Science.gov

Sample records for 5-enolpyruvylshikimate 3-phosphate synthase

  1. Crystal structure of 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase from the ESKAPE pathogen Acinetobacter baumannii.

    PubMed

    Sutton, Kristin A; Breen, Jennifer; Russo, Thomas A; Schultz, L Wayne; Umland, Timothy C

    2016-03-01

    The enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase catalyzes the sixth step of the seven-step shikimate pathway. Chorismate, the product of the pathway, is a precursor for the biosynthesis of aromatic amino acids, siderophores and metabolites such as folate, ubiquinone and vitamin K. The shikimate pathway is present in bacteria, fungi, algae, plants and apicomplexan parasites, but is absent in humans. The EPSP synthase enzyme produces 5-enolpyruvylshikimate 3-phosphate and phosphate from phosphoenolpyruvate and shikimate 3-phosphate via a transferase reaction, and is the target of the herbicide glyphosate. The Acinetobacter baumannii gene encoding EPSP synthase, aroA, has previously been demonstrated to be essential during host infection for the growth and survival of this clinically important drug-resistant ESKAPE pathogen. Prephenate dehydrogenase is also encoded by the bifunctional A. baumannii aroA gene, but its activity is dependent upon EPSP synthase since it operates downstream of the shikimate pathway. As part of an effort to evaluate new antimicrobial targets, recombinant A. baumannii EPSP (AbEPSP) synthase, comprising residues Ala301-Gln756 of the aroA gene product, was overexpressed in Escherichia coli, purified and crystallized. The crystal structure, determined to 2.37 Å resolution, is described in the context of a potential antimicrobial target and in comparison to EPSP synthases that are resistant or sensitive to the herbicide glyphosate. PMID:26919521

  2. Plastid-expressed 5-enolpyruvylshikimate-3-phosphate synthase genes provide high level glyphosate tolerance in tobacco.

    PubMed

    Ye, G N; Hajdukiewicz, P T; Broyles, D; Rodriguez, D; Xu, C W; Nehra, N; Staub, J M

    2001-02-01

    Plastid transformation (transplastomic) technology has several potential advantages for biotechnological applications including the use of unmodified prokaryotic genes for engineering, potential high-level gene expression and gene containment due to maternal inheritance in most crop plants. However, the efficacy of a plastid-encoded trait may change depending on plastid number and tissue type. We report a feasibility study in tobacco plastids to achieve high-level herbicide resistance in both vegetative tissues and reproductive organs. We chose to test glyphosate resistance via over-expression in plastids of tolerant forms of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Immunological, enzymatic and whole-plant assays were used to prove the efficacy of three different prokaryotic (Achromobacter, Agrobacterium and Bacillus) EPSPS genes. Using the Agrobacterium strain CP4 EPSPS as a model we identified translational control sequences that direct a 10,000-fold range of protein accumulation (to >10% total soluble protein in leaves). Plastid-expressed EPSPS could provide very high levels of glyphosate resistance, although levels of resistance in vegetative and reproductive tissues differed depending on EPSPS accumulation levels, and correlated to the plastid abundance in these tissues. Paradoxically, higher levels of plastid-expressed EPSPS protein accumulation were apparently required for efficacy than from a similar nuclear-encoded gene. Nevertheless, the demonstration of high-level glyphosate tolerance in vegetative and reproductive organs using transplastomic technology provides a necessary step for transfer of this technology to other crop species.

  3. Glyphosate selected amplification of the 5-enolpyruvylshikimate-3-phosphate synthase gene in cultured carrot cells.

    PubMed

    Shyr, Y Y; Hepburn, A G; Widholm, J M

    1992-04-01

    CAR and C1, two carrot (Daucus carota L.) suspension cultures of different genotypes, were subjected to stepwise selection for tolerance to the herbicide glyphosate [(N-phosphonomethyl)glycine]. The specific activity of the target enzyme, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), as well as the mRNA level and copy number of the structural gene increased with each glyphosate selection step. Therefore, the tolerance to glyphosate is due to stepwise amplification of the EPSPS genes. During the amplification process, DNA rearrangement did not occur within the EPSPS gene of the CAR cell line but did occur during the selection step from 28 to 35 mM glyphosate for the C1 cell line, as determined by Southern hybridization of selected cell DNA following EcoRI restriction endonuclease digestion. Two cell lines derived from a previously selected glyphosate-tolerant cell line (PR), which also had undergone EPSPS gene amplification but have been maintained in glyphosate-free medium for 2 and 5 years, have lost 36 and 100% of the increased EPSPS activity, respectively. Southern blot analysis of these lines confirms that the amplified DNA is relatively stable in the absence of selection. These studies demonstrate that stepwise selection for glyphosate resistance reproducibly produces stepwise amplification of the EPSPS genes. The relative stability of this amplification indicates that the amplified genes are not extrachromosomal.

  4. A novel 5-enolpyruvylshikimate-3-phosphate synthase from Rahnella aquatilis with significantly reduced glyphosate sensitivity.

    PubMed

    Peng, Ri-He; Tian, Yong-Sheng; Xiong, Ai-Sheng; Zhao, Wei; Fu, Xiao-Yan; Han, Hong-Juan; Chen, Chen; Jin, Xiao-Fen; Yao, Quan-Hong

    2012-01-01

    The 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS; EC 2.5.1.19) is a key enzyme in the shikimate pathway for the production of aromatic amino acids and chorismate-derived secondary metabolites in plants, fungi, and microorganisms. It is also the target of the broad-spectrum herbicide glyphosate. Natural glyphosate resistance is generally thought to occur within microorganisms in a strong selective pressure condition. Rahnella aquatilis strain GR20, an antagonist against pathogenic agrobacterial strains of grape crown gall, was isolated from the rhizosphere of grape in glyphosate-contaminated vineyards. A novel gene encoding EPSPS was identified from the isolated bacterium by complementation of an Escherichia coli auxotrophic aroA mutant. The EPSPS, named AroA(R. aquatilis), was expressed and purified from E. coli, and key kinetic values were determined. The full-length enzyme exhibited higher tolerance to glyphosate than the E. coli EPSPS (AroA(E. coli)), while retaining high affinity for the substrate phosphoenolpyruvate. Transgenic plants of AroA(R. aquatilis) were also observed to be more resistant to glyphosate at a concentration of 5 mM than that of AroA(E. coli). To probe the sites contributing to increased tolerance to glyphosate, mutant R. aquatilis EPSPS enzymes were produced with the c-strand of subdomain 3 and the f-strand of subdomain 5 (Thr38Lys, Arg40Val, Arg222Gln, Ser224Val, Ile225Val, and Gln226Lys) substituted by the corresponding region of the E. coli EPSPS. The mutant enzyme exhibited greater sensitivity to glyphosate than the wild type R. aquatilis EPSPS with little change of affinity for its first substrate, shikimate-3-phosphate (S3P) and phosphoenolpyruvate (PEP). The effect of the residues on subdomain 5 on glyphosate resistance was more obvious. PMID:22870190

  5. A novel 5-enolpyruvylshikimate-3-phosphate synthase from Rahnella aquatilis with significantly reduced glyphosate sensitivity.

    PubMed

    Peng, Ri-He; Tian, Yong-Sheng; Xiong, Ai-Sheng; Zhao, Wei; Fu, Xiao-Yan; Han, Hong-Juan; Chen, Chen; Jin, Xiao-Fen; Yao, Quan-Hong

    2012-01-01

    The 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS; EC 2.5.1.19) is a key enzyme in the shikimate pathway for the production of aromatic amino acids and chorismate-derived secondary metabolites in plants, fungi, and microorganisms. It is also the target of the broad-spectrum herbicide glyphosate. Natural glyphosate resistance is generally thought to occur within microorganisms in a strong selective pressure condition. Rahnella aquatilis strain GR20, an antagonist against pathogenic agrobacterial strains of grape crown gall, was isolated from the rhizosphere of grape in glyphosate-contaminated vineyards. A novel gene encoding EPSPS was identified from the isolated bacterium by complementation of an Escherichia coli auxotrophic aroA mutant. The EPSPS, named AroA(R. aquatilis), was expressed and purified from E. coli, and key kinetic values were determined. The full-length enzyme exhibited higher tolerance to glyphosate than the E. coli EPSPS (AroA(E. coli)), while retaining high affinity for the substrate phosphoenolpyruvate. Transgenic plants of AroA(R. aquatilis) were also observed to be more resistant to glyphosate at a concentration of 5 mM than that of AroA(E. coli). To probe the sites contributing to increased tolerance to glyphosate, mutant R. aquatilis EPSPS enzymes were produced with the c-strand of subdomain 3 and the f-strand of subdomain 5 (Thr38Lys, Arg40Val, Arg222Gln, Ser224Val, Ile225Val, and Gln226Lys) substituted by the corresponding region of the E. coli EPSPS. The mutant enzyme exhibited greater sensitivity to glyphosate than the wild type R. aquatilis EPSPS with little change of affinity for its first substrate, shikimate-3-phosphate (S3P) and phosphoenolpyruvate (PEP). The effect of the residues on subdomain 5 on glyphosate resistance was more obvious.

  6. Tandem amplification of a chromosomal segment harboring 5-enolpyruvylshikimate-3-phosphate synthase locus confers glyphosate resistance in Kochia scoparia.

    PubMed

    Jugulam, Mithila; Niehues, Kindsey; Godar, Amar S; Koo, Dal-Hoe; Danilova, Tatiana; Friebe, Bernd; Sehgal, Sunish; Varanasi, Vijay K; Wiersma, Andrew; Westra, Philip; Stahlman, Phillip W; Gill, Bikram S

    2014-11-01

    Recent rapid evolution and spread of resistance to the most extensively used herbicide, glyphosate, is a major threat to global crop production. Genetic mechanisms by which weeds evolve resistance to herbicides largely determine the level of resistance and the rate of evolution of resistance. In a previous study, we determined that glyphosate resistance in Kochia scoparia is due to the amplification of the 5-Enolpyruvylshikimate-3-Phosphate Synthase (EPSPS) gene, the enzyme target of glyphosate. Here, we investigated the genomic organization of the amplified EPSPS copies using fluorescence in situ hybridization (FISH) and extended DNA fiber (Fiber FISH) on K. scoparia chromosomes. In both glyphosate-resistant K. scoparia populations tested (GR1 and GR2), FISH results displayed a single and prominent hybridization site of the EPSPS gene localized on the distal end of one pair of homologous metaphase chromosomes compared with a faint hybridization site in glyphosate-susceptible samples (GS1 and GS2). Fiber FISH displayed 10 copies of the EPSPS gene (approximately 5 kb) arranged in tandem configuration approximately 40 to 70 kb apart, with one copy in an inverted orientation in GR2. In agreement with FISH results, segregation of EPSPS copies followed single-locus inheritance in GR1 population. This is the first report of tandem target gene amplification conferring field-evolved herbicide resistance in weed populations.

  7. Mutation by DNA shuffling of 5-enolpyruvylshikimate-3-phosphate synthase from Malus domestica for improved glyphosate resistance.

    PubMed

    Tian, Yong-Sheng; Xu, Jing; Peng, Ri-He; Xiong, Ai-Sheng; Xu, Hu; Zhao, Wei; Fu, Xiao-Yan; Han, Hong-Juan; Yao, Quan-Hong

    2013-09-01

    A new 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene from Malus domestica (MdEPSPS) was cloned and characterized by rapid amplification of cDNA ends to identify an EPSPS gene appropriate for the development of transgenic glyphosate-tolerant plants. However, wild-type MdEPSPS is not suitable for the development of transgenic glyphosate-tolerant plants because of its poor glyphosate resistance. Thus, we performed DNA shuffling on MdEPSPS, and one highly glyphosate-resistant mutant with mutations in eight amino acids (N63D, N86S, T101A, A187T, D230G, H317R, Y399R and C413A.) was identified after five rounds of DNA shuffling and screening. Among the eight amino acid substitutions on this mutant, only two residue changes (T101A and A187T) were identified by site-directed mutagenesis as essential and additive in altering glyphosate resistance, which was further confirmed by kinetic analyses. The single-site A187T mutation has also never been previously reported as an important residue for glyphosate resistance. Furthermore, transgenic rice was used to confirm the potential of MdEPSPS mutant in developing glyphosate-resistant crops.

  8. A novel 5-enolpyruvylshikimate-3-phosphate synthase shows high glyphosate tolerance in Escherichia coli and tobacco plants.

    PubMed

    Cao, Gaoyi; Liu, Yunjun; Zhang, Shengxue; Yang, Xuewen; Chen, Rongrong; Zhang, Yuwen; Lu, Wei; Liu, Yan; Wang, Jianhua; Lin, Min; Wang, Guoying

    2012-01-01

    A key enzyme in the shikimate pathway, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is the primary target of the broad-spectrum herbicide glyphosate. Identification of new aroA genes coding for EPSPS with a high level of glyphosate tolerance is essential for the development of glyphosate-tolerant crops. In the present study, the glyphosate tolerance of five bacterial aroA genes was evaluated in the E. coli aroA-defective strain ER2799 and in transgenic tobacco plants. All five aroA genes could complement the aroA-defective strain ER2799, and AM79 aroA showed the highest glyphosate tolerance. Although glyphosate treatment inhibited the growth of both WT and transgenic tobacco plants, transgenic plants expressing AM79 aroA tolerated higher concentration of glyphosate and had a higher fresh weight and survival rate than plants expressing other aroA genes. When treated with high concentration of glyphosate, lower shikimate content was detected in the leaves of transgenic plants expressing AM79 aroA than transgenic plants expressing other aroA genes. These results suggest that AM79 aroA could be a good candidate for the development of transgenic glyphosate-tolerant crops.

  9. Tandem amplification of a chromosomal segment harboring 5-enolpyruvylshikimate-3-phosphate synthase locus confers glyphosate resistance in Kochia scoparia.

    PubMed

    Jugulam, Mithila; Niehues, Kindsey; Godar, Amar S; Koo, Dal-Hoe; Danilova, Tatiana; Friebe, Bernd; Sehgal, Sunish; Varanasi, Vijay K; Wiersma, Andrew; Westra, Philip; Stahlman, Phillip W; Gill, Bikram S

    2014-11-01

    Recent rapid evolution and spread of resistance to the most extensively used herbicide, glyphosate, is a major threat to global crop production. Genetic mechanisms by which weeds evolve resistance to herbicides largely determine the level of resistance and the rate of evolution of resistance. In a previous study, we determined that glyphosate resistance in Kochia scoparia is due to the amplification of the 5-Enolpyruvylshikimate-3-Phosphate Synthase (EPSPS) gene, the enzyme target of glyphosate. Here, we investigated the genomic organization of the amplified EPSPS copies using fluorescence in situ hybridization (FISH) and extended DNA fiber (Fiber FISH) on K. scoparia chromosomes. In both glyphosate-resistant K. scoparia populations tested (GR1 and GR2), FISH results displayed a single and prominent hybridization site of the EPSPS gene localized on the distal end of one pair of homologous metaphase chromosomes compared with a faint hybridization site in glyphosate-susceptible samples (GS1 and GS2). Fiber FISH displayed 10 copies of the EPSPS gene (approximately 5 kb) arranged in tandem configuration approximately 40 to 70 kb apart, with one copy in an inverted orientation in GR2. In agreement with FISH results, segregation of EPSPS copies followed single-locus inheritance in GR1 population. This is the first report of tandem target gene amplification conferring field-evolved herbicide resistance in weed populations. PMID:25037215

  10. In silico peptide prediction for antibody generation to recognize 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) in genetically modified organisms.

    PubMed

    Marani, Mariela M; Costa, Joana; Mafra, Isabel; Oliveira, Maria Beatriz P P; Camperi, Silvia A; Leite, José Roberto de Souza Almeida

    2015-03-01

    For the prospective immunorecognition of 5-enolpyruvylshikimate-3-phosphate synthase (CP4-EPSPS) as a biomarker protein expressed by transgenic soybean, an extensive in silico evaluation of the referred protein was performed. The main objective of this study was the selection of a set of peptides that could function as potential immunogens for the production of novel antibodies against CP4-EPSPS protein. For this purpose, the protein was in silico cleaved with trypsin/chymotrypsin and the resultant peptides were extensively analyzed for further selection of the best candidates for antibody production. The analysis enabled the successful proposal of four peptides with potential immunogenicity for their future use as screening biomarkers of genetically modified organisms. To our knowledge, this is the first attempt to select and define potential linear epitopes for the immunization of animals and, subsequently, to generate adequate antibodies for CP4-EPSPS recognition. The present work will be followed by the synthesis of the candidate peptides to be incubated in animals for antibody generation and potential applicability for the development of an immunosensor for CP4-EPSPS detection.

  11. Fluorimetric analysis of the binding characteristics of 5-enolpyruvylshikimate-3-phosphate synthase with substrates in Dunaliella salina.

    PubMed

    Cao, Yu; Xu, Hui; Xie, Li; Yi, Yi; Yu, Yingpeng; Feng, Shunli; Qiao, Dairong; Cao, Yi

    2014-09-01

    A general model of the catalytic mechanism for 5-enolpyruvylshikimate-3-phosphate synthase (EPSPs) has already been proposed. But whether shikimate-3-phosphate (S3P) alone can cause EPSPs' conformation changes, and whether the binding site of phosphoenolpyruvate (PEP) and glyphosate is the same are still in debate. In this paper, DsaroA gene amplified and cloned from Dunaliella salina (our laboratory's early study) was used for DsEPSPs expression and purification. Then the DsEPSP conformation changes as it bind with different substrates were detected by fluorimetry. The results show that we obtained the DsEPSPs by prokaryotic expression and purification, and the S3P binding with DsEPSPs alone cannot cause DsEPSPs to form "close" conformation directly. However, when S3P exits, DsEPSPs did have a trend to change to the "close" conformation. Then the "close" conformation can be formed completely with the addition of phosphoenolpyruvate (PEP) or glyphosate. The inorganic phosphorus can help S3P to induce two domains of DsEPSPs to form "close" conformation. Besides, when DsEPSPs binds with S3P, in 295 nm, only the intensity of emission peak decreases, however, in 280 nm, not only the peak intensity reduces but also the blue-shift phenomenon takes place. The reason for blue-shift phenomenon was the distribution of aromatic amino acids in EPSPs. EPSPs is a good target for novel antibiotics and herbicides, because of shikimic acid pathway is only present in plants and microorganisms, completely absent in mammals, fish, birds, reptiles, and insects. The results demonstrate that the binding of substrates to EPSPs causes a conformational change from an open form to a closed form, that might be important for designing of novel antimicrobial and herbicidal agents that block closure of the enzyme.

  12. Translocation of the precursor of 5-enolpyruvylshikimate-3-phosphate synthase into chloroplasts of higher plants in vitro

    PubMed Central

    Della-Cioppa, Guy; Bauer, S. Christopher; Klein, Barbara K.; Shah, Dilip M.; Fraley, Robert T.; Kishore, Ganesh M.

    1986-01-01

    5-enolPyruvylshikimate-3-phosphate synthase (EPSP synthase; 3-phosphoshikimate 1-carboxyvinyl-transferase; EC 2.5.1.19) is a chloroplast-localized enzyme of the shikimate pathway in plants. This enzyme is the target for the nonselective herbicide glyphosate (N-phosphonomethylglycine). We have previously isolated a full-length cDNA clone of EPSP synthase from Petunia hybrida. DNA sequence analysis suggested that the enzyme is synthesized as a cytosolic precursor (pre-EPSP synthase) with an amino-terminal transit peptide. Based on the known amino terminus of the mature enzyme, and the 5′ open reading frame of the cDNA, the transit peptide of pre-EPSP synthase would be maximally 72 amino acids long. To confirm this prediction and to assay directly for translocation of pre-EPSP synthase into chloroplasts in vitro, we cloned the full-length cDNA into an SP6 transcription system to produce large amounts of mRNA for in vitro translation. The translation products, when analyzed by NaDodSO4/PAGE autoradiography, indicate a relative molecular mass for pre-EPSP synthase of ≈55 kDa. Uptake studies with intact chloroplasts, in vitro, indicate that pre-EPSP synthase was rapidly taken up into chloroplasts and proteolytically cleaved to the mature ≈48-kDa enzyme. The transit peptide was shown to be essential for import of the precursor enzyme into the chloroplast. To our knowledge, post-translational import into chloroplasts of a precursor enzyme involved in amino acid biosynthesis has not been reported previously. Furthermore, enzymatic analysis of translation products indicates that pre-EPSP synthase is catalytically active and has a similar sensitivity to the herbicide glyphosate as the mature enzyme. To our knowledge, pre-EPSP synthase represents the only example of a catalytically competent chloroplast-precursor enzyme. Images PMID:16593759

  13. Transgenic tobacco simultaneously overexpressing glyphosate N-acetyltransferase and 5-enolpyruvylshikimate-3-phosphate synthase are more resistant to glyphosate than those containing one gene.

    PubMed

    Liu, Yunjun; Cao, Gaoyi; Chen, Rongrong; Zhang, Shengxue; Ren, Yuan; Lu, Wei; Wang, Jianhua; Wang, Guoying

    2015-08-01

    5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) and glyphosate N-acetyltransferase (GAT) can detoxify glyphosate by alleviating the suppression of shikimate pathway. In this study, we obtained transgenic tobacco plants overexpressing AM79 aroA, GAT, and both of them, respectively, to evaluate whether overexpression of both genes could confer transgenic plants with higher glyphosate resistance. The transgenic plants harboring GAT or AM79 aroA, respectively, showed good glyphosate resistance. As expected, the hybrid plants containing both GAT and AM79 aroA exhibited improved glyphosate resistance than the transgenic plants overexpressing only a single gene. When grown on media with high concentration of glyphosate, seedlings containing a single gene were severely inhibited, whereas plants expressing both genes were affected less. When transgenic plants grown in the greenhouse were sprayed with glyphosate, less damage was observed for the plants containing both genes. Metabolomics analysis showed that transgenic plants containing two genes could maintain the metabolism balance better than those containing one gene after glyphosate treatment. Glyphosate treatment did not lead to a huge increase of shikimate contents of tobacco leaves in transgenic plants overexpressing two genes, whereas significant increase of shikimate contents in transgenic plants containing only a single gene was observed. These results demonstrated that pyramiding both aroA and GAT in transgenic plants can enhance glyphosate resistance, and this strategy can be used for the development of transgenic glyphosate-resistant crops.

  14. Evolution of a double amino acid substitution in the 5-enolpyruvylshikimate-3-phosphate synthase in Eleusine indica conferring high-level glyphosate resistance.

    PubMed

    Yu, Qin; Jalaludin, Adam; Han, Heping; Chen, Ming; Sammons, R Douglas; Powles, Stephen B

    2015-04-01

    Glyphosate is the most important and widely used herbicide in world agriculture. Intensive glyphosate selection has resulted in the widespread evolution of glyphosate-resistant weed populations, threatening the sustainability of this valuable once-in-a-century agrochemical. Field-evolved glyphosate resistance due to known resistance mechanisms is generally low to modest. Here, working with a highly glyphosate-resistant Eleusine indica population, we identified a double amino acid substitution (T102I+P106S [TIPS]) in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene in glyphosate-resistant individuals. This TIPS mutation recreates the biotechnology-engineered commercial first generation glyphosate-tolerant EPSPS in corn (Zea mays) and now in other crops. In E. indica, the naturally evolved TIPS mutants are highly (more than 180-fold) resistant to glyphosate compared with the wild type and more resistant (more than 32-fold) than the previously known P106S mutants. The E. indica TIPS EPSPS showed very high-level (2,647-fold) in vitro resistance to glyphosate relative to the wild type and is more resistant (600-fold) than the P106S variant. The evolution of the TIPS mutation in crop fields under glyphosate selection is likely a sequential event, with the P106S mutation being selected first and fixed, followed by the T102I mutation to create the highly resistant TIPS EPSPS. The sequential evolution of the TIPS mutation endowing high-level glyphosate resistance is an important mechanism by which plants adapt to intense herbicide selection and a dramatic example of evolution in action. PMID:25717039

  15. Evolution of a Double Amino Acid Substitution in the 5-Enolpyruvylshikimate-3-Phosphate Synthase in Eleusine indica Conferring High-Level Glyphosate Resistance1

    PubMed Central

    Yu, Qin; Jalaludin, Adam; Han, Heping; Chen, Ming; Sammons, R. Douglas; Powles, Stephen B.

    2015-01-01

    Glyphosate is the most important and widely used herbicide in world agriculture. Intensive glyphosate selection has resulted in the widespread evolution of glyphosate-resistant weed populations, threatening the sustainability of this valuable once-in-a-century agrochemical. Field-evolved glyphosate resistance due to known resistance mechanisms is generally low to modest. Here, working with a highly glyphosate-resistant Eleusine indica population, we identified a double amino acid substitution (T102I + P106S [TIPS]) in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene in glyphosate-resistant individuals. This TIPS mutation recreates the biotechnology-engineered commercial first generation glyphosate-tolerant EPSPS in corn (Zea mays) and now in other crops. In E. indica, the naturally evolved TIPS mutants are highly (more than 180-fold) resistant to glyphosate compared with the wild type and more resistant (more than 32-fold) than the previously known P106S mutants. The E. indica TIPS EPSPS showed very high-level (2,647-fold) in vitro resistance to glyphosate relative to the wild type and is more resistant (600-fold) than the P106S variant. The evolution of the TIPS mutation in crop fields under glyphosate selection is likely a sequential event, with the P106S mutation being selected first and fixed, followed by the T102I mutation to create the highly resistant TIPS EPSPS. The sequential evolution of the TIPS mutation endowing high-level glyphosate resistance is an important mechanism by which plants adapt to intense herbicide selection and a dramatic example of evolution in action. PMID:25717039

  16. Evolution of a double amino acid substitution in the 5-enolpyruvylshikimate-3-phosphate synthase in Eleusine indica conferring high-level glyphosate resistance.

    PubMed

    Yu, Qin; Jalaludin, Adam; Han, Heping; Chen, Ming; Sammons, R Douglas; Powles, Stephen B

    2015-04-01

    Glyphosate is the most important and widely used herbicide in world agriculture. Intensive glyphosate selection has resulted in the widespread evolution of glyphosate-resistant weed populations, threatening the sustainability of this valuable once-in-a-century agrochemical. Field-evolved glyphosate resistance due to known resistance mechanisms is generally low to modest. Here, working with a highly glyphosate-resistant Eleusine indica population, we identified a double amino acid substitution (T102I+P106S [TIPS]) in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene in glyphosate-resistant individuals. This TIPS mutation recreates the biotechnology-engineered commercial first generation glyphosate-tolerant EPSPS in corn (Zea mays) and now in other crops. In E. indica, the naturally evolved TIPS mutants are highly (more than 180-fold) resistant to glyphosate compared with the wild type and more resistant (more than 32-fold) than the previously known P106S mutants. The E. indica TIPS EPSPS showed very high-level (2,647-fold) in vitro resistance to glyphosate relative to the wild type and is more resistant (600-fold) than the P106S variant. The evolution of the TIPS mutation in crop fields under glyphosate selection is likely a sequential event, with the P106S mutation being selected first and fixed, followed by the T102I mutation to create the highly resistant TIPS EPSPS. The sequential evolution of the TIPS mutation endowing high-level glyphosate resistance is an important mechanism by which plants adapt to intense herbicide selection and a dramatic example of evolution in action.

  17. Simultaneous substitution of Gly96 to Ala and Ala183 to Thr in 5-enolpyruvylshikimate-3-phosphate synthase gene of E. coli (k12) and transformation of rapeseed (Brassica napus L.) in order to make tolerance to glyphosate.

    PubMed

    Kahrizi, Danial; Salmanian, Ali Hatef; Afshari, Afsoon; Moieni, Ahmad; Mousavi, Amir

    2007-01-01

    Glyphosate is a non-selective broad-spectrum herbicide that inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). This is a key enzyme in the aromatic amino acid biosynthesis pathway of microorganisms and plants. The manipulation of bacterial EPSPS gene in order to reduce its affinity for glyphosate, followed by its transfer to plants is one of the most effective approaches for the production of glyphosate-tolerant plants. In this study, we chose to focus on amino acid residues glycine96 and alanine183 of the E. coli (k12) EPSPS enzyme. These two amino acids are important residues for glyphosate binding. We used site directed mutagenesis (SDM) to induce point mutations in the E. coli EPSPS gene, in order to convert glycine96 to alanine (Gly96Ala) and alanine183 to threonine (Ala183Thr). After confirming the mutation by sequencing, the altered EPSPS gene was transferred to rapeseed (Brassica napus L.) via Agrobacterium-mediated transformation. The transformed explants were screened in shoot induction medium containing 25 mg L-1 kanamycin. Glyphosate tolerance was assayed in putative transgenic plants. Statistical analysis of data showed that there was a significant difference between the transgenic and control plants. It was observed that transgenic plants were resistant to glyphosate at a concentration of 10 mM whereas the non-transformed control plants were unable to survive 1 mM glyphosate. The presence and copy numbers of the transgene were confirmed with PCR and Southern blotting analysis, respectively.

  18. Glyphosate inhibition of 5-enolpyruvylshikimate 3-phosphate synthease from suspension-cultured cells of Nicotiana silvestris

    SciTech Connect

    Rubin, J.L.; Gaines, C.G.; Jensen, R.A.

    1984-07-01

    Treatment of isogenic suspension-cultured cells of Nicotiana silvestris Speg, et Comes with glyphosate (N-(phosphonomethyl)glycine) led to elevated levels of intracellular shikimate (364-fold increase by 1.0 millimolar glyphosate). In the presence of glyphosate, it is likely that most molecules of shikimate originate from the action of 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase-Mn since this isozyme, in contrast to the DAHP synthase-Co isozyme, is insensitive to inhibition by glyphosate. 5-Enolpyruvylshikimate 3-phosphate (EPSP) synthase (EC 2.5.1.19) from N. silvestris was sensitive to micromolar concentrations of glyphosate and possessed a single inhibitor binding site. Rigorous kinetic studies of EPSP synthase required resolution from the multiple phosphatase activities present in crude extracts, a result achieved by ion-exchange column chromatography. Although EPSP synthase exhibited a broad pH profile (50% of maximal activity between pH 6.2 and 8.5), sensitivity to glyphosate increased dramatically with increasing pH within this range. In accordance with these data and the pK/sub a/ values of glyphosate, it is likely that the ionic form of glyphosate inhibiting EPSP synthase is COO/sup -/CH/sub 2/NH/sub 2//sup +/CH/sub 2/PO/sub 3//sup 2 -/, and that a completely ionized phosphono group is essential for inhibition. At pH 7.0, inhibition was competitive with respect to phosphoenolpyruvate (K/sub i/ = 1.25 micromolar) and uncompetitive with respect to shikimate-3-P (K/sub i/ = 18.3 micromolar). All data were consistent with a mechanism of inhibition in which glyphosate competes with PEP for binding to an (enzyme:shikimate-3-P) complex and ultimately forms the dead-end complex of (enzyme:shikimate-3-P:glyphosate). 36 references, 8 figures, 1 table.

  19. Distinguishing between weedy Amaranthus species based on intron one sequences from the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS)gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hybridization between Amaranthus species and the potential for herbicide resistance to be transferred by hybridization are of growing concern in the weed science community. It is important to confirm suspect hybrid populations early to develop an effective control strategy. With this in mind, a PC...

  20. Glyphosate-Resistant Goosegrass. Identification of a Mutation in the Target Enzyme 5-enolpyruvylshikimate-3-phosphate Synthase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The spontaneous occurrence of resistance to the herbicide glyphosate in weed species has been an extremely infrequent event, despite over 20 years of extensive use. Recently, a glyphosate-resistant biotype of goosegrass (Eleusine indica) was identified in Malaysia exhibiting an LD50 value approxima...

  1. A Novel Naturally Occurring Class I 5-Enolpyruvylshikimate-3-Phosphate Synthase from Janibacter sp. Confers High Glyphosate Tolerance to Rice

    PubMed Central

    Yi, Shu-yuan; Cui, Ying; Zhao, Yan; Liu, Zi-duo; Lin, Yong-jun; Zhou, Fei

    2016-01-01

    As glyphosate is a broad spectrum herbicide extensively used in agriculture worldwide, identification of new aroA genes with high level of glyphosate tolerance is essential for the development and breeding of transgenic glyphosate-tolerant crops. In this study, an aroA gene was cloned from a Janibacter sp. strain isolated from marine sediment (designated as aroAJ. sp). The purified aroAJ. sp enzyme has a Km value of 30 μM for PEP and 83 μM for S3P, and a significantly higher Ki value for glyphosate (373 μM) than aroAE. coli. AroAJ. sp is characterized as a novel and naturally occurring class I aroA enzyme with glyphosate tolerance. Furthermore, we show that aroAJ. sp can be used as an effective selectable marker in both japonica and indica rice cultivar. Transgenic rice lines were tested by herbicide bioassay and it was confirmed that they could tolerate up to 3360 g/ha glyphosate, a dosage four-fold that of the recommended agricultural application level. To our knowledge, it is the first report of a naturally occurring novel class I aroA gene which can be efficiently utilized to study and develop transgenic glyphosate-tolerant crops, and can facilitate a more economical and simplified weed control system. PMID:26754957

  2. Characterization and site-directed mutagenesis of a novel class II 5-enopyruvylshikimate-3-phosphate (EPSP) synthase from the deep-sea bacterium Alcanivorax sp. L27.

    PubMed

    Zhang, Yi; Yi, Licong; Lin, Yongjun; Zhang, Lili; Shao, Zongze; Liu, Ziduo

    2014-09-01

    The 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is a key enzyme in the aromatic amino acid biosynthetic pathway in microorganisms and plants, which catalyzes the formation of 5-enolpyruvylshikimate-3-phosphate (EPSP) from shikimate-3-phosphate (S3P) and phosphoenolpyruvate (PEP). In this study, a novel AroA-encoding gene was identified from the deep sea bacterium Alcanivorax sp. L27 through screening the genomic library and termed as AroAA.sp. A phylogenetic analysis revealed that AroAA.sp (1317 bp and 438 amino acids) is a class II AroA. This enzyme exhibited considerable activity between pH 5.5 and pH 8.0 and notable activity at low temperatures. The KM for PEP and IC50 [glyphosate] values (the concentration of glyphosate that inhibited enzyme activity by 50%) of AroAA.sp were 78 μM and 1.5 mM, respectively. Furthermore, site-directed mutagenesis revealed that the G100A mutant had a 30-fold increase in the IC50 [glyphosate] value; while the L105P mutant showed only 20% catalytic activity compared to wild-type AroAA.sp. The specific activity of the wild-type AroAA.sp, the G100A mutant and the L105P mutant were 7.78 U/mg, 7.26 U/mg and 1.76 U/mg, respectively. This is the first report showing that the G100A mutant of AroA displays considerably improved glyphosate resistance and demonstrates that Leu105 is essential for the enzyme's activity.

  3. Characterization and site-directed mutagenesis of a novel class II 5-enopyruvylshikimate-3-phosphate (EPSP) synthase from the deep-sea bacterium Alcanivorax sp. L27.

    PubMed

    Zhang, Yi; Yi, Licong; Lin, Yongjun; Zhang, Lili; Shao, Zongze; Liu, Ziduo

    2014-09-01

    The 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is a key enzyme in the aromatic amino acid biosynthetic pathway in microorganisms and plants, which catalyzes the formation of 5-enolpyruvylshikimate-3-phosphate (EPSP) from shikimate-3-phosphate (S3P) and phosphoenolpyruvate (PEP). In this study, a novel AroA-encoding gene was identified from the deep sea bacterium Alcanivorax sp. L27 through screening the genomic library and termed as AroAA.sp. A phylogenetic analysis revealed that AroAA.sp (1317 bp and 438 amino acids) is a class II AroA. This enzyme exhibited considerable activity between pH 5.5 and pH 8.0 and notable activity at low temperatures. The KM for PEP and IC50 [glyphosate] values (the concentration of glyphosate that inhibited enzyme activity by 50%) of AroAA.sp were 78 μM and 1.5 mM, respectively. Furthermore, site-directed mutagenesis revealed that the G100A mutant had a 30-fold increase in the IC50 [glyphosate] value; while the L105P mutant showed only 20% catalytic activity compared to wild-type AroAA.sp. The specific activity of the wild-type AroAA.sp, the G100A mutant and the L105P mutant were 7.78 U/mg, 7.26 U/mg and 1.76 U/mg, respectively. This is the first report showing that the G100A mutant of AroA displays considerably improved glyphosate resistance and demonstrates that Leu105 is essential for the enzyme's activity. PMID:25039062

  4. Molecular and phylogenetic characterization of the homoeologous EPSP Synthase genes of allohexaploid wheat, Triticum aestivum (L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: 5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) is the sixth and penultimate enzyme in the shikimate biosynthesis pathway. The EPSPS genes of allohexaploid wheat (Triticum aestivum, AABBDD) have not been well characterized. Herein, the three homoeologous copies of the wheat EPSPS gen...

  5. An EPSP synthase inhibitor joining shikimate 3-phosphate with glyphosate: synthesis and ligand binding studies.

    PubMed

    Marzabadi, M R; Gruys, K J; Pansegrau, P D; Walker, M C; Yuen, H K; Sikorski, J A

    1996-04-01

    A novel EPSP synthase inhibitor 4 has been designed and synthesized to probe the configurational details of glyphosate recognition in its herbicidal ternary complex with enzyme and shikimate 3-phosphate (S3P). A kinetic evaluation of the new 3-dephospho analog 12, as well as calorimetric and (31)P NMR spectroscopic studies of enzyme-bound 4, now provides a more precise quantitative definition for the molecular interactions of 4 with this enzyme. The very poor binding, relative to 4, displayed by the 3-dephospho analog 12 is indicative that 4 has a specific interaction with the S3P site. A comparison of Ki(calc) for 12 versus the Ki(app) for 4 indicates that the 3-phosphate group in 4 contributes about 4.8 kcal/mol to binding. This compares well with the 5.2 kcal/mol which the 3-phosphate group in S3P contributes to binding. Isothermal titration calorimetry demonstrates that 4 binds to free enzyme with an observed Kd of 0.53 +/- 0.04 microM. As such, 4 binds only 3-fold weaker than glyphosate and about 150-fold better than N-methylglyphosate. Consequently, 4 represents the most potent N-alkylglyphosate derivative identified to date. However, the resulting thermodynamic binding parameters clearly demonstrate that the formation of EPSPS x 4 is entropy driven like S3P. The binding characteristics of 4 are fully consistent with a primary interaction localized at the S3P subsite. Furthermore, (31)P NMR studies of enzyme-bound 4 confirm the expected interaction at the shikimate 3-phosphate site. However, the chemical shift observed for the phosphonate signal of EPSPS x 4 is in the opposite direction than that observed previously when glyphosate binds with enzyme and S3P. Therefore, when 4 occupies the S3P binding site, there is incomplete overlap at the glyphosate phosphonate subsite. As a glyphosate analog inhibitor, the potency of 4 most likely arises from predominant interactions which occur outside the normal glyphosate binding site. Consequently, 4 is best described

  6. Rat brain myo-inositol 3-phosphate synthase is a phosphoprotein.

    PubMed

    Parthasarathy, R N; Lakshmanan, J; Thangavel, M; Seelan, R S; Stagner, J I; Janckila, A J; Vadnal, R E; Casanova, M F; Parthasarathy, L K

    2013-06-01

    The therapeutic effects of lithium in bipolar disorder are poorly understood. Lithium decreases free inositol levels by inhibiting inositol monophosphatase 1 and myo-inositol 3-phosphate synthase (IPS). In this study, we demonstrate for the first time that IPS can be phosphorylated. This was evident when purified rat IPS was dephosphorylated by lambda protein phosphatase and analyzed by phospho-specific ProQ-Diamond staining and Western blot analysis. These techniques demonstrated a mobility shift consistent with IPS being phosphorylated. Mass spectral analysis revealed that Serine-524 (S524), which resides in the hinge region derived from exon 11 of the gene, is the site for phosphorylation. Further, an antibody generated against a synthetic peptide of IPS containing monophosphorylated-S524, was able to discriminate the phosphorylated and non-phosphorylated forms of IPS. The phosphoprotein is found in the brain and testis, but not in the intestine. The intestinal IPS isoform lacks the peptide bearing S524, and hence, cannot be phosphorylated. Evidences suggest that IPS is monophosphorylated at S524 and that the removal of this phosphate does not alter its enzymatic activity. These observations suggest a novel function for IPS in brain and other tissues. Future studies should resolve the functional role of phospho-IPS in brain inositol signaling.

  7. The Inositol-3-Phosphate Synthase Biosynthetic Enzyme Has Distinct Catalytic and Metabolic Roles

    PubMed Central

    Frej, Anna D.; Clark, Jonathan; Le Roy, Caroline I.; Lilla, Sergio; Thomason, Peter A.; Otto, Grant P.; Churchill, Grant; Insall, Robert H.; Claus, Sandrine P.; Hawkins, Phillip; Stephens, Len

    2016-01-01

    Inositol levels, maintained by the biosynthetic enzyme inositol-3-phosphate synthase (Ino1), are altered in a range of disorders, including bipolar disorder and Alzheimer's disease. To date, most inositol studies have focused on the molecular and cellular effects of inositol depletion without considering Ino1 levels. Here we employ a simple eukaryote, Dictyostelium discoideum, to demonstrate distinct effects of loss of Ino1 and inositol depletion. We show that loss of Ino1 results in an inositol auxotrophy that can be rescued only partially by exogenous inositol. Removal of inositol supplementation from the ino1− mutant resulted in a rapid 56% reduction in inositol levels, triggering the induction of autophagy, reduced cytokinesis, and substrate adhesion. Inositol depletion also caused a dramatic generalized decrease in phosphoinositide levels that was rescued by inositol supplementation. However, loss of Ino1 triggered broad metabolic changes consistent with the induction of a catabolic state that was not rescued by inositol supplementation. These data suggest a metabolic role for Ino1 that is independent of inositol biosynthesis. To characterize this role, an Ino1 binding partner containing SEL1L1 domains (Q54IX5) and having homology to mammalian macromolecular complex adaptor proteins was identified. Our findings therefore identify a new role for Ino1, independent of inositol biosynthesis, with broad effects on cell metabolism. PMID:26951199

  8. Phosphorylation regulates myo-inositol-3-phosphate synthase: a novel regulatory mechanism of inositol biosynthesis.

    PubMed

    Deranieh, Rania M; He, Quan; Caruso, Joseph A; Greenberg, Miriam L

    2013-09-13

    myo-Inositol-3-phosphate synthase (MIPS) plays a crucial role in inositol homeostasis. Transcription of the coding gene INO1 is highly regulated. However, regulation of the enzyme is not well defined. We previously showed that MIPS is indirectly inhibited by valproate, suggesting that the enzyme is post-translationally regulated. Using (32)Pi labeling and phosphoamino acid analysis, we show that yeast MIPS is a phosphoprotein. Mass spectrometry analysis identified five phosphosites, three of which are conserved in the human MIPS. Analysis of phosphorylation-deficient and phosphomimetic site mutants indicated that the three conserved sites in yeast (Ser-184, Ser-296, and Ser-374) and humans (Ser-177, Ser-279, and Ser-357) affect MIPS activity. Both S296A and S296D yeast mutants and S177A and S177D human mutants exhibited decreased enzymatic activity, suggesting that a serine residue is critical at that location. The phosphomimetic mutations S184D (human S279D) and S374D (human S357D) but not the phosphodeficient mutations decreased activity, suggesting that phosphorylation of these two sites is inhibitory. The double mutation S184A/S374A caused an increase in MIPS activity, conferred a growth advantage, and partially rescued sensitivity to valproate. Our findings identify a novel mechanism of regulation of inositol synthesis by phosphorylation of MIPS.

  9. Differential methylation of the gene encoding myo-inositol 3-phosphate synthase (Isyna1) in rat tissues

    PubMed Central

    Seelan, Ratnam S; Pisano, M Michele; Greene, Robert M; Casanova, Manuel F; Parthasarathy, Ranga N

    2011-01-01

    Aims Myo-inositol levels are frequently altered in several brain disorders. Myo-inositol 3-phosphate synthase, encoded by the Isyna1 gene, catalyzes the synthesis of myo-inositol in cells. Very little is known about the mechanisms regulating Isyna1 expression in brain and other tissues. In this study, we have examined the role of DNA methylation in regulating Isyna1 expression in rat tissues. Materials & methods Transfection analysis using in vitro methylated promoter constructs, Southern blot analysis of genomic DNA from various tissues digested with a methylation-sensitive enzyme and CpG methylation profiling of genomic DNA from different tissues were used to determine differential methylation of Isyna1 in tissues. Transfection analysis using plasmids harboring mutated CpG residues in the 5’-upstream region of Isyna1 was used to identify critical residues mediating promoter activity. Results The −700 bp to −500 bp region (region 1) of Isyna1 exhibited increased methylation in brain cortex compared with other tissues; it also exhibited sex-specific methylation differences between matched male and female brain cortices. Mutation analysis identified one CpG residue in region 1 necessary for promoter activity in neuronal cells. A tissue-specific differentially methylated region (T-DMR) was found to be localized between +450 bp and +650 bp (region 3). This DMR was comparatively highly methylated in spleen, moderately methylated in brain cortex and poorly methylated in testis, consistent with mRNA levels observed in these tissues. Conclusion Rat Isyna1 exhibits tissue-specific DNA methylation. Brain DNA was uniquely methylated in the 5’-upstream region and displayed gender specificity. A T-DMR was identified within the gene body of Isyna1. These findings suggest that Isyna1 is regulated, in part, by DNA methylation and that significant alterations in methylation patterns during development could have a major impact on inositol phosphate synthase expression in

  10. Improvement of glyphosate resistance through concurrent mutations in three amino acids of the Ochrobactrum 5-enopyruvylshikimate-3-phosphate synthase.

    PubMed

    Tian, Yong-Sheng; Xu, Jing; Xiong, Ai-Sheng; Zhao, Wei; Fu, Xiao-Yan; Peng, Ri-He; Yao, Quan-Hong

    2011-12-01

    A mutant of 5-enopyruvylshikimate-3-phosphate synthase from Ochrobactrum anthropi was identified after four rounds of DNA shuffling and screening. Its ability to restore the growth of the mutant ER2799 cell on an M9 minimal medium containing 300 mM glyphosate led to its identification. The mutant had mutations in seven amino acids: E145G, N163H, N267S, P318R, M377V, M425T, and P438L. Among these mutations, N267S, P318R, and M425T have never been previously reported as important residues for glyphosate resistance. However, in the present study they were found by site-directed mutagenesis to collectively contribute to the improvement of glyphosate tolerance. Kinetic analyses of these three mutants demonstrated that the effectiveness of these three individual amino acid alterations on glyphosate tolerance was in the order P318R > M425T > N267S. The results of the kinetic analyses combined with a three-dimensional structure modeling of the location of P318R and M425T demonstrate that the lower hemisphere's upper surface is possibly another important region for glyphosate resistance. Furthermore, the transgenic Arabidopsis was obtained to confirm the potential of the mutant in developing glyphosate-resistant crops.

  11. Safety evaluation of the double mutant 5-enol pyruvylshikimate-3-phosphate synthase (2mEPSPS) from maize that confers tolerance to glyphosate herbicide in transgenic plants.

    PubMed

    Herouet-Guicheney, Corinne; Rouquié, David; Freyssinet, Martine; Currier, Thomas; Martone, Aris; Zhou, Junguo; Bates, Elizabeth E M; Ferullo, Jean-Marc; Hendrickx, Koen; Rouan, Dominique

    2009-07-01

    Glyphosate tolerance can be conferred by decreasing the herbicide's ability to inhibit the enzyme 5-enol pyruvylshikimate-3-phosphate synthase, which is essential for the biosynthesis of aromatic amino acids in all plants, fungi, and bacteria. Glyphosate tolerance is based upon the expression of the double mutant 5-enol pyruvylshikimate-3-phosphate synthase (2mEPSPS) protein. The 2mEPSPS protein, with a lower binding affinity for glyphosate, is highly resistant to the inhibition by glyphosate and thus allows sufficient enzyme activity for the plants to grow in the presence of herbicides that contain glyphosate. Based on both a review of published literature and experimental studies, the potential safety concerns related to the transgenic 2mEPSPS protein were assessed. The safety evaluation supports that the expressed protein is innocuous. The 2mEPSPS enzyme does not possess any of the properties associated with known toxins or allergens, including a lack of amino acid sequence similarity to known toxins and allergens, a rapid degradation in simulated gastric and intestinal fluids, and no adverse effects in mice after intravenous or oral administration (at 10 or 2000 mg/kg body weight, respectively). In conclusion, there is a reasonable certainty of no harm resulting from the inclusion of the 2mEPSPS protein in human food or in animal feed.

  12. Safety evaluation of the double mutant 5-enol pyruvylshikimate-3-phosphate synthase (2mEPSPS) from maize that confers tolerance to glyphosate herbicide in transgenic plants.

    PubMed

    Herouet-Guicheney, Corinne; Rouquié, David; Freyssinet, Martine; Currier, Thomas; Martone, Aris; Zhou, Junguo; Bates, Elizabeth E M; Ferullo, Jean-Marc; Hendrickx, Koen; Rouan, Dominique

    2009-07-01

    Glyphosate tolerance can be conferred by decreasing the herbicide's ability to inhibit the enzyme 5-enol pyruvylshikimate-3-phosphate synthase, which is essential for the biosynthesis of aromatic amino acids in all plants, fungi, and bacteria. Glyphosate tolerance is based upon the expression of the double mutant 5-enol pyruvylshikimate-3-phosphate synthase (2mEPSPS) protein. The 2mEPSPS protein, with a lower binding affinity for glyphosate, is highly resistant to the inhibition by glyphosate and thus allows sufficient enzyme activity for the plants to grow in the presence of herbicides that contain glyphosate. Based on both a review of published literature and experimental studies, the potential safety concerns related to the transgenic 2mEPSPS protein were assessed. The safety evaluation supports that the expressed protein is innocuous. The 2mEPSPS enzyme does not possess any of the properties associated with known toxins or allergens, including a lack of amino acid sequence similarity to known toxins and allergens, a rapid degradation in simulated gastric and intestinal fluids, and no adverse effects in mice after intravenous or oral administration (at 10 or 2000 mg/kg body weight, respectively). In conclusion, there is a reasonable certainty of no harm resulting from the inclusion of the 2mEPSPS protein in human food or in animal feed. PMID:19303906

  13. Divergent properties and phylogeny of cyanobacterial 5-enol-pyruvyl-shikimate-3-phosphate synthases: evidence for horizontal gene transfer in the Nostocales.

    PubMed

    Forlani, Giuseppe; Bertazzini, Michele; Barillaro, Donatella; Rippka, Rosmarie

    2015-01-01

    As it represents the target of the successful herbicide glyphosate, great attention has been paid to the shikimate pathway enzyme 5-enol-pyruvyl-shikimate-3-phosphate (EPSP) synthase. However, inconsistent results have been reported concerning the sensitivity of the enzyme from cyanobacteria, and consequent inhibitory effects on cyanobacterial growth. The properties of EPSP synthase were investigated in a set of 42 strains representative of the large morphological diversity of these prokaryotes. Publicly available protein sequences were analyzed, and related to enzymatic features. In most cases, the native protein showed an unusual homodimeric composition and a general sensitivity to micromolar doses of glyphosate. By contrast, eight out of 15 Nostocales strains were found to possess a monomeric EPSP synthase, whose activity was inhibited only at concentrations exceeding 1 mM. Sequence analysis showed that these two forms are only distantly related, the latter clustering separately in a clade composed of diverse bacterial phyla. The results are consistent with the occurrence of a horizontal gene transfer event involving an evolutionarily distant organism. Moreover, data suggest that the existence of class I (glyphosate-sensitive) and class II (glyphosate-tolerant) EPSP synthases representing two distinct phylogenetic clades is an oversimplification because of the limited number of analyzed samples. PMID:25229999

  14. 40 CFR 174.523 - CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase in all plants; exemption from the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CP4 EPSPS) synthase in all plants; exemption from the requirement of a tolerance. 174.523 Section 174.523 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions §...

  15. 40 CFR 174.523 - CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase in all plants; exemption from the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CP4 EPSPS) synthase in all plants; exemption from the requirement of a tolerance. 174.523 Section 174.523 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions §...

  16. 40 CFR 174.523 - CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase in all plants; exemption from the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CP4 EPSPS) synthase in all plants; exemption from the requirement of a tolerance. 174.523 Section 174.523 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions §...

  17. 40 CFR 174.523 - CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase in all plants; exemption from the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CP4 EPSPS) synthase in all plants; exemption from the requirement of a tolerance. 174.523 Section 174.523 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions §...

  18. 40 CFR 174.523 - CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase in all plants; exemption from the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CP4 EPSPS) synthase in all plants; exemption from the requirement of a tolerance. 174.523 Section 174.523 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions §...

  19. A novel 5-enolpyruvoylshikimate-3-phosphate (EPSP) synthase transgene for glyphosate resistance stimulates growth and fecundity in weedy rice (Oryza sativa) without herbicide.

    PubMed

    Wang, Wei; Xia, Hui; Yang, Xiao; Xu, Ting; Si, Hong Jiang; Cai, Xing Xing; Wang, Feng; Su, Jun; Snow, Allison A; Lu, Bao-Rong

    2014-04-01

    Understanding evolutionary interactions among crops and weeds can facilitate effective weed management. For example, gene flow from crops to their wild or weedy relatives can lead to rapid evolution in recipient populations. In rice (Oryza sativa), transgenic herbicide resistance is expected to spread to conspecific weedy rice (Oryza sativa f. spontanea) via hybridization. Here, we studied fitness effects of transgenic over-expression of a native 5-enolpyruvoylshikimate-3-phosphate synthase (epsps) gene developed to confer glyphosate resistance in rice. Controlling for genetic background, we examined physiological traits and field performance of crop-weed hybrid lineages that segregated for the presence or absence of this novel epsps transgene. Surprisingly, we found that transgenic F2 crop-weed hybrids produced 48-125% more seeds per plant than nontransgenic controls in monoculture- and mixed-planting designs without glyphosate application. Transgenic plants also had greater EPSPS protein levels, tryptophan concentrations, photosynthetic rates, and per cent seed germination compared with nontransgenic controls. Our findings suggest that over-expression of a native rice epsps gene can lead to fitness advantages, even without exposure to glyphosate. We hypothesize that over-expressed epsps may be useful to breeders and, if deployed, could result in fitness benefits in weedy relatives following transgene introgression.

  20. Ectopic expression of myo-inositol 3-phosphate synthase induces a wide range of metabolic changes and confers salt tolerance in rice.

    PubMed

    Kusuda, Hiroki; Koga, Wataru; Kusano, Miyako; Oikawa, Akira; Saito, Kazuki; Hirai, Masami Yokota; Yoshida, Kaoru T

    2015-03-01

    Salt stress is an important factor that limits crop production worldwide. The salt tolerance of plants is a complex biological process mediated by changes in gene expression and metabolite composition. The enzyme myo-inositol 3-phosphate synthase (MIPS; EC 5.5.1.4) catalyzes the first step of myo-inositol biosynthesis, and overexpression of the MIPS gene enhances salt stress tolerance in several plant species. In this study, we performed metabolite profiling of both MIPS-overexpressing and wild-type rice. The enhanced salt stress tolerance of MIPS-overexpressing plants was clear based on growth and the metabolites under salt stress. We found that constitutive overexpression of the rice MIPS gene resulted in a wide range of metabolic changes. This study demonstrates for the first time that overexpression of the MIPS gene increases various metabolites responsible for protecting plants from abiotic stress. Activation of both basal metabolism, such as glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle, and inositol metabolism is induced in MIPS-overexpressing plants. We discuss the relationship between the metabolic changes and the improved salt tolerance observed in transgenic rice.

  1. Reconstructed Ancestral Myo-Inositol-3-Phosphate Synthases Indicate That Ancestors of the Thermococcales and Thermotoga Species Were More Thermophilic than Their Descendants

    PubMed Central

    Butzin, Nicholas C.; Lapierre, Pascal; Green, Anna G.; Swithers, Kristen S.; Gogarten, J. Peter; Noll, Kenneth M.

    2013-01-01

    The bacterial genomes of Thermotoga species show evidence of significant interdomain horizontal gene transfer from the Archaea. Members of this genus acquired many genes from the Thermococcales, which grow at higher temperatures than Thermotoga species. In order to study the functional history of an interdomain horizontally acquired gene we used ancestral sequence reconstruction to examine the thermal characteristics of reconstructed ancestral proteins of the Thermotoga lineage and its archaeal donors. Several ancestral sequence reconstruction methods were used to determine the possible sequences of the ancestral Thermotoga and Archaea myo-inositol-3-phosphate synthase (MIPS). These sequences were predicted to be more thermostable than the extant proteins using an established sequence composition method. We verified these computational predictions by measuring the activities and thermostabilities of purified proteins from the Thermotoga and the Thermococcales species, and eight ancestral reconstructed proteins. We found that the ancestral proteins from both the archaeal donor and the Thermotoga most recent common ancestor recipient were more thermostable than their descendants. We show that there is a correlation between the thermostability of MIPS protein and the optimal growth temperature (OGT) of its host, which suggests that the OGT of the ancestors of these species of Archaea and the Thermotoga grew at higher OGTs than their descendants. PMID:24391933

  2. A novel 5-enolpyruvoylshikimate-3-phosphate (EPSP) synthase transgene for glyphosate resistance stimulates growth and fecundity in weedy rice (Oryza sativa) without herbicide

    PubMed Central

    Wang, Wei; Xia, Hui; Yang, Xiao; Xu, Ting; Si, Hong Jiang; Cai, Xing Xing; Wang, Feng; Su, Jun; Snow, Allison A; Lu, Bao-Rong

    2014-01-01

    Understanding evolutionary interactions among crops and weeds can facilitate effective weed management. For example, gene flow from crops to their wild or weedy relatives can lead to rapid evolution in recipient populations. In rice (Oryza sativa), transgenic herbicide resistance is expected to spread to conspecific weedy rice (Oryza sativa f. spontanea) via hybridization. Here, we studied fitness effects of transgenic over-expression of a native 5-enolpyruvoylshikimate-3-phosphate synthase (epsps) gene developed to confer glyphosate resistance in rice. Controlling for genetic background, we examined physiological traits and field performance of crop–weed hybrid lineages that segregated for the presence or absence of this novel epsps transgene. Surprisingly, we found that transgenic F2 crop–weed hybrids produced 48–125% more seeds per plant than nontransgenic controls in monoculture- and mixed-planting designs without glyphosate application. Transgenic plants also had greater EPSPS protein levels, tryptophan concentrations, photosynthetic rates, and per cent seed germination compared with nontransgenic controls. Our findings suggest that over-expression of a native rice epsps gene can lead to fitness advantages, even without exposure to glyphosate. We hypothesize that over-expressed epsps may be useful to breeders and, if deployed, could result in fitness benefits in weedy relatives following transgene introgression. PMID:23905647

  3. Phosphorus-31, sup 15 N, and sup 13 C NMR of glyphosate: Comparison of pH titrations to the herbicidal dead-end complex with 5-enolpyruvoylshikimate-3-phosphate synthase

    SciTech Connect

    Castellino, S.; Leo, G.C.; Sammons, R.D.; Sikorski, J.A. )

    1989-05-02

    The herbicidal dead-end ternary complex (E{sup S3P}{sub Glyph}) of glyphosate (N-(phosphonomethyl)glycine) with 5-enolpyruvoylshikimate-3-phosphate synthase (EPSPS) and the substrate shikimate 3-phosphate (S3P) has been characterized by {sup 31}P, {sup 15}N, and {sup 13}C NMR. The NMR spectra of EPSPS-bound glyphosate show unique chemical shifts ({delta}) for each of the three nuclei. By {sup 31}P NMR, glyphosate in the dead-end complex is a distinct species 3.5 ppm downfield from free glyphosate. The {sup 13}C signal of glyphosate in the dead-end complex is shifted 4 ppm downfield from that of free glyphosate. The {sup 15}N signal for glyphosate (99%) in the dead-end complex is 5 ppm further downfield than that of any free zwitterionic species and 10 ppm downfield from that of the average free species at pH 10.1. The structures of each ionic state of glyphosate are modeled with force field calculations by using MacroModel. A correlation is made for the {sup 31}P {delta} and the C-P-O bond angle, and the {sup 13}C and {sup 15}N {delta} values are postulated to be related to C-C-O and C-N-C bond angles, respectively. The downfield {sup 31}P chemical shift perturbation for S3P in the EPSPS binary complex is consistent with ionization of the 3-phosphate of S3P upon binding. Comparison with the S3P {sup 31}P {delta} vs pH titration curve specifies predominantly the dianion of the 3-phosphate in the E{sup S3P} binary complex, while the E{sup S3P}{sub Glyph} complex indicates net protonation at the 3-phosphate. Chemical shift perturbations of this latter type may be explained by changes in the O-P-O bond angle.

  4. Observation of thiamin-bound intermediates and microscopic rate constants for their interconversion on 1-deoxy-D-xylulose 5-phosphate synthase: 600-fold rate acceleration of pyruvate decarboxylation by D-glyceraldehyde-3-phosphate

    PubMed Central

    Patel, Hetalben; Nemeria, Natalia S.; Brammer, Leighanne A.; Freel Meyers, Caren L.; Jordan, Frank

    2012-01-01

    The thiamin diphosphate (ThDP)-dependent enzyme 1-deoxy-D-xylulose 5-phosphate (DXP) synthase carries out the condensation of pyruvate as 2-hydroxyethyl donor with D-glyceraldehyde-3-phosphate (D-GAP) as acceptor forming DXP. Toward understanding catalysis of this potential anti-infective drug target, we examined the pathway of the enzyme using steady state and pre-steady state kinetic methods. It was found that DXP synthase stabilizes the ThDP-bound pre-decarboxylation intermediate formed between ThDP and pyruvate (C2α-lactylThDP or LThDP) in the absence of D-GAP, while addition of D-GAP enhanced the rate of decarboxylation by at least 600-fold. We postulate that decarboxylation requires formation of a ternary complex with both LThDP and D-GAP bound, and the central enzyme-bound enamine reacts with D-GAP to form DXP. This appears to be the first study of a ThDP enzyme where the individual rate constants could be evaluated by time-resolved CD spectroscopy, and the results could have relevance to other ThDP enzymes in which decarboxylation is coupled to a ligation reaction. The acceleration of the rate of decarboxylation of enzyme-bound LThDP in the presence of D-GAP suggests a new approach to inhibitor design. PMID:23072514

  5. Cloning and nucleotide sequence of the aroA gene of Bordetella pertussis.

    PubMed Central

    Maskell, D J; Morrissey, P; Dougan, G

    1988-01-01

    The aroA locus of Bordetella pertussis, encoding 5-enolpyruvylshikimate 3-phosphate synthase, has been cloned into Escherichia coli by using a cosmid vector. The gene is expressed in E. coli and complemented an E. coli aroA mutant. The nucleotide sequence of the B. pertussis aroA gene was determined and contains an open reading frame encoding 442 amino acids, with a calculated molecular weight for 5-enolpyruvylshikimate 3-phosphate synthase of 46,688. The amino acid sequence derived from the nucleotide sequence shows homology with the published amino acid sequences of aroA gene products of other microorganisms. PMID:2897356

  6. Gene Amplification Is A Mechanism For Rapid Weed Evolution To Herbicide Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The herbicide glyphosate became widely used in the U.S. and other parts of the world following the introduction of glyphosate-resistant crops. These crops were created by introduction of a modified 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene, the herbicide target site. Increased use of ...

  7. Identification of genetic elements associated with EPSPS gene amplification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed populations can have high genetic plasticity and rapid responses to environmental selection pressures. For example, 100-fold amplification of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene evolved to confer resistance to glyphosate, the world's most important herbicide, in the wee...

  8. Characterization of glyphosate resistance in cloned Amaranthus palmeri plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate resistant Palmer amaranth from Georgia (GA) possesses multiple copies of the target site, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) of this herbicide. Cloned plants of glyphosate-resistant Palmer amaranth biotypes from Mississippi (MS) were compared with GA populations using le...

  9. Two potential fish glycerol-3-phosphate phosphatases.

    PubMed

    Raymond, James A

    2015-06-01

    Winter-acclimated rainbow smelt (Osmerus mordax Mitchill) produce high levels of glycerol as an antifreeze. A common pathway to glycerol involves the enzyme glycerol-3-phosphate phosphatase (GPP), but no GPP has yet been identified in fish or any other animal. Here, two phosphatases assembled from existing EST libraries (from winter-acclimated smelt and cold-acclimated smelt hepatocytes) were found to resemble a glycerol-associated phosphatase from a glycerol-producing alga, Dunaliella salina, and a recently discovered GPP from a bacterium, Mycobacterium tuberculosis. Recombinant proteins were generated and were found to have GPP activity on the order of a few μMol Pi/mg enzyme/min. The two enzymes have acidic pH optima (~5.5) similar to that previously determined for GPP activity in liver tissue, with about 1/3 of their peak activities at neutral pH. The two enzymes appear to account for the GPP activity of smelt liver, but due to their reduced activities at neutral pH, their contributions to glycerol production in vivo remain unclear. Similar enzymes may be active in a glycerol-producing insect, Dendroctonus ponderosae.

  10. THE HEME BINDING PROPERTIES OF GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE

    PubMed Central

    Hannibal, Luciana; Collins, Daniel; Brassard, Julie; Chakravarti, Ritu; Vempati, Rajesh; Dorlet, Pierre; Santolini, Jérôme; Dawson, John H.; Stuehr, Dennis J.

    2012-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a glycolytic enzyme that also functions in transcriptional regulation, oxidative stress, vesicular trafficking, and apoptosis. Because GAPDH is required for cellular heme insertion into inducible nitric oxide synthase (Chakravarti et al, PNAS 2010, 107(42):18004-9), we extensively characterized the heme binding properties of GAPDH. Substoichiometric amounts of ferric heme bound to GAPDH (1 heme per GAPDH tetramer) to form a low-spin complex with UV-visible maxima at 362, 418 and 537 nm, and when reduced to ferrous gave maxima at 424, 527 and 559 nm. Ferric heme association and dissociation rate constants at 10 °C were kon =17,800 M−1s−1 and koff1 = 7.0 × 10−3 s−1; koff2 = 3.3 × 10−4 s−1 respectively, giving approximate affinities of 19–390 nM. Ferrous heme bound more poorly to GAPDH and dissociated with a koff = 4.2 × 10−3 s−1. Magnetic circular dichroism (MCD), resonance Raman (rR) and EPR spectroscopic data on the ferric, ferrous, and ferrous-CO complexes of GAPDH showed that the heme is bis-ligated with His as the proximal ligand. The distal ligand in ferric complex was not displaced by CN− or N3− but in ferrous complex was displaceable by CO at a rate of 1.75 s−1 (for [CO]>0.2 mM). Studies with heme analogs revealed selectivity toward the coordinating metal and porphyrin ring structure. GAPDH-heme was isolated from bacteria induced to express rabbit GAPDH in the presence of δ-amino levulinic acid. Our finding of heme binding to GAPDH expands the protein’s potential roles. The strength, selectivity, reversibility, and redox sensitivity of heme binding to GAPDH is consistent with it performing heme sensing or heme chaperone-like functions in cells. PMID:22957700

  11. Structure of RNA 3'-phosphate cyclase bound to substrate RNA.

    PubMed

    Desai, Kevin K; Bingman, Craig A; Cheng, Chin L; Phillips, George N; Raines, Ronald T

    2014-10-01

    RNA 3'-phosphate cyclase (RtcA) catalyzes the ATP-dependent cyclization of a 3'-phosphate to form a 2',3'-cyclic phosphate at RNA termini. Cyclization proceeds through RtcA-AMP and RNA(3')pp(5')A covalent intermediates, which are analogous to intermediates formed during catalysis by the tRNA ligase RtcB. Here we present a crystal structure of Pyrococcus horikoshii RtcA in complex with a 3'-phosphate terminated RNA and adenosine in the AMP-binding pocket. Our data reveal that RtcA recognizes substrate RNA by ensuring that the terminal 3'-phosphate makes a large contribution to RNA binding. Furthermore, the RNA 3'-phosphate is poised for in-line attack on the P-N bond that links the phosphorous atom of AMP to N(ε) of His307. Thus, we provide the first insights into RNA 3'-phosphate termini recognition and the mechanism of 3'-phosphate activation by an Rtc enzyme.

  12. Heme binding properties of glyceraldehyde-3-phosphate dehydrogenase.

    PubMed

    Hannibal, Luciana; Collins, Daniel; Brassard, Julie; Chakravarti, Ritu; Vempati, Rajesh; Dorlet, Pierre; Santolini, Jérôme; Dawson, John H; Stuehr, Dennis J

    2012-10-30

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a glycolytic enzyme that also functions in transcriptional regulation, oxidative stress, vesicular trafficking, and apoptosis. Because GAPDH is required for the insertion of cellular heme into inducible nitric oxide synthase [Chakravarti, R., et al. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 18004-18009], we extensively characterized the heme binding properties of GAPDH. Substoichiometric amounts of ferric heme bound to GAPDH (one heme per GAPDH tetramer) to form a low-spin complex with UV-visible maxima at 362, 418, and 537 nm and when reduced to ferrous gave maxima at 424, 527, and 559 nm. Ferric heme association and dissociation rate constants at 10 °C were as follows: k(on) = 17800 M(-1) s(-1), k(off1) = 7.0 × 10(-3) s(-1), and k(off2) = 3.3 × 10(-4) s(-1) (giving approximate affinities of 19-390 nM). Ferrous heme bound more poorly to GAPDH and dissociated with a k(off) of 4.2 × 10(-3) s(-1). Magnetic circular dichroism, resonance Raman, and electron paramagnetic resonance spectroscopic data on the ferric, ferrous, and ferrous-CO complexes of GAPDH showed that the heme is bis-ligated with His as the proximal ligand. The distal ligand in the ferric complex was not displaced by CN(-) or N(3)(-) but in the ferrous complex could be displaced by CO at a rate of 1.75 s(-1) (for >0.2 mM CO). Studies with heme analogues revealed selectivity toward the coordinating metal and porphyrin ring structure. The GAPDH-heme complex was isolated from bacteria induced to express rabbit GAPDH in the presence of δ-aminolevulinic acid. Our finding of heme binding to GAPDH expands the protein's potential roles. The strength, selectivity, reversibility, and redox sensitivity of heme binding to GAPDH are consistent with it performing heme sensing or heme chaperone-like functions in cells.

  13. Metabolism of L-glyceraldehyde 3-phosphate in Escherichia coli

    SciTech Connect

    Kalyananda, M.K.G.S.

    1985-01-01

    E. coli is able to incorporate L-glyceraldehyde and L-glyceraldehyde 3-phosphate into phospholipids, L-(3-/sup 3/H)Glyceraldehyde was synthesized and the purity and the chemical identity of the product were checked by paper chromatography. L-(3-/sup 3/H)Glyceraldehyde 3-phosphate was synthesized from L-(3-/sup 3/H)glyceraldehyde in a reaction catalyzed by glycerokinase. E. coli extract contains a new enzyme activity which catalyzes an NADPH dependent reduction of L-glyceraldehyde 3-phosphate into sn-glycerol 3-phosphate. A procedure, specifically suitable for assaying the reductase activity in the crude extract, was developed. A more convenient spectrophotometric assay method was employed for the purified enzyme. At moderate concentrations sulfhydryl group inhibitors had no effect on the enzyme activity of L-GAP reductase. At 100..mu..M concentration Zn/sup +2/ inhibited the enzyme activity by about 30% while Mn/sup +2/ elevated the activity by about the same margin. Mg/sup +2/, Ca/sup +2/ and Fe/sup +2/ were without effect at this concentration. L-Glyceraldehyde 3-phosphate is known to be bactericidal at 1.25 ..mu..M concentration and the D-enantiomer is without effect. Furthermore, methylglyoxal is known to be bactericidal at or above 0.5 mM concentration. Strains of E. coli resistant to 1 mM methylglyoxal were isolated. The cell extract prepared from the mutant possessed increased capacity to transform methylglyoxal into D-lactate via a glutathione dependent reaction. These mutants were less sensitive to 2.5 mM DL-GAP suggesting that conversion of L-glyceraldehyde 3-phosphate into methylglyoxal may at least partly be responsible for the bactericidal activity of L-GAP.

  14. Essential fructosuria: increased levels of fructose 3-phosphate in erythrocytes.

    PubMed

    Petersen, A; Steinmann, B; Gitzelmann, R

    1992-01-01

    Erythrocytes of 3 adult siblings with essential fructosuria contained 45-200 mumol/l fructose 3-phosphate (Fru-3-P), i.e. 3-15 times the concentration in normal controls. Sorbitol 3-phosphate was also increased, but to a lesser degree. An oral load with 50 g of fructose produced an additional 40 mumol/l increase of erythrocyte Fru-3-P after 5 h. The rate of Fru-3-P formation by red cells in vitro was normal. HbA1 and HbA1c were normal. The suspected pathogenetic role of Fru-3-P in diabetic complications is questioned.

  15. Model of early self-replication based on covalent complementarity for a copolymer of glycerate-3-phosphate and glycerol-3-phosphate

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1989-01-01

    Glyceraldehyde-3-phosphate acts as the substrate in a model of early self-replication of a phosphodiester copolymer of glycerate-3-phosphate and glycerol-3-phosphate. This model of self-replication is based on covalent complementarity in which information transfer is mediated by a single covalent bond, in contrast to multiple weak interactions that establish complementarity in nucleic acid replication. This replication model is connected to contemporary biochemistry through its use of glyceraldehyde-3-phosphate, a central metabolite of glycolysis and photosynthesis.

  16. Functional characterization of the human 1-acylglycerol-3-phosphate-O-acyltransferase isoform 10/glycerol-3-phosphate acyltransferase isoform 3

    PubMed Central

    Sukumaran, Suja; Barnes, Robert I; Garg, Abhimanyu; Agarwal, Anil K

    2016-01-01

    Synthesis of phospholipids can occur de novo or via remodeling of the existing phospholipids. Synthesis of triglycerides, a form of energy storage in cells, is an end product of these pathways. Several 1-acylglycerol-3-phosphate-O-acyltransferases (AGPATs) acylate lysophosphatidic acid (LPA) at the sn-2 (carbon 2) position to produce phosphatidic acid (PA). These enzymes are involved in phospholipids and triglyceride synthesis through an evolutionary conserved process involving serial acylations of glycerol-3-phosphate. We cloned a cDNA predicted to be an AGPAT isoform (AGPAT10). This cDNA has been recently identified as glycerol-3-phosphate-O-acyltransferase isoform 3 (GPAT3). When this AGPAT10/GPAT3 cDNA was expressed in Chinese Hamster ovary cells, the protein product localizes to the endoplasmic reticulum. In vitro enzymatic activity using lysates of human embryonic kidney-293 cells infected with recombinant AGPAT10/GPAT3 adenovirus show that the protein has a robust AGPAT activity with an apparent Vmax of 2 nmol/min per mg protein, but lacks GPAT enzymatic activity. This AGPAT has similar substrate specificities for LPA and acyl-CoA as shown for another known isoform, AGPAT2. We further show that when overexpressed in human Huh-7 cells depleted of endogenous AGPAT activity by sh-RNA-AGPAT2-lentivirus, the protein again demonstrates AGPAT activity. These observations strongly suggest that the cDNA previously identified as GPAT3 has AGPAT activity and thus we prefer to identify this clone as AGPAT10 as well. PMID:19318427

  17. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Alzheimer's disease.

    PubMed

    El Kadmiri, N; Slassi, I; El Moutawakil, B; Nadifi, S; Tadevosyan, A; Hachem, A; Soukri, A

    2014-12-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a ubiquitous enzyme that catalyzes the sixth step of glycolysis and thus, serves to break down glucose for energy production. Beyond the traditional aerobic metabolism of glucose, recent studies have highlighted additional roles played by GAPDH in non-metabolic processes, such as control of gene expression and redox post-translational modifications. Neuroproteomics have revealed high affinity interactions between GAPDH and Alzheimer's disease-associated proteins, including the β-amyloid, β-amyloid precursor protein and tau. This neuronal protein interaction may lead to impairment of the GAPDH glycolytic function in Alzheimer's disease and may be a forerunner of its participation in apoptosis. The present review examines the crucial implication of GAPDH in neurodegenerative processes and clarifies its role in apoptotic cell death.

  18. Substrate specificity modification of the stromal glycerol-3-phosphate acyltransferase.

    PubMed

    Ferri, S R; Toguri, T

    1997-01-15

    The stromal glycerol-3-phosphate acyltransferases (GPATs; EC 2.3.1.15) from spinach (Spinacia oleracea) and squash (Cucurbita moschata) were expressed in Escherichia coli and their activities with palmitoyl-CoA and oleoyl-CoA compared. The GPAT from squash, a chilling-sensitive plant, was found to have the greatest difference in activities between the two substrates, using palmitoyl-CoA over three times faster than oleoyl-CoA. In contrast, the enzyme from spinach, a chilling-tolerant plant, preferred oleoyl-CoA over palmitoyl-CoA. By using conserved restriction endonuclease sites each of the two genes was divided into three fragments of roughly equal size and recombined to create six different chimeras. All chimeras retained a large portion of their original activity but in most cases the specificity was greatly altered. The central third of the protein was found to contain the structural features which determine substrate specificity of the wild-type GPATs. Two of the chimeras, which have a spinach-derived central region and a squash-derived carboxyl region, were found to have greatly enhanced specificities for 18:1 acyl chains, potentially making them ideal for decreasing the level of saturation of plant membrane lipids through genetic engineering.

  19. Structure of rabbit-muscle glyceraldehyde-3-phosphate dehydrogenase.

    PubMed

    Cowan-Jacob, Sandra W; Kaufmann, Markus; Anselmo, Anthony N; Stark, Wilhelm; Grütter, Markus G

    2003-12-01

    The crystal structure of the tetrameric form of D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) isolated from rabbit muscle was solved at 2.4 A resolution after careful dynamic light-scattering experiments to find a suitable buffer for crystallization trials. The refined model has a crystallographic R factor of 20.3%. Here, the first detailed model of a mammalian GAPDH is presented. The cofactor NAD(+) (nicotinamide adenine dinucleotide) is bound to two subunits of the tetrameric enzyme, which is consistent with the negative cooperativity of NAD(+) binding to this enzyme. The structure of rabbit-muscle GAPDH is of interest because it shares 91% sequence identity with the human enzyme; human GAPDH is a potential target for the development of anti-apoptotic drugs. In addition, differences in the cofactor-binding pocket compared with the homology-model structure of GAPDH from the malaria parasite Plasmodium falciparum could be exploited in order to develop novel selective and potential antimalaria drugs.

  20. Interactions among p22, glyceraldehyde-3-phosphate dehydrogenase and microtubules.

    PubMed

    Andrade, Josefa; Pearce, Sandy Timm; Zhao, Hu; Barroso, Margarida

    2004-12-01

    Previously, we have shown that p22, an EF-hand Ca2+-binding protein, interacts indirectly with microtubules in an N-myristoylation-dependent and Ca2+-independent manner. In the present study, we report that N-myristoylated p22 interacts with several microtubule-associated proteins within the 30-100 kDa range using overlay blots of microtubule pellets containing cytosolic proteins. One of those p22-binding partners, a 35-40 kDa microtubule-binding protein, has been identified by MS as GAPDH (glyceraldehyde-3-phosphate dehydrogenase). Several lines of evidence suggest a functional relationship between GAPDH and p22. First, endogenous p22 interacts with GAPDH by immunoprecipitation. Secondly, p22 and GAPDH align along microtubule tracks in analogous punctate structures in BHK cells. Thirdly, GAPDH facilitates the p22-dependent interactions between microtubules and microsomal membranes, by increasing the ability of p22 to bind microtubules but not membranes. We have also shown a direct interaction between N-myristoylated p22 and GAPDH in vitro with a K(D) of approximately 0.5 microM. The removal of either the N-myristoyl group or the last six C-terminal amino acids abolishes the binding of p22 to GAPDH and reduces the ability of p22 to associate with microtubules. In summary, we report that GAPDH is involved in the ability of p22 to facilitate microtubule-membrane interactions by affecting the p22-microtubule, but not the p22-membrane, association. PMID:15312048

  1. Glyceraldehyde 3-phosphate dehydrogenase is bound to the fibrous sheath of mammalian spermatozoa.

    PubMed

    Westhoff, D; Kamp, G

    1997-08-01

    Evidence is provided that the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase is covalently linked to the fibrous sheath. The fibrous sheath is a typical structure of mammalian spermatozoa surrounding the axoneme in the principal piece of the flagellum. More than 90% of boar sperm glyceraldehyde 3-phosphate dehydrogenase activity is sedimented after cell disintegration by centrifugation. Detergents, different salt concentrations or short term incubation with chymotrypsin do not solubilize the enzyme, whereas digestion with trypsin or elastase does. Short term incubation with trypsin (15 minutes) even resulted in an activation of glyceraldehyde 3-phosphate dehydrogenase. Purification on phenyl-Sepharose yielded a homogeneous glyceraldehyde 3-phosphate dehydrogenase as judged from gel electrophoresis SDS-PAGE and native gradient PAGE. The molecular masses are 41.5 and 238 kDa, respectively, suggesting native glyceraldehyde 3-phosphate dehydrogenase to be a hexamer. Rabbit polyclonal antibodies raised to purified glyceraldehyde 3-phosphate dehydrogenase show a high specificity for mammalian spermatozoal glyceraldehyde 3-phosphate dehydrogenase, while other proteins of boar spermatozoa or the muscle glyceraldehyde 3-phosphate dehydrogenase are not labelled. Immunogold staining performed in a post-embedding procedure reveals the localization of glyceraldehyde 3-phosphate dehydrogenase along the fibrous sheath in spermatozoa of boar, bull, rat, stallion and man. Other structures such as the cell membrane, dense fibres, the axoneme or the mitochondria are free of label. During the process of sperm maturation, most of the cytoplasm of the sperm midpiece is removed as droplets during the passage through the epididymis. The labelling of this cytoplasm, in immature boar spermatozoa and in the droplets, indicates that glyceraldehyde 3-phosphate dehydrogenase is completely removed from the midpiece during sperm maturation in the epididymis. The inverse

  2. Pseudouridine synthases.

    PubMed

    Hamma, Tomoko; Ferré-D'Amaré, Adrian R

    2006-11-01

    Pseudouridine synthases are the enzymes responsible for the most abundant posttranscriptional modification of cellular RNAs. These enzymes catalyze the site-specific isomerization of uridine residues that are already part of an RNA chain, and appear to employ both sequence and structural information to achieve site specificity. Crystallographic analyses have demonstrated that all pseudouridine synthases share a common core fold and active site structure and that this core is modified by peripheral domains, accessory proteins, and guide RNAs to give rise to remarkable substrate versatility.

  3. Nonreversible d-Glyceraldehyde 3-Phosphate Dehydrogenase of Plant Tissues 1

    PubMed Central

    Kelly, G. J.; Gibbs, Martin

    1973-01-01

    Preparations of TPN-linked nonreversible d-glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.9), free of TPN-linked reversible d-glyceraldehyde 3-phosphate dehydrogenase, have been obtained from green shoots, etiolated shoots, and cotyledons of pea (Pisum sativum), cotyledons of peanut (Arachis hypogea), and leaves of maize (Zea mays). The properties of the enzyme were similar from each of these sources: the Km values for d-glyceraldehyde 3-phosphate and TPN were about 20 μm and 3 μm, respectively. The enzyme activity was inhibited by l-glyceraldehyde 3-phosphate, d-erythrose 4-phosphate, and phosphohydroxypyruvate. Activity was found predominantly in photosynthetic and gluconeogenic tissues of higher plants. A light-induced, phytochrome-mediated increase of enzyme activity in a photosynthetic tissue (pea shoots) was demonstrated. Appearance of enzyme activity in a gluconeogenic tissue (endosperm of castor bean, Ricinus communis) coincided with the conversion of fat to carbohydrate during germination. In photosynthetic tissue, the enzyme is located outside the chloroplast, and at in vivo levels of triose-phosphates and pyridine nucleotides, the activity is probably greater than that of DPN-linked reversible d-glyceraldehyde 3-phosphate dehydrogenase. Several possible roles for the enzyme in plant carbohydrate metabolism are considered. PMID:16658509

  4. Fructose metabolism in the human erythrocyte. Phosphorylation to fructose 3-phosphate.

    PubMed Central

    Petersen, A; Kappler, F; Szwergold, B S; Brown, T R

    1992-01-01

    In human erythrocytes, the first step in the metabolism of fructose is generally thought to be phosphorylation to fructose 6-phosphate catalysed by hexokinase. In variance with this assumption, we show here that fructose in these cells is metabolized primarily to fructose 3-phosphate by a specific 3-phosphokinase. This process has an overall estimated Km of 30 mM with respect to extracellular fructose and an apparent Vmax. of 0.6 mumol/h per ml. At a fixed concentration of fructose in the medium, the accumulation of fructose 3-phosphate was linearly dependent on the duration of incubation up to 5 h and was not affected by glucose. Once accumulated, fructose 3-phosphate appears to be degraded and/or relatively slowly metabolized, decreasing by only approximately 30% after a 12 h incubation in a fructose-free medium. PMID:1599419

  5. Isolation of a GPD gene from Debaryomyces hansenii encoding a glycerol 3-phosphate dehydrogenase (NAD+).

    PubMed

    Thomé, Patricia E

    2004-01-30

    A gene homologous to GPD1, coding for glycerol-3-phosphate dehydrogenase (sn-glycerol 3-phosphate: NAD(+) oxidoreductase, EC 1.1.1.8), has been isolated from the halophilic yeast Debaryomyces hansenii by complementation of a Saccharomyces cerevisiae gpd1 Delta mutant. DNA sequencing of the complementing genomic clone indicated the existence of an open reading frame encoding a protein with 369 amino acids. Comparative analysis of the deduced amino acid sequence showed high similarity to homologous genes described for other eukaryotic GPD enzymes. The sequence has been submitted to the GenBank database under Accession No. AY333427.

  6. [The pentose phosphate pathway and NADP-dependent glycerol-3-phosphate dehydrogenase activity in some tissues of albino rat].

    PubMed

    Glushankov, E P; Epifanova, Iu E; Kolotilova, A I

    1976-10-01

    The NADP-dependent glycerol-3-phosphate dehydrogenase activity in liver, heart and skeletal muscle of rat was studied. The activity is found when glyceraldehyde-3-phosphate or ribose-5-phosphate in the presence of ATP are taken as substrates. The data obtained confirm that NADP-dependent glycerol-3-phosphate dehydrogenase exists in skeletal muscle and demonstrate that it is found in heart muscle as well.

  7. [Activity of NADP-dependent glycerol-3-phosphate dehydrogenase in skeletal muscles of animals].

    PubMed

    Epifanova, Iu E; Glushankov, E P; Kolotilova, A I

    1978-01-01

    The NADP-dependent glycerol-3-phosphate dehydrogenase activity was studied in sketetal muscles of the rat, rabbit and frog. The dehydrogenase activity in the skeletal muscles of the rat and rabbit was higher than that of the frog. The enzyme activity was found to depend upon the buffer, being higher in tris-HCl buffer than in triethanolamine buffer.

  8. Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glycerol-3-phosphate (G3P) is an important metabolite that contributes to the growth and disease-related physiologies of prokaryotes, plants, animals and humans alike. Here we show that G3P serves as the inducer of an important form of broad-spectrum immunity in plants, termed systemic acquired resi...

  9. Chemical and enzymatic methodologies for the synthesis of enantiomerically pure glyceraldehyde 3-phosphates.

    PubMed

    Gauss, Dominik; Schoenenberger, Bernhard; Wohlgemuth, Roland

    2014-05-01

    Glyceraldehyde 3-phosphates are important intermediates of many central metabolic pathways in a large number of living organisms. d-Glyceraldehyde 3-phosphate (d-GAP) is a key intermediate during glycolysis and can as well be found in a variety of other metabolic pathways. The opposite enantiomer, l-glyceraldehyde 3-phosphate (l-GAP), has been found in a few exciting new pathways. Here, improved syntheses of enantiomerically pure glyceraldehyde 3-phosphates are reported. While d-GAP was synthesized by periodate cleavage of d-fructose 6-phosphate, l-GAP was obtained by enzymatic phosphorylation of l-glyceraldehyde. (1)H- and (31)P NMR spectroscopy was applied in order to examine pH-dependent behavior of GAP over time and to identify potential degradation products. It was found that GAP is stable in acidic aqueous solution below pH 4. At pH 7, methylglyoxal is formed, whereas under alkaline conditions, the formation of lactic acid could be observed.

  10. EXPRESSION OF THE SPERMATOGENIC CELL-SPECIFIC GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE (GAPDS) IN RAT TESTIS

    EPA Science Inventory

    The spermatogenic cell-specific variant of glyceraldehyde 3-phosphate dehydrogenase (GAPDS) has been cloned from a rat testis cDNA library and its pattern of expression determined. A 1417 nucleotide cDNA has been found to encode an enzyme with substantial homology to mouse GAPDS...

  11. Fusion of phospholipid vesicles induced by muscle glyceraldehyde-3-phosphate dehydrogenase in the absence of calcium.

    PubMed

    Morero, R D; Viñals, A L; Bloj, B; Farías, R N

    1985-04-01

    Ca2+-induced fusion of phospholipid vesicles (phosphatidylcholine/phosphatidic acid, 9:1 mol/mol) prepared by ethanolic injection was followed by five different procedures: resonance energy transfer, light scattering, electron microscopy, intermixing of aqueous content, and gel filtration through Sepharose 4-B. The five methods gave concordant results, showing that vesicles containing only 10% phosphatidic acid can be induced to fuse by millimolar concentrations of Ca2+. When the fusing capability of several soluble proteins was assayed, it was found that concanavalin A, bovine serum albumin, ribonuclease, and protease were inactive. On the other hand, lysozyme, L-lactic dehydrogenase, and muscle and yeast glyceraldehyde-3-phosphate dehydrogenase were capable of inducing vesicle fusion. Glyceraldehyde-3-phosphate dehydrogenase from rabbit muscle, the most extensively studied protein, proved to be very effective: 0.1 microM was enough to induce complete intermixing of bilayer phospholipid vesicles. Under conditions used in this work, fusion was accompanied by leakage of internal contents. The fusing capability of glyceraldehyde-3-phosphate dehydrogenase was not affected by 5 mM ethylenediaminetetraacetic acid. The Ca2+ concentration in the medium, as determined by atomic absorption spectroscopy, was 5 ppm. Heat-denatured enzyme was incapable of inducing fusion. We conclude that glyceraldehyde-3-phosphate dehydrogenase is a soluble protein inherently endowed with the capability of fusing phospholipid vesicles.

  12. A thermodynamic investigation of reactions catalyzed by tryptophan synthase.

    PubMed

    Kishore, N; Tewari, Y B; Akers, D L; Goldberg, R N; Miles, E W

    1998-07-27

    Microcalorimetry and high-performance liquid chromatography have been used to conduct a thermodynamic investigation of the following reactions catalyzed by the tryptophan synthase alpha 2 beta 2 complex (EC 4.2.1.20) and its subunits: indole(aq) + L-serine(aq) = L-tryptophan(aq) + H2O(1); L-serine(aq) = pyruvate(aq) + ammonia(aq); indole(aq) + D-glyceraldehyde 3-phosphate(aq) = 1-(indol-3-yl)glycerol 3-phosphate(aq); L-serine(aq) + 1-(indol-3-yl)glycerol 3-phosphate(aq) = L-tryptophan(aq) + D-glyceraldehyde 3-phosphate(aq) + H2O(1). The calorimetric measurements led to standard molar enthalpy changes for all four of these reactions. Direct measurements yielded an apparent equilibrium constant for the third reaction; equilibrium constants for the remaining three reactions were obtained by using thermochemical cycle calculations. The results of the calorimetric and equilibrium measurements were analyzed in terms of a chemical equilibrium model that accounted for the multiplicity of the ionic states of the reactants and products. Thermodynamic quantities for chemical reference reactions involving specific ionic forms have been obtained. These quantities permit the calculation of the position of equilibrium of the above four reactions as a function of temperature, pH, and ionic strength. Values of the apparent equilibrium constants and standard transformed Gibbs free energy changes delta r G'(m) degree under approximately physiological conditions are given. Le Châtelier's principle provides an explanation as to why, in the metabolic pathway leading to the synthesis of L-tryptophan, the third reaction proceeds in the direction of formation of indole and D-glyceraldehyde 3-phosphate even though the apparent equilibrium constant greatly favors the formation of 1-(indol-3-yl)glycerol 3-phosphate. PMID:9700925

  13. Regulation of cyclic electron flow in C₃ plants: differential effects of limiting photosynthesis at ribulose-1,5-bisphosphate carboxylase/oxygenase and glyceraldehyde-3-phosphate dehydrogenase.

    PubMed

    Livingston, Aaron K; Kanazawa, Atsuko; Cruz, Jeffrey A; Kramer, David M

    2010-11-01

    Cyclic electron flow around photosystem I (CEF1) is thought to augment chloroplast ATP production to meet metabolic needs. Very little is known about the induction and regulation of CEF1. We investigated the effects on CEF1 of antisense suppression of the Calvin-Benson enzymes glyceraldehyde-3-phosphate dehydrogenase (gapR), and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit (SSU), in tobacco (Nicotiana tabacum cv. Wisconsin 38). The gapR, but not ssuR, mutants showed substantial increases in CEF1, demonstrating that specific intermediates, rather than slowing of assimilation, induce CEF1. Both types of mutant showed increases in steady-state transthylakoid proton motive force (pmf) and subsequent activation of the photoprotective q(E) response. With gapR, the increased pmf was caused both by up-regulation of CEF1 and down-regulation of the ATP synthase. In ssuR, the increased pmf was attributed entirely to a decrease in ATP synthase activity, as previously seen in wild-type plants when CO₂ levels were decreased. Comparison of major stromal metabolites in gapR, ssuR and hcef1, a mutant with decreased fructose 1,6-bisphosphatase activity, showed that neither the ATP/ADP ratio, nor major Calvin-Benson cycle intermediates can directly account for the activation of CEF1, suggesting that chloroplast redox status or reactive oxygen species regulate CEF1.

  14. Structure of glycerol-3-phosphate dehydrogenase, an essential monotopic membrane enzyme involved in respiration and metabolism

    SciTech Connect

    Yeh, Joanne I.; Chinte, Unmesh; Du, Shoucheng

    2008-04-02

    Sn-glycerol-3-phosphate dehydrogenase (GlpD) is an essential membrane enzyme, functioning at the central junction of respiration, glycolysis, and phospholipid biosynthesis. Its critical role is indicated by the multitiered regulatory mechanisms that stringently controls its expression and function. Once expressed, GlpD activity is regulated through lipid-enzyme interactions in Escherichia coli. Here, we report seven previously undescribed structures of the fully active E. coli GlpD, up to 1.75 {angstrom} resolution. In addition to elucidating the structure of the native enzyme, we have determined the structures of GlpD complexed with substrate analogues phosphoenolpyruvate, glyceric acid 2-phosphate, glyceraldehyde-3-phosphate, and product, dihydroxyacetone phosphate. These structural results reveal conformational states of the enzyme, delineating the residues involved in substrate binding and catalysis at the glycerol-3-phosphate site. Two probable mechanisms for catalyzing the dehydrogenation of glycerol-3-phosphate are envisioned, based on the conformational states of the complexes. To further correlate catalytic dehydrogenation to respiration, we have additionally determined the structures of GlpD bound with ubiquinone analogues menadione and 2-n-heptyl-4-hydroxyquinoline N-oxide, identifying a hydrophobic plateau that is likely the ubiquinone-binding site. These structures illuminate probable mechanisms of catalysis and suggest how GlpD shuttles electrons into the respiratory pathway. Glycerol metabolism has been implicated in insulin signaling and perturbations in glycerol uptake and catabolism are linked to obesity in humans. Homologs of GlpD are found in practically all organisms, from prokaryotes to humans, with >45% consensus protein sequences, signifying that these structural results on the prokaryotic enzyme may be readily applied to the eukaryotic GlpD enzymes.

  15. Discovery of covalent inhibitors of glyceraldehyde-3-phosphate dehydrogenase, a target for the treatment of malaria.

    PubMed

    Bruno, Stefano; Pinto, Andrea; Paredi, Gianluca; Tamborini, Lucia; De Micheli, Carlo; La Pietra, Valeria; Marinelli, Luciana; Novellino, Ettore; Conti, Paola; Mozzarelli, Andrea

    2014-09-11

    We developed a new class of covalent inhibitors of Plasmodium falciparum glyceraldehyde-3-phosphate dehydrogenase, a validated target for the treatment of malaria, by screening a small library of 3-bromo-isoxazoline derivatives that inactivate the enzyme through a covalent, selective bond to the catalytic cysteine, as demonstrated by mass spectrometry. Substituents on the isoxazolinic ring modulated the potency up to 20-fold, predominantly due to an electrostatic effect, as assessed by computational analysis. PMID:25137375

  16. The glycerol-3-phosphate permease GlpT is the only fosfomycin transporter in Pseudomonas aeruginosa.

    PubMed

    Castañeda-García, Alfredo; Rodríguez-Rojas, Alexandro; Guelfo, Javier R; Blázquez, Jesús

    2009-11-01

    Fosfomycin is transported into Escherichia coli via both glycerol-3-phosphate (GlpT) and a hexose phosphate transporter (UhpT). Consequently, the inactivation of either glpT or uhpT confers increased fosfomycin resistance in this species. The inactivation of other genes, including ptsI and cyaA, also confers significant fosfomycin resistance. It has been assumed that identical mechanisms are responsible for fosfomycin transport into Pseudomonas aeruginosa cells. The study of an ordered library of insertion mutants in P. aeruginosa PA14 demonstrated that only insertions in glpT confer significant resistance. To explore the uniqueness of this resistance target in P. aeruginosa, the linkage between fosfomycin resistance and the use of glycerol-3-phosphate was tested. Fosfomycin-resistant (Fos-R) mutants were obtained in LB and minimal medium containing glycerol as the sole carbon source at a frequency of 10(-6). However, no Fos-R mutants grew on plates containing fosfomycin and glycerol-3-phosphate instead of glycerol (mutant frequency, < or = 5 x 10(-11)). In addition, 10 out of 10 independent spontaneous Fos-R mutants, obtained on LB-fosfomycin, harbored mutations in glpT, and in all cases the sensitivity to fosfomycin was recovered upon complementation with the wild-type glpT gene. The analysis of these mutants provides additional insights into the structure-function relationship of glycerol-3-phosphate the transporter in P. aeruginosa. Studies with glucose-6-phosphate and different mutant derivatives strongly suggest that P. aeruginosa lacks a specific transport system for this sugar. Thus, glpT seems to be the only fosfomycin resistance mutational target in P. aeruginosa. The high frequency of Fos-R mutations and their apparent lack of fitness cost suggest that Fos-R variants will be obtained easily in vivo upon the fosfomycin treatment of P. aeruginosa infections.

  17. Crystal structures capture three states in the catalytic cycle of a pyridoxal phosphate (PLP) synthase.

    PubMed

    Smith, Amber Marie; Brown, William Clay; Harms, Etti; Smith, Janet L

    2015-02-27

    PLP synthase (PLPS) is a remarkable single-enzyme biosynthetic pathway that produces pyridoxal 5'-phosphate (PLP) from glutamine, ribose 5-phosphate, and glyceraldehyde 3-phosphate. The intact enzyme includes 12 synthase and 12 glutaminase subunits. PLP synthesis occurs in the synthase active site by a complicated mechanism involving at least two covalent intermediates at a catalytic lysine. The first intermediate forms with ribose 5-phosphate. The glutaminase subunit is a glutamine amidotransferase that hydrolyzes glutamine and channels ammonia to the synthase active site. Ammonia attack on the first covalent intermediate forms the second intermediate. Glyceraldehyde 3-phosphate reacts with the second intermediate to form PLP. To investigate the mechanism of the synthase subunit, crystal structures were obtained for three intermediate states of the Geobacillus stearothermophilus intact PLPS or its synthase subunit. The structures capture the synthase active site at three distinct steps in its complicated catalytic cycle, provide insights into the elusive mechanism, and illustrate the coordinated motions within the synthase subunit that separate the catalytic states. In the intact PLPS with a Michaelis-like intermediate in the glutaminase active site, the first covalent intermediate of the synthase is fully sequestered within the enzyme by the ordering of a generally disordered 20-residue C-terminal tail. Following addition of ammonia, the synthase active site opens and admits the Lys-149 side chain, which participates in formation of the second intermediate and PLP. Roles are identified for conserved Asp-24 in the formation of the first intermediate and for conserved Arg-147 in the conversion of the first to the second intermediate. PMID:25568319

  18. Expression, purification and kinetic characterization of His-tagged glyceraldehyde-3-phosphate dehydrogenase from Trypanosoma cruzi.

    PubMed

    Cheleski, Juliana; Freitas, Renato F; Wiggers, Helton José; Rocha, Josmar R; de Araújo, Ana Paula Ulian; Montanari, Carlos A

    2011-04-01

    Trypanosomes are flagellated protozoa responsible for serious parasitic diseases that have been classified by the World Health Organization as tropical sicknesses of major importance. One important drug target receiving considerable attention is the enzyme glyceraldehyde-3-phosphate dehydrogenase from the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease (T. cruzi Glyceraldehyde-3-phosphate dehydrogenase (TcGAPDH); EC 1.2.1.12). TcGAPDH is a key enzyme in the glycolytic pathway of T. cruzi and catalyzes the oxidative phosphorylation of D-glyceraldehyde-3-phosphate (G3P) to 1,3-bisphosphoglycerate (1,3-BPG) coupled to the reduction of oxidized nicotinamide adenine dinucleotide, (NAD(+)) to NADH, the reduced form. Herein, we describe the cloning of the T. cruzi gene for TcGAPDH into the pET-28a(+) vector, its expression as a tagged protein in Escherichia coli, purification and kinetic characterization. The His(6)-tagged TcGAPDH was purified by affinity chromatography. Enzyme activity assays for the recombinant His(6)-TcGAPDH were carried out spectrophotometrically to determine the kinetic parameters. The apparent Michaelis-Menten constant (K(M)(app)) determined for D-glyceraldehyde-3-phosphate and NAD(+) were 352±21 and 272±25 μM, respectively, which were consistent with the values for the untagged enzyme reported in the literature. We have demonstrated by the use of Isothermal Titration Calorimetry (ITC) that this vector modification resulted in activity preserved for a higher period. We also report here the use of response surface methodology (RSM) to determine the region of optimal conditions for enzyme activity. A quadratic model was developed by RSM to describe the enzyme activity in terms of pH and temperature as independent variables. According to the RMS contour plots and variance analysis, the maximum enzyme activity was at 29.1°C and pH 8.6. Above 37°C, the enzyme activity starts to fall, which may be related to previous

  19. Expanding the molecular diversity and phenotypic spectrum of glycerol 3-phosphate dehydrogenase 1 deficiency.

    PubMed

    Dionisi-Vici, Carlo; Shteyer, Eyal; Niceta, Marcello; Rizzo, Cristiano; Pode-Shakked, Ben; Chillemi, Giovanni; Bruselles, Alessandro; Semeraro, Michela; Barel, Ortal; Eyal, Eran; Kol, Nitzan; Haberman, Yael; Lahad, Avishai; Diomedi-Camassei, Francesca; Marek-Yagel, Dina; Rechavi, Gideon; Tartaglia, Marco; Anikster, Yair

    2016-09-01

    Transient infantile hypertriglyceridemia (HTGT1; OMIM #614480) is a rare autosomal recessive disorder, which manifests in early infancy with transient hypertriglyceridemia, hepatomegaly, elevated liver enzymes, persistent fatty liver and hepatic fibrosis. This rare clinical entity is caused by inactivating mutations in the GPD1 gene, which encodes the cytosolic isoform of glycerol-3-phosphate dehydrogenase. Here we report on four patients from three unrelated families of diverse ethnic origins, who presented with hepatomegaly, liver steatosis, hypertriglyceridemia, with or without fasting ketotic hypoglycemia. Whole exome sequencing revealed the affected individuals to harbor deleterious biallelic mutations in the GPD1 gene, including the previously undescribed c.806G > A (p.Arg269Gln) and c.640T > C (p.Cys214Arg) mutations. The clinical features in three of our patients showed several differences compared to the original reports. One subject presented with recurrent episodes of fasting hypoglycemia along with hepatomegaly, hypetriglyceridemia, and elevated liver enzymes; the second showed a severe liver disease, with intrahepatic cholestasis associated with kidney involvement; finally, the third presented persistent hypertriglyceridemia at the age of 30 years. These findings expand the current knowledge of this rare disorder, both with regard to the phenotype and molecular basis. The enlarged phenotypic spectrum of glycerol-3-phosphate dehydrogenase 1 deficiency can mimic other inborn errors of metabolism with liver involvement and should alert clinicians to recognize this entity by considering GPD1 mutations in appropriate clinical settings. PMID:27368975

  20. Cloning and characterization of glyceraldehyde-3-phosphate dehydrogenase encoding gene in Gracilaria/Gracilariopsis lemaneiformis

    NASA Astrophysics Data System (ADS)

    Ren, Xueying; Sui, Zhenghong; Zhang, Xuecheng

    2006-04-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays important roles in various cellular processes. A cytosolic GAPDH encoding gene ( gpd) of Gracilaria/Gracilariopsis lemaneiformis was cloned and characterized. Deduced amino acid sequence of the enzyme of G. lemaneiformis had high homology with those of seven red algae. The 5'-untranslated regions of the GAPDHs encoding genes of these red algae varied greatly. GAPDHs of these red algae shared the highly conserved glyceraldehyde 3-phosphate dehydrogenase active site ASCTTNCL. However, such active site of Cyanidium caldarium was different from those of the other six algae at the last two residues (CL to LF), thus the spatial structure of its GAPDH active center may be different from those of the other six. Phylogenetic analysis indicated that GAPDH of G. lemaneiformis might have undergone an evolution similar to those of Porphyra yezoensis, Chondrus crispus, and Gracilaria verrucosa. C. caldarium had a closer evolutionary relationship with Cyanidioschyzon merolae than with Cyanidium sp. Virtual Northern blot analysis revealed that gpd of G. lemaneiformis expressed constitutively, which suggested that it might be house-keeping and could be adapted as an inner control in gene expression analysis of G. lemaneiformis.

  1. d-myo-Inositol-3-Phosphate Affects Phosphatidylinositol-Mediated Endomembrane Function in Arabidopsis and Is Essential for Auxin-Regulated Embryogenesis[W][OA

    PubMed Central

    Luo, Yu; Qin, Genji; Zhang, Jun; Liang, Yuan; Song, Yingqi; Zhao, Meiping; Tsuge, Tomohiko; Aoyama, Takashi; Liu, Jingjing; Gu, Hongya; Qu, Li-Jia

    2011-01-01

    In animal cells, myo-inositol is an important regulatory molecule in several physiological and biochemical processes, including signal transduction and membrane biogenesis. However, the fundamental biological functions of myo-inositol are still far from clear in plants. Here, we report the genetic characterization of three Arabidopsis thaliana genes encoding d-myo-inositol-3-phosphate synthase (MIPS), which catalyzes the rate-limiting step in de novo synthesis of myo-inositol. Each of the three MIPS genes rescued the yeast ino1 mutant, which is defective in yeast MIPS gene INO1, and they had different dynamic expression patterns during Arabidopsis embryo development. Although single mips mutants showed no obvious phenotypes, the mips1 mips2 double mutant and the mips1 mips2 mips3 triple mutant were embryo lethal, whereas the mips1 mips3 and mips1 mips2+/− double mutants had abnormal embryos. The mips phenotypes resembled those of auxin mutants. Indeed, the double and triple mips mutants displayed abnormal expression patterns of DR5:green fluorescent protein, an auxin-responsive fusion protein, and they had altered PIN1 subcellular localization. Also, membrane trafficking was affected in mips1 mips3. Interestingly, overexpression of PHOSPHATIDYLINOSITOL SYNTHASE2, which converts myo-inositol to membrane phosphatidylinositol (PtdIns), largely rescued the cotyledon and endomembrane defects in mips1 mips3. We conclude that myo-inositol serves as the main substrate for synthesizing PtdIns and phosphatidylinositides, which are essential for endomembrane structure and trafficking and thus for auxin-regulated embryogenesis. PMID:21505066

  2. Succination of proteins by fumarate: mechanism of inactivation of glyceraldehyde-3-phosphate dehydrogenase in diabetes.

    PubMed

    Blatnik, Matthew; Thorpe, Suzanne R; Baynes, John W

    2008-04-01

    S-(2-succinyl)cysteine (2SC) is a chemical modification of proteins formed by a Michael addition reaction between the Krebs cycle intermediate, fumarate, and thiol groups in protein--a process known as succination of protein. Succination causes irreversible inactivation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in vitro. GAPDH was immunoprecipitated from muscle of diabetic rats, then analyzed by ultra-performance liquid chromatography-electrospray ionization-mass spectroscopy. Succination of GAPDH was increased in muscle of diabetic rats, and the extent of succination correlated strongly with the decrease in specific activity of the enzyme. We propose that 2SC is a biomarker of mitochondrial and oxidative stress in diabetes and that succination of GAPDH and other thiol proteins may provide the chemical link between glucotoxicity and the pathogenesis of diabetic complications.

  3. Atomic-level characterization of transport cycle thermodynamics in the glycerol-3-phosphate:phosphate antiporter

    PubMed Central

    Moradi, Mahmoud; Enkavi, Giray; Tajkhorshid, Emad

    2015-01-01

    Membrane transporters actively translocate their substrate by undergoing large-scale structural transitions between inward- (IF) and outward-facing (OF) states (‘alternating-access' mechanism). Despite extensive structural studies, atomic-level mechanistic details of such structural transitions, and as importantly, their coupling to chemical events supplying the energy, remain amongst the most elusive aspects of the function of these proteins. Here we present a quantitative, atomic-level description of the functional thermodynamic cycle for the glycerol-3-phosphate:phosphate antiporter GlpT by using a novel approach in reconstructing the free energy landscape governing the IF↔OF transition along a cyclic transition pathway involving both apo and substrate-bound states. Our results provide a fully atomic description of the complete transport process, offering a structural model for the alternating-access mechanism and substantiating the close coupling between global structural transitions and local chemical events. PMID:26417850

  4. Receptor protein kinase FERONIA controls leaf starch accumulation by interacting with glyceraldehyde-3-phosphate dehydrogenase.

    PubMed

    Yang, Tao; Wang, Long; Li, Chiyu; Liu, Ying; Zhu, Sirui; Qi, Yinyao; Liu, Xuanming; Lin, Qinglu; Luan, Sheng; Yu, Feng

    2015-09-11

    Cell expansion is coordinated by several cues, but available energy is the major factor determining growth. Receptor protein kinase FERONIA (FER) is a master regulator of cell expansion, but the details of its control mechanisms are not clear. Here we show that FER interacts with cytosolic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH, GAPC1 and GAPC2), that catalyzes a key reaction in glycolysis, which contributes to energy production. When there is an FER deficiency, there are corresponding decreases in the enzyme activity of GAPDH and increased amounts of starch. More importantly, gapc1/2 mutants mimic fer4 mutants. These data indicate that FER regulated starch content is an evolutionarily conserved function in plants that connects the cell expansion and energy metabolism pathways.

  5. Characterization of a Novel Intestinal Glycerol-3-phosphate Acyltransferase Pathway and Its Role in Lipid Homeostasis.

    PubMed

    Khatun, Irani; Clark, Ronald W; Vera, Nicholas B; Kou, Kou; Erion, Derek M; Coskran, Timothy; Bobrowski, Walter F; Okerberg, Carlin; Goodwin, Bryan

    2016-02-01

    Dietary triglycerides (TG) are absorbed by the enterocytes of the small intestine after luminal hydrolysis into monacylglycerol and fatty acids. Before secretion on chylomicrons, these lipids are reesterified into TG, primarily through the monoacylglycerol pathway. However, targeted deletion of the primary murine monoacylglycerol acyltransferase does not quantitatively affect lipid absorption, suggesting the existence of alternative pathways. Therefore, we investigated the role of the glycerol 3-phosphate pathway in dietary lipid absorption. The expression of glycerol-3-phosphate acyltransferase (GPAT3) was examined throughout the small intestine. To evaluate the role for GPAT3 in lipid absorption, mice harboring a disrupted GPAT3 gene (Gpat3(-/-)) were subjected to an oral lipid challenge and fed a Western-type diet to characterize the role in lipid and cholesterol homeostasis. Additional mechanistic studies were performed in primary enterocytes. GPAT3 was abundantly expressed in the apical surface of enterocytes in the small intestine. After an oral lipid bolus, Gpat3(-/-) mice exhibited attenuated plasma TG excursion and accumulated lipid in the enterocytes. Electron microscopy studies revealed a lack of lipids in the lamina propria and intercellular space in Gpat3(-/-) mice. Gpat3(-/-) enterocytes displayed a compensatory increase in the synthesis of phospholipid and cholesteryl ester. When fed a Western-type diet, hepatic TG and cholesteryl ester accumulation was significantly higher in Gpat3(-/-) mice compared with the wild-type mice accompanied by elevated levels of alanine aminotransferase, a marker of liver injury. Dysregulation of bile acid metabolism was also evident in Gpat3-null mice. These studies identify GPAT3 as a novel enzyme involved in intestinal lipid metabolism.

  6. Characterization of a Novel Intestinal Glycerol-3-phosphate Acyltransferase Pathway and Its Role in Lipid Homeostasis.

    PubMed

    Khatun, Irani; Clark, Ronald W; Vera, Nicholas B; Kou, Kou; Erion, Derek M; Coskran, Timothy; Bobrowski, Walter F; Okerberg, Carlin; Goodwin, Bryan

    2016-02-01

    Dietary triglycerides (TG) are absorbed by the enterocytes of the small intestine after luminal hydrolysis into monacylglycerol and fatty acids. Before secretion on chylomicrons, these lipids are reesterified into TG, primarily through the monoacylglycerol pathway. However, targeted deletion of the primary murine monoacylglycerol acyltransferase does not quantitatively affect lipid absorption, suggesting the existence of alternative pathways. Therefore, we investigated the role of the glycerol 3-phosphate pathway in dietary lipid absorption. The expression of glycerol-3-phosphate acyltransferase (GPAT3) was examined throughout the small intestine. To evaluate the role for GPAT3 in lipid absorption, mice harboring a disrupted GPAT3 gene (Gpat3(-/-)) were subjected to an oral lipid challenge and fed a Western-type diet to characterize the role in lipid and cholesterol homeostasis. Additional mechanistic studies were performed in primary enterocytes. GPAT3 was abundantly expressed in the apical surface of enterocytes in the small intestine. After an oral lipid bolus, Gpat3(-/-) mice exhibited attenuated plasma TG excursion and accumulated lipid in the enterocytes. Electron microscopy studies revealed a lack of lipids in the lamina propria and intercellular space in Gpat3(-/-) mice. Gpat3(-/-) enterocytes displayed a compensatory increase in the synthesis of phospholipid and cholesteryl ester. When fed a Western-type diet, hepatic TG and cholesteryl ester accumulation was significantly higher in Gpat3(-/-) mice compared with the wild-type mice accompanied by elevated levels of alanine aminotransferase, a marker of liver injury. Dysregulation of bile acid metabolism was also evident in Gpat3-null mice. These studies identify GPAT3 as a novel enzyme involved in intestinal lipid metabolism. PMID:26644473

  7. Stilbene Synthase and Chalcone Synthase 1

    PubMed Central

    Rolfs, Claus-Henning; Kindl, Helmut

    1984-01-01

    Cultured cells of Picea excelsa capable of forming stilbenes and flavanoids have been established. Unlike needles of intact plants containing piceatannol (3,3′,4′,5-tetrahydroxystilbene) and stilbene glycosides the cultured cells converted phenylalanine and p-coumaric acid primarily into resveratrol monomethyl ether (3,4′-dihydroxy-5-methoxystilbene) and naringenin. Partially purified enzyme preparations were assayed for chalcone synthase as well as for stilbene synthase activity converting malonyl-CoA plus p-coumaroyl-CoA into 3,4′,5-trihydroxystilbene (resveratrol). Although stilbene synthase and chalcone synthase use the same substrates and exhibit similar molecular properties, i.e. molecular weight and subunit molecular weight, they are two different proteins. This difference was demonstrated by gel electrophoresis and by means of monospecific antibodies. PMID:16663649

  8. Crystallization and preliminary X-ray analysis of the glycerol-3-phosphate 1-acyltransferase from squash (Cucurbita moschata).

    PubMed

    Turnbull, A P; Rafferty, J B; Sedelnikova, S E; Slabas, A R; Schierer, T P; Kroon, J T; Nishida, I; Murata, N; Simon, J W; Rice, D W

    2001-03-01

    Glycerol-3-phosphate 1-acyltransferase (E.C. 2.3.1.15; G3PAT) catalyses the incorporation of an acyl group from either acyl-acyl carrier proteins (acylACPs) or acylCoAs into the sn-1 position of glycerol 3-phosphate to yield 1-acylglycerol 3-phosphate. Crystals of squash G3PAT have been obtained by the hanging-drop method of vapour diffusion using PEG 4000 as the precipitant. These crystals are most likely to belong to space group P2(1)2(1)2(1), with approximate unit-cell parameters a = 61.1, b = 65.1, c = 103.3 A, alpha = beta = gamma = 90 degrees and a monomer in the asymmetric unit. X-ray diffraction data to 1.9 A resolution have been collected in-house using a MAR 345 imaging-plate system.

  9. Modeling of glycerol-3-phosphate transporter suggests a potential 'tilt' mechanism involved in its function.

    PubMed

    Tsigelny, Igor F; Greenberg, Jerry; Kouznetsova, Valentina; Nigam, Sanjay K

    2008-10-01

    Many major facilitator superfamily (MFS) transporters have similar 12-transmembrane alpha-helical topologies with two six-helix halves connected by a long loop. In humans, these transporters participate in key physiological processes and are also, as in the case of members of the organic anion transporter (OAT) family, of pharmaceutical interest. Recently, crystal structures of two bacterial representatives of the MFS family--the glycerol-3-phosphate transporter (GlpT) and lac-permease (LacY)--have been solved and, because of assumptions regarding the high structural conservation of this family, there is hope that the results can be applied to mammalian transporters as well. Based on crystallography, it has been suggested that a major conformational "switching" mechanism accounts for ligand transport by MFS proteins. This conformational switch would then allow periodic changes in the overall transporter configuration, resulting in its cyclic opening to the periplasm or cytoplasm. Following this lead, we have modeled a possible "switch" mechanism in GlpT, using the concept of rotation of protein domains as in the DynDom program17 and membranephilic constraints predicted by the MAPAS program.(23) We found that the minima of energies of intersubunit interactions support two alternate positions consistent with their transport properties. Thus, for GlpT, a "tilt" of 9 degrees -10 degrees rotation had the most favorable energetics of electrostatic interaction between the two halves of the transporter; moreover, this confirmation was sufficient to suggest transport of the ligand across the membrane. We conducted steered molecular dynamics simulations of the GlpT-ligand system to explore how glycerol-3-phosphate would be handled by the "tilted" structure, and obtained results generally consistent with experimental mutagenesis data. While biochemical data remain most consistent with a single-site alternating access model, our results raise the possibility that, while the

  10. Dengue Virus NS1 Protein Modulates Cellular Energy Metabolism by Increasing Glyceraldehyde-3-Phosphate Dehydrogenase Activity

    PubMed Central

    Allonso, Diego; Andrade, Iamara S.; Conde, Jonas N.; Coelho, Diego R.; Rocha, Daniele C. P.; da Silva, Manuela L.; Ventura, Gustavo T.

    2015-01-01

    ABSTRACT Dengue is one of the main public health concerns worldwide. Recent estimates indicate that over 390 million people are infected annually with the dengue virus (DENV), resulting in thousands of deaths. Among the DENV nonstructural proteins, the NS1 protein is the only one whose function during replication is still unknown. NS1 is a 46- to 55-kDa glycoprotein commonly found as both a membrane-associated homodimer and a soluble hexameric barrel-shaped lipoprotein. Despite its role in the pathogenic process, NS1 is essential for proper RNA accumulation and virus production. In the present study, we identified that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts with intracellular NS1. Molecular docking revealed that this interaction occurs through the hydrophobic protrusion of NS1 and the hydrophobic residues located at the opposite side of the catalytic site. Moreover, addition of purified recombinant NS1 enhanced the glycolytic activity of GAPDH in vitro. Interestingly, we observed that DENV infection promoted the relocalization of GAPDH to the perinuclear region, where NS1 is commonly found. Both DENV infection and expression of NS1 itself resulted in increased GAPDH activity. Our findings indicate that the NS1 protein acts to increase glycolytic flux and, consequently, energy production, which is consistent with the recent finding that DENV induces and requires glycolysis for proper replication. This is the first report to propose that NS1 is an important modulator of cellular energy metabolism. The data presented here provide new insights that may be useful for further drug design and the development of alternative antiviral therapies against DENV. IMPORTANCE Dengue represents a serious public health problem worldwide and is caused by infection with dengue virus (DENV). Estimates indicate that half of the global population is at risk of infection, with almost 400 million cases occurring per year. The NS1 glycoprotein is found in both the

  11. GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE-S, A SPERM-SPECIFIC GLYCOLYTIC ENZYME, IS REQUIRED FOR SPERM MOTILITY AND MALE FERTILITY

    EPA Science Inventory

    While glycolysis is highly conserved, it is remarkable that several novel isozymes in this central metabolic pathway are found in mammalian sperm. Glyceraldehyde 3-phosphate dehydrogenase-S (GAPDS) is the product of a mouse gene expressed only during spermatogenesis and, like it...

  12. Enhanced resistance in Theobroma cacao against oomycete and fungal pathogens by secretion of phosphatidylinositol-3-phosphate-binding proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The internalization of oomycete and fungal pathogen effectors into host plant cells has been reported to be blocked by proteins that bind to the effectors’ cell entry receptor, phosphatidylinositol-3-phosphate (PI3P). This finding suggested a novel strategy for disease control by engineering plants ...

  13. Effects of cell volume regulating osmolytes on glycerol 3-phosphate binding to triosephosphate isomerase.

    PubMed

    Gulotta, Miriam; Qiu, Linlin; Desamero, Ruel; Rösgen, Jörg; Bolen, D Wayne; Callender, Robert

    2007-09-01

    During cell volume regulation, intracellular concentration changes occur in both inorganic and organic osmolytes in order to balance the extracellular osmotic stress and maintain cell volume homeostasis. Generally, salt and urea increase the Km's of enzymes and trimethylamine N-oxide (TMAO) counteracts these effects by decreasing Km's. The hypothesis to account for these effects is that urea and salt shift the native state ensemble of the enzyme toward conformers that are substrate-binding incompetent (BI), while TMAO shifts the ensemble toward binding competent (BC) species. Km's are often complex assemblies of rate constants involving several elementary steps in catalysis, so to better understand osmolyte effects we have focused on a single elementary event, substrate binding. We test the conformational shift hypothesis by evaluating the effects of salt, urea, and TMAO on the mechanism of binding glycerol 3-phosphate, a substrate analogue, to yeast triosephosphate isomerase. Temperature-jump kinetic measurements promote a mechanism consistent with osmolyte-induced shifts in the [BI]/[BC] ratio of enzyme conformers. Importantly, salt significantly affects the binding constant through its effect on the activity coefficients of substrate, enzyme, and enzyme-substrate complex, and it is likely that TMAO and urea affect activity coefficients as well. Results indicate that the conformational shift hypothesis alone does not account for the effects of osmolytes on Km's. PMID:17696453

  14. Negative regulation of phosphatidylinositol 3-phosphate levels in early-to-late endosome conversion

    PubMed Central

    Liu, Kai; Jian, Youli; Sun, Xiaojuan; Yang, Chengkui; Gao, Zhiyang; Zhang, Zhili; Liu, Xuezhao; Li, Yang; Xu, Jing; Jing, Yudong; Mitani, Shohei; He, Sudan

    2016-01-01

    Phosphatidylinositol 3-phosphate (PtdIns3P) plays a central role in endosome fusion, recycling, sorting, and early-to-late endosome conversion, but the mechanisms that determine how the correct endosomal PtdIns3P level is achieved remain largely elusive. Here we identify two new factors, SORF-1 and SORF-2, as essential PtdIns3P regulators in Caenorhabditis elegans. Loss of sorf-1 or sorf-2 leads to greatly elevated endosomal PtdIns3P, which drives excessive fusion of early endosomes. sorf-1 and sorf-2 function coordinately with Rab switching genes to inhibit synthesis of PtdIns3P, allowing its turnover for endosome conversion. SORF-1 and SORF-2 act in a complex with BEC-1/Beclin1, and their loss causes elevated activity of the phosphatidylinositol 3-kinase (PI3K) complex. In mammalian cells, inactivation of WDR91 and WDR81, the homologs of SORF-1 and SORF-2, induces Beclin1-dependent enlargement of PtdIns3P-enriched endosomes and defective degradation of epidermal growth factor receptor. WDR91 and WDR81 interact with Beclin1 and inhibit PI3K complex activity. These findings reveal a conserved mechanism that controls appropriate PtdIns3P levels in early-to-late endosome conversion. PMID:26783301

  15. Glyceraldehyde-3-phosphate dehydrogenase is regulated by ferredoxin-NADP reductase in the diatom Asterionella formosa.

    PubMed

    Mekhalfi, Malika; Puppo, Carine; Avilan, Luisana; Lebrun, Régine; Mansuelle, Pascal; Maberly, Stephen C; Gontero, Brigitte

    2014-07-01

    Diatoms are a widespread and ecologically important group of heterokont algae that contribute c. 20% to global productivity. Previous work has shown that regulation of their key Calvin cycle enzymes differs from that of the Plantae, and that in crude extracts, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) can be inhibited by nicotinamide adenine dinucleotide phosphate reduced (NADPH) under oxidizing conditions. The freshwater diatom, Asterionella formosa, was studied using enzyme kinetics, chromatography, surface plasmon resonance, mass spectrometry and sequence analysis to determine the mechanism behind this GAPDH inhibition. GAPDH interacted with ferredoxin-nicotinamide adenine dinucleotide phosphate (NADP) reductase (FNR) from the primary phase of photosynthesis, and the small chloroplast protein, CP12. Sequences of copurified GAPDH and FNR were highly homologous with published sequences. However, the widespread ternary complex among GAPDH, phosphoribulokinase and CP12 was absent. Activity measurements under oxidizing conditions showed that NADPH can inhibit GAPDH-CP12 in the presence of FNR, explaining the earlier observed inhibition within crude extracts. Diatom plastids have a distinctive metabolism, including the lack of the oxidative pentose phosphate pathway, and so cannot produce NADPH in the dark. The observed down-regulation of GAPDH in the dark may allow NADPH to be rerouted towards other reductive processes contributing to their ecological success.

  16. Glyceraldehyde 3-phosphate dehydrogenase-telomere association correlates with redox status in Trypanosoma cruzi.

    PubMed

    Pariona-Llanos, Ricardo; Pavani, Raphael Souza; Reis, Marcelo; Noël, Vincent; Silber, Ariel Mariano; Armelin, Hugo Aguirre; Cano, Maria Isabel Nogueira; Elias, Maria Carolina

    2015-01-01

    Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a classical metabolic enzyme involved in energy production and plays a role in additional nuclear functions, including transcriptional control, recognition of misincorporated nucleotides in DNA and maintenance of telomere structure. Here, we show that the recombinant protein T. cruzi GAPDH (rTcGAPDH) binds single-stranded telomeric DNA. We demonstrate that the binding of GAPDH to telomeric DNA correlates with the balance between oxidized and reduced forms of nicotinamide adenine dinucleotides (NAD+/NADH). We observed that GAPDH-telomere association and NAD+/NADH balance changed throughout the T. cruzi life cycle. For example, in replicative epimastigote forms of T. cruzi, which show similar intracellular concentrations of NAD+ and NADH, GAPDH binds to telomeric DNA in vivo and this binding activity is inhibited by exogenous NAD+. In contrast, in the T. cruzi non-proliferative trypomastigote forms, which show higher NAD+ concentration, GAPDH was absent from telomeres. In addition, NAD+ abolishes physical interaction between recombinant GAPDH and synthetic telomere oligonucleotide in a cell free system, mimicking exogenous NAD+ that reduces GAPDH-telomere interaction in vivo. We propose that the balance in the NAD+/NADH ratio during T. cruzi life cycle homeostatically regulates GAPDH telomere association, suggesting that in trypanosomes redox status locally modulates GAPDH association with telomeric DNA. PMID:25775131

  17. Glyceraldehyde 3-Phosphate Dehydrogenase-Telomere Association Correlates with Redox Status in Trypanosoma cruzi

    PubMed Central

    Pariona-Llanos, Ricardo; Pavani, Raphael Souza; Reis, Marcelo; Noël, Vincent; Silber, Ariel Mariano; Armelin, Hugo Aguirre; Cano, Maria Isabel Nogueira; Elias, Maria Carolina

    2015-01-01

    Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a classical metabolic enzyme involved in energy production and plays a role in additional nuclear functions, including transcriptional control, recognition of misincorporated nucleotides in DNA and maintenance of telomere structure. Here, we show that the recombinant protein T. cruzi GAPDH (rTcGAPDH) binds single-stranded telomeric DNA. We demonstrate that the binding of GAPDH to telomeric DNA correlates with the balance between oxidized and reduced forms of nicotinamide adenine dinucleotides (NAD+/NADH). We observed that GAPDH-telomere association and NAD+/NADH balance changed throughout the T. cruzi life cycle. For example, in replicative epimastigote forms of T. cruzi, which show similar intracellular concentrations of NAD+ and NADH, GAPDH binds to telomeric DNA in vivo and this binding activity is inhibited by exogenous NAD+. In contrast, in the T. cruzi non-proliferative trypomastigote forms, which show higher NAD+ concentration, GAPDH was absent from telomeres. In addition, NAD+ abolishes physical interaction between recombinant GAPDH and synthetic telomere oligonucleotide in a cell free system, mimicking exogenous NAD+ that reduces GAPDH-telomere interaction in vivo. We propose that the balance in the NAD+/NADH ratio during T. cruzi life cycle homeostatically regulates GAPDH telomere association, suggesting that in trypanosomes redox status locally modulates GAPDH association with telomeric DNA. PMID:25775131

  18. Comparative molecular analysis of evolutionarily distant glyceraldehyde-3-phosphate dehydrogenase from Sardina pilchardus and Octopus vulgaris.

    PubMed

    Baibai, Tarik; Oukhattar, Laila; Mountassif, Driss; Assobhei, Omar; Serrano, Aurelio; Soukri, Abdelaziz

    2010-12-01

    The NAD(+)-dependent cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12), which is recognized as a key to central carbon metabolism in glycolysis and gluconeogenesis and as an important allozymic polymorphic biomarker, was purified from muscles of two marine species: the skeletal muscle of Sardina pilchardus Walbaum (Teleost, Clupeida) and the incompressible arm muscle of Octopus vulgaris (Mollusca, Cephalopoda). Comparative biochemical studies have revealed that they differ in their subunit molecular masses and in pI values. Partial cDNA sequences corresponding to an internal region of the GapC genes from Sardina and Octopus were obtained by polymerase chain reaction using degenerate primers designed from highly conserved protein motifs. Alignments of the deduced amino acid sequences were used to establish the 3D structures of the active site of two enzymes as well as the phylogenetic relationships of the sardine and octopus enzymes. These two enzymes are the first two GAPDHs characterized so far from teleost fish and cephalopod, respectively. Interestingly, phylogenetic analyses indicated that the sardina GAPDH is in a cluster with the archetypical enzymes from other vertebrates, while the octopus GAPDH comes together with other molluscan sequences in a distant basal assembly closer to bacterial and fungal orthologs, thus suggesting their different evolutionary scenarios.

  19. Assisted folding of D-glyceraldehyde-3-phosphate dehydrogenase by trigger factor.

    PubMed Central

    Huang, G. C.; Li, Z. Y.; Zhou, J. M.; Fischer, G.

    2000-01-01

    The Escherichia coli trigger factor is a peptidyl-prolyl cis-trans isomerase that catalyzes proline-limited protein folding extremely well. Here, refolding of D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in the presence of trigger factor was investigated. The regain of activity of GAPDH was markedly increased by trigger factor after either long- or short-term denaturation, and detectable aggregation of GAPDH intermediates was prevented. In both cases, time courses of refolding of GAPDH were decelerated by trigger factor. The reactivation yield of GAPDH showed a slow down-turn when molar ratios of trigger factor to GAPDH were above 5, due to tight binding between trigger factor and GAPDH intermediates. Such inactive bound GAPDH could be partially rescued from trigger factor by addition of reduced alphaLA as competitor, by further diluting the refolding mixture, or by disrupting hydrophobic interactions in the complexes. A model for trigger factor assisted refolding of GAPDH is proposed. We also suggest that assisted refolding of GAPDH is due mainly to the chaperone function of trigger factor. PMID:10892818

  20. Structural and functional properties of glycerol-3-phosphate dehydrogenase from a mammalian hibernator.

    PubMed

    de la Roche, Marc; Tessier, Shannon N; Storey, Kenneth B

    2012-02-01

    Glycerol-3-phosphate dehydrogenase (G3PDH; E.C.1.1.1.8) was purified from liver and skeletal muscle of black-tailed prairie dogs (Cynomys ludivicianus), a hibernating species. Native and subunit molecular masses of the dimeric enzyme were 77 and 40 kD, respectively, and both tissues contained a single isozyme with a pI of 6.4. Kinetic parameters of purified G3PDH from prairie dog liver and muscle were characterized at 22 and 5 °C and compared with rabbit muscle G3PDH. Substrate affinities for hibernator muscle G3PDH were stable (NAD) or increased significantly (K(m) G3P and DHAP decreased) at low temperature whereas K(m) NAD and DHAP of rabbit G3PDH increased. Prairie dog G3PDH showed greater conservation of K(m) G3P over a wide temperature range as well as greater thermal stability and resistance to chemical denaturation by guanidine hydrochloride than the rabbit enzyme. In addition, using the protein sequence of the hibernating thirteen-lined ground squirrel (Ictidomys tridecemlineatus) and bioinformatics tools, the deduced protein structure of G3PDH was compared between heterothermic and homeothermic mammals. Structural and functional characteristics of G3PDH from the hibernating species would support enzyme function over a wide range of core body temperatures over cycles of torpor and arousal. PMID:22180227

  1. Reciprocal Phosphorylation of Yeast Glycerol-3-Phosphate Dehydrogenases in Adaptation to Distinct Types of Stress

    PubMed Central

    Lee, Yong Jae; Jeschke, Grace R.; Roelants, Françoise M.; Thorner, Jeremy

    2012-01-01

    Eukaryotic cells have evolved mechanisms for ensuring growth and survival in the face of stress caused by a fluctuating environment. Saccharomyces cerevisiae has two homologous glycerol-3-phosphate dehydrogenases, Gpd1 and Gpd2, that are required to endure various stresses, including hyperosmotic shock and hypoxia. These enzymes are only partially redundant, and their unique functions were attributed previously to differential transcriptional regulation and localization. We find that Gpd1 and Gpd2 are negatively regulated through phosphorylation by distinct kinases under reciprocal conditions. Gpd2 is phosphorylated by the AMP-activated protein kinase Snf1 to curtail glycerol production when nutrients are limiting. Gpd1, in contrast, is a target of TORC2-dependent kinases Ypk1 and Ypk2. Inactivation of Ypk1 by hyperosmotic shock results in dephosphorylation and activation of Gpd1, accelerating recovery through increased glycerol production. Gpd1 dephosphorylation acts synergistically with its transcriptional upregulation, enabling long-term growth at high osmolarity. Phosphorylation of Gpd1 and Gpd2 by distinct kinases thereby enables rapid adaptation to specific stress conditions. Introduction of phosphorylation motifs targeted by distinct kinases provides a general mechanism for functional specialization of duplicated genes during evolution. PMID:22988299

  2. Simple method for isolation of glyceraldehyde 3-phosphate dehydrogenase and the improvement of myofibril gel properties.

    PubMed

    Miyaguchi, Yuji; Sakamoto, Taro; Sasaki, Shun; Nakade, Koji; Tanabe, Manabu; Ichinoseki, Satoko; Numata, Masahiro; Kosai, Kiichi

    2011-02-01

    Porcine glycolytic enzyme, glyceraldehyde 3-phosphate dehydrogenase (G3PD) was prepared effectively by a combination of ethylene diamine tetra-acetate (EDTA) pretreatment and affinity purification. After salting out of porcine sarcoplasmic proteins (SP) with ammonium sulfate at 75% saturation, the obtained supernatant (SP-f3) was treated with EDTA, leaving G3PD in the supernatant (G3PD-E) and most other SPs in the precipitate. At that time, the separation of G3PD-E required more than 20 mmol/L EDTA. G3PD-E was then subjected to affinity purification by batchwise method using blue-sepharose CL-6B, and purified G3PD (G3PD-AP) was obtained using 2 mol/L potassium chloride (KCl) as an eluent. Texture analysis showed that the hardness, adhesiveness and gumminess of the myofibril gel at 0.2-mol/L NaCl increased with the addition of G3PD-AP. Scanning electron microscopy revealed that the G3PD-AP reinforced the gel network of the myofibril. However, scanning electron micrograph analysis showed that the network-structure of the gel by the addition of G3PD-AP developed in a different manner from that by adding 0.6 mol/L NaCl. These results showed that glycolytic enzyme, G3PD, contributes to the improvement of the rheological properties of meat products.

  3. Catalysis of nitrite generation from nitroglycerin by glyceraldehyde-3-phosphate dehydrogenase (GAPDH).

    PubMed

    Seabra, Amedea B; Ouellet, Marc; Antonic, Marija; Chrétien, Michelle N; English, Ann M

    2013-11-30

    Vascular relaxation to nitroglycerin (glyceryl trinitrate; GTN) requires its bioactivation by mechanisms that remain controversial. We report here that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the release of nitrite from GTN. In assays containing dithiothreitol (DTT) and NAD(+), the GTN reductase activity of purified GAPDH produces nitrite and 1,2-GDN as the major products. A vmax of 2.6nmolmin(-)(1)mg(-)(1) was measured for nitrite production by GAPDH from rabbit muscle and a GTN KM of 1.2mM. Reductive denitration of GTN in the absence of DTT results in dose- and time-dependent inhibition of GAPDH dehydrogenase activity. Disulfiram, a thiol-modifying drug, inhibits both the dehydrogenase and GTN reductase activity of GAPDH, while DTT or tris(2-carboxyethyl)phosphine reverse the GTN-induced inhibition. Incubation of intact human erythrocytes or hemolysates with 2mM GTN for 60min results in 50% inhibition of GAPDH's dehydrogenase activity, indicating that GTN is taken up by these cells and that the dehydrogenase is a target of GTN. Thus, erythrocyte GAPDH may contribute to GTN bioactivation.

  4. Phosphatidylinositol-3-phosphate is light-regulated and essential for survival in retinal rods

    PubMed Central

    He, Feng; Agosto, Melina A.; Anastassov, Ivan A.; Tse, Dennis Y.; Wu, Samuel M.; Wensel, Theodore G.

    2016-01-01

    Phosphoinositides play important roles in numerous intracellular membrane pathways. Little is known about the regulation or function of these lipids in rod photoreceptor cells, which have highly active membrane dynamics. Using new assays with femtomole sensitivity, we determined that whereas levels of phosphatidylinositol-3,4-bisphosphate and phosphatidylinositol-3,4,5-trisphosphate were below detection limits, phosphatidylinositol-3-phosphate (PI(3)P) levels in rod inner/outer segments increased more than 30-fold after light exposure. This increase was blocked in a rod-specific knockout of the PI-3 kinase Vps34, resulting in failure of endosomal and autophagy-related membranes to fuse with lysosomes, and accumulation of abnormal membrane structures. At early ages, rods displayed normal morphology, rhodopsin trafficking, and light responses, but underwent progressive neurodegeneration with eventual loss of both rods and cones by twelve weeks. The degeneration is considerably faster than in rod knockouts of autophagy genes, indicating defects in endosome recycling or other PI(3)P-dependent membrane trafficking pathways are also essential for rod survival. PMID:27245220

  5. A glyceraldehyde-3-phosphate dehydrogenase with eubacterial features in the amitochondriate eukaryote, Trichomonas vaginalis.

    PubMed

    Markos, A; Miretsky, A; Müller, M

    1993-12-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), localized in the cytosol of Trichomonas vaginalis, was partially purified. The enzyme is specific for NAD+ and is similar in most of its catalytic properties to glycolytic GAPDHs from other organisms. Its sensitivity to koningic acid is similar to levels observed in GAPDHs from eubacteria and two orders of magnitude lower than those observed for eukaryotic GAPDHs. The complete amino acid sequence of T. vaginalis GAPDH was derived from the N-terminal sequence of the purified protein and the deduced sequence of a cDNA clone. It showed great similarity to other eubacterial and eukaryotic GAPDH sequences. The sequence of the S-loop displayed a eubacterial signature. The overall sequence was more similar to eubacterial sequences than to cytosolic and glycosomal eukaryotic sequences. In phylogenetic trees obtained with distance matrix and parsimony methods T. vaginalis GAPDH clustered with its eubacterial homologs. GAPDHs of other amitochondriate protists, belonging to early branches of the eukaryotic lineage (Giardia lamblia and Entamoeba histolytica--Smith M.W. and Doolittle R.F., unpublished data in GenBank), showed typical eukaryotic signatures and clustered with other eukaryotic sequences, indicating that T. vaginalis GAPDH occupies an anomalous position, possibly due to horizontal gene transfer from a eubacterium.

  6. Occurrence of a multimeric high-molecular-weight glyceraldehyde-3-phosphate dehydrogenase in human serum.

    PubMed

    Kunjithapatham, Rani; Geschwind, Jean-Francois; Devine, Lauren; Boronina, Tatiana N; O'Meally, Robert N; Cole, Robert N; Torbenson, Michael S; Ganapathy-Kanniappan, Shanmugasundaram

    2015-04-01

    Cellular glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a phylogenetically conserved, ubiquitous enzyme that plays an indispensable role in energy metabolism. Although a wealth of information is available on cellular GAPDH, there is a clear paucity of data on its extracellular counterpart (i.e., the secreted or extracellular GAPDH). Here, we show that the extracellular GAPDH in human serum is a multimeric, high-molecular-weight, yet glycolytically active enzyme. The high-molecular-weight multimers of serum GAPDH were identified by immunodetection on one- and two-dimensional gel electrophoresis using multiple antibodies specific for various epitopes of GAPDH. Partial purification of serum GAPDH by DEAE Affigel affinity/ion exchange chromatography further established the multimeric composition of serum GAPDH. In vitro data demonstrated that human cell lines secrete a multimeric, high-molecular-weight enzyme similar to that of serum GAPDH. Furthermore, LC-MS/MS analysis of extracellular GAPDH from human cell lines confirmed the presence of unique peptides of GAPDH in the high-molecular-weight subunits. Furthermore, data from pulse-chase experiments established the presence of high-molecular-weight subunits in the secreted, extracellular GAPDH. Taken together, our findings demonstrate the presence of a high-molecular-weight, enzymatically active secretory GAPDH in human serum that may have a hitherto unknown function in humans.

  7. On the interaction between glyceraldehyde-3-phosphate dehydrogenase and airborne particles: Evidence for electrophilic species

    NASA Astrophysics Data System (ADS)

    Shinyashiki, Masaru; Rodriguez, Chester E.; Di Stefano, Emma W.; Sioutas, Constantinos; Delfino, Ralph J.; Kumagai, Yoshito; Froines, John R.; Cho, Arthur K.

    Many of the adverse health effects of airborne particulate matter (PM) have been attributed to the chemical properties of some of the large number of chemical species present in PM. Some PM component chemicals are capable of generating reactive oxygen species and eliciting a state of oxidative stress. In addition, however, PM can contain chemical species that elicit their effects through covalent bond formation with nucleophilic functions in the cell. In this manuscript, we report the presence of constituents with electrophilic properties in ambient and diesel exhaust particles, demonstrated by their ability to inhibit the thiol enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH). GAPDH is irreversibly inactivated by electrophiles under anaerobic conditions by covalent bond formation. This inactivation can be blocked by the prior addition of a high concentration of dithiothreitol (DTT) as an alternate nucleophile. Addition of DTT after the reaction between the electrophile and GAPDH, however, does not reverse the inactivation. This property has been utilized to develop a procedure that provides a quantitative measure of electrophiles present in samples of ambient particles collected in the Los Angeles Basin and in diesel exhaust particles. The toxicity of electrophiles is the result of irreversible changes in biological molecules; recovery is dependent on resynthesis. If the resynthesis is slow, the irreversible effects can be cumulative and manifest themselves after chronic exposure to low levels of electrophiles.

  8. Widespread occurrence of non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase among gram-positive bacteria.

    PubMed

    Iddar, Abdelghani; Valverde, Federico; Assobhei, Omar; Serrano, Aurelio; Soukri, Abdelaziz

    2005-12-01

    The non-phosphorylating glyceraldehyde 3-phosphate dehydrogenase (GAPDHN, NADP+-specific, EC 1.2.1.9) is present in green eukaryotes and some Streptococcus strains. The present report describes the results of activity and immunoblot analyses, which were used to generate the first survey of bacterial GAPDHN distribution in a number of Bacillus, Streptococcus and Clostridium strains. Putative gapN genes were identified after PCR amplification of partial 700-bp sequences using degenerate primers constructed from highly conserved protein regions. Alignment of the amino acid sequences of these fragments with those of known sequences from other eukaryotic and prokaryotic GAPDHNs, demonstrated the presence of conserved residues involved in catalytic activity that are not conserved in aldehyde dehydrogenases, a protein family closely linked to GAPDHNs. The results confirm that the basic structural features of the members of the GAPDHN family have been conserved throughout evolution and that no identity exists with phosphorylating GAPDHs. Furthermore, phylogenetic trees generated from multiple sequence alignments suggested a close relationship between plant and bacterial GAPDHN families.

  9. Structure of holo-glyceraldehyde-3-phosphate dehydrogenase from Palinurus versicolor refined at 2 A resolution.

    PubMed

    Song, S; Li, J; Lin, Z

    1998-07-01

    The crystal structure of holo-glyceraldehyde-3-phosphate dehydrogenase from Palinurus versicolor, South China sea lobster, was determined and refined at 2 A resolution to an R factor of 17.1% and reasonable stereochemistry. The structure refinement has not altered the overall structure of GAPDH from this lobster species. However, some local changes in conformation and the inclusion of ordered solvent model have resulted in a substantial improvement in the accuracy of the structure. Structure analysis reveals that the two subunits including NAD+ in the asymmetric unit are remarkably similar. The thermal differences between the two subunits found in some regions of the NAD+-binding domain may originate from different crystallographic environments rather than from an inherent molecular asymmetry. In this structure, the side chain of Arg194 does not point toward the active site but forms an ion pair with Asp293 from a neighboring subunit. Structural comparisons with other GAPDH's of known structure reveal that obvious contrast exists between mesophilic and thermophilic GAPDH mainly in the catalytic domain with significant conformational differences in the S-loop, beta7-strand and loop 120-125; the P-axis interface is more conserved than the R- and Q-axis interfaces and the catalytic domain is more conserved than the NAD+-binding domain. Some possible factors affecting the thermostability of this enzyme are tentatively analyzed by comparison with the highly refined structures of thermophilic enzymes.

  10. Isolation and some properties of glycated D-glyceraldehyde-3-phosphate dehydrogenase from rabbit muscle.

    PubMed Central

    He, R Q; Yang, M D; Zheng, X; Zhou, J X

    1995-01-01

    Glycated D-glyceraldehyde-3-phosphate dehydrogenases (GAPDH) from rabbit muscle and human erythrocytes have been investigated. The specific activity of the non-glycated GAPDH from rabbit muscle is approx. 180 units. (One unit is defined as the specific activity required to convert 1 microM of substrate/min per mg of enzyme.) The activity of the glycated enzyme, consisting of two sugars per tetramer, is lower than that of the non-glycated GAPDH. Non-enzymic transamination of the N-termini of glycated GAPDH (gGAPDH) indicates that they are not blocked by glycation. The rate of modification of thiols (Cys-149) with 5,5'-dithiobis-(2-nitrobenzoic acid) was greater for the glycated than the non-glycated enzymes. The rate of modification of amino groups of Lys residues of gGAPDH with o-phthalaldehyde was greater for the non-glycated enzyme. In 0.18 M guanidine-HC1 solution, the emission intensity at 410 nm of a fluorescent NAD+ derivative introduced into the active site decreased to 80%, whereas that of gGAPDH decreased to 50%. This suggests that the glycated sites are near the active site; glycation of the enzyme leads to a change of the microenvironment of Cys-149, alters the conformation of the active site and decreases the activity. Images Figure 1 PMID:7619048

  11. Carnosine prevents glyceraldehyde 3-phosphate-mediated inhibition of aspartate aminotransferase.

    PubMed

    Swearengin, T A; Fitzgerald, C; Seidler, N W

    1999-08-01

    Post-mitotic tissues, such as the heart, exhibit high concentrations (20 mM) of carnosine (beta-alanyl-l-histidine). Carnosine may have aldehyde scavenging properties. We tested this hypothesis by examining its protective effects against inhibition of enzyme activity by glyceraldehyde 3-phosphate (Glyc3P). Glyc3P is a potentially toxic triose; Glyc3P inhibits the cardiac aspartate aminotransferase (cAAT) by non-enzymatic glycosylation (or glycation) of the protein. cAAT requires pyridoxal 5-phosphate (PyP) for catalysis. We observed that carnosine (20 mM) completely prevents the inhibition of cAAT activity by Glyc3P (5 mM) after brief incubation (30 min at 37 degrees C). After a prolonged incubation (3.25 h) of cAAT with Glyc3P (0.5 mM) at 37 degrees C, the protection by carnosine (20 mM) persisted but PyP availability was affected. In the absence of PyP from the assay medium, cAAT activities (plus Glyc3P) were 95 +/- 18.2 micromol/min per mg protein (mean +/- SD), minus carnosine and 100 +/- 2.4, plus carnosine; control activity was 172 +/- 3.9. When PyP (1.0 microM) was included in the assay medium, cAAT activities (plus Glyc3P) were 93 +/- 14.8, minus carnosine and 151 +/- 16.8, plus carnosine, P < 0. 001; control activity was 180 +/- 17.7. These data, which showed carnosine moderating the effects of both Glyc3P and PyP, suggest that carnosine may be an endogenous aldehyde scavenger.

  12. Disruption of NAD+ binding site in glyceraldehyde 3-phosphate dehydrogenase affects its intranuclear interactions

    PubMed Central

    Phadke, Manali; Krynetskaia, Natalia; Mishra, Anurag; Barrero, Carlos; Merali, Salim; Gothe, Scott A; Krynetskiy, Evgeny

    2015-01-01

    AIM: To characterize phosphorylation of human glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and mobility of GAPDH in cancer cells treated with chemotherapeutic agents. METHODS: We used proteomics analysis to detect and characterize phosphorylation sites within human GAPDH. Site-specific mutagenesis and alanine scanning was then performed to evaluate functional significance of phosphorylation sites in the GAPDH polypeptide chain. Enzymatic properties of mutated GAPDH variants were assessed using kinetic studies. Intranuclear dynamics parameters (diffusion coefficient and the immobile fraction) were estimated using fluorescence recovery after photobleaching (FRAP) experiments and confocal microscopy. Molecular modeling experiments were performed to estimate the effects of mutations on NAD+ cofactor binding. RESULTS: Using MALDI-TOF analysis, we identified novel phosphorylation sites within the NAD+ binding center of GAPDH at Y94, S98, and T99. Using polyclonal antibody specific to phospho-T99-containing peptide within GAPDH, we demonstrated accumulation of phospho-T99-GAPDH in the nuclear fractions of A549, HCT116, and SW48 cancer cells after cytotoxic stress. We performed site-mutagenesis, and estimated enzymatic properties, intranuclear distribution, and intranuclear mobility of GAPDH mutated variants. Site-mutagenesis at positions S98 and T99 in the NAD+ binding center reduced enzymatic activity of GAPDH due to decreased affinity to NAD+ (Km = 741 ± 257 μmol/L in T99I vs 57 ± 11.1 µmol/L in wild type GAPDH. Molecular modeling experiments revealed the effect of mutations on NAD+ binding with GAPDH. FRAP (fluorescence recovery after photo bleaching) analysis showed that mutations in NAD+ binding center of GAPDH abrogated its intranuclear interactions. CONCLUSION: Our results suggest an important functional role of phosphorylated amino acids in the NAD+ binding center in GAPDH interactions with its intranuclear partners. PMID:26629320

  13. Overexpression of glycerol-3-phosphate acyltransferase gene improves chilling tolerance in tomato.

    PubMed

    Sui, Na; Li, Meng; Zhao, Shi-Jie; Li, Feng; Liang, Hui; Meng, Qing-Wei

    2007-10-01

    A tomato (Lycopersicon esculentum Mill.) glycerol-3-phosphate acyltransferase gene (LeGPAT) was isolated. The deduced amino acid sequence revealed that LeGPAT contained four acyltransferase domains, showing high identities with GPAT in other plant species. A GFP fusion protein of LeGPAT was targeted to chloroplast in cowpea mesophyll protoplast. RNA gel blot showed that the mRNA accumulation of LeGPAT in the wild type (WT) was induced by chilling temperature. Higher expression levels were observed when tomato leaves were exposed to 4 degrees C for 4 h. RNA gel and western blot analysis confirmed that the sense gene LeGPAT was transferred into the tomato genome and overexpressed under the control of 35S-CaMV. Although tomato is classified as a chilling-sensitive plant, LeGPAT exhibited selectivity to 18:1 over 16:0. Overexpression of LeGPAT increased total activity of LeGPAT and cis-unsaturated fatty acids in PG in thylakoid membrane. Chilling treatment induced less ion leakage from the transgenic plants than from the WT. The photosynthetic rate and the maximal photochemical efficiency of PS II (Fv/Fm) in transgenic plants decreased more slowly during chilling stress and recovered faster than in WT under optimal conditions. The oxidizable P700 in both WT and transgenic plants decreased obviously at chilling temperature under low irradiance, but the oxidizable P700 recovered faster in transgenic plants than in the WT. These results indicate that overexpression of LeGPAT increased the levels of PG cis-unsaturated fatty acids in thylakoid membrane, which was beneficial for the recovery of chilling-induced PS I photoinhibition in tomato.

  14. The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase of Candida albicans is a surface antigen.

    PubMed Central

    Gil-Navarro, I; Gil, M L; Casanova, M; O'Connor, J E; Martínez, J P; Gozalbo, D

    1997-01-01

    A lambda gt11 cDNA library from Candida albicans ATCC 26555 was screened by using pooled sera from two patients with systemic candidiasis and five neutropenic patients with high levels of anti-C. albicans immunoglobulin M antibodies. Seven clones were isolated from 60,000 recombinant phages. The most reactive one contained a 0.9-kb cDNA encoding a polypeptide immunoreactive only with sera from patients with systemic candidiasis. The whole gene was isolated from a genomic library by using the cDNA as a probe. The nucleotide sequence of the coding region showed homology (78 to 79%) to the Saccharomyces cerevisiae TDH1 to TDH3 genes coding for glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and their amino acid sequences showed 76% identity; thus, this gene has been named C. albicans TDH1. A rabbit polyclonal antiserum against the purified cytosolic C. albicans GAPDH (polyclonal antibody [PAb] anti-CA-GAPDH) was used to identify the GAPDH in the beta-mercaptoethanol extracts containing cell wall moieties. Indirect immunofluorescence demonstrated the presence of GAPDH at the C. albicans cell surface, particularly on the blastoconidia. Semiquantitative flow cytometry analysis showed the sensitivity of this GAPDH form to trypsin and its resistance to be removed with 2 M NaCl or 2% sodium dodecyl sulfate. The decrease in fluorescence in the presence of soluble GAPDH indicates the specificity of the labelling. In addition, a dose-dependent GAPDH enzymatic activity was detected in intact blastoconidia and germ tube cells. This activity was reduced by pretreatment of the cells with trypsin, formaldehyde, and PAb anti-CA-GAPDH. These observations indicate that an immunogenic, enzymatically active cell wall-associated form of the glycolytic enzyme GAPDH is found at the cell surface of C. albicans cells. PMID:9260938

  15. Identification of some ectomycorrhizal basidiomycetes by PCR amplification of their gpd (glyceraldehyde-3-phosphate dehydrogenase) genes.

    PubMed

    Kreuzinger, N; Podeu, R; Gruber, F; Göbl, F; Kubicek, C P

    1996-09-01

    Degenerated oligonucleotide primers designed to flank an approximately 1.2-kb fragment of the gene encoding glyceraldehyde-3-phosphate dehydrogenase (gpd) from ascomycetes and basidiomycetes were used to amplify the corresponding gpd fragments from several species of the ectomycorrhizal fungal taxa Boletus, Amanita, and Lactarius. Those from B. edulis, A. muscaria, and L. deterrimus were cloned and sequenced. The respective nucleotide sequences of these gene fragments showed a moderate degree of similarity (72 to 76%) in the protein-encoding regions and only a low degree of similarity in the introns (56 to 66%). Introns, where present, occurred at conserved positions, but the respective positions and numbers of introns in a given taxon varied. The amplified fragment from a given taxon could be distinguished from that of others by both restriction nuclease cleavage analysis and Southern hybridization. A procedure for labeling DNA probes with fluorescein-12-dUTP by PCR was developed. These probes were used in a nonradioactive hybridization assay, with which the gene could be detected in 2 ng of chromosomal DNA of L. deterrimus on slot blots. Taxon-specific amplification was achieved by the design of specific oligonucleotide primers. The application of the gpd gene for the identification of mycorrhizal fungi under field conditions was demonstrated, with Picea abies (spruce) mycorrhizal roots harvested from a northern alpine forest area as well as from a plant-breeding nursery. The interference by inhibitory substances, which sometimes occurred in the DNA extracted from the root-fungus mixture, could be overcome by using very diluted concentrations of template DNA for a first round of PCR amplification followed by a second round with nested oligonucleotide primers. We conclude that gpd can be used to detect ectomycorrhizal fungi during symbiotic interaction. PMID:8795234

  16. Oxidative modifications of glyceraldehyde 3-phosphate dehydrogenase regulate metabolic reprogramming of stored red blood cells.

    PubMed

    Reisz, Julie A; Wither, Matthew J; Dzieciatkowska, Monika; Nemkov, Travis; Issaian, Aaron; Yoshida, Tatsuro; Dunham, Andrew J; Hill, Ryan C; Hansen, Kirk C; D'Alessandro, Angelo

    2016-09-22

    Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) plays a key regulatory function in glucose oxidation by mediating fluxes through glycolysis or the pentose phosphate pathway (PPP) in an oxidative stress-dependent fashion. Previous studies documented metabolic reprogramming in stored red blood cells (RBCs) and oxidation of GAPDH at functional residues upon exposure to pro-oxidants diamide and H2O2 Here we hypothesize that routine storage of erythrocyte concentrates promotes metabolic modulation of stored RBCs by targeting functional thiol residues of GAPDH. Progressive increases in PPP/glycolysis ratios were determined via metabolic flux analysis after spiking (13)C1,2,3-glucose in erythrocyte concentrates stored in Additive Solution-3 under blood bank conditions for up to 42 days. Proteomics analyses revealed a storage-dependent oxidation of GAPDH at functional Cys152, 156, 247, and His179. Activity loss by oxidation occurred with increasing storage duration and was progressively irreversible. Irreversibly oxidized GAPDH accumulated in stored erythrocyte membranes and supernatants through storage day 42. By combining state-of-the-art ultra-high-pressure liquid chromatography-mass spectrometry metabolic flux analysis with redox and switch-tag proteomics, we identify for the first time ex vivo functionally relevant reversible and irreversible (sulfinic acid; Cys to dehydroalanine) oxidations of GAPDH without exogenous supplementation of excess pro-oxidant compounds in clinically relevant blood products. Oxidative and metabolic lesions, exacerbated by storage under hyperoxic conditions, were ameliorated by hypoxic storage. Storage-dependent reversible oxidation of GAPDH represents a mechanistic adaptation in stored erythrocytes to promote PPP activation and generate reducing equivalents. Removal of irreversibly oxidized, functionally compromised GAPDH identifies enhanced vesiculation as a self-protective mechanism in ex vivo aging erythrocytes.

  17. Diacylglycerol pyrophosphate binds and inhibits the glyceraldehyde-3-phosphate dehydrogenase in barley aleurone.

    PubMed

    Astorquiza, Paula Luján; Usorach, Javier; Racagni, Graciela; Villasuso, Ana Laura

    2016-04-01

    The aleurona cell is a model that allows the study of the antagonistic effect of gibberellic acid (GA) and abscisic acid (ABA). Previous results of our laboratory demonstrated the involvement of phospholipids during the response to ABA and GA. ABA modulates the levels of diacylglycerol, phosphatidic acid and diacylglycerol pyrophosphate (DAG, PA, DGPP) through the activities of phosphatidate phosphatases, phospholipase D, diacylglycerol kinase and phosphatidate kinase (PAP, PLD, DGK and PAK). PA and DGPP are key phospholipids in the response to ABA, since both are capable of modifying the hydrolitic activity of the aleurona. Nevertheless, little is known about the mechanism of action of these phospholipids during the ABA signal. DGPP is an anionic phospholipid with a pyrophosphate group attached to diacylglycerol. The ionization of the pyrophosphate group may be important to allow electrostatic interactions between DGPP and proteins. To understand how DGPP mediates cell functions in barley aleurone, we used a DGPP affinity membrane assay to isolate DGPP-binding proteins from Hordeum vulgare, followed by mass spectrometric sequencing. A cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) was identified for being bound to DGPP. To validate our method, the relatively abundant GAPDH was characterized with respect to its lipid-binding properties, by fat western blot. GAPDH antibody interacts with proteins that only bind to DGPP and PA. We also observed that ABA treatment increased GAPDH abundance and enzyme activity. The presence of phospholipids during GAPDH reaction modulated the GAPDH activity in ABA treated aleurone. These data suggest that DGPP binds to GAPDH and this DGPP and GAPDH interaction provides new evidences in the study of DGPP-mediated ABA responses in barley aleurone.

  18. Diacylglycerol pyrophosphate binds and inhibits the glyceraldehyde-3-phosphate dehydrogenase in barley aleurone.

    PubMed

    Astorquiza, Paula Luján; Usorach, Javier; Racagni, Graciela; Villasuso, Ana Laura

    2016-04-01

    The aleurona cell is a model that allows the study of the antagonistic effect of gibberellic acid (GA) and abscisic acid (ABA). Previous results of our laboratory demonstrated the involvement of phospholipids during the response to ABA and GA. ABA modulates the levels of diacylglycerol, phosphatidic acid and diacylglycerol pyrophosphate (DAG, PA, DGPP) through the activities of phosphatidate phosphatases, phospholipase D, diacylglycerol kinase and phosphatidate kinase (PAP, PLD, DGK and PAK). PA and DGPP are key phospholipids in the response to ABA, since both are capable of modifying the hydrolitic activity of the aleurona. Nevertheless, little is known about the mechanism of action of these phospholipids during the ABA signal. DGPP is an anionic phospholipid with a pyrophosphate group attached to diacylglycerol. The ionization of the pyrophosphate group may be important to allow electrostatic interactions between DGPP and proteins. To understand how DGPP mediates cell functions in barley aleurone, we used a DGPP affinity membrane assay to isolate DGPP-binding proteins from Hordeum vulgare, followed by mass spectrometric sequencing. A cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) was identified for being bound to DGPP. To validate our method, the relatively abundant GAPDH was characterized with respect to its lipid-binding properties, by fat western blot. GAPDH antibody interacts with proteins that only bind to DGPP and PA. We also observed that ABA treatment increased GAPDH abundance and enzyme activity. The presence of phospholipids during GAPDH reaction modulated the GAPDH activity in ABA treated aleurone. These data suggest that DGPP binds to GAPDH and this DGPP and GAPDH interaction provides new evidences in the study of DGPP-mediated ABA responses in barley aleurone. PMID:26866974

  19. Hydroxybenzaldoximes are d-GAP-competitive inhibitors of E. coli 1-deoxy-d-xylulose-5-phosphate synthase

    PubMed Central

    Bartee, David; Morris, Francine; Al-khouja, Amer

    2015-01-01

    1-Deoxy-d-xylulose 5-phosphate (DXP) synthase is the first enzyme in the methylerythritol phosphate pathway to essential isoprenoids in pathogenic bacteria and apicomplexan parasites. In bacterial pathogens, DXP lies at a metabolic branchpoint, serving also as a precursor in the biosynthesis of vitamins B1 and B6 which are critical for central metabolism. Toward identifying novel bisubstrate analog inhibitors that exploit the large active site and distinct mechanism of DXP synthase, a library of aryl mixed oximes was prepared and evaluated. Trihydroxybenzaldoximes emerged as reversible, low micromolar inhibitors, competitive against d-glyceraldehyde 3-phosphate (d-GAP) and either uncompetitive or noncompetitive against pyruvate. Hydroxybenzaldoximes are the first class of d-GAP-competitive DXP synthase inhibitors offering new tools for mechanistic studies of DXP synthase and a new direction for the development of antimicrobial agents targeting isoprenoid biosynthesis. PMID:26174207

  20. Hydroxybenzaldoximes Are D-GAP-Competitive Inhibitors of E. coli 1-Deoxy-D-Xylulose-5-Phosphate Synthase.

    PubMed

    Bartee, David; Morris, Francine; Al-Khouja, Amer; Freel Meyers, Caren L

    2015-08-17

    1-Deoxy-D-xylulose 5-phosphate (DXP) synthase is the first enzyme in the methylerythritol phosphate pathway to essential isoprenoids in pathogenic bacteria and apicomplexan parasites. In bacterial pathogens, DXP lies at a metabolic branch point, serving also as a precursor in the biosynthesis of vitamins B1 and B6, which are critical for central metabolism. In an effort to identify new bisubstrate analogue inhibitors that exploit the large active site and distinct mechanism of DXP synthase, a library of aryl mixed oximes was prepared and evaluated. Trihydroxybenzaldoximes emerged as reversible, low-micromolar inhibitors, competitive against D-glyceraldehyde 3-phosphate (D-GAP) and either uncompetitive or noncompetitive against pyruvate. Hydroxybenzaldoximes are the first class of D-GAP-competitive DXP synthase inhibitors, offering new tools for mechanistic studies of DXP synthase and a new direction for the development of antimicrobial agents targeting isoprenoid biosynthesis.

  1. Negative homotropic cooperativity and affinity heterogeneity: preparation of yeast glyceraldehyde-3-phosphate dehydrogenase with maximal affinity homogeneity.

    PubMed Central

    Gennis, L S

    1976-01-01

    A three-step procedure including affinity chromatography on NAD+-azobenzamidopropyl-Sepharose has been designed for the purification of yeast glyceraldehyde-3-phosphate dehydrogenase [D-glyceraldehyde-3-phosphate: NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12] with maximized specific activity and maximized homogeneity with respect to affinity for the coenzyme, NAD+.Binding isotherms allow the analysis of cooperativity patterns that disclose both the average ligand affinity in the system and the distribution of ligands among the sites, only for systems with complete affinity homogeneity. The presence of affinity heterogeneity, resulting from multiple oligomeric species differing only in their affinity for coenzyme, gives rise to isotherms which falsely manifest apparent negative cooperativity. A method for distinguishing negative homotropic cooperativity from affinity heterogeneity is suggested. PMID:186779

  2. Kinetic mechanism and order of substrate binding for sn-glycerol-3-phosphate acyltransferase from squash (Cucurbita moschata).

    PubMed

    Hayman, Matthew W; Fawcett, Tony; Slabas, Antoni R

    2002-03-13

    sn-Glycerol-3-phosphate acyltransferase (G3PAT, EC 2.3.1.15), a component of glycerolipid biosynthesis, is an important enzyme in chilling sensitivity in plants. The three-dimensional structure of the enzyme from squash (Cucurbita moschata), without bound substrate, has been determined [Turnbull et al. (2001) Acta Crystallogr. D 57, 451-453; Turnbull et al. (2001) Structure 9, 347-353]. Here we report the kinetic mechanism of plastidial G3PAT from squash and the order of substrate binding using acyl-acyl carrier protein (acyl-ACP) substrates. The reaction proceeds via a compulsory-ordered ternary complex with acyl-ACP binding before glycerol-3-phosphate. We have also determined that the reaction will proceed with C(4:0)-CoA, C(6:0)-CoA and C(12:0)-ACP substrates, allowing a wider choice of acyl groups for future co-crystallisation studies.

  3. Sulfur mustard induced nuclear translocation of glyceraldehyde-3-phosphate-dehydrogenase (GAPDH).

    PubMed

    Steinritz, Dirk; Weber, Jana; Balszuweit, Frank; Thiermann, Horst; Schmidt, Annette

    2013-12-01

    Sulfur Mustard (SM) is a vesicant chemical warfare agent, which is acutely toxic to a variety of organ systems including skin, eyes, respiratory system and bone marrow. The underlying molecular pathomechanism was mainly attributed to the alkylating properties of SM. However, recent studies have revealed that cellular responses to SM exposure are of more complex nature and include increased protein expression and protein modifications that can be used as biomarkers. In order to confirm already known biomarkers, to detect potential new ones and to further elucidate the pathomechanism of SM, we conducted large-scale proteomic experiments based on a human keratinocyte cell line (HaCaT) exposed to SM. Surprisingly, our analysis identified glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) as one of the up-regulated proteins after exposure of HaCaT cells to SM. In this paper we demonstrate the sulfur mustard induced nuclear translocation of GAPDH in HaCaT cells by 2D gel-electrophoresis (2D GE), immunocytochemistry (ICC), Western Blot (WB) and a combination thereof. 2D GE in combination with MALDI-TOF MS/MS analysis identified GAPDH as an up-regulated protein after SM exposure. Immunocytochemistry revealed a distinct nuclear translocation of GAPDH after exposure to 300μM SM. This finding was confirmed by fractionated WB analysis. 2D GE and subsequent immunoblot staining of GAPDH demonstrated two different spot locations of GAPH (pI 7.0 and pI 8.5) that are related to cytosolic or nuclear GAPDH respectively. After exposure to 300μM SM a significant increase of nuclear GAPDH at pI 8.5 occurred. Nuclear GAPDH has been associated with apoptosis, detection of structural DNA alterations, DNA repair and regulation of genomic integrity and telomere structure. The results of our study add new aspects to the pathophysiology of sulfur mustard toxicity, yet further studies will be necessary to reveal the specific function of nuclear GAPDH in the pathomechanism of sulfur mustard

  4. The Glycerol-3-Phosphate Acyltransferase TbGAT is Dispensable for Viability and the Synthesis of Glycerolipids in Trypanosoma brucei.

    PubMed

    Patel, Nipul; Pirani, Karim A; Zhu, Tongtong; Cheung-See-Kit, Melanie; Lee, Sungsu; Chen, Daniel G; Zufferey, Rachel

    2016-09-01

    Glycerolipids are the main constituents of biological membranes in Trypanosoma brucei, which causes sleeping sickness in humans. Importantly, they occur as a structural component of the glycosylphosphatidylinositol lipid anchor of the abundant cell surface glycoproteins procyclin in procyclic forms and variant surface glycoprotein in bloodstream form, that play crucial roles for the development of the parasite in the insect vector and the mammalian host, respectively. The present work reports the characterization of the glycerol-3-phosphate acyltransferase TbGAT that initiates the biosynthesis of ester glycerolipids. TbGAT restored glycerol-3-phosphate acyltransferase activity when expressed in a Leishmania major deletion strain lacking this activity and exhibited preference for medium length, unsaturated fatty acyl-CoAs. TbGAT localized to the endoplasmic reticulum membrane with its N-terminal domain facing the cytosol. Despite that a TbGAT null mutant in T. brucei procyclic forms lacked glycerol-3-phosphate acyltransferase activity, it remained viable and exhibited similar growth rate as the wild type. TbGAT was dispensable for the biosynthesis of phosphatidylcholine, phosphatidylinositol, phosphatidylserine, and GPI-anchored protein procyclin. However, the null mutant exhibited a slight decrease in phosphatidylethanolamine biosynthesis that was compensated with a modest increase in production of ether phosphatidylcholine. Our data suggest that an alternative initial acyltransferase takes over TbGAT's function in its absence. PMID:26909872

  5. The Glycerol-3-Phosphate Acyltransferase TbGAT is Dispensable for Viability and the Synthesis of Glycerolipids in Trypanosoma brucei.

    PubMed

    Patel, Nipul; Pirani, Karim A; Zhu, Tongtong; Cheung-See-Kit, Melanie; Lee, Sungsu; Chen, Daniel G; Zufferey, Rachel

    2016-09-01

    Glycerolipids are the main constituents of biological membranes in Trypanosoma brucei, which causes sleeping sickness in humans. Importantly, they occur as a structural component of the glycosylphosphatidylinositol lipid anchor of the abundant cell surface glycoproteins procyclin in procyclic forms and variant surface glycoprotein in bloodstream form, that play crucial roles for the development of the parasite in the insect vector and the mammalian host, respectively. The present work reports the characterization of the glycerol-3-phosphate acyltransferase TbGAT that initiates the biosynthesis of ester glycerolipids. TbGAT restored glycerol-3-phosphate acyltransferase activity when expressed in a Leishmania major deletion strain lacking this activity and exhibited preference for medium length, unsaturated fatty acyl-CoAs. TbGAT localized to the endoplasmic reticulum membrane with its N-terminal domain facing the cytosol. Despite that a TbGAT null mutant in T. brucei procyclic forms lacked glycerol-3-phosphate acyltransferase activity, it remained viable and exhibited similar growth rate as the wild type. TbGAT was dispensable for the biosynthesis of phosphatidylcholine, phosphatidylinositol, phosphatidylserine, and GPI-anchored protein procyclin. However, the null mutant exhibited a slight decrease in phosphatidylethanolamine biosynthesis that was compensated with a modest increase in production of ether phosphatidylcholine. Our data suggest that an alternative initial acyltransferase takes over TbGAT's function in its absence.

  6. Identification of a Second Two-Component Signal Transduction System That Controls Fosfomycin Tolerance and Glycerol-3-Phosphate Uptake

    PubMed Central

    Kurabayashi, Kumiko; Hirakawa, Yuko; Tanimoto, Koichi; Tomita, Haruyoshi

    2014-01-01

    Particular interest in fosfomycin has resurfaced because it is a highly beneficial antibiotic for the treatment of refractory infectious diseases caused by pathogens that are resistant to other commonly used antibiotics. The biological cost to cells of resistance to fosfomycin because of chromosomal mutation is high. We previously found that a bacterial two-component system, CpxAR, induces fosfomycin tolerance in enterohemorrhagic Escherichia coli (EHEC) O157:H7. This mechanism does not rely on irreversible genetic modification and allows EHEC to relieve the fitness burden that results from fosfomycin resistance in the absence of fosfomycin. Here we show that another two-component system, TorSRT, which was originally characterized as a regulatory system for anaerobic respiration utilizing trimethylamine-N-oxide (TMAO), also induces fosfomycin tolerance. Activation of the Tor regulatory pathway by overexpression of torR, which encodes the response regulator, or addition of TMAO increased fosfomycin tolerance in EHEC. We also show that phosphorylated TorR directly represses the expression of glpT, a gene that encodes a symporter of fosfomycin and glycerol-3-phosphate, and activation of the TorR protein results in the reduced uptake of fosfomycin by cells. However, cells in which the Tor pathway was activated had an impaired growth phenotype when cultured with glycerol-3-phosphate as a carbon substrate. These observations suggest that the TorSRT pathway is the second two-component system to reversibly control fosfomycin tolerance and glycerol-3-phosphate uptake in EHEC, and this may be beneficial for bacteria by alleviating the biological cost. We expect that this mechanism could be a potential target to enhance the utility of fosfomycin as chemotherapy against multidrug-resistant pathogens. PMID:25512306

  7. Regulation of glycolysis and l-glycerol 3-phosphate concentration in rat epididymal adipose tissue in vitro. Role of phosphofructokinase

    PubMed Central

    Halperin, M. L.; Denton, R. M.

    1969-01-01

    1. Attempts were made to define the role of phosphofructokinase in glycolytic control and the factors regulating the concentration of l-glycerol 3-phosphate in rat epididymal fat pads incubated in vitro. 2. Glycolysis rates were altered by anoxia or by additions of insulin, adrenaline or both to the incubation medium, and the changes in rate were related to changes in the steady-state concentrations of hexose phosphates, adenine nucleotides, l-glycerol 3-phosphate and citrate in the whole tissue. Measurements were also made of the lactate/pyruvate concentration ratio in the medium after incubation. 3. The mass-action ratios of phosphofructokinase, calculated from the whole-tissue concentrations of products and substrates, were less than 0·1% of the value of the ratio at pH7·4 at equilibrium. 4. Only in the presence of adrenaline could the observed stimulation of glycolytic flux be related to a possible activation of phosphofructokinase since, in this situation, the concentration of one substrate, fructose 6-phosphate, was not altered and the concentration of the other, ATP, was decreased. Increased glycolytic flux in the presence of insulin may be explained by an observed increase in the concentration of the substrate, fructose 6-phosphate. Under anaerobic conditions, glycolytic flux was decreased but this did not appear to be the result of inhibition of phosphofructokinase, since the concentrations of both substrates, fructose 6-phosphate and ATP, were decreased. The changes in glycolytic flux with insulin and anoxia may be secondary to changes in the rate of glucose uptake. 5. Changes in l-glycerol 3-phosphate concentration appear to be related both to changes in the concentration of dihydroxyacetone phosphate and to changes in the NADH/NAD+ concentration ratio in the cytoplasm. They do not seem to be related directly to alterations in glycolytic rate. PMID:4308837

  8. Regulation of Specific Functions of Glial Cells in Somatic Hybrids, II. Control of Inducibility of Glycerol-3-Phosphate Dehydrogenase

    PubMed Central

    Davidson, Richard L.; Benda, Philippe

    1970-01-01

    Glycerol-3-phosphate dehydrogenase (EC 1.1.1.8) is induced when glial cells are exposed to hydrocortisone in vitro. In contrast, the enzyme activity in fibroblasts is not affected by the steroid. In an attempt to elucidate the mechanisms controlling inducibility, hybrids between glial cells and fibroblasts were studied. It was found that the activity of the enzyme does not increase when the hybrids are exposed to hydrocortisone. It was also shown that inducibility and the noninduced activity of enzyme are controlled independently. Comparisons of S-100 and glycerol phosphate dehydrogenase activity in the hybrids suggest that all the specialized functions characteristics of glial cells are not coordinately controlled. PMID:4321349

  9. Geranyl diphosphate synthase from mint

    DOEpatents

    Croteau, Rodney Bruce; Wildung, Mark Raymond; Burke, Charles Cullen; Gershenzon, Jonathan

    1999-01-01

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate.

  10. Geranyl diphosphate synthase from mint

    DOEpatents

    Croteau, R.B.; Wildung, M.R.; Burke, C.C.; Gershenzon, J.

    1999-03-02

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate. 5 figs.

  11. Alteration of plant physiology by glyphosate and its by-product aminomethylphosphonic acid: an overview.

    PubMed

    Gomes, Marcelo P; Smedbol, Elise; Chalifour, Annie; Hénault-Ethier, Louise; Labrecque, Michel; Lepage, Laurent; Lucotte, Marc; Juneau, Philippe

    2014-09-01

    It is generally claimed that glyphosate kills undesired plants by affecting the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) enzyme, disturbing the shikimate pathway. However, the mechanisms leading to plant death may also be related to secondary or indirect effects of glyphosate on plant physiology. Moreover, some plants can metabolize glyphosate to aminomethylphosphonic acid (AMPA) or be exposed to AMPA from different environmental matrices. AMPA is a recognized phytotoxin, and its co-occurrence with glyphosate could modify the effects of glyphosate on plant physiology. The present review provides an overall picture of alterations of plant physiology caused by environmental exposure to glyphosate and its metabolite AMPA, and summarizes their effects on several physiological processes. It particularly focuses on photosynthesis, from photochemical events to C assimilation and translocation, as well as oxidative stress. The effects of glyphosate and AMPA on several plant physiological processes have been linked, with the aim of better understanding their phytotoxicity and glyphosate herbicidal effects. PMID:25039071

  12. Real-Time PCR-Based Quantitation Method for the Genetically Modified Soybean Line GTS 40-3-2.

    PubMed

    Kitta, Kazumi; Takabatake, Reona; Mano, Junichi

    2016-01-01

    This chapter describes a real-time PCR-based method for quantitation of the relative amount of genetically modified (GM) soybean line GTS 40-3-2 [Roundup Ready(®) soybean (RRS)] contained in a batch. The method targets a taxon-specific soybean gene (lectin gene, Le1) and the specific DNA construct junction region between the Petunia hybrida chloroplast transit peptide sequence and the Agrobacterium 5-enolpyruvylshikimate-3-phosphate synthase gene (epsps) sequence present in GTS 40-3-2. The method employs plasmid pMulSL2 as a reference material in order to quantify the relative amount of GTS 40-3-2 in soybean samples using a conversion factor (Cf) equal to the ratio of the RRS-specific DNA to the taxon-specific DNA in representative genuine GTS 40-3-2 seeds.

  13. Generation of insect-resistant and glyphosate-tolerant rice by introduction of a T-DNA containing two Bt insecticidal genes and an EPSPS gene.

    PubMed

    Zhao, Qi-chao; Liu, Ming-hong; Zhang, Xian-wen; Lin, Chao-yang; Zhang, Qing; Shen, Zhi-cheng

    2015-10-01

    Insect resistance and glyphosate tolerance have been two of the most important traits in the genetic improvement of various crops. In this study, two Bacillus thuringiensis (Bt) insecticidal genes, Cry1Ac and Cry1Ig, and a modified glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene (G10) were combined into a single transferred DNA (T-DNA) fragment and introduced into rice by Agrobacterium-mediated transformation. A transgenic line with single-copy T-DNA insertion named GAI-14 was found to be highly resistant to striped stem borer and rice leaf roller, and tolerant to glyphosate. Analysis of T-DNA border sequence suggested that the transgenes were inserted at the chromosome 3 and appeared to have not interrupted any known or putative genes. A field trial observed no significant difference in the basic agronomic traits between GAI-14 and the recipient rice. PMID:26465130

  14. Generation of insect-resistant and glyphosate-tolerant rice by introduction of a T-DNA containing two Bt insecticidal genes and an EPSPS gene.

    PubMed

    Zhao, Qi-chao; Liu, Ming-hong; Zhang, Xian-wen; Lin, Chao-yang; Zhang, Qing; Shen, Zhi-cheng

    2015-10-01

    Insect resistance and glyphosate tolerance have been two of the most important traits in the genetic improvement of various crops. In this study, two Bacillus thuringiensis (Bt) insecticidal genes, Cry1Ac and Cry1Ig, and a modified glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene (G10) were combined into a single transferred DNA (T-DNA) fragment and introduced into rice by Agrobacterium-mediated transformation. A transgenic line with single-copy T-DNA insertion named GAI-14 was found to be highly resistant to striped stem borer and rice leaf roller, and tolerant to glyphosate. Analysis of T-DNA border sequence suggested that the transgenes were inserted at the chromosome 3 and appeared to have not interrupted any known or putative genes. A field trial observed no significant difference in the basic agronomic traits between GAI-14 and the recipient rice.

  15. Characterization of the Amaranthus palmeri Physiological Response to Glyphosate in Susceptible and Resistant Populations.

    PubMed

    Fernández-Escalada, Manuel; Gil-Monreal, Miriam; Zabalza, Ana; Royuela, Mercedes

    2016-01-13

    The herbicide glyphosate inhibits the plant enzyme 5-enolpyruvylshikimate3-phosphate synthase (EPSPS) in the aromatic amino acid (AAA) biosynthetic pathway. The physiologies of an Amaranthus palmeri population exhibiting resistance to glyphosate by EPSPS gene amplification (NC-R) and a susceptible population (NC-S) were compared. The EPSPS copy number of NC-R plants was 47.5-fold the copy number of NC-S plants. Although the amounts of EPSPS protein and activity were higher in NC-R plants than in NC-S plants, the AAA concentrations were similar. The increases in total free amino acid and in AAA contents induced by glyphosate were more evident in NC-S plants. In both populations, the EPSPS protein increased after glyphosate exposure, suggesting regulation of gene expression. EPSPS activity seems tightly controlled in vivo. Carbohydrate accumulation and a slight induction of ethanol fermentation were detected in both populations.

  16. Functional characterization of aroA from Rhizobium leguminosarum with significant glyphosate tolerance in transgenic Arabidopsis.

    PubMed

    Han, Jing; Tian, Yong-Sheng; Xu, Jing; Wang, Li-Juan; Wang, Bo; Peng, Ri-He; Yao, Quan-Hong

    2014-09-01

    Glyphosate is the active component of the top-selling herbicide, the phytotoxicity of which is due to its inhibition of the shikimic acid pathway. 5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) is a key enzyme in the shikimic acid pathway. Glyphosate tolerance in plants can be achieved by the expression of a glyphosate-insensitive aroA gene (EPSPS). In this study, we used a PCR-based two-step DNA synthesis method to synthesize a new aroA gene (aroAR. leguminosarum) from Rhizobium leguminosarum. In vitro glyphosate sensitivity assays showed that aroAR. leguminosarum is glyphosate tolerant. The new gene was then expressed in E. coli and key kinetic values of the purified enzyme were determined. Furthermore, we transformed the aroA gene into Arabidopsis thaliana by the floral dip method. Transgenic Arabidopsis with the aroAR. leguminosarum gene was obtained to prove its potential use in developing glyphosate-resistant crops.

  17. Characterization of the Amaranthus palmeri Physiological Response to Glyphosate in Susceptible and Resistant Populations.

    PubMed

    Fernández-Escalada, Manuel; Gil-Monreal, Miriam; Zabalza, Ana; Royuela, Mercedes

    2016-01-13

    The herbicide glyphosate inhibits the plant enzyme 5-enolpyruvylshikimate3-phosphate synthase (EPSPS) in the aromatic amino acid (AAA) biosynthetic pathway. The physiologies of an Amaranthus palmeri population exhibiting resistance to glyphosate by EPSPS gene amplification (NC-R) and a susceptible population (NC-S) were compared. The EPSPS copy number of NC-R plants was 47.5-fold the copy number of NC-S plants. Although the amounts of EPSPS protein and activity were higher in NC-R plants than in NC-S plants, the AAA concentrations were similar. The increases in total free amino acid and in AAA contents induced by glyphosate were more evident in NC-S plants. In both populations, the EPSPS protein increased after glyphosate exposure, suggesting regulation of gene expression. EPSPS activity seems tightly controlled in vivo. Carbohydrate accumulation and a slight induction of ethanol fermentation were detected in both populations. PMID:26652930

  18. Generation of insect-resistant and glyphosate-tolerant rice by introduction of a T-DNA containing two Bt insecticidal genes and an EPSPS gene*

    PubMed Central

    ZHAO, Qi-chao; LIU, Ming-hong; ZHANG, Xian-wen; LIN, Chao-yang; ZHANG, Qing; SHEN, Zhi-cheng

    2015-01-01

    Insect resistance and glyphosate tolerance have been two of the most important traits in the genetic improvement of various crops. In this study, two Bacillus thuringiensis (Bt) insecticidal genes, Cry1Ac and Cry1Ig, and a modified glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene (G10) were combined into a single transferred DNA (T-DNA) fragment and introduced into rice by Agrobacterium-mediated transformation. A transgenic line with single-copy T-DNA insertion named GAI-14 was found to be highly resistant to striped stem borer and rice leaf roller, and tolerant to glyphosate. Analysis of T-DNA border sequence suggested that the transgenes were inserted at the chromosome 3 and appeared to have not interrupted any known or putative genes. A field trial observed no significant difference in the basic agronomic traits between GAI-14 and the recipient rice. PMID:26465130

  19. Screening of photosynthetic pigments for herbicidal activity with a new computational molecular approach.

    PubMed

    Krishnaraj, R Navanietha; Chandran, Saravanan; Pal, Parimal; Berchmans, Sheela

    2013-12-01

    There is an immense interest among the researchers to identify new herbicides which are effective against the herbs without affecting the environment. In this work, photosynthetic pigments are used as the ligands to predict their herbicidal activity. The enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase is a good target for the herbicides. Homology modeling of the target enzyme is done using Modeler 9.11 and the model is validated. Docking studies were performed with AutoDock Vina algorithm to predict the binding of the natural pigments such as β-carotene, chlorophyll a, chlorophyll b, phycoerythrin and phycocyanin to the target. β-carotene, phycoerythrin and phycocyanin have higher binding energies indicating the herbicidal activity of the pigments. This work reports a procedure to screen herbicides with computational molecular approach. These pigments will serve as potential bioherbicides in the future. PMID:24050696

  20. Characterization and partial purification of acyl-CoA:glycerol 3-phosphate acyltransferase from sunflower (Helianthus annuus L.) developing seeds.

    PubMed

    Ruiz-López, Noemí; Garcés, Rafael; Harwood, John L; Martínez-Force, Enrique

    2010-01-01

    The glycerol 3-phosphate acyltransferase (GPAT, EC 2.3.1.15) from sunflower (Helianthus annuus L.) microsomes has been characterised and partially purified. The in vitro determination of activity was optimized, and the maximum value for GPAT activity identified between 15 and 20 days after flowering. The apparent Michaelis-Menten K(m) for the glycerol 3-phosphate was 354 muM. The preferred substrates were palmitoyl-CoA = linoleoyl-CoA > oleoyl-CoA with the lowest activity using stearoyl-CoA. High solubilisation was achieved using 0.75% Tween80 and the solubilised GPAT was partially purified by ion-exchange chromatography using a Hi-Trap DEAE FF column, followed by gel filtration chromatography using a Superose 12 HR column. The fraction containing the GPAT activity was analysed by SDS-PAGE and contained a major band of 60.1 kDa. Finally, evidence is provided which shows the role of GPAT in the asymmetrical distribution, between positions sn-1 and sn-3, of saturated fatty acids in highly saturated sunflower triacylglycerols. This work provides background information on the sunflower endoplasmic reticulum GPAT which may prove valuable for future modification of oil deposition in this important crop.

  1. Low-interference washing-free electrochemical immunosensor using glycerol-3-phosphate dehydrogenase as an enzyme label.

    PubMed

    Dutta, Gorachand; Park, Seonhwa; Singh, Amardeep; Seo, Jeongwook; Kim, Sinyoung; Yang, Haesik

    2015-04-01

    In washing-free electrochemical detection, various redox and reactive species cause significant interference. To minimize this interference, we report a washing-free electrochemical immunosensor using flavin adenine dinucleotide (FAD)-dependent glycerol-3-phosphate dehydrogenase (GPDH) and glycerol-3-phosphate (GP) as an enzyme label and its substrate, respectively, because the reaction of FAD-dependent dehydrogenases with dissolved O2 is slow and the level of GP preexisting in blood is low (<0.1 mM). A combination of a low electrocatalytic indium-tin oxide (ITO) electrode and fast electron-mediating Ru(NH3)6(3+) is employed to obtain a high signal-to-background ratio via proximity-dependent electron mediation of Ru(NH3)6(3+) between the ITO electrode and the GPDH label. Electrochemical oxidation of GPDH-generated Ru(NH3)6(2+) is performed at 0.05 V vs Ag/AgCl, at which point the electrochemical interference is very low. When a washing-free immunosensor is applied to cardiac troponin I detection in human serum, the calculated detection limit is approximately 10 pg/mL, indicating that the immunosensor is very sensitive in spite of the use of washing-free detection with a short detection period (10 min for incubation and 100 s for electrochemical measurement). The low-interference washing-free electrochemical immunosensor shows good promise for fast and simple point-of-care testing.

  2. Cloning and nucleotide sequence of the glpD gene encoding sn-glycerol-3-phosphate dehydrogenase of Pseudomonas aeruginosa.

    PubMed Central

    Schweizer, H P; Po, C

    1994-01-01

    Nitrosoguanidine-induced Pseudomonas aeruginosa mutants which were unable to utilize glycerol as a carbon source were isolated. By utilizing PAO104, a mutant defective in glycerol transport and sn-glycerol-3-phosphate dehydrogenase (glpD), the glpD gene was cloned by a phage mini-D3112-based in vivo cloning method. The cloned gene was able to complement an Escherichia coli glpD mutant. Restriction analysis and recloning of DNA fragments located the glpD gene to a 1.6-kb EcoRI-SphI DNA fragment. In E. coli, a single 56,000-Da protein was expressed from the cloned DNA fragments. An in-frame glpD'-'lacZ translational fusion was isolated and used to determine the reading frame of glpD by sequencing across the fusion junction. The nucleotide sequence of a 1,792-bp fragment containing the glpD region was determined. The glpD gene encodes a protein containing 510 amino acids and with a predicted molecular weight of 56,150. Compared with the aerobic sn-glycerol-3-phosphate dehydrogenase from E. coli, P. aeruginosa GlpD is 56% identical and 69% similar. A similar comparison with GlpD from Bacillus subtilis reveals 21% identity and 40% similarity. A flavin-binding domain near the amino terminus which shared the consensus sequence reported for other bacterial flavoproteins was identified. Images PMID:8157588

  3. Cloning, heterologous expression and biochemical characterization of plastidial sn-glycerol-3-phosphate acyltransferase from Helianthus annuus.

    PubMed

    Payá-Milans, Miriam; Venegas-Calerón, Mónica; Salas, Joaquín J; Garcés, Rafael; Martínez-Force, Enrique

    2015-03-01

    The acyl-[acyl carrier protein]:sn-1-glycerol-3-phosphate acyltransferase (GPAT; E.C. 2.3.1.15) catalyzes the first step of glycerolipid assembly within the stroma of the chloroplast. In the present study, the sunflower (Helianthus annuus, L.) stromal GPAT was cloned, sequenced and characterized. We identified a single ORF of 1344base pairs that encoded a GPAT sharing strong sequence homology with the plastidial GPAT from Arabidopsis thaliana (ATS1, At1g32200). Gene expression studies showed that the highest transcript levels occurred in green tissues in which chloroplasts are abundant. The corresponding mature protein was heterologously overexpressed in Escherichia coli for purification and biochemical characterization. In vitro assays using radiolabelled acyl-ACPs and glycerol-3-phosphate as substrates revealed a strong preference for oleic versus palmitic acid, and weak activity towards stearic acid. The positional fatty acid composition of relevant chloroplast phospholipids from sunflower leaves did not reflect the in vitro GPAT specificity, suggesting a more complex scenario with mixed substrates at different concentrations, competition with other acyl-ACP consuming enzymatic reactions, etc. In summary, this study has confirmed the affinity of this enzyme which would partly explain the resistance to cold temperatures observed in sunflower plants.

  4. Metabolic engineering of enhanced glycerol-3-phosphate synthesis to increase lipid production in Synechocystis sp. PCC 6803.

    PubMed

    Wang, Xi; Xiong, Xiaochao; Sa, Na; Roje, Sanja; Chen, Shulin

    2016-07-01

    With the growing attention to global warming and energy sustainability, biosynthesis of lipids by photosynthetic microorganisms has attracted more interest for the production of renewable transportation fuels. Recently, the cyanobacterium Synechocystis sp. PCC 6803 has been widely used for biofuel production through metabolic engineering because of its efficient photosynthesis and well-developed genetic tools. In lipid biosynthesis, glycerol-3-phosphate (G3P) is a key node for both CO2 fixation and lipid metabolism in cyanobacteria. However, few studies have explored the use of G3P synthesis to improve photosynthetic lipid production. In this study, metabolic engineering combined with flux balance analysis (FBA) was conducted to reveal the effect of G3P synthesis on lipid production. Heterologous genes that encoded glycerol-3-phosphate dehydrogenase (GPD) and diacylglycerol acyltransferase (DGAT) were engineered into Synechocystis sp. PCC 6803 to enhance G3P supply and lipid production. The resultant recombinant Synechocystis produced higher levels of lipids without a significant reduction in cell growth. Compared with the wild-type strain, lipid content and productivity of the engineered cyanobacteria increased by up to 36 and 31 %, respectively, under autotrophic conditions. Lipid production under mixotrophic conditions of the engineered cyanobacteria was also investigated. This work demonstrated that enhanced G3P synthesis was an important factor in photosynthetic lipid production and that introducing heterologous GPD and DGAT genes was an effective strategy to increase lipid production in Synechocystis sp. PCC 6803. PMID:27154348

  5. Metabolic engineering of enhanced glycerol-3-phosphate synthesis to increase lipid production in Synechocystis sp. PCC 6803.

    PubMed

    Wang, Xi; Xiong, Xiaochao; Sa, Na; Roje, Sanja; Chen, Shulin

    2016-07-01

    With the growing attention to global warming and energy sustainability, biosynthesis of lipids by photosynthetic microorganisms has attracted more interest for the production of renewable transportation fuels. Recently, the cyanobacterium Synechocystis sp. PCC 6803 has been widely used for biofuel production through metabolic engineering because of its efficient photosynthesis and well-developed genetic tools. In lipid biosynthesis, glycerol-3-phosphate (G3P) is a key node for both CO2 fixation and lipid metabolism in cyanobacteria. However, few studies have explored the use of G3P synthesis to improve photosynthetic lipid production. In this study, metabolic engineering combined with flux balance analysis (FBA) was conducted to reveal the effect of G3P synthesis on lipid production. Heterologous genes that encoded glycerol-3-phosphate dehydrogenase (GPD) and diacylglycerol acyltransferase (DGAT) were engineered into Synechocystis sp. PCC 6803 to enhance G3P supply and lipid production. The resultant recombinant Synechocystis produced higher levels of lipids without a significant reduction in cell growth. Compared with the wild-type strain, lipid content and productivity of the engineered cyanobacteria increased by up to 36 and 31 %, respectively, under autotrophic conditions. Lipid production under mixotrophic conditions of the engineered cyanobacteria was also investigated. This work demonstrated that enhanced G3P synthesis was an important factor in photosynthetic lipid production and that introducing heterologous GPD and DGAT genes was an effective strategy to increase lipid production in Synechocystis sp. PCC 6803.

  6. Structural basis for regulation of stability and activity in glyceraldehyde-3-phosphate dehydrogenases. Differential scanning calorimetry and molecular dynamics.

    PubMed

    Makshakova, Olga N; Semenyuk, Pavel I; Kuravsky, Mikhail L; Ermakova, Elena A; Zuev, Yuriy F; Muronetz, Vladimir I

    2015-05-01

    Tissue specific isoforms of human glyceraldehyde-3-phosphate dehydrogenase, somatic (GAPD) and sperm-specific (GAPDS), have been reported to display different levels of both stability and catalytic activity. Here we apply MD simulations to investigate molecular basis of this phenomenon. The protein is a tetramer where each subunit consists of two domains - catalytic and NAD-binding one. We demonstrated key residues responsible for intersubunit and interdomain interactions. Effect of several residues was studied by point mutations. Overall we considered three mutations (Glu96Gln, Glu244Gln and Asp311Asn) disrupting GAPDS-specific salt bridges. Comparison of calculated interaction energies with calorimetric enthalpies confirmed that intersubunit interactions were responsible for enhanced thermostability of GAPDS whereas interdomain interactions had indirect influence on intersubunit contacts. Mutation Asp311Asn was around 10Å far from the active center and corresponded to the closest natural substitution in the isoenzymes. MD simulations revealed that this residue had slight interaction with catalytic residues but influenced the hydrogen bond net and dynamics in active site. These effects can be responsible for a strong influence of this residue on catalytic activity. Overall, our results provide new insight into glyceraldehyde-3-phosphate dehydrogenase structure-function relationships and can be used for the engineering of mutant proteins with modified properties and for development of new inhibitors with indirect influence on the catalytic site. PMID:25869789

  7. Hybrid polyketide synthases

    DOEpatents

    Fortman, Jeffrey L.; Hagen, Andrew; Katz, Leonard; Keasling, Jay D.; Poust, Sean; Zhang, Jingwei; Zotchev, Sergey

    2016-05-10

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing an even-chain or odd-chain diacid or lactam or diamine. The present invention also provides for a host cell comprising the PKS and when cultured produces the even-chain diacid, odd-chain diacid, or KAPA. The present invention also provides for a host cell comprising the PKS capable of synthesizing a pimelic acid or KAPA, and when cultured produces biotin.

  8. Characterization of the highly active fragment of glyceraldehyde-3-phosphate dehydrogenase gene promoter for recombinant protein expression in Pleurotus ostreatus.

    PubMed

    Yin, Chaomin; Zheng, Liesheng; Zhu, Jihong; Chen, Liguo; Ma, Aimin

    2015-03-01

    Developing efficient native promoters is important for improving recombinant protein expression by fungal genetic engineering. The promoter region of glyceraldehyde-3-phosphate dehydrogenase gene in Pleurotus ostreatus (Pogpd) was isolated and optimized by upstream truncation. The activities of these promoters with different lengths were further confirmed by fluorescence, quantitative real-time PCR and Western blot analysis. A truncated Pogpd-P2 fragment (795 bp) drove enhanced green fluorescence protein (egfp) gene expression in P. ostreatus much more efficiently than full-length Pogpd-P1. Further truncating Pogpd-P2 to 603, 403 and 231 bp reduced the eGFP expression significantly. However, the 403-bp fragment between -356 bp and the start codon was the minimal but sufficient promoter element for eGFP expression. Compact native promoters for genetic engineering of P. ostreatus were successfully developed and validated in this study. This will broaden the preexisting repertoire of fungal promoters for biotechnology application. PMID:25743073

  9. Mutagenesis of squash (Cucurbita moschata) glycerol-3-phosphate acyltransferase (GPAT) to produce an enzyme with altered substrate selectivity.

    PubMed

    Hayman, M W; Fawcett, T; Schierer, T F; Simon, J W; Kroon, J T; Gilroy, J S; Rice, D W; Rafferty, J; Turnbull, A P; Sedelnikova, S E; Slabas, A R

    2000-12-01

    In an attempt to rationalize the relationship between structure and substrate selectivity of glycerol-3-phosphate acyltransferase (GPAT, 1AT, EC 2.3.1.15) we have cloned a number of cDNAs into the pET overexpression system using a PCR-based approach. Following assay of the recombinant enzyme we noted that the substrate selectivity of the squash (Cucurbita moschata) enzyme had altered dramatically. This form of GPAT has now been crystallized and its full three-dimensional structure elucidated. Since we now have two forms of the enzyme that display different substrate selectivities this should provide a powerful tool to determine the basis of the selectivity changes. Kinetic and structural analyses are currently being performed to rationalize the changes which have taken place.

  10. Over-expression of PsGPD, a mushroom glyceraldehyde-3-phosphate dehydrogenase gene, enhances salt tolerance in rice plants.

    PubMed

    Cho, Jung-Il; Lim, Hye-Min; Siddiqui, Zamin Shaheed; Park, Sung-Han; Kim, A-Ram; Kwon, Taek-Ryoun; Lee, Seong-Kon; Park, Soo-Chul; Jeong, Mi-Jeong; Lee, Gang-Seob

    2014-08-01

    Transgenic potatoes expressing glyceraldehyde-3-phosphate dehydrogenase (GPD), isolated from the oyster mushroom, Pleurotus sajor-caju, had increased tolerance to salt stress (Jeong et al. Biochem Biophys Res Commun 278:192-196, 2000). To examine the physiological mechanisms enhancing salt tolerance in GPD-transgenic rice plants, the salt tolerance of five GPD transgenic rice lines (T1-T5) derived from Dongjin rice cultivar were evaluated in a fixed 150 mM saline environment in comparison to two known wild-type rice cultivars, Dongjin (salt sensitive) and Pokali (salt tolerant). Transgenic lines, T2, T3, and T5, had a substantial increase in biomass and relative water content compared to Dongjin. Stomatal conductance and osmotic potential were higher in the GPD transgenic lines and were similar to those in Pokali. The results are discussed based on the comparative physiological response of GPD transgenic lines with those of the salt-sensitive and salt-tolerant rice cultivars.

  11. A novel glyceraldehyde-3-phosphate dehydrogenase (GAPDH) promoter for expressing transgenes in the halotolerant alga Dunaliella salina.

    PubMed

    Jia, Yanlong; Li, Shenke; Allen, George; Feng, Shuying; Xue, Lexun

    2012-05-01

    A major challenge for efficient transgene expression in Dunaliella salina is to find strong endogenous promoters to drive the transgene expression. In the present study, a novel glyceraldehyde-3-phosphate dehydrogenase (GAPDH) promoter was cloned and used to drive expressions of the bialaphos resistance (bar) gene and of the N-terminal fragment of human canstatin (Can-N). The results showed that the bar gene was transcribed by the GAPDH promoter and integrated into the genome of the transformants of D. salina. Furthermore, the PCR identification, Southern and western blots indicated that Can-N was expressed in transgenic D. salina, demonstrating that the promoter of the D. salina GAPDH gene is suitable for driving expression of heterologous genes in transgenic D. salina.

  12. Homocysteine induces glyceraldehyde-3-phosphate dehydrogenase acetylation and apoptosis in the neuroblastoma cell line Neuro2a.

    PubMed

    Fang, M; Jin, A; Zhao, Y; Liu, X

    2016-02-01

    High plasma levels of homocysteine (Hcy) promote the progression of neurodegenerative diseases. However, the mechanism by which Hcy mediates neurotoxicity has not been elucidated. We observed that upon incubation with Hcy, the viability of a neuroblastoma cell line Neuro2a declined in a dose-dependent manner, and apoptosis was induced within 48 h. The median effective concentration (EC50) of Hcy was approximately 5 mM. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) nuclear translocation and acylation has been implicated in the regulation of apoptosis. We found that nuclear translocation and acetylation of GAPDH increased in the presence of 5 mM Hcy and that higher levels of acetyltransferase p300/CBP were detected in Neuro2a cells. These findings implicate the involvement of GAPDH in the mechanism whereby Hcy induces apoptosis in neurons. This study highlights a potentially important pathway in neurodegenerative disorders, and a novel target pathway for neuroprotective therapy. PMID:26785692

  13. Homocysteine induces glyceraldehyde-3-phosphate dehydrogenase acetylation and apoptosis in the neuroblastoma cell line Neuro2a

    PubMed Central

    Fang, M.; Jin, A.; Zhao, Y.; Liu, X.

    2016-01-01

    High plasma levels of homocysteine (Hcy) promote the progression of neurodegenerative diseases. However, the mechanism by which Hcy mediates neurotoxicity has not been elucidated. We observed that upon incubation with Hcy, the viability of a neuroblastoma cell line Neuro2a declined in a dose-dependent manner, and apoptosis was induced within 48 h. The median effective concentration (EC50) of Hcy was approximately 5 mM. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) nuclear translocation and acylation has been implicated in the regulation of apoptosis. We found that nuclear translocation and acetylation of GAPDH increased in the presence of 5 mM Hcy and that higher levels of acetyltransferase p300/CBP were detected in Neuro2a cells. These findings implicate the involvement of GAPDH in the mechanism whereby Hcy induces apoptosis in neurons. This study highlights a potentially important pathway in neurodegenerative disorders, and a novel target pathway for neuroprotective therapy. PMID:26785692

  14. The sweet side of RNA regulation: glyceraldehyde-3-phosphate dehydrogenase as a noncanonical RNA-binding protein.

    PubMed

    White, Michael R; Garcin, Elsa D

    2016-01-01

    The glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), has a vast array of extraglycolytic cellular functions, including interactions with nucleic acids. GAPDH has been implicated in the translocation of transfer RNA (tRNA), the regulation of cellular messenger RNA (mRNA) stability and translation, as well as the regulation of replication and gene expression of many single-stranded RNA viruses. A growing body of evidence supports GAPDH-RNA interactions serving as part of a larger coordination between intermediary metabolism and RNA biogenesis. Despite the established role of GAPDH in nucleic acid regulation, it is still unclear how and where GAPDH binds to its RNA targets, highlighted by the absence of any conserved RNA-binding sequences. This review will summarize our current understanding of GAPDH-mediated regulation of RNA function. WIREs RNA 2016, 7:53-70. doi: 10.1002/wrna.1315 For further resources related to this article, please visit the WIREs website.

  15. Glyceraldehyde 3-phosphate dehydrogenase augments the intercellular transmission and toxicity of polyglutamine aggregates in a cell model of Huntington disease.

    PubMed

    Mikhaylova, Elena R; Lazarev, Vladimir F; Nikotina, Alina D; Margulis, Boris A; Guzhova, Irina V

    2016-03-01

    The common feature of Huntington disease is the accumulation of oligomers or aggregates of mutant huntingtin protein (mHTT), which causes the death of a subset of striatal neuronal populations. The cytotoxic species can leave neurons and migrate to other groups of cells penetrating and damaging them in a prion-like manner. We hypothesized that the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH), previously shown to elevate the aggregation of mHTT, is associated with an increased efficiency of intercellular propagation of mHTT. GAPDH, on its own or together with polyglutamine species, was shown to be released into the extracellular milieu mainly from dying cells as assessed by a novel enzyme immunoassay, western blotting, and ultrafiltration. The conditioned medium of cells with growing GAPDH-polyQ aggregates was toxic to naïve cells, whereas depletion of the aggregates from the medium lowered this cytotoxicity. The GAPDH component of the aggregates was found to increase their toxicity by two-fold in comparison with polyQ alone. Furthermore, GAPDH-polyQ complexes were shown to penetrate acceptor cells and to increase the capacity of polyQ to prionize its intracellular homolog containing a repeat of 25 glutamine residues. Finally, inhibitors of intracellular transport showed that polyQ-GAPDH complexes, as well as GAPDH itself, penetrated cells using clathrin-mediated endocytosis. This suggested a pivotal role of the enzyme in the intercellular transmission of Huntington disease pathogenicity. In conclusion, GAPDH occurring in complexes with polyglutamine strengthens the prion-like activity and toxicity of the migrating aggregates. Aggregating polygluatmine tracts were shown to release from the cells over-expressing mutant huntingtin in a complex with glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The enzyme enhances the intracellular transport of aggregates to healthy cells, prionization of normal cellular proteins and finally cell death, thus

  16. Citrin/mitochondrial glycerol-3-phosphate dehydrogenase double knock-out mice recapitulate features of human citrin deficiency.

    PubMed

    Saheki, Takeyori; Iijima, Mikio; Li, Meng Xian; Kobayashi, Keiko; Horiuchi, Masahisa; Ushikai, Miharu; Okumura, Fumihiko; Meng, Xiao Jian; Inoue, Ituro; Tajima, Atsushi; Moriyama, Mitsuaki; Eto, Kazuhiro; Kadowaki, Takashi; Sinasac, David S; Tsui, Lap-Chee; Tsuji, Mihoko; Okano, Akira; Kobayashi, Tsuyoshi

    2007-08-24

    Citrin is the liver-type mitochondrial aspartate-glutamate carrier that participates in urea, protein, and nucleotide biosynthetic pathways by supplying aspartate from mitochondria to the cytosol. Citrin also plays a role in transporting cytosolic NADH reducing equivalents into mitochondria as a component of the malate-aspartate shuttle. In humans, loss-of-function mutations in the SLC25A13 gene encoding citrin cause both adult-onset type II citrullinemia and neonatal intrahepatic cholestasis, collectively referred to as human citrin deficiency. Citrin knock-out mice fail to display features of human citrin deficiency. Based on the hypothesis that an enhanced glycerol phosphate shuttle activity may be compensating for the loss of citrin function in the mouse, we have generated mice with a combined disruption of the genes for citrin and mitochondrial glycerol 3-phosphate dehydrogenase. The resulting double knock-out mice demonstrated citrullinemia, hyperammonemia that was further elevated by oral sucrose administration, hypoglycemia, and a fatty liver, all features of human citrin deficiency. An increased hepatic lactate/pyruvate ratio in the double knock-out mice compared with controls was also further elevated by the oral sucrose administration, suggesting that an altered cytosolic NADH/NAD(+) ratio is closely associated with the hyperammonemia observed. Microarray analyses identified over 100 genes that were differentially expressed in the double knock-out mice compared with wild-type controls, revealing genes potentially involved in compensatory or downstream effects of the combined mutations. Together, our data indicate that the more severe phenotype present in the citrin/mitochondrial glycerol-3-phosphate dehydrogenase double knock-out mice represents a more accurate model of human citrin deficiency than citrin knock-out mice.

  17. Effects of salinities on the gene expression of a (NAD+)-dependent glycerol-3-phosphate dehydrogenase in Dunaliella salina.

    PubMed

    Chen, Hui; Lao, Yong-Min; Jiang, Jian-Guo

    2011-03-01

    Glycerol-3-phosphate dehydrogenase (G3pdh) is a key enzyme in the pathway of glycerol synthesis, which converts dihydroxyacetone phosphate (DHAP) to glycerol-3-phosphate. In this study, the effects of salinity changes on variation of cell shape and single cell glycerol content of Dunaliella salina were observed, and the effects of salinity changes on the gene expressions of a (NAD+)-dependent G3pdh (EC1.1.1.8) among G3pdh isozymes in D. salina were detected by real-time quantitative PCR. Results showed that the changes of shape and volume of D. salina cell cultured chronically at various salinities were minor, but when the salinity was changed rapidly, the variations of cell shape and cell volume of D. salina were significant, which were recovered basically after 2h except treating by high salinity. Also, it was found some lipid globules in the surface of D. salina cells when the salinity increased from 2.0 to 4.0-5.0 M NaCl rapidly. When D. salina was cultured chronically at various salinities, the accumulation of single cell glycerol increased with increased salinity, and D. salina also could rapidly decrease or increase single cell glycerol contents to adapt to hypoosmotic or hyperosmotic shock. The expression level of G3pdh in D. salina grown at various salinities was significantly inversely correlated to the salinity, but there was no significant correlation between the expression level of G3pdh and salinity after 2 h of treatment by hyperosmotic or hypoosmotic shock.

  18. Expression, purification, crystallization and preliminary X-ray analysis of an NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Helicobacter pylori

    SciTech Connect

    Elliott, Paul R.; Evans, Daniel; Greenwood, Jacqueline A.; Moody, Peter C. E.

    2008-08-01

    Glyceraldehyde-3-phosphate dehydrogenase A has been cloned, expressed and purified. Apoprotein crystals have been grown which diffracted to 1.75 Å resolution and belonged to space group P2{sub 1}; holo crystals were grown in the presence of NADP, diffracted to 2.6 Å resolution and belonged to space group P3{sub 2}. The classical glycolytic pathway contains an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase, with NADP-dependent forms reserved for photosynthetic organisms and archaea. Here, the cloning, expression, purification, crystallization and preliminary X-ray analysis of an NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Helicobacter pylori is reported; crystals of the protein were grown both in the presence and the absence of NADP.

  19. Monoterpene synthases from common sage (Salvia officinalis)

    DOEpatents

    Croteau, Rodney Bruce; Wise, Mitchell Lynn; Katahira, Eva Joy; Savage, Thomas Jonathan

    1999-01-01

    cDNAs encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase from common sage (Salvia officinalis) have been isolated and sequenced, and the corresponding amino acid sequences has been determined. Accordingly, isolated DNA sequences (SEQ ID No:1; SEQ ID No:3 and SEQ ID No:5) are provided which code for the expression of (+)-bornyl diphosphate synthase (SEQ ID No:2), 1,8-cineole synthase (SEQ ID No:4) and (+)-sabinene synthase SEQ ID No:6), respectively, from sage (Salvia officinalis). In other aspects, replicable recombinant cloning vehicles are provided which code for (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase, or for a base sequence sufficiently complementary to at least a portion of (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant monoterpene synthases that may be used to facilitate their production, isolation and purification in significant amounts. Recombinant (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase may be used to obtain expression or enhanced expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase in plants in order to enhance the production of monoterpenoids, or may be otherwise employed for the regulation or expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase, or the production of their products.

  20. Glyceraldehyde-3-phosphate ferredoxin oxidoreductase (GAPOR) and nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN), key enzymes of the respective modified Embden-Meyerhof pathways in the hyperthermophilic crenarchaeota Pyrobaculum aerophilum and Aeropyrum pernix.

    PubMed

    Reher, Matthias; Gebhard, Susanne; Schönheit, Peter

    2007-08-01

    The growth of Pyrobaculum aerophilum on yeast extract and nitrate was stimulated by the addition of maltose. Extracts of maltose/yeast extract/nitrate-grown cells contained all enzyme activities of a modified Embden-Meyerhof (EM) pathway, including ATP-dependent glucokinase, phosphoglucose isomerase, ATP-dependent 6-phosphofructokinase, fructose-1,6-phosphate aldolase, triose-phosphate isomerase, GAPOR, phosphoglycerate mutase, enolase and pyruvate kinase. The activity of GAPOR was stimulated about fourfold by maltose, indicating a role in sugar degradation. GAPOR was purified 200-fold to homogeneity and characterized as a 67 kDa monomeric, extremely thermostable protein. The enzyme showed high specificity for glyceraldehyde-3-phosphate and did not use glyceraldehyde, acetaldehyde or formaldehyde as substrates. By matrix-assisted laser desorption/ionization-time of flight analysis of the purified enzyme, ORF PA1029 was identified as a coding gene, gapor, in the sequenced genome of Pyrobaculum aerophilum. The data indicate that the (micro)aerophilic Pyrobaculum aerophilum contains a functional GAPOR as part of a modified EM pathway. Cells of the strictly aerobic crenarchaeon Aeropyrum pernix also contain enzyme activities of a modified EM pathway similar to that of Pyrobaculum aerophilum, except that a GAPN activity replaces GAPOR activity.

  1. The interactions of 9,10-phenanthrenequinone with glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a potential site for toxic actions.

    PubMed

    Rodriguez, Chester E; Fukuto, Jon M; Taguchi, Keiko; Froines, John; Cho, Arthur K

    2005-06-30

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the oxidative phosphorylation of glyceraldehyde 3-phosphate to 1,3-diphosphoglycerate, one of the precursors for glycolytic ATP biosynthesis. The enzyme contains an active site cysteine thiolate, which is critical for its catalytic function. As part of a continuing study of the interactions of quinones with biological systems, we have examined the susceptibility of GAPDH to inactivation by 9,10-phenanthrenequinone (9,10-PQ). In a previous study of quinone toxicity, this quinone, whose actions have been exclusively attributed to reactive oxygen species (ROS) generation, caused a reduction in the glycolytic activity of GAPDH under aerobic and anaerobic conditions, indicating indirect and possible direct actions on this enzyme. In this study, the effects of 9,10-PQ on GAPDH were examined in detail under aerobic and anaerobic conditions so that the role of oxygen could be distinguished from the direct effects of the quinone. The results indicate that, in the presence of the reducing agent DTT, GAPDH inhibition by 9,10-PQ under aerobic conditions was mostly indirect and comparable to the direct actions of exogenously-added H2O2 on this enzyme. GAPDH was also inhibited by 9,10-PQ anaerobically, but in a somewhat more complex manner. This quinone, which is not considered an electrophile, inhibited GAPDH in a time-dependent manner, consistent with irreversible modification and comparable to the electrophilic actions of 1,4-benzoquinone (1,4-BQ). Analysis of the anaerobic inactivation kinetics for the two quinones revealed comparable inactivation rate constants (k(inac)), but a much lower inhibitor binding constant (K(i)) for 1,4-BQ. Protection and thiol titration studies suggest that these quinones bind to the NAD+ binding site and modify the catalytic thiol from this site. Thus, 9,10-PQ inhibits GAPDH by two distinct mechanisms: through ROS generation that results in the oxidization of GAPDH thiols, and by an

  2. The role of glycerol-3-phosphate dehydrogenase 1 in the progression of fatty liver after acute ethanol administration in mice

    SciTech Connect

    Sato, Tomoki; Morita, Akihito; Mori, Nobuko; Miura, Shinji

    2014-02-21

    Highlights: • Ethanol administration increased GPD1 mRNA expression. • Ethanol administration increased glucose incorporation into TG glycerol moieties. • No increase in hepatic TG levels was observed in ethanol-injected GPD1 null mice. • We propose that GPD1 is required for ethanol-induced TG accumulation in the liver. - Abstract: Acute ethanol consumption leads to the accumulation of triglycerides (TGs) in hepatocytes. The increase in lipogenesis and reduction of fatty acid oxidation are implicated as the mechanisms underlying ethanol-induced hepatic TG accumulation. Although glycerol-3-phosphate (Gro3P), formed by glycerol kinase (GYK) or glycerol-3-phosphate dehydrogenase 1 (GPD1), is also required for TG synthesis, the roles of GYK and GPD1 have been the subject of some debate. In this study, we examine (1) the expression of genes involved in Gro3P production in the liver of C57BL/6J mice in the context of hepatic TG accumulation after acute ethanol intake, and (2) the role of GPD1 in the progression of ethanol-induced fatty liver using GPD1 null mice. As a result, in C57BL/6J mice, ethanol-induced hepatic TG accumulation began within 2 h and was 1.7-fold greater than that observed in the control group after 6 h. The up-regulation of GPD1 began 2 h after administering ethanol, and significantly increased 6 h later with the concomitant escalation in the glycolytic gene expression. The incorporation of {sup 14}C-labelled glucose into TG glycerol moieties increased during the same period. On the other hand, in GPD1 null mice carrying normal GYK activity, no significant increase in hepatic TG level was observed after acute ethanol intake. In conclusion, GPD1 and glycolytic gene expression is up-regulated by ethanol, and GPD1-mediated incorporation of glucose into TG glycerol moieties together with increased lipogenesis, is suggested to play an important role in ethanol-induced hepatic TG accumulation.

  3. Morphological and metabolic changes in transgenic wheat with altered glycerol-3-phosphate acyltransferase or acyl-acyl carrier protein (ACP) thioesterase activities.

    PubMed

    Edlin, D A; Kille, P; Wilkinson, M D; Jones, H D; Harwood, J L

    2000-12-01

    We have transformed varieties of wheat with a Pisum sativum glycerol-3-phosphate acyltransferase gene, and also with an Arabidopsis thaliana acyl-ACP thioesterase gene. Morphological (growth, organelle development) and metabolic changes (fatty acid labelling of chloroplast and non-chloroplast lipids) have been observed in transgenics with altered gene expression for either enzyme. PMID:11171169

  4. SIRT1 interacts with and protects glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from nuclear translocation: Implications for cell survival after irradiation

    SciTech Connect

    Joo, Hyun-Yoo; Woo, Seon Rang; Shen, Yan-Nan; Yun, Mi Yong; Shin, Hyun-Jin; Park, Eun-Ran; Kim, Su-Hyeon; Park, Jeong-Eun; Ju, Yeun-Jin; Hong, Sung Hee; Hwang, Sang-Gu; Cho, Myung-Haing; Kim, Joon; Lee, Kee-Ho

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer SIRT1 serves to retain GAPDH in the cytosol, preventing GAPDH nuclear translocation. Black-Right-Pointing-Pointer When SIRT1 is depleted, GAPDH translocation occurs even in the absence of stress. Black-Right-Pointing-Pointer Upon irradiation, SIRT1 interacts with GAPDH. Black-Right-Pointing-Pointer SIRT1 prevents irradiation-induced nuclear translocation of GAPDH. Black-Right-Pointing-Pointer SIRT1 presence rather than activity is essential for inhibiting GAPDH translocation. -- Abstract: Upon apoptotic stimulation, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a cytosolic enzyme normally active in glycolysis, translocates into the nucleus and activates an apoptotic cascade therein. In the present work, we show that SIRT1 prevents nuclear translocation of GAPDH via interaction with GAPDH. SIRT1 depletion triggered nuclear translocation of cytosolic GAPDH even in the absence of apoptotic stress. Such translocation was not, however, observed when SIRT1 enzymatic activity was inhibited, indicating that SIRT1 protein per se, rather than the deacetylase activity of the protein, is required to inhibit GAPDH translocation. Upon irradiation, SIRT1 prevented irradiation-induced nuclear translocation of GAPDH, accompanied by interaction of SIRT1 and GAPDH. Thus, SIRT1 functions to retain GAPDH in the cytosol, protecting the enzyme from nuclear translocation via interaction with these two proteins. This serves as a mechanism whereby SIRT1 regulates cell survival upon induction of apoptotic stress by means that include irradiation.

  5. The glyceraldehyde-3-phosphate dehydrogenase gene of Moniliophthoraperniciosa, the causal agent of witches' broom disease of Theobroma cacao.

    PubMed

    Lima, Juliana O; Pereira, Jorge F; Rincones, Johana; Barau, Joan G; Araújo, Elza F; Pereira, Gonçalo A G; Queiroz, Marisa V

    2009-04-01

    This report describes the cloning, sequence and expression analysis of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene of Moniliophthora perniciosa, the most important pathogen of cocoa in Brazil. Southern blot analysis revealed the presence of a single copy of the GAPDH gene in the M. perniciosa genome (MpGAPDH). The complete MpGAPDH coding sequence contained 1,461 bp with eight introns that were conserved in the GAPDH genes of other basidiomycete species. The cis-elements in the promoter region of the MpGAPDH gene were similar to those of other basidiomycetes. Likewise, the MpGAPDH gene encoded a putative 339 amino acid protein that shared significant sequence similarity with other GAPDH proteins in fungi, plants, and metazoans. Phylogenetic analyses clustered the MPGAPDH protein with other homobasidiomycete fungi of the family Tricholomataceae. Expression analysis of the MpGAPDH gene by real-time PCR showed that this gene was more expressed (~1.3X) in the saprotrophic stage of this hemibiotrophic plant pathogen than in the biotrophic stage when grown in cacao extracts.

  6. Export of malaria proteins requires co-translational processing of the PEXEL motif independent of phosphatidylinositol-3-phosphate binding

    PubMed Central

    Boddey, Justin A.; O'Neill, Matthew T.; Lopaticki, Sash; Carvalho, Teresa G.; Hodder, Anthony N.; Nebl, Thomas; Wawra, Stephan; van West, Pieter; Ebrahimzadeh, Zeinab; Richard, Dave; Flemming, Sven; Spielmann, Tobias; Przyborski, Jude; Babon, Jeff J.; Cowman, Alan F.

    2016-01-01

    Plasmodium falciparum exports proteins into erythrocytes using the Plasmodium export element (PEXEL) motif, which is cleaved in the endoplasmic reticulum (ER) by plasmepsin V (PMV). A recent study reported that phosphatidylinositol-3-phosphate (PI(3)P) concentrated in the ER binds to PEXEL motifs and is required for export independent of PMV, and that PEXEL motifs are functionally interchangeable with RxLR motifs of oomycete effectors. Here we show that the PEXEL does not bind PI(3)P, and that this lipid is not concentrated in the ER. We find that RxLR motifs cannot mediate export in P. falciparum. Parasites expressing a mutated version of KAHRP, with the PEXEL motif repositioned near the signal sequence, prevented PMV cleavage. This mutant possessed the putative PI(3)P-binding residues but is not exported. Reinstatement of PEXEL to its original location restores processing by PMV and export. These results challenge the PI(3)P hypothesis and provide evidence that PEXEL position is conserved for co-translational processing and export. PMID:26832821

  7. Human and pneumococcal cell surface glyceraldehyde-3-phosphate dehydrogenase (GAPDH) proteins are both ligands of human C1q protein.

    PubMed

    Terrasse, Rémi; Tacnet-Delorme, Pascale; Moriscot, Christine; Pérard, Julien; Schoehn, Guy; Vernet, Thierry; Thielens, Nicole M; Di Guilmi, Anne Marie; Frachet, Philippe

    2012-12-14

    C1q, a key component of the classical complement pathway, is a major player in the response to microbial infection and has been shown to detect noxious altered-self substances such as apoptotic cells. In this work, using complementary experimental approaches, we identified the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a C1q partner when exposed at the surface of human pathogenic bacteria Streptococcus pneumoniae and human apoptotic cells. The membrane-associated GAPDH on HeLa cells bound the globular regions of C1q as demonstrated by pulldown and cell surface co-localization experiments. Pneumococcal strains deficient in surface-exposed GAPDH harbored a decreased level of C1q recognition when compared with the wild-type strains. Both recombinant human and pneumococcal GAPDHs interacted avidly with C1q as measured by surface plasmon resonance experiments (K(D) = 0.34-2.17 nm). In addition, GAPDH-C1q complexes were observed by transmission electron microscopy after cross-linking. The purified pneumococcal GAPDH protein activated C1 in an in vitro assay unlike the human form. Deposition of C1q, C3b, and C4b from human serum at the surface of pneumococcal cells was dependent on the presence of surface-exposed GAPDH. This ability of C1q to sense both human and bacterial GAPDHs sheds new insights on the role of this important defense collagen molecule in modulating the immune response. PMID:23086952

  8. An investigation of the nicotinamide-adenine dinucleotide-induced 'tightening' of the structure of glyceraldehyde 3-phosphate dehydrogenase.

    PubMed Central

    Osborne, H H; Hollaway, M R

    1976-01-01

    An investigation was made of the effect of NAD+ analogues on subunit interactions in yeast and rabbit muscle glyceraldehyde 3-phosphate dehydrogenases by using the subunit exchange (hybridization) method described previously [e.g. see Osborne & Hollaway (1975) Biochem. J. 151, 37-45]. The ligands ATP, ITP, ADP, AMP, cyclic AMP and ADP-ribose like NADH, all caused an apparent weakening of intramolecular subunit interactions, whereas NAD+ caused an apparent increase in the stability of the tetrameric enzyme molecules. A mixture of NMN and AMP, although it did not simulate completely the NAD+-induced 'tightening' of the enzyme structure, did result in a more than 20-fold decrease in the rate of subunit exchange compared with that in the presence of AMP alone. These results show that occupancy of the NMN subsite of the enzyme NAD+-binding site is insufficient in itself to give the marked tightening of the enzyme structure induced by NAD+. The 'tightening' effect is specific in that it seems to require a phosphodiester link between NMN and ADP-ribose. These effects are discussed in terms of the detailed X-ray structure of the lobster holoenzyme [Buehner et al. (1974) J. Mol. Biol. 90, 25-49]. Images PLATE 1 PLATE 2 PMID:183744

  9. An unusual effect of NADP+ on the thermostability of the nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase from Streptococcus mutans.

    PubMed

    Arutyunov, Denis; Schmalhausen, Elena; Orlov, Victor; Rahuel-Clermont, Sophie; Nagradova, Natalia; Branlant, Guy; Muronetz, Vladimir

    2013-10-01

    Adiabatic differential scanning calorimetry was used to investigate the effect of NADP+ on the irreversible thermal denaturation of the nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) from Streptococcus mutans. The GAPN-NADP+ binary complex showed a strongly decreased thermal stability, with a difference of about 20 °C between the temperatures of the thermal transition peak maxima of the complex and the free protein. This finding was similar to the previously described thermal destabilization of GAPN upon binding of inorganic phosphate to the substrate binding site and can be interpreted as the shift of the equilibrium between 2 conformers of tetrameric GAPN upon addition of the coenzyme. Single amino acid substitution, known to abolish the NADP+ binding, cancelled the calorimetric effect of the coenzyme. GAPN thermal inactivation was considerably decelerated in the presence of NADP+ showing that the apparent change in stability of the active centre can be the opposite to that of the whole protein molecule. NADP+ could also reactivate the inactive GAPN* species, obtained by the heating of the apoenzyme below the thermal denaturation transition temperature. These effects may reflect a mechanism that provides GAPN the sufficient flexibility for the earlier observed profound active site reorganizations required during the catalytic cycle. The elevated thermal stability of the apoenzyme may, in turn, be important for maintaining a constant level of active GAPN--an enzyme that is known to be crucial for the effective supply of the reducing equivalents in S. mutans and its ability to grow under aerobic conditions.

  10. Detection of glyceraldehyde 3-phosphate dehydrogenase messenger RNA using a peptide nucleic acid probe in paraffin-embedded archival specimens.

    PubMed

    Hiroyasu, Makoto; Akatsuka, Shinya; Shirase, Tomoyuki; Toda, Yoshinobu; Hiai, Hiroshi; Toyokuni, Shinya

    2004-04-01

    Although the human genome project has been completed, the functions of many genes remain undetermined. In situ hybridization (ISH) is a key method for identifying cells in which a given messenger RNA is transcribed. Paraffin-embedded specimens remain precious materials for research, but preservation of high-quality RNA in these specimens is not expected unless ample caution was taken during fixation. Peptide nucleic acid (PNA) is a recently developed hybrid molecule with genetic information that has high stability and high affinity to the complementary DNA or RNA. We applied a PNA probe to mRNA ISH of liver specimens obtained by autopsy and embedded in paraffin 28-48 years ago. An 18-mer PNA probe for glyceraldehyde 3-phosphate dehydrogenase was used. Staining was then analyzed in association with morphology by hematoxylin and eosin staining, and with the time between death of the patient and tissue fixation. Notably, specimens fixed with formalin and embedded in paraffin 48 years ago yielded excellent results if the time before fixation was short enough (<8 h). There was a significant inverse correlation between the intensity of ISH staining and the time before fixation. Oligonucleotide PNA probe, albeit at high cost, would increase the value of paraffin-embedded specimens in storage for use in human medical research.

  11. Altered regulation of lipid biosynthesis in a mutant of Arabidopsis deficient in chloroplast glycerol-3-phosphate acyltransferase activity

    SciTech Connect

    Kunst, L.; Browse, J.; Somerville, C. )

    1988-06-01

    The leaf membrane lipids of many plant species, including Arabidopsis thaliana (L.) Heynh., are synthesized by two complementary pathways that are associated with the chloroplast and the endoplasmic reticulum. By screening directly for alterations in lipid acyl-group composition, the authors have identified several mutants of Arabidopsis that lack the plastid pathway because of a deficiency in activity of the first enzyme in the plastid pathway of glycerolipid synthesis, acyl-ACP:sn-glycerol-3-phosphate acyltransferase. The lesion results in an increased synthesis of lipids by the cytoplasmic pathway that largely compensates for the loss of the plastid pathway and provides nearly normal amounts of all the lipids required for chloroplast biogenesis. However, the fatty acid composition of the leaf membrane lipids of the mutants is altered because the acyltransferases associated with the two pathways normally exhibit different substrate specificities. The remarkable flexibility of the system provides an insight into the nature of the regulatory mechanisms that allocate lipids for membrane biogenesis.

  12. Over-expression of PsGPD, a mushroom glyceraldehyde-3-phosphate dehydrogenase gene, enhances salt tolerance in rice plants.

    PubMed

    Cho, Jung-Il; Lim, Hye-Min; Siddiqui, Zamin Shaheed; Park, Sung-Han; Kim, A-Ram; Kwon, Taek-Ryoun; Lee, Seong-Kon; Park, Soo-Chul; Jeong, Mi-Jeong; Lee, Gang-Seob

    2014-08-01

    Transgenic potatoes expressing glyceraldehyde-3-phosphate dehydrogenase (GPD), isolated from the oyster mushroom, Pleurotus sajor-caju, had increased tolerance to salt stress (Jeong et al. Biochem Biophys Res Commun 278:192-196, 2000). To examine the physiological mechanisms enhancing salt tolerance in GPD-transgenic rice plants, the salt tolerance of five GPD transgenic rice lines (T1-T5) derived from Dongjin rice cultivar were evaluated in a fixed 150 mM saline environment in comparison to two known wild-type rice cultivars, Dongjin (salt sensitive) and Pokali (salt tolerant). Transgenic lines, T2, T3, and T5, had a substantial increase in biomass and relative water content compared to Dongjin. Stomatal conductance and osmotic potential were higher in the GPD transgenic lines and were similar to those in Pokali. The results are discussed based on the comparative physiological response of GPD transgenic lines with those of the salt-sensitive and salt-tolerant rice cultivars. PMID:24737077

  13. Cloning and characterization of a NAD+-dependent glycerol-3-phosphate dehydrogenase gene from Candida glycerinogenes, an industrial glycerol producer.

    PubMed

    Chen, Xianzhong; Fang, Huiying; Rao, Zhiming; Shen, Wei; Zhuge, Bin; Wang, Zhengxiang; Zhuge, Jian

    2008-08-01

    The osmotolerant yeast Candida glycerinogenes produces glycerol as a major metabolite on an industrial scale, but the underlying molecular mechanisms are poorly understood. We cloned and characterized a 4900-bp genomic fragment containing the CgGPD gene encoding a glycerol-3-phosphate dehydrogenase homologous to GPD genes in other yeasts using degenerate primers in conjunction with inverse PCR. Sequence analysis revealed a 1167-bp open reading frame encoding a putative peptide of 388 deduced amino acids with a molecular mass of 42 695 Da. The CgGPD gene consisted of an N-terminal NAD(+)-binding domain and a central catalytic domain, whereas seven stress response elements were found in the upstream region. Functional analysis revealed that Saccharomyces cerevisiae gpd1Delta and gpd1Delta/gpd2Delta osmosensitive mutants transformed with CgGPD were restored to the wild-type phenotype when cultured in high osmolarity media, suggesting that it is a functional GPD protein. Transformants also accumulated glycerol intracellularly and GPD-specific activity increased significantly when stressed with NaCl, whereas the S. cerevisiae mutants transformed with the empty plasmid showed only slight increases. The full-length CgGPD gene sequence including upstream and downstream regions has been deposited in GenBank under accession no. EU186536.

  14. Glycerol-3-phosphate acyltransferase 4 is essential for the normal development of reproductive organs and the embryo in Brassica napus.

    PubMed

    Chen, Xue; Chen, Guanqun; Truksa, Martin; Snyder, Crystal L; Shah, Saleh; Weselake, Randall J

    2014-08-01

    The enzyme sn-glycerol-3-phosphate acyltransferase 4 (GPAT4) is involved in the biosynthesis of plant lipid poly-esters. The present study further characterizes the enzymatic activities of three endoplasmic reticulum-bound GPAT4 isoforms of Brassica napus and examines their roles in the development of reproductive organs and the embryo. All three BnGPAT4 isoforms exhibited sn-2 acyltransferase and phosphatase activities with dicarboxylic acid-CoA as acyl donor. When non-substituted acyl-CoA was used as acyl donor, the rate of acylation was considerably lower and phosphatase activity was not manifested. RNA interference (RNAi)-mediated down-regulation of all GPAT4 homologues in B. napus under the control of the napin promoter caused abnormal development of several reproductive organs and reduced seed set. Microscopic examination and reciprocal crosses revealed that both pollen grains and developing embryo sacs of the B. napus gpat4 lines were affected. The gpat4 mature embryos showed decreased cutin content and altered monomer composition. The defective embryo development further affected the oil body morphology, oil content, and fatty acid composition in gpat4 seeds. These results suggest that GPAT4 has a critical role in the development of reproductive organs and the seed of B. napus.

  15. Structural Characterization of Heparin-induced Glyceraldehyde-3-phosphate Dehydrogenase Protofibrils Preventing α-Synuclein Oligomeric Species Toxicity*

    PubMed Central

    Ávila, César L.; Torres-Bugeau, Clarisa M.; Barbosa, Leandro R. S.; Sales, Elisa Morandé; Ouidja, Mohand O.; Socías, Sergio B.; Celej, M. Soledad; Raisman-Vozari, Rita; Papy-Garcia, Dulce; Itri, Rosangela; Chehín, Rosana N.

    2014-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional enzyme that has been associated with neurodegenerative diseases. GAPDH colocalizes with α-synuclein in amyloid aggregates in post-mortem tissue of patients with sporadic Parkinson disease and promotes the formation of Lewy body-like inclusions in cell culture. In a previous work, we showed that glycosaminoglycan-induced GAPDH prefibrillar species accelerate the conversion of α-synuclein to fibrils. However, it remains to be determined whether the interplay among glycosaminoglycans, GAPDH, and α-synuclein has a role in pathological states. Here, we demonstrate that the toxic effect exerted by α-synuclein oligomers in dopaminergic cell culture is abolished in the presence of GAPDH prefibrillar species. Structural analysis of prefibrillar GAPDH performed by small angle x-ray scattering showed a particle compatible with a protofibril. This protofibril is shaped as a cylinder 22 nm long and a cross-section diameter of 12 nm. Using biocomputational techniques, we obtained the first all-atom model of the GAPDH protofibril, which was validated by cross-linking coupled to mass spectrometry experiments. Because GAPDH can be secreted outside the cell where glycosaminoglycans are present, it seems plausible that GAPDH protofibrils could be assembled in the extracellular space kidnapping α-synuclein toxic oligomers. Thus, the role of GAPDH protofibrils in neuronal proteostasis must be considered. The data reported here could open alternative ways in the development of therapeutic strategies against synucleinopathies like Parkinson disease. PMID:24671416

  16. Autophagy and endosomal trafficking inhibition by Vibrio cholerae MARTX toxin phosphatidylinositol-3-phosphate-specific phospholipase A1 activity.

    PubMed

    Agarwal, Shivani; Kim, Hyunjin; Chan, Robin B; Agarwal, Shivangi; Williamson, Rebecca; Cho, Wonhwa; Paolo, Gilbert Di; Paolo, Gilbert D; Satchell, Karla J F

    2015-10-26

    Vibrio cholerae, responsible for acute gastroenteritis secretes a large multifunctional-autoprocessing repeat-in-toxin (MARTX) toxin linked to evasion of host immune system, facilitating colonization of small intestine. Unlike other effector domains of the multifunctional toxin that target cytoskeleton, the function of alpha-beta hydrolase (ABH) remained elusive. This study demonstrates that ABH is an esterase/lipase with catalytic Ser-His-Asp triad. ABH binds with high affinity to phosphatidylinositol-3-phosphate (PtdIns3P) and cleaves the fatty acid in PtdIns3P at the sn1 position in vitro making it the first PtdIns3P-specific phospholipase A1 (PLA1). Expression of ABH in vivo reduces intracellular PtdIns3P levels and its PtdIns3P-specific PLA1 activity blocks endosomal and autophagic pathways. In accordance with recent studies acknowledging the potential of extracellular pathogens to evade or exploit autophagy to prevent their clearance and facilitate survival, this is the first report highlighting the role of ABH in inhibiting autophagy and endosomal trafficking induced by extracellular V. cholerae.

  17. Glycerol-3-phosphate acyltransferase 4 is essential for the normal development of reproductive organs and the embryo in Brassica napus

    PubMed Central

    Chen, Xue; Chen, Guanqun; Truksa, Martin; Snyder, Crystal L.; Shah, Saleh; Weselake, Randall J.

    2014-01-01

    The enzyme sn-glycerol-3-phosphate acyltransferase 4 (GPAT4) is involved in the biosynthesis of plant lipid poly-esters. The present study further characterizes the enzymatic activities of three endoplasmic reticulum-bound GPAT4 isoforms of Brassica napus and examines their roles in the development of reproductive organs and the embryo. All three BnGPAT4 isoforms exhibited sn-2 acyltransferase and phosphatase activities with dicarboxylic acid-CoA as acyl donor. When non-substituted acyl-CoA was used as acyl donor, the rate of acylation was considerably lower and phosphatase activity was not manifested. RNA interference (RNAi)-mediated down-regulation of all GPAT4 homologues in B. napus under the control of the napin promoter caused abnormal development of several reproductive organs and reduced seed set. Microscopic examination and reciprocal crosses revealed that both pollen grains and developing embryo sacs of the B. napus gpat4 lines were affected. The gpat4 mature embryos showed decreased cutin content and altered monomer composition. The defective embryo development further affected the oil body morphology, oil content, and fatty acid composition in gpat4 seeds. These results suggest that GPAT4 has a critical role in the development of reproductive organs and the seed of B. napus. PMID:24821955

  18. Autophagy and endosomal trafficking inhibition by Vibrio cholerae MARTX toxin phosphatidylinositol-3-phosphate-specific phospholipase A1 activity

    PubMed Central

    Agarwal, Shivani; Kim, Hyunjin; Chan, Robin B.; Agarwal, Shivangi; Williamson, Rebecca; Cho, Wonhwa; Paolo, Gilbert D.; Satchell, Karla J. F.

    2015-01-01

    Vibrio cholerae, responsible for acute gastroenteritis secretes a large multifunctional-autoprocessing repeat-in-toxin (MARTX) toxin linked to evasion of host immune system, facilitating colonization of small intestine. Unlike other effector domains of the multifunctional toxin that target cytoskeleton, the function of alpha-beta hydrolase (ABH) remained elusive. This study demonstrates that ABH is an esterase/lipase with catalytic Ser–His–Asp triad. ABH binds with high affinity to phosphatidylinositol-3-phosphate (PtdIns3P) and cleaves the fatty acid in PtdIns3P at the sn1 position in vitro making it the first PtdIns3P-specific phospholipase A1 (PLA1). Expression of ABH in vivo reduces intracellular PtdIns3P levels and its PtdIns3P-specific PLA1 activity blocks endosomal and autophagic pathways. In accordance with recent studies acknowledging the potential of extracellular pathogens to evade or exploit autophagy to prevent their clearance and facilitate survival, this is the first report highlighting the role of ABH in inhibiting autophagy and endosomal trafficking induced by extracellular V. cholerae. PMID:26498860

  19. Sequence analysis and structural characterization of a glyceraldehyde-3-phosphate dehydrogenase gene from the phytopathogenic fungus Eremothecium ashbyi.

    PubMed

    Sengupta, Sudeshna; Chandra, T S

    2011-02-01

    Eremothecium ashbyi is a phytopathogenic fungus infesting cotton, soybeans and several other plants. This highly flavinogenic fungus has been phylogenetically characterized, but the genetic aspects of its central metabolic and riboflavin biosynthetic pathways are unknown. An ORF of 996 bp was obtained from E. ashbyi by using degenerate primers for glyceraldehyde-3-phosphate dehydrogenase (GPD) through reverse transcriptase polymerase chain reaction (RT-PCR) and 5'-3' rapid amplification of cDNA ends (RACE-PCR). This nucleotide sequence had a high similarity of 88% with GPD sequence of Ashbya gossypii. The putative GPD peptide of 331-aa had a high similarity of 85% with the GPD sequence from other ascomycetes. The ORF had an unusually strong codon bias with 5 amino acids showing strict preference of a single codon. The theoretical molecular weight for the putative peptide was 35.58 kDa with an estimated pI of 5.7. A neighbor-joining tree showed that the putative peptide from E. ashbyi displayed the highest similarity to GPD of A. gossypii. The gene sequence is available at the GenBank, accession number EU717696. Homology modeling done with Kluyveromyces marxianus GPD (PDB: 2I5P) as template indicated high structural similarity. PMID:20820924

  20. Secreted multifunctional Glyceraldehyde-3-phosphate dehydrogenase sequesters lactoferrin and iron into cells via a non-canonical pathway

    PubMed Central

    Chauhan, Anoop S.; Rawat, Pooja; Malhotra, Himanshu; Sheokand, Navdeep; Kumar, Manoj; Patidar, Anil; Chaudhary, Surbhi; Jakhar, Priyanka; Raje, Chaaya I.; Raje, Manoj

    2015-01-01

    Lactoferrin is a crucial nutritionally important pleiotropic molecule and iron an essential trace metal for all life. The current paradigm is that living organisms have evolved specific membrane anchored receptors along with iron carrier molecules for regulated absorption, transport, storage and mobilization of these vital nutrients. We present evidence for the existence of non-canonical pathway whereby cells actively forage these vital resources from beyond their physical boundaries, by secreting the multifunctional housekeeping enzyme Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) into the extracellular milieu. This effect’s an autocrine/paracrine acquisition of target ligand into the cell. Internalization by this route is extensively favoured even by cells that express surface receptors for lactoferrin and involves urokinase plasminogen activator receptor (uPAR). We also demonstrate the operation of this phenomenon during inflammation, as an arm of the innate immune response where lactoferrin denies iron to invading microorganisms by chelating it and then itself being sequestered into surrounding host cells by GAPDH. PMID:26672975

  1. Purification and properties of glyceraldehyde-3-phosphate dehydrogenase from the skeletal muscle of the hibernating ground squirrel, Ictidomys tridecemlineatus.

    PubMed

    Bell, Ryan A V; Smith, Jeffrey C; Storey, Kenneth B

    2014-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from the skeletal muscle of euthermic and torpid Ictidomys tridecemlineatus was purified to electrophoretic homogeneity using a novel method involving Blue-agarose and Phenyl-agarose chromatography. Kinetic analysis of the enzymes isolated from the two conditions suggested the existence of two structurally distinct proteins, with GAPDH V max being 40-60% less for the enzyme from the torpid condition (in both glycolytic and gluconeogenic directions) as compared to the euthermic enzyme form. Thermal denaturation, in part determined by differential scanning fluorimetry, revealed that purified GAPDH from the torpid animals was significantly more stable that the enzyme from the euthermic condition. Mass spectrometry combined with Western blot analyses of purified GAPDH indicate that the cellular GAPDH population is extensively modified, with posttranslational phosphorylation, acetylation and methylation being detected. Global reduction in GAPDH tyrosine phosphorylation during torpor as well as site specific alterations in methylation sites suggests that that the stable changes observed in kinetic and structural GAPDH properties may be due to posttranslational modification of this enzyme during torpor. Taken together, these results suggest a stable suppression of GAPDH (possibly by some reversible posttranslational modification) during ground squirrel torpor, which likely contributes to the overall reduction in carbohydrate metabolism when these animals switch to lipid fuels during dormancy.

  2. Nuclear translocation and accumulation of glyceraldehyde-3-phosphate dehydrogenase involved in diclazuril-induced apoptosis in Eimeria tenella (E. tenella).

    PubMed

    Wang, Congcong; Han, Chunzhou; Li, Tao; Yang, Dehao; Shen, Xiaojiong; Fan, Yinxin; Xu, Yang; Zheng, Wenli; Fei, Chenzhong; Zhang, Lifang; Xue, Feiqun

    2013-01-01

    In mammalian cells, GAPDH (glyceraldehyde-3-phosphate dehydrogenase) has recently been shown to be implicated in numerous apoptotic paradigms, especially in neuronal apoptosis, and has been demonstrated to play a vital role in some neurodegenerative disorders. However, this phenomenon has not been reported in protists. In the present study, we report for the first time that such a mechanism is involved in diclazuril-induced apoptosis in Eimeria tenella (E. tenella). We found that upon treatment of parasites with diclazuril, the expression levels of GAPDH transcript and protein were significantly increased in second-generation merozoites. Then, we examined the subcellular localization of GAPDH by fluorescence microscopy and Western blot analysis. The results show that a considerable amount of GAPDH protein appeared in the nucleus within diclazuril-treated second-generation merozoites; in contrast, the control group had very low levels of GAPDH in the nucleus. The glycolytic activity of GAPDH was kinetically analyzed in different subcellular fractions. A substantial decrease (48.5%) in glycolytic activity of GAPDH in the nucleus was displayed. Moreover, the activities of caspases-3, -9, and -8 were measured in cell extracts using specific caspase substrates. The data show significant increases in caspase-3 and caspase-9 activities in the diclazuril-treated group.

  3. Improved purification of sn-glycerol-3-phosphate dehydrogenase of Saccharomyces cerevisiae and its inhibition by ethanol

    SciTech Connect

    Merkel, J.R.; Chen, S.M.; Osinchak, J.; Trumbore, M.

    1986-05-01

    An improved purification procedure yielded a homogeneous preparation of sn-glycerol-3-phosphate dehydrogenase (GPD) from commercially available baker's yeast. The enzyme had an apparent molecular weight of 42,000 by SDS-polyacrylamide gel electrophoresis. This differs from the 31,000 reported earlier on the basis of its elution from a calibrated Sepharose 6B column. When denatured by guanidine (6M) and chromatographed on a Sephadex G-100 column with 6M guanidine in 0.1M phosphate buffer, pH 6.5, containing 0.1M ..beta..-mercaptoethanol, GPD eluted with the approximately 42,000 mw proteins. S. cerevisiae GPD is an NAD-dependent oxidoreductase. With NADH as the variable substrate the GPD-catalyzed reduction of dihydroxacetone phosphate (DHAP) had a K/sub M/ of 0.018 mM and was competitively inhibited by ethanol. With DHAP as the variable substrate and NADH constant GPD catalyzed the reduction with a K/sub M/ of 0.37 mM and was noncompetitively inhibited by ethanol. The calculated K/sub i/ for the non-competitive inhibition was 3.4M. K/sub i/ for the competitive inhibition of NADH by ethanol varied with increasing concentrations of ethanol indicating a more complex mechanism than a truly competitive one.

  4. Identification of a mammalian glycerol-3-phosphate phosphatase: Role in metabolism and signaling in pancreatic β-cells and hepatocytes

    PubMed Central

    Mugabo, Yves; Zhao, Shangang; Seifried, Annegrit; Gezzar, Sari; Al-Mass, Anfal; Zhang, Dongwei; Lamontagne, Julien; Attane, Camille; Poursharifi, Pegah; Iglesias, José; Joly, Erik; Peyot, Marie-Line; Gohla, Antje; Madiraju, S. R. Murthy; Prentki, Marc

    2016-01-01

    Obesity, and the associated disturbed glycerolipid/fatty acid (GL/FA) cycle, contribute to insulin resistance, islet β-cell failure, and type 2 diabetes. Flux through the GL/FA cycle is regulated by the availability of glycerol-3-phosphate (Gro3P) and fatty acyl-CoA. We describe here a mammalian Gro3P phosphatase (G3PP), which was not known to exist in mammalian cells, that can directly hydrolyze Gro3P to glycerol. We identified that mammalian phosphoglycolate phosphatase, with an uncertain function, acts in fact as a G3PP. We found that G3PP, by controlling Gro3P levels, regulates glycolysis and glucose oxidation, cellular redox and ATP production, gluconeogenesis, glycerolipid synthesis, and fatty acid oxidation in pancreatic islet β-cells and hepatocytes, and that glucose stimulated insulin secretion and the response to metabolic stress, e.g., glucolipotoxicity, in β-cells. In vivo overexpression of G3PP in rat liver lowers body weight gain and hepatic glucose production from glycerol and elevates plasma HDL levels. G3PP is expressed at various levels in different tissues, and its expression varies according to the nutritional state in some tissues. As Gro3P lies at the crossroads of glucose, lipid, and energy metabolism, control of its availability by G3PP adds a key level of metabolic regulation in mammalian cells, and G3PP offers a potential target for type 2 diabetes and cardiometabolic disorders. PMID:26755581

  5. Altered chloroplast structure and function in a mutant of Arabidopsis deficient in plastid glycerol-3-phosphate acyltransferase activity

    SciTech Connect

    Kunst, L.; Somerville, C. ); Browse, J. )

    1989-07-01

    Mutants of Arabidopsis thaliana deficient in plastid glycerol-3-phosphate acyltransferase activity have altered chloroplast membrane lipid composition. This caused an increase in the number of regions of appressed membrane per chloroplast and a decrease in the average number of thylakoid membranes in the appressed regions. The net effect was a significant decrease in the ratio of appressed to nonappressed membranes. A comparison of 77 K fluorescence emission spectra of thylakoid membranes from the mutant and wild type indicated that the ultrastructural changes were associated with an altered distribution of excitation energy transfer from antenna chlorophyll to photosystem II and photosystem I in the mutant. The changes in leaf lipid composition did not significantly affect growth or development of the mutant under standard conditions. However, at temperatures above 28{degree}C the mutant grew slightly more rapidly than the wild type, and measurements of temperature-induced fluorescence yield enhancement suggested an increased thermal stability of the photosynthetic apparatus of the mutant. These effects are consistent with other evidence suggesting that membrane lipid composition is an important determinant of chloroplast structure but has relatively minor direct effects on the function of the membrane proteins associated with photosynthetic electron transport.

  6. Glycerol-3-phosphate acyltransferase 4 is essential for the normal development of reproductive organs and the embryo in Brassica napus.

    PubMed

    Chen, Xue; Chen, Guanqun; Truksa, Martin; Snyder, Crystal L; Shah, Saleh; Weselake, Randall J

    2014-08-01

    The enzyme sn-glycerol-3-phosphate acyltransferase 4 (GPAT4) is involved in the biosynthesis of plant lipid poly-esters. The present study further characterizes the enzymatic activities of three endoplasmic reticulum-bound GPAT4 isoforms of Brassica napus and examines their roles in the development of reproductive organs and the embryo. All three BnGPAT4 isoforms exhibited sn-2 acyltransferase and phosphatase activities with dicarboxylic acid-CoA as acyl donor. When non-substituted acyl-CoA was used as acyl donor, the rate of acylation was considerably lower and phosphatase activity was not manifested. RNA interference (RNAi)-mediated down-regulation of all GPAT4 homologues in B. napus under the control of the napin promoter caused abnormal development of several reproductive organs and reduced seed set. Microscopic examination and reciprocal crosses revealed that both pollen grains and developing embryo sacs of the B. napus gpat4 lines were affected. The gpat4 mature embryos showed decreased cutin content and altered monomer composition. The defective embryo development further affected the oil body morphology, oil content, and fatty acid composition in gpat4 seeds. These results suggest that GPAT4 has a critical role in the development of reproductive organs and the seed of B. napus. PMID:24821955

  7. Role of two different glyceraldehyde-3-phosphate dehydrogenases in controlling the reversible Embden-Meyerhof-Parnas pathway in Thermoproteus tenax: regulation on protein and transcript level.

    PubMed

    Brunner, N A; Siebers, B; Hensel, R

    2001-04-01

    The hyperthermophilic archaeum Thermoproteus tenax uses a variant of the Embden-Meyerhof-Parnas (EMP) pathway as the main route for carbohydrate metabolism. This variant is characterized by a reversible nonallosteric PPi-dependent phosphofructokinase and two glyceraldehyde-3-phosphate dehydrogenases differing in cosubstrate specificity, phosphate dependence, and allosteric behavior. Although the nonphosphorylating NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPN; E.C. 1.2.1.8) fulfills exclusively catabolic purposes, the phosphorylating NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase (NADP+-GAPDH; E.C. 1.2.1.13) exhibits anabolic features. The gene encoding the NADP+-GAPDH was cloned, sequenced, and expressed in Escherichia coli. The deduced protein sequence displayed 47%-53% sequence identity to archaeal phosphorylating GAPDHs. The kinetic parameters of the NADP+-GAPDH showed a clear preference for the reductive reaction with a 5-fold-higher specific activity in the reductive reaction as compared to the oxidative reaction and a 20-fold-lower Km for 1,3-bisphosphoglycerate as compared to glyceraldehyde-3-phosphate. Contrary to GAPN, the enzyme is not allosterically regulated. The coding gene overlaps by 1 bp with a preceding open reading frame coding for 3-phosphoglycerate kinase (PGK; E.C. 2.7.2.3). Northern analyses identified mono- and bicistronic messages of both genes in an equimolar ratio. Transcript levels and specific activity of NADP+-GAPDH and PGK were 3- to 4-fold higher under autotrophic conditions as compared to heterotrophic conditions, whereas transcript abundance and specific activity of GAPN remained constant in autotrophically and heterotrophically grown cells. The different regulation of the two counteracting glyceraldehyde-3-phosphate dehydrogenases is discussed with respect to the flux control of the T. tenax-specific EMP variant.

  8. LtpD is a novel Legionella pneumophila effector that binds phosphatidylinositol 3-phosphate and inositol monophosphatase IMPA1.

    PubMed

    Harding, Clare R; Mattheis, Corinna; Mousnier, Aurélie; Oates, Clare V; Hartland, Elizabeth L; Frankel, Gad; Schroeder, Gunnar N

    2013-11-01

    The Dot/Icm type IV secretion system (T4SS) of Legionella pneumophila is crucial for the pathogen to survive in protozoa and cause human disease. Although more than 275 effector proteins are delivered into the host cell by the T4SS, the function of the majority is unknown. Here we have characterized the Dot/Icm effector LtpD. During infection, LtpD localized to the cytoplasmic face of the membrane of the Legionella-containing vacuole (LCV). In A549 lung epithelial cells, ectopically expressed LtpD localized to large vesicular structures that contained markers of endosomal compartments. Systematic analysis of LtpD fragments identified an internal 17-kDa fragment, LtpD471-626, which was essential for targeting ectopically expressed LtpD to vesicular structures and for the association of translocated LtpD with the LCV. LtpD471-626 bound directly to phosphatidylinositol 3-phosphate [PtdIns(3)P] in vitro and colocalized with the PtdIns(3)P markers FYVE and SetA in cotransfected cells. LtpD was also found to bind the host cell enzyme inositol (myo)-1 (or 4)-monophosphatase 1, an important phosphatase involved in phosphoinositide production. Analysis of the role of LtpD in infection showed that LtpD is involved in bacterial replication in THP-1 macrophages, the larvae of Galleria mellonella, and mouse lungs. Together, these data suggest that LtpD is a novel phosphoinositide-binding L. pneumophila effector that has a role in intracellular bacterial replication.

  9. LtpD Is a Novel Legionella pneumophila Effector That Binds Phosphatidylinositol 3-Phosphate and Inositol Monophosphatase IMPA1

    PubMed Central

    Harding, Clare R.; Mattheis, Corinna; Mousnier, Aurélie; Oates, Clare V.; Hartland, Elizabeth L.; Schroeder, Gunnar N.

    2013-01-01

    The Dot/Icm type IV secretion system (T4SS) of Legionella pneumophila is crucial for the pathogen to survive in protozoa and cause human disease. Although more than 275 effector proteins are delivered into the host cell by the T4SS, the function of the majority is unknown. Here we have characterized the Dot/Icm effector LtpD. During infection, LtpD localized to the cytoplasmic face of the membrane of the Legionella-containing vacuole (LCV). In A549 lung epithelial cells, ectopically expressed LtpD localized to large vesicular structures that contained markers of endosomal compartments. Systematic analysis of LtpD fragments identified an internal 17-kDa fragment, LtpD471-626, which was essential for targeting ectopically expressed LtpD to vesicular structures and for the association of translocated LtpD with the LCV. LtpD471-626 bound directly to phosphatidylinositol 3-phosphate [PtdIns(3)P] in vitro and colocalized with the PtdIns(3)P markers FYVE and SetA in cotransfected cells. LtpD was also found to bind the host cell enzyme inositol (myo)-1 (or 4)-monophosphatase 1, an important phosphatase involved in phosphoinositide production. Analysis of the role of LtpD in infection showed that LtpD is involved in bacterial replication in THP-1 macrophages, the larvae of Galleria mellonella, and mouse lungs. Together, these data suggest that LtpD is a novel phosphoinositide-binding L. pneumophila effector that has a role in intracellular bacterial replication. PMID:24002062

  10. The Glycerol-3-Phosphate Acyltransferase GPAT6 from Tomato Plays a Central Role in Fruit Cutin Biosynthesis.

    PubMed

    Petit, Johann; Bres, Cécile; Mauxion, Jean-Philippe; Tai, Fabienne Wong Jun; Martin, Laetitia B B; Fich, Eric A; Joubès, Jérôme; Rose, Jocelyn K C; Domergue, Frédéric; Rothan, Christophe

    2016-06-01

    The thick cuticle covering and embedding the epidermal cells of tomato (Solanum lycopersicum) fruit acts not only as a protective barrier against pathogens and water loss but also influences quality traits such as brightness and postharvest shelf-life. In a recent study, we screened a mutant collection of the miniature tomato cultivar Micro-Tom and isolated several glossy fruit mutants in which the abundance of cutin, the polyester component of the cuticle, was strongly reduced. We employed a newly developed mapping-by-sequencing strategy to identify the causal mutation underlying the cutin deficiency in a mutant thereafter named gpat6-a (for glycerol-3-phosphate acyltransferase6). To this end, a backcross population (BC1F2) segregating for the glossy trait was phenotyped. Individuals displaying either a wild-type or a glossy fruit trait were then pooled into bulked populations and submitted to whole-genome sequencing prior to mutation frequency analysis. This revealed that the causal point mutation in the gpat6-a mutant introduces a charged amino acid adjacent to the active site of a GPAT6 enzyme. We further showed that this mutation completely abolished the GPAT activity of the recombinant protein. The gpat6-a mutant showed perturbed pollen formation but, unlike a gpat6 mutant of Arabidopsis (Arabidopsis thaliana), was not male sterile. The most striking phenotype was observed in the mutant fruit, where cuticle thickness, composition, and properties were altered. RNA sequencing analysis highlighted the main processes and pathways that were affected by the mutation at the transcriptional level, which included those associated with lipid, secondary metabolite, and cell wall biosynthesis. PMID:27208295

  11. Active site cysteine-null glyceraldehyde-3-phosphate dehydrogenase (GAPDH) rescues nitric oxide-induced cell death.

    PubMed

    Kubo, Takeya; Nakajima, Hidemitsu; Nakatsuji, Masatoshi; Itakura, Masanori; Kaneshige, Akihiro; Azuma, Yasu-Taka; Inui, Takashi; Takeuchi, Tadayoshi

    2016-02-29

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a homotetrameric enzyme involved in a key step of glycolysis, also has a role in mediating cell death under nitrosative stress. Our previous reports suggest that nitric oxide-induced intramolecular disulfide-bonding GAPDH aggregation, which occurs through oxidation of the active site cysteine (Cys-152), participates in a mechanism to account for nitric oxide-induced death signaling in some neurodegenerative/neuropsychiatric disorders. Here, we demonstrate a rescue strategy for nitric oxide-induced cell death accompanied by GAPDH aggregation in a mutant with a substitution of Cys-152 to alanine (C152A-GAPDH). Pre-incubation of purified wild-type GAPDH with C152A-GAPDH under exposure to nitric oxide inhibited wild-type GAPDH aggregation in a concentration-dependent manner in vitro. Several lines of structural analysis revealed that C152A-GAPDH extensively interfered with nitric oxide-induced GAPDH-amyloidogenesis. Overexpression of doxycycline-inducible C152A-GAPDH in SH-SY5Y neuroblastoma significantly rescued nitric oxide-induced death, concomitant with the decreased formation of GAPDH aggregates. Further, both co-immunoprecipitation assays and simulation models revealed a heterotetramer composed of one dimer each of wild-type GAPDH and C152A-GAPDH. These results suggest that the C152A-GAPDH mutant acts as a dominant-negative molecule against GAPDH aggregation via the formation of this GAPDH heterotetramer. This study may contribute to a new therapeutic approach utilizing C152A-GAPDH against brain damage in nitrosative stress-related disorders.

  12. Crystal Structure of CTP: Glycerol-3-Phosphate Cytidylyl Tranferase from Staphylococcus Aurues: Examination of Structural Basis for Kinetic Mechanism

    SciTech Connect

    Fong,D.; Yim, V.; D'elia, M.; Brown, E.; Berghuis, A.

    2006-01-01

    Integrity of the cell wall is essential for bacterial survival, and as a consequence components involved in its biosynthesis can potentially be exploited as targets for antibiotics. One such potential target is CTP:glycerol-3-phosphate cytidylyltransferase. This enzyme (TarD{sub Sa} in Staphylococcus aureus and TagD{sub Bs} in Bacillus subtilis) catalyzes the formation of CDP-glycerol, which is used for the assembly of linkages between peptidoglycan and teichoic acid polymer in Gram-positive bacteria. Intriguingly, despite the high sequence identity between TarD{sub Sa} and TagD{sub Bs} (69% identity), kinetic studies show that these two enzymes differ markedly in their kinetic mechanism and activity. To examine the basis for the disparate enzymological properties, we have determined the crystal structure of TarD{sub Sa} in the apo state to 3 Angstroms resolution, and performed equilibrium sedimentation analysis. Comparison of the structure with that of CTP- and CDP-glycerol-bound TagD{sub Bs} crystal structures reveals that the overall structure of TarD{sub Sa} is essentially the same as that of TagD{sub Bs}, except in the C-terminus, where it forms a helix in TagD{sub Bs} but is disordered in the apo TarDSa structure. In addition, TarD{sub Sa} can exist both as a tetramer and as a dimer, unlike TagD{sub Bs}, which is a dimer. These observations shed light on the structural basis for the differing kinetic characteristics between TarD{sub Sa} and TagD{sub Bs}.

  13. Glycerol-3-phosphate Acyltransferase Isoform-4 (GPAT4) Limits Oxidation of Exogenous Fatty Acids in Brown Adipocytes*

    PubMed Central

    Cooper, Daniel E.; Grevengoed, Trisha J.; Klett, Eric L.; Coleman, Rosalind A.

    2015-01-01

    Glycerol-3-phosphate acyltransferase-4 (GPAT4) null pups grew poorly during the suckling period and, as adults, were protected from high fat diet-induced obesity. To determine why Gpat4−/− mice failed to gain weight during these two periods of high fat feeding, we examined energy metabolism. Compared with controls, the metabolic rate of Gpat4−/− mice fed a 45% fat diet was 12% higher. Core body temperature was 1 ºC higher after high fat feeding. Food intake, fat absorption, and activity were similar in both genotypes. Impaired weight gain in Gpat4−/− mice did not result from increased heat loss, because both cold tolerance and response to a β3-adrenergic agonist were similar in both genotypes. Because GPAT4 comprises 65% of the total GPAT activity in brown adipose tissue (BAT), we characterized BAT function. A 45% fat diet increased the Gpat4−/− BAT expression of peroxisome proliferator-activated receptor α (PPAR) target genes, Cpt1α, Pgc1α, and Ucp1, and BAT mitochondria oxidized oleate and pyruvate at higher rates than controls, suggesting that fatty acid signaling and flux through the TCA cycle were enhanced. To assess the role of GPAT4 directly, neonatal BAT preadipocytes were differentiated to adipocytes. Compared with controls, Gpat4−/− brown adipocytes incorporated 33% less fatty acid into triacylglycerol and 46% more into the pathway of β-oxidation. The increased oxidation rate was due solely to an increase in the oxidation of exogenous fatty acids. These data suggest that in the absence of cold exposure, GPAT4 limits excessive fatty acid oxidation and the detrimental induction of a hypermetabolic state. PMID:25918168

  14. Transient Infantile Hypertriglyceridemia, Fatty Liver, and Hepatic Fibrosis Caused by Mutated GPD1, Encoding Glycerol-3-Phosphate Dehydrogenase 1

    PubMed Central

    Basel-Vanagaite, Lina; Zevit, Noam; Zahav, Adi Har; Guo, Liang; Parathath, Saj; Pasmanik-Chor, Metsada; McIntyre, Adam D.; Wang, Jian; Albin-Kaplanski, Adi; Hartman, Corina; Marom, Daphna; Zeharia, Avraham; Badir, Abir; Shoerman, Oded; Simon, Amos J.; Rechavi, Gideon; Shohat, Mordechai; Hegele, Robert A.; Fisher, Edward A.; Shamir, Raanan

    2012-01-01

    The molecular basis for primary hereditary hypertriglyceridemia has been identified in fewer than 5% of cases. Investigation of monogenic dyslipidemias has the potential to expose key metabolic pathways. We describe a hitherto unreported disease in ten individuals manifesting as moderate to severe transient childhood hypertriglyceridemia and fatty liver followed by hepatic fibrosis and the identification of the mutated gene responsible for this condition. We performed SNP array-based homozygosity mapping and found a single large continuous segment of homozygosity on chromosomal region 12q13.12. The candidate region contained 35 genes that are listed in Online Mendelian Inheritance in Man (OMIM) and 27 other genes. We performed candidate gene sequencing and screened both clinically affected individuals (children and adults with hypertriglyceridemia) and also a healthy cohort for mutations in GPD1, which encodes glycerol-3-phosphate dehydrogenase 1. Mutation analysis revealed a homozygous splicing mutation, c.361−1G>C, which resulted in an aberrantly spliced mRNA in the ten affected individuals. This mutation is predicted to result in a truncated protein lacking essential conserved residues, including a functional site responsible for initial substrate recognition. Functional consequences of the mutation were evaluated by measuring intracellular concentrations of cholesterol and triglyceride as well as triglyceride secretion in HepG2 (hepatocellular carcinoma) human cells lines overexpressing normal and mutant GPD1 cDNA. Overexpression of mutant GPD1 in HepG2 cells, in comparison to overexpression of wild-type GPD1, resulted in increased secretion of triglycerides (p = 0.01). This finding supports the pathogenicity of the identified mutation. PMID:22226083

  15. The Glycerol-3-Phosphate Acyltransferase GPAT6 from Tomato Plays a Central Role in Fruit Cutin Biosynthesis1[OPEN

    PubMed Central

    Petit, Johann; Mauxion, Jean-Philippe; Tai, Fabienne Wong Jun; Fich, Eric A.; Joubès, Jérôme; Rothan, Christophe

    2016-01-01

    The thick cuticle covering and embedding the epidermal cells of tomato (Solanum lycopersicum) fruit acts not only as a protective barrier against pathogens and water loss but also influences quality traits such as brightness and postharvest shelf-life. In a recent study, we screened a mutant collection of the miniature tomato cultivar Micro-Tom and isolated several glossy fruit mutants in which the abundance of cutin, the polyester component of the cuticle, was strongly reduced. We employed a newly developed mapping-by-sequencing strategy to identify the causal mutation underlying the cutin deficiency in a mutant thereafter named gpat6-a (for glycerol-3-phosphate acyltransferase6). To this end, a backcross population (BC1F2) segregating for the glossy trait was phenotyped. Individuals displaying either a wild-type or a glossy fruit trait were then pooled into bulked populations and submitted to whole-genome sequencing prior to mutation frequency analysis. This revealed that the causal point mutation in the gpat6-a mutant introduces a charged amino acid adjacent to the active site of a GPAT6 enzyme. We further showed that this mutation completely abolished the GPAT activity of the recombinant protein. The gpat6-a mutant showed perturbed pollen formation but, unlike a gpat6 mutant of Arabidopsis (Arabidopsis thaliana), was not male sterile. The most striking phenotype was observed in the mutant fruit, where cuticle thickness, composition, and properties were altered. RNA sequencing analysis highlighted the main processes and pathways that were affected by the mutation at the transcriptional level, which included those associated with lipid, secondary metabolite, and cell wall biosynthesis. PMID:27208295

  16. Pharmacological glycerol-3-phosphate acyltransferase inhibition decreases food intake and adiposity and increases insulin sensitivity in diet-induced obesity.

    PubMed

    Kuhajda, Francis P; Aja, Susan; Tu, Yajun; Han, Wan Fang; Medghalchi, Susan M; El Meskini, Rajaa; Landree, Leslie E; Peterson, Jonathan M; Daniels, Khadija; Wong, Kody; Wydysh, Edward A; Townsend, Craig A; Ronnett, Gabriele V

    2011-07-01

    Storage of excess calories as triglycerides is central to obesity and its associated disorders. Glycerol-3-phosphate acyltransferases (GPATs) catalyze the initial step in acylglyceride syntheses, including triglyceride synthesis. We utilized a novel small-molecule GPAT inhibitor, FSG67, to investigate metabolic consequences of systemic pharmacological GPAT inhibition in lean and diet-induced obese (DIO) mice. FSG67 administered intraperitoneally decreased body weight and energy intake, without producing conditioned taste aversion. Daily FSG67 (5 mg/kg, 15.3 μmol/kg) produced gradual 12% weight loss in DIO mice beyond that due to transient 9- to 10-day hypophagia (6% weight loss in pair-fed controls). Continued FSG67 maintained the weight loss despite return to baseline energy intake. Weight was lost specifically from fat mass. Indirect calorimetry showed partial protection by FSG67 against decreased rates of oxygen consumption seen with hypophagia. Despite low respiratory exchange ratio due to a high-fat diet, FSG67-treated mice showed further decreased respiratory exchange ratio, beyond pair-fed controls, indicating enhanced fat oxidation. Chronic FSG67 increased glucose tolerance and insulin sensitivity in DIO mice. Chronic FSG67 decreased gene expression for lipogenic enzymes in white adipose tissue and liver and decreased lipid accumulation in white adipose, brown adipose, and liver tissues without signs of damage. RT-PCR showed decreased gene expression for orexigenic hypothalamic neuropeptides AgRP or NPY after acute and chronic systemic FSG67. FSG67 given intracerebroventricularly (100 and 320 nmol icv) produced 24-h weight loss and feeding suppression, indicating contributions from direct central nervous system sites of action. Together, these data point to GPAT as a new potential therapeutic target for the management of obesity and its comorbidities. PMID:21490364

  17. Phylogenetically-based variation in the regulation of the Calvin cycle enzymes, phosphoribulokinase and glyceraldehyde-3-phosphate dehydrogenase, in algae.

    PubMed

    Maberly, Stephen C; Courcelle, Carine; Groben, Rene; Gontero, Brigitte

    2010-03-01

    Aquatic photosynthesis is responsible for about half of the global production and is undertaken by a huge phylogenetic diversity of algae that are poorly studied. The diversity of redox-regulation of phosphoribulokinase (PRK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was investigated in a wide range of algal groups under standard conditions. Redox-regulation of PRK was greatest in chlorophytes, low or absent in a red alga and most chromalveolates, and linked to the number of amino acids between two regulatory cysteine residues. GAPDH regulation was not strongly-related to the different forms of this enzyme and was less variable than for PRK. Addition of recombinant CP12, a protein that forms a complex with PRK and GAPDH, to crude extracts inhibited GAPDH and PRK inversely in the Plantae, but in most chromalveolates had little effect on GAPDH and inhibited or stimulated PRK depending on the species. Patterns of enzyme regulation were used to produce a phylogenetic tree in which cryptophytes and haptophytes, at the base of the chromalveolates, formed a distinct clade. A second clade comprised only chromalveolates. A third clade comprised a mixture of Plantae, an excavate and three chromalveolates: a marine diatom and two others (a xanthophyte and eustigmatophyte) that are distinguished by a low content of chlorophyll c and a lack of fucoxanthin. Regulation of both enzymes was greater in freshwater than in marine taxa, possibly because most freshwaters are more dynamic than oceans. This work highlights the importance of understanding enzyme regulation in diverse algae if their ecology and productivity is to be understood.

  18. Cell cycle regulation of the glyceraldehyde-3-phosphate dehydrogenase/uracil DNA glycosylase gene in normal human cells.

    PubMed Central

    Mansur, N R; Meyer-Siegler, K; Wurzer, J C; Sirover, M A

    1993-01-01

    The cell cycle regulation of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH)/uracil DNA glycosylase (UDG) gene was examined in normal human cells. Steady state RNA levels were monitored by Northern blot analysis using a plasmid (pChug 20.1) which contained the 1.3 kb GAPDH/UDG cDNA. The biosynthesis of the 37 kDa GAPDH/UDG protein was determined using an anti-human placental GAPDH/UDG monoclonal antibody to immunoprecipitate the radiolabeled protein. Increases in steady state GAPDH/UDG mRNA levels were cell cycle specific. A biphasic pattern was observed resulting in a 19-fold increase in the amount of GAPDH/UDG mRNA. The biosynthesis of the 37 kDa GAPDH/UDG protein displayed a similar biphasic regulation with a 7-fold increase. Pulse-chase experiments revealed a remarkably short half life of less than 1 hr. for the newly synthesized 37 kDa protein, comparable to that previously documented for a number of oncogenes. GAPDH/UDG mRNA levels were markedly reduced at 24 hr. when DNA synthesis was maximal. These results define the GAPDH/UDG gene as cell cycle regulated with a characteristic temporal sequence of expression in relation to DNA synthesis. The cell cycle synthesis of a labile 37 kDa monomer suggests a possible regulatory function for this multidimensional protein. Further, modulation of the GAPDH/UDG gene in the cell cycle may preclude its use as a reporter gene when the proliferative state of the cell is not kept constant. Images PMID:8451199

  19. The Glycerol-3-Phosphate Acyltransferase GPAT6 from Tomato Plays a Central Role in Fruit Cutin Biosynthesis.

    PubMed

    Petit, Johann; Bres, Cécile; Mauxion, Jean-Philippe; Tai, Fabienne Wong Jun; Martin, Laetitia B B; Fich, Eric A; Joubès, Jérôme; Rose, Jocelyn K C; Domergue, Frédéric; Rothan, Christophe

    2016-06-01

    The thick cuticle covering and embedding the epidermal cells of tomato (Solanum lycopersicum) fruit acts not only as a protective barrier against pathogens and water loss but also influences quality traits such as brightness and postharvest shelf-life. In a recent study, we screened a mutant collection of the miniature tomato cultivar Micro-Tom and isolated several glossy fruit mutants in which the abundance of cutin, the polyester component of the cuticle, was strongly reduced. We employed a newly developed mapping-by-sequencing strategy to identify the causal mutation underlying the cutin deficiency in a mutant thereafter named gpat6-a (for glycerol-3-phosphate acyltransferase6). To this end, a backcross population (BC1F2) segregating for the glossy trait was phenotyped. Individuals displaying either a wild-type or a glossy fruit trait were then pooled into bulked populations and submitted to whole-genome sequencing prior to mutation frequency analysis. This revealed that the causal point mutation in the gpat6-a mutant introduces a charged amino acid adjacent to the active site of a GPAT6 enzyme. We further showed that this mutation completely abolished the GPAT activity of the recombinant protein. The gpat6-a mutant showed perturbed pollen formation but, unlike a gpat6 mutant of Arabidopsis (Arabidopsis thaliana), was not male sterile. The most striking phenotype was observed in the mutant fruit, where cuticle thickness, composition, and properties were altered. RNA sequencing analysis highlighted the main processes and pathways that were affected by the mutation at the transcriptional level, which included those associated with lipid, secondary metabolite, and cell wall biosynthesis.

  20. A monoclonal antibody that inhibits translation in Sf21 cell lysates is specific for glyceraldehyde-3-phosphate dehydrogenase.

    PubMed

    Van Meter, Kipp E; Stuart, Melissa K

    2008-11-01

    Monoclonal antibody (Mab) 8B7 was shown in a previous study to inhibit protein translation in lysates of Sf21 cells. The antibody was thought to be specific for a 60-kDa form of elongation factor-1 alpha (EF-1alpha), primarily because the antigen immunoprecipitated by Mab 8B7 cross-reacted with Mab CBP-KK1, an antibody generated to EF-1alpha from Trypanosoma brucei. The purpose of the current study was to investigate further the antigenic specificity of Mab 8B7. The concentration of the 60-kDa antigen relative to total cellular protein proved insufficient for its definitive identification. However, subcellular fractionation of Sf21 cells yielded an additional protein of 37 kDa in the cytosolic and microsomal fractions that was reactive with Mab 8B7. The 37-kDa protein could be easily visualized by colloidal Coomassie Blue G-250 staining as a series of pI 6.9-8.4 spots on two-dimensional gels. Excision of an abundant immunoreactive spot enabled identification of the protein as glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) and protein database searching. Subsequent immunoblotting of purified rabbit skeletal muscle GAPDH with Mab 8B7 confirmed the antibody's specificity for GAPDH. Besides the pivotal role GAPDH plays in glycolysis, the enzyme has a number of noncanonical functions, including binding to mRNA and tRNA. The ability of Mab 8B7 to disrupt these lesser-known functions of GAPDH may account for the antibody's inhibitory effect on in vitro translation. PMID:18850593

  1. Hydron transfer catalyzed by triosephosphate isomerase. Products of isomerization of (R)-glyceraldehyde 3-phosphate in D2O.

    PubMed

    O'Donoghue, Annmarie C; Amyes, Tina L; Richard, John P

    2005-02-22

    The product distributions for the reactions of (R)-glyceraldehyde 3-phosphate (GAP) in D(2)O at pD 7.5-7.9 catalyzed by triosephosphate isomerase (TIM) from chicken and rabbit muscle were determined by (1)H NMR spectroscopy. Three products were observed from the reactions catalyzed by TIM: dihydroxyacetone phosphate (DHAP) from isomerization with intramolecular transfer of hydrogen (49% of the enzymatic products), [1(R)-(2)H]-DHAP from isomerization with incorporation of deuterium from D(2)O into C-1 of DHAP (31% of the enzymatic products), and [2(R)-(2)H]-GAP from incorporation of deuterium from D(2)O into C-2 of GAP (21% of the enzymatic products). The similar yields of [1(R)-(2)H]-DHAP and [2(R)-(2)H]-GAP from partitioning of the enzyme-bound enediol(ate) intermediate between hydron transfer to C-1 and C-2 is consistent with earlier results, which showed that there are similar barriers for conversion of this intermediate to the alpha-hydroxy ketone and aldehyde products (Knowles, J. R., and Albery, W. J. (1977) Acc. Chem. Res. 10, 105-111). However, the observation that the TIM-catalyzed isomerization of GAP in D(2)O proceeds with 49% intramolecular transfer of the (1)H label from substrate to product DHAP stands in sharp contrast with the

  2. Expression, purification, crystallization and preliminary X-ray analysis of an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase from Helicobacter pylori

    SciTech Connect

    Elliott, Paul R.; Mohammad, Shabaz; Melrose, Helen J.; Moody, Peter C. E.

    2008-08-01

    Glyceraldehyde-3-phosphate dehydrogenase B from H. pylori has been cloned, expressed, purified and crystallized in the presence of NAD. Crystals of GAPDHB diffracted to 2.8 Å resolution and belonged to space group P6{sub 5}22, with unit-cell parameters a = b = 166.1, c = 253.1 Å. Helicobacter pylori is a dangerous human pathogen that resides in the upper gastrointestinal tract. Little is known about its metabolism and with the onset of antibiotic resistance new treatments are required. In this study, the expression, purification, crystallization and preliminary X-ray diffraction of an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase from H. pylori are reported.

  3. Inhibition of glyceraldehyde 3-phosphate dehydrogenase by plasma and serum ultrafiltrates due in part to a low-molecular-weight, nonpeptide material.

    PubMed

    Schwartz, P L; Turfus, I M

    1975-05-01

    In an attempt to verify the existence in the blood of a diabetogenic peptide (somantin) derived from growth hormone, ultrafiltrates from plasma and serum from normal and diabetic subjects were prepared. The freeze-dried residues of these ultrafiltrates inhibited glyceraldehyde 3-phosphate dehydrogenase as somantin is claimed to do. However, the behavior of the inhibitory material on gel filtration on Sephadex G-10 indicated a molecular weight well below 700, rather than the considerably larger size claimed for somantin. The inhibitory material did not adsorb to Dowex 50W cation exchange resin at pH 2.5, while over 95 percent of ninhydrin-positive material was retained. Acid hydrolysis of the inhibitory material did not abolish its activity. Because of the presence of this low-molecular-weight, nonpeptide inhibitory material, inhibition of glyceraldehyde 3-phosphate dehydrogenase by a simple ultrafiltrate of plasma or serum is probably not a definitive measure of somantin. PMID:1128227

  4. Antibodies to inactive conformations of glyceraldehyde-3-phosphate dehydrogenase inactivate the apo- and holoforms of the enzyme.

    PubMed

    Arutiunova, E I; Pleten, A P; Nagradova, N K; Muronetz, V I

    2006-06-01

    Polyclonal antibodies produced after the immunization of a rabbit with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Bacillus stearothermophilus were used to isolate two types of antibodies interacting with different non-native forms of the antigen. Type I antibodies were purified using Sepharose-bound apo-GAPDH that was treated with glutaraldehyde to stabilize the enzyme in the tetrameric form. Type II antibodies were isolated using immobilized denatured monomers of the enzyme. It was shown that the type I antibodies bound to the native holo- and apoforms of the enzyme with the ratio of one antibody molecule per GAPDH tetramer. While interacting with the native holoenzyme, the type I antibodies induce a time-dependent decrease in its activity by 80-90%. In the case of the apoenzyme, the decrease in the activity constitutes only 25%, this indicating that only one subunit of the tetramer is inactivated. Differential scanning calorimetry experiments showed that the formation of the complex between both forms of the enzyme and the type I antibodies resulted in a shift of the maximum of the thermal capacity curves (T(m) value) to lower temperatures. The extremely stable holoenzyme was affected to the greatest extent, the shift of the T(m) value constituting approximately 20 degrees C. We assume that the formation of the complex between the holo- or apo-GAPDH and the type I antibody results in time-dependent conformational changes in the enzyme molecule. Thus, the antibodies induce the structural rearrangements yielding the conformation that is identical to the structure of the antigen used for the selection of the antibodies (i.e., inactive). The interaction of the antibodies with the apo-GAPDH results in the inactivation of the subunit directly bound to the antibody. Virtually complete inactivation of the holoenzyme by the antibodies is likely due to the transmission of the conformational changes through the intersubunit contacts. The type II antibodies, which

  5. The ferredoxin-dependent conversion of glyceraldehyde-3-phosphate in the hyperthermophilic archaeon Pyrococcus furiosus represents a novel site of glycolytic regulation.

    PubMed

    van der Oost, J; Schut, G; Kengen, S W; Hagen, W R; Thomm, M; de Vos, W M

    1998-10-23

    The fermentative conversion of glucose in anaerobic hyperthermophilic Archaea is a variant of the classical Embden-Meyerhof pathway found in Bacteria and Eukarya. A major difference of the archaeal glycolytic pathway concerns the conversion of glyceraldehyde-3-phosphate. In the hyperthermophilic archaeon Pyrococcus furiosus, this reaction is catalyzed by an unique enzyme, glyceraldehyde-3-phosphate ferredoxin oxidoreductase (GAPOR). Here, we report the isolation, characterization, and transcriptional analysis of the GAPOR-encoding gene. GAPOR is related to a family of ferredoxin-dependent tungsten enzymes in (hyper)thermophilic Archaea and, in addition, to a hypothetical protein in Escherichia coli. Electron paramagnetic resonance analysis of the purified P. furiosus GAPOR protein confirms the anticipated involvement of tungsten in catalysis. During glycolysis in P. furiosus, GAPOR gene expression is induced, whereas the activity of glyceraldehyde-3-phosphate dehydrogenase is repressed. It is discussed that this unprecedented unidirectional reaction couple in the pyrococcal glycolysis and gluconeogenesis gives rise to a novel site of glycolytic regulation that might be widespread among Archaea.

  6. Genetics Home Reference: GM3 synthase deficiency

    MedlinePlus

    ... GM3 synthase deficiency is characterized by recurrent seizures (epilepsy) and problems with brain development. Within the first ... diagnosis or management of GM3 synthase deficiency: American Epilepsy Society: Find a Doctor Clinic for Special Children ( ...

  7. Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases.

    PubMed

    Herbst, Dominik A; Jakob, Roman P; Zähringer, Franziska; Maier, Timm

    2016-03-24

    Polyketide synthases (PKSs) are biosynthetic factories that produce natural products with important biological and pharmacological activities. Their exceptional product diversity is encoded in a modular architecture. Modular PKSs (modPKSs) catalyse reactions colinear to the order of modules in an assembly line, whereas iterative PKSs (iPKSs) use a single module iteratively as exemplified by fungal iPKSs (fiPKSs). However, in some cases non-colinear iterative action is also observed for modPKSs modules and is controlled by the assembly line environment. PKSs feature a structural and functional separation into a condensing and a modifying region as observed for fatty acid synthases. Despite the outstanding relevance of PKSs, the detailed organization of PKSs with complete fully reducing modifying regions remains elusive. Here we report a hybrid crystal structure of Mycobacterium smegmatis mycocerosic acid synthase based on structures of its condensing and modifying regions. Mycocerosic acid synthase is a fully reducing iPKS, closely related to modPKSs, and the prototype of mycobacterial mycocerosic acid synthase-like PKSs. It is involved in the biosynthesis of C20-C28 branched-chain fatty acids, which are important virulence factors of mycobacteria. Our structural data reveal a dimeric linker-based organization of the modifying region and visualize dynamics and conformational coupling in PKSs. On the basis of comparative small-angle X-ray scattering, the observed modifying region architecture may be common also in modPKSs. The linker-based organization provides a rationale for the characteristic variability of PKS modules as a main contributor to product diversity. The comprehensive architectural model enables functional dissection and re-engineering of PKSs.

  8. Heterologous expression of glycerol 3-phosphate dehydrogenase gene [DhGPD1] from the osmotolerant yeast Debaryomyces hansenii in Saccharomyces cerevisiae.

    PubMed

    Thomé, Patricia E

    2005-08-01

    The role for the gene encoding glycerol 3-phosphate dehydrogenase (DhGPD1) from the osmotolerant yeast Debaryomyces hansenii, in glycerol production and halotolerance, was studied through its heterologous expression in a Saccharomyces cerevisiae strain deficient in glycerol synthesis (gpd1Delta). The expression of the DhGPD1 gene in the gpd1Delta background restored glycerol production and halotolerance to wild type levels, corroborating its role in the salt-induced production of glycerol. Although the gene was functional in S. cerevisiae, its heterologous expression was not efficient, suggesting that the regulatory mechanism may not be shared by these two yeasts.

  9. The specific role of plastidial glycolysis in photosynthetic and heterotrophic cells under scrutiny through the study of glyceraldehyde-3-phosphate dehydrogenase.

    PubMed

    Anoman, Armand Djoro; Flores-Tornero, María; Rosa-Telléz, Sara; Muñoz-Bertomeu, Jesús; Segura, Juan; Ros, Roc

    2016-01-01

    The cellular compartmentalization of metabolic processes is an important feature in plants where the same pathways could be simultaneously active in different compartments. Plant glycolysis occurs in the cytosol and plastids of green and non-green cells in which the requirements of energy and precursors may be completely different. Because of this, the relevance of plastidial glycolysis could be very different depending on the cell type. In the associated study, we investigated the function of plastidial glycolysis in photosynthetic and heterotrophic cells by specifically driving the expression of plastidial glyceraldehyde-3-phosphate dehydrogenase (GAPCp) in a glyceraldehyde-3-phosphate dehydrogenase double mutant background (gapcp1gapcp2). We showed that GAPCp is not functionally significant in photosynthetic cells, while it plays a crucial function in heterotrophic cells. We also showed that (i) GAPCp activity expression in root tips is necessary for primary root growth, (ii) its expression in heterotrophic cells of aerial parts and roots is necessary for plant growth and development, and (iii) GAPCp is an important metabolic connector of carbon and nitrogen metabolism through the phosphorylated pathway of serine biosynthesis (PPSB). We discuss here the role that this pathway could play in the control of plant growth and development. PMID:26953506

  10. Esters of 3,4-dihydroxybenzoic acid, highly effective inhibitors of the sn-glycerol-3-phosphate oxidase of Trypanosoma brucei brucei.

    PubMed

    Grady, R W; Bienen, E J; Clarkson, A B

    1986-10-01

    Alkyl esters of 3,4-dihydroxybenzoic acid are inhibitors of the sn-glycerol-3-phosphate oxidase system of Trypanosoma brucei brucei in vitro and have significant trypanocidal activity in vivo when combined with glycerol. While the parent acid has little inhibitory activity in vitro, the esters are highly active with activity increasing as the chain length of the esterifying alcohol increases. The n-dodecyl ester was more than 400 times as active as salicylhydroxamic acid and 15 times more active than the corresponding p-n-alkyloxybenzhydroxamic acid, one of the most active sn-glycerol-3-phosphate oxidase inhibitors previously reported. When combined with glycerol (to block an alternative pathway of glycolysis) and tested in vitro against intact parasites, this ester was 100 times more effective than salicylhydroxamic acid and 10 times more effective than p-n-dodecyloxybenzhydroxamic acid. It was also active against T. b. brucei in mice when combined with glycerol whereas the latter compound was not. Esters of 3,4,5-trihydroxybenzoic acid (gallic acid) were also highly active while those of 2,3-dihydroxybenzoic acid were much less inhibitory and those of 2,5-dihydroxybenzoic acid were inactive. A related compound, 2',4',5'-trihydroxybutyrophenone, was also active as predicted by its structure but was too toxic to be of interest as a drug candidate.

  11. Overexpression of ACC gene from oleaginous yeast Lipomyces starkeyi enhanced the lipid accumulation in Saccharomyces cerevisiae with increased levels of glycerol 3-phosphate substrates.

    PubMed

    Wang, Jiancai; Xu, Ronghua; Wang, Ruling; Haque, Mohammad Enamul; Liu, Aizhong

    2016-06-01

    The conversion of acetyl-CoA to malonyl-CoA by acetyl-CoA carboxylase (ACC) is the rate-limiting step in fatty acid biosynthesis. In this study, a gene coding for ACC was isolated and characterized from an oleaginous yeast, Lipomyces starkeyi. Real-time quantitative PCR (qPCR) analysis of L. starkeyi acetyl-CoA carboxylase gene (LsACC1) showed that the expression levels were upregulated with the fast accumulation of lipids. The LsACC1 was co-overexpressed with the glycerol 3-phosphate dehydrogenase gene (GPD1), which regulates lipids biosynthesis by supplying another substrates glycerol 3-phosphate for storage lipid assembly, in the non-oleaginous yeast Saccharomyces cerevisiae. Further, the S. cerevisiae acetyl-CoA carboxylase (ScACC1) was transferred with GPD1 and its function was analyzed in comparison with LsACC1. The results showed that overexpressed LsACC1 and GPD1 resulted in a 63% increase in S. cerevisiae. This study gives new data in understanding of the molecular mechanisms underlying the regulation of fatty acids and lipid biosynthesis in yeasts.

  12. Mapping of two ugp genes coding for the pho regulon-dependent sn-glycerol-3-phosphate transport system of Escherichia coli.

    PubMed Central

    Schweizer, H; Grussenmeyer, T; Boos, W

    1982-01-01

    Two genes, ugpA and ugpB, coding for a binding protein-dependent sn-glycerol-3-phosphate transport system, were mapped at 75.3 min on the Escherichia coli chromosome. A Tn10 insertion in ugpA resulted in loss of transport activity but still allowed the synthesis of the sn-glycerol-3-phosphate-binding protein. This Tn10 insertion was found to be linked by P1 transduction to pit, aroB, malA, asd, and livH with 2.5, 2.8, 25, 63.5, and 83% cotransduction frequency. An insertion of Mud (Ampr lac) in ugpB resulted in the loss of the binding protein. ugpB is closely linked to ugpA. It is either the structural gene for the binding protein or located proximal to it. The analysis of the crosses allowed the ordering of the markers in the clockwise direction as follows: aroB, malA, asd, ugpA, ugpB, livH, pit. Images PMID:6281238

  13. Molecular clone and expression of a NAD+-dependent glycerol-3-phosphate dehydrogenase isozyme gene from the halotolerant alga Dunaliella salina.

    PubMed

    Cai, Ma; He, Li-Hong; Yu, Tu-Yuan

    2013-01-01

    Glycerol is an important osmotically compatible solute in Dunaliella. Glycerol-3-phosphate dehydrogenase (G3PDH) is a key enzyme in the pathway of glycerol synthesis, which converts dihydroxyacetone phosphate (DHAP) to glycerol-3-phosphate. Generally, the glycerol-DHAP cycle pathway, which is driven by G3PDH, is considered as the rate-limiting enzyme to regulate the glycerol level under osmotic shocks. Considering the peculiarity in osmoregulation, the cDNA of a NAD(+)-dependent G3PDH was isolated from D. salina using RACE and RT-PCR approaches in this study. Results indicated that the length of the cDNA sequence of G3PDH was 2,100 bp encoding a 699 amino acid deduced polypeptide whose computational molecular weight was 76.6 kDa. Conserved domain analysis revealed that the G3PDH protein has two independent functional domains, SerB and G3PDH domains. It was predicted that the G3PDH was a nonsecretory protein and may be located in the chloroplast of D. salina. Phylogenetic analysis demonstrated that the D. salina G3PDH had a closer relationship with the G3PDHs from the Dunaliella genus than with those from other species. In addition, the cDNA was subsequently subcloned in the pET-32a(+) vector and was transformed into E. coli strain BL21 (DE3), a expression protein with 100 kDa was identified, which was consistent with the theoretical value.

  14. STRUCTURAL ENZYMOLOGY OF POLYKETIDE SYNTHASES

    PubMed Central

    Tsai, Shiou-Chuan (Sheryl); Ames, Brian Douglas

    2010-01-01

    This chapter describes structural and associated enzymological studies of polyketide synthases, including isolated single domains and multidomain fragments. The sequence–structure–function relationship of polyketide biosynthesis, compared with homologous fatty acid synthesis, is discussed in detail. Structural enzymology sheds light on sequence and structural motifs that are important for the precise timing, substrate recognition, enzyme catalysis, and protein–protein interactions leading to the extraordinary structural diversity of naturally occurring polyketides. PMID:19362634

  15. Acetohydroxyacid synthases: evolution, structure, and function.

    PubMed

    Liu, Yadi; Li, Yanyan; Wang, Xiaoyuan

    2016-10-01

    Acetohydroxyacid synthase, a thiamine diphosphate-dependent enzyme, can condense either two pyruvate molecules to form acetolactate for synthesizing L-valine and L-leucine or pyruvate with 2-ketobutyrate to form acetohydroxybutyrate for synthesizing L-isoleucine. Because the key reaction catalyzed by acetohydroxyacid synthase in the biosynthetic pathways of branched-chain amino acids exists in plants, fungi, archaea, and bacteria, but not in animals, acetohydroxyacid synthase becomes a potential target for developing novel herbicides and antimicrobial compounds. In this article, the evolution, structure, and catalytic mechanism of acetohydroxyacid synthase are summarized. PMID:27576495

  16. Producing biofuels using polyketide synthases

    SciTech Connect

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-04-16

    The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

  17. The 2',4'-dihydroxychalcone could be explored to develop new inhibitors against the glycerol-3-phosphate dehydrogenase from Leishmania species.

    PubMed

    Passalacqua, Thais G; Torres, Fábio A E; Nogueira, Camila T; de Almeida, Leticia; Del Cistia, Mayara L; dos Santos, Mariana B; Regasini, Luis O; Graminha, Márcia A S; Marchetto, Reinaldo; Zottis, Aderson

    2015-09-01

    The enzyme glycerol-3-phosphate dehydrogenase (G3PDH) from Leishmania species is considered as an attractive target to design new antileishmanial drugs and a previous in silico study reported on the importance of chalcones to achieve its inhibition. Here, we report the identification of a synthetic chalcone in our in vitro assays with promastigote cells from Leishmania amazonensis, its biological activity in animal models, and docking followed by molecular dynamics simulation to investigate the molecular interactions and structural patterns that are crucial to achieve the inhibition complex between this compound and G3PDH. A molecular fragment of this natural product derivative can provide new inhibitors with increased potency and selectivity. PMID:26169126

  18. Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways.

    PubMed

    Martínez, Irene; Zhu, Jiangfeng; Lin, Henry; Bennett, George N; San, Ka-Yiu

    2008-11-01

    Reactions requiring reducing equivalents, NAD(P)H, are of enormous importance for the synthesis of industrially valuable compounds such as carotenoids, polymers, antibiotics and chiral alcohols among others. The use of whole-cell biocatalysis can reduce process cost by acting as catalyst and cofactor regenerator at the same time; however, product yields might be limited by cofactor availability within the cell. Thus, our study focussed on the genetic manipulation of a whole-cell system by modifying metabolic pathways and enzymes to improve the overall production process. In the present work, we genetically engineered an Escherichia coli strain to increase NADPH availability to improve the productivity of products that require NADPH in its biosynthesis. The approach involved an alteration of the glycolysis step where glyceraldehyde-3-phosphate (GAP) is oxidized to 1,3 bisphophoglycerate (1,3-BPG). This reaction is catalyzed by NAD-dependent endogenous glyceraldehyde-3-phosphate dehydrogenase (GAPDH) encoded by the gapA gene. We constructed a recombinant E. coli strain by replacing the native NAD-dependent gapA gene with a NADP-dependent GAPDH from Clostridium acetobutylicum, encoded by the gene gapC. The beauty of this approach is that the recombinant E. coli strain produces 2 mol of NADPH, instead of NADH, per mole of glucose consumed. Metabolic flux analysis showed that the flux through the pentose phosphate (PP) pathway, one of the main pathways that produce NADPH, was reduced significantly in the recombinant strain when compared to that of the parent strain. The effectiveness of the NADPH enhancing system was tested using the production of lycopene and epsilon-caprolactone as model systems using two different background strains. The recombinant strains, with increased NADPH availability, consistently showed significant higher productivity than the parent strains.

  19. The investigation of substrate-induced changes in subunit interactions in glyceraldehyde 3-phosphate dehydrogenases by measurement of the kinetics and thermodynamics of subunit exchange.

    PubMed Central

    Osborne, H H; Hollaway, M R

    1975-01-01

    An investigation was made of changes in subunit interactions in glyceraldehyde 3-phosphate dehydrogenase on binding NAD+, NADH and other substrates by using the previously developed method of measurement of rates and extent of subunit exchange between the rabbit enzyme (R4), yeast enzyme (Y4) and rabbit-yeast hybrid (R2Y2) [Osborne & Hollaway (1974) Biochem. J. 143, 651-662]. The free energy of activation for the conversion of tetramer into dimer for the rabbit enzyme (R4 leads to 2R2) is increased by at least 12kJ/mol in the presence of NAD+. This increase is interpreted in terms of an NAD+-induced 'tightening' of the tetrameric structure probably involving increased interaction at the subunit interfaces across the QR plane of the molecule [see Buehner et al. (1974) J. Mol. Biol. 82, 563-585]. This tightening of the structure only occurs on binding the third NAD+ molecule to a given enzyme molecule. Conversely, binding of NADH causes a decrease in the free energy of activation for the R4 leads to 2R2 and Y4 leads to 2Y2 conversions by at least 10kJ/mol. This is interpreted as a NADH-induced 'loosening' of the structures arising from decreased interactions across the subunit interfaces involving the QR dissociation plane. In the presence of NADH the increase in the rate of subunit exchange is such that it is not possible to separate the hybrid from the other species if electrophoresis is carried out with NADH in the separation media. In the presence of a mixture of NADH and NAD+ the effect of NAD+ on subunit exchange is dominant. The results are discussed in terms of the known co-operativty between binding sites in glyceraldehyde 3-phosphate dehydrogenases. Images PLATE 1(a) PLATE 1(b) PLATE 2(a) PLATE 2(b) PLATE 2(c) PMID:174555

  20. Cloning and characterization of murine 1-acyl-sn-glycerol 3-phosphate acyltransferases and their regulation by PPARalpha in murine heart.

    PubMed

    Lu, Biao; Jiang, Yan J; Zhou, Yaling; Xu, Fred Y; Hatch, Grant M; Choy, Patrick C

    2005-01-15

    AGPAT (1-acyl-sn-glycerol 3-phosphate acyltransferase) exists in at least five isoforms in humans, termed as AGPAT1, AGPAT2, AGPAT3, AGPAT4 and AGPAT5. Although they catalyse the same biochemical reaction, their relative function, tissue expression and regulation are poorly understood. Linkage studies in humans have revealed that AGPAT2 contributes to glycerolipid synthesis and plays an important role in regulating lipid metabolism. We report the molecular cloning, tissue distribution, and enzyme characterization of mAGPATs (murine AGPATs) and regulation of cardiac mAGPATs by PPARalpha (peroxisome-proliferator-activated receptor alpha). mAGPATs demonstrated differential tissue expression profiles: mAGPAT1 and mAGPAT3 were ubiquitously expressed in most tissues, whereas mAGPAT2, mAGPAT4 and mAGPAT5 were expressed in a tissue-specific manner. mAGPAT2 expressed in in vitro transcription and translation reactions and in transfected COS-1 cells exhibited specificity for 1-acyl-sn-glycerol 3-phosphate. When amino acid sequences of five mAGPATs were compared, three highly conserved motifs were identified, including one novel motif/pattern KX2LX6GX12R. Cardiac mAGPAT activities were 25% lower (P<0.05) in PPARalpha null mice compared with wild-type. In addition, cardiac mAGPAT activities were 50% lower (P<0.05) in PPARalpha null mice fed clofibrate compared with clofibrate fed wild-type animals. This modulation of AGPAT activity was accompanied by significant enhancement/reduction of the mRNA levels of mAGPAT3/mAGPAT2 respectively. Finally, mRNA expression of cardiac mAGPAT3 appeared to be regulated by PPARalpha activation. We conclude that cardiac mAGPAT activity may be regulated by both the composition of mAGPAT isoforms and the levels of each isoform. PMID:15367102

  1. Site-Directed Mutagenesis from Arg195 to His of a Microalgal Putatively Chloroplastidial Glycerol-3-Phosphate Acyltransferase Causes an Increase in Phospholipid Levels in Yeast

    PubMed Central

    Ouyang, Long-Ling; Li, Hui; Yan, Xiao-Jun; Xu, Ji-Lin; Zhou, Zhi-Gang

    2016-01-01

    To analyze the contribution of glycerol-3-phosphate acyltransferase (GPAT) to the first acylation of glycerol-3-phosphate (G-3-P), the present study focused on a functional analysis of the GPAT gene from Lobosphaera incisa (designated as LiGPAT). A full-length cDNA of LiGPAT consisting of a 1,305-bp ORF, a 1,652-bp 5′-UTR, and a 354-bp 3′-UTR, was cloned. The ORF encoded a 434-amino acid peptide, of which 63 residues at the N-terminus defined a chloroplast transit peptide. Multiple sequence alignment and phylogeny analysis of GPAT homologs provided the convincible bioinformatics evidence that LiGPAT was localized to chloroplasts. Considering the conservation of His among the G-3-P binding sites from chloroplastidial GPATs and the substitution of His by Arg at position 195 in the LiGPAT mature protein (designated mLiGPAT), we established the heterologous expression of either mLiGPAT or its mutant (Arg195His) (sdmLiGPAT) in the GPAT-deficient yeast mutant gat1Δ. Lipid profile analyses of these transgenic yeasts not only validated the acylation function of LiGPAT but also indicated that the site-directed mutagenesis from Arg195 to His led to an increase in the phospholipid level in yeast. Semi-quantitative analysis of mLiGPAT and sdmLiGPAT, together with the structural superimposition of their G-3-P binding sites, indicated that the increased enzymatic activity was caused by the enlarged accessible surface of the phosphate group binding pocket when Arg195 was mutated to His. Thus, the potential of genetic manipulation of GPAT to increase the glycerolipid level in L. incisa and other microalgae would be of great interest. PMID:27014309

  2. Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways.

    PubMed

    Martínez, Irene; Zhu, Jiangfeng; Lin, Henry; Bennett, George N; San, Ka-Yiu

    2008-11-01

    Reactions requiring reducing equivalents, NAD(P)H, are of enormous importance for the synthesis of industrially valuable compounds such as carotenoids, polymers, antibiotics and chiral alcohols among others. The use of whole-cell biocatalysis can reduce process cost by acting as catalyst and cofactor regenerator at the same time; however, product yields might be limited by cofactor availability within the cell. Thus, our study focussed on the genetic manipulation of a whole-cell system by modifying metabolic pathways and enzymes to improve the overall production process. In the present work, we genetically engineered an Escherichia coli strain to increase NADPH availability to improve the productivity of products that require NADPH in its biosynthesis. The approach involved an alteration of the glycolysis step where glyceraldehyde-3-phosphate (GAP) is oxidized to 1,3 bisphophoglycerate (1,3-BPG). This reaction is catalyzed by NAD-dependent endogenous glyceraldehyde-3-phosphate dehydrogenase (GAPDH) encoded by the gapA gene. We constructed a recombinant E. coli strain by replacing the native NAD-dependent gapA gene with a NADP-dependent GAPDH from Clostridium acetobutylicum, encoded by the gene gapC. The beauty of this approach is that the recombinant E. coli strain produces 2 mol of NADPH, instead of NADH, per mole of glucose consumed. Metabolic flux analysis showed that the flux through the pentose phosphate (PP) pathway, one of the main pathways that produce NADPH, was reduced significantly in the recombinant strain when compared to that of the parent strain. The effectiveness of the NADPH enhancing system was tested using the production of lycopene and epsilon-caprolactone as model systems using two different background strains. The recombinant strains, with increased NADPH availability, consistently showed significant higher productivity than the parent strains. PMID:18852061

  3. Inactivation of glyceraldehyde-3-phosphate dehydrogenase by a reactive metabolite of acetaminophen and mass spectral characterization of an arylated active site peptide.

    PubMed

    Dietze, E C; Schäfer, A; Omichinski, J G; Nelson, S D

    1997-10-01

    Acetaminophen (4'-hydroxyacetanilide, APAP) is a widely used analgesic and antipyretic drug that can cause hepatic necrosis under some circumstances via cytochrome P450-mediated oxidation to a reactive metabolite, N-acetyl-p-benzoquinone imine (NAPQI). Although the mechanism of hepatocellular injury caused by APAP is not fully understood, it is known that NAPQI forms covalent adducts with several hepatocellular proteins. Reported here is the identification of one of these proteins as glyceraldehyde-3-phosphate dehydrogenase [GAPDH, D-glyceraldehyde-3-phosphate: NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12]. Two hours after the administration of hepatotoxic doses of [14C]APAP to mice, at a time prior to overt cell damage, hepatocellular GAPDH activity was significantly decreased concurrent with the formation of a 14C-labeled GAPDH adduct. A nonhepatotoxic regioisomer of APAP, 3'-hydroxyacetanilide (AMAP), was found to decrease GAPDH activity to a lesser extent than APAP, and radiolabel from [14C]AMAP bound to a lesser extent to GAPDH at a time when its overall binding to hepatocellular proteins was almost equivalent to that of APAP. In order to determine the nature of the covalent adduct between GAPDH and APAP, its major reactive and toxic metabolite, NAPQI, was incubated with purified porcine muscle GAPDH. Microsequencing analysis and fast atom bombardment mass spectrometry (FAB-MS) with collision-induced dissociation (CID) were used to characterize one of the adducts as APAP bound to the cysteinyl sulfhydryl group of Cys-149 in the active site peptide of GAPDH. PMID:9348431

  4. The class II phosphatidylinositol 3-phosphate kinase PIK3C2A promotes Shigella flexneri dissemination through formation of vacuole-like protrusions.

    PubMed

    Dragoi, Ana-Maria; Agaisse, Hervé

    2015-04-01

    Intracellular pathogens such as Shigella flexneri and Listeria monocytogenes achieve dissemination in the intestinal epithelium by displaying actin-based motility in the cytosol of infected cells. As they reach the cell periphery, motile bacteria form plasma membrane protrusions that resolve into vacuoles in adjacent cells, through a poorly understood mechanism. Here, we report on the role of the class II phosphatidylinositol 3-phosphate kinase PIK3C2A in S. flexneri dissemination. Time-lapse microscopy revealed that PIK3C2A was required for the resolution of protrusions into vacuoles through the formation of an intermediate membrane-bound compartment that we refer to as a vacuole-like protrusion (VLP). Genetic rescue of PIK3C2A depletion with RNA interference (RNAi)-resistant cDNA constructs demonstrated that VLP formation required the activity of PIK3C2A in primary infected cells. PIK3C2A expression was required for production of phosphatidylinositol 3-phosphate [PtdIns(3)P] at the plasma membrane surrounding protrusions. PtdIns(3)P production was not observed in the protrusions formed by L. monocytogenes, whose dissemination did not rely on PIK3C2A. PIK3C2A-mediated PtdIns(3)P production in S. flexneri protrusions was regulated by host cell tyrosine kinase signaling and relied on the integrity of the S. flexneri type 3 secretion system (T3SS). We suggest a model of S. flexneri dissemination in which the formation of VLPs is mediated by the PIK3C2A-dependent production of the signaling lipid PtdIns(3)P in the protrusion membrane, which relies on the T3SS-dependent activation of tyrosine kinase signaling in protrusions.

  5. Molecular evolution and sequence divergence of plant chalcone synthase and chalcone synthase-Like genes.

    PubMed

    Han, Yingying; Zhao, Wenwen; Wang, Zhicui; Zhu, Jingying; Liu, Qisong

    2014-06-01

    Plant chalcone synthase (CHS) and CHS-Like (CHSL) proteins are polyketide synthases. In this study, we evaluated the molecular evolution of this gene family using representative types of CHSL genes, including stilbene synthase (STS), 2-pyrone synthase (2-PS), bibenzyl synthase (BBS), acridone synthase (ACS), biphenyl synthase (BIS), benzalacetone synthase, coumaroyl triacetic acid synthase (CTAS), and benzophenone synthase (BPS), along with their CHS homologs from the same species of both angiosperms and gymnosperms. A cDNA-based phylogeny indicated that CHSLs had diverse evolutionary patterns. STS, ACS, and 2-PS clustered with CHSs from the same species (late diverged pattern), while CTAS, BBS, BPS, and BIS were distant from their CHS homologs (early diverged pattern). The amino-acid phylogeny suggested that CHS and CHSL proteins formed clades according to enzyme function. The CHSs and CHSLs from Polygonaceae and Arachis had unique evolutionary histories. Synonymous mutation rates were lower in late diverged CHSLs than in early diverged ones, indicating that gene duplications occurred more recently in late diverged CHSLs than in early diverged ones. Relative rate tests proved that late diverged CHSLs had unequal rates to CHSs from the same species when using fatty acid synthase, which evolved from the common ancestor with the CHS superfamily, as the outgroup, while the early diverged lineages had equal rates. This indicated that late diverged CHSLs experienced more frequent mutation than early diverged CHSLs after gene duplication, allowing obtaining new functions in relatively short period of time.

  6. Trichodiene synthase. Substrate specificity and inhibition.

    PubMed

    Cane, D E; Yang, G; Xue, Q; Shim, J H

    1995-02-28

    The substrate specificity of the sesquiterpene synthase trichodiene synthase was examined by determining the Vmax and Km parameters for the natural substrate, trans,trans-farnesyl diphosphate (1), its stereoisomer, cis,trans-farnesyl diphosphate, and the tertiary allylic isomer, (3R)-nerolidyl diphosphate (3), using both the native fungal and recombinant enzymes. A series of farnesyl diphosphate analogs, 15, 16, 20, 7, 8, and 9, was also tested as inhibitors of trichodiene synthase. 10-Fluorofarnesyl diphosphate (15) was the most effective competitive inhibitor, with a K1 of 16 nM compared to the Km for 1 of 87 nM, while the ether analog of farnesyl diphosphate, 8, an extremely potent inhibitor of squalene synthase, showed only modest inhibition of trichodiene synthase, with a K1/Km of 70. PMID:7873526

  7. Crystal structure of riboflavin synthase

    SciTech Connect

    Liao, D.-I.; Wawrzak, Z.; Calabrese, J.C.; Viitanen, P.V.; Jordan, D.B.

    2010-03-05

    Riboflavin synthase catalyzes the dismutation of two molecules of 6,7-dimethyl-8-(1'-D-ribityl)-lumazine to yield riboflavin and 4-ribitylamino-5-amino-2,6-dihydroxypyrimidine. The homotrimer of 23 kDa subunits has no cofactor requirements for catalysis. The enzyme is nonexistent in humans and is an attractive target for antimicrobial agents of organisms whose pathogenicity depends on their ability to biosynthesize riboflavin. The first three-dimensional structure of the enzyme was determined at 2.0 {angstrom} resolution using the multiwavelength anomalous diffraction (MAD) method on the Escherichia coli protein containing selenomethionine residues. The homotrimer consists of an asymmetric assembly of monomers, each of which comprises two similar {beta} barrels and a C-terminal {alpha} helix. The similar {beta} barrels within the monomer confirm a prediction of pseudo two-fold symmetry that is inferred from the sequence similarity between the two halves of the protein. The {beta} barrels closely resemble folds found in phthalate dioxygenase reductase and other flavoproteins. The three active sites of the trimer are proposed to lie between pairs of monomers in which residues conserved among species reside, including two Asp-His-Ser triads and dyads of Cys-Ser and His-Thr. The proposed active sites are located where FMN (an analog of riboflavin) is modeled from an overlay of the {beta} barrels of phthalate dioxygenase reductase and riboflavin synthase. In the trimer, one active site is formed, and the other two active sites are wide open and exposed to solvent. The nature of the trimer configuration suggests that only one active site can be formed and be catalytically competent at a time.

  8. Comparison of the regulation, metabolic functions, and roles in virulence of the glyceraldehyde-3-phosphate dehydrogenase homologues gapA and gapB in Staphylococcus aureus.

    PubMed

    Purves, Joanne; Cockayne, Alan; Moody, Peter C E; Morrissey, Julie A

    2010-12-01

    The Gram-positive bacterium Staphylococcus aureus contains two glyceraldehyde-3-phosphate dehydrogenase (GAPDH) homologues known as GapA and GapB. GapA has been characterized as a functional GAPDH protein, but currently there is no biological evidence for the role of GapB in metabolism in S. aureus. In this study we show through a number of complementary methods that S. aureus GapA is essential for glycolysis while GapB is essential in gluconeogenesis. These proteins are reciprocally regulated in response to glucose concentrations, and both are influenced by the glycolysis regulator protein GapR, which is the first demonstration of the role of this regulator in S. aureus and the first indication that GapR homologues control genes other than those within the glycolytic operon. Furthermore, we show that both GapA and GapB are important in the pathogenesis of S. aureus in a Galleria mellonella model of infection, showing for the first time in any bacteria that both glycolysis and gluconeogenesis have important roles in virulence.

  9. Three homologous genes encoding sn-glycerol-3-phosphate acyltransferase 4 exhibit different expression patterns and functional divergence in Brassica napus.

    PubMed

    Chen, Xue; Truksa, Martin; Snyder, Crystal L; El-Mezawy, Aliaa; Shah, Saleh; Weselake, Randall J

    2011-02-01

    Brassica napus is an allotetraploid (AACC) formed from the fusion of two diploid progenitors, Brassica rapa (AA) and Brassica oleracea (CC). Polyploidy and genome-wide rearrangement during the evolution process have resulted in genes that are present as multiple homologs in the B. napus genome. In this study, three B. napus homologous genes encoding endoplasmic reticulum-bound sn-glycerol-3-phosphate acyltransferase 4 (GPAT4) were identified and characterized. Although the three GPAT4 homologs share a high sequence similarity, they exhibit different expression patterns and altered epigenetic features. Heterologous expression in yeast further revealed that the three BnGPAT4 homologs encoded functional GPAT enzymes but with different levels of polypeptide accumulation. Complementation of the Arabidopsis (Arabidopsis thaliana) gpat4 gpat8 double mutant line with individual BnGPAT4 homologs suggested their physiological roles in cuticle formation. Analysis of gpat4 RNA interference lines of B. napus revealed that the BnGPAT4 deficiency resulted in reduced cutin content and altered stomatal structures in leaves. Our results revealed that the BnGPAT4 homologs have evolved into functionally divergent forms and play important roles in cutin synthesis and stomatal development.

  10. Escherichia coli mutants defective in membrane phospholipid synthesis: binding and metabolism of 1-oleoylglycerol 3-phosphate by a plsB deep rough mutant.

    PubMed Central

    McIntyre, T M; Bell, R M

    1978-01-01

    Mutants of Escherichia coli containing a defective sn-glycerol 3-phosphate acyltransferase are conditionally defective in the synthesis of acylglycerol phosphate (acylglycerol-P). Incubation of a deep rough derivative of one of these plsB strains with 1-[3H]oleoylglycerol-32P resulted in the binding of up to 70 nmol of oleoylglycerol-P per 100 nmol of cellular phospholipid. The binding was dependent on time, oleoylglycerol-P concentration, and the quantity of cells employed. The rate and extent of oleoylglycerol-P binding was affected by the deep rough mutation. The altered phospholipid composition due to oleoylglycerol-P binding was without consequence on cell growth and viability, but caused the appearance of intracellular multilamellar structures. Use of the double-labeled oleoylglycerol P demonstrated that the entire molecule was bound to the cell. Intact [3H]-oleoylglycerol-32P was converted to phosphatidylethanolamine and phosphotidyl-glycerol at a rate about 40% of that of de novo phospholipid synthesis. These data demonstrate the transmembrane movement of oleoylglycerol-P to the inner surface of the cytoplasmic membrane and suggest that it may become possible to supplement plsB strains of E. coli with acylglycerol-P's. Images PMID:353031

  11. Apicoplast-Localized Lysophosphatidic Acid Precursor Assembly Is Required for Bulk Phospholipid Synthesis in Toxoplasma gondii and Relies on an Algal/Plant-Like Glycerol 3-Phosphate Acyltransferase.

    PubMed

    Amiar, Souad; MacRae, James I; Callahan, Damien L; Dubois, David; van Dooren, Giel G; Shears, Melanie J; Cesbron-Delauw, Marie-France; Maréchal, Eric; McConville, Malcolm J; McFadden, Geoffrey I; Yamaryo-Botté, Yoshiki; Botté, Cyrille Y

    2016-08-01

    Most apicomplexan parasites possess a non-photosynthetic plastid (the apicoplast), which harbors enzymes for a number of metabolic pathways, including a prokaryotic type II fatty acid synthesis (FASII) pathway. In Toxoplasma gondii, the causative agent of toxoplasmosis, the FASII pathway is essential for parasite growth and infectivity. However, little is known about the fate of fatty acids synthesized by FASII. In this study, we have investigated the function of a plant-like glycerol 3-phosphate acyltransferase (TgATS1) that localizes to the T. gondii apicoplast. Knock-down of TgATS1 resulted in significantly reduced incorporation of FASII-synthesized fatty acids into phosphatidic acid and downstream phospholipids and a severe defect in intracellular parasite replication and survival. Lipidomic analysis demonstrated that lipid precursors are made in, and exported from, the apicoplast for de novo biosynthesis of bulk phospholipids. This study reveals that the apicoplast-located FASII and ATS1, which are primarily used to generate plastid galactolipids in plants and algae, instead generate bulk phospholipids for membrane biogenesis in T. gondii. PMID:27490259

  12. Aromatic hydrocarbons upregulate glyceraldehyde-3-phosphate dehydrogenase and induce changes in actin cytoskeleton. Role of the aryl hydrocarbon receptor (AhR).

    PubMed

    Reyes-Hernández, O D; Mejía-García, A; Sánchez-Ocampo, E M; Castro-Muñozledo, F; Hernández-Muñoz, R; Elizondo, G

    2009-12-21

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional enzyme involved in several cellular functions including glycolysis, membrane transport, microtubule assembly, DNA replication and repair, nuclear RNA export, apoptosis, and the detection of nitric oxide stress. Therefore, modifications in the regulatory ability and function of GAPDH may alter cellular homeostasis. We report here that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and beta-naphthoflavone, which are well-known ligands for the aryl hydrocarbon receptor (AhR), increase GAPDH mRNA levels in vivo and in vitro, respectively. These compounds fail to induce GAPDH transcription in an AhR-null mouse model, suggesting that the increase in GAPDH level is dependent upon AhR activation. To analyse the consequences of AhR ligands on GAPDH function, mice were treated with TCDD and the level of liver activity of GAPDH was determined. The results showed that TCDD treatment increased GAPDH activity. On the other hand, treatment of Hepa-1 cells with beta-naphthoflavone leads to an increase in microfilament density when compared to untreated cultures. Collectively, these results suggest that AhR ligands, such as polycyclic hydrocarbons, can modify GAPDH expression and, therefore, have the potential to alter the multiple functions of this enzyme.

  13. Cis-acting elements essential for light regulation of the nuclear gene encoding the A subunit of chloroplast glyceraldehyde 3-phosphate dehydrogenase in Arabidopsis thaliana.

    PubMed Central

    Park, S C; Kwon, H B; Shih, M C

    1996-01-01

    We report the characterization of cis-acting elements involved in light regulation of the nuclear gene (GapA) that encodes the A subunit of glyceraldehyde 3-phosphate dehydrogenase in Arabidopsis thaliana. Our previous deletion analyses indicate that the -277 to -195 upstream region of GapA is essential for light induction of the beta-glucuronidase reporter gene in transgenic tobacco (Nicotiana tabacum) plants. This region contains three direct repeats with the consensus sequence 5'-CAAATGAA(A/G)A-3' (Gap boxes). Our results show that 2-bp substitutions of the last four nucleotides (AA or GA) of the Gap boxes by CC abolish light induction of the beta-glucuronidase reporter gene in vivo and affect binding of the Gap box binding factor in vitro. We have also identified an additional cis-acting element, AE (Activation Element) box, that is involved in regulation of GapA. A combination of a Gap box trimer and an AE box dimer can confer light responsiveness of the cauliflower mosaic virus 35S promoter containing the -92 to +6 upstream sequence, whereas oligomers of Gap boxes or AE boxes alone cannot confer light responsiveness on the same promoter. These results suggest that Gap boxes and AE boxes function together as the light-responsive element of GapA. PMID:8972600

  14. Two glycerol 3-phosphate dehydrogenase isogenes from Candida versatilis SN-18 play an important role in glycerol biosynthesis under osmotic stress.

    PubMed

    Mizushima, Daiki; Iwata, Hisashi; Ishimaki, Yuki; Ogihara, Jun; Kato, Jun; Kasumi, Takafumi

    2016-05-01

    Two isogenes of glycerol 3-phosphate dehydrogenase (GPD) from Candida versatilis SN-18 were cloned and sequenced. These intronless genes (Cagpd1 and Cagpd2) were both predicted to encode a 378 amino acid polypeptide, and the deduced amino acid sequences mutually showed 76% identity. Interestingly, Cagpd1 and Cagpd2 were located tandemly in a locus of genomic DNA within a 262 bp interval. To our knowledge, this represents a novel instance of isogenic genes relating to glucose metabolism. The stress response element (STRE) was found respectively at -93 to -89 bp upstream of the 5'end of Cagpd1 and -707 to -703 bp upstream of Cagpd2, indicating that these genes are involved in osmotic stress response. In heterologous expression using a gpd1Δgpd2Δ double deletion mutant of Saccharomyces cerevisiae, Cagpd1 and Cagpd2 transformants complemented the function of GPD, with Cagpd2 being much more effective than Cagpd1 in promoting growth and glycerol synthesis. Phylogenetic analysis of the amino acid sequences suggested that Cagpd1p and Cagpd2p are NADP(+)-dependent GPDs (EC 1.1.1.94). However, crude enzyme extract from Cagpd1 and Cagpd2 transformants showed GPD activity with only NAD(+) as cofactor. Hence, both Cagpd1p and Cagpd2p are likely NAD(+)-dependent GPDs (EC 1.1.1.8), similar to GPDs from S. cerevisiae and Candida magnoliae. PMID:26906228

  15. Plastidial Glycolytic Glyceraldehyde-3-Phosphate Dehydrogenase Is an Important Determinant in the Carbon and Nitrogen Metabolism of Heterotrophic Cells in Arabidopsis.

    PubMed

    Anoman, Armand D; Muñoz-Bertomeu, Jesús; Rosa-Téllez, Sara; Flores-Tornero, María; Serrano, Ramón; Bueso, Eduardo; Fernie, Alisdair R; Segura, Juan; Ros, Roc

    2015-11-01

    This study functionally characterizes the Arabidopsis (Arabidopsis thaliana) plastidial glycolytic isoforms of glyceraldehyde-3-phosphate dehydrogenase (GAPCp) in photosynthetic and heterotrophic cells. We expressed the enzyme in gapcp double mutants (gapcp1gapcp2) under the control of photosynthetic (Rubisco small subunit RBCS2B [RBCS]) or heterotrophic (phosphate transporter PHT1.2 [PHT]) cell-specific promoters. Expression of GAPCp1 under the control of RBCS in gapcp1gapcp2 had no significant effect on the metabolite profile or growth in the aerial part (AP). GAPCp1 expression under the control of the PHT promoter clearly affected Arabidopsis development by increasing the number of lateral roots and having a major effect on AP growth and metabolite profile. Our results indicate that GAPCp1 is not functionally important in photosynthetic cells but plays a fundamental role in roots and in heterotrophic cells of the AP. Specifically, GAPCp activity may be required in root meristems and the root cap for normal primary root growth. Transcriptomic and metabolomic analyses indicate that the lack of GAPCp activity affects nitrogen and carbon metabolism as well as mineral nutrition and that glycerate and glutamine are the main metabolites responding to GAPCp activity. Thus, GAPCp could be an important metabolic connector of glycolysis with other pathways, such as the phosphorylated pathway of serine biosynthesis, the ammonium assimilation pathway, or the metabolism of γ-aminobutyrate, which in turn affect plant development. PMID:26134167

  16. Cloning and heterologous overexpression of three gap genes encoding different glyceraldehyde-3-phosphate dehydrogenases from the plant pathogenic bacterium Pseudomonas syringae pv. tomato strain DC3000.

    PubMed

    Elkhalfi, Bouchra; Araya-Garay, José Miguel; Rodríguez-Castro, Jorge; Rey-Méndez, Manuel; Soukri, Abdelaziz; Serrano Delgado, Aurelio

    2013-06-01

    The gammaproteobacterium Pseudomonas syringae pv. tomato DC3000 is the causal agent of bacterial speck, a common disease of tomato. The mode of infection of this pathogen is not well understood, but according to molecular biological, genomic and proteomic data it produces a number of proteins that may promote infection and draw nutrients from the plant. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a major enzyme of carbon metabolism that was reported to be a surface antigen and virulence factor in other pathogenic microorganisms, but its possible role in the infection process of P. syringae has so far not been studied. Whole-genome sequence analyses revealed the occurrence in this phytopathogenic bacterium of three paralogous gap genes encoding distinct GAPDHs, namely two class I enzymes having different molecular mass subunits and one class III bifunctional D-erythrose-4-phosphate dehydrogenase/GAPDH enzyme. By using genome bioinformatics data, as well as alignments of both DNA and deduced protein sequences, the three gap genes of P. syringae were one-step cloned with a His-Tag in pET21a vector using a PCR-based strategy, and its expression optimized in Escherichia coli BL21 to achieve high yield of the heterologous proteins. In accordance with their distinct molecular phylogenies, these bacterial gap genes encode functional GAPDHs of diverse molecular masses and nicotinamide-coenzyme specificities, suggesting specific metabolic and/or cellular roles. PMID:23507306

  17. A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase.

    PubMed

    Bommareddy, Rajesh Reddy; Chen, Zhen; Rappert, Sugima; Zeng, An-Ping

    2014-09-01

    Engineering the cofactor availability is a common strategy of metabolic engineering to improve the production of many industrially important compounds. In this work, a de novo NADPH generation pathway is proposed by altering the coenzyme specificity of a native NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) to NADP, which consequently has the potential to produce additional NADPH in the glycolytic pathway. Specifically, the coenzyme specificity of GAPDH of Corynebacterium glutamicum is systematically manipulated by rational protein design and the effect of the manipulation for cellular metabolism and lysine production is evaluated. By a combinatorial modification of four key residues within the coenzyme binding sites, different GAPDH mutants with varied coenzyme specificity were constructed. While increasing the catalytic efficiency of GAPDH towards NADP enhanced lysine production in all of the tested mutants, the most significant improvement of lysine production (~60%) was achieved with the mutant showing similar preference towards both NAD and NADP. Metabolic flux analysis with (13)C isotope studies confirmed that there was no significant change of flux towards the pentose phosphate pathway and the increased lysine yield was mainly attributed to the NADPH generated by the mutated GAPDH. The present study highlights the importance of protein engineering as a key strategy in de novo pathway design and overproduction of desired products.

  18. Phosphatidylinositol 3-Phosphate 5-Kinase, FAB1/PIKfyve Kinase Mediates Endosome Maturation to Establish Endosome-Cortical Microtubule Interaction in Arabidopsis1[OPEN

    PubMed Central

    Hirano, Tomoko; Munnik, Teun; Sato, Masa H.

    2015-01-01

    Phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2] is an important lipid in membrane trafficking in animal and yeast systems; however, its role is still largely obscure in plants. Here, we demonstrate that the phosphatidylinositol 3-phosphate 5-kinase, formation of aploid and binucleate cells1 (FAB1)/FYVE finger-containing phosphoinositide kinase (PIKfyve), and its product, PtdIns(3,5)P2, are essential for the maturation process of endosomes to mediate cortical microtubule association of endosomes, thereby controlling proper PIN-FORMED protein trafficking in young cortical and stele cells of root. We found that FAB1 predominantly localizes on the Sorting Nexin1 (SNX1)-residing late endosomes, and a loss of FAB1 function causes the release of late endosomal proteins, Ara7, and SNX1 from the endosome membrane, indicating that FAB1, or its product PtdIns(3,5)P2, mediates the maturation process of the late endosomes. We also found that loss of FAB1 function causes the release of endosomes from cortical microtubules and disturbs proper cortical microtubule organization. PMID:26353760

  19. Apicoplast-Localized Lysophosphatidic Acid Precursor Assembly Is Required for Bulk Phospholipid Synthesis in Toxoplasma gondii and Relies on an Algal/Plant-Like Glycerol 3-Phosphate Acyltransferase

    PubMed Central

    Callahan, Damien L.; Dubois, David; van Dooren, Giel G.; Shears, Melanie J.; Cesbron-Delauw, Marie-France; Maréchal, Eric; McConville, Malcolm J.; McFadden, Geoffrey I.; Yamaryo-Botté, Yoshiki; Botté, Cyrille Y.

    2016-01-01

    Most apicomplexan parasites possess a non-photosynthetic plastid (the apicoplast), which harbors enzymes for a number of metabolic pathways, including a prokaryotic type II fatty acid synthesis (FASII) pathway. In Toxoplasma gondii, the causative agent of toxoplasmosis, the FASII pathway is essential for parasite growth and infectivity. However, little is known about the fate of fatty acids synthesized by FASII. In this study, we have investigated the function of a plant-like glycerol 3-phosphate acyltransferase (TgATS1) that localizes to the T. gondii apicoplast. Knock-down of TgATS1 resulted in significantly reduced incorporation of FASII-synthesized fatty acids into phosphatidic acid and downstream phospholipids and a severe defect in intracellular parasite replication and survival. Lipidomic analysis demonstrated that lipid precursors are made in, and exported from, the apicoplast for de novo biosynthesis of bulk phospholipids. This study reveals that the apicoplast-located FASII and ATS1, which are primarily used to generate plastid galactolipids in plants and algae, instead generate bulk phospholipids for membrane biogenesis in T. gondii. PMID:27490259

  20. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of glyceraldehyde-3-phosphate dehydrogenase from Streptococcus agalactiae NEM316

    PubMed Central

    Nagarajan, Revathi; Ponnuraj, Karthe

    2014-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an essential enzyme involved in glycolysis. Despite lacking the secretory signal sequence, this cytosolic enzyme has been found localized at the surface of several bacteria and fungi. As a surface protein, GAPDH exhibits various adhesive functions, thereby facilitating colonization and invasion of host tissues. Streptococcus agalactiae, also known as group B streptococcus (GBS), binds onto the host using its surface adhesins and causes sepsis and pneumonia in neonates. GAPDH is one of the surface adhesins of GBS binding to human plasminogen and is a virulent factor associated with host colonization. Although the surface-associated GAPDH has been shown to bind to a variety of host extracellular matrix (ECM) molecules in various bacteria, the molecular mechanism underlying their interaction is not fully understood. To investigate this, structural studies on GAPDH of S. agalactiae were initiated. The gapC gene of S. agalactiae NEM316 encoding GAPDH protein was cloned into pET-28a vector, overexpressed in Escherichia coli BL21(DE3) cells and purified to homogeneity. The purified protein was crystallized using the hanging-drop vapour-diffusion method. The GAPDH crystals obtained in two different crystallization conditions diffracted to 2.8 and 2.6 Å resolution, belonging to two different space groups P21 and P212121, respectively. The structure was solved by molecular replacement and structure refinement is now in progress. PMID:25005093

  1. Targeted gene disruption of glycerol-3-phosphate dehydrogenase in Colletotrichum gloeosporioides reveals evidence that glycerol is a significant transferred nutrient from host plant to fungal pathogen.

    PubMed

    Wei, Yangdou; Shen, Wenyun; Dauk, Melanie; Wang, Feng; Selvaraj, Gopalan; Zou, Jitao

    2004-01-01

    Unidirectional transfer of nutrients from plant host to pathogen represents a most revealing aspect of the parasitic lifestyle of plant pathogens. Whereas much effort has been focused on sugars and amino acids, the identification of other significant metabolites is equally important for comprehensive characterization of metabolic interactions between plants and biotrophic fungal pathogens. Employing a strategy of targeted gene disruption, we generated a mutant strain (gpdhDelta) defective in glycerol-3-phosphate dehydrogenase in a hemibiotrophic plant pathogen, Colletotrichum gloeosporioides f.sp. malvae. The gpdhDelta strain had severe defects in carbon utilization as it could use neither glucose nor amino acids for sustained growth. Although the mutant mycelia were able to grow on potato dextrose agar medium, they displayed arrhythmicity in growth and failure to conidiate. The metabolic defect of gpdhDelta could be entirely ameliorated by glycerol in chemically defined minimal medium. Furthermore, glycerol was the one and only metabolite that could restore rhythmic growth and conidiation of gpdhDelta. Despite the profound defects in carbon source utilization, in planta the gpdhDelta strain exhibited normal pathogenicity, proceeded normally in its life cycle, and produced abundant conidia. Analysis of plant tissues at the peripheral zone of fungal infection sites revealed a time-dependent reduction in glycerol content. This study provides strong evidence for a role of glycerol as a significant transferred metabolite from plant to fungal pathogen.

  2. Possible role of NAD-dependent glyceraldehyde-3-phosphate dehydrogenase in growth promotion of Arabidopsis seedlings by low levels of selenium.

    PubMed

    Takeda, Toru; Fukui, Yuki

    2015-01-01

    We explored functional significance of selenium (Se) in Arabidopsis physiology. Se at very low concentrations in cultivation exerted a considerable positive effect on Arabidopsis growth with no indication of oxidative stress, whereas Se at higher concentrations significantly suppressed the growth and brought serious oxidative damage. Respiration, ATP levels, and the activity of NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (NAD-GAPDH) were enhanced in Arabidopsis grown in the medium containing 1.0 μM Se. Addition of an inhibitor of glutathione (GSH) synthesis to the medium abolished both of the Se-dependent growth promotion and NAD-GAPDH up-regulation. Assay of NAD-GAPDH purified from seedlings subjected to Se interventions raised the possibility of a direct connection between the activity of this enzyme and Arabidopsis growth. These results reveal that trace amounts of Se accelerate Arabidopsis growth, and suggest that this pro-growth effect of Se arises enhancing mitochondrial performance in a GSH-dependent manner, in which NAD-GAPDH may serve as a key regulator.

  3. Arabidopsis AtGPAT1, a Member of the Membrane-Bound Glycerol-3-Phosphate Acyltransferase Gene Family, Is Essential for Tapetum Differentiation and Male Fertility

    PubMed Central

    Zheng, Zhifu; Xia, Qun; Dauk, Melanie; Shen, Wenyun; Selvaraj, Gopalan; Zou, Jitao

    2003-01-01

    Membrane-bound glycerol-3-phosphate acyltransferase (GPAT; EC 2.3.1.15) mediates the initial step of glycerolipid biosynthesis in the extraplastidic compartments of plant cells. Here, we report the molecular characterization of a novel GPAT gene family from Arabidopsis, designated AtGPAT. The corresponding polypeptides possess transmembrane domains and GPAT activity when expressed heterologously in a yeast lipid mutant. The functional significance of one isoform, AtGPAT1, is the focus of the present study. Disruption of the AtGPAT1 gene causes a massive pollen development arrest, and subsequent introduction of the gene into the mutant plant rescues the phenotype, illustrating a pivotal role for AtGPAT1 in pollen development. Microscopic examinations revealed that the gene lesion results in a perturbed degeneration of the tapetum, which is associated with altered endoplasmic reticulum profiles and reduced secretion. In addition to the sporophytic effect, AtGPAT1 also exerts a gametophytic effect on pollen performance, as the competitive ability of a pollen grain to pollinate is dependent on the presence of an AtGPAT1 gene. Deficiency in AtGPAT1 correlates with several fatty acid composition changes in flower tissues and seeds. Unexpectedly, however, a loss of AtGPAT1 causes no significant change in seed oil content. PMID:12897259

  4. The tigA gene is a transcriptional fusion of glycolytic genes encoding triose-phosphate isomerase and glyceraldehyde-3-phosphate dehydrogenase in oomycota.

    PubMed Central

    Unkles, S E; Logsdon, J M; Robison, K; Kinghorn, J R; Duncan, J M

    1997-01-01

    Genes encoding triose-phosphate isomerase (TPI) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) are fused and form a single transcriptional unit (tigA) in Phytophthora species, members of the order Pythiales in the phylum Oomycota. This is the first demonstration of glycolytic gene fusion in eukaryotes and the first case of a TPI-GAPDH fusion in any organism. The tigA gene from Phytophthora infestans has a typical Oomycota transcriptional start point consensus sequence and, in common with most Phytophthora genes, has no introns. Furthermore, Southern and PCR analyses suggest that the same organization exists in other closely related genera, such as Pythium, from the same order (Oomycota), as well as more distantly related genera, Saprolegnia and Achlya, in the order Saprolegniales. Evidence is provided that in P. infestans, there is at least one other discrete copy of a GAPDH-encoding gene but not of a TPI-encoding gene. Finally, a phylogenetic analysis of TPI does not place Phytophthora within the assemblage of crown eukaryotes and suggests TPI may not be particularly useful for resolving relationships among major eukaryotic groups. PMID:9352934

  5. Development and Implementation of a High Throughput Screen for the Human Sperm-Specific Isoform of Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDHS).

    PubMed

    Sexton, Jonathan Z; Danshina, Polina V; Lamson, David R; Hughes, Mark; House, Alan J; Yeh, Li-An; O'Brien, Deborah A; Williams, Kevin P

    2011-01-01

    Glycolytic isozymes that are restricted to the male germline are potential targets for the development of reversible, non-hormonal male contraceptives. GAPDHS, the sperm-specific isoform of glyceraldehyde-3-phosphate dehydrogenase, is an essential enzyme for glycolysis making it an attractive target for rational drug design. Toward this goal, we have optimized and validated a high-throughput spectrophotometric assay for GAPDHS in 384-well format. The assay was stable over time and tolerant to DMSO. Whole plate validation experiments yielded Z' values >0.8 indicating a robust assay for HTS. Two compounds were identified and confirmed from a test screen of the Prestwick collection. This assay was used to screen a diverse chemical library and identified fourteen small molecules that modulated the activity of recombinant purified GAPDHS with confirmed IC50 values ranging from 1.8 to 42 µM. These compounds may provide useful scaffolds as molecular tools to probe the role of GAPDHS in sperm motility and long term to develop potent and selective GAPDHS inhibitors leading to novel contraceptive agents. PMID:21760877

  6. The complete sequence of a full length cDNA for human liver glyceraldehyde-3-phosphate dehydrogenase: evidence for multiple mRNA species.

    PubMed Central

    Arcari, P; Martinelli, R; Salvatore, F

    1984-01-01

    A recombinant M13 clone (O42) containing a 65 b.p. cDNA fragment from human fetal liver mRNA coding for glyceraldehyde-3-phosphate dehydrogenase has been identified and it has been used to isolate from a full-length human adult liver cDNA library a recombinant clone, pG1, which has been subcloned in M13 phage and completely sequenced with the chain terminator method. Besides the coding region of 1008 b.p., the cDNA sequence includes 60 nucleotides at the 5'-end and 204 nucleotides at the 3'-end up to the polyA tail. Hybridization of pG1 to human liver total RNA shows only one band about the size of pG1 cDNA. A much stronger hybridization signal was observed using RNA derived from human hepatocarcinoma and kidney carcinoma cell lines. Sequence homology between clone 042 and the homologous region of clone pG1 is 86%. On the other hand, homology among the translated sequences and the known human muscle protein sequence ranges between 77 and 90%; these data demonstrate the existence of more than one gene coding for G3PD. Southern blot of human DNA, digested with several restriction enzymes, also indicate that several homologous sequences are present in the human genome. Images PMID:6096821

  7. ATP-driven transhydrogenation and ionization of water in a reconstituted glyceraldehyde-3-phosphate dehydrogenases (phosphorylating and non-phosphorylating) model system.

    PubMed

    Serrano, A; Mateos, M I; Losada, M

    1993-12-30

    In an unbuffered medium, an intense acidification occurs during the oxidation of D-glyceraldehyde-3-phosphate (G3P) to 3-phospho-D-glycerate (PGA) catalyzed by NADP(+)-specific non-phosphorylating G3P dehydrogenase, an enzyme that photosynthetic eukaryotic cells contain exclusively in their cytosol. The true enzymatic character of this proton release is the consequence of the following redox/acid-base reaction: G3P + NADP+ + H2O-->PGA + NADPH + 2H+. When the well-established ATP-dependent reduction of PGA to G3P, catalyzed by PGA kinase and NAD(+)-specific phosphorylating G3P dehydrogenase, was coupled through the intermediate G3P to the above reverse oxidation reaction, a transient alkalinization of the medium followed by its acidification accompanied transhydrogenation from NADH to NADP+. The significance of the observed endergonic transhydrogenation and ionization of water at the expense of the chemical energy of ATP in this reconstituted enzyme system as well as its relevance for the export of reducing power (H-) across the chloroplast membrane and the maintenance of the pH gradient that exists between the stroma and the cytosol are discussed. PMID:8280152

  8. Evolutionary engineering of a glycerol-3-phosphate dehydrogenase-negative, acetate-reducing Saccharomyces cerevisiae strain enables anaerobic growth at high glucose concentrations

    PubMed Central

    Guadalupe-Medina, Víctor; Metz, Benjamin; Oud, Bart; van Der Graaf, Charlotte M; Mans, Robert; Pronk, Jack T; van Maris, Antonius J A

    2014-01-01

    Glycerol production by Saccharomyces cerevisiae, which is required for redox-cofactor balancing in anaerobic cultures, causes yield reduction in industrial bioethanol production. Recently, glycerol formation in anaerobic S. cerevisiae cultures was eliminated by expressing Escherichia coli (acetylating) acetaldehyde dehydrogenase (encoded by mhpF) and simultaneously deleting the GPD1 and GPD2 genes encoding glycerol-3-phosphate dehydrogenase, thus coupling NADH reoxidation to reduction of acetate to ethanol. Gpd– strains are, however, sensitive to high sugar concentrations, which complicates industrial implementation of this metabolic engineering concept. In this study, laboratory evolution was used to improve osmotolerance of a Gpd– mhpF-expressing S. cerevisiae strain. Serial batch cultivation at increasing osmotic pressure enabled isolation of an evolved strain that grew anaerobically at 1 M glucose, at a specific growth rate of 0.12 h−1. The evolved strain produced glycerol at low concentrations (0.64 ± 0.33 g l−1). However, these glycerol concentrations were below 10% of those observed with a Gpd+ reference strain. Consequently, the ethanol yield on sugar increased from 79% of the theoretical maximum in the reference strain to 92% for the evolved strains. Genetic analysis indicated that osmotolerance under aerobic conditions required a single dominant chromosomal mutation, and one further mutation in the plasmid-borne mhpF gene for anaerobic growth. PMID:24004455

  9. A H2 very high frequency capacitively coupled plasma inactivates glyceraldehyde 3-phosphate dehydrogenase(GapDH) more efficiently than UV photons and heat combined

    NASA Astrophysics Data System (ADS)

    Stapelmann, Katharina; Lackmann, Jan-Wilm; Buerger, Ines; Bandow, Julia Elisabeth; Awakowicz, Peter

    2014-02-01

    Plasma sterilization is a promising alternative to commonly used sterilization techniques, because the conventional methods suffer from certain limitations, e.g. incompatibility with heat-sensitive materials, or use of toxic agents. However, plasma-based sterilization mechanisms are not fully understood yet. A low-pressure very high frequency capacitively coupled plasma is used to investigate the impact of a hydrogen discharge on the protein glyceraldehyde 3-phosphate dehydrogenase (GapDH). GapDH is an enzyme of glycolysis. As a part of the central metabolism, it occurs in nearly all organisms from bacteria to humans. The plasma is investigated with absolutely calibrated optical emission spectroscopy in order to identify and to quantify plasma components that can contribute to enzyme inactivation. The contribution of UV photons and heat to GapDH inactivation is investigated separately, and neither seems to be a major factor. In order to investigate the mechanisms of GapDH inactivation by the hydrogen discharge, samples are investigated for etching, induction of amino acid backbone breaks, and chemical modifications. While neither etching nor strand breaks are observed, chemical modifications occur at different amino acid residues of GapDH. Deamidations of asparagines as well as methionine and cysteine oxidations are detected after VHF-CCP treatment. In particular, oxidation of the cysteine in the active centre is known to lead to GapDH inactivation.

  10. Adaptation of the glycerol-3-phosphate dehydrogenase Gpd1 to high salinities in the extremely halotolerant Hortaea werneckii and halophilic Wallemia ichthyophaga.

    PubMed

    Lenassi, Metka; Zajc, Janja; Gostinčar, Cene; Gorjan, Alenka; Gunde-Cimerman, Nina; Plemenitaš, Ana

    2011-10-01

    We report the first identification and characterisation of the glycerol-3-phosphate dehydrogenase (GPD) genes from extremely halophilic fungi. The black ascomycetous yeast Hortaea werneckii and the non-melanised basidiomycetous fungus Wallemia ichthyophaga inhabit similar hypersaline environments, yet they have two different strategies of haloadaptation through Gpd1-regulated glycerol synthesis. The extremely halotolerant H. werneckii codes for two salt-inducible GPD1 genes that show similar gene transcription regulation and have 98% amino-acid sequence identity between paralogues; however, they have distinct effects when expressed heterologously in Saccharomyces cerevisiae gpd mutants. Only the HwGpd1B isoform complements the function of Gpd in the gpd1 mutant, whereas none of the Gpd1 isoforms can rescue the salt sensitivity of the gpd1gpd2 double mutant. The obligate halophile W. ichthyophaga codes for only one GPD1 orthologue, the transcription of which is less affected by salt when compared to the H. werneckii homologues. Heterologous expression of WiGPD1 in S. cerevisiae recovers halotolerance of the gpd1 and gpd1gpd2 mutant strains, which is probably due to the overall high amino-acid similarity of the Gpd1 protein in W. ichthyophaga and S. cerevisiae. Phylogenetic analysis of amino-acid sequences reveals that the evolutionary origins of all of these three novel enzymes correspond to the phylogeny of the fungal species from which the genes were identified.

  11. The lumazine synthase/riboflavin synthase complex: shapes and functions of a highly variable enzyme system.

    PubMed

    Ladenstein, Rudolf; Fischer, Markus; Bacher, Adelbert

    2013-06-01

    The xylene ring of riboflavin (vitamin B2 ) is assembled from two molecules of 3,4-dihydroxy-2-butanone 4-phosphate by a mechanistically complex process that is jointly catalyzed by lumazine synthase and riboflavin synthase. In Bacillaceae, these enzymes form a structurally unique complex comprising an icosahedral shell of 60 lumazine synthase subunits and a core of three riboflavin synthase subunits, whereas many other bacteria have empty lumazine synthase capsids, fungi, Archaea and some eubacteria have pentameric lumazine synthases, and the riboflavin synthases of Archaea are paralogs of lumazine synthase. The structures of the molecular ensembles have been studied in considerable detail by X-ray crystallography, X-ray small-angle scattering and electron microscopy. However, certain mechanistic aspects remain unknown. Surprisingly, the quaternary structure of the icosahedral β subunit capsids undergoes drastic changes, resulting in formation of large, quasi-spherical capsids; this process is modulated by sequence mutations. The occurrence of large shells consisting of 180 or more lumazine synthase subunits has recently generated interest for protein engineering topics, particularly the construction of encapsulation systems.

  12. Unique animal prenyltransferase with monoterpene synthase activity

    NASA Astrophysics Data System (ADS)

    Gilg, Anna B.; Tittiger, Claus; Blomquist, Gary J.

    2009-06-01

    Monoterpenes are structurally diverse natural compounds that play an essential role in the chemical ecology of a wide array of organisms. A key enzyme in monoterpene biosynthesis is geranyl diphosphate synthase (GPPS). GPPS is an isoprenyl diphosphate synthase that catalyzes a single electrophilic condensation reaction between dimethylallyl diphosphate (C5) and isopentenyl diphosphate (C5) to produce geranyl diphosphate (GDP; C10). GDP is the universal precursor to all monoterpenes. Subsequently, monoterpene synthases are responsible for the transformation of GDP to a variety of acyclic, monocyclic, and bicyclic monoterpene products. In pheromone-producing male Ips pini bark beetles (Coleoptera: Scolytidae), the acyclic monoterpene myrcene is required for the production of the major aggregation pheromone component, ipsdienol. Here, we report monoterpene synthase activity associated with GPPS of I. pini. Enzyme assays were performed on recombinant GPPS to determine the presence of monoterpene synthase activity, and the reaction products were analyzed by coupled gas chromatography-mass spectrometry. The functionally expressed recombinant enzyme produced both GDP and myrcene, making GPPS of I. pini a bifunctional enzyme. This unique insect isoprenyl diphosphate synthase possesses the functional plasticity that is characteristic of terpene biosynthetic enzymes of plants, contributing toward the current understanding of product specificity of the isoprenoid pathway.

  13. Nitric oxide synthases in pregnant rat uterus.

    PubMed

    Farina, M; Ribeiro, M L; Franchi, A

    2001-03-01

    The conversion of [14C]arginine into [14C]citrulline as an indicator of nitric oxide synthesis was studied in uteri isolated from rats on different days of gestation, after labour and during dioestrus. Nitric oxide synthesis was present in uterine tissues isolated at each stage of gestation and also in tissues collected during dioestrus and after labour. Expression of neuronal nitric oxide synthase was not detectable at any of the stages studied. Endothelial nitric oxide synthase was present at all the stages studied, but there was a significant increase on day 13 of gestation and a decrease thereafter, with the lowest expression recorded on the day after labour. Inducible nitric oxide synthase expression in rat uteri increased substantially during pregnancy, with the highest expression on day 13 of gestation; expression decreased at term and after labour. The changes in expression of inducible nitric oxide synthase were coincident with the changes in nitric oxide synthase activity in uteri treated with aminoguanidine. Thus, these findings indicate that an increase in expression of inducible nitric oxide synthase in the uterus may be important for maintenance of uterine quiescence during pregnancy and its decrease near the time of labour could have an effect on the start of uterine contractility. PMID:11226066

  14. MicroRNA-24 can control triacylglycerol synthesis in goat mammary epithelial cells by targeting the fatty acid synthase gene.

    PubMed

    Wang, H; Luo, J; Chen, Z; Cao, W T; Xu, H F; Gou, D M; Zhu, J J

    2015-12-01

    In nonruminants it has been demonstrated that microRNA-24 (miR-24) is involved in preadipocyte differentiation, hepatic lipid, and plasma triacylglycerol synthesis. However, its role in ruminant mammary gland remains unclear. In this study we measured miR-24 expression in goat mammary gland tissue at 4 different stages of lactation and observed that it had highest expression at peak lactation when compared with the dry period. Overexpression or downregulation of miR-24 in goat mammary epithelial cells (GMEC) strongly affected fatty acid profiles; in particular, miR-24 enhanced unsaturated fatty acid concentration. Additional effects of miR-24 included changes in triacylglycerol content and the expression of fatty acid synthase, sterol regulatory element binding transcription protein 1, stearoyl-CoA desaturase, glycerol-3-phosphate acyltransferase mitochondrial, and acetyl-CoA carboxylase. Luciferase reporter assay confirmed that fatty acid synthase is a target of miR-24. Taken together, these results not only highlight the physiological importance of miR-24 in fatty acid metabolism in GMEC, but also laid the foundation for further research on regulatory mechanisms among miR-24 and other microRNA expressed in GMEC. PMID:26476938

  15. Malate synthase a membrane protein

    SciTech Connect

    Chapman, K.D.; Turley, R.B.; Hermerath, C.A.; Carrapico, F.; Trelease, R.N.

    1987-04-01

    Malate synthase (MS) is generally regarded as a peripheral membrane protein, and believed by some to be ontogenetically associated with ER. However, immuno- and cyto-chemical in situ localizations show MS throughout the matrix of cotton (and cucumber) glyoxysomes, not specifically near their boundary membranes, nor in ER. Only a maximum of 50% MS can be solubilized from cotton glyoxysomes with 1% Triton X-100, 2mM Zwittergen 14, or 10mM DOC +/- salts. Cotton MS does not incorporate /sup 3/H-glucosamine in vivo, nor does it react with Con A on columns or blots. Cotton MS banded with ER in sucrose gradients (20-40%) in Tricine after 3h, but not after 22h in Tricine or Hepes, or after 3h in Hepes or K-phosphate. Collectively the authors data are inconsistent with physiologically meaningful MS-membrane associations in ER or glyoxysomes. It appears that experimentally-induced aggregates of MS migrate in ER gradients and occur in isolated glyoxysomes. These data indicate that ER is not involved in synthesis or modification of cottonseed MS prior to its import into the glyoxysomal matrix.

  16. Dihydrodipicolinate synthase from Thermotoga maritima.

    PubMed

    Pearce, F Grant; Perugini, Matthew A; McKerchar, Hannah J; Gerrard, Juliet A

    2006-12-01

    DHDPS (dihydrodipicolinate synthase) catalyses the branch point in lysine biosynthesis in bacteria and plants and is feedback inhibited by lysine. DHDPS from the thermophilic bacterium Thermotoga maritima shows a high level of heat and chemical stability. When incubated at 90 degrees C or in 8 M urea, the enzyme showed little or no loss of activity, unlike the Escherichia coli enzyme. The active site is very similar to that of the E. coli enzyme, and at mesophilic temperatures the two enzymes have similar kinetic constants. Like other forms of the enzyme, T. maritima DHDPS is a tetramer in solution, with a sedimentation coefficient of 7.2 S and molar mass of 133 kDa. However, the residues involved in the interface between different subunits in the tetramer differ from those of E. coli and include two cysteine residues poised to form a disulfide bond. Thus the increased heat and chemical stability of the T. maritima DHDPS enzyme is, at least in part, explained by an increased number of inter-subunit contacts. Unlike the plant or E. coli enzyme, the thermophilic DHDPS enzyme is not inhibited by (S)-lysine, suggesting that feedback control of the lysine biosynthetic pathway evolved later in the bacterial lineage. PMID:16872276

  17. Identification of avian wax synthases

    PubMed Central

    2012-01-01

    Background Bird species show a high degree of variation in the composition of their preen gland waxes. For instance, galliform birds like chicken contain fatty acid esters of 2,3-alkanediols, while Anseriformes like goose or Strigiformes like barn owl contain wax monoesters in their preen gland secretions. The final biosynthetic step is catalyzed by wax synthases (WS) which have been identified in pro- and eukaryotic organisms. Results Sequence similarities enabled us to identify six cDNAs encoding putative wax synthesizing proteins in chicken and two from barn owl and goose. Expression studies in yeast under in vivo and in vitro conditions showed that three proteins from chicken performed WS activity while a sequence from chicken, goose and barn owl encoded a bifunctional enzyme catalyzing both wax ester and triacylglycerol synthesis. Mono- and bifunctional WS were found to differ in their substrate specificities especially with regard to branched-chain alcohols and acyl-CoA thioesters. According to the expression patterns of their transcripts and the properties of the enzymes, avian WS proteins might not be confined to preen glands. Conclusions We provide direct evidence that avian preen glands possess both monofunctional and bifunctional WS proteins which have different expression patterns and WS activities with different substrate specificities. PMID:22305293

  18. Energy transduction in ATP synthase

    NASA Astrophysics Data System (ADS)

    Elston, Timothy; Wang, Hongyun; Oster, George

    1998-01-01

    Mitochondria, bacteria and chloroplasts use the free energy stored in transmembrane ion gradients to manufacture ATP by the action of ATP synthase. This enzyme consists of two principal domains. The asymmetric membrane-spanning Fo portion contains the proton channel, and the soluble F1 portion contains three catalytic sites which cooperate in the synthetic reactions. The flow of protons through Fo is thought to generate a torque which is transmitted to F1 by an asymmetric shaft, the coiled-coil γ-subunit. This acts as a rotating `cam' within F1, sequentially releasing ATPs from the three active sites. The free-energy difference across the inner membrane of mitochondria and bacteria is sufficient to produce three ATPs per twelve protons passing through the motor. It has been suggested that this protonmotive force biases the rotor's diffusion so that Fo constitutes a rotary motor turning the γ shaft. Here we show that biased diffusion, augmented by electrostatic forces, does indeed generate sufficient torque to account for ATP production. Moreover, the motor's reversibility - supplying torque from ATP hydrolysis in F1 converts the motor into an efficient proton pump - can also be explained by our model.

  19. A specific process to purify 2-methyl-D-erythritol-4-phosphate enzymatically converted from D-glyceraldehyde-3-phosphate and pyruvate.

    PubMed

    Yang, Shao-Qing; Deng, Jian; Wu, Qian-Qian; Li, Heng; Gao, Wen-Yun

    2015-02-01

    A one-pot enzymatic cascade was established to synthesize MEP, one of the key intermediates in the MEP terpenoid biosynthetic pathway. D-GAP and sodium pyruvate were converted to MEP in a reaction catalyzed by DXP synthase and DXP reductoisomerase (DXR) in the presence of the coenzymes ThPP, NADPH, and Mg2+. The product was then isolated by using a specific two-step purification process and MEP was obtained in a yield of nearly 60% and high purity. Importantly, MEP prepared by this way was totally free from contamination by minor amounts of DXP that was not completely convertible by DXR.

  20. DNA vaccine encoding the moonlighting protein Onchocerca volvulus glyceraldehyde-3-phosphate dehydrogenase (Ov-GAPDH) leads to partial protection in a mouse model of human filariasis.

    PubMed

    Steisslinger, Vera; Korten, Simone; Brattig, Norbert W; Erttmann, Klaus D

    2015-10-26

    River blindness, caused by the filarial parasite Onchocerca volvulus, is a major socio-economic and public health problem in Sub-Saharan Africa. In January 2015, The Onchocerciasis Vaccine for Africa (TOVA) Initiative has been launched with the aim of providing new tools to complement mass drug administration (MDA) of ivermectin, thereby promoting elimination of onchocerciasis in Africa. In this context we here present Onchocerca volvulus glyceraldehyde-3-phosphate dehydrogenase (Ov-GAPDH) as a possible DNA vaccine candidate. We report that in a laboratory model for filariasis, immunization with Ov-GAPDH led to a significant reduction of adult worm load and microfilaraemia in BALB/c mice after challenge infection with the filarial parasite Litomosoides sigmodontis. Mice were either vaccinated with Ov-GAPDH.DNA plasmid (Ov-pGAPDH.DNA) alone or in combination with recombinantly expressed Ov-GAPDH protein (Ov-rGAPDH). During the following challenge infection of immunized and control mice with L. sigmodontis, those formulations which included the DNA plasmid, led to a significant reduction of adult worm loads (up to 57% median reduction) and microfilaraemia (up to 94% reduction) in immunized animals. In a further experiment, immunization with a mixture of four overlapping, synthetic Ov-GAPDH peptides (Ov-GAPDHpept), with alum as adjuvant, did not significantly reduce worm loads. Our results indicate that DNA vaccination with Ov-GAPDH has protective potential against filarial challenge infection in the mouse model. This suggests a transfer of the approach into the cattle Onchocerca ochengi model, where it is possible to investigate the effects of this vaccination in the context of a natural host-parasite relationship. PMID:26320419

  1. Ablation of succinate production from glucose metabolism in the procyclic trypanosomes induces metabolic switches to the glycerol 3-phosphate/dihydroxyacetone phosphate shuttle and to proline metabolism.

    PubMed

    Ebikeme, Charles; Hubert, Jane; Biran, Marc; Gouspillou, Gilles; Morand, Pauline; Plazolles, Nicolas; Guegan, Fabien; Diolez, Philippe; Franconi, Jean-Michel; Portais, Jean-Charles; Bringaud, Frédéric

    2010-10-15

    Trypanosoma brucei is a parasitic protist that undergoes a complex life cycle during transmission from its mammalian host (bloodstream forms) to the midgut of its insect vector (procyclic form). In both parasitic forms, most glycolytic steps take place within specialized peroxisomes, called glycosomes. Here, we studied metabolic adaptations in procyclic trypanosome mutants affected in their maintenance of the glycosomal redox balance. T. brucei can theoretically use three strategies to maintain the glycosomal NAD(+)/NADH balance as follows: (i) the glycosomal succinic fermentation branch; (ii) the glycerol 3-phosphate (Gly-3-P)/dihydroxyacetone phosphate (DHAP) shuttle that transfers reducing equivalents to the mitochondrion; and (iii) the glycosomal glycerol production pathway. We showed a hierarchy in the use of these glycosomal NADH-consuming pathways by determining metabolic perturbations and adaptations in single and double mutant cell lines using a combination of NMR, ion chromatography-MS/MS, and HPLC approaches. Although functional, the Gly-3-P/DHAP shuttle is primarily used when the preferred succinate fermentation pathway is abolished in the Δpepck knock-out mutant cell line. In the absence of these two pathways (Δpepck/(RNAi)FAD-GPDH.i mutant), glycerol production is used but with a 16-fold reduced glycolytic flux. In addition, the Δpepck mutant cell line shows a 3.3-fold reduced glycolytic flux compensated by an increase of proline metabolism. The inability of the Δpepck mutant to maintain a high glycolytic flux demonstrates that the Gly-3-P/DHAP shuttle is not adapted to the procyclic trypanosome context. In contrast, this shuttle was shown earlier to be the only way used by the bloodstream forms of T. brucei to sustain their high glycolytic flux.

  2. Misfolded forms of glyceraldehyde-3-phosphate dehydrogenase interact with GroEL and inhibit chaperonin-assisted folding of the wild-type enzyme.

    PubMed

    Polyakova, Oxana V; Roitel, Olivier; Asryants, Regina A; Poliakov, Alexei A; Branlant, Guy; Muronetz, Vladimir I

    2005-04-01

    We studied the interaction of chaperonin GroEL with different misfolded forms of tetrameric phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPDH): (1) GAPDH from rabbit muscles with all SH-groups modified by 5,5'-dithiobis(2-nitrobenzoate); (2) O-R-type dimers of mutant GAPDH from Bacillus stearothermophilus with amino acid substitutions Y283V, D282G, and Y283V/W84F, and (3) O-P-type dimers of mutant GAPDH from B. stearothermophilus with amino acid substitutions Y46G/S48G and Y46G/R52G. It was shown that chemically modified GAPDH and the O-R-type mutant dimers bound to GroEL with 1:1 stoichiometry and dissociation constants K(d) of 0.4 and 0.9 muM, respectively. A striking feature of the resulting complexes with GroEL was their stability in the presence of Mg-ATP. Chemically modified GAPDH and the O-R-type mutant dimers inhibited GroEL-assisted refolding of urea-denatured wild-type GAPDH from B. stearothermophilus but did not affect its spontaneous reactivation. In contrast to the O-R-dimers, the O-P-type mutant dimers neither bound nor affected GroEL-assisted refolding of the wild-type GAPDH. Thus, we suggest that interaction of GroEL with certain types of misfolded proteins can result in the formation of stable complexes and the impairment of chaperonin activity. PMID:15741339

  3. Misfolded forms of glyceraldehyde-3-phosphate dehydrogenase interact with GroEL and inhibit chaperonin-assisted folding of the wild-type enzyme

    PubMed Central

    Polyakova, Oxana V.; Roitel, Olivier; Asryants, Regina A.; Poliakov, Alexei A.; Branlant, Guy; Muronetz, Vladimir I.

    2005-01-01

    We studied the interaction of chaperonin GroEL with different misfolded forms of tetrameric phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPDH): (1) GAPDH from rabbit muscles with all SH-groups modified by 5,5′-dithiobis(2-nitrobenzoate); (2) O-R-type dimers of mutant GAPDH from Bacillus stearothermophilus with amino acid substitutions Y283V, D282G, and Y283V/W84F, and (3) O-P-type dimers of mutant GAPDH from B. stearothermophilus with amino acid substitutions Y46G/S48G and Y46G/R52G. It was shown that chemically modified GAPDH and the O-R-type mutant dimers bound to GroEL with 1:1 stoichiometry and dissociation constants Kd of 0.4 and 0.9 μM, respectively. A striking feature of the resulting complexes with GroEL was their stability in the presence of Mg-ATP. Chemically modified GAPDH and the O-R-type mutant dimers inhibited GroEL-assisted refolding of urea-denatured wild-type GAPDH from B. stearothermophilus but did not affect its spontaneous reactivation. In contrast to the O-R-dimers, the O-P-type mutant dimers neither bound nor affected GroEL-assisted refolding of the wild-type GAPDH. Thus, we suggest that interaction of GroEL with certain types of misfolded proteins can result in the formation of stable complexes and the impairment of chaperonin activity. PMID:15741339

  4. Covalent immobilization of lipase, glycerol kinase, glycerol-3-phosphate oxidase & horseradish peroxidase onto plasticized polyvinyl chloride (PVC) strip & its application in serum triglyceride determination

    PubMed Central

    Chauhan, Nidhi; Narang, Jagriti; Pundir, Chandra Shekhar

    2014-01-01

    Background & objectives: Reusable biostrip consisting enzymes immobilized onto alkylamine glass beads affixed on plasticized PVC strip for determination of triglyceride (TG) suffers from high cost of beads and their detachments during washings for reuse, leading to loss of activity. The purpose of this study was to develop a cheaper and stable biostrip for investigation of TG levels in serum. Methods: A reusable enzyme-strip was prepared for TG determination by co-immobilizing lipase, glycerol kinase (GK), glycerol-3-phosphate oxidase (GPO) and peroxidase (HRP) directly onto plasticized polyvinyl chloride (PVC) strip through glutaraldehyde coupling. The method was evaluated by studying its recovery, precision and reusability. Results: The enzyme-strip showed optimum activity at pH 7.0, 35°C and a linear relationship between its activity and triolein concentration in the range 0.1 to 15 mM. The strip was used for determination of serum TG. The detection limit of the method was 0.1 mM. Analytical recovery of added triolein was 96 per cent. Within and between batch coefficients of variation (CV) were 2.2 and 3.7 per cent, respectively. A good correlation (r=0.99) was found between TG values by standard enzymic colrimetric method employing free enzymes and the present method. The strip lost 50 per cent of its initial activity after its 200 uses during the span of 100 days, when stored at 4°C. Interpretation & conclusions: The nitrating acidic treatment of plasticized PVC strip led to glutaraldehyde coupling of four enzymes used for enzymic colourimetric determination of serum TG. The strip provided 200 reuses of enzymes with only 50 per cent loss of its initial activity. The method could be used for preparation of other enzyme strips also. PMID:24927348

  5. Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) Protein-Protein Interaction Inhibitor Reveals a Non-catalytic Role for GAPDH Oligomerization in Cell Death.

    PubMed

    Qvit, Nir; Joshi, Amit U; Cunningham, Anna D; Ferreira, Julio C B; Mochly-Rosen, Daria

    2016-06-24

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an important glycolytic enzyme, has a non-catalytic (thus a non-canonical) role in inducing mitochondrial elimination under oxidative stress. We recently demonstrated that phosphorylation of GAPDH by δ protein kinase C (δPKC) inhibits this GAPDH-dependent mitochondrial elimination. δPKC phosphorylation of GAPDH correlates with increased cell injury following oxidative stress, suggesting that inhibiting GAPDH phosphorylation should decrease cell injury. Using rational design, we identified pseudo-GAPDH (ψGAPDH) peptide, an inhibitor of δPKC-mediated GAPDH phosphorylation that does not inhibit the phosphorylation of other δPKC substrates. Unexpectedly, ψGAPDH decreased mitochondrial elimination and increased cardiac damage in an animal model of heart attack. Either treatment with ψGAPDH or direct phosphorylation of GAPDH by δPKC decreased GAPDH tetramerization, which corresponded to reduced GAPDH glycolytic activity in vitro and ex vivo Taken together, our study identified the potential mechanism by which oxidative stress inhibits the protective GAPDH-mediated elimination of damaged mitochondria. Our study also identified a pharmacological tool, ψGAPDH peptide, with interesting properties. ψGAPDH peptide is an inhibitor of the interaction between δPKC and GAPDH and of the resulting phosphorylation of GAPDH by δPKC. ψGAPDH peptide is also an inhibitor of GAPDH oligomerization and thus an inhibitor of GAPDH glycolytic activity. Finally, we found that ψGAPDH peptide is an inhibitor of the elimination of damaged mitochondria. We discuss how this unique property of increasing cell damage following oxidative stress suggests a potential use for ψGAPDH peptide-based therapy. PMID:27129213

  6. Glycerol-3-phosphate acyltransferase-4-deficient mice are protected from diet-induced insulin resistance by the enhanced association of mTOR and rictor.

    PubMed

    Zhang, Chongben; Cooper, Daniel E; Grevengoed, Trisha J; Li, Lei O; Klett, Eric L; Eaton, James M; Harris, Thurl E; Coleman, Rosalind A

    2014-08-01

    Glycerol-3-phosphate acyltransferase (GPAT) activity is highly induced in obese individuals with insulin resistance, suggesting a correlation between GPAT function, triacylglycerol accumulation, and insulin resistance. We asked whether microsomal GPAT4, an isoform regulated by insulin, might contribute to the development of hepatic insulin resistance. Compared with control mice fed a high fat diet, Gpat4(-/-) mice were more glucose tolerant and were protected from insulin resistance. Overexpression of GPAT4 in mouse hepatocytes impaired insulin-suppressed gluconeogenesis and insulin-stimulated glycogen synthesis. Impaired glucose homeostasis was coupled to inhibited insulin-stimulated phosphorylation of Akt(Ser⁴⁷³) and Akt(Thr³⁰⁸). GPAT4 overexpression inhibited rictor's association with the mammalian target of rapamycin (mTOR), and mTOR complex 2 (mTORC2) activity. Compared with overexpressed GPAT3 in mouse hepatocytes, GPAT4 overexpression increased phosphatidic acid (PA), especially di16:0-PA. Conversely, in Gpat4(-/-) hepatocytes, both mTOR/rictor association and mTORC2 activity increased, and the content of PA in Gpat4(-/-) hepatocytes was lower than in controls, with the greatest decrease in 16:0-PA species. Compared with controls, liver and skeletal muscle from Gpat4(-/-)-deficient mice fed a high-fat diet were more insulin sensitive and had a lower hepatic content of di16:0-PA. Taken together, these data demonstrate that a GPAT4-derived lipid signal, likely di16:0-PA, impairs insulin signaling in mouse liver and contributes to hepatic insulin resistance. PMID:24939733

  7. Nrbf2 Protein Suppresses Autophagy by Modulating Atg14L Protein-containing Beclin 1-Vps34 Complex Architecture and Reducing Intracellular Phosphatidylinositol-3 Phosphate Levels*

    PubMed Central

    Zhong, Yu; Morris, Deanna H.; Jin, Lin; Patel, Mittul S.; Karunakaran, Senthil K.; Fu, You-Jun; Matuszak, Emily A.; Weiss, Heidi L.; Chait, Brian T.; Wang, Qing Jun

    2014-01-01

    Autophagy is a tightly regulated lysosomal degradation pathway for maintaining cellular homeostasis and responding to stresses. Beclin 1 and its interacting proteins, including the class III phosphatidylinositol-3 kinase Vps34, play crucial roles in autophagy regulation in mammals. We identified nuclear receptor binding factor 2 (Nrbf2) as a Beclin 1-interacting protein from Becn1−/−;Becn1-EGFP/+ mouse liver and brain. We also found that Nrbf2-Beclin 1 interaction required the N terminus of Nrbf2. We next used the human retinal pigment epithelial cell line RPE-1 as a model system and showed that transiently knocking down Nrbf2 by siRNA increased autophagic flux under both nutrient-rich and starvation conditions. To investigate the mechanism by which Nrbf2 regulates autophagy, we demonstrated that Nrbf2 interacted and colocalized with Atg14L, suggesting that Nrbf2 is a component of the Atg14L-containing Beclin 1-Vps34 complex. Moreover, ectopically expressed Nrbf2 formed cytosolic puncta that were positive for isolation membrane markers. These results suggest that Nrbf2 is involved in autophagosome biogenesis. Furthermore, we showed that Nrbf2 deficiency led to increased intracellular phosphatidylinositol-3 phosphate levels and diminished Atg14L-Vps34/Vps15 interactions, suggesting that Nrbf2-mediated Atg14L-Vps34/Vps15 interactions likely inhibit Vps34 activity. Therefore, we propose that Nrbf2 may interact with the Atg14L-containing Beclin 1-Vps34 protein complex to modulate protein-protein interactions within the complex, leading to suppression of Vps34 activity, autophagosome biogenesis, and autophagic flux. This work reveals a novel aspect of the intricate mechanism for the Beclin 1-Vps34 protein-protein interaction network to achieve precise control of autophagy. PMID:25086043

  8. Inter-species variation in the oligomeric states of the higher plant Calvin cycle enzymes glyceraldehyde-3-phosphate dehydrogenase and phosphoribulokinase.

    PubMed

    Howard, Thomas P; Lloyd, Julie C; Raines, Christine A

    2011-07-01

    In darkened leaves the Calvin cycle enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) form a regulatory multi-enzyme complex with the small chloroplast protein CP12. GAPDH also forms a high molecular weight regulatory mono-enzyme complex. Given that there are different reports as to the number and subunit composition of these complexes and that enzyme regulatory mechanisms are known to vary between species, it was reasoned that protein-protein interactions may also vary between species. Here, this variation is investigated. This study shows that two different tetramers of GAPDH (an A2B2 heterotetramer and an A4 homotetramer) have the capacity to form part of the PRK/GAPDH/CP12 complex. The role of the PRK/GAPDH/CP12 complex is not simply to regulate the 'non-regulatory' A4 GAPDH tetramer. This study also demonstrates that the abundance and nature of PRK/GAPDH/CP12 interactions are not equal in all species and that whilst NAD enhances complex formation in some species, this is not sufficient for complex formation in others. Furthermore, it is shown that the GAPDH mono-enzyme complex is more abundant as a 2(A2B2) complex, rather than the larger 4(A2B2) complex. This smaller complex is sensitive to cellular metabolites indicating that it is an important regulatory isoform of GAPDH. This comparative study has highlighted considerable heterogeneity in PRK and GAPDH protein interactions between closely related species and the possible underlying physiological basis for this is discussed.

  9. Glycerol-3-phosphate acyltransferase-4-deficient mice are protected from diet-induced insulin resistance by the enhanced association of mTOR and rictor.

    PubMed

    Zhang, Chongben; Cooper, Daniel E; Grevengoed, Trisha J; Li, Lei O; Klett, Eric L; Eaton, James M; Harris, Thurl E; Coleman, Rosalind A

    2014-08-01

    Glycerol-3-phosphate acyltransferase (GPAT) activity is highly induced in obese individuals with insulin resistance, suggesting a correlation between GPAT function, triacylglycerol accumulation, and insulin resistance. We asked whether microsomal GPAT4, an isoform regulated by insulin, might contribute to the development of hepatic insulin resistance. Compared with control mice fed a high fat diet, Gpat4(-/-) mice were more glucose tolerant and were protected from insulin resistance. Overexpression of GPAT4 in mouse hepatocytes impaired insulin-suppressed gluconeogenesis and insulin-stimulated glycogen synthesis. Impaired glucose homeostasis was coupled to inhibited insulin-stimulated phosphorylation of Akt(Ser⁴⁷³) and Akt(Thr³⁰⁸). GPAT4 overexpression inhibited rictor's association with the mammalian target of rapamycin (mTOR), and mTOR complex 2 (mTORC2) activity. Compared with overexpressed GPAT3 in mouse hepatocytes, GPAT4 overexpression increased phosphatidic acid (PA), especially di16:0-PA. Conversely, in Gpat4(-/-) hepatocytes, both mTOR/rictor association and mTORC2 activity increased, and the content of PA in Gpat4(-/-) hepatocytes was lower than in controls, with the greatest decrease in 16:0-PA species. Compared with controls, liver and skeletal muscle from Gpat4(-/-)-deficient mice fed a high-fat diet were more insulin sensitive and had a lower hepatic content of di16:0-PA. Taken together, these data demonstrate that a GPAT4-derived lipid signal, likely di16:0-PA, impairs insulin signaling in mouse liver and contributes to hepatic insulin resistance.

  10. Insulin activates glycerol-3-phosphate acyltransferase (de novo phosphatidic acid synthesis) through a phospholipid-derived mediator. Apparent involvement of Gi alpha and activation of a phospholipase C.

    PubMed

    Vila, M C; Milligan, G; Standaert, M L; Farese, R V

    1990-09-18

    We studied the mechanism whereby insulin activates de novo phosphatidic acid synthesis in BC3H-1 myocytes. Insulin rapidly activated glycerol-3-phosphate acyltransferase (G3PAT) in intact and cell-free preparations of myocytes in a dose-related manner. The apparent Km of the enzyme was decreased by treatment with insulin, whereas the Vmax was unaffected. No activation was found by ACTH, insulin-like growth factor-I, angiotensin II, or phenylephrine, but epidermal growth factor, which, like insulin, is known to activate de novo phosphatidic acid synthesis in intact myocytes, also stimulated G3PAT activity. In homogenates or membrane fractions, the effect of insulin on G3PAT was fully mimicked by nonspecific or phosphatidylinositol (PI)-specific phospholipase C (PLC). An antiserum raised against PI-glycan-PLC completely blocked the effect of insulin on G3PAT. Although the above findings suggested involvement of a PLC in insulin-induced activation of G3PAT, neither diacylglycerol nor protein kinase C activation appeared to be involved. On the other hand, insulin stimulated the release of a cytosolic factor, which activated membrane-associated G3PAT. This cytosolic factor had a molecular weight of less than 5K as determined by Sephadex G-25 chromatography. NaF, a phosphatase inhibitor, blocked the activation of G3PAT by insulin, suggesting involvement of a phosphatase. Insulin-induced activation of G3PAT was also blocked by pretreatment of intact myocytes with pertussis toxin and by prior addition, to homogenates, of an antiserum that recognizes the C-terminal decapeptide of Gi alpha.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Proteome analysis of a Lactococcus lactis strain overexpressing gapA suggests that the gene product is an auxiliary glyceraldehyde 3-phosphate dehydrogenase.

    PubMed

    Willemoës, Martin; Kilstrup, Mogens; Roepstorff, Peter; Hammer, Karin

    2002-08-01

    The sequence of the genome from the Lactococcus lactis subspecies lactis strain IL1403 shows the presence of two reading frames, gapA and gapB, putatively encoding glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Previous proteomic analysis of the L. lactis subspecies cremoris strain MG1363 has revealed two neighbouring protein spots, GapBI and GapBII, with amino terminal sequences identical to the product of gapA from the L. lactis subspecies cremoris strain LM0230 and that of the two IL1403 sequences. In order to assign the two protein spots to their respective genes we constructed an L. lactis strain that overexpessed the gapA gene derived from MG1363 upon nisin induction. Compared to the wild-type, the overexpressing strain had a 3.4-fold elevated level of specific GAPDH activity when grown in the presence of nisin. In both MG1363 and the gapA overexpressing strain the GAPDH activity was specific for NAD. No NADP dependent activity was detected. Proteome analysis of the gapA overexpressing strain revealed two new protein spots, GapAI and GapAII, not previously detected in proteome analysis of MG1363. Results from mass spectrometry analysis of GapA and GapB and comparison with the deduced protein sequences for the GAPDH isozymes from the genome sequence of strain IL1403 allowed us to assign GapA and GapB to their apparent IL1403 homologues encoded by gapA and gapB, respectively. Furthermore, we suggest that a homologue of a gapB product, represented by GapB, is the main source of GAPDH activity in L. lactis during normal growth.

  12. DNA vaccine encoding the moonlighting protein Onchocerca volvulus glyceraldehyde-3-phosphate dehydrogenase (Ov-GAPDH) leads to partial protection in a mouse model of human filariasis.

    PubMed

    Steisslinger, Vera; Korten, Simone; Brattig, Norbert W; Erttmann, Klaus D

    2015-10-26

    River blindness, caused by the filarial parasite Onchocerca volvulus, is a major socio-economic and public health problem in Sub-Saharan Africa. In January 2015, The Onchocerciasis Vaccine for Africa (TOVA) Initiative has been launched with the aim of providing new tools to complement mass drug administration (MDA) of ivermectin, thereby promoting elimination of onchocerciasis in Africa. In this context we here present Onchocerca volvulus glyceraldehyde-3-phosphate dehydrogenase (Ov-GAPDH) as a possible DNA vaccine candidate. We report that in a laboratory model for filariasis, immunization with Ov-GAPDH led to a significant reduction of adult worm load and microfilaraemia in BALB/c mice after challenge infection with the filarial parasite Litomosoides sigmodontis. Mice were either vaccinated with Ov-GAPDH.DNA plasmid (Ov-pGAPDH.DNA) alone or in combination with recombinantly expressed Ov-GAPDH protein (Ov-rGAPDH). During the following challenge infection of immunized and control mice with L. sigmodontis, those formulations which included the DNA plasmid, led to a significant reduction of adult worm loads (up to 57% median reduction) and microfilaraemia (up to 94% reduction) in immunized animals. In a further experiment, immunization with a mixture of four overlapping, synthetic Ov-GAPDH peptides (Ov-GAPDHpept), with alum as adjuvant, did not significantly reduce worm loads. Our results indicate that DNA vaccination with Ov-GAPDH has protective potential against filarial challenge infection in the mouse model. This suggests a transfer of the approach into the cattle Onchocerca ochengi model, where it is possible to investigate the effects of this vaccination in the context of a natural host-parasite relationship.

  13. Critical aspartic acid residues in pseudouridine synthases.

    PubMed

    Ramamurthy, V; Swann, S L; Paulson, J L; Spedaliere, C J; Mueller, E G

    1999-08-01

    The pseudouridine synthases catalyze the isomerization of uridine to pseudouridine at particular positions in certain RNA molecules. Genomic data base searches and sequence alignments using the first four identified pseudouridine synthases led Koonin (Koonin, E. V. (1996) Nucleic Acids Res. 24, 2411-2415) and, independently, Santi and co-workers (Gustafsson, C., Reid, R., Greene, P. J., and Santi, D. V. (1996) Nucleic Acids Res. 24, 3756-3762) to group this class of enzyme into four families, which display no statistically significant global sequence similarity to each other. Upon further scrutiny (Huang, H. L., Pookanjanatavip, M., Gu, X. G., and Santi, D. V. (1998) Biochemistry 37, 344-351), the Santi group discovered that a single aspartic acid residue is the only amino acid present in all of the aligned sequences; they then demonstrated that this aspartic acid residue is catalytically essential in one pseudouridine synthase. To test the functional significance of the sequence alignments in light of the global dissimilarity between the pseudouridine synthase families, we changed the aspartic acid residue in representatives of two additional families to both alanine and cysteine: the mutant enzymes are catalytically inactive but retain the ability to bind tRNA substrate. We have also verified that the mutant enzymes do not release uracil from the substrate at a rate significant relative to turnover by the wild-type pseudouridine synthases. Our results clearly show that the aligned aspartic acid residue is critical for the catalytic activity of pseudouridine synthases from two additional families of these enzymes, supporting the predictive power of the sequence alignments and suggesting that the sequence motif containing the aligned aspartic acid residue might be a prerequisite for pseudouridine synthase function.

  14. Terpene synthases are widely distributed in bacteria

    PubMed Central

    Yamada, Yuuki; Kuzuyama, Tomohisa; Komatsu, Mamoru; Shin-ya, Kazuo; Omura, Satoshi; Cane, David E.; Ikeda, Haruo

    2015-01-01

    Odoriferous terpene metabolites of bacterial origin have been known for many years. In genome-sequenced Streptomycetaceae microorganisms, the vast majority produces the degraded sesquiterpene alcohol geosmin. Two minor groups of bacteria do not produce geosmin, with one of these groups instead producing other sesquiterpene alcohols, whereas members of the remaining group do not produce any detectable terpenoid metabolites. Because bacterial terpene synthases typically show no significant overall sequence similarity to any other known fungal or plant terpene synthases and usually exhibit relatively low levels of mutual sequence similarity with other bacterial synthases, simple correlation of protein sequence data with the structure of the cyclized terpene product has been precluded. We have previously described a powerful search method based on the use of hidden Markov models (HMMs) and protein families database (Pfam) search that has allowed the discovery of monoterpene synthases of bacterial origin. Using an enhanced set of HMM parameters generated using a training set of 140 previously identified bacterial terpene synthase sequences, a Pfam search of 8,759,463 predicted bacterial proteins from public databases and in-house draft genome data has now revealed 262 presumptive terpene synthases. The biochemical function of a considerable number of these presumptive terpene synthase genes could be determined by expression in a specially engineered heterologous Streptomyces host and spectroscopic identification of the resulting terpene products. In addition to a wide variety of terpenes that had been previously reported from fungal or plant sources, we have isolated and determined the complete structures of 13 previously unidentified cyclic sesquiterpenes and diterpenes. PMID:25535391

  15. Properties of phosphorylated thymidylate synthase.

    PubMed

    Frączyk, Tomasz; Ruman, Tomasz; Wilk, Piotr; Palmowski, Paweł; Rogowska-Wrzesinska, Adelina; Cieśla, Joanna; Zieliński, Zbigniew; Nizioł, Joanna; Jarmuła, Adam; Maj, Piotr; Gołos, Barbara; Wińska, Patrycja; Ostafil, Sylwia; Wałajtys-Rode, Elżbieta; Shugar, David; Rode, Wojciech

    2015-12-01

    Thymidylate synthase (TS) may undergo phosphorylation endogenously in mammalian cells, and as a recombinant protein expressed in bacterial cells, as indicated by the reaction of purified enzyme protein with Pro-Q® Diamond Phosphoprotein Gel Stain (PGS). With recombinant human, mouse, rat, Trichinella spiralis and Caenorhabditis elegans TSs, expressed in Escherichia coli, the phosphorylated, compared to non-phosphorylated recombinant enzyme forms, showed a decrease in Vmax(app), bound their cognate mRNA (only rat enzyme studied), and repressed translation of their own and several heterologous mRNAs (human, rat and mouse enzymes studied). However, attempts to determine the modification site(s), whether endogenously expressed in mammalian cells, or recombinant proteins, did not lead to unequivocal results. Comparative ESI-MS/analysis of IEF fractions of TS preparations from parental and FdUrd-resistant mouse leukemia L1210 cells, differing in sensitivity to inactivation by FdUMP, demonstrated phosphorylation of Ser(10) and Ser(16) in the resistant enzyme only, although PGS staining pointed to the modification of both L1210 TS proteins. The TS proteins phosphorylated in bacterial cells were shown by (31)P NMR to be modified only on histidine residues, like potassium phosphoramidate (KPA)-phosphorylated TS proteins. NanoLC-MS/MS, enabling the use of CID and ETD peptide fragmentation methods, identified several phosphohistidine residues, but certain phosphoserine and phosphothreonine residues were also implicated. Molecular dynamics studies, based on the mouse TS crystal structure, allowed one to assess potential of several phosphorylated histidine residues to affect catalytic activity, the effect being phosphorylation site dependent.

  16. Nuclear genetic defects of mitochondrial ATP synthase.

    PubMed

    Hejzlarová, K; Mráček, T; Vrbacký, M; Kaplanová, V; Karbanová, V; Nůsková, H; Pecina, P; Houštěk, J

    2014-01-01

    Disorders of ATP synthase, the key enzyme of mitochondrial energy provision belong to the most severe metabolic diseases presenting as early-onset mitochondrial encephalo-cardiomyopathies. Up to now, mutations in four nuclear genes were associated with isolated deficiency of ATP synthase. Two of them, ATP5A1 and ATP5E encode enzyme's structural subunits alpha and epsilon, respectively, while the other two ATPAF2 and TMEM70 encode specific ancillary factors that facilitate the biogenesis of ATP synthase. All these defects share a similar biochemical phenotype with pronounced decrease in the content of fully assembled and functional ATP synthase complex. However, substantial differences can be found in their frequency, molecular mechanism of pathogenesis, clinical manifestation as well as the course of the disease progression. While for TMEM70 the number of reported patients as well as spectrum of the mutations is steadily increasing, mutations in ATP5A1, ATP5E and ATPAF2 genes are very rare. Apparently, TMEM70 gene is highly prone to mutagenesis and this type of a rare mitochondrial disease has a rather frequent incidence. Here we present overview of individual reported cases of nuclear mutations in ATP synthase and discuss, how their analysis can improve our understanding of the enzyme biogenesis.

  17. An investigation into eukaryotic pseudouridine synthases.

    PubMed

    King, Ross D; Lu, Chuan

    2014-08-01

    A common post-transcriptional modification of RNA is the conversion of uridine to its isomer pseudouridine. We investigated the biological significance of eukaryotic pseudouridine synthases using the yeast Saccharomyces cerevisiae. We conducted a comprehensive statistical analysis on growth data from automated perturbation (gene deletion) experiments, and used bi-logistic curve analysis to characterise the yeast phenotypes. The deletant strains displayed different alteration in growth properties, including in some cases enhanced growth and/or biphasic growth curves not seen in wild-type strains under matched conditions. These results demonstrate that disrupting pseudouridine synthases can have a significant qualitative effect on growth. We further investigated the significance of post-transcriptional pseudouridine modification through investigation of the scientific literature. We found that (1) In Toxoplasma gondii, a pseudouridine synthase gene is critical in cellular differentiation between the two asexual forms: Tachyzoites and bradyzoites; (2) Mutation of pseudouridine synthase genes has also been implicated in human diseases (mitochondrial myopathy and sideroblastic anemia (MLASA); dyskeratosis congenita). Taken together, these results are consistent with pseudouridine synthases having a Gene Ontology function of "biological regulation".

  18. Exploring biosynthetic diversity with trichodiene synthase.

    PubMed

    Vedula, L Sangeetha; Zhao, Yuxin; Coates, Robert M; Koyama, Tanetoshi; Cane, David E; Christianson, David W

    2007-10-15

    Trichodiene synthase is a terpenoid cyclase that catalyzes the cyclization of farnesyl diphosphate (FPP) to form the bicyclic sesquiterpene hydrocarbon trichodiene (89%), at least five sesquiterpene side products (11%), and inorganic pyrophosphate (PP(i)). Incubation of trichodiene synthase with 2-fluorofarnesyl diphosphate or 4-methylfarnesyl diphosphate similarly yields sesquiterpene mixtures despite the electronic effects or steric bulk introduced by substrate derivatization. The versatility of the enzyme is also demonstrated in the 2.85A resolution X-ray crystal structure of the complex with Mg(2+) (3)-PP(i) and the benzyl triethylammonium cation, which is a bulkier mimic of the bisabolyl carbocation intermediate in catalysis. Taken together, these findings show that the active site of trichodiene synthase is sufficiently flexible to accommodate bulkier and electronically-diverse substrates and intermediates, which could indicate additional potential for the biosynthetic utility of this terpenoid cyclase. PMID:17678871

  19. Population genetics structure of glyphosate-resistant Johnsongrass (Sorghum halepense L. Pers) does not support a single origin of the resistance

    PubMed Central

    Fernández, Luis; de Haro, Luis Alejandro; Distefano, Ana J; Carolina Martínez, Maria; Lía, Verónica; Papa, Juan C; Olea, Ignacio; Tosto, Daniela; Esteban Hopp, Horacio

    2013-01-01

    Single sequence repeats (SSR) developed for Sorghum bicolor were used to characterize the genetic distance of 46 different Sorghum halepense (Johnsongrass) accessions from Argentina some of which have evolved toward glyphosate resistance. Since Johnsongrass is an allotetraploid and only one subgenome is homologous to cultivated sorghum, some SSR loci amplified up to two alleles while others (presumably more conserved loci) amplified up to four alleles. Twelve SSR providing information of 24 loci representative of Johnsongrass genome were selected for genetic distance characterization. All of them were highly polymorphic, which was evidenced by the number of different alleles found in the samples studied, in some of them up to 20. UPGMA and Mantel analysis showed that Johnsongrass glyphosate-resistant accessions that belong to different geographic regions do not share similar genetic backgrounds. In contrast, they show closer similarity to their neighboring susceptible counterparts. Discriminant Analysis of Principal Components using the clusters identified by K-means support the lack of a clear pattern of association among samples and resistance status or province of origin. Consequently, these results do not support a single genetic origin of glyphosate resistance. Nucleotide sequencing of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) encoding gene from glyphosate-resistant and susceptible accessions collected from different geographic origins showed that none presented expected mutations in aminoacid positions 101 and 106 which are diagnostic of target-site resistance mechanism. PMID:24223277

  20. Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9.

    PubMed

    Li, Jun; Meng, Xiangbing; Zong, Yuan; Chen, Kunling; Zhang, Huawei; Liu, Jinxing; Li, Jiayang; Gao, Caixia

    2016-01-01

    Sequence-specific nucleases have been exploited to create targeted gene knockouts in various plants(1), but replacing a fragment and even obtaining gene insertions at specific loci in plant genomes remain a serious challenge. Here, we report efficient intron-mediated site-specific gene replacement and insertion approaches that generate mutations using the non-homologous end joining (NHEJ) pathway using the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system. Using a pair of single guide RNAs (sgRNAs) targeting adjacent introns and a donor DNA template including the same pair of sgRNA sites, we achieved gene replacements in the rice endogenous gene 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) at a frequency of 2.0%. We also obtained targeted gene insertions at a frequency of 2.2% using a sgRNA targeting one intron and a donor DNA template including the same sgRNA site. Rice plants harbouring the OsEPSPS gene with the intended substitutions were glyphosate-resistant. Furthermore, the site-specific gene replacements and insertions were faithfully transmitted to the next generation. These newly developed approaches can be generally used to replace targeted gene fragments and to insert exogenous DNA sequences into specific genomic sites in rice and other plants. PMID:27618611

  1. The composition of grain and forage from glyphosate tolerant wheat MON 71800 is equivalent to that of conventional wheat (Triticum aestivum L.).

    PubMed

    Obert, Janet C; Ridley, William P; Schneider, Ronald W; Riordan, Susan G; Nemeth, Margaret A; Trujillo, William A; Breeze, Matthew L; Sorbet, Roy; Astwood, James D

    2004-03-10

    Glyphosate tolerant wheat MON 71800, simply referred to as MON 71800, contains a 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) protein from Agrobacterium sp. strain CP4 (CP4 EPSPS) that has a reduced affinity for glyphosate as compared to the endogenous plant EPSPS enzyme. The purpose of this work was to evaluate the compositional equivalence of MON 71800 to its nontransgenic parent as well as to conventional wheat varieties. The compositional assessment evaluated the levels of proximates, amino acids, fatty acids, minerals, vitamins, secondary metabolites, and antinutrients in wheat forage and grain grown during two field seasons across a total of eight sites in the United States and Canada. These data demonstrated that with respect to these important nutritional components, the forage and grain from MON 71800 were equivalent to those of its nontransgenic parent and commercial wheat varieties. These data, together with the previously established safety of the CP4 EPSPS protein, support the conclusion that glyphosate tolerant wheat MON 71800 is as safe and nutritious as commercial wheat varieties.

  2. Cropping practices modulate the impact of glyphosate on arbuscular mycorrhizal fungi and rhizosphere bacteria in agroecosystems of the semiarid prairie.

    PubMed

    Sheng, Min; Hamel, Chantal; Fernandez, Myriam R

    2012-08-01

    A growing body of evidence obtained from studies performed under controlled conditions suggests that glyphosate use can modify microbial community assemblages. However, few studies have examined the influence of glyphosate in agroecosystems. We examined 4 wheat-based production systems typical of the Canadian prairie over 2 years to answer the following question: Does preseeding of glyphosate impact soil rhizosphere microorganisms? If so, do cropping practices influence this impact? Glyphosate caused a shift in the species dominating the arbuscular mycorrhizal fungal community in the rhizosphere, possibly through the modification of host plant physiology. Glyphosate stimulated rhizobacterial growth while having no influence on saprotrophic fungi, suggesting a greater abundance of glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) in bacteria than in fungi. Glyphosate stimulated rhizosphere bacteria in pea but not in urea-fertilized durum wheat, which is consistent with inhibition of EPSPS tolerance to residual glyphosate through high ammonium levels. Mitigation of the effects of glyphosate on rhizosphere bacteria through tillage suggests a reduction in residual glyphosate activity through increased adsorption to soil binding sites upon soil mixing. The influence of glyphosate on Gram-negative bacteria was mitigated under drought conditions in 2007. Our experiment suggests that interactions between soil fertility, tillage, and cropping practices shape the influence of glyphosate use on rhizosphere microorganisms.

  3. Development of an innovative immunoassay for CP4EPSPS and Cry1AB genetically modified protein detection and quantification.

    PubMed

    Ermolli, M; Prospero, A; Balla, B; Querci, M; Mazzeo, A; Van Den Eede, G

    2006-09-01

    An innovative immunoassay, called enzyme-linked immunoabsorbant assay (ELISA) Reverse, based on a new conformation of the solid phase, was developed. The solid support was expressly designed to be immersed directly in liquid samples to detect the presence of protein targets. Its application is proposed in those cases where a large number of samples have to be screened simultaneously or when the simultaneous detection of different proteins is required. As a first application, a quantitative immunoassay for Cry1AB protein in genetically modified maize was optimized. The method was tested using genetically modified organism concentrations from 0.1 to 2.0%. The limit of detection and limit of quantitation of the method were determined as 0.0056 and 0.0168 (expressed as the percentage of genetically modified organisms content), respectively. A qualitative multiplex assay to assess the presence of two genetically modified proteins simultaneously was also established for the case of the Cry1AB and the CP4EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) present in genetically modified maize and soy, respectively.

  4. Compositional equivalence of insect-protected glyphosate-tolerant soybean MON 87701 × MON 89788 to conventional soybean extends across different world regions and multiple growing seasons.

    PubMed

    Berman, Kristina H; Harrigan, George G; Nemeth, Margaret A; Oliveira, Wladecir S; Berger, Geraldo U; Tagliaferro, Fabio S

    2011-11-01

    The soybean product MON 87701 × MON 89788 expresses both the cry1Ac gene derived from Bacillus thuringiensis and the cp4 epsps (5-enolpyruvylshikimate-3-phosphate synthase) gene derived from Agrobacterium sp. strain CP4. Each biotechnology-derived trait confers specific benefits of insect resistance and glyphosate tolerance, respectively. The purpose of this study was to compare the composition of seed and forage from this combined-trait product to those of conventional soybean grown in geographically and climatically distinct regions. Field trials were conducted in the United States during the 2007 growing season, in Argentina during the 2007-2008 growing season, and in the northern and southern soybean regions of Brazil during the 2007-2008 and 2008-2009 growing seasons. Results demonstrated that the compositional equivalence of MON 87701 × MON 89788 to the conventional soybean extended across all regions and growing seasons. Further evaluation of the data showed that natural variation (region and growing season) contributed more to compositional variability in soybean, particularly for such components as isoflavones, fatty acids, and vitamin E, than transgene insertion.

  5. Molecular Characterization of the Aeromonas hydrophila aroA Gene and Potential Use of an Auxotrophic aroA Mutant as a Live Attenuated Vaccine

    PubMed Central

    Hernanz Moral, Carmen; del Castillo, Emilio Flaño; Fierro, Pilar López; Cortés, Alberto Villena; Castillo, Juan Anguita; Soriano, Alberto Cascón; Salazar, María Sánchez; Peralta, Blanca Razquín; Carrasco, Germán Naharro

    1998-01-01

    The aroA gene of Aeromonas hydrophila SO2/2, encoding 5-enolpyruvylshikimate 3-phosphate synthase, was cloned by complementation of the aroA mutation in Escherichia coli K-12 strain AB2829, and the nucleotide sequence was determined. The nucleotide sequence of the A. hydrophila aroA gene encoded a protein of 440 amino acids which showed a high degree of homology to other bacterial AroA proteins. To obtain an effective attenuated live vaccine against A. hydrophila infections in fish, the aroA gene was inactivated by the insertion of a DNA fragment containing a kanamycin resistance determinant and reintroduced by allelic exchange into the chromosome of A. hydrophila AG2 by means of the suicide vector pSUP202. The A. hydrophila mutant AG2 aroA::Kar was highly attenuated when inoculated intraperitoneally into a rainbow trout, with a 50% lethal dose of >2 × 108 CFU. The mutants were not recoverable from the internal organs after 48 h postinoculation. Immunohistochemical studies demonstrated that immunopositive materials, but not whole cells, reacting with a polyclonal antiserum against A. hydrophila were present in the kidney and spleen 9 days postinjection. Vaccination of rainbow trout with the AroA mutant as a live vaccine conferred significant protection against the wild-type strain of A. hydrophila. PMID:9573055

  6. Lack of glyphosate resistance gene transfer from Roundup Ready soybean to Bradyrhizobium japonicum under field and laboratory conditions.

    PubMed

    Isaza, Laura Arango; Opelt, Katja; Wagner, Tobias; Mattes, Elke; Bieber, Evi; Hatley, Elwood O; Roth, Greg; Sanjuán, Juan; Fischer, Hans-Martin; Sandermann, Heinrich; Hartmann, Anton; Ernst, Dieter

    2011-01-01

    A field study was conducted at the Russell E. Larson Agricultural Research Center to determine the effect of transgenic glyphosate-resistant soybean in combination with herbicide (Roundup) application on its endosymbiont Bradyrhizobium japonicum. DNA of bacteroids from isolated nodules was analysed for the presence of the transgenic 5-enolpyruvylshikimate-3-phosphate synthase (CP4-EPSPS) DNA sequence using polymerase chain reaction (PCR). To further assess the likelihood that the EPSPS gene may be transferred from the Roundup Ready (RR) soybean to B. japonicum, we have examined the natural transformation efficiency of B. japonicum strain 110spc4. Analyses of nodules showed the presence of the transgenic EPSPS DNA sequence. In bacteroids that were isolated from nodules of transgenic soybean plants and then cultivated in the presence of glyphosate this sequence could not be detected. This indicates that no stable horizontal gene transfer (HGT) of the EPSPS gene had occurred under field conditions. Under laboratory conditions, no natural transformation was detected in B. japonicum strain 110spc4 in the presence of various amounts of recombinant plasmid DNA. Our results indicate that no natural competence state exists in B. japonicum 110spc4. Results from field and laboratory studies indicate the lack of functional transfer of the CP4-EPSPS gene from glyphosate-tolerant soybean treated with glyphosate to root-associated B. japonicum.

  7. Gene amplification confers glyphosate resistance in Amaranthus palmeri

    PubMed Central

    Gaines, Todd A.; Zhang, Wenli; Wang, Dafu; Bukun, Bekir; Chisholm, Stephen T.; Shaner, Dale L.; Nissen, Scott J.; Patzoldt, William L.; Tranel, Patrick J.; Culpepper, A. Stanley; Grey, Timothy L.; Webster, Theodore M.; Vencill, William K.; Sammons, R. Douglas; Jiang, Jiming; Preston, Christopher; Leach, Jan E.; Westra, Philip

    2009-01-01

    The herbicide glyphosate became widely used in the United States and other parts of the world after the commercialization of glyphosate-resistant crops. These crops have constitutive overexpression of a glyphosate-insensitive form of the herbicide target site gene, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Increased use of glyphosate over multiple years imposes selective genetic pressure on weed populations. We investigated recently discovered glyphosate-resistant Amaranthus palmeri populations from Georgia, in comparison with normally sensitive populations. EPSPS enzyme activity from resistant and susceptible plants was equally inhibited by glyphosate, which led us to use quantitative PCR to measure relative copy numbers of the EPSPS gene. Genomes of resistant plants contained from 5-fold to more than 160-fold more copies of the EPSPS gene than did genomes of susceptible plants. Quantitative RT-PCR on cDNA revealed that EPSPS expression was positively correlated with genomic EPSPS relative copy number. Immunoblot analyses showed that increased EPSPS protein level also correlated with EPSPS genomic copy number. EPSPS gene amplification was heritable, correlated with resistance in pseudo-F2 populations, and is proposed to be the molecular basis of glyphosate resistance. FISH revealed that EPSPS genes were present on every chromosome and, therefore, gene amplification was likely not caused by unequal chromosome crossing over. This occurrence of gene amplification as an herbicide resistance mechanism in a naturally occurring weed population is particularly significant because it could threaten the sustainable use of glyphosate-resistant crop technology. PMID:20018685

  8. Lack of glyphosate resistance gene transfer from Roundup Ready soybean to Bradyrhizobium japonicum under field and laboratory conditions.

    PubMed

    Isaza, Laura Arango; Opelt, Katja; Wagner, Tobias; Mattes, Elke; Bieber, Evi; Hatley, Elwood O; Roth, Greg; Sanjuán, Juan; Fischer, Hans-Martin; Sandermann, Heinrich; Hartmann, Anton; Ernst, Dieter

    2011-01-01

    A field study was conducted at the Russell E. Larson Agricultural Research Center to determine the effect of transgenic glyphosate-resistant soybean in combination with herbicide (Roundup) application on its endosymbiont Bradyrhizobium japonicum. DNA of bacteroids from isolated nodules was analysed for the presence of the transgenic 5-enolpyruvylshikimate-3-phosphate synthase (CP4-EPSPS) DNA sequence using polymerase chain reaction (PCR). To further assess the likelihood that the EPSPS gene may be transferred from the Roundup Ready (RR) soybean to B. japonicum, we have examined the natural transformation efficiency of B. japonicum strain 110spc4. Analyses of nodules showed the presence of the transgenic EPSPS DNA sequence. In bacteroids that were isolated from nodules of transgenic soybean plants and then cultivated in the presence of glyphosate this sequence could not be detected. This indicates that no stable horizontal gene transfer (HGT) of the EPSPS gene had occurred under field conditions. Under laboratory conditions, no natural transformation was detected in B. japonicum strain 110spc4 in the presence of various amounts of recombinant plasmid DNA. Our results indicate that no natural competence state exists in B. japonicum 110spc4. Results from field and laboratory studies indicate the lack of functional transfer of the CP4-EPSPS gene from glyphosate-tolerant soybean treated with glyphosate to root-associated B. japonicum. PMID:22351985

  9. Collaborative trial validation studies of real-time PCR-based GMO screening methods for detection of the bar gene and the ctp2-cp4epsps construct.

    PubMed

    Grohmann, Lutz; Brünen-Nieweler, Claudia; Nemeth, Anne; Waiblinger, Hans-Ulrich

    2009-10-14

    Polymerase Chain Reaction (PCR)-based screening methods targeting genetic elements commonly used in genetically modified (GM) plants are important tools for the detection of GM materials in food, feed, and seed samples. To expand and harmonize the screening capability of enforcement laboratories, the German Federal Office of Consumer Protection and Food Safety conducted collaborative trials for interlaboratory validation of real-time PCR methods for detection of the phosphinothricin acetyltransferase (bar) gene from Streptomyces hygroscopicus and a construct containing the 5-enolpyruvylshikimate-3-phosphate synthase gene from Agrobacterium tumefaciens sp. strain CP4 (ctp2-cp4epsps), respectively. To assess the limit of detection, precision, and accuracy of the methods, laboratories had to analyze two sets of 18 coded genomic DNA samples of events LLRice62 and MS8 with the bar method and NK603 and GT73 with the ctp2-cp4epsps method at analyte levels of 0, 0.02, and 0.1% GM content, respectively. In addition, standard DNAs were provided to the laboratories to generate calibration curves for copy number quantification of the bar and ctp2-cp4epsps target sequences present in the test samples. The study design and the results obtained are discussed with respect to the difficult issue of developing general guidelines and concepts for the collaborative trial validation of qualitative PCR screening methods.

  10. Effect of glyphosate on the sperm quality of zebrafish Danio rerio.

    PubMed

    Lopes, Fernanda Moreira; Varela Junior, Antonio Sergio; Corcini, Carine Dahl; da Silva, Alessandra Cardoso; Guazzelli, Vitória Gasperin; Tavares, Georgia; da Rosa, Carlos Eduardo

    2014-10-01

    Glyphosate is a systemic, non-selective herbicide widely used in agriculture worldwide. It acts as an inhibitor of the enzyme 5-enolpyruvylshikimate-3-phosphate synthase by interrupting the synthesis of essential aromatic amino acids. This pathway is not present in animals, although some studies have shown that the herbicide glyphosate can affect fish reproduction. In this study, the effect of glyphosate on sperm quality of the fish Danio rerio was investigated after 24 and 96 h of exposure at concentrations of 5mg/L and 10mg/L. The spermatic cell concentration, sperm motility and motility period were measured employing conventional microscopy. The mitochondrial functionality, membrane integrity and DNA integrity were measured by fluorescence microscopy using specific probes. No significant differences in sperm concentration were observed; however, sperm motility and the motility period were reduced after exposure to both glyphosate concentrations during both exposure periods. The mitochondrial functionality and membrane and DNA integrity were also reduced at the highest concentration during both exposure periods. The results showed that glyphosate can induce harmful effects on reproductive parameters in D. rerio and that this change would reduce the fertility rate of these animals. PMID:25089920

  11. Mass spectrometric detection of CP4 EPSPS in genetically modified soya and maize.

    PubMed

    Ocaña, Mireia Fernández; Fraser, Paul D; Patel, Raj K P; Halket, John M; Bramley, Peter M

    2007-01-01

    The potential of protein fractionation hyphenated to mass spectrometry (MS) to detect and characterize the transgenic protein present in Roundup Ready soya and maize has been investigated. Genetically modified (GM) soya and maize contain the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene from Agrobacterium tumefaciens CP4, which confers resistance to the herbicide glyphosate. The GM soya and maize proteomes were fractionated by gel filtration, anion-exchange chromatography and sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) prior to MS. This facilitated detection of a tryptic peptide map of CP4 EPSPS by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS and nanoelectrospray ionization quadrupole time-of-flight (nanoESI-QTOF) MS. Subsequently, sequence information from the CP4 EPSPS tryptic peptides was obtained by nanoESI-QTOF MS/MS. The identification was accomplished in 0.9% GM soya seeds, which is the current EU threshold for food-labeling requirements.

  12. Involvement of facultative apomixis in inheritance of EPSPS gene amplification in glyphosate-resistant Amaranthus palmeri.

    PubMed

    Ribeiro, Daniela N; Pan, Zhiqiang; Duke, Stephen O; Nandula, Vijay K; Baldwin, Brian S; Shaw, David R; Dayan, Franck E

    2014-01-01

    The inheritance of glyphosate resistance in two Amaranthus palmeri populations (R1 and R2) was examined in reciprocal crosses (RC) and second reciprocal crosses (2RC) between glyphosate-resistant (R) and -susceptible (S) parents of this dioecious species. R populations and Female-R × Male-S crosses contain higher 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene copy numbers than the S population. EPSPS expression, EPSPS enzyme activity, EPSPS protein quantity, and level of resistance to glyphosate correlated positively with genomic EPSPS relative copy number. Transfer of resistance was more influenced by the female than the male parent in spite of the fact that the multiple copies of EPSPS are amplified in the nuclear genome. This led us to hypothesize that this perplexing pattern of inheritance may result from apomictic seed production in A. palmeri. We confirmed that reproductively isolated R and S female plants produced seeds, indicating that A. palmeri can produce seeds both sexually and apomictically (facultative apomixis). This apomictic trait accounts for the low copy number inheritance in the Female-S × Male-R offsprings. Apomixis may also enhance the stability of the glyphosate resistance trait in the R populations in the absence of reproductive partners. PMID:24142112

  13. Involvement of facultative apomixis in inheritance of EPSPS gene amplification in glyphosate-resistant Amaranthus palmeri.

    PubMed

    Ribeiro, Daniela N; Pan, Zhiqiang; Duke, Stephen O; Nandula, Vijay K; Baldwin, Brian S; Shaw, David R; Dayan, Franck E

    2014-01-01

    The inheritance of glyphosate resistance in two Amaranthus palmeri populations (R1 and R2) was examined in reciprocal crosses (RC) and second reciprocal crosses (2RC) between glyphosate-resistant (R) and -susceptible (S) parents of this dioecious species. R populations and Female-R × Male-S crosses contain higher 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene copy numbers than the S population. EPSPS expression, EPSPS enzyme activity, EPSPS protein quantity, and level of resistance to glyphosate correlated positively with genomic EPSPS relative copy number. Transfer of resistance was more influenced by the female than the male parent in spite of the fact that the multiple copies of EPSPS are amplified in the nuclear genome. This led us to hypothesize that this perplexing pattern of inheritance may result from apomictic seed production in A. palmeri. We confirmed that reproductively isolated R and S female plants produced seeds, indicating that A. palmeri can produce seeds both sexually and apomictically (facultative apomixis). This apomictic trait accounts for the low copy number inheritance in the Female-S × Male-R offsprings. Apomixis may also enhance the stability of the glyphosate resistance trait in the R populations in the absence of reproductive partners.

  14. A built-in strategy for containment of transgenic plants: creation of selectively terminable transgenic rice.

    PubMed

    Lin, Chaoyang; Fang, Jun; Xu, Xiaoli; Zhao, Te; Cheng, Jiaan; Tu, Juming; Ye, Gongyin; Shen, Zhicheng

    2008-01-01

    Plant transgenic technology has been widely utilized for engineering crops for trait improvements and for production of high value proteins such as pharmaceuticals. However, the unintended spreading of commercial transgenic crops by pollination and seed dispersal is a major concern for environmental and food safety. Simple and reliable containment strategies for transgenes are highly desirable. Here we report a novel method for creating selectively terminable transgenic rice. In this method, the gene(s) of interest is tagged with a RNA interference cassette, which specifically suppresses the expression of the bentazon detoxification enzyme CYP81A6 and thus renders transgenic rice to be sensitive to bentazon, a herbicide used for rice weed control. We generated transgenic rice plants by this method using a new glyphosate resistant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene from Pesudomonas putida as the gene of interest, and demonstrated that these transgenic rice plants were highly sensitive to bentazon but tolerant to glyphosate, which is exactly the opposite of conventional rice. Field trial of these transgenic rice plants further confirmed that they can be selectively killed at 100% by one spray of bentazon at a regular dose used for conventional rice weed control. Furthermore, we found that the terminable transgenic rice created in this study shows no difference in growth, development and yield compared to its non-transgenic control. Therefore, this method of creating transgenic rice constitutes a novel strategy of transgene containment, which appears simple, reliable and inexpensive for implementation. PMID:18350155

  15. EPSPS variability, gene expression, and enzymatic activity in glyphosate-resistant biotypes of Digitaria insularis.

    PubMed

    Galeano, E; Barroso, A A M; Vasconcelos, T S; López-Rubio, A; Albrecht, A J P; Victoria Filho, R; Carrer, H

    2016-01-01

    Weed resistance to herbicides is a natural phenomenon that exerts selection on individuals in a population. In Brazil, glyphosate resistance was recently detected in Digitaria insularis. The objective of this study was to elucidate mechanisms of weed resistance in this plant, including genetic variability, allelism, amino acid substitutions, gene expression, and enzymatic activity levels. Most of these have not previously been studied in this species. D. insularis DNA sequences were used to analyze genetic variability. cDNA from resistant and susceptible plants was used to identify mutations, alleles, and 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) expression, using real-time quantitative reverse transcription-polymerase chain reaction. In addition, EPSPS activity was measured. We found a decrease in genetic variability between populations related to glyphosate application. Substitutions from proline to threonine and tyrosine to cysteine led to a decrease in EPSPS affinity for the glyphosate. In addition, the EPSPS enzymatic activity was slightly higher in resistant plants, whereas EPSPS gene expression was almost identical in both biotypes, suggesting feedback regulation at different levels. To conclude, our results suggest new molecular mechanisms used by D. insularis to increase glyphosate resistance. PMID:27525929

  16. Oligonucleotide-Mediated Genome Editing Provides Precision and Function to Engineered Nucleases and Antibiotics in Plants.

    PubMed

    Sauer, Noel J; Narváez-Vásquez, Javier; Mozoruk, Jerry; Miller, Ryan B; Warburg, Zachary J; Woodward, Melody J; Mihiret, Yohannes A; Lincoln, Tracey A; Segami, Rosa E; Sanders, Steven L; Walker, Keith A; Beetham, Peter R; Schöpke, Christian R; Gocal, Greg F W

    2016-04-01

    Here, we report a form of oligonucleotide-directed mutagenesis for precision genome editing in plants that uses single-stranded oligonucleotides (ssODNs) to precisely and efficiently generate genome edits at DNA strand lesions made by DNA double strand break reagents. Employing a transgene model in Arabidopsis (Arabidopsis thaliana), we obtained a high frequency of precise targeted genome edits when ssODNs were introduced into protoplasts that were pretreated with the glycopeptide antibiotic phleomycin, a nonspecific DNA double strand breaker. Simultaneous delivery of ssODN and a site-specific DNA double strand breaker, either transcription activator-like effector nucleases (TALENs) or clustered, regularly interspaced, short palindromic repeats (CRISPR/Cas9), resulted in a much greater targeted genome-editing frequency compared with treatment with DNA double strand-breaking reagents alone. Using this site-specific approach, we applied the combination of ssODN and CRISPR/Cas9 to develop an herbicide tolerance trait in flax (Linum usitatissimum) by precisely editing the 5'-ENOLPYRUVYLSHIKIMATE-3-PHOSPHATE SYNTHASE (EPSPS) genes. EPSPS edits occurred at sufficient frequency that we could regenerate whole plants from edited protoplasts without employing selection. These plants were subsequently determined to be tolerant to the herbicide glyphosate in greenhouse spray tests. Progeny (C1) of these plants showed the expected Mendelian segregation of EPSPS edits. Our findings show the enormous potential of using a genome-editing platform for precise, reliable trait development in crop plants. PMID:26864017

  17. Population genetics structure of glyphosate-resistant Johnsongrass (Sorghum halepense L. Pers) does not support a single origin of the resistance.

    PubMed

    Fernández, Luis; de Haro, Luis Alejandro; Distefano, Ana J; Carolina Martínez, Maria; Lía, Verónica; Papa, Juan C; Olea, Ignacio; Tosto, Daniela; Esteban Hopp, Horacio

    2013-09-01

    Single sequence repeats (SSR) developed for Sorghum bicolor were used to characterize the genetic distance of 46 different Sorghum halepense (Johnsongrass) accessions from Argentina some of which have evolved toward glyphosate resistance. Since Johnsongrass is an allotetraploid and only one subgenome is homologous to cultivated sorghum, some SSR loci amplified up to two alleles while others (presumably more conserved loci) amplified up to four alleles. Twelve SSR providing information of 24 loci representative of Johnsongrass genome were selected for genetic distance characterization. All of them were highly polymorphic, which was evidenced by the number of different alleles found in the samples studied, in some of them up to 20. UPGMA and Mantel analysis showed that Johnsongrass glyphosate-resistant accessions that belong to different geographic regions do not share similar genetic backgrounds. In contrast, they show closer similarity to their neighboring susceptible counterparts. Discriminant Analysis of Principal Components using the clusters identified by K-means support the lack of a clear pattern of association among samples and resistance status or province of origin. Consequently, these results do not support a single genetic origin of glyphosate resistance. Nucleotide sequencing of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) encoding gene from glyphosate-resistant and susceptible accessions collected from different geographic origins showed that none presented expected mutations in aminoacid positions 101 and 106 which are diagnostic of target-site resistance mechanism.

  18. Collaborative trial validation studies of real-time PCR-based GMO screening methods for detection of the bar gene and the ctp2-cp4epsps construct.

    PubMed

    Grohmann, Lutz; Brünen-Nieweler, Claudia; Nemeth, Anne; Waiblinger, Hans-Ulrich

    2009-10-14

    Polymerase Chain Reaction (PCR)-based screening methods targeting genetic elements commonly used in genetically modified (GM) plants are important tools for the detection of GM materials in food, feed, and seed samples. To expand and harmonize the screening capability of enforcement laboratories, the German Federal Office of Consumer Protection and Food Safety conducted collaborative trials for interlaboratory validation of real-time PCR methods for detection of the phosphinothricin acetyltransferase (bar) gene from Streptomyces hygroscopicus and a construct containing the 5-enolpyruvylshikimate-3-phosphate synthase gene from Agrobacterium tumefaciens sp. strain CP4 (ctp2-cp4epsps), respectively. To assess the limit of detection, precision, and accuracy of the methods, laboratories had to analyze two sets of 18 coded genomic DNA samples of events LLRice62 and MS8 with the bar method and NK603 and GT73 with the ctp2-cp4epsps method at analyte levels of 0, 0.02, and 0.1% GM content, respectively. In addition, standard DNAs were provided to the laboratories to generate calibration curves for copy number quantification of the bar and ctp2-cp4epsps target sequences present in the test samples. The study design and the results obtained are discussed with respect to the difficult issue of developing general guidelines and concepts for the collaborative trial validation of qualitative PCR screening methods. PMID:19807158

  19. EPSPS variability, gene expression, and enzymatic activity in glyphosate-resistant biotypes of Digitaria insularis.

    PubMed

    Galeano, E; Barroso, A A M; Vasconcelos, T S; López-Rubio, A; Albrecht, A J P; Victoria Filho, R; Carrer, H

    2016-08-12

    Weed resistance to herbicides is a natural phenomenon that exerts selection on individuals in a population. In Brazil, glyphosate resistance was recently detected in Digitaria insularis. The objective of this study was to elucidate mechanisms of weed resistance in this plant, including genetic variability, allelism, amino acid substitutions, gene expression, and enzymatic activity levels. Most of these have not previously been studied in this species. D. insularis DNA sequences were used to analyze genetic variability. cDNA from resistant and susceptible plants was used to identify mutations, alleles, and 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) expression, using real-time quantitative reverse transcription-polymerase chain reaction. In addition, EPSPS activity was measured. We found a decrease in genetic variability between populations related to glyphosate application. Substitutions from proline to threonine and tyrosine to cysteine led to a decrease in EPSPS affinity for the glyphosate. In addition, the EPSPS enzymatic activity was slightly higher in resistant plants, whereas EPSPS gene expression was almost identical in both biotypes, suggesting feedback regulation at different levels. To conclude, our results suggest new molecular mechanisms used by D. insularis to increase glyphosate resistance.

  20. Expression of an evolved engineered variant of a bacterial glycine oxidase leads to glyphosate resistance in alfalfa.

    PubMed

    Nicolia, A; Ferradini, N; Molla, G; Biagetti, E; Pollegioni, L; Veronesi, F; Rosellini, D

    2014-08-20

    The main strategy for resistance to the herbicide glyphosate in plants is the overexpression of an herbicide insensitive, bacterial 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). A glyphosate resistance strategy based on the ability to degrade the herbicide can be useful to reduce glyphosate phytotoxicity to the crops. Here we present the characterization of glyphosate resistance in transgenic alfalfa (Medicago sativa L.) expressing a plant-optimized variant of glycine oxidase (GO) from Bacillus subtilis, evolved in vitro by a protein engineering approach to efficiently degrade glyphosate. Two constructs were used, one with (GO(TP+)) and one without (GO(TP-)) the pea rbcS plastid transit peptide. Molecular and biochemical analyses confirmed the stable integration of the transgene and the correct localization of the plastid-imported GO protein. Transgenic alfalfa plants were tested for glyphosate resistance both in vitro and in vivo. Two GO(TP+) lines showed moderate resistance to the herbicide in both conditions. Optimization of expression of this GO variant may allow to attain sufficient field resistance to glyphosate herbicides, thus providing a resistance strategy based on herbicide degradation.

  1. Identification of regulated genes conferring resistance to high concentrations of glyphosate in a new strain of Enterobacter.

    PubMed

    Fei, Yun-Yan; Gai, Jun-Yi; Zhao, Tuan-Jie

    2013-12-01

    Glyphosate is a widely used herbicide that inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity. Most plants and microbes are sensitive to glyphosate. However, transgenic-resistant crops that contain a modified epsps obtained from the resistant microbes have been commercially successful and therefore, new resistance genes and their adaptive regulatory mechanisms are of great interest. In this study, a soil-borne, glyphosate-resistant bacterium was selected and identified as Enterobacter. The EPSPS in this strain was found to have been altered to a resistant one. A total of 42 differentially expressed genes (DEGs) in the glyphosate were screened using microarray techniques. Under treatment, argF, sdhA, ivbL, rrfA-H were downregulated, whereas the transcripts of speA, osmY, pflB, ahpC, fusA, deoA, uxaC, rpoD and a few ribosomal protein genes were upregulated. Data were verified by quantitative real-time PCR on selected genes. All transcriptional changes appeared to protect the bacteria from glyphosate and associated osmotic, acidic and oxidative stresses. Many DEGs may have the potential to confer resistance to glyphosate alone, and some may be closely related to the shikimate pathway, reflecting the complex gene interaction network for glyphosate resistance.

  2. Mechanism of resistance of evolved glyphosate-resistant Palmer amaranth (Amaranthus palmeri).

    PubMed

    Gaines, Todd A; Shaner, Dale L; Ward, Sarah M; Leach, Jan E; Preston, Christopher; Westra, Philip

    2011-06-01

    Evolved glyphosate resistance in weedy species represents a challenge for the continued success and utility of glyphosate-resistant crops. Glyphosate functions by inhibiting the plant enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). The resistance mechanism was determined in a population of glyphosate-resistant Palmer amaranth from Georgia (U.S.). Within this population, glyphosate resistance correlates with increases in (a) genomic copy number of EPSPS, (b) expression of the EPSPS transcript, (c) EPSPS protein level, and (d) EPSPS enzymatic activity. Dose response results from the resistant and an F(2) population suggest that between 30 and 50 EPSPS genomic copies are necessary to survive glyphosate rates between 0.5 and 1.0 kg ha(-1). These results further confirm the role of EPSPS gene amplification in conferring glyphosate resistance in this population of Palmer amaranth. Questions remain related to how the EPSPS amplification initially occurred and the occurrence of this mechanism in other Palmer amaranth populations and other glyphosate-resistant species.

  3. Bacterial glyphosate resistance conferred by overexpression of an E. coli membrane efflux transporter.

    PubMed

    Staub, Jeffrey M; Brand, Leslie; Tran, Minhtien; Kong, Yifei; Rogers, Stephen G

    2012-04-01

    Glyphosate herbicide-resistant crop plants, introduced commercially in 1994, now represent approximately 85% of the land area devoted to transgenic crops. Herbicide resistance in commercial glyphosate-resistant crops is due to expression of a variant form of a bacterial 5-enolpyruvylshikimate-3-phosphate synthase with a significantly decreased binding affinity for glyphosate at the target site of the enzyme. As a result of widespread and recurrent glyphosate use, often as the only herbicide used for weed management, increasing numbers of weedy species have evolved resistance to glyphosate. Weed resistance is most often due to changes in herbicide translocation patterns, presumed to be through the activity of an as yet unidentified membrane transporter in plants. To provide insight into glyphosate resistance mechanisms and identify a potential glyphosate transporter, we screened Escherichia coli genomic DNA for alternate sources of glyphosate resistance genes. Our search identified a single non-target gene that, when overexpressed in E. coli and Pseudomonas, confers high-level glyphosate resistance. The gene, yhhS, encodes a predicted membrane transporter of the major facilitator superfamily involved in drug efflux. We report here that an alternative mode of glyphosate resistance in E. coli is due to reduced accumulation of glyphosate in cells that overexpress this membrane transporter and discuss the implications for potential alternative resistance mechanisms in other organisms such as plants.

  4. A red and far-red light receptor mutation confers resistance to the herbicide glyphosate.

    PubMed

    Sharkhuu, Altanbadralt; Narasimhan, Meena L; Merzaban, Jasmeen S; Bressan, Ray A; Weller, Steve; Gehring, Chris

    2014-06-01

    Glyphosate is a widely applied broad-spectrum systemic herbicide that inhibits competitively the penultimate enzyme 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) from the shikimate pathway, thereby causing deleterious effects. A glyphosate-resistant Arabidopsis mutant (gre1) was isolated and genetic analyses indicated that a dysfunctional red (R) and far-red (FR) light receptor, phytochrome B (phyB), caused this phenotype. This finding is consistent with increased glyphosate sensitivity and glyphosate-induced shikimate accumulation in low R:FR light, and the induction of genes encoding enzymes of the shikimate pathway in high R:FR light. Expression of the shikimate pathway genes exhibited diurnal oscillation and this oscillation was altered in the phyB mutant. Furthermore, transcript analysis suggested that this diurnal oscillation was not only dependent on phyB but was also due to circadian regulatory mechanisms. Our data offer an explanation of the well documented observation that glyphosate treatment at various times throughout the day, with their specific composition of light quality and intensity, results in different efficiencies of the herbicide.

  5. A Built-In Strategy for Containment of Transgenic Plants: Creation of Selectively Terminable Transgenic Rice

    PubMed Central

    Zhao, Te; Cheng, Jiaan; Tu, Juming; Ye, Gongyin; Shen, Zhicheng

    2008-01-01

    Plant transgenic technology has been widely utilized for engineering crops for trait improvements and for production of high value proteins such as pharmaceuticals. However, the unintended spreading of commercial transgenic crops by pollination and seed dispersal is a major concern for environmental and food safety. Simple and reliable containment strategies for transgenes are highly desirable. Here we report a novel method for creating selectively terminable transgenic rice. In this method, the gene(s) of interest is tagged with a RNA interference cassette, which specifically suppresses the expression of the bentazon detoxification enzyme CYP81A6 and thus renders transgenic rice to be sensitive to bentazon, a herbicide used for rice weed control. We generated transgenic rice plants by this method using a new glyphosate resistant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene from Pesudomonas putida as the gene of interest, and demonstrated that these transgenic rice plants were highly sensitive to bentazon but tolerant to glyphosate, which is exactly the opposite of conventional rice. Field trial of these transgenic rice plants further confirmed that they can be selectively killed at 100% by one spray of bentazon at a regular dose used for conventional rice weed control. Furthermore, we found that the terminable transgenic rice created in this study shows no difference in growth, development and yield compared to its non-transgenic control. Therefore, this method of creating transgenic rice constitutes a novel strategy of transgene containment, which appears simple, reliable and inexpensive for implementation. PMID:18350155

  6. Strategies to improve low copy transgenic events in Agrobacterium-mediated transformation of maize.

    PubMed

    Sivamani, Elumalai; Li, Xianggan; Nalapalli, Samson; Barron, Yoshimi; Prairie, Anna; Bradley, David; Doyle, Michele; Que, Qiudeng

    2015-12-01

    Transgenic plants containing low copy transgene insertion free of vector backbone are highly desired for many biotechnological applications. We have investigated two different strategies for increasing the percentage of low copy events in Agrobacterium-mediated transformation experiments in maize. One of the strategies is to use a binary vector with two separate T-DNAs, one T-DNA containing an intact E.coli manA gene encoding phosphomannose isomerase (PMI) as selectable marker gene cassette and another T-DNA containing an RNAi cassette of PMI sequences. By using this strategy, low copy transgenic events containing the transgenes were increased from 43 to 60 % in maize. An alternate strategy is using selectable marker gene cassettes containing regulatory or coding sequences derived from essential plant genes such as 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) or MADS box transcription factor. In this paper we demonstrate that higher percentage of low copy transgenic events can be obtained in Agrobacterium-mediated maize transformation experiments using both strategies. We propose that the above two strategies can be used independently or in combination to increase transgenic events that contain low copy transgene insertion in Agrobacterium-mediated transformation experiments.

  7. Piezoelectric Sensor for Determination of Genetically Modified Soybean Roundup Ready® in Samples not Amplified by PCR

    PubMed Central

    Stobiecka, Magdalena; Cieśla, Jarosław M.; Janowska, Beata; Tudek, Barbara; Radecka, Hanna

    2007-01-01

    The chemically modified piezoelectrodes were utilized to develop relatively cheap and easy to use biosensor for determination of genetically modified Roundup Ready soybean (RR soybean). The biosensor relies on the immobilization onto gold piezoelectrodes of the 21-mer single stranded oligonucleotide (probes) related to 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene, which is an active component of an insert integrated into RR soybean genome. The hybridization reaction between the probe and the target complementary sequence in solution was monitored. The system was optimized using synthetic oligonucleotides, which were applied for EPSPS gene detection in DNA samples extracted from animal feed containing 30% RR soybean amplified by the PCR and nonamplified by PCR. The detection limit for genomic DNA was in the range of 4.7·105 numbers of genom copies contained EPSPS gene in the QCM cell. The properties such as sensitivity and selectivity of piezoelectric senor presented here indicated that it could be applied for the direct determination of genetically modified RR soybean in the samples non-amplified by PCR.

  8. Quantification of genetically modified soya using strong anion exchange chromatography and time-of-flight mass spectrometry.

    PubMed

    Chang, Po-Chih; Reddy, P Muralidhar; Ho, Yen-Peng

    2014-09-01

    Stable-isotope dimethyl labeling was applied to the quantification of genetically modified (GM) soya. The herbicide-resistant gene-related protein 5-enolpyruvylshikimate-3-phosphate synthase (CP4 EPSPS) was labeled using a dimethyl labeling reagent, formaldehyde-H2 or -D2. The identification and quantification of CP4 EPSPS was performed using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The CP4 EPSPS protein was separated from high abundance proteins using strong anion exchange chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Then, the tryptic peptides from the samples and reference were labeled with formaldehyde-H2 and formaldehyde-D2, respectively. The two labeled pools were mixed and analyzed using MALDI-MS. The data showed a good correlation between the peak ratio of the H- and D-labeled peptides and the GM soya percentages at 0.5, 1, 3, and 5 %, with R (2) of 0.99. The labeling reagents are readily available. The labeling experiments and the detection procedures are simple. The approach is useful for the quantification of GM soya at a level as low as 0.5 %.

  9. A built-in strategy for containment of transgenic plants: creation of selectively terminable transgenic rice.

    PubMed

    Lin, Chaoyang; Fang, Jun; Xu, Xiaoli; Zhao, Te; Cheng, Jiaan; Tu, Juming; Ye, Gongyin; Shen, Zhicheng

    2008-01-01

    Plant transgenic technology has been widely utilized for engineering crops for trait improvements and for production of high value proteins such as pharmaceuticals. However, the unintended spreading of commercial transgenic crops by pollination and seed dispersal is a major concern for environmental and food safety. Simple and reliable containment strategies for transgenes are highly desirable. Here we report a novel method for creating selectively terminable transgenic rice. In this method, the gene(s) of interest is tagged with a RNA interference cassette, which specifically suppresses the expression of the bentazon detoxification enzyme CYP81A6 and thus renders transgenic rice to be sensitive to bentazon, a herbicide used for rice weed control. We generated transgenic rice plants by this method using a new glyphosate resistant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene from Pesudomonas putida as the gene of interest, and demonstrated that these transgenic rice plants were highly sensitive to bentazon but tolerant to glyphosate, which is exactly the opposite of conventional rice. Field trial of these transgenic rice plants further confirmed that they can be selectively killed at 100% by one spray of bentazon at a regular dose used for conventional rice weed control. Furthermore, we found that the terminable transgenic rice created in this study shows no difference in growth, development and yield compared to its non-transgenic control. Therefore, this method of creating transgenic rice constitutes a novel strategy of transgene containment, which appears simple, reliable and inexpensive for implementation.

  10. Structural Insights into the Mechanism of the PLP Synthase Holoenzyme from Thermotoga maritima†,‡

    PubMed Central

    Zein, Fairuz; Zhang, Yan; Kang, You-Na; Burns, Kristin; Begley, Tadhg P.; Ealick, Steven E.

    2008-01-01

    Pyridoxal 5'-phosphate (PLP) is the biologically active form of vitamin B6 and is an important cofactor for several of the enzymes involved in the metabolism of amine-containing natural products such as amino acids and amino-sugars. The PLP synthase holoenzyme consists of two subunits: YaaD catalyzes the condensation of ribulose 5-phosphate, glyceraldehyde-3-phosphate and ammonia and YaaE catalyzes the production of ammonia from glutamine. Here we describe the structure of the PLP synthase complex (YaaD-YaaE) from Thermotoga maritima at 2.9 Å resolution. This complex consists of a core of 12 YaaD monomers with 12 noninteracting YaaE monomers attached to the core. Compared to the previously published structure of PdxS (a YaaD ortholog in Geobacillus stearothermophilus), the N-terminus (1–18), which includes helix α0, the β2-α2 loop(46–56), which includes new helix α2a, and the C-terminus (270–280) of YaaD, are ordered in the complex but disordered in PdxS. A ribulose 5-phosphate is bound to YaaD via an imine with Lys82. Previous studies have demonstrated a similar imine at Lys149 and not at Lys81 (equivalent to Lys150 and 82 in T. maritima) for the Bacillus subtilis enzyme suggesting the possibility that two separate sites on YaaD are involved in PLP formation. A phosphate from the crystallization solution is found bound to YaaD and also serves as a marker for a possible second active site. An ammonia channel that connects the active site of YaaE with the ribulose 5-phosphate binding site was identified. This channel is similar to one found in imidazole glycerol phosphate synthase; however, when the β-barrels of the two complexes are superimposed, the glutaminase domains are rotated by about 180° with respect to each other. PMID:17144654

  11. Cellulose Synthase Complexes: Composition and Regulation

    PubMed Central

    Lei, Lei; Li, Shundai; Gu, Ying

    2012-01-01

    Live cell imaging has greatly advanced our knowledge on the molecular mechanism by which cellulose is deposited. Both the actin and microtubule cytoskeleton are involved in assuring the proper distribution, organization, and dynamics of cellulose synthase complexes (CSCs). This review is an update on the most recent progress on the characterization of the composition, regulation, and trafficking of CSCs. With the newly identified cellulose synthase interactive protein 1 (CSI1) on hand, we begin to unveil the mystery of an intimate relationship between cellulose microfibrils and microtubules. PMID:22639663

  12. Functional complementation of an Escherichia coli gap mutant supports an amphibolic role for NAD(P)-dependent glyceraldehyde-3-phosphate dehydrogenase of Synechocystis sp. strain PCC 6803.

    PubMed Central

    Valverde, F; Losada, M; Serrano, A

    1997-01-01

    The gap-2 gene, encoding the NAD(P)-dependent D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH2) of the cyanobacterium Synechocystis sp. strain PCC 6803, was cloned by functional complementation of an Escherichia coli gap mutant with a genomic DNA library; this is the first time that this cloning strategy has been used for a GAPDH involved in photosynthetic carbon assimilation. The Synechocystis DNA region able to complement the E. coli gap mutant was narrowed down to 3 kb and fully sequenced. A single complete open reading frame of 1,011 bp encoding a protein of 337 amino acids was found and identified as the putative gap-2 gene identified in the complete genome sequence of this organism. Determination of the transcriptional start point, identification of putative promoter and terminator sites, and orientation of the truncated flanking genes suggested the gap-2 transcript should be monocystronic, a possibility further confirmed by Northern blot studies. Both natural and recombinant homotetrameric GAPDH2s were purified and found to exhibit virtually identical physicochemical and kinetic properties. The recombinant GAPDH2 showed the dual pyridine nucleotide specificity characteristic of the native cyanobacterial enzyme, and similar ratios of NAD- to NADP-dependent activities were found in cell extracts from Synechocystis as well as in those from the complemented E. coli clones. The deduced amino acid sequence of Synechocystis GAPDH2 presented a high degree of identity with sequences of the chloroplastic NADP-dependent enzymes. In agreement with this result, immunoblot analysis using monospecific antibodies raised against GAPDH2 showed the presence of the 38-kDa GAPDH subunit not only in crude extracts from the gap-2-expressing E. coli clones and all cyanobacteria that were tested but also in those from eukaryotic microalgae and plants. Western and Northern blot experiments showed that gap-2 is conspicuously expressed, although at different levels, in Synechocystis

  13. The Atg18-Atg2 Complex Is Recruited to Autophagic Membranes via Phosphatidylinositol 3-Phosphate and Exerts an Essential Function*S⃞

    PubMed Central

    Obara, Keisuke; Sekito, Takayuki; Niimi, Kaori; Ohsumi, Yoshinori

    2008-01-01

    Atg18 is essential for both autophagy and the regulation of vacuolar morphology. The latter process is mediated by phosphatidylinositol 3,5-bisphosphate binding, which is dispensable for autophagy. Atg18 also binds to phosphatidylinositol 3-phosphate (PtdIns(3)P) in vitro. Here, we investigate the relationship between PtdIns(3)P-binding of Atg18 and autophagy. Using an Atg18 variant, Atg18(FTTG), which is unable to bind phosphoinositides, we found that PtdIns(3)P binding of Atg18 is essential for full activity in both selective and nonselective autophagy. Atg18(FTTG) formed a complex with Atg2 in a normal manner, and Atg18-Atg2 complex formation occurred in cells in the absence of PtdIns(3)P, indicating that Atg18-Atg2 complex formation is independent of PtdIns(3)P-binding of Atg18. Atg18 localized to endosomes, the vacuolar membrane, and autophagic membranes, whereas Atg18(FTTG) did not localize to these structures. The localization of Atg2 to autophagic membranes was also lost in Atg18(FTTG) cells. These data indicate that PtdIns(3)P-binding of Atg18 is involved in directing the Atg18-Atg2 complex to autophagic membranes. Connection of a 2×FYVE domain, a specific PtdIns(3)P-binding domain, to the C terminus of Atg18(FTTG) restored the localization of Atg18-Atg2 to autophagic membranes and full autophagic activity, indicating that PtdIns(3)P-binding by Atg18 is dispensable for the function of the Atg18-Atg2 complex but is required for its localization. This also suggests that PtdIns(3)P does not act allosterically on Atg18. Taken together, Atg18 forms a complex with Atg2 irrespective of PtdIns(3)P binding, associates tightly to autophagic membranes by interacting with PtdIns(3)P, and plays an essential role. PMID:18586673

  14. Identification of a light-responsive region of the nuclear gene encoding the B subunit of chloroplast glyceraldehyde 3-phosphate dehydrogenase from Arabidopsis thaliana.

    PubMed Central

    Kwon, H B; Park, S C; Peng, H P; Goodman, H M; Dewdney, J; Shih, M C

    1994-01-01

    We report here the identification of a cis-acting region involved in light regulation of the nuclear gene (GapB) encoding the B subunit of chloroplast glyceraldehyde 3-phosphate dehydrogenase from Arabidopsis thaliana. Our results show that a 664-bp GapB promoter fragment is sufficient to confer light induction and organ-specific expression of the Escherichia coli beta-glucuronidase reporter gene (Gus) in transgenic tobacco (Nicotiana tabacum) plants. Deletion analysis indicates that the -261 to -173 upstream region of the GapB gene is essential for light induction. This region contains four direct repeats with the consensus sequence 5'-ATGAA(A/G)A-3' (Gap boxes). Deletion of all four repeats abolishes light induction completely. In addition, we have linked a 109-bp (-263 to -152) GapB upstream fragment containing the four direct repeats in two orientations to the -92 to +6 upstream sequence of the cauliflower mosaic virus 35S basal promoter. The resulting chimeric promoters are able to confer light induction and to enhance leaf-specific expression of the Gus reporter gene in transgenic tobacco plants. Based on these results we conclude that Gap boxes are essential for light regulation and organ-specific expression of the GapB gene in A. thaliana. Using gel mobility shift assays we have also identified a nuclear factor from tobacco that interacts with GapA and GapB DNA fragments containing these Gap boxes. Competition assays indicate that Gap boxes are the binding sites for this factor. Although this binding activity is present in nuclear extracts from leaves and roots of light-grown or dark-treated tobacco plants, the activity is less abundant in nuclear extracts prepared from leaves of dark-treated plants or from roots of greenhouse-grown plants. In addition, our data show that this binding factor is distinct from the GT-1 factor, which binds to Box II and Box III within the light-responsive element of the RbcS-3A gene of pea. PMID:8029358

  15. Repressor for the sn-glycerol 3-phosphate regulon of Escherichia coli K-12: primary structure and identification of the DNA-binding domain.

    PubMed

    Zeng, G; Ye, S; Larson, T J

    1996-12-01

    The nucleotide sequence of the glpEGR operon of Escherichia coli was determined. The translational reading frame at the beginning, middle, and end of each gene was verified. The glpE gene encodes an acidic, cytoplasmic protein of 108 amino acids with a molecular weight of 12,082. The glpG gene encodes a basic, cytoplasmic membrane-associated protein of 276 amino acids with a molecular weight of 31,278. The functions of GlpE and GlpG are unknown. The glpR gene encodes the repressor for the glycerol 3-phosphate regulon, a protein predicted to contain 252 amino acids with a calculated molecular weight of 28,048. The amino acid sequence of the glp repressor was similar to several repressors of carbohydrate catabolic systems, including those of the glucitol (GutR), fucose (FucR), and deoxyribonucleoside (DeoR) systems of E. coli, as well as those of the lactose (LacR) and inositol (IolR) systems of gram-positive bacteria and agrocinopine (AccR) system of Agrobacterium tumefaciens. These repressors constitute a family of related proteins, all of which contain approximately 250 amino acids, possess a helix-turn-helix DNA-binding motif near the amino terminus, and bind a sugar phosphate molecule as the inducing signal. The DNA recognition helix of the glp repressor and the nucleotide sequence of the glp operator were very similar to those of the deo system. The presumptive recognition helix of the glp repressor was changed by site-directed mutagenesis to match that of the deo repressor or, in a separate construct, to abolish DNA binding. Neither altered form of the glp repressor recognized the glp or deo operator, either in vivo or in vitro. However, both altered forms of the glp repressor were negatively dominant to the wild-type glp repressor, indicating that the inability to bind DNA with high affinity was due to alteration of the DNA-binding domain, not to an inability to oligomerize or instability of the altered repressors. For the first time, analysis of repressors

  16. Homology study of two polyhydroxyalkanoate (PHA) synthases from Pseudomonas aureofaciens.

    PubMed

    Umeda, F; Nishikawa, T; Miyasaka, H; Maeda, I; Kawase, M; Yagi, K

    2001-11-01

    Recently, we have cloned and analyzed two polyhydroxyalkanoate (PHA) synthase genes (phaC1 and phaC2 in the pha cluster) from Pseudomonas aureofaciens. In this report, the deduced amino acid (AA) sequences of PHA synthase 1 and PHA synthase 2 from P. aureofaciens are compared with those from three other bacterial strains (Pseudomonas sp. 61-3, P. oleovorans and P. aeruginosa) containing the homologous pha cluster. The level of homology of either PHA synthase 1 or PHA synthase 2 was high with each enzyme from these three bacterial strains. Furthermore, multialignment of PHA synthase AA sequences implied that both enzymes of PHA synthase 1 and PHA synthase 2 were highly conserved in the four strains including P. aureofaciens. PMID:11916262

  17. Identification of novel sesterterpene/triterpene synthase from Bacillus clausii.

    PubMed

    Sato, Tsutomu; Yamaga, Hiroaki; Kashima, Shoji; Murata, Yusuke; Shinada, Tetsuro; Nakano, Chiaki; Hoshino, Tsutomu

    2013-05-10

    Basic enzyme: The tetraprenyl-β-curcumene synthase homologue from the alkalophilic Bacillus clausii catalyses conversions of a geranylfarnesyl diphosphate and a hexaprenyl diphosphate into novel head-to-tail acyclic sesterterpene and triterpene. Tetraprenyl-β-curcumene synthase homologues represent a new family of terpene synthases that form not only sesquarterpene but also sesterterpene and triterpene. PMID:23554321

  18. Lessons from 455 Fusarium polyketide synthases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In fungi, polyketide synthases (PKSs) synthesize a structurally diverse array of secondary metabolites (SMs) with a range of biological activities. The most studied SMs are toxic to animals and/or plants, alter plant growth, have beneficial pharmaceutical activities, and/or are brightly colored pigm...

  19. Producing dicarboxylic acids using polyketide synthases

    SciTech Connect

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-10-29

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing a dicarboxylic acid (diacid). Such diacids include diketide-diacids and triketide-diacids. The invention includes recombinant nucleic acid encoding the PKS, and host cells comprising the PKS. The invention also includes methods for producing the diacids.

  20. Producing dicarboxylic acids using polyketide synthases

    SciTech Connect

    Katz, Leonard; Fortman, Jeffrey L.; Keasling, Jay D.

    2015-05-26

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing a dicarboxylic acid (diacid). Such diacids include diketide-diacids and triketide-diacids. The invention includes recombinant nucleic acid encoding the PKS, and host cells comprising the PKS. The invention also includes methods for producing the diacids.

  1. Rational Design of Nanoparticle Platforms for "Cutting-the-Fat": Covalent Immobilization of Lipase, Glycerol Kinase, and Glycerol-3-Phosphate Oxidase on Metal Nanoparticles.

    PubMed

    Aggarwal, V; Pundir, C S

    2016-01-01

    The aggregates of nanoparticles (NPs) are considered better supports for the immobilization of enzymes, as these promote enzyme kinetics, due to their unusual but favorable properties such as larger surface area to volume ratio, high catalytic efficiency of certain immobilized enzymes, non-toxicity of some of the nanoparticle matrices, high stability, strong adsorption of the enzyme of interest by a number of different approaches, and faster electron transportability. Co-immobilization of multiple enzymes required for a multistep reaction cascade on a single support is more efficient than separately immobilizing the corresponding enzymes and mixing them physically, since products of one enzyme could serve as reactants for another. These products can diffuse much more easily between enzymes on the same particle than diffusion from one particle to the next, in the reaction medium. Thus, co-immobilization of enzymes onto NP aggregates is expected to produce faster kinetics than their individual immobilizations on separate matrices. Lipase, glycerol kinase, and glycerol-3-phosphate oxidase are required for lipid analysis in a cascade reaction, and we describe the co-immobilization of these three enzymes on nanocomposites of zinc oxide nanoparticles (ZnONPs)-chitosan (CHIT) and gold nanoparticles-polypyrrole-polyindole carboxylic acid (AuPPy-Pin5COOH) which are electrodeposited on Pt and Au electrodes, respectively. The kinetic properties and analytes used for amperometric determination of TG are fully described for others to practice in a trained laboratory. Cyclic voltammetry, scanning electron microscopy, Fourier transform infra-red spectra, and electrochemical impedance spectra confirmed their covalent co-immobilization onto electrode surfaces through glutaraldehyde coupling on CHIT-ZnONPs and amide bonding on AuPPy/Pin5COOH. The combined activities of co-immobilized enzymes was tested amperometrically, and these composite nanobiocatalysts showed optimum activity

  2. Re-Citrate Synthase from Clostridium kluyveri Is Phylogenetically Related to Homocitrate Synthase and Isopropylmalate Synthase Rather Than to Si-Citrate Synthase† ▿

    PubMed Central

    Li, Fuli; Hagemeier, Christoph H.; Seedorf, Henning; Gottschalk, Gerhard; Thauer, Rudolf K.

    2007-01-01

    The synthesis of citrate from acetyl-coenzyme A and oxaloacetate is catalyzed in most organisms by a Si-citrate synthase, which is Si-face stereospecific with respect to C-2 of oxaloacetate. However, in Clostridium kluyveri and some other strictly anaerobic bacteria, the reaction is catalyzed by a Re-citrate synthase, whose primary structure has remained elusive. We report here that Re-citrate synthase from C. kluyveri is the product of a gene predicted to encode isopropylmalate synthase. C. kluyveri is also shown to contain a gene for Si-citrate synthase, which explains why cell extracts of the organism always exhibit some Si-citrate synthase activity. PMID:17400742

  3. Geranyl diphosphate synthase large subunit, and methods of use

    DOEpatents

    Croteau, Rodney B.; Burke, Charles C.; Wildung, Mark R.

    2001-10-16

    A cDNA encoding geranyl diphosphate synthase large subunit from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase large subunit). In another aspect, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase large subunit. In yet another aspect, the present invention provides isolated, recombinant geranyl diphosphate synthase protein comprising an isolated, recombinant geranyl diphosphate synthase large subunit protein and an isolated, recombinant geranyl diphosphate synthase small subunit protein. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase.

  4. Laticifer-specific gene expression in Hevea brasiliensis (rubber tree).

    PubMed Central

    Kush, A; Goyvaerts, E; Chye, M L; Chua, N H

    1990-01-01

    Natural rubber, cis-1,4-polyisoprene, is obtained from a colloidal fluid called latex, which represents the cytoplasmic content of the laticifers of the rubber tree (Hevea brasiliensis). We have developed a method of extracting translatable mRNA from freshly tapped latex. Analysis of in vitro translation products of latex mRNA showed that the encoded polypeptides are very different from those of leaf mRNA and these differences are visible in the protein profiles of latex and leaf as well. Northern blot analysis demonstrated that laticifer RNA is 20- to 100-fold enriched in transcripts encoding enzymes involved in rubber biosynthesis. Plant defense genes encoding chitinases, pathogenesis-related protein, phenylalanine ammonia-lyase, chalcone synthase, chalcone isomerase, cinnamyl alcohol dehydrogenase, and 5-enolpyruvylshikimate-3-phosphate synthase show a 10- to 50-fold higher expression in laticifers than in leaves, indicating the probable response of rubber trees to tapping and ethylene treatment. Photosynthetic genes encoding ribulose-bisphosphate carboxylase small subunit and chlorophyll a/b-binding protein are not expressed at a detectable level in laticifers. In contrast, genes encoding two hydrolytic enzymes, cellulase and polygalacturonase, are more highly expressed in laticifers than in leaves. Transcripts for the cytoplasmic form of glutamine synthase are preferentially expressed in laticifers, whereas those for the chloroplastic form of the same enzyme are present mainly in leaves. Control experiments demonstrated that beta-ATPase, actin, and ubiquitin are equally expressed in laticifers and leaves. Therefore, the differences in specific transcript abundance between laticifers and leaves are due to differential expression of the genes for these transcripts in the laticifers. Images PMID:11607069

  5. Benzophenone synthase from Garcinia mangostana L. pericarps.

    PubMed

    Nualkaew, Natsajee; Morita, Hiroyuki; Shimokawa, Yoshihiko; Kinjo, Keishi; Kushiro, Tetsuo; De-Eknamkul, Wanchai; Ebizuka, Yutaka; Abe, Ikuro

    2012-05-01

    The cDNA of a benzophenone synthase (BPS), a type III polyketide synthase (PKS), was cloned and the recombinant protein expressed from the fruit pericarps of Garcinia mangostana L., which contains mainly prenylated xanthones. The obtained GmBPS showed an amino acid sequence identity of 77-78% with other plant BPSs belonging to the same family (Clusiaceae). The recombinant enzyme produced 2,4,6-trihydroxybenzophenone as the predominant product with benzoyl CoA as substrate. It also accepted other substrates, such as other plant PKSs, and used 1-3 molecules of malonyl CoA to form various phloroglucinol-type and polyketide lactone-type compounds. Thus, providing GmBPS with various substrates in vivo might redirect the xanthone biosynthetic pathway.

  6. Monoterpene synthases from grand fir (Abies grandis). cDNA isolation, characterization, and functional expression of myrcene synthase, (-)-(4S)-limonene synthase, and (-)-(1S,5S)-pinene synthase.

    PubMed

    Bohlmann, J; Steele, C L; Croteau, R

    1997-08-29

    Grand fir (Abies grandis) has been developed as a model system for studying defensive oleoresin formation in conifers in response to insect attack or other injury. The turpentine fraction of the oleoresin is a complex mixture of monoterpene (C10) olefins in which (-)-limonene and (-)-alpha- and (-)-beta-pinene are prominent components; (-)-limonene and (-)-pinene synthase activities are also induced upon stem wounding. A similarity based cloning strategy yielded three new cDNA species from a wounded stem cDNA library that appeared to encode three distinct monoterpene synthases. After expression in Escherichia coli and enzyme assay with geranyl diphosphate as substrate, subsequent analysis of the terpene products by chiral phase gas chromatography and mass spectrometry showed that these sequences encoded a (-)-limonene synthase, a myrcene synthase, and a (-)-pinene synthase that produces both alpha-pinene and beta-pinene. In properties and reaction stereochemistry, the recombinant enzymes resemble the corresponding native monoterpene synthases of wound-induced grand fir stem. The deduced amino acid sequences indicated the limonene synthase to be 637 residues in length (73.5 kDa), the myrcene synthase to be 627 residues in length (72.5 kDa), and the pinene synthase to be 628 residues in length (71.5 kDa); all of these monoterpene synthases appear to be translated as preproteins bearing an amino-terminal plastid targeting sequence. Sequence comparison revealed that these monoterpene synthases from grand fir resemble sesquiterpene (C15) synthases and diterpene (C20) synthases from conifers more closely than other monoterpene synthases from angiosperm species. This similarity between extant monoterpene, sesquiterpene, and diterpene synthases of gymnosperms is surprising since functional diversification of this enzyme class is assumed to have occurred over 300 million years ago. Wound-induced accumulation of transcripts for monoterpene synthases was demonstrated by RNA

  7. Building-block selectivity of polyketide synthases.

    PubMed

    Liou, Grace F; Khosla, Chaitan

    2003-04-01

    For the past decade, polyketide synthases have presented an exciting paradigm for the controlled manipulation of complex natural product structure. These multifunctional enzymes catalyze the biosynthesis of polyketide natural products by stepwise condensation and modification of metabolically derived building blocks. In particular, regioselective modification of polyketide structure is possible by alterations in either intracellular acyl-CoA pools or, more commonly, by manipulation of acyl transferases that act as the primary gatekeepers for building blocks.

  8. Chrysanthemyl diphosphate synthase operates in planta as a bifunctional enzyme with chrysanthemol synthase activity.

    PubMed

    Yang, Ting; Gao, Liping; Hu, Hao; Stoopen, Geert; Wang, Caiyun; Jongsma, Maarten A

    2014-12-26

    Chrysanthemyl diphosphate synthase (CDS) is the first pathway-specific enzyme in the biosynthesis of pyrethrins, the most widely used plant-derived pesticide. CDS catalyzes c1'-2-3 cyclopropanation reactions of two molecules of dimethylallyl diphosphate (DMAPP) to yield chrysanthemyl diphosphate (CPP). Three proteins are known to catalyze this cyclopropanation reaction of terpene precursors. Two of them, phytoene and squalene synthase, are bifunctional enzymes with both prenyltransferase and terpene synthase activity. CDS, the other member, has been reported to perform only the prenyltransferase step. Here we show that the NDXXD catalytic motif of CDS, under the lower substrate conditions prevalent in plants, also catalyzes the next step, converting CPP into chrysanthemol by hydrolyzing the diphosphate moiety. The enzymatic hydrolysis reaction followed conventional Michaelis-Menten kinetics, with a Km value for CPP of 196 μm. For the chrysanthemol synthase activity, DMAPP competed with CPP as substrate. The DMAPP concentration required for half-maximal activity to produce chrysanthemol was ∼100 μm, and significant substrate inhibition was observed at elevated DMAPP concentrations. The N-terminal peptide of CDS was identified as a plastid-targeting peptide. Transgenic tobacco plants overexpressing CDS emitted chrysanthemol at a rate of 0.12-0.16 μg h(-1) g(-1) fresh weight. We propose that CDS should be renamed a chrysanthemol synthase utilizing DMAPP as substrate.

  9. Chrysanthemyl Diphosphate Synthase Operates in Planta as a Bifunctional Enzyme with Chrysanthemol Synthase Activity*

    PubMed Central

    Yang, Ting; Gao, Liping; Hu, Hao; Stoopen, Geert; Wang, Caiyun; Jongsma, Maarten A.

    2014-01-01

    Chrysanthemyl diphosphate synthase (CDS) is the first pathway-specific enzyme in the biosynthesis of pyrethrins, the most widely used plant-derived pesticide. CDS catalyzes c1′-2-3 cyclopropanation reactions of two molecules of dimethylallyl diphosphate (DMAPP) to yield chrysanthemyl diphosphate (CPP). Three proteins are known to catalyze this cyclopropanation reaction of terpene precursors. Two of them, phytoene and squalene synthase, are bifunctional enzymes with both prenyltransferase and terpene synthase activity. CDS, the other member, has been reported to perform only the prenyltransferase step. Here we show that the NDXXD catalytic motif of CDS, under the lower substrate conditions prevalent in plants, also catalyzes the next step, converting CPP into chrysanthemol by hydrolyzing the diphosphate moiety. The enzymatic hydrolysis reaction followed conventional Michaelis-Menten kinetics, with a Km value for CPP of 196 μm. For the chrysanthemol synthase activity, DMAPP competed with CPP as substrate. The DMAPP concentration required for half-maximal activity to produce chrysanthemol was ∼100 μm, and significant substrate inhibition was observed at elevated DMAPP concentrations. The N-terminal peptide of CDS was identified as a plastid-targeting peptide. Transgenic tobacco plants overexpressing CDS emitted chrysanthemol at a rate of 0.12–0.16 μg h−1 g−1 fresh weight. We propose that CDS should be renamed a chrysanthemol synthase utilizing DMAPP as substrate. PMID:25378387

  10. All members in the sphingomyelin synthase gene family have ceramide phosphoethanolamine synthase activity[S

    PubMed Central

    Ding, Tingbo; Kabir, Inamul; Li, Yue; Lou, Caixia; Yazdanyar, Amirfarbod; Xu, Jiachen; Dong, Jibin; Zhou, Hongwen; Park, Taesik; Boutjdir, Mohamed; Li, Zhiqiang; Jiang, Xian-Cheng

    2015-01-01

    Sphingomyelin synthase-related protein (SMSr) synthesizes the sphingomyelin analog ceramide phosphoethanolamine (CPE) in cells. Previous cell studies indicated that SMSr is involved in ceramide homeostasis and is crucial for cell function. To further examine SMSr function in vivo, we generated Smsr KO mice that were fertile and had no obvious phenotypic alterations. Quantitative MS analyses of plasma, liver, and macrophages from the KO mice revealed only marginal changes in CPE and ceramide as well as other sphingolipid levels. Because SMS2 also has CPE synthase activity, we prepared Smsr/Sms2 double KO mice. We found that CPE levels were not significantly changed in macrophages, suggesting that CPE levels are not exclusively dependent on SMSr and SMS2 activities. We then measured CPE levels in Sms1 KO mice and found that Sms1 deficiency also reduced plasma CPE levels. Importantly, we found that expression of Sms1 or Sms2 in SF9 insect cells significantly increased not only SM but also CPE formation, indicating that SMS1 also has CPE synthase activity. Moreover, we measured CPE synthase Km and Vmax for SMS1, SMS2, and SMSr using different NBD ceramides. Our study reveals that all mouse SMS family members (SMSr, SMS1, and SMS2) have CPE synthase activity. However, neither CPE nor SMSr appears to be a critical regulator of ceramide levels in vivo. PMID:25605874

  11. CTP synthase forms cytoophidia in the cytoplasm and nucleus

    SciTech Connect

    Gou, Ke-Mian; Chang, Chia-Chun; Shen, Qing-Ji; Sung, Li-Ying; Liu, Ji-Long

    2014-04-15

    CTP synthase is an essential metabolic enzyme responsible for the de novo synthesis of CTP. Multiple studies have recently showed that CTP synthase protein molecules form filamentous structures termed cytoophidia or CTP synthase filaments in the cytoplasm of eukaryotic cells, as well as in bacteria. Here we report that CTP synthase can form cytoophidia not only in the cytoplasm, but also in the nucleus of eukaryotic cells. Both glutamine deprivation and glutamine analog treatment promote formation of cytoplasmic cytoophidia (C-cytoophidia) and nuclear cytoophidia (N-cytoophidia). N-cytoophidia are generally shorter and thinner than their cytoplasmic counterparts. In mammalian cells, both CTP synthase 1 and CTP synthase 2 can form cytoophidia. Using live imaging, we have observed that both C-cytoophidia and N-cytoophidia undergo multiple rounds of fusion upon glutamine analog treatment. Our study reveals the coexistence of cytoophidia in the cytoplasm and nucleus, therefore providing a good opportunity to investigate the intracellular compartmentation of CTP synthase. - Highlights: • CTP synthase forms cytoophidia not only in the cytoplasm but also in the nucleus. • Glutamine deprivation and Glutamine analogs promotes cytoophidium formation. • N-cytoophidia exhibit distinct morphology when compared to C-cytoophidia. • Both CTP synthase 1 and CTP synthase 2 form cytoophidia in mammalian cells. • Fusions of cytoophidia occur in the cytoplasm and nucleus.

  12. The length of the combined 3' untranslated region and poly(A) tail does not control rates of glyceraldehyde-3-phosphate dehydrogenase mRNA translation in three species of parasitic protists.

    PubMed

    ter Kuile, B H; Sallés, F J

    2000-06-01

    Experimental observations suggested that the length of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA 3' end has a role in regulating rates of translation in the parasitic protists Trypanosoma brucei, Leishmania donovani, and Trichomonas vaginalis. Using a PCR assay for poly(A) tail length, we measured the size of the RNA 3' end under different growth conditions in all three species. Our results showed that the combined 3' untranslated region and poly(A) tail of GAPDH mRNA do not vary with different rates of translation.

  13. Oligosaccharide Binding in Escherichia coli Glycogen Synthase

    SciTech Connect

    Sheng, Fang; Yep, Alejandra; Feng, Lei; Preiss, Jack; Geiger, James H.

    2010-11-17

    Glycogen/starch synthase elongates glucan chains and is the key enzyme in the synthesis of glycogen in bacteria and starch in plants. Cocrystallization of Escherichia coli wild-type glycogen synthase (GS) with substrate ADPGlc and the glucan acceptor mimic HEPPSO produced a closed form of GS and suggests that domain-domain closure accompanies glycogen synthesis. Cocrystallization of the inactive GS mutant E377A with substrate ADPGlc and oligosaccharide results in the first oligosaccharide-bound glycogen synthase structure. Four bound oligosaccharides are observed, one in the interdomain cleft (G6a) and three on the N-terminal domain surface (G6b, G6c, and G6d). Extending from the center of the enzyme to the interdomain cleft opening, G6a mostly interacts with the highly conserved N-terminal domain residues lining the cleft of GS. The surface-bound oligosaccharides G6c and G6d have less interaction with enzyme and exhibit a more curled, helixlike structural arrangement. The observation that oligosaccharides bind only to the N-terminal domain of GS suggests that glycogen in vivo probably binds to only one side of the enzyme to ensure unencumbered interdomain movement, which is required for efficient, continuous glucan-chain synthesis.

  14. Allosteric regulation of tryptophan synthase channeling: the internal aldimine probed by trans-3-indole-3'-acrylate binding.

    PubMed

    Casino, Patricia; Niks, Dimitri; Ngo, Huu; Pan, Peng; Brzovic, Peter; Blumenstein, Lars; Barends, Thomas Reinier; Schlichting, Ilme; Dunn, Michael F

    2007-07-01

    Substrate channeling in the tryptophan synthase bienzyme complex from Salmonella typhimurium is regulated by allosteric interactions triggered by binding of ligand to the alpha-site and covalent reaction at the beta-site. These interactions switch the enzyme between low-activity forms with open conformations and high-activity forms with closed conformations. Previously, allosteric interactions have been demonstrated between the alpha-site and the external aldimine, alpha-aminoacrylate, and quinonoid forms of the beta-site. Here we employ the chromophoric l-Trp analogue, trans-3-indole-3'-acrylate (IA), and noncleavable alpha-site ligands (ASLs) to probe the allosteric properties of the internal aldimine, E(Ain). The ASLs studied are alpha-d,l-glycerol phosphate (GP) and d-glyceraldehyde 3-phosphate (G3P), and examples of two new classes of high-affinity alpha-site ligands, N-(4'-trifluoromethoxybenzoyl)-2-aminoethyl phosphate (F6) and N-(4'-trifluoromethoxybenzenesulfonyl)-2-aminoethyl phosphate (F9), that were previously shown to bind to the alpha-site by optical spectroscopy and X-ray crystal structures [Ngo, H., Harris, R., Kimmich, N., Casino, P., Niks, D., Blumenstein, L., Barends, T. R., Kulik, V., Weyand, M., Schlichting, I., and Dunn, M. F. (2007) Synthesis and characterization of allosteric probes of substrate channeling in the tryptophan synthase bienzyme complex, Biochemistry 46, 7713-7727]. The binding of IA to the beta-site is stimulated by the binding of GP, G3P, F6, or F9 to the alpha-site. The binding of ASLs was found to increase the affinity of the beta-site of E(Ain) for IA by 4-5-fold, demonstrating for the first time that the beta-subunit of the E(Ain) species undergoes a switching between low- and high-affinity states in response to the binding of ASLs.

  15. Mutational analysis of a monoterpene synthase reaction: altered catalysis through directed mutagenesis of (-)-pinene synthase from Abies grandis.

    PubMed

    Hyatt, David C; Croteau, Rodney

    2005-07-15

    Two monoterpene synthases, (-)-pinene synthase and (-)-camphene synthase, from grand fir (Abies grandis) produce different product mixtures despite having highly homologous amino acid sequences and, presumably, very similar three-dimensional structures. The major product of (-)-camphene synthase, (-)-camphene, and the major products of (-)-pinene synthase, (-)-alpha-pinene, and (-)-beta-pinene, arise through distinct mechanistic variations of the electrophilic reaction cascade that is common to terpenoid synthases. Structural modeling followed by directed mutagenesis in (-)-pinene synthase was used to replace selected amino acid residues with the corresponding residues from (-)-camphene synthase in an effort to identify the amino acids responsible for the catalytic differences. This approach produced an enzyme in which more than half of the product was channeled through an alternative pathway. It was also shown that several (-)-pinene synthase to (-)-camphene synthase amino acid substitutions were necessary before catalysis was significantly altered. The data support a model in which the collective action of many key amino acids, located both in and distant from the active site pocket, regulate the course of the electrophilic reaction cascade.

  16. Regulation of mitochondrial ATP synthase in cardiac pathophysiology.

    PubMed

    Long, Qinqiang; Yang, Kevin; Yang, Qinglin

    2015-01-01

    Mitochondrial function is paramount to energy homeostasis, metabolism, signaling, and apoptosis in cells. Mitochondrial complex V (ATP synthase), a molecular motor, is the ultimate ATP generator and a key determinant of mitochondrial function. ATP synthase catalyzes the final coupling step of oxidative phosphorylation to supply energy in the form of ATP. Alterations at this step will crucially impact mitochondrial respiration and hence cardiac performance. It is well established that cardiac contractility is strongly dependent on the mitochondria, and that myocardial ATP depletion is a key feature of heart failure. ATP synthase dysfunction can cause and exacerbate human diseases, such as cardiomyopathy and heart failure. While ATP synthase has been extensively studied, essential questions related to how the regulation of ATP synthase determines energy metabolism in the heart linger and therapies targeting this important mechanism remain scarce. This review will visit the main findings, identify unsolved issues and provide insights into potential future perspectives related to the regulation of ATP synthase and cardiac pathophysiology.

  17. Surrogate splicing for functional analysis of sesquiterpene synthase genes.

    PubMed

    Wu, Shuiqin; Schoenbeck, Mark A; Greenhagen, Bryan T; Takahashi, Shunji; Lee, Sungbeom; Coates, Robert M; Chappell, Joseph

    2005-07-01

    A method for the recovery of full-length cDNAs from predicted terpene synthase genes containing introns is described. The approach utilizes Agrobacterium-mediated transient expression coupled with a reverse transcription-polydeoxyribonucleotide chain reaction assay to facilitate expression cloning of processed transcripts. Subsequent expression of intronless cDNAs in a suitable prokaryotic host provides for direct functional testing of the encoded gene product. The method was optimized by examining the expression of an intron-containing beta-glucuronidase gene agroinfiltrated into petunia (Petunia hybrida) leaves, and its utility was demonstrated by defining the function of two previously uncharacterized terpene synthases. A tobacco (Nicotiana tabacum) terpene synthase-like gene containing six predicted introns was characterized as having 5-epi-aristolochene synthase activity, while an Arabidopsis (Arabidopsis thaliana) gene previously annotated as a terpene synthase was shown to possess a novel sesquiterpene synthase activity for alpha-barbatene, thujopsene, and beta-chamigrene biosynthesis. PMID:15965019

  18. β-Glucan Synthase Gene Overexpression and β-Glucans Overproduction in Pleurotus ostreatus Using Promoter Swapping

    PubMed Central

    Liu, Dongren; Qi, Yuancheng; Gao, Yuqian; Shen, Jinwen; Qiu, Liyou

    2013-01-01

    Mushroom β-glucans are potent immunological stimulators in medicine, but their productivities are very low. In this study, we successfully improved its production by promoter engineering in Pleurotus ostreatus. The promoter for β-1,3-glucan synthase gene (GLS) was replaced by the promoter of glyceraldehyde-3-phosphate dehydrogenase gene of Aspergillus nidulans. The homologous recombination fragment for swapping GLS promoter comprised five segments, which were fused by two rounds of combined touchdown PCR and overlap extension PCR (TD-OE PCR), and was introduced into P. ostreatus through PEG/CaCl2-mediated protoplast transformation. The transformants exhibited one to three fold higher transcription of GLS gene and produced 32% to 131% higher yield of β-glucans than the wild type. The polysaccharide yields had a significant positive correlation to the GLS gene expression. The infrared spectra of the polysaccharides all displayed the typical absorption peaks of β-glucans. This is the first report of successful swapping of promoters in filamentous fungi. PMID:23637884

  19. Geranyl diphosphate synthase molecules, and nucleic acid molecules encoding same

    DOEpatents

    Croteau, Rodney Bruce; Burke, Charles Cullen

    2008-06-24

    In one aspect, the present invention provides isolated nucleic acid molecules that each encode a geranyl diphosphate synthase protein, wherein each isolated nucleic acid molecule hybridizes to a nucleic acid molecule consisting of the sequence set forth in SEQ ID NO:1 under conditions of 5.times.SSC at 45.degree. C. for one hour. The present invention also provides isolated geranyl diphosphate synthase proteins, and methods for altering the level of expression of geranyl diphosphate synthase protein in a host cell.

  20. Vitis vinifera terpenoid cyclases: functional identification of two sesquiterpene synthase cDNAs encoding (+)-valencene synthase and (-)-germacrene D synthase and expression of mono- and sesquiterpene synthases in grapevine flowers and berries.

    PubMed

    Lücker, Joost; Bowen, Pat; Bohlmann, Jörg

    2004-10-01

    Valencene is a volatile sesquiterpene emitted from flowers of grapevine, Vitis vinifera L. A full-length cDNA from the cultivar Gewürztraminer was functionally expressed in Escherichia coli and found to encode valencene synthase (VvVal). The two major products formed by recombinant VvVal enzyme activity with farnesyl diphosphate (FPP) as substrate are (+)-valencene and (-)-7-epi-alpha-selinene. Grapevine valencene synthase is closely related to a second sesquiterpene synthase from this species, (-)-germacrene D synthase (VvGerD). VvVal and VvGerD cDNA probes revealed strong signals in Northern hybridizations with RNA isolated from grapevine flower buds. Transcript levels were lower in open pre-anthesis flowers, flowers after anthesis, or at early onset of fruit development. Similar results were obtained using a third probe, (-)-alpha-terpineol synthase, a monoterpenol synthase. Sesquiterpene synthase and monoterpene synthase transcripts were not detected in the mesocarp and exocarp during early stages of fruit development, but transcripts hybridizing with VvVal appeared during late ripening of the berries. Sesquiterpene synthase transcripts were also detected in young seeds. PMID:15464152

  1. Divinyl ether synthase gene, and protein and uses thereof

    DOEpatents

    Howe, Gregg A.; Itoh, Aya

    2006-12-26

    The present invention relates to divinyl ether synthase genes, proteins, and methods of their use. The present invention encompasses both native and recombinant wild-type forms of the synthase, as well as mutants and variant forms, some of which possess altered characteristics relative to the wild-type synthase. The present invention also relates to methods of using divinyl ether synthase genes and proteins, including in their expression in transgenic organisms and in the production of divinyl ether fatty acids, and to methods of suing divinyl ether fatty acids, including in the protection of plants from pathogens.

  2. Divinyl ether synthase gene and protein, and uses thereof

    DOEpatents

    Howe, Gregg A.; Itoh, Aya

    2011-09-13

    The present invention relates to divinyl ether synthase genes, proteins, and methods of their use. The present invention encompasses both native and recombinant wild-type forms of the synthase, as well as mutants and variant forms, some of which possess altered characteristics relative to the wild-type synthase. The present invention also relates to methods of using divinyl ether synthase genes and proteins, including in their expression in transgenic organisms and in the production of divinyl ether fatty acids, and to methods of suing divinyl ether fatty acids, including in the protection of plants from pathogens.

  3. Molecular characterization of the homo-phytochelatin synthase of soybean Glycine max: relation to phytochelatin synthase.

    PubMed

    Oven, Matjaz; Page, Jonathan E; Zenk, Meinhart H; Kutchan, Toni M

    2002-02-15

    The phytochelatin homologs homo-phytochelatins are heavy metal-binding peptides present in many legumes. To study the biosynthesis of these compounds, we have isolated and functionally expressed a cDNA GmhPCS1 encoding homo-phytochelatin synthase from Glycine max, a plant known to accumulate homo-phytochelatins rather than phytochelatins upon the exposure to heavy metals. The catalytic properties of GmhPCS1 were compared with the phytochelatin synthase AtPCS1 from Arabidopsis thaliana. When assayed only in the presence of glutathione, both enzymes catalyzed phytochelatin formation. GmhPCS1 accepted homoglutathione as the sole substrate for the synthesis of homo-phytochelatins whereas AtPCS1 did not. Homo-phytochelatin synthesis activity of both recombinant enzymes was significantly higher when glutathione was included in the reaction mixture. The incorporation of both glutathione and homoglutathione into homo-phytochelatin, n = 2, was demonstrated using GmhPCS1 and AtPCS1. In addition to bis(glutathionato)-metal complexes, various other metal-thiolates were shown to contribute to the activation of phytochelatin synthase. These complexes were not accepted as substrates by the enzyme, thereby suggesting that a recently proposed model of activation cannot fully explain the catalytic mechanism of phytochelatin synthase (Vatamaniuk, O. K., Mari, S., Lu, Y. P., and Rea, P. A. (2000) J. Biol. Chem. 275, 31451-31459). PMID:11706029

  4. Engineering of chimeric class II polyhydroxyalkanoate synthases.

    PubMed

    Niamsiri, Nuttawee; Delamarre, Soazig C; Kim, Young-Rok; Batt, Carl A

    2004-11-01

    PHA synthase is a key enzyme involved in the biosynthesis of polyhydroxyalkanoates (PHAs). Using a combinatorial genetic strategy to create unique chimeric class II PHA synthases, we have obtained a number of novel chimeras which display improved catalytic properties. To engineer the chimeric PHA synthases, we constructed a synthetic phaC gene from Pseudomonas oleovorans (phaC1Po) that was devoid of an internal 540-bp fragment. Randomly amplified PCR products (created with primers based on conserved phaC sequences flanking the deleted internal fragment) were generated using genomic DNA isolated from soil and were substituted for the 540-bp internal region. The chimeric genes were expressed in a PHA-negative strain of Ralstonia eutropha, PHB(-)4 (DSM 541). Out of 1,478 recombinant clones screened for PHA production, we obtained five different chimeric phaC1Po genes that produced more PHA than the native phaC1Po. Chimeras S1-71, S4-8, S5-58, S3-69, and S3-44 exhibited 1.3-, 1.4-, 2.0-, 2.1-, and 3.0-fold-increased levels of in vivo activity, respectively. All of the mutants mediated the synthesis of PHAs with a slightly increased molar fraction of 3-hydroxyoctanoate; however, the weight-average molecular weights (Mw) of the PHAs in all cases remained almost the same. Based upon DNA sequence analyses, the various phaC fragments appear to have originated from Pseudomonas fluorescens and Pseudomonas aureofaciens. The amino acid sequence analyses showed that the chimeric proteins had 17 to 20 amino acid differences from the wild-type phaC1Po, and these differences were clustered in the same positions in the five chimeric clones. A threading model of PhaC1Po, developed based on homology of the enzyme to the Burkholderia glumae lipase, suggested that the amino acid substitutions found in the active chimeras were located mostly on the protein model surface. Thus, our combinatorial genetic engineering strategy proved to be broadly useful for improving the catalytic

  5. Mechanistic binding insights for 1-deoxy-D-Xylulose-5-Phosphate synthase, the enzyme catalyzing the first reaction of isoprenoid biosynthesis in the malaria-causing protists, Plasmodium falciparum and Plasmodium vivax.

    PubMed

    Battistini, Matthew R; Shoji, Christopher; Handa, Sumit; Breydo, Leonid; Merkler, David J

    2016-04-01

    We have successfully truncated and recombinantly-expressed 1-deoxy-D-xylulose-5-phosphate synthase (DXS) from both Plasmodium vivax and Plasmodium falciparum. We elucidated the order of substrate binding for both of these ThDP-dependent enzymes using steady-state kinetic analyses, dead-end inhibition, and intrinsic tryptophan fluorescence titrations. Both enzymes adhere to a random sequential mechanism with respect to binding of both substrates: pyruvate and D-glyceraldehyde-3-phosphate. These findings are in contrast to other ThDP-dependent enzymes, which exhibit classical ordered and/or ping-pong kinetic mechanisms. A better understanding of the kinetic mechanism for these two Plasmodial enzymes could aid in the development of novel DXS-specific inhibitors that might prove useful in treatment of malaria.

  6. Novel family of terpene synthases evolved from trans-isoprenyl diphosphate synthases in a flea beetle.

    PubMed

    Beran, Franziska; Rahfeld, Peter; Luck, Katrin; Nagel, Raimund; Vogel, Heiko; Wielsch, Natalie; Irmisch, Sandra; Ramasamy, Srinivasan; Gershenzon, Jonathan; Heckel, David G; Köllner, Tobias G

    2016-03-15

    Sesquiterpenes play important roles in insect communication, for example as pheromones. However, no sesquiterpene synthases, the enzymes involved in construction of the basic carbon skeleton, have been identified in insects to date. We investigated the biosynthesis of the sesquiterpene (6R,7S)-himachala-9,11-diene in the crucifer flea beetle Phyllotreta striolata, a compound previously identified as a male-produced aggregation pheromone in several Phyllotreta species. A (6R,7S)-himachala-9,11-diene-producing sesquiterpene synthase activity was detected in crude beetle protein extracts, but only when (Z,E)-farnesyl diphosphate [(Z,E)-FPP] was offered as a substrate. No sequences resembling sesquiterpene synthases from plants, fungi, or bacteria were found in the P. striolata transcriptome, but we identified nine divergent putative trans-isoprenyl diphosphate synthase (trans-IDS) transcripts. Four of these putative trans-IDSs exhibited terpene synthase (TPS) activity when heterologously expressed. Recombinant PsTPS1 converted (Z,E)-FPP to (6R,7S)-himachala-9,11-diene and other sesquiterpenes observed in beetle extracts. RNAi-mediated knockdown of PsTPS1 mRNA in P. striolata males led to reduced emission of aggregation pheromone, confirming a significant role of PsTPS1 in pheromone biosynthesis. Two expressed enzymes showed genuine IDS activity, with PsIDS1 synthesizing (E,E)-FPP, whereas PsIDS3 produced neryl diphosphate, (Z,Z)-FPP, and (Z,E)-FPP. In a phylogenetic analysis, the PsTPS enzymes and PsIDS3 were clearly separated from a clade of known coleopteran trans-IDS enzymes including PsIDS1 and PsIDS2. However, the exon-intron structures of IDS and TPS genes in P. striolata are conserved, suggesting that this TPS gene family evolved from trans-IDS ancestors. PMID:26936952

  7. Novel family of terpene synthases evolved from trans-isoprenyl diphosphate synthases in a flea beetle.

    PubMed

    Beran, Franziska; Rahfeld, Peter; Luck, Katrin; Nagel, Raimund; Vogel, Heiko; Wielsch, Natalie; Irmisch, Sandra; Ramasamy, Srinivasan; Gershenzon, Jonathan; Heckel, David G; Köllner, Tobias G

    2016-03-15

    Sesquiterpenes play important roles in insect communication, for example as pheromones. However, no sesquiterpene synthases, the enzymes involved in construction of the basic carbon skeleton, have been identified in insects to date. We investigated the biosynthesis of the sesquiterpene (6R,7S)-himachala-9,11-diene in the crucifer flea beetle Phyllotreta striolata, a compound previously identified as a male-produced aggregation pheromone in several Phyllotreta species. A (6R,7S)-himachala-9,11-diene-producing sesquiterpene synthase activity was detected in crude beetle protein extracts, but only when (Z,E)-farnesyl diphosphate [(Z,E)-FPP] was offered as a substrate. No sequences resembling sesquiterpene synthases from plants, fungi, or bacteria were found in the P. striolata transcriptome, but we identified nine divergent putative trans-isoprenyl diphosphate synthase (trans-IDS) transcripts. Four of these putative trans-IDSs exhibited terpene synthase (TPS) activity when heterologously expressed. Recombinant PsTPS1 converted (Z,E)-FPP to (6R,7S)-himachala-9,11-diene and other sesquiterpenes observed in beetle extracts. RNAi-mediated knockdown of PsTPS1 mRNA in P. striolata males led to reduced emission of aggregation pheromone, confirming a significant role of PsTPS1 in pheromone biosynthesis. Two expressed enzymes showed genuine IDS activity, with PsIDS1 synthesizing (E,E)-FPP, whereas PsIDS3 produced neryl diphosphate, (Z,Z)-FPP, and (Z,E)-FPP. In a phylogenetic analysis, the PsTPS enzymes and PsIDS3 were clearly separated from a clade of known coleopteran trans-IDS enzymes including PsIDS1 and PsIDS2. However, the exon-intron structures of IDS and TPS genes in P. striolata are conserved, suggesting that this TPS gene family evolved from trans-IDS ancestors.

  8. Novel family of terpene synthases evolved from trans-isoprenyl diphosphate synthases in a flea beetle

    PubMed Central

    Beran, Franziska; Rahfeld, Peter; Luck, Katrin; Nagel, Raimund; Vogel, Heiko; Wielsch, Natalie; Irmisch, Sandra; Ramasamy, Srinivasan; Gershenzon, Jonathan; Heckel, David G.; Köllner, Tobias G.

    2016-01-01

    Sesquiterpenes play important roles in insect communication, for example as pheromones. However, no sesquiterpene synthases, the enzymes involved in construction of the basic carbon skeleton, have been identified in insects to date. We investigated the biosynthesis of the sesquiterpene (6R,7S)-himachala-9,11-diene in the crucifer flea beetle Phyllotreta striolata, a compound previously identified as a male-produced aggregation pheromone in several Phyllotreta species. A (6R,7S)-himachala-9,11-diene–producing sesquiterpene synthase activity was detected in crude beetle protein extracts, but only when (Z,E)-farnesyl diphosphate [(Z,E)-FPP] was offered as a substrate. No sequences resembling sesquiterpene synthases from plants, fungi, or bacteria were found in the P. striolata transcriptome, but we identified nine divergent putative trans-isoprenyl diphosphate synthase (trans-IDS) transcripts. Four of these putative trans-IDSs exhibited terpene synthase (TPS) activity when heterologously expressed. Recombinant PsTPS1 converted (Z,E)-FPP to (6R,7S)-himachala-9,11-diene and other sesquiterpenes observed in beetle extracts. RNAi-mediated knockdown of PsTPS1 mRNA in P. striolata males led to reduced emission of aggregation pheromone, confirming a significant role of PsTPS1 in pheromone biosynthesis. Two expressed enzymes showed genuine IDS activity, with PsIDS1 synthesizing (E,E)-FPP, whereas PsIDS3 produced neryl diphosphate, (Z,Z)-FPP, and (Z,E)-FPP. In a phylogenetic analysis, the PsTPS enzymes and PsIDS3 were clearly separated from a clade of known coleopteran trans-IDS enzymes including PsIDS1 and PsIDS2. However, the exon–intron structures of IDS and TPS genes in P. striolata are conserved, suggesting that this TPS gene family evolved from trans-IDS ancestors. PMID:26936952

  9. Ligand-induced formation of a transient tryptophan synthase complex with αββ subunit stoichiometry.

    PubMed

    Ehrmann, Alexander; Richter, Klaus; Busch, Florian; Reimann, Julia; Albers, Sonja-Verena; Sterner, Reinhard

    2010-12-28

    The prototypical tryptophan synthases form a stable heterotetrameric αββα complex in which the constituting TrpA and TrpB1 subunits activate each other in a bidirectional manner. The hyperthermophilic archaeon Sulfolobus solfataricus does not contain a TrpB1 protein but instead two members of the phylogenetically distinct family of TrpB2 proteins, which are encoded within (sTrpB2i) and outside (sTrpB2a) the tryptophan operon. It has previously been shown that sTrpB2a does not functionally or structurally interact with sTrpA, whereas sTrpB2i substantially activates sTrpA in a unidirectional manner. However, in the absence of catalysis, no physical complex between sTrpB2i and sTrpA could be detected. In order to elucidate the structural requirements for complex formation, we have analyzed the interaction between sTrpA (α-monomer) and sTrpB2i (ββ-dimer) by means of spectroscopy, analytical gel filtration, and analytical ultracentrifugation, as well as isothermal titration calorimetry. In the presence of the TrpA ligand glycerol 3-phosphate (GP) and the TrpB substrate l-serine, sTrpA and sTrpB2i formed a physical complex with a thermodynamic dissociation constant of about 1 μM, indicating that the affinity between the α- and ββ-subunits is weaker by at least 1 order of magnitude than the affinity between the corresponding subunits of prototypical tryptophan synthases. The observed stoichiometry of the complex was 1 subunit of sTrpA per 2 subunits of sTrpB2i, which corresponds to a αββ quaternary structure and testifies to a strong negative cooperativity for the binding of the α-monomers to the ββ-dimer. The analysis of the interaction between sTrpB2i and sTrpA in the presence of several substrate, transition state, and product analogues suggests that the αββ complex remains stable during the whole catalytic cycle and disintegrates into α- and ββ-subunits upon the release of the reaction product tryptophan. The formation of a transient tryptophan

  10. Evolution and function of phytochelatin synthases.

    PubMed

    Clemens, Stephan

    2006-02-01

    Both essential and non-essential transition metal ions can easily be toxic to cells. The physiological range for essential metals between deficiency and toxicity is therefore extremely narrow and a tightly controlled metal homeostasis network to adjust to fluctuations in micronutrient availability is a necessity for all organisms. One protective strategy against metal excess is the expression of high-affinity binding sites to suppress uncontrolled binding of metal ions to physiologically important functional groups. The synthesis of phytochelatins, glutathione-derived metal binding peptides, represents the major detoxification mechanism for cadmium and arsenic in plants and an unknown range of other organisms. A few years ago genes encoding phytochelatin synthases (PCS) were cloned from plants, fungi and nematodes. Since then it has become apparent that PCS genes are far more widespread than ever anticipated. Searches in sequence databases indicate PCS expression in representatives of all eukaryotic kingdoms and the presence of PCS-like proteins in several prokaryotes. The almost ubiquitous presence in the plant kingdom and beyond as well as the constitutive expression of PCS genes and PCS activity in all major plant tissues are still mysterious. It is unclear, how the extremely rare need to cope with an excess of cadmium or arsenic ions could explain the evolution and distribution of PCS genes. Possible answers to this question are discussed. Also, the molecular characterization of phytochelatin synthases and our current knowledge about the enzymology of phytochelatin synthesis are reviewed.

  11. Activities and regulation of peptidoglycan synthases

    PubMed Central

    Egan, Alexander J. F.; Biboy, Jacob; van't Veer, Inge; Breukink, Eefjan; Vollmer, Waldemar

    2015-01-01

    Peptidoglycan (PG) is an essential component in the cell wall of nearly all bacteria, forming a continuous, mesh-like structure, called the sacculus, around the cytoplasmic membrane to protect the cell from bursting by its turgor. Although PG synthases, the penicillin-binding proteins (PBPs), have been studied for 70 years, useful in vitro assays for measuring their activities were established only recently, and these provided the first insights into the regulation of these enzymes. Here, we review the current knowledge on the glycosyltransferase and transpeptidase activities of PG synthases. We provide new data showing that the bifunctional PBP1A and PBP1B from Escherichia coli are active upon reconstitution into the membrane environment of proteoliposomes, and that these enzymes also exhibit DD-carboxypeptidase activity in certain conditions. Both novel features are relevant for their functioning within the cell. We also review recent data on the impact of protein–protein interactions and other factors on the activities of PBPs. As an example, we demonstrate a synergistic effect of multiple protein–protein interactions on the glycosyltransferase activity of PBP1B, by its cognate lipoprotein activator LpoB and the essential cell division protein FtsN. PMID:26370943

  12. ATP synthase: a tentative structural model.

    PubMed

    Engelbrecht, S; Junge, W

    1997-09-15

    Adenosine triphosphate (ATP) synthase produces ATP from ADP and inorganic phosphate at the expense of proton- or sodium-motive force across the respective coupling membrane in Archaea, Bacteria and Eucarya. Cation flow through the intrinsic membrane portion of this enzyme (Fo, subunits ab2c9-12) and substrate turnover in the headpiece (F1, subunits alpha3beta3 gammadeltaepsilon) are mechanically coupled by the rotation of subunit gamma in the center of the catalytic hexagon of subunits (alphabeta)3 in F1. ATP synthase is the smallest rotatory engine in nature. With respect to the headpiece alone, it probably operates with three steps. Partial structures of six out of its at least eight different subunits have been published and a 3-dimensional structure is available for the assembly (alphabeta)3gamma. In this article, we review the available structural data and build a tentative topological model of the holoenzyme. The rotor portion is proposed to consist of a wheel of at least nine copies of subunits c, epsilon and a portion of gamma as a spoke, and another portion of gamma as a crankshaft. The stator is made up from a, the transmembrane portion of b2, delta and the catalytic hexagon of (alphabeta)3. As an educated guess, the model may be of heuristic value for ongoing studies on this fascinating electrochemical-to-mechanical-to-chemical transducer. PMID:9323021

  13. Torque generation mechanism of ATP synthase

    NASA Astrophysics Data System (ADS)

    Miller, John; Maric, Sladjana; Scoppa, M.; Cheung, M.

    2010-03-01

    ATP synthase is a rotary motor that produces adenosine triphosphate (ATP), the chemical currency of life. Our proposed electric field driven torque (EFT) model of FoF1-ATP synthase describes how torque, which scales with the number of c-ring proton binding sites, is generated by the proton motive force (pmf) across the mitochondrial inner membrane. When Fo is coupled to F1, the model predicts a critical pmf to drive ATP production. In order to fully understand how the electric field resulting from the pmf drives the c-ring to rotate, it is important to examine the charge distributions in the protonated c-ring and a-subunit containing the proton channels. Our calculations use a self-consistent field approach based on a refinement of reported structural data. The results reveal changes in pKa for key residues on the a-subunit and c-ring, as well as titration curves and protonation state energy diagrams. Health implications will be briefly discussed.

  14. ATP synthases from archaea: the beauty of a molecular motor.

    PubMed

    Grüber, Gerhard; Manimekalai, Malathy Sony Subramanian; Mayer, Florian; Müller, Volker

    2014-06-01

    Archaea live under different environmental conditions, such as high salinity, extreme pHs and cold or hot temperatures. How energy is conserved under such harsh environmental conditions is a major question in cellular bioenergetics of archaea. The key enzymes in energy conservation are the archaeal A1AO ATP synthases, a class of ATP synthases distinct from the F1FO ATP synthase ATP synthase found in bacteria, mitochondria and chloroplasts and the V1VO ATPases of eukaryotes. A1AO ATP synthases have distinct structural features such as a collar-like structure, an extended central stalk, and two peripheral stalks possibly stabilizing the A1AO ATP synthase during rotation in ATP synthesis/hydrolysis at high temperatures as well as to provide the storage of transient elastic energy during ion-pumping and ATP synthesis/-hydrolysis. High resolution structures of individual subunits and subcomplexes have been obtained in recent years that shed new light on the function and mechanism of this unique class of ATP synthases. An outstanding feature of archaeal A1AO ATP synthases is their diversity in size of rotor subunits and the coupling ion used for ATP synthesis with H(+), Na(+) or even H(+) and Na(+) using enzymes. The evolution of the H(+) binding site to a Na(+) binding site and its implications for the energy metabolism and physiology of the cell are discussed.

  15. [Four cases of aldosterone synthase deficiency in childhood].

    PubMed

    Collinet, E; Pelissier, P; Richard, O; Gay, C; Pugeat, M; Morel, Y; Stephan, J-L

    2012-11-01

    Neonatal salt-wasting syndromes are rare but potentially serious conditions. Isolated hypoaldosteronism is an autosomal recessive inherited disorder of terminal aldosterone synthesis, leading to selective aldosterone deficiency. Two different biochemical forms of this disease have been described, called aldosterone synthase deficiency or corticosterone methyl oxydase, types I and II. In type I, there is no aldosterone synthase activity and the 18 hydroxycorticosterone (18 OHB) level is low, whereas in type II, a residual activity of aldosterone synthase persists and 18 OHB is overproduced. We report on four patients with isolated hypoaldosteronism. In 2 of them, who were recently diagnosed with aldosterone synthase deficit, we discuss the symptoms and treatment. The 2 other patients are now adults. We discuss the long-term outcome, the quality of adult life, aldosterone synthase deficits, as well as the pathophysiology and molecular analysis.

  16. Ubiquitination and filamentous structure of cytidine triphosphate synthase

    PubMed Central

    Pai, Li-Mei; Wang, Pei-Yu; Lin, Wei-Cheng; Chakraborty, Archan; Yeh, Chau-Ting; Lin, Yu-Hung

    2016-01-01

    ABSTRACT Living organisms respond to nutrient availability by regulating the activity of metabolic enzymes. Therefore, the reversible post-translational modification of an enzyme is a common regulatory mechanism for energy conservation. Recently, cytidine-5′-triphosphate (CTP) synthase was discovered to form a filamentous structure that is evolutionarily conserved from flies to humans. Interestingly, induction of the formation of CTP synthase filament is responsive to starvation or glutamine depletion. However, the biological roles of this structure remain elusive. We have recently shown that ubiquitination regulates CTP synthase activity by promoting filament formation in Drosophila ovaries during endocycles. Intriguingly, although the ubiquitination process was required for filament formation induced by glutamine depletion, CTP synthase ubiquitination was found to be inversely correlated with filament formation in Drosophila and human cell lines. In this article, we discuss the putative dual roles of ubiquitination, as well as its physiological implications, in the regulation of CTP synthase structure. PMID:27116391

  17. Trinuclear Metal Clusters in Catalysis by Terpenoid Synthases.

    PubMed

    Aaron, Julie A; Christianson, David W

    2010-01-01

    Terpenoid synthases are ubiquitous enzymes that catalyze the formation of structurally and stereochemically diverse isoprenoid natural products. Many isoprenoid coupling enzymes and terpenoid cyclases from bacteria, fungi, protists, plants, and animals share the class I terpenoid synthase fold. Despite generally low amino acid sequence identity among these examples, class I terpenoid synthases contain conserved metal binding motifs that coordinate to a trinuclear metal cluster. This cluster not only serves to bind and orient the flexible isoprenoid substrate in the precatalytic Michaelis complex, but it also triggers the departure of the diphosphate leaving group to generate a carbocation that initiates catalysis. Additional conserved hydrogen bond donors assist the metal cluster in this function. Crystal structure analysis reveals that the constellation of three metal ions required for terpenoid synthase catalysis is generally identical among all class I terpenoid synthases of known structure.

  18. Taxonomic and life history bias in herbicide resistant weeds: implications for deployment of resistant crops.

    PubMed

    Holt, Jodie S; Welles, Shana R; Silvera, Katia; Heap, Ian M; Heredia, Sylvia M; Martinez-Berdeja, Alejandra; Palenscar, Kai T; Sweet, Lynn C; Ellstrand, Norman C

    2013-01-01

    Evolved herbicide resistance (EHR) is an important agronomic problem and consequently a food security problem, as it jeopardizes herbicide effectiveness and increases the difficulty and cost of weed management. EHR in weeds was first reported in 1970 and the number of cases has accelerated dramatically over the last two decades. Despite 40 years of research on EHR, why some weeds evolve resistance and others do not is poorly understood. Here we ask whether weed species that have EHR are different from weeds in general. Comparing taxonomic and life history traits of weeds with EHR to a control group ("the world's worst weeds"), we found weeds with EHR significantly over-represented in certain plant families and having certain life history biases. In particular, resistance is overrepresented in Amaranthaceae, Brassicaceae and Poaceae relative to all weeds, and annuality is ca. 1.5 times as frequent in weeds with EHR as in the control group. Also, for perennial EHR weeds, vegetative reproduction is only 60% as frequent as in the control group. We found the same trends for subsets of weeds with EHR to acetolactate synthase (ALS), photosystem II (PSII), and 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase-inhibitor herbicides and with multiple resistance. As herbicide resistant crops (transgenic or not) are increasingly deployed in developing countries, the problems of EHR could increase in those countries as it has in the USA if the selecting herbicides are heavily applied and appropriate management strategies are not employed. Given our analysis, we make some predictions about additional species that might evolve resistance.

  19. Metabonomics classifies pathways affected by bioactive compounds. Artificial neural network classification of NMR spectra of plant extracts.

    PubMed

    Ott, Karl-Heinz; Araníbar, Nelly; Singh, Bijay; Stockton, Gerald W

    2003-03-01

    The biochemical mode-of-action (MOA) for herbicides and other bioactive compounds can be rapidly and simultaneously classified by automated pattern recognition of the metabonome that is embodied in the 1H NMR spectrum of a crude plant extract. The ca. 300 herbicides that are used in agriculture today affect less than 30 different biochemical pathways. In this report, 19 of the most interesting MOAs were automatically classified. Corn (Zea mays) plants were treated with various herbicides such as imazethapyr, glyphosate, sethoxydim, and diuron, which represent various biochemical modes-of-action such as inhibition of specific enzymes (acetohydroxy acid synthase [AHAS], protoporphyrin IX oxidase [PROTOX], 5-enolpyruvylshikimate-3-phosphate synthase [EPSPS], acetyl CoA carboxylase [ACC-ase], etc.), or protein complexes (photosystems I and II), or major biological process such as oxidative phosphorylation, auxin transport, microtubule growth, and mitosis. Crude isolates from the treated plants were subjected to 1H NMR spectroscopy, and the spectra were classified by artificial neural network analysis to discriminate the herbicide modes-of-action. We demonstrate the use and refinement of the method, and present cross-validated assignments for the metabolite NMR profiles of over 400 plant isolates. The MOA screen also recognizes when a new mode-of-action is present, which is considered extremely important for the herbicide discovery process, and can be used to study deviations in the metabolism of compounds from a chemical synthesis program. The combination of NMR metabolite profiling and neural network classification is expected to be similarly relevant to other metabonomic profiling applications, such as in drug discovery. PMID:12590124

  20. Taxonomic and Life History Bias in Herbicide Resistant Weeds: Implications for Deployment of Resistant Crops

    PubMed Central

    Holt, Jodie S.; Welles, Shana R.; Silvera, Katia; Heap, Ian M.; Heredia, Sylvia M.; Martinez-Berdeja, Alejandra; Palenscar, Kai T.; Sweet, Lynn C.; Ellstrand, Norman C.

    2013-01-01

    Evolved herbicide resistance (EHR) is an important agronomic problem and consequently a food security problem, as it jeopardizes herbicide effectiveness and increases the difficulty and cost of weed management. EHR in weeds was first reported in 1970 and the number of cases has accelerated dramatically over the last two decades. Despite 40 years of research on EHR, why some weeds evolve resistance and others do not is poorly understood. Here we ask whether weed species that have EHR are different from weeds in general. Comparing taxonomic and life history traits of weeds with EHR to a control group (“the world's worst weeds”), we found weeds with EHR significantly over-represented in certain plant families and having certain life history biases. In particular, resistance is overrepresented in Amaranthaceae, Brassicaceae and Poaceae relative to all weeds, and annuality is ca. 1.5 times as frequent in weeds with EHR as in the control group. Also, for perennial EHR weeds, vegetative reproduction is only 60% as frequent as in the control group. We found the same trends for subsets of weeds with EHR to acetolactate synthase (ALS), photosystem II (PSII), and 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase-inhibitor herbicides and with multiple resistance. As herbicide resistant crops (transgenic or not) are increasingly deployed in developing countries, the problems of EHR could increase in those countries as it has in the USA if the selecting herbicides are heavily applied and appropriate management strategies are not employed. Given our analysis, we make some predictions about additional species that might evolve resistance. PMID:24039727

  1. Functional Contribution of Chorismate Synthase, Anthranilate Synthase, and Chorismate Mutase to Penetration Resistance in Barley-Powdery Mildew Interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant processes resulting from primary or secondary metabolism have been hypothesized to contribute to defense against microbial attack. Barley chorismate synthase (HvCS), anthranilate synthase alpha subunit 2 (HvASa2) and chorismate mutase 1 (HvCM1) occupy pivotal branch-points downstream of the s...

  2. A Comparison of the Effects of Neuronal Nitric Oxide Synthase and Inducible Nitric Oxide Synthase Inhibition on Cartilage Damage

    PubMed Central

    Gokay, Nevzat Selim; Yilmaz, Ibrahim; Demiroz, Ahu Senem; Gokce, Alper; Dervisoglu, Sergülen; Gokay, Banu Vural

    2016-01-01

    The objective of this study was to investigate the effects of selective inducible nitric oxide synthase and neuronal nitric oxide synthase inhibitors on cartilage regeneration. The study involved 27 Wistar rats that were divided into five groups. On Day 1, both knees of 3 rats were resected and placed in a formalin solution as a control group. The remaining 24 rats were separated into 4 groups, and their right knees were surgically damaged. Depending on the groups, the rats were injected with intra-articular normal saline solution, neuronal nitric oxide synthase inhibitor 7-nitroindazole (50 mg/kg), inducible nitric oxide synthase inhibitor amino-guanidine (30 mg/kg), or nitric oxide precursor L-arginine (200 mg/kg). After 21 days, the right and left knees of the rats were resected and placed in formalin solution. The samples were histopathologically examined by a blinded evaluator and scored on 8 parameters. Although selective neuronal nitric oxide synthase inhibition exhibited significant (P = 0.044) positive effects on cartilage regeneration following cartilage damage, it was determined that inducible nitric oxide synthase inhibition had no statistically significant effect on cartilage regeneration. It was observed that the nitric oxide synthase activation triggered advanced arthrosis symptoms, such as osteophyte formation. The fact that selective neuronal nitric oxide synthase inhibitors were observed to have mitigating effects on the severity of the damage may, in the future, influence the development of new agents to be used in the treatment of cartilage disorders. PMID:27382570

  3. Pseudouridines and pseudouridine synthases of the ribosome.

    PubMed

    Ofengand, J; Malhotra, A; Remme, J; Gutgsell, N S; Del Campo, M; Jean-Charles, S; Peil, L; Kaya, Y

    2001-01-01

    psi are ubiquitous in ribosomal RNA. Eubacteria, Archaea, and eukaryotes all contain psi, although their number varies widely, with eukaryotes having the most. The small ribosomal subunit can apparently do without psi in some organisms, even though others have as many as 40 or more. Large subunits appear to need at least one psi but can have up to 50-60. psi is made by a set of site-specific enzymes in eubacteria, and in eukaryotes by a single enzyme complexed with auxiliary proteins and specificity-conferring guide RNAs. The mechanism is not known in Archaea, but based on an analysis of the kinds of psi synthases found in sequenced archaeal genomes, it is likely to involve use of guide RNAs. All psi synthases can be classified into one of four related groups, virtually all of which have a conserved aspartate residue in a conserved sequence motif. The aspartate is essential for psi formation in all twelve synthases examined so far. When the need for psi in E. coli was examined, the only synthase whose absence caused a major decrease in growth rate under normal conditions was RluD, the synthase that makes psi 1911, psi 1915, and psi 1917 in the helix 69 end-loop. This growth defect was the result of a major failure in assembly of the large ribosomal subunit. The defect could be prevented by supplying the rluD structural gene in trans, and also by providing a point mutant gene that made a synthase unable to make psi. Therefore, the RluD synthase protein appears to be directly involved in 50S subunit assembly, possibly as an RNA chaperone, and this activity is independent of its ability to form psi. This result is not without precedent. Depletion of PET56, a 2'-O-methyltransferase specific for G2251 (E. coli numbering) in yeast mitochondria virtually blocks 50S subunit assembly and mitochondrial function (Sirum-Connolly et al. 1995), but the methylation activity of the enzyme is not required (T. Mason, pers. comm.). The absence of FtsJ, a heat shock protein that makes

  4. The FAD-dependent glycerol-3-phosphate dehydrogenase of Giardia duodenalis: an unconventional enzyme that interacts with the g14-3-3 and it is a target of the antitumoral compound NBDHEX

    PubMed Central

    Lalle, Marco; Camerini, Serena; Cecchetti, Serena; Finelli, Renata; Sferra, Gabriella; Müller, Joachim; Ricci, Giorgio; Pozio, Edoardo

    2015-01-01

    The flagellated protozoan Giardia duodenalis is a worldwide parasite causing giardiasis, an acute and chronic diarrheal disease. Metabolism in G. duodenalis has a limited complexity thus making metabolic enzymes ideal targets for drug development. However, only few metabolic pathways (i.e., carbohydrates) have been described so far. Recently, the parasite homolog of the mitochondrial-like glycerol-3-phosphate dehydrogenase (gG3PD) has been identified among the interactors of the g14-3-3 protein. G3PD is involved in glycolysis, electron transport, glycerophospholipids metabolism, and hyperosmotic stress response, and is emerging as promising target in tumor treatment. In this work, we demonstrate that gG3PD is a functional flavoenzyme able to convert glycerol-3-phosphate into dihydroxyacetone phosphate and that its activity and the intracellular glycerol level increase during encystation. Taking advantage of co-immunoprecipitation assays and deletion mutants, we provide evidence that gG3PD and g14-3-3 interact at the trophozoite stage, the intracellular localization of gG3PD is stage dependent and it partially co-localizes with mitosomes during cyst development. Finally, we demonstrate that the gG3PD activity is affected by the antitumoral compound 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol, that results more effective in vitro at killing G. duodenalis trophozoites than the reference drug metronidazole. Overall, our results highlight the involvement of gG3PD in processes crucial for the parasite survival thus proposing this enzyme as target for novel antigiardial interventions. PMID:26082764

  5. Hyaluronan synthases and hyaluronidases in nasal polyps.

    PubMed

    Panogeorgou, T; Tserbini, E; Filou, S; Vynios, D H; Naxakis, S S; Papadas, T A; Goumas, P D; Mastronikolis, N S

    2016-07-01

    Nasal polyps (NPs) are benign lesions of nasal and paranasal sinuses mucosa affecting 1-4 % of all adults. Nasal polyposis affects the quality of patient's life as it causes nasal obstruction, postnasal drainage, purulent nasal discharge, hyposmia or anosmia, chronic sinusitis, facial pain and snoring. Without treatment, the disease can alter the craniofacial skeleton in cases of extended growth of polyps. The development of NPs is caused by the hyperplasia of nasal or paranasal sinuses mucosa, and edema of extracellular matrix. This is usually the result of high concentration of high molecular mass hyaluronan (HA) which is either overproduced or accumulated from blood supply. The size of HA presents high diversity and, especially in pathologic conditions, chains of low molecular mass can be observed. In NPs, chains of about 200 kDa have been identified and considered to be responsible for the inflammation. The purpose of the present study was the investigation, in NPs and normal nasal mucosa (NM), of the expression of the wild-type and alternatively spliced forms of hyaluronidases, their immunolocalization, and the expression of HA synthases to examine the isoform(s) responsible for the increased amounts of HA in NPs. Hyaluronidases' presence was examined on mRNA (RT-PCR analysis) and protein (immunohistochemistry) levels. Hyaluronan synthases' presence was examined on mRNA levels. Hyaluronidases were localized in the cytoplasm of epithelial and inflammatory cells, as well as in the matrix. On mRNA level, it was found that hyal-1-wt was decreased in NPs compared to NM and hyal-1-v3, -v4 and -v5 were substantially increased. Moreover, HAS2 and HAS3 were the only hyaluronan synthases detected, the expression of which was almost similar in NPs and NM. Overall, the results of the present study support that hyaluronidases are the main enzymes responsible for the decreased size of hyaluronan observed in NPs; thus they behave as inflammatory agents. Therefore, they

  6. Structure of Aminodeoxychorismate Synthase from Stenotrophomonas maltophilia†

    PubMed Central

    Bera, Asim K.; Atanasova, Vesna; Dhanda, Anjali; Ladner, Jane E.; Parsons, James F.

    2012-01-01

    PabB, aminodeoxychorismate synthase, is the chorismic acid binding component of the heterodimeric PabAB complex that converts chorismic acid to 4-amino-4-deoxychorismate, a precursor of p-aminobenzoate and folic acid in microorganisms. The second component, a glutamine amidotransferase subunit, PabA, generates ammonia that is channeled to the PabB active site where it attacks the C4 carbon of a chorismate derived intermediate that is covalently bound, through C2, to an active site lysine residue. The presence of a PIKGT motif was, until recently, believed to be discriminate PabB enzymes from the closely related enzyme anthranilate synthase, which typically contains a PIAGT active site motif and does not form a covalent enzyme-substrate intermediate with chorismate. A subclass of PabB enzymes that employ an alternative mechanism requiring two equivalents of ammonia from glutamine and that feature a noncovalently bound 2-amino-2-deoxyisochorismate intermediate was recently identified. Here we report the 2.25 Å crystal structure of PabB from the emerging pathogen Stenotrophomonas maltophilia. It is the first reported structure of a PabB that features the PIAGT motif. Surprisingly, no dedicated pabA is evident in the genome of S. maltophilia suggesting that another cellular amidotransferase is able to fulfill the role of PabA in this organism. Evaluation of the ammonia-dependent aminodeoxychorismate synthase activity of S. maltophilia PabB alone revealed that it is virtually inactive. However, in the presence of a heterologous PabA surrogate, typical levels of activity were observed using either glutamine or ammonia as the nitrogen source. Additionally, the structure suggests that a key segment of the polypeptide can remodel itself to interact with a nonspecialized or shared amidotransferase partner in vivo. The structure and mass spectral analysis further suggest that S. maltophilia PabB, like Escherichia coli PabB, binds tryptophan in a vestigial regulatory site

  7. Defining critical residues for substrate binding to 1-deoxy-D-xylulose 5-phosphate synthase--active site substitutions stabilize the predecarboxylation intermediate C2α-lactylthiamin diphosphate.

    PubMed

    Brammer Basta, Leighanne A; Patel, Hetalben; Kakalis, Lazaros; Jordan, Frank; Freel Meyers, Caren L

    2014-06-01

    1-Deoxy-D-xylulose 5-phosphate (DXP) synthase catalyzes the formation of DXP from pyruvate and D-glyceraldehyde 3-phosphate (GraP) in a thiamin diphosphate-dependent manner, and is the first step in the essential pathway to isoprenoids in human pathogens. Understanding the mechanism of this unique enzyme is critical for developing new anti-infective agents that selectively target isoprenoid biosynthesis. The present study used mutagenesis and a combination of protein fluorescence, CD and kinetics experiments to investigate the roles of Arg420, Arg478 and Tyr392 in substrate binding and catalysis. The results support a random sequential, preferred order mechanism, and predict that Arg420 and Arg478 are involved in binding of the acceptor substrate, GraP. D-Glyceraldehyde, an alternative acceptor substrate lacking the phosphoryl group predicted to interact with Arg420 and Arg478, also accelerates decarboxylation of the predecarboxylation intermediate C2α-lactylthiamin diphosphate (LThDP) on DXP synthase, indicating that this binding interaction is not absolutely required, and that the hydroxyaldehyde sufficiently triggers decarboxylation. Unexpectedly, Tyr392 contributes to GraP affinity, and is not required for LThDP formation or its GraP-promoted decarboxylation. Time-resolved CD spectroscopy and NMR experiments indicate that LThDP is significantly stabilized on R420A and Y392F variants as compared with wild-type DXP synthase in the absence of acceptor substrate, but these substitutions do not appear to affect the rate of GraP-promoted LThDP decarboxylation in the presence of high levels of GraP, and LThDP formation remains the rate-limiting step. These results suggest a role of these residues in promoting GraP binding, which in turn facilitates decarboxylation, and also highlight interesting differences between DXP synthase and other thiamin diphosphate-dependent enzymes.

  8. Conversion of anthranilate synthase into isochorismate synthase: implications for the evolution of chorismate-utilizing enzymes.

    PubMed

    Plach, Maximilian G; Löffler, Patrick; Merkl, Rainer; Sterner, Reinhard

    2015-09-14

    Chorismate-utilizing enzymes play a vital role in the biosynthesis of metabolites in plants as well as free-living and infectious microorganisms. Among these enzymes are the homologous primary metabolic anthranilate synthase (AS) and secondary metabolic isochorismate synthase (ICS). Both catalyze mechanistically related reactions by using ammonia and water as nucleophiles, respectively. We report that the nucleophile specificity of AS can be extended from ammonia to water by just two amino acid exchanges in a channel leading to the active site. The observed ICS/AS bifunctionality demonstrates that a secondary metabolic enzyme can readily evolve from a primary metabolic enzyme without requiring an initial gene duplication event. In a general sense, these findings add to our understanding how nature has used the structurally predetermined features of enzyme superfamilies to evolve new reactions.

  9. Identification of cystathionine γ-synthase and threonine synthase from Cicer arietinum and Lens culinaris.

    PubMed

    Morneau, Dominique J K; Jaworski, Allison F; Aitken, Susan M

    2013-04-01

    In plants, cystathionine γ-synthase (CGS) and threonine synthase (TS) compete for the branch-point metabolite O-phospho-L-homoserine. These enzymes are potential targets for metabolic engineering studies, aiming to alter the flux through the competing methionine and threonine biosynthetic pathways, with the goal of increasing methionine production. Although CGS and TS have been characterized in the model organisms Escherichia coli and Arabidopsis thaliana, little information is available on these enzymes in other, particularly plant, species. The functional CGS and TS coding sequences from the grain legumes Cicer arietinum (chickpea) and Lens culinaris (lentil) identified in this study share approximately 80% amino acid sequence identity with the corresponding sequences from Glycine max. At least 7 active-site residues of grain legume CGS and TS are conserved in the model bacterial enzymes, including the catalytic base. Putative processing sites that remove the targeting sequence and result in functional TS were identified in the target species.

  10. Endothelial nitric oxide synthase in the microcirculation.

    PubMed

    Shu, Xiaohong; Keller, T C Stevenson; Begandt, Daniela; Butcher, Joshua T; Biwer, Lauren; Keller, Alexander S; Columbus, Linda; Isakson, Brant E

    2015-12-01

    Endothelial nitric oxide synthase (eNOS, NOS3) is responsible for producing nitric oxide (NO)--a key molecule that can directly (or indirectly) act as a vasodilator and anti-inflammatory mediator. In this review, we examine the structural effects of regulation of the eNOS enzyme, including post-translational modifications and subcellular localization. After production, NO diffuses to surrounding cells with a variety of effects. We focus on the physiological role of NO and NO-derived molecules, including microvascular effects on vessel tone and immune response. Regulation of eNOS and NO action is complicated; we address endogenous and exogenous mechanisms of NO regulation with a discussion of pharmacological agents used in clinical and laboratory settings and a proposed role for eNOS in circulating red blood cells.

  11. The Rotary Mechanism of the ATP Synthase

    PubMed Central

    Nakamoto, Robert K.; Scanlon, Joanne A. Baylis; Al-Shawi, Marwan K.

    2008-01-01

    The FOF1 ATP synthase is a large complex of at least 22 subunits, more than half of which are in the membranous FO sector. This nearly ubiquitous transporter is responsible for the majority of ATP synthesis in oxidative and photo-phosphorylation, and its overall structure and mechanism have remained conserved throughout evolution. Most examples utilize the proton motive force to drive ATP synthesis except for a few bacteria, which use a sodium motive force. A remarkable feature of the complex is the rotary movement of an assembly of subunits that plays essential roles in both transport and catalytic mechanisms. This review addresses the role of rotation in catalysis of ATP synthesis/hydrolysis and the transport of protons or sodium. PMID:18515057

  12. Transfer RNA pseudouridine synthases in Saccharomyces cerevisiae.

    PubMed

    Samuelsson, T; Olsson, M

    1990-05-25

    A transfer RNA lacking modified nucleosides was produced by transcription in vitro of a cloned gene that encodes a Saccharomyces cerevisiae glycine tRNA. At least three different uridines (in nucleotide positions 13, 32, and 55) of this transcript tRNA are modified to pseudouridine by an extract of S. cerevisiae. Variants of the RNA substrate were also constructed that each had only one of these sites, thus allowing specific monitoring of pseudouridylation at different nucleotide positions. Using such RNAs to assay pseudouridine synthesis, enzymes producing this nucleoside were purified from an extract of S. cerevisiae. The activities corresponding to positions 13, 32, and 55 in the tRNA substrate could all be separated chromatographically, indicating that there is a separate enzyme for each of these sites. The enzyme specific for position 55 (denoted pseudouridine synthase 55) was purified approximately 4000-fold using a combination of DEAE-Sepharose, heparin-Sepharose, and hydroxylapatite.

  13. Prenyltransferases of the dimethylallyltryptophan synthase superfamily.

    PubMed

    Yu, Xia; Li, Shu-Ming

    2012-01-01

    Prenylated natural products often have interesting biological and pharmacological activities clearly distinct from their nonprenylated precursors. Prenyltransferases are responsible for the attachment of prenyl moieties to a number of acceptors and contribute significantly to structural and biological diversity of these compounds in nature. In the past 8 years, significant progress has been achieved in the molecular biological, biochemical, and structural biological investigation of the prenyltransferases of the dimethylallyltryptophan synthase (DMATS) superfamily. These soluble enzymes are involved in the biosynthesis of fungal secondary metabolites and mainly catalyze prenylation of diverse indole derivatives, including tryptophan and tryptophan-containing cyclic dipeptides. The members of the DMATS superfamily show promising flexibility toward their aromatic substrates and catalyze highly regio- and stereoselective prenyltransfer reactions. These features were successfully used for chemoenzymatic synthesis, not only for production of prenylated simple indoles and cyclic dipeptides but also for prenylated hydroxynaphthalenes and flavonoids, which are usually found in bacteria and plants, respectively.

  14. Structure and Function of Fusicoccadiene Synthase, a Hexameric Bifunctional Diterpene Synthase.

    PubMed

    Chen, Mengbin; Chou, Wayne K W; Toyomasu, Tomonobu; Cane, David E; Christianson, David W

    2016-04-15

    Fusicoccin A is a diterpene glucoside phytotoxin generated by the fungal pathogen Phomopsis amygdali that causes the plant disease constriction canker, first discovered in New Jersey peach orchards in the 1930s. Fusicoccin A is also an emerging new lead in cancer chemotherapy. The hydrocarbon precursor of fusicoccin A is the tricyclic diterpene fusicoccadiene, which is generated by a bifunctional terpenoid synthase. Here, we report X-ray crystal structures of the individual catalytic domains of fusicoccadiene synthase: the C-terminal domain is a chain elongation enzyme that generates geranylgeranyl diphosphate, and the N-terminal domain catalyzes the cyclization of geranylgeranyl diphosphate to form fusicoccadiene. Crystal structures of each domain complexed with bisphosphonate substrate analogues suggest that three metal ions and three positively charged amino acid side chains trigger substrate ionization in each active site. While in vitro incubations reveal that the cyclase domain can utilize farnesyl diphosphate and geranyl diphosphate as surrogate substrates, these shorter isoprenoid diphosphates are mainly converted into acyclic alcohol or hydrocarbon products. Gel filtration chromatography and analytical ultracentrifugation experiments indicate that full-length fusicoccadiene synthase adopts hexameric quaternary structure, and small-angle X-ray scattering data yield a well-defined molecular envelope illustrating a plausible model for hexamer assembly.

  15. CLYBL is a polymorphic human enzyme with malate synthase and β-methylmalate synthase activity

    PubMed Central

    Strittmatter, Laura; Li, Yang; Nakatsuka, Nathan J.; Calvo, Sarah E.; Grabarek, Zenon; Mootha, Vamsi K.

    2014-01-01

    CLYBL is a human mitochondrial enzyme of unknown function that is found in multiple eukaryotic taxa and conserved to bacteria. The protein is expressed in the mitochondria of all mammalian organs, with highest expression in brown fat and kidney. Approximately 5% of all humans harbor a premature stop polymorphism in CLYBL that has been associated with reduced levels of circulating vitamin B12. Using comparative genomics, we now show that CLYBL is strongly co-expressed with and co-evolved specifically with other components of the mitochondrial B12 pathway. We confirm that the premature stop polymorphism in CLYBL leads to a loss of protein expression. To elucidate the molecular function of CLYBL, we used comparative operon analysis, structural modeling and enzyme kinetics. We report that CLYBL encodes a malate/β-methylmalate synthase, converting glyoxylate and acetyl-CoA to malate, or glyoxylate and propionyl-CoA to β-methylmalate. Malate synthases are best known for their established role in the glyoxylate shunt of plants and lower organisms and are traditionally described as not occurring in humans. The broader role of a malate/β-methylmalate synthase in human physiology and its mechanistic link to vitamin B12 metabolism remain unknown. PMID:24334609

  16. Role of cysteine residues in pseudouridine synthases of different families.

    PubMed

    Ramamurthy, V; Swann, S L; Spedaliere, C J; Mueller, E G

    1999-10-01

    The pseudouridine synthases catalyze the isomerization of uridine to pseudouridine in RNA molecules. An attractive mechanism was proposed based on that of thymidylate synthase, in which the thiol(ate) group of a cysteine side chain serves as the nucleophile in a Michael addition to C6 of the isomerized uridine. Such a role for cysteine in the pseudouridine synthase TruA (also named Psi synthase I) has been discredited by site-directed mutagenesis, but sequence alignments have led to the conclusion that there are four distinct "families" of pseudouridine synthases that share no statistically significant global sequence similarity. It was, therefore, necessary to probe the role of cysteine residues in pseudouridine synthases of the families that do not include TruA. We examined the enzymes RluA and TruB, which are members of different families than TruA and each other. Substitution of cysteine for amino acids with nonnucleophilic side chains did not significantly alter the catalytic activity of either pseudouridine synthase. We conclude, therefore, that neither TruB nor RluA require thiol(ate) groups to effect catalysis, excluding their participation in a Michael addition to C6 of uridine, although not eliminating that mechanism (with an alternate nucleophile) from future consideration.

  17. The Pseudouridine Synthases Proceed through a Glycal Intermediate

    PubMed Central

    2016-01-01

    The pseudouridine synthases isomerize (U) in RNA to pseudouridine (Ψ), and the mechanism that they follow has long been a question of interest. The recent elucidation of a product of the mechanistic probe 5-fluorouridine that had been epimerized to the arabino isomer suggested that the Ψ synthases might operate through a glycal intermediate formed by deprotonation of C2′. When that position in substrate U is deuterated, a primary kinetic isotope effect is observed, which indisputably indicates that the proposed deprotonation occurs during the isomerization of U to Ψ and establishes the mechanism followed by the Ψ synthases. PMID:27292228

  18. Colorimetric Coupled Enzyme Assay for Cystathionine β-Synthase.

    PubMed

    Rocchiccioli, Marco; Moschini, Roberta; Cappiello, Laura; Balestri, Francesco; Cappiello, Mario; Mura, Umberto; Del-Corso, Antonella

    2016-01-01

    A colorimetric coupled enzyme assay for the determination of cystathionine β-synthase activity is described. The method exploits cystathionine γ-lyase as an ancillary enzyme capable of transforming cystathionine, produced by cystathionine β-synthase, into cysteine. The cysteine is then spectrophotometrically detected at 560 nm, after its specific complexation with ninhydrin. This method was used to detect cystathionine β-synthase in crude extracts, and for the kinetic characterization of the enzyme partially purified from bovine kidney. A rapid two-step protocol is described for the partial purification of cystathionine γ-lyase from bovine kidney, aimed at a suitable and stable ancillary enzyme preparation. PMID:27506718

  19. Computational design and selections for an engineered, thermostable terpene synthase

    PubMed Central

    Diaz, Juan E; Lin, Chun-Shi; Kunishiro, Kazuyoshi; Feld, Birte K; Avrantinis, Sara K; Bronson, Jonathan; Greaves, John; Saven, Jeffery G; Weiss, Gregory A

    2011-01-01

    Terpenoids include structurally diverse antibiotics, flavorings, and fragrances. Engineering terpene synthases for control over the synthesis of such compounds represents a long sought goal. We report computational design, selections, and assays of a thermostable mutant of tobacco 5-epi-aristolochene synthase (TEAS) for the catalysis of carbocation cyclization reactions at elevated temperatures. Selection for thermostability included proteolytic digestion followed by capture of intact proteins. Unlike the wild-type enzyme, the mutant TEAS retains enzymatic activity at 65°C. The thermostable terpene synthase variant denatures above 80°C, approximately twice the temperature of the wild-type enzyme. PMID:21739507

  20. The Pseudouridine Synthases Proceed through a Glycal Intermediate.

    PubMed

    Veerareddygari, Govardhan Reddy; Singh, Sanjay K; Mueller, Eugene G

    2016-06-29

    The pseudouridine synthases isomerize (U) in RNA to pseudouridine (Ψ), and the mechanism that they follow has long been a question of interest. The recent elucidation of a product of the mechanistic probe 5-fluorouridine that had been epimerized to the arabino isomer suggested that the Ψ synthases might operate through a glycal intermediate formed by deprotonation of C2'. When that position in substrate U is deuterated, a primary kinetic isotope effect is observed, which indisputably indicates that the proposed deprotonation occurs during the isomerization of U to Ψ and establishes the mechanism followed by the Ψ synthases.

  1. Generation and Functional Evaluation of Designer Monoterpene Synthases.

    PubMed

    Srividya, N; Lange, I; Lange, B M

    2016-01-01

    Monoterpene synthases are highly versatile enzymes that catalyze the first committed step in the pathways toward terpenoids, the structurally most diverse class of plant natural products. Recent advancements in our understanding of the reaction mechanism have enabled engineering approaches to develop mutant monoterpene synthases that produce specific monoterpenes. In this chapter, we are describing protocols to introduce targeted mutations, express mutant enzyme catalysts in heterologous hosts, and assess their catalytic properties. Mutant monoterpene synthases have the potential to contribute significantly to synthetic biology efforts aimed at producing larger amounts of commercially attractive monoterpenes. PMID:27480686

  2. Peroxisomal and mitochondrial citrate synthase in CAM plants.

    PubMed

    Zafra, M F; Segovia, J L; Alejandre, M J; García-Peregrín, E

    1981-12-01

    Citrate synthase wa studied for the first time in peroxisomes and mitochondria of crassulacean acid metabolism plants. Cellular organelles were isolated from Agave americana leaves by sucrose density gradient centrifugation and characterized by the use of catalase and cytochrome oxidase as marker enzymes, respectively. 48,000 X g centrifugation caused the breakdown of the cellular organelles. The presence of a glyoxylate cycle enzyme (citrate synthase) and a glycollate pathway enzyme (catalase) in the same organelles, besides the absence of another glyoxalate cycle enzyme (malate synthase) is reported for the first time, suggesting that peroxisomal and glyoxysomal proteins are synthesized at the same time and housed in he same organelle.

  3. Rare structural variants of human and murine uroporphyrinogen I synthase.

    PubMed Central

    Meisler, M H; Carter, M L

    1980-01-01

    An isoelectric focusing method for detection of structural variants of the enzyme uroporphyrinogen I synthase [porphobilinogen ammonia-lyase (polymerizing), EC 4.3.1.8] in mammalian tissues has been developed. Mouse and human erythrocytes contain one or two major isozymes of uroporphyrinogen I synthase, respectively. Other tissues contain a set of more acidic isozymes that are encoded by the same structural gene as the erythrocyte isozymes. Mouse populations studied with this method were monomorphic for uroporphyrinogen I synthase, with the exception of one feral mouse population. The pedigree of a human family with a rare structural variant is consistent with autosomal linkage of the structural gene. This system provides a convenient isozyme marker for genetic studies and will facilitate determination of the chromosomal location of the uroporphyrinogen I synthase locus. Images PMID:6930671

  4. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth

    PubMed Central

    Ahmad, Zulfiqar; Laughlin, Thomas F.; Kady, Ismail O.

    2015-01-01

    We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control cells demonstrates that ATP synthase is a molecular target for thymoquinone. This also links the beneficial dietary based antimicrobial and anticancer effects of thymoquinone to its inhibitory action on ATP synthase. PMID:25996607

  5. Regulation of synthase phosphatase and phosphorylase phosphatase in rat liver.

    PubMed

    Tan, A W; Nuttall, F Q

    1976-08-12

    Using substrates purified from liver, the apparent Km values of synthase phosphatase ([UDPglucose--glycogen glucosyltransferase-D]phosphohydrolase, EC 3.1.3.42) and phosphorylase phosphatase (phosphorylase a phosphohydrolase, EC 3.1.3.17) were found to be 0.7 and 60 units/ml respectively. The maximal velocity of phosphorylase phosphatase was more than a 100 times that of synthase phosphatase. In adrenalectomized, fasted animals there was a complete loss of synthase phosphatase but only a slight decrease in phosphorylase phosphatase when activity was measured using endogenous substrates in a concentrated liver extract. When assayed under optimal conditions with purified substrates, both activities were present but had decreased to very low levels. Mixing experiments indicated that synthase D present in the extract of adrenalectomized fasted animals was altered such that it was no longer a substrate for synthase phosphatase from normal rats. Phosphorylase a substrate on the other hand was unaltered and readily converted. When glucose was given in vivo, no change in percent of synthase in the I form was seen in adrenalectomized rats but the percent of phosphorylase in the a form was reduced. Precipitation of protein from an extract of normal fed rats with ethanol produced a large activation of phosphorylase phosphatase activity with no corresponding increase in synthase phosphatase activity. Despite the low phosphorylase phosphatase present in extracts of adrenalectomized fasted animals, ethanol precipitation increased activity to the same high level as obtained in the normal fed rats. Synthase phosphatase and phosphorylase phosphatase activities were also decreased in normal fasted, diabetic fed and fasted, and adrenalectomized fed rats. Both enzymes recovered in the same manner temporally after oral glucose administration to adrenalectomized, fasted rats. These results suggest an integrated regulatory mechanism for the two phosphatase.

  6. Biosynthesis of riboflavin: an unusual riboflavin synthase of Methanobacterium thermoautotrophicum.

    PubMed Central

    Eberhardt, S; Korn, S; Lottspeich, F; Bacher, A

    1997-01-01

    Riboflavin synthase was purified by a factor of about 1,500 from cell extract of Methanobacterium thermoautotrophicum. The enzyme had a specific activity of about 2,700 nmol mg(-1) h(-1) at 65 degrees C, which is relatively low compared to those of riboflavin synthases of eubacteria and yeast. Amino acid sequences obtained after proteolytic cleavage had no similarity with known riboflavin synthases. The gene coding for riboflavin synthase (designated ribC) was subsequently cloned by marker rescue with a ribC mutant of Escherichia coli. The ribC gene of M. thermoautotrophicum specifies a protein of 153 amino acid residues. The predicted amino acid sequence agrees with the information gleaned from Edman degradation of the isolated protein and shows 67% identity with the sequence predicted for the unannotated reading frame MJ1184 of Methanococcus jannaschii. The ribC gene is adjacent to a cluster of four genes with similarity to the genes cbiMNQO of Salmonella typhimurium, which form part of the cob operon (this operon contains most of the genes involved in the biosynthesis of vitamin B12). The amino acid sequence predicted by the ribC gene of M. thermoautotrophicum shows no similarity whatsoever to the sequences of riboflavin synthases of eubacteria and yeast. Most notably, the M. thermoautotrophicum protein does not show the internal sequence homology characteristic of eubacterial and yeast riboflavin synthases. The protein of M. thermoautotrophicum can be expressed efficiently in a recombinant E. coli strain. The specific activity of the purified, recombinant protein is 1,900 nmol mg(-1) h(-1) at 65 degrees C. In contrast to riboflavin synthases from eubacteria and fungi, the methanobacterial enzyme has an absolute requirement for magnesium ions. The 5' phosphate of 6,7-dimethyl-8-ribityllumazine does not act as a substrate. The findings suggest that riboflavin synthase has evolved independently in eubacteria and methanobacteria. PMID:9139911

  7. Understanding structure, function, and mutations in the mitochondrial ATP synthase

    PubMed Central

    Xu, Ting; Pagadala, Vijayakanth; Mueller, David M.

    2015-01-01

    The mitochondrial ATP synthase is a multimeric enzyme complex with an overall molecular weight of about 600,000 Da. The ATP synthase is a molecular motor composed of two separable parts: F1 and Fo. The F1 portion contains the catalytic sites for ATP synthesis and protrudes into the mitochondrial matrix. Fo forms a proton turbine that is embedded in the inner membrane and connected to the rotor of F1. The flux of protons flowing down a potential gradient powers the rotation of the rotor driving the synthesis of ATP. Thus, the flow of protons though Fo is coupled to the synthesis of ATP. This review will discuss the structure/function relationship in the ATP synthase as determined by biochemical, crystallographic, and genetic studies. An emphasis will be placed on linking the structure/function relationship with understanding how disease causing mutations or putative single nucleotide polymorphisms (SNPs) in genes encoding the subunits of the ATP synthase, will affect the function of the enzyme and the health of the individual. The review will start by summarizing the current understanding of the subunit composition of the enzyme and the role of the subunits followed by a discussion on known mutations and their effect on the activity of the ATP synthase. The review will conclude with a summary of mutations in genes encoding subunits of the ATP synthase that are known to be responsible for human disease, and a brief discussion on SNPs. PMID:25938092

  8. Linking pseudouridine synthases to growth, development and cell competition.

    PubMed

    Tortoriello, Giuseppe; de Celis, José F; Furia, Maria

    2010-08-01

    Eukaryotic pseudouridine synthases direct RNA pseudouridylation and bind H/ACA small nucleolar RNA (snoRNAs), which, in turn, may act as precursors of microRNA-like molecules. In humans, loss of pseudouridine synthase activity causes dyskeratosis congenita (DC), a complex systemic disorder characterized by cancer susceptibility, failures in ribosome biogenesis and telomere stability, and defects in stem cell formation. Considering the significant interest in deciphering the various molecular consequences of pseudouridine synthase failure, we performed a loss of function analysis of minifly (mfl), the pseudouridine synthase gene of Drosophila, in the wing disc, an advantageous model system for studies of cell growth and differentiation. In this organ, depletion of the mfl-encoded pseudouridine synthase causes a severe reduction in size by decreasing both the number and the size of wing cells. Reduction of cell number was mainly attributable to cell death rather than reduced proliferation, establishing that apoptosis plays a key role in the development of the loss of function mutant phenotype. Depletion of Mfl also causes a proliferative disadvantage in mosaic tissues that leads to the elimination of mutant cells by cell competition. Intriguingly, mfl silencing also triggered unexpected effects on wing patterning and cell differentiation, including deviations from normal lineage boundaries, mingling of cells of different compartments, and defects in the formation of the wing margin that closely mimic the phenotype of reduced Notch activity. These results suggest that a component of the pseudouridine synthase loss of function phenotype is caused by defects in Notch signalling.

  9. Citrate synthase from the liver fluke Fasciola hepatica.

    PubMed

    Zinsser, Veronika L; Moore, Catherine M; Hoey, Elizabeth M; Trudgett, Alan; Timson, David J

    2013-06-01

    Citrate synthase catalyses the first step of the Krebs' tricarboxylic acid cycle. A sequence encoding citrate synthase from the common liver fluke, Fasciola hepatica, has been cloned. The encoded protein sequence is predicted to fold into a largely α-helical protein with high structural similarity to mammalian citrate synthases. Although a hexahistidine-tagged version of the protein could be expressed in Escherichia coli, it was not possible to purify it by nickel-affinity chromatography. Similar results were obtained with a version of the protein which lacks the putative mitochondrial targeting sequence (residues 1 to 29). However, extracts from bacterial cells expressing this version had additional citrate synthase activity after correcting for the endogenous, bacterial activity. The apparent K m for oxaloacetate was found to be 0.22 mM, which is higher than that observed in mammalian citrate synthases. Overall, the sequence and structure of F. hepatica citrate synthase are similar to ones from other eukaryotes, but there are enzymological differences which merit further investigation.

  10. Membrane localization and topology of leukotriene C4 synthase.

    PubMed

    Christmas, Peter; Weber, Brittany M; McKee, Mary; Brown, Dennis; Soberman, Roy J

    2002-08-01

    Leukotriene C(4) (LTC(4)) synthase conjugates LTA(4) with GSH to form LTC(4). Determining the site of LTC(4) synthesis and the topology of LTC(4) synthase may uncover unappreciated intracellular roles for LTC(4), as well as how LTC(4) is transferred to its export carrier, the multidrug resistance protein-1. We have determined the membrane localization of LTC(4) synthase by immunoelectron microscopy. In contrast to the closely related five-lipoxygenase-activating protein, LTC(4) synthase is distributed in the outer nuclear membrane and peripheral endoplasmic reticulum but is excluded from the inner nuclear membrane. We have combined immunofluorescence with differential membrane permeabilization to determine the topology of LTC(4) synthase. The active site of LTC(4) synthase is localized in the lumen of the nuclear envelope and endoplasmic reticulum. These results indicate that the synthesis of LTB(4) and LTC(4) occurs in different subcellular locations and suggests that LTC(4) must be returned to the cytoplasmic side of the membrane for export by multidrug resistance protein-1. The differential localization of two very similar integral membrane proteins suggests that mechanisms other than size-dependent exclusion regulate their passage to the inner nuclear membrane.

  11. Nitric Oxide Synthases in Heart Failure

    PubMed Central

    Carnicer, Ricardo; Crabtree, Mark J.; Sivakumaran, Vidhya

    2013-01-01

    Abstract Significance: The regulation of myocardial function by constitutive nitric oxide synthases (NOS) is important for the maintenance of myocardial Ca2+ homeostasis, relaxation and distensibility, and protection from arrhythmia and abnormal stress stimuli. However, sustained insults such as diabetes, hypertension, hemodynamic overload, and atrial fibrillation lead to dysfunctional NOS activity with superoxide produced instead of NO and worse pathophysiology. Recent Advances: Major strides in understanding the role of normal and abnormal constitutive NOS in the heart have revealed molecular targets by which NO modulates myocyte function and morphology, the role and nature of post-translational modifications of NOS, and factors controlling nitroso-redox balance. Localized and differential signaling from NOS1 (neuronal) versus NOS3 (endothelial) isoforms are being identified, as are methods to restore NOS function in heart disease. Critical Issues: Abnormal NOS signaling plays a key role in many cardiac disorders, while targeted modulation may potentially reverse this pathogenic source of oxidative stress. Future Directions: Improvements in the clinical translation of potent modulators of NOS function/dysfunction may ultimately provide a powerful new treatment for many hearts diseases that are fueled by nitroso-redox imbalance. Antioxid. Redox Signal. 18, 1078–1099. PMID:22871241

  12. Electric field driven torque in ATP synthase.

    PubMed

    Miller, John H; Rajapakshe, Kimal I; Infante, Hans L; Claycomb, James R

    2013-01-01

    FO-ATP synthase (FO) is a rotary motor that converts potential energy from ions, usually protons, moving from high- to low-potential sides of a membrane into torque and rotary motion. Here we propose a mechanism whereby electric fields emanating from the proton entry and exit channels act on asymmetric charge distributions in the c-ring, due to protonated and deprotonated sites, and drive it to rotate. The model predicts a scaling between time-averaged torque and proton motive force, which can be hindered by mutations that adversely affect the channels. The torque created by the c-ring of FO drives the γ-subunit to rotate within the ATP-producing complex (F1) overcoming, with the aid of thermal fluctuations, an opposing torque that rises and falls with angular position. Using the analogy with thermal Brownian motion of a particle in a tilted washboard potential, we compute ATP production rates vs. proton motive force. The latter shows a minimum, needed to drive ATP production, which scales inversely with the number of proton binding sites on the c-ring. PMID:24040370

  13. Electric Field Driven Torque in ATP Synthase

    PubMed Central

    Miller, John H.; Rajapakshe, Kimal I.; Infante, Hans L.; Claycomb, James R.

    2013-01-01

    FO-ATP synthase (FO) is a rotary motor that converts potential energy from ions, usually protons, moving from high- to low-potential sides of a membrane into torque and rotary motion. Here we propose a mechanism whereby electric fields emanating from the proton entry and exit channels act on asymmetric charge distributions in the c-ring, due to protonated and deprotonated sites, and drive it to rotate. The model predicts a scaling between time-averaged torque and proton motive force, which can be hindered by mutations that adversely affect the channels. The torque created by the c-ring of FO drives the γ-subunit to rotate within the ATP-producing complex (F1) overcoming, with the aid of thermal fluctuations, an opposing torque that rises and falls with angular position. Using the analogy with thermal Brownian motion of a particle in a tilted washboard potential, we compute ATP production rates vs. proton motive force. The latter shows a minimum, needed to drive ATP production, which scales inversely with the number of proton binding sites on the c-ring. PMID:24040370

  14. Human Isoprenoid Synthase Enzymes as Therapeutic Targets

    NASA Astrophysics Data System (ADS)

    Park, Jaeok; Matralis, Alexios; Berghuis, Albert; Tsantrizos, Youla

    2014-07-01

    The complex biochemical network known as the mevalonate pathway is responsible for the biosynthesis of all isoprenoids in the human body, which consists of a vast array of metabolites that are vital for proper cellular functions. Two key isoprenoids, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are responsible for the post-translational prenylation of small GTP-binding proteins, and serve as the biosynthetic precursors to numerous other biomolecules. The down-stream metabolite of FPP and GGPP is squalene, the precursor to steroids, bile acids, lipoproteins and vitamin D. In the past, interest in prenyl synthase inhibitors focused mainly on the role of the FPP in lytic bone diseases. More recently, pre-clinical and clinical studies have strongly implicated high levels of protein prenylation in a plethora of human diseases, including non-skeletal cancers, the progression of neurodegenerative diseases and cardiovascular diseases. In this review, we focus mainly on the potential therapeutic value of down-regulating the biosynthesis of FPP, GGPP and squalene. We summarize the most recent drug discovery efforts and the structural data available that support the current on-going studies.

  15. Electric field driven torque in ATP synthase.

    PubMed

    Miller, John H; Rajapakshe, Kimal I; Infante, Hans L; Claycomb, James R

    2013-01-01

    FO-ATP synthase (FO) is a rotary motor that converts potential energy from ions, usually protons, moving from high- to low-potential sides of a membrane into torque and rotary motion. Here we propose a mechanism whereby electric fields emanating from the proton entry and exit channels act on asymmetric charge distributions in the c-ring, due to protonated and deprotonated sites, and drive it to rotate. The model predicts a scaling between time-averaged torque and proton motive force, which can be hindered by mutations that adversely affect the channels. The torque created by the c-ring of FO drives the γ-subunit to rotate within the ATP-producing complex (F1) overcoming, with the aid of thermal fluctuations, an opposing torque that rises and falls with angular position. Using the analogy with thermal Brownian motion of a particle in a tilted washboard potential, we compute ATP production rates vs. proton motive force. The latter shows a minimum, needed to drive ATP production, which scales inversely with the number of proton binding sites on the c-ring.

  16. Human isoprenoid synthase enzymes as therapeutic targets

    PubMed Central

    Park, Jaeok; Matralis, Alexios N.; Berghuis, Albert M.; Tsantrizos, Youla S.

    2014-01-01

    In the human body, the complex biochemical network known as the mevalonate pathway is responsible for the biosynthesis of all isoprenoids, which consists of a vast array of metabolites that are vital for proper cellular functions. Two key isoprenoids, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are responsible for the post-translational prenylation of small GTP-binding proteins, and serve as the biosynthetic precursors to numerous other biomolecules. The down-stream metabolite of FPP and GGPP is squalene, the precursor to steroids, bile acids, lipoproteins, and vitamin D. In the past, interest in prenyl synthase inhibitors focused mainly on the role of the FPP in lytic bone diseases. More recently pre-clinical and clinical studies have strongly implicated high levels of protein prenylation in a plethora of human diseases, including non-skeletal cancers, the progression of neurodegenerative diseases and cardiovascular diseases. In this review, we focus mainly on the potential therapeutic value of down-regulating the biosynthesis of FPP, GGPP, and squalene. We summarize the most recent drug discovery efforts and the structural data available that support the current on-going studies. PMID:25101260

  17. Undecaprenyl diphosphate synthase inhibitors: antibacterial drug leads.

    PubMed

    Sinko, William; Wang, Yang; Zhu, Wei; Zhang, Yonghui; Feixas, Ferran; Cox, Courtney L; Mitchell, Douglas A; Oldfield, Eric; McCammon, J Andrew

    2014-07-10

    There is a significant need for new antibiotics due to the rise in drug resistance. Drugs such as methicillin and vancomycin target bacterial cell wall biosynthesis, but methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE) have now arisen and are of major concern. Inhibitors acting on new targets in cell wall biosynthesis are thus of particular interest since they might also restore sensitivity to existing drugs, and the cis-prenyl transferase undecaprenyl diphosphate synthase (UPPS), essential for lipid I, lipid II, and thus, peptidoglycan biosynthesis, is one such target. We used 12 UPPS crystal structures to validate virtual screening models and then assayed 100 virtual hits (from 450,000 compounds) against UPPS from S. aureus and Escherichia coli. The most promising inhibitors (IC50 ∼2 μM, Ki ∼300 nM) had activity against MRSA, Listeria monocytogenes, Bacillus anthracis, and a vancomycin-resistant Enterococcus sp. with MIC or IC50 values in the 0.25-4 μg/mL range. Moreover, one compound (1), a rhodanine with close structural similarity to the commercial diabetes drug epalrestat, exhibited good activity as well as a fractional inhibitory concentration index (FICI) of 0.1 with methicillin against the community-acquired MRSA USA300 strain, indicating strong synergism. PMID:24827744

  18. Reconstitution of Diphthine Synthase Activity In Vitro

    PubMed Central

    Zhu, Xuling; Kim, Jungwoo; Su, Xiaoyang; Lin, Hening

    2010-01-01

    Diphthamide, the target of diphtheria toxin, is a unique posttranslational modification on eukaryotic and archaeal translation elongation factor 2 (EF2). Although diphthamide modification was discovered three decades ago, in vitro reconstitution of diphthamide biosynthesis using purified proteins has not been reported. The proposed biosynthesis pathway of diphthamide involves three steps. Our laboratory has recently showed that in Pyrococcus horikoshii (P. horikoshii), the first step uses an [4Fe-4S] enzyme PhDph2 to generate a 3-amino-3-carboxypropyl radical from S-adenosyl-L-methionine (SAM) to form a C-C bond. The second step is the trimethylation of an amino group to form the diphthine intermediate. This step is catalyzed by a methyltransferase called diphthine synthase or Dph5. Here we report the in vitro reconstitution of the second step using P. horikoshii Dph5 (PhDph5). Our results demonstrate that PhDph5 is sufficient to catalyze the mono-, di-, and trimethylation of P. horikoshii EF2 (PhEF2). Interestingly, the trimethylated product from PhDph5-catalyzed reaction can easily eliminate the trimethylamino group. The potential implication of this unexpected finding on the diphthamide biosynthesis pathway is discussed. PMID:20873788

  19. Protein preparation, crystallization and preliminary X-ray analysis of Polygonum cuspidatum bifunctional chalcone synthase/benzalacetone synthase.

    PubMed

    Lu, Heshu; Yang, Mingfeng; Liu, Chunmei; Lu, Ping; Cang, Huaixing; Ma, Lanqing

    2013-08-01

    The chalcone synthase (CHS) superfamily of type III polyketide synthases (PKSs) generate the backbones of a variety of plant secondary metabolites. An active bifunctional chalcone synthase/benzalacetone synthase (CHS/BAS) from Polygonum cuspidatum was overexpressed in Escherichia coli as a C-terminally polyhistidine-tagged fusion protein, purified to homogeneity and crystallized using polyethylene glycol 4000 as a precipitant. The production of well shaped crystals of the complex between PcPKS1 and benzalacetone was dependent on the presence of sorbitol and barium chloride as additives. The crystals belonged to the orthorhombic space group P2₁2₁2₁, with unit-cell parameters a = 80.23, b = 81.01, c = 122.89 Å, and diffracted X-rays to at least 2.0 Å resolution. PMID:23908031

  20. EPSP synthase: binding studies using isothermal titration microcalorimetry and equilibrium dialysis and their implications for ligand recognition and kinetic mechanism.

    PubMed

    Ream, J E; Yuen, H K; Frazier, R B; Sikorski, J A

    1992-06-23

    Isothermal titration calorimetry measurements are reported which give important new binding constant (Kd) information for various substrate and inhibitor complexes of Escherichia coli EPSP synthase (EPSPS). The validity of this technique was first verified by determining Kd's for the known binary complex with the substrate, shikimate 3-phosphate (S3P), as well as the herbicidal ternary complex with S3P and glyphosate (EPSPS.S3P.glyphosate). The observed Kd's agreed very well with those from previous independently determined kinetic and fluorescence binding measurements. Further applications unequivocally demonstrate for the first time a fairly tight interaction between phosphoenolpyruvate (PEP) and free enzyme (Kd = 390 microM) as well as a correspondingly weak affinity for glyphosate (Kd = 12 mM) alone with enzyme. The formation of the EPSPS.PEP binary complex was independently corroborated using equilibrium dialysis. These results strongly suggest that S3P synergizes glyphosate binding much more effectively than it does PEP binding. These observations add important new evidence to support the hypothesis that glyphosate acts as a transition-state analogue of PEP. However, the formation of a catalytically productive PEP binary complex is inconsistent with the previously reported compulsory binding order process required for catalysis and has led to new studies which completely revise the overall EPSPS kinetic mechanism. A previously postulated ternary complex between S3P and inorganic phosphate (EPSPS.S3P.Pi, Kd = 4 mM) was also detected for the first time. Quantitative binding enthalpies and entropies were also determined for each ligand complex from the microcalorimetry data. These values demonstrate a clear difference in thermodynamic parameters for recognition at the S3P site versus those observed for the PEP, Pi, and glyphosate sites.

  1. Improvement of NADPH bioavailability in Escherichia coli by replacing NAD(+)-dependent glyceraldehyde-3-phosphate dehydrogenase GapA with NADP (+)-dependent GapB from Bacillus subtilis and addition of NAD kinase.

    PubMed

    Wang, Yipeng; San, Ka-Yiu; Bennett, George N

    2013-12-01

    Enzymatic synthesis of some industrially important compounds depends heavily on cofactor NADPH as the reducing agent. This is especially true in the synthesis of chiral compounds that are often used as pharmaceutical intermediates to generate the correct stereochemistry in bioactive products. The high cost and technical difficulty of cofactor regeneration often pose a challenge for such biocatalytic reactions. In this study, to increase NADPH bioavailability, the native NAD(+)-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gapA gene in Escherichia coli was replaced with a NADP(+)-dependent gapB from Bacillus subtilis. To overcome the limitation of NADP(+) availability, E. coli NAD kinase, nadK was also coexpressed with gapB. The recombinant strains were then tested in three reporting systems: biosynthesis of lycopene, oxidation of cyclohexanone with cyclohexanone monooxygenase (CHMO), and an anaerobic system utilizing 2-haloacrylate reductase (CAA43). In all the reporting systems, replacing NAD(+)-dependent GapA activity with NADP(+)-dependent GapB activity increased the synthesis of NADPH-dependent compounds. The increase was more pronounced when NAD kinase was also overexpressed in the case of the one-step reaction catalyzed by CAA43 which approximately doubled the product yield. These results validate this novel approach to improve NADPH bioavailability in E. coli and suggest that the strategy can be applied in E. coli or other bacterium-based production of NADPH-dependent compounds.

  2. A second gene for acyl-(acyl-carrier-protein): glycerol-3-phosphate acyltransferase in squash, Cucurbita moschata cv. Shirogikuza(*), codes for an oleate-selective isozyme: molecular cloning and protein purification studies.

    PubMed

    Nishida, I; Sugiura, M; Enju, A; Nakamura, M

    2000-12-01

    A new isogene for acyl-(acyl-carrier-protein):glycerol-3-phosphate acyltransferase (GPAT; EC 2.3.1.15) in squash has been cloned and the gene product was identified as oleate-selective GPAT. Using PCR primers that could hybridise with exons for a previously cloned squash GPAT, we obtained two PCR products of different size: one coded for a previously cloned squash GPAT corresponding to non-selective isoforms AT2 and AT3, and the other for a new isozyme, probably the oleate-selective isoform AT1. Full-length amino acid sequences of respective isozymes were deduced from the nucleotide sequences of genomic genes and cDNAs, which were cloned by a series of PCR-based methods. Thus, we designated the new gene CmATS1;1 and the other one CmATS1;2. Genome blot analysis revealed that the squash genome contained the two isogenes at non-allelic loci. AT1-active fractions were partially purified, and three polypeptide bands were identified as being AT1 polypeptides, which exhibited relative molecular masses of 39.5-40.5 kDa, pI values of 6.75-7.15, and oleate selectivity over palmitate. Partial amino-terminal sequences obtained from two of these bands verified that the new isogene codes for AT1 polypeptides.

  3. Specificities of the Acyl-Acyl Carrier Protein (ACP) Thioesterase and Glycerol-3-Phosphate Acyltransferase for Octadecenoyl-ACP Isomers (Identification of a Petroselinoyl-ACP Thioesterase in Umbelliferae).

    PubMed Central

    Dormann, P.; Frentzen, M.; Ohlrogge, J. B.

    1994-01-01

    This study was designed to address the question: How specific for double bond position and conformation are plant enzymes that act on oleoyl-acyl carrier protein (ACP)? Octadecenoyl-ACPs with cis double bonds at positions [delta]6, [delta]7, [delta]8, [delta]9, [delta]10, [delta]11, or [delta]12 and elaidyl (18:1[delta]9trans)-ACP were synthesized and used to characterize the substrate specificity of the acyl-ACP thioesterase and acyl-ACP:sn-glycerol-3-phosphate acyltransferase. The two enzymes were found to be specific for the [delta]9 position of the double bond. The thioesterase was highly specific for the [delta]9 cis conformation, but the transferase was almost equally active with the cis and the trans isomer of 18:1[delta]9-ACP. In plants such as the Umbelliferae species coriander (Coriandrum sativum L.) that accumulate petroselinic acid (18:1[delta]6cis) in their seed triacylglycerols, a high petroselinoyl-ACP thioesterase activity was found in addition to the oleoyl-ACP thioesterase. The two activities could be separated by anion-exchange chromatography, indicating that the petroselinoyl-ACP thioesterase is represented by a distinct polypeptide. PMID:12232130

  4. Functional analysis of sucrose phosphate synthase (SPS) and sucrose synthase (SS) in sugarcane (Saccharum) cultivars.

    PubMed

    Verma, A K; Upadhyay, S K; Verma, P C; Solomon, S; Singh, S B

    2011-03-01

    Sucrose phosphate synthase (SPS; EC 2.4.1.14) and sucrose synthase (SS; EC 2.4.1.13) are key enzymes in the synthesis and breakdown of sucrose in sugarcane. The activities of internodal SPS and SS, as well as transcript expression were determined using semi-quantitative RT-PCR at different developmental stages of high and low sucrose accumulating sugarcane cultivars. SPS activity and transcript expression was higher in mature internodes compared with immature internodes in all the studied cultivars. However, high sugar cultivars showed increased transcript expression and enzyme activity of SPS compared to low sugar cultivars at all developmental stages. SS activity was higher in immature internodes than in mature internodes in all cultivars; SS transcript expression showed a similar pattern. Our studies demonstrate that SPS activity was positively correlated with sucrose and negatively correlated with hexose sugars. However, SS activity was negatively correlated with sucrose and positively correlated with hexose sugars. The present study opens the possibility for improvement of sugarcane cultivars by increasing expression of the respective enzymes using transgene technology.

  5. Dehydration induces expression of GALACTINOL SYNTHASE and RAFFINOSE SYNTHASE in seedlings of pea (Pisum sativum L.).

    PubMed

    Lahuta, Lesław B; Pluskota, Wioletta E; Stelmaszewska, Joanna; Szablińska, Joanna

    2014-09-01

    The exposition of 7-day-old pea seedlings to dehydration induced sudden changes in the concentration of monosaccharides and sucrose in epicotyl and roots tissues. During 24h of dehydration, the concentration of glucose and, to a lesser extent, fructose in seedling tissues decreased. The accumulation of sucrose was observed in roots after 4h and in epicotyls after 8h of stress. Epicotyls and roots also began to accumulate galactinol and raffinose after 8h of stress, when small changes in the water content of tissues occurred. The accumulation of galactinol and raffinose progressed parallel to water withdrawal from tissues, but after seedling rehydration both galactosides disappeared. The synthesis of galactinol and raffinose by an early induction (during the first hour of treatment) of galactinol synthase (PsGolS) and raffinose synthase (PsRS) gene expression as well as a later increase in the activity of both enzymes was noted. Signals possibly triggering the induction of PsGolS and PsRS gene expression and accumulation of galactinol and raffinose in seedlings are discussed.

  6. Structural and functional organization of the animal fatty acid synthase.

    PubMed

    Smith, Stuart; Witkowski, Andrzej; Joshi, Anil K

    2003-07-01

    The entire pathway of palmitate synthesis from malonyl-CoA in mammals is catalyzed by a single, homodimeric, multifunctional protein, the fatty acid synthase. Each subunit contains three N-terminal domains, the beta-ketoacyl synthase, malonyl/acetyl transferase and dehydrase separated by a structural core from four C-terminal domains, the enoyl reductase, beta-ketoacyl reductase, acyl carrier protein and thiosterase. The kinetics and specificities of the substrate loading reaction catalyzed by the malonyl/acetyl transferase, the condensation reaction catalyzed by beta-ketoacyl synthase and chain-terminating reaction catalyzed by the thioesterase ensure that intermediates do not leak off the enzyme, saturated chains exclusively are elongated and palmitate is released as the major product. Only in the fatty acid synthase dimer do the subunits adopt conformations that facilitate productive coupling of the individual reactions for fatty acid synthesis at the two acyl carrier protein centers. Introduction of a double tagging and dual affinity chromatographic procedure has permitted the engineering and isolation of heterodimeric fatty acid synthases carrying different mutations on each subunit. Characterization of these heterodimers, by activity assays and chemical cross-linking, has been exploited to map the functional topology of the protein. The results reveal that the two acyl carrier protein domains engage in substrate loading and condensation reactions catalyzed by the malonyl/acetyl transferase and beta-ketoacyl synthase domains of either subunit. In contrast, the reactions involved in processing of the beta-carbon atom, following each chain elongation step, together with the release of palmitate, are catalyzed by the cooperation of the acyl carrier protein with catalytic domains of the same subunit. These findings suggest a revised model for the fatty acid synthase in which the two polypeptides are oriented such that head-to-tail contacts are formed both between

  7. Nitric oxide synthases: structure, function and inhibition.

    PubMed Central

    Alderton, W K; Cooper, C E; Knowles, R G

    2001-01-01

    This review concentrates on advances in nitric oxide synthase (NOS) structure, function and inhibition made in the last seven years, during which time substantial advances have been made in our understanding of this enzyme family. There is now information on the enzyme structure at all levels from primary (amino acid sequence) to quaternary (dimerization, association with other proteins) structure. The crystal structures of the oxygenase domains of inducible NOS (iNOS) and vascular endothelial NOS (eNOS) allow us to interpret other information in the context of this important part of the enzyme, with its binding sites for iron protoporphyrin IX (haem), biopterin, L-arginine, and the many inhibitors which interact with them. The exact nature of the NOS reaction, its mechanism and its products continue to be sources of controversy. The role of the biopterin cofactor is now becoming clearer, with emerging data implicating one-electron redox cycling as well as the multiple allosteric effects on enzyme activity. Regulation of the NOSs has been described at all levels from gene transcription to covalent modification and allosteric regulation of the enzyme itself. A wide range of NOS inhibitors have been discussed, interacting with the enzyme in diverse ways in terms of site and mechanism of inhibition, time-dependence and selectivity for individual isoforms, although there are many pitfalls and misunderstandings of these aspects. Highly selective inhibitors of iNOS versus eNOS and neuronal NOS have been identified and some of these have potential in the treatment of a range of inflammatory and other conditions in which iNOS has been implicated. PMID:11463332

  8. Tertiary model of a plant cellulose synthase

    PubMed Central

    Sethaphong, Latsavongsakda; Haigler, Candace H.; Kubicki, James D.; Zimmer, Jochen; Bonetta, Dario; DeBolt, Seth; Yingling, Yaroslava G.

    2013-01-01

    A 3D atomistic model of a plant cellulose synthase (CESA) has remained elusive despite over forty years of experimental effort. Here, we report a computationally predicted 3D structure of 506 amino acids of cotton CESA within the cytosolic region. Comparison of the predicted plant CESA structure with the solved structure of a bacterial cellulose-synthesizing protein validates the overall fold of the modeled glycosyltransferase (GT) domain. The coaligned plant and bacterial GT domains share a six-stranded β-sheet, five α-helices, and conserved motifs similar to those required for catalysis in other GT-2 glycosyltransferases. Extending beyond the cross-kingdom similarities related to cellulose polymerization, the predicted structure of cotton CESA reveals that plant-specific modules (plant-conserved region and class-specific region) fold into distinct subdomains on the periphery of the catalytic region. Computational results support the importance of the plant-conserved region and/or class-specific region in CESA oligomerization to form the multimeric cellulose–synthesis complexes that are characteristic of plants. Relatively high sequence conservation between plant CESAs allowed mapping of known mutations and two previously undescribed mutations that perturb cellulose synthesis in Arabidopsis thaliana to their analogous positions in the modeled structure. Most of these mutation sites are near the predicted catalytic region, and the confluence of other mutation sites supports the existence of previously undefined functional nodes within the catalytic core of CESA. Overall, the predicted tertiary structure provides a platform for the biochemical engineering of plant CESAs. PMID:23592721

  9. Highly Divergent Mitochondrial ATP Synthase Complexes in Tetrahymena thermophila

    PubMed Central

    Balabaskaran Nina, Praveen; Dudkina, Natalya V.; Kane, Lesley A.; van Eyk, Jennifer E.; Boekema, Egbert J.; Mather, Michael W.; Vaidya, Akhil B.

    2010-01-01

    The F-type ATP synthase complex is a rotary nano-motor driven by proton motive force to synthesize ATP. Its F1 sector catalyzes ATP synthesis, whereas the Fo sector conducts the protons and provides a stator for the rotary action of the complex. Components of both F1 and Fo sectors are highly conserved across prokaryotes and eukaryotes. Therefore, it was a surprise that genes encoding the a and b subunits as well as other components of the Fo sector were undetectable in the sequenced genomes of a variety of apicomplexan parasites. While the parasitic existence of these organisms could explain the apparent incomplete nature of ATP synthase in Apicomplexa, genes for these essential components were absent even in Tetrahymena thermophila, a free-living ciliate belonging to a sister clade of Apicomplexa, which demonstrates robust oxidative phosphorylation. This observation raises the possibility that the entire clade of Alveolata may have invented novel means to operate ATP synthase complexes. To assess this remarkable possibility, we have carried out an investigation of the ATP synthase from T. thermophila. Blue native polyacrylamide gel electrophoresis (BN-PAGE) revealed the ATP synthase to be present as a large complex. Structural study based on single particle electron microscopy analysis suggested the complex to be a dimer with several unique structures including an unusually large domain on the intermembrane side of the ATP synthase and novel domains flanking the c subunit rings. The two monomers were in a parallel configuration rather than the angled configuration previously observed in other organisms. Proteomic analyses of well-resolved ATP synthase complexes from 2-D BN/BN-PAGE identified orthologs of seven canonical ATP synthase subunits, and at least 13 novel proteins that constitute subunits apparently limited to the ciliate lineage. A mitochondrially encoded protein, Ymf66, with predicted eight transmembrane domains could be a substitute for the subunit a

  10. Expression and characterization of glycogen synthase kinase-3 mutants and their effect on glycogen synthase activity in intact cells.

    PubMed Central

    Eldar-Finkelman, H; Argast, G M; Foord, O; Fischer, E H; Krebs, E G

    1996-01-01

    In these studies we expressed and characterized wild-type (WT) GSK-3 (glycogen synthase kinase-3) and its mutants, and examined their physiological effect on glycogen synthase activity. The GSK-3 mutants included mutation at serine-9 either to alanine (S9A) or glutamic acid (S9E) and an inactive mutant, K85,86MA. Expression of WT and the various mutants in a cell-free system indicated that S9A and S9E exhibit increased kinase activity as compared with WT. Subsequently, 293 cells were transiently transfected with WT GSK-3 and mutants. Cells expressing the S9A mutant exhibited higher kinase activity (2.6-fold of control cells) as compared with cells expressing WT and S9E (1.8- and 2.0-fold, respectively, of control cells). Combined, these results suggest serine-9 as a key regulatory site of GSK-3 inactivation, and indicate that glutamic acid cannot mimic the function of the phosphorylated residue. The GSK-3-expressing cell system enabled us to examine whether GSK-3 can induce changes in the endogenous glycogen synthase activity. A decrease in glycogen synthase activity (50%) was observed in cells expressing the S9A mutant. Similarly, glycogen synthase activity was suppressed in cells expressing WT and the S9E mutant (20-30%, respectively). These studies indicate that activation of GSK-3 is sufficient to inhibit glycogen synthase in intact cells, and provide evidence supporting a physiological role for GSK-3 in regulating glycogen synthase and glycogen metabolism. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8816781

  11. Non-target Site Tolerance Mechanisms Describe Tolerance to Glyphosate in Avena sterilis

    PubMed Central

    Fernández-Moreno, Pablo T.; Alcantara-de la Cruz, Ricardo; Cruz-Hipólito, Hugo E.; Rojano-Delgado, Antonia M.; Travlos, Ilias; De Prado, Rafael

    2016-01-01

    Sterile wild oat (Avena sterilis L.) is an autogamous grass established in warm climate regions. This species has been used as a cover crop in Mediterranean perennial crops during the spring period prior to initiating competition with the main crop for water and nutrients. However, such cover crops need to be controlled (by glyphosate or tillage) before the beginning of summer period (due to the possibility of intense drought stress). In 2011, the olive grove farmers of southern Spain expressed dissatisfaction because of the ineffective control with glyphosate on A. sterilis. Experiments were conducted to determine whether the continued use of glyphosate over a 5 year period had selected a new resistant or tolerant species. The GR50 values obtained for A. sterilis were 297.12 and 245.23 g ae ha−1 for exposed (E) and un-exposed (UE) glyphosate accessions, respectively. The spray retention and shikimic acid accumulation exhibited a non-significant difference between the two accessions. The results of 14C- glyphosate absorption was the same in the two accessions (E and UE), while the translocation from the treated leaf to the rest of the shoots and roots was similar in A. sterilis accessions. Glyphosate metabolism to aminomethylphosphonic acid (AMPA) and glyoxylate was similar in both accessions, but increased after treatment with glyphosate, indicating that metabolism plays an important role in tolerance. Both A. sterilis accessions, present similarity in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity enzyme with different glyphosate concentrations and without glyphosate, confirming that both accessions present the same genomic characteristics. The above-mentioned results indicate that innate tolerance to glyphosate in A. sterilis is probably and partly due to reduced herbicide absorption and translocation and metabolism compared to the susceptibility of other grasses weeds like Chloris inflata, Eleusine indica, and Lolium rigidum. PMID:27570531

  12. Conventional and real-time polymerase chain reaction assessment of the fate of transgenic DNA in sheep fed Roundup Ready rapeseed meal.

    PubMed

    Alexander, Trevor W; Reuter, Tim; Okine, Erasmus; Sharma, Ranjana; McAllister, Tim A

    2006-12-01

    Conventional and real-time PCR were used to detect transgenic DNA in digesta, faeces and blood collected from six ruminally and duodenally cannulated sheep fed forage-based (F) or concentrate-based (C) diets containing 15% Roundup Ready (RR) rapeseed meal (n 3). The sheep were adapted for 14 d to F or C diets containing non-GM rapeseed, then fed the RR diets for 11 d. On day 12, they were switched back to non-GM diets for a further 11 d. Ruminal and duodenal fluids (RF, DF) and faecal samples were collected at 3 or 4 h intervals over the 4 d immediately following the last feeding of GM diets. DNA was isolated from whole RF and DF, from the cell-free supernatant fraction, and from culture fermentation liquid. Blood was collected on days 1, 5 and 9 of feeding the RR rapeseed meal. The 1363 bp 5-enolpyruvylshikimate-3-phosphate synthase transgene (epsps) was quantifiable in whole RF and DF for up to 13 h, and a 108 bp epsps fragment for up to 29 h. Transgenic DNA was not detectable in faeces or blood, or in microbial DNA. Diet type (F v. C) did not affect (P>0.05) the quantity of transgenic DNA in digesta. More (P<0.05) transgenic DNA was detected in RF than in DF, but there was an interaction (P<0.05) between sample type and collection time. In supernatant fractions from RF and DF, three different fragments of transgenic DNA ranging in size from 62 to 420 bp were not amplifiable.

  13. Relative stability of transgene DNA fragments from GM rapeseed in mixed ruminal cultures.

    PubMed

    Sharma, Ranjana; Alexander, Trevor W; John, S Jacob; Forster, Robert J; McAllister, Tim A

    2004-05-01

    The use of transgenic crops as feeds for ruminant animals has prompted study of the possible uptake of transgene fragments by ruminal micro-organisms and/or intestinal absorption of fragments surviving passage through the rumen. The persistence in buffered ruminal contents of seven different recombinant DNA fragments from GM rapeseed expressing the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) transgene was tracked using PCR. Parental and transgenic (i.e. glyphosphate-tolerant; Roundup Ready, Monsanto Company, St Louis, MO, USA) rapeseed were incubated for 0, 2, 4, 8, 12, 24 and 48 h as whole seeds, cracked seeds, rapeseed meal, and as pelleted, barley-based diets containing 65 g rapeseed meal/kg. The seven transgene fragments ranged from 179 to 527 bp and spanned the entire 1363 bp EPSPS transgene. A 180 bp ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit fragment and a 466 bp 16S rDNA fragment were used as controls for endogenous rapeseed DNA and bacterial DNA respectively. The limit of detection of the PCR assay, established using negative controls spiked with known quantities of DNA, was 12.5 pg. Production of gas and NH3 was monitored throughout the incubation and confirmed active in vitro fermentation. Bacterial DNA was detected in all sample types at all time points. Persistence patterns of endogenous (Rubisco) and recombinant (EPSPS) rapeseed DNA were inversely related to substrate digestibility (amplifiable for 48, 8 and 4 h in whole or cracked seeds, meal and diets respectively), but did not differ between parental and GM rapeseed, nor among fragments. Detection of fragments was representative of persistence of the whole transgene. No EPSPS fragments were amplifiable in microbial DNA, suggesting that transformation had not occurred during the 48 h incubation. Uptake of transgenic DNA fragments by ruminal bacteria is probably precluded or time-limited by rapid degradation of plant DNA upon plant cell lysis.

  14. Expression and purification of recombinant human serum albumin from selectively terminable transgenic rice*

    PubMed Central

    Zhang, Qing; Yu, Hui; Zhang, Feng-zhen; Shen, Zhi-cheng

    2013-01-01

    Human serum albumin (HSA) is widely utilized for medical purposes and biochemical research. Transgenic rice has proved to be an attractive bioreactor for mass production of recombinant HSA (rHSA). However, transgene spread is a major environmental and food safety concern for transgenic rice expressing proteins of medical value. This study aimed to develop a selectively terminable transgenic rice line expressing HSA in rice seeds, and a simple process for recovery and purification of rHSA for economical manufacture. An HSA expression cassette was inserted into a T-DNA vector encoding an RNA interference (RNAi) cassette suppressing the CYP81A6 gene. This gene detoxifies the herbicide bentazon and is linked to the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) cassette which confers glyphosate tolerance. ANX Sepharose Fast Flow (ANX FF) anion exchange chromatography coupled with Butyl Sepharose High Performance (Butyl HP) hydrophobic interaction chromatography was used to purify rHSA. A transgenic rice line, HSA-84, was obtained with stable expression of rHSA of up to 0.72% of the total dry weight of the dehusked rice seeds. This line also demonstrated high sensitivity to bentazon, and thus could be killed selectively by a spray of bentazon. A two-step chromatography purification scheme was established to purify the rHSA from rice seeds to a purity of 99% with a recovery of 62.4%. Results from mass spectrometry and N-terminus sequencing suggested that the purified rHSA was identical to natural plasma-derived HSA. This study provides an alternative strategy for large-scale production of HSA with a built-in transgene safety control mechanism. PMID:24101203

  15. Composition of grain, forage, and processed fractions from second-generation glyphosate-tolerant soybean, MON 89788, is equivalent to that of conventional soybean (Glycine max L.).

    PubMed

    Lundry, Denise R; Ridley, William P; Meyer, Jiaying J; Riordan, Susan G; Nemeth, Margaret A; Trujillo, William A; Breeze, Matthew L; Sorbet, Roy

    2008-06-25

    Developments in biotechnology and molecular-assisted breeding have led to the development of a second-generation glyphosate-tolerant soybean product, MON 89788. The MON 89788 event was produced by direct transformation of a cp4 epsps (5-enolpyruvylshikimate-3-phosphate synthase) gene cassette derived from Agrobacterium sp. strain CP4 into an elite soybean germplasm known for its superior agronomic characteristics and high yielding property. The purpose of this work was to assess whether the nutrient and antinutrient levels in seed and forage tissues of MON 89788 are comparable to those in the conventional soybean variety, A3244, which has background genetics similar to MON 89788 but does not contain the cp4 epsps gene cassette. Additional conventional soybean varieties currently in the marketplace were also included in the analysis to establish a range of natural variability for each analyte, where the range of variability is defined by a 99% tolerance interval for that particular analyte. Compositional analyses were conducted on forage, seed and four processed fractions from soybeans grown in ten sites across both the United States and Argentina during the 2004-2005 growing seasons. Forage samples were analyzed for levels of proximates (ash, fat, moisture, and protein) and fiber. Seed samples were analyzed for proximates, fiber, antinutrients, and vitamin E. Defatted, toasted (DT) meal was analyzed for proximates, fiber, amino acids, and antinutrients. Refined, bleached, and deodorized (RBD) oil was analyzed for fatty acids and vitamin E. Protein isolate was analyzed for amino acids and moisture. Crude Lecithin was analyzed for phosphatides. Results of the comparisons indicate that MON 89788 is compositionally and nutritionally equivalent to conventional soybean varieties currently in commerce.

  16. Compositions of forage and seed from second-generation glyphosate-tolerant soybean MON 89788 and insect-protected soybean MON 87701 from Brazil are equivalent to those of conventional soybean (Glycine max).

    PubMed

    Berman, Kristina H; Harrigan, George G; Riordan, Susan G; Nemeth, Margaret A; Hanson, Christy; Smith, Michelle; Sorbet, Roy; Zhu, Eddie; Ridley, William P

    2010-05-26

    Brazil has become one of the largest soybean producers. Two Monsanto Co. biotechnology-derived soybean products are designed to offer benefits in weed and pest management. These are second-generation glyphosate-tolerant soybean, MON 89788, and insect-protected soybean, MON 87701. The second-generation glyphosate-tolerant soybean product, MON 89788, contains the 5-enolpyruvylshikimate-3-phosphate synthase gene derived from Agrobacterium sp. strain CP4 (cp4 epsps). MON 87701 contains the cry1Ac gene and expression of the Cry1Ac protein providing protection from feeding damage caused by certain lepidopteran insect pests. The purpose of this assessment was to determine whether the compositions of seed and forage of MON 89788 and MON 87701 are comparable to those of conventional soybean grown in two geographically and climatically distinct regions in multiple replicated sites in Brazil during the 2007-2008 growing season. Overall, results demonstrated that the seed and forage of MON 89788 and MON 87701 are compositionally equivalent to those of conventional soybean. Strikingly, the results also showed that differences in mean component values of forage and seed from the two controls grown in the different geographical regions were generally greater than that observed in test and control comparisons. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) of compositional data generated on MON 89788, MON 87701, and their respective region-specific controls provide a graphical illustration of how natural variation contributes more than biotechnology-driven genetic modification to compositional variability in soybean. Levels of isoflavones and fatty acids were particularly variable.

  17. Tolerance and accumulation of shikimic acid in response to glyphosate applications in glyphosate-resistant and nonglyphosate-resistant cotton (Gossypium hirsutum L.).

    PubMed

    Pline, Wendy A; Wilcut, John W; Duke, Stephen O; Edmisten, Keith L; Wells, Randy

    2002-01-30

    Measurement of shikimic acid accumulation in response to glyphosate inhibition of 5-enolpyruvylshikimate-3-phosphate synthase is a rapid and accurate assay to quantify glyphosate-induced damage in sensitive plants. Two methods of assaying shikimic acid, a spectrophotometric and a high-performance liquid chromatography (HPLC) method, were compared for their accuracy of recovering known amounts of shikimic acid spiked into plant samples. The HPLC method recovered essentially 100% of shikimic acid as compared with only 73% using the spectrophotometric method. Relative sensitivity to glyphosate was measured in glyphosate-resistant (GR) and non-GR cotton leaves, fruiting branches, and squares (floral buds) by assaying shikimic acid. Accumulation of shikimic acid was not observed in any tissue, either GR or non-GR, at rates of 5 mM glyphosate or less applied to leaves. All tissues of non-GR plants accumulated shikimic acid in response to glyphosate treatment; however, only fruiting branches and squares of GR plants accumulated a slight amount of shikimic acid. In non-GR cotton, fruiting branches and squares accumulated 18 and 11 times, respectively, more shikimic acid per micromolar of translocated glyphosate than leaf tissue, suggesting increased sensitivity to glyphosate of reproductive tissue over vegetative tissue. GR cotton leaves treated with 80 mM of glyphosate accumulated 57 times less shikimic acid per micromolar of translocated glyphosate than non-GR cotton but only 12.4- and 4-fold less in fruiting branches and squares, respectively. The increased sensitivity of reproductive structures to glyphosate inhibition may be due to a higher demand for shikimate pathway products and may provide an explanation for reports of fruit abortion from glyphosate-treated GR cotton.

  18. Expression and purification of recombinant human serum albumin from selectively terminable transgenic rice.

    PubMed

    Zhang, Qing; Yu, Hui; Zhang, Feng-zhen; Shen, Zhi-cheng

    2013-10-01

    Human serum albumin (HSA) is widely utilized for medical purposes and biochemical research. Transgenic rice has proved to be an attractive bioreactor for mass production of recombinant HSA (rHSA). However, transgene spread is a major environmental and food safety concern for transgenic rice expressing proteins of medical value. This study aimed to develop a selectively terminable transgenic rice line expressing HSA in rice seeds, and a simple process for recovery and purification of rHSA for economical manufacture. An HSA expression cassette was inserted into a T-DNA vector encoding an RNA interference (RNAi) cassette suppressing the CYP81A6 gene. This gene detoxifies the herbicide bentazon and is linked to the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) cassette which confers glyphosate tolerance. ANX Sepharose Fast Flow (ANX FF) anion exchange chromatography coupled with Butyl Sepharose High Performance (Butyl HP) hydrophobic interaction chromatography was used to purify rHSA. A transgenic rice line, HSA-84, was obtained with stable expression of rHSA of up to 0.72% of the total dry weight of the dehusked rice seeds. This line also demonstrated high sensitivity to bentazon, and thus could be killed selectively by a spray of bentazon. A two-step chromatography purification scheme was established to purify the rHSA from rice seeds to a purity of 99% with a recovery of 62.4%. Results from mass spectrometry and N-terminus sequencing suggested that the purified rHSA was identical to natural plasma-derived HSA. This study provides an alternative strategy for large-scale production of HSA with a built-in transgene safety control mechanism.

  19. Selection and characterization of glyphosate tolerance in birdsfoot trefoil (Lotus corniculatus)

    SciTech Connect

    Boerboom, C.M.

    1989-01-01

    If birdsfoot trefoil (Lotus corniculatus L.) was tolerant to glyphosate (N-(phosphonomethyl)glycine), Canada thistle (Cirsium arvense (L.) Scop.) and other dicot weeds could be selectively controlled in certified seed production fields. Glyphosate tolerance in birdsfoot trefoil was identified in plants from the cultivar Leo, plants regenerated from tolerant callus, and selfed progeny of plants regenerated from callus. Plants from the three sources were evaluated in field studies for tolerance to glyphosate at rates up to 1.6 kg ae/ha. Plants of Leo selected for tolerance exhibited a twofold range in the rate required to reduce shoot weight 50% (I{sub 50}s from 0.6 to 1.2 kg/ha glyphosate). Plants regenerated from tolerant callus had tolerance up to 66% greater than plants regenerated from unselected callus. Transgressive segregation for glyphosate tolerance was observed in the selfed progeny of two regenerated plants that both had I{sub 50}s of 0.7 kg/ha glyphosate. The selfed progeny ranged from highly tolerant (I{sub 50} of 1.5 kg/ha) to susceptible (I{sub 50} of 0.5 kg/ha). Spray retention, {sup 14}C-glyphosate absorption and translocation did not account for the differential tolerance of nine plants that were evaluated from the three sources. The specific activity of 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase ranged from 1.3 to 3.5 nmol/min{sm bullet}mg among the nine plants and was positively correlated with glyphosate tolerance. Leo birdsfoot trefoil was found to have significant variation in glyphosate tolerance which made it possible to initiate a recurrent selection program to select for glyphosate tolerance in birdsfoot trefoil. Two cycles of selection for glyphosate tolerance were practiced in three birdsfoot trefoil populations, Leo, Norcen, and MU-81.

  20. Glyphosate-Resistant and Conventional Canola (Brassica napus L.) Responses to Glyphosate and Aminomethylphosphonic Acid (AMPA) Treatment.

    PubMed

    Corrêa, Elza Alves; Dayan, Franck E; Owens, Daniel K; Rimando, Agnes M; Duke, Stephen O

    2016-05-11

    Glyphosate-resistant (GR) canola contains two transgenes that impart resistance to the herbicide glyphosate: (1) the microbial glyphosate oxidase gene (gox) encoding the glyphosate oxidase enzyme (GOX) that metabolizes glyphosate to aminomethylphosphonic acid (AMPA) and (2) cp4 that encodes a GR form of the glyphosate target enzyme 5-enolpyruvylshikimic acid-3-phosphate synthase. The objectives of this research were to determine the phytotoxicity of AMPA to canola, the relative metabolism of glyphosate to AMPA in GR and conventional non-GR (NGR) canola, and AMPA pool sizes in glyphosate-treated GR canola. AMPA applied at 1.0 kg ha(-1) was not phytotoxic to GR or NGR. At this AMPA application rate, NGR canola accumulated a higher concentration of AMPA in its tissues than GR canola. At rates of 1 and 3.33 kg ae ha(-1) of glyphosate, GR canola growth was stimulated. This stimulatory effect is similar to that of much lower doses of glyphosate on NGR canola. Both shikimate and AMPA accumulated in tissues of these glyphosate-treated plants. In a separate experiment in which young GR and NGR canola plants were treated with non-phytotoxic levels of [(14)C]-glyphosate, very little glyphosate was metabolized in NGR plants, whereas most of the glyphosate was metabolized to AMPA in GR plants at 7 days after application. Untreated leaves of GR plants accumulated only metabolites (mostly AMPA) of glyphosate, indicating that GOX activity is very high in the youngest leaves. These data indicate that more glyphosate is transformed to AMPA rapidly in GR canola and that the accumulated AMPA is not toxic to the canola plant. PMID:27092715

  1. Non-target Site Tolerance Mechanisms Describe Tolerance to Glyphosate in Avena sterilis.

    PubMed

    Fernández-Moreno, Pablo T; Alcantara-de la Cruz, Ricardo; Cruz-Hipólito, Hugo E; Rojano-Delgado, Antonia M; Travlos, Ilias; De Prado, Rafael

    2016-01-01

    Sterile wild oat (Avena sterilis L.) is an autogamous grass established in warm climate regions. This species has been used as a cover crop in Mediterranean perennial crops during the spring period prior to initiating competition with the main crop for water and nutrients. However, such cover crops need to be controlled (by glyphosate or tillage) before the beginning of summer period (due to the possibility of intense drought stress). In 2011, the olive grove farmers of southern Spain expressed dissatisfaction because of the ineffective control with glyphosate on A. sterilis. Experiments were conducted to determine whether the continued use of glyphosate over a 5 year period had selected a new resistant or tolerant species. The GR50 values obtained for A. sterilis were 297.12 and 245.23 g ae ha(-1) for exposed (E) and un-exposed (UE) glyphosate accessions, respectively. The spray retention and shikimic acid accumulation exhibited a non-significant difference between the two accessions. The results of (14)C- glyphosate absorption was the same in the two accessions (E and UE), while the translocation from the treated leaf to the rest of the shoots and roots was similar in A. sterilis accessions. Glyphosate metabolism to aminomethylphosphonic acid (AMPA) and glyoxylate was similar in both accessions, but increased after treatment with glyphosate, indicating that metabolism plays an important role in tolerance. Both A. sterilis accessions, present similarity in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity enzyme with different glyphosate concentrations and without glyphosate, confirming that both accessions present the same genomic characteristics. The above-mentioned results indicate that innate tolerance to glyphosate in A. sterilis is probably and partly due to reduced herbicide absorption and translocation and metabolism compared to the susceptibility of other grasses weeds like Chloris inflata, Eleusine indica, and Lolium rigidum.

  2. Glyphosate-Resistant and Conventional Canola (Brassica napus L.) Responses to Glyphosate and Aminomethylphosphonic Acid (AMPA) Treatment.

    PubMed

    Corrêa, Elza Alves; Dayan, Franck E; Owens, Daniel K; Rimando, Agnes M; Duke, Stephen O

    2016-05-11

    Glyphosate-resistant (GR) canola contains two transgenes that impart resistance to the herbicide glyphosate: (1) the microbial glyphosate oxidase gene (gox) encoding the glyphosate oxidase enzyme (GOX) that metabolizes glyphosate to aminomethylphosphonic acid (AMPA) and (2) cp4 that encodes a GR form of the glyphosate target enzyme 5-enolpyruvylshikimic acid-3-phosphate synthase. The objectives of this research were to determine the phytotoxicity of AMPA to canola, the relative metabolism of glyphosate to AMPA in GR and conventional non-GR (NGR) canola, and AMPA pool sizes in glyphosate-treated GR canola. AMPA applied at 1.0 kg ha(-1) was not phytotoxic to GR or NGR. At this AMPA application rate, NGR canola accumulated a higher concentration of AMPA in its tissues than GR canola. At rates of 1 and 3.33 kg ae ha(-1) of glyphosate, GR canola growth was stimulated. This stimulatory effect is similar to that of much lower doses of glyphosate on NGR canola. Both shikimate and AMPA accumulated in tissues of these glyphosate-treated plants. In a separate experiment in which young GR and NGR canola plants were treated with non-phytotoxic levels of [(14)C]-glyphosate, very little glyphosate was metabolized in NGR plants, whereas most of the glyphosate was metabolized to AMPA in GR plants at 7 days after application. Untreated leaves of GR plants accumulated only metabolites (mostly AMPA) of glyphosate, indicating that GOX activity is very high in the youngest leaves. These data indicate that more glyphosate is transformed to AMPA rapidly in GR canola and that the accumulated AMPA is not toxic to the canola plant.

  3. Expression of CP4 EPSPS in microspores and tapetum cells of cotton (Gossypium hirsutum) is critical for male reproductive development in response to late-stage glyphosate applications.

    PubMed

    Chen, Yun-Chia Sophia; Hubmeier, Christopher; Tran, Minhtien; Martens, Amy; Cerny, R Eric; Sammons, R Doug; CaJacob, Claire

    2006-09-01

    Plants expressing Agrobacterium sp. strain CP4 5-enolpyruvylshikimate-3-phosphate synthase (CP4 EPSPS) are known to be resistant to glyphosate, a potent herbicide that inhibits the activity of the endogenous plant EPSPS. The RR1445 transgenic cotton line (current commercial line for Roundup Ready Cotton) was generated using the figwort mosaic virus (FMV) 35S promoter to drive the expression of the CP4 EPSPS gene, and has excellent vegetative tolerance to glyphosate. However, with high glyphosate application rates at developmental stages later than the four-leaf stage (late-stage applications: applications that are inconsistent with the Roundup labels), RR1445 shows male sterility. Another transgenic cotton line, RR60, was generated using the FMV 35S promoter and the Arabidopsis elongation factor-1alpha promoter (AtEF1alpha) for the expression of CP4 EPSPS. RR60 has excellent vegetative and reproductive tolerance to applications of glyphosate at all developmental stages. Histochemical analyses were conducted to examine the male reproductive development at the cellular level of these cotton lines in response to glyphosate applications, and to investigate the correlation between glyphosate injury and the expression of CP4 EPSPS in male reproductive tissues. The expression of CP4 EPSPS in RR60 was found to be strong in all male reproductive cell types. Conversely, CP4 EPSPS expression in RR1445 was low in pollen mother cells, male gametophytes and tapetum, three crucial male reproductive cell types. Our results indicate that the FMV 35S promoter, although expressing strongly in most vegetative tissues in plants, has extremely low activity in these cell types.

  4. A Built-In Mechanism to Mitigate the Spread of Insect-Resistance and Herbicide-Tolerance Transgenes into Weedy Rice Populations

    PubMed Central

    Liu, Chengyi; Li, Jingjing; Gao, Jianhua; Shen, Zhicheng; Lu, Bao-Rong; Lin, Chaoyang

    2012-01-01

    Background The major challenge of cultivating genetically modified (GM) rice (Oryza sativa) at the commercial scale is to prevent the spread of transgenes from GM cultivated rice to its coexisting weedy rice (O. sativa f. spontanea). The strategic development of GM rice with a built-in control mechanism can mitigate transgene spread in weedy rice populations. Methodology/Principal Findings An RNAi cassette suppressing the expression of the bentazon detoxifying enzyme CYP81A6 was constructed into the T-DNA which contained two tightly linked transgenes expressing the Bt insecticidal protein Cry1Ab and the glyphosate tolerant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), respectively. GM rice plants developed from this T-DNA were resistant to lepidopteran pests and tolerant to glyphosate, but sensitive to bentazon. The application of bentazon of 2000 mg/L at the rate of 40 mL/m2, which is approximately the recommended dose for the field application to control common rice weeds, killed all F2 plants containing the transgenes generated from the Crop-weed hybrids between a GM rice line (CGH-13) and two weedy rice strains (PI-63 and PI-1401). Conclusions/Significance Weedy rice plants containing transgenes from GM rice through gene flow can be selectively killed by the spray of bentazon when a non-GM rice variety is cultivated alternately in a few-year interval. The built-in control mechanism in combination of cropping management is likely to mitigate the spread of transgenes into weedy rice populations. PMID:22359609

  5. Non-target Site Tolerance Mechanisms Describe Tolerance to Glyphosate in Avena sterilis.

    PubMed

    Fernández-Moreno, Pablo T; Alcantara-de la Cruz, Ricardo; Cruz-Hipólito, Hugo E; Rojano-Delgado, Antonia M; Travlos, Ilias; De Prado, Rafael

    2016-01-01

    Sterile wild oat (Avena sterilis L.) is an autogamous grass established in warm climate regions. This species has been used as a cover crop in Mediterranean perennial crops during the spring period prior to initiating competition with the main crop for water and nutrients. However, such cover crops need to be controlled (by glyphosate or tillage) before the beginning of summer period (due to the possibility of intense drought stress). In 2011, the olive grove farmers of southern Spain expressed dissatisfaction because of the ineffective control with glyphosate on A. sterilis. Experiments were conducted to determine whether the continued use of glyphosate over a 5 year period had selected a new resistant or tolerant species. The GR50 values obtained for A. sterilis were 297.12 and 245.23 g ae ha(-1) for exposed (E) and un-exposed (UE) glyphosate accessions, respectively. The spray retention and shikimic acid accumulation exhibited a non-significant difference between the two accessions. The results of (14)C- glyphosate absorption was the same in the two accessions (E and UE), while the translocation from the treated leaf to the rest of the shoots and roots was similar in A. sterilis accessions. Glyphosate metabolism to aminomethylphosphonic acid (AMPA) and glyoxylate was similar in both accessions, but increased after treatment with glyphosate, indicating that metabolism plays an important role in tolerance. Both A. sterilis accessions, present similarity in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity enzyme with different glyphosate concentrations and without glyphosate, confirming that both accessions present the same genomic characteristics. The above-mentioned results indicate that innate tolerance to glyphosate in A. sterilis is probably and partly due to reduced herbicide absorption and translocation and metabolism compared to the susceptibility of other grasses weeds like Chloris inflata, Eleusine indica, and Lolium rigidum. PMID:27570531

  6. Comparison of broiler performance and carcass parameters when fed diets containing soybean meal produced from glyphosate-tolerant (MON 89788), control, or conventional reference soybeans.

    PubMed

    Taylor, M; Hartnell, G; Lucas, D; Davis, S; Nemeth, M

    2007-12-01

    A 42-d floor pen study was conducted to compare broiler (Ross x Ross 308) performance and carcass measurements when fed diets containing meal produced from glyphosate-tolerant soybeans (MON 89788) with those of broilers fed diets containing meal produced from control soybean (A3244) that has similar genetic background to MON 89788. Soybean meal produced from 6 conventional soybean varieties was included in the study to provide comparison measurements for broilers fed meal derived from conventional soybeans. It has been found that MON 89788 produces the 5-enolpyruvylshikimate-3-phosphate synthase protein from Agrobacterium sp. strain CP4 (cp4 epsps), which confers tolerance to glyphosate, the active ingredient in Roundup agricultural herbicides. Broilers were fed starter diets (approximately 33% wt/wt dehulled soybean meal) from d 0 to 21 and grower-finisher diets (approximately 30% wt/wt dehulled soybean meal) from d 21 to 42. The study utilized a randomized complete block design with 8 dietary treatments assigned randomly within 5 blocks of 16 pens each (8 male and 8 female) with 10 birds per pen. There were 10 pens per treatment group (5 male and 5 female). No treatment differences (P > 0.05) were detected among dietary treatments for feed intake, weight gain, adjusted feed conversion, or any measured carcass and meat quality parameters. Comparison of all performance, carcass, and meat quality parameters measured showed no differences (P > 0.05) between birds fed the MON 89788 soybean meal diet and the population of birds fed the control and 6 conventional reference soybean meal diets. It is concluded that the diets containing soybean meal produced from MON 89788 were nutritionally equivalent to diets containing soybean meal produced from the control and conventional reference soybean varieties when fed to broilers.

  7. Comparison of broiler performance and carcass parameters when fed diets containing combined trait insect-protected and glyphosate-tolerant corn (MON 89034 x NK603), control, or conventional reference corn.

    PubMed

    Taylor, M; Lucas, D; Nemeth, M; Davis, S; Hartnell, G

    2007-09-01

    A 42-d floor pen study was conducted to compare broiler (Ross x Ross 308) performance and carcass measurements when fed diets containing lepidopteran-protected corn combined with glyphosate-tolerant corn (MON 89034 x NK603) with those of broilers fed diets containing corn grain from the conventional control (similar genetic background to the test corn) and 6 conventional corn hybrids. It has been found that MON 89034 produces the Cry1A.105 and Cry2Ab2 insecticidal proteins that protect corn plants from feeding damage caused by European corn borer (Ostrinia nubilalis) and other lepidopteran insect pests. In addition, NK603 produces the 5-enolpyruvylshikimate-3-phosphate synthase protein from Agrobacterium sp. strain CP4 (CP4 EPSPS), which confers tolerance to glyphosate, the active ingredient in Roundup agricultural herbicides. The traditional breeding of plants that express the individual traits produced MON 89034 x NK603. Broilers were fed starter diets (approximately 57% wt/wt corn grain) from d 0 to 21 and grower-finisher diets (approximately 59% wt/wt corn grain) from d 21 to 42. The study utilized a randomized complete block design with 8 dietary treatments assigned randomly within 5 blocks of 16 pens each (8 male and 8 female) with 10 birds per pen. There were 10 pens per treatment group (5 male and 5 female). Weight at d 0 and 42, feed intake, feed conversion, and all measured carcass and meat quality parameters were not different (P > 0.05) for birds fed MON 89034 x NK603 and control corn diets. In addition, comparisons of the MON 89034 x NK603 diet to the population of the control and 6 reference corn diets showed no difference (P > 0.05) in any performance, carcass, or meat quality parameter measured. In conclusion, the diets containing MON 89034 x NK603 were nutritionally equivalent to diets containing the control or conventional reference corn grain when fed to broilers.

  8. Plasticity and Evolution of (+)-3-Carene Synthase and (−)-Sabinene Synthase Functions of a Sitka Spruce Monoterpene Synthase Gene Family Associated with Weevil Resistance*

    PubMed Central

    Roach, Christopher R.; Hall, Dawn E.; Zerbe, Philipp; Bohlmann, Jörg

    2014-01-01

    The monoterpene (+)-3-carene is associated with resistance of Sitka spruce against white pine weevil, a major North American forest insect pest of pine and spruce. High and low levels of (+)-3-carene in, respectively, resistant and susceptible Sitka spruce genotypes are due to variation of (+)-3-carene synthase gene copy number, transcript and protein expression levels, enzyme product profiles, and enzyme catalytic efficiency. A family of multiproduct (+)-3-carene synthase-like genes of Sitka spruce include the three (+)-3-carene synthases, PsTPS-3car1, PsTPS-3car2, PsTPS-3car3, and the (−)-sabinene synthase PsTPS-sab. Of these, PsTPS-3car2 is responsible for the relatively higher levels of (+)-3-carene in weevil-resistant trees. Here, we identified features of the PsTPS-3car1, PsTPS-3car2, PsTPS-3car3, and PsTPS-sab proteins that determine different product profiles. A series of domain swap and site-directed mutations, supported by structural comparisons, identified the amino acid in position 596 as critical for product profiles dominated by (+)-3-carene in PsTPS-3car1, PsTPS-3car2, and PsTPS-3car3, or (−)-sabinene in PsTPS-sab. A leucine in this position promotes formation of (+)-3-carene, whereas phenylalanine promotes (−)-sabinene. Homology modeling predicts that position 596 directs product profiles through differential stabilization of the reaction intermediate. Kinetic analysis revealed position 596 also plays a role in catalytic efficiency. Mutations of position 596 with different side chain properties resulted in a series of enzymes with different product profiles, further highlighting the inherent plasticity and potential for evolution of alternative product profiles of these monoterpene synthases of conifer defense against insects. PMID:25016016

  9. ATP synthases: cellular nanomotors characterized by LILBID mass spectrometry

    PubMed Central

    Hoffmann, Jan; Sokolova, Lucie; Preiss, Laura; Hicks, David B.; Krulwich, Terry A.; Morgner, Nina; Wittig, Ilka; Schägger, Hermann; Meier, Thomas; Brutschy, Bernd

    2010-01-01

    Mass spectrometry of membrane protein complexes is still a methodological challenge due to hydrophobic and hydrophilic parts of the species and the fact that all subunits are bound non-covalently together. The present study with the novel laser induced liquid bead ion desorption mass spectrometry (LILBID-MS) reports on the determination of the subunit composition of the F1Fo-ATP synthase from Bacillus pseudofirmus OF4, that of both bovine heart and, for the first time, of human heart mitochondrial F1Fo-ATP synthases. Under selected buffer conditions the mass of the intact F1Fo-ATP synthase of B. pseudofirmus OF4 could be measured, allowing the analysis of complex subunit stoichiometry. The agreement with theoretical masses derived from sequence databases is very good. A comparison of the ATP synthase subunit composition of 5 different ATPases reveals differences in the complexity of eukaryotic and bacterial ATP synthases. However, whereas the overall construction of eukaryotic enzymes is more complex than the bacterial ones, functionally important subunits are conserved among all ATPases. PMID:20820587

  10. Dimers of mitochondrial ATP synthase form the permeability transition pore

    PubMed Central

    Giorgio, Valentina; von Stockum, Sophia; Antoniel, Manuela; Fabbro, Astrid; Fogolari, Federico; Forte, Michael; Glick, Gary D.; Petronilli, Valeria; Zoratti, Mario; Szabó, Ildikó; Lippe, Giovanna; Bernardi, Paolo

    2013-01-01

    Here we define the molecular nature of the mitochondrial permeability transition pore (PTP), a key effector of cell death. The PTP is regulated by matrix cyclophilin D (CyPD), which also binds the lateral stalk of the FOF1 ATP synthase. We show that CyPD binds the oligomycin sensitivity-conferring protein subunit of the enzyme at the same site as the ATP synthase inhibitor benzodiazepine 423 (Bz-423), that Bz-423 sensitizes the PTP to Ca2+ like CyPD itself, and that decreasing oligomycin sensitivity-conferring protein expression by RNAi increases the sensitivity of the PTP to Ca2+. Purified dimers of the ATP synthase, which did not contain voltage-dependent anion channel or adenine nucleotide translocator, were reconstituted into lipid bilayers. In the presence of Ca2+, addition of Bz-423 triggered opening of a channel with currents that were typical of the mitochondrial megachannel, which is the PTP electrophysiological equivalent. Channel openings were inhibited by the ATP synthase inhibitor AMP-PNP (γ-imino ATP, a nonhydrolyzable ATP analog) and Mg2+/ADP. These results indicate that the PTP forms from dimers of the ATP synthase. PMID:23530243

  11. The ATP synthase: the understood, the uncertain and the unknown.

    PubMed

    Walker, John E

    2013-02-01

    The ATP synthases are multiprotein complexes found in the energy-transducing membranes of bacteria, chloroplasts and mitochondria. They employ a transmembrane protonmotive force, Δp, as a source of energy to drive a mechanical rotary mechanism that leads to the chemical synthesis of ATP from ADP and Pi. Their overall architecture, organization and mechanistic principles are mostly well established, but other features are less well understood. For example, ATP synthases from bacteria, mitochondria and chloroplasts differ in the mechanisms of regulation of their activity, and the molecular bases of these different mechanisms and their physiological roles are only just beginning to emerge. Another crucial feature lacking a molecular description is how rotation driven by Δp is generated, and how rotation transmits energy into the catalytic sites of the enzyme to produce the stepping action during rotation. One surprising and incompletely explained deduction based on the symmetries of c-rings in the rotor of the enzyme is that the amount of energy required by the ATP synthase to make an ATP molecule does not have a universal value. ATP synthases from multicellular organisms require the least energy, whereas the energy required to make an ATP molecule in unicellular organisms and chloroplasts is higher, and a range of values has been calculated. Finally, evidence is growing for other roles of ATP synthases in the inner membranes of mitochondria. Here the enzymes form supermolecular complexes, possibly with specific lipids, and these complexes probably contribute to, or even determine, the formation of the cristae.

  12. Diversity of sesquiterpene synthases in the basidiomycete Coprinus cinereus.

    PubMed

    Agger, Sean; Lopez-Gallego, Fernando; Schmidt-Dannert, Claudia

    2009-06-01

    Fungi are a rich source of bioactive secondary metabolites, and mushroom-forming fungi (Agaricomycetes) are especially known for the synthesis of numerous bioactive and often cytotoxic sesquiterpenoid secondary metabolites. Compared with the large number of sesquiterpene synthases identified in plants, less than a handful of unique sesquiterpene synthases have been described from fungi. Here we describe the functional characterization of six sesquiterpene synthases (Cop1 to Cop6) and two terpene-oxidizing cytochrome P450 monooxygenases (Cox1 and Cox2) from Coprinus cinereus. The genes were cloned and, except for cop5, functionally expressed in Escherichia coli and/or Saccharomyces cerevisiae. Cop1 and Cop2 each synthesize germacrene A as the major product. Cop3 was identified as an alpha-muurolene synthase, an enzyme that has not been described previously, while Cop4 synthesizes delta-cadinene as its major product. Cop6 was originally annotated as a trichodiene synthase homologue but instead was found to catalyse the highly specific synthesis of alpha-cuprenene. Coexpression of cop6 and the two monooxygenase genes next to it yields oxygenated alpha-cuprenene derivatives, including cuparophenol, suggesting that these genes encode the enzymes for the biosynthesis of antimicrobial quinone sesquiterpenoids (known as lagopodins) that were previously isolated from C. cinereus and other Coprinus species. PMID:19400802

  13. Understanding Plant Cellulose Synthases through a Comprehensive Investigation of the Cellulose Synthase Family Sequences

    PubMed Central

    Carroll, Andrew; Specht, Chelsea D.

    2011-01-01

    The development of cellulose as an organizing structure in the plant cell wall was a key event in both the initial colonization and the subsequent domination of the terrestrial ecosystem by vascular plants. A wealth of experimental data has demonstrated the complicated genetic interactions required to form the large synthetic complex that synthesizes cellulose. However, these results are lacking an extensive analysis of the evolution, specialization, and regulation of the proteins that compose this complex. Here we perform an in-depth analysis of the sequences in the cellulose synthase (CesA) family. We investigate the phylogeny of the CesA family, with emphasis on evolutionary specialization. We define specialized clades and identify the class-specific regions within the CesA sequence that may explain this specialization. We investigate changes in regulation of CesAs by looking at the conservation of proposed phosphorylation sites. We investigate the conservation of sites where mutations have been documented that impair CesA function, and compare these sites to those observed in the closest cellulose synthase-like (Csl) families to better understand what regions may separate the CesAs from other Csls. Finally we identify two positions with strong conservation of the aromatic trait, but lacking conservation of amino acid identity, which may represent residues important for positioning the sugar substrate for catalysis. These analyses provide useful tools for understanding characterized mutations and post-translational modifications, and for informing further experiments to probe CesA assembly, regulation, and function through site-directed mutagenesis or domain swapping experiments. PMID:22629257

  14. Tomato Pistil Factor STIG1 Promotes in Vivo Pollen Tube Growth by Binding to Phosphatidylinositol 3-Phosphate and the Extracellular Domain of the Pollen Receptor Kinase LePRK2[W][OPEN

    PubMed Central

    Huang, Wei-Jie; Liu, Hai-Kuan; McCormick, Sheila; Tang, Wei-Hua

    2014-01-01

    The speed of pollen tube growth is a major determinant of reproductive success in flowering plants. Tomato (Solanum lycopersicum) STIGMA-SPECIFIC PROTEIN1 (STIG1), a small Cys-rich protein from the pistil, was previously identified as a binding partner of the pollen receptor kinase LePRK2 and shown to promote pollen tube growth in vitro. However, the in vivo function of STIG1 and the underlying mechanism of its promotive effect were unknown. Here, we show that a 7-kD processed peptide of STIG1 is abundant in the stigmatic exudate and accumulates at the pollen tube surface, where it can bind LePRK2. Antisense LePRK2 pollen was less responsive than wild-type pollen to exogenous STIG1 in an in vitro pollen germination assay. Silencing of STIG1 reduced both the in vivo pollen tube elongation rate and seed production. Using partial deletion and point mutation analyses, two regions underlying the promotive activity of the STIG1 processed peptide were identified: amino acids 80 to 83, which interact with LePRK2; and amino acids 88 to 115, which bind specifically to phosphatidylinositol 3-phosphate [PI(3)P]. Furthermore, exogenous STIG1 elevated the overall redox potential of pollen tubes in both PI(3)P-dependent and LePRK2-dependent manners. Our results demonstrate that STIG1 conveys growth-promoting signals acting through the pollen receptor kinase LePRK2, a process that relies on the external phosphoinositide PI(3)P. PMID:24938288

  15. The Central Polybasic Region of the Soluble SNARE (Soluble N-Ethylmaleimide-sensitive Factor Attachment Protein Receptor) Vam7 Affects Binding to Phosphatidylinositol 3-Phosphate by the PX (Phox Homology) Domain.

    PubMed

    Miner, Gregory E; Starr, Matthew L; Hurst, Logan R; Sparks, Robert P; Padolina, Mark; Fratti, Rutilio A

    2016-08-19

    The yeast vacuole requires four SNAREs to trigger membrane fusion including the soluble Qc-SNARE Vam7. The N-terminal PX domain of Vam7 binds to the lipid phosphatidylinositol 3-phosphate (PI3P) and the tethering complex HOPS (homotypic fusion and vacuole protein sorting complex), whereas the C-terminal SNARE motif forms SNARE complexes. Vam7 also contains an uncharacterized middle domain that is predicted to be a coiled-coil domain with multiple helices. One helix contains a polybasic region (PBR) composed of Arg-164, Arg-168, Lys-172, Lys-175, Arg-179, and Lys-186. Polybasic regions are often associated with nonspecific binding to acidic phospholipids including phosphoinositides. Although the PX (phox homology) domain alone binds PI3P, we theorized that the Vam7 PBR could bind to additional acidic phospholipids enriched at fusion sites. Mutating each of the basic residues in the PBR to an alanine (Vam7-6A) led to attenuated vacuole fusion. The defective fusion of Vam7-6A was due in part to inefficient association with its cognate SNAREs and HOPS, yet the overall vacuole association of Vam7-6A was similar to wild type. Experiments testing the binding of Vam7 to specific signaling lipids showed that mutating the PBR to alanines augmented binding to PI3P. The increased binding to PI3P by Vam7-6A likely contributed to the observed wild type levels of vacuole association, whereas protein-protein interactions were diminished. PI3P binding was inhibited when the PX domain mutant Y42A was introduced into Vam7-6A to make Vam7-7A. Thus the Vam7 PBR affects PI3P binding by the PX domain and in turn affects binding to SNAREs and HOPS to support efficient fusion. PMID:27365394

  16. SbnG, a Citrate Synthase in Staphylococcus aureus

    PubMed Central

    Kobylarz, Marek J.; Grigg, Jason C.; Sheldon, Jessica R.; Heinrichs, David E.; Murphy, Michael E. P.

    2014-01-01

    In response to iron deprivation, Staphylococcus aureus produces staphyloferrin B, a citrate-containing siderophore that delivers iron back to the cell. This bacterium also possesses a second citrate synthase, SbnG, that is necessary for supplying citrate to the staphyloferrin B biosynthetic pathway. We present the structure of SbnG bound to the inhibitor calcium and an active site variant in complex with oxaloacetate. The overall fold of SbnG is structurally distinct from TCA cycle citrate synthases yet similar to metal-dependent class II aldolases. Phylogenetic analyses revealed that SbnG forms a separate clade with homologs from other siderophore biosynthetic gene clusters and is representative of a metal-independent subgroup in the phosphoenolpyruvate/pyruvate domain superfamily. A structural superposition of the SbnG active site to TCA cycle citrate synthases and site-directed mutagenesis suggests a case for convergent evolution toward a conserved catalytic mechanism for citrate production. PMID:25336653

  17. Evolutionary history of the chitin synthases of eukaryotes.

    PubMed

    Morozov, Alexey A; Likhoshway, Yelena V

    2016-06-01

    Chitin synthases are widespread among eukaryotes and known to have a complex evolutionary history in some of the groups. We have reconstructed the chitin synthase phylogeny using the most taxonomically comprehensive dataset currently available and have shown the presence of independently formed paralogous groups in oomycetes, ciliates, fungi, and all diatoms except raphid pennates. There were also two cases of horizontal gene transfer (HGT): transfer from fungus to early diatoms gave rise to diatom paralogous group, while transfer from raphid pennate diatom to Acantamoeba ancestor is, to our knowledge, restricted to a single gene in amoeba. Early evolution of chitin synthases is heavily obscured by paralogy, and further sequencing effort is necessary. PMID:26887391

  18. A functional map of the nopaline synthase promoter.

    PubMed Central

    Shaw, C H; Carter, G H; Watson, M D; Shaw, C H

    1984-01-01

    This paper describes the first functional map of a promoter expressed from the plant chromosome. We have constructed a series of overlapping deletion mutants within the region upstream of the Ti-plasmid encoded nopaline synthase (nos) gene. By monitoring nos expression in tumour tissue we have inferred a functional map of the nos promoter. The maximum length of sequence upstream of the transcription initiation point required to express wild type levels of nopaline synthase is 88 bp. Within this region, the "CAAT" box is essential for maximal activity; deletion of this sequence reduced apparent nos expression by over 80%. Presence of an intact or partial "TATA" box in the absence of the "CAAT" box supports a barely detectable level of nopaline synthase. Removal of all sequences upstream of the nos coding sequence results in no detectable activity. PMID:6493982

  19. Properties of peroxisomal and mitochondrial citrate synthase from Agave americana.

    PubMed

    Segovia, J L; Zafra, M F; Alejandre, M J; García-Peregrín, E

    1982-09-01

    Adenine nucleotides were tested as effectors of peroxisomal and mitochondrial citrate synthase from Agave americana leaves in the presence of different concentrations of acetyl-CoA and oxalacetate substrates. ATP inhibited both enzyme activities but with a different inhibition profile. 1.0-7.5 mM ADP did not inhibit the peroxisomal citrate synthase in the presence of high substrate concentrations, while the mitochondrial enzyme was strongly inhibited by 1.0 mM ADP in the same conditions. Likewise, a different pattern was obtained with AMP on both peroxisomal and mitochondrial activities. The rate of citrate formation as function of acetyl-CoA and oxalacetate concentration was also studied in both fractions. Maximal velocity was highest in the peroxisomal fraction, whether acetyl-CoA or oxalacetate were the variable substrates. These differences indicate that peroxisomal and mitochondrial citrate synthases seem to be two different isoenzymes.

  20. Mapping a kingdom-specific functional domain of squalene synthase.

    PubMed

    Linscott, Kristin B; Niehaus, Thomas D; Zhuang, Xun; Bell, Stephen A; Chappell, Joe

    2016-09-01

    Squalene synthase catalyzes the first committed step in sterol biosynthesis and consists of both an amino-terminal catalytic domain and a carboxy-terminal domain tethering the enzyme to the ER membrane. While the overall architecture of this enzyme is identical in eukaryotes, it was previously shown that plant and animal genes cannot complement a squalene synthase knockout mutation in yeast unless the carboxy-terminal domain is swapped for one of fungal origin. This implied a unique component of the fungal carboxy-terminal domain was responsible for the complementation phenotype. To identify this motif, we used Saccharomyces cerevisiae with a squalene synthase knockout mutation, and expressed intact and chimeric squalene synthases originating from fungi, plants, and animals. In contrast to previous observations, all enzymes tested could partially complement the knockout mutation when the genes were weakly expressed. However, when highly expressed, non-fungal squalene synthases could not complement the yeast mutation and instead led to the accumulation of a toxic intermediate(s) as defined by mutations of genes downstream in the ergosterol pathway. Restoration of the complete complementation phenotype was mapped to a 26-amino acid hinge region linking the catalytic and membrane-spanning domains specific to fungal squalene synthases. Over-expression of the C-terminal domain containing a hinge domain from fungi, not from animals or plants, led to growth inhibition of wild-type yeast. Because this hinge region is unique to and highly conserved within each kingdom of life, the data suggests that the hinge domain plays an essential functional role, such as assembly of ergosterol multi-enzyme complexes in fungi.

  1. Exploiting the Biosynthetic Potential of Type III Polyketide Synthases.

    PubMed

    Lim, Yan Ping; Go, Maybelle K; Yew, Wen Shan

    2016-01-01

    Polyketides are structurally and functionally diverse secondary metabolites that are biosynthesized by polyketide synthases (PKSs) using acyl-CoA precursors. Recent studies in the engineering and structural characterization of PKSs have facilitated the use of target enzymes as biocatalysts to produce novel functionally optimized polyketides. These compounds may serve as potential drug leads. This review summarizes the insights gained from research on type III PKSs, from the discovery of chalcone synthase in plants to novel PKSs in bacteria and fungi. To date, at least 15 families of type III PKSs have been characterized, highlighting the utility of PKSs in the development of natural product libraries for therapeutic development. PMID:27338328

  2. An Unusual Chimeric Diterpene Synthase from Emericella variecolor and Its Functional Conversion into a Sesterterpene Synthase by Domain Swapping.

    PubMed

    Qin, Bin; Matsuda, Yudai; Mori, Takahiro; Okada, Masahiro; Quan, Zhiyang; Mitsuhashi, Takaaki; Wakimoto, Toshiyuki; Abe, Ikuro

    2016-01-26

    Di- and sesterterpene synthases produce C20 and C25 isoprenoid scaffolds from geranylgeranyl pyrophosphate (GGPP) and geranylfarnesyl pyrophosphate (GFPP), respectively. By genome mining of the fungus Emericella variecolor, we identified a multitasking chimeric terpene synthase, EvVS, which has terpene cyclase (TC) and prenyltransferase (PT) domains. Heterologous gene expression in Aspergillus oryzae led to the isolation of variediene (1), a novel tricyclic diterpene hydrocarbon. Intriguingly, in vitro reaction with the enzyme afforded the new macrocyclic sesterterpene 2 as a minor product from dimethylallyl pyrophosphate (DMAPP) and isopentenyl pyrophosphate (IPP). The TC domain thus produces the diterpene 1 and the sesterterpene 2 from GGPP and GFPP, respectively. Notably, a domain swap of the PT domain of EvVS with that of another chimeric sesterterpene synthase, EvSS, successfully resulted in the production of 2 in vivo as well. Cyclization mechanisms for the production of these two compounds are proposed.

  3. Benzophenone Synthase and Chalcone Synthase Accumulate in the Mesophyll of Hypericum perforatum Leaves at Different Developmental Stages

    PubMed Central

    Belkheir, Asma K.; Gaid, Mariam; Liu, Benye; Hänsch, Robert; Beerhues, Ludger

    2016-01-01

    The active medicinal constituents in Hypericum perforatum, used to treat depression and skin irritation, include flavonoids and xanthones. The carbon skeletons of these compounds are formed by chalcone synthase (CHS) and benzophenone synthase (BPS), respectively. Polyclonal antisera were raised against the polyketide synthases from Hypericum androsaemum and their IgG fractions were isolated. Immunoblotting and immunotitration were used to test the IgGs for crossreactivity and monospecificity in H. perforatum leaf protein extract. Immunofluorescence localization revealed that both CHS and BPS are located in the mesophyll. The maximum fluorescence levels were observed in approx. 0.5 and 1 cm long leaves, respectively. The fluorescence intensity observed for CHS significantly exceeded that for BPS. Using histochemical staining, flavonoids were detected in the mesophyll, indicating that the sites of biosynthesis and accumulation coincide. Our results help understand the biosynthesis and underlying regulation of active H. perforatum constituents. PMID:27446151

  4. Identification of a cryptic type III polyketide synthase (1,3,6,8-tetrahydroxynaphthalene synthase) from Streptomyces peucetius ATCC 27952.

    PubMed

    Ghimire, Gopal Prasad; Oh, Tae-Jin; Liou, Kwangkyoung; Sohng, Jae Kyung

    2008-10-31

    We identified a 1,134-bp putative type III polyketide synthase from the sequence analysis of Streptomyces peucetius ATCC 27952, named Sp-RppA, which is characterized as 1,3,6,8-tetrahydroxynaphthalene synthase and shares 33% identity with SCO1206 from S. coelicolor A3(2) and 32% identity with RppA from S. griseus. The 1,3,6,8-tetrahydroxynaphthalene synthase is known to catalyze the sequential decarboxylative condensation, intramolecular cyclization, and aromatization of an oligoketide derived from five units of malonyl-CoA to give 1,3,6,8-tetrahydroxynaphthalene, which spontaneously oxidizes to form 2,5,7-trihydroxy-1,4-naphthoquinone (flaviolin). In this study, we report the in vivo expression and in vitro synthesis of flaviolin from purified gene product (Sp-RppA). PMID:18612244

  5. Benzophenone Synthase and Chalcone Synthase Accumulate in the Mesophyll of Hypericum perforatum Leaves at Different Developmental Stages.

    PubMed

    Belkheir, Asma K; Gaid, Mariam; Liu, Benye; Hänsch, Robert; Beerhues, Ludger

    2016-01-01

    The active medicinal constituents in Hypericum perforatum, used to treat depression and skin irritation, include flavonoids and xanthones. The carbon skeletons of these compounds are formed by chalcone synthase (CHS) and benzophenone synthase (BPS), respectively. Polyclonal antisera were raised against the polyketide synthases from Hypericum androsaemum and their IgG fractions were isolated. Immunoblotting and immunotitration were used to test the IgGs for crossreactivity and monospecificity in H. perforatum leaf protein extract. Immunofluorescence localization revealed that both CHS and BPS are located in the mesophyll. The maximum fluorescence levels were observed in approx. 0.5 and 1 cm long leaves, respectively. The fluorescence intensity observed for CHS significantly exceeded that for BPS. Using histochemical staining, flavonoids were detected in the mesophyll, indicating that the sites of biosynthesis and accumulation coincide. Our results help understand the biosynthesis and underlying regulation of active H. perforatum constituents. PMID:27446151

  6. Genetics Home Reference: N-acetylglutamate synthase deficiency

    MedlinePlus

    ... of reactions that occurs in liver cells. This cycle processes excess nitrogen, generated when protein is used by the body, to make a compound called urea that is excreted by the kidneys. The ... cycle. In people with N-acetylglutamate synthase deficiency , N- ...

  7. Incremental truncation of PHA synthases results in altered product specificity.

    PubMed

    Wang, Qian; Xia, Yongzhen; Chen, Quan; Qi, Qingsheng

    2012-05-10

    PHA synthase is the key enzyme involved in the biosynthesis of microbial polymers, polyhydroxyalkanoates (PHA). In this study, we created a hybrid library of PHA synthase gene with different crossover points by an incremental truncation method between the C-terminal fragments of the phaC(Cn) (phaC from Cupriavidus necator) and the N-terminal fragments of the phaC1(Pa) (phaC from Pseudomonas aeruginosa). As the truncation of the hybrid enzyme increased, the in vivo PHB synthesis ability of the hybrids declined gradually. PHA synthase PhaC(Cn) with a deletion on N-terminal up to 83 amino acid residues showed no synthase activity. While with the removal of up to 270 amino acids from the N-terminus, the activity of the truncated PhaC(Cn) could be complemented by the N-terminus of PhaC1(Pa). Three of the hybrid enzymes W188, W235 and W272 (named by the deleted nucleic acid number) were found to have altered product specificities. PMID:22500895

  8. Absence of Pneumocystis dihydropteroate synthase mutants in Brittany, France.

    PubMed

    Le Gal, Solène; Robert-Gangneux, Florence; Perrot, Maëla; Rouillé, Amélie; Virmaux, Michèle; Damiani, Céline; Totet, Anne; Gangneux, Jean-Pierre; Nevez, Gilles

    2013-05-01

    Archival Pneumocystis jirovecii specimens from 84 patients monitored at Rennes University Hospital (Rennes, France) were assayed at the dihydropteroate synthase (DHPS) locus. No patient was infected with mutants. The results provide additional data showing that P. jirovecii infections involving DHPS mutants do not represent a public health issue in Brittany, western France.

  9. Insight into Biochemical Characterization of Plant Sesquiterpene Synthases

    PubMed Central

    Manczak, Tom; Simonsen, Henrik Toft

    2016-01-01

    A fast and reproducible protocol was established for enzymatic characterization of plant sesquiterpene synthases that can incorporate radioactivity in their products. The method utilizes the 96-well format in conjunction with cluster tubes and enables processing of >200 samples a day. Along with reduced reagent usage, it allows further reduction in the use of radioactive isotopes and flammable organic solvents. The sesquiterpene synthases previously characterized were expressed in yeast, and the plant-derived Thapsia garganica kunzeaol synthase TgTPS2 was tested in this method. KM for TgTPS2 was found to be 0.55 μM; the turnover number, kcat, was found to be 0.29 s−1, kcat for TgTPS2 is in agreement with that of terpene synthases of other plants, and kcat/KM was found to be 0.53 s−1 μM−1 for TgTPS2. The kinetic parameters were in agreement with previously published data. PMID:27721652

  10. A particular phenotype in a girl with aldosterone synthase deficiency.

    PubMed

    Williams, Tracy A; Mulatero, Paolo; Bosio, Maurizio; Lewicka, Sabina; Palermo, Mario; Veglio, Franco; Armanini, Decio

    2004-07-01

    Aldosterone synthase deficiency (ASD) usually presents in infancy as a life-threatening electrolyte imbalance. A 4-wk-old child of unrelated parents was examined for failure to thrive and salt-wasting. Notable laboratory findings were hyperkalemia, high plasma renin, and low-normal aldosterone levels. Urinary metabolite ratios of corticosterone/18-hydroxycorticosterone and 18-hydroxycorticosterone/aldosterone were intermediate between ASD type I and type II. Sequence analysis of CYP11B2, the gene encoding aldosterone synthase (P450c11AS), revealed that the patient was a compound heterozygote carrying a previously described mutation located in exon 4 causing a premature stop codon (E255X) and a further, novel mutation in exon 5 that also causes a premature stop codon (Q272X). The patient's unaffected father was a heterozygous carrier of the E255X mutation, whereas the unaffected mother was a heterozygous carrier of the Q272X mutation. Therefore, the patient's CYP11B2 encodes two truncated forms of aldosterone synthase predicted to be inactive because they lack critical active site residues as well as the heme-binding site. This case of ASD is of particular interest because despite the apparent lack of aldosterone synthase activity, the patient displays low-normal aldosterone levels, thus raising the question of its source. PMID:15240589

  11. Lipoxin synthase activity of human platelet 12-lipoxygenase.

    PubMed Central

    Romano, M; Chen, X S; Takahashi, Y; Yamamoto, S; Funk, C D; Serhan, C N

    1993-01-01

    Human platelets and megacaryocytes generate lipoxins from exogenous leukotriene A4 (LTA4). We examined the role of human 12-lipoxygenase (12-LO) in lipoxin generation with recombinant histidine-tagged human platelet enzyme (6His-12-LO), partially purified 12-LO from human platelets (HPL 12-LO) and, for the purposes of direct comparison, permeabilized platelets. Recombinant and HPL 12-LO catalysed the conversion of intact LTA4 into both lipoxin A4 (LXA4) and lipoxin B4 (LXB4). In contrast, only negligible quantities of LXA4 were generated when recombinant 12-LO was incubated with the non-enzymic hydrolysis products of LTA4.6His-12-LO also converted a non-allylic epoxide, 5(6)-epoxy-(8Z,11Z,14Z)-eicosatrienoic acid. The apparent Km and Vmax. for lipoxin synthase activity of 6His-12-LO were estimated to be 7.9 +/- 0.8 microM and 24.5 +/- 2.5 nmol/min per mg respectively, and the LXB4 synthase activity of this enzyme was selectively regulated by suicide inactivation. Aspirin gave a 2-fold increase in lipoxin formation by platelets but did not enhance the conversion of LTA4 by the recombinant 12-LO. These results provide direct evidence for LXA4 and LXB4 synthase activity of human platelet 12-LO. Moreover, they suggest that 12-LO is a dual-function enzyme that carries both oxygenase and lipoxin synthase activity. Images Figure 1 PMID:8250832

  12. Polyhydroyxalkanoate synthase fusions as a strategy for oriented enzyme immobilisation.

    PubMed

    Hooks, David O; Venning-Slater, Mark; Du, Jinping; Rehm, Bernd H A

    2014-01-01

    Polyhydroxyalkanoate (PHA) is a carbon storage polymer produced by certain bacteria in unbalanced nutrient conditions. The PHA forms spherical inclusions surrounded by granule associate proteins including the PHA synthase (PhaC). Recently, the intracellular formation of PHA granules with covalently attached synthase from Ralstonia eutropha has been exploited as a novel strategy for oriented enzyme immobilisation. Fusing the enzyme of interest to PHA synthase results in a bifunctional protein able to produce PHA granules and immobilise the active enzyme of choice to the granule surface. Functionalised PHA granules can be isolated from the bacterial hosts, such as Escherichia coli, and maintain enzymatic activity in a wide variety of assay conditions. This approach to oriented enzyme immobilisation has produced higher enzyme activities and product levels than non-oriented immobilisation techniques such as protein inclusion based particles. Here, enzyme immobilisation via PHA synthase fusion is reviewed in terms of the genetic designs, the choices of enzymes, the control of enzyme orientations, as well as their current and potential applications. PMID:24962396

  13. Isoelectric focusing of wound-induced tomato ACC synthase

    SciTech Connect

    White, J.A.; Kende, H. )

    1990-05-01

    Several techniques of electrofocusing have been used to determine whether 1-aminocyclopropane-1-carboxylate (ACC) synthase isolated from wounded tomato pericarp tissue exists in different isoforms, each with its characteristic isoelectric point (pI). The pI of the native enzyme was found to be 6.0 {plus minus} 0.2. When radiolabeled, denatured ACC synthase was electrofocused by non-equilibrium pH gradient electrophoresis (NEpHGE), the enzyme separated into four discernible spots which, upon reaching equilibrium, ranged in pI from 6.6 to 6.9. Immunopurified ACC synthase from four tomato cultivars (Duke, Cornell, Mountain Pride and Pik Red) migrated in each case as a 50-kDa protein on sodium dodecyl sulfate polyacrylamide gels (SDS-PAGE). We propose that native ACC synthase in extracts of tomato pericarp tissue exists in one single form and that the charge heterogeneities observed upon electrofocusing of denatured enzyme result from modifications of preexisting protein.

  14. Mechanism of the beta-ketoacyl synthase reaction catalyzed by the animal fatty acid synthase.

    PubMed

    Witkowski, Andrzej; Joshi, Anil K; Smith, Stuart

    2002-09-01

    The catalytic mechanism of the beta-ketoacyl synthase domain of the multifunctional fatty acid synthase has been investigated by a combination of mutagenesis, active-site titration, product analysis, and product inhibition. Neither the reactivity of the active-site Cys161 residue toward iodoacetamide nor the rate of unidirectional transfer of acyl moieties to Cys161 was significantly decreased by replacement of any of the conserved residues, His293, His331, or Lys326, with Ala. Decarboxylation of malonyl moieties in the fully-active Cys161Gln background generated equimolar amounts of acetyl-CoA and bicarbonate, rather than carbon dioxide, and was seriously compromised by replacement of any of the conserved basic residues. The ability of bicarbonate to inhibit decarboxylation of malonyl moieties in the Cys161Gln background was significantly reduced by replacement of His293 but less so by replacement of His331. The data are consistent with a reaction mechanism, in which the initial primer transfer reaction is promoted largely through a lowering of the pKa of the Cys161 thiol by a helix dipole effect and activation of the substrate thioester carbon atom by binding of the keto group in an oxyanion hole. The data also indicate that an activated water molecule is present at the active site that is required either for the rapid hydration of carbon dioxide, prior its release as bicarbonate or, alternatively, for an initial attack on the malonyl C3. In the alternative mechanism, a negatively-charged tetrahedral transition state could be generated, stabilized in part by interaction of His293 with the negatively charged oxygen at C3 and interaction of His331 with the negatively charged thioester carbonyl oxygen, that breaks down to generate bicarbonate directly. Finally, the carbanion at C2, attacks the electrophilic C1 of the primer, generating a second tetrahedral transition state, also stabilized through contacts with the oxyanion hole and His331, that breaks down to form

  15. Glycerol-3-phosphate acyltransferase-1 upregulation by O-GlcNAcylation of Sp1 protects against hypoxia-induced mouse embryonic stem cell apoptosis via mTOR activation

    PubMed Central

    Lee, H J; Ryu, J M; Jung, Y H; Lee, K H; Kim, D I; Han, H J

    2016-01-01

    Oxygen signaling is critical for stem cell regulation, and oxidative stress-induced stem cell apoptosis decreases the efficiency of stem cell therapy. Hypoxia activates O-linked β-N-acetyl glucosaminylation (O-GlcNAcylation) of stem cells, which contributes to regulation of cellular metabolism, as well as cell fate. Our study investigated the role of O-GlcNAcylation via glucosamine in the protection of hypoxia-induced apoptosis of mouse embryonic stem cells (mESCs). Hypoxia increased mESCs apoptosis in a time-dependent manner. Moreover, hypoxia also slightly increased the O-GlcNAc level. Glucosamine treatment further enhanced the O-GlcNAc level and prevented hypoxia-induced mESC apoptosis, which was suppressed by O-GlcNAc transferase inhibitors. In addition, hypoxia regulated several lipid metabolic enzymes, whereas glucosamine increased expression of glycerol-3-phosphate acyltransferase-1 (GPAT1), a lipid metabolic enzyme producing lysophosphatidic acid (LPA). In addition, glucosamine-increased O-GlcNAcylation of Sp1, which subsequently leads to Sp1 nuclear translocation and GPAT1 expression. Silencing of GPAT1 by gpat1 siRNA transfection reduced glucosamine-mediated anti-apoptosis in mESCs and reduced mammalian target of rapamycin (mTOR) phosphorylation. Indeed, LPA prevented mESCs from undergoing hypoxia-induced apoptosis and increased phosphorylation of mTOR and its substrates (S6K1 and 4EBP1). Moreover, mTOR inactivation by rapamycin (mTOR inhibitor) increased pro-apoptotic proteins expressions and mESC apoptosis. Furthermore, transplantation of non-targeting siRNA and glucosamine-treated mESCs increased cell survival and inhibited flap necrosis in mouse skin flap model. Conversely, silencing of GPAT1 expression reversed those glucosamine effects. In conclusion, enhancing O-GlcNAcylation of Sp1 by glucosamine stimulates GPAT1 expression, which leads to inhibition of hypoxia-induced mESC apoptosis via mTOR activation. PMID:27010859

  16. Participation of analogues of lysophosphatidic acid (LPA): oleoyl-sn-glycero-3-phosphate (L-alpha-LPA) and 1-oleoyl-2-O-methyl-rac-glycerophosphothionate (OMPT) in uterine smooth muscle contractility of the pregnant pigs.

    PubMed

    Markiewicz, W; Kamińska, K; Bogacki, M; Maślanka, T; Jaroszewski, J

    2012-01-01

    Recent studies show that a representative of phospholipids, namely lysophosphatidic acid (LPA) and its receptors (LPA1.3) play a significant role in the reproductive processes, i. a, in the modulation of the uterine contractility. The participation of LPA3 in the reproductive processes has been revealed in mice and has not been studied in gilts. Therefore, in the present study we investigated the role/action of LPA and its receptors LPA1, LPA2 and LPA3 on the contraction activity in the porcine uterus. The study was conducted on an experimental model in which the pig uterus consisted of the one whole uterine horn and a part of the second horn, both connected with the uterine corpus. Uterine strips consisting of the endometrium with the myometrium (ENDO/MYO) and myometrium (MYO) alone were collected on days 12-14 of the estrous cycle (control group; n = 5) or pregnancy (experimental group; n = 5). Two analogues of LPA at increasing doses were used: oleoyl-sn-glycero-3-phosphate (L-alpha-LPA, a selective agonist of LPA1 and LPA2 receptors; 10(-7) M; 10(-6) M and 10(-5) M) and 1-oleoyl-2-O-methyl-rac-glycerophosphothionate (OMPT, a selective agonist of LPA3 receptor; 68 nM; 136 nM and 680 nM). L-alpha-LPA caused an increase in the contraction tension, amplitude and frequency of ENDO/MYO from the uterine horn with the developing embryos. This effect was not observed in MYO in both groups examined. In the ENDO/MYO strips of the uterine horn with developing embryos, OMPT significantly increased the contraction tension at the highest dose (680 nM) and amplitude at all doses examined, while frequency of contractions was decreased at doses of 136 nM and 680 nM. In the MYO strips of the uterine horn with embryos a significant increase in the contraction tension and amplitude after the highest dose of OMPT was observed. The results obtained imply the important role of receptors LPA1, LPA2 and LPA3 in the contraction activity of the porcine uterus during early pregnancy. PMID

  17. Resveratrol plus ethanol counteract the ethanol-induced impairment of energy metabolism: ³¹P NMR study of ATP and sn-glycerol-3-phosphate on isolated and perfused rat liver.

    PubMed

    Gallis, Jean-Louis; Serhan, Nizar; Gin, Henri; Couzigou, Patrice; Beauvieux, Marie-Christine

    2012-03-01

    The effects of trans-resveratrol (RSV) combined with ethanol (EtOH) were evaluated by (31)P NMR on total ATP and sn-glycerol-3-phosphate (sn-G3P) contents measured in real time in isolated and perfused whole liver of the rat. Mitochondrial ATP turnover was assessed by using specific inhibitors of glycolytic and mitochondrial ATP supply (iodacetate and KCN, respectively). In RSV alone, the slight decrease in ATP content (-14±5% of the initial content), sn-G3P content and ATP turnover were similar to those in the Krebs-Henseleit buffer control. Compared to control, EtOH alone (14 or 70 mmol/L) induced a decrease in ATP content (-24.95±2.95% of initial content, p<0.05) and an increase in sn-G3P (+158±22%), whereas ATP turnover tended to be increased. RSV (20 μmol/L) combined with EtOH, (i) maintained ATP content near 100%, (ii) induced a 1.6-fold increase in mitochondrial ATP turnover (p=0.049 and p=0.004 vs EtOH 14 and 70 mmol/L alone, respectively) and (iii) led to an increase in sn-G3P (+49±9% and +81±6% for 14 and 70 mmol/L EtOH, respectively). These improvements were obtained only when glycolysis was efficient at the time of addition of EtOH+RSV. Glycolysis inhibition by iodacetate (IAA) evidenced an almost 21% contribution of this pathway to ATP content. RSV alone or RSV+EtOH prevented the ATP decrease induced by IAA addition (p<0.05 vs control). This is the first demonstration of the combined effects of RSV and EtOH on liver energy metabolism. RSV increased (i) the flux of substrates through ATP producing pathways (glycolysis and phosphorylative oxidation) probably via the activation of AMPkinase, and (ii) maintained the glycolysis deviation to sn-G3P linked to NADH+H⁺ re-oxidation occurring during EtOH detoxication, thus reducing the energy cost due to the latter.

  18. Participation of analogues of lysophosphatidic acid (LPA): oleoyl-sn-glycero-3-phosphate (L-alpha-LPA) and 1-oleoyl-2-O-methyl-rac-glycerophosphothionate (OMPT) in uterine smooth muscle contractility of the pregnant pigs.

    PubMed

    Markiewicz, W; Kamińska, K; Bogacki, M; Maślanka, T; Jaroszewski, J

    2012-01-01

    Recent studies show that a representative of phospholipids, namely lysophosphatidic acid (LPA) and its receptors (LPA1.3) play a significant role in the reproductive processes, i. a, in the modulation of the uterine contractility. The participation of LPA3 in the reproductive processes has been revealed in mice and has not been studied in gilts. Therefore, in the present study we investigated the role/action of LPA and its receptors LPA1, LPA2 and LPA3 on the contraction activity in the porcine uterus. The study was conducted on an experimental model in which the pig uterus consisted of the one whole uterine horn and a part of the second horn, both connected with the uterine corpus. Uterine strips consisting of the endometrium with the myometrium (ENDO/MYO) and myometrium (MYO) alone were collected on days 12-14 of the estrous cycle (control group; n = 5) or pregnancy (experimental group; n = 5). Two analogues of LPA at increasing doses were used: oleoyl-sn-glycero-3-phosphate (L-alpha-LPA, a selective agonist of LPA1 and LPA2 receptors; 10(-7) M; 10(-6) M and 10(-5) M) and 1-oleoyl-2-O-methyl-rac-glycerophosphothionate (OMPT, a selective agonist of LPA3 receptor; 68 nM; 136 nM and 680 nM). L-alpha-LPA caused an increase in the contraction tension, amplitude and frequency of ENDO/MYO from the uterine horn with the developing embryos. This effect was not observed in MYO in both groups examined. In the ENDO/MYO strips of the uterine horn with developing embryos, OMPT significantly increased the contraction tension at the highest dose (680 nM) and amplitude at all doses examined, while frequency of contractions was decreased at doses of 136 nM and 680 nM. In the MYO strips of the uterine horn with embryos a significant increase in the contraction tension and amplitude after the highest dose of OMPT was observed. The results obtained imply the important role of receptors LPA1, LPA2 and LPA3 in the contraction activity of the porcine uterus during early pregnancy.

  19. Detailed characterization of the substrate specificity of mouse wax synthase.

    PubMed

    Miklaszewska, Magdalena; Kawiński, Adam; Banaś, Antoni

    2013-01-01

    Wax synthases are membrane-associated enzymes catalysing the esterification reaction between fatty acyl-CoA and a long chain fatty alcohol. In living organisms, wax esters function as storage materials or provide protection against harmful environmental influences. In industry, they are used as ingredients for the production of lubricants, pharmaceuticals, and cosmetics. Currently the biological sources of wax esters are limited to jojoba oil. In order to establish a large-scale production of desired wax esters in transgenic high-yielding oilseed plants, enzymes involved in wax esters synthesis from different biological resources should be characterized in detail taking into consideration their substrate specificity. Therefore, this study aims at determining the substrate specificity of one of such enzymes -- the mouse wax synthase. The gene encoding this enzyme was expressed heterologously in Saccharomyces cerevisiae. In the in vitro assays (using microsomal fraction from transgenic yeast), we evaluated the preferences of mouse wax synthase towards a set of combinations of 11 acyl-CoAs with 17 fatty alcohols. The highest activity was observed for 14:0-CoA, 12:0-CoA, and 16:0-CoA in combination with medium chain alcohols (up to 5.2, 3.4, and 3.3 nmol wax esters/min/mg microsomal protein, respectively). Unsaturated alcohols longer than 18°C were better utilized by the enzyme in comparison to the saturated ones. Combinations of all tested alcohols with 20:0-CoA, 22:1-CoA, or Ric-CoA were poorly utilized by the enzyme, and conjugated acyl-CoAs were not utilized at all. Apart from the wax synthase activity, mouse wax synthase also exhibited a very low acyl-CoA:diacylglycerol acyltransferase activity. However, it displayed neither acyl-CoA:monoacylglycerol acyltransferase, nor acyl-CoA:sterol acyltransferase activity.

  20. Phytochelatin synthase: of a protease a peptide polymerase made.

    PubMed

    Rea, Philip A

    2012-05-01

    Of the mechanisms known to protect vascular plants and some algae, fungi and invertebrates from the toxic effects of non-essential heavy metals such as As, Cd or Hg, one of the most sophisticated is the enzyme-catalyzed synthesis of phytochelatins (PCs). PCs, (γ-Glu-Cys)(n) Gly polymers, which serve as high-affinity, thiol-rich cellular chelators and contribute to the detoxification of heavy metal ions, are derived from glutathione (GSH; γ-Glu-Cys-Gly) and related thiols in a reaction catalyzed by phytochelatin synthases (PC synthases, EC 2.3.2.15). Using the enzyme from Arabidopsis thaliana (AtPCS1) as a model, the reasoning and experiments behind the conclusion that PC synthases are novel papain-like Cys protease superfamily members are presented. The status of S-substituted GSH derivatives as generic PC synthase substrates and the sufficiency of the N-terminal domain of the enzyme from eukaryotic and its half-size equivalents from prokaryotic sources, for net PC synthesis and deglycylation of GSH and its derivatives, respectively, are emphasized. The question of the common need or needs met by PC synthases and their homologs is discussed. Of the schemes proposed to account for the combined protease and peptide polymerase capabilities of the eukaryotic enzymes vs the limited protease capabilities of the prokaryotic enzymes, two that will be considered are the storage and homeostasis of essential heavy metals in eukaryotes and the metabolism of S-substituted GSH derivatives in both eukaryotes and prokaryotes.

  1. Identifying the catalytic components of cellulose synthase and the maize mixed-linkage beta-glucan synthase

    SciTech Connect

    Nicholas C Carpita

    2009-04-20

    Five specific objectives of this project are to develop strategies to identify the genes that encode the catalytic components of "mixed-linkage" (1→3),(1→4)-beta-D-glucans in grasses, to determine the protein components of the synthase complex, and determine the biochemical mechanism of synthesis. We have used proteomic approaches to define intrinsic and extrinsic polypeptides of Golgi membranes that are associated with polysaccharide synthesis and trafficking. We were successful in producing recombinant catalytic domains of cellulose synthase genes and discovered that they dimerize upon concentration, indicating that two CesA proteins form the catalytic unit. We characterized a brittle stalk2 mutant as a defect in a COBRA-like protein that results in compromised lignin-cellulose interactions that decrease tissue flexibility. We used virus-induced gene silencing of barley cell wall polysaccharide synthesis by BSMV in an attempt to silence specific members of the cellulose synthase-like gene family. However, we unexpectedly found that regardless of the specificity of the target gene, whole gene interaction networks were silenced. We discovered the cause to be an antisense transcript of the cellulose synthase gene initiated small interfering RNAs that spread silencing to related genes.

  2. Isolation and functional characterization of a τ-cadinol synthase, a new sesquiterpene synthase from Lavandula angustifolia.

    PubMed

    Jullien, Frédéric; Moja, Sandrine; Bony, Aurélie; Legrand, Sylvain; Petit, Cécile; Benabdelkader, Tarek; Poirot, Kévin; Fiorucci, Sébastien; Guitton, Yann; Nicolè, Florence; Baudino, Sylvie; Magnard, Jean-Louis

    2014-01-01

    In this paper we characterize three sTPSs: a germacrene D (LaGERDS), a (E)-β-caryophyllene (LaCARS) and a τ-cadinol synthase (LaCADS). τ-cadinol synthase is reported here for the first time and its activity was studied in several biological models including transiently or stably transformed tobacco species. Three dimensional structure models of LaCADS and Ocimum basilicum γ-cadinene synthase were built by homology modeling using the template structure of Gossypium arboreum δ-cadinene synthase. The depiction of their active site organization provides evidence of the global influence of the enzymes on the formation of τ-cadinol: instead of a unique amino-acid, the electrostatic properties and solvent accessibility of the whole active site in LaCADS may explain the stabilization of the cadinyl cation intermediate. Quantitative PCR performed from leaves and inflorescences showed two patterns of expression. LaGERDS and LaCARS were mainly expressed during early stages of flower development and, at these stages, transcript levels paralleled the accumulation of the corresponding terpene products (germacrene D and (E)-β-caryophyllene). By contrast, the expression level of LaCADS was constant in leaves and flowers. Phylogenetic analysis provided informative results on potential duplication process leading to sTPS diversification in lavender. PMID:24078339

  3. Transgene silencing of sucrose synthase in alfalfa stem vascular tissue by a truncated phosphoenolpyruvate carboxylase: sucrose synthase construct

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An important role of sucrose synthase (SUS, EC 2.4.1.13) in plants is to provide UDP-glucose needed for cellulose synthesis in cell walls. We examined if over-expressing SUS in alfalfa (Medicago sativa L.) would increase cellulose content of stem cell walls. Alfalfa plants were transformed with two ...

  4. Evolutionary and mechanistic insights from the reconstruction of α-humulene synthases from a modern (+)-germacrene A synthase.

    PubMed

    Gonzalez, Veronica; Touchet, Sabrina; Grundy, Daniel J; Faraldos, Juan A; Allemann, Rudolf K

    2014-10-15

    Germacrene A synthase (GAS) from Solidago canadensis catalyzes the conversion of farnesyl diphosphate (FDP) to the plant sesquiterpene (+)-germacrene A. After diphosphate expulsion, farnesyl cation reacts with the distal 10,11-double bond to afford germacrene A (>96%) and <2% α-humulene, which arises from 1,11-cyclization of FDP. The origin of the 1,11-activity of GAS was investigated by amino acid sequence alignments of 1,10- and 1,11-synthases and comparisons of X-ray crystal structures with the homology model of GAS; a triad [Thr 401-Gly 402-Gly 403] that might be responsible for the predominant 1,10-cyclization activity of GAS was identified. Replacement of Gly 402 with residues of increasing size led to a progressive increase of 1,11-cyclization. The catalytic robustness of these 1,10- /1,11-GAS variants point to Gly 402 as a functional switch of evolutionary significance and suggests that enzymes with strict functionalities have evolved from less specific ancestors through a small number of substitutions. Similar results were obtained with germacrene D synthase (GDS) upon replacement of the homologous active-site residue Gly 404: GDS-G404V generated approximately 20% bicyclogermacrene, a hydrocarbon with a cyclopropane ring that underlines the dual 1,10-/1,11-cyclization activity of this mutant. This suggests that the reaction pathways to germacrenes and humulenes might be connected through a bridged 1,10,11-carbocation intermediate or transition state that resembles bicyclogermacrene. Mechanistic studies using [1-(3)H1]-10-fluorofarnesyl diphosphate and deuterium-labeling experiments with [12,13-(2)H6]-FDP support a germacrene-humulene rearrangement linking 1,10- and 1,11-pathways. These results support the bioinformatics proposal that modern 1,10-synthases could have evolved from promiscuous 1,11-sesquiterpene synthases. PMID:25230152

  5. Mechanism of Germacradien-4-ol Synthase-Controlled Water Capture.

    PubMed

    Grundy, Daniel J; Chen, Mengbin; González, Verónica; Leoni, Stefano; Miller, David J; Christianson, David W; Allemann, Rudolf K

    2016-04-12

    The sesquiterpene synthase germacradiene-4-ol synthase (GdolS) from Streptomyces citricolor is one of only a few known high-fidelity terpene synthases that convert farnesyl diphosphate (FDP) into a single hydroxylated product. Crystals of unliganded GdolS-E248A diffracted to 1.50 Å and revealed a typical class 1 sesquiterpene synthase fold with the active site in an open conformation. The metal binding motifs were identified as D(80)DQFD and N(218)DVRSFAQE. Some bound water molecules were evident in the X-ray crystal structure, but none were obviously positioned to quench a putative final carbocation intermediate. Incubations in H2(18)O generated labeled product, confirming that the alcohol functionality arises from nucleophilic capture of the final carbocation by water originating from solution. Site-directed mutagenesis of amino acid residues from both within the metal binding motifs and without identified by sequence alignment with aristolochene synthase from Aspergillus terreus generated mostly functional germacradien-4-ol synthases. Only GdolS-N218Q generated radically different products (∼50% germacrene A), but no direct evidence of the mechanism of incorporation of water into the active site was obtained. Fluorinated FDP analogues 2F-FDP and 15,15,15-F3-FDP were potent noncompetitive inhibitors of GdolS. 12,13-DiF-FDP generated 12,13-(E)-β-farnesene upon being incubated with GdolS, suggesting stepwise formation of the germacryl cation during the catalytic cycle. Incubation of GdolS with [1-(2)H2]FDP and (R)-[1-(2)H]FDP demonstrated that following germacryl cation formation a [1,3]-hydride shift generates the final carbocation prior to nucleophilic capture. The stereochemistry of this shift is not defined, and the deuteron in the final product was scrambled. Because no clear candidate residue for binding of a nucleophilic water molecule in the active site and no significant perturbation of product distribution from the replacement of active site residues

  6. Mechanism of Germacradien-4-ol Synthase-Controlled Water Capture

    PubMed Central

    2016-01-01

    The sesquiterpene synthase germacradiene-4-ol synthase (GdolS) from Streptomyces citricolor is one of only a few known high-fidelity terpene synthases that convert farnesyl diphosphate (FDP) into a single hydroxylated product. Crystals of unliganded GdolS-E248A diffracted to 1.50 Å and revealed a typical class 1 sesquiterpene synthase fold with the active site in an open conformation. The metal binding motifs were identified as D80DQFD and N218DVRSFAQE. Some bound water molecules were evident in the X-ray crystal structure, but none were obviously positioned to quench a putative final carbocation intermediate. Incubations in H218O generated labeled product, confirming that the alcohol functionality arises from nucleophilic capture of the final carbocation by water originating from solution. Site-directed mutagenesis of amino acid residues from both within the metal binding motifs and without identified by sequence alignment with aristolochene synthase from Aspergillus terreus generated mostly functional germacradien-4-ol synthases. Only GdolS-N218Q generated radically different products (∼50% germacrene A), but no direct evidence of the mechanism of incorporation of water into the active site was obtained. Fluorinated FDP analogues 2F-FDP and 15,15,15-F3-FDP were potent noncompetitive inhibitors of GdolS. 12,13-DiF-FDP generated 12,13-(E)-β-farnesene upon being incubated with GdolS, suggesting stepwise formation of the germacryl cation during the catalytic cycle. Incubation of GdolS with [1-2H2]FDP and (R)-[1-2H]FDP demonstrated that following germacryl cation formation a [1,3]-hydride shift generates the final carbocation prior to nucleophilic capture. The stereochemistry of this shift is not defined, and the deuteron in the final product was scrambled. Because no clear candidate residue for binding of a nucleophilic water molecule in the active site and no significant perturbation of product distribution from the replacement of active site residues were

  7. Phasin proteins activate Aeromonas caviae polyhydroxyalkanoate (PHA) synthase but not Ralstonia eutropha PHA synthase.

    PubMed

    Ushimaru, Kazunori; Motoda, Yoko; Numata, Keiji; Tsuge, Takeharu

    2014-05-01

    In this study, we performed in vitro and in vivo activity assays of polyhydroxyalkanoate (PHA) synthases (PhaCs) in the presence of phasin proteins (PhaPs), which revealed that PhaPs are activators of PhaC derived from Aeromonas caviae (PhaCAc). In in vitro assays, among the three PhaCs tested, PhaCAc was significantly activated when PhaPs were added at the beginning of polymerization (prepolymerization PhaCAc), whereas the prepolymerization PhaCRe (derived from Ralstonia eutropha) and PhaCDa (Delftia acidovorans) showed reduced activity with PhaPs. The PhaP-activated PhaCAc showed a slight shift of substrate preference toward 3-hydroxyhexanoyl-CoA (C6). PhaPAc also activated PhaCAc when it was added during polymerization (polymer-elongating PhaCAc), while this effect was not observed for PhaCRe. In an in vivo assay using Escherichia coli TOP10 as the host strain, the effect of PhaPAc expression on PHA synthesis by PhaCAc or PhaCRe was examined. As PhaPAc expression increased, PHA production was increased by up to 2.3-fold in the PhaCAc-expressing strain, whereas it was slightly increased in the PhaCRe-expressing strain. Taken together, this study provides evidence that PhaPs function as activators for PhaCAc both in vitro and in vivo but do not activate PhaCRe. This activating effect may be attributed to the new role of PhaPs in the polymerization reaction by PhaCAc.

  8. S-sulfocysteine synthase function in sensing chloroplast redox status

    PubMed Central

    Gotor, Cecilia; Romero, Luis C.

    2013-01-01

    The minor chloroplastic O-acetylserine(thiol)lyase isoform encoded by the CS26 gene in Arabidopsis thaliana has been described as an S-sulfocysteine synthase enzyme that plays an important role in chloroplast function. This enzyme is located in the thylakoid lumen, and its S-sulfocysteine activity is essential for the proper photosynthetic performance of the chloroplast under long-day growth conditions. Based on the present knowledge of this enzyme, we suggest that S-sulfocysteine synthase functions as a protein sensor to detect the accumulation of thiosulfate as a result of the inadequate detoxification of reactive oxygen species generated under conditions of excess light to produce the S-sulfocysteine molecule that triggers protection mechanisms of the photosynthetic apparatus. PMID:23333972

  9. Structure of isochorismate synthase DhbC from Bacillus anthracis

    PubMed Central

    Domagalski, M. J.; Tkaczuk, K. L.; Chruszcz, M.; Skarina, T.; Onopriyenko, O.; Cymborowski, M.; Grabowski, M.; Savchenko, A.; Minor, W.

    2013-01-01

    The isochorismate synthase DhbC from Bacillus anthracis is essential for the biosynthesis of the siderophore bacillibactin by this pathogenic bacterium. The structure of the selenomethionine-substituted protein was determined to 2.4 Å resolution using single-wavelength anomalous diffraction. B. anthracis DhbC bears the strongest resemblance to the Escherichia coli isochorismate synthase EntC, which is involved in the biosynthesis of another siderophore, namely enterobactin. Both proteins adopt the characteristic fold of other chorismate-utilizing enzymes, which are involved in the biosynthesis of various products, including siderophores, menaquinone and tryptophan. The conservation of the active-site residues, as well as their spatial arrangement, suggests that these enzymes share a common Mg2+-dependent catalytic mechanism. PMID:23989140

  10. Visualization of cellulose synthases in Arabidopsis secondary cell walls.

    PubMed

    Watanabe, Y; Meents, M J; McDonnell, L M; Barkwill, S; Sampathkumar, A; Cartwright, H N; Demura, T; Ehrhardt, D W; Samuels, A L; Mansfield, S D

    2015-10-01

    Cellulose biosynthesis in plant secondary cell walls forms the basis of vascular development in land plants, with xylem tissues constituting the vast majority of terrestrial biomass. We used plant lines that contained an inducible master transcription factor controlling xylem cell fate to quantitatively image fluorescently tagged cellulose synthase enzymes during cellulose deposition in living protoxylem cells. The formation of secondary cell wall thickenings was associated with a redistribution and enrichment of CESA7-containing cellulose synthase complexes (CSCs) into narrow membrane domains. The velocities of secondary cell wall-specific CSCs were faster than those of primary cell wall CSCs during abundant cellulose production. Dynamic intracellular of endomembranes, in combination with increased velocity and high density of CSCs, enables cellulose to be synthesized rapidly in secondary cell walls. PMID:26450210

  11. Defining the Product Chemical Space of Monoterpenoid Synthases

    PubMed Central

    Tian, Boxue; Poulter, C. Dale; Jacobson, Matthew P.

    2016-01-01

    Terpenoid synthases create diverse carbon skeletons by catalyzing complex carbocation rearrangements, making them particularly challenging for enzyme function prediction. To begin to address this challenge, we have developed a computational approach for the systematic enumeration of terpenoid carbocations. Application of this approach allows us to systematically define a nearly complete chemical space for the potential carbon skeletons of products from monoterpenoid synthases. Specifically, 18758 carbocations were generated, which we cluster into 74 cyclic skeletons. Five of the 74 skeletons are found in known natural products; some of the others are plausible for new functions, either in nature or engineered. This work systematizes the description of function for this class of enzymes, and provides a basis for predicting functions of uncharacterized enzymes. To our knowledge, this is the first computational study to explore the complete product chemical space of this important class of enzymes. PMID:27517297

  12. S-sulfocysteine synthase function in sensing chloroplast redox status.

    PubMed

    Gotor, Cecilia; Romero, Luis C

    2013-03-01

    The minor chloroplastic O-acetylserine(thiol)lyase isoform encoded by the CS26 gene in Arabidopsis thaliana has been described as an S-sulfocysteine synthase enzyme that plays an important role in chloroplast function. This enzyme is located in the thylakoid lumen, and its S-sulfocysteine activity is essential for the proper photosynthetic performance of the chloroplast under long-day growth conditions. Based on the present knowledge of this enzyme, we suggest that S-sulfocysteine synthase functions as a protein sensor to detect the accumulation of thiosulfate as a result of the inadequate detoxification of reactive oxygen species generated under conditions of excess light to produce the S-sulfocysteine molecule that triggers protection mechanisms of the photosynthetic apparatus.

  13. Visualization of cellulose synthases in Arabidopsis secondary cell walls.

    PubMed

    Watanabe, Y; Meents, M J; McDonnell, L M; Barkwill, S; Sampathkumar, A; Cartwright, H N; Demura, T; Ehrhardt, D W; Samuels, A L; Mansfield, S D

    2015-10-01

    Cellulose biosynthesis in plant secondary cell walls forms the basis of vascular development in land plants, with xylem tissues constituting the vast majority of terrestrial biomass. We used plant lines that contained an inducible master transcription factor controlling xylem cell fate to quantitatively image fluorescently tagged cellulose synthase enzymes during cellulose deposition in living protoxylem cells. The formation of secondary cell wall thickenings was associated with a redistribution and enrichment of CESA7-containing cellulose synthase complexes (CSCs) into narrow membrane domains. The velocities of secondary cell wall-specific CSCs were faster than those of primary cell wall CSCs during abundant cellulose production. Dynamic intracellular of endomembranes, in combination with increased velocity and high density of CSCs, enables cellulose to be synthesized rapidly in secondary cell walls.

  14. Expression of fibroblast growth factor receptor 1, fibroblast growth factor 2, phosphatidyl inositol 3 phosphate kinase and their clinical and prognostic significance in early and advanced stage of squamous cell carcinoma of the lung

    PubMed Central

    Usul Afsar, Cigdem; Sahin, Berksoy; Gunaldi, Meral; Kılıc Bagir, Emine; Gumurdulu, Derya; Burgut, Refik; Erkisi, Melek; Kara, Ismail Oguz; Paydas, Semra; Karaca, Feryal; Ercolak, Vehbi

    2015-01-01

    Aim: Non-small cell lung carcinoma is the leading cause of cancer related to death in the world. Squamous cell lung carcinoma (SqCLC) is the second most frequent histological subtype of lung carcinomas. Recently, growth factors, growth factor receptors, and signal transduction system-related gene amplifications and mutations are extensively under investigation to estimate the prognosis and to develop individualized therapies in SqCLC. In this study, besides the signal transduction molecule phosphatidyl inositol-3-phosphate kinase (IP3K) p110α, we explored the expressions of fibroblast growth factor 2 (FGF2) and receptor-1 (FGFR1) in tumor tissue and also their clinical and prognostic significance in patients with early/advanced SqCLC. Materials and methods: From 2005 to 2013, 129 patients (23 early, 106 advanced disease) with a histopathological SqCLC diagnosis were selected from the hospital files of Cukurova University Medical Faculty for this study. Two independent pathologists evaluated FGFR1, FGF2, and PI3K (p110α) expressions in both tumor and stromal tissues from 99 of the patients with sufficient tissue samples, using immunohistochemistry. Considering survival analysis separately for patients with both early and advanced stage diseases, the relationship between the clinical features of the patients and expressions were evaluated by univariate and multivariate analyses. Results: FGFR1 expression was found to be low in 59 (60%) patients and high in 40 (40%) patients. For FGF2; 12 (12%) patients had high, 87 (88%) patients had low expression and for IP3K; 31 (32%) patients had high and 66 (68%) patients had low expressions. In univariate analysis, overall survival (OS) was significantly associated with stage of the disease and the performance status of the patient (P<0.0001 and P<0.001). There was no significant difference in OS of the patients with either low or high expressions of FGFR1, FGF2, and IP3K. When the patients with early or advanced stage

  15. Use of linalool synthase in genetic engineering of scent production

    DOEpatents

    Pichersky, E.

    1998-12-15

    A purified S-linalool synthase polypeptide from Clarkia breweri is disclosed as is the recombinant polypeptide and nucleic acid sequences encoding the polypeptide. Also disclosed are antibodies immunoreactive with the purified peptide and with recombinant versions of the polypeptide. Methods of using the nucleic acid sequences, as well as methods of enhancing the smell and the flavor of plants expressing the nucleic acid sequences are also disclosed. 5 figs.

  16. Structural organization of the multifunctional animal fatty-acid synthase.

    PubMed

    Witkowski, A; Rangan, V S; Randhawa, Z I; Amy, C M; Smith, S

    1991-06-15

    The amino acid sequence of the multifunctional fatty-acid synthase has been examined to investigate the exact location of the seven functional domains. Good agreement in predicting the location of interdomain boundaries was obtained using three independent methods. First, the sites of limited proteolytic attack that give rise to relatively stable, large polypeptide fragments were identified; cryptic sites for protease attack at the subunit interface were unmasked by first dissociating the dimer into its component subunits. Second, polypeptide regions exhibiting higher-than-average rates of non-conservative mutation were identified. Third, the sizes of putative functional domains were compared with those of related monofunctional proteins that exhibit similar primary or secondary structure. Residues 1-406 were assigned to the oxoacyl synthase, residues 430-802 to the malonyl/acetyl transferase, residues 1630-1850 to the enoyl reductase, residues 1870-2100 to the oxyreductase, residues 2114-2190 to the acyl-carrier protein and residues 2200-2505 to the thioesterase. The 47-kDa transferase and 8-kDa acyl-carrier-protein domains, which are situated at opposite ends of the multifunctional subunit, were nevertheless isolated from tryptic digests as a non-covalently associated complex. Furthermore, a centrally located domain encompassing residues 1160-1545 was isolated as a nicked dimer. These findings, indicating that interactions between the head-to-tail juxtaposed subunits occur in both the polar and equatorial regions, are consistent with previously derived electron-micrograph images that show subunit contacts in these areas. The data permit refinement of the model for the fatty-acid synthase dimer and suggest that the malonyl/acetyl transferase and oxoacyl synthase of one subunit cooperate with the reductases, acyl carrier protein and thioesterase of the companion subunit in the formation of a center for fatty-acid synthesis.

  17. Structure and Mechanistic Implications of a Tryptophan Synthase Quinonoid Intermediate

    SciTech Connect

    Barends,T.; Domratcheva, T.; Kulik, V.; Blumenstein, L.; Niks, D.; Dunn, M.; Schlichting, I.

    2008-01-01

    Quinonoid intermediates play a key role in the catalytic mechanism of pyridoxal 5'-phosphate (PLP)-dependent enzymes. Whereas structures of other PLP-bound reaction intermediates have been determined, a high-quality structure of a quinonoid species has not been reported. We present the crystal structure of the indoline quinonoid intermediate of tryptophan synthase (see figure) and discuss its implications for the enzymatic mechanism and allosteric regulation.

  18. Isolation and characterization of terpene synthases in cotton (Gossypium hirsutum).

    PubMed

    Yang, Chang-Qing; Wu, Xiu-Ming; Ruan, Ju-Xin; Hu, Wen-Li; Mao, Yin-Bo; Chen, Xiao-Ya; Wang, Ling-Jian

    2013-12-01

    Cotton plants accumulate gossypol and related sesquiterpene aldehydes, which function as phytoalexins against pathogens and feeding deterrents to herbivorous insects. However, to date little is known about the biosynthesis of volatile terpenes in this crop. Herein is reported that 5 monoterpenes and 11 sesquiterpenes from extracts of a glanded cotton cultivar, Gossypium hirsutum cv. CCRI12, were detected by gas chromatography-mass spectrometry (GC-MS). By EST data mining combined with Rapid Amplification of cDNA Ends (RACE), full-length cDNAs of three terpene synthases (TPSs), GhTPS1, GhTPS2 and GhTPS3 were isolated. By in vitro assays of the recombinant proteins, it was found that GhTPS1 and GhTPS2 are sesquiterpene synthases: the former converted farnesyl pyrophosphate (FPP) into β-caryophyllene and α-humulene in a ratio of 2:1, whereas the latter produced several sesquiterpenes with guaia-1(10),11-diene as the major product. By contrast, GhTPS3 is a monoterpene synthase, which produced α-pinene, β-pinene, β-phellandrene and trace amounts of other monoterpenes from geranyl pyrophosphate (GPP). The TPS activities were also supported by Virus Induced Gene Silencing (VIGS) in the cotton plant. GhTPS1 and GhTPS3 were highly expressed in the cotton plant overall, whereas GhTPS2 was expressed only in leaves. When stimulated by mechanical wounding, Verticillium dahliae (Vde) elicitor or methyl jasmonate (MeJA), production of terpenes and expression of the corresponding synthase genes were induced. These data demonstrate that the three genes account for the biosynthesis of volatile terpenes of cotton, at least of this Upland cotton.

  19. The cellulose synthase superfamily in fully sequenced plants and algae

    PubMed Central

    2009-01-01

    Background The cellulose synthase superfamily has been classified into nine cellulose synthase-like (Csl) families and one cellulose synthase (CesA) family. The Csl families have been proposed to be involved in the synthesis of the backbones of hemicelluloses of plant cell walls. With 17 plant and algal genomes fully sequenced, we sought to conduct a genome-wide and systematic investigation of this superfamily through in-depth phylogenetic analyses. Results A single-copy gene is found in the six chlorophyte green algae, which is most closely related to the CslA and CslC families that are present in the seven land plants investigated in our analyses. Six proteins from poplar, grape and sorghum form a distinct family (CslJ), providing further support for the conclusions from two recent studies. CslB/E/G/H/J families have evolved significantly more rapidly than their widely distributed relatives, and tend to have intragenomic duplications, in particular in the grape genome. Conclusion Our data suggest that the CslA and CslC families originated through an ancient gene duplication event in land plants. We speculate that the single-copy Csl gene in green algae may encode a mannan synthase. We confirm that the rest of the Csl families have a different evolutionary origin than CslA and CslC, and have proposed a model for the divergence order among them. Our study provides new insights about the evolution of this important gene family in plants. PMID:19646250

  20. QSAR modeling of the inhibition of glycogen synthase kinase-3.

    PubMed

    Katritzky, Alan R; Pacureanu, Liliana M; Dobchev, Dimitar A; Fara, Dan C; Duchowicz, Pablo R; Karelson, Mati

    2006-07-15

    Quantitative structure-activity relationship (QSAR) models of the biological activity (pIC50) of 277 inhibitors of Glycogen Synthase Kinase-3 (GSK-3) are developed using geometrical, topological, quantum mechanical, and electronic descriptors calculated by CODESSA PRO. The linear (multilinear regression) and nonlinear (artificial neural network) models obtained link the structures to their reported activity pIC50. The results are discussed in the light of the main factors that influence the inhibitory activity of the GSK-3 enzyme.

  1. Trichodiene synthase: mechanism-based inhibition of a sesquiterpene cyclase.

    PubMed

    Cane, D E; Bowser, T E

    1999-04-19

    The 10-cyclopropylidene analog of farnesyl diphosphate was shown to be a mechanis