet. We verified previous suggestions that the majority (about 80%) of these clasts are CM2 material, but we discovered that a significant proportion are CR2 (about 20%) and other rare types are present. We conclude that chondritic compounds of mixed CM2 and CR2 materials should be investigated in future geochemical modeling of the origin of the HED asteroid(s).

  7. Reactor and method for hydrocracking carbonaceous material

    DOEpatents

    Duncan, Dennis A.; Beeson, Justin L.; Oberle, R. Donald; Dirksen, Henry A.

    1980-01-01

    Solid, carbonaceous material is cracked in the presence of hydrogen or other reducing gas to provide aliphatic and aromatic hydrocarbons of lower molecular weight for gaseous and liquid fuels. The carbonaceous material, such as coal, is entrained as finely divided particles in a flow of reducing gas and preheated to near the decomposition temperature of the high molecular weight polymers. Within the reactor, small quantities of oxygen containing gas are injected at a plurality of discrete points to burn corresponding amounts of the hydrogen or other fuel and elevate the mixture to high temperatures sufficient to decompose the high molecular weight, carbonaceous solids. Turbulent mixing at each injection point rapidly quenches the material to a more moderate bulk temperature. Additional quenching after the final injection point can be performed by direct contact with quench gas or oil. The reactions are carried out in the presence of a hydrogen-containing reducing gas at moderate to high pressure which stabilizes the products.

  8. Spectrum of carbonaceous-chondrite fission xenon

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.

    1976-01-01

    Estimations of the fission spectrum in xenon isotopes from the progenitor of the strange carbonaceous-chondrite xenon must take account of p-process nucleosynthesis if the latter is the source of anomalous Xe-124, 126. Sample calculations of the p-process yields illustrate the magnitude of the effect, which can greatly increase the estimated Xe-132 fission yield.

  9. Exposure ages of carbonaceous chondrites, 1

    NASA Technical Reports Server (NTRS)

    Nishiizumi, K.; Arnold, J. R.; Caffee, M. W.; Finkel, R. C.; Southon, J. R.; Nagai, H.; Honda, M.; Sharma, P.; Imamura, M.; Kobayashi, K.

    1993-01-01

    The recent exposure histories of carbonaceous chondrites have been investigated using cosmogenic radionuclides. Our results may indicate a clustering of exposure ages of C1 and C2 chondrites into two peaks, 0.2 My and 0.6 My, perhaps implying two collisional events of Earth-crossing parent bodies. Among carbonaceous chondrites are some having short exposure ages which Mazor et al. hypothesized cluster into a small number of families. This hypothesis is based on spallogenic Ne-21 exposure ages, which in some instances are difficult to determine owing to the large amounts of trapped noble gases in carbonaceous chondrites. Also, since Ne-21 is stable, it integrates a sample's entire exposure history, so meteorites with complex exposure histories are difficult to understand using exclusively Ne-21. Cosmogenic radionuclides provide an alternative means of determining the recent cosmic ray exposure duration. To test the hypothesis of Mazor et al. we have begun a systematic investigation of exposure histories of Antarctic and non-Antarctic carbonaceous chondrites especially C2s.

  10. Structure and oxidation of carbonaceous cenospheres

    SciTech Connect

    Gavalas, G.R.; Loewenberg, M.; Bellan, J.; Clayton, R.M.

    1985-01-01

    Carbonaceous cenosphere particles from an oil furnace are characterized by scanning electron microscopy, mercury intrusion and nitrogen adsorption porosimetry. The porosimetry data are used to construct a random pore model describing the evolution of surface area and pore volume distribution. The pore model is combined with gas phase transport to formulate the equations for transient particle combustion and some numerical solutions are presented.

  11. Synthesis and Transformation of Carbonaceous Nanoparticles

    NASA Astrophysics Data System (ADS)

    Mennella, Vito

    2015-03-01

    The physical properties of carbonaceous nanoparticles depend on the production conditions. In addition, these properties are modified by heat, UV and ion irradiation and gas interaction. We will discuss the synthesis and transformation of carbon nanoparticles that have been proposed as carriers of aromatic and aliphatic spectroscopic features observed in the interstellar medium.

  12. Whole-Mount Immunohistochemistry for Anti-F59 in Zebrafish Embryos (1-5 Days Post Fertilization (dpf)).

    PubMed

    Doganli, Canan; Bukata, Lucas; Lykke-Hartmann, Karin

    2016-01-01

    Immunohistochemistry (IHC) is a powerful method to determine localization of tissue components by the interaction of target antigens with labeled antibodies. Here we describe an IHC protocol for localizing the myosin heavy chain of zebrafish embryos at 1-2 and 3-5 days post fertilization (dpf).

  13. 21 CFR 803.53 - If I am a manufacturer, in which circumstances must I submit a 5-day report?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....14, no later than 5 work days after the day that you become aware that: (a) An MDR reportable event..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES MEDICAL DEVICE REPORTING Manufacturer Reporting Requirements § 803.53 If I am a manufacturer, in which circumstances must I submit a 5-day...

  14. Continuing Assessment of the 5-Day Sodium Carbonate-Ammonium Nitrate Extraction Assay as an Indicator Test for Silicon Fertilizers.

    PubMed

    Zellner, Wendy; Friedrich, Russell L; Kim, Sujin; Sturtz, Douglas; Frantz, Jonathan; Altland, James; Krause, Charles

    2015-01-01

    The 5-day sodium carbonate-ammonium nitrate extraction assay (5-day method) has been recognized by the American Association of Plant Food Control Officials as a validated test method to identify fertilizers or beneficial substances that provide plant-available silicon (Si). The test method used the molybdenum blue colorimetric assay to quantify percentage Si; however, laboratories may use inductively coupled plasma optical emission spectroscopy (ICP-OES) for elemental analysis. To examine the use of either colorimetric or ICP-OES methods for Si determination, the 5-day method was performed on the following Si-containing compounds; wollastonite, sand, biochar, and a basic oven furnace (BOF) slag. Grow-out studies using Zinnia elegans were also performed using varying rates of the wollastonite, biochar, and BOF slag. Our results show using the 5-day method, wollastonite had the highest extracted amounts of silicic acid (H4SiO4) at 4% followed by biochar (2%), BOF slag (1%), and sand (0%). Extraction values calculated using either the molybdenum blue colorimetric assay or ICP-OES for detection of the H4SiO4 had a significant correlation, supporting the application of either detection method for this type of analysis. However, when extracted values were compared to amounts of Si taken up by the plants, the 5-day method overestimated both wollastonite and biochar. While this method is a valid indicator test for determining a soluble Si source, other plant species and methods should be perused to potentially provide more quantitative analyses for plant-available Si content of all materials.

  15. Continuing Assessment of the 5-Day Sodium Carbonate-Ammonium Nitrate Extraction Assay as an Indicator Test for Silicon Fertilizers.

    PubMed

    Zellner, Wendy; Friedrich, Russell L; Kim, Sujin; Sturtz, Douglas; Frantz, Jonathan; Altland, James; Krause, Charles

    2015-01-01

    The 5-day sodium carbonate-ammonium nitrate extraction assay (5-day method) has been recognized by the American Association of Plant Food Control Officials as a validated test method to identify fertilizers or beneficial substances that provide plant-available silicon (Si). The test method used the molybdenum blue colorimetric assay to quantify percentage Si; however, laboratories may use inductively coupled plasma optical emission spectroscopy (ICP-OES) for elemental analysis. To examine the use of either colorimetric or ICP-OES methods for Si determination, the 5-day method was performed on the following Si-containing compounds; wollastonite, sand, biochar, and a basic oven furnace (BOF) slag. Grow-out studies using Zinnia elegans were also performed using varying rates of the wollastonite, biochar, and BOF slag. Our results show using the 5-day method, wollastonite had the highest extracted amounts of silicic acid (H4SiO4) at 4% followed by biochar (2%), BOF slag (1%), and sand (0%). Extraction values calculated using either the molybdenum blue colorimetric assay or ICP-OES for detection of the H4SiO4 had a significant correlation, supporting the application of either detection method for this type of analysis. However, when extracted values were compared to amounts of Si taken up by the plants, the 5-day method overestimated both wollastonite and biochar. While this method is a valid indicator test for determining a soluble Si source, other plant species and methods should be perused to potentially provide more quantitative analyses for plant-available Si content of all materials. PMID:26268968

  16. Nuclear magnetic biosignatures in the carbonaceous matter of ancient cherts: comparison with carbonaceous meteorites.

    PubMed

    Gourier, Didier; Delpoux, Olivier; Binet, Laurent; Vezin, Hervé

    2013-10-01

    The search for organic biosignatures is motivated by the hope of understanding the conditions of emergence of life on Earth and the perspective of finding traces of extinct life in martian sediments. Paramagnetic radicals, which exist naturally in amorphous carbonaceous matter fossilized in Precambrian cherts, were used as local structural probes and studied by electron paramagnetic resonance (EPR) spectroscopy. The nuclear magnetic resonance transitions of elements inside and around these radicals were detected by monitoring the nuclear modulations of electron spin echo in pulsed EPR. We found that the carbonaceous matter of fossilized microorganisms with age up to 3.5 billion years gives specific nuclear magnetic signatures of hydrogen (¹H), carbon (¹³C), and phosphorus (³¹P) nuclei. We observed that these potential biosignatures of extinct life are found neither in the carbonaceous matter of carbonaceous meteorites (4.56 billion years), the most ancient objects of the Solar System, nor in any carbonaceous matter resulting from carbonization of organic and bioorganic precursors. These results indicate that these nuclear signatures are sensitive to thermal episodes and can be used for Archean cherts with metamorphism not higher than the greenschist facies.

  17. Nuclear magnetic biosignatures in the carbonaceous matter of ancient cherts: comparison with carbonaceous meteorites.

    PubMed

    Gourier, Didier; Delpoux, Olivier; Binet, Laurent; Vezin, Hervé

    2013-10-01

    The search for organic biosignatures is motivated by the hope of understanding the conditions of emergence of life on Earth and the perspective of finding traces of extinct life in martian sediments. Paramagnetic radicals, which exist naturally in amorphous carbonaceous matter fossilized in Precambrian cherts, were used as local structural probes and studied by electron paramagnetic resonance (EPR) spectroscopy. The nuclear magnetic resonance transitions of elements inside and around these radicals were detected by monitoring the nuclear modulations of electron spin echo in pulsed EPR. We found that the carbonaceous matter of fossilized microorganisms with age up to 3.5 billion years gives specific nuclear magnetic signatures of hydrogen (¹H), carbon (¹³C), and phosphorus (³¹P) nuclei. We observed that these potential biosignatures of extinct life are found neither in the carbonaceous matter of carbonaceous meteorites (4.56 billion years), the most ancient objects of the Solar System, nor in any carbonaceous matter resulting from carbonization of organic and bioorganic precursors. These results indicate that these nuclear signatures are sensitive to thermal episodes and can be used for Archean cherts with metamorphism not higher than the greenschist facies. PMID:24093546

  18. High-temperature condensates in carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Grossman, L.

    1977-01-01

    Equilibrium thermodynamic calculations of the sequence of condensation of minerals from a cooling gas of solar composition play an important role in explaining the mineralogy and trace element content of different types of inclusions in carbonaceous chondrites. Group IV B iron meteorites and enstatite chondrites may also be direct condensates from the solar nebula. Condensation theory provides a framework within which chemical fractionations between different classes of chondrites may be understood.

  19. Amino and fatty acids in carbonaceous meteorites

    NASA Technical Reports Server (NTRS)

    Kvenvolden, K. A.

    1974-01-01

    Analyses of two carbonaceous meteorites have provided much of the latest evidence which seems to support Oparin's theory on the origin of life. The meteorites involved are the Murray meteorite, which fell in 1950, and the Murchison meteorite, which fell in 1969. The amino acids in the two meteorites are similar in composition. Eight of the twenty amino acids found belong to amino acids present in proteins. A number of monocarboxylic and dicarboxylic fatty acids were also found in the meteorites.

  20. Carbonaceous xenoliths from the Erevan howardite

    NASA Technical Reports Server (NTRS)

    Nazarov, M. A.; Brandstaetter, F.; Kurat, G.

    1993-01-01

    Preliminary studies of the Erevan howardite showed that the meteorite is a polymict breccia. We report on our study of CM-type carbonaceous xenoliths. All of these clasts are enriched in tochilinite and carbonate inclusion as compared to CM chondrites. They also contain a new, P-rich sulphide beside pentlandite. The P-rich sulphide represents a new type of P-bearing phases. It indicates a chalcophile behavior of P under certain nebular conditions.

  1. Translocation and biokinetic behavior of nanoscaled europium oxide particles within 5 days following an acute inhalation in rats.

    PubMed

    Creutzenberg, Otto; Kock, Heiko; Schaudien, Dirk

    2016-03-01

    Nanoscaled europium oxide (Eu2O3) particles were inhaled by rats after acute exposure and the potential translocation of particles followed by chemical analysis and transmission electron microscopy (TEM) was investigated. An aqueous dispersion (phosphate buffer/bovine serum albumin) of a commercially available Eu2O3 particle fraction consisting partially of nanoscaled particles was aerosolized with pressurized air. After rapid evaporation, rats inhaled the dry aerosol for 6 h in a single exposure resulting in an alveolar calculated dose of approximately 39.5 μg Eu2O3. Using chemical analysis, 36.8 μg Eu2O3 was detected 1 h after lung inhalation. The amount declined slightly to 34.5 μg after 1 day and 35.0 μg after 5 days. The liver showed an increase of Eu2O3 from 32.3 ng 1 h up to 294 ng 5 days after inhalation. Additionally, lung-associated lymph nodes, thymus, kidneys, heart and testis exhibited an increase of europium over the period investigated. In the blood, the highest amount of europium was found 1 h after treatment whereas feces, urine and mesenteric lymph nodes revealed the highest amount 1 day after treatment. Using TEM analysis, particles could be detected only in lungs, and in the liver, no particles were detectable. In conclusion, the translocation of Eu2O3 within 5 days following inhalation could be determined very precisely by chemical analysis. A translocation of Eu2O3 particulate matter to liver was not detectable by TEM analysis; thus, the overproportional level of 0.8% of the lung load observed in the liver after 5 days suggests a filtering effect of dissolved europium with accumulation.

  2. Stimulation of oxygen consumption of platelets by Solcoseryl and cardiocrome during in vitro aging for 5 days.

    PubMed

    Shimizu, T

    1990-08-01

    Solcoseryl (SOL) and Cardiocrome (CAR) produced decreases in the partial oxygen pressure of platelet suspensions, indicating the acceleration of platelet oxygen consumption. However, the peak response to CAR was much faster than that to SOL. Application of 1 ml of SOL to 20 ml of platelet suspension stored for 1 day produced increases of 1 nmol ATP per min per 10(9) platelets. The same increases in oxygen consumption appeared after 3 or 5 day-storage.

  3. Responses of the lower thermospheric temperature to the 9 day and 13.5 day oscillations of recurrent geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Jiang, Guoying; Wang, Wenbin; Xu, Jiyao; Yue, Jia; Burns, Alan G.; Lei, Jiuhou; Mlynczak, Martin G.; Rusell, James M., III

    2015-04-01

    Responses of the lower thermospheric temperature to the 9 day and 13.5 day oscillations of recurrent geomagnetic activity and solar EUV radiation have been investigated using neutral temperature data observed by the TIMED/SABER (Thermosphere IonosphereMesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry) instrument and numerical experiments by the NCAR-TIME-GCM (National Center for Atmospheric Research-thermosphere-ionosphere-mesosphere electrodynamics-general circulation model). The TIMED/SABER data analyzed were for the period from 2002 to 2007 during the declining phase of solar cycle 23. The observations show that the zonal mean temperature in the lower thermosphere oscillated with periods of near 9 and 13.5 days in the height range of 100-120 km. These oscillations were more strongly correlated with the recurrent geomagnetic activity than with the solar EUV variability of the same periods. The 9 day and 13.5 day oscillations of lower thermospheric temperature had greater amplitudes at high latitudes than at low latitudes; they also had larger amplitudes at higher altitudes, and the oscillations could penetrate down to ~105 km, depending on the strength of the recurrent geomagnetic activity for a particular time period. The data further show that the periodic responses of the lower thermospheric temperature to recurrent geomagnetic activity were different in the two hemispheres. In addition, numerical experiments have been carried out using the NCAR-TIME-GCM to investigate the causal relationship between the temperature oscillations and the geomagnetic activity and solar EUV variations of the same periods. Model simulations showed the same periodic oscillations as those seen in the observations when the real geomagnetic activity index, Kp, was used to drive the model. These numerical results show that recurrent geomagnetic activity is the main cause of the 9 day and 13.5 day variations in the lower thermosphere

  4. Responses of the lower thermospheric temperature to the 9 day and 13.5 day oscillations of recurrent geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Jiang, Guoying; Wang, Wenbin; Xu, Jiyao; Yue, Jia; Burns, Alan G.; Lei, Jiuhou; Mlynczak, Martin G.; Rusell, James M.

    2014-06-01

    Responses of the lower thermospheric temperature to the 9 day and 13.5 day oscillations of recurrent geomagnetic activity and solar EUV radiation have been investigated using neutral temperature data observed by the TIMED/SABER (Thermosphere Ionosphere Mesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry) instrument and numerical experiments by the NCAR-TIME-GCM (National Center for Atmospheric Research-thermosphere-ionosphere-mesosphere electrodynamics-general circulation model). The TIMED/SABER data analyzed were for the period from 2002 to 2007 during the declining phase of solar cycle 23. The observations show that the zonal mean temperature in the lower thermosphere oscillated with periods of near 9 and 13.5 days in the height range of 100-120 km. These oscillations were more strongly correlated with the recurrent geomagnetic activity than with the solar EUV variability of the same periods. The 9 day and 13.5 day oscillations of lower thermospheric temperature had greater amplitudes at high latitudes than at low latitudes; they also had larger amplitudes at higher altitudes, and the oscillations could penetrate down to ~105 km, depending on the strength of the recurrent geomagnetic activity for a particular time period. The data further show that the periodic responses of the lower thermospheric temperature to recurrent geomagnetic activity were different in the two hemispheres. In addition, numerical experiments have been carried out using the NCAR-TIME-GCM to investigate the causal relationship between the temperature oscillations and the geomagnetic activity and solar EUV variations of the same periods. Model simulations showed the same periodic oscillations as those seen in the observations when the real geomagnetic activity index, Kp, was used to drive the model. These numerical results show that recurrent geomagnetic activity is the main cause of the 9 day and 13.5 day variations in the lower thermosphere

  5. Uranium-Bearing Carbonaceous Nodules of Southwestern Oklahoma

    USGS Publications Warehouse

    Hill, James Wilcott

    1956-01-01

    Uranium-bearing carbonaceous nodules have been found along the north flank of the Wichita uplift in southwestern Oklahoma. The carbonaceous nodules are black, hard, and predominantly nodular shaped. One specimen, by analyses, was found to contain approximately 42 percent carbon and 3 percent hydrogen. The uranium, vanadium, cobalt, arsenic, nickel, lead and iron contents each range between 1 and 10 percent. It is concluded that the carbonaceous nodules are epigenetic and that the organic and inorganic constituents were derived from, mobile soluttons.

  6. Determination of Biochemical Oxygen Demand of Area Waters: A Bioassay Procedure for Environmental Monitoring

    ERIC Educational Resources Information Center

    Riehl, Matthew

    2012-01-01

    A graphical method for determining the 5-day biochemical oxygen demand (BOD5) for a body of water is described. In this bioassay, students collect a sample of water from a designated site, transport it to the laboratory, and evaluate the amount of oxygen consumed by naturally occurring bacteria during a 5-day incubation period. An accuracy check,…

  7. Chiral Biomarkers and Microfossils in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2010-01-01

    Homochirality of the biomolecules (D-sugars of DNA and RNA and L-amino acids of proteins) is a fundamental property of all life on Earth. Abiotic mechanisms yield racemic mixtures (D/L=1) of chiral molecules and after the death of an organism, the enantiopure chiral biomolecules slowly racemize. Several independent investigators have now established that the amino acids present in CI1 and CM2 carbonaceous meteorites have a moderate to strong excess of the L-enantiomer. Stable isotope data have established that these amino acids are both indigenous and extraterrestrial. Carbonaceous meteorites also contain many other strong chemical biomarkers including purines and pyrimidines (nitrogen heterocycles of nucleic acids); pristine and phytane (components of the chlorophyll pigment) and morphological biomarkers (microfossils of filamentous cyanobacteria). Energy dispersive X-ray Spectroscopy (EDS) analysis reveals that nitrogen is below the detectability level in most of the meteorite filaments as well as in Cambrian Trilobites and filaments of 2.7 Gya Archaean cyanobacteria from Karelia. The deficiency of nitrogen in the filaments and the total absence of sugars, of twelve of the life-critical protein amino acids, and two of the nucleobases of DNA and RNA provide clear and convincing evidence that these filaments are not modern biological contaminants. This paper reviews the chiral, chemical biomarkers morphological biomarkers and microfossils in carbonaceous meteorites. This paper reviews chiral and morphological biomarkers and discusses the missing nitrogen, sugars, protein amino acids, and nucleobases as ?bio-discriminators? that exclude modern biological contaminants as a possible explanation for the permineralized cyanobacterial filaments found in the meteorites.

  8. Acritarchs in carbonaceous meteorites and terrestrial rocks

    NASA Astrophysics Data System (ADS)

    Rozanov, Alexei Y.; Hoover, Richard B.

    2013-10-01

    Acritarchs are a group of organic-walled, acid-resistant microfossils of uncertain or unknown origin. Some are thought to represent the cysts or resting stages of unicellular protists (possibly dinoflagellates), chrysophytes (green algae) or other planktonic eukaryotic algae. Acritarchs are found throughout the geologic column extending back as far at 3.2 Ga. The presence of large sphaeromorphs in the Archaean provides evidence that the eukaryotic lineage extends much farther back in time than previously thought possible. Acritarchs are abundant in the Paleoproterozoic shales (1.9-1.6 Ga) of the former Soviet Union and they have been extensively used for the investigation of Proterozoic and Paleozoic biostratigraphy and paleoenvironmental parameters. Scanning Electron Microscope studies have revealed the fossilized remains of organic-walled microfossils of unknown origin and exhibiting characteristics of acritarchs in a variety of carbonaceous meteorites. In many cases, these remains are black or brown in color and have Carbon/Oxygen ratios suggesting they have been diagenetically converted into kerogen. It is not feasible that the fossilized remains of organicwalled microfossils such as acritarchs represent biological contaminant that invaded and became embedded in the rock matrix of carbonaceous meteorites within the short time periods of their residence on Earth. Consequently, these groups of microfossils are considered to provide an additional line for the existence of indigenous extraterrestrial microbial remains in meteorites. This paper presents a brief review of acritarchs in terrestrial rocks and provides images of a number of similar morphotypes of uncertain origin found in freshly fractured samples of carbonaceous meteorites.

  9. Chiral biomarkers and microfossils in carbonaceous meteorites

    NASA Astrophysics Data System (ADS)

    Hoover, Richard B.

    2010-09-01

    Homochirality of the biomolecules (D-sugars of DNA and RNA and L-amino acids of proteins) is a fundamental property of all life on Earth. Abiotic mechanisms yield racemic mixtures (D/L=1) of chiral molecules and after the death of an organism, the enantiopure chiral biomolecules slowly racemize. Several independent investigators have now established that the amino acids present in CI1 and CM2 carbonaceous meteorites have a moderate to strong excess of the L-enantiomer. Stable isotope data have established that these amino acids are both indigenous and extraterrestrial. Carbonaceous meteorites also contain many other strong chemical biomarkers including purines and pyrimidines (nitrogen heterocycles of nucleic acids); pristine and phytane (components of the chlorophyll pigment) and morphological biomarkers (microfossils of filamentous cyanobacteria). Energy dispersive X-ray Spectroscopy (EDS) analysis reveals that nitrogen is below the detectability level in most of the meteorite filaments as well as in Cambrian Trilobites and filaments of 2.7 Gya Archaean cyanobacteria from Karelia. The deficiency of nitrogen in the filaments and the total absence of sugars, of twelve of the life-critical protein amino acids, and two of the nucleobases of DNA and RNA provide clear and convincing evidence that these filaments are not modern biological contaminants. This paper reviews the chiral, chemical biomarkers morphological biomarkers and microfossils in carbonaceous meteorites. This paper reviews chiral and morphological biomarkers and discusses the missing nitrogen, sugars, protein amino acids, and nucleobases as "bio-discriminators" that exclude modern biological contaminants as a possible explanation for the permineralized cyanobacterial filaments found in the meteorites.

  10. Hypervelocity impact survivability experiments for carbonaceous impactors

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.; Becker, Luann; Bada, Jeffrey; Macklin, John; Radicatidibrozolo, Filippo; Fleming, R. H.; Erlichman, Jozef

    1993-01-01

    We performed a series of hypervelocity impact experiments using carbon-bearing impactors (diamond, graphite, fullerenes, phthalic acid crystals, and Murchison meteorite) into Al plate at velocities between 4.2 and 6.1 km/s. These tests were made to do the following: (1) determine the survivability of carbon forms and organize molecules in low hypervelocity impact; (2) characterize carbonaceous impactor residues; and (3) determine whether or not fullerenes could form from carbonaceous impactors, under our experimental conditions, or survive as impactors. An analytical protocol of field emission SEM imagery, SEM-EDX, laser Raman spectroscopy, single and 2-stage laser mass spectrometry, and laser induced fluorescence (LIF) found the following: (1) diamonds did not survive impact at 4.8 km/s, but were transformed into various forms of disordered graphite; (2) intact, well-ordered graphite impactors did survive impact at 5.9 km/sec, but were only found in the crater bottom centers; the degree of impact-induced disorder in the graphite increases outward (walls, rims, ejecta); (3) phthalic acid crystals were destroyed on impact (at 4.2 km/s, although a large proportion of phthalic acid molecules did survive impact); (4) fullerenes did not form as products of carbonaceous impactors (5.9 - 6.1 km/s, fullerene impactor molecules mostly survived impact at 5.9 km/s; and (5) two Murchison meteorite samples (launched at 4.8 and 5.9 km/s) show preservation of some higher mass polycyclic aromatic hydrocarbons (PAHs) compared with the non-impacted sample. Each impactor type shows unique impactor residue morphologies produced at a given impact velocity. An expanded methodology is presented to announce relatively new analytical techniques together with innovative modifications to other methods that can be used to characterize small impact residues in LDEF craters, in addition to other acquired extraterrestrial samples.

  11. Nucleosynthetic strontium isotope anomalies in carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Yokoyama, Tetsuya; Fukami, Yusuke; Okui, Wataru; Ito, Nobuaki; Yamazaki, Hiroshi

    2015-04-01

    Precise Sr isotopic compositions in samples from sequential acid leaching experiments have been determined for three carbonaceous chondrites, Allende, Murchison, and Tagish Lake, together with those in the bulk aliquots of these meteorites. The chondritic acid leachates and residues were characterized by Sr isotope anomalies with variable μ84Sr values (106 relative deviation from a standard material) ranging from +120 to - 4700 ppm, documenting multiple nucleosynthetic sources within a single meteorite. In addition, the μ84Sr patterns across leaching samples for individual chondrites differed from one another. The highest μ84Sr values were observed for leaching Step 3 (HCl+H2O, 75 °C) for Allende and Murchison likely because of the incorporation of calcium and aluminum-rich inclusions (CAIs). In contrast, extremely low μ84Sr values were observed in the later fractions (Steps 6 and 7) for Murchison and Tagish Lake, suggesting the existence of s-process-enriched presolar SiC grains derived from AGB stars. A μ84Sr-ɛ54Cr diagram was prepared with the CAIs and bulk aliquots of carbonaceous chondrites and other meteorites (noncarbonaceous) that were plotted separately; however, they still formed a global positive correlation. CAIs presented the highest μ84Sr and ɛ54Cr values, whereas carbonaceous chondrites and noncarbonaceous meteorites had intermediate and the lowest μ84Sr and ɛ54Cr values, respectively. The positive trend was interpreted as resulting from global thermal processing in which sublimation of high μ84Sr and ɛ54Cr carriers generated the excess μ84Sr and ɛ54Cr signatures in CAIs, while noncarbonaceous planetesimals accreted from materials that underwent significant thermal processing and thus had relatively low μ84Sr and ɛ54Cr values. Apart from the global trend, the carbonaceous chondrites and noncarbonaceous meteorites both exhibited intrinsic variations that highlight an isotopic dichotomy similar to that observed in other isotope

  12. Carbonaceous fuel combustion with improved desulfurization

    DOEpatents

    Yang, Ralph T.; Shen, Ming-shing

    1980-01-01

    Lime utilization for sulfurous oxides adsorption in fluidized combustion of carbonaceous fuels is improved by impregnation of porous lime particulates with iron oxide. The impregnation is achieved by spraying an aqueous solution of mixed iron sulfate and sulfite on the limestone before transfer to the fluidized bed combustor, whereby the iron compounds react with the limestone substrate to form iron oxide at the limestone surface. The iron oxide present in the spent limestone is found to catalyze the regeneration rate of the spent limestone in a reducing environment. Thus both the calcium and iron components may be recycled.

  13. Microfossils in CI and CO Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Rozanov, Alexei Y.; Jerman, Gregory; Costen, James

    2003-01-01

    Secondary and backscatter electron images and x-ray spectral data of selected CI (Alais, Orgueil, and Tagish Lake) and CO3 (Rainbow and Dar a1 Gani 749) carbonaceous meteorites have recently been obtained using Field Emission and Environmental Scanning Electron Microscopes These studies indicate the presence of a large assemblage of biomarkers and complex lithified and carbonized remains of bodies that we interpret as indigenous microfossils. We discuss the meteorites, provide images of many of the biogenic forms found embedded in the freshly fractured meteorite surfaces.

  14. Fossil Diatoms in a New Carbonaceous Meteorite

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, N. C.; Wallis, J.; Wallis, D. H.; Samaranayake, Anil

    2013-01-01

    We report the discovery for the first time of diatom frustules in a carbonaceous meteorite that fell in the North Central Province of Sri Lanka on 29 December 2012. Contamination is excluded by the circumstance that the elemental abundances within the structures match closely with those of the surrounding matrix. There is also evidence of structures morphologically similar to red rain cells that may have contributed to the episode of red rain that followed within days of the meteorite fall. The new data on "fossil" diatoms provide strong evidence to support the theory of cometary panspermia.

  15. Sulfur removal and comminution of carbonaceous material

    DOEpatents

    Narain, Nand K.; Ruether, John A.; Smith, Dennis N.

    1988-01-01

    Finely divided, clean coal or other carbonaceous material is provided by forming a slurry of coarse coal in aqueous alkali solution and heating the slurry under pressure to above the critical conditions of steam. The supercritical fluid penetrates and is trapped in the porosity of the coal as it swells in a thermoplastic condition at elevated temperature. By a sudden, explosive release of pressure the coal is fractured into finely divided particles with release of sulfur-containing gases and minerals. The finely divided coal is recovered from the minerals for use as a clean coal product.

  16. Sulfur removal and comminution of carbonaceous material

    DOEpatents

    Narain, N.K.; Ruether, J.A.; Smith, D.N.

    1987-10-07

    Finely divided, clean coal or other carbonaceous material is provided by forming a slurry of coarse coal in aqueous alkali solution and heating the slurry under pressure to above the critical conditions of steam. The supercritical fluid penetrates and is trapped in the porosity of the coal as it swells in a thermoplastic condition at elevated temperature. By a sudden, explosive release of pressure the coal is fractured into finely divided particles with release of sulfur-containing gases and minerals. The finely divided coal is recovered from the minerals for use as a clean coal product. 2 figs.

  17. Pyrolysis of Carbonaceous Foundry Sand Additives: Seacoal and Gilsonite

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seacoal and gilsonite are used by the foundry industry as carbonaceous additives in green molding sands. In this study, pyrolysis was used to simulate the heating conditions that the carbonaceous additives would experience during metal casting. Gas chromatography-mass spectrometry was used to tent...

  18. New Tendencies in Development of Carbonaceous Additives for Welding Fluxes

    NASA Astrophysics Data System (ADS)

    Kozyrev, N. A.; Kryukov, R. E.; Kozyreva, O. A.

    2015-09-01

    The paper provides results of comparative analysis of the effect of carbonaceous components introduced into welding fluxes on molten metal - slag interaction. Thermodynamical calculations of dehydrogenization are presented for submerged arc welding. A positive influence of carbonaceous additives on gas content and mechanical properties of welds is demonstrated. Carbon and fluorine containing additives are emphasized to be promising for automatic submerged arc welding.

  19. Evidence of Microfossils in Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Rozanov, Alexei Y.; Zhmur, S. I.; Gorlenko, V. M.

    1998-01-01

    Investigations have been carried out on freshly broken, internal surfaces of the Murchison, Efremovka and Orgueil carbonaceous chondrites using Scanning Electron Microscopes (SEM) in Russia and the Environmental Scanning Electron Microscope (ESEM) in the United States. These independent studies on different samples of the meteorites have resulted in the detection of numerous spherical and ellipsoidal bodies (some with spikes) similar to the forms of uncertain biogenicity that were designated "organized elements" by prior researchers. We have also encountered numerous complex biomorphic microstructures in these carbonaceous chondrites. Many of these complex bodies exhibit diverse characteristics reminiscent of microfossils of cyanobacteria such as we have investigated in ancient phosphorites and high carbon rocks (e.g. oil shales). Energy Dispersive Spectroscopy (EDS) analysis and 2D elemental maps shows enhanced carbon content in the bodies superimposed upon the elemental distributions characteristic of the chondritic matrix. The size, distribution, composition, and indications of cell walls, reproductive and life cycle developmental stages of these bodies are strongly suggestive of biology' These bodies appear to be mineralized and embedded within the meteorite matrix, and can not be attributed to recent surface contamination effects. Consequently, we have interpreted these in-situ microstructures to represent the lithified remains of prokaryotes and filamentous cyanobacteria. We also detected in Orgueil microstructures morphologically similar to fibrous kerite crystals. We present images of many biomorphic microstructures and possible microfossils found in the Murchison, Efremovka, and Orgueil chondrites and compare these forms with known microfossils from the Cambrian phosphate-rich rocks (phosphorites) of Khubsugul, Northern Mongolia.

  20. Iron isotope anomalies. [In carbonaceous meteorites

    SciTech Connect

    Voelkening, J.; Papanastassiou, D.A. )

    1989-12-01

    Precise determinations of the Fe isotope abundances yield identical results for a terrestrial standard and for samples of carbonaceous meteorites. Fe-54/Fe-56 = 0.062669; Fe-57/Fe-56 = 0.023261 + or - 0.000002; and Fe-58/Fe-56 = 0.0031132 + or - 0.0000011 are found. Refractory element-rich inclusions from the Allende carbonaceous meteorite yield hints of deficits in Fe-57/Fe-56 of up to -3.9 + or - 2.6 parts in 10,000 and a hint of excess in Fe-58/Fe-56 of up to 27 + or - 11 parts in 10,000. One special (FUN) inclusion shows a large excess of 2.9 percent, uniquely attributable to Fe-58. This excess correlates with large excesses in the same inclusion in the neutron-rich isotopes Ca-48, Ti-50 and Cr-54. These results strengthen the evidence for an exotic nucleosynthetic component produced by neutron-rich, statistical equilibrium burning, and injected into the interstellar medium. 29 refs.

  1. Keto-acids in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Cooper, G.; Chang, P. M.; Dugas, A.; Byrd, A.; Chang, P. M.; Washington, N.

    2005-01-01

    The Murchison and Murray meteorites are the best-characterized carbonaceous meteorites with respect to organic chemistry and are generally used as references for organic compounds in extraterrestrial material. Among the classes of organic compounds found in these meteorites are amino acids, carboxylic acids, hydroxy acids, purines, and pyrimidines. Such compounds, important in contemporary biochemistry, are thought to have been delivered to the early Earth in asteroids and comets and may have played a role in early life and/or the origin of life. Absent among (today's) critically important biological compounds reported in carbonaceous meteorites are keto acids, i.e., pyruvic acid, acetoacetic acid, and higher homologs. These compounds are key intermediates in such critical processes as glycolysis and the citric acid cycle. In this study several individual meteoritic keto acids were identified by gas chromatography-mass spectrometry (GC-MS) (see figure below). All compounds were identified as their trimethylsilyl (TMS), isopropyl ester (ISP), and tert-butyldimethylsilyl (tBDMS) derivatives. In general, the compounds follow the abiotic synthesis pattern of other known meteorite classes of organic compounds [1,2]: a general decrease in abundance with increasing carbon number within a class of compounds and many, if not all, possible isomers present at a given carbon number. The majority of the shown compounds was positively identified by comparison of their mass spectra to commercially available standards or synthesized standards.

  2. Novel carbonaceous materials for lithium secondary batteries

    SciTech Connect

    Sandi, G.; Winans, R.E.; Carrado, K.A.; Johnson, C.S.

    1997-07-01

    Carbonaceous materials have been synthesized using pillared clays (PILCs) as templates. The PILC was loaded with organic materials such as pyrene in the liquid and vapor phase, styrene in the vapor phase, trioxane, ethylene and propylene. The samples were then pyrolyzed at 700 C in an inert atmosphere, followed by dissolution of the inorganic template by conventional demineralization methods. X-ray powder diffraction of the carbons showed broad d{sub 002} peaks in the diffraction pattern, indicative of a disordered or turbostratic system. N{sub 2} BET surface areas of the carbonaceous materials range from 10 to 100 m{sup 2}/g. There is some microporosity (r < 1 nm) in the highest surface area carbons. Most of the surface area, however, comes from a mixture of micro and mesopores with radii of 2--5 nm. Electrochemical studies were performed on these carbons. Button cells were fabricated with capacity- limiting carbon pellets electrodes as the cathode a/nd metallic lithium foil as the anode. Large reversible capacities (up to 850 mAh/g) were achieved for most of the samples. The irreversible capacity loss was less than 180 mAh/g after the first cycle, suggesting that these types of carbon materials are very stable to lithium insertion and de-insertion reactions.

  3. Radiocarbon: nature's tracer for carbonaceous pollutants

    SciTech Connect

    Currie, L.A.; Klouda, G.A.; Gerlach, R.W.

    1982-01-01

    Recent developments in radiocarbon dating techniques have made it feasible to determine /sup 14/C//sup 12/C ratios in samples containing milligram or even microgram quantities of carbon. As a result, it has become practicable to apply these techniques to the study of trace gases and particles in the atmosphere, as a means of resolving anthropogenic from natural source components. Interpretation of /sup 14/C data is straightforward: biospheric carbon (such as vegetation) is alive with a /sup 14/C//sup 12/C ratio of about 1.5 x 10 to the 12th power, whereas fossil carbon is dead. Beyond this dichotomous classification it becomes very interesting to combine the isotopic data with concurrent chemical data, as well as spatial and temporal distributions, in order to infer the strengths of specific sources of carbonaceous pollutants. A brief review will be presented of program on atmospheric gases and carbonaceous particles. For the latter, the authors have assayed individual chemical and size fractions, and samples collected in urban, rural, and remote locales. The biogenic carbon fraction -- presumably from wood-burning -- ranged from 10 to 100% for the urban samples analyzed.

  4. Manganese chromium isotope systematics of carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Shukolyukov, A.; Lugmair, G. W.

    2006-10-01

    In this article we present the results of Cr isotope investigations of different types of carbonaceous chondrites and of the pallasite Eagle Station. The 53Cr/ 52Cr ratios in the bulk samples of carbonaceous chondrites are correlated with 55Mn/ 52Cr ratios. The slope of the correlation line yields a 53Mn/ 55Mn ratio of (8.5 ± 1.5) × 10 - 6 at the time of Mn/Cr fractionation. Mapping this ratio onto an absolute time scale yields a time for this event of 4568.1 + 0.8/- 1.1 Ma ago. This time is very similar to the formation age of Efremovka CAIs of 4567.2 ± 0.6 Ma [Y. Amelin, A. N. Krot, I. D. Hutcheon, A. A. Ulyanov, Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions, Science 297 (2002) 1678-1683], to a time of the chondrule formation of 4568 ± 1 Ma ago [L.E. Nyquist, D. Lindstrom, D. Mittlefehldt, C.-Y. Shih, H. Wiesmann, S. Wentworth, R. Martinez, Manganese-chromium formation intervals for chondrules from the Bishunpur and Chainpur meteorites, Meteorit. Planet. Sci. 36 (2001) 911-938], which, most likely, constrains early global high-temperature Mn/Cr fractionation in a nebular setting. The bulk samples of carbonaceous chondrites exhibit clear 54Cr excesses ( 54Cr *) that are correlated with the 53Cr excesses ( 53Cr *) and also with Mn/Cr ratios. One possible explanation of this correlation is that 54Cr * is also radiogenic, like 53Cr *, and was formed by the decay of the short-lived parent radionuclide 54Mn. The very short half-life of 54Mn of 312 days would require that both short-lived radionuclides 53Mn and 54Mn were generated locally in spallation reactions during the early period of an active sun. The alternative and possibly more plausible explanation is the heterogeneous addition of presolar material. The presolar component, enriched in 54Cr, is mostly contained in the matrix of carbonaceous chondrites. The relative amount of matrix decreases in the sequence CI > CM > CO,CV. A large proportion of Mn is associated with the matrix while

  5. Multi-wavelength characterization of carbonaceous aerosol

    NASA Astrophysics Data System (ADS)

    Massabò, Dario; Caponi, Lorenzo; Chiara Bove, Maria; Piazzalunga, Andrea; Valli, Gianluigi; Vecchi, Roberta; Prati, Paolo

    2014-05-01

    Carbonaceous aerosol is a major component of the urban PM. It mainly consists of organic carbon (OC) and elemental carbon (EC) although a minor fraction of carbonate carbon could be also present. Elemental carbon is mainly found in the finer PM fractions (PM2.5 and PM1) and it is strongly light absorbing. When determined by optical methods, it is usually called black carbon (BC). The two quantities, EC and BC, even if both related to the refractory components of carbonaceous aerosols, do not exactly define the same PM component (Bond and Bergstrom, 2006; and references therein). Moreover, another fraction of light-absorbing carbon exists which is not black and it is generally called brown carbon (Andreae and Gelencsér, 2006). We introduce a simple, fully automatic, multi-wavelength and non-destructive optical system, actually a Multi-Wavelength Absorbance Analyzer, MWAA, to measure off-line the light absorption in Particulate Matter (PM) collected on filters and hence to derive the black and brown carbon content in the PM This gives the opportunity to measure in the same sample the concentration of total PM by gravimetric analysis, black and brown carbon, metals by, for instance, X Ray Fluorescence, and finally ions by Ion Chromatography. Up to 16 samples can be analyzed in sequence and in an automatic and controlled way within a few hours. The filter absorbance measured by MWAA was successfully validated both against a MAAP, Multi Angle Absorption Photometer (Petzold and Schönlinner, 2004), and the polar photometer of the University of Milan. The measurement of sample absorbance at three wavelengths gives the possibility to apportion different sources of carbonaceous PM, for instance fossil fuels and wood combustion. This can be done following the so called "aethalometer method" (Sandradewi et al., 2008;) but with some significant upgrades that will be discussed together the results of field campaigns in rural and urban sites. Andreae, M.O, and Gelencsér, A

  6. Global cloud condensation nuclei influenced by carbonaceous combustion aerosol

    NASA Astrophysics Data System (ADS)

    Spracklen, D. V.; Carslaw, K. S.; Pöschl, U.; Rap, A.; Forster, P. M.

    2011-09-01

    Black carbon in carbonaceous combustion aerosol warms the climate by absorbing solar radiation, meaning reductions in black carbon emissions are often perceived as an attractive global warming mitigation option. However, carbonaceous combustion aerosol can also act as cloud condensation nuclei (CCN) so they also cool the climate by increasing cloud albedo. The net radiative effect of carbonaceous combustion aerosol is uncertain because their contribution to CCN has not been evaluated on the global scale. By combining extensive observations of CCN concentrations with the GLOMAP global aerosol model, we find that the model is biased low (normalised mean bias = -77 %) unless carbonaceous combustion aerosol act as CCN. We show that carbonaceous combustion aerosol accounts for more than half (52-64 %) of global CCN with the range due to uncertainty in the emitted size distribution of carbonaceous combustion particles. The model predicts that wildfire and pollution (fossil fuel and biofuel) carbonaceous combustion aerosol causes a global mean cloud albedo aerosol indirect effect of -0.34 W m-2, with stronger cooling if we assume smaller particle emission size. We calculate that carbonaceous combustion aerosol from pollution sources cause a global mean aerosol indirect effect of -0.23 W m-2. The small size of carbonaceous combustion particles from fossil fuel sources means that whilst pollution sources account for only one-third of the emitted mass they cause two-thirds of the cloud albedo aerosol indirect effect that is due to carbonaceous combustion aerosol. This cooling effect must be accounted for, along with other cloud effects not studied here, to ensure that black carbon emissions controls that reduce the high number concentrations of fossil fuel particles have the desired net effect on climate.

  7. Discovery of a Similar to 5 Day Characteristic Timescale in the Kepler Power Spectrum of Zw 229-15

    NASA Technical Reports Server (NTRS)

    Edelson, R.; Vaughan, S.; Malkan, M.; Kelly, B. C.; Smith, K. L.; Boyd, P. T.; Mushotzky, R.

    2014-01-01

    We present time series analyses of the full Kepler dataset of Zw 229- 15. This Kepler light curve- with a baseline greater than three years, composed of virtually continuous, evenly sampled 30-minute measurements - is unprecedented in its quality and precision. We utilize two methods of power spectral analysis to investigate the optical variability and search for evidence of a bend frequency associated with a characteristic optical variability timescale. Each method yields similar results. The first interpolates across data gaps to use the standard Fourier periodogram. The second, using the CARMA-based time-domain modeling technique of Kelly et al., does not need evenly-sampled data. Both methods find excess power at high frequencies that may be due to Kepler instrumental effects. More importantly both also show strong bends (delta alpha is approx. 2) at timescales of approx. 5 days, a feature similar to those seen in the X-ray PSDs of AGN but never before in the optical. This observed approx. 5 day timescale may be associated with one of several physical processes potentially responsible for the variability. A plausible association could be made with light -crossing, dynamical or thermal timescales, depending on the assumed value of the accretion disk size and on unobserved disk parameters such as alpha and H¬R. This timescale is not consistent with the viscous timescale, which would be years in a approx. 10(exp7) solar mass AGN such as Zw 229- 15. However there must be a second bend on long (& 1 year) timescales, and that feature could be associated with the viscous timescale.

  8. Discovery of a ∼5 day characteristic timescale in the Kepler power spectrum of Zw 229–15

    SciTech Connect

    Edelson, R.; Smith, K. L.; Mushotzky, R.; Vaughan, S.; Malkan, M.; Kelly, B. C.; Boyd, P. T.

    2014-11-01

    We present time series analyses of the full Kepler data set of Zw 229–15. This Kepler light curve—with a baseline greater than 3 yr, composed of virtually continuous, evenly sampled 30 minute measurements—is unprecedented in its quality and precision. We utilize two methods of power spectral analysis to investigate the optical variability and search for evidence of a bend frequency associated with a characteristic optical variability timescale. Each method yields similar results. The first interpolates across data gaps to use the standard Fourier periodogram. The second, using the CARMA-based time-domain modeling technique of Kelly et al., does not need evenly sampled data. Both methods find excess power at high frequencies that may be due to Kepler instrumental effects. More importantly, both also show strong bends (Δα ∼ 2) at timescales of ∼5 days, a feature similar to those seen in the X-ray power spectral densities of active galactic nuclei (AGNs) but never before in the optical. This observed ∼5 day timescale may be associated with one of several physical processes potentially responsible for the variability. A plausible association could be made with light-crossing dynamical or thermal timescales depending on the assumed value of the accretion disk size and on unobserved disk parameters such as α and H/R. This timescale is not consistent with the viscous timescale, which would be years in a ∼10{sup 7} M {sub ☉} AGN such as Zw 229–15. However, there must be a second bend on long (≳ 1 yr) timescales and that feature could be associated with the viscous timescale.

  9. Microfossils of Cyanobacteria in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2007-01-01

    During the past decade, Environmental and Field Emission Scanning Electron Microscopes have been used at the NASA/Marshall Space Flight Center to investigate freshly fractured interior surfaces of a large number of different types of meteorites. Large, complex, microfossils with clearly recognizable biological affinities have been found embedded in several carbonaceous meteorites. Similar forms were notably absent in all stony and nickel-iron meteorites investigated. The forms encountered are consistent in size and morphology with morphotypes of known genera of Cyanobacteria and microorganisms that are typically encountered in associated benthic prokaryotic mats. Even though many coccoidal and isodiametric filamentous cyanobacteria have a strong morphological convergence with some other spherical and filamentous bacteria and algae, many genera of heteropolar cyanobacteria have distinctive apical and basal regions and cellular differentiation that makes it possible to unambiguously recognize the forms based entirely upon cellular dimensions, filament size and distinctive morphological characteristics. For almost two centuries, these morphological characteristics have historically provided the basis for the systematics and taxonomy of cyanobacteria. This paper presents ESEM and FESEM images of embedded filaments and thick mats found in-situ in the Murchison CM2 and Orgueil cn carbonaceous meteorites. Comparative images are also provided for known genera and species of cyanobacteria and other microbial extremophiles. Energy Dispersive X-ray Spectroscopy (EDS) studies indicate that the meteorite filaments typically exhibit dramatic chemical differentiation with distinctive difference between the possible microfossil and the meteorite matrix in the immediate proximity. Chemical differentiation is also observed within these microstructures with many of the permineralized filaments enveloped within electron transparent carbonaceous sheaths. Elemental distributions of

  10. Carbonaceous chondrites and the origin of life

    NASA Technical Reports Server (NTRS)

    Hartman, Hyman; Sweeney, Michael A.; Kropp, Michael A.; Lewis, John S.

    1993-01-01

    Organic matter in carbonaceous chondrites can be separated into three fractions. The first component, the fraction that is insoluble in chloroform and methanol, has a part which is of interstellar origin. The other two fractions (chloroform-soluble hydrocarbons and methanol-soluble polar organics) are hypothesized to have been synthesized on a planetoid body. We propose that the polar organics, i.e., amino acids, were synthesized close to its surface by the radiolysis of hydrocarbons and ammonium carbonate in a liquid water environment. Some hydrocarbons may have been synthesized by a Fischer-Tropsch mechanism in the interior of the body. Ferrous ion acted as a protection against back reactions. The simultaneous synthesis of iron-rich clays with the polar organics may be indicative of events related to the origin of life on Earth.

  11. Organic analysis of the Antarctic carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Kotra, R. K.; Shimoyama, A.; Ponnamperuma, C.; Hare, P. E.; Yanai, K.

    1981-01-01

    Thus far, organic analysis of carbonaceous chondrites has proven the only fruitful means of examining complex organic matter of extraterrestrial origin. The present paper presents the results of organic analysis of two Antarctic meteorites, Allan Hills (77306) and Yamato (74662), which may be considered free from terrestrial contamination. Ion-exchange chromatography, gas chromatography and mass spectrometery of meteorite samples reveal the presence in Yamato of 15 and in Allan Hills of 20 protein and nonprotein amino acids, the most abundant of which are glycine and alanine. Abundances of the D and L enantiomers of each amino acid are also found to be nearly equal. Data thus indicate an abiotic extraterrestrial origin for the matter, and confirm a lack of terrestrial contamination.

  12. Nanostructured carbonaceous materials from molecular precursors.

    PubMed

    Hoheisel, Tobias N; Schrettl, Stephen; Szilluweit, Ruth; Frauenrath, Holger

    2010-09-01

    Nanostructured carbonaceous materials, that is, carbon materials with a feature size on the nanometer scale and, in some cases, functionalized surfaces, already play an important role in a wide range of emerging fields, such as the search for novel energy sources, efficient energy storage, sustainable chemical technology, as well as organic electronic materials. Furthermore, such materials might offer solutions to the challenges associated with the on-going depletion of nonrenewable energy resources or climate change, and they may promote further breakthroughs in the field of microelectronics. However, novel methods for their preparation will be required that afford functional carbon materials with controlled surface chemistry, mesoscopic morphology, and microstructure. A highly promising approach for the synthesis of such materials is based on the use of well-defined molecular precursors. PMID:20661971

  13. Electron microscope comparisons of fine and ultra-fine carbonaceous and non-carbonaceous, airborne particulates

    NASA Astrophysics Data System (ADS)

    Murr, L. E.; Bang, J. J.

    Particulate matter (PM) from a number of specific sources has been collected on carbon/formvar-coated 100-mesh nickel or copper grids for transmission electron microscopy (TEM) using a thermal precipitator. These sources included diesel truck exhaust, graphitic PM from brake-shop environments, jet engine exhaust streams, and a wide range of general airborne PM for comparison. Individual PM TEM images were compared with corresponding selected-area electron diffraction patterns and energy-dispersive (X-ray) spectra. Diesel PM was characterized by aggregate branching of carbonaceous spherules while graphitic PM consisted of layered carbon, crystalline carbon nanotubes and fullerene-related nanocrystals, and prominent mixtures of inorganic microcrystals. Essentially, all airborne PM collected was characterized by variations of cluster or aggregate morphologies and non-carbonaceous PM was mostly micro- or nanocrystalline. Mixtures of carbonaceous and nanocrystalline PM were also observed. Although tedious, individual PM analysis and comparison appears to be a necessary strategy to elucidate the apparent toxic effects increasingly identified with ultra-fine and nanoparticulates in the air.

  14. Global cloud condensation nuclei influenced by carbonaceous combustion aerosol

    NASA Astrophysics Data System (ADS)

    Spracklen, D. V.; Carslaw, K. S.; Pöschl, U.; Rap, A.; Forster, P. M.

    2011-03-01

    Black carbon in carbonaceous combustion aerosol warms the climate by absorbing solar radiation, meaning reductions in black carbon emissions are often perceived as an attractive global warming mitigation option. However, carbonaceous combustion aerosol can also act as cloud condensation nuclei (particles upon which cloud drops form) so they also cool the climate by increasing cloud albedo. The net radiative effect of carbonaceous combustion aerosol is uncertain because their contribution to cloud drops has not been evaluated on the global scale. By combining extensive observations of cloud condensation nuclei concentrations and a global aerosol model, we show that carbonaceous combustion aerosol accounts for more than half of global cloud condensation nuclei. The evaluated model predicts that wildfire and pollution (fossil fuel and biofuel) carbonaceous combustion aerosol causes a global mean aerosol indirect effect of -0.34 W m-2 due to changes in cloud albedo, with pollution sources alone causing a global mean aerosol indirect effect of -0.23 W m-2. The small size of carbonaceous combustion particles from pollution sources means that whilst they account for only one-third of the emitted mass from these sources they cause two-thirds of the cloud albedo indirect effect that is due to carbonaceous combustion aerosol. This cooling effect must be accounted for to ensure that black carbon emissions controls that reduce the high number concentrations of small pollution particles have the desired net effect on climate.

  15. Carbonaceous adsorbent regeneration and halocarbon displacement by hydrocarbon gases

    DOEpatents

    Senum, Gunnar I.; Dietz, Russell N.

    1994-01-01

    This invention describes a process for regeneration of halocarbon bearing carbonaceous adsorbents through which a carbonaceous adsorbent is contacted with hydrocarbon gases, preferably propane, butane and pentane at near room temperatures and at atmospheric pressure. As the hydrocarbon gases come in contact with the adsorbent, the hydrocarbons displace the halocarbons by physical adsorption. As a result of using this process, the halocarbon concentration and the hydrocarbon eluant is increased thereby allowing for an easier recovery of pure halocarbons. By using the process of this invention, carbonaceous adsorbents can be regenerated by an inexpensive process which also allows for subsequent re-use of the recovered halocarbons.

  16. Carbonaceous adsorbent regeneration and halocarbon displacement by hydrocarbon gases

    DOEpatents

    Senum, G.I.; Dietz, R.N.

    1994-04-05

    This invention describes a process for regeneration of halocarbon bearing carbonaceous adsorbents through which a carbonaceous adsorbent is contacted with hydrocarbon gases, preferably propane, butane and pentane at near room temperatures and at atmospheric pressure. As the hydrocarbon gases come in contact with the adsorbent, the hydrocarbons displace the halocarbons by physical adsorption. As a result of using this process, the halocarbon concentration and the hydrocarbon eluant is increased thereby allowing for an easier recovery of pure halocarbons. By using the process of this invention, carbonaceous adsorbents can be regenerated by an inexpensive process which also allows for subsequent re-use of the recovered halocarbons. 8 figures.

  17. Phase I/II study of 131I-MIBG with vincristine and 5 days of irinotecan for advanced neuroblastoma

    PubMed Central

    DuBois, S G; Allen, S; Bent, M; Hilton, J F; Hollinger, F; Hawkins, R; Courtier, J; Mosse, Y P; Matthay, K K

    2015-01-01

    Background: 131I-metaiodobenzylguanidine (MIBG) is an active radiopharmaceutical in neuroblastoma. A previous study demonstrated that MIBG could be combined with vincristine and prolonged irinotecan, although 25% of first courses had grade 3 diarrhoea. The current phase I/II study evaluated MIBG with vincristine and 5 days of higher-dose irinotecan. Methods: Patients 1–30 years old with advanced neuroblastoma were eligible. Patients received cefixime on days −1 to +6, irinotecan (50 mg m−2 per dose IV) on days 0–4, vincristine (2 mg m−2) on day 0, MIBG (555 or 666 MBq kg−1) on day 1, and peripheral blood stem cells on day 13. UGT1A1 genotyping was performed in consenting patients. Results: Thirty-two patients (12 phase I ; 20 phase II) received 42 courses. No dose-limiting toxicities were seen during dose escalation and the recommended administered activity was 666 MBq kg−1. Myelosuppression and diarrhoea were the most common toxicities, with grade 3 diarrhoea in 6% of first courses. Patients homozygous for UGT1A1*28 had more grade 4 thrombocytopenia (80% vs 37% P=0.14). Responses (five complete and four partial) occurred in 9 out of 32 (28%) patients. Conclusions: MIBG (666 MBq kg−1) with vincristine and this irinotecan schedule is tolerable and active, with less severe diarrhoea compared with a regimen using more protracted irinotecan. PMID:25602966

  18. Effects of endurance training on endocrine response to physical exercise after 5 days of bed rest in healthy male subjects.

    PubMed

    Koska, Juraj; Ksinantová, Lucia; Kvetnanský, Richard; Hamar, Dusan; Martinkovic, Miroslav; Vigas, Milan

    2004-06-01

    The study was designed to evaluate how a bout of endurance training (ET) influences the endocrine response after head-down bed rest (HDBR). Eleven healthy males completed the study, which consisted of a 6-wk ET followed by 5 days of -6 degrees head-down HDBR. Treadmill exercise at 80% of pretraining maximal aerobic capacity (VO(2max)) was performed before and after ET as well as after HDBR. ET increased VO(2max) by 13%. The response of norepinephrine was attenuated after ET and exaggerated after HDBR (P < 0.001). The differences in epinephrine responses were not statistically significant. The responses of cortisol and plasma renin activity (PRA) were unchanged after ET and were enhanced after HDBR (P < 0.001). The response of growth hormone after HDBR was reduced (P < 0.05). Only the change in cortisol response was associated with the increment of VO(2max) after ET (r = 0.68, P < 0.01). Endurance training failed to completely prevent changes in endocrine responses seen after HDBR. Improvement of physical fitness was associated with an enhancement of the cortisol response to exercise following the period of bed rest. PMID:15240416

  19. Heparin for 5 days as compared with 10 days in the initial treatment of proximal venous thrombosis.

    PubMed

    Hull, R D; Raskob, G E; Rosenbloom, D; Panju, A A; Brill-Edwards, P; Ginsberg, J S; Hirsh, J; Martin, G J; Green, D

    1990-05-01

    It is common practice to begin anticoagulant treatment of deep-vein thrombosis with a 10-day course of intravenous heparin, with warfarin added on day 5 to 10 and continued for several months. We performed a randomized, double-blind trial comparing a shorter course of continuous intravenous heparin (5 days, with warfarin sodium begun on the first day) with the conventional 10-day course of heparin (with warfarin sodium begun on the fifth day) in the initial treatment of 199 patients with acute proximal venous thrombosis documented by venography. The frequency of objectively documented recurrent venous thromboembolism was low and essentially the same in the two groups (7.1 percent in the short-course group vs. 7.0 percent in the long-course group). Because the observed difference between the groups was 0.1 percent in favor of the long-course group, it is unlikely (P less than 0.05) that a true difference in favor of this group would be greater than 7.5 percent; the difference could be as much as 7.3 percent in favor of the short-course group. Major bleeding episodes were infrequent, and the rate was similar in both groups. We conclude that a five-day course of heparin is as effective as a 10-day course in treating deep venous thrombosis. Furthermore, using the shorter course would permit earlier discharge from the hospital and thus offer substantial cost savings.

  20. Occurrence of uranium-bearing coal, carbonaceous shale, and carbonaceous limestone in the Fall Creek area, Bonneville County, Idaho

    USGS Publications Warehouse

    Vine, James D.; Moore, George W.

    1952-01-01

    Uraniferous coal, carbonaceous shale, and carbonaceous limestone occur in the Bear River formation of Upper Crestaceous age at the Fall Creek prospect, in the Fall Creek area, Bonneville County, IDaho. The uranium compounds are believed to have been derived from mildly radioactive silicic volcanic rocks of the Tertiary age that rest unconformably on all older rocks and once overlay the Bear River formation and its coal. Meteoric water, percolating downward through the silicic volcanic rocks and into the older rocks along joints and faults, is believed to have brought the uranium compounds into contact with the coal and carbonaceous rocks in which the uranium was absorbed.

  1. Petrographic, Chemical and Spectroscopic Data on Thermally Metamorphosed Carbonaceous Chondrites

    NASA Astrophysics Data System (ADS)

    Tonui, E. K.; Zolensky, M. E.; Hiroi, T.; Wang, M.-S.; Lipschutz, M. E.

    2002-03-01

    First comprehensive description of aqueous alteration and thermal metamorphism in carbonaceous chondrites. Petrographic evidence has been checked against labile trace element temperatures. Spectroscopic data reveals the level of dehydration and possible relationship to primitive asteroids.

  2. Carbonaceous cathode with enhanced wettability for aluminum production

    DOEpatents

    Keller, Rudolf; Gatty, David G.; Barca, Brian J.

    2003-09-09

    A method of preparing carbonaceous blocks or bodies for use in a cathode in an electrolytic cell for producing aluminum wherein the cell contains an electrolyte and has molten aluminum contacting the cathode, the cathode having improved wettability with molten aluminum. The method comprises the steps of providing a carbonaceous block and a boron oxide containing melt. The carbonaceous block is immersed in the melt and pressure is applied to the melt to impregnate the melt into pores in the block. Thereafter, the carbonaceous block is withdrawn from the melt, the block having boron oxide containing melt intruded into pores therein, the boron oxide capable of reacting with a source of titanium or zirconium or like metal to form titanium or zirconium diboride during heatup or operation of said cell.

  3. Method for co-processing waste rubber and carbonaceous material

    DOEpatents

    Farcasiu, Malvina; Smith, Charlene M.

    1991-01-01

    In a process for the co-processing of waste rubber and carbonaceous material to form a useful liquid product, the rubber and the carbonaceous material are combined and heated to the depolymerization temperature of the rubber in the presence of a source of hydrogen. The depolymerized rubber acts as a liquefying solvent for the carbonaceous material while a beneficial catalytic effect is obtained from the carbon black released on depolymerization the reinforced rubber. The reaction is carried out at liquefaction conditions of 380.degree.-600.degree. C. and 70-280 atmospheres hydrogen pressure. The resulting liquid is separated from residual solids and further processed such as by distillation or solvent extraction to provide a carbonaceous liquid useful for fuels and other purposes.

  4. Search for Nucleosynthetic Cadmium Isotope Variations in Bulk Carbonaceous Chondrites

    NASA Astrophysics Data System (ADS)

    Toth, E. R.; Schönbächler, M.; Friebel, M.; Fehr, M. A.

    2016-08-01

    New high-precision Cd isotope data will be presented for bulk carbonaceous chondrites, such as Allende and Murchison. Volatile element isotope anomalies and their potential nucleosynthetic sources will be discussed.

  5. Analogues for Wild2: Carbonaceous Chondrites Shot into Aerogel

    NASA Astrophysics Data System (ADS)

    Hicks, L. J.; Bridges, J. C.; MacArthur, J. L.; Wickham-Eade, J. E.; Price, M. C.; Burchell, M. J.; Butterworth, A. L.; Baker, S. H.

    2016-08-01

    Comet Wild2 particles show similarities to carbonaceous chondrites. We compare Wild2 grains to analogue shots of CV3 and CR2 powders in aerogel tracks, using the same techniques, to make accurate comparisons.

  6. Bacterial morphologies in carbonaceous meteorites and comet dust

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, Chandra; Wallis, Max K.; Gibson, Carl H.; Wallis, Jamie; Al-Mufti, Shirwan; Miyake, Nori

    2010-09-01

    Three decades ago the first convincing evidence of microbial fossils in carbonaceous chondrites was discovered and reported by Hans Dieter Pflug and his collaborators. In addition to morphology, other data, notably laser mass spectroscopy, confirmed the identification of such structures as putative bacterial fossils. Balloon-borne cryosampling of the stratosphere enables recovery of fragile cometary dust aggregates with their structure and carbonaceous matter largely intact. SEM studies of texture and morphology of particles in the Cardiff collection, together with EDX identifications, show two main types of putative bio-fossils - firstly organic-walled hollow spheres around 10μm across, secondly siliceous diatom skeletons similar to those found in carbonaceous chondrites and terrestrial sedimentary rocks and termed 'acritarchs'. Since carbonaceous chondrites (particularly Type 1 chondrites) are thought to be extinct comets the data reviewed in this article provide strong support for theories of cometary panspermia.

  7. Amoeboid olivine aggregates from CH carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Krot, Alexander N.; Park, Changkun; Nagashima, Kazuhide

    2014-08-01

    Amoeboid olivine aggregates (AOAs) in CH carbonaceous chondrites are texturally and mineralogically similar to those in other carbonaceous chondrite groups. They show no evidence for alteration and thermal metamorphism in an asteroidal setting and consist of nearly pure forsterite (Fa<3; in wt%, CaO = 0.1-0.8, Cr2O3 = 0.04-0.48; MnO < 0.5), anorthite, Al-diopside (in wt%, Al2O3 = 0.7-8.1; TiO2 < 1), Fe,Ni-metal, spinel, and, occasionally, low-Ca pyroxene (Fs1Wo2-3), and calcium-aluminum-rich inclusions (CAIs). The CAIs inside AOAs are composed of hibonite, grossite, melilite (Åk13-44), spinel, perovskite, Al,Ti-diopside (in wt%, Al2O3 up to 19.6; TiO2 up to 13.9), and anorthite. The CH AOAs, including CAIs within AOAs, have isotopically uniform 16O-rich compositions (average Δ17O = -23.4 ± 2.3‰, 2SD) and on a three-isotope oxygen diagram plot along ∼slope-1 line. The only exception is a low-Ca pyroxene-bearing AOA 1-103 that shows a range of Δ17O values, from -24‰ to -13‰. Melilite, grossite, and hibonite in four CAIs within AOAs show no evidence for radiogenic 26Mg excess (δ26Mg). In contrast, anorthite in five out of six AOAs measured has δ26Mg corresponding to the inferred initial 26Al/27Al ratio of (4.3 ± 0.7) × 10-5, (4.2 ± 0.6) × 10-5, (4.0 ± 0.3) × 10-5, (1.7 ± 0.2) × 10-5, and (3.0 ± 2.6) × 10-6. Anorthite in another AOA shows no resolvable δ26Mg excess; an upper limit on the initial 26Al/27Al ratio is 5 × 10-6. We infer that CH AOAs formed by gas-solid condensation and aggregation of the solar nebula condensates (forsterite and Fe,Ni-metal) mixed with the previously formed CAIs. Subsequently they experienced thermal annealing and possibly melting to a small degree in a 16O-rich gaseous reservoir during a brief epoch of CAI formation. The low-Ca pyroxene-bearing AOA 1-103 may have experienced incomplete melting and isotope exchange in an 16O-poor gaseous reservoir. The lack of resolvable δ26Mg excess in melilite, grossite, and

  8. CARES: Carbonaceous Aerosol and Radiative Effects Study Science Plan

    SciTech Connect

    Zaveri, RA; Shaw, WJ; Cziczo, DJ

    2010-05-27

    Carbonaceous aerosol components, which include black carbon (BC), urban primary organic aerosols (POA), biomass burning aerosols, and secondary organic aerosols (SOA) from both urban and biogenic precursors, have been previously shown to play a major role in the direct and indirect radiative forcing of climate. The primary objective of the CARES 2010 intensive field study is to investigate the evolution of carbonaceous aerosols of different types and their effects on optical and cloud formation properties.

  9. Recommendations for Estimating Carbonaceous Aerosol Inventories

    NASA Astrophysics Data System (ADS)

    Liousse, C.; Cachier, H.; Bond, T.; Penner, J.; Carmichael, G.; Reddy, M.; Gadi, R.; Michel, C.

    2002-12-01

    Increasing interest for carbonaceous aerosol studies is due to the recognized effect of such particles on regional and global radiative balance and climate. Recent calculations (Jacobson et al.,2002) have shown for example that reduction of black carbon (BC) and organic carbon (OC) particle emissions by fossil fuel combustions especially diesel combustions, may slow the global warming more efficiently that any reductions of carbon dioxide. Also, modeling studies of aerosol radiative forcing have pointed out its high sensitivity to the choice of BC source inventory, as BC is the main absorbing component of the aerosol phase. However, such studies rely on very different existing BC inventories (Penner et al., 1993, Cooke and Wilson, 1996, Liousse et al., 1996, Cooke et al., 1999, LavouZ˜ et al., 2000) while other developments for the global (Bond, Shulz or Chin works) and regional scales (Streets, Reddy, Michel, Liousse works) are currently underway. Actually, the budgets which are presented in the various inventories differ significantly. Yearly global BC emissions from Bond is roughly half of those given by Cooke et al., 1999. Let us note also that there is an important lack of knowledge for organic particulates. We created a working group on this topic and the first meeting took place in Toulouse last June. The aim is also to keep close connection with other initiatives and to conduct intercomparisons with the different inventories with a double focus, the global scale and zooms over some areas of particular interest for combustion aerosols (Asia and Africa). Our role is above all to obtain consistent inventories relying firstly in the definition of carbonaceous aerosol, secondly in the methods chosen for carbon measurements. Thus we will be able to propose clear recommendations for existing emission factor values for fossil fuel (especially for diesel and coal) and biomass burning (especially for domestic fires, savanna and forest fires) or future experiments

  10. Distinct Purine Distribution in Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Callahan, Michael P.; Smith, Karen E.; Cleaves, Henderson J.; Ruzicka, Josef; Stern, Jennifer C.; Glavin, Daniel P.; House, Christopher H.; Dworkin, Jason P.

    2011-01-01

    Carbonaceous chondrite meteorites are known to contain a diverse suite of organic compounds, many of which are essential components of biochemistry. Amino acids, which are the monomers of proteins, have been extensively studied in such meteorites (e.g. Botta and Bada 2002; Pizzarello et aI., 2006). The origin of amino acids in meteorites has been firmly established as extraterrestrial based on their detection typically as racemic mixtures of amino acids, the presence of many non-protein amino acids, and non-terrestrial values for compound-specific deuterium, carbon, and nitrogen isotopic measurements. In contrast to amino acids, nucleobases in meteorites have been far less studied. Nucleobases are substituted one-ring (pyrimidine) or two-ring (purine) nitrogen heterocyclic compounds and serve as the information carriers of nucleic acids and in numerous coenzymes. All of the purines (adenine, guanine, hypoxanthine, and xanthine) and pyrimidines (uracil) previously reported in meteorites are biologically common and could be interpreted as the result of terrestrial contamination (e.g. van del' Velden and Schwartz, 1974.) Unlike other meteoritic organics, there have been no observations of stochastic molecular diversity of purines and pyrimidines in meteorites, which has been a criterion for establishing extraterrestrial origin. Maltins et al. (2008) performed compound-specific stable carbon isotope measurements for uracil and xanthine in the Murchison meteorite. They assigned a non-terrestrial origin for these nucleobases; however, the possibility that interfering indigenous molecules (e.g. carboxylic acids) contributed to the 13C-enriched isotope values for these nucleobases cannot be completely ruled out. Thus, the origin of these meteoritic nucleobases has never been established unequivocally. Here we report on our investigation of extracts of II different carbonaceous chondrites covering various petrographic types (Cl, CM, and CR) and degrees of aqueous alteration

  11. Determination of ultimate carbonaceous BOD and the specific rate constant (K1)

    USGS Publications Warehouse

    Stamer, J.K.; Bennett, J.P.; McKenzie, Stuart W.

    1982-01-01

    Ultimate carbonaceous biochemical oxygen demand (BODu) and the specific rate constant (K1) at which the demand is exerted are important parameters in designing biological wastewater treatment plants and in assessing the impact of wastewater on receiving streams. An analytical method is presented which uses time-series concentrations of BOD, defined as the calculated sum of dissolved oxygen (DO) losses at each time of measurement, for determining BODu and K1. Time-series DO measurements are obtained from a water sample that is incubated in darkness at 20 degrees Celsius in the presence of nitrapyrin, a chemical nitrification inhibitor. Time-series concentrations of BOD that approximate first order kinetics can be analyzed graphically or mathematically to compute BODu and K1.

  12. Carbonaceous particles reduce marine microgel formation.

    PubMed

    Shiu, Ruei-Feng; Chin, Wei-Chun; Lee, Chon-Lin

    2014-01-01

    An increase in ambient carbonaceous particle (CNP) levels has been found, potentially leading to significant environmental/health hazards. These particles will ultimately enter the oceanic environment and interact with dissolved organic carbon. However, a detailed mechanistic understanding of their behavior, transport, and fate in marine systems is still much needed. This study, using carbon black (CB, 14 nm) nanoparticles as a model, aimed to investigate the impact of CNPs on marine microgel formation, a critical shunt between DOC and particulate organic carbon that potentially represents a ~70-Gt organic carbon flux. We found that CB can enhance the stability of DOC polymers and reduce microgel equilibrium sizes in concentration as low as 1 μgL(-1) CB, possibly due to negative surface charges on CB that decrease cross-linking bridges through Ca(2+) bonds. The reduction of marine microgel formation induced by CB could lead to a decrease in the downward transportation of microbial substrates and nutrients, and therefore, could have a significant impact on the carbon cycle and the marine ecosystem. PMID:25068549

  13. Detection of Carbonaceous Material in Naga Bhasma

    PubMed Central

    Singh, S. K.; Rai, S. B.

    2012-01-01

    Traditional medicines have maintained their popularity in all regions of the developing world and are being adopted increasingly by people worldwide. Indian traditional system of medicine Ayurveda make use of unique metallic-herbal preparations (called Bhasma) which involves different processing steps including repeated steps of calcination of metal in the presence of natural precursor (herbal juices, decoctions, and powders, etc). It has been recently established that Bhasma contains nano/sub-micron size particles and different nutrient elements. However, the role and the end product of the raw materials, especially the herbal parts, used during the synthesis of the drug (Bhasma) is one of the important but unanswered problems in such medicinal preparations. Present work on Naga Bhasma is an attempt to understand the role of natural precursors in detail. Our results on infrared, Raman and X-ray photoelectron spectroscopy along with thermal measurements identify the presence of carbonaceous material (hydrogenated amorphous carbon) in the drug along with other compounds. In addition, this work also suggests the science and mechanism behind such complex preparations which could help in standardization of such medicines. PMID:23326003

  14. Detection of carbonaceous material in naga bhasma.

    PubMed

    Singh, S K; Rai, S B

    2012-03-01

    Traditional medicines have maintained their popularity in all regions of the developing world and are being adopted increasingly by people worldwide. Indian traditional system of medicine Ayurveda make use of unique metallic-herbal preparations (called Bhasma) which involves different processing steps including repeated steps of calcination of metal in the presence of natural precursor (herbal juices, decoctions, and powders, etc). It has been recently established that Bhasma contains nano/sub-micron size particles and different nutrient elements. However, the role and the end product of the raw materials, especially the herbal parts, used during the synthesis of the drug (Bhasma) is one of the important but unanswered problems in such medicinal preparations. Present work on Naga Bhasma is an attempt to understand the role of natural precursors in detail. Our results on infrared, Raman and X-ray photoelectron spectroscopy along with thermal measurements identify the presence of carbonaceous material (hydrogenated amorphous carbon) in the drug along with other compounds. In addition, this work also suggests the science and mechanism behind such complex preparations which could help in standardization of such medicines. PMID:23326003

  15. Carbonaceous particles reduce marine microgel formation

    PubMed Central

    Shiu, Ruei-Feng; Chin, Wei-Chun; Lee, Chon-Lin

    2014-01-01

    An increase in ambient carbonaceous particle (CNP) levels has been found, potentially leading to significant environmental/health hazards. These particles will ultimately enter the oceanic environment and interact with dissolved organic carbon. However, a detailed mechanistic understanding of their behavior, transport, and fate in marine systems is still much needed. This study, using carbon black (CB, 14 nm) nanoparticles as a model, aimed to investigate the impact of CNPs on marine microgel formation, a critical shunt between DOC and particulate organic carbon that potentially represents a ~70-Gt organic carbon flux. We found that CB can enhance the stability of DOC polymers and reduce microgel equilibrium sizes in concentration as low as 1 μgL−1 CB, possibly due to negative surface charges on CB that decrease cross-linking bridges through Ca2+ bonds. The reduction of marine microgel formation induced by CB could lead to a decrease in the downward transportation of microbial substrates and nutrients, and therefore, could have a significant impact on the carbon cycle and the marine ecosystem. PMID:25068549

  16. Long-term changes in human colonic Bifidobacterium populations induced by a 5-day oral amoxicillin-clavulanic acid treatment.

    PubMed

    Mangin, Irène; Lévêque, Christophe; Magne, Fabien; Suau, Antonia; Pochart, Philippe

    2012-01-01

    The objective of this study was to assess the possible modifications due to amoxicillin-clavulanic acid (AMC) treatment on total bacteria and on Bifidobacterium species balance in human colonic microbiota. Eighteen healthy volunteers (19 to 36 years old) were given a 875/125 mg dose of AMC twice a day for 5 days. Fecal samples were obtained before and after antibiotic exposure. After total DNA extraction, total bacteria and bifidobacteria were specifically quantified using real-time PCR. Dominant species were monitored over time using bacterial and bifidobacterial Temporal Temperature Gradient gel Electrophoresis (TTGE). At the end of AMC exposure, total bacterial concentrations as well as bifidobacteria concentrations were significantly reduced compared to before AMC exposure:10.7±0.1 log(10) 16S rRNA gene copies/g vs 11.1±0.1 log(10) (p = 0.003) and 8.1±0.5 log(10) 16S rRNA gene copies/g vs 9.4±0.3 log(10) (p = 0.003), respectively. At the same time, the mean similarity percentages of TTGE bacteria and TTGE bifidobacteria profiles were significantly reduced compared to before AMC exposure: 51.6%±3.5% vs 81.4%±2.1% and 55.8%±7.6% vs 84.5%±4.1%, respectively. Occurrence of B. adolescentis, B. bifidum and B. pseudocatenulatum/B. catenulatum species significantly decreased. Occurrence of B. longum remained stable. Moreover, the number of distinct Bifidobacterium species per sample significantly decreased (1.5±0.3 vs 2.3±0.3; p = 0.01). Two months after AMC exposure, the mean similarity percentage of TTGE profiles was 55.6% for bacteria and 62.3% for bifidobacteria. These results clearly demonstrated that a common antibiotic treatment may qualitatively alter the colonic microbiota. Such modifications may have potential long-term physiological consequences.

  17. Quenched Carbonaceous Composite: a laboratory analog for carbonaceous material in the interstellar medium.

    PubMed

    Tokunaga, A T; Wada, S

    1997-01-01

    We review the properties of Quenched Carbonaceous Composite (QCC), a residue produced from a hydrocarbon plasma, and the properties of its derivatives. A. Sakata and his colleagues have shown that QCC has a 220 nm absorption band, visible fluorescence matching the extended red emission seen in reflection nebulae, and infrared absorption bands that correspond to the infrared emission features in reflection nebulae, HII regions, and planetary nebulae. These properties make QCC a strong candidate material as a laboratory analog to the carbonaceous material in the interstellar medium. QCC is distinguished from the PAH hypothesis in that (1) it is a condensate composed of aromatic and aliphatic molecules, as well as radicals; (2) it exhibits a 220 nm absorption that is very similar in wavelength to the 217 nm absorption in the interstellar medium; (3) it exhibits visible fluorescence consistent with that seen in reflection nebulae; and (4) the bands at 7.7 and 8.6 microns are caused by ketone bands in oxidized QCC. The aromatic component in QCC is thought to be typically 1-4 rings, with the majority being about 1-2 rings. PMID:11541327

  18. Carbonaceous Components in the Comet Halley Dust

    NASA Technical Reports Server (NTRS)

    Fomenkova, M. N.; Chang, S.; Mukhin, L. M.

    1994-01-01

    Cometary grains containing large amounts of carbon and/or organic matter (CHON) were discovered by in situ measurements of comet Halley dust composition during VEGA and GIOTTO flyby missions. In this paper, we report the classification of these cometary, grains by means of cluster analysis, discuss the resulting compositional groups, and compare them with substances observed or hypothesized in meteorites, interplanetary dust particles, and the interstellar medium. Grains dominated by carbon and/or organic matter (CHON grains) represent approx. 22% of the total population of measured cometary dust particles. They, usually contain a minor abundance of rock-forming elements as well. Grains having organic material are relatively more abundant in the vicinity of the nucleus than in the outer regions of the coma, which suggests decomposition of the organics in the coma environment. The majority of comet Halley organic particles are multicomponent mixtures of carbon phases and organic compounds. Possibly, the cometary CHON grains may be related to kerogen material of an interstellar origin in carbonaceous meteorites. Pure carbon grains, hydrocarbons and polymers of cyanopolyynes, and multi-carbon monoxides are present in cometary dust as compositionally simple and distinctive components among a variety of others. There is no clear evidence of significant presence of pure formaldehyde or HCN polymers in Halley dust particles. The diversity of types of cometary organic compounds is consistent with the inter-stellar dust model of comets and probably reflects differences in composition of precursor dust. Preservation of this heterogeneity among submicron particles suggest the gentle formation of cometary, nucleus by aggregation of interstellar dust in the protosolar nebula without complete mixing or chemical homogenization at the submicron level.

  19. Opaque Assemblages in CK and CV Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Neff, K. E.; Righter, K.

    2006-01-01

    CK carbonaceous chondrites are the only group of carbonaceous chondrites that exhibit thermal metamorphism. As a result, CKs display features of metamorphism such as silicate darkening, recrystallization and shock veins. Calcium Aluminum Inclusions and Fe-Ni metal are rare. CV carbonaceous chondrites are unequilibrated and have two subgroups; oxidized and reduced. The CV and CK carbonaceous chondrite groups have been compared to each other often because of petrographic similarities, such as overlapping oxygen isotopic ratios. Scientists have suggested the two groups of carbonaceous chondrites formed from the same parent body and CKs are equilibrated CV chondrites [1, 2]. The oxidized CV group has been most closely related to CKs. This study examines the petrology and mineralogy of CKs and CVs focusing on opaque minerals found in the meteorites. Using the oxide, metal and sulfide assemblages, constraints can be placed on the temperature and oxygen fugacity at which the meteorites equilibrated. The temperature and oxygen fugacity of the CK and CV chondrites can be compared in order to help define their formation history.

  20. Physical and Chemical Characterization of Carbonaceous Aerosols in Korea

    NASA Astrophysics Data System (ADS)

    Choung, S.; Jin, J. S.; Hwang, G. S.; Jang, K. S.; Han, W. S.; OH, J.; Kwon, Y.

    2014-12-01

    Atmospheric aerosols have been recently paid attention more in environmental research due to their negative effects on air quality, public health, and climate change. The aerosols contain approximately >20-50% carbonaceous components such as organic carbon (OC) and black carbon (BC) (or elemental carbon [EC]) derived from organic compounds, biomass burning, and incomplete combustion of fossil fuels. The physical, chemical, and biological properties of atmospheric aerosols are strongly dependent on the carbonaceous components. In particular, the BC could significantly affect the regional air quality in the northeastern Asia, because China is one of the foremost BC emission country in the world. Previous studies have mainly focused on the quantification and source identification for carbonaceous aerosols. However, understanding of physical and chemical properties for the carbonaceous aerosols related to environmental contamination and toxicity was still incomplete due to analytical difficulties. This study is addressed to evaluate the contribution of carbonaceous aerosols to air pollution through the surface, mass spectroscopic, and electron microscopic analyses, and determination of chemical composition and structure using the air particulate matter (PM2.5 and >PM2.5) samples.

  1. Process for gasifying carbonaceous material from a recycled condensate slurry

    DOEpatents

    Forney, Albert J.; Haynes, William P.

    1981-01-01

    Coal or other carbonaceous material is gasified by reaction with steam and oxygen in a manner to minimize the problems of effluent water stream disposal. The condensate water from the product gas is recycled to slurry the coal feed and the amount of additional water or steam added for cooling or heating is minimized and preferably kept to a level of about that required to react with the carbonaceous material in the gasification reaction. The gasification is performed in a pressurized fluidized bed with the coal fed in a water slurry and preheated or vaporized by indirect heat exchange contact with product gas and recycled steam. The carbonaceous material is conveyed in a gas-solid mixture from bottom to top of the pressurized fluidized bed gasifier with the solids removed from the product gas and recycled steam in a supported moving bed filter of the resulting carbonaceous char. Steam is condensed from the product gas and the condensate recycled to form a slurry with the feed coal carbonaceous particles.

  2. Carbonaceous particles in the atmosphere: A historical perspective to the Fifth International Conference on Carbonaceous Particles in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Penner, Joyce E.; Novakov, T.

    1996-08-01

    Carbonaceous aerosol species together with sulfates, other water-soluble inorganic compounds, and mineral particles play an important role in a variety of environmental effects. Carbonaceous particles contribute to the extinction of visible light by both scattering and absorption, thus influencing visibility degradation and radiative transfer through the atmosphere. These particles may serve as sites for condensation of water vapor and organic compounds. Components of carbonaceous material may contribute to atmospheric chemical processes because of their chemical and catalytic properties. Many of the original results in this field of research were first presented at the International Conferences on Carbonaceous Particles in the Atmosphere held in Berkeley (1978 and 1987) and in Linz and Vienna, Austria (1983 and 1991, respectively). At the fifth conference, August 23-26, 1994, at Lawrence Berkeley Laboratory, 85 papers were presented. This volume contains papers accepted for publication after peer review. In this introduction we attempt to provide an overview of research on carbonaceous particles from the 1950s to mid-1970s, which provided the backdrop for the first conference. We follow this by outlining research accomplishments and evolution of emphasis (as evidenced by the material presented at these conferences) and by summarizing the present state of this field of research.

  3. Differences in isotopic composition of carbonaceous components in enstatite chondrites

    NASA Astrophysics Data System (ADS)

    Grady, M. M.; Wright, I. P.; Carr, R. H.; Poths, J.; Pillinger, C. T.

    1988-02-01

    Carbon stable isotopic composition of the major carbonaceous component in enstatite chondrites varies with petrologic type. Investigation of a suite of HF/HCl-resistant residues has shown that this variation is due to an inherent difference in delta(C-13) of the carbon, and is not a result of the presence of small amounts of isotopically anomalous carbon-bearing components. These latter do occur in type EH3 and EH4 chondrites, in concentrations similar to those found in C1 and C2 carbonaceous chondrites. Combustion of the major carbon component (apparently elemental carbon, not necessarily graphite) occurs at relatively higher temperatures in enstatite chondrites of increasing petrologic type. This is considered to reflect an increase in crystallinity or ordering of the carbonaceous component, and is a measure of the degree of thermal processing to which the meteorites have been subjected during accretion and/or metamorphism.

  4. Laboratory Studies Of Circumstellar Carbonaceous Grain Formation

    NASA Astrophysics Data System (ADS)

    Contreras, Cesar; Sciamma-O'Brien, Ella; Salama, Farid

    2014-06-01

    The study of the formation processes of dust is essential to understand the budget of extraterrestrial organic molecules. Although dust with all its components plays an important role in the evolution of interstellar (IS) chemistry and in the formation of organic molecules, little is known on the formation processes of carbonaceous dust. We report the progress that was recently achieved in this domain using NASA Ames’ COSmIC facility (Contreras & Salama 2013, ApJS, 208, 6). PAHs are important chemical building blocks of IS dust. They are detected in IDPs and in meteoritic samples. Additionally, observational, laboratory, and theoretical studies have shown that PAHs are an important, ubiquitous component of the ISM. The formation of PAHs from smaller molecules has not been extensively studied. Therefore, we have performed laboratory experiments to study the dynamic processes of carbon grain formation, starting from the smallest hydrocarbon molecules into the formation of larger PAH and further into nanograins. Studies of IS dust analogs formed from a variety of PAH and hydrocarbon precursors as well as species that include the atoms O, N, and S, have recently been performed in our laboratory using the COSmIC facility to provide conditions that simulate IS and circumstellar environments. The species formed in the COSmiC chamber through a pulsed discharge nozzle plasma source are detected and characterized with a cavity ringdown spectrometer coupled to a time-of-flight mass spectrometer, thus providing both spectroscopic and ion mass information in-situ. Analysis of solid soot particles was also conducted using scanning electron microscopy at the UCSC/NASA Ames’ MACS facility. The SEM analysis of the deposition of soot from methane and acetylene precursors seeded in argon plasmas provide examples on the types of nanoparticles and micrograins that are produced in these gas mixtures under our experimental conditions. From these measurements, we derive information on

  5. PING Gamma Ray and Neutron Measurements of a Meter-Scale Carbonaceous Asteroid Analog Material

    NASA Astrophysics Data System (ADS)

    Bodnarik, J. G.; Schweitzer, J. S.; Parsons, A. M.; Evans, L. G.; Starr, R. D.

    2012-03-01

    We compare PING experimental data from the asteroid stimulant, basalt, and granite structures with computer simulations for a homogenous carbonaceous asteroid to show that the asteroid simulant's response closely approximates a carbonaceous asteroid.

  6. Hydrated interplanetary dust particle linked with carbonaceous chondrites?

    NASA Technical Reports Server (NTRS)

    Tomeoka, K.; Buseck, P. R.

    1985-01-01

    The results of transmission electron microscope observations of a hydrated interplanetary dust particle (IDP) containing Fe-, Mg-rich smectite or mica as a major phase are reported. The sheet silicate appears to have formed by alteration of anhydrous silicates. Fassaite, a Ca, Al clinopyroxene, also occurs in this particle, and one of the crystals exhibits solar-flare tracks, clearly indicating that it is extraterrestrial. Fassaite is a major constituent of the Ca-, Al-rich refractory inclusions found in the carbonaceous chondrites, so its presence in this particle suggests that there may be a link between hydrated IDPs and carbonaceous chondrites in the early history of the solar system.

  7. Conditioning of carbonaceous material prior to physical beneficiation

    DOEpatents

    Warzinski, Robert P.; Ruether, John A.

    1987-01-01

    A carbonaceous material such as coal is conditioned by contact with a supercritical fluid prior to physical beneficiation. The solid feed material is contacted with an organic supercritical fluid such as cyclohexane or methanol at temperatures slightly above the critical temperature and pressures of 1 to 4 times the critical pressure. A minor solute fraction is extracted into critical phase and separated from the solid residuum. The residuum is then processed by physical separation such as by froth flotation or specific gravity separation to recover a substantial fraction thereof with reduced ash content. The solute in supercritical phase can be released by pressure reduction and recombined with the low-ash, carbonaceous material.

  8. Carbonaceous Chondrite Fragments in the Polymict Eucrite Yamato 791834

    NASA Technical Reports Server (NTRS)

    Buchanan, P. C.; Zolensky, M. E.

    2003-01-01

    Buchanan et al. and Zolensky et al. described carbonaceous chondrite fragments in a variety of howardites and concluded that the majority are CM2 and CR2 materials. Gounelle et al. also described similar, but very small, fragments in these meteorites. These clasts are important because they represent materials that were in orbital proximity to the HED parent body (4 Vesta) and they may be similar to the primitive materials that originally accreted to form this body. The present study describes two carbonaceous chondrite clasts in the Yamato 791834 (Y791834) polymict eucrite.

  9. Phyllosilicates in the Carbonaceous Chondrite Breccia Kaidun

    NASA Astrophysics Data System (ADS)

    Yang, S. V.; Zolensky, M.; Golden, D. C.; Ming, D. W.; Ivanov, A.

    1993-07-01

    observed. In contrast, most reported Kaidun and CR lithologies have approximately subequal amounts of saponite and serpentine in matrix. Phyllosilicates in Kaidun are commonly associated with sulfides; no phyllosilicates have been observed as direct overgrowths on olivine or pyroxene. Microprobe analyses of coarse-grained Kaidun saponites indicate that the majority of the exchangeable cations in the saponites studied are Mg2+ and Ca2+, with mior Na+. However, since the results of this study suggest that the saponite in Kaidun has a highly charged interlayer environment, one might speculate that any ammonium (NH4+) if present in the original parent body atmosphere or the reacting solution might be fixed in the interlayers. High- charge smectites are known to fix ammonium ions from solution [3]. There is spectroscopic evidence for ammonium-bearing phases on asteroid Ceres 1 [4]. Most carbonaceous chondrites are known to contain relatively high amounts of nitrogen (up to 3000 ppm) [5]. In order to detect if any of this N is in NH4+ form in the interlayers, we set up our Cameca electron microprobe to detect the nitrogen K-alpha X-ray peak using an ODPB crystal of a wavelength dispersive spectrometer. No nitrogen peak was positively identified on the carbonaceous matrix, nor on any saponites, although it is possible that the electron beam neutralized and evaporated any NH4+ cations before detection. In conclusion, the phyllosilicates in Kaidun are heterogeneously distributed from clast to clast, with highly charged saponite predominating in some clasts; serpentine and saponite are more nearly equally abundant in other clasts. No nitrogen was positively detected in the matrix or in any components in Kaidun by the electron microprobe in this study, although further studies of Kaidun phyllosilicates are in progress. References: [1] Zolensky M. and McSween H. Y. Jr. (1988) in Meteorites and the Early Solar System, Univ. of Arizona, 114-143. [2] Ming D. W. et. al. (1992) LPSC XXIII

  10. Pore Water Convection in Carbonaceous Chondrite Planetesimals

    NASA Astrophysics Data System (ADS)

    Travis, B. J.; Schubert, G.

    2004-12-01

    Chondritic meteorites are so named because they nearly all contain chondrules - small spherules of olivine and pyroxene that condensed and crystallized in the solar nebula and then combined with other material to form a matrix. Their parent bodies did not differentiate, i.e., form a crust and a core. Carbonaceous chondrites (CCs) derived from undifferentiated icy planetesimals. Asteroids of the inner solar system are probably present-day representatives of the early planetesimals. CCs exhibit liquid water-rock interactions. CCs contain small but significant amounts of radiogenic elements (e.g., 26Al), sufficient to warm up an initially cold planetesimal. A warmed-up phase could last millions of years. During the warmed-up phase, liquid water will form, and could evolve into a hydrothermal convective flow. Flowing water will affect the evolution of minerals. We report on results of a numerical study of the thermal evolution of CCs, considering the major factors that control heating history and possible flow, namely: permeability, radiogenic element content, and planetesimal radius. We determine the time sequence of thermal processes, length of time for a convective phase and patterns of flow, amount of fluid flow throughout the planetesimals, and sensitivity of evolution to primary parameters. We use the MAGHNUM code to simulate 3-D dynamic freezing and thawing and flow of water in a self-gravitating, permeable spherical body. Governing equations are Darcy's law, mass conservation, energy conservation, and equation of state for water and ice. We have simulated the evolution of heating, melting of ice, subsequent flow and eventual re-freezing for several examples of CC planetesimals. For a reference simulation, we use typical values from meteorite analyses: 20 % porosity, 1 darcy permeability (~10-12 m2), 3x10-8 wt fraction of 26Al, rock density of 3000 kg/m3, rock specific heat of 1000 J/kg/K, body radius of 50 km, solid rock thermal conductivity of 3 W/m/K. For the

  11. Comparison of mutagenicities in a Salmonella reversion assay mediated by uninduced hepatocytes and hepatocytes from rats pretreated for 1 or 5 days with Aroclor 1254.

    PubMed

    Hass, B S; Heflich, R H; Shaddock, J G; Casciano, D A

    1985-01-01

    Hepatocytes prepared from rats pretreated for 5 days with 500 mg/kg Aroclor 1254 were found to be unsuitable for use in a modified Salmonella mutagenicity assay. These hepatocytes exhibited low viability, did not readily attach to plastic culture dishes, and produced mutagenicity responses with benzo[a]pyrene (B[a]P) and 2-aminofluorene (2AF) that were greatly enhanced by the addition of an NADPH-regenerating system (NADPH-RS). Shortening the Aroclor pretreatment time to 1 day resulted in hepatocytes that exhibited high viability and readily attached to plastic culture dishes. These hepatocytes produced higher numbers of revertants when used to assay the mutagenicities of B[a]P and 2AF than were produced using hepatocytes from animals that were pretreated for 5 days. These reversion frequencies were also higher than those produced using uninduced hepatocytes and were much less affected by the addition of NADPH-RS than were the reversions mediated by the 5-day preinduced hepatocytes. Liver homogenate postmitochondrial fractions (S9s), which were prepared from rats pretreated with Aroclor for 1 or 5 days, were nearly equal in their ability to mediate the mutagenicity of B[a]P and 2AF in the Salmonella/microsome reversion assay. Qualitative differences between the S9- and hepatocyte-mediated mutagenicity of 2AF were found, however. These results indicate that employing hepatocytes from rats pretreated with Aroclor for 1 day, rather than 5 days, results in an enzymatically induced, more-intact cell population that is capable of detecting the mutagenicity of B[a]P and 2AF in a modified Salmonella reversion assay.

  12. Changes in the vertical temperature structure associated with carbonaceous aerosols

    SciTech Connect

    Zhang, Y; Penner, J E; Chuang, C C; Santer, B D; Taylor, K

    2002-02-08

    Carbonaceous aerosols from anthropogenic activities act to both scatter and absorb solar radiation. It has been postulated that absorption by aerosols might significantly alter both the vertical temperature structure of the atmosphere and cloud fraction [Hansen et al. 1997, Ackerman et al, 2000]. Since both effects may alter the assessment of climate change associated with human activities, it is very important to understand both the magnitude and the mechanism by which carbonaceous aerosols affect climate. In this paper, we used a coupled climate and chemistry transport model to estimate the effects of carbonaceous aerosols on the vertical temperature structure and their effects on cloud fraction. A series Of control simulations were also carried out to compare the results of the model in which carbonaceous aerosols interact with climate with those in which they do not. We will present the temperature difference between simulations that include the effect of black carbon on the radiation field and those that do not, both at the surface and in the free troposphere. We will also discuss the change of temperature lapse rate and changes of cloud fraction associated with black carbon.

  13. Comets, carbonaceous chondrites, and interstellar clouds: Condensation of carbon

    NASA Technical Reports Server (NTRS)

    Field, G. B.

    1979-01-01

    Comets, carbonaceous chondrites, and interstellar clouds are discussed in relation to information on interstellar dust. The formation and presence of carbon in stars, comets, and meteorites is investigated. The existence of graphite in the interstellar medium, though it is predicted from thermodynamic calculations, is questioned and the form of carbon contained in comets is considered.

  14. [Probe into the platelets adhesion to carbonaceous biomaterials].

    PubMed

    Li, Bogang; Na, Juanjuan; Yin, Guangfu; Yin, Jie; Zheng, Changqiong

    2004-02-01

    In order to clarify the mechanism of blood coagulation for carbonaceous biomaterials, the plasma rich in platelet was obtaining through the centrifugation of fresh human blood containing anticoagulant. Adhesive tests of platelets to surfaces of DLC, diamond film(DF) and graphite was carried out at 37 degrees C. Then, morphology observation, counting and deformation index calculation of the platelets adhering to surfaces of the three kinds of materials were analyzed by SEM. It has been shown that there is no any platelet on the surface of DLC, but on DF and graphite, a lot of platelets are observed with serious deformation of type III-V. The adhesive amounts of platelet on the surface of graphite are more than those on DF, but deformation index of platelets on the surface of DF is more than that on graphite. Three major conclusions have been obtained through comparative analyses with our previous researches and related literatures: (1) Adhesion, deformation and collection of platelets occurred in succession on material surfaces resulting from protein adsorption are the major mechanism of blood coagulation of carbonaceous materials; (2) Deformation degree of platelets is more important hemocompatibility index than consumption ratio of platelets for carbonaceous materials; (3) The purer the DLC, the better is the hemocompatibility. These conclusions possess important directive function for improving and designing carbonaceous materials used in artificial mechanical heart valves.

  15. [Investigation of Carbonaceous Airborne Particles by Scanning Proton Microprobe].

    PubMed

    Bao, Liang-man; Liu, Jiang-feng; Lei, Qian-tao; Li, Xiao-lin; Zhang, Gui-lin; Li, Yan

    2016-01-15

    Carbonaceous particles are an important component of the atmospheric aerosol particles and important for global climate change, air quality and human health. The PM₁₀ single particles from two environmental monitor locations and seven pollution emission sources were analyzed using scanning proton microprobe (SPM) techniques. The concentration of carbon in individual particles was quantitatively determined by proton non-Rutherford elastic backscattering spectrometry (EBS). The results of this investigation showed that carbonaceous particles were dominant in the pollution sources of coal and oil combustions, diesel busexhaust and automobile exhaust, while inorganic particles were dominant in the sources of steel industry, cement dust and soil dust. Carbonaceous matter was enriched in particles from the city center, while mineral matter was the main component of airborne particles in the industrial area. Elemental mapping of single aerosol particles yielded important information on the chemical reactions of aerosol particles. The micro-PIXE (particle induced X-ray emission) maps of S, Ca and Fe of individual carbonaceous particles showed that sulfuration reaction occurred between SO₂and mineral particles, which increased the sulfur content of particles. PMID:27078933

  16. Surfactant-assisted liquefaction of particulate carbonaceous substances

    NASA Technical Reports Server (NTRS)

    Hsu, G. C. (Inventor)

    1978-01-01

    A slurry of carbonaceous particles such as coal containing an oil soluble polar substituted oleophilic surfactant, suitably an amine substituted long chain hydrocarbon, is liquefied at high temperature and high hydrogen presence. The pressure of surfactant results in an increase in yield and the conversion product contains a higher proportion of light and heavy oils and less asphaltene than products from other liquefaction processes.

  17. Carbonaceous chondrites: Early irradiation and Pu-244 fission records

    NASA Technical Reports Server (NTRS)

    Macdougall, J. D.

    1983-01-01

    The carbonaceous meteorites were studied. The studies which were conducted have evolved from investigations of early irradiation to mineralogic and petrologic studies of refractory inclusions and to an examination of the time scales of alteration processes on the parent bodies. The attached listing of papers and abstracts provide the details.

  18. Process for hydrocracking carbonaceous material in liquid carrier

    DOEpatents

    Duncan, Dennis A.

    1980-01-01

    Solid carbonaceous material is hydrocracked to provide aliphatic and aromatic hydrocarbons for use as gaseous and liquid fuels or chemical feed stock. Particulate carbonaceous material such as coal in slurry with recycled product oil is preheated in liquid state to a temperature of 600.degree.-1200.degree. F. in the presence of hydrogen gas. The product oil acts as a sorbing agent for the agglomerating bitumins to minimize caking within the process. In the hydrocracking reactor, the slurry of oil and carbonaceous particles is heated within a tubular passageway to vaporize the oil and form a gas-solid mixture which is further heated to a hydropyrolysis temperature in excess of 1200.degree. F. The gas-solid mixture is quenched by contact with additional oil to condense normally liquid hydrocarbons for separation from the gases. A fraction of the hydrocarbon liquid product is recycled for quenching and slurrying with the carbonaceous feed. Hydrogen is recovered from the gas for recycle and additional hydrogen is produced by gasification of residual char.

  19. Impact of aging mechanism on model simulated carbonaceous aerosols

    PubMed Central

    Huang, Y.; Wu, S.; Dubey, M.K.; French, N. H. F.

    2013-01-01

    Carbonaceous aerosols including organic carbon and black carbon have significant implications for both climate and air quality. In the current global climate or chemical transport models, a fixed hydrophobic-to-hydrophilic conversion lifetime for carbonaceous aerosol (τ) is generally assumed, which is usually around one day. We have implemented a new detailed aging scheme for carbonaceous aerosols in a chemical transport model (GEOS-Chem) to account for both the chemical oxidation and the physical condensation-coagulation effects, where τ is affected by local atmospheric environment including atmospheric concentrations of water vapor, ozone, hydroxyl radical and sulfuric acid. The updated τ exhibits large spatial and temporal variations with the global average (up to 11 km altitude) calculated to be 2.6 days. The chemical aging effects are found to be strongest over the tropical regions driven by the low ozone concentrations and high humidity there. The τ resulted from chemical aging generally decreases with altitude due to increases in ozone concentration and decreases in humidity. The condensation-coagulation effects are found to be most important for the high-latitude areas, in particular the polar regions, where the τ values are calculated to be up to 15 days. When both the chemical aging and condensation-coagulation effects are considered, the total atmospheric burdens and global average lifetimes of BC, black carbon, (OC, organic carbon) are calculated to increase by 9% (3%) compared to the control simulation, with considerable enhancements of BC and OC concentrations in the Southern Hemisphere. Model evaluations against data from multiple datasets show that the updated aging scheme improves model simulations of carbonaceous aerosols for some regions, especially for the remote areas in the Northern Hemisphere. The improvement helps explain the persistent low model bias for carbonaceous aerosols in the Northern Hemisphere reported in literature. Further

  20. Slurry burner for mixture of carbonaceous material and water

    DOEpatents

    Nodd, Dennis G.; Walker, Richard J.

    1987-01-01

    A carbonaceous material-water slurry burner includes a high pressure tip-emulsion atomizer for directing a carbonaceous material-water slurry into a combustion chamber for burning therein without requiring a support fuel or oxygen enrichment of the combustion air. Introduction of the carbonaceous material-water slurry under pressure forces it through a fixed atomizer wherein the slurry is reduced to small droplets by mixing with an atomizing air flow and directed into the combustion chamber. The atomizer includes a swirler located immediately adjacent to where the fuel slurry is introduced into the combustion chamber and which has a single center channel through which the carbonaceous material-water slurry flows into a plurality of diverging channels continuous with the center channel from which the slurry exits the swirler immediately adjacent to an aperture in the combustion chamber. The swirler includes a plurality of slots around its periphery extending the length thereof through which the atomizing air flows and by means of which the atomizing air is deflected so as to exert a maximum shear force upon the carbonaceous material-water slurry as it exits the swirler and enters the combustion chamber. A circulating coolant system or boiler feed water is provided around the periphery of the burner along the length thereof to regulate burner operating temperature, eliminate atomizer plugging, and inhibit the generation of sparklers, thus increasing combustion efficiency. A secondary air source directs heated air into the combustion chamber to promote recirculation of the hot combustion gases within the combustion chamber.

  1. Delivery of dark material to Vesta via carbonaceous chondritic impacts

    NASA Astrophysics Data System (ADS)

    Reddy, Vishnu; Le Corre, Lucille; O'Brien, David P.; Nathues, Andreas; Cloutis, Edward A.; Durda, Daniel D.; Bottke, William F.; Bhatt, Megha U.; Nesvorny, David; Buczkowski, Debra; Scully, Jennifer E. C.; Palmer, Elizabeth M.; Sierks, Holger; Mann, Paul J.; Becker, Kris J.; Beck, Andrew W.; Mittlefehldt, David; Li, Jian-Yang; Gaskell, Robert; Russell, Christopher T.; Gaffey, Michael J.; McSween, Harry Y.; McCord, Thomas B.; Combe, Jean-Philippe; Blewett, David

    2012-11-01

    NASA’s Dawn spacecraft observations of Asteroid (4) Vesta reveal a surface with the highest albedo and color variation of any asteroid we have observed so far. Terrains rich in low albedo dark material (DM) have been identified using Dawn Framing Camera (FC) 0.75 μm filter images in several geologic settings: associated with impact craters (in the ejecta blanket material and/or on the crater walls and rims); as flow-like deposits or rays commonly associated with topographic highs; and as dark spots (likely secondary impacts) nearby impact craters. This DM could be a relic of ancient volcanic activity or exogenic in origin. We report that the majority of the spectra of DM are similar to carbonaceous chondrite meteorites mixed with materials indigenous to Vesta. Using high-resolution seven color images we compared DM color properties (albedo, band depth) with laboratory measurements of possible analog materials. Band depth and albedo of DM are identical to those of carbonaceous chondrite xenolith-rich howardite Mt. Pratt (PRA) 04401. Laboratory mixtures of Murchison CM2 carbonaceous chondrite and basaltic eucrite Millbillillie also show band depth and albedo affinity to DM. Modeling of carbonaceous chondrite abundance in DM (1-6 vol.%) is consistent with howardite meteorites. We find no evidence for large-scale volcanism (exposed dikes/pyroclastic falls) as the source of DM. Our modeling efforts using impact crater scaling laws and numerical models of ejecta reaccretion suggest the delivery and emplacement of this DM on Vesta during the formation of the ∼400 km Veneneia basin by a low-velocity (<2 km/s) carbonaceous impactor. This discovery is important because it strengthens the long-held idea that primitive bodies are the source of carbon and probably volatiles in the early Solar System.

  2. Comets, Carbonaceous Meteorites, and the Origin of the Biosphere

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2007-01-01

    Evidence for indigenous microfossils in carbonaceous meteorites suggests that the paradigm of the endogenous origin of life on Earth should be reconsidered. It is now widely accepted that comets and carbonaceous meteorites played an important role in the delivery of water, organics and life critical biogenic elements to the early Earth and facilitated the origin and evolution of the Earth's Biosphere. However; the detection of embedded microfossils and mats in carbonaceous meteorites implies that comets and meteorites may have played a direct role in the delivery of intact microorganisms and that the Biosphere may extend far into the Cosmos. Recent space observations have found the nuclei of comets to have very low albedos (approx.0.03) and. these jet-black surfaces become very hot (T approx. 400 K) near perihelion. This paper reviews recent observational data-on comets and suggests that liquid water pools could exist in cavities and fissures between the internal ices and rocks and the exterior carbonaceous crust. The presence of light and liquid water near the surface of the nucleus enhances the possibility that comets could harbor prokaryotic extremophiles (e.g., cyanobacteria) capable of growth over a wide range of temperatures. The hypothesis that comets are the parent bodies of the CI1 and the CM2 carbonaceous meteorites is advanced. Electron microscopy images will be presented showing forms interpreted as indigenous-microfossils embedded' in freshly. fractured interior surfaces of the Orgueil (CI1) and Murchison (CM2) meteorites. These forms are consistent in size and morphologies with known morphotypes of all five orders of Cyanobacteriaceae: Energy Dispersive X-ray Spectroscopy (EDS) elemental data shows that the meteoritic forms have anomalous C/O; C/N; and C/S as compared with modern extremophiles and cyanobacteria. These images and spectral data indicate that the clearly biogenic and embedded remains cannot be interpreted as recent biological

  3. A null c-myc mutation causes lethality before 10.5 days of gestation in homozygotes and reduced fertility in heterozygous female mice.

    PubMed

    Davis, A C; Wims, M; Spotts, G D; Hann, S R; Bradley, A

    1993-04-01

    To directly assess c-myc function in cellular proliferation, differentiation, and embryogenesis, we have used homologous recombination in embryonic stem cells to generate both heterozygous and homozygous c-myc mutant ES cell lines. The mutation is a null allele at the protein level. Mouse chimeras from seven heterozygous cell lines transmitted the mutant allele to their offspring. The analysis of embryos from two clones has shown that the mutation is lethal in homozygotes between 9.5 and 10.5 days of gestation. The embryos are generally smaller and retarded in development compared with their littermates. Pathologic abnormalities include the heart, pericardium, neural tube, and delay or failure in turning of the embryo. Heterozygous females have reduced fertility owing to embryonic resorption before 9.5 days of gestation in 14% of implanted embryos. c-Myc protein is necessary for embryonic survival beyond 10.5 days of gestation; however, it appears to be dispensable for cell division both in ES cell lines and in the embryo before that time.

  4. Time-resolved measurements of PM2.5 carbonaceous aerosols at Gosan, Korea.

    PubMed

    Batmunkh, T; Kim, Y J; Lee, K Y; Cayetano, M G; Jung, J S; Kim, S Y; Kim, K C; Lee, S J; Kim, J S; Chang, L S; An, J Y

    2011-11-01

    In order to better understand the characteristics of atmospheric carbonaceous aerosol at a background site in Northeast Asia, semicontinuous organic carbon (OC) and elemental carbon (EC), and time-resolved water-soluble organic carbon (WSOC) were measured by a Sunset OC/ EC and a PILS-TOC (particle-into-liquid sampler coupled with an online total organic carbon) analyzer, respectively, at the Gosan supersite on Jeju Island, Korea, in the summer (May 28-June 17) and fall (August 24-September 30) of 2009. Hourly average OC concentration varied in the range of approximately 0.87-28.38 microgC m-3, with a mean of 4.07+/- 2.60 microgC m-3, while the hourly average EC concentration ranged approximately from 0.04 to 8.19 .microgC m-3, with a mean of 1.35 +/- 0.71 microgC m-3, from May 28 to June 17, 2009. During the fall season, OC varied in the approximate range 0.9-9.6 microgC m-3, with a mean of 2.30 +/-0.80 microgC m-3, whereas EC ranged approximately from 0.01 to 5.40 microgC m-3, with a mean of 0.66 +/- 0.38 microgC m-3. Average contributions of EC to TC and WSOC to OC were 26.0% +/- 9.7% and 20.6% +/-7.4%, and 37.6% +/- 23.5% and 57.2% +/- 22.2% during summer and fall seasons, respectively. As expected, clear diurnal variation of WSOC/OC was found in summer, varying from 0.22 during the nighttime up to 0.72 during the daytime, mainly due to the photo-oxidation process. In order to investigate the effect of air mass pathway on the characteristics of carbonaceous aerosol, 5-day back-trajectory analysis was conducted using the HYSPLIT model. The air mass pathways were classified into four types: Continental (CC), Marine (M), East Sea (ES) and Korean Peninsula (KP). The highest OC/EC ratio of 3.63 was observed when air mass originated from the Continental area (CC). The lowest OC/EC ratio of 0.79 was measured when air mass originated from the Marine area (M). A high OC concentration was occasionally observed at Gosan due to local biomass burning activities. The

  5. Fertility in Angus cross beef cows following 5-day CO-Synch + CIDR or 7-day CO-Synch + CIDR estrus synchronization and timed artificial insemination.

    PubMed

    Whittier, William D; Currin, John F; Schramm, Holly; Holland, Sarah; Kasimanickam, Ramanathan K

    2013-12-01

    The present study determined whether a 5-day CO-Synch + controlled internal drug release (CIDR) protocol with two doses of PGF2α would improve timed artificial insemination (AI) pregnancy rate compared with 7-day CO-Synch + CIDR protocol in beef cows. Angus cross beef cows (N = 1817) at 12 locations were randomly assigned to 5-day CO-Synch + CIDR or 7-day CO-Synch + CIDR groups. All cows received 100 μg of GnRH and a CIDR insert on Day 0. Cows (n = 911) in the 5-day CO-Synch + CIDR group received two doses of 25 mg PGF, the first dose given on Day 5 at CIDR removal and the second dose 6 hours later, and 100 μg GnRH on Day 8 and were inseminated concurrently, 72 hours after CIDR removal. Cows (n = 906) in 7-day CO-Synch + CIDR group received 25 mg of PGF at CIDR removal on Day 7, and 100 μg GnRH on Day 10 and were inseminated concurrently, 66 to 72 hours after CIDR removal. All cows were fitted with a heat detector aid at CIDR removal and were observed twice daily until insemination for estrus and heat detector aid status. Accounting for estrus expression at or before AI (P < 0.0001) and body condition score (P < 0.01), cows in the 5-day CO-Synch + CIDR group had greater AI pregnancy rate compared with cows in the 7-day CO-Synch + CIDR group (58.1% vs. 55.1%; P = 0.04). More cows that exhibited estrus at or before AI became pregnant compared with cows that did not [65.7% (681/1037) vs. 44.5% (347/780); P < 0.0001]. The AI pregnancy rate was lesser for cows with body condition ≤4 [≤4 - 49.3% (101/219), 5-6 - 57.9%; >6 - 55.8%]. The mean AI pregnancy rate difference between treatment groups and projected economic outcome varied among locations. In conclusion, cows synchronized with the 5-day CO-Synch + CIDR protocol had greater AI pregnancy rate than those that received the 7-day CO-Synch + CIDR protocol.

  6. Detection and formation scenario of citric acid, pyruvic acid, and other possible metabolism precursors in carbonaceous meteorites.

    PubMed

    Cooper, George; Reed, Chris; Nguyen, Dang; Carter, Malika; Wang, Yi

    2011-08-23

    Carbonaceous meteorites deliver a variety of organic compounds to Earth that may have played a role in the origin and/or evolution of biochemical pathways. Some apparently ancient and critical metabolic processes require several compounds, some of which are relatively labile such as keto acids. Therefore, a prebiotic setting for any such individual process would have required either a continuous distant source for the entire suite of intact precursor molecules and/or an energetic and compact local synthesis, particularly of the more fragile members. To date, compounds such as pyruvic acid, oxaloacetic acid, citric acid, isocitric acid, and α-ketoglutaric acid (all members of the citric acid cycle) have not been identified in extraterrestrial sources or, as a group, as part of a "one pot" suite of compounds synthesized under plausibly prebiotic conditions. We have identified these compounds and others in carbonaceous meteorites and/or as low temperature (laboratory) reaction products of pyruvic acid. In meteorites, we observe many as part of three newly reported classes of compounds: keto acids (pyruvic acid and homologs), hydroxy tricarboxylic acids (citric acid and homologs), and tricarboxylic acids. Laboratory syntheses using (13)C-labeled reactants demonstrate that one compound alone, pyruvic acid, can produce several (nonenzymatic) members of the citric acid cycle including oxaloacetic acid. The isotopic composition of some of the meteoritic keto acids points to interstellar or presolar origins, indicating that such compounds might also exist in other planetary systems.

  7. Slurry burner for mixture of carbonaceous material and water

    DOEpatents

    Nodd, D.G.; Walker, R.J.

    1985-11-05

    The present invention is intended to overcome the limitations of the prior art by providing a fuel burner particularly adapted for the combustion of carbonaceous material-water slurries which includes a stationary high pressure tip-emulsion atomizer which directs a uniform fuel into a shearing air flow as the carbonaceous material-water slurry is directed into a combustion chamber, inhibits the collection of unburned fuel upon and within the atomizer, reduces the slurry to a collection of fine particles upon discharge into the combustion chamber, and regulates the operating temperature of the burner as well as primary air flow about the burner and into the combustion chamber for improved combustion efficiency, no atomizer plugging and enhanced flame stability.

  8. Plagioclase-rich inclusions in carbonaceous chondrite meteorites - Liquid condensates?

    NASA Technical Reports Server (NTRS)

    Wark, D. A.

    1987-01-01

    The characteristics and formation of coarse-grained, plagioclase-rich inclusions are investigated. The textures, mineralogical compositions, and initial Al-26/Al-27 ratios for the plagioclase-rich inclusions are described. It is observed that plagioclase-rich inclusions in carbonaceous chondrites are either Ca-Al-rich inclusions (CAIs) composed of 30-60 vol pct anorthite, and less than 35 vol pct Ti-Al-pyroxene and melilite, or CA chondrites composed of plagioclase, pyroxene, olivine, spinel, and melilite. It is observed that CA chondrules are chemically and mineralogically the most similar components shared by carbonaceous and ordinary chondrites. The textural changes observed in the inclusions are examined. The data reveal that the CAIs have three textural groups: coarse anorthite laths, equigranular anorthite and Ti-Al-pyroxene, and lacy Ti-Al-pyroxene and fine-grained anorthite.

  9. Amino acids in the Yamato carbonaceous chrondrite from Antarctica

    NASA Technical Reports Server (NTRS)

    Shimoyama, A.; Ponnamperuma, C.; Yanai, K.

    1979-01-01

    Evidence for the presence of amino acids of extraterrestrial origin in the Antarctic Yamato carbonaceous chrondrite is presented. Hydrolyzed and nonhydrolyzed water-extracted amino acid samples from exterior, middle and interior portions of the meteorite were analyzed by an amino acid analyzer and by gas chromatography of N-TFA-isopropyl amino acid derivatives. Nine protein and six nonprotein amino acids were detected in the meteorite at abundances between 34 and less than one nmole/g, with equal amounts in interior and exterior portions. Nearly equal abundances of the D and L enantiomers of alanine, aspartic acid and glutamic acid were found, indicating the abiotic, therefore extraterrestrial, origin of the amino acids. The Antarctic environment and the uniformity of protein amino acid abundances are discussed as evidence against the racemization of terrestrially acquired amino acids, and similarities between Yamato amino acid compositions and the amino acid compositions of the Murchison and Murray type II carbonaceous chrondrites are indicated.

  10. Electron microscopy of carbonaceous matter in Allende acid residues

    NASA Technical Reports Server (NTRS)

    Lumpkin, G. R.

    1982-01-01

    On the basis of characteristic diffuse ring diffraction patterns, much of the carbonaceous matter in a large suite of Allende acid residues has been identified as a variety of turbostratic carbon. Crystallites of this phase contain randomly stacked sp(2) hybridized carbon layers and diffraction patterns resemble those from carbon black and glassy carbon. Carbynes are probably absent, and are certainly restricted to less than 0.5% of these acid residues. The work of Ott et al. (1981) provides a basis for the possibility that turbostratic carbon is a carrier of noble gases, but an additional component - amorphous carbon - may be necessary to explain the high release temperatures of noble gases as well as the glassy character of many of the carbonaceous particles. Carbynes are considered to be questionable as important carriers of noble gases in the Allende acid residues.

  11. Electron microscopy of carbonaceous matter in Allende acid residues

    NASA Astrophysics Data System (ADS)

    Lumpkin, G. R.

    On the basis of characteristic diffuse ring diffraction patterns, much of the carbonaceous matter in a large suite of Allende acid residues has been identified as a variety of turbostratic carbon. Crystallites of this phase contain randomly stacked sp(2) hybridized carbon layers and diffraction patterns resemble those from carbon black and glassy carbon. Carbynes are probably absent, and are certainly restricted to less than 0.5% of these acid residues. The work of Ott et al. (1981) provides a basis for the possibility that turbostratic carbon is a carrier of noble gases, but an additional component - amorphous carbon - may be necessary to explain the high release temperatures of noble gases as well as the glassy character of many of the carbonaceous particles. Carbynes are considered to be questionable as important carriers of noble gases in the Allende acid residues.

  12. Apparatus and method for compacting, degassing and carbonizing carbonaceous agglomerates

    SciTech Connect

    Theodore, F.W.

    1980-08-19

    An apparatus for compacting, degassing and carbonizing carbonaceous agglomerates is described. The apparatus comprises a rotary kiln having an agglomerate inlet means for introducing green agglomerates into the kiln near the inlet of the kiln and a heating medium inlet for introducing a heating medium comprising a finely divided solid into the kiln at a preselected location intermediate the inlet end of the kiln and the outlet end of the kiln to produce a mixture at a temperature above the carbonizing temperature of the agglomerates and a sieve positioned to receive the products from the rotary kiln and separate the heating medium and the compacted, degassed, carbonized agglomerate product. A method for producing compacted, degassed, carbonized carbonaceous agglomerates by the use of the apparatus is also disclosed.

  13. Formation and composition of the moon. [carbonaceous meteorites

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1974-01-01

    Many of the properties of the moon are discussed including the enrichment in Ca, Al, Ti, U, Th, Ba, Sr and the REE and the depletion in Fe, Rb, K, Na and other volatiles which could be understood if the moon represents a high temperature condensate from the solar nebula. Thermodynamic calculations show that Ca, Al and Ti rich compounds condense first in a cooling nebula. The initial high temperature mineralogy is gehlenite, spinel, perovskite, Ca-Al-rich pyroxenes and anorthite. Inclusions in Type III carbonaceous chondrites such as the Allende meteorite are composed primarily of these minerals and, in addition, are highly enriched in refractories such as REE relative to carbonaceous chondrites. These inclusions can yield basalt and anorthosite in the proportions required to eliminate the europium anomaly, leaving a residual spinel-melilite interior.

  14. Characterization of carbonaceous materials using extraction with supercritical pentane

    SciTech Connect

    Fetzer, J.C.; Graham, J.A.; Arrendale, R.R.; Klee, M.S.; Rogers, L.B.

    1980-05-30

    The use of carbonaceous adsorbents is limited by irreversible adsorption of some compounds so the use of supercritical pentane as an extracting solvent was examined. Carbon black appeared to be broken down slowly, but continuously, by the penane. To see if other types of carbon behaved similarly, high purity graphite, technical grade graphites, active carbons, and charcoals were examined. The extracts were characterized by uv spectroscopy, packed column chromatography using flame ionization and flame photometric detectors, and capillary GC/MS. The extracts were characteristic for each class of carbonaceous material. The high purity graphite yielded large, polycyclic aromatic compounds; the technical grade graphites yielded alkanes and alkyl-substituted benzenes and naphthalenes; the active carbons yielded alkanes, dienes, and small amounts of alkyl-substituted benzenes; and the charcoals yielded almost entirely alkanes in small amounts.

  15. Organic matter in carbonaceous meteorites: past, present and future research.

    PubMed

    Sephton, Mark A

    2005-12-15

    Carbonaceous meteorites are fragments of ancient asteroids that have remained relatively unprocessed since the formation of the Solar System. These carbon-rich objects provide a record of prebiotic chemical evolution and a window on the early Solar System. Many compound classes are present reflecting a rich organic chemical environment during the formation of the planets. Recent theories suggest that similar extraterrestrial organic mixtures may have acted as the starting materials for life on Earth.

  16. Co-processing of carbonaceous solids and petroleum oil

    SciTech Connect

    Gupta, A.; Greene, M.I.

    1992-06-09

    This patent describes a process for liquefying a carbonaceous solid in a thermal liquefaction heater in a first stage thermal liquefaction in the presence of a liquefaction solvent, followed by a second stage catalytic hydrogenation wherein liquefaction solvent is recovered from the second stage for use in the first stage. This patent describes improvement in introducing a liquefaction solvent to the first stage liquefaction heater.

  17. Origin of magnetite and pyrrhotite in carbonaceous chondrites

    USGS Publications Warehouse

    Herndon, J.M.; Rowe, M.W.; Larson, E.E.; Watson, D.E.

    1975-01-01

    CARBONACEOUS chondrites, although comprising only about 2% of known meteorites, are extremely interesting for scientific investigation. Their mineral constitution, and the correspondence between their bulk chemical composition and the solar abundance of condensable elements, indicate that minimum chemical fractionation and thermal alteration have occurred. The mineral phases observed in these primitive chondrites are sufficiently unique, with respect to other meteorite classes, to have elicited considerable speculation about the physical environment in which they formed1-7. ?? 1975 Nature Publishing Group.

  18. Characteristics and sources of carbonaceous aerosols from Shanghai, China

    NASA Astrophysics Data System (ADS)

    Cao, J.-J.; Zhu, C.-S.; Tie, X.-X.; Geng, F.-H.; Xu, H.-M.; Ho, S. S. H.; Wang, G.-H.; Han, Y.-M.; Ho, K.-F.

    2012-07-01

    An intensive investigation of carbonaceous PM2.5 and TSP from Pudong (China) was conducted as part of the MIRAGE-Shanghai Experiment in 2009. Data for organic and elemental carbon (OC and EC), organic species, including C17 to C40 n-alkanes and 17 polycyclic aromatic hydrocarbons (PAHs), and stable C isotopes OC (δ13COC) and EC (δ13CEC) were used to evaluate the aerosols' temporal variations and identify presumptive sources. High OC/EC ratios indicated a large fraction of secondary organic aerosol (SOA); high char/soot ratios indicated stronger contributions to EC from motor vehicles and coal combustion than biomass burning. Diagnostic ratios of PAHs indicated that much of the SOA was produced via coal combustion. Isotope abundances (δ13COC = -24.5 ± 0.8‰ and δ13CEC = -25.1 ± 0.6‰) indicated that fossil fuels were the most important source for carbonaceous PM2.5, with lesser impacts from biomass burning and natural sources. An EC tracer system and isotope mass balance calculations showed that the relative contributions to total carbon from coal combustion, motor vehicle exhaust, and SOA were 41%, 21%, and 31%: other primary sources such as marine, soil and biogenic emissions contributed 7%. Combined analyses of OC and EC, n-alkanes and PAHs, and stable carbon isotopes provide a new way to apportion the sources of carbonaceous particles.

  19. Kinetics of volatile extraction from carbonaceous chondrites: Dehydration of talc

    NASA Technical Reports Server (NTRS)

    Bose, Kunal; Ganguly, Jibamitra

    1991-01-01

    Carbonaceous chondrites are believed to be the primary constituents of near-Earth asteroids and Phobos and Deimos, and are potential resources of fuels that may be exploited for future planetary missions. Calculations of equilibrium phase relations suggest that talc (Ta) and antigorite (Ant) are likely to be the major hydrous phases in the C1 and C2 meteorites (Ganguly and Saxena, 1989), which constitute the most volatile rich classes of carbonaceous chondrites. The dehydration kinetics of talc are studied as a function of temperature, grain size, composition and fluid fugacity, as part of a systematic study of the reaction kinetics of the volatile bearing phases that are either known or likely to be present in carbonaceous chondrites. The dehydration kinetics were investigated at 1 bar, 775 to 875 C by monitoring the in-situ weight loss as a function of time of a natural talc. The talc platelets had a dimension of 0.8 to 1 micron. The run durations varied from 233.3 hours at 775 C (48 percent dehydration) to 20.8 hours at 875 C (80 pct. dehydration). The results can be adequately represented by a given rate equation. Theoretical analysis suggests that the reduction in the concentration of H2O in the environment of dehydrating talc, as would be encountered in processing chondritic materials, will have negligible effect on the rate of dehydration, unless there is a change of reaction mechanism owing to the presence of other volatile species.

  20. Indigenous Carbonaceous Matter in the Nakhla Mars Meteorite

    NASA Technical Reports Server (NTRS)

    Clemett, S. J.; Thomas-Keprta, K. L.; Rahman, Z.; Le, L.; Wentworth, S. J.; Gibson, E. K.; McKay, D. S.

    2016-01-01

    Detailed microanalysis of the Martian meteorite Nakhla has shown there are morphologically distinct carbonaceous features spatially associated with low-T aqueous alteration phases including salts and id-dingsite. A comprehensive suite of analytical instrumentation including optical microscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) spectroscopy, focused ion beam (FIB) microscopy, transmission electron microscopy (TEM), two-step laser mass spectrometry (mu-L(sup 2)MS), laser mu-Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and nanoscale secondary ion mass spectrometry (NanoSIMS) are being used to characterize the carbonaceous matter and host mineralogy. The search for carbonaceous matter on Mars has proved challenging. Viking Landers failed to unambiguously detect simple organics at either of the two landing sites although the Martian surface is estimated to have acquired at least 10(exp15) kg of C as a consequence of meteoritic accretion over the last several Ga. The dearth of organics at the Martian surface has been attributed to various oxidative processes including UV photolysis and peroxide activity. Consequently, investigations of Martian organics need to be focused on the sub-surface regolith where such surface processes are either severely attenuated or absent. Fortuitously since Martian meteorites are derived from buried regolith materials they provide a unique opportunity to study Martian organic geochemistry.

  1. The contribution of carbonaceous aerosols to climate change

    SciTech Connect

    Penner, J.E. |; Chuang, C.C.; Liousse, C.

    1996-04-01

    Contribution of aerosols to climate change results from two effects: clear-sky and cloudy-sky forcing. The clear-sky climate forcing by carbonaceous aerosols from biomass burning and fossil fuel burning depends on the relative contribution of scattering and absorption by the aerosols which in turn depends on the fraction of aerosol mass associated with black carbon and its size distribution. This paper reviews estimates for the emission of carbonaceous aerosols, placing these estimates in the context of estimates for the emissions of anthropogenic and natural sulfate aerosols and natural sources of organic particulate matter. The cloudy-sky forcing from carbonaceous aerosols is difficult to estimate because, among other factors, it depends on the amount of absorption by the aerosols in the cloud. It is also highly sensitive to the assumed pre-existing, natural aerosol abundance. An upper limit for this cloudy-sky forcing is -4.4 W/m{sup 2}, but may range as low as -2.4 W/m{sup 2}, depending on background aerosol concentrations. These estimates do not yet account for absorption of radiation by black carbon associated with cloud or the presence of pre-existing dust particles.

  2. Carbonaceous aerosols influencing atmospheric radiation: Black and organic carbon

    SciTech Connect

    Penner, J.E.

    1994-09-01

    Carbonaceous particles in the atmosphere may both scatter and absorb solar radiation. The fraction associated with the absorbing component is generally referred to as black carbon (BC) and is mainly produced from incomplete combustion processes. The fraction associated with condensed organic compounds is generally referred to as organic carbon (OC) or organic matter and is mainly scattering. Absorption of solar radiation by carbonaceous aerosols may heat the atmosphere, thereby altering the vertical temperature profile, while scattering of solar radiation may lead to a net cooling of the atmosphere/ocean system. Carbonaceous aerosols may also enhance the concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the fine particle (D < 2.5 {mu}m) source rates of both OC and BC. The source rates for anthropogenic organic aerosols may be as large as the source rates for anthropogenic sulfate aerosols, suggesting a similar magnitude of direct forcing of climate. The role of BC in decreasing the amount of reflected solar radiation by OC and sulfates is discussed. The total estimated forcing depends on the source estimates for organic and black carbon aerosols which are highly uncertain. The role of organic aerosols acting as cloud condensation nuclei (CCN) is also described.

  3. Distinct Distribution of Purines in CM and CR Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Callahan, Michael P.; Stern, Jennifer C.; Glavin, Daniel P.; Smith, Karen E.; Martin, Mildred G.; Dworkin, Jason P.

    2010-01-01

    Carbonaceous meteorites contain a diverse suite of organic molecules and delivered pre biotic organic compounds, including purines and pyrimidines, to the early Earth (and other planetary bodies), seeding it with the ingredients likely required for the first genetic material. We have investigated the distribution of nucleobases in six different CM and CR type carbonaceous chondrites, including fivc Antarctic meteorites never before analyzed for nucleobases. We employed a traditional formic acid extraction protocol and a recently developed solid phase extraction method to isolate nucleobases. We analyzed these extracts by high performance liquid chromatography with UV absorbance detection and tandem mass spectrometry (HPLC-UV -MS/MS) targeting the five canonical RNAIDNA bases and hypoxanthine and xanthine. We detected parts-per-billion levels of nucleobases in both CM and CR meteorites. The relative abundances of the purines found in Antarctic CM and CR meteorites were clearly distinct from each other suggesting that these compounds are not terrestrial contaminants. One likely source of these purines is formation by HCN oligomerization (with other small molecules) during aqueous alteration inside the meteorite parent body. The detection of the purines adenine (A), guanine (0), hypoxanthine (HX), and xanthine (X) in carbonaceous meteorites indicates that these compounds should have been available on the early Earth prior to the origin of the first genetic material.

  4. Development and validation of a 5-day-ahead hay fever forecast for patients with grass-pollen-induced allergic rhinitis

    NASA Astrophysics Data System (ADS)

    de Weger, Letty A.; Beerthuizen, Thijs; Hiemstra, Pieter S.; Sont, Jacob K.

    2014-08-01

    One-third of the Dutch population suffers from allergic rhinitis, including hay fever. In this study, a 5-day-ahead hay fever forecast was developed and validated for grass pollen allergic patients in the Netherlands. Using multiple regression analysis, a two-step pollen and hay fever symptom prediction model was developed using actual and forecasted weather parameters, grass pollen data and patient symptom diaries. Therefore, 80 patients with a grass pollen allergy rated the severity of their hay fever symptoms during the grass pollen season in 2007 and 2008. First, a grass pollen forecast model was developed using the following predictors: (1) daily means of grass pollen counts of the previous 10 years; (2) grass pollen counts of the previous 2-week period of the current year; and (3) maximum, minimum and mean temperature ( R 2 = 0.76). The second modeling step concerned the forecasting of hay fever symptom severity and included the following predictors: (1) forecasted grass pollen counts; (2) day number of the year; (3) moving average of the grass pollen counts of the previous 2 week-periods; and (4) maximum and mean temperatures ( R 2 = 0.81). Since the daily hay fever forecast is reported in three categories (low-, medium- and high symptom risk), we assessed the agreement between the observed and the 1- to 5-day-ahead predicted risk categories by kappa, which ranged from 65 % to 77 %. These results indicate that a model based on forecasted temperature and grass pollen counts performs well in predicting symptoms of hay fever up to 5 days ahead.

  5. Development and validation of a 5-day-ahead hay fever forecast for patients with grass-pollen-induced allergic rhinitis.

    PubMed

    de Weger, Letty A; Beerthuizen, Thijs; Hiemstra, Pieter S; Sont, Jacob K

    2014-08-01

    One-third of the Dutch population suffers from allergic rhinitis, including hay fever. In this study, a 5-day-ahead hay fever forecast was developed and validated for grass pollen allergic patients in the Netherlands. Using multiple regression analysis, a two-step pollen and hay fever symptom prediction model was developed using actual and forecasted weather parameters, grass pollen data and patient symptom diaries. Therefore, 80 patients with a grass pollen allergy rated the severity of their hay fever symptoms during the grass pollen season in 2007 and 2008. First, a grass pollen forecast model was developed using the following predictors: (1) daily means of grass pollen counts of the previous 10 years; (2) grass pollen counts of the previous 2-week period of the current year; and (3) maximum, minimum and mean temperature (R (2)=0.76). The second modeling step concerned the forecasting of hay fever symptom severity and included the following predictors: (1) forecasted grass pollen counts; (2) day number of the year; (3) moving average of the grass pollen counts of the previous 2 week-periods; and (4) maximum and mean temperatures (R (2)=0.81). Since the daily hay fever forecast is reported in three categories (low-, medium- and high symptom risk), we assessed the agreement between the observed and the 1- to 5-day-ahead predicted risk categories by kappa, which ranged from 65 % to 77 %. These results indicate that a model based on forecasted temperature and grass pollen counts performs well in predicting symptoms of hay fever up to 5 days ahead.

  6. The effect of a single high dose of PGF2α administered to dairy cattle 3.5 days after ovulation on luteal function, morphology, and follicular dynamics.

    PubMed

    Cuervo-Arango, J; García-Roselló, E; García-Muñoz, A; Valldecabres-Torres, X; Martínez-Ros, P; González-Bulnes, A

    2011-12-01

    A single treatment with PGF2α is assumed to have no luteolytic effect on cows with corpora lutea < 5 days old. The objective of this study was to determine the effect of a single high dose of PGF2α administered to dairy cattle on the morphology and function of the early CL. The study followed a crossover design with a treatment cycle in which 50 mg of dinoprost were administered 3.5 days postovulation and a control untreated cycle. Ultrasound examination and blood samples were performed during the two consecutive cycles. Corpus luteum (CL) diameter, progesterone concentration, and follicular dynamics characteristics were compared between control and treated cycles. Two of nine cows (22%) developed full luteolysis. The remaining seven cows (78%) had partial luteolysis with a decrease (P < 0.05) in progesterone concentration and CL diameter for two and 12 days post-treatment, respectively. The interovulatory interval of treated cycles (19.7 ± 2.4 days) was not different (P > 0.05) from that of controls (23.8 ± 0.9 days). The transient reduction in progesterone of cows with partial luteolysis had no effect on the proportion of cows with two or three follicular waves, follicle growth rate, or preovulatory diameter (P > 0.05). Two cows developed ovarian cystic degeneration during the PGF2α-induced cycle. In conclusion, the treatment of cows with a high dose of PGF2α 3.5 days postovulation induced some degree of luteolysis in all treated cows. This resulted in partial luteolysis in 78% of treated animals and in full luteolysis in the remaining 22%.

  7. Artifact free denuder method for sampling of carbonaceous aerosols

    NASA Astrophysics Data System (ADS)

    Mikuška, P.; Vecera, Z.; Broškovicová, A.

    2003-04-01

    Over the past decade, a growing attention has been focused on the carbonaceous aerosols. Although they may account for 30--60% of the total fine aerosol mass, their concentration and formation mechanisms are not well understood, particularly in comparison with major fine particle inorganic species. The deficiency in knowledge of carbonaceous aerosols results from their complexity and because of problems associated with their collection. Conventional sampling techniques of the carbonaceous aerosols, which utilize filters/backup adsorbents suffer from sampling artefacts. Positive artifacts are mainly due to adsorption of gas-phase organic compounds by the filter material or by the already collected particles, whereas negative artifacts arise from the volatilisation of already collected organic compounds from the filter. Furthermore, in the course of the sampling, the composition of the collected organic compounds may be modified by oxidants (O_3, NO_2, PAN, peroxides) that are present in the air passing through the sampler. It is clear that new, artifact free, method for sampling of carbonaceous aerosols is needed. A combination of a diffusion denuder and a filter in series is very promising in this respect. The denuder is expected to collect gaseous oxidants and gas-phase organic compounds from sample air stream prior to collection of aerosol particles on filters, and eliminate thus both positive and negative sampling artifacts for carbonaceous aerosols. This combination is subject of the presentation. Several designs of diffusion denuders (cylindrical, annular, parallel plate, multi-channel) in combination with various types of wall coatings (dry, liquid) were examined. Special attention was given to preservation of the long-term collection efficiency. Different adsorbents (activated charcoal, molecular sieve, porous polymers) and sorbents coated with various chemical reagents (KI, Na_2SO_3, MnO_2, ascorbic acid) or chromatographic stationary phases (silicon oils

  8. [Structural and functional organization of the vestibular apparatus in rats maintained under weightless conditions for 19.5 days aboard the satellite "Cosmos-782"].

    PubMed

    Vinnikov, Ia A; Gazenko, O G; Titova, L K; Bronshteĭn, A A; Govardovskiĭ, V I

    1978-01-01

    Vestibular apparatus was investigated in rats subjected to weightlessness for 19.5 days in the satelite "Cosmos-782" and experienced acceleration on launching and landing. Some structural and functional changes were noted. They were seen in otolith clinging to the utricular receptor surface and in the peripheral arrangement of the nucleolus in the nuclei of the receptor cells. It is also possible that increased edema of the vestibular tissue resulted in destruction of some receptor cells, and within the otolith--changes in the form and structure of otoconia. In the horizontal crista the cupula was separated.

  9. Structural and Functional Organization of the Vestibular Apparatus in Rats Subjected to Weightlessness for 19.5 Days Aboard the Kosmos-782 Satellite

    NASA Technical Reports Server (NTRS)

    Vinnikov, Y. A.; Gazenko, O. G.; Titova, L. K.; Bronshteyn, A. A.; Govardovskiy, V. I.; Pevzner, R. A.; Gribakin, G. G.; Aronova, M. Z.; Kharkeyevich, T. A.; Tsirulis, T. P.

    1978-01-01

    The vestibular apparatus was investigated in rats subjected to weightlessness for 19.5 days. The vestibular apparatus was removed and its sections were fixed in a glutaraldehyde solution for investigation by light and electron microscopes. Structural and functional charges were noted in the otolith portions of the ear, with the otolith particles clinging to the utricular receptor surface and with the peripheral arrangement of the nucleolus in the nuclei of the receptor cells. It is possible that increased edema of the vestibular tissue resulted in the destruction of some receptor cells and in changes in the form and structure of the otolith. In the horizontal crista, the capula was separated.

  10. Biochemical Engineering Fundamentals

    ERIC Educational Resources Information Center

    Bailey, J. E.; Ollis, D. F.

    1976-01-01

    Discusses a biochemical engineering course that is offered as part of a chemical engineering curriculum and includes topics that influence the behavior of man-made or natural microbial or enzyme reactors. (MLH)

  11. Biochemical Education in Leisure.

    ERIC Educational Resources Information Center

    Tayyab, Saad

    1994-01-01

    Presents two alternative teaching approaches to ensure that students become active participants of learning in the biochemistry classroom. Diagrams and rules are provided for using educational playing cards and creating a biochemical comic book. (ZWH)

  12. Efficacy of a 5-day extended therapy program during lactation with cephapirin sodium in dairy cows chronically infected with Staphylococcus aureus

    PubMed Central

    Roy, Jean-Philippe; DesCôteaux, Luc; DuTremblay, Denis; Beaudry, Francis; Elsener, Johanne

    2009-01-01

    This study determined the efficacy of a 5-day extended therapy with cephapirin sodium in dairy cows chronically infected with Staphylococcus aureus. Chronically infected cows selected from 14 dairy herds in the St-Hyacinthe region, Québec were randomly allocated to a group of 31 cows treated for 5 consecutive days with 200 mg of cephapirin per quarter BID or a group of 30 untreated control cows. Bacteriological cure was determined by 3 negative bacterial cultures at 10, 24, and 31 days after treatment. The cow cure rates were 25.8% (8/31) in the treated cows and 3.3% (1/30) in the control group (P = 0.013). The quarter cure rates at first sampling post-treatment were 77.6% (38/49) and 18% (9/50) in the treated and the control groups, respectively (P < 0.0001). A 5-day extended therapy with cephapirin is effective in treating cows chronically infected with S. aureus. PMID:20190974

  13. Efficacy of a 5-day extended therapy program during lactation with cephapirin sodium in dairy cows chronically infected with Staphylococcus aureus.

    PubMed

    Roy, Jean-Philippe; DesCôteaux, Luc; DuTremblay, Denis; Beaudry, Francis; Elsener, Johanne

    2009-12-01

    This study determined the efficacy of a 5-day extended therapy with cephapirin sodium in dairy cows chronically infected with Staphylococcus aureus. Chronically infected cows selected from 14 dairy herds in the St-Hyacinthe region, Québec were randomly allocated to a group of 31 cows treated for 5 consecutive days with 200 mg of cephapirin per quarter BID or a group of 30 untreated control cows. Bacteriological cure was determined by 3 negative bacterial cultures at 10, 24, and 31 days after treatment. The cow cure rates were 25.8% (8/31) in the treated cows and 3.3% (1/30) in the control group (P = 0.013). The quarter cure rates at first sampling post-treatment were 77.6% (38/49) and 18% (9/50) in the treated and the control groups, respectively (P < 0.0001). A 5-day extended therapy with cephapirin is effective in treating cows chronically infected with S. aureus.

  14. A Whole-Genome Microarray Study of Arabidopsis thaliana Semisolid Callus Cultures Exposed to Microgravity and Nonmicrogravity Related Spaceflight Conditions for 5 Days on Board of Shenzhou 8

    PubMed Central

    Neef, Maren; Ecke, Margret; Hampp, Rüdiger

    2015-01-01

    The Simbox mission was the first joint space project between Germany and China in November 2011. Eleven-day-old Arabidopsis thaliana wild type semisolid callus cultures were integrated into fully automated plant cultivation containers and exposed to spaceflight conditions within the Simbox hardware on board of the spacecraft Shenzhou 8. The related ground experiment was conducted under similar conditions. The use of an in-flight centrifuge provided a 1 g gravitational field in space. The cells were metabolically quenched after 5 days via RNAlater injection. The impact on the Arabidopsis transcriptome was investigated by means of whole-genome gene expression analysis. The results show a major impact of nonmicrogravity related spaceflight conditions. Genes that were significantly altered in transcript abundance are mainly involved in protein phosphorylation and MAPK cascade-related signaling processes, as well as in the cellular defense and stress responses. In contrast to short-term effects of microgravity (seconds, minutes), this mission identified only minor changes after 5 days of microgravity. These concerned genes coding for proteins involved in the plastid-associated translation machinery, mitochondrial electron transport, and energy production. PMID:25654111

  15. A whole-genome microarray study of Arabidopsis thaliana semisolid callus cultures exposed to microgravity and nonmicrogravity related spaceflight conditions for 5 days on board of Shenzhou 8.

    PubMed

    Fengler, Svenja; Spirer, Ina; Neef, Maren; Ecke, Margret; Nieselt, Kay; Hampp, Rüdiger

    2015-01-01

    The Simbox mission was the first joint space project between Germany and China in November 2011. Eleven-day-old Arabidopsis thaliana wild type semisolid callus cultures were integrated into fully automated plant cultivation containers and exposed to spaceflight conditions within the Simbox hardware on board of the spacecraft Shenzhou 8. The related ground experiment was conducted under similar conditions. The use of an in-flight centrifuge provided a 1 g gravitational field in space. The cells were metabolically quenched after 5 days via RNAlater injection. The impact on the Arabidopsis transcriptome was investigated by means of whole-genome gene expression analysis. The results show a major impact of nonmicrogravity related spaceflight conditions. Genes that were significantly altered in transcript abundance are mainly involved in protein phosphorylation and MAPK cascade-related signaling processes, as well as in the cellular defense and stress responses. In contrast to short-term effects of microgravity (seconds, minutes), this mission identified only minor changes after 5 days of microgravity. These concerned genes coding for proteins involved in the plastid-associated translation machinery, mitochondrial electron transport, and energy production.

  16. Molybdenum isotopic evidence for the origin of chondrules and a distinct genetic heritage of carbonaceous and non-carbonaceous meteorites

    NASA Astrophysics Data System (ADS)

    Budde, Gerrit; Burkhardt, Christoph; Brennecka, Gregory A.; Fischer-Gödde, Mario; Kruijer, Thomas S.; Kleine, Thorsten

    2016-11-01

    Nucleosynthetic isotope anomalies are powerful tracers to determine the provenance of meteorites and their components, and to identify genetic links between these materials. Here we show that chondrules and matrix separated from the Allende CV3 chondrite have complementary nucleosynthetic Mo isotope anomalies. These anomalies result from the enrichment of a presolar carrier enriched in s-process Mo into the matrix, and the corresponding depletion of this carrier in the chondrules. This carrier most likely is a metal and so the uneven distribution of presolar material probably results from metal-silicate fractionation during chondrule formation. The Mo isotope anomalies correlate with those reported for W isotopes on the same samples in an earlier study, suggesting that the isotope variations for both Mo and W are caused by the heterogeneous distribution of the same carrier. The isotopic complementary of chondrules and matrix indicates that both components are genetically linked and formed together from one common reservoir of solar nebula dust. As such, the isotopic data require that most chondrules formed in the solar nebula and are not a product of protoplanetary impacts. Allende chondrules and matrix together with bulk carbonaceous chondrites and some iron meteorites (groups IID, IIIF, and IVB) show uniform excesses in 92Mo, 95Mo, and 97Mo that result from the addition of supernova material to the solar nebula region in which these carbonaceous meteorites formed. Non-carbonaceous meteorites (enstatite and ordinary chondrites as well as most iron meteorites) do not contain this material, demonstrating that two distinct Mo isotope reservoirs co-existed in the early solar nebula that remained spatially separated for several million years. This separation was most likely achieved through the formation of the gas giants, which cleared the disk between the inner and outer solar system regions parental to the non-carbonaceous and carbonaceous meteorites. The Mo isotope

  17. New Evidence for the Presence of Indigenous Microfossils in Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Rozanov, Alexei Yu.

    2004-01-01

    We present additional evidence for the presence of indigenous microfossils in carbonaceous meteorites scanning electron micrograph studies of freshly fractured interior surfaces of pristine samples of the Murchison CM2 carbonaceous meteorite have revealed forms in-situ that are recognizable as biofilms as well as complex and highly structured forms similar to calcareous and siliceous microfossils. Some of the forms encountered are very well-preserved and exhibit complex associated microstructures similar to bacterial flagella. New images will be presented of forms recently encountered in carbonaceous meteorites and they will be compared with those of known microbial extremophiles. KEYWORDS: carbonaceous chondrites, Murchison, microfossils, extremophiles

  18. Results of reconnaissance for uraniferous coal, lignite, and carbonaceous shale in western Montana

    USGS Publications Warehouse

    Hail, William J.; Gill, James R.

    1952-01-01

    A reconnaissance search for uraniferous lignite and carbonaceous shale was made in western Montana and adjacent parts of Idaho during the summer of 1951. Particular emphasis in the examination was placed on coal and carbonaceous shale associated with volcanic rocks, as volcanic rocks in many area appear to have released uranium to circulating ground water from which it was concentrated in carbonaceous material. Twenty-two area in Montana and one area of Idaho were examine. The coal in five of these area is of Cretaceous age. The coal and carbonaceous shale in the remaining 18 area occur in Tertiary "lake-bed" deposits of Oligocene and younger age. Both the Cretaceous and Tertiary coal and carbonaceous shale are associated with contemporaneous or younger volcanic rocks and pyroclastic sequences. A sample of carbonaceous shale from the Prickly Pear Valley northeast of Helena, Montana, contained 0.013 percent uranium. A sample of carbonaceous shale from the Flint Creek Valley southwest of Drummond, Montana, contained 0.006 percent uranium. All other samples of both Cretaceous and Tertiary coal and carbonaceous shale were essentially non-radioactive. No further work is planned on the Cretaceous and Tertiary coal and carbonaceous shale in western Montana. A few localities in Idaho will be visited in the course of other work.

  19. Characteristics and sources of carbonaceous aerosols from Shanghai, China

    NASA Astrophysics Data System (ADS)

    Cao, J.-J.; Zhu, C.-S.; Tie, X.-X.; Geng, F.-H.; Xu, H.-M.; Ho, S. S. H.; Wang, G.-H.; Han, Y.-M.; Ho, K.-F.

    2013-01-01

    An intensive investigation of carbonaceous PM2.5 and TSP (total suspended particles) from Pudong (China) was conducted as part of the MIRAGE-Shanghai (Megacities Impact on Regional and Global Environment) experiment in 2009. Data for organic and elemental carbon (OC and EC), organic species, including C17 to C40 n-alkanes and 17 polycyclic aromatic hydrocarbons (PAHs), and stable carbon isotopes OC (δ13COC) and EC (δ13CEC) were used to evaluate the aerosols' temporal variations and identify presumptive sources. High OC/EC ratios indicated a large fraction of secondary organic aerosol (SOA); high char/soot ratios indicated stronger contributions to EC from motor vehicles and coal combustion than biomass burning. Diagnostic ratios of PAHs indicated that much of the SOA was produced via coal combustion. Isotope abundances (δ13COC = -24.5 ± 0.8‰ and δ13CEC = -25.1 ± 0.6‰) indicated that fossil fuels were the most important source for carbonaceous PM2.5 (particulate matter less than 2.5 micrometers in diameter), with lesser impacts from biomass burning and natural sources. An EC tracer system and isotope mass balance calculations showed that the relative contributions to total carbon from coal combustion, motor vehicle exhaust, and SOA were 41%, 21%, and 31%; other primary sources such as marine, soil and biogenic emissions contributed 7%. Combined analyses of OC and EC, n-alkanes and PAHs, and stable carbon isotopes provide a new way to apportion the sources of carbonaceous particles.

  20. Carbonaceous aerosols from prescribed burning of a boreal forest ecosystem

    SciTech Connect

    Mazurek, M.A. ); Cofer, W.R. III; Levine, J.S. . Langley Research Center)

    1990-10-01

    The identity and ambient mass concentrations of radiatively important carbonaceous aerosols were measured for a boreal forest prescribed burn conducted in northern Ontario, CAN in August 1989. Nonsize-segregated airborne particles were collected for smoldering-fire and full-fire conditions using a helicopter sampling platform. Total carbon (TC), organic carbon (OC) and elemental carbon (EC) were measured. Smoke plume mass concentrations of the OC and EC particles were greatest for full-fire conditions and had ranges of 1.560 to 2.160 mg/m{sup {minus}1} (OC) and 0.120 to 0.160 mg/m{sup {minus}3} (EC) with OC:EC ratios of 10 to 18, respectively. Smoldering fire conditions showed smoke plume OC and EC levels of 0.570--1.030 mg/m{sup {minus}3} (OC) and 0.006--0.050 mg/m{sup {minus}3} (EC) and much higher ratios of OC:EC (21 to 95). These aerosol data indicate the formation of EC particles is greatest during full-fire combustion of boreal forest material relative to smoldering combustion. However, EC particles comprise a minor fraction of the particulate carbon smoke aerosols for both full-fire and smoldering conditions; the major component of carbonaceous smoke aerosols emitted during the prescribed burn is OC. Overall, the OC and EC in-plume smoke aerosol data show nonuniform production of these particles during various stages of the prescribed burn, and major differences in the type of carbonaceous aerosol that is generated (OC versus EC).

  1. The structural evolution of carbonaceous material during metamorphism : a geothermometer

    NASA Astrophysics Data System (ADS)

    Beyssac, O.; Goffe, B.; Brunet, F.; Bollinger, L.; Avouac, J.; Rouzaud, J.

    2003-12-01

    With increasing metamorphic temperature, the organic matter present in sedimentary rocks is progressively transformed into graphite (graphitization). The degree of organization of this carbonaceous material (CM) as characterized by Raman spectroscopy (RSCM), can be used as a geothermometer which yields the maximum temperature reached during the metamorphic cycle (Beyssac et al., 2002). We used this RSCM geothermometer to map the maximum metamorphic temperatures through the Lesser Himalaya (LH) in Nepal. This study provides a large dataset (80 samples) to estimate uncertainty of this method and to ascertain its reliability by comparison with conventional petrological investigations. We show that the RSCM geothermometer might be used to detect inter-samples temperature variations as small as 10° C or so, but absolute temperatures are only loosely determined to +/- 50° C due to the uncertainty on the calibration. This successful application of the RSCM geothermometer confirms that, at the timescale of regional metamorphism (several My), the transformation of CM is mainly controlled by temperature. However, laboratory investigations suggest that, in addition to temperature, pressure should also play a role (Beyssac et al. 2003). As a matter of fact, high degree of organizations encountered in natural CM cannot be reproduced in laboratory without pressure, even at temperatures as high as 3000° C. In addition to the data acquired on natural CM, we will discuss laboratory experiments performed up to 8 GPa which show that (1) a few kbar of hydrostatic pressure are required to initiate microtextural and subsequent structural transformations within CM and (2) the overall effect of increasing pressure is to speed up graphitization process. Beyssac, O., Goffe, B., Chopin, C., and Rouzaud, J.N., 2002, Raman spectra of carbonaceous material in metasediments: a new geothermometer. Journal of Metamorphic Geology, 20, 859-871. Beyssac, O., Brunet, F., Petitet, J.P., Goffe, B

  2. Sugar-Related Organic Compounds in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Cooper, G.; Kimmich, N.; Belisle, W.; Sarinana, J.; Brabham, K.; Garrel, L.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Sugars and related polyols are critical components of all organisms and may have been necessary for the origin of life. To date, this class of organic compounds had not been definitively identified in meteorites. This study was undertaken to determine if polyols were present in the early Solar System as constituents of carbonaceous meteorites. Results of analyses of the Murchison and Murray meteorites indicate that formaldehyde and sugar chemistry may be responsible for the presence of a variety of polyols. We conclude that polyols were present on the early Earth through delivery by asteroids and possibly comets.

  3. Nanoindentation of heterogeneous carbonaceous films containing Ni nano-crystals.

    PubMed

    Richter, A; Czerwosz, E; Dłuzewski, P; Kozłowski, M; Nowicki, M

    2009-01-01

    Composite films of nano-size nickel grains embedded in a carbonaceous matrix are synthesized by a PVD process of C(60) fullerenes and Ni acetate. The morphology of the nano-composite films is characterized by TEM, selected area electron diffraction, chemical analysis and AFM. Correlations with deposition parameters and typical structure changes are found. The mechanical properties are analyzed by nanoindentation. The load-displacement charts show typical pop-ins correlated with the heterogeneous nano-structure. The depth dependent hardness and indentation modulus vary according to the nano-composite structure and reflect the changes of the mechanical properties in the film.

  4. Porous carbonaceous electrode structure and method for secondary electrochemical cell

    DOEpatents

    Kaun, Thomas D.

    1977-03-08

    Positive and negative electrodes are provided as rigid, porous carbonaceous matrices with particulate active material fixedly embedded. Active material such as metal chalcogenides, solid alloys of alkali metal or alkaline earth metals along with other metals and their oxides in particulate form are blended with a thermosetting resin and a solid volatile to form a paste mixture. Various electrically conductive powders or current collector structures can be blended or embedded into the paste mixture which can be molded to the desired electrode shape. The molded paste is heated to a temperature at which the volatile transforms into vapor to impart porosity as the resin begins to cure into a rigid solid structure.

  5. Catalytic iron oxide for lime regeneration in carbonaceous fuel combustion

    DOEpatents

    Shen, Ming-Shing; Yang, Ralph T.

    1980-01-01

    Lime utilization for sulfurous oxides absorption in fluidized combustion of carbonaceous fuels is improved by impregnation of porous lime particulates with iron oxide. The impregnation is achieved by spraying an aqueous solution of mixed iron sulfate and sulfite on the limestone before transfer to the fluidized bed combustor, whereby the iron compounds react with the limestone substrate to form iron oxide at the limestone surface. It is found that iron oxide present in the spent limestone acts as a catalyst to regenerate the spent limestone in a reducing environment. With only small quantities of iron oxide the calcium can be recycled at a significantly increased rate.

  6. Water and the thermal evolution of carbonaceous chondrite parent bodies

    NASA Technical Reports Server (NTRS)

    Grimm, Robert E.; Mcsween, Harry Y., Jr.

    1989-01-01

    Two hypotheses are proposed for the aqueous alteration of carbonaceous chondrites within their parent bodies, in which respectively the alteration occurs (1) throughout the parent body interior, or (2) in a postaccretional surface regolith; both models assume an initially homogeneous mixture of ice and rock that is heated through the decay of Al-26. Water is seen to exert a powerful influence on chondrite evolution through its role of thermal buffer, permitting substitution of a low temperature aqueous alteration for high temperature recrystallization. It is quantitatively demonstrated that liquid water may be introduced by either hydrothermal circulation, vapor diffusion from below, or venting due to fracture.

  7. Liquefaction of solid carbonaceous material with catalyst recycle

    DOEpatents

    Gupta, Avinash; Greene, Marvin I.

    1992-01-01

    In the two stage liquefaction of a carbonaceous solid such as coal wherein coal is liquefied in a first stage in the presence of a liquefaction solvent and the first stage effluent is hydrogenated in the presence of a supported hydrogenation catalyst in a second stage, catalyst which has been previously employed in the second stage and comminuted to a particle size distribution equivalent to 100% passing through U.S. 100 Mesh, is passed to the first stage to improve the overall operation.

  8. Fluorescent accessory phases in the carbonaceous matrix of ureilites

    NASA Technical Reports Server (NTRS)

    Berkley, J. L.; Taylor, G. J.; Keil, K.; Healey, J. T.

    1978-01-01

    The carbonaceous matrix of ureilite meteorites (C-bearing olivine-pigeonite achondrites) contain abundant minute phases that emit a multicolored fluorescence under electron bombardment. These include NaCl and KCl, found in all seven ureilites studied, high-Si glass with pyroxene and chlorapatite quench crystals in North Haig, an unidentified high-Ca-Al-Cl phase in Novo Urei, and possibly free SiO2 in Novo Urei and Dingo Pup Donga. The origin of these phases is uncertain but some, especially chlorides and glass, may represent residual postcumulus materials precipitated from a late-stage interstitial liquid during the igneous phase of ureilite history.

  9. Step-wise supercritical extraction of carbonaceous residua

    DOEpatents

    Warzinski, Robert P.

    1987-01-01

    A method of fractionating a mixture containing high boiling carbonaceous material and normally solid mineral matter includes processing with a plurality of different supercritical solvents. The mixture is treated with a first solvent of high critical temperature and solvent capacity to extract a large fraction as solute. The solute is released as liquid from solvent and successively treated with other supercritical solvents of different critical values to extract fractions of differing properties. Fractionation can be supplemented by solute reflux over a temperature gradient, pressure let down in steps and extractions at varying temperature and pressure values.

  10. Organic matter in carbonaceous chondrites, planetary satellites, asteroids and comets

    NASA Technical Reports Server (NTRS)

    Cronin, John R.; Pizzarello, Sandra; Cruikshank, Dale P.

    1988-01-01

    A detailed review is given of the organic compounds found in carbonaceous chondrite meteorites, especially the Murchison meteorite, and detected spectroscopically in other solar-system objects. The chemical processes by which the organic compounds could have formed in the early solar system and the conditions required for these processes are discussed, taking into account the possible alteration of the compounds during the lifetime of the meteoroid. Also considered are the implications for prebiotic evolution and the origin of life. Diagrams, graphs, and tables of numerical data are provided.

  11. Catalytic iron oxide for lime regeneration in carbonaceous fuel combustion

    SciTech Connect

    Shen, M.; Yang, R.T.

    1980-09-30

    Lime utilization for sulfurous oxides absorption in fluidized combustion of carbonaceous fuels is improved by impregnation of porous lime particulates with iron oxide. The impregnation is achieved by spraying an aqueous solution of mixed iron sulfate and sulfite on the limestone before transfer to the fluidized bed combustor, whereby the iron compounds react with the limestone substrate to form iron oxide at the limestone surface. It is found that iron oxide present in the spent limestone acts as a catalyst to regenerate the spent limestone in a reducing environment. With only small quantities of iron oxide the calcium can be recycled at a significantly increased rate.

  12. A study of gravity-wave spectra in the troposphere and stratosphere at 5-min to 5-day periods with the Poker Flat MST radar

    NASA Technical Reports Server (NTRS)

    Bemra, R. S.; Rastogi, P. K.; Balsley, B. B.

    1986-01-01

    An analysis of frequency spectra at periods of about 5 days to 5 min from two 20-day sets of velocity measurements in the stratosphere and troposphere region obtained with the Poker Flat mesosphere-stratosphere-troposphere (MST) radar during January and June, 1984 is presented. A technique based on median filtering and averaged order statistics for automatic editing, smoothing and spectral analysis of velocity time series contaminated with spurious data points or outliers is outlined. The validity of this technique and its effects on the inferred spectral index was tested through simulation. Spectra obtained with this technique are discussed. The measured spectral indices show variability with season and height, especially across the tropopause. The discussion briefly outlines the need for obtaining better climatologies of velocity spectra and for the refinements of the existing theories to explain their behavior.

  13. The 27-day versus 13.5-day variations in the solar Lyman-alpha radiation and the radio wave absorption in the lower ionosphere over Europe

    NASA Technical Reports Server (NTRS)

    Delamorena, B. A.; Lastovicka, Jan; Rapoport, Z. TS.; Alberca, L.

    1989-01-01

    In order to clarify the question of solar periods in absorption, the pattern was studied of the solar Lyman-alpha radiation (the principal ionizing agent of the lower ionosphere) and of the radio wave absorption at five widely spaced places in Europe. When the solar Lyman-alpha flux variability is very well developed, then it dominates in the lower ionospheric variability. The most pronounced Lyman-alpha variation on time scale day-month is the solar rotation variation (about 27 days). When the Lyman-alpha variability is developed rather poorly, as it is typical for periods dominated by the 13.5 day variability, then the lower ionospheric variability appears to be dominated by variations of meteorological origin. The conclusions hold for all five widely spaced placed in Europe.

  14. Assessing WRF Model Parameter Sensitivity and Optimization: A Case Study with 5-day Summer Precipitation Forecasting in the Greater Beijing Area

    NASA Astrophysics Data System (ADS)

    Di, Zhenhua; Duan, Qingyun; Quan, JiPing

    2015-04-01

    A global sensitivity analysis method was used to identify the parameters of the Weather Research and Forecasting (WRF) model that exert the most influence on precipitation forecasting skill. Twenty-three adjustable parameters were selected from seven physical components of the WRF model. The sensitivity was evaluated based on skill scores calculated over nine 5-day precipitation forecasts during the summer seasons from 2008 to 2010 in the Greater Beijing Area in North China. We found that 8 parameters are more sensitive than others. Storm type seems to have no impact on the list of sensitive parameters, but does influence the degree of sensitivity. We also examined the physical interpretation of the sensitivity analysis results. The results of this study are used for further optimization of the WRF model parameters to improve WRF predictive performance. The improving rate has arrived at 17% for new parameter values, showing the screening and optimization are very effective in reducing the uncertainty of WRF parameters.

  15. Prenatal exposure to ethanol during late gestation facilitates operant self-administration of the drug in 5-day-old rats.

    PubMed

    Miranda-Morales, Roberto Sebastián; Nizhnikov, Michael E; Spear, Norman E

    2014-02-01

    Prenatal ethanol exposure modifies postnatal affinity to the drug, increasing the probability of ethanol use and abuse. The present study tested developing rats (5-day-old) in a novel operant technique to assess the degree of ethanol self-administration as a result of prenatal exposure to low ethanol doses during late gestation. On a single occasion during each of gestational days 17-20, pregnant rats were intragastrically administered ethanol 1 g/kg, or water (vehicle). On postnatal day 5, pups were tested on a novel operant conditioning procedure in which they learned to touch a sensor to obtain 0.1% saccharin, 3% ethanol, or 5% ethanol. Immediately after a 15-min training session, a 6-min extinction session was given in which operant behavior had no consequence. Pups were positioned on a smooth surface and had access to a touch-sensitive sensor. Physical contact with the sensor activated an infusion pump, which served to deliver an intraoral solution as reinforcement (Paired group). A Yoked control animal evaluated at the same time received the reinforcer when its corresponding Paired pup touched the sensor. Operant behavior to gain access to 3% ethanol was facilitated by prenatal exposure to ethanol during late gestation. In contrast, operant learning reflecting ethanol reinforcement did not occur in control animals prenatally exposed to water only. Similarly, saccharin reinforcement was not affected by prenatal ethanol exposure. These results suggest that in 5-day-old rats, prenatal exposure to a low ethanol dose facilitates operant learning reinforced by intraoral administration of a low-concentration ethanol solution. This emphasizes the importance of intrauterine experiences with ethanol in later susceptibility to drug reinforcement. The present operant conditioning technique represents an alternative tool to assess self-administration and seeking behavior during early stages of development.

  16. Structure of high-molecular carbonaceous compound in carbonaceous chondrites and formation of IR-spectroscopically similar compounds in the laboratory.

    PubMed

    Murae, T

    1997-01-01

    Main components of carbonaceous matter in carbonaceous chondrites are high molecular organic matter. Examinations of the compounds using pyrolysis GC/MS and FT-IR indicated the structural resemblance of major part of the molecule for all of the compounds from different types of carbonaceous chondrites (8 Antarctic and 2 none-Antarctic meteorites). A carbonaceous matter derived from graphite on a shock experiment using a rail gun (1g projectile at 7 km/s) showed similar IR spectrum to those of the meteoritic high-molecular organic matter. C-60 fullerene also gave a similar compound (with minor differences in IR spectra) on a shock experiment under the same conditions. A shock experiment using coronene also examined. PMID:11541332

  17. Structure of high-molecular carbonaceous compound in carbonaceous chondrites and formation of IR-spectroscopically similar compounds in the laboratory

    NASA Astrophysics Data System (ADS)

    Murae, T.

    1997-05-01

    Main components of carbonaceous matter in carbonaceous chondrites are high molecular organic matter. Examinations of the compounds using pyrolysis GC/MS and FT-IR indicated the structural resemblance of major part of the molecule for all of the compounds from different types of carbonaceous chondrites (8 Antarctic and 2 none-Antarctic meteorites). A carbonaceous matter derived from graphite on a shock experiment using a rail gun (1g projectile at 7 km/s) showed similar IR spectrum to those of the meteoritic high-molecular organic matter. C-60 fulleren also gave a similar compound (with minor differences in IR spectra) on a shock experiment under the same conditions. A shock experiment using coronene also examined.

  18. Theoretical predictions of volatile bearing phases and volatile resources in some carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Ganguly, Jibamitra; Saxena, Surendra K.

    1989-01-01

    Results are presented from theoretical calculations to predict the modal abundances and compositions of the major mineral phases and the vapor phase that could develop in the bulk compositions of carbonaceous chondrites. The abundances and compositions are obtained as functions of temperature and pressure. The calculations are used to evaluate the volatile and mineralogical resource potential of C1 and C2 carbonaceous chondrites.

  19. Carbonaceous Aerosols and Radiative Effects Study (CARES), g1-aircraft, sedlacek sp2

    DOE Data Explorer

    Sedlacek, Art

    2011-08-30

    The primary objective of the Carbonaceous Aerosol and Radiative Effects Study (CARES) in 2010 was to investigate the evolution of carbonaceous aerosols of different types and their optical and hygroscopic properties in central California, with a focus on the Sacramento urban plume.

  20. Origins of interstellar and solar system: Carbonaceous materials

    NASA Technical Reports Server (NTRS)

    Feigelson, Eric D.

    1994-01-01

    Carbon is a crucial atom in cosmochemistry. It is well-established that carbon is synthesized in stellar interiors after the main sequence, is ejected by red giants as small carbonaceous grains during their 'carbon star' phase, resides in the interstellar medium, and was later incorporated into the solar system. The mechanisms of carbon grain formation and later chemical processing are complex because, with only small thermodynamic differences, carbon can take on a bewildering variety of forms: diamond; oxides; carbides; graphite; aliphatic hydrocarbons; polycyclic aromatic hydrocarbons (PAH's); fullerenes; amorphous carbon; and other compounds. These are evidence for many of the forms of carbon found in astronomical observations. We seek to understand the possible astrophysical sites and conditions of the origins of different forms of carbon by combining state-of-the-art capabilities of carbon chemistry with astrophysical modeling. The work is a collaboration between Prof. Frenklach, a leading carbon materials scientist with both laboratory and computer modeling expertise and Prof. Feigelson, an astrophysicist with interests in star formation. The largest effort under this grant was devoted to developing this concept into a comprehensive quantitative model. In addition to explaining the astronomical properties of red giants producing carbonaceous grains, our model also can incorporate recent meteoritic findings. Finally, our induced nucleation grain formation model provides a natural explanation for the widespread presence of PAH emission bands in the Galactic interstellar medium. A brief synopsis of other activities sponsored under this grant and a list of publications from this grant is included.

  1. Enantiomeric and Isotopic Analysis of Sugar Derivatives in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Cooper, George; Asiyo, Cynthia; Turk, Kendra; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    Several classes of organic compounds are found in carbonaceous meteorites including amino acids, carboxylic acids, hydroxy acids, purines, and pyrimidines. Such compounds are thought to have been delivered to the early Earth in asteroids and comets and may have played a role in the origin of life. Likewise, sugar derivatives are critical to all known lifeforms. Recent analyses of the Murchison and Murray carbonaceous meteorites revealed a diverse suite of such derivatives, i.e., sugar alcohols, and sugar acids. This presentation will focus primarily on the analysis of individual sugar acids - their enantiomeric and isotopic composition. Analysis of these compounds may reveal the nature of past (or present) meteoritic sugars themselves. For example, if parent sugars decomposed (by well-known mechanisms) to give the present acids, were their enantiomeric ratios preserved? Combined with other evidence, the enantiomeric composition of such compounds as glyceric acid and (especially) rare acids may help to answer such questions. C-13 and D isotope analysis of meteoritic sugar alcohols (glycerol, threitol, ribitol, etc.) as a group revealed that they were indigenous to the meteorite. Preliminary C-13 analysis of glyceric acid shows that it is also extraterrestrial.

  2. Molecular and Enantiomeric Analysis of Organic Compounds in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Cooper, George

    2003-01-01

    Carbonaceous meteorites are relatively enriched in carbon. Much of this carbon is in the form of soluble organic compounds. The Murchison and Murray meteorites are the best-characterized carbonaceous meteorites with respect to organic chemistry. Their content of organic compounds has led to an initial understanding of early solar system organic chemistry as well as what compounds may have played a role in the origin of life (Cronin and Chang, 1993). Reported compounds include: amino acids, amides, carboxylic acids, sulfonic acids, and polyols. This talk will focus on the molecular and enantiomeric analysis of individual meteoritic compounds: polyol acids; and a newly identified class of meteorite compounds, keto acids, i.e., acetoacetic acid, levulinic acid, etc. Keto acids (including pyruvic) are critically important in all contemporary organisms. They are key intermediates in metabolism and processes such as the citric acid cycle. Using gas chromatography-mass spectrometry we identified individual meteoritic keto acids after derivatization to one or more of the following forms: isopropyl ester (ISP), trimethyIsiIy1 (TMS), tert-butyldimethylsilyl (BDMS). Ongoing analyses will determine if, in addition to certain amino acids from Murchison (Cronin and Pizzarello, 1997), other potentially important prebiotic compounds also contain enantiomeric excesses, i.e., excesses that could have contributed to the current homochirality of life.

  3. Metal-free carbonaceous electrocatalysts and photocatalysts for water splitting.

    PubMed

    Xu, You; Kraft, Markus; Xu, Rong

    2016-05-31

    Water splitting driven by sunlight or renewable resource-derived electricity has attracted great attention for sustainable production of hydrogen from water. Current research interest in this field is focused on the development of earth-abundant photo- or electrocatalytic materials with high activity and long-term stability for hydrogen and/or oxygen evolution reactions. Due to their unique properties and characteristics, carbon and related carbon-based materials show great potential to replace some of the existing precious metal catalysts in water splitting technology. This tutorial review summarizes the recent significant progress in the fabrication and application of metal-free carbonaceous materials as photo- or electrocatalysts for water splitting. Synthetic strategies and applications of various carbonaceous materials, including graphitic carbon nitride (g-C3N4), graphene, carbon nanotubes (CNTs) as well as other forms of carbon-containing materials, for electrochemical or photochemical water splitting are presented, accompanied by a discussion of the key scientific issues and prospects for the future development of metal-free photo- and electrocatalysts. PMID:27094875

  4. Ethanol and other oxygenateds from low grade carbonaceous resources

    SciTech Connect

    Joo, O.S.; Jung, K.D.; Han, S.H.

    1995-12-31

    Anhydrous ethanol and other oxygenates of C2 up can be produced quite competitively from low grade carbonaceous resources in high yield via gasification, methanol synthesis, carbonylation of methanol an hydrogenation consecutively. Gas phase carbonylation of methanol to form methyl acetate is the key step for the whole process. Methyl acetate can be produced very selectively in one step gas phase reaction on a fixed bed column reactor with GHSV over 5,000. The consecutive hydrogenation of methyl or ethyl acetate produce anhydrous ethanol in high purity. It is also attempted to co-produce methanol and DME in IGCC, in which low grade carbonaceous resources are used as energy sources, and the surplus power and pre-power gas can be stored in liquid form of methanol and DME during base load time. Further integration of C2 up oxygenate production with IGCC can improve its economics. The attempt of above extensive technology integration can generate significant industrial profitability as well as reduce the environmental complication related with massive energy consumption.

  5. Potential Explosion Hazard of Carbonaceous Nanoparticles: Screening of Allotropes

    PubMed Central

    Turkevich, Leonid A.; Fernback, Joseph; Dastidar, Ashok G.; Osterberg, Paul

    2016-01-01

    There is a concern that engineered carbon nanoparticles, when manufactured on an industrial scale, will pose an explosion hazard. Explosion testing has been performed on 20 codes of carbonaceous powders. These include several different codes of SWCNTs (single-walled carbon nanotubes), MWCNTs (multi-walled carbon nanotubes) and CNFs (carbon nanofibers), graphene, diamond, fullerene, as well as several different control carbon blacks and graphites. Explosion screening was performed in a 20 L explosion chamber (ASTM E1226 protocol), at a concentration of 500 g/m3, using a 5 kJ ignition source. Time traces of overpressure were recorded. Samples typically exhibited overpressures of 5–7 bar, and deflagration index KSt = V1/3 (dP/dt)max ~ 10 – 80 bar-m/s, which places these materials in European Dust Explosion Class St-1. There is minimal variation between these different materials. The explosive characteristics of these carbonaceous powders are uncorrelated with primary particle size (BET specific surface area). PMID:27468178

  6. Heavy-ion irradiation induced diamond formation in carbonaceous materials.

    SciTech Connect

    Daulton, T. L.

    1999-01-08

    The basic mechanisms of metastable phase formation produced under highly non-equilibrium thermodynamic conditions within high-energy particle tracks are investigated. In particular, the possible formation of diamond by heavy-ion irradiation of graphite at ambient temperature is examined. This work was motivated, in part, by earlier studies which discovered nanometer-grain polycrystalline diamond aggregates of submicron-size in uranium-rich carbonaceous mineral assemblages of Precambrian age. It was proposed that the radioactive decay of uranium formed diamond in the fission particle tracks produced in the carbonaceous minerals. To test the hypothesis that nanodiamonds can form by ion irradiation, fine-grain polycrystalline graphite sheets were irradiated with 400 MeV Kr ions. The ion irradiated graphite (and unirradiated graphite control) were then subjected to acid dissolution treatments to remove the graphite and isolate any diamonds that were produced. The acid residues were then characterized by analytical and high-resolution transmission electron microscopy. The acid residues of the ion-irradiated graphite were found to contain ppm concentrations of nanodiamonds, suggesting that ion irradiation of bulk graphite at ambient temperature can produce diamond.

  7. Metal-free carbonaceous electrocatalysts and photocatalysts for water splitting.

    PubMed

    Xu, You; Kraft, Markus; Xu, Rong

    2016-05-31

    Water splitting driven by sunlight or renewable resource-derived electricity has attracted great attention for sustainable production of hydrogen from water. Current research interest in this field is focused on the development of earth-abundant photo- or electrocatalytic materials with high activity and long-term stability for hydrogen and/or oxygen evolution reactions. Due to their unique properties and characteristics, carbon and related carbon-based materials show great potential to replace some of the existing precious metal catalysts in water splitting technology. This tutorial review summarizes the recent significant progress in the fabrication and application of metal-free carbonaceous materials as photo- or electrocatalysts for water splitting. Synthetic strategies and applications of various carbonaceous materials, including graphitic carbon nitride (g-C3N4), graphene, carbon nanotubes (CNTs) as well as other forms of carbon-containing materials, for electrochemical or photochemical water splitting are presented, accompanied by a discussion of the key scientific issues and prospects for the future development of metal-free photo- and electrocatalysts.

  8. Conditions of formation for carbonaceous silicites of the continental margins

    SciTech Connect

    Bazhenova, O.K.

    1986-06-01

    Carbonaceous silicites occur in virtually all systems in Phanerozoic folded regions. They are of practical interest as concentrators of silver, molybdenum, vanadium, and nickel and as source and occasionally reservoir beds for petroleum. Some small oil pools occur in them in basins in Japan (Niigata and Akita), California, and East Sakhalin. Recently, interest has increased because a major pool was discovered in silicites of the Monterey formation: Point Arguello Hueso in the offshore part of the Santa Maria basin. Here the authors consider carbonaceous silicates in the western part of the Pacific active margin, which include Silurian and Devonian phthanites in the Mongolia-Okhotsk belt, and Triassic and Jurassic phthanites in the Sikhote-Alin area, although these rocks are of fairly local occurrence in the section. The authors have examined silicites in Kamchatka, Sakhalin, and Chukotka: diatomites, tuff-diatomites, and opokas, together with their recrystallized analogs. They occur in the Paleogene, but they are most abundant in the Miocene and Pliocene, as well as in the Jurassic, Cretaceous, and Eocene, particularly in the Miocene of California and Japan. 16 references.

  9. Measures of Biochemical Sociology

    ERIC Educational Resources Information Center

    Snell, Joel; Marsh, Mitchell

    2008-01-01

    In a previous article, the authors introduced a new sub field in sociology that we labeled "biochemical sociology." We introduced the definition of a sociology that encompasses sociological measures, psychological measures, and biological indicators Snell & Marsh (2003). In this article, we want to demonstrate a research strategy that would assess…

  10. Biochemical Education in Brazil.

    ERIC Educational Resources Information Center

    Vella, F.

    1988-01-01

    Described are discussions held concerning the problems of biochemical education in Brazil at a meeting of the Sociedade Brazileira de Bioquimica in April 1988. Also discussed are other visits that were made to universities in Brazil. Three major recommendations to improve the state of biochemistry education in Brazil are presented. (CW)

  11. Biochemical upgrading of oils

    DOEpatents

    Premuzic, E.T.; Lin, M.S.

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

  12. Nanoparticles as biochemical sensors

    PubMed Central

    El-Ansary, Afaf; Faddah, Layla M

    2010-01-01

    There is little doubt that nanoparticles offer real and new opportunities in many fields, such as biomedicine and materials science. Such particles are small enough to enter almost all areas of the body, including cells and organelles, potentially leading to new approaches in nanomedicine. Sensors for small molecules of biochemical interest are of critical importance. This review is an attempt to trace the use of nanomaterials in biochemical sensor design. The possibility of using nanoparticles functionalized with antibodies as markers for proteins will be elucidated. Moreover, capabilities and applications for nanoparticles based on gold, silver, magnetic, and semiconductor materials (quantum dots), used in optical (absorbance, luminescence, surface enhanced Raman spectroscopy, surface plasmon resonance), electrochemical, and mass-sensitive sensors will be highlighted. The unique ability of nanosensors to improve the analysis of biochemical fluids is discussed either through considering the use of nanoparticles for in vitro molecular diagnosis, or in the biological/biochemical analysis for in vivo interaction with the human body. PMID:24198472

  13. Emergence of multipotent hemopoietic cells in the yolk sac and paraaortic splanchnopleura in mouse embryos, beginning at 8.5 days postcoitus.

    PubMed Central

    Godin, I; Dieterlen-Lièvre, F; Cumano, A

    1995-01-01

    We show by an in vitro approach that multipotent hemopoietic cells can be detected in the body of the mouse embryo between the stages of 10-25 somites (8.5-9.5 days of gestation)--i.e., prior to liver colonization (28-32 pairs of somites). Interestingly, hemopoietic cells appear in parallel in this location, the paraaortic splanchnopleura, and in the yolk sac, where they represent a new generation by reference to the primitive hemopoietic stem cells. Lymphoid cell clones, which could differentiate into mature B cells, were obtained from yolk sac and paraaortic splanchnopleura cell preparations but not from other tissues of the embryonic body. These B-cell precursors were first detected around the stage of 10 somites; thereafter, their initial minute numbers increased in parallel in the yolk sac and the paraaortic splanchnopleura, suggesting that their emergence in the two sites was simultaneous. By single cell manipulation, we show that these precursors can generate B and T lymphocytes and myeloid cells; these precursors can thus be defined as multipotent hemopoietic cells. Images Fig. 1 Fig. 4 PMID:7846049

  14. Mineralized Remains of Morphotypes of Filamentous Cyanobacteria in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2005-01-01

    ) investigations of freshly fractured interior surfaces of carbonaceous meteorites, terrestrial rocks, and recent microbial extremophiles and filamentous cyanobacteria. These studies have resulted in the detection in a several carbonaceous meteorites of the mineralized remains of a wide variety of complex filamentous trichomic microorganisms. These embedded forms are consistent in size and microstructure with well-preserved morphotypes of mat- forming filamentous trichomic cyanobacteria and the degraded remains of microfibrils of cyanobacterial sheaths. We present the results of comparative imaging studies and EDAX elemental analyses of recent cyanobacteria (e.g. Calothrix, Oscillatoria, and Lyngbya) that are similar in size, morphology and microstructure to morphotypes found embedded in meteorites. EDAX elemental studies reveal that forms found in carbonaceous meteorites often have highly carbonized sheaths in close association with permineralized filaments, trichomes and microbial cells. Ratios of critical bioelements (C:O, C:N, C:P, and C:S) reveal dramatic differences between microfossils in Earth rocks and meteorites and in filaments, trichomes, hormogonia, and cells of recent cyanobacteria.

  15. Stable Isotope Fractionation of Cr in Carbonaceous and Ordinary Chondrites

    NASA Astrophysics Data System (ADS)

    Moynier, F.; Jacobsen, B.; Yin, Q.

    2006-12-01

    Difficulties with chemical separation and mass spectrometry combined with little expectation of isotopic fractionation at high temperature left the stable isotope geochemistry of Cr almost unknown [1]. The search for ^{53}Cr excess resulting from the decay of the radioactive nuclide ^{53}Mn (T1/2 = 3.5 My) was very successful but the small amount of data produced to date attests to the particularly difficult measurement by TIMS. This preliminary report describes evidence of mass-dependent fractionation of the stable Cr isotopes 50, 52, and 53 as measured by MC-ICPMS in meteorites relative to SRM 979 Cr standard. Cr was purified using cation-exchange chemistry. The yield is ~100 %. The samples were run on the Nu- Plasma HR of UC Davis in pseudo high-resolution mode. The absence of isotopic fractionation induced by the chemical purification has been double checked by 1) processing the standard through the column and 2) running the same sample several times through the columns. In both cases, we observe no difference in the measured isotopic ratio. The external reproducibility, estimated from 13 replicates of Bjurbole, is 50 ppm. The range of the fractionation per mass unit among 7 carbonaceous chondrites (CI, CM, CO, CV and CK) and 5 ordinary chondrites (H, L and LL) is 0.3 ‰. Individual chondrules from Chainpur and Bjurbole have a wider range (0.6 ‰). All the chondrites analyzed so far are isotopically lighter than the bulk silicate earth (δ ^{50/52}Cr=0, [1]). As for Zn [2], Cr isotopes seem to be heavier in ordinary chondrites (-0.23 ‰) than in carbonaceous chondrites (-0.35 ‰). Also as for Zn and Cu [2-3], Cr stable isotopes in carbonaceous chondrites are correlated with Δ 17O, suggesting a mixing between an isotopically heavy component and an isotopically light one. The correlation between mass-dependent fractionation of Cr and non-mass-dependent Δ 17O requires attention and adequate interpretation. References: [1] Johnson and Bullen, 2004, Review in

  16. Progress in biochemical engineering.

    PubMed

    Böing, J T

    1976-07-01

    Biochemical engineering is one of the answers to some of the challenges of the present age: hunger, shortage in raw material and energy supply and contamination of environment. Its contribution to the solution of these problems is the industrial production of protein, the use of raw materials (incl. waste products) not used up to now, the accomplishment of chemical reactions at ambient temperatures as well as the degradation or utilization of widely different waste materials.

  17. Enantiomeric and Isotopic Analysis of Organic Compounds in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Cooper, George

    2004-01-01

    Carbonaceous meteorites are relatively enriched in soluble organic compounds. The Murchison and Murray meteorites contain numerous compounds of interest in the study of early solar system organic chemistry and organic compounds of potential importance for the origin of life. These include: amino acids, amides, carboxylic acids, and polyols. This talk will focus on the enantiomeric and isotopic analysis of individual meteoritic compounds - primarily polyol acids. The analyses will determine if, in addition to certain amino acids from Murchison, another potentially important class of prebiotic compounds also contains enantiomeric excesses, i.e., excesses that could have contributed to the current homochirality of life. Preliminary enantiomeric and isotopic (C- 13) measurements of Murchison glyceric acid show that it is indeed extraterrestrial. C-13 and D isotope analysis of meteoritic sugar alcohols (glycerol, threitol, ribitol, etc.) has shown that they are also indigenous to the meteorite.

  18. Quantification of monocarboxylic acids in the Murchison carbonaceous meteorite

    NASA Technical Reports Server (NTRS)

    Lawless, J. G.; Yuen, G. U.

    1979-01-01

    The abundances of some of the straight- and branched-chain isomers of the monocarboxylic acids found in the Murchison carbonaceous chondrite are determined. Monocarboxylic acids extracted from a crushed sample of Murchison interior were quantified by means of gas chromatography and mass spectroscopy after a spiking solution of deuterated analogues of 11 carboxylic acids had been added. Monocarboxylic acid abundances are found to range between 1.83 and 0.01 micromole/g, which is significantly higher than Murchison amino acid concentrations, and to decrease with increasing carbon number for both branched and unbranched molecules. The results are interpreted to support the abiotic extraterrestrial synthesis of monocarboxylic acids. Possible mechanisms leading to the equal synthesis of branched and each unbranched carboxylic acid with the same carbon number are considered, noting that the Fischer-Tropsch Type mechanism by itself is incapable of accounting for the observed distributions.

  19. Spectral evidence for a carbonaceous chondrite surface composition on Deimos

    NASA Technical Reports Server (NTRS)

    Pang, K. D.; Rhoads, J. W.; Lane, A. L.; Ajello, J. M.

    1980-01-01

    The surface compositions of Phobos and Deimos as determined by their UV-visible reflectance are compared in order to evaluate the hypothesis that the different surface morphologies of the two satellites are due to different mechanical properties. The UV-visible reflectance spectrum of Deimos is compiled from Mariner 9 UV spectrometry and Canopus star tracker photometry and ground-based colorimetry and polarimetry; the geometric albedo of Deimos is determined from Mariner 9 Canopus star tracker data. The reflectance spectra of Deimos and Phobos are found to be similar in a first approximation, exhibiting low, flat reflectivities in the visible and dropping off sharply in the UV, compatible with a probable carbonaceous chondrite nature for Deimos as well as Phobos and suggesting that their different surface morphologies are most likely due to different orbital histories.

  20. Isotopic composition and concentration of sulfur in carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Gao, X.; Thiemens, M. H.

    1993-07-01

    New sulfur isotopic ratio measurements are reported for seven carbonaceous chondrites. Newly developed procedures permit measurement of delta S-33, delta S-34, and delta S-36 at precisions significantly greater than previously reported. A search for S-36 nucleosynthetic anomalies coproduced with anomalies in, for example, Ti-50 and Ca-48 was negative. The high endemic sulfur concentration probably dilutes any S-36 anomaly, and separation of individual sulfur phases may be needed to identify S-36 carrier phases. Large internal isotopic variations are observed, deriving from parent body and possibly nebular processes. Chondrule separates from Allende demonstrate isotopic compositions which vary as a function of diameter. High-temperature gas-solid exchange and a two-component mixing model may account for the observations. High-resolution isotopic data and structural information are reported for organic sulfur compounds separated by chemical extractions. The insoluble organics appear to be of either aliphatic or alicyclic structure and are dominant phases.

  1. Immobilization of pentachlorophenol in soil using carbonaceous material amendments.

    PubMed

    Wen, Bei; Li, Rui-Juan; Zhang, Shuzhen; Shan, Xiao-Quan; Fang, Jing; Xiao, Ke; Khan, Shahamat U

    2009-03-01

    In this study, three pentachlorophenol (PCP) laboratory-spiked and one field-contaminated soil were amended with 2.0% char, humic acid (HA) and peat, respectively. The amended soils were aged for either 7 or 250 days. After amendment, CaCl(2) extractability of PCP was significantly decreased. Desorption kinetics indicated that the proposed amendment could lead to a strong binding and slow desorption of PCP in soils. Amendment with char reduced the bioaccumulation factor (BAF) of PCP most significantly for earthworms (Eisenia fetida) in all soils studied. The results of both physicochemical and biological tests suggested that amendment reduced PCP bioavailability quickly and enduringly, implying that carbonaceous material amendment, especially char amendment, was a potentially attractive in situ remediation method for sequestration of PCP in contaminated soil. PMID:19028411

  2. Carbonaceous nanowire supports for polymer electrolyte membrane fuel cells

    SciTech Connect

    Garzon, Fernando H.; Wilson, Mahlon S.; Banham, Dustin; Ye, Siyu; More, Karren Leslie

    2015-12-03

    Here, carbohydrate-dye combinations were used to form ionically-linked soft templates for the formation of polypyrrole nanowire networks. High yields of nanostructured products were obtained using small amounts of low-cost carbohydrate and dye template materials, the majority of which remained encapsulated within the nanowires. Varying the concentration and the two-part ratio of the templates influenced the length and diameter of the nanofiber segments within the nanowire network. Pyrolysis of the nanowires yielded carbonaceous fibers containing nitrogen heteroatoms, as well as convoluted graphitic domains, well suited for supporting Pt nanoparticles. The resulting high density of nucleation sites enabled the formation of well dispersed, smaller Pt particles compared to commercial catalysts, despite significantly higher support surface loadings.

  3. Carbonaceous nanowire supports for polymer electrolyte membrane fuel cells

    DOE PAGES

    Garzon, Fernando H.; Wilson, Mahlon S.; Banham, Dustin; Ye, Siyu; More, Karren Leslie

    2015-12-03

    Here, carbohydrate-dye combinations were used to form ionically-linked soft templates for the formation of polypyrrole nanowire networks. High yields of nanostructured products were obtained using small amounts of low-cost carbohydrate and dye template materials, the majority of which remained encapsulated within the nanowires. Varying the concentration and the two-part ratio of the templates influenced the length and diameter of the nanofiber segments within the nanowire network. Pyrolysis of the nanowires yielded carbonaceous fibers containing nitrogen heteroatoms, as well as convoluted graphitic domains, well suited for supporting Pt nanoparticles. The resulting high density of nucleation sites enabled the formation of wellmore » dispersed, smaller Pt particles compared to commercial catalysts, despite significantly higher support surface loadings.« less

  4. Comparing Amino Acid Abundances and Distributions Across Carbonaceous Chondrite Groups

    NASA Technical Reports Server (NTRS)

    Burton, Aaron S.; Callahan, Michael P.; Glavin, Daniel P.; Elsila, Jamie E.; Dworkin, Jason P.

    2012-01-01

    Meteorites are grouped according to bulk properties such as chemical composition and mineralogy. These parameters can vary significantly among the different carbonaceous chondrite groups (CI, CM, CO, CR, CH, CB, CV and CK). We have determined the amino acid abundances of more than 30 primary amino acids in meteorites from each of the eight groups, revealing several interesting trends. There are noticeable differences in the structural diversity and overall abundances of amino acids between meteorites from the different chondrite groups. Because meteorites may have been an important source of amino acids to the prebiotic Earth and these organic compounds are essential for life as we know it, the observed variations of these molecules may have been important for the origins of life.

  5. The micro-distribution of carbonaceous matter in the Murchison meteorite as investigated by Raman imaging.

    PubMed

    El Amri, Chahrazade; Maurel, Marie-Christine; Sagon, Gérard; Baron, Marie-Hélène

    2005-07-01

    The carbonaceous Murchison chondrite is one of the most studied meteorites. It is considered to be an astrobiology standard for detection of extraterrestrial organic matter. Considerable work has been done to resolve the elemental composition of this meteorite. Raman spectroscopy is a very suitable technique for non-destructive rapid in situ analyses to establish the spatial distribution of carbonaceous matter. This report demonstrates that Raman cartography at a resolution of 1 microm2 can be performed. Two-dimensional distribution of graphitised carbon, amorphous carbonaceous matter and minerals were obtained on 100 microm2 maps. Maps of the surface of native stones and of a powdered sample are compared. Graphitic and amorphous carbonaceous domains are found to be highly overlapping in all tested areas at the surface of the meteorite and in its interior as well. Pyroxene, olivine and iron oxide grains are embedded into this mixed carbonaceous material. The results show that every mineral grain with a size of less than a few microm2 is encased in a thin carbonaceous matrix, which accounts for only 2.5 wt.%. This interstitial matter sticks together isolated mineral crystallites or concretions, including only very few individualized graphitised grains. Grinding separates the mineral particles but most of them retain their carbonaceous coating. This Raman study complements recent findings deduced from other spatial analyses performed by microprobe laser-desorption laser-ionisation mass spectrometry (microL2MS), transmission electron microscopy (TEM) and scanning transmission X-ray microscopy (STXM).

  6. Adsorption of dyes onto carbonaceous materials produced from coffee grounds by microwave treatment.

    PubMed

    Hirata, Mizuho; Kawasaki, Naohito; Nakamura, Takeo; Matsumoto, Kazuoki; Kabayama, Mineaki; Tamura, Takamichi; Tanada, Seiki

    2002-10-01

    Organic wastes have been burned for reclamation. However, they have to be recycled and reused for industrial sustainable development. Carbonaceous materials were produced from coffee grounds by microwave treatment. There are many phenolic hydroxyl and carboxyl groups on the surface of carbonaceous materials. The base consumption of the carbonaceous materials was larger than that of the commercially activated carbon. The carbonaceous materials produced from coffee grounds were applied to the adsorbates for the removal of basic dyes (methylene blue and gentian violet) in wastewater. This result indicated that the adsorption of dyes depended upon the surface polar groups on the carbonaceous materials. Moreover, the Freundlich constants of isotherms for the adsorption of methylene blue and gentian violet onto the carbonaceous materials produced from coffee grounds were greater than those for adsorption onto activated carbon or ceramic activated carbon. The interaction was greatest between the surface or porosity of the carbonaceous materials and methylene blue and gentian violet. The microwave treatment would be useful for the carbonization of organic wastes to save energy.

  7. In situ growth of copper nanocrystals from carbonaceous microspheres with electrochemical glucose sensing properties

    SciTech Connect

    Zhou, Xiaoliang; Yan, Zhengguang Han, Xiaodong

    2014-02-01

    Graphical abstract: In situ growth of copper nanoparticles from hydrothermal copper-containing carbonaceous microspheres was induced by annealing or electron beam irradiation. Obtained micro-nano carbon/copper composite microspheres show electrochemical glucose sensing properties. - Highlights: • We synthesized carbonaceous microspheres containing non-nanoparicle copper species through a hydrothermal route. • By annealing or electron beam irradiation, copper nanoparticles would form from the carbonaceous microspheres in situ. • By controlling the annealing temperature, particle size of copper could be controlled in the range of 50–500 nm. • The annealed carbon/copper hierarchical composite microspheres were used to fabricate an electrochemical glucose sensor. - Abstract: In situ growth of copper nanocrystals from carbon/copper microspheres was observed in a well-controlled annealing or an electron beam irradiation process. Carbonaceous microspheres containing copper species with a smooth appearance were yielded by a hydrothermal synthesis using copper nitrate and ascorbic acid as reactants. When annealing the carbonaceous microspheres under inert atmosphere, copper nanoparticles were formed on carbon microspheres and the copper particle sizes can be increased to a range of 50–500 nm by altering the heating temperature. Similarly, in situ formation of copper nanocrystals from these carbonaceous microspheres was observed on the hydrothermal product carbonaceous microspheres with electron beam irradiation in a vacuum transmission electron microscopy chamber. The carbon/copper composite microspheres obtained through annealing were used to modify a glassy carbon electrode and tested as an electrochemical glucose sensor.

  8. Hypervelocity impact survivability experiments for carbonaceous impactors, part 2

    SciTech Connect

    Bunch, T.E.; Paque, J.M.; Becker, L.; Vedder, J.F.; Erlichman, J. ||

    1995-02-01

    Hypervelocity impact experiments were performed to further test the survivability of carbonaceous impactors and to determine potential products that may have been synthesized during impact. Diamonds were launched by the Ames two-stage light gas gun into Al plate at velocities of 2.75 and 3.1 km sec(exp -1). FESEM imagery confirms that diamond fragments survived in both experiments. Earlier experiments found that diamonds were destroyed on impact above 4.3 km sec(exp -1). Thus, the upper stability limit for diamond on impact into Al, as determined from our experimental conditions, is between 3.1 and 4.3 km sec(exp -1). Particles of the carbonaceous chondrite Nogoya were also launched into Al at a velocity of 6.2 km sec (exp -1). Laser desorption (L (exp 2) MS) analyses of the impactor residues indicate that the lowest and highest mass polycyclic aromatic hydrocarbons (PAH`s) were largely destroyed on impact; those of intermediate mass (202-220 amu) remained at the same level or increased in abundance. In addition, alkyl-substituted homologs of the most abundant pre-impacted PAH`s were synthesized during impact. These results suggest that an unknown fraction of some organic compounds can survive low to moderate impact velocities and that synthesized products can be expected to form up to velocities of, at least, 6.5 km sec(exp -1). The authors also present examples of craters formed by a unique microparticle accelerator that could launch micron-sized particles of almost any coherent material at velocities up to approximately 15 km sec(exp -1). Many of the experiments have a direct bearing on the interpretation of LDEF craters.

  9. Dating carbonaceous matter in archean cherts by electron paramagnetic resonance.

    PubMed

    Bourbin, M; Gourier, D; Derenne, S; Binet, L; Le Du, Y; Westall, F; Kremer, B; Gautret, P

    2013-02-01

    Ancient geological materials are likely to be contaminated through geological times. Thus, establishing the syngeneity of the organic matter embedded in a mineral matrix is a crucial step in the study of very ancient rocks. This is particularly the case for Archean siliceous sedimentary rocks (cherts), which record the earliest traces of life. We used electron paramagnetic resonance (EPR) for assessing the syngeneity of organic matter in cherts that have a metamorphic grade no higher than greenschist. A correlation between the age of Precambrian samples and the shape of their EPR signal was established and statistically tested. As thermal treatments impact organic matter maturity, the effect of temperature on this syngeneity proxy was studied; cyanobacteria were submitted to cumulative short thermal treatment at high temperatures followed by an analysis of their EPR parameters. The resulting carbonaceous matter showed an evolution similar to that of a thermally treated young chert. Furthermore, the possible effect of metamorphism, which is a longer thermal event at lower temperatures, was ruled out for cherts older than 2 Gyr, based on the study of Silurian cherts of the same age and same precursors but various metamorphic grades. We determined that even the most metamorphosed sample did not exhibit the lineshape of an Archean sample. In the hope of detecting organic contamination in Archean cherts, a "contamination-like" mixture was prepared and studied by EPR. It resulted that the lineshape analysis alone does not allow contamination detection and that it must be performed along with cumulative thermal treatments. Such treatments were applied to three Archean chert samples, making dating of their carbonaceous matter possible. We concluded that EPR is a powerful tool to study primitive organic matter and could be used in further exobiology studies on low-metamorphic grade samples (from Mars for example).

  10. Dating Carbonaceous Matter in Archean Cherts by Electron Paramagnetic Resonance

    PubMed Central

    Bourbin, M.; Derenne, S.; Binet, L.; Le Du, Y.; Westall, F.; Kremer, B.; Gautret, P.

    2013-01-01

    Abstract Ancient geological materials are likely to be contaminated through geological times. Thus, establishing the syngeneity of the organic matter embedded in a mineral matrix is a crucial step in the study of very ancient rocks. This is particularly the case for Archean siliceous sedimentary rocks (cherts), which record the earliest traces of life. We used electron paramagnetic resonance (EPR) for assessing the syngeneity of organic matter in cherts that have a metamorphic grade no higher than greenschist. A correlation between the age of Precambrian samples and the shape of their EPR signal was established and statistically tested. As thermal treatments impact organic matter maturity, the effect of temperature on this syngeneity proxy was studied; cyanobacteria were submitted to cumulative short thermal treatment at high temperatures followed by an analysis of their EPR parameters. The resulting carbonaceous matter showed an evolution similar to that of a thermally treated young chert. Furthermore, the possible effect of metamorphism, which is a longer thermal event at lower temperatures, was ruled out for cherts older than 2 Gyr, based on the study of Silurian cherts of the same age and same precursors but various metamorphic grades. We determined that even the most metamorphosed sample did not exhibit the lineshape of an Archean sample. In the hope of detecting organic contamination in Archean cherts, a “contamination-like” mixture was prepared and studied by EPR. It resulted that the lineshape analysis alone does not allow contamination detection and that it must be performed along with cumulative thermal treatments. Such treatments were applied to three Archean chert samples, making dating of their carbonaceous matter possible. We concluded that EPR is a powerful tool to study primitive organic matter and could be used in further exobiology studies on low-metamorphic grade samples (from Mars for example). Key Words: Kerogen—Sedimentary rocks

  11. Hypervelocity impact survivability experiments for carbonaceous impactors, part 2

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.; Paque, Julie M.; Becker, Luann; Vedder, James F.; Erlichman, Jozef

    1995-01-01

    Hypervelocity impact experiments were performed to further test the survivability of carbonaceous impactors and to determine potential products that may have been synthesized during impact. Diamonds were launched by the Ames two-stage light gas gun into Al plate at velocities of 2.75 and 3.1 km sec(exp -1). FESEM imagery confirms that diamond fragments survived in both experiments. Earlier experiments found that diamonds were destroyed on impact above 4.3 km sec(exp -1). Thus, the upper stability limit for diamond on impact into Al, as determined from our experimental conditions, is between 3.1 and 4.3 km sec(exp -1). Particles of the carbonaceous chondrite Nogoya were also launched into Al at a velocity of 6.2 km sec (exp -1). Laser desorption (L (exp 2) MS) analyses of the impactor residues indicate that the lowest and highest mass polycyclic aromatic hydrocarbons (PAH's) were largely destroyed on impact; those of intermediate mass (202-220 amu) remained at the same level or increased in abundance. In addition, alkyl-substituted homologs of the most abundant pre-impacted PAH's were synthesized during impact. These results suggest that an unknown fraction of some organic compounds can survive low to moderate impact velocities and that synthesized products can be expected to form up to velocities of, at least, 6.5 km sec(exp -1). We also present examples of craters formed by a unique microparticle accelerator that could launch micron-sized particles of almost any coherent material at velocities up to approximately 15 km sec(exp -1). Many of the experiments have a direct bearing on the interpretation of LDEF craters.

  12. Dating carbonaceous matter in archean cherts by electron paramagnetic resonance.

    PubMed

    Bourbin, M; Gourier, D; Derenne, S; Binet, L; Le Du, Y; Westall, F; Kremer, B; Gautret, P

    2013-02-01

    Ancient geological materials are likely to be contaminated through geological times. Thus, establishing the syngeneity of the organic matter embedded in a mineral matrix is a crucial step in the study of very ancient rocks. This is particularly the case for Archean siliceous sedimentary rocks (cherts), which record the earliest traces of life. We used electron paramagnetic resonance (EPR) for assessing the syngeneity of organic matter in cherts that have a metamorphic grade no higher than greenschist. A correlation between the age of Precambrian samples and the shape of their EPR signal was established and statistically tested. As thermal treatments impact organic matter maturity, the effect of temperature on this syngeneity proxy was studied; cyanobacteria were submitted to cumulative short thermal treatment at high temperatures followed by an analysis of their EPR parameters. The resulting carbonaceous matter showed an evolution similar to that of a thermally treated young chert. Furthermore, the possible effect of metamorphism, which is a longer thermal event at lower temperatures, was ruled out for cherts older than 2 Gyr, based on the study of Silurian cherts of the same age and same precursors but various metamorphic grades. We determined that even the most metamorphosed sample did not exhibit the lineshape of an Archean sample. In the hope of detecting organic contamination in Archean cherts, a "contamination-like" mixture was prepared and studied by EPR. It resulted that the lineshape analysis alone does not allow contamination detection and that it must be performed along with cumulative thermal treatments. Such treatments were applied to three Archean chert samples, making dating of their carbonaceous matter possible. We concluded that EPR is a powerful tool to study primitive organic matter and could be used in further exobiology studies on low-metamorphic grade samples (from Mars for example). PMID:23397956

  13. Fertility of Holstein heifers after two doses of PGF2α in 5-day CO-Synch progesterone-based synchronization protocol.

    PubMed

    Say, Erkan; Çoban, Serdal; Nak, Yavuz; Nak, Deniz; Kara, Uğur; White, Stephanie; Kasimanickam, Vanmathy; Kasimanickam, Ramanathan

    2016-09-01

    The objective of the study was to determine the effect of three different PGF2α (PGF) treatments in the 5-day CO-Synch progesterone-based synchronization protocol on artificial insemination (AI) pregnancy rate (PR) in Holstein heifers in Turkey and the United States. We hypothesized that two doses of PGF administered concurrently or 6 hours apart would result in greater AI pregnancy compared with a single dose of PGF on Day 5 at controlled internal drug release (CIDR) removal. In Turkey, Holstein heifers (n = 450) from one farm in the province of Adana and another farm in the province of Bursa were included. In the US, Holstein heifers (n = 483) from two locations in the state of Idaho were included. Heifers within locations were randomly allocated to one of three protocol groups: 1PGF-received 25 mg IM of dinoprost at CIDR removal; 2Co-PGF-received 50 mg IM of dinoprost at CIDR removal, and 2PGF-received 25 mg IM of dinoprost at CIDR removal and an additional 25 mg IM of dinoprost 6 hours later. All heifers received a CIDR (1.38 g of progesterone) and GnRH (10 μg IM of Buserelin [Turkey] or gonadorelin hydrochloride [US]) on Day 0. The CIDRs were removed on Day 5, and each heifer was given PGF according to the assigned treatments. On Day 7, each heifer was given another dose of GnRH and concurrently inseminated at 56 hours after CIDR removal. Heifers in both experiments were examined for pregnancy status between 35 and 45 days after AI. Overall, controlling for age, the heifers in the 2PGF group had greater AI-PR (61.7% [192/311]) than heifers in 2Co-PGF (48.2% [149/309]; P < 0.001) or 1PGF (53.7% [168/313]; P < 0.05) groups. No difference was observed between 2Co-PGF and 1PGF groups (P > 0.1). In Turkey, the heifers in the 2PGF group had a greater AI-PR (60% [90/150]) than 2Co-PGF (45.3% (68/150); P < 0.01] group. No difference was observed between 2PGF and 1PGF (55.3% [83/150]) groups (P > 0.1). There was a trend for AI pregnancy between 1

  14. Contribution of Biomass Burning to Carbonaceous Aerosols in Mexico City during may 2013

    NASA Astrophysics Data System (ADS)

    Tzompa Sosa, Z. A.; Sullivan, A.; Kreidenweis, S. M.

    2014-12-01

    inert in the atmosphere, the estimated biomass burning contributions to WSOC ranged from 7-23%. When assuming a LEV lifetime of 1.1 to 5 days, the estimated contributions increased on average 80%. Thus, we conclude that biomass burning sources had a large impact on WSOC and PM2.5 during May 2013, potentially explaining up to half of the measured WSOC.

  15. Effects of 5-day styrene inhalation on serum LH and testosterone levels and on hypothalamic and striatal amino acid neurotransmitter concentrations in male rats.

    PubMed

    Jarry, Hubertus; Gamer, Armin; Wuttke, Wolfgang

    2004-04-01

    The volatile chemical styrene may impair male fertility. Testicular testosterone (T) production is controlled by the hypothalamic/pituitary/gonadal axis. From the mediobasal hypothalamus (MBH), gonadotropin-releasing hormone (GnRH) is released, which stimulates luteinizing hormone (LH) secretion from the pituitary, which in turn enhances T production. GnRH release is controlled by glutamate (GLU) and gamma-aminobutyric acid (GABA). GLU and GABA neurons are regulated by T. Thus, reduced fertility of styrene-exposed male workers may result from altered GLU/GABA neurotransmission, causing insufficient GnRH, LH, and T secretion. Therefore, we compared LH and T levels of male rats that have inhaled styrene (0, 150, 500, 1500 ppm for 6 h on 5 consecutive days) to GLU and GABA concentrations in the MBH and striatum. Animals were killed directly following the last exposure (immediate group) or after 24 h (recovery group). No suppression of LH or T levels was observed after styrene inhalation. LH levels of the immediate groups with 500 or 1500 ppm exposure were slightly but significantly elevated. Hypothalamic GLU and GABA concentrations remained unchanged. Increased striatal GABA concentrations were determined in recovery groups with 500 or 1500 ppm exposure. Striatal GLU concentrations remained unaffected. Thus, we demonstrate slightly increased LH and T levels in styrene-exposed male rats after inhalation of the two higher doses. This effect did not correlate with hypothalamic GLU and GABA concentrations. With the limitations inherent to any animal model, these data obtained from a 5-day exposure study with rats suggest, but do not unequivocally prove, that styrene may have also no reproductive toxicity effects in men chronically exposed to this chemical.

  16. Evaluation of Biomarkers of Exposure in Smokers Switching to a Carbon-Heated Tobacco Product: A Controlled, Randomized, Open-Label 5-Day Exposure Study

    PubMed Central

    Haziza, Christelle; Weitkunat, Rolf; Magnette, John

    2016-01-01

    Introduction: Tobacco harm reduction aims to provide reduced risk alternatives to adult smokers who would otherwise continue smoking combustible cigarettes (CCs). This randomized, open-label, three-arm, parallel-group, single-center, short-term confinement study aimed to investigate the effects of exposure to selected harmful and potentially harmful constituents (HPHCs) of cigarette smoke in adult smokers who switched to a carbon-heated tobacco product (CHTP) compared with adult smokers who continued to smoke CCs and those who abstained from smoking for 5 days. Methods: Biomarkers of exposure to HPHCs, including nicotine and urinary excretion of mutagenic material, were measured in 24-hour urine and blood samples in 112 male and female Caucasian smokers switching from CCs to the CHTP ad libitum use. Puffing topography was assessed during product use. Results: Switching to the CHTP or smoking abstinence (SA) resulted in marked decreases from baseline to Day 5 in all biomarkers of exposure measured, including carboxyhemoglobin (43% and 55% decrease in the CHTP and SA groups, respectively). The urinary excretion of mutagenic material was also markedly decreased on Day 5 compared with baseline (89% and 87% decrease in the CHTP and SA groups, respectively). No changes in biomarkers of exposure to HPHCs or urinary mutagenic material were observed between baseline and Day 5 in the CC group. Conclusions: Our results provide clear evidence supporting a reduction in the level of exposure to HPHCs of tobacco smoke in smokers who switch to CHTP under controlled conditions, similar to that observed in SA. Implications: The reductions observed in biomarkers of exposure to HPHCs of tobacco smoke in this short-term study could potentially also reduce the incidence of cancer, cardiovascular and respiratory diseases in those smokers who switch to a heated tobacco product. PMID:26817490

  17. Distribution of the lipolysis stimulated receptor in adult and embryonic murine tissues and lethality of LSR-/- embryos at 12.5 to 14.5 days of gestation.

    PubMed

    Mesli, Samir; Javorschi, Sandrine; Bérard, Annie M; Landry, Marc; Priddle, Helen; Kivlichan, David; Smith, Andrew J H; Yen, Frances T; Bihain, Bernard E; Darmon, Michel

    2004-08-01

    The lipolysis stimulated receptor (LSR) recognizes apolipoprotein B/E-containing lipoproteins in the presence of free fatty acids, and is thought to be involved in the clearance of triglyceride-rich lipoproteins (TRL). The distribution of LSR in mice was studied by Northern blots, quantitative PCR and immunofluorescence. In the adult, LSR mRNA was detectable in all tissues tested except muscle and heart, and was abundant in liver, lung, intestine, kidney, ovaries and testes. During embryogenesis, LSR mRNA was detectable at 7.5 days post-coitum (E7) and increased up to E17 in parallel to prothrombin, a liver marker. In adult liver, immunofluorescence experiments showed a staining at the periphery of hepatocytes as well as in fetal liver at E12 and E15. These results are in agreement with the assumption that LSR is a plasma membrane receptor involved in the clearance of lipoproteins by liver, and suggest a possible role in steroidogenic organs, lung, intestine and kidney). To explore the role of LSR in vivo, the LSR gene was inactivated in 129/Ola ES cells by removing a gene segment containing exons 2-5, and 129/Ola-C57BL/6 mice bearing the deletion were produced. Although heterozygotes appeared normal, LSR homozygotes were not viable, with the exception of three males, while the total progeny of genotyped wild-type and heterozygote pups was 345. Mortality of the homozygote embryos was observed between days 12.5 and 15.5 of gestation, a time at which their liver was much smaller than that of their littermates, indicating that the expression of LSR is critical for liver and embryonic development.

  18. Decontamination efficacy of erbium:yttrium-aluminium-garnet and diode laser light on oral Candida albicans isolates of a 5-day in vitro biofilm model.

    PubMed

    Sennhenn-Kirchner, Sabine; Schwarz, Peter; Schliephake, Henning; Konietschke, Frank; Brunner, Edgar; Borg-von Zepelin, Margarete

    2009-05-01

    The different forms of superficial and systemic candidiasis are often associated with biofilm formation on surfaces of host tissues or medical devices. The biofilm formation of Candida spp., in general, necessitates significantly increased amounts of antifungal agents for therapy. Often the therapeutic effect is doubtful. A 5-day biofilm model with oral Candida isolates was established according to Chandra et al. (J Dent Res 80:903-908, 2001) on glass and titanium surfaces and was modified by Sennhenn-Kirchner et al. (Z Zahnärztl Implantol 3:45-51, 2007) to investigate different aspects unanswered in the field of dentistry. In this model, the efficacy of erbium:yttrium-aluminium-garnet (Er:YAG) light (2940 nm, 100 mJ, 10 Hz, 300 micros pulsed mode applied for 80 s) and diode laser light (810 nm, 1 W, continuous wave mode applied for 20 s with four repetitions after 30 s pauses each) was evaluated and compared to untreated controls. The photometric evaluation of the samples was completed by observations on morphological changes of yeast cells grown in the biofilm. Compared to the untreated controls Candida cells grown in mature in vitro biofilms were significantly reduced by both wavelengths investigated. Comparison between the different methods of laser treatment additionally revealed a significantly greater effect of the Er:YAG over the diode laser. Scanning electron microscopy findings proved that the diode laser light was effective in direct contact mode. In contrast, in the areas without direct contact, the fungal cells were left almost unchanged. The Er:YAG laser damaged the fungal cells to a great extent wherever it was applied.

  19. Evaluation of short-term clinical efficacy of 3-day therapy with azithromycin in comparison with 5-day cefcapene-pivoxyl for acute streptococcal tonsillopharyngitis in primary care.

    PubMed

    Koga, Takeharu; Rikimaru, Toru; Tokunaga, Naoto; Higashi, Toshihiro; Nakamura, Masahiro; Ichikawa, Yoichiro; Matsuo, Kazuhiko

    2011-08-01

    Group A streptococcal (GAS) tonsillopharyngitis is one of the few conditions for which antibiotics are advocated among common upper respiratory infections. Although a 3-day course of azithromycin is attracting attention as a treatment of choice for the condition, it is not clear if the efficacy of the treatment is comparable with that of treatment with cephalosporins. A prospective, randomized, comparative multicenter study was conducted to compare the efficacy of azithromycin (AZM) given once daily for 3 days with that of cefcapene-pivoxyl (CFPN-PI) divided into three daily doses for 5 days. 88 patients (male: 38, mean age: 16.5) were treated with AZM and 69 (male: 34, mean age: 16.9) with CFPN-PI. The symptoms of all but 5 (2 for AZM and 3 for CFPN-PI) of the patients were resolved by the 8th day of the treatment. By the 4th day of the treatment, criteria for clinical efficacy were fulfilled in 71 (80.7%) subjects who were treated with AZM and in 48 (67.6%) of those treated with CFPN-PI (p = 0.07). The same figures on the 8th day of the treatment were 86 (97.7%) and 68 (95.8%), respectively (p = 0.66), confirming there was no significant difference in clinical efficacy between the two treatments. Mild adverse reactions were reported by two patients treated with AZM and by none treated with CFPN-PI. The clinical efficacy of a 3-day course with AZM was comparable with that of a 5-day course of CFPN-PI for GAS tonsillopharyngitis.

  20. Effect of route of administration and age on the pharmacokinetics of amikacin administered by the intravenous and intraosseous routes to 3 and 5-day-old foals.

    PubMed

    Golenz, M R; Wilson, W D; Carlson, G P; Craychee, T J; Mihalyi, J E; Knox, L

    1994-09-01

    The suitability of the intraosseous (i.o.) route for drug administration to equine neonates was evaluated in a study comparing the pharmacokinetics of amikacin administered by the i.o. and intravenous (i.v.) routes. Using a cross-over study design amikacin sulphate (7 mg/kg bwt) was administered i.o. or i.v. to 6 healthy foals at 3 and 5 days of age. Amikacin was instantaneously and completely absorbed after i.o. administration, achieving a mean +/- sd peak concentration (34.17 +/- 3.54 micrograms/ml) in the first sample collected 3 min after administration which was not significantly different from the mean +/- sd peak concentration (32.92 +/- 2.63 micrograms/ml) achieved after i.v. administration. The plasma amikacin concentration-time profiles for the i.o. and i.v. routes were not different and both were appropriately described by a 2-compartment open pharmacokinetic model. No significant differences attributable to route of administration were found in values for the major pharmacokinetic variables. The degree of inter-individual variation in values for indices of clearance was considerably greater than the degree of variation attributable to age. Despite this, values for body clearance (ClB) were significantly higher (P < 0.05) and values for area under the plasma amikacin concentration-time curve (AUC) and concentration of amikacin in plasma at 8 h [Cp(8h)] were significantly lower in 5- than in 3-day-old foals, indicating that amikacin was more rapidly cleared by the older foals. Technical difficulties were not encountered during i.o. needle placement in the medial aspect of the proximal tibia. Mild diffuse soft tissue swelling which developed at the i.o. site resolved completely within 1-2 months.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Pressure gradient passivation of carbonaceous material normally susceptible to spontaneous combustion

    DOEpatents

    Ochs, Thomas L.; Sands, William D.; Schroeder, Karl; Summers, Cathy A.; Utz, Bruce R.

    2000-11-14

    This invention is a process for the passivation or deactivation with resp to oxygen of a carbonaceous material by the exposure of the carbonaceous material to an oxygenated gas in which the oxygenated gas pressure is increased from a first pressure to a second pressure and then the pressure is changed to a third pressure. Preferably a cyclic process which comprises exposing the carbonaceous material to the gas at low pressure and increasing the pressure to a second higher pressure and then returning the pressure to a lower pressure is used. The cycle is repeated at least twice wherein the higher pressure may be increased after a selected number of cycles.

  2. Pressure gradient passivation of carbonaceous material normally susceptible to spontaneous combustion

    DOEpatents

    Ochs, Thomas L.; Sands, William D.; Schroeder, Karl; Summers, Cathy A.; Utz, Bruce R.

    2002-01-29

    This invention is a process for the passivation or deactivation with respect to oxygen of a carbonaceous material by the exposure of the carbonaceous material to an oxygenated gas in which the oxygenated gas pressure is increased from a first pressure to a second pressure and then the pressure is changed to a third pressure. Preferably a cyclic process which comprises exposing the carbonaceous material to the gas at low pressure and increasing the pressure to a second higher pressure and then returning the pressure to a lower pressure is used. The cycle is repeated at least twice wherein the higher pressure may be increased after a selected number of cycles.

  3. Uranium-bearing coal and carbonaceous rocks in the Fall Creek area, Bonneville County, Idaho

    USGS Publications Warehouse

    Vine, James D.; Moore, George Winfred

    1952-01-01

    Uraniferous coal, carbonaceous shale, and carbonaceous limestone occur in the Bear River formation of Early Cretaceous age at the Fall Creek prospect, in the Fall Creek area, Bonneville County, Idaho. The uranium compounds are believed to have been derived from mildly radioactive silicic volcanic rocks of Tertiary age that rest unconformably on all older rocks and once overlay the Bear River formation and its coal. Meteoric water, percolating downward through the silicic volcanic rocks and into the older rocks along joints and faults, is believed to have brought the uranium compounds into contact with the coal and carbonaceous rocks in which the uranium was absorbed.

  4. Liquefaction process for solid carbonaceous materials containing alkaline earth metal humates

    DOEpatents

    Epperly, William R.; Deane, Barry C.; Brunson, Roy J.

    1982-01-01

    An improved liquefaction process wherein wall scale and particulate agglomeration during the liquefaction of solid carbonaceous materials containing alkaline earth metal humates is reduced and/or eliminated by subjecting the solid carbonaceous materials to controlled cyclic cavitation during liquefaction. It is important that the solid carbonaceous material be slurried in a suitable solvent or diluent during liquefaction. The cyclic cavitation may be imparted via pressure cycling, cyclic agitation and the like. When pressure cycling or the like is employed an amplitude equivalent to at least 25 psia is required to effectively remove scale from the liquefaction vessel walls.

  5. Carbonaceous chondrites. II - Carbonaceous chondrite phyllosilicates and light element geochemistry as indicators of parent body processes and surface conditions

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.; Chang, S.

    1980-01-01

    Petrographic analyses of CM matrices characterized four phyllosilicates in Murray and Murchison meteorites and Fe- and Mg-serpentines in Nogoya. All phyllosilicates and bulk matrices show enrichment of K relative to Na when compared with bulk meteorites; the loss of Na and some Cl, and the addition of H2O, CO2, and water-soluble organics during alteration indicates a partially open system. Synthesis of soluble organic materials may have occurred in CM matrices before aqueous alteration of the precursive phases. Nogoya was 95% altered and has a bulk C content of 5.2%, higher than any meteorite; also, it has the lowest measured C-13/C-12 ratio of any carbonaceous chondrite except for Karoonda.

  6. Impaired T-wave amplitude adaptation to heart-rate induced by cardiac deconditioning after 5-days of head-down bed-rest

    NASA Astrophysics Data System (ADS)

    Caiani, Enrico G.; Pellegrini, Alessandro; Bolea, Juan; Sotaquira, Miguel; Almeida, Rute; Vaïda, Pierre

    2013-10-01

    The study of QT/RR relationship is important for the clinical evaluation of possible risk of acquired or congenital ventricular tachyarrhythmias. In the hypothesis that microgravity exposure could induce changes in the repolarization mechanisms, our aim was to test if a short 5-days strict 6° head-down bed-rest (HDBR) could induce alterations in the QT/RR relationship and spatial repolarization heterogeneity. Twenty-two healthy men (mean age 31±6) were enrolled as part of the European Space Agency HDBR studies. High fidelity (1000 Hz) 24 h Holter ECG (12-leads, Mortara Instrument) was acquired before (PRE), the last day of HDBR (HDT5), and four days after its conclusion (POST). The night period (23:00-06:30) was selected for analysis. X, Y, Z leads were derived and the vectorcardiogram computed. Selective beat averaging was used to obtain averages of P-QRS-T complexes preceded by the same RR (10 ms bin amplitude, in the range 900-1200 ms). For each averaged waveform (i.e., one for each bin), T-wave maximum amplitude (Tmax), T-wave area (Tarea), RTapex, RTend, ventricular gradient (VG) magnitude and spatial QRS-T angle were computed. Non-parametric Friedman test was applied. Compared to PRE, at HDT5 both RTapex and RTend resulted shortened (-4%), with a decrease in T-wave amplitude (-8%) and area (-13%). VG was diminished by 10%, and QRS-T angle increased by 14°. At POST, QT duration and area parameters, as well as QRS-T angle were restored while Tmax resulted larger than PRE (+5%) and VG was still decreased by 3%. Also, a marked loss in strength of the linear regression with RR was found at HDT5 in Tmax and Tarea, that could represent a new dynamic marker of increased risk for life-threatening arrhythmias. Despite the short-term HDBR, ventricular repolarization during the night period was affected. This should be taken into account in astronauts for risk assessment during space flight.

  7. Functional Group Compositions of Carbonaceous Materials of Hayabusa-Returned Samples

    NASA Astrophysics Data System (ADS)

    Yabuta, H.; Uesugi, M.; Naraoka, H.; Ito, M.; Kilcoyne, D.; Sandford, S. A.; Kitajima, F.; Mita, H.; Takano, Y.; Yada, T.; Karouji, Y.; Ishibashi, Y.; Okada, T.; Abe, M.

    2014-09-01

    We have analyzed the functional group compositions of the carbonaceous materials of Hayabusa-returned samples by STXM-XANES, in order to identify whether the materials are terrestrial or extraterrestrial.

  8. AMENDMENT OF SEDIMENTS WITH A CARBONACEOUS RESIN REDUCES BIOAVAILABILITY OF POLYCYCLIC AROMATIC HYDROCARBONS

    EPA Science Inventory

    A series of laboratory and field test studies were conducted to evaluate the effectiveness of Ambersorb, a carbonaceous resin, in reducing bioavailability of polycyclic aromatic hydrocarbons (PAHs) in contaminated sediments collected from the field. Amending contaminated sediment...

  9. UV signatures of carbonaceous species on low-albedo asteroids

    NASA Astrophysics Data System (ADS)

    Hendrix, A.; Vilas, F.

    2014-07-01

    Asteroids in the low-albedo classes (C, B, G, F) are known to have spectra that are relatively feature-free in the visible/near-infrared (VNIR) spectral region, making them classically difficult to study in terms of surface mineralogy. Many of these bodies exhibit a 3-micron absorption band (e.g., [1]), which can be used to study hydration and organics. The primary other spectrally active region --- less well studied so far --- is the ultraviolet (UV). In this study, we utilize UV spectra of low-albedo asteroids (C, B, G, and F class) to study surface composition. In particular, we investigate implications for the presence of carbonaceous compounds, including tholins and Polycyclic Aromatic Hydrocarbons (PAHs), which have unique spectral features in the UV. Low-albedo asteroids are typically rather bland spectrally at VNIR wavelengths. Many of these objects exhibit an absorption band near 3 microns, indicative of some type of hydration (OH and-or H_2O). A subset of the asteroids with the 3-micron features also exhibit absorption near 0.7 microns, due to a ferrous-ferric charge-transfer transition likely resulting from aqueous alteration (the interaction of material with liquid water formed by melting of water upon a heating event). Some asteroids likely do not exhibit these features due to a history of heating experienced at some point in the asteroid's evolution. Despite having little spectral activity in the VNIR, all low-albedo asteroids absorb at wavelengths shorter than ˜500 nm. This has been generally attributed to a ferric-iron intervalence charge-transfer transition absorption. Carbon-bearing phases have long been assumed to be important on low-albedo asteroids (e.g., [2]) due to the dark, mostly-featureless VNIR spectra of these bodies. However, there are many forms of carbonaceous species and the species are expected to undergo phase modifications (e.g., due to thermal, aqueous, and radiation processes) that affect the spectra [3,7]. Tholins are residues

  10. Aqueous processing of organic compounds in carbonaceous asteroids

    NASA Astrophysics Data System (ADS)

    Trigo-Rodríguez, Josep Maria; Rimola, Albert; Martins, Zita

    2015-04-01

    There is growing evidence pointing towards a prebiotic synthesis of complex organic species in water-rich undifferentiated bodies. For instance, clays have been found to be associated with complex organic compounds (Pearson et al. 2002; Garvie & Buseck 2007; Arteaga et al. 2010), whereas theoretical calculations have studied the interaction between the organic species and surface minerals (Rimola et al., 2013) as well as surface-induced reactions (Rimola at al. 2007). Now, we are using more detailed analytical techniques to study the possible processing of organic molecules associated with the mild aqueous alteration in CR, CM and CI chondrites. To learn more about these processes we are studying carbonaceous chondrites at Ultra High-Resolution Transmission Electron Microscopy (UHR-TEM). We are particularly interested in the relationship between organics and clay minerals in carbonaceous chondrites (CCs) matrixes (Trigo-Rodríguez et al. 2014, 2015).We want to address two goals: i) identifying the chemical steps in which the organic molecules could have increased their complexity (i.e., surface interaction and catalysis); and ii) studying if the organic matter present in CCs experienced significant processing concomitant to the formation of clays and other minerals at the time in which these planetary bodies experienced aqueous alteration. Here, these two points are preliminarily explored combing experimental results with theoretical calculations based on accurate quantum mechanical methods. References Arteaga O, Canillas A, Crusats J, El-Hachemi Z, Jellison GE, Llorca J, Ribó JM (2010) Chiral biases in solids by effect of shear gradients: a speculation on the deterministic origin of biological homochirality. Orig Life Evol Biosph 40:27-40. Garvie LAJ, Buseck PR (2007) Prebiotic carbon in clays from Orgueil and Ivuna (CI) and Tagish lake (C2 ungrouped) meteorites. Meteorit Planet Sci 42:2111-2117. Pearson VK, Sephton MA, Kearsley AT, Bland AP, Franchi IA, Gilmour

  11. Mineralized remains of morphotypes of filamentous cyanobacteria in carbonaceous meteorites

    NASA Astrophysics Data System (ADS)

    Hoover, Richard B.

    2005-09-01

    The quest for conclusive evidence of microfossils in meteorites has been elusive. Abiotic microstructures, mineral grains, and even coating artifacts may mimic unicellular bacteria, archaea and nanobacteria with simple spherical or rod morphologies (i.e., cocci, diplococci, bacilli, etc.). This is not the case for the larger and more complex microorganisms, colonies and microbial consortia and ecosystems. Microfossils of algae, cyanobacteria, and cyanobacterial and microbial mats have been recognized and described from many of the most ancient rocks on Earth. The filamentous cyanobacteria and sulphur-bacteria have very distinctive size ranges, complex and recognizable morphologies and visibly differentiated cellular microstructures. The taphonomic modes of fossilization and the life habits and processes of these microorganisms often result in distinctive chemical biosignatures associated with carbonization, silicification, calcification, phosphatization and metal-binding properties of their cell-walls, trichomes, sheaths and extracellular polymeric substances (EPS). Valid biogenicity is provided by the combination of a suite of known biogenic elements (that differ from the meteorite matrix) found in direct association with recognizable and distinct biological features and microstructures (e.g., uniseriate or multiseriate filaments, trichomes, sheaths and cells of proper size/size range); specialized cells (e.g., basal or apical cells, hormogonia, akinetes, and heterocysts); and evidence of growth characteristics (e.g., spiral filaments, robust or thin sheaths, laminated sheaths, true or false branching of trichomes, tapered or uniform filaments) and evidence of locomotion (e.g. emergent cells and trichomes, coiling hormogonia, and hollow or flattened and twisted sheaths). Since 1997 we have conducted Environmental and Field Emission Scanning Electron Microscopy (ESEM and FESEM) studies of freshly fractured interior surfaces of carbonaceous meteorites, terrestrial

  12. Alternative hypothesis for the origin of CCF xenon. [Carbonaceous-Chondrite-Fission xenon

    NASA Technical Reports Server (NTRS)

    Black, D. C.

    1975-01-01

    The relative abundances and origins of the xenon isotopes found in carbonaceous meteorites are discussed. It is proposed that carbonaceous-chondrite-fission (CCF) xenon is not caused by fission, but is the direct result of a modified r-process nucleosynthesis which produces a peak at Z = 54 and N = 82. The xenon produced in this way would have been trapped in dust grains which were subsequently incorporated in the solar system with minimal degassing.

  13. Textural evidence bearing on the origin of isolated olivine crystals in C2 carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Richardson, S. M.; Mcsween, H. Y., Jr.

    1978-01-01

    In some cases the mechanical competence of chondrules in carbonaceous chondrites has been reduced by alteration of their mesostasis glass to friable phyllosilicate, providing a mechanism by which euhedral olivines can be separated from chondrules. Morphological features of isolate olivine grains found in carbonaceous chondrites are similar to those of olivine phenocrysts in chondrules. These observations suggest that the isolated olivine grains formed in chondrules, by crystallization from a liquid, rather than by condensation from a vapor.

  14. Explosion Production of Fullerenes from Carbonaceous Bullet in Vacuum Using Rail Gun

    NASA Astrophysics Data System (ADS)

    Mieno, Tetsu; Yamori, Akira

    2006-04-01

    A carbonaceous bullet is accelerated using a rail gun in vacuum and collides with a metal or carbon target at a speed of approximately 6 km/s, at which the bullet explodes and the high-temperature reaction of carbon particles takes place. As a result, C60 and higher fullerenes are produced. Using a carbonaceous bullet containing metal-oxide powder, endohedral metallofullerenes are also produced by this method.

  15. Comets, Carbonaceous Meteorites, and the Origin of the Biosphere

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2005-01-01

    The biosphere comprises the Earth s crust, atmosphere, oceans, and ice caps and the living organisms that survive within this habitat. The discoveries of barophilic chemolithoautotrophic thermophiles living deep within the crust and in deep-sea hydrothermal vents, and psychrophiles in permafrost and deep within the Antarctic Ice Sheet indicate the Earth s biosphere is far more extensive than previously recognized. Molecular biomarkers and Bacterial Paleontology provide evidence that life appeared very early on the primitive Earth and the origin of the biosphere is closely linked with the emergence of life. The role of comets, meteorites, and interstellar dust in the delivery of water, organics and prebiotic chemicals has long been recognized. Deuterium enrichment of seawater and comets indicates that comets delivered oceans to the early Earth. Furthermore, the similarity of the D/H ratios and the chemical compositions of CI carbonaceous meteorites and comets indicate that the CI meteorites may be remnants of cometary nuclei with most volatiles removed. Comets, meteorites, and interstellar dust also contain complex organic chemicals, amino acids, macromolecules, and kerogen-like biopolymers and may have played a crucial role in the delivery of complex organics and prebiotic chemicals during the Hadean (4.5-3.8 Gyr) period of heavy bombardment. The existence of indigenous microfossils of morphotypes of cyanobacteria in the CI and CM carbonaceous meteorites suggests that the paradigm that life originated endogenously in the primitive oceans of early Earth may require re-consideration. Recent data on the hot (300-400 K) black crust on comet P/Halley and Stardust images of P/Wild 2 showing depressions, tall cliffs, and pinnacles, indicate the presence of thick, durable, dark crusts on comets. If cavities within the ice and crust sustain vapor pressures in excess of 10 millibar, then localized pools of liquid water and brines could exist within the comet. Since life

  16. The onset of metamorphism in ordinary and carbonaceous chondrites

    USGS Publications Warehouse

    Grossman, J.N.; Brearley, A.J.

    2005-01-01

    Ordinary and carbonaceous chondrites of the lowest petrologic types were surveyed by X-ray mapping techniques. A variety of metamorphic effects were noted and subjected to detailed analysis using electron microprobe, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and cathodoluminescence (CL) methods. The distribution of Cr in FeO-rich olivine systematically changes as metamorphism increases between type 3.0 and type 3.2. Igneous zoning patterns are replaced by complex ones and Cr-rich coatings develop on all grains. Cr distributions in olivine are controlled by the exsolution of a Cr-rich phase, probably chromite. Cr in olivine may have been partly present as tetrahedrally coordinated Cr3+. Separation of chromite is nearly complete by petrologic type 3.2. The abundance of chondrules showing an inhomogeneous distribution of alkalis in mesostasis also increases with petrologic type. TEM shows this to be the result of crystallization of albite. Residual glass compositions systematically change during metamorphism, becoming increasingly rich in K. Glass in type I chondrules also gains alkalis during metamorphism. Both types of chondrules were open to an exchange of alkalis with opaque matrix and other chondrules. The matrix in the least metamorphosed chondrites is rich in S and Na. The S is lost from the matrix at the earliest stages of metamorphism due to coalescence of minute grains. Progressive heating also results in the loss of sulfides from chondrule rims and increases sulfide abundances in coarse matrix assemblages as well as inside chondrules. Alkalis initially leave the matrix and enter chondrules during early metamorphism. Feldspar subsequently nucleates in the matrix and Na re-enters from chondrules. These metamorphic trends can be used to refine classification schemes for chondrites. Cr distributions in olivine are a highly effective tool for assigning petrologic types to the most primitive meteorites and can be used to

  17. Chemical and structural composition of organic carbonaceous structures in Tissint: evidence for a biogenetic origin

    NASA Astrophysics Data System (ADS)

    Wallis, Jamie; Wickramasinghe, N. C.; Wallis, Daryl H.; Miyake, Nori; Wallis, M. K.; Hoover, Richard B.

    2015-09-01

    Earlier studies of the Tissint Martian meteorite identified the presence of a number of 5-50μm carbonaceous spherical structures. SEM and EDS elemental spectra for 11 selected structures confirmed that they comprise of a carbonaceous outer coating with a inner core of FeS2 (pyrite) and are characterised as immiscible globules with curved boundaries. Here we report on the results of Raman spectroscopic studies that unambiguously confirm the mantle as comprising of `disordered carbonaceous material'. R1 = ID/IG against ΓD (cm-1) band parameter plots of the carbonaceous coatings imply a complex precursor carbon inventory comparable to the precursor carbon component of materials of known biotic source (plants, algae, fungi, crustaceans, prokaryotes). Correlation between peak metamorphic temperatures and Raman D-band (ΓD) parameters further indicate the carbonaceous component was subjected to a peak temperature of ~250 OC suggesting a possible link with the hydrothermal precipitation processes responsible for the formation of similar globules observed in hydrothermal calcite veins in central Ireland. Ω G (cm-1), ΓG (cm-1), Ω D (cm-1) and ΓD (cm-1) parameters further imply a level of crystallinity and disorder of the carbon component consistent with carbonaceous material recovered from a variety of non-terrestrial sources. Cl, N, O and S to C elemental ratios are typical of high volatility bituminous coals and distinctly higher than equivalent graphite standards.

  18. Evaluation of early Archean volcaniclastic and volcanic flow rocks as possible sites for carbonaceous fossil microbes.

    PubMed

    Walsh, Maud M

    2004-01-01

    Sedimentary rocks have traditionally been the focus of the search for Archean microfossils; the Earth's oldest fossil bacteria are associated with carbonaceous matter in sedimentary cherts in greenstone belts in the eastern Pilbara block of Western Australia and Barberton greenstone belt of South Africa. Reports of possible fossils in a martian meteorite composed of igneous rock and the discovery of modern bacteria associated with basalts have stimulated a new look at Archean volcanic rocks as possible sites for fossil microbes. This study examines silicified volcaniclastic rocks, near-surface altered volcanic flow rocks, and associated stromatolite- like structures from the Archean Barberton greenstone belt to evaluate their potential for the preservation of carbonaceous fossils. Detrital carbonaceous particles are widely admixed with current-deposited debris. Carbonaceous matter is also present in altered volcanic flow rocks as sparse particles in silica veins that appear to be fed by overlying carbonaceous chert layers. Neither microfossils nor mat-like material was identified in the altered volcanic rocks or adjacent stromatolite-like structures. Ancient volcanic flow and volcaniclastic rocks are not promising sites for carbonaceous fossil preservation.

  19. Evaluation of early Archean volcaniclastic and volcanic flow rocks as possible sites for carbonaceous fossil microbes.

    PubMed

    Walsh, Maud M

    2004-01-01

    Sedimentary rocks have traditionally been the focus of the search for Archean microfossils; the Earth's oldest fossil bacteria are associated with carbonaceous matter in sedimentary cherts in greenstone belts in the eastern Pilbara block of Western Australia and Barberton greenstone belt of South Africa. Reports of possible fossils in a martian meteorite composed of igneous rock and the discovery of modern bacteria associated with basalts have stimulated a new look at Archean volcanic rocks as possible sites for fossil microbes. This study examines silicified volcaniclastic rocks, near-surface altered volcanic flow rocks, and associated stromatolite- like structures from the Archean Barberton greenstone belt to evaluate their potential for the preservation of carbonaceous fossils. Detrital carbonaceous particles are widely admixed with current-deposited debris. Carbonaceous matter is also present in altered volcanic flow rocks as sparse particles in silica veins that appear to be fed by overlying carbonaceous chert layers. Neither microfossils nor mat-like material was identified in the altered volcanic rocks or adjacent stromatolite-like structures. Ancient volcanic flow and volcaniclastic rocks are not promising sites for carbonaceous fossil preservation. PMID:15684724

  20. Carbonaceous aerosol tracers in ice-cores record multi-decadal climate oscillations

    PubMed Central

    Seki, Osamu; Kawamura, Kimitaka; Bendle, James A. P.; Izawa, Yusuke; Suzuki, Ikuko; Shiraiwa, Takayuki; Fujii, Yoshiyuki

    2015-01-01

    Carbonaceous aerosols influence the climate via direct and indirect effects on radiative balance. However, the factors controlling the emissions, transport and role of carbonaceous aerosols in the climate system are highly uncertain. Here we investigate organic tracers in ice cores from Greenland and Kamchatka and find that, throughout the period covered by the records (1550 to 2000 CE), the concentrations and composition of biomass burning-, soil bacterial- and plant wax- tracers correspond to Arctic and regional temperatures as well as the warm season Arctic Oscillation (AO) over multi-decadal time-scales. Specifically, order of magnitude decreases (increases) in abundances of ice-core organic tracers, likely representing significant decreases (increases) in the atmospheric loading of carbonaceous aerosols, occur during colder (warmer) phases in the high latitudinal Northern Hemisphere. This raises questions about causality and possible carbonaceous aerosol feedback mechanisms. Our work opens new avenues for ice core research. Translating concentrations of organic tracers (μg/kg-ice or TOC) from ice-cores, into estimates of the atmospheric loading of carbonaceous aerosols (μg/m3) combined with new model constraints on the strength and sign of climate forcing by carbonaceous aerosols should be a priority for future research. PMID:26411576

  1. Biochemical Reversal of Aging

    NASA Astrophysics Data System (ADS)

    Ely, John T. A.

    2006-03-01

    We cite our progress on biochemical reversal of aging. However, it may be circa 2 years before we have necessary substances at low cost. Meanwhile, without them, a number of measures can be adopted providing marked improvement for the problems of aging in modern societies. For example, enzymes are needed to excrete toxins that accelerate aging; Hg is the ultimate toxin that disables all enzymes (including those needed to excrete Hg itself). Low Hg level in the urine, due to loss of excretory ability, causes the diagnosis of Hg toxicity to almost always be missed. Hg sources must be removed from the body! Another example is excess sugar; hyperglycemia decreases intracellular ascorbic acid (AA) by competitively inhibiting the insulin- mediated active transport of AA into cells. Thus, immunity is impaired by low leucocyte AA. AA is needed for new proteins in aging tissues. Humans must supplement AA; their need same as in AA-synthesizing mammals.

  2. Laboratory study of carbonaceous dust and molecules of astrochemical interest

    NASA Astrophysics Data System (ADS)

    Cataldo, F.; Garcia-Hernandez, D. A.; Manchado, A.; Kwok, S.

    2016-07-01

    In this paper are reviewed some research works dedicated to the study of carbonaceous dust and molecules of astrochemical interest. First of all it is discussed the carbon arc through which it is possible to produce carbon soot and fullerenes under helium but also many other different products just changing the arcing conditions. For example, when the carbon arc is struck in an hydrocarbon solvent it is possible to produce and trap polyynes in the solvent. Monocyanopolyynes and dicyanopolyynes can be produced as well by selecting the appropriate conditions. Amorphous carbon soot or partially graphitized carbon black can be produced with the carbon arc. Fullerenes were found in space thanks to the reference infrared spectra and the absorption cross sections which were determined in laboratory. Fullerenes are readily reactive with hydrogen yielding fulleranes the hydrogenated fullerenes. Furthermore fullerenes react with PAHs and with iron carbonyl yielding adducts. All these fullerene derivatives were synthesized and their reference spectra recorded in laboratory. It was proposed that petroleum fractions can be used as model substrates in the explanation of the carriers of the AIB (Aromatic Infrared Bands) observed in protoplanetary and planetary nebulae and the UIE (Unidentified Infrared Bands) found in the interstellar medium.

  3. Reactor for the gasification of solid carbonaceous materials

    SciTech Connect

    Velling, G.; Schrader, L.; Schumacher, H.

    1985-05-21

    In a reactor for gasification of solid carbonaceous materials in a fluidized bed under elevated pressure and at high temperatures using a hot gasification agent, a feed device for the gasification agent is installed in the lower part of the reactor chamber and traverses this chamber in the form of a bridge, which has an arch joined to the walls of the reactor chamber, said arch consisting of refractory brick and supporting a section of metal pipe. The latter is shielded from the outside by the arch and by a top-mounted structure of refractory material. On the inside, the metal pipe is also provided with a tubular lining of refractory material. Metal pipe, lining, and arch have openings for passage of the gasification agent. The size and shape of the openings are selected to assure passage of the gasification agent even if the parts undergo changes in length as a result of the effects of temperature. The metal pipe section also serves to absorb the forces resulting from the positive pressure of the gasification agent inside it, as well as for the purpose of metering and distributing the gasification agent in the interior of the reactor.

  4. MoS2 Surface Structure Tailoring via Carbonaceous Promoter

    NASA Astrophysics Data System (ADS)

    Shi, Yumeng; Li, Henan; Wong, Jen It; Zhang, Xiaoting; Wang, Ye; Song, Huaihe; Yang, Hui Ying

    2015-05-01

    Atomically thin semiconducting transition-metal dichalcogenides have been attracting lots of attentions, particularly, molybdenum disulfide (MoS2) monolayers show promising applications in field effect transistors, optoelectronics and valleytronics. However, the controlled synthesis of highly crystalline MoS2 remain a challenge especially the systematic approach to manipulate its structure and morphology. Herein, we report a method for controlled synthesis of highly crystalline MoS2 by using chemical vapor deposition method with carbonaceous materials as growth promoter. A uniform and highly crystalline MoS2 monolayer with the grain size close to 40 μm was achieved. Furthermore, we extend the method to the manipulation of MoS2 morphology, flower-shape vertical grown MoS2 layers were obtained on growth promoting substrates. This simple approach allows an easy access of highly crystalline MoS2 layers with morphology tuned in a controllable manner. Moreover, the flower-shape MoS2 grown on graphene oxide film used as an anode material for lithium-ion batteries showed excellent electrochemical performance.

  5. High and rapid alkali cation storage in ultramicroporous carbonaceous materials

    NASA Astrophysics Data System (ADS)

    Yun, Young Soo; Lee, Seulbee; Kim, Na Rae; Kang, Minjee; Leal, Cecilia; Park, Kyu-Young; Kang, Kisuk; Jin, Hyoung-Joon

    2016-05-01

    To achieve better supercapacitor performance, efforts have focused on increasing the specific surface area of electrode materials to obtain higher energy and power density. The control of pores in these materials is one of the most effective ways to increase the surface area. However, when the size of pores decreases to a sub-nanometer regime, it becomes difficult to apply the conventional parallel-plate capacitor model because the charge separation distance (d-value) of the electrical double layer has a similar length scale. In this study, ultramicroporous carbonaceous materials (UCMs) containing sub-nanometer-scale pores are fabricated using a simple in situ carbonization/activation of cellulose-based compounds containing potassium. The results show that alkali cations act as charge carriers in the ultramicropores (<0.7 nm), and these materials can deliver high capacitances of ∼300 F g-1 at 0.5 A g-1 and 130 F g-1, even at a high current rate of 65 A g-1 in an aqueous medium. In addition, the UCM-based symmetric supercapacitors are stable over 10,000 cycles and have a high energy and power densities of 8.4 Wh kg-1 and 15,000 W kg-1, respectively. This study provides a better understanding of the effects of ultramicropores in alkali cation storage.

  6. Evidence for Extended Aqueous Alteration in CR Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Trigo-Rodriquez, J. M.; Moyano-Cambero, C. E.; Mestres, N.; Fraxedas, J.; Zolensky, M.; Nakamura, T.; Martins, Z.

    2013-01-01

    We are currently studying the chemical interrelationships between the main rockforming components of carbonaceous chondrites (hereafter CC), e.g. silicate chondrules, refractory inclusions and metal grains, and the surrounding meteorite matrices. It is thought that the fine-grained materials that form CC matrices are representing samples of relatively unprocessed protoplanetary disk materials [1-3]. In fact, modern non-destructive analytical techniques have shown that CC matrices host a large diversity of stellar grains from many distinguishable stellar sources [4]. Aqueous alteration has played a role in homogeneizing the isotopic content that allows the identification of presolar grains [5]. On the other hand, detailed analytical techniques have found that the aqueously-altered CR, CM and CI chondrite groups contain matrices in which the organic matter has experienced significant processing concomitant to the formation of clays and other minerals. In this sense, clays have been found to be directly associated with complex organics [6, 7]. CR chondrites are particularly relevant in this context as this chondrite group contains abundant metal grains in the interstitial matrix, and inside glassy silicate chondrules. It is important because CR are known for exhibiting a large complexity of organic compounds [8-10], and only metallic Fe is considered essential in Fischer-Tropsch catalysis of organics [11-13]. Therefore, CR chondrites can be considered primitive materials capable to provide clues on the role played by aqueous alteration in the chemical evolution of their parent asteroids.

  7. Magnetic evidence for a partially differentiated carbonaceous chondrite parent body

    PubMed Central

    Carporzen, Laurent; Weiss, Benjamin P.; Elkins-Tanton, Linda T.; Shuster, David L.; Ebel, Denton; Gattacceca, Jérôme

    2011-01-01

    The textures of chondritic meteorites demonstrate that they are not the products of planetary melting processes. This has long been interpreted as evidence that chondrite parent bodies never experienced large-scale melting. As a result, the paleomagnetism of the CV carbonaceous chondrite Allende, most of which was acquired after accretion of the parent body, has been a long-standing mystery. The possibility of a core dynamo like that known for achondrite parent bodies has been discounted because chondrite parent bodies are assumed to be undifferentiated. Resolution of this conundrum requires a determination of the age and timescale over which Allende acquired its magnetization. Here, we report that Allende’s magnetization was acquired over several million years (Ma) during metasomatism on the parent planetesimal in a >  ∼ 20 μT field up to approximately 9—10 Ma after solar system formation. This field was present too recently and directionally stable for too long to have been generated by the protoplanetary disk or young Sun. The field intensity is in the range expected for planetesimal core dynamos, suggesting that CV chondrites are derived from the outer, unmelted layer of a partially differentiated body with a convecting metallic core.

  8. Chiral Analyses of Organic Compounds in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Pizzarello, Sandra

    2004-01-01

    Contents include the following: 1. Characterization of Tagish Lake organic content. The first two grant years were largely devoted to the molecular and isotopic analyses of Tagish Lake organic composition. This carbonaceous meteorite fell in Canada in the winter of the year 2000, and its exceptional atmospheric entry and subsequent recovery (e. g., the sample was recovered and stored by avoiding hand contact and above freezing temperatures) contributed in providing a rare and pristine extraterrestrial material. 2. Chiral analyses of Murchison and Murray soluble organics. One of the most intriguing finding in regard to soluble meteorite organics is the presence within the amino acid suite of some compounds displaying L-enantiomeric excesses. This configuration is exclusive in the amino acids of terrestrial proteins and the finding has raised speculations of a possible role of amino acids from meteorites in the origin of homochirality on the early Earth. The main objective for this NASA funding was the characterization of enantiomeric excesses in meteorites and we have conducted several studies toward establishing their distribution and indignity.

  9. A search for extraterrestrial amino acids in carbonaceous Antarctic micrometeorites

    NASA Technical Reports Server (NTRS)

    Brinton, K. L.; Engrand, C.; Glavin, D. P.; Bada, J. L.; Maurette, M.

    1998-01-01

    Antarctic micrometeorites (AMMs) in the 100-400 microns size range are the dominant mass fraction of extraterrestrial material accreted by the Earth today. A high performance liquid chromatography (HPLC) based technique exploited at the limits of sensitivity has been used to search for the extraterrestrial amino acids alpha-aminoisobutyric acid (AIB) and isovaline in AMMs. Five samples, each containing about 30 to 35 grains, were analyzed. All the samples possess a terrestrial amino acid component, indicated by the excess of the L-enantiomers of common protein amino acids. In only one sample (A91) was AIB found to be present at a level significantly above the background blanks. The concentration of AIB (approximately 280 ppm), and the AIB/isovaline ratio (> or = 10), in this sample are both much higher than in CM chondrites. The apparently large variation in the AIB concentrations of the samples suggests that AIB may be concentrated in rare subset of micrometeorites. Because the AIB/isovaline ratio in sample A91 is much larger than in CM chondrites, the synthesis of amino acids in the micrometeorite parent bodies might have involved a different process requiring an HCN-rich environment, such as that found in comets. If the present day characteristics of the meteorite and micrometeorite fluxes can be extrapolated back in time, then the flux of large carbonaceous micrometeorites could have contributed to the inventory of prebiotic molecules on the early Earth.

  10. Microfossils in the Murchison and Rainbow Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Rozanov, Alexei Y.; Jerman, Greg A.; Davies, Paul C.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Astrobiologists are working to develop methodologies for the recognition of bacterial microfossils, biominerals, and chemical biomarkers in terrestrial rocks, to provide a basis for the scientific assessment of possible microfossils in meteorites and other Astromaterials. During the past 5 years, we have conducted electron microscopy investigations to understand the morphology and chemical composition of microfossils in ancient terrestrial rocks and to search for microfossils presence in meteorites. We have detected evidence of indigenous microfossils and biominerals in-situ in every carbonaceous meteorite investigated but have found no evidence for microfossils in the nickel-iron and stony meteorites studied. In this paper, we provide a brief review of prior evidence for microfossils in meteorites and present Scanning and Environmental Scanning Electron Microscope (SEM and ESEM) and Field Emission Scanning Electron Microscope (FESEM) images of microfossils found in-situ in freshly fractured surfaces of the Murchison and Rainbow meteorites. We describe the techniques and methods used to protect the samples from contamination and for the discrimination of indigenous microfossils from recent terrestrial contaminants We provide data from Energy Dispersive Spectroscopy (EDS) and Link microprobe analysis of the chemical elements and 2D x-ray maps as strong evidence that these biogenic forms are indigenous to the meteorites and cannot logically be interpreted as recent bio-contaminants. We show evidence of framboidal magnetites and pyrites and compare them with framboidal magnetites and pyrites found in Cambrian richs from the Siberian Platform.

  11. Carbonaceous species emitted from handheld two-stroke engines

    NASA Astrophysics Data System (ADS)

    Volckens, John; Olson, David A.; Hays, Michael D.

    Small, handheld two-stroke engines used for lawn and garden work (e.g., string trimmers, leaf blowers, etc.) can emit a variety of potentially toxic carbonaceous air pollutants. Yet, the emissions effluents from these machines go largely uncharacterized, constraining the proper development of human exposure estimates, emissions inventories, and climate and air quality models. This study samples and evaluates chemical pollutant emissions from the dynamometer testing of six small, handheld spark-ignition engines—model years 1998-2002. Four oil-gas blends were tested in each engine in duplicate. Emissions of carbon dioxide, carbon monoxide, and gas-phase hydrocarbons were predominant, and the PM emitted was organic matter primarily. An ANOVA model determined that engine type and control tier contributed significantly to emissions variations across all identified compound classes; whereas fuel blend was an insignificant variable accounting for <5% of the observed variation in emissions. Though emissions rates from small engines were generally intermediate in magnitude compared with other gasoline-powered engines, numerous compounds traditionally viewed as motor vehicle markers are also present in small engine emissions in similar relative proportions. Given that small, handheld two-stroke engines used for lawn and garden work account for 5-10% of total US emissions of CO, CO 2, NO x, HC, and PM 2.5, source apportionment models and human exposure studies need to consider the effect of these small engines on ambient concentrations in air polluted environments.

  12. Carbonaceous oxidation using a new vertically moving biofilm system.

    PubMed

    Rodgers, M; Burke, D

    2001-06-01

    This laboratory study consisted of the construction and testing of a new experimental biofilm system for the carbonaceous oxidation of a synthetic wastewater. In the system, a biofilm cuboid module with a high surface area was vertically and repeatedly immersed in and lifted out of the wastewater in a reactor. The performance of two different biofilm modules were compared: one module was constructed from crossflow corrugated plastic sheets with a specific surface area of 410 m2m(-3) and had a calculated surface area of 6.24 m2; the other consisted of honeycombed plastic with hexagonal vertical columns and an estimated surface area of about 2.8 m2. Filtered chemical oxygen demand (COD) removal rates per bulk fluid volume for the corrugated and honeycombed modules of 7.2 kg COD m(-3) d(-1) and 7.6 kg COD m(-3) d(-1) were respectively achieved and these rates compare favourably with other wastewater treatment systems. The new biofilm system was simple to construct and operate, and was very effective in removing biodegradable COD from the synthetic wastewater. The system offers potential for reduced reactor volumes, energy saving, low solids production and easy solids removal.

  13. MoS2 Surface Structure Tailoring via Carbonaceous Promoter

    PubMed Central

    Shi, Yumeng; Li, Henan; Wong, Jen It; Zhang, Xiaoting; Wang, Ye; Song, Huaihe; Yang, Hui Ying

    2015-01-01

    Atomically thin semiconducting transition-metal dichalcogenides have been attracting lots of attentions, particularly, molybdenum disulfide (MoS2) monolayers show promising applications in field effect transistors, optoelectronics and valleytronics. However, the controlled synthesis of highly crystalline MoS2 remain a challenge especially the systematic approach to manipulate its structure and morphology. Herein, we report a method for controlled synthesis of highly crystalline MoS2 by using chemical vapor deposition method with carbonaceous materials as growth promoter. A uniform and highly crystalline MoS2 monolayer with the grain size close to 40 μm was achieved. Furthermore, we extend the method to the manipulation of MoS2 morphology, flower-shape vertical grown MoS2 layers were obtained on growth promoting substrates. This simple approach allows an easy access of highly crystalline MoS2 layers with morphology tuned in a controllable manner. Moreover, the flower-shape MoS2 grown on graphene oxide film used as an anode material for lithium-ion batteries showed excellent electrochemical performance. PMID:25994238

  14. No nebular magnetization in the Allende CV carbonaceous chondrite

    NASA Astrophysics Data System (ADS)

    Fu, R. R.; Lima, E. A.; Weiss, B. P.

    2014-10-01

    Magnetic fields in the solar nebula may have played a central role in mass and angular momentum transport in the protosolar disk and facilitated the accretion of the first planetesimals. Thought to be key evidence for this hypothesis is the high unblocking-temperature, randomly oriented magnetization in chondrules in the Allende CV carbonaceous chondrite. However, it has recently been realized that most of the ferromagnetic minerals in Allende are products of secondary processes on the parent planetesimal. Here we reevaluate the pre-accretional magnetism hypothesis for Allende using new paleomagnetic analyses of chondrules including the first measurements of mutually oriented subsamples from within individual chondrules. We confirm that Allende chondrules carry a high-temperature component of magnetization that is randomly oriented among chondrules. However, we find that subsamples of individual chondrules are also non-unidirectionally magnetized. Therefore, the high-temperature magnetization in Allende chondrules is not a record of nebular magnetic fields and is instead best explained by remagnetization during metasomatism in a <8 μT magnetic field. This low field intensity suggests that any core dynamo on the CV parent body decayed before the end of metasomatism, likely <40 My after the formation of calcium aluminum-rich inclusions (CAIs). Despite widespread practice, the magnetization in Allende should not be used to constrain magnetic fields in the protosolar nebula.

  15. Generation of oil from coal and carbonaceous shale

    SciTech Connect

    Kirkland, D.W.; Tsui, T.F.; Stockton, M.L.

    1987-05-01

    Coal and carbonaceous shale contain the remains of higher terrestrial (vascular) plants, remains commonly referred to as Type III kerogen. Given sufficient thermal exposure, such organic matter is commonly considered to generate only natural gas. Coaly sequences, however, are not always strictly gas producers. Many coaly sequences, particularly those of Tertiary age, have generated important volumes of oil. Those oils are usually paraffinic and waxy, or naphthenic; have a pristane-to-phytane ratio of 2-12; contain definitive biomarkers such as tricyclic diterpenoids; and are low in sulfur (much less than 1%). These oils are clearly distinct from those derived predominantly from marine algal remains. The principal source sequences of oils derived from coaly material occur in Tertiary deltas. Such source sequences contain abundant coaly material with favorable generative quality. Evaluation of generative quality is based either on geochemical analysis (e.g., atomic H/C > 0.9) or on petrographic analysis: source potential being proportional to the abundance and hydrogen richness of organic constituents (macerals). In approximate ranking, oil-generating potential of the hydrogen-rich macerals is exudatinite > alginite > resinite > liptodetrinite > cutinite > sporinite > vitrinite-B (fluorescing vitrinite). Examples of basins containing both a major Tertiary deltaic sequence (hundreds of cubic miles) and major volumes of oil (billions of barrels) derived predominantly from higher terrestrial plate remains are: the Ardjuna and Kutei basins, Indonesia; and the Gippsland basin, Australia.

  16. Exposure history of the Sutter's Mill carbonaceous chondrite

    NASA Astrophysics Data System (ADS)

    Nishiizumi, K.; Caffee, M. W.; Hamajima, Y.; Reedy, R. C.; Welten, K. C.

    2014-11-01

    The Sutter's Mill (SM) carbonaceous chondrite fell in California on April 22, 2012. The cosmogenic radionuclide data indicate that Sutter's Mill was exposed to cosmic rays for 0.082 ± 0.008 Myr, which is one of the shortest ages for C chondrites, but overlaps with a small cluster at approximately 0.1 Myr. The age is significantly longer than proposed ages that were obtained from cosmogenic noble gas concentrations, which have large uncertainties due to trapped noble gas corrections. The presence of neutron-capture 60Co and 36Cl in SM indicates a minimum preatmospheric radius of approximately 50 cm, and is consistent with a radius of 1-2 m, as derived from the fireball observations. Although a large preatmospheric size was proposed, one fragment (SM18) contains solar cosmic ray-produced short-lived radionuclides, such as 56Co and 51Cr. This implies that this specimen was less than 2 cm from the preatmospheric surface of Sutter's Mill. Although this conclusion seems surprising, it is consistent with the observation that the meteoroid fragmented high in the atmosphere. The presence of SCR-produced nuclides is consistent with the high SCR fluxes observed during the last few months before the meteorite's fall, when its orbit was less than 1 AU from the Sun.

  17. CARES: Carbonaceous Aerosol and Radiative Effects Study Operations Plan

    SciTech Connect

    Zaveri, RA; Shaw, WJ; Cziczo, DJ

    2010-07-12

    The CARES field campaign is motivated by the scientific issues described in the CARES Science Plan. The primary objectives of this field campaign are to investigate the evolution and aging of carbonaceous aerosols and their climate-affecting properties in the urban plume of Sacramento, California, a mid-size, mid-latitude city that is located upwind of a biogenic volatile organic compound (VOC) emission region. Our basic observational strategy is to make comprehensive gas, aerosol, and meteorological measurements upwind, within, and downwind of the urban area with the DOE G-1 aircraft and at strategically located ground sites so as to study the evolution of urban aerosols as they age and mix with biogenic SOA precursors. The NASA B-200 aircraft, equipped with the High Spectral Resolution Lidar (HSRL), digital camera, and the Research Scanning Polarimeter (RSP), will be flown in coordination with the G-1 to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties, and to provide the vertical context for the G-1 and ground in situ measurements.

  18. Rhenium-osmium isotope systematics of carbonaceous chondrites

    USGS Publications Warehouse

    Walker, R.J.; Morgan, J.W.

    1989-01-01

    Rhenium and osmium concentrations and Os isotopic compositions of eight carbonaceous chondrites, one LL3 ordinary chondrite, and two iron meteorites were determined by resonance ionization mass spectrometry. Iron meteorite 187Re/186Os and 187OS/186Os ratios plot on the previously determined iron meteorite isochron, but most chondrite data plot 1 to 2 percent above this meteorite isochron. This suggests either that irons have significantly younger Re-Os closure ages than chondrites or that chondrites were formed from precursor materials with different chemical histories from the precursors of irons. Some samples of Semarkona (LL3) and Murray (C2M) meteorites plot 4 to 6 percent above the iron meteorite isochron, well above the field delineated by other chondrites. Murray may have lost Re by aqueous leaching during its preterrestrial history. Semarkona could have experienced a similar loss of Re, but only slight aqueous alteration is evident in the meteorite. Therefore, the isotopic composition of Semarkona could reflect assembly of isotopically heterogeneous components subsequent to 4.55 billion years ago or Os isotopic heterogeneities in the primordial solar nebula.

  19. Hydrous-Carbonaceous Meteoroids in the Hadean Aeon

    NASA Astrophysics Data System (ADS)

    Maurette, M.

    2009-12-01

    Meteoroids ˜50-200 μm in size represent the dominant mass fraction of extraterrestrial material accreted by the Earth today. About 20% of them survive as unmelted micrometeorites upon atmospheric entry, and they can be recovered from Antarctica ices and snows. Around 99% of them are related to the rare group of the most volatile-rich chondrites (˜2.5% of the meteorite falls), dominantly composed of a primitive hydrous-carbonaceous material. Micrometeorites contain a mixture of volatiles showing an elemental composition and a water isotopic composition very similar to the corresponding values measured in the contemporary Earth’s atmosphere. This surprising micrometeoritic “purity” of the Earth’s atmosphere led to an accretion equation to compute the total amount of any meteoroid species accreted by the Earth, during the first ˜100-200 Ma of the post-lunar period of the Early Heavy Bombardment of the solar system, when the mass flux of meteoroids was about one million times higher than today. This equation allows using micrometeorites and other meteoroid “ashes” as tracers of early planetary processes, including: the formation of the atmospheres of the Earth and Mars; the functioning of the Earth’s mantle, and; the formation of the prebiotic “soups” and benign climatic conditions required for the birth of life.

  20. Microscale Distribution of Hydrogen Isotopes in Two Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Young, A. F.; Nittler, L. R.; Alexander, C. M. O'D

    2004-01-01

    Hydrogen isotopes are highly variable among primitive meteorites and interplanetary dust particles (IDPs) [1, 2]. In particular, many primitive objects exhibit D (and N-15) enrichments, relative to terrestrial values, thought to represent partial preservation of presolar material fractionated in molecular clouds. However, the diversity of D/H ratios among IDPs and chondrites indicates a complex history of processing in the solar nebula and on meteorite parent bodies. Deconvolving this record requires identification and characterization of the carriers of D enrichments in different objects. Isotopic imaging has proven to be a powerful method to quantitatively explore the distribution of D/H ratios on a one to several m scale in IDPs [2-4] and the CR chondrite Renazzo [5, 6]. In this study, we have used ion imaging to explore the microscale D/H distribution of two carbonaceous chondrites, Tagish Lake (unique) and Al Rais (CR2). Previous D/H measurements (on a tens of microns scale) of Tagish Lake matrix fragments by Messenger [7] and Engrand et al. [8] have found different results, most likely related to the analytical techniques used. Previous work has also shown a large range of D/H ratios in CR chondrites, including very large variations on a scale of a few microns [5, 6, 9].

  1. Primordial Molecular Cloud Material in Metal-Rich Carbonaceous Chondrites

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2016-03-01

    The menagerie of objects that make up our Solar System reflects the composition of the huge molecular cloud in which the Sun formed, a late addition of short-lived isotopes from an exploding supernova or stellar winds from a neighboring massive star, heating and/or alteration by water in growing planetesimals that modified and segregated the primordial components, and mixing throughout the Solar System. Outer Solar System objects, such as comets, have always been cold, hence minimizing the changes experienced by more processed objects. They are thought to preserve information about the molecular cloud. Elishevah Van Kooten (Natural History Museum of Denmark and the University of Copenhagen) and co-authors in Denmark and at the University of Hawai'i, measured the isotopic compositions of magnesium and chromium in metal-rich carbonaceous chondrites. They found that the meteorites preserve an isotopic signature of primordial molecular cloud materials, providing a potentially detailed record of the molecular cloud's composition and of materials that formed in the outer Solar System.

  2. Mineralogy of Carbonaceous Chondrites and ACFER 217 from the Sahara

    NASA Astrophysics Data System (ADS)

    Geiger, T.; Bischoff, A.

    1992-07-01

    Among the approximately 400 meteorites recovered in the past three years in the Sahara at least 19 carbonaceous chondrites exist. Ten paired samples belong to the CR- chondrite Acfer 059/El Djouf 001 which has been recently described (Bischoff et al., 1992a). Three samples (Acfer 182, 207, 214) represent a unique (carbonaceous) chondrite (Bischoff et al., 1992b) that has similarities to ALH 85085 (e.g. Scott, 1988). Here, we describe six unpaired carbonaceous chondrites and Acfer 217, an unusual chondritic breccia. Three chondrites probably belong to the CV- chondrites (Acfer 082, 086, 272) and two to the CO- chondrites (Acfer 202, 243). Acfer 094 has trace element characteristics of a CM-chondrite, but has oxygen isotope ratios different from CM-chondrites (Bischoff et al., 1991). CV-chondrites: Based on the petrography and mineral chemistry Acfer 082 and 086 are typical CV3 chondrites. Large coarse-grained CAIs (especially in Acfer 082), fine- grained spinel-rich and large olivine-rich aggregates, chondrules and fragments are embedded in a fine-grained groundmass mainly consisting of small Fe-rich olivine laths. In Acfer 082 and Acfer 086 the average compositions of matrix olivine are Fa 55 and Fa 40, respectively. Acfer 082 is quite fresh concerning the degree of weathering, whereas Acfer 086 is severely weathered as indicated by the occurrence of abundant calcite filling fractures and pores between the olivine laths of the matrix. Acfer 272 has a mineral chemistry similar to Acfer 082, but is in texture, trace element chemistry (Spettel et al., 1992), and oxygen isotopes (Mayeda and Clayton, pers. communication) different to Acfer 082. Acfer 272 has a densely compacted matrix without individual euhedral to subhedral olivine laths. CO-chondrites: Acfer 202 and 243 consist of abundant porphyritic chondrules, CAIs, olivine-rich inclusions, and fragments embedded in abundant fine-grained matrix. The main component of the matrix is Fe-rich olivine. Matrix olivines

  3. Nonprevalence of biochemical fossils in kerogen from pre-Phanerozoic sediments

    PubMed Central

    Leventhal, Joel; Suess, Stephen E.; Cloud, Preston

    1975-01-01

    Evidence of biochemical and geochemical evolution was sought in insoluble carbonaceous matter from 30 selected pre-Phanerozoic sediments ranging in age from about 3.8 to about 0.7 × 109 years. The carbon isotope ratios observed were in the range of -20 to -32 per mil with reference to the Peedee belemnite standard, similar to those previously reported. No systematic trends are obvious to us. Stepwise pyrolysis-gas-chromatography showed only molecules with fewer than 8 carbon atoms at the level of sensitivity of 10-9 g of organics in a 10 mg rock sample. Carbon, hydrogen, and nitrogen analyses showed noncarbonate carbon from less than 0.1% to more than 3%, with very small amounts of N. The H/C (atomic) ratios on HCl-leached and HF-treated samples were generally less than 0.3. Evidence of low pyrolysis yields (micro-analysis) and low H/C atomic ratios (macro-analysis) implies that the carbonaceous solids in even the least metamorphosed of these ancient sediments have evolved far toward amorphous carbon or graphite and do not yield useful “biochemical fossils.” PMID:16592291

  4. In Situ Observation of Carbonaceous Material in the Matrices of CV and CM Carbonaceous Chondrites: Preliminary Results from Energy Filtered Transmission Electron Microscopy

    NASA Technical Reports Server (NTRS)

    Brearley, A. J.; Abreu, N. M.

    2001-01-01

    Energy filtered transmission electron microscopy shows that organic matter can be detected in situ in the matrices of carbonaceous chondrites at a spatial resolution of at least 1 nm. In CM chondrites, carbon is often associated with sulfide particles. Additional information is contained in the original extended abstract.

  5. The micro-distribution of carbonaceous matter in the Murchison meteorite as investigated by Raman imaging

    NASA Astrophysics Data System (ADS)

    Amri, Chahrazade El; Maurel, Marie-Christine; Sagon, Gérard; Baron, Marie-Hélène

    2005-07-01

    The carbonaceous Murchison chondrite is one of the most studied meteorites. It is considered to be an astrobiology standard for detection of extraterrestrial organic matter. Considerable work has been done to resolve the elemental composition of this meteorite. Raman spectroscopy is a very suitable technique for non-destructive rapid in situ analyses to establish the spatial distribution of carbonaceous matter. This report demonstrates that Raman cartography at a resolution of 1 μm 2 can be performed. Two-dimensional distribution of graphitised carbon, amorphous carbonaceous matter and minerals were obtained on 100 μm 2 maps. Maps of the surface of native stones and of a powdered sample are compared. Graphitic and amorphous carbonaceous domains are found to be highly overlapping in all tested areas at the surface of the meteorite and in its interior as well. Pyroxene, olivine and iron oxide grains are embedded into this mixed carbonaceous material. The results show that every mineral grain with a size of less than a few μm 2 is encased in a thin carbonaceous matrix, which accounts for only 2.5 wt.%. This interstitial matter sticks together isolated mineral crystallites or concretions, including only very few individualized graphitised grains. Grinding separates the mineral particles but most of them retain their carbonaceous coating. This Raman study complements recent findings deduced from other spatial analyses performed by microprobe laser-desorption laser-ionisation mass spectrometry (μL 2MS), transmission electron microscopy (TEM) and scanning transmission X-ray microscopy (STXM).

  6. Experimental shock metamorphism of the Murchison CM carbonaceous chondrite

    NASA Astrophysics Data System (ADS)

    Tomeoka, Kazushige; Yamahana, Yasuhiro; Sekine, Toshimori

    1999-11-01

    A series of shock-recovery experiments were carried out on the Murchison CM carbonaceous chondrite by using a single-stage propellant gun. The Murchison samples were shocked in nine experiments at peak pressures from 4 to 49 GPa. The recovered samples were studied in detail by using an optical microscope, a scanning electron microscope and an electron-probe microanalyzer. Chondrules are flattened in the plane of the shock front at 4 to 30 GPa. The mean aspect ratio of chondrules increases from 1.17 to 1.57 roughly in proportion to the intensity of shock pressure up to ˜25 GPa. At 25 to 30 GPa, the mean aspect ratio does not increase further, and chondrules show increasingly more random orientations and degrade their preferred orientations, and at ˜35 GPa, they are extensively disrupted. Most coarse grains of olivine and pyroxene are irregularly fractured, fracture density increases with increasing shock pressure and at ˜30 GPa almost all are thoroughly fractured with subgrains of <1 to 5 μm in size. At ˜20 GPa, subparallel fractures begin to form in the matrix in directions roughly perpendicular to the compression axis and their densities increase with pressure, especially dramatically at 25 to 30 GPa; thus, the sample is increasingly comminuted and becomes fragile. Local shock melting occurs as melt veins and pockets at 20 to 30 GPa. Fracture-filling veins of fine grains of matrix are also produced at 25 to 30 GPa. The melts and the fine grains seem to result mainly from frictional heating due to displacement along fractures. At ˜35 GPa, melting occurs pervasively throughout the matrix. The melts are mainly produced from the matrix; however, they are consistently more enriched in Fe, S, and Ca, which indicates that these elements are selectively incorporated into the melts. The melts contain tiny spherules of Fe-Ni metal, Fe sulfide, and numerous vesicles. At 49 GPa, the matrix is totally melted and coarse grains of olivine are partially melted. The melts

  7. Characterisation of carbonaceous aerosols from the Azorean Island of Terceira

    NASA Astrophysics Data System (ADS)

    Alves, Célia; Oliveira, Tiago; Pio, Casimiro; Silvestre, Armando J. D.; Fialho, Paulo; Barata, Filipe; Legrand, Michel

    Aerosol samples were collected from 2002 to 2003 in Terceira, one of the islands of the Azores archipelago in the north-eastern Atlantic. The atmospheric samples have been analysed for its carbonaceous content and for lipid class compounds. The major constituents that comprise plant wax are n-alkanes (C 23-C 33, with and odd-to-even carbon predominance and carbon maxima at 29 or 31), n-alkanols (C 22-C 30, even-to-odd) and n-alkanoic acids (C 22-C 30, even-to-odd), with minor amounts of n-alkanals and polycyclic biomarkers, such as phytosterols. Some alkanedioic acids and phthalates were also detected. The occurrence of short-chain homologues may indicate an additional marine source, probably introduced into the atmosphere via sea spray. Changes in the composition of the homologous series derived from terrestrial plants throughout the observation period may be related to alterations in the regional sources and transport pathways. These terrestrial lipids contributed up to 47% of the total compound mass, while the marine input was estimated to be inferior to 19%, both of them being more representative in summer. Biomass burning sources represented approximately 1% of the total inputs to the organic aerosol for the most part of the year, excepting during the spring, when it contributed to 10%. Petroleum products and plasticizers presented higher contributions (up to 19%) during the winter months. Secondary constituents resulting from oxidation during transport varied from 14% to 37% of the apportioned organic mass. The fraction derived from soil resuspension accounted for 2-16%.

  8. A Re-Examination of Nucleobases in Carbonaceous Chondrites

    NASA Astrophysics Data System (ADS)

    Martins, Z.; Botta, O.; de Vries, M.; Becker, L.; Ehrenfreund, E.

    The biomolecular building blocks of life, as we know it, are amino acids, purines and pyrimidines. The latter two form the bases of DNA and RNA, molecules that are used in the storage, transcription and translation of genetic information in all terrestrial organisms. A dedicated search for these compounds in meteorites can shed light on the origins of life in two ways: (i) Results can help assess the plausibility of extraterrestrial formation of prebiotic molecules followed by their meteoritic delivery to the early Earth. (ii) Such studies can also provide insights into possible prebiotic synthetic routes. We will search for these compounds in selected carbonaceous chondrites using formic acid extraction and reverse phase high performance liquid chromatography (HPLC) to isolate specific nucleobases from the bulk meteorite material as previously reported [1,2,3]. We will also use a new technique, resonant two-photon ionization mass spectrometry (R2PI) that can, not only identify organic compounds by their mass, but at the same time by their vibronic spectroscopy [4]. R2PI dramatically enhances the specificity for certain compounds (e.g. amino acids, nucleobases) and allows for distinction of structural isomers, tautomers and enantiomers as well as providing additional information due to isotope shifts. The optical spectroscopy can thus help us to further discriminate between terrestrial and extraterrestrial nucleobases. References: [1] Van Der Velden, W. and Schwarts, A. W. (1977) Geochim. Cosmochim. Acta, 41, 961-968. [2] Stoks, P. G. and Schwartz, A. W. (1979a) Nature, 282, 709-10. [3] Glavin, D. P. and Bada, J. L. (2004) In Lunar and Planetary Science XXXV, Abstract # 1022, Houston. [4] Nir, E., Grace, L. I., Brauer, B. and de Vries, M. S. (1999) Journal of the American Chemical Society, 121, 4896-4897.

  9. Spatial and seasonal variability of carbonaceous aerosol across Italy

    NASA Astrophysics Data System (ADS)

    Sandrini, Silvia; Fuzzi, Sandro; Piazzalunga, Andrea; Prati, Paolo; Bonasoni, Paolo; Cavalli, Fabrizia; Bove, Maria Chiara; Calvello, Mariarosaria; Cappelletti, David; Colombi, Cristina; Contini, Daniele; de Gennaro, Gianluigi; Di Gilio, Alessia; Fermo, Paola; Ferrero, Luca; Gianelle, Vorne; Giugliano, Michele; Ielpo, Pierina; Lonati, Giovanni; Marinoni, Angela; Massabò, Dario; Molteni, Ugo; Moroni, Beatrice; Pavese, Giulia; Perrino, Cinzia; Perrone, Maria Grazia; Perrone, Maria Rita; Putaud, Jean-Philippe; Sargolini, Tiziana; Vecchi, Roberta; Gilardoni, Stefania

    2014-12-01

    This paper analyses elemental (EC), organic (OC) and total carbon (TC) concentration in PM2.5 and PM10 samples collected over the last few years within several national and European projects at 37 remote, rural, urban, and traffic sites across the Italian peninsula. The purpose of the study is to obtain a picture of the spatial and seasonal variability of these aerosol species in Italy, and an insight into sources, processes and effects of meteorological conditions. OC and EC showed winter maxima and summer minima at urban and rural locations and an opposite behaviour at remote high altitude sites, where they increase during the warm period due to the rising of the Planetary Boundary Layer (PBL). The seasonal averages of OC are higher during winter compared to summer at the rural sites in the Po Valley (from 1.4 to 3.5 times), opposite to what usually occurs at rural locations, where OC increases during the warm period. This denotes the marked influence of urban areas on the surrounding rural environment in this densely populated region. The different types of sites exhibit marked differences in the average concentrations of carbonaceous aerosol and OC/EC ratio. This ratio is less sensitive to atmospheric processing than OC and EC concentrations, and hence more representative of different source types. Remote locations are characterised by the lowest levels of OC and especially EC, with OC/EC ratios ranging from 13 to 20, while the maximum OC and EC concentrations are observed at road-traffic influenced urban sites, where the OC/EC ratio ranges between 1 and 3. The highest urban impacts of OC and EC relative to remote and rural background sites occur in the Po Valley, especially in the city of Milan, which has the highest concentrations of PM and TC and low values of the OC/EC ratio.

  10. Observationally constrained estimates of carbonaceous aerosol radiative forcing.

    PubMed

    Chung, Chul E; Ramanathan, V; Decremer, Damien

    2012-07-17

    Carbonaceous aerosols (CA) emitted by fossil and biomass fuels consist of black carbon (BC), a strong absorber of solar radiation, and organic matter (OM). OM scatters as well as absorbs solar radiation. The absorbing component of OM, which is ignored in most climate models, is referred to as brown carbon (BrC). Model estimates of the global CA radiative forcing range from 0 to 0.7 Wm(-2), to be compared with the Intergovernmental Panel on Climate Change's estimate for the pre-Industrial to the present net radiative forcing of about 1.6 Wm(-2). This study provides a model-independent, observationally based estimate of the CA direct radiative forcing. Ground-based aerosol network data is integrated with field data and satellite-based aerosol observations to provide a decadal (2001 through 2009) global view of the CA optical properties and direct radiative forcing. The estimated global CA direct radiative effect is about 0.75 Wm(-2) (0.5 to 1.0). This study identifies the global importance of BrC, which is shown to contribute about 20% to 550-nm CA solar absorption globally. Because of the inclusion of BrC, the net effect of OM is close to zero and the CA forcing is nearly equal to that of BC. The CA direct radiative forcing is estimated to be about 0.65 (0.5 to about 0.8) Wm(-2), thus comparable to or exceeding that by methane. Caused in part by BrC absorption, CAs have a net warming effect even over open biomass-burning regions in Africa and the Amazon. PMID:22753522

  11. Observationally constrained estimates of carbonaceous aerosol radiative forcing.

    PubMed

    Chung, Chul E; Ramanathan, V; Decremer, Damien

    2012-07-17

    Carbonaceous aerosols (CA) emitted by fossil and biomass fuels consist of black carbon (BC), a strong absorber of solar radiation, and organic matter (OM). OM scatters as well as absorbs solar radiation. The absorbing component of OM, which is ignored in most climate models, is referred to as brown carbon (BrC). Model estimates of the global CA radiative forcing range from 0 to 0.7 Wm(-2), to be compared with the Intergovernmental Panel on Climate Change's estimate for the pre-Industrial to the present net radiative forcing of about 1.6 Wm(-2). This study provides a model-independent, observationally based estimate of the CA direct radiative forcing. Ground-based aerosol network data is integrated with field data and satellite-based aerosol observations to provide a decadal (2001 through 2009) global view of the CA optical properties and direct radiative forcing. The estimated global CA direct radiative effect is about 0.75 Wm(-2) (0.5 to 1.0). This study identifies the global importance of BrC, which is shown to contribute about 20% to 550-nm CA solar absorption globally. Because of the inclusion of BrC, the net effect of OM is close to zero and the CA forcing is nearly equal to that of BC. The CA direct radiative forcing is estimated to be about 0.65 (0.5 to about 0.8) Wm(-2), thus comparable to or exceeding that by methane. Caused in part by BrC absorption, CAs have a net warming effect even over open biomass-burning regions in Africa and the Amazon.

  12. Oxygen isotopic composition of relict olivine grains in cosmic spherules: Links to chondrules from carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Rudraswami, N. G.; Prasad, M. Shyam; Nagashima, K.; Jones, R. H.

    2015-09-01

    Most olivine relict grains in cosmic spherules selected for the present study are pristine and have not been disturbed during their atmospheric entry, thereby preserving their chemical, mineralogical and isotopic compositions. In order to understand the origin of the particles, oxygen isotope compositions of relict olivine grains in twelve cosmic spherules collected from deep sea sediments of the Indian Ocean were studied using secondary ion mass spectrometry. Most of the data lie close to the CCAM (Carbonaceous Chondrite Anhydrous Mineral) line, with Δ17O ranging from -5‰ to 0‰. The data overlap oxygen isotopic compositions of chondrules from carbonaceous chondrites such as CV, CK, CR and CM, which suggests that chondrules from carbonaceous chondrites are the source of relict grains in cosmic spherules. Chemical compositions of olivine in cosmic spherules are also very similar to chondrule olivine from carbonaceous chondrites. Several olivine relict grains in three cosmic spherules are 16O-rich (Δ17O -21.9‰ to -18.7‰), similar to oxygen isotopic compositions observed in calcium aluminum rich inclusions (CAIs), amoeboid olivine aggregates (AOAs), and some porphyritic chondrules from carbonaceous chondrites. These grains appear to have recorded the initial oxygen isotopic composition of the inner solar nebula. Three olivine grains from two cosmic spherules have δ18O values >+20‰, which could be interpreted as mixing with stratospheric oxygen during atmospheric entry.

  13. A reconnaissance for uranium in carbonaceous rocks in southwestern Colorado and parts of New Mexico

    USGS Publications Warehouse

    Baltz, Elmer H., Jr.

    1955-01-01

    Coal and carbonaceous shale of the Dakota formation of Cretaceous age were examined for radioactivity in the Colorado Plateau of southwestern Colorado and northwestern New l1exico during the summer of 1953. Older and younger sedimentary rocks and some igneous rocks also were examined, but in less detail, Weak radioactivity was detected at many places but no new deposits of apparent economic importance were discovered. The highest radioactivity of carbonaceous rocks was detected in black shale, siltstone, and sandstone of the Paradox member of the Hermosa formation of Pennsylvanian age. A sample collected from this member at the Bald Eagle prospect in Gypsum Valley, San Higuel County, Colo. contains 0.10. percent uranium. Carbonaceous rocks were investigated at several localities on the Las Vegas Plateau and the Canadian Escarpment in Harding and San Miguel Counties, northeastern New Mexico. Carbonaceous sandstone and siltstone in the middle sandstone member of the Chinle formation of Triassic age contain uranium at a prospect of the Hunt Oil Company southwest of Sabinoso in northeastern San Miguel County, N. Mex. A channel sample across 3.2 feet of mineralized rocks at this locality contains 0.22 percent uranium. Weak radioactivity was detected at two localities in carbonaceous shale of the Dakota and Purgatoire formations of Cretaceous age.

  14. 40Ar/39Ar Ages of Carbonaceous Xenoliths in 2 HED Meteorites

    NASA Technical Reports Server (NTRS)

    Turrin, B.; Lindsay, F. N.; Park, J.; Herzog, G. F.; Delaney, J. S.; Swisher, C. C., III; Johnson, J.; Zolensky, M.

    2016-01-01

    The generally young K/Ar and 40Ar/39Ar ages of CM chondrites made us wonder whether carbonaceous xenoliths (CMX) entombed in Howardite–Eucrite–Diogenite (HED) meteorites might retain more radiogenic 40Ar than do ‘free-range’ CM-chondrites. To find out, we selected two HED breccias with carbonaceous inclusions in order to compare the 40Ar/39Ar release patterns and ages of the inclusions with those of nearby HED material. Carbonaceous inclusions (CMXs) in two HED meteorites lost a greater fraction of radiogenic 40Ar than did surrounding host material, but a smaller fraction of it than did free-range CM-chondrites such as Murchison or more heavily altered ones. Importantly, however, the siting of the CMXs in HED matrix did not prevent the 40Ar loss of about 40 percent of the radiogenic 40Ar, even from phases that degas at high laboratory temperatures. We infer that carbonaceous asteroids with perihelia of 1 astronomical unit probably experience losses of at least this size. The usefulness of 40Ar/39Ar dating for samples returned from C-type asteroids may hinge, therefore, on identifying and analyzing separately small quantities of the most retentive phases of carbonaceous chondrites.

  15. Investigation of Carbonaceous Interstellar Dust Analogues by Infrared Spectroscopy: Effects of Energetic Processing

    NASA Astrophysics Data System (ADS)

    Maté, Belén; Jiménez-Redondo, Miguel; Tanarro, Isabel; Herrero, Victor Jose

    2015-06-01

    Carbonaceous compounds, both solids and gas-phase molecules, are found in very diverse astronomical media. A significant amount of the elemental carbon is found in small dust grains. This carbonaceous dust, mostly formed in the last stages of evolution of C-rich stars, is the carrier of characteristic IR absorption bands revealing the presence of aliphatic, aromatic and olefinic functional groups in variable proportions. Among the various candidate materials investigated as possible carriers of these bands, hydrogenated amorphous carbon (a-C:H) has led to the best agreement with the observations. Carbonaceous grains are processed by H atoms, UV radiation, cosmic rays and interstellar shocks in their passage from asymptotic giant branch stars to planetary nebulae and to the diffuse interstellar medium. The mechanisms of a-C:H production and evolution in astronomical media are presently a subject of intensive investigation. In this work we present a study of the stability of carbonaceous dust analogues generated in He+CH_4 radiofrequency discharges. In order to simulate the processing of dust in the interstellar environments, the samples have been subjected to electron bombardment, UV irradiation, and both He and H_2 plasma processing. IR spectroscopy is employed to monitor the changes in the structure and composition of the carbonaceous films. A.G.G.M. Tielens. Rev. Mod. Phys., 85, 1021 (2013) J.E. Chiar, A.G.G.M. Tielens, A.J. Adamson and A. Ricca. Astrophys. J., 770, 78 (2013)

  16. Lunar and Planetary Science XXXV: Organics and Alteration in Carbonaceous Chondrites: Goop and Crud

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Organics and Alteration in Carbonaceous Chondrites: Goop and Crud" included the following reports:Organics on Fe-Silicate Grains: Potential Mimicry of Meteoritic Processes?; Molecular and Compound-Specific Isotopic Study of Monocarboxylic Acids in Murchison and Antarctic Meteorites; Nanoglobules, Macromolecular Materials, and Carbon Sulfides in Carbonaceous Chondrites; Evidence for Terrestrial Organic Contamination of the Tagish Lake Meteorite; Nitrogen Isotopic Imaging of Tagish Lake Carbon Globules; Microscale Distribution of Hydrogen Isotopes in Two Carbonaceous Chondrites; The Nature and Origin of Aromatic Organic Matter in the Tagish Lake Meteorite; Terrestrial Alteration of CM Chondritic Carbonate; Serpentine Nanotubes in CM Chondrites; Experimental Study of Serpentinization Reactions; Chondrule Glass Alteration in Type IIA Chondrules in the CR2 Chondrites EET 87770 and EET 92105: Insights into Elemental Exchange Between Chondrules and Matrices; Aqueous Alteration of Carbonaceous Chondrites: New Insights from Comparative Studies of Two Unbrecciated CM2 Chondrites, Y 791198 and ALH 81002 ;and A Unique Style of Alteration of Iron-Nickel Metal in WIS91600, an Unusual C2 Carbonaceous Chondrite.

  17. Reactive Oxygen-Doped 3D Interdigital Carbonaceous Materials for Li and Na Ion Batteries.

    PubMed

    Fan, Ling; Lu, Bingan

    2016-05-01

    Carbonaceous materials as anodes usually exhibit low capacity for lithium ion batteries (LIBs) and sodium ion batteries (SIBs). Oxygen-doped carbonaceous materials have the potential of high capacity and super rate performance. However, up to now, the reported oxygen-doped carbonaceous materials usually exhibit inferior electrochemical performance. To overcome this problem, a high reactive oxygen-doped 3D interdigital porous carbonaceous material is designed and synthesized through epitaxial growth method and used as anodes for LIBs and SIBs. It delivers high reversible capacity, super rate performance, and long cycling stability (473 mA h g(-1) after 500 cycles for LIBs and 223 mA h g(-1) after 1200 cycles for SIBs, respectively, at the current density of 1000 mA g(-1) ), with a capacity decay of 0.0214% per cycle for LIBs and 0.0155% per cycle for SIBs. The results demonstrate that constructing 3D interdigital porous structure with reactive oxygen functional groups can significantly enhance the electrochemical performance of oxygen-doped carbonaceous material.

  18. Alcoholic myopathy: biochemical mechanisms.

    PubMed

    Preedy, V R; Paice, A; Mantle, D; Dhillon, A S; Palmer, T N; Peters, T J

    2001-08-01

    Between one- and two-thirds of all alcohol abusers have impairment of muscle function that may be accompanied by biochemical lesions and/or the presence of a defined myopathy characterised by selective atrophy of Type II fibres. Perturbations in protein metabolism are central to the effects on muscle and account for the reductions in muscle mass and fibre diameter. Ethanol abuse is also associated with abnormalities in carbohydrate (as well as lipid) metabolism in skeletal muscle. Ethanol-mediated insulin resistance is allied with the inhibitory effects of ethanol on insulin-stimulated carbohydrate metabolism. It acutely impairs insulin-stimulated glucose and lipid metabolism, although it is not known whether it has an analogous effect on insulin-stimulated protein synthesis. In alcoholic cirrhosis, insulin resistance occurs with respect to carbohydrate metabolism, although the actions of insulin to suppress protein degradation and stimulate amino acid uptake are unimpaired. In acute alcohol-dosing studies defective rates of protein synthesis occur, particularly in Type II fibre-predominant muscles. The relative amounts of mRNA-encoding contractile proteins do not appear to be adversely affected by chronic alcohol feeding, although subtle changes in muscle protein isoforms may occur. There are also rapid and sustained reductions in total (largely ribosomal) RNA in chronic studies. Loss of RNA appears to be related to increases in the activities of specific muscle RNases in these long-term studies. However, in acute dosing studies (less than 1 day), the reductions in muscle protein synthesis are not due to overt loss of total RNA. These data implicate a role for translational modifications in the initial stages of the myopathy, although changes in transcription and/or protein degradation may also be superimposed. These events have important implications for whole-body metabolism.

  19. Methods for assessing biochemical oxygen demand (BOD): a review.

    PubMed

    Jouanneau, S; Recoules, L; Durand, M J; Boukabache, A; Picot, V; Primault, Y; Lakel, A; Sengelin, M; Barillon, B; Thouand, G

    2014-02-01

    The Biochemical Oxygen Demand (BOD) is one of the most widely used criteria for water quality assessment. It provides information about the ready biodegradable fraction of the organic load in water. However, this analytical method is time-consuming (generally 5 days, BOD5), and the results may vary according to the laboratory (20%), primarily due to fluctuations in the microbial diversity of the inoculum used. Work performed during the two last decades has resulted in several technologies that are less time-consuming and more reliable. This review is devoted to the analysis of the technical features of the principal methods described in the literature in order to compare their performances (measuring window, reliability, robustness) and to identify the pros and the cons of each method.

  20. Spaceflight effects on biomechanical and biochemical properties of rat vertebrae

    NASA Technical Reports Server (NTRS)

    Zernicke, R. F.; Vailas, A. C.; Grindeland, R. E.; Kaplansky, A.; Salem, G. J.; Martinez, D. A.

    1990-01-01

    The biomechanical and biochemical responses of lumbar vertebral bodies during a 12.5-day spaceflight (Cosmos 1887 biosatellite) were determined for rapidly growing rats (90-day-old, Czechoslovakian-Wistar). By use of age-matched vivarium controls (normal cage environment) and synchronous controls (simulated flight conditions), as well as a basal control group (killed before lift-off on the 1st day of flight), the combined influences of growth and space-flight could be examined. Centra of the sixth lumbar vertebrae (L6) were compressed to 50% strain at a fast strain rate while immersed in physiological buffer (37 degrees C). The body masses of vivarium and synchronous controls were significantly heavier than either the flight or basal controls. The flight group had an L6 vertebral body compressional stiffness that was 39% less than the vivarium controls, 47% less than the synchronous control, and 16% less than the basal controls. In addition, the average initial maximum load of the flight L6 was 22% less than vivarium controls and 18% less than the synchronous controls, whereas the linear compressional load of the flight group averaged 34% less than the vivarium and 25% less than the synchronous groups. The structural properties of the vertebrae from the 12.5-day-younger basal group closely resembled the flight vertebrae. Calcium, phosphorous, and hydroxyproline concentrations were not significantly different among the groups. Nevertheless, the lack of strength and stiffness development in spaceflight, coupled with a smaller proportion of mature hydroxypyridinoline cross-links, suggested that the 12.5 days of spaceflight slowed the maturation of trabecular bone in the vertebral bodies of rapidly growing rats.

  1. Carbonaceous material for production of hydrogen from low heating value fuel gases

    DOEpatents

    Koutsoukos, Elias P.

    1989-01-01

    A process for the catalytic production of hydrogen, from a wide variety of low heating value fuel gases containing carbon monoxide, comprises circulating a carbonaceous material between two reactors--a carbon deposition reactor and a steaming reactor. In the carbon deposition reactor, carbon monoxide is removed from a fuel gas and is deposited on the carbonaceous material as an active carbon. In the steaming reactor, the reactive carbon reacts with steam to give hydrogen and carbon dioxide. The carbonaceous material contains a metal component comprising from about 75% to about 95% cobalt, from about 5% to about 15% iron, and up to about 10% chromium, and is effective in suppressing the production of methane in the steaming reactor.

  2. Extraterrestrial Amino Acids in Orgueil and Ivuna: Tracing the Parent Body of CI Type Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Meyer, Michael (Technical Monitor); Ehrenfreund, Pascale; Glavin, Daniel P.; Bota, Oliver; Cooper, George; Bada, Jeffrey

    2001-01-01

    Amino acid analyses using HPLC of pristine interior pieces of the CI carbonaceous chondrites Orgueil and Ivuna have found that beta-alanine, glycine, and gamma-amino-n-butyric acid (ABA) are the most abundant amino acids in these two meteorites, with concentrations ranging from approx. 600 to 2,000 parts per billion (ppb). Other alpha-amino acids such as alanine, alpha-ABA, alpha-aminoisobutyric acid (AIB), and isovaline are present only in trace amounts (less than 200 ppb). Carbon isotopic measurements of beta-alanine and glycine and the presence of racemic (D/L 1) alanine and beta-ABA in Orgueil suggest that these amino acids are extraterrestrial in origin. In comparison to the CM carbonaceous chondrites Murchison and Murray, the amino acid composition of the CIs is strikingly distinct, suggesting that these meteorites came from a different type of parent body, possibly an extinct comet, than did the CM carbonaceous chondrites.

  3. Kinetics governing Michigan Antrim oil shale. I. Pyrolysis. II. Oxidation of carbonaceous residue

    SciTech Connect

    Rostam-Abadi, M.

    1982-01-01

    The intrinsic reaction rate kinetics for the pyrolysis of Michigan Antrim oil shale and the oxidation of the carbonaceous residue of this shale have been determined. The effect of heating rate, and oil shale minerals, particularly iron pyrite on the pyrolysis reaction was also investigated. As a part of the combustion process, the oxidation reactivity of carbonaceous residue prepared at several final pyrolysis temperatures, and the kinetics of chemisorption of oxygen on carbonaceous residue have been determined. Thermogravimetric and differential thermogravimetric techniques were employed in this research. The kinetics of the pyrolysis reaction were determined from both isothermal and nonisothermal rate data. No evidence of any reaction among the oil shale mineral constituents was observed at temperatures below 1173/sup 0/K. However, it was found that the presence of pyrite in oil shale reduces the primary devolatization rates of kerogen and increases the amount of residual char in the spent shale.

  4. Preparation of a sulfonated carbonaceous material from lignosulfonate and its usefulness as an esterification catalyst.

    PubMed

    Lee, Duckhee

    2013-07-10

    Sulfonated carbonaceous material useful as a solid acid catalyst was prepared from lignosulfonate, a waste of the paper-making industry sulfite pulping process, and characterized by 13C-NMR, FT-IR, TGA, SEM and elemental analysis, etc. The sulfonic acid group density and total density of all acid groups in the sulfonated carbonaceous material was determined by titration to be 1.24 mmol/g and 5.90 mmol/g, respectively. Its catalytic activity in the esterification of cyclohexanecarboxylic acid with anhydrous ethanol was shown to be comparable to that of the ionic exchange resin Amberlyst-15, when they were used in the same amount. In the meantime, the sulfonic acid group was found to be leached out by 26%-29% after it was exposed to hot water (95 °C) for 5 h. The catalytic usefulness of the prepared carbonaceous material was investigated by performing esterifications.

  5. Screening of organic halogens and identification of chlorinated benzoic acids in carbonaceous meteorites.

    PubMed

    Schöler, Heinz F; Nkusi, Gerard; Niedan, Volker W; Müller, German; Spitthoff, Bianca

    2005-09-01

    The occurrence of halogenated organic compounds measured as a sum parameter and the evidence of chlorinated benzoic acids in four carbonaceous meteorites (Cold Bokkeveld, Murray, Murchison and Orgueil) from four independent fall events is reported. After AOX (Adsorbable organic halogen) and EOX (Extractable organic halogen) screening to quantify organically bound halogens, chlorinated organic compounds were analyzed by gas chromatography. AOX concentrations varying from 124 to 209 microg Cl/g d.w. were observed in carbonaceous meteorites. Ion chromatographic analysis of the distribution of organically bound halogens performed on the Cold Bokkeveld meteorite revealed that chlorinated and brominated organic compounds were extractable, up to 70%, whereas only trace amounts of organofluorines could be extracted. Chlorinated benzoic acids have been identified in carbonaceous meteorite extracts. Their presence and concentrations raise the question concerning the origin of halogenated, especially chlorinated, organic compounds in primitive planetary matter.

  6. Extraterrestrial amino acids in Orgueil and Ivuna: Tracing the parent body of CI type carbonaceous chondrites

    PubMed Central

    Ehrenfreund, Pascale; Glavin, Daniel P.; Botta, Oliver; Cooper, George; Bada, Jeffrey L.

    2001-01-01

    Amino acid analyses using HPLC of pristine interior pieces of the CI carbonaceous chondrites Orgueil and Ivuna have found that β-alanine, glycine, and γ-amino-n-butyric acid (ABA) are the most abundant amino acids in these two meteorites, with concentrations ranging from ≈600 to 2,000 parts per billion (ppb). Other α-amino acids such as alanine, α-ABA, α-aminoisobutyric acid (AIB), and isovaline are present only in trace amounts (<200 ppb). Carbon isotopic measurements of β-alanine and glycine and the presence of racemic (D/L ≈ 1) alanine and β-ABA in Orgueil suggest that these amino acids are extraterrestrial in origin. In comparison to the CM carbonaceous chondrites Murchison and Murray, the amino acid composition of the CIs is strikingly distinct, suggesting that these meteorites came from a different type of parent body, possibly an extinct comet, than did the CM carbonaceous chondrites. PMID:11226205

  7. Electrical conductivity of carbonaceous chondrites and electric heating of meteorite parent bodies

    NASA Technical Reports Server (NTRS)

    Duba, A.

    1986-01-01

    The electrical conductivity of samples of the Murchison and Allende carbonaceous chondrites is 4 to 6 magnitudes greater than rock forming minerals such as Olivine up to 700 C. The remarkably high electrical conductivity of these meteorites is attributed to carbon at grain boundaries. The environment in the wake of the space station can be exploited to produce conditions which will allow pyrolysis of carbonaceous chondrites. An experimental package consisting of a one square meter shield attached to a 15 cm diameter by 40 cm long furnace and tied to a conductance bridge, furnace controller, and digital voltmeter inside the space station via umbilical cable could make the required measurements. Since heating rates as low as 0.1 C/hour are required to study kinetics of the pyrolysis reations which are the cause of the high conductivity of the carbonaceous chondrites, experimental times up to 3 months will be needed.

  8. Aqueous alteration on the parent bodies of carbonaceous chondrites: Computer simulations of late-stage oxidation

    NASA Technical Reports Server (NTRS)

    Bourcier, W. L.; Zolensky, Michael E.

    1991-01-01

    CI carbonaceous chondrites may be products of hydrous alteration of CV- or anhydrous CM-type materials. The CIs typically contain veins filled with carbonates and sulfates, probably indicating a period of late stage aqueous alteration under oxidizing conditions. To test this idea, computer simulations of aqueous alteration of CV- and CM-type carbonaceous were performed. Simulations were restricted to the oxidation of hydrous mineral assemblages produced in previous simulations in order to determine whether further reaction and oxidation results in the phyllosilicate, carbonate, sulfate and oxide vein assemblages typical of CI carbonaceous chondrites. Our simulations were performed at 1, 25, 100, and 150 C (the appropriate temperature range) for the CV and CM mineral assemblages and using the computer code EQ3/6.

  9. Petrologic Locations of Nanodiamonds in Carbonaceous Chondrite Meteorites

    NASA Astrophysics Data System (ADS)

    Garvie, Laurence

    Nanodiamonds (NDs), with dimensions near two nanometers, are widespread accessory minerals in primitive meteorites. They have been studied extensively in concentrates made from acid-insoluble residues, but surprisingly little is known about their petrologic settings in the meteorites because they have not been studied in situ. Information about such settings is fundamental for determining how they formed and were incorporated into the meteorites. The primary goal of the planned research is to determine and compare the petrologic settings of NDs within matrix of different types of carbonaceous chondrites, with the long-term aim of providing new insights regarding the origin of NDs. This research will also provide new data on the structure and major and trace element compositions of individual NDs and regions within them. Transmission electron microscopes (TEMs) provide uniquely powerful information regarding chemical, bonding, and structural data on the scale needed to solve this problem, assuming the NDs can be located within the host matrix. We have developed methods of observing NDs in situ within the fine-grained matrix of primitive meteorites and will use various TEMs to accomplish that goal for several meteorites. High- resolution imaging and electron energy-loss spectroscopy (EELS) will permit determination of both structural and chemical information about the NDs and their adjacent minerals. By the middle of the proposed grant period, two state-of-the-art, aberration-corrected TEMs will have been installed at ASU and will be used to locate heavy elements such as Xe, Te, and Pd within the NDs. These TEMs permit the imaging of individual atoms of heavy elements with annular dark-field (ADF) imaging, and these atoms can be identified using EELS. The result of these new types of measurements will provide information about whether such elements, which have been used to determine whether NDs formed in supernovae, occur within the interiors or on the surfaces of

  10. Fe/Mn in olivine of carbonaceous meteorites

    NASA Technical Reports Server (NTRS)

    Steele, Ian M.

    1993-01-01

    Olivines in primitive meteorites show a range of Fe/Mn both within one grain and among grains suggesting that they have recorded changing conditions during or after growth. Because olivine should be an early forming phase, Fe/Mn is used here to infer these earliest conditions. Initial Fe/Mn in cores of isolated, euhedral forsterite in both C2 and C3 meteorites ranges from 25 to 35 but differs at grain edge. Murchison (C2) forsterites show Fe/Mn approaching 1.0 at the grain edge while Ornans Fe/Mn is near 60 at grain edge. These values are lower than the matrix Fe/Mn for both meteorites and the distinct difference in zoning profile indicates different processes operating during and after grain growth. The Fe/Mn of bulk samples from a particular source such as the Moon is nearly constant. Individual samples show variation suggesting that there is some fractionation of Mn from Fe. Minerals have their individual ranges of Fe/Mn which has been used to recognize different types of olivine within one meteorite. Extreme values of Fe/Mn below 1.0 occur in forsterite from some IDP's, UOC matrix, and C1 meteorites. There are apparently no detailed studies of Fe/Mn variation within single olivine grains. Forsterite grains in C2 and C3 carbonaceous chondrites show complex zoning, and the nearly pure forsterites (Fo greater than approximately 99.5) have high levels of some minor elements including Ti, Al, V, and Sc. There is disagreement on the original source of these grains and both chondrule and vapor growth have been proposed. In addition, there is clear evidence that diffusion has affected the outer margins but in some cases the whole grain. Within the cores, the FeO range is limited, and if growing under constant conditions, the Fe/Mn should be near constant as there is little fractionation of Mn from Fe by forsterite. Additionally, there are apparently no co-crystallizing phases as evidenced by a lack of common inclusions in the forsterites. These observations are now

  11. A Course in... Biochemical Engineering.

    ERIC Educational Resources Information Center

    Ng, Terry K-L.; And Others

    1988-01-01

    Describes a chemical engineering course for senior undergraduates and first year graduate students in biochemical engineering. Discusses five experiments used in the course: aseptic techniques, dissolved oxygen measurement, oxygen uptake by yeast, continuous sterilization, and cultivation of microorganisms. (MVL)

  12. Microfossils and biomolecules in carbonaceous meteorites: possibility of life in water-bearing asteroids and comets

    NASA Astrophysics Data System (ADS)

    Hoover, Richard B.

    2014-09-01

    It is well established that carbonaceous meteorites contain water, carbon, biogenic elements and a host of organic chemicals and biomolecules. Several independent lines of evidence indicate that the parent bodies of the CI1 and CM2 carbonaceous meteorites are most probably the C-type asteroids or cometary nuclei. Several of the protein amino acids detected in the meteorites exhibit chirality and have an excess of the L-enantiomer -- such as in the amino acids present in the proteins of all known life forms on Earth. Isotopic studies have established that the amino acids and nucleobases in the CI1 and CM2 carbonaceous meteorites are both indigenous and extraterrestrial. Optical and Scanning Electron Microscopy studies carried out by researchers during the past half century have revealed the presence of complex biogenic microstructures embedded in the rock-matrix of many of carbonaceous meteorites similar to extinct life-forms known as acritarchs and hystrichospheres. Carbonaceous meteorites also contain a wide variety of large filaments that exhibit the complex morphologies and correct size ranges of known genera and species of photosynthetic microorganisms such as cyanobacteria and diatoms. However, EDAX investigations have shown that these carbon-rich filaments typically have nitrogen content below the level of detection (<0.5% atomic) of the instrument. EDAX studies of living and dead terrestrial biological materials have shown that nitrogen can be detected in ancient mummies and tissue, hair and teeth of Pleistocene Mammoths. Hence, the absence of detectable nitrogen in the filaments provides direct evidence that they do not represent recent biological contaminants that invaded these meteorite stones after they were observed to fall to Earth. The spectral and fluorescence properties of pigments found in several species of terrestrial cyanobacteria which are similar to some microfossils found in carbonaceous meteorites may provide valuable clues to help search

  13. Estimating the Radiative Forcing of Carbonaceous Aerosols over California based on Satellite and Ground Observations

    SciTech Connect

    Xu, Yangyang; Bahadur, R.; Zhao, Chun; Leung, Lai-Yung R.

    2013-10-04

    Carbonaceous aerosols have the potential to impact climate both through directly absorbing incoming solar radiation, and by indirectly affecting the cloud layer. To quantify this impact recent modeling studies have made great efforts to simulate both the spatial and temporal distribution of carbonaceous aerosols and their associated radiative forcing. This study makes the first observationally constrained assessment of the direct radiative forcing of carbonaceous aerosols at a regional scale over California. By exploiting multiple observations (including ground sites and satellites), we constructed the distribution of aerosol optical depths and aerosol absorption optical depths over California for a ten-year period (2000-2010). The total solar absorption was then partitioned into contributions from elemental carbon (EC), organic carbon (OC) and dust aerosols using a newly developed scheme. Aerosol absorption optical depth due to carbonaceous aerosols (EC and OC) at 440 nm is 50%-200% larger than natural dust, with EC contributing the bulk (70%-90%). Observationally constrained EC absorption agrees reasonably well with estimates from regional transport models, but the model underestimates the OC AAOD by at least 50%. We estimate that the TOA warming from carbonaceous aerosols is 0.7 W/m2 and the TOA forcing due to OC is close to zero. The atmospheric heating of carbonaceous aerosols is 2.2-2.9 W/m2, of which EC contributed about 80-90%. The atmospheric heating due to OC is estimated to be 0.1 to 0.4 W/m2, larger than model simulations. The surface brightening due to EC reduction over the last two decades is estimated to be 1.5-3.5 W/m2.

  14. The Oxygen Isotope Composition of Dark Inclusions in HEDs, Ordinary and Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Greenwood, R. C.; Zolensky, M. E.; Buchanan, P. C.; Franchi, I. A.

    2015-01-01

    Dark inclusions (DIs) are lithic fragments that form a volumetrically small, but important, component in carbonaceous chondrites. Carbonaceous clasts similar to DIs are also found in some ordinary chondrites and HEDs. DIs are of particular interest because they provide a record of nebular and planetary processes distinct from that of their host meteorite. DIs may be representative of the material that delivered water and other volatiles to early Earth as a late veneer. Here we focus on the oxygen isotopic composition of DIs in a variety of settings with the aim of understanding their formational history and relationship to the enclosing host meteorite.

  15. Process for liquefying carbonaceous materials of high molecular weight and for separating liquefaction products

    DOEpatents

    Malek, John M.

    1977-01-01

    Process characterized by comprising successively a dissolution zone fed with carbonaceous solids and with a solvent, a high pressure hydrogenation zone provided with a source of hydrogen, and a hydrogenation products separation zone, wherein the improvement consists mainly in chemical upgrading of the liquidform products derived from the separation zone, and recycling a part of the upgraded products to the dissolution zone, this recycled part being of either positively acidic or positively basic properties for enhancing the dissolution - decomposition of base-acid structures present in the carbonaceous solid feed.

  16. Carbon dioxide capture on amine-rich carbonaceous materials derived from glucose.

    PubMed

    Zhao, Li; Bacsik, Zoltan; Hedin, Niklas; Wei, Wei; Sun, Yuhan; Antonietti, Markus; Titirici, Maria-Magdalena

    2010-07-19

    The synthesis of carbonaceous materials with a high surface density of amino functions for CO(2) sorption and sequestration is reported. The amino-rich carbonaceous materials are characterized by elemental analysis, N(2) sorption, scanning and transmission electron microscopy, zeta potential, TGA and FTIR measurements. A detailed discussion on the use of these materials in CO(2) capture is provided. The materials show significant sorption capabilities for CO(2) (4.3 mmol g(-1)at -20 degrees C and 1 bar). Furthermore, they show a high apparent selectivity for CO(2) over N(2) at both low and high temperatures.

  17. Carbonaceous matter in sulfide-quartz veins at the Kurultyken base-metal deposit, eastern Transbaikal region, Russia

    NASA Astrophysics Data System (ADS)

    Kuz'min, M. I.; Troshin, Yu. P.; Boiko, S. M.; Razvozzhaeva, E. A.; Zorina, L. D.; Martikhaeva, D. Kh.

    2010-06-01

    The carbonaceous matter filling cavities in sulfide-quartz veins at the Kurultyken hydrothermal base-metal deposit in the Khapcheranga ore district, Transbaikal region, was studied using chromatography/mass spectrometry, X-ray diffraction, thermal and isotopic analyses, and IR spectroscopy. It was established that carbonaceous matter was a maltha composed of polycyclic aromatic hydrocarbons (PAHs). Chrysene, pyrene, and benzpyrelene identified among PAHs are evidence for the hydrothermal origin of the initial carbonaceous matter of maltha. The main mass of carbonaceous matter was synthesized under reductive conditions and at a low temperature, i.e., at the final stage of base-metal ore formation. Nevertheless, the thermometric data indicate that part of the carbonic compounds could have formed at 480°C, i.e., at the high-temperature stage of the postmagmatic process. The contribution of host rocks as a source of carbonaceous matter was minimal.

  18. Spectral reflectance properties of carbonaceous chondrites: 8. “Other” carbonaceous chondrites: CH, ungrouped, polymict, xenolithic inclusions, and R chondrites

    NASA Astrophysics Data System (ADS)

    Cloutis, E. A.; Hudon, P.; Hiroi, T.; Gaffey, M. J.; Mann, P.

    2012-11-01

    We have analyzed reflectance spectra (0.3-2.5 μm) of a number of ungrouped or tentatively grouped carbonaceous chondrites (CCs), possible CC-type xenoliths in an aubrite (Cumberland Falls) and a howardite (PRA 04401), a CH chondrite (PCA 91467), a CC polymict breccia (Kaidun), and some R chondrites. The best approach to analysis relies largely on characterizing spectrally active phases - i.e., those phases that contribute diagnostic absorption features, involving absorption band wavelength position, band depth, shape of absorption features, combined with albedo and spectral slope. Mafic silicate (hydrous and/or anhydrous) absorption features are ubiquitous in the CCs and R chondrites we have examined. Combining information on these features along with albedo and spectral slopes allows reasonable inferences to be made concerning their uniqueness. Reflectance spectra of Coolidge show contributions from both olivine and Fe oxyhydroxides (from terrestrial weathering), and its high reflectance and mafic silicate band depths are consistent with a petrologic grade >3 and inconsistent with CVs. The CC nature of the Cumberland Falls inclusions from spectral analysis is inconclusive, but they do exhibit spectral features consistent with their overall mineralogy. DaG 430, which has petrologic characteristics of both CV and CK chondrites, has a spectrum that is not fully consistent with either group. The spectrum of EET 96029 is consistent with some, but not all CM2 chondrites. GRO 95566, a meteorite with some affinities to CM2s, most resembles the Renazzo CR2 chondrite, consistent with their similar mineralogies, and its spectral properties can be related to its major mineralogic characteristics. Spectra of Kaidun are most consistent with CR chondrites, which form the bulk of this meteorite. The reflectance spectrum of MCY 92005 is consistent with its recent classification as a CM2 chondrite. The R3 chondrite MET 01149 shares many characteristics with CKs, but differs in

  19. Direct Carbon Fuel Cell System Utilizing Solid Carbonaceous Fuels

    SciTech Connect

    Turgut Gur

    2010-04-30

    This 1-year project has achieved most of its objective and successfully demonstrated the viability of the fluidized bed direct carbon fuel cell (FB-DCFC) approach under development by Direct Carbon technologies, LLC, that utilizes solid carbonaceous fuels for power generation. This unique electrochemical technology offers high conversion efficiencies, produces proportionately less CO{sub 2} in capture-ready form, and does not consume or require water for gasification. FB-DCFC employs a specialized solid oxide fuel cell (SOFC) arrangement coupled to a Boudouard gasifier where the solid fuel particles are fluidized and reacted by the anode recycle gas CO{sub 2}. The resulting CO is electrochemically oxidized at the anode. Anode supported SOFC structures employed a porous Ni cermet anode layer, a dense yttria stabilized zirconia membrane, and a mixed conducting porous perovskite cathode film. Several kinds of untreated solid fuels (carbon and coal) were tested in bench scale FBDCFC prototypes for electrochemical performance and stability testing. Single cells of tubular geometry with active areas up to 24 cm{sup 2} were fabricated. The cells achieved high power densities up to 450 mW/cm{sup 2} at 850 C using a low sulfur Alaska coal char. This represents the highest power density reported in the open literature for coal based DCFC. Similarly, power densities up to 175 mW/cm{sup 2} at 850 C were demonstrated with carbon. Electrical conversion efficiencies for coal char were experimentally determined to be 48%. Long-term stability of cell performance was measured under galvanostatic conditions for 375 hours in CO with no degradation whatsoever, indicating that carbon deposition (or coking) does not pose any problems. Similar cell stability results were obtained in coal char tested for 24 hours under galvanostatic conditions with no sign of sulfur poisoning. Moreover, a 50-cell planar stack targeted for 1 kW output was fabricated and tested in 95% CO (balance CO{sub 2

  20. Carbonaceous content of atmospheric aerosols in Lisbon urban atmosphere

    NASA Astrophysics Data System (ADS)

    Mirante, Fátima; Oliveira, C.; Martins, N.; Pio, C.; Caseiro, A.; Cerqueira, M.; Alves, C.; Oliveira, C.; Oliveira, J.; Camões, F.; Matos, M.; Silva, H.

    2010-05-01

    Lisbon is the capital city of Portugal with about 565,000 residents and a population density of 6,600 inhabitants per square kilometre. The town is surrounded by satellite cities, forming together a region known as "Lisbon Metropolitan Area" with about 3 million inhabitants. It is estimated that more than one million citizens come into the Lisbon area every day from the outskirts, leading to elevated traffic densities and intense traffic jams. Airborne particulate matter limit values are frequently exceeded, with important consequences on air pollution levels and obvious negative impacts on human health. Atmospheric aerosols are known to have in their structure significant amounts of carbonaceous material. The knowledge of the aerosols carbon content, particularly on their several carbon forms (as TC, EC and OC, meaning respectively Total, Elemental and Organic carbon) is often required to provide information for source attribution. In order to assess the vehicles PM input, two sampling campaigns (summer and winter periods) were carried out in 2008 in Lisbon in two contrasting sites, a roadside and an urban background site. Particulate matter was collected in two fractions on quartz fibre filters using Hi-Vol samplers (coarse fraction, 2.5µm

  1. Carbonaceous compounds in carbon stars and planetary nebulae

    NASA Astrophysics Data System (ADS)

    Ryter, C.

    A recent count of the stars leaving the main sequence and the method to estimate the return of matter to the interstellar medium due to mass-loss is summarized. Stars of (1 - 5) M? would replenish the interstellar medium in (6 - 12) x 109 years. Carbonaceous compounds of the interstellar dust are believed to be formed in the atmosphere of carbon stars, but I bring evidences that the fraction of it made of very small particles and most frequently referred to as polycyclic aromatic hydrocarbons (PAH), which on average are believed to accommodate > 15% of the interstellar carbon, are not formed as soon as the dust condenses in the atmosphere of red giants. Some kind of processing seems to be required, very likely induced by the exposition of the dust to the ultraviolet radiation of the central star when the red giant becomes a planetary nebula. Heating of small grains by hard photons is believed to heat them to high enough a temperature to produce some morphological or crystallographic evolution, roughly from aliphatic to aromatic stucture. Further processing of the interstellar medium along the same line is suggested by observations of reflection nebulae, which display properties of the dust and gas at the site of star formation. Les résultats de comptages récents d'étoiles quittant la séquence principale et la méthode permettant d'évaluer le taux de perte de masse sont brièvement présentés. On trouve que les étoiles de 1 à 5 M⊙ reconstituent la masse du milieu interstellaire en (6 -12) x 109 années. Il est plausible que les géantes rouges forment d'abord les composants sHicés, puis lorsqu'elles atteignent la phase à carbone, qu'elles produisent la composante carbonée de la poussière interstellaire. Cette dernière comporte une importante fractions de très petites particules, le plus souvent considérées comme formées de grosses molécules polycycliques aromatiques (PAH), et qui contiennent au moins 15 % du carbone interstellaire. Bien qu

  2. Spectral reflectance properties of carbonaceous chondrites: 2. CM chondrites

    NASA Astrophysics Data System (ADS)

    Cloutis, E. A.; Hudon, P.; Hiroi, T.; Gaffey, M. J.; Mann, P.

    2011-11-01

    We have examined the spectral reflectance properties and available modal mineralogies of 39 CM carbonaceous chondrites to determine their range of spectral variability and to diagnose their spectral features. We have also reviewed the published literature on CM mineralogy and subclassification, surveyed the published spectral literature and added new measurements of CM chondrites and relevant end members and mineral mixtures, and measured 11 parameters and searched pair-wise for correlations between all quantities. CM spectra are characterized by overall slopes that can range from modestly blue-sloped to red-sloped, with brighter spectra being generally more red-sloped. Spectral slopes, as measured by the 2.4:0.56 μm and 2.4 μm:visible region peak reflectance ratios, range from 0.90 to 2.32, and 0.81 to 2.24, respectively, with values <1 indicating blue-sloped spectra. Matrix-enriched CM spectra can be even more blue-sloped than bulk samples, with ratios as low as 0.85. There is no apparent correlation between spectral slope and grain size for CM chondrite spectra - both fine-grained powders and chips can exhibit blue-sloped spectra. Maximum reflectance across the 0.3-2.5 μm interval ranges from 2.9% to 20.0%, and from 2.8% to 14.0% at 0.56 μm. Matrix-enriched CM spectra can be darker than bulk samples, with maximum reflectance as low as 2.1%. CM spectra exhibit nearly ubiquitous absorption bands near 0.7, 0.9, and 1.1 μm, with depths up to 12%, and, less commonly, absorption bands in other wavelength regions (e.g., 0.4-0.5, 0.65, 2.2 μm). The depths of the 0.7, 0.9, and 1.1 μm absorption features vary largely in tandem, suggesting a single cause, specifically serpentine-group phyllosilicates. The generally high Fe content, high phyllosilicate abundance relative to mafic silicates, and dual Fe valence state in CM phyllosilicates, all suggest that the phyllosilicates will exhibit strong absorption bands in the 0.7 μm region (due to Fe 3+-Fe 2+ charge

  3. Laboratory Experiments and Instrument Intercomparison Studies of Carbonaceous Aerosol Particles

    SciTech Connect

    Davidovits, Paul

    2015-10-20

    Aerosols containing black carbon (and some specific types of organic particulate matter) directly absorb incoming light, heating the atmosphere. In addition, all aerosol particles backscatter solar light, leading to a net-cooling effect. Indirect effects involve hydrophilic aerosols, which serve as cloud condensation nuclei (CCN) that affect cloud cover and cloud stability, impacting both atmospheric radiation balance and precipitation patterns. At night, all clouds produce local warming, but overall clouds exert a net-cooling effect on the Earth. The effect of aerosol radiative forcing on climate may be as large as that of the greenhouse gases, but predominantly opposite in sign and much more uncertain. The uncertainties in the representation of aerosol interactions in climate models makes it problematic to use model projections to guide energy policy. The objective of our program is to reduce the uncertainties in the aerosol radiative forcing in the two areas highlighted in the ASR Science and Program Plan. That is, (1) addressing the direct effect by correlating particle chemistry and morphology with particle optical properties (i.e. absorption, scattering, extinction), and (2) addressing the indirect effect by correlating particle hygroscopicity and CCN activity with particle size, chemistry, and morphology. In this connection we are systematically studying particle formation, oxidation, and the effects of particle coating. The work is specifically focused on carbonaceous particles where the uncertainties in the climate relevant properties are the highest. The ongoing work consists of laboratory experiments and related instrument inter-comparison studies both coordinated with field and modeling studies, with the aim of providing reliable data to represent aerosol processes in climate models. The work is performed in the aerosol laboratory at Boston College. At the center of our laboratory setup are two main sources for the production of aerosol particles: (a

  4. Catalyzed electrochemical gasification of carbonaceous materials at anode and electrowinning of metals at cathode

    SciTech Connect

    Vaughan, R.J.

    1983-09-20

    The electrochemical gasification reaction of carbonaceous materials by anodic oxidation in an aqueous acidic electrolyte to produce oxides of carbon at the anode and metallic elements at the cathode of an electrolysis cell is catalyzed by the use of an iron catalyst.

  5. Carbonaceous Aerosols in Fine Particulate Matter of Santiago Metropolitan Area, Chile

    PubMed Central

    Toro Araya, Richard; Flocchini, Robert; Morales Segura, Rául G. E.; Leiva Guzmán, Manuel A.

    2014-01-01

    Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002–2007), concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August) and warm (September to February) seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41%) than in the warm season (44 ± 18%). On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m3) and the United States Environmental Protection Agency standard (15 µg/m3) for fine particulate matter. PMID:24587753

  6. Carbonaceous Aerosols Emitted from Light-Duty Vehicles Operating on Gasoline and Ethanol Fuel Blends

    EPA Science Inventory

    This study examines the chemical properties of carbonaceous aerosols emitted from three light-duty gasoline vehicles (LDVs) operating on gasoline (e0) and ethanol-gasoline fuel blends (e10 and e85). Vehicle road load simulations were performed on a chassis dynamometer using the t...

  7. Uranium in carbonaceous rocks in the Townsend and Helena valleys, Montana

    USGS Publications Warehouse

    Becraft, George E.

    1956-01-01

    Uranium-bearing carbonaceous shale and lignite beds are exposed in five areas in the Townsend and Helena Valleys in western Montana. The greatest number of exposures is in an area of several square miles northeast of Winston in the Townsend Valley. The uranium-bearing beds are in the lower part of a Tertiary unit that consists largely of thin-bedded, white to buff, pure and impure tuffs, locally altered to bentonite. The uranium occurrences, none of which appear to be commercial, have three characteristics in common: (1) they are in and adjacent to carbonaceous shale or lignite interbedded with light-gray of white, fine-grained tuffs and lapilli tuffs, (2) the stratigraphic section in the vicinity of the deposits includes bentonite and partly bentonized tuff, and (3) the distribution of the uranium in the favorable beds is erratic. The uranium was probably leached from the tuffs and lapilli tuffs by meteoric water during bentonization and was concentrated in the carbonaceous shale and lignite. Similar Tertiary rocks are present in many of the major valleys in Western Montana and probably warrant prospecting for uranium. Areas containing white, fine-grained tuff or lapilli tuff, bentonite, and coal, or carbonaceous shale would be particularly favorable for prospecting.

  8. INTERACTIONS OF THE NANO-SIZED CARBONACEOUS PARTICLES WITH LUNG EPITHELIAL CELLS AND ALVEOLAR MACROPHAGES

    EPA Science Inventory

    Human beings especially in urban areas are exposed to automobile exhaust from truck or car diesel engines. The bulk of the suspended particles in diesel exhaust (diesel exhaust particulate, DEP) is below 100 nm in size and comprises a carbonaceous core on which a variety of organ...

  9. Magnetite in CI carbonaceous meteorites - Origin by aqueous activity on a planetesimal surface

    NASA Technical Reports Server (NTRS)

    Kerridge, J. F.; Mackay, A. L.; Boynton, W. V.

    1979-01-01

    The composition and morphology of magnetite in CI carbonaceous meteorites appear incompatible with a nebular origin. Mineralization on the meteorite parent body is a more plausible mode of formation. The iodine-xenon age of this material therefore dates an episode of secondary mineralization on a planetesimal rather than the epoch of condensation in the primitive solar nebula.

  10. Mineralogy and Petrology of Yamato 86029: A New Type of Carbonaceous Chondrite

    NASA Technical Reports Server (NTRS)

    Tonui, E.; Zolensky, M. E.

    2001-01-01

    Y-86029 resembles CI chondrites. Its matrix is very fine-grained. Olivine shows evidence of shock, which has rarely been observed in carbonaceous chondrites. Y-86029 experienced aqueous and thermal alteration during or after accretion in parent body. Additional information is contained in the original extended abstract.

  11. Comment on Mars as the Parent Body of the CI Carbonaceous Chondrites by J. E. Brandenburg

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.

    1996-01-01

    Geological and chemical data refute a martian origin for the CI carbonaceous chondrites. Here, I will first consider Brandenburg's [1996] proposal that the CI's formed as water-deposited sediments on Mars, and that these sediments had limited chemical interactions with their martian environment. Finally, I will address oxygen isotope ratios, the strongest link between the CIs and the martian meteorites.

  12. Functionalization of biomass carbonaceous aerogels: selective preparation of MnO2@CA composites for supercapacitors.

    PubMed

    Ren, Yumei; Xu, Qun; Zhang, Jianmin; Yang, Hongxia; Wang, Bo; Yang, Daoyuan; Hu, Junhua; Liu, Zhimin

    2014-06-25

    Functionalized porous carbon materials with hierarchical structure and developed porosity coming from natural and renewable biomass have been attracting tremendous attention recently. In this work, we present a facile and scalable method to synthesize MnO2 loaded carbonaceous aerogel (MnO2@CA) composites via the hydrothermal carbonaceous (HTC) process. We employ two reaction systems of the mixed metal ion precursors to study the optimal selective adsorption and further reaction of MnO2 precursor on CA. Our experimental results show that the system containing KMnO4 and Na2S2O3·5H2O exhibits better electrochemical properties compared with the reaction system of MnSO4·H2O and (NH4)2S2O8. For the former, the obtained MnO2@CA displays the specific capacitance of 123.5 F·g(-1). The enhanced supercapacitance of MnO2@CA nanocomposites could be ascribed to both electrochemical contributions of the loaded MnO2 nanoparticles and the porous structure of three-dimensional carbonaceous aerogels. This study not only indicates that it is vital for the reaction systems to match with porous carbonaceous materials, but also offers a new fabrication strategy to prepare lightweight and high-performance materials that can be used in energy storage devices. PMID:24882146

  13. Amphiphilic hollow carbonaceous microspheres for the sorption of phenol from water.

    PubMed

    Guan, Zhengrong; Liu, Li; He, Lilu; Yang, Sen

    2011-11-30

    Amphiphilic porous hollow carbonaceous spheres (PHCSs) were synthesized via mild hydrothermal treatment of yeast cells and further pyrolyzing post treatment. The morphology, chemical composition, porosity, and structure of the carbonaceous materials were investigated. It is evident that the carbonaceous materials were composed of the carbonized organic matter (COM) and the noncarbonized organic matter (NOM), and the relative COM and NOM fractions could be adjusted through changing the temperature of hydrothermal and/or pyrolyzing treatment. The phenol sorption properties of the carbonaceous materials had been investigated and the sorption isotherms fit well to the modified Freundlich equation. It was found that the sorption isotherm of phenol onto PHCSs was practically linear even at extreme high concentrations, which was fewer reported for activated carbon or other inorganic materials. This type of sorption isothermals was assigned to a partition mechanism, and the largest value of the partition coefficient (K(f)) and carbon-normalized K(f) (K(oc)) is 56.7 and 91.5 mL g(-1), respectively. Moreover, PHCSs exhibit fast sorption kinetic and facile regeneration property. The results indicate PHCSs are potential effective sorbents for removal of undesirable organic chemicals in wastewater, especially at high concentrations. PMID:21943920

  14. Effect of carbonaceous soil amendments on potential mobility of weak acid herbicides in soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Use of carbonaceous amendments in soil has been proposed to decrease potential offsite transport of weak acid herbicides and metabolites by increasing their sorption to soil. The effects of organic olive mill waste, biochars from different feed stocks, and humic acid bound to clay on sorption of MCP...

  15. Carbonaceous Aerosol Characteristics over a Pinus taeda plantation: Results from the CELTIC experiment

    EPA Science Inventory

    Carbonaceous particles smaller than 2.5 um aerodynamic diameter (PM2.5) were collected in July, 2003 over a Loblolly Pine plantation at Duke Forest, NC during the Chemical Emission, Loss, Transformation and Interactions within Canopies (CELTIC) field study. Organic (OC) and eleme...

  16. ANALYSIS OF CARBONACEOUS AEROSOLS USING THE THERMAL OPTICAL TRANSMITTANCE AND THERMAL OPTICAL REFLECTANCE METHODS

    EPA Science Inventory

    Carbonaceous particulate typically represents a large fraction of PM2.5 (20 - 40%). Two primary techniques presently used for the analysis of particulate carbon are Thermal Optical Transmission (TOT - NIOSH Method 5040) and Thermal Optical Reflectance (TOR). These two methods b...

  17. Ion microprobe studies of a carbonaceous (CM) xenolith in the Erevan howardite

    NASA Astrophysics Data System (ADS)

    Sahijpal, S.; Nazarov, M. A.

    1994-07-01

    The presence of carbonaceous (CM) xenoliths in the Erevan howardite has been reported recently by Nazarov et al. The carbonates present in these clasts occur as rounded aggregates and are fine grained and extremely pure in composition. Although they resemble CAIs in morphology and texture, no relic refractory phases are present in them. These features and the absence of associated secondary phases led Nazarov et al. to propose these carbonates to be of nebular origin even though carbonates are generally not considered to be a stable phase under normal solar nebular conditions. A unique fragment of P-rich sulfide was also found in one of the carbonaceous clasts. A highly nebular environment characterized by high S fugacity was proposed as the formation site of this unique fragment, which was later incorporated into the carbonaceous matrix. We have used the ion microprobe to determine Ca isotopic compositions of several of the carbonate inclusions and S isotopic composition of the P-rich sulfide. We present the results of our Ca isotopic studies. The results obtained from Ca isotopic studies of six carbonate inclusions from the carbonaceous clast that also contain the P-rich sulfide are presented. The Ca isotopic compositions of all the inclusions are normal within the limits of our experimental uncertainties. If these carbonate inclusions were indeed of nebular origin, they have either sampled a nebular reservoir of normal Ca isotopic composition or they have equilibrated with reservoir(s) of normal isotopic composition

  18. Development of a carbonaceous selective absorber for solar thermal energy collection and process for its formation

    NASA Astrophysics Data System (ADS)

    Garrison, John D.

    1989-02-01

    The main goal of the US Department of Energy supported part of this project is to develop information about controlling the complicated chemical processes involved in the formation of a carbonaceous selective absorber and learn what equipment will allow production of this absorber commercially. The work necessary to accomplish this goal is not yet complete. Formation of the carbonaceous selective absorber in the conveyor oven tried so far has been unsatisfactory, because the proper conditions for applying the carbonaceous coating in each conveyor oven fabricated, either have been difficult to obtain, or have been difficult to maintain over an extended period of time. A new conveyor oven is nearing completion which is expected to allow formation of the carbonaceous selective absorber on absorber tubes in a continuous operation over many days without the necessity of cleaning the conveyor oven or changing the thickness of the electroplated nickel catalyst to compensate for changes in the coating environment in the oven. Work under this project concerned with forming and sealing glass panels to test ideas on evacuated glass solar collector designs and production have been generally quite satisfactory. Delays in completion of the selective absorber work, has caused postponement of the fabrication of a small prototype evacuated glass solar collector panel. Preliminary cost estimates of the selective absorber and solar collector panel indicate that this collector system should be lower in cost than evacuated solar collectors now on the market.

  19. Sources of excess urban carbonaceous aerosol in the Pearl River delta region, China

    EPA Science Inventory

    Carbonaceous aerosol is one of the important constituents of fine particulate matter (PM2.5) in Southern China, including the Pearl River Delta (PRD) region and Hong Kong (HK). During the study period (October and December of 2002, and March and June of 2003), the monthly average...

  20. A neutron activation analysis of iridium concentration in Yamato carbonaceous chondrite

    NASA Astrophysics Data System (ADS)

    Yabushita, S.; Wada, K.; Moriyama, H.; Takeuchi, K.

    1988-09-01

    Iridium concentration in extra-terrestrial bodies is an important quantity in relation to Ir-rich geological layers. Ir concentration of a Yamato carbonaceous chondrite (Y-793321) has been measured by a neutron activation method. The measurement yields a value (0.57±0.06) μg per gramme for the chondrite.

  1. R Raman Spectroscopy and Petrology of Antarctic CR Chondrites: Comparison with Other Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Komatsu, M.; Fagan, T. J.; Yamaguchi, A.; Mikouchi, T.; Zolensky, M. E.; Yasutake, M.

    2015-01-01

    In Renazzo-like carbonaceous (CR) chondrites, abundant original Fe,Ni-metal is preserved in chrondules, but the matrix is characterized by fine-grained magnetite with phyllosilicate. This combination of reduced Fe in chrodrules with oxidized Fe and phyllosilicate in the matrix has been attributed to aqueous alteration of matrix at relatively low temperatures.

  2. Sorption of the monoterpenes α-pinene and limonene to carbonaceous geosorbents including biochar.

    PubMed

    Hale, Sarah E; Endo, Satoshi; Arp, Hans Peter H; Zimmerman, Andrew R; Cornelissen, Gerard

    2015-01-01

    The sorption of two monoterpenes, α pinene and limonene to the carbonaceous geosorbents graphite, bituminous coal, lignite coke, biochar and Pahokee peat was quantified. Polyethylene (PE) passive samplers were calibrated for the first time for these compounds by determining the PE-water partitioning coefficients and used as a tool to determine sorption to the carbonaceous geosorbents. Log KPE-water values were 3.49±0.58 for α pinene and 4.08±0.27 for limonene. The sorption of limonene to all materials was stronger than that for α pinene (differences of 0.2-1.3 log units between distribution coefficients for the monoterpenes). Placing Kd values in increasing order for α pinene gave biochar≈Pahokee peat≈bituminous coal≈lignite cokecarbonaceous geosorbent-water distribution coefficients were also calculated. There was no clear correlation of these distribution coefficients with SA. Elemental composition was used to assess the degree of condensation (or alteration) of the carbonaceous geosorbents. The degree of carbonisation increased in the order; Pahokee peat

  3. SOURCE APPORTIONMENT OF PRIMARY AND SECONDARY CARBONACEOUS AEROSOL IN THE UNITED STATES USING MODELS AND MEASUREMENTS

    EPA Science Inventory

    In this presentation, three diagnostic evaluation methods of model performance for carbonaceous aerosol are reviewed. The EC-tracer method is used to distinguish primary and secondary carbon, radiocarbon data are used to distinguish fossil-fuel and contemporary carbon, and organ...

  4. SOURCE APPORTIONMENT OF PRIMARY CARBONACEOUS AEROSOL USING THE COMMUNITY MULTISCALE AIR QUALITY MODEL

    EPA Science Inventory

    A substantial fraction of fine particulate matter (PM) across the United States is composed of carbon, which may be either emitted in particulate form (i.e., primary) or formed in the atmosphere through gas-to-particle conversion processes (i.e., secondary). Primary carbonaceous...

  5. A 5-day method for determination of soluble silicon concentrations in nonliquid fertilizer materials using a sodium carbonate-ammonium nitrate extractant followed by visible spectroscopy with heteropoly blue analysis: single-laboratory validation.

    PubMed

    Sebastian, Dennis; Rodrigues, Hugh; Kinsey, Charles; Korndörfer, Gaspar; Pereira, Hamilton; Buck, Guilherme; Datnoff, Lawrence; Miranda, Stephen; Provance-Bowley, Mary

    2013-01-01

    A 5-day method for determining the soluble silicon (Si) concentrations in nonliquid fertilizer products was developed using a sodium carbonate (Na2CO3)-ammonium nitrate (NH4NO3) extractant followed by visible spectroscopy with heteropoly blue analysis at 660 nm. The 5-Day Na2CO3-NH4NO3 Soluble Si Extraction Method can be applied to quantify the plant-available Si in solid fertilizer products at levels ranging from 0.2 to 8.4% Si with an LOD of 0.06%, and LOQ of 0.20%. This Si extraction method for fertilizers correlates well with plant uptake of Si (r2 = 0.96 for a range of solid fertilizers) and is applicable to solid Si fertilizer products including blended products and beneficial substances. Fertilizer materials can be processed as received using commercially available laboratory chemicals and materials at ambient laboratory temperatures. The single-laboratory validation of the 5-Day Na2CO3-NH4NO3 Soluble Si Extraction Method has been approved by The Association of American Plant Food Control Officials for testing nonliquid Si fertilizer products.

  6. The Effects of Parent Body Processes on Amino Acids in Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Callahan, Michael P.; Dworkin, Jason P.; Elsila, Jamie E.

    2010-01-01

    To investigate the effect of parent body processes on the abundance, distribution, and enantiomeric composition of amino acids in carbonaceous chondrites, the water extracts from nine different powdered Cl, CM, and CR carbonaceous chondrites were analyzed for amino acids by ultrahigh performance liquid chromatography-fluorescence detection and time-of-flight mass spectrometry (UPLC-FD/ToF-MS). Four aqueously altered type 1 carbonaceous chondrites including Orgueil (C11), Meteorite Hills (MET) 01070 (CM1), Scott Glacier (SCO) 06043 (CM1), and Grosvenor Mountains (GRO) 95577 (CR1) were analyzed using this technique for the first time. Analyses of these meteorites revealed low levels of two- to five-carbon acyclic amino alkanoic acids with concentrations ranging from -1 to 2,700 parts-per-billion (ppb). The type 1 carbonaceous chondrites have a distinct distribution of the five-carbon (C5) amino acids with much higher relative abundances of the gamma- and delta-amino acids compared to the type 2 and type 3 carbonaceous chondrites, which are dominated by a-amino acids. Much higher amino acid abundances were found in the CM2 chondrites Murchison, Lonewolf Nunataks (LON) 94102, and Lewis Cliffs (LEW) 90500, the CR2 Elephant Moraine (EET) 92042, and the CR3 Queen Alexandra Range (QUE) 99177. For example, a-aminoisobutyric acid ((alpha-AIB) and isovaline were approximately 100 to 1000 times more abundant in the type 2 and 3 chondrites compared to the more aqueously altered type 1 chondrites. Most of the chiral amino acids identified in these meteorites were racemic, indicating an extraterrestrial abiotic origin. However, non-racemic isovaline was observed in the aqueously altered carbonaceous chondrites Murchison, Orgueil, SCO 06043, and GRO 95577 with L-isovaline excesses ranging from approximately 11 to 19%, whereas the most pristine, unaltered carbonaceous chondrites analyzed in this study had no detectable L-isovaline excesses. These results are consistent with the

  7. The effects of parent body processes on amino acids in carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Glavin, Daniel P.; Callahan, Michael P.; Dworkin, Jason P.; Elsila, Jamie E.

    2010-12-01

    To investigate the effect of parent body processes on the abundance, distribution, and enantiomeric composition of amino acids in carbonaceous chondrites, the water extracts from nine different powdered CI, CM, and CR carbonaceous chondrites were analyzed for amino acids by ultra performance liquid chromatography-fluorescence detection and time-of-flight mass spectrometry (UPLC-FD/ToF-MS). Four aqueously altered type 1 carbonaceous chondrites including Orgueil (CI1), Meteorite Hills (MET) 01070 (CM1), Scott Glacier (SCO) 06043 (CM1), and Grosvenor Mountains (GRO) 95577 (CR1) were analyzed using this technique for the first time. Analyses of these meteorites revealed low levels of two- to five-carbon acyclic amino alkanoic acids with concentrations ranging from approximately 1 to 2,700 parts-per-billion (ppb). The type 1 carbonaceous chondrites have a distinct distribution of the five-carbon (C5) amino acids with much higher relative abundances of the γ- and δ-amino acids compared to the type 2 and type 3 carbonaceous chondrites, which are dominated by α-amino acids. Much higher amino acid abundances were found in the CM2 chondrites Murchison, Lonewolf Nunataks (LON) 94102, and Lewis Cliffs (LEW) 90500, the CR2 Elephant Moraine (EET) 92042, and the CR3 Queen Alexandra Range (QUE) 99177. For example, α-aminoisobutyric acid (α-AIB) and isovaline were approximately 100 to 1000 times more abundant in the type 2 and 3 chondrites compared to the more aqueously altered type 1 chondrites. Most of the chiral amino acids identified in these meteorites were racemic, indicating an extraterrestrial abiotic origin. However, nonracemic isovaline was observed in the aqueously altered carbonaceous chondrites Murchison, Orgueil, SCO 06043, and GRO 95577 with L-isovaline excesses ranging from approximately 11 to 19%, whereas the most pristine, unaltered carbonaceous chondrites analyzed in this study had no detectable L-isovaline excesses. These results are consistent with the

  8. Hepatic histological alterations and biochemical changes induced by sildenafil overdoses.

    PubMed

    Jarrar, Bashir Mahmoud; Almansour, Mansour Ibrahim

    2015-11-01

    Sildenafil is used for the treatment of erectile dysfunction and is helping millions of men around the world to achieve and maintain a long lasting erection. Fifty healthy male rabbits (Oryctolagus cuniculus) were used in the present study and exposed daily to sildenafil (0, 1, 3, 6, 9 mg/kg) for 5 days per week for 7 weeks to investigate the biochemical changes and alterations in the hepatic tissues induced by this drug overdosing. In comparison with respective control rabbits, sildenafil overdoses elevated significantly (p-value<0.05, ANOVA test) alanine aminotransferase (ALT), aspartate aminotransferase (AST), testosterone, follicular stimulating hormone and total protein, while creatinine and urea were lowered with no significant alteration was observed in uric acid and luteinizing hormone concentration. Also sildenafil provoked hepatocytes nuclear alterations, necrosis, hydropic degeneration, bile duct hyperplasia, Kupffer cells hyperplasia, inflammatory cells infiltration, hepatic vessels congestion and evident partial depletion of glycogen content. The results show that subchronic exposure to sildenafil overdoses exhibits significant biochemical and alterations in the hepatic tissues that might affect the functions of the liver and other vital organs. PMID:26639481

  9. BEST: Biochemical Engineering Simulation Technology

    SciTech Connect

    Not Available

    1996-01-01

    The idea of developing a process simulator that can describe biochemical engineering (a relatively new technology area) was formulated at the National Renewable Energy Laboratory (NREL) during the late 1980s. The initial plan was to build a consortium of industrial and U.S. Department of Energy (DOE) partners to enhance a commercial simulator with biochemical unit operations. DOE supported this effort; however, before the consortium was established, the process simulator industry changed considerably. Work on the first phase of implementing various fermentation reactors into the chemical process simulator, ASPEN/SP-BEST, is complete. This report will focus on those developments. Simulation Sciences, Inc. (SimSci) no longer supports ASPEN/SP, and Aspen Technology, Inc. (AspenTech) has developed an add-on to its ASPEN PLUS (also called BioProcess Simulator [BPS]). This report will also explain the similarities and differences between BEST and BPS. ASPEN, developed by the Massachusetts Institute of Technology for DOE in the late 1970s, is still the state-of-the-art chemical process simulator. It was selected as the only simulator with the potential to be easily expanded into the biochemical area. ASPEN/SP, commercially sold by SimSci, was selected for the BEST work. SimSci completed work on batch, fed-batch, and continuous fermentation reactors in 1993, just as it announced it would no longer commercially support the complete ASPEN/SP product. BEST was left without a basic support program. Luckily, during this same time frame, AspenTech was developing a biochemical simulator with its version of ASPEN (ASPEN PLUS), which incorporates most BEST concepts. The future of BEST will involve developing physical property data and models appropriate to biochemical systems that are necessary for good biochemical process design.

  10. Apollo 17 mission 5-day report

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A five day report of the Apollo 17 mission is presented. The subjects discussed are: (1) sequence of events, (2) extravehicular activities, (3) first, second, and third lunar surface extravehicular activity, (4) transearth extravehicular activity, (5) lunar surface experiments conducted, (6) orbital science activities, (7) spacecraft reentry and recovery.

  11. Nuclear criticality safety: 5-day training course

    SciTech Connect

    Schlesser, J.A.

    1992-11-01

    This compilation of notes is presented as a source reference for the criticality safety course. It represents the contributions of many people, particularly Tom McLaughlin, the course`s primary instructor. At the completion of this training course, the attendee will: be able to define terms commonly used in nuclear criticality safety; be able to appreciate the fundamentals of nuclear criticality safety; be able to identify factors which affect nuclear criticality safety; be able to identify examples of criticality controls as used at Los Alamos; be able to identify examples of circumstances present during criticality accidents; be able to identify examples of computer codes used by the nuclear criticality safety specialist; be able to identify examples of safety consciousness required in nuclear criticality safety.

  12. Nuclear criticality safety: 5-day training course

    SciTech Connect

    Schlesser, J.A.

    1992-11-01

    This compilation of notes is presented as a source reference for the criticality safety course. It represents the contributions of many people, particularly Tom McLaughlin, the course's primary instructor. At the completion of this training course, the attendee will: be able to define terms commonly used in nuclear criticality safety; be able to appreciate the fundamentals of nuclear criticality safety; be able to identify factors which affect nuclear criticality safety; be able to identify examples of criticality controls as used at Los Alamos; be able to identify examples of circumstances present during criticality accidents; be able to identify examples of computer codes used by the nuclear criticality safety specialist; be able to identify examples of safety consciousness required in nuclear criticality safety.

  13. Spectro-microscopic measurements of carbonaceous aerosol aging in Central California

    NASA Astrophysics Data System (ADS)

    Moffet, R. C.; Rödel, T. C.; Kelly, S. T.; Yu, X. Y.; Carroll, G. T.; Fast, J.; Zaveri, R. A.; Laskin, A.; Gilles, M. K.

    2013-04-01

    Carbonaceous aerosols are responsible for large uncertainties in climate models, degraded visibility, and adverse health effects. The Carbonaceous Aerosols and Radiative Effects Study (CARES) was designed to study carbonaceous aerosols in the natural environment of Central Valley, California, and learn more about their atmospheric formation and aging. This paper presents results from spectro-microscopic measurements of carbonaceous particles collected during CARES at the time of pollution accumulation event (27-29 June 2010), when in situ measurements indicated an increase in the organic carbon content of aerosols as the Sacramento urban plume aged. Computer controlled scanning electron microscopy coupled with an energy dispersive X-ray detector (CCSEM/EDX) and scanning transmission X-ray microscopy coupled with near edge X-ray absorption spectroscopy (STXM/NEXAFS) were used to probe the chemical composition and morphology of individual particles. It was found that the mass of organic carbon on individual particles increased through condensation of secondary organic aerosol. STXM/NEXAFS indicated that the number fraction of homogenous organic particles lacking inorganic inclusions (greater than ~50 nm diameter) increased with plume age as did the organic mass per particle. Comparison of the CARES spectro-microscopic data set with a similar dataset obtained in Mexico City during the MILAGRO campaign showed that individual particles in Mexico City contained twice as much carbon as those sampled during CARES. The number fraction of soot particles at the Mexico City urban site (30%) was larger than at the CARES urban site (10%) and the most aged samples from CARES contained less carbon-carbon double bonds. Differences between carbonaceous particles in Mexico City and California result from different sources, photochemical conditions, gas phase reactants, and secondary organic aerosol precursors. The detailed results provided by these spectro-microscopic measurements

  14. Spectro-microscopic measurements of carbonaceous aerosol aging in Central California

    NASA Astrophysics Data System (ADS)

    Moffet, R. C.; Rödel, T. C.; Kelly, S. T.; Yu, X. Y.; Carroll, G. T.; Fast, J.; Zaveri, R. A.; Laskin, A.; Gilles, M. K.

    2013-10-01

    Carbonaceous aerosols are responsible for large uncertainties in climate models, degraded visibility, and adverse health effects. The Carbonaceous Aerosols and Radiative Effects Study (CARES) was designed to study carbonaceous aerosols in the natural environment of the Central Valley, California, and learn more about their atmospheric formation and aging. This paper presents results from spectro-microscopic measurements of carbonaceous particles collected during CARES at the time of a pollution accumulation event (27-29 June 2010), when in situ measurements indicated an increase in the organic carbon content of aerosols as the Sacramento urban plume aged. Computer-controlled scanning electron microscopy coupled with an energy dispersive X-ray detector (CCSEM/EDX) and scanning transmission X-ray microscopy coupled with near-edge X-ray absorption spectroscopy (STXM/NEXAFS) were used to probe the chemical composition and morphology of individual particles. It was found that the mass of organic carbon on individual particles increased through condensation of secondary organic aerosol. STXM/NEXAFS indicated that the number fraction of homogenous organic particles lacking inorganic inclusions (greater than ~50 nm equivalent circular diameter) increased with plume age, as did the organic mass per particle. Comparison of the CARES spectro-microscopic dataset with a similar dataset obtained in Mexico City during the MILAGRO campaign showed that fresh particles in Mexico City contained three times as much carbon as those sampled during CARES. The number fraction of soot particles at the Mexico City urban site (ranging from 16.6 to 47.3%) was larger than at the CARES urban site (13.4-15.7%), and the most aged samples from CARES contained fewer carbon-carbon double bonds. Differences between carbonaceous particles in Mexico City and California result from different sources, photochemical conditions, gas phase reactants, and secondary organic aerosol precursors. The detailed

  15. Micro Raman spectroscopy of carbonaceous material in microfossils and meteorites: improving a method for life detection.

    PubMed

    Bower, D M; Steele, A; Fries, M D; Kater, L

    2013-01-01

    The identification of biosignatures in Earth's ancient rock record and detection of extraplanetary life is one of the primary goals in astrobiology. Intrinsic to this goal is the improvement of analytical techniques and protocols used to identify an unambiguous signal of life. Micro Raman spectroscopy is a nondestructive method that allows for in situ identification of a wide range of minerals and compounds. The use of D (∼1350 cm(-1)) and G (∼1580 cm(-1)) band parameters to infer the biogenicity of carbonaceous materials in fossils has become a commonly used analytical tool, but carbonaceous compounds from different sources often share the same spectroscopic characteristics. Microfossil studies do not always take into consideration a nonbiological source for the carbon in their samples and therefore still rely on morphology as the primary mode of identification. Comprehensive studies that consider all carbon sources are typically done on metasediments, coals, or meteorites, and the results are not clearly applicable to microfossil identification. In this study, microfossils from a suite of sedimentary rock samples of various ages were analyzed with micro Raman spectroscopy to investigate the nature and provenance of carbonaceous material. To further constrain D- and G-band carbon characteristics, micro Raman analyses were also performed on well-characterized meteorite samples as abiological controls. The results appear to show a correlation of precursor carbonaceous material with D-band parameters and thermal history with G-band parameters. This systematic study lays the groundwork for improving the use of the G- and D-band trends as useful indicators of the origin of carbon in microfossils. Before unambiguous biosignatures can be established, further work characterizing the carbonaceous material in microfossils of different ages, thermal histories, and host rock compositions is needed.

  16. Relative Amino Acid Concentrations as a Signature for Parent Body Processes of Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Botta, Oliver; Glavin, Daniel P.; Kminek, Gerhard; Bada, Jeffrey L.

    2002-01-01

    Most meteorites are thought to have originated from objects in the asteroid belt. Carbonaceous chondrites, which contain significant amounts of organic carbon including complex organic compounds, have also been suggested to be derived from comets. The current model for the synthesis of organic compounds found in carbonaceous chondrites includes the survival of interstellar organic compounds and the processing of some of these compounds on the meteoritic parent body. The amino acid composition of five CM carbonaceous chondrites, two CIs, one CR, and one CV3 have been measured using hot water extraction-vapor hydrolysis, OPA/NAC derivatization and high-performance liquid chromatography (HPLC). Total amino acid abundances in the bulk meteorites as well as the amino acid concentrations relative to glycine = 1.0 for beta-alanine, alpha-aminoisobutyric acid and D-alanine were determined. Additional data for three Antarctic CM meteorites were obtained from the literature. All CM meteorites analyzed in this study show a complex distribution of amino acids and a high variability in total concentration ranging from approx. 15,300 to approx. 5800 parts per billion (ppb), while the CIs show a total amino acid abundance of approx. 4300 ppb. The relatively (compared to glycine) high AIB content found in all the CMs is a strong indicator that Strecker-cyanohydrin synthesis is the dominant pathway for the formation of amino acids found in these meteorites. The data from the Antarctic CM carbonaceous chondrites are inconsistent with the results from the other CMs, perhaps due to influences from the Antarctic ice that were effective during their residence time. In contrast to CMs, the data from the CI carbonaceous chondrites indicate that the Strecker synthesis was not active on their parent bodies.

  17. A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles

    NASA Astrophysics Data System (ADS)

    Qin, F.; Brosseau, C.

    2012-03-01

    Carbon (C) is a crucial material for many branches of modern technology. A growing number of demanding applications in electronics and telecommunications rely on the unique properties of C allotropes. The need for microwave absorbers and radar-absorbing materials is ever growing in military applications (reduction of radar signature of aircraft, ships, tanks, and targets) as well as in civilian applications (reduction of electromagnetic interference among components and circuits, reduction of the back-radiation of microstrip radiators). Whatever the application for which the absorber is intended, weight reduction and optimization of the operating bandwidth are two important issues. A composite absorber that uses carbonaceous particles in combination with a polymer matrix offers a large flexibility for design and properties control, as the composite can be tuned and optimized via changes in both the carbonaceous inclusions (C black, C nanotube, C fiber, graphene) and the embedding matrix (rubber, thermoplastic). This paper offers a perspective on the experimental efforts toward the development of microwave absorbers composed of carbonaceous inclusions in a polymer matrix. The absorption properties of such composites can be tailored through changes in geometry, composition, morphology, and volume fraction of the filler particles. Polymer composites filled with carbonaceous particles provide a versatile system to probe physical properties at the nanoscale of fundamental interest and of relevance to a wide range of potential applications that span radar absorption, electromagnetic protection from natural phenomena (lightning), shielding for particle accelerators in nuclear physics, nuclear electromagnetic pulse protection, electromagnetic compatibility for electronic devices, high-intensity radiated field protection, anechoic chambers, and human exposure mitigation. Carbonaceous particles are also relevant to future applications that require environmentally benign and

  18. Micro Raman spectroscopy of carbonaceous material in microfossils and meteorites: improving a method for life detection.

    PubMed

    Bower, D M; Steele, A; Fries, M D; Kater, L

    2013-01-01

    The identification of biosignatures in Earth's ancient rock record and detection of extraplanetary life is one of the primary goals in astrobiology. Intrinsic to this goal is the improvement of analytical techniques and protocols used to identify an unambiguous signal of life. Micro Raman spectroscopy is a nondestructive method that allows for in situ identification of a wide range of minerals and compounds. The use of D (∼1350 cm(-1)) and G (∼1580 cm(-1)) band parameters to infer the biogenicity of carbonaceous materials in fossils has become a commonly used analytical tool, but carbonaceous compounds from different sources often share the same spectroscopic characteristics. Microfossil studies do not always take into consideration a nonbiological source for the carbon in their samples and therefore still rely on morphology as the primary mode of identification. Comprehensive studies that consider all carbon sources are typically done on metasediments, coals, or meteorites, and the results are not clearly applicable to microfossil identification. In this study, microfossils from a suite of sedimentary rock samples of various ages were analyzed with micro Raman spectroscopy to investigate the nature and provenance of carbonaceous material. To further constrain D- and G-band carbon characteristics, micro Raman analyses were also performed on well-characterized meteorite samples as abiological controls. The results appear to show a correlation of precursor carbonaceous material with D-band parameters and thermal history with G-band parameters. This systematic study lays the groundwork for improving the use of the G- and D-band trends as useful indicators of the origin of carbon in microfossils. Before unambiguous biosignatures can be established, further work characterizing the carbonaceous material in microfossils of different ages, thermal histories, and host rock compositions is needed. PMID:23268624

  19. Carbonaceous matter in peridotites and basalts studied by XPS, SALI, and LEED

    SciTech Connect

    Tingle, T.N. SRI International, Menlo Park, CA ); Mathez, E.A. ); Hochella, M.F. Jr. )

    1991-05-01

    Carbonaceous matter in peridotite xenoliths and basalt from the Hualalai Volcano, in a basalt glass collected directly from an active lava lake on the east rift of Kilauea, in garnet and diopside megacrysts from the Jagersfontein kimberlite, and in gabbros from the Stillwater and Bushveld Complexes has been studied by X-ray photoelectron spectroscopy (XPS), thermal-desorption surface analysis by laser ionization (SALI), and low-energy electron diffraction (LEED). The basalt and two of the four xenoliths from Hualalai and both Jagersfontein megacrysts yielded trace quantities ({le}10 nanomoles) of organic compounds on heating to 700C. Organics were not detected in the rocks from the layered intrusions, and neither carbonaceous matter nor organics were detected in the glass from the lava lake. Where detected, organics appear to be associated with carbonaceous films on microcrack surfaces. Carbonaceous matter exists as films less than a few nm thick and particles up to 20 {mu}m across, both of which contain elements expected to be present in significant quantities in magmatic vapors, namely Si, alkalis, halogens, N, and transition metals. LEED studies suggest that the carbonaceous films are amorphous. The data suggest two possible mechanisms for the formation of the organics. One is that they are a product of abiotic heterogeneous catalysis of volcanic gas on new, chemically active mineral surfaces formed by fracturing during cooling. Alternatively, organics may have been assimilated into the volcanic gases prior to eruption and then deposited on cracks formed during eruption and cooling. In any case, there is no evidence to suggest that the organics represent laboratory or field biogenic contamination.

  20. Circadian Clocks: Unexpected Biochemical Cogs

    PubMed Central

    Mori, Tetsuya; Mchaourab, Hassane; Johnson, Carl Hirschie

    2015-01-01

    A circadian oscillation can be reconstituted in vitro from three proteins that cycles with a period of ~24 h. Two recent studies provide surprising biochemical answers to why this remarkable oscillator has such a long time constant and how it can switch effortlessly between alternating enzymatic modes. PMID:26439342

  1. Carbonaceous aerosols over China--review of observations, emissions, and climate forcing.

    PubMed

    Wang, Linpeng; Zhou, Xuehua; Ma, Yujie; Cao, Zhaoyu; Wu, Ruidong; Wang, Wenxing

    2016-01-01

    Carbonaceous aerosols have been attracting attention due to the influence on visibility, air quality, and regional climate. Statistical analyses based on concentration levels, spatial-temporal variations, correlations, and organic carbon (OC) to element carbon (EC) ratios from published data of OC and EC in particulate matter (PM2.5 and PM10) were carried out in order to give a carbonaceous aerosol profile in China. The results showed maxima for OC of 29.5 ± 18.2 μg C m(-3) and for EC of 8.4 ± 6.3 μg C m(-3) in winter and minima for OC of 12.9 ± 7.7 μg C m(-3) in summer and for EC of 4.6 ± 2.8 μg C m(-3) in spring. In addition, OC and EC both had higher concentrations in urban than those in rural sites. Carbonaceous aerosol levels in China are about three to seven times higher compared to those in the USA and Europe. OC and EC occupied 20 ± 6 and 7 ± 3% of PM2.5 mass and 17 ± 7 and 5 ± 3% of PM10 mass, respectively, implying that carbonaceous aerosols are the main component of PM, especially OC. Secondary organic carbon (SOC) was a significant portion of PM and contributed 41 ± 26% to OC and 8 ± 6% to PM2.5 mass. The OC/EC ratio was 3.63 ± 1.73, which, along with the good correlation between OC and EC and the OC to EC slope of 2.29, signifies that coal combustion and/or vehicular exhaust is the dominated carbonaceous aerosol source in China. These provide a primary observation-based understanding of carbonaceous aerosol pollution in China and have a great significance in improving the emission inventory and climate forcing evaluation.

  2. Carbonaceous aerosols over China--review of observations, emissions, and climate forcing.

    PubMed

    Wang, Linpeng; Zhou, Xuehua; Ma, Yujie; Cao, Zhaoyu; Wu, Ruidong; Wang, Wenxing

    2016-01-01

    Carbonaceous aerosols have been attracting attention due to the influence on visibility, air quality, and regional climate. Statistical analyses based on concentration levels, spatial-temporal variations, correlations, and organic carbon (OC) to element carbon (EC) ratios from published data of OC and EC in particulate matter (PM2.5 and PM10) were carried out in order to give a carbonaceous aerosol profile in China. The results showed maxima for OC of 29.5 ± 18.2 μg C m(-3) and for EC of 8.4 ± 6.3 μg C m(-3) in winter and minima for OC of 12.9 ± 7.7 μg C m(-3) in summer and for EC of 4.6 ± 2.8 μg C m(-3) in spring. In addition, OC and EC both had higher concentrations in urban than those in rural sites. Carbonaceous aerosol levels in China are about three to seven times higher compared to those in the USA and Europe. OC and EC occupied 20 ± 6 and 7 ± 3% of PM2.5 mass and 17 ± 7 and 5 ± 3% of PM10 mass, respectively, implying that carbonaceous aerosols are the main component of PM, especially OC. Secondary organic carbon (SOC) was a significant portion of PM and contributed 41 ± 26% to OC and 8 ± 6% to PM2.5 mass. The OC/EC ratio was 3.63 ± 1.73, which, along with the good correlation between OC and EC and the OC to EC slope of 2.29, signifies that coal combustion and/or vehicular exhaust is the dominated carbonaceous aerosol source in China. These provide a primary observation-based understanding of carbonaceous aerosol pollution in China and have a great significance in improving the emission inventory and climate forcing evaluation. PMID:26385857

  3. Selenium effects on gallium arsenide induced biochemical and immunotoxicological changes in rats.

    PubMed

    Flora, S J; Kannan, G M; Kumar, P

    1999-08-30

    The influence of selenium (6.3 and 12.6 micromol/kg, intraperitoneally) on the disposition of gallium and arsenic and a few gallium arsenide (GaAs) sensitive biochemical variables was studied in male rats. Concomitant administration of Se and GaAs (70 micromol/kg, orally, 5 days a week for 4 weeks) significantly prevented the accumulation of arsenic while, the gallium concentration reduced moderately in the soft organs. The biochemical (haematopoietic and liver) and immunological variables however, responded less favorably to selenium administration. Most of the protection was however observed with the dose of 12.6 micromol rather than at 6.3 micromol. The results thus suggest a few beneficial effects of selenium in preventing the appearance of signs of GaAs toxicity like preventing inhibition of blood delta-aminolevulinic acid dehydratase (ALAD), hepatic malondialdehyde (MDA) formation and the accumulation of gallium and arsenic concentration.

  4. The Biological Potency Of Carbonaceous Nanoparticles Is Associated With The State Of Oxidation Of Surface Carbon Atoms

    EPA Science Inventory

    Epidemiological studies have shown that exposure to ambient particulate matter (PM) is associated with excess morbidity and mortality. An important component of PM consists of inorganic and organic compounds adsorbed onto a carbonaceous particle core. Toxicological studies indica...

  5. Formation of P-Rich Olivine in DaG 978 Carbonaceous Chondrite Through Fluid-Assisted Metamorphism

    NASA Astrophysics Data System (ADS)

    Zhang, A. C.; Li, Y.; Chen, J. N.; Gu, L. X.; Wang, R. C.

    2016-08-01

    We describe an occurrence of P-rich olivine in the DaG 978 carbonaceous chondrite. Different from other natural P-rich olivine, the P-rich olivine should have formed through fluid-assisted metamorphism.

  6. Biochemical Engineering. Part II: Process Design

    ERIC Educational Resources Information Center

    Atkinson, B.

    1972-01-01

    Describes types of industrial techniques involving biochemical products, specifying the advantages and disadvantages of batch and continuous processes, and contrasting biochemical and chemical engineering. See SE 506 318 for Part I. (AL)

  7. Laboratory experiments on the weathering of iron meteorites and carbonaceous chondrites by iron-oxidizing bacteria

    NASA Astrophysics Data System (ADS)

    Gronstal, A.; Pearson, V.; Kappler, A.; Dooris, C.; Anand, M.; Poitrasson, F.; Kee, T. P.; Cockell, C. S.

    2009-03-01

    Batch culture experiments were performed to investigate the weathering of meteoritic material by iron-oxidizing bacteria. The aerobic, acidophilic iron oxidizer (A. ferrooxidans) was capable of oxidizing iron from both carbonaceous chondrites (Murchison and Cold Bokkeveld) and iron meteorites (York and Casas Grandes). Preliminary iron isotope results clearly show contrasted iron pathways during oxidation with and without bacteria suggesting that a biological role in meteorite weathering could be distinguished isotopically. Anaerobic iron-oxidizers growing under pH-neutral conditions oxidized iron from iron meteorites. These results show that rapid biologicallymediated alteration of extraterrestrial materials can occur in both aerobic and anaerobic environments. These results also demonstrate that iron can act as a source of energy for microorganisms from both iron and carbonaceous chondrites in aerobic and anaerobic conditions with implications for life on the early Earth and the possible use of microorganisms to extract minerals from asteroidal material.

  8. Comparison of the trace element composition of Tagish Lake with other primitive carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Friedrich, Jon M.; Wang, Ming-Sheng; Lipschutz, Michael E.

    2002-05-01

    A meteorite fall on 18 January 2000 was detected by U.S. Defense Department satellites which established its pre-impact orbit. Fresh samples were collected from frozen Tagish Lake in British Columbia a week later and some properties of these samples reveal it to be a unique meteorite. We characterized Tagish Lake and 8 other samples using ICPMS and RNAA: data for 47 elements reveal that each of 9 carbonaceous chondrites of different type exhibit the Orgueil-normalized plateaus expected for members of such types. Trends evident in Tagish Lake differ from all other carbonaceous chondrites, including CI and CM. Samples of Tagish Lake collected later show similar patterns affected by weathering.

  9. Process for the conversion of carbonaceous feedstocks to particulate carbon and methanol

    DOEpatents

    Steinberg, Meyer; Grohse, Edward W.

    1995-01-01

    A process for the production of a pollutant-free particulate carbon (i.e., a substantially ash-, sulfur- and nitrogen-free carbon) from carbonaceous feedstocks. The basic process involves de-oxygenating one of the gas streams formed in a cyclic hydropyrolysis-methane pyrolysis process in order to improve conversion of the initial carbonaceous feedstock. De-oxygenation is effected by catalytically converting carbon monoxide, carbon dioxide, and hydrogen contained in one of the pyrolysis gas streams, preferably the latter, to a methanol co-product. There are thus produced two products whose use is known per se, viz., a substantially pollutant-free particulate carbon black and methanol. These products may be admixed in the form of a liquid slurry of carbon black in methanol.

  10. Ion Irradiation Experiments on the Murchison CM2 Carbonaceous Chondrite: Simulating Space Weathering of Primitive Asteroids

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Christoffersen, R.; Dukes, C. A.; Baragiola, R. A.; Rahman, Z.

    2015-01-01

    Remote sensing observations show that space weathering processes affect all airless bodies in the Solar System to some degree. Sample analyses and lab experiments provide insights into the chemical, spectroscopic and mineralogic effects of space weathering and aid in the interpretation of remote- sensing data. For example, analyses of particles returned from the S-type asteroid Itokawa by the Hayabusa mission revealed that space-weathering on that body was dominated by interactions with the solar wind acting on LL ordinary chondrite-like materials [1, 2]. Understanding and predicting how the surface regoliths of primitive carbonaceous asteroids respond to space weathering processes is important for future sample return missions (Hayabusa 2 and OSIRIS-REx) that are targeting objects of this type. Here, we report the results of our preliminary ion irradiation experiments on a hydrated carbonaceous chondrite with emphasis on microstructural and infrared spectral changes.

  11. Everyone Wins: A Mars-Impact Origin for Carbonaceous Phobos and Deimos

    NASA Technical Reports Server (NTRS)

    Fries, M.; Welzenbach, L.; Steele, A.

    2016-01-01

    Discussions of Phobos' and Deimos' origin(s) tend to feature an orthogonally opposed pair of observations: dynamical studies which favor coalescence of the moons from an orbital debris ring arising from a large impact on Mars; and reflectance spectroscopy of the moons that indicate a carbonaceous composition that is not consistent with Martian surface materials. One way to reconcile this discrepancy is to consider the option of a Mars-impact origin for Phobos and Deimos, followed by surficial decoration of carbon-rich materials by interplanetary dust particles (IDP). The moons experience a high IDP flux because of their location in Mars' gravity well. Calculations show that accreted carbon is sufficient to produce a surface with reflectance spectra resembling carbonaceous chondrites.

  12. Ion irradiation of carbonaceous chondrites as a simulation of space weathering on C-complex asteroids

    NASA Astrophysics Data System (ADS)

    Lantz, C.; Brunetto, R.; Barucci, M. A.; Bachelet, C.; Baklouti, D.; Bourçois, J.; Dartois, E.; Duprat, J.; Duret, P.; Engrand, C.; Godard, M.; Ledu, D.; Mivumbi, O.; Fornasier, S.

    2015-10-01

    We are investigating the effects of space weathering on primitive asteroids using ion irradiation on their meteoritic analogs. To do so, we exposed several carbonaceous chondrites (CV Allende, COs Lancé and Frontier Mountain 95002, CM Mighei, CI Alais, and ungrouped Tagish Lake) to 40 keV He+ ions as a simulation of solar wind irradiation using fluences up to 6.1016 ions/cm2 (implantation platform IRMA at CSNSM Orsay). As a test for our new experimental setup, we also studied samples of olivine and diopside. We confirm the reddening and darkening trends on S-type objects, but carbonaceous chondrites present a continuum of behaviors after ion irradiation as a function of the initial albedo and carbon content: from red to blue and from dark to bright.

  13. Field effect transistors and photodetectors based on nanocrystalline graphene derived from electron beam induced carbonaceous patterns.

    PubMed

    Kurra, Narendra; Bhadram, Venkata Srinu; Narayana, Chandrabhas; Kulkarni, G U

    2012-10-26

    We describe a transfer-free method for the fabrication of nanocrystalline graphene (nc-graphene) on SiO(2) substrates directly from patterned carbonaceous deposits. The deposits were produced from the residual hydrocarbons present in the vacuum chamber without any external source by using an electron beam induced carbonaceous deposition (EBICD) process. Thermal treatment under vacuum conditions in the presence of Ni catalyst transformed the EBIC deposit into nc-graphene patterns, confirmed using Raman and TEM analysis. The nc-graphene patterns have been employed as an active p-type channel material in a field effect transistor (FET) which showed a hole mobility of ~90 cm(2) V(-1) s(-1). The nc-graphene also proved to be suitable material for IR detection.

  14. Field effect transistors and photodetectors based on nanocrystalline graphene derived from electron beam induced carbonaceous patterns

    NASA Astrophysics Data System (ADS)

    Kurra, Narendra; Srinu Bhadram, Venkata; Narayana, Chandrabhas; Kulkarni, G. U.

    2012-10-01

    We describe a transfer-free method for the fabrication of nanocrystalline graphene (nc-graphene) on SiO2 substrates directly from patterned carbonaceous deposits. The deposits were produced from the residual hydrocarbons present in the vacuum chamber without any external source by using an electron beam induced carbonaceous deposition (EBICD) process. Thermal treatment under vacuum conditions in the presence of Ni catalyst transformed the EBIC deposit into nc-graphene patterns, confirmed using Raman and TEM analysis. The nc-graphene patterns have been employed as an active p-type channel material in a field effect transistor (FET) which showed a hole mobility of ˜90 cm2 V-1 s-1. The nc-graphene also proved to be suitable material for IR detection.

  15. Influence of carbonaceous particles on the interaction of coal combustion stack ash with organic matter

    SciTech Connect

    Griest, W.H.; Tomkins, B.A.

    1986-03-01

    Stack ash samples were fractionated by aerodynamic size, and the largest particle size fraction was separated into constituent particle type subfractions. Comparison of the mineral, magnetic, and carbonaceous particles showed that coked coal is responsible for the sorptivity of the large particle size fraction for carbon-14 labeled benzo(a)pyrene ((/sup 14/C)BaP) and for low solvent extraction recoveries. Elevated levels of organic matter and surface area also are contributed by the carbonaceous particles. In contrast, solvent extraction recoveries of polar degradation products of (/sup 14/C)BaP are attributable more to the mineral and magnetic particles and to exposure of the ash to light and oxygen. Analysis of bulk ash samples may not fully reflect the true organic composition of stack ash. 27 references, 1 figure, 4 tables.

  16. The concentration and isotopic composition of hydrogen, carbon and nitrogen in carbonaceous meteorites

    NASA Technical Reports Server (NTRS)

    Robert, F.; Epstein, S.

    1982-01-01

    Stepwise pyrolysis was used to extract H2, N2 and C from powdered meteorites and from meteorite residues resulting from partial dissolution in aqueous HF or from reaction with HF-HCl solutions. Concentrations and isotopic compositions were determined for the cases of the carbonaceous chondrites Orgueil, Murray, Murchison, Renazzo and Cold Bokkeveld. Acidification of the meteorites removed the organic sources of H2, so that H2 in the HF-HCl acid residues came mostly from the insoluble organic matter making up 70-80% of the total carbon in carbonaceous meteorites. Good correlation is found between delta-D and the concentration of H2 in the acid residues, but no correlation exists between the delta-D, delta-C-13 and delta-N-15 in them. A model is proposed for both the high delta-D values and the relationship between those values and the H2 concentration.

  17. Process for the conversion of carbonaceous feedstocks to particulate carbon and methanol

    DOEpatents

    Steinberg, M.; Grohse, E.W.

    1995-06-27

    A process is described for the production of a pollutant-free particulate carbon (i.e., a substantially ash-, sulfur- and nitrogen-free carbon) from carbonaceous feedstocks. The basic process involves de-oxygenating one of the gas streams formed in a cyclic hydropyrolysis-methane pyrolysis process in order to improve conversion of the initial carbonaceous feedstock. De-oxygenation is effected by catalytically converting carbon monoxide, carbon dioxide, and hydrogen contained in one of the pyrolysis gas streams, preferably the latter, to a methanol co-product. There are thus produced two products whose use is known per se, viz., a substantially pollutant-free particulate carbon black and methanol. These products may be admixed in the form of a liquid slurry of carbon black in methanol. 3 figs.

  18. Adsorption and Desorption of Carbon Dioxide and Water Mixtures on Synthetic Hydrophobic Carbonaceous Adsorbents

    NASA Technical Reports Server (NTRS)

    Finn, John E.; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    Several synthetic carbonaceous adsorbents produced through pyrolysis of polymeric materials are available commercially. Some appear to have advantages over activated carbon for certain adsorption applications. In particular, they can have tailored hydrophobicities that are significantly greater than that of activated carbon, while moderately high surfaces areas are retained. These sorbents are being investigated for possible use in removing trace contaminants and excess carbon dioxide from air in closed habitats, plant growth chambers, and other applications involving purification of humid gas streams. We have analyzed the characteristics of a few of these adsorbents through adsorption and desorption experiments and standard characterization techniques. This paper presents pure and multicomponent adsorption data collected for carbon dioxide and water on two synthetic carbonaceous adsorbents having different hydrophobicities and capillary condensation characteristics. The observations are interpreted through consideration of the pore structure and surface chemistry of the solids and interactions between adsorbed carbon dioxide, water, and the solvent gas.

  19. Enantiomer excesses of rare and common sugar derivatives in carbonaceous meteorites.

    PubMed

    Cooper, George; Rios, Andro C

    2016-06-14

    Biological polymers such as nucleic acids and proteins are constructed of only one-the d or l-of the two possible nonsuperimposable mirror images (enantiomers) of selected organic compounds. However, before the advent of life, it is generally assumed that chemical reactions produced 50:50 (racemic) mixtures of enantiomers, as evidenced by common abiotic laboratory syntheses. Carbonaceous meteorites contain clues to prebiotic chemistry because they preserve a record of some of the Solar System's earliest (∼4.5 Gy) chemical and physical processes. In multiple carbonaceous meteorites, we show that both rare and common sugar monoacids (aldonic acids) contain significant excesses of the d enantiomer, whereas other (comparable) sugar acids and sugar alcohols are racemic. Although the proposed origins of such excesses are still tentative, the findings imply that meteoritic compounds and/or the processes that operated on meteoritic precursors may have played an ancient role in the enantiomer composition of life's carbohydrate-related biopolymers. PMID:27247410

  20. Petrology of Amoeboid Olivine Aggregates in Antarctic CR Chondrites: Comparison With Other Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Komatsu, M.; Fagan, T. J.; Yamaguchi, A.; Mikouchi, T.; Zolensky, M. E.; Yasutake, M.

    2016-01-01

    Amoeboid olivine aggregates (AOAs) are important refractory components of carbonaceous chondrites and have been interpreted to represent solar nebular condensates that experienced high-temperature annealing, but largely escaped melting. In addition, because AOAs in primitive chondrites are composed of fine-grained minerals (forsterite, anorthite, spinel) that are easily modified during post crystallization alteration, the mineralogy of AOAs can be used as a sensitive indicator of metamorphic or alteration processes. AOAs in CR chondrites are particularly important because they show little evidence for secondary alteration. In addition, some CR AOAs contain Mn-enriched forsterite (aka low-iron, Mn-enriched or LIME olivine), which is an indicator of nebular formation conditions. Here we report preliminary results of the mineralogy and petrology of AOAs in Antarctic CR chondrites, and compare them to those in other carbonaceous chondrites.

  1. Sustainable approach toward synthesis of green functional carbonaceous 3-D micro/nanostructures from biomass

    PubMed Central

    2013-01-01

    This study proposes a novel technique to synthesize functional carbonaceous three-dimensional (3-D) micro/nanocompounds from agricultural by-products using femtosecond laser irradiation. Biowastes of rice husk and wheat straw are value-engineered to carbonaceous structures in a single-step process under ambient conditions. Our results demonstrate that by controlling the laser fluence, structures with a variety of different morphologies from nanostructures to microstructures can be achieved. Also, the results indicate that altering the laser processing parameters influences the chemical composition of the synthesized structures. This sustainable approach presents an important step towards synthesizing 3-D micro/nanofibrous compounds from biowaste materials. These structures, as-synthesized or as nanocomposite fillers, can have practical uses in electronic, sensing, biological, and environmental applications. PMID:23924310

  2. Sustainable approach toward synthesis of green functional carbonaceous 3-D micro/nanostructures from biomass.

    PubMed

    Tavangar, Amirhossein; Tan, Bo; Venkatakrishnan, Krishnan

    2013-01-01

    This study proposes a novel technique to synthesize functional carbonaceous three-dimensional (3-D) micro/nanocompounds from agricultural by-products using femtosecond laser irradiation. Biowastes of rice husk and wheat straw are value-engineered to carbonaceous structures in a single-step process under ambient conditions. Our results demonstrate that by controlling the laser fluence, structures with a variety of different morphologies from nanostructures to microstructures can be achieved. Also, the results indicate that altering the laser processing parameters influences the chemical composition of the synthesized structures. This sustainable approach presents an important step towards synthesizing 3-D micro/nanofibrous compounds from biowaste materials. These structures, as-synthesized or as nanocomposite fillers, can have practical uses in electronic, sensing, biological, and environmental applications. PMID:23924310

  3. Sustainable approach toward synthesis of green functional carbonaceous 3-D micro/nanostructures from biomass

    NASA Astrophysics Data System (ADS)

    Tavangar, Amirhossein; Tan, Bo; Venkatakrishnan, Krishnan

    2013-08-01

    This study proposes a novel technique to synthesize functional carbonaceous three-dimensional (3-D) micro/nanocompounds from agricultural by-products using femtosecond laser irradiation. Biowastes of rice husk and wheat straw are value-engineered to carbonaceous structures in a single-step process under ambient conditions. Our results demonstrate that by controlling the laser fluence, structures with a variety of different morphologies from nanostructures to microstructures can be achieved. Also, the results indicate that altering the laser processing parameters influences the chemical composition of the synthesized structures. This sustainable approach presents an important step towards synthesizing 3-D micro/nanofibrous compounds from biowaste materials. These structures, as-synthesized or as nanocomposite fillers, can have practical uses in electronic, sensing, biological, and environmental applications.

  4. Effects of 5 days of head-down bed rest, with and without short-arm centrifugation as countermeasure, on cardiac function in males (BR-AG1 study).

    PubMed

    Caiani, E G; Massabuau, P; Weinert, L; Vaïda, P; Lang, R M

    2014-09-15

    This study examined cardiac remodeling and functional changes induced by 5 days of head-down (-6°) bed rest (HDBR) and the effectiveness of short-arm centrifugation (SAC) in preventing them in males. Twelve healthy men (mean age: 33 ± 7) were enrolled in a crossover design study (BR-AG1, European Space Agency), including one sedentary (CTRL) and two daily SAC countermeasures (SAC1, 30 min continuously; SAC2, 30 min intermittently) groups. Measurements included plasma and blood volume and left ventricular (LV) and atrial (LA) dimensions by transthoracic echocardiography (2- and 3-dimensional) and Doppler inflows. Results showed that 5 days of HDBR had a major impact on both the geometry and cardiac function in males. LV mass and volume decreased by 16 and 14%, respectively; LA volume was reduced by 36%; Doppler flow and tissue Doppler velocities were reduced during early filling by 18 and 12%, respectively; and aortic flow velocity time integral was decreased by 18% with a 3% shortening of LV ejection time. These modifications were presumably due to decreased physiological loading and dehydration, resulting in reduced plasma and blood volume. All these changes were fully reversed 3 days after termination of HDBR. Moreover, SAC was not able to counteract these changes, either when applied continuously or intermittently. PMID:25080927

  5. The use of sulfur-containing carbonaceous rocks as components of agricultural fertilizers

    SciTech Connect

    Dzhun'ko, P.M.; Masalkina, S.A.; Pokrovskii, N.P.; Shardakov, A.N.; Shpirt, M.Ya.

    1983-01-01

    The physicochemical and agrochemical properties of wastes from the mining and enrichment of the coals of the Kizel basin have been studied. The possibility has been considered of using the sulfite-containing carbonaceous rocks as components of an organomineral fertilizer in agriculture. The sulfur-containing rocks have a favorable influence on the agrochemical properties of soils and on the productivity of agricultural crops.

  6. Natural Radionuclides and Isotopic Signatures for Determining Carbonaceous Aerosol Sources, Aerosol Lifetimes, and Washout Processes

    SciTech Connect

    Gaffney, Jeffrey

    2012-12-12

    This is the final technical report. The project description is as follows: to determine the role of aerosol radiative forcing on climate, the processes that control their atmospheric concentrations must be understood, and aerosol sources need to be determined for mitigation. Measurements of naturally occurring radionuclides and stable isotopic signatures allow the sources, removal and transport processes, as well as atmospheric lifetimes of fine carbonaceous aerosols, to be evaluated.

  7. In Situ Mapping of the Organic Matter in Carbonaceous Chondrites and Mineral Relationships

    NASA Technical Reports Server (NTRS)

    Clemett, Simon J.; Messenger, S.; Thomas-Keprta, K. L.; Ross, D. K.

    2012-01-01

    Carbonaceous chondrite organic matter represents a fossil record of reactions that occurred in a range of physically, spatially and temporally distinct environments, from the interstellar medium to asteroid parent bodies. While bulk chemical analysis has provided a detailed view of the nature and diversity of this organic matter, almost nothing is known about its spatial distribution and mineralogical relationships. Such information is nevertheless critical to deciphering its formation processes and evolutionary history.

  8. Hydrothermal pretreatment to prevent scale during liquefaction of certain solid carbonaceous materials

    DOEpatents

    Stone, John B.; Floyd, Frank M.

    1984-01-01

    Scale formation during the liquefaction of lower ranking coals and similar carbonaceous materials is significantly reduced and/or prevented by hydrothermal pretreatment. The said pretreatment is believed to convert the scale-forming components to the corresponding carbonate prior to liquefaction. The said pretreatment is accomplished at a total pressure within the range from about 1000 to about 4400 psia. Temperature during said pretreatment will generally be within the range from about 500.degree. to about 700.degree. F.

  9. Carbonaceous aerosol characteristics over Delhi in Northern India: Seasonal variability and possible sources

    NASA Astrophysics Data System (ADS)

    Srivastava, Atul Kumar; Bisht, Ds; Tiwari, S.

    Carbonaceous aerosols have been the focus of extensive studies during the last decade due to its significant impacts on human health, visibility and climate change. As per Asian regions are concerned, aerosols in south-Asia are gaining considerable importance because of their potential impacts on regional climate, yet their possible sources are poorly understood. Semi-continuous measurements of organic carbon (OC) and elemental carbon (EC) and continuous measurements of black carbon (BC) aerosols were conducted simultaneously at Delhi during the period from January 2011 to May 2012. Delhi is the capital city of India and one of the densely populated and industrialized urban megacities in Asia, located at the Ganga basin in the northern part of India. Being highly polluted region, mass concentrations of OC, EC and BC over Delhi were found to vary from about 6-92 mug m (-3) (mean: 23±16 mug m (-3) ), 3-38 mug m (-3) (mean: 11±7 mug m (-3) ) and 1-24 mug m (-3) (mean: 7±5 mug m (-3) ), respectively during the entire measurement period, with about two times higher concentration during winter as compared to summer. A significant correlation between OC and EC (R=0.95, n=232) and relatively lower OC/EC ratio (range: 1.0-3.6; mean: 2.2±0.5) suggest fossil fuel emission as a dominant source of carbonaceous aerosols over the station. The average mass concentration of EC was found about 38% higher than BC during the study period, which is interestingly different as reported at other locations over Ganga basin. We also determined the associated optical properties of carbonaceous species (e.g. absorption coefficient and mass absorption efficiency) over the station. Significant loading of carbonaceous species over such regions emphasize an urgent need to focus on air quality management and proper impact assessment on health perspective.

  10. Phyllosilicates in the Mokoia CV carbonaceous chondrite - Evidence for aqueous alteration in an oxidizing environment

    NASA Technical Reports Server (NTRS)

    Tomeoka, Kazushige; Buseck, Peter R.

    1990-01-01

    Most CV chondrites contain little if any phyllosilicate mineralization. A petrographic and transmission electron microscopy study of the Mokoia CV carbonaceous chondrite shows that the matrix, chondrules, aggregates, and inclusions all contain considerable amounts of phyllosilicates. The mineralogy and occurrence of phyllosilicates in Mokoia differ from those in the CI and CM chondrites. The differences suggests that aqueous alteration of the three meteorite groups probably occurred under a variety of conditions.

  11. Combined method for simultaneously dewatering and reconstituting finely divided carbonaceous material

    SciTech Connect

    Wen, Wu-Wey; Deurbrouck, Albert W.

    1990-01-01

    A finely-divided carbonaceous material is dewatered and reconstituted in a combined process by adding a binding agent directly into slurry of finely divided material and dewatering the material to form a cake or consolidated piece which can be hardened by drying at ambient or elevated temperatures. Alternatively, the binder often in the form of a crusting agent is sprayed onto the surface of a moist cake prior to curing.

  12. Origin of fine carbonaceous particulate matter in the Western Mediterranean Basin: fossil versus modern sources

    NASA Astrophysics Data System (ADS)

    Cruz Minguillón, María.; Perron, Nolwenn; Querol, Xavier; Szidat, Sönke; Fahrni, Simon; Wacker, Lukas; Reche, Cristina; Cusack, Michael; Baltensperger, Urs; Prévôt, André S. H.

    2010-05-01

    The present work was carried out in the frame of the international field campaign DAURE (Determination of the sources of atmospheric Aerosols in Urban and Rural Environments in the western Mediterranean). The objective of this campaign is to study the aerosol pollution episodes occurring at regional scale during winter and summer in the Western Mediterranean Basin. As part of this campaign, this work focuses on identifying the origin of fine carbonaceous aerosols. To this end, fine particulate matter (PM1) samples were collected during two different seasons (February-March and July 2009) at two sites: an urban site (Barcelona, NE Spain) and a rural European Supersite for Atmospheric Aerosol Research (Montseny, NE Spain). Subsequently, 14C analyses were carried out on these samples, both in the elemental carbon (EC) fraction and the organic carbon (OC) fraction, in order to distinguish between modern carbonaceous sources (biogenic emissions and biomass burning emissions) and fossil carbonaceous sources (mainly road traffic). Preliminary results from the winter period show that 40% of the OC at Barcelona has a fossil origin whereas at Montseny this percentage is 30%. These values can be considered as unexpected given the nature of the sites. Nevertheless, the absolute concentrations of fossil OC at Barcelona and Montseny differ by a factor of 2 (the first being higher), since the total OC at Montseny is lower than at Barcelona. Further evaluation of results and comparison with other measurements carried out during the campaign are required to better evaluate the origin of the fine carbonaceous matter in the Western Mediterranean Basin. Acknowledgements: Spanish Ministry of Education and Science, for a Postdoctoral Grant awarded to M.C. Minguillón in the frame of Programa Nacional de Movilidad de Recursos Humanos del Plan nacional de I-D+I 2008-2011. Spanish Ministry of Education and Science, for the Acción Complementaria DAURE CGL2007-30502-E/CLI.

  13. Comets: Cosmic connections with carbonaceous meteorites, interstellar molecules and the origin of life

    NASA Technical Reports Server (NTRS)

    Chang, S.

    1979-01-01

    The ions, radicals, and molecules observed in comets may be derived intact or by partial decomposition from parent compounds of the sort found either in the interstellar medium or in carbonaceous meteorites. The early loss of highly reducing primitive atmosphere and its replacement by a secondary atmosphere dominated by H2O, CO2, and N2, as depicted in current models of the earth's evolution, pose a dilemma for the origin of life: the synthesis of organic compounds necessary for life from components of the secondary atmosphere appears to be difficult, and plausible mechanisms have not been evaluated. Both comets and carbonaceous meteorites are implicated as sources for the earth's atmophilic and organogenic elements. A mass balance argument involving the estimated ratios of hydrogen to carbon in carbonaceous meteorites, comets, and the crust and upper mantle suggests that comets supplied the earth with a large fraction of its volatiles. The probability that comets contributed significantly to the earth's volatile inventory suggests a chemical evolutionary link between comets, prebiotic organic synthesis, and the origin of life.

  14. Origin of carbonaceous aerosols over the tropical Indian Ocean: Biomass burning or fossil fuels?

    SciTech Connect

    Novakov, T.; Andreae, M.O.; Gabriel, R.; Kirchstetter, T.; Mayol-Bracero, O.L.; Ramanathan, V.

    2000-08-26

    We present an analysis of the carbon, potassium and sulfate content of the extensive aerosol haze layer observed over the tropical Indian Ocean during the Indian Ocean Experiment (INDOEX). The black carbon (BC) content of the haze is as high as 17% of the total fine particle mass (the sum of carbonaceous and soluble ionic aerosol components) which results in significant solar absorption. The ratio of black carbon to organic carbon (OC) (over the Arabian Sea and equatorial Indian Ocean) was a factor of 5 to 10 times larger than expected for biomass burning. This ratio was closer to values measured downwind of industrialized regions in Japan and Western Europe. These results indicate that fossil fuel combustion is the major source of carbonaceous aerosols, including black carbon during the events considered. If the data set analyzed here is representative of the entire INDOEX study then fossil fuel emissions from South Asia must have similarly contributed to aerosols over the whole study region. The INDOEX ratios are substantially different from those reported f or some source regions of South Asia, thus raising the possibility that changes in composition of carbonaceous aerosol may occur during transport.

  15. Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres.

    PubMed

    Sun, Xiaoming; Liu, Junfeng; Li, Yadong

    2006-02-20

    A general method for the synthesis of metal oxide hollow spheres has been developed by using carbonaceous polysaccharide microspheres prepared from saccharide solution as templates. Hollow spheres of a series of metal oxides (SnO2, Al2O3, Ga2O3, CoO, NiO, Mn3O4, Cr2O3, La2O3, Y2O3, Lu2O3, CeO2, TiO2, and ZrO2) have been prepared in this way. The method involves the initial absorption of metal ions from solution into the functional surface layer of carbonaceous saccharide microspheres; these are then densified and cross-linked in a subsequent calcination and oxidation procedure to form metal oxide hollow spheres. Metal salts are used as starting materials, which widens the accessible field of metal oxide hollow spheres. The carbonaceous colloids used as templates have integral and uniform surface functional layers, which makes surface modification unnecessary and ensures homogeneity of the shell. Macroporous films or cheese-like nanostructures of oxides can also be prepared by slightly modified procedures. XRD, TEM, HRTEM, and SAED have been used to characterize the structures. In a preliminary study on the gas sensitivity of SnO2 hollow spheres, considerably reduced "recovery times" were noted, exemplifying the distinct properties imparted by the hollow structure. These hollow or porous nanostructures have the potential for diverse applications, such as in gas sensitivity or catalysis, or as advanced ceramic materials.

  16. Raman spectral characterization of dispersed carbonaceous matter in decorative crystalline limestones.

    PubMed

    Jehlicka, Jan; Stastná, Aneta; Prikryl, Richard

    2009-08-01

    Crystalline limestones (marbles) is a metamorphic rock that is widely used in the construction of buildings and in the manufacturing of statues. Along with dominant carbonates, marbles often contains carbonaceous matter resulting in a more or less grey colour. The Raman spectra of metamorphosed carbonaceous material (CM) were obtained in so-called graphitic marbles from several sites in the Bohemian Massif (Czech Republic). Frequencies of the major Raman bands and spectroscopic parameters such as O- and D-peak width and D/O intensity ratio were determined to characterize the various types of CM. Three types of Raman spectra allowed the discrimination between (1) well-ordered CM-graphite of high-grade regional metamorphosed marbles, (2) CM of contact metamorphosed marbles and (3) amorphous organic compounds as "disordered" CM of low-grade regional metamorphosed marbles. Raman microspectrometric analysis revealed the coexistence of carbonaceous particles exhibiting different degrees of graphitization within one marble sample. The structural state of the CM reflects the conditions of the contact or regional metamorphism and can be described by nondestructive Raman spectroscopy. For the first time, Raman spectra measured on reduced CM grains permitted one to distinguish marbles of different origin and propose their utilization in the provenance determination. PMID:19062335

  17. Garnet-filled trails associated with carbonaceous matter mimicking microbial filaments in Archean basalt.

    PubMed

    Lepot, K; Philippot, P; Benzerara, K; Wang, G-Y

    2009-09-01

    The study of the earliest traces of life on Earth can be complicated by abiotically formed biomorphs. We report here the finding of clustered micrometer-sized filaments of iron- and calcium-rich garnets associated with carbonaceous matter in an agate amygdale from a 2.7-billion-year-old basalt of the Maddina Formation, Western Australia. The distribution of carbonaceous matter and the mineral phases composing the filaments were analyzed using a combination of confocal laser scanning microscopy, laser-Raman micro-spectroscopy, focused ion beam sectioning and transmission electron microscopy. The results allow consideration of possible biogenic and abiotic processes that produced the filamentous structures. The filaments have a range of sizes, morphologies and distributions similar to those of certain modern iron-mineralized filamentous bacteria and some ancient filamentous structures interpreted as microfossils. They also share a high morphological similarity with tubular structures produced by microbial boring activity. However, the microstructures and the distribution of carbonaceous matter are more suggestive of an abiotic origin for the filaments. They are characteristic features of trails produced by the displacement of inclusions associated with local dissolution of their silica matrix. Organic compounds found in kerogen or bitumen inclusions may have contributed significantly to the dissolution of the quartz (or silica gel) matrix driving filamentous growth. Discriminating the products of such abiotic organic-mediated processes from filamentous microfossils or microbial borings is important to the interpretation of the scarce Precambrian fossil record and requires investigation down to the nanoscale.

  18. Investigation of pyridine carboxylic acids in CM2 carbonaceous chondrites: Potential precursor molecules for ancient coenzymes

    NASA Astrophysics Data System (ADS)

    Smith, Karen E.; Callahan, Michael P.; Gerakines, Perry A.; Dworkin, Jason P.; House, Christopher H.

    2014-07-01

    The distribution and abundances of pyridine carboxylic acids (including nicotinic acid) in eight CM2 carbonaceous chondrites (ALH 85013, DOM 03183, DOM 08003, EET 96016, LAP 02333, LAP 02336, LEW 85311, and WIS 91600) were investigated by liquid chromatography coupled to UV detection and high resolution Orbitrap mass spectrometry. We find that pyridine monocarboxylic acids are prevalent in CM2-type chondrites and their abundance negatively correlates with the degree of pre-terrestrial aqueous alteration that the meteorite parent body experienced. We also report the first detection of pyridine dicarboxylic acids in carbonaceous chondrites. Additionally, we carried out laboratory studies of proton-irradiated pyridine in carbon dioxide-rich ices (a 1:1 mixture) to serve as a model of the interstellar ice chemistry that may have led to the synthesis of pyridine carboxylic acids. Analysis of the irradiated ice residue shows that a comparable suite of pyridine mono- and dicarboxylic acids was produced, although aqueous alteration may still play a role in the synthesis (and ultimate yield) of these compounds in carbonaceous meteorites. Nicotinic acid is a precursor to nicotinamide adenine dinucleotide, a likely ancient molecule used in cellular metabolism in all of life, and its common occurrence in CM2 chondrites may indicate that meteorites may have been a source of molecules for the emergence of more complex coenzymes on the early Earth.

  19. Raman spectral characterization of dispersed carbonaceous matter in decorative crystalline limestones.

    PubMed

    Jehlicka, Jan; Stastná, Aneta; Prikryl, Richard

    2009-08-01

    Crystalline limestones (marbles) is a metamorphic rock that is widely used in the construction of buildings and in the manufacturing of statues. Along with dominant carbonates, marbles often contains carbonaceous matter resulting in a more or less grey colour. The Raman spectra of metamorphosed carbonaceous material (CM) were obtained in so-called graphitic marbles from several sites in the Bohemian Massif (Czech Republic). Frequencies of the major Raman bands and spectroscopic parameters such as O- and D-peak width and D/O intensity ratio were determined to characterize the various types of CM. Three types of Raman spectra allowed the discrimination between (1) well-ordered CM-graphite of high-grade regional metamorphosed marbles, (2) CM of contact metamorphosed marbles and (3) amorphous organic compounds as "disordered" CM of low-grade regional metamorphosed marbles. Raman microspectrometric analysis revealed the coexistence of carbonaceous particles exhibiting different degrees of graphitization within one marble sample. The structural state of the CM reflects the conditions of the contact or regional metamorphism and can be described by nondestructive Raman spectroscopy. For the first time, Raman spectra measured on reduced CM grains permitted one to distinguish marbles of different origin and propose their utilization in the provenance determination.

  20. Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres.

    PubMed

    Sun, Xiaoming; Liu, Junfeng; Li, Yadong

    2006-02-20

    A general method for the synthesis of metal oxide hollow spheres has been developed by using carbonaceous polysaccharide microspheres prepared from saccharide solution as templates. Hollow spheres of a series of metal oxides (SnO2, Al2O3, Ga2O3, CoO, NiO, Mn3O4, Cr2O3, La2O3, Y2O3, Lu2O3, CeO2, TiO2, and ZrO2) have been prepared in this way. The method involves the initial absorption of metal ions from solution into the functional surface layer of carbonaceous saccharide microspheres; these are then densified and cross-linked in a subsequent calcination and oxidation procedure to form metal oxide hollow spheres. Metal salts are used as starting materials, which widens the accessible field of metal oxide hollow spheres. The carbonaceous colloids used as templates have integral and uniform surface functional layers, which makes surface modification unnecessary and ensures homogeneity of the shell. Macroporous films or cheese-like nanostructures of oxides can also be prepared by slightly modified procedures. XRD, TEM, HRTEM, and SAED have been used to characterize the structures. In a preliminary study on the gas sensitivity of SnO2 hollow spheres, considerably reduced "recovery times" were noted, exemplifying the distinct properties imparted by the hollow structure. These hollow or porous nanostructures have the potential for diverse applications, such as in gas sensitivity or catalysis, or as advanced ceramic materials. PMID:16374888

  1. Simulation of possible regolith optical alteration effects on carbonaceous chondrite meteorites

    NASA Astrophysics Data System (ADS)

    Clark, Beth E.; Fanale, Fraser P.; Robinson, Mark S.

    1993-03-01

    As the spectral reflectance search continues for links between meteorites and their parent body asteroids, the effects of optical surface alteration processes need to be considered. We present the results of an experimental simulation of the melting and recrystallization that occurs to a carbonaceous chondrite meteorite regolith powder upon heating. As done for the ordinary chondrite meteorites, we show the effects of possible parent-body regolith alteration processes on reflectance spectra of carbonaceous chondrites (CC's). For this study, six CC's of different mineralogical classes were obtained from the Antarctic Meteorite Collection: two CM meteorites, two CO meteorites, one CK, and one CV. Each sample was ground with a ceramic mortar and pestle to powders with maximum grain sizes of 180 and 90 microns. The reflectance spectra of these powders were measured at RELAB (Brown University) from 0.3 to 2.5 microns. Following comminution, the 90 micron grain size was melted in a nitrogen controlled-atmosphere fusion furnace at an approximate temperature of 1700 C. The fused sample was immediately held above a flow of nitrogen at 0 C for quenching. Following melting and recrystallization, the samples were reground to powders, and the reflectance spectra were remeasured. The effects on spectral reflectance for a sample of the CM carbonaceous chondrite called Murchison are shown.

  2. The Spatial Distribution of Organic Matter and Mineralogical Relationships in Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Clemett, S. J.; Messenger, S.; Thomas-Keprta, K. L.; Nakamura-Messenger, K.

    2012-01-01

    Organic matter present within primitive carbonaceous meteorites represents the complex conglomeration of species formed in a variety of physically and temporally distinct environments including circumstellar space, the interstellar medium, the Solar Nebula & Jovian sub-nebulae and asteroids. In each case, multiple chemical pathways would have been available for the synthesis of organic molecules. Consequently these meteorites constitute a unique record of organic chemical evolution in the Universe and one of the biggest challenges in organic cosmochemistry has been in deciphering this record. While bulk chemical analysis has provided a detailed description of the range and diversity of organic species present in carbonaceous chondrites, there is virtually no hard experimental data as to how these species are spatially distributed and their relationship to the host mineral matrix, (with one exception). The distribution of organic phases is nevertheless critical to understanding parent body processes. The CM and CI chondrites all display evidence of low temperature (< 350K) interaction with aqueous fluids, which based on O isotope data, flowed along thermal gradients within the respective parent bodies. This pervasive aqueous alteration may have led to aqueous geochromatographic separation of organics and synthesis of new organics coupled to aqueous mineral alteration. To address such issues we have applied the technique of microprobe two-step laser desorption / photoionization mass spectrometry (L2MS) to map in situ the spatial distribution of a broad range of organic species at the micron scale in the freshly exposed matrices of the Bells, Tagish Lake and Murchison (CM2) carbonaceous chondrites.

  3. Anticorrosion properties of tin oxide coatings for carbonaceous bipolar plates of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Kinumoto, Taro; Nagano, Keita; Yamamoto, Yuji; Tsumura, Tomoki; Toyoda, Masahiro

    2014-03-01

    An anticorrosive surface treatment of a carbonaceous bipolar plate used in proton exchange membrane fuel cells (PEMFCs) was demonstrated by addition of a tin oxide surface coating by liquid phase deposition (LPD), and its effectiveness toward corrosion prevention was determined. The tin oxide coating was deposited by immersion in tin fluoride and boric acid solutions, without any observable decrease in the bipolar plate electrical conductivity. Anticorrosion properties of a flat carbonaceous bipolar plate were investigated in an aqueous HClO4 electrolyte solution (10 μmol dm-3) at 80 °C. CO2 release due to corrosion was significant for the bare specimen above 1.3 V, whereas no CO2 release was noted for the tin-oxide-coated specimen, even approaching 1.5 V. Moreover, minimal changes in contact angle against a water droplet before and after treatment indicated suppressed corrosion of the surface-coated specimen. Anticorrosion properties were also confirmed for a model bipolar plate having four gas flow channels. The tin oxide layer remained on the channel surfaces (inner walls, corners and intersections) after durability tests. Based on these results, tin-oxide-based surface coatings fabricated by LPD show promise as an anticorrosion technique for carbonaceous bipolar plates for PEMFCs.

  4. Simulation of possible regolith optical alteration effects on carbonaceous chondrite meteorites

    NASA Technical Reports Server (NTRS)

    Clark, Beth E.; Fanale, Fraser P.; Robinson, Mark S.

    1993-01-01

    As the spectral reflectance search continues for links between meteorites and their parent body asteroids, the effects of optical surface alteration processes need to be considered. We present the results of an experimental simulation of the melting and recrystallization that occurs to a carbonaceous chondrite meteorite regolith powder upon heating. As done for the ordinary chondrite meteorites, we show the effects of possible parent-body regolith alteration processes on reflectance spectra of carbonaceous chondrites (CC's). For this study, six CC's of different mineralogical classes were obtained from the Antarctic Meteorite Collection: two CM meteorites, two CO meteorites, one CK, and one CV. Each sample was ground with a ceramic mortar and pestle to powders with maximum grain sizes of 180 and 90 microns. The reflectance spectra of these powders were measured at RELAB (Brown University) from 0.3 to 2.5 microns. Following comminution, the 90 micron grain size was melted in a nitrogen controlled-atmosphere fusion furnace at an approximate temperature of 1700 C. The fused sample was immediately held above a flow of nitrogen at 0 C for quenching. Following melting and recrystallization, the samples were reground to powders, and the reflectance spectra were remeasured. The effects on spectral reflectance for a sample of the CM carbonaceous chondrite called Murchison are shown.

  5. Carbonaceous matter deposition in the high glacial regions of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, Chaoliu; Chen, Pengfei; Kang, Shichang; Yan, Fangping; Li, Xiaofei; Qu, Bin; Sillanpää, Mika

    2016-09-01

    Carbonaceous matter at glacial region plays important role in river ecosystems fed by glacier and albedo reduction of glacier surface. However, currently, limited knowledge are available on the carbonaceous matter within the glacial region of the Tibetan Plateau (TP). In this study, the data from six snowpits in the glacial region across the TP were reported. The results showed that dissolved organic carbon (DOC) concentrations of snowpit samples of the TP were comparable to those of European Alps and the Arctic. The ratio of DOC to carbonaceous matter (40.25 ± 8.98%) was lower than that of Alpine glaciers, thus indicating greater particulate carbon content in the TP glacial region. In addition, the DOC was significantly correlated with insoluble particulate carbon (IPC), indicating that IPC and DOC likely came from the same sources. Spatially, the DOC concentration decreased from the north (0.42 ± 0.29 mg-C L-1) to the south TP (0.15 ± 0.06 mg-C L-1), which was consistent with variations in the distribution of dust storm on the TP. Principal component analysis of major ions and DOC showed that mineral dust contributed the major part of DOC, followed by biogenic sources such as agriculture and livestock. Finally, based on DOC concentrations and precipitation amounts at different periods, the mean annul flux of DOC in the glacial region of the TP was calculated to be 0.11 ± 0.05 g-C m-2 yr-1.

  6. Garnet-filled trails associated with carbonaceous matter mimicking microbial filaments in Archean basalt.

    PubMed

    Lepot, K; Philippot, P; Benzerara, K; Wang, G-Y

    2009-09-01

    The study of the earliest traces of life on Earth can be complicated by abiotically formed biomorphs. We report here the finding of clustered micrometer-sized filaments of iron- and calcium-rich garnets associated with carbonaceous matter in an agate amygdale from a 2.7-billion-year-old basalt of the Maddina Formation, Western Australia. The distribution of carbonaceous matter and the mineral phases composing the filaments were analyzed using a combination of confocal laser scanning microscopy, laser-Raman micro-spectroscopy, focused ion beam sectioning and transmission electron microscopy. The results allow consideration of possible biogenic and abiotic processes that produced the filamentous structures. The filaments have a range of sizes, morphologies and distributions similar to those of certain modern iron-mineralized filamentous bacteria and some ancient filamentous structures interpreted as microfossils. They also share a high morphological similarity with tubular structures produced by microbial boring activity. However, the microstructures and the distribution of carbonaceous matter are more suggestive of an abiotic origin for the filaments. They are characteristic features of trails produced by the displacement of inclusions associated with local dissolution of their silica matrix. Organic compounds found in kerogen or bitumen inclusions may have contributed significantly to the dissolution of the quartz (or silica gel) matrix driving filamentous growth. Discriminating the products of such abiotic organic-mediated processes from filamentous microfossils or microbial borings is important to the interpretation of the scarce Precambrian fossil record and requires investigation down to the nanoscale. PMID:19656217

  7. Theoretical predictions of volatile bearing phases and volatile resources in some carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Ganguly, Jibamitra; Saxena, Surendra K.

    1989-01-01

    Carbonaceous chondrites are usually believed to be the primary constituents of near-Earth asteroids and Phobos and Diemos, and are potential resources of fuels which may be exploited for future planetary missions. The nature and abundances are calculated of the major volatile bearing and other phases, including the vapor phase that should form in C1 and C2 type carbonaceous chondrites as functions of pressure and temperature. The results suggest that talc, antigorite plus or minus magnesite are the major volatile bearing phases and are stable below 400 C at 1 bar in these chondritic compositions. Simulated heating of a kilogram of C2 chondrite at fixed bulk composition between 400 and 800 C at 1 bar yields about 135 gm of volatile, which is made primarily of H2O, H2, CH4, CO2 and CO. The relative abundances of these volatile species change as functions of temperature, and on a molar basis, H2 becomes the most dominant species above 500 C. In contrast, Cl chondrites yield about 306 gm of volatile under the same condition, which consist almost completely of 60 wt percent H2O and 40 wt percent CO2. Preliminary kinetic considerations suggest that equilibrium dehydration of hydrous phyllosilicates should be attainable within a few hours at 600 C. These results provide the framework for further analyses of the volatile and economic resource potentials of carbonaceous chondrites.

  8. Investigation of Pyridine Carboxylic Acids in CM2 Carbonaceous Chondrites: Potential Precursor Molecules for Ancient Coenzymes

    NASA Technical Reports Server (NTRS)

    Smith, Karen E.; Callahan, Michael P.; Gerakines, Perry A.; Dworkin, Jason P.; House, Christopher H.

    2014-01-01

    The distribution and abundances of pyridine carboxylic acids (including nicotinic acid) in eight CM2 carbonaceous chondrites (ALH 85013, DOM 03183, DOM 08003, EET 96016, LAP 02333, LAP 02336, LEW 85311, and WIS 91600) were investigated by liquid chromatography coupled to UV detection and high resolution Orbitrap mass spectrometry. We find that pyridine monocarboxylic acids are prevalent in CM2-type chondrites and their abundance negatively correlates with the degree of pre-terrestrial aqueous alteration that the meteorite parent body experienced. We lso report the first detection of pyridine dicarboxylic acids in carbonaceous chondrites. Additionally, we carried out laboratory studies of proton-irradiated pyridine in carbon dioxide-rich ices (a 1:1 mixture) to serve as a model of the interstellar ice chemistry that may have led to the synthesis of pyridine carboxylic acids. Analysis of the irradiated ice residue shows that a comparable suite of pyridine mono- and dicarboxylic acids was produced, although aqueous alteration may still play a role in the synthesis (and ultimate yield) of these compounds in carbonaceous meteorites. Nicotinic acid is a precursor to nicotinamide adenine dinucleotide, a likely ancient molecule used in cellular metabolism in all of life, and its common occurrence in CM2 chondrites may indicate that meteorites may have been a source of molecules for the emergence of more complex coenzymes on the early Earth.

  9. Investigation of Pyridine Carboxylic Acids in CM2 Carbonaceous Chondrites: Potential Precursor Molecules for Ancient Coenzymes

    NASA Technical Reports Server (NTRS)

    Smith, Karen E.; Callahan, Michael P.; Gerakines, Perry A.; Dworkin, Jason P.; House, Christopher H.

    2014-01-01

    The distribution and abundances of pyridine carboxylic acids (including nicotinic acid) in eight CM2 carbonaceous chondrites (ALH 85013, DOM 03183, DOM 08003, EET 96016, LAP 02333, LAP 02336, LEW 85311, and WIS 91600) were investigated by liquid chromatography coupled to UV detection and high resolution Orbitrap mass spectrometry. We find that pyridine monocarboxylic acids are prevalent in CM2-type chondrites and their abundance negatively correlates with the degree of pre-terrestrial aqueous alteration that the meteorite parent body experienced. We also report the first detection of pyridine dicarboxylic acids in carbonaceous chondrites. Additionally, we carried out laboratory studies of proton-irradiated pyridine in carbon dioxide-rich ices (a 1:1 mixture) to serve as a model of the interstellar ice chemistry that may have led to the synthesis of pyridine carboxylic acids. Analysis of the irradiated ice residue shows that a comparable suite of pyridine mono- and dicarboxylic acids was produced, although aqueous alteration may still play a role in the synthesis (and ultimate yield) of these compounds in carbonaceous meteorites. Nicotinic acid is a precursor to nicotinamide adenine dinucleotide, a likely ancient molecule used in cellular metabolism in all of life, and its common occurrence in CM2 chondrites may indicate that meteorites may have been a source of molecules for the emergence of more complex coenzymes on the early Earth.

  10. A Carbonaceous Membrane based on a Polymer of Intrinsic Microporosity (PIM-1) for Water Treatment

    PubMed Central

    Kim, Hee Joong; Kim, Dong-Gyun; Lee, Kyuchul; Baek, Youngbin; Yoo, Youngjae; Kim, Yong Seok; Kim, Byoung Gak; Lee, Jong-Chan

    2016-01-01

    As insufficient access to clean water is expected to become worse in the near future, water purification is becoming increasingly important. Membrane filtration is the most promising technologies to produce clean water from contaminated water. Although there have been many studies to prepare highly water-permeable carbon-based membranes by utilizing frictionless water flow inside the carbonaceous pores, the carbon-based membranes still suffer from several issues, such as high cost and complicated fabrication as well as relatively low salt rejection. Here, we report for the first time the use of microporous carbonaceous membranes via controlled carbonization of polymer membranes with uniform microporosity for high-flux nanofiltration. Further enhancement of membrane performance is observed by O2 plasma treatment. The optimized membrane exhibits high water flux (13.30 LMH Bar−1) and good MgSO4 rejection (77.38%) as well as antifouling properties. This study provides insight into the design of microporous carbonaceous membranes for water purification. PMID:27782212

  11. Biochemical adaptation to ocean acidification.

    PubMed

    Stillman, Jonathon H; Paganini, Adam W

    2015-06-01

    The change in oceanic carbonate chemistry due to increased atmospheric PCO2  has caused pH to decline in marine surface waters, a phenomenon known as ocean acidification (OA). The effects of OA on organisms have been shown to be widespread among diverse taxa from a wide range of habitats. The majority of studies of organismal response to OA are in short-term exposures to future levels of PCO2 . From such studies, much information has been gathered on plastic responses organisms may make in the future that are beneficial or harmful to fitness. Relatively few studies have examined whether organisms can adapt to negative-fitness consequences of plastic responses to OA. We outline major approaches that have been used to study the adaptive potential for organisms to OA, which include comparative studies and experimental evolution. Organisms that inhabit a range of pH environments (e.g. pH gradients at volcanic CO2 seeps or in upwelling zones) have great potential for studies that identify adaptive shifts that have occurred through evolution. Comparative studies have advanced our understanding of adaptation to OA by linking whole-organism responses with cellular mechanisms. Such optimization of function provides a link between genetic variation and adaptive evolution in tuning optimal function of rate-limiting cellular processes in different pH conditions. For example, in experimental evolution studies of organisms with short generation times (e.g. phytoplankton), hundreds of generations of growth under future conditions has resulted in fixed differences in gene expression related to acid-base regulation. However, biochemical mechanisms for adaptive responses to OA have yet to be fully characterized, and are likely to be more complex than simply changes in gene expression or protein modification. Finally, we present a hypothesis regarding an unexplored area for biochemical adaptation to ocean acidification. In this hypothesis, proteins and membranes exposed to the

  12. Comets as parent bodies of CI1 carbonaceous meteorites and possible habitats of ice-microbes

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, N. Chandra; Wickramasinghe, Janaki T.; Wallis, Jamie; Hoover, Richard B.; Rozanov, Alexei Y.

    2011-10-01

    Recent studies of comets and cometary dust have confirmed the presence of biologically relevant organic molecules along with clay minerals and water ice. It is also now well established by deuterium/hydrogen ratios that the CI1 carbonaceous meteorites contain indigenous extraterrestrial water. The evidence of extensive aqueous alteration of the minerals in these meteorites led to the hypothesis that water-bearing asteroids or comets represent the parent bodies of the CI1 (and perhaps CM2) carbonaceous meteorites. These meteorites have also been shown to possess a diverse array of complex organics and chiral and morphological biomarkers. Stable isotope studies by numerous independent investigators have conclusively established that the complex organics found in these meteorites are both indigenous and extraterrestrial in nature. Although the origin of these organics is still unknown, some researchers have suggested that they originated by unknown abiotic mechanisms and may have played a role in the delivery of chiral biomolecules and the origin of life on Early Earth. In this paper we review these results and investigate the thermal history of comets. We show that permanent as well as transient domains of liquid water can be maintained on a comet under a plausible set of assumptions. With each perihelion passage of a comet volatiles are preferentially released, and during millions of such passages the comet could shed crustal debris that may survive transit through the Earth's atmosphere as a carbonaceous meteorite. We review the current state of knowledge of comets and carbonaceous meteorites. We also present the results of recent studies on the long-term viability of terrestrial ice-microbiota encased in ancient glacial ice and permafrost. We suggest that the conditions which have been observed to prevail on many comets do not preclude either survivability (or even the active metabolism and growth) of many types of eukaryotic and prokaryotic microbial

  13. A stable carbon isotope and biological marker study of Polish bituminous coals and carbonaceous shales

    USGS Publications Warehouse

    Kotarba, M.J.; Clayton, J.L.

    2003-01-01

    Biological marker and carbon isotopic compositions of coals and carbonaceous shales from the Upper Carboniferous strata of the Upper Silesian (USCB), Lower Silesian (LSCB), and Lublin (LCB) coal basins were determined to assess depositional conditions and sources of the organic matter. n-Alkane, sterane, and isoprenoid distribution, and carbon isotope ratios are consistent with an origin from higher plants. In some cases, pristane/phytane (Pr/Ph) ratios of carbonaceous shales (roof and floor shales) are < 1.0, while the associated coals have high ratios (??? 1.0). This suggests that reducing conditions prevailed during deposition of the shales, but a period of oxidizing conditions accompanied deposition of the coals. Steranes present in coal extracts are dominated by the 14??(H)17??(H)20R C29 stereoisomers, typical, but not conclusive, of higher plant origin. Carbonaceous shales exhibit a wider range of sterane composition, suggesting local, significant input of algal organic matter. Significant amounts of benzohopanes and gammacerane are present in some coals. Although benzohopanes are present at least in small amounts in samples from many different environments, they have been reported to occur most commonly in marine environments. The present study seems to provide the first example where benzohopanes have been reported in significant amounts in terrestrial organic matter. Gammacerane is abundant in rocks or sediments deposited in carbonate or highly saline marine environments. The finding of high gammacerane concentrations in the coals expands the depositional settings in which it has been observed and questions its utility as an independent indicator of hypersaline carbonate environments. Stable carbon isotope composition of coals, and type III kerogen in carbonaceous shales as well as correlation of stable carbon isotope composition of saturated and aromatic hydrocarbons in carbonaceous shales from both the USCB and the LSCB indicate terrigenous origin

  14. Comets as Parent Bodies of CI1 Carbonaceous Meteorites and Possible Habitats of Ice-Microbiota

    NASA Technical Reports Server (NTRS)

    Wickramasinghe, N. Chandra; Wallis, Daryl H.; Rozanov, Alexei Yu.; Hoover, Richard B.

    2011-01-01

    Recent studies of comets and cometary dust have confirmed the presence of biologically relevant organic molecules along with clay minerals and water ice. It is also now well established by deuterium/hydrogen ratios that the CI1 carbonaceous meteorites contain indigenous extraterrestrial water. The evidence of extensive aqueous alteration of the minerals in these meteorites led to the hypothesis that water-bearing asteroids or comets represent the parent bodies of the CI1 (and perhaps CM2) carbonaceous meteorites. These meteorites have also been shown to possess a diverse array of complex organics and chiral and morphological biomarkers. Stable isotope studies by numerous independent investigators have conclusively established that the complex organics found in these meteorites are both indigenous and extraterrestrial in nature. Although the origin of these organics is still unknown, some researchers have suggested that they originated by unknown abiotic mechanisms and may have played a role in the delivery of chiral biomolecules and the origin of life on Early Earth. In this paper we review these results and investigate the thermal history of comets. We show that permanent as well as transient domains of liquid water can be maintained on a comet under a plausible set of assumptions. With each perihelion passage of a comet volatiles are preferentially released, and during millions of such passages the comet could shed crustal debris that may survive transit through the Earth s atmosphere as a carbonaceous meteorite. We review the current state of knowledge of comets and carbonaceous meteorites. We also present the results of recent studies on the long-term viability of terrestrial ice-microbiota encased in ancient glacial ice and permafrost. We suggest that the conditions which have been observed to prevail on many comets do not preclude either survivability (or even the active metabolism and growth) of many types of eukaryotic and prokaryotic microbial

  15. Biochemical Markers of Myocardial Damage

    PubMed Central

    2016-01-01

    Heart diseases, especially coronary artery diseases (CAD), are the leading causes of morbidity and mortality in developed countries. Effective therapy is available to ensure patient survival and to prevent long term sequelae after an acute ischemic event caused by CAD, but appropriate therapy requires rapid and accurate diagnosis. Research into the pathology of CAD have demonstrated the usefulness of measuring concentrations of chemicals released from the injured cardiac muscle can aid the diagnosis of diseases caused by myocardial ischemia. Since the mid-1950s successively better biochemical markers have been described in research publications and applied for the clinical diagnosis of acute ischemic myocardial injury. Aspartate aminotransferase of the 1950s was replaced by other cytosolic enzymes such as lactate dehydrogenase, creatine kinase and their isoenzymes that exhibited better cardiac specificity. With the availability of immunoassays, other muscle proteins, that had no enzymatic activity, were also added to the diagnostic arsenal but their limited tissue specificity and sensitivity lead to suboptimal diagnostic performance. After the discovery that cardiac troponins I and T have the desired specificity, they have replaced the cytosolic enzymes in the role of diagnosing myocardial ischemia and infarction. The use of the troponins provided new knowledge that led to revision and redefinition of ischemic myocardial injury as well as the introduction of biochemicals for estimation of the probability of future ischemic myocardial events. These markers, known as cardiac risk markers, evolved from the diagnostic markers such as CK-MB or troponins, but markers of inflammation also belong to these groups of diagnostic chemicals. This review article presents a brief summary of the most significant developments in the field of biochemical markers of cardiac injury and summarizes the most recent significant recommendations regarding the use of the cardiac markers in

  16. Biochemical Markers of Myocardial Damage.

    PubMed

    Bodor, Geza S

    2016-04-01

    Heart diseases, especially coronary artery diseases (CAD), are the leading causes of morbidity and mortality in developed countries. Effective therapy is available to ensure patient survival and to prevent long term sequelae after an acute ischemic event caused by CAD, but appropriate therapy requires rapid and accurate diagnosis. Research into the pathology of CAD have demonstrated the usefulness of measuring concentrations of chemicals released from the injured cardiac muscle can aid the diagnosis of diseases caused by myocardial ischemia. Since the mid-1950s successively better biochemical markers have been described in research publications and applied for the clinical diagnosis of acute ischemic myocardial injury. Aspartate aminotransferase of the 1950s was replaced by other cytosolic enzymes such as lactate dehydrogenase, creatine kinase and their isoenzymes that exhibited better cardiac specificity. With the availability of immunoassays, other muscle proteins, that had no enzymatic activity, were also added to the diagnostic arsenal but their limited tissue specificity and sensitivity lead to suboptimal diagnostic performance. After the discovery that cardiac troponins I and T have the desired specificity, they have replaced the cytosolic enzymes in the role of diagnosing myocardial ischemia and infarction. The use of the troponins provided new knowledge that led to revision and redefinition of ischemic myocardial injury as well as the introduction of biochemicals for estimation of the probability of future ischemic myocardial events. These markers, known as cardiac risk markers, evolved from the diagnostic markers such as CK-MB or troponins, but markers of inflammation also belong to these groups of diagnostic chemicals. This review article presents a brief summary of the most significant developments in the field of biochemical markers of cardiac injury and summarizes the most recent significant recommendations regarding the use of the cardiac markers in

  17. Ordering events of biochemical evolution.

    PubMed

    Cunchillos, C; Lecointre, G

    2007-05-01

    Metabolic pathways exhibit structures resulting from an evolutionary process. Pathways have been inherited through time with modification, from the earliest periods of life. It is possible to compare the structure of pathways as done in comparative anatomy, i.e. for inferring ancestral pathways or parts of it (ancestral enzymatic functions), using standard phylogenetic reconstruction. Thus a phylogenetic tree of pathways provides a relative ordering of the rise of enzymatic functions. It even becomes possible to order the birth of each complete pathway in time. This particular "DNA-free" conceptual approach to evolutionary biochemistry is reviewed, gathering all the justifications given for it. Then, the method of assigning a given pathway to a time span of biochemical development is revisited. The previous method used an implicit "clock" of metabolic development that is difficult to justify. We develop a new clock-free approach, using functional biochemical arguments. Results of the two methods are not significantly different; our method is just more precise. This suggests that the clock assumed in the first method does not provoke any important artefact in describing the development of biochemical evolution. It is just unnecessary to postulate it. As a result, most of the amino acid metabolic pathways develop forwards, confirming former models of amino acid catabolism evolution, but not those for amino acid anabolism. The order of appearance of sectors of universal cellular metabolism is: (1) amino acid catabolism, (2) amino acid anabolism and closure of the urea cycle, (3) glycolysis and glycogenesis, (4) closure of the pentose-phosphate cycle, (5) closure of the Krebs cycle and fatty acids metabolism, (6) closure of the Calvin cycle.

  18. Biochemical structure of Calendula officinalis.

    PubMed

    Korakhashvili, A; Kacharava, T; Kiknavelidze, N

    2007-01-01

    Calendula officinalis is a well known medicinal herb. It is common knowledge that its medicinal properties are conditioned on biologically active complex substances of Carotin (Provitamin A), Stearin, Triterpiniod, Plavonoid, Kumarin, macro and micro compound elements. Because of constant need in raw material of Calendula officinalis, features of its ontogenetic development agro-biological qualities in various eco regions of Georgia were investigated. The data of biologically active compounds, biochemical structure and the maintenance both in flowers and in others parts of plant is presented; the pharmacological activity and importance in medicine was reviewed. PMID:17921550

  19. Efficacy and safety profile of combination of tramadol-diclofenac versus tramadol-paracetamol in patients with acute musculoskeletal conditions, postoperative pain, and acute flare of osteoarthritis and rheumatoid arthritis: a Phase III, 5-day open-label study

    PubMed Central

    Chandanwale, Ajay S; Sundar, Subramanian; Latchoumibady, Kaliaperumal; Biswas, Swati; Gabhane, Mukesh; Naik, Manoj; Patel, Kamlesh

    2014-01-01

    Objective We aimed to evaluate the safety and efficacy of a fixed-dose combination (FDC) of tramadol and diclofenac versus a standard approved FDC of tramadol and paracetamol, in patients with acute moderate to severe pain. Methods A total of 204 patients with moderate to severe pain due to acute musculoskeletal conditions (n=52), acute flare of osteoarthritis (n=52), acute flare of rheumatoid arthritis (n=50), or postoperative pain (n=50) were enrolled in the study at baseline. Each disease category was then randomized to receive either of two treatments for 5 days: group A received an FDC of immediate-release tramadol hydrochloride (50 mg) and sustained-release diclofenac sodium (75 mg) (one tablet, twice daily), and group B received an FDC of tramadol hydrochloride (37.5 mg) and paracetamol (325 mg) (two tablets every 4–6 hours, up to a maximum of eight tablets daily). The primary efficacy end points were reductions in pain intensity from baseline at day 3 and day 5 as assessed by a Visual Analog Scale (VAS) score. Results Group A showed a significant reduction in the VAS score for overall pain from baseline on day 3 (P=0.001) and day 5 (P<0.0001) as compared with group B. The combination of tramadol-diclofenac resulted in few mild to moderate adverse events (nausea, vomiting, epigastric pain, and gastritis), which required minimal management, without any treatment discontinuation. The number of adverse events in group A was nine (8.82%) compared with 22 (21.78%) in group B, after 5 days of treatment. Conclusion An FDC of tramadol-diclofenac showed a significantly greater reduction in pain intensity and was well tolerated compared with tramadol-paracetamol, resulting in better analgesia in patients suffering from moderate to severe pain due to acute musculoskeletal conditions, postoperative pain following orthopedic surgery, or acute flare of osteoarthritis and rheumatoid arthritis. PMID:25152629

  20. The role of carbonaceous aerosols on short-term variations of precipitation over North Africa: Carbonaceous aerosols on rainfall change over North Africa

    DOE PAGES

    Yoon, Jin-Ho; Rasch, Philip J.; Wang, Hailong; Vinoj, V.; Ganguly, Dilip

    2016-06-16

    Northern Africa has been subject to extensive droughts in the late 20th century, which are frequently linked to changes in the Sea Surface Temperature (SST) in both the Atlantic and Indian Oceans. However, climate models forced by observed Sea Surface Temperatures have been unable to reproduce the magnitude of rainfall reduction over the last several decades. In this study, we propose that aerosol indirect effects (AIE) may be an important feedback mechanism to contribute this recent reduction. The climate model used here has a fully predictive aerosol life cycle. Results are presented for a set of sensitivity experiments designed tomore » distinguish the role of aerosol direct/semi-­direct and indirect effects on regional precipitation. Changes in cloud lifetime due to the presence of carbonaceous aerosols are proposed as a key mechanism to explain the reduced rainfall over the tropical and North Africa.« less

  1. Vector Encoding in Biochemical Networks

    NASA Astrophysics Data System (ADS)

    Potter, Garrett; Sun, Bo

    Encoding of environmental cues via biochemical signaling pathways is of vital importance in the transmission of information for cells in a network. The current literature assumes a single cell state is used to encode information, however, recent research suggests the optimal strategy utilizes a vector of cell states sampled at various time points. To elucidate the optimal sampling strategy for vector encoding, we take an information theoretic approach and determine the mutual information of the calcium signaling dynamics obtained from fibroblast cells perturbed with different concentrations of ATP. Specifically, we analyze the sampling strategies under the cases of fixed and non-fixed vector dimension as well as the efficiency of these strategies. Our results show that sampling with greater frequency is optimal in the case of non-fixed vector dimension but that, in general, a lower sampling frequency is best from both a fixed vector dimension and efficiency standpoint. Further, we find the use of a simple modified Ornstein-Uhlenbeck process as a model qualitatively captures many of our experimental results suggesting that sampling in biochemical networks is based on a few basic components.

  2. CORRELATED MORPHOMETRIC AND BIOCHEMICAL STUDIES ON THE LIVER CELL

    PubMed Central

    Stäubli, Willy; Hess, Robert; Weibel, Ewald R.

    1969-01-01

    The changes occurring in rat hepatocytes during a 5 day period of treatment with phenobarbital were determined by morphometric and biochemical methods, particular attention being paid to the endoplasmic reticulum. The hepatocytic cytoplasm played an overwhelming part in the liver hypertrophy, while the hepatocytic nuclei contributed to only a moderate extent. The endoplasmic reticulum accounted for more than half of the increase in cytoplasmic volume. The increase in the volume and number of hepatocytic nuclei in the course of phenobarbital treatment was associated with changes in the ploidy pattern. Until the 2nd day of treatment both the rough-surfaced endoplasmic reticulum (RER) and the smooth-surfaced endoplasmic reticulum (SER) participated in the increase in volume and surface of the whole endoplasmic reticulum (ER). Subsequently, the values for RER fell again to control levels, whereas those for SER continued to increase, with the result that by the 5th day of treatment the SER constituted the dominant cytoplasmic element. The specific volume of mitochondria and microbodies (peroxisomes) remained constant throughout the duration of the experiment, while that of the dense bodies increased. The specific number of mitochondria and microbodies displayed a significant increase, associated with a decrease in their mean volume. The phenobarbital-induced increase in the phospholipid and cytochrome P-450 content of the microsomes, as well as in the activities of microsomal reduced nicotinamide-adenine dinucleotide phosphate-cytochrome c reductase and N-demethylase, was correlated with the morphometric data on the endoplasmic reticulum. PMID:4306789

  3. Aerosol-Assisted Self-Assembly of Reticulated N-Doped Carbonaceous Submicron Spheres for Effective Removal of Hexavalent Chromium.

    PubMed

    He, Jiawei; Long, Yuan; Wang, Yiyan; Wei, Chaoliang; Zhan, Jingjing

    2016-07-01

    This Research Article described a facile one-step method to prepare reticulated N-doped carbonaceous submicron spheres. Through a simple aerosol-assisted technology, glucosamine sulfate used as a carbon source was aerosolized and carbonized to functionalized carbonaceous submicron spheres. The electrostatic attraction between protonated amino groups and sulfate in the aerosol droplets induced a self-assembly and led to the formation of reticular structure, avoiding the use of templates. Compared to bare carbonaceous materials produced from glucose, reticulated N-doped carbonaceous spheres exhibit higher efficiency in the removal of Cr(VI), where the doping of element nitrogen led to electrostatic attraction between protonated nitrogen and chromium ions, and reticulated structure created relatively higher surface area and pore volume, facilitating materials to contact with Cr(VI) ions. XPS characterization proved these novel N-doped carbonaceous materials could effectively transform Cr(VI) to less toxic Cr(III) because of the surface reducing groups. For the practical application, several factors including the initial pH, materials dosage and recycle numbers on the removal performance were studied.

  4. Nature and origin of the resistant carbonaceous polymorphs involved the fossilization of biogenic soil-aggregates

    NASA Astrophysics Data System (ADS)

    Courty, M.-A.

    2012-04-01

    The rare occurrence of organic-rich surface horizons in soil archives is widely accepted to resulting from their rapid degradation. We intend here to further elucidate how pedogenic signatures that initially formed at the soil surface could resist over long timescales to burial processes. We focus on the structural evolution of the biogenic soil aggregates that is controlled by the complex interaction of bioturbation, root colonization, microbial decomposition, chemical weathering and physical processes. The nature and origin of carbonaceous components that could possibly contribute to the long term preservation of biogenic soil-aggregates is particularly examined. The study is based on the comparison of pedogenic aggregated microfacies from present-day situations and the ones encountered in soil archives from contrasting edaphic conditions: Arctic Holocene soils from Spitsbergen, hyper-arid soils from the Moche valley (Peru), Holocene semi-arid Mediterranean soils from Northern Syria, late Pleistocene paleosols from lake Mungo (South Wales Australia) and late Pleistocene paleosols from the Ardeche valley (France). The assemblage and composition of biogenic soil-aggregated horizons has been characterized under the binocular microscope and in thin sections. The basic components have been separated by water sieving. A typology of carbonaceous polymorphs and associated composite materials has been established under the binocular. They have been characterized by SEM-EDS, Raman spectrometry, X-ray diffraction and TEM. The comparative study shows that all the biogenic soil-aggregates from the soil archives contain a high amount of similar exotic components that contrast from the parent materials by their fresh aspect and their hydrophobic properties. This exotic assemblage comprises various types of aliphatic carbonaceous polymorphs (filaments, agglutinates, spherules) and aromatic ones (vitrous char, graphite), carbon cenospheres, fine grained sandstones and rock clasts

  5. Ultrastructural Heterogeneity of Carbonaceous Material in Ancient Cherts: Investigating Biosignature Origin and Preservation.

    PubMed

    Qu, Yuangao; Engdahl, Anders; Zhu, Shixing; Vajda, Vivi; McLoughlin, Nicola

    2015-10-01

    Opaline silica deposits on Mars may be good target sites where organic biosignatures could be preserved. Potential analogues on Earth are provided by ancient cherts containing carbonaceous material (CM) permineralized by silica. In this study, we investigated the ultrastructure and chemical characteristics of CM in the Rhynie chert (c. 410 Ma, UK), Bitter Springs Formation (c. 820 Ma, Australia), and Wumishan Formation (c. 1485 Ma, China). Raman spectroscopy indicates that the CM has experienced advanced diagenesis or low-grade metamorphism at peak metamorphic temperatures of 150-350°C. Raman mapping and micro-Fourier transform infrared (micro-FTIR) spectroscopy were used to document subcellular-scale variation in the CM of fossilized plants, fungi, prokaryotes, and carbonaceous stromatolites. In the Rhynie chert, ultrastructural variation in the CM was found within individual fossils, while in coccoidal and filamentous microfossils of the Bitter Springs and formless CM of the Wumishan stromatolites ultrastructural variation was found between, not within, different microfossils. This heterogeneity cannot be explained by secondary geological processes but supports diverse carbonaceous precursors that experienced differential graphitization. Micro-FTIR analysis found that CM with lower structural order contains more straight carbon chains (has a lower R3/2 branching index) and that the structural order of eukaryotic CM is more heterogeneous than prokaryotic CM. This study demonstrates how Raman spectroscopy combined with micro-FTIR can be used to investigate the origin and preservation of silica-permineralized organics. This approach has good capability for furthering our understanding of CM preserved in Precambrian cherts, and potential biosignatures in siliceous deposits on Mars.

  6. Vanadium accumulation in carbonaceous rocks: A review of geochemical controls during deposition and diagenesis

    USGS Publications Warehouse

    Breit, G.N.; Wanty, R.B.

    1991-01-01

    Published data relevant to the geochemistry of vanadium were used to evaluate processes and conditions that control vanadium accumulation in carbonaceous rocks. Reduction, adsorption, and complexation of dissolved vanadium favor addition of vanadium to sediments rich in organic carbon. Dissolved vanadate (V(V)) species predominate in oxic seawater and are reduced to vanadyl ion (V(IV)) by organic compounds or H2S. Vanadyl ion readily adsorbs to particle surfaces and is added to the sediment as the particles settle. The large vanadium concentrations of rocks deposited in marine as compared to lacustrine environments are the result of the relatively large amount of vanadium provided by circulating ocean water compared to terrestrial runoff. Vanadium-rich carbonaceous rocks typically have high contents of organically bound sulfur and are stratigraphically associated with phosphate-rich units. A correspondence between vanadium content and organically bound sulfur is consistent with high activities of H2S during sediment deposition. Excess H2S exited the sediment into bottom waters and favored reduction of dissolved V(V) to V(IV) or possibly V(III). The stratigraphic association of vanadiferous and phosphatic rocks reflects temporal and spatial shifts in bottom water chemistry from suboxic (phosphate concentrated) to more reducing (euxinic?) conditions that favor vanadium accumulation. During diagenesis some vanadium-organic complexes migrate with petroleum out of carbonaceous rocks, but significant amounts of vanadium are retained in refractory organic matter or clay minerals. As carbon in the rock evolves toward graphite during metamorphism, vanadium is incorporated into silicate minerals. ?? 1991.

  7. Origin and formation of carbonaceous material veins in the 2008 Wenchuan earthquake fault zone

    NASA Astrophysics Data System (ADS)

    Liu, Jiang; Li, Haibing; Zhang, Jinjiang; Zhang, Bo

    2016-02-01

    This paper establishes a reference data set of carbonaceous materials (CMs) from the active fault zone of the Longmen Shan fault belt that ruptured in the 2008 Mw7.9 Wenchuan earthquake and presents an application of these data for studies of both other exhumed carbonaceous-rich fault zones and deep-drilling cores. The CMs distributed in the active fault zone are found as narrow veins and located along the slip surfaces. Microstructural observation shows that the carbonaceous material veins (CMVs) are located along slip surfaces in the fault gouge zones. Some CMVs have a cataclastic fabric, and their branches intrude into voids around the slip surfaces. Raman spectra of the CMVs show a wide (full width at half maximum >200 cm-1) D-peak at ~1345 cm-1 (defect peak), which is much lower than the O-peak at ~1595 cm-1 (ordered peak), indicating a metamorphic temperature of zeolite facies or lower than 250 °C. In addition, the stable carbon isotopic compositions (δ13C values) of the CMVs, ranging from -23.4 to -26.4‰, are very similar to that of the kerogen collected from the Late Triassic Xujiahe Formation in Sichuan Basin. Given the data at which it may be formed, the Xujiahe Formation is the most likely origin of CMs for the CMVs, and it seems that some CMVs in the fault zone were crushed and intruded into the voids during coseismic events, possibly driven by an enhanced pore fluid pressure. Since graphitization is suggested as an indicator of transient frictional heating in this area, our study providing a reference data set of CMs would help future CM-rich fault-zone research to retrieve seismic signatures presumably occurring in the Longmen Shan fault zone belt.

  8. Organic Matter from Comet 81p/Wild 2, IDPS and Carbonaceous Meteorites; Similarities and Differences

    SciTech Connect

    Wirick, S.; Flynn, G; Keller, L; Nakamura Messenger, K; Peltzer, C; Jacobsen, C; Sandford, S; Zolensky, M

    2009-01-01

    During preliminary examination of 81P/Wild 2 particles collected by the NASA Stardust spacecraft, we analyzed seven, sulfur embedded and ultramicrotomed particles extracted from five different tracks. Sections were analyzed using a scanning transmission X-ray microscope (SXTM) and carbon X-ray absorption near edge structure (XANES) spectra were collected. We compared the carbon XANES spectra of these Wild 2 samples with a database of spectra on thirty-four interplanetary dust particles (IDPs) and with several meteorites. Two of the particles analyzed are iron sulfides and there is evidence that an aliphatic compound associated with these particles can survive high temperatures. An iron sulfide from an IDP demonstrates the same phenomenon. Another, mostly carbon free containing particle radiation damaged, something we have not observed in any IDPs we have analyzed or any indigenous organic matter from the carbonaceous meteorites, Tagish Lake, Orgueil, Bells and Murchison. The carbonaceous material associated with this particle showed no mass loss during the initial analysis but chemically changed over a period of two months. The carbon XANES spectra of the other four particles varied more than spectra from IDPs and indigenous organic matter from meteorites. Comparison of the carbon XANES spectra from these particles with 1. the carbon XANES spectra from thirty-four IDPs (<15 micron in size) and 2. the carbon XANES spectra from carbonaceous material from the Tagish Lake, Orgueil, Bells, and Murchison meteorites show that 81P/Wild 2 carbon XANES spectra are more similar to IDP carbon XANES spectra then to the carbon XANES spectra of meteorites.

  9. Microfossils, biomolecules and biominerals in carbonaceous meteorites: implications to the origin of life

    NASA Astrophysics Data System (ADS)

    Hoover, Richard B.

    2012-11-01

    Environmental and Field Emission Scanning Electron Microscopy (ESEM and FESEM) investigations have shown that a wide variety of carbonaceous meteorites contain the remains of large filaments embedded within freshly fractured interior surfaces of the meteorite rock matrix. The filaments occur singly or in dense assemblages and mats and are often encased within carbon-rich, electron transparent sheaths. Electron Dispersive X-ray Spectroscopy (EDS) spot analysis and 2D X-Ray maps indicate the filaments rarely have detectable nitrogen levels and exhibit elemental compositions consistent with that interpretation that of the meteorite rock matrix. Many of the meteorite filaments are exceptionally well-preserved and show evidence of cells, cell-wall constrictions and specialized cells and processes for reproduction, nitrogen fixation, attachment and motility. Morphological and morphometric analyses permit many of the filaments to be associated with morphotypes of known genera and species of known filamentous trichomic prokaryotes (cyanobacteria and sulfur bacteria). The presence in carbonaceous meteorites of diagenetic breakdown products of chlorophyll (pristane and phytane) along with indigenous and extraterrestrial chiral protein amino acids, nucleobases and other life-critical biomolecules provides strong support to the hypothesis that these filaments represent the remains of cyanobacteria and other microorganisms that grew on the meteorite parent body. The absence of other life-critical biomolecules in the meteorites and the lack of detectable levels of nitrogen indicate the filaments died long ago and can not possibly represent modern microbial contaminants that entered the stones after they arrived on Earth. This paper presents new evidence for microfossils, biomolecules and biominerals in carbonaceous meteorites and considers the implications to some of the major hypotheses for the Origin of Life.

  10. Carbonaceous aerosol and its characteristics observed in Tokyo and south Kanto region

    NASA Astrophysics Data System (ADS)

    Minoura, Hiroaki; Morikawa, Tazuko; Mizohata, Akira; Sakamoto, Kazuhiko

    2012-12-01

    Due to enforcing vehicle emission reduction requirements in Japan, particulate matter (PM) concentration, especially elemental carbon (EC) concentration in roadside atmosphere, obviously decreased in the last decade. In spite of the previous vehicle emission reduction, EC concentration was not shown a clear decrease, recently. To achieve the PM2.5 environmental standard, measurements based on emission source contribution are desirable. However, source apportionment of carbonaceous aerosol was ambiguous because chemical components are complicated, and the components change through photochemical reaction. The goal of this study is to determine source apportionment for carbonaceous aerosols. Examination of PM2.5 was performed in south Kanto including Tokyo in the summer of 2008 and the winter of 2009. Emissions from the industrial area around Tokyo Bay and the agricultural northern area showed transportation and accumulation due to the seasonal prevailing wind. The emissions formed a geographical distribution due to photochemical reactions. The characteristics of carbonaceous aerosol were obtained using carbon profile analysis and carbon isotope analysis, including the source information such as fossil fuel emission origin, vegetation origin, and combustion product, photochemical reaction product, etc. Soot-EC was found as a substance with fossil fuel origin which did not contain biomass combustion matter, and since it is stable, there was no observed difference by site and a uniform concentration was observed in winter. It became apparent from the carbon isotope analysis using 14C that the carbon from the biomass origin involved 29% in total carbon in the summer, and 48% in winter even at Kudan of central Tokyo.

  11. Extraterrestrial amino acids identified in metal-rich CH and CB carbonaceous chondrites from Antarctica

    NASA Astrophysics Data System (ADS)

    Burton, Aaron S.; Elsila, Jamie E.; Hein, Jason E.; Glavin, Daniel P.; Dworkin, Jason P.

    2013-03-01

    Carbonaceous chondrites contain numerous indigenous organic compounds and could have been an important source of prebiotic compounds required for the origin of life on Earth or elsewhere. Extraterrestrial amino acids have been reported in five of the eight groups of carbonaceous chondrites and are most abundant in CI, CM, and CR chondrites but are also present in the more thermally altered CV and CO chondrites. We report the abundance, distribution, and enantiomeric and isotopic compositions of simple primary amino acids in six metal-rich CH and CB carbonaceous chondrites that have not previously been investigated for amino acids: Allan Hills (ALH) 85085 (CH3), Pecora Escarpment (PCA) 91467 (CH3), Patuxent Range (PAT) 91546 (CH3), MacAlpine Hills (MAC) 02675 (CBb), Miller Range (MIL) 05082 (CB), and Miller Range (MIL) 07411 (CB). Amino acid abundances and carbon isotopic values were obtained by using both liquid chromatography time-of-flight mass spectrometry and fluorescence, and gas chromatography isotope ratio mass spectrometry. The δ13C/12C ratios of multiple amino acids fall outside of the terrestrial range and support their extraterrestrial origin. Extracts of CH chondrites were found to be particularly rich in amino acids (13-16 parts per million, ppm) while CB chondrite extracts had much lower abundances (0.2-2 ppm). The amino acid distributions of the CH and CB chondrites were distinct from the distributions observed in type 2 and 3 CM and CR chondrites and contained elevated levels of β-, γ-, and δ-amino acids compared to the corresponding α-amino acids, providing evidence that multiple amino acid formation mechanisms were important in CH and CB chondrites.

  12. Carbon isotope analysis of carbonaceous compounds in Puget Sound and Lake Washington

    SciTech Connect

    Swanson, J.R.

    1980-01-01

    A new method has been developed and tested for determining chronological profiles of organic pollutants. This method, Carbon Isotope Analysis (CIA), involves measurements of /sup 12/C, /sup 13/C and /sup 14/C in carbonaceous compounds found in layers of sediment. Lipids, total aliphatic hydrocarbons (TAHs) and polycyclic aromatic hydrocarbons (PAHs) are separated from kg quantities of sediment. Large Soxhlet extractors are used to remove the extractable organics, using ultra-pure benzene-methanol solution and having an extraction efficiency of about 86% for compounds with boiling points higher than n-tetradecane (n-C/sub 14/). The basic steps in compound separation include freeze-drying, extraction, fractionation, column chromatography and evaporation. Isolating the TAH and PAH fractions is accomplished by eluting samples from Sephadex and alumina/silica-gel columns. The amount of each fraction recovered is determined by converting the hydrocarbons to carbon dioxide and measuring this gas manometrically. Variations in /sup 12/C and /sup 13/C abundances for carbonaceous compounds are primarily due to thermodynamic, photosynthetic and metabolic fractionation processes. Thus, the source of a particular organic compound can often be determined by measuring its /sup 13/C//sup 12/C ratio. Combining the information from both the /sup 13/C analysis and /sup 14/C analysis makes source identification more certain. In addition, this investigation reviews carbon isotopic data and carbon cycling and analyzes organic pollution in two limited ecosystems (Puget Sound and Lake Washington). Specifically, distinct carbonaceous species are analyzed for pollution in sediments of Lake Washington, Elliott Bay, Commencement Bay, central Puget Sound and northern Puget Sound near the Cherry Point oil refineries.

  13. Assessment of hydrocarbon source rock potential of Polish bituminous coals and carbonaceous shales

    USGS Publications Warehouse

    Kotarba, M.J.; Clayton, J.L.; Rice, D.D.; Wagner, M.

    2002-01-01

    We analyzed 40 coal samples and 45 carbonaceous shale samples of varying thermal maturity (vitrinite reflectance 0.59% to 4.28%) from the Upper Carboniferous coal-bearing strata of the Upper Silesian, Lower Silesian, and Lublin basins, Poland, to evaluate their potential for generation and expulsion of gaseous and liquid hydrocarbons. We evaluated source rock potential based on Rock-Eval pyrolysis yield, elemental composition (atomic H/C and O/C), and solvent extraction yields of bitumen. An attempt was made to relate maceral composition to these source rock parameters and to composition of the organic matter and likely biological precursors. A few carbonaceous shale samples contain sufficient generation potential (pyrolysis assay and elemental composition) to be considered potential source rocks, although the extractable hydrocarbon and bitumen yields are lower than those reported in previous studies for effective Type III source rocks. Most samples analysed contain insufficient capacity for generation of hydrocarbons to reach thresholds required for expulsion (primary migration) to occur. In view of these findings, it is improbable that any of the coals or carbonaceous shales at the sites sampled in our study would be capable of expelling commercial amounts of oil. Inasmuch as a few samples contained sufficient generation capacity to be considered potential source rocks, it is possible that some locations or stratigraphic zones within the coals and shales could have favourable potential, but could not be clearly delimited with the number of samples analysed in our study. Because of their high heteroatomic content and high amount of asphaltenes, the bitumens contained in the coals are less capable of generating hydrocarbons even under optimal thermal conditions than their counterpart bitumens in the shales which have a lower heteroatomic content. Published by Elsevier Science B.V.

  14. Carbonaceous aerosols from prescribed burning of a boreal forest ecosystem. Revision

    SciTech Connect

    Mazurek, M.A.; Cofer, W.R. III; Levine, J.S.

    1990-10-01

    The identity and ambient mass concentrations of radiatively important carbonaceous aerosols were measured for a boreal forest prescribed burn conducted in northern Ontario, CAN in August 1989. Nonsize-segregated airborne particles were collected for smoldering-fire and full-fire conditions using a helicopter sampling platform. Total carbon (TC), organic carbon (OC) and elemental carbon (EC) were measured. Smoke plume mass concentrations of the OC and EC particles were greatest for full-fire conditions and had ranges of 1.560 to 2.160 mg/m{sup {minus}1} (OC) and 0.120 to 0.160 mg/m{sup {minus}3} (EC) with OC:EC ratios of 10 to 18, respectively. Smoldering fire conditions showed smoke plume OC and EC levels of 0.570--1.030 mg/m{sup {minus}3} (OC) and 0.006--0.050 mg/m{sup {minus}3} (EC) and much higher ratios of OC:EC (21 to 95). These aerosol data indicate the formation of EC particles is greatest during full-fire combustion of boreal forest material relative to smoldering combustion. However, EC particles comprise a minor fraction of the particulate carbon smoke aerosols for both full-fire and smoldering conditions; the major component of carbonaceous smoke aerosols emitted during the prescribed burn is OC. Overall, the OC and EC in-plume smoke aerosol data show nonuniform production of these particles during various stages of the prescribed burn, and major differences in the type of carbonaceous aerosol that is generated (OC versus EC).

  15. Ultrastructural Heterogeneity of Carbonaceous Material in Ancient Cherts: Investigating Biosignature Origin and Preservation.

    PubMed

    Qu, Yuangao; Engdahl, Anders; Zhu, Shixing; Vajda, Vivi; McLoughlin, Nicola

    2015-10-01

    Opaline silica deposits on Mars may be good target sites where organic biosignatures could be preserved. Potential analogues on Earth are provided by ancient cherts containing carbonaceous material (CM) permineralized by silica. In this study, we investigated the ultrastructure and chemical characteristics of CM in the Rhynie chert (c. 410 Ma, UK), Bitter Springs Formation (c. 820 Ma, Australia), and Wumishan Formation (c. 1485 Ma, China). Raman spectroscopy indicates that the CM has experienced advanced diagenesis or low-grade metamorphism at peak metamorphic temperatures of 150-350°C. Raman mapping and micro-Fourier transform infrared (micro-FTIR) spectroscopy were used to document subcellular-scale variation in the CM of fossilized plants, fungi, prokaryotes, and carbonaceous stromatolites. In the Rhynie chert, ultrastructural variation in the CM was found within individual fossils, while in coccoidal and filamentous microfossils of the Bitter Springs and formless CM of the Wumishan stromatolites ultrastructural variation was found between, not within, different microfossils. This heterogeneity cannot be explained by secondary geological processes but supports diverse carbonaceous precursors that experienced differential graphitization. Micro-FTIR analysis found that CM with lower structural order contains more straight carbon chains (has a lower R3/2 branching index) and that the structural order of eukaryotic CM is more heterogeneous than prokaryotic CM. This study demonstrates how Raman spectroscopy combined with micro-FTIR can be used to investigate the origin and preservation of silica-permineralized organics. This approach has good capability for furthering our understanding of CM preserved in Precambrian cherts, and potential biosignatures in siliceous deposits on Mars. PMID:26496525

  16. Extraterrestrial Amino Acids Identified in Metal-Rich CH and CB Carbonaceous Chondrites from Antarctica

    NASA Technical Reports Server (NTRS)

    Burton, Aaron S.; Elsila, Jamie E.; Hein, Jason E.; Glavin, Daniel P.; Dworkin, Jason P.

    2013-01-01

    Carbonaceous chondrites contain numerous indigenous organic compounds and could have been an important source of prebiotic compounds required for the origin of life on Earth or elsewhere. Extraterrestrial amino acids have been reported in five of the eight groups of carbonaceous chondrites and are most abundant in CI, CM, and CR chondritesbut are also present in the more thermally altered CV and CO chondrites. We report the abundance, distribution, and enantiomeric and isotopic compositions of simple primary amino acids in six metal-rich CH and CB carbonaceous chondrites that have not previously been investigated for amino acids: Allan Hills (ALH) 85085 (CH3), Pecora Escarpment(PCA) 91467 (CH3), Patuxent Range (PAT) 91546 (CH3), MacAlpine Hills (MAC) 02675(CBb), Miller Range (MIL) 05082 (CB), and Miller Range (MIL) 07411 (CB). Amino acid abundances and carbon isotopic values were obtained by using both liquid chromatography time-of-flight mass spectrometry and fluorescence, and gas chromatography isotope ratiomass spectrometry. The (delta D, delta C-13, delta N-15) ratios of multiple amino acids fall outside of the terrestrial range and support their extraterrestrial origin. Extracts of CH chondrites were found to be particularly rich in amino acids (1316 parts per million, ppm) while CB chondrite extracts had much lower abundances (0.22 ppm). The amino acid distributions of the CH and CB chondrites were distinct from the distributions observed in type 2 and 3 CM and CR chondrites and contained elevated levels of beta-, gamma-, and delta-amino acids compared to the corresponding alpha-amino acids, providing evidence that multiple amino acid formation mechanisms were important in CH and CB chondrites.

  17. Measurements of Carbonaceous Aerosols using Semi-Continuous Thermal-Optical Method

    SciTech Connect

    Yu, Xiao-Ying

    2011-08-01

    Carbonaceous aerosols are major components in air pollution as a result of energy consumption, thus measurement of them is important to waste management. Increasing interest has been drawn to the identification, measurement, analysis, and modeling of carbon aerosols in the past decade. This book chapter will provide a review of current state-of-art techniques to determine carbonaceous aerosols in relation to air pollution and waste management. The chapter will be composed of four parts. The introduction will discuss why carbon aerosols including elemental carbon (EC), organic carbon (OC), and total carbon (TC=EC+OC) are important to energy consumption, air pollution, waste management, and global climate change. Key definitions will be introduced. Relevant terminologies will be provided. The second part will be a review of the current state-of the art measurement techniques that are used to determine carbon aerosols. Both on-line and off-line methods will be described. Comparisons of different techniques that provide the same physical quantity will be provided based on recent literature findings. Differences among the physical parameters determined by various techniques will be discussed. The third part will focus on data analysis and products obtained from carbon aerosol measurements. In addition to EC, OC, and TC, primary organic carbon (POC) and secondary organic carbon (SOC) are of interest to researchers to understand the source and sink of carbonaceous aerosols. Techniques used to determine POC and SOC, such as the EC tracer method and positive matrix factorization, will be described and their differences discussed. Examples will be provided showing field data comparison between the Sunset organic carbon and elemental carbon field analyzer and the Aerodyne aerosol mass spectrometer, both of which are widely used for on-line aerosol measurements. The last part will report new trends and summarize future research needs in carbon aerosol measurement. Emerging

  18. Mineralogic and petrologic study of the low-temperature minerals in carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Wood, J. A.

    1977-01-01

    Samples and petrographic thin sections of the Orgueil, Ivuna, and Alais chondrites were examined by optical, X-ray, and SEM techniques. Mineral species identified as primary vein constituents were epsomite, gypsum, and a calcium-magnesium carbonate. Relative abundances and textural relationships have suggested that fracture mineralization was a multi stage process, with individual mineralizations closely associated with impact brecciation events. Mass balance considerations of carbonaceous chondrite matrix support the prevailing view that the source of the fracture filling minerals was local. By inference they also suggest that the phyllosilicate matrix has been chemically altered and that there are probably very few primitive mineral phases in the primitive Cl chondrites.

  19. Petrographic, chemical and spectroscopic evidence for thermal metamorphism in carbonaceous chondrites I: CI and CM chondrites

    NASA Astrophysics Data System (ADS)

    Tonui, Eric; Zolensky, Mike; Hiroi, Takahiro; Nakamura, Tomoki; Lipschutz, Michael E.; Wang, Ming-Sheng; Okudaira, Kyoko

    2014-02-01

    We present a comprehensive description of petrologic, chemical and spectroscopic features of thermally metamorphosed CI-like and CM (and CM-like) chondrites. Only two such CI chondrites have so far been discovered i.e. Y-86029 and Y-82162. Thermal metamorphism in these chondrites is apparent in their low contents of H2O, C and the most thermally labile trace elements, partial dehydration of matrix phyllosilicates and abundance of thermally decomposed Ca-Mg-Fe-Mn carbonates, which apparently resulted from heating of Mg-Fe carbonate precursors. The CM chondrites exhibit a wide range of aqueous and thermal alteration characteristics. This alteration was almost complete in Y-86720 and Y-86789, which also escaped alternating episodes of oxidation and sulfidization experienced by the others. Thermal metamorphism in the CM chondrites is apparent in loss of thermally labile trace elements and also in partial to almost complete dehydration of matrix phyllosilicates: heating was less uniform in them than in CI chondrites. This dehydration is also evident in strength and shapes of integrated intensities of the 3 μm bands except in PCA 91008, which experienced extensive terrestrial weathering. Tochilinite is absent in all but Y-793321 probably due to heating. Textural evidence for thermal metamorphism is conspicuous in blurring or integration/fusion of chondrules with matrix in the more extensively heated (⩾600 °C) CM chondrites like PCA 91008 and B-7904. TEM and XRD analyses reveal that phyllosilicate transformation to anhydrous phases proceeds via poorly crystalline, highly desiccated and disordered 'intermediate' phases in the least and moderately heated (400-600 °C) carbonaceous chondrites like WIS 91600, PCA 91008 and Y-86029. These findings are significant in that they confirm that these phases occur in meteorites as well as terrestrial samples. Thermal alteration in these meteorites can be used to identify other carbonaceous chondrites that were thermally

  20. Evidence for interstellar SiC in the Murray carbonaceous meteorite

    NASA Technical Reports Server (NTRS)

    Bernatowicz, Thomas; Wopenka, Brigitte; Fraundorf, Gail; Ming, Tang; Anders, Edward

    1987-01-01

    Silicon carbide has been identified in two separates from the Murray carbonaceous chondrite that are enriched 20,000-fold in isotopically anomalous neon and xenon. The SiC is present in the form of crystalline grains 0.1-1 micron in size. Cubic and 111-plane-twinned cubic are the most common ordered polytypes observed so far. The anomalous isotopic composition of its carbon, nitrogen, and silicon indicates a presolar origin, probably in the atmospheres of red giants. An additional silicon- and oxygen-rich phase shows large isotropic anomalies in nitrogen and silicon, also associated with a presolar origin.

  1. Indigenous Carbonaceous Phases Embedded Within Surface Deposits on Apollo 17 Volcanic Glass Beads

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, K. L.; Clemett, S. J.; Ross, D. K.; Le, L.; McKay, D. S.; Gibson, E. K.; Gonzalez, C.

    2012-01-01

    The assessment of indigenous organic matter in returned lunar samples was one of the primary scientific goals of the Apollo program. Prior studies of Apollo samples have shown the total amount of organic matter to be in the range of approx 50 to 250 ppm. Low concentrations of lunar organics may be a consequence not only of its paucity but also its heterogeneous distribution. Several processes should have contributed to the lunar organic inventory including exogenous carbonaceous accretion from meteoroids and interplanetary dust particles, and endogenous synthesis driven by early planetary volcanism and cosmic and solar radiation.

  2. A one-dimensional modeling study of carbonaceous haze effects on the springtime Arctic environment

    NASA Technical Reports Server (NTRS)

    Emery, Christopher A.; Haberle, Robert; Ackerman, Thomas P.

    1992-01-01

    The effect of carbonaceous Arctic haze on the surface energy balance was investigated using a specially developed one-dimensional three-component numerical model which accounts for the transfer of IR and solar radiation through the atmosphere, turbulent mixing within the boundary layer, and heat conduction through snow-capped sea ice. The results of calculations indicate that, when haze is present, the surface temperature increases, provided the relative humidity through the column does not change. The increase is due to an increase in the absorbed radiation at the surface.

  3. Brighter material on Deimos - A particle size effect in a carbonaceous material?

    NASA Technical Reports Server (NTRS)

    French, L. M.; Veverka, J.; Thomas, P.

    1988-01-01

    The values obtained for brightness ratios between contiguous bright and dark areas on Deimos from Viking Orbiter images, together with the lack of a significant wavelength dependence of these ratios in the 0.4-0.6-micron range, are presently noted to be consistent with particle size fraction measurements of the Murchison CM meteorite. These data, and a near-coincidence of Deimos absolute reflectances with those of laboratory samples, render the present data consistent with both brighter and darker materials on Deimos being akin to carbonaceous chondrites; the material with smaller average particle size is associated with the brighter patches.

  4. Amino Acid Chemistry as a Link Between Small Solar System Bodies and Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Ehrenfreund, Pascale; Botta, Oliver; Cooper, George; Bada, Jeffrey L.

    2000-01-01

    Establishing chemical links between meteorites and small solar system bodies, such as comets and asteroids, provides a tool for investigating the processes that occurred during the formation of the solar system. Carbonaceous meteorites are of particular interest, since they may have seeded the early Earth with a variety of prebiotic organic compounds including amino acids, purines and pyrimidines, which are thought to be necessary for the origin of life. Here we report the results of high-performance liquid chromatography (HPLC) based amino acid analyses of the acid-hydrolyzed hot water extracts from pristine interior pieces of the CI carbonaceous chondrites Orgueil and Ivuna and the CM meteorites Murchison and Murray. We found that the CI meteorites Orgueil and Ivuna contained high abundances of beta-alanine and glycine, while only traces of other amino acids like alanine, alpha-amino-n-butryic acid (ABA) and alpha-aminoisobutyric acid (AIB) were detected in these meteorites. Carbon isotopic measurements of beta-alanine and glycine in Orgueil by gas chromatography combustion-isotope ratio mass spectrometry clearly indicate an extraterrestrial origin of these amino acids. The amino acid composition of Orgueil and Ivuna was strikingly different from the CM chondrites Murchison and Murray. The most notable difference was the high relative abundance of B-alanine in Orgueil and Ivuna compared to Murchison and Murray. Furthermore, AIB, which is one of the most abundant amino acids found in Murchison and Murray, was present in only trace amounts in Orgueil and Ivuna. Our amino acid data strongly suggest that the CI meteorites Orgueil and Ivuna came from a different type of parent body than the CM meteorites Murchison and Murray, possibly from an extinct comet. It is generally thought that carbonaceous meteorites are fragments of larger asteroidal bodies delivered via near Earth objects (NEO). Orbital and dynamic studies suggest that both fragments of main belt asteroids

  5. Characteristics of atmospheric depositions of ionic and carbonaceous components at remote sites in Japan

    NASA Astrophysics Data System (ADS)

    Sato, K.; Inomata, Y.; Kajino, M.; Tang, N.; Hayakawa, K.; Hakamata, M.; Morisaki, H.

    2015-12-01

    Atmospheric deposition process is important to evaluate lifetimes and budget of atmospheric components. Deposition amounts of sulfur and nitrogen compounds have been evaluated not only in East Asian region but also worldwide. On the other hand, atmospheric deposition of carbonaceous components including organic carbon (OC), elementary carbon (EC) and Polycyclic Aromatic Hydrocarbons (PAHs) were monitored only at a few sites in Europe, North America and Africa, which will obscure removal process and atmospheric concentration distribution of those components. In this study, ionic and carbonaceous components in precipitation and aerosol are monitored at remote sites in Japan, and the characteristics of atmospheric deposition amounts were evaluated.Field observations have been implemented at the Noto station since November 2013 and the Sado station since May 2011. Wet deposition samples were collected by rain samplers, and dry deposition samples were collected by high volume or low volume aerosol samplers. Concentrations of Cl-, NO3-, SO42-, NH4+, Na+, K+, Mg2+, Ca2+ were measured by ion chromatography, EC and OC by the IMPROVE protocol, and PAHs by HPLC with a fluorescence detector. Wet deposition amounts were calculated as the products of aqueous concentration and precipitation amounts, and dry deposition amounts were as the products of aerosol concentrations and deposition velocity estimated by the Inferential Method.Total (wet and dry) annual deposition amounts of carbonaceous components of NO3-, SO42-, EC, water insoluble OC, Fluoranthene at Noto (Nov. 2013 to Oct. 2014) were 4353.81 mg/m2, 7020.50 mg/m2, 149.84 mg/m2, 1191.09 mg/m2, 28.6 μg/m2, respectively. These amounts are comparable total annual deposition amounts of OC and EC at Sado (May 2011 to Feb. 2012), which were 166.04 mg/m2 and 834.0 mg/m2. Higher deposition amounts of ionic and carbonaceous components were observed, which would be attributable to long range transportation of the East Asian

  6. An Overview of the 2010 Carbonaceous Aerosol and Radiative Effects Study (CARES) Field Campaign

    NASA Astrophysics Data System (ADS)

    Zaveri, R. A.; Shaw, W. J.; Cziczo, D. J.

    2010-12-01

    The primary objective of the DOE Carbonaceous Aerosol and Radiative Effects Study (CARES) in June 2010 was to investigate the evolution of carbonaceous aerosols of different types and their optical and hygroscopic properties in central California, with a focus on the Sacramento urban plume. Carbonaceous aerosol components, which include black carbon (BC), urban primary organic aerosols (POA), biomass burning aerosols, and secondary organic aerosols (SOA) from both urban and biogenic precursors, have been shown to play a major role in the direct and indirect radiative forcing of climate. However, significant knowledge gaps and uncertainties still exist in the process-level understanding of: 1) SOA formation, 2) BC mixing state evolution, and 3) the optical and hygroscopic properties of fresh and aged carbonaceous aerosols. The CARES 2010 field study was designed to address several specific science questions under these three topics. During summer the Sacramento-Blodgett Forest corridor effectively serves as a mesoscale daytime flow reactor in which the urban aerosols undergo significant aging as they are transported to the northeast by upslope flow. The CARES campaign observation strategy consisted of the DOE G-1 aircraft sampling upwind, within, and outside of the evolving Sacramento urban plume in the morning and again in the afternoon. The G-1 payload consisted of a suite of instruments to measure trace gases, aerosol size distribution, composition, and optical properties. The NASA B-200 aircraft carrying a High Spectral Resolution Lidar (HSRL) and a Research Scanning Polarimeter (RSP) was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties. The aircraft measurements were complemented by heavily-instrumented ground sites within the Sacramento urban area and at a downwind site in Cool, California, to characterize the diurnal evolution of meteorological variables, trace gases, aerosol precursors, aerosol

  7. Carbonaceous aerosol over semi-arid region of western India: Heterogeneity in sources and characteristics

    NASA Astrophysics Data System (ADS)

    Sudheer, A. K.; Aslam, M. Y.; Upadhyay, M.; Rengarajan, R.; Bhushan, R.; Rathore, J. S.; Singh, S. K.; Kumar, S.

    2016-09-01

    Carbonaceous species (elemental carbon (EC), organic carbon (OC), water-soluble organic carbon (WSOC)) and water-soluble inorganic species (Na+, NH4+, K+, Ca2 +, Mg2 +, Cl-, NO3-, SO42 -) in PM10 and PM2.5 from Ahmedabad and Jodhpur (urban and semi-urban locations, respectively) in western India were measured during May-September, 2011. Stable isotope composition of carbonaceous aerosol (δ13C of TC) in PM10 samples was also determined. Average EC concentration in PM10 at Ahmedabad was 1 μg m- 3 (range: 0.34 to 3.4 μg m- 3), almost 80% of which remained in PM2.5. Similarly, 70% of EC in PM10 (average: 0.9 μg m- 3) resided in PM2.5 at Jodhpur. Average OC concentration at Ahmedabad was 6.4 μg m- 3 and ~ 52% of this was found in PM2.5. On the contrary, OC concentration at Jodhpur was 40 μg m- 3, 80% of which was found in coarse particles contributing substantially to aerosol mass. δ13C of TC (average: - 27.5‰, range: - 29.6 to - 25.8‰) along with WSOC/EC ratio shows an increasing trend at Jodhpur suggesting the possibility of aging of aerosol, since aging results in enrichment of heavier isotope. OC and WSOC show significant correlations with K+ and not with EC, indicating biogenic origin of OC. Different size distributions are also exhibited by WSOC at the two stations. On the other hand, δ13C exhibits an inverse trend with sea-salt constituents at Ahmedabad, indicating the influence of air masses transported from the western/south-western region on carbonaceous aerosol. These results suggest that a strong heterogeneity exists in the sources of carbonaceous aerosol over this region and potential sources of non-combustion emissions such as bio-aerosol that need further investigation.

  8. Fossils of Cyanobacteria in CI1 Carbonaceous Meteorites: Implications to Life on Comets, Europa and Enceladus

    NASA Astrophysics Data System (ADS)

    Hoover, Richard B.

    2011-10-01

    Environmental (ESEM) and Field Emission Scanning Electron Microscopy (FESEM) investigations of the internal surfaces of the CI1 Carbonaceous Meteorites have yielded images of large complex filaments. The filaments have been observed to be embedded in freshly fractured internal surfaces of the stones. They exhibit recognizable features (e.g., the size and size ranges of the internal cells and their location and arrangement within sheaths) that are diagnostic of known genera and species of filamentous trichomic cyanobacteria and other trichomic prokaryotes (such as filamentous sulfur bacteria). ESEM and FESEM studies of living and fossil cyanobacteria show features similar to the filaments found in the meteorites -- uniseriate and multiseriate, branched or unbranched, isodiametric or tapered, polarized or unpolarized filaments with trichomes encased within thin or thick external sheaths. Some of the filaments found in the CI1 meteorites also exhibit specialized cells and structures used by cyanobacteria for reproduction (baeocytes, akinetes and hormogonia), nitrogen fixation (basal, intercalary or apical heterocysts), attachment (pili or fimbriae) or indicative of oscillatoria type locomotion (escaped or coiling hormogonia and flattened and coiled empty sheaths). Energy dispersive X-ray Spectroscopy (EDS) studies indicate that the Orgueil meteorite filaments are typically carbon-rich sheaths infilled with magnesium sulfate and other minerals characteristic of the CI1 carbonaceous meteorites. However, the size, structure, detailed morphological characteristics and chemical compositions of the meteorite filaments are not consistent with known species of abiotic minerals. The nitrogen content of the meteorite filaments are almost always below the detection limit of the EDS detector. EDS analysis of living and dead biological materials (e.g., filamentous cyanobacteria; bacteria, mummy and mammoth hair and tissues, and fossils of cyanobacteria, trilobites and insects in

  9. Reconnaissance for uranium-bearing carbonaceous rocks in California and adjacent parts of Oregon and Nevada

    USGS Publications Warehouse

    Moore, George Winfred; Stephens, James G.

    1954-01-01

    During the summer of 1952 a reconnaissance was conducted in California and parts of Oregon and Nevada in search of new deposits of uranium-bearing carbonaceous rocks. The principal localities found in California where uranium occurs in coal are listed here with. the uranium content of the coal: Newhall prospect, Los Angeles County, 0.020 percent; Fireflex mine, San Benito County, 0.005 percent; American licyaite mine, Amador County, 0.004 percent; and Tesla prospect, Alameda County, 0.003 percent. An oil-saturated sandstone near Edna, San Luis Obispo County, contains 0.002 percent uranium.

  10. Method and apparatus for conversion of carbonaceous materials to liquid fuel

    SciTech Connect

    Lux, Kenneth W.; Namazian, Mehdi; Kelly, John T.

    2015-12-01

    Embodiments of the invention relates to conversion of hydrocarbon material including but not limited to coal and biomass to a synthetic liquid transportation fuel. The invention includes the integration of a non-catalytic first reaction scheme, which converts carbonaceous materials into a solid product that includes char and ash and a gaseous product; a non-catalytic second reaction scheme, which converts a portion of the gaseous product from the first reaction scheme to light olefins and liquid byproducts; a traditional gas-cleanup operations; and the third reaction scheme to combine the olefins from the second reaction scheme to produce a targeted fuel like liquid transportation fuels.

  11. [Analysis of FT-IR-ATR spectra of serum proteins adsorbed on carbonaceous materials].

    PubMed

    Li, Bogang; Na, Juanjuan; Yin, Jie; Yin, Guangfu

    2006-10-01

    To clarify the reason causing difference of serum proteins adsorbability on different carbonaceous materials, FT-IR-ATR spectra of human serum albumin (HSA) and human serum fibrinogen(HFG) before and after adsorbing on diamond like carbon film (DLC),diamond film (DF) and graphite were analyzed. It has been shown that there are hydrogen bond because of -NH at the interfaces of HSA-DLC, HFG-DF and HFG-graphite. Based on the results, earlier research conclusion that the adsorbability of HSA on DLC higher than that on DF and graphite, but on DF and graphite the adsorption of HFG takes precedence can be explained rationally.

  12. [A feasibility study on use of surface and interface properties for evaluating hemocompatibility of carbonaceous biomaterials].

    PubMed

    Li, Bogang; Kang, Anfu; Yin, Guangfua; Zheng, Changqiong

    2005-06-01

    In order to evaluate diamond like carbon film (DLC), DLC containing Si, graphite, diamond film (DF), low temperature isotropic carbon film (LTIC) and SiC, we investigated the correlations between surface energy parameters and hemocompatibility indices such as kinetic clotting time, hemolysis and platelet consumption. An analysis of T-type correlation degree in the Grey system theory was performed. The results showed: (1) all of correlation degrees between kinetic clotting time and polar surface energy parameters were positive, but for critical surface tension, the correlation degree was negative; among five of surface energy parameters, interface tension had the highest relation degree (0.63) with kinetic clotting time, and critical surface tension (-0.43) took the second place; (2) on the contrary, all of correlation degrees between hemolysis and polar surface energy parameters were negative, but for critical surface tension, the correlation degree was positive; and that which had closer correlations with hemolysis were still interface tension (-0.43) and critical surface tension (0.29); (3) critical surface tension had the highest relation degree (0.68) with platelet consumption, and surface tension (0.32) took the second place; (4) kinetic clotting time possessed higher negative correlation degrees with hemolysis (-0.57) and platelet consumption (-0.36). These data indicate that kinetic clotting time depended on a balance between the polarity of surface and the limited humidifying of water on the surface, and that platelet consumption was based on good humidification and power polarity of surface, while hemolysis was promoted by the aid of chromatic dispersion action stemming from the surface and fully humidifying of water on the surface. There was "seesaw effect" between kinetic clotting time and hemolysis or platelet consumption, hence the hemocompatibility of carbonaceous biomaterials could be equivalently evaluated by using kinetic clotting time as an index

  13. Application of selected methods of remote sensing for detecting carbonaceous water pollution

    NASA Technical Reports Server (NTRS)

    Davis, E. M.; Fosbury, W. J.

    1972-01-01

    The use of aerial photography to determine the nature and extent of water pollution from carbonaceous materials is discussed. Flights were conducted over the Galveston Bay estuarine complex. Ground truth data were developed from field sampling of the waters in a region near the Houston Ship Channel. Tests conducted in the field were those for the following physical and chemical factors: (1) ph, (2) dissolved oxygen, (3) temperature, and (4) light penetration. Laboratory analyses to determine various properties of the water are described and the types of instruments used are identified. Results of the analyses are presented as charts and graphs.

  14. Special Issue for the 9th International Conference on Carbonaceous Particles in the Atmosphere

    SciTech Connect

    Strawa, A.W.; Kirchstetter, T.W.; Puxbaum, H.

    2009-12-11

    Carbonaceous particles are a minor constituent of the atmosphere but have a profound effect on air quality, human health, visibility and climate. The importance of carbonaceous particles has been increasingly recognized and become a mainstream topic at numerous conferences. Such was not the case in 1978, when the 1st International Conference on Carbonaceous Particles in the Atmosphere (ICCPA), or ''Carbon Conference'' as it is widely known, was introduced as a new forum to bring together scientists who were just beginning to reveal the importance and complexity of carbonaceous particles in the environment. Table 1 lists the conference dates, venues in the series as well as the proceedings, and special issues resulting form the meetings. Penner and Novakov (Penner and Novakov, 1996) provide an excellent historical perspective to the early ICCPA Conferences. Thirty years later, the ninth in this conference series was held at its inception site, Berkeley, California, attended by 160 scientists from 31 countries, and featuring both new and old themes in 49 oral and 83 poster presentations. Topics covered such areas as historical trends in black carbon aerosol, ambient concentrations, analytic techniques, secondary aerosol formation, biogenic, biomass, and HULIS1 characterization, optical properties, and regional and global climate effects. The conference website, http://iccpa.lbl.gov/, holds the agenda, as well as many presentations, for the 9th ICCPA. The 10th ICCPA is tentatively scheduled for 2011 in Vienna, Austria. The papers in this issue are representative of several of the themes discussed in the conference. Ban-Weiss et al., (Ban-Weiss et al., accepted) measured the abundance of ultrafine particles in a traffic tunnel and found that heavy duty diesel trucks emit at least an order of magnitude more ultrafine particles than light duty gas-powered vehicles per unit of fuel burned. Understanding of this issue is important as ultrafine particles have been shown to

  15. Pretreatment of solid carbonaceous material with dicarboxylic aromatic acids to prevent scale formation

    DOEpatents

    Brunson, Roy J.

    1982-01-01

    Scale formation during the liquefaction of lower ranking coals and similar carbonaceous materials is significantly reduced and/or prevented by pretreatment with a pretreating agent selected from the group consisting of phthalic acid, phthalic anhydride, pyromellitic acid and pyromellitic anhydride. The pretreatment is believed to convert the scale-forming components to the corresponding phthalate and/or pyromellitate prior to liquefaction. The pretreatment is accomplished at a total pressure within the range from about 1 to about 2 atmospheres. Temperature during pretreatment will generally be within the range from about 5.degree. to about 80.degree. C.

  16. Fossils of Cyanobacteria in CI1 Carbonaceous Meteorites: Implications to Life on Comets, Europa, and Enceladus

    NASA Astrophysics Data System (ADS)

    Hoover, Richard B.

    Environmental (ESEM) and Field Emission Scanning Electron Microscopy (FESEM) investigations of the internal surfaces of the CI1 Carbonaceous Meteorites have yielded images of large complex filaments. The filaments have been observed to be embedded in freshly fractured internal surfaces of the stones. They exhibit features (e.g., the size and size ranges of the internal cells and their location and arrangement within sheaths) that are diagnostic of known genera and species of trichomic cyanobacteria and other trichomic prokaryotes such as the filamentous sulfur bacteria. ESEM and FESEM studies of living and fossil cyanobacteria show similar features in uniseriate and multiseriate, branched or unbranched, isodiametric or tapered, polarized or unpolarized filaments with trichomes encased within thin or thick external sheaths. Filaments found in the CI1 meteorites have also been detected that exhibit structures consistent with the specialized cells and structures used by cyanobacteria for reproduction (baeocytes, akinetes and hormogonia), nitrogen fixation (basal, intercalary or apical heterocysts) and attachment or motility (fimbriae). Energy dispersive X-ray Spectroscopy (EDS) studies indicate that the meteorite filaments are typically carbon rich sheaths infilled with magnesium sulfate and other minerals characteristic of the CI1 carbonaceous meteorites. The size, structure, detailed morphological characteristics and chemical compositions of the meteorite filaments are not consistent with known species of minerals. The nitrogen content of the meteorite filaments are almost always below the detection limit of the EDS detector. EDS analysis of terrestrial minerals and biological materials (e.g., fibrous epsomite, filamentous cyanobacteria; mummy and mammoth hair/tissues, and fossils of cyanobacteria, trilobites, insects in amber) indicate that nitrogen remains detectable in biological materials for thousands of years but is undetectable in the ancient fossils. These

  17. Evidence that Polycyclic Aromatic Hydrocarbons in Two Carbonaceous Chondrites Predate Parent-Body Formation

    NASA Technical Reports Server (NTRS)

    Plows, F. L.; Elsila, J. E.; Zare, R. N.; Buseck, P. R.

    2003-01-01

    Organic material in meteorites provides insight into the cosmochemistry of the early solar system. The distribution of polycyclic aromatic hydrocarbons (PAHs) in the Allende and Murchison carbonaceous chondrites was investigated using spatially resolved microprobe laser-desorption laser-ionization mass spectrometry. Sharp chemical gradients of PAHs are associated with specific meteorite features. The ratios of various PAH intensities relative to the smallest PAH, naphthalene, are nearly constant across the sample. These findings suggest a common origin for PAHs dating prior to or contemporary with the formation of the parent body, consistent with proposed interstellar formation mechanisms.

  18. New SSMS Techniques for the Determination of Rhodium and Other Platinum- Group Elements in Carbonaceous Chondrites

    NASA Astrophysics Data System (ADS)

    Jochum, K. P.; Seufert, H. M.

    1995-09-01

    We have developed new spark source mass spectrometric (SSMS) techniques for simultaneous analysis of platinum-group elements (PGE) together with other trace elements in stony meteorites. We have measured elemental abundances of Rh, Ru, Os, Ir, Pt, Au in carbonaceous chondrites of different types including the two CI chondrites Orgueil and Ivuna. These data are relevant for the determination of solar-system abundances. Whereas the solar-system abundances of most PGE are well known, this is not the case for Rh, and no literature data exist for carbonaceous chondrites, mainly because of analytical difficulties. The SSMS techniques include new calibration procedures and the use of a recently developed multi-ion counting (MIC) system [1]. The mono-isotopic element Rh and the other PGE were determined by using internal standard elements (e.g., Nd, U) that were measured by isotope dilution in the same sample electrode material. The data were calibrated with certified standard solutions of PGE which were doped on trace-element poor rock samples. Ion abundances were measured using both the conventional photoplate detection and the ion-counting techniques. The new MIC technique that uses up to 20 small channeltrons for ion counting measurements has the advantage of improved precision, detection limits and analysis time compared to photoplate detection. Tab. 1 shows the Rh analyses for the meteorites Orgueil, Ivuna, Murchison, Allende and Karoonda obtained by conventional photoplate detection. These are the first Rh results for carbonaceous chondrites. The data for the two CI chondrites Orgueil and Ivuna are identical and agree within 4 % with the CI estimate of Anders and Grevesse [2] which was derived indirectly from analyses for H-chondrites. The PGE Os, Ir, Pt, Au and W, Re, Th, U concentrations were determined by both detection systems. Data obtained with the MIC system are more precise (about 4% for concentrations in the ppb range) compared to the photoplate detection

  19. Quenched carbonaceous composite - Fluorescence spectrum compared to the extended red emission observed in reflection nebulae

    NASA Technical Reports Server (NTRS)

    Sakata, Akira; Wada, Setsuko; Narisawa, Takatoshi; Asano, Yoichi; Iijima, Yutaka; Onaka, Takashi; Tokunaga, Alan T.

    1992-01-01

    The photoluminescence (fluorescence) of a film of the laboratory-synthesized quenched carbonaceous composite (filmy QCC) is shown to have a single broad emission feature with a peak wavelength that varies from 670 to 725 nm, and coincides with that of the extended red emission observed in reflection nebulae. The rapid decay of the filmy QCC red fluorescence in air and of the stable blue fluorescence of the filmy QCC dissolved in liquid Freon suggests that the red fluorescence originates from the interaction of active chemical species and aromatic components in the filmy QCC. A material similar in nature to that of the filmy QCC may be a major component of interstellar dust.

  20. Electrical conductivity of carbonaceous chondrites and electric heating of meteorite parent bodies

    NASA Technical Reports Server (NTRS)

    Duba, AL

    1987-01-01

    Electromagnetic heating of rock-forming materials most probably was an important process in the early history of the solar system. Electrical conductivity experiments of representative materials such as carbonaceous chondrites are necessary to obtain data for use in electromagnetic heating models. With the assumption that carbon was present at grain boundaries in the material that comprised the meteorite parent bodies, the electrical heating of such bodies was calculated as a function of body size and solar distance using the T-Tauri model of Sonett and Herbert (1977). The results are discussed.

  1. Cobalt-rich, nickel-poor metal (wairauite) in the Ningqiang carbonaceous chondrite

    NASA Technical Reports Server (NTRS)

    Xin, Hua; Eisenhour, Don D.; Buseck, Peter R.

    1995-01-01

    A structurally ordered cubic metal grain containing approximately 39 wt% Co, 61 wt% Fe, and less than 0.6 wt% Ni (approximately Fe3Co2) was found associated with troilite and pentlandite in the matrix of the Ningqiang carbonaceous chondrite. This mineral is similar to terrestrial wairauite. Experimental data in the Fe-Co system indicate that this CsCl-type Co-rich metal is stable below 700 C. Phase relations in the Fe-Co-Ni system show that Co cannot fractionate from Ni above 500 C. The dominant opaque minerals of awaruite, magnetite, and pentlandite in Ningqiang suggest relatively oxidizing conditions.

  2. Biochemical Analysis of Protein SUMOylation

    PubMed Central

    Alontaga, Aileen Y.; Bobkova, Ekaterina; Chen, Yuan

    2012-01-01

    SUMOylation, the covalent attachment of Small Ubiquitin-like MOdifier (SUMO) polypeptides to other proteins, is among the most important post-translational modifications that regulate the functional properties of a large number of proteins. SUMOylation is broadly involved in cellular processes such as gene transcription, hormone response, signal transduction, DNA repair and nuclear transport. SUMO modification has also been implicated in the pathogenesis of human diseases, such as cancer, neurodegenerative disorders and viral infection. Attachment of a SUMO protein to another protein is carried out in multiple steps catalyzed by three enzymes. This unit describes and discusses the in vitro biochemical methods used for investigating each step of the SUMOylation process. In addition, a high throughput screening protocol is included for the identification of inhibitors of SUMOylation. PMID:22870855

  3. Biochemical markers of acute pancreatitis.

    PubMed

    Matull, W R; Pereira, S P; O'Donohue, J W

    2006-04-01

    Serum amylase remains the most commonly used biochemical marker for the diagnosis of acute pancreatitis, but its sensitivity can be reduced by late presentation, hypertriglyceridaemia, and chronic alcoholism. Urinary trypsinogen-2 is convenient, of comparable diagnostic accuracy, and provides greater (99%) negative predictive value. Early prediction of the severity of acute pancreatitis can be made by well validated scoring systems at 48 hours, but the novel serum markers procalcitonin and interleukin 6 allow earlier prediction (12 to 24 hours after admission). Serum alanine transaminase >150 IU/l and jaundice suggest a gallstone aetiology, requiring endoscopic retrograde cholangiopancreatography. For obscure aetiologies, serum calcium and triglycerides should be measured. Genetic polymorphisms may play an important role in "idiopathic" acute recurrent pancreatitis.

  4. Hyponatraemia: biochemical and clinical perspectives.

    PubMed Central

    Gill, G.; Leese, G.

    1998-01-01

    Hyponatraemia is a common bio-chemical abnormality, occurring in about 15% of hospital inpatients. It is often associated with severe illness and relatively poor outcome. Pathophysiologically, hyponatraemia may be spurious, dilutional, depletional or redistributional. Particularly difficult causes and concepts of hyponatraemia are the syndrome of inappropriate antidiuresis and the sick cell syndrome, which are discussed here in detail. Therapy should always be targeted at the underlying disease process. 'Hyponatraemic symptoms' are of doubtful importance, and may be more related to water overload and/or the causative disease, than to hyponatraemia per se. Artificial elevation of plasma sodium by saline infusion carries the risk of induction of osmotic demyelination (central pontine myelinolysis). PMID:10211323

  5. Diagnosis of hyperandrogenism: biochemical criteria.

    PubMed

    Stanczyk, Frank Z

    2006-06-01

    Biochemical derangements in ovarian, adrenal, and peripheral androgen production and metabolism play an important role in underlying causes of hyperandrogenism. Specific diagnostic serum markers such as testosterone (total) and dehydroepiandrosterone sulfate (DHEAS), respectively, may be helpful in the diagnosis of ovarian and adrenal hyperandrogenism, respectively. Validated immunoassays or mass spectrometry assays should be used to quantify testosterone, DHEAS and other principal androgens. Free testosterone measurements, determined by equilibrium dialysis or the calculated method, are advocated for routine evaluation of more subtle forms of hyperandrogenism. The skin, with its pilosebaceous units (PSUs), is an important site of active androgen production. A key regulator in PSUs is 5alpha-reductase, which transforms testosterone or androstenedione to dihydrotestosterone (DHT). DHT in blood is not effective in indicating the presence of hyperandrogenism. However, distal metabolites of DHT have been shown to be good markers of clinical manifestations of hirsutism, acne and alopecia. Assays for these peripheral markers need improvement for routine clinical testing. PMID:16772150

  6. Double-blind randomized study comparing the efficacies and safeties of a short (3-day) course of azithromycin and a 5-day course of amoxicillin in patients with acute exacerbations of chronic bronchitis.

    PubMed Central

    Mertens, J C; van Barneveld, P W; Asin, H R; Ligtvoet, E; Visser, M R; Branger, T; Hoepelman, A I

    1992-01-01

    The efficacies and safeties of a three-dose regimen of azithromycin (500 mg once daily for 3 days) and a 15-dose regimen of amoxicillin (500 mg three times daily for 5 days) were compared in a double-blind manner in patients with an acute exacerbation of chronic bronchitis. A total of 92% of patients suffered a type 1 exacerbation. Treatment success, defined as cure or major improvement, was achieved in all patients in the azithromycin group by day 5, compared with 23 (92%) of 25 patients in the amoxicillin group. On day 12, these data were 24 of 25 (96%) in the azithromycin group and 20 of 25 (80%) in the amoxicillin group (results were not significantly different). Several pathogens were isolated (MIC ranges [micrograms per milliliter] in parentheses): Haemophilus influenzae or Haemophilus parainfluenzae was isolated 23 times (azithromycin, less than or equal to 0.06 to 32; amoxicillin, 0.12 to 2); Streptococcus pneumoniae was isolated from 11 patients (azithromcyin, less than or equal to 0.06 greater than 256; amoxicillin, less than or equal to 0.06 to 0.25); Moraxella (Branhamella) catarrhalis was isolated from eight patients (azithromycin, less than or equal to 0.06; amoxicillin, less than or equal to 0.06 to 16); and other members of the family Enterobacteriaceae were isolated from eight patients. One patient treated with azithromycin had Legionella pneumophila pneumonia, and another in that group had a significant rise in titer of antibody against influenza A virus. One patient treated with amoxicillin also had a significant rise in titer of antibody against influenza A virus. Microbiological response rates were comparable. One patient who received azithromycin developed abnormal liver function. Two patients treated with amoxicillin developed abnormal liver functions, one developed exanthema, and one treatment was stopped because of nausea. It is concluded that a three-dose (3-day) regimen of azithromycin is as effective clinically and microbiologically as a

  7. Direct contact cytotoxicity assays for filter-collected, carbonaceous (soot) nanoparticulate material and observations of lung cell response

    NASA Astrophysics Data System (ADS)

    Soto, K. F.; Garza, K. M.; Shi, Y.; Murr, L. E.

    A simple, direct contact, cytotoxicity (in vitro) assay has been developed where particulate matter (PM) collected on glass fiber filters was exposed to human epithelial (lung) cells. Carbonaceous (soot) PM included tire, wood, diesel, candle, and variously combusted natural gas PM from a kitchen stove range. Black carbon PM and a commercial multiwall carbon nanotube aggregate PM was also examined in vitro as surrogate materials, and all experimental PM was characterized by field emission scanning electron microscopy and transmission electron microscopy. Assay results for 48 h cultures showed toxicity for all carbonaceous PM with various natural gas PM being the most toxic; this was comparable to the toxicity induced by the surrogate PM. Light microscopy examination of affected epithelial cells confirmed the semi-quantitative results. Comparison of polycyclic aromatic hydrocarbon (PAH) content and concentration for the carbonaceous PM showed no PAH correlation with relative cell viability (cell death) after 48 h.

  8. Mixing state of aerosols and direct observation of carbonaceous and marine coatings on African dust by individual particle analysis

    NASA Astrophysics Data System (ADS)

    Deboudt, Karine; Flament, Pascal; ChoëL, Marie; Gloter, Alexandre; Sobanska, Sophie; Colliex, Christian

    2010-12-01

    The mixing state of aerosols collected at M'Bour, Senegal, during the Special Observing Period conducted in January-February 2006 (SOP-0) of the African Monsoon Multidisciplinary Analysis project (AMMA), was studied by individual particle analysis. The sampling location on the Atlantic coast is particularly adapted for studying the mixing state of tropospheric aerosols since it is (1) located on the path of Saharan dust plumes transported westward over the northern tropical Atlantic, (2) influenced by biomass burning events particularly frequent from December to March, and (3) strongly influenced by anthropogenic emissions from polluted African cities. Particle size, morphology, and chemical composition were determined for 12,672 particles using scanning electron microscopy (automated SEM-EDX). Complementary analyses were performed using transmission electron microscopy combined with electron energy loss spectrometry (TEM-EELS) and Raman microspectrometry. Mineral dust and carbonaceous and marine compounds were predominantly found externally mixed, i.e., not present together in the same particles. Binary internally mixed particles, i.e., dust/carbonaceous, carbonaceous/marine, and dust/marine mixtures, accounted for a significant fraction of analyzed particles (from 10.5% to 46.5%). Western Sahara was identified as the main source of mineral dust. Two major types of carbonaceous particles were identified: "tar balls" probably coming from biomass burning emissions and soot from anthropogenic emissions. Regarding binary internally mixed particles, marine and carbonaceous compounds generally formed a coating on mineral dust particles. The carbonaceous coating observed at the particle scale on African dust was evidenced by the combined use of elemental and molecular microanalysis techniques, with the identification of an amorphous rather than crystallized carbon structure.

  9. On the effect of gold nanoparticles loading within carbonaceous macro-mesocellular foams toward lithium-sulfur battery performances

    NASA Astrophysics Data System (ADS)

    Depardieu, Martin; Demir-Cakan, Rezan; Sanchez, Clément; Birot, Marc; Deleuze, Hervé; Morcrette, Mathieu; Backov, Rénal

    2016-05-01

    Novel carbonaceous monolith foams loaded with gold nanoparticles have been synthesized and thoroughly characterized over several length scale. Their Li-S battery electrode capabilities have been assessed and compared while varying the gold loading and subsequently the specific surface area. Their capacities expressed in either mass (mA h g-1) or volume (mA h cm-3) dimensions have shown that specific surface area and nanoparticles loading are acting in a strong partitioning mode, rather than a cooperative mode, which does not favor the use of gold nanoparticles loading as efficient incremental path toward optimizing porous carbonaceous-based Li-S battery electrodes.

  10. Filamentous Trichomic Prokaryotes in Carbonaceous Meteorites: Indigenous Microfossils, Minerals, or Modern Bio-Contaminants?

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Rozanov, Alexei Yu.

    2011-01-01

    Large complex filaments have been detected in freshly fractured interior surfaces of a variety of carbonaceous meteorites. Many exhibit the detailed morphological and morphometric characteristics of known filamentous trichomic prokaryotic microorganisms. In this paper we review prior studies of filamentous microstructures encountered in the meteorites along with the elemental compositions and characteristics of the, fibrous evaporite minerals and filamentous cyanobacteria and homologous trichomic sulfur bacteria. The meteorite images and elemental compositions will compared with data obtained with the same instruments for abiotic microstructures and living and fossil microorganisms in order to evaluate the relative merits of the alternate hypotheses that have been advanced to explain the nature and characteristics of the meteorite filaments. The possibiility that the filaments found in the meteorites may be comprise modern bio-contaminants will be evaluated in light of their observed elemental compositions and data by other researchers on the detection of indigenous complex organic biosignatures, and extraterrestrial amino acids and nucleobases found in the Murchison CM2 and the Orgueil CI1 carbonaceous meteorites.

  11. Derivation of optical properties of carbonaceous aerosols by monochromated electron energy-loss spectroscopy.

    PubMed

    Zhu, Jiangtao; Crozier, Peter A; Ercius, Peter; Anderson, James R

    2014-06-01

    Monochromated electron energy-loss spectroscopy (EELS) is employed to determine the optical properties of carbonaceous aerosols from the infrared to the ultraviolet region of the spectrum. It is essential to determine their optical properties to understand their accurate contribution to radiative forcing for climate change. The influence of surface and interface plasmon effects on the accuracy of dielectric data determined from EELS is discussed. Our measurements show that the standard thin film formulation of Kramers-Kronig analysis can be employed to make accurate determination of the dielectric function for carbonaceous particles down to about 40 nm in size. The complex refractive indices of graphitic and amorphous carbon spherules found in the atmosphere were determined over the wavelength range 200-1,200 nm. The graphitic carbon was strongly absorbing black carbon, whereas the amorphous carbon shows a more weakly absorbing brown carbon profile. The EELS approach provides an important tool for exploring the variation in optical properties of atmospheric carbon. PMID:24735494

  12. A carbon and nitrogen isotope study of carbonaceous vein material in ureilite meteorites

    NASA Technical Reports Server (NTRS)

    Russell, S. S.; Arden, J. W.; Franchi, I. A.; Pillinger, C. T.

    1993-01-01

    The ureilite meteorite group is known to be rich in carbon in the form of graphite/diamond veins that are associated with planetary type noble gases. This paper reports preliminary data from a systematic study of the carbon and nitrogen isotopic composition of this carbonaceous vein material. A previous study focused on the whole rock signatures and reported that the carbon inventory appeared to be dominated by the graphitic/diamond intergrowths, whereas the nitrogen was clearly composed of several distinct components including one that was isotopically light, possibly associated with the carbonaceous material. Recent studies have demonstrated that diamonds in the solar system formed in many different environments. C and N measurements from ureilitic diamond made in a similar way would be a useful addition to this overall study. The methods used for isolating diamonds of possible presolar origin from primitive meteorites are equally applicable to the processing of carbon bearing components in the ureilite group so that their stable isotopic composition can be determined. Herein we discuss conjoint C and N stepped combustion measurements made on crushed whole rock ureilite samples that have been treated with 1M HCl/9M HF to dissolve silicate and free metal. In addition, two samples have been further treated with oxidizing acids to leave a diamond rich residue.

  13. Enantiomer excesses of rare and common sugar derivatives in carbonaceous meteorites

    NASA Astrophysics Data System (ADS)

    Cooper, George; Rios, Andro C.

    2016-06-01

    Biological polymers such as nucleic acids and proteins are constructed of only one—the d or l—of the two possible nonsuperimposable mirror images (enantiomers) of selected organic compounds. However, before the advent of life, it is generally assumed that chemical reactions produced 50:50 (racemic) mixtures of enantiomers, as evidenced by common abiotic laboratory syntheses. Carbonaceous meteorites contain clues to prebiotic chemistry because they preserve a record of some of the Solar System’s earliest (˜4.5 Gy) chemical and physical processes. In multiple carbonaceous meteorites, we show that both rare and common sugar monoacids (aldonic acids) contain significant excesses of the d enantiomer, whereas other (comparable) sugar acids and sugar alcohols are racemic. Although the proposed origins of such excesses are still tentative, the findings imply that meteoritic compounds and/or the processes that operated on meteoritic precursors may have played an ancient role in the enantiomer composition of life’s carbohydrate-related biopolymers.

  14. Young Pb-Isotopic Ages of Chondrules in CB Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Amelin, Yuri; Krot, Alexander N.

    2005-01-01

    CB (Bencubbin-type) carbonaceous chondrites differ in many ways from more familiar CV and CO carbonaceous chondrites and from ordinary chondrites. CB chondrites are very rich in Fe-Ni metal (50-70 vol%) and contain magnesian silicates mainly as angular to sub-rounded clasts (or chondrules) with barred olivine (BO) or cryptocrystalline (CC) textures. Both metal and silicates appear to have formed by condensation. The sizes of silicate clasts vary greatly between the two subgroups of CB chondrites: large (up to one cm) in CB(sub a) chondrites, and typically to much much less than 1 mm in CB(sub b) chondrites. The compositional and mineralogical differences between these subgroups and between the CB(sub s) and other types of chondrites suggest different environment and possibly different timing of chondrule formation. In order to constrain the timing of chondrule forming processes in CB(sub s) and understand genetic relationship between their subgroups, we have determined Pb-isotopic ages of silicate material from the CB(sub a) chondrite Gujba and CB(sub b) chondrite Hammadah al Hamra 237 (HH237 hereafter).

  15. Role of air bubbles overlooked in the adsorption of perfluorooctanesulfonate on hydrophobic carbonaceous adsorbents.

    PubMed

    Meng, Pingping; Deng, Shubo; Lu, Xinyu; Du, Ziwen; Wang, Bin; Huang, Jun; Wang, Yujue; Yu, Gang; Xing, Baoshan

    2014-12-01

    Hydrophobic interaction has been considered to be responsible for adsorption of perfluorooctanesulfonate (PFOS) on the surface of hydrophobic adsorbents, but the long C-F chain in PFOS is not only hydrophobic but also oleophobic. In this study, for the first time we propose that air bubbles on the surface of hydrophobic carbonaceous adsorbents play an important role in the adsorption of PFOS. The level of adsorption of PFOS on carbon nanotubes (CNTs), graphite (GI), graphene (GE), and powdered activated carbon (PAC) decreases after vacuum degassing. Vacuum degassing time and pressure significantly affect the removal of PFOS by these adsorbents. After vacuum degassing at 0.01 atm for 36 h, the extent of removal of PFOS by the pristine CNTs and GI decreases 79% and 74%, respectively, indicating the main contribution of air bubbles to PFOS adsorption. When the degassed solution is recontacted with air during the adsorption process, the removal of PFOS recovers to the value obtained without vacuum degassing, further verifying the key role of air bubbles in PFOS adsorption. By theoretical calculation, the distribution of PFOS in air bubbles on the adsorbent surfaces is discussed, and a new schematic sorption model of PFOS on carbonaceous adsorbents in the presence of air bubbles is proposed. The accumulation of PFOS at the interface of air bubbles on the adsorbents is primarily responsible for its adsorption, providing a new mechanistic insight into the transport, fate, and removal of PFOS. PMID:25365738

  16. Characterization of the carbonaceous materials obtained from different agro-industrial wastes.

    PubMed

    Ensuncho-Muñoz, A E; Carriazo, J G

    2015-01-01

    This paper reports the preparation and characterization of carbonaceous materials obtained from three types of vegetable wastes provided by agricultural industries. Soft carbonization (280°C) and H3PO4-activation procedures were used to convert the agricultural wastes to carbon powders with high adsorbent capacities. This process is excellent for eliminating and exploiting the huge masses (many tons) of vegetable residues remaining after each harvest every year in several Colombian agro-industries. The powders were characterized by X-ray diffraction (XRD), IR spectroscopy, scanning electron microscopy (SEM), and N2-adsorption isotherms. XRD and IR verified the formation of carbons, and SEM showed small particles (20-500 µm) with characteristic morphology for each type of residue used and abundant cavities of different sizes. The N2-adsorption analyses showed that the carbons had high adsorption capacities with important surface area values and large pore volumes. The use of the activated carbonaceous materials as adsorbent of azo dyes (allura red and sunset yellow) from aqueous solutions was evaluated. The results showed a good adsorption capacity indicating the potentiality of these materials as pollutant adsorbents in food industry wastewaters. These results indicate that these powders can be used as potential adsorbents for different gaseous or liquid pollutants.

  17. A plausible link between the asteroid 21 Lutetia and CH carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Moyano-Cambero, Carles E.; Trigo-Rodriguez, Josep M.; Llorca, Jordi; Fornasier, Sonia; Barucci, Maria A.; Rimola, Albert

    2016-08-01

    A crucial topic in planetology research is establishing links between primitive meteorites and their parent asteroids. In this study, we investigate the feasibility of a connection between asteroids similar to 21 Lutetia, encountered by the Rosetta mission in July 2010, and the CH3 carbonaceous chondrite Pecora Escarpment 91467 (PCA 91467). Several spectra of this meteorite were acquired in the ultraviolet to near-infrared (0.3-2.2 μm) and in the midinfrared to thermal infrared (2.5-30.0 μm or 4000 to ~333 cm-1), and they are compared here to spectra from the asteroid 21 Lutetia. There are several similarities in absorption bands and overall spectral behavior between this CH3 meteorite and 21 Lutetia. Considering also that the bulk density of Lutetia is similar to that of CH chondrites, we suggest that this asteroid could be similar, or related to, the parent body of these meteorites, if not the parent body itself. However, the apparent surface diversity of Lutetia pointed out in previous studies indicates that it could simultaneously be related to other types of chondrites. Future discovery of additional unweathered CH chondrites could provide deeper insight in the possible connection between this family of metal-rich carbonaceous chondrites and 21 Lutetia or other featureless, possibly hydrated high-albedo asteroids.

  18. Structure and Bonding of Carbon in Clays from CI Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Garview, Laurence a. J.; Buseck, Peter R.

    2005-01-01

    Carbonaceous chondrites (CC) contain a diverse suite of C-rich materials. Acid dissolution of these meteorites leaves a C-rich residue with chemical and structural affinities to kerogen. This material has primarily been analyzed in bulk, and much information has been provided regarding functional groups and elemental and isotopic compositions. However, comparatively little work has been done on C in unprocessed meteorites. Studies of CCs suggest a spatial relationship of some C-rich materials with products of aqueous alteration. Recent studies revealed discrete submicronsized, C-rich particles in Tagish Lake and a range of CM2 meteorites. A challenge is to correlate the findings from the bulk acid-residue studies with those of high-spatial resolution-mineralogical and spectroscopic observations of unprocessed meteorites. Hence, the relationship between the C-rich materials in the acid residues and its form and locations in the unprocessed meteorite remains unclear. Here we provide information on the structure and bonding of C associated with clays in CI carbonaceous chondrites. Additional information is included in the original extended abstract.

  19. Localized Chemical Redistribution During Aqueous Alteration in CR2 Carbonaceous Chondrites EET 87770 and EET 92105

    NASA Technical Reports Server (NTRS)

    Burger, Paul V.; Brearley, Adrian J.

    2005-01-01

    Carbonaceous chondrites are primitive meteorites that are valuable because they preserve evidence of processes that occurred in the solar nebula and on asteroidal parent bodies. Among the carbonaceous chondrite groups, the CR group appears to contain a particularly pristine record of early solar system processes. Distinguishing characteristics of CR2 chondrites include a high abundance of chondrules (50-60 vol.%) and Fe, Ni metal (5-8 vol. %). These meteorites preserve evidence for varying degrees of aqueous alteration, manifested by progressive replacement of chondrule mesostasis by phyllosilicates. Recent studies have suggested that even in weakly altered chondrites, mass transfer occurred between chondrules and fine-grained matrices, implying that aqueous alteration must have followed lithification of the final meteorite parent body. Although petrographic characteristics of alteration in CR chondrites have been documented, mechanisms of alteration are still only poorly understood. For example, the relative rates and scales of elemental mobility as well as the sources and sinks for key elements are currently not constrained. An improved knowledge of these issues will contribute to an increased understanding of aqueous alteration reactions on meteorite parent bodies. This study expands on research conducted on Type IIA chondrules and chondrule fragments from two CR2 chondrites, EET 87770 and EET 92105. These chondrites have been weakly altered; chondrule mesostases show incipient alteration primarily where they are in direct contact with fine-grained matrices.

  20. Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite

    DOE PAGES

    Doyle, Patricia M.; Jogo, Kaori; Nagashima, Kazuhide; Krot, Alexander N.; Wakita, Shigeru; Ciesla, Fred J.; Hutcheon, Ian D.

    2015-06-23

    Here, chronology of aqueous activity on chondrite parent bodies constrains their accretion times and thermal histories. Radiometric 53Mn–53Cr dating has been successfully applied to aqueously formed carbonates in CM carbonaceous chondrites. Owing to the absence of carbonates in ordinary (H, L and LL), and CV and CO carbonaceous chondrites, and the lack of proper standards, there are no reliable ages of aqueous activity on their parent bodies. Here we report the first 53Mn–53Cr ages of aqueously formed fayalite in the L3 chondrite Elephant Moraine 90161 as 2.4 +1.8-1.3 Myr after calcium–aluminium-rich inclusions (CAIs), the oldest Solar System solids. In addition,more » measurements using our synthesized fayalite standard show that fayalite in the CV3 chondrite Asuka 881317 and CO3-like chondrite MacAlpine Hills 88107 formed and 4.2+0.8-0.7 Myr after CAIs, respectively. Thermal modelling, combined with the inferred conditions (temperature and water/rock ratio) and 53Mn–53Cr ages of aqueous alteration, suggests accretion of the L, CV and CO parent bodies ~1.8–2.5 Myr after CAIs.« less

  1. Why are carbonaceous grains unaligned in the ISM? - HAWC+ polarimetry of IRC+10216

    NASA Astrophysics Data System (ADS)

    Andersson, B.-G.

    2015-10-01

    Polarization due to aligned dust grains is a well-known tool for probing interstellar magnetic fields. The detailed physics of the grain alignment mechanism has, however, been poorly understood and it's only in the last decade that the promise of a quantitative, observationally supported, theory has emerged. A well-tested alignment theory would allow dust polarimetry to more securely probe the magnetic fields, but also to address issues of grain size distributions, mineralogy, and environmental parameters. Radiative Alignment Torque (RAT) theory predicts that asymmetric dust grain are spun up and, if paramagnetic, aligned with the magnetic field, through interaction with the radiation field. The theory provides a number of quantitative predictions, many of which are supported by observations. One - as of yet untested - prediction would resolve the conundrum of why carbonaceous dust does not contribute to ISM polarization. Under RAT alignment carbonaceous grains are spun-up by the radiation but, because such dust is diamagnetic, does not align with the magnetic field. The theory, however, also predicts that for an intense, highly anisotropic radiation field, the grains will align with the radiation. We will test this prediction by performing HAWC+ polarimetry of the carbon rich circumstellar envelope of IRC+10216.

  2. [Study on pollution characteristics of carbonaceous aerosols in Xi'an City during the spring festival].

    PubMed

    Zhou, Bian-Hong; Zhang, Cheng-Zhong; Wang, Ge-Hui

    2013-02-01

    The samples of PM2.5 with 8 times periods were collected using Automated Cartridge Collection Unit (ACCU) of Rupprecht& Patashnick (R&P)Corporation, and monitored by R&P1400a instrument of TEOM series online during 2011 Spring Festival in Xi'an city. The organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC) and water-insoluble organic carbon (WIOC) contents of 3 h integrated PM2.5 were analyzed to evaluate the influence of firework display on the carbonaceous components in urban air. The mass concentration of PM2.5 was found increased significantly from 00:00 A. M. to 02:59 A. M. at the Chinese Lunar New Year's Eve than the non-firework periods, reaching 1514.8 microg.m-3 at 01:00 A. M. The mass concentrations of OC, EC, WSOC, and WIOC during the same time period were 123.3 microg.m-3, 18.6 microg.m-3, 66.7 microg.m-3, and 56.6 microg.m-3, about 1.7, 1.2, 1.4, and 2.2 times higher than the average in normal days, respectively. Correlation analysis among WSOC, OC, and EC contents in PM25 showed that firework emission was an obvious source of carbonaceous aerosol in the Spring Festival vacation. However, it only contributes to 9. 4% for aerosol in fireworks emission.

  3. Precursor soot synthesis of fullerenes and nanotubes without formation of carbonaceous soot

    DOEpatents

    Reilly, Peter T. A.

    2007-03-20

    The present invention is a method for the synthesis of fullerenes and/or nanotubes from precursor soot without the formation of carbonaceous soot. The method comprises the pyrolysis of a hydrocarbon fuel source by heating the fuel source at a sufficient temperature to transform the fuel source to a condensed hydrocarbon. The condensed hydrocarbon is a reaction medium comprising precursor soot wherein hydrogen exchange occurs within the reaction medium to form reactive radicals which cause continuous rearrangement of the carbon skeletal structure of the condensed hydrocarbon. Then, inducing dehydrogenation of the precursor soot to form fullerenes and/or nanotubes free from the formation of carbonaceous soot by continued heating at the sufficient temperature and by regulating the carbon to hydrogen ratio within the reaction medium. The dehydrogenation process produces hydrogen gas as a by-product. The method of the present invention in another embodiment is also a continuous synthesis process having a continuous supply of the fuel source. The method of the present invention can also be a continuous cyclic synthesis process wherein the reaction medium is fed back into the system as a fuel source after extraction of the fullerenes and/or nanotube products. The method of the present invention is also a method for producing precursor soot in bulk quantity, then forming fullerenes and/or nanotubes from the precursor bulk.

  4. Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite

    NASA Astrophysics Data System (ADS)

    Doyle, Patricia M.; Jogo, Kaori; Nagashima, Kazuhide; Krot, Alexander N.; Wakita, Shigeru; Ciesla, Fred J.; Hutcheon, Ian D.

    2015-06-01

    Chronology of aqueous activity on chondrite parent bodies constrains their accretion times and thermal histories. Radiometric 53Mn-53Cr dating has been successfully applied to aqueously formed carbonates in CM carbonaceous chondrites. Owing to the absence of carbonates in ordinary (H, L and LL), and CV and CO carbonaceous chondrites, and the lack of proper standards, there are no reliable ages of aqueous activity on their parent bodies. Here we report the first 53Mn-53Cr ages of aqueously formed fayalite in the L3 chondrite Elephant Moraine 90161 as Myr after calcium-aluminium-rich inclusions (CAIs), the oldest Solar System solids. In addition, measurements using our synthesized fayalite standard show that fayalite in the CV3 chondrite Asuka 881317 and CO3-like chondrite MacAlpine Hills 88107 formed and Myr after CAIs, respectively. Thermal modelling, combined with the inferred conditions (temperature and water/rock ratio) and 53Mn-53Cr ages of aqueous alteration, suggests accretion of the L, CV and CO parent bodies ~1.8-2.5 Myr after CAIs.

  5. Correlating Mineralogy and Amino Acid Contents of Milligram-Scale Murchison Carbonaceous Chondrite Samples

    NASA Technical Reports Server (NTRS)

    Burton, Aaron, S.; Berger, Eve L.; Locke, Darren R.; Elsila, Jamie E.; Glavin, Daniel P.; Dworkin, Jason P.

    2015-01-01

    Amino acids, the building blocks of proteins, have been found to be indigenous in most of the carbonaceous chondrite groups. The abundances of amino acids, as well as their structural, enantiomeric and isotopic compositions differ significantly among meteorites of different groups and petrologic types. This suggests that there is a link between parent-body conditions, mineralogy and the synthesis and preservation of amino acids (and likely other organic molecules). However, elucidating specific causes for the observed differences in amino acid composition has proven extremely challenging because samples analyzed for amino acids are typically much larger ((is) approximately 100 mg powders) than the scale at which meteorite heterogeneity is observed (sub mm-scale differences, (is) approximately 1-mg or smaller samples). Thus, the effects of differences in mineralogy on amino acid abundances could not be easily discerned. Recent advances in the sensitivity of instrumentation have made possible the analysis of smaller samples for amino acids, enabling a new approach to investigate the link between mineralogical con-text and amino acid compositions/abundances in meteorites. Through coordinated mineral separation, mineral characterization and highly sensitive amino acid analyses, we have performed preliminary investigations into the relationship between meteorite mineralogy and amino acid composition. By linking amino acid data to mineralogy, we have started to identify amino acid-bearing mineral phases in different carbonaceous meteorites. The methodology and results of analyses performed on the Murchison meteorite are presented here.

  6. The Chromium Isotopic Composition of the Ungrouped Carbonaceous Chondrite Tagish Lake

    NASA Astrophysics Data System (ADS)

    Petitat, M.; Birck, J.-L.; Luu, T. H.; Gounelle, M.

    2011-07-01

    Early solar materials bear a variety of isotopic anomalies that reflect compositional differences deriving from distinct stellar nucleosynthetic processes. As shown in previous studies, the stepwise dissolution with increasing acid strengths of bulk rock carbonaceous chondrites liberates Cr with both excesses and deficits in 53Cr and 54Cr relative to the terrestrial standard. The magnitude of the 54Cr variations within a meteorite decreases in the sequence CI1 > CR2 > CM2 > CV3 > CO3 > CK4 and correlates with the degree of metamorphism of each carbonaceous chondrite class. This study shows that the Tagish Lake meteorite presents the highest excesses in 54Cr ever measured in a bulk silicate phase. According to this study, the Tagish Lake meteorite is composed of the least re-equilibrated material known at this time. The magnitude of 54Cr variation decreases now in the following sequence: Tagish Lake (ungrouped CI2) > Orgueil (CI1) > Murchison (CM2) > Allende (CV2). Moreover, this study shows that excesses in 53Cr relative to Earth can be interpreted as representing the extent of aqueous alteration on meteorite parent bodies. Finally, the high 54Cr anomalies measured in this meteorite make Tagish Lake one of the major targets to decipher the host of these anomalies.

  7. [Study on pollution characteristics of carbonaceous aerosols in Xi'an City during the spring festival].

    PubMed

    Zhou, Bian-Hong; Zhang, Cheng-Zhong; Wang, Ge-Hui

    2013-02-01

    The samples of PM2.5 with 8 times periods were collected using Automated Cartridge Collection Unit (ACCU) of Rupprecht& Patashnick (R&P)Corporation, and monitored by R&P1400a instrument of TEOM series online during 2011 Spring Festival in Xi'an city. The organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC) and water-insoluble organic carbon (WIOC) contents of 3 h integrated PM2.5 were analyzed to evaluate the influence of firework display on the carbonaceous components in urban air. The mass concentration of PM2.5 was found increased significantly from 00:00 A. M. to 02:59 A. M. at the Chinese Lunar New Year's Eve than the non-firework periods, reaching 1514.8 microg.m-3 at 01:00 A. M. The mass concentrations of OC, EC, WSOC, and WIOC during the same time period were 123.3 microg.m-3, 18.6 microg.m-3, 66.7 microg.m-3, and 56.6 microg.m-3, about 1.7, 1.2, 1.4, and 2.2 times higher than the average in normal days, respectively. Correlation analysis among WSOC, OC, and EC contents in PM25 showed that firework emission was an obvious source of carbonaceous aerosol in the Spring Festival vacation. However, it only contributes to 9. 4% for aerosol in fireworks emission. PMID:23668108

  8. Chemical compositions and classifica tion of five thermally altered carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Noronha, Bianca A.; Friedrich, Jon M.

    2014-08-01

    To establish the chemical group provenance of the five thermally altered carbonaceous chondrites Asuka (A-) 881551, Asuka-882113, Elephant Moraine (EET) 96026, Mulga (west), and Northwest Africa (NWA) 3133, we quantified 44 trace elements in each of them. We also analyzed Larkman Nunatak (LAR) 04318 (CK4), Miller Range (MIL) 090001 (CR2), Roberts Massif (RBT) 03522 (CK5) as reference samples as their chemical group affinity is already recognized. We conclude that Asuka-881551, Asuka-882113, and Mulga (west) are thermally metamorphosed CK chondrites. Compositionally, Elephant Moraine 96026 most resembles the CV chondrites. NWA 3133 is the most significantly thermally altered carbonaceous chondrite in our suite of samples. It is completely recrystallized (no chondrules or matrix remain), but its bulk composition is consistent with a CV-CK clan provenance. The thermally labile element (e.g., Se, Te, Zn, and Bi) depletion in NWA 3133 indicates a chemically open system during the heating episode. It remains unclear if the heat necessary for its thermal alteration of NWA 3133 was due to the decay of 26Al or was impact related. Finally, we infer that MIL 090001, Mulga (west), and NWA 3133 show occasional compositional signatures indicative of terrestrial alteration. The alteration is especially evident within the elements Sr, Ba, La, Ce, Th, U, and possibly Sb. Despite the alteration, we can still confidently place each of the altered chondrites within an established chemical group or clan.

  9. Role of air bubbles overlooked in the adsorption of perfluorooctanesulfonate on hydrophobic carbonaceous adsorbents.

    PubMed

    Meng, Pingping; Deng, Shubo; Lu, Xinyu; Du, Ziwen; Wang, Bin; Huang, Jun; Wang, Yujue; Yu, Gang; Xing, Baoshan

    2014-12-01

    Hydrophobic interaction has been considered to be responsible for adsorption of perfluorooctanesulfonate (PFOS) on the surface of hydrophobic adsorbents, but the long C-F chain in PFOS is not only hydrophobic but also oleophobic. In this study, for the first time we propose that air bubbles on the surface of hydrophobic carbonaceous adsorbents play an important role in the adsorption of PFOS. The level of adsorption of PFOS on carbon nanotubes (CNTs), graphite (GI), graphene (GE), and powdered activated carbon (PAC) decreases after vacuum degassing. Vacuum degassing time and pressure significantly affect the removal of PFOS by these adsorbents. After vacuum degassing at 0.01 atm for 36 h, the extent of removal of PFOS by the pristine CNTs and GI decreases 79% and 74%, respectively, indicating the main contribution of air bubbles to PFOS adsorption. When the degassed solution is recontacted with air during the adsorption process, the removal of PFOS recovers to the value obtained without vacuum degassing, further verifying the key role of air bubbles in PFOS adsorption. By theoretical calculation, the distribution of PFOS in air bubbles on the adsorbent surfaces is discussed, and a new schematic sorption model of PFOS on carbonaceous adsorbents in the presence of air bubbles is proposed. The accumulation of PFOS at the interface of air bubbles on the adsorbents is primarily responsible for its adsorption, providing a new mechanistic insight into the transport, fate, and removal of PFOS.

  10. Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite.

    PubMed

    Doyle, Patricia M; Jogo, Kaori; Nagashima, Kazuhide; Krot, Alexander N; Wakita, Shigeru; Ciesla, Fred J; Hutcheon, Ian D

    2015-01-01

    Chronology of aqueous activity on chondrite parent bodies constrains their accretion times and thermal histories. Radiometric (53)Mn-(53)Cr dating has been successfully applied to aqueously formed carbonates in CM carbonaceous chondrites. Owing to the absence of carbonates in ordinary (H, L and LL), and CV and CO carbonaceous chondrites, and the lack of proper standards, there are no reliable ages of aqueous activity on their parent bodies. Here we report the first (53)Mn-(53)Cr ages of aqueously formed fayalite in the L3 chondrite Elephant Moraine 90161 as Myr after calcium-aluminium-rich inclusions (CAIs), the oldest Solar System solids. In addition, measurements using our synthesized fayalite standard show that fayalite in the CV3 chondrite Asuka 881317 and CO3-like chondrite MacAlpine Hills 88107 formed and Myr after CAIs, respectively. Thermal modelling, combined with the inferred conditions (temperature and water/rock ratio) and (53)Mn-(53)Cr ages of aqueous alteration, suggests accretion of the L, CV and CO parent bodies ∼1.8-2.5 Myr after CAIs. PMID:26100451

  11. THE CHROMIUM ISOTOPIC COMPOSITION OF THE UNGROUPED CARBONACEOUS CHONDRITE TAGISH LAKE

    SciTech Connect

    Petitat, M.; Gounelle, M.; Birck, J.-L.; Luu, T. H.

    2011-07-20

    Early solar materials bear a variety of isotopic anomalies that reflect compositional differences deriving from distinct stellar nucleosynthetic processes. As shown in previous studies, the stepwise dissolution with increasing acid strengths of bulk rock carbonaceous chondrites liberates Cr with both excesses and deficits in {sup 53}Cr and {sup 54}Cr relative to the terrestrial standard. The magnitude of the {sup 54}Cr variations within a meteorite decreases in the sequence CI1 > CR2 > CM2 > CV3 > CO3 > CK4 and correlates with the degree of metamorphism of each carbonaceous chondrite class. This study shows that the Tagish Lake meteorite presents the highest excesses in {sup 54}Cr ever measured in a bulk silicate phase. According to this study, the Tagish Lake meteorite is composed of the least re-equilibrated material known at this time. The magnitude of {sup 54}Cr variation decreases now in the following sequence: Tagish Lake (ungrouped CI2) > Orgueil (CI1) > Murchison (CM2) > Allende (CV2). Moreover, this study shows that excesses in {sup 53}Cr relative to Earth can be interpreted as representing the extent of aqueous alteration on meteorite parent bodies. Finally, the high {sup 54}Cr anomalies measured in this meteorite make Tagish Lake one of the major targets to decipher the host of these anomalies.

  12. Type IV kerogens as analogues for organic macromolecular materials in aqueously altered carbonaceous chondrites.

    PubMed

    Matthewman, Richard; Martins, Zita; Sephton, Mark A

    2013-04-01

    Understanding the processes involved in the evolution of organic matter in the early Solar System requires extensive experimental work. The scientifically valuable carbonaceous chondrites are principal targets for organic analyses, but these meteorites are rare. Meteoritic analog materials available in larger quantities, on which experiments can be performed, would be highly beneficial. The bulk of the organic inventory of carbonaceous chondrites is made up of solvent-insoluble macromolecular material. This high-molecular-weight entity provides a record of thermal and aqueous parent-body alteration of precursor organic structures present at the birth of the Solar System. To identify an effective analogue for this macromolecular material, we analyzed a series of terrestrial kerogens by pyrolysis-gas chromatography-mass spectrometry. Type I and II kerogens are unsuitable analogues owing to their highly aliphatic nature. Type III kerogens show some similarities to meteoritic macromolecular materials but display a substantial biological heritage. Type IV kerogens, in this study derived from Mesozoic paleosols and produced by the reworking and oxidation of organic matter, represent an effective analogue. Some isomeric differences exist between meteoritic macromolecular materials and type IV kerogens, and stepped pyrolysis indicates variations in thermal stability. In addition to being a suitable material for novel experimentation, type IV kerogens also have the potential to aid in the optimization of instruments for deployment on Mars. PMID:23551239

  13. Carbonaceous thin film coating with Fe-N4 site for enhancement of dioxovanadium ion reduction

    NASA Astrophysics Data System (ADS)

    Maruyama, Jun; Hasegawa, Takahiro; Iwasaki, Satoshi; Fukuhara, Tomoko; Orikasa, Yuki; Uchimoto, Yoshiharu

    2016-08-01

    It has been found that carbonaceous materials containing a transition metal coordinated by 4 nitrogens in the square-planar configuration (metal-N4 site) on the surface possessed a catalytic activity for various electrochemical reactions related to energy conversion and storage; i.e., oxygen reduction, hydrogen evolution, and quite recently, the electrode reactions in vanadium redox flow batteries (VRFB). The catalyst for the VRFB positive electrode discharge reaction, i.e., the dioxovanadium ion reduction, was formed by coating the surface of cup-stack carbon nanotubes with a carbonaceous thin film with the Fe-N4 site generated by the sublimation, deposition, and pyrolysis of iron phthalocyanine. In this study, the influence of the physical properties of the catalyst on the electrochemical reactions was investigated to optimize the coating. With an increase in the coating, the specific surface area increased, whereas the pore size decreased. The surface Fe concentration was increased in spite of the Fe aggregation inside the carbon matrix. The catalytic activity enhancement was achieved due to the increase in the specific surface area and the surface Fe concentration, but was lowered due to the decrease in the pore size, which was disadvantageous for the penetration of the electrolyte and the mass transfer.

  14. Testing for fullerenes in geologic materials: Oklo carbonaceous substances, Karelian shungites, Sudbury Black Tuff

    NASA Astrophysics Data System (ADS)

    Mossman, David; Eigendorf, Guenter; Tokaryk, Dennis; Gauthier-Lafaye, François; Guckert, Kristal D.; Melezhik, Victor; Farrow, Catharine E. G.

    2003-03-01

    Fullerenes have been reported from diverse geologic environments since their discovery in shungite from Karelian Russia. Our investigation is prompted by the presence of onionskin-like structures in some carbonaceous substances associated with the fossil nuclear fission reactors of Oklo, Gabon. The same series of extractions and the same instrumental techniques, laser desorption ionization and high-resolution mass spectroscopy (electron-impact mass spectroscopy), were employed to test for fullerenes in samples from three different localities: two sites containing putative fullerenes (Sudbury Basin and Russian Karelia) and one new location (Oklo, Gabon). We confirm the presence of fullerenes (C60 and C70) in the Black Tuff of the Onaping Formation impact breccia in the Sudbury Basin, but we find no evidence of fullerenes in shungite samples from various locations in Russian Karelia. Analysis of carbonaceous substances associated with the natural nuclear fission reactors of Oklo yields no definitive signals for fullerenes. If fullerenes were produced during sustained nuclear fission at Oklo, then they are present below the detection limit (˜100 fmol), or they have destabilized since formation. Contrary to some expectations, geologic occurrences of fullerenes are not commonplace.

  15. Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite

    SciTech Connect

    Doyle, Patricia M.; Jogo, Kaori; Nagashima, Kazuhide; Krot, Alexander N.; Wakita, Shigeru; Ciesla, Fred J.; Hutcheon, Ian D.

    2015-06-23

    Here, chronology of aqueous activity on chondrite parent bodies constrains their accretion times and thermal histories. Radiometric 53Mn–53Cr dating has been successfully applied to aqueously formed carbonates in CM carbonaceous chondrites. Owing to the absence of carbonates in ordinary (H, L and LL), and CV and CO carbonaceous chondrites, and the lack of proper standards, there are no reliable ages of aqueous activity on their parent bodies. Here we report the first 53Mn–53Cr ages of aqueously formed fayalite in the L3 chondrite Elephant Moraine 90161 as 2.4 +1.8-1.3 Myr after calcium–aluminium-rich inclusions (CAIs), the oldest Solar System solids. In addition, measurements using our synthesized fayalite standard show that fayalite in the CV3 chondrite Asuka 881317 and CO3-like chondrite MacAlpine Hills 88107 formed and 4.2+0.8-0.7 Myr after CAIs, respectively. Thermal modelling, combined with the inferred conditions (temperature and water/rock ratio) and 53Mn–53Cr ages of aqueous alteration, suggests accretion of the L, CV and CO parent bodies ~1.8–2.5 Myr after CAIs.

  16. Preliminary Results of the Investigation of the Carbonaceous Chondrites Nagoya, Allende, and Murray

    NASA Technical Reports Server (NTRS)

    Rozanov, Alexei Yu.; Hoover, Richard B.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    As part of a long-term study of morphological biomarkers in Astromaterials, we are documenting a variety of features considered to be indigenous to ancient terrestrial rocks and carbonaceous meteorites. In preparation for the study of samples returned from Mars and other bodies of our Solar System, it is imperative that we establish a database of the nature and morphology of known bacterial fossils in Earth rocks and biomorphic microstructures which may represent microfossils in meteorites. The process of fossilization or mineralization can cause major changes in morphologies and textures of the original organisms and the study of fossilized terrestrial organisms can help provide insight into the interpretation of mineral biomarkers and abiotic microstructures which may mimic certain aspects of microfossils. One class of biomarkers consists of biominerals which have either been precipitated directly by microorganisms, or whose precipitation has been influenced by the organisms. Such microbe-mediated mineral formation may include important clues to the size, shape, and environment of the microorganisms. This paper describes the detection of possible microbe-mediated minerals, biomorphic microstructures and possible microfossils in the Nagoya, Allende, and Murray Carbonaceous Chondrites.

  17. Volatile-bearing phases in carbonaceous chondrites: Compositions, modal abundance, and reaction kinetics

    NASA Technical Reports Server (NTRS)

    Ganguly, Jibamitra

    1990-01-01

    The spectral and density characteristics of Phobos and Deimos (the two small natural satellites of Mars) strongly suggest that a significant fraction of the near-earth asteroids are made of carbonaceous chondrites, which are rich in volatile components and, thus, could serve as potential resources for propellants and life supporting systems in future planetary missions. However, in order to develop energy efficient engineering designs for the extraction of volatiles, knowledge of the nature and modal abundance of the minerals in which the volatiles are structurally bound and appropriate kinetic data on the rates of the devolatilization reactions is required. Theoretical calculations to predict the modal abundances and compositions of the major volatile-bearing and other mineral phases that could develop in the bulk compositions of C1 and C2 classes (the most volatile rich classes among the carbonaceous chondrites) were performed as functions of pressure and temperature. The rates of dehydration of talc at 585, 600, 637, and 670 C at P(total) = 1 bar were determine for the reaction: Talc = 3 enstatite + quartz + water. A scanning electron microscopic study was conducted to see if the relative abundance of phases can be determined on the basis of the spectral identification and x ray mapping. The results of this study and the other studies within the project are discussed.

  18. Intercomparison of methods for the measurement of carbonaceous aerosol species. Final report

    SciTech Connect

    Appel, B.R.; Cheng, W.; Tokiwa, Y.; Salaymeh, F.; Povard, V.

    1987-01-01

    The principal goal of the study, as part of the Carbonaceous Species Methods Comparison Study, was to perform field trials at Citrus College, Glendora, CA, in August 1986 with a sampler intended to minimize positive and negative artifacts for sampling particulate carbon. In addition, organic and elemental carbon in atmospheric and laboratory-generated samples were analyzed to permit intermethod comparisons. The particulate carbon sampler consisted of a cyclone, parallel-plate diffusion denuder packed with coarse, activated alumina, and a quartz-fiber filter followed by a fluidized bed of activated alumina. The sampler failed to perform effectively in atmospheric trials; alumina showed little activity in decreasing the positive error in filter carbon sampling due to sorption of gas-phase carbonaceous material. The measurement of organic (Co) and elemental carbon (Ce) employed an optical absorption technique for Ce and a coulometer for total C (Ct). Organic carbon was then obtained by difference between Ct and Ce. In addition, organic and elemental carbon in atmospheric and laboratory-generated samples were analyzed to permit intermethod comparisons.

  19. Possible effects of diagenesis on the stable isotope composition of amino acids in carbonaceous meteorites

    NASA Astrophysics Data System (ADS)

    Engel, Michael H.

    2015-09-01

    The initial report of indigenous, non-racemic protein amino acids (L-enantiomer excess) in the Murchison meteorite was based on the fact that only eight of the twenty amino acids characteristic of all life on Earth was present in this stone1. The absence of the other protein amino acids indicated that contamination subsequent to impact was highly unlikely. The development of new techniques for determining the stable isotope composition of individual amino acid enantiomers in the Murchison meteorite further documented the extraterrestrial origins of these compounds2,3. The stable isotope approach continues to be used to document the occurrence of an extraterrestrial L-enantiomer excess of protein amino acids in other carbonaceous meteorites4. It has been suggested that this L-enantiomer excess may result from aqueous reprocessing on meteorite parent bodies4,5. Preliminary results of simulation experiments are presented that are used to determine the extent to which the stable isotope compositions of amino acid constituents of carbonaceous meteorites may have been altered by these types of diagenetic processes subsequent to synthesis.

  20. Development of multicolor pyrometers to monitor the transient response of burning carbonaceous particles

    SciTech Connect

    Levendis, Y.A.; Estrada, K.R. ); Hottel, H.C. )

    1992-07-01

    A three-color ratio pyrometer has been developed to obtain surface temperatures and high-temperature combustion rates of burning carbonaceous particles. The features and performance of this instrument are contrasted to those of a two-color ratio pyrometer, constructed earlier for similar studies. The three-color pyrometer employs a visible (0.65 {mu}m) and two near-infrared (0.80 and 0.975 {mu}m) wavelengths. The instrument uses a single optical fiber to capture radiation emitted from a particle burning in a high-temperature laminar flow furnace. Monitoring of the combustion events takes place coaxially with the particle flow, from observation windows located at the top of the furnace injectors. Thus, the temperature-time history of burning particles can be recorded. The radiation flux is split into three beams using dichroic edge filters. Narrow (or medium) bandwidth interference filters guide monochromatic radiation to solid-state silicon photodetectors. The associated amplification is linear and/or logarithmic. In contrast, the two-color pyrometer used a bifurcated optical fiber bundle to split radiation to two medium bandwidth interference filters centered at 0.80 and 1.0 {mu}m. Silicon detectors were employed, associated with linear amplification. Both instruments were used to monitor the combustion temperature-time behavior of burning highly homogeneous, spherical, and monodisperse carbonaceous particles, and their performance is discussed herein.