Science.gov

Sample records for 5-enolpyruvylshikimate 3-phosphate synthase

  1. Phosphate closes the solution structure of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) from Mycobacterium tuberculosis.

    PubMed

    Borges, Júlio C; Pereira, José H; Vasconcelos, Igor B; dos Santos, Giovanni C; Olivieri, Johnny R; Ramos, Carlos H I; Palma, Mário S; Basso, Luiz A; Santos, Diógenes S; de Azevedo, Walter F

    2006-08-15

    The 5-enolpyruvylshikimate-3-phosphate synthase catalyses the sixth step of the shikimate pathway that is responsible for synthesizing aromatic compounds and is absent in mammals, which makes it a potential target for drugs development against microbial diseases. Here, we report the phosphate binding effects at the structure of the 5-enolpyruvylshikimate-3-phosphate synthase from Mycobacterium tuberculosis. This enzyme is formed by two similar domains that close on each other induced by ligand binding, showing the occurrence of a large conformation change. We have monitored the phosphate binding effects using analytical ultracentrifugation, small angle X-ray scattering and, circular dichroism techniques. The low resolution results showed that the enzyme in the presence of phosphate clearly presented a more compact structure. Thermal-induced unfolding experiments followed by circular dichroism suggested that phosphate rigidified the enzyme. Summarizing, these data suggested that the phosphate itself is able to induce conformational change resulting in the closure movement in the M. tuberculosis 5-enolpyruvylshikimate-3-phosphate synthase.

  2. Plastid-expressed 5-enolpyruvylshikimate-3-phosphate synthase genes provide high level glyphosate tolerance in tobacco.

    PubMed

    Ye, G N; Hajdukiewicz, P T; Broyles, D; Rodriguez, D; Xu, C W; Nehra, N; Staub, J M

    2001-02-01

    Plastid transformation (transplastomic) technology has several potential advantages for biotechnological applications including the use of unmodified prokaryotic genes for engineering, potential high-level gene expression and gene containment due to maternal inheritance in most crop plants. However, the efficacy of a plastid-encoded trait may change depending on plastid number and tissue type. We report a feasibility study in tobacco plastids to achieve high-level herbicide resistance in both vegetative tissues and reproductive organs. We chose to test glyphosate resistance via over-expression in plastids of tolerant forms of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Immunological, enzymatic and whole-plant assays were used to prove the efficacy of three different prokaryotic (Achromobacter, Agrobacterium and Bacillus) EPSPS genes. Using the Agrobacterium strain CP4 EPSPS as a model we identified translational control sequences that direct a 10,000-fold range of protein accumulation (to >10% total soluble protein in leaves). Plastid-expressed EPSPS could provide very high levels of glyphosate resistance, although levels of resistance in vegetative and reproductive tissues differed depending on EPSPS accumulation levels, and correlated to the plastid abundance in these tissues. Paradoxically, higher levels of plastid-expressed EPSPS protein accumulation were apparently required for efficacy than from a similar nuclear-encoded gene. Nevertheless, the demonstration of high-level glyphosate tolerance in vegetative and reproductive organs using transplastomic technology provides a necessary step for transfer of this technology to other crop species.

  3. Nucleotide variability in the 5-enolpyruvylshikimate-3-phosphate synthase gene from Eleusine indica (L.) Gaertn.

    PubMed

    Chong, J L; Wickneswari, R; Ismail, B S; Salmijah, S

    2008-02-01

    This study reports the results of the partial DNA sequence analysis of the 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSPS) gene in glyphosate-resistant (R) and glyphosate-susceptible (S) biotypes of Eleusine indica (L.) Gaertn from Peninsular Malaysia. Sequencing results revealed point mutation at nucleotide position 875 in the R biotypes of Bidor, Chaah and Temerloh. In the Chaah R population, substitution of cytosine (C) to adenine (A) resulted in the change of threonine (Thr106) to proline (Pro106) and from C to thymidine (T) in the Bidor R population, leading to serine (Ser106) from Pro106. As for the Temerloh R, C was substituted by T resulting in the change of Pro106 to Ser106. A new mutation previously undetected in the Temerloh R was revealed with C being substituted with A, resulting in the change of Pro106 to Thr106 indicating multiple founding events rather than to the spread of a single resistant allele. There was no point mutation recorded at nucleotide position 875 previously demonstrated to play a pivotal role in conferring glyphosate resistance to E. indica for the Lenggeng, Kuala Selangor, Melaka R populations. Thus, there may be another resistance mechanism yet undiscovered in the resistant Lenggeng, Kuala Selangor and Melaka populations.

  4. In silico peptide prediction for antibody generation to recognize 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) in genetically modified organisms.

    PubMed

    Marani, Mariela M; Costa, Joana; Mafra, Isabel; Oliveira, Maria Beatriz P P; Camperi, Silvia A; Leite, José Roberto de Souza Almeida

    2015-03-01

    For the prospective immunorecognition of 5-enolpyruvylshikimate-3-phosphate synthase (CP4-EPSPS) as a biomarker protein expressed by transgenic soybean, an extensive in silico evaluation of the referred protein was performed. The main objective of this study was the selection of a set of peptides that could function as potential immunogens for the production of novel antibodies against CP4-EPSPS protein. For this purpose, the protein was in silico cleaved with trypsin/chymotrypsin and the resultant peptides were extensively analyzed for further selection of the best candidates for antibody production. The analysis enabled the successful proposal of four peptides with potential immunogenicity for their future use as screening biomarkers of genetically modified organisms. To our knowledge, this is the first attempt to select and define potential linear epitopes for the immunization of animals and, subsequently, to generate adequate antibodies for CP4-EPSPS recognition. The present work will be followed by the synthesis of the candidate peptides to be incubated in animals for antibody generation and potential applicability for the development of an immunosensor for CP4-EPSPS detection.

  5. Glyphosate-resistant goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase.

    PubMed

    Baerson, Scott R; Rodriguez, Damian J; Tran, Minhtien; Feng, Yongmei; Biest, Nancy A; Dill, Gerald M

    2002-07-01

    The spontaneous occurrence of resistance to the herbicide glyphosate in weed species has been an extremely infrequent event, despite over 20 years of extensive use. Recently, a glyphosate-resistant biotype of goosegrass (Eleusine indica) was identified in Malaysia exhibiting an LD(50) value approximately 2- to 4-fold greater than the sensitive biotype collected from the same region. A comparison of the inhibition of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity by glyphosate in extracts prepared from the resistant (R) and sensitive (S) biotypes revealed an approximately 5-fold higher IC(50)(glyphosate) for the (R) biotype. Sequence comparisons of the predicted EPSPS mature protein coding regions from both biotypes revealed four single-nucleotide differences, two of which result in amino acid changes. One of these changes, a proline to serine substitution at position 106 in the (R) biotype, corresponds to a substitution previously identified in a glyphosate-insensitive EPSPS enzyme from Salmonella typhimurium. Kinetic data generated for the recombinant enzymes suggests that the second substitution identified in the (R) EPSPS does not contribute significantly to its reduced glyphosate sensitivity. Escherichia coli aroA- (EPSPS deficient) strains expressing the mature EPSPS enzyme from the (R) biotype exhibited an approximately 3-fold increase in glyphosate tolerance relative to strains expressing the mature EPSPS from the (S) biotype. These results provide the first evidence for an altered EPSPS enzyme as an underlying component of evolved glyphosate resistance in any plant species.

  6. Mutation by DNA shuffling of 5-enolpyruvylshikimate-3-phosphate synthase from Malus domestica for improved glyphosate resistance.

    PubMed

    Tian, Yong-Sheng; Xu, Jing; Peng, Ri-He; Xiong, Ai-Sheng; Xu, Hu; Zhao, Wei; Fu, Xiao-Yan; Han, Hong-Juan; Yao, Quan-Hong

    2013-09-01

    A new 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene from Malus domestica (MdEPSPS) was cloned and characterized by rapid amplification of cDNA ends to identify an EPSPS gene appropriate for the development of transgenic glyphosate-tolerant plants. However, wild-type MdEPSPS is not suitable for the development of transgenic glyphosate-tolerant plants because of its poor glyphosate resistance. Thus, we performed DNA shuffling on MdEPSPS, and one highly glyphosate-resistant mutant with mutations in eight amino acids (N63D, N86S, T101A, A187T, D230G, H317R, Y399R and C413A.) was identified after five rounds of DNA shuffling and screening. Among the eight amino acid substitutions on this mutant, only two residue changes (T101A and A187T) were identified by site-directed mutagenesis as essential and additive in altering glyphosate resistance, which was further confirmed by kinetic analyses. The single-site A187T mutation has also never been previously reported as an important residue for glyphosate resistance. Furthermore, transgenic rice was used to confirm the potential of MdEPSPS mutant in developing glyphosate-resistant crops.

  7. Physical Mapping of Amplified Copies of the 5-Enolpyruvylshikimate-3-Phosphate Synthase Gene in Glyphosate-Resistant Amaranthus tuberculatus.

    PubMed

    Dillon, Andrew; Varanasi, Vijay K; Danilova, Tatiana V; Koo, Dal-Hoe; Nakka, Sridevi; Peterson, Dallas E; Tranel, Patrick J; Friebe, Bernd; Gill, Bikram S; Jugulam, Mithila

    2017-02-01

    Recent and rapid evolution of resistance to glyphosate, the most widely used herbicides, in several weed species, including common waterhemp (Amaranthus tuberculatus), poses a serious threat to sustained crop production. We report that glyphosate resistance in A tuberculatus was due to amplification of the 5-enolpyruvylshikimate-3-P synthase (EPSPS) gene, which encodes the molecular target of glyphosate. There was a positive correlation between EPSPS gene copies and its transcript expression. We analyzed the distribution of EPSPS copies in the genome of A tuberculatus using fluorescence in situ hybridization on mitotic metaphase chromosomes and interphase nuclei. Fluorescence in situ hybridization analysis mapped the EPSPS gene to pericentromeric regions of two homologous chromosomes in glyphosate sensitive A tuberculatus In glyphosate-resistant plants, a cluster of EPSPS genes on the pericentromeric region on one pair of homologous chromosomes was detected. Intriguingly, two highly glyphosate-resistant plants harbored an additional chromosome with several EPSPS copies besides the native chromosome pair with EPSPS copies. These results suggest that the initial event of EPSPS gene duplication may have occurred because of unequal recombination mediated by repetitive DNA. Subsequently, gene amplification may have resulted via several other mechanisms, such as chromosomal rearrangements, deletion/insertion, transposon-mediated dispersion, or possibly by interspecific hybridization. This report illustrates the physical mapping of amplified EPSPS copies in A tuberculatus.

  8. Evidence for a reactive gamma-carboxyl group (Glu-418) at the herbicide glyphosate binding site of 5-enolpyruvylshikimate-3-phosphate synthase from Escherichia coli.

    PubMed

    Huynh, Q K

    1988-08-25

    Incubation of 5-enolpyruvylshikimate-3-phosphate synthase, a target for the nonselective herbicide glyphosate (N-(phosphonomethyl)glycine), with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide in the presence of glycine ethyl ester resulted in a time-dependent loss of enzyme activity. The inactivation followed pseudo-first order kinetics, with a second order rate constant of 2.2 M-1 min-1 at pH 5.5 and 25 degrees C. The inactivation is prevented by preincubation of the enzyme with a combination of the substrate shikimate 3-phosphate plus glyphosate, but not by shikimate 3-phosphate, phosphoenolpyruvate, or glyphosate alone. Increasing the concentration of glyphosate during preincubation resulted in decreasing the rate of inactivation of the enzyme. Complete inactivation of the enzyme required the modification of 4 carboxyl groups per molecule of the enzyme. However, statistical analysis of the residual activity and the extent of modification showed that among the 4 modifiable carboxyl groups, only 1 is critical for activity. Tryptic mapping of the enzyme modified in the absence of shikimate 3-phosphate and glyphosate by reverse phase chromatography resulted in the isolation of a [14C]glycine ethyl ester-containing peptide that was absent in the enzyme modified in the presence of shikimate 3-phosphate and glyphosate. By amino acid sequencing of this labeled peptide, the modified critical carboxyl group was identified as Glu-418. The above results suggest that Glu-418 is the most accessible reactive carboxyl group under these conditions and is located at or close to the glyphosate binding site.

  9. Structure and topological symmetry of the glyphosate target 5-enolpyruvylshikimate-3-phosphate synthase: a distinctive protein fold.

    PubMed Central

    Stallings, W C; Abdel-Meguid, S S; Lim, L W; Shieh, H S; Dayringer, H E; Leimgruber, N K; Stegeman, R A; Anderson, K S; Sikorski, J A; Padgette, S R; Kishore, G M

    1991-01-01

    5-enol-Pyruvylshikimate-3-phosphate synthase (EPSP synthase; phosphoenolpyruvate:3-phosphoshikimate 1-carboxyvinyltransferase, EC 2.5.1.19) is an enzyme on the pathway toward the synthesis of aromatic amino acids in plants, fungi, and bacteria and is the target of the broad-spectrum herbicide glyphosate. The three-dimensional structure of the enzyme from Escherichia coli has been determined by crystallographic techniques. The polypeptide backbone chain was traced by examination of an electron density map calculated at 3-A resolution. The two-domain structure has a distinctive fold and appears to be formed by 6-fold replication of a protein folding unit comprising two parallel helices and a four-stranded sheet. Each domain is formed from three of these units, which are related by an approximate threefold symmetry axis; in each domain three of the helices are completely buried by a surface formed from the three beta-sheets and solvent-accessible faces of the other three helices. The domains are related by an approximate dyad, but in the present crystals the molecule does not display pseudo-symmetry related to the symmetry of point group 32 because its approximate threefold axes are almost normal. A possible relation between the three-dimensional structure of the protein and the linear sequence of its gene will be described. The topological threefold symmetry and orientation of each of the two observed globular domains may direct the binding of substrates and inhibitors by a helix macrodipole effect and implies that the active site is located near the interdomain crossover segments. The structure also suggests a rationale for the glyphosate tolerance conferred by sequence alterations. Images PMID:11607190

  10. Transgenic tobacco simultaneously overexpressing glyphosate N-acetyltransferase and 5-enolpyruvylshikimate-3-phosphate synthase are more resistant to glyphosate than those containing one gene.

    PubMed

    Liu, Yunjun; Cao, Gaoyi; Chen, Rongrong; Zhang, Shengxue; Ren, Yuan; Lu, Wei; Wang, Jianhua; Wang, Guoying

    2015-08-01

    5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) and glyphosate N-acetyltransferase (GAT) can detoxify glyphosate by alleviating the suppression of shikimate pathway. In this study, we obtained transgenic tobacco plants overexpressing AM79 aroA, GAT, and both of them, respectively, to evaluate whether overexpression of both genes could confer transgenic plants with higher glyphosate resistance. The transgenic plants harboring GAT or AM79 aroA, respectively, showed good glyphosate resistance. As expected, the hybrid plants containing both GAT and AM79 aroA exhibited improved glyphosate resistance than the transgenic plants overexpressing only a single gene. When grown on media with high concentration of glyphosate, seedlings containing a single gene were severely inhibited, whereas plants expressing both genes were affected less. When transgenic plants grown in the greenhouse were sprayed with glyphosate, less damage was observed for the plants containing both genes. Metabolomics analysis showed that transgenic plants containing two genes could maintain the metabolism balance better than those containing one gene after glyphosate treatment. Glyphosate treatment did not lead to a huge increase of shikimate contents of tobacco leaves in transgenic plants overexpressing two genes, whereas significant increase of shikimate contents in transgenic plants containing only a single gene was observed. These results demonstrated that pyramiding both aroA and GAT in transgenic plants can enhance glyphosate resistance, and this strategy can be used for the development of transgenic glyphosate-resistant crops.

  11. Identification of a Glyphosate-Resistant Mutant of Rice 5-Enolpyruvylshikimate 3-Phosphate Synthase Using a Directed Evolution Strategy1[W][OA

    PubMed Central

    Zhou, Min; Xu, Honglin; Wei, Xiaoli; Ye, Zhiqiang; Wei, Liping; Gong, Weimin; Wang, Yongqin; Zhu, Zhen

    2006-01-01

    5-Enolpyruvylshikimate 3-phosphate synthase (EPSPS) is a key enzyme in the shikimate pathway and is targeted by the wide-spectrum herbicide glyphosate. Here, we describe the use of a selection system based on directed evolution to select glyphosate-resistant mutants of EPSPS. Using this system, the rice (Oryza sativa) EPSPS gene, mutagenized by Error-Prone polymerase chain reaction, was introduced into an EPSPS-deficient Escherichia coli strain, AB2829, and transformants were selected on minimal medium by functional complementation. Three mutants with high glyphosate resistance were identified in three independent glyphosate selection experiments. Each mutant contained a C317→T transition within the EPSPS coding sequence, causing a change of proline-106 to leucine (P106L) in the protein sequence. Glyphosate resistance assays indicated a 3-fold increase in glyphosate resistance of E. coli expressing the P106L mutant. Affinity of the P106L mutant for glyphosate and phosphoenolpyruvate was decreased about 70-fold and 4.6-fold, respectively, compared to wild-type EPSPS. Analysis based on a kinetic model demonstrates that the P106L mutant has a high glyphosate resistance while retaining relatively high catalytic efficiency at low phosphoenolpyruvate concentrations. A mathematical model derived from the Michaelis-Menten equation was used to characterize the effect of expression level and selection conditions on kinetic (Ki and Km) variation of the mutants. This prediction suggests that the expression level is an important aspect of the selection system. Furthermore, glyphosate resistance of the P106L mutant was confirmed in transgenic tobacco (Nicotiana tabacum), demonstrating the potential for using the P106L mutant in transgenic crops. PMID:16361526

  12. Evolution of a Double Amino Acid Substitution in the 5-Enolpyruvylshikimate-3-Phosphate Synthase in Eleusine indica Conferring High-Level Glyphosate Resistance1

    PubMed Central

    Yu, Qin; Jalaludin, Adam; Han, Heping; Chen, Ming; Sammons, R. Douglas; Powles, Stephen B.

    2015-01-01

    Glyphosate is the most important and widely used herbicide in world agriculture. Intensive glyphosate selection has resulted in the widespread evolution of glyphosate-resistant weed populations, threatening the sustainability of this valuable once-in-a-century agrochemical. Field-evolved glyphosate resistance due to known resistance mechanisms is generally low to modest. Here, working with a highly glyphosate-resistant Eleusine indica population, we identified a double amino acid substitution (T102I + P106S [TIPS]) in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene in glyphosate-resistant individuals. This TIPS mutation recreates the biotechnology-engineered commercial first generation glyphosate-tolerant EPSPS in corn (Zea mays) and now in other crops. In E. indica, the naturally evolved TIPS mutants are highly (more than 180-fold) resistant to glyphosate compared with the wild type and more resistant (more than 32-fold) than the previously known P106S mutants. The E. indica TIPS EPSPS showed very high-level (2,647-fold) in vitro resistance to glyphosate relative to the wild type and is more resistant (600-fold) than the P106S variant. The evolution of the TIPS mutation in crop fields under glyphosate selection is likely a sequential event, with the P106S mutation being selected first and fixed, followed by the T102I mutation to create the highly resistant TIPS EPSPS. The sequential evolution of the TIPS mutation endowing high-level glyphosate resistance is an important mechanism by which plants adapt to intense herbicide selection and a dramatic example of evolution in action. PMID:25717039

  13. Evolution of a double amino acid substitution in the 5-enolpyruvylshikimate-3-phosphate synthase in Eleusine indica conferring high-level glyphosate resistance.

    PubMed

    Yu, Qin; Jalaludin, Adam; Han, Heping; Chen, Ming; Sammons, R Douglas; Powles, Stephen B

    2015-04-01

    Glyphosate is the most important and widely used herbicide in world agriculture. Intensive glyphosate selection has resulted in the widespread evolution of glyphosate-resistant weed populations, threatening the sustainability of this valuable once-in-a-century agrochemical. Field-evolved glyphosate resistance due to known resistance mechanisms is generally low to modest. Here, working with a highly glyphosate-resistant Eleusine indica population, we identified a double amino acid substitution (T102I+P106S [TIPS]) in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene in glyphosate-resistant individuals. This TIPS mutation recreates the biotechnology-engineered commercial first generation glyphosate-tolerant EPSPS in corn (Zea mays) and now in other crops. In E. indica, the naturally evolved TIPS mutants are highly (more than 180-fold) resistant to glyphosate compared with the wild type and more resistant (more than 32-fold) than the previously known P106S mutants. The E. indica TIPS EPSPS showed very high-level (2,647-fold) in vitro resistance to glyphosate relative to the wild type and is more resistant (600-fold) than the P106S variant. The evolution of the TIPS mutation in crop fields under glyphosate selection is likely a sequential event, with the P106S mutation being selected first and fixed, followed by the T102I mutation to create the highly resistant TIPS EPSPS. The sequential evolution of the TIPS mutation endowing high-level glyphosate resistance is an important mechanism by which plants adapt to intense herbicide selection and a dramatic example of evolution in action.

  14. Physical Mapping of Amplified Copies of the 5-Enolpyruvylshikimate-3-Phosphate Synthase Gene in Glyphosate-Resistant Amaranthus tuberculatus1[OPEN

    PubMed Central

    Dillon, Andrew; Varanasi, Vijay K.; Koo, Dal-Hoe; Nakka, Sridevi; Peterson, Dallas E.; Friebe, Bernd

    2017-01-01

    Recent and rapid evolution of resistance to glyphosate, the most widely used herbicides, in several weed species, including common waterhemp (Amaranthus tuberculatus), poses a serious threat to sustained crop production. We report that glyphosate resistance in A. tuberculatus was due to amplification of the 5-enolpyruvylshikimate-3-P synthase (EPSPS) gene, which encodes the molecular target of glyphosate. There was a positive correlation between EPSPS gene copies and its transcript expression. We analyzed the distribution of EPSPS copies in the genome of A. tuberculatus using fluorescence in situ hybridization on mitotic metaphase chromosomes and interphase nuclei. Fluorescence in situ hybridization analysis mapped the EPSPS gene to pericentromeric regions of two homologous chromosomes in glyphosate sensitive A. tuberculatus. In glyphosate-resistant plants, a cluster of EPSPS genes on the pericentromeric region on one pair of homologous chromosomes was detected. Intriguingly, two highly glyphosate-resistant plants harbored an additional chromosome with several EPSPS copies besides the native chromosome pair with EPSPS copies. These results suggest that the initial event of EPSPS gene duplication may have occurred because of unequal recombination mediated by repetitive DNA. Subsequently, gene amplification may have resulted via several other mechanisms, such as chromosomal rearrangements, deletion/insertion, transposon-mediated dispersion, or possibly by interspecific hybridization. This report illustrates the physical mapping of amplified EPSPS copies in A. tuberculatus. PMID:27956489

  15. The expressed protein in glyphosate-tolerant soybean, 5-enolpyruvylshikimate-3-phosphate synthase from Agrobacterium sp. strain CP4, is rapidly digested in vitro and is not toxic to acutely gavaged mice.

    PubMed

    Harrison, L A; Bailey, M R; Naylor, M W; Ream, J E; Hammond, B G; Nida, D L; Burnette, B L; Nickson, T E; Mitsky, T A; Taylor, M L; Fuchs, R L; Padgette, S R

    1996-03-01

    The safety of 5-enolpyruvylshikimate-3-phosphate synthase enzyme derived from Agrobacterium sp. strain CP4 (CP4 EPSPS) was assessed. CP4 EPSPS is the only protein introduced by genetic manipulation that is expressed in glyphosate-tolerant soybeans, which are being developed to provide new weed-control options for farmers. Expression of this protein in plants imparts high levels of glyphosate tolerance. The safety of CP4 EPSPS was ascertained by evaluating both physical and functional characteristics. CP4 EPSPS degrades readily in simulated gastric and intestinal fluids, suggesting that this protein will be degraded in the mammalian digestive tract upon ingestion as a component of food or feed, There were no deleterious effects due to the acute administration of CP4 EPSPS to mice by gavage at a high dosage of 572 mg/kg body wt, which exceeds 1000-fold tha anticipated consumption level of food products potentially containing CP4 EPSPS protein. CP4 EPSPS does not pose any important allergen concerns because this protein does not possess characteristics typical of allergenic proteins. These data, in combination with seed compositional analysis and animal feeding studies, support the conclusion that glyphosate-tolerant soybean are as safe and nutritious as traditional soybeans currently being marketed.

  16. Glyphosate inhibition of 5-enolpyruvylshikimate 3-phosphate synthease from suspension-cultured cells of Nicotiana silvestris

    SciTech Connect

    Rubin, J.L.; Gaines, C.G.; Jensen, R.A.

    1984-07-01

    Treatment of isogenic suspension-cultured cells of Nicotiana silvestris Speg, et Comes with glyphosate (N-(phosphonomethyl)glycine) led to elevated levels of intracellular shikimate (364-fold increase by 1.0 millimolar glyphosate). In the presence of glyphosate, it is likely that most molecules of shikimate originate from the action of 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase-Mn since this isozyme, in contrast to the DAHP synthase-Co isozyme, is insensitive to inhibition by glyphosate. 5-Enolpyruvylshikimate 3-phosphate (EPSP) synthase (EC 2.5.1.19) from N. silvestris was sensitive to micromolar concentrations of glyphosate and possessed a single inhibitor binding site. Rigorous kinetic studies of EPSP synthase required resolution from the multiple phosphatase activities present in crude extracts, a result achieved by ion-exchange column chromatography. Although EPSP synthase exhibited a broad pH profile (50% of maximal activity between pH 6.2 and 8.5), sensitivity to glyphosate increased dramatically with increasing pH within this range. In accordance with these data and the pK/sub a/ values of glyphosate, it is likely that the ionic form of glyphosate inhibiting EPSP synthase is COO/sup -/CH/sub 2/NH/sub 2//sup +/CH/sub 2/PO/sub 3//sup 2 -/, and that a completely ionized phosphono group is essential for inhibition. At pH 7.0, inhibition was competitive with respect to phosphoenolpyruvate (K/sub i/ = 1.25 micromolar) and uncompetitive with respect to shikimate-3-P (K/sub i/ = 18.3 micromolar). All data were consistent with a mechanism of inhibition in which glyphosate competes with PEP for binding to an (enzyme:shikimate-3-P) complex and ultimately forms the dead-end complex of (enzyme:shikimate-3-P:glyphosate). 36 references, 8 figures, 1 table.

  17. Distinguishing between weedy Amaranthus species based on intron one sequences from the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS)gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hybridization between Amaranthus species and the potential for herbicide resistance to be transferred by hybridization are of growing concern in the weed science community. It is important to confirm suspect hybrid populations early to develop an effective control strategy. With this in mind, a PC...

  18. A Novel Naturally Occurring Class I 5-Enolpyruvylshikimate-3-Phosphate Synthase from Janibacter sp. Confers High Glyphosate Tolerance to Rice

    PubMed Central

    Yi, Shu-yuan; Cui, Ying; Zhao, Yan; Liu, Zi-duo; Lin, Yong-jun; Zhou, Fei

    2016-01-01

    As glyphosate is a broad spectrum herbicide extensively used in agriculture worldwide, identification of new aroA genes with high level of glyphosate tolerance is essential for the development and breeding of transgenic glyphosate-tolerant crops. In this study, an aroA gene was cloned from a Janibacter sp. strain isolated from marine sediment (designated as aroAJ. sp). The purified aroAJ. sp enzyme has a Km value of 30 μM for PEP and 83 μM for S3P, and a significantly higher Ki value for glyphosate (373 μM) than aroAE. coli. AroAJ. sp is characterized as a novel and naturally occurring class I aroA enzyme with glyphosate tolerance. Furthermore, we show that aroAJ. sp can be used as an effective selectable marker in both japonica and indica rice cultivar. Transgenic rice lines were tested by herbicide bioassay and it was confirmed that they could tolerate up to 3360 g/ha glyphosate, a dosage four-fold that of the recommended agricultural application level. To our knowledge, it is the first report of a naturally occurring novel class I aroA gene which can be efficiently utilized to study and develop transgenic glyphosate-tolerant crops, and can facilitate a more economical and simplified weed control system. PMID:26754957

  19. Glyphosate-Resistant Goosegrass. Identification of a Mutation in the Target Enzyme 5-enolpyruvylshikimate-3-phosphate Synthase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The spontaneous occurrence of resistance to the herbicide glyphosate in weed species has been an extremely infrequent event, despite over 20 years of extensive use. Recently, a glyphosate-resistant biotype of goosegrass (Eleusine indica) was identified in Malaysia exhibiting an LD50 value approxima...

  20. A Novel Naturally Occurring Class I 5-Enolpyruvylshikimate-3-Phosphate Synthase from Janibacter sp. Confers High Glyphosate Tolerance to Rice.

    PubMed

    Yi, Shu-yuan; Cui, Ying; Zhao, Yan; Liu, Zi-duo; Lin, Yong-jun; Zhou, Fei

    2016-01-12

    As glyphosate is a broad spectrum herbicide extensively used in agriculture worldwide, identification of new aroA genes with high level of glyphosate tolerance is essential for the development and breeding of transgenic glyphosate-tolerant crops. In this study, an aroA gene was cloned from a Janibacter sp. strain isolated from marine sediment (designated as aroAJ. sp). The purified aroAJ. sp enzyme has a Km value of 30 μM for PEP and 83 μM for S3P, and a significantly higher Ki value for glyphosate (373 μM) than aroAE. coli. AroAJ. sp is characterized as a novel and naturally occurring class I aroA enzyme with glyphosate tolerance. Furthermore, we show that aroAJ. sp can be used as an effective selectable marker in both japonica and indica rice cultivar. Transgenic rice lines were tested by herbicide bioassay and it was confirmed that they could tolerate up to 3360 g/ha glyphosate, a dosage four-fold that of the recommended agricultural application level. To our knowledge, it is the first report of a naturally occurring novel class I aroA gene which can be efficiently utilized to study and develop transgenic glyphosate-tolerant crops, and can facilitate a more economical and simplified weed control system.

  1. Characterization and site-directed mutagenesis of a novel class II 5-enopyruvylshikimate-3-phosphate (EPSP) synthase from the deep-sea bacterium Alcanivorax sp. L27.

    PubMed

    Zhang, Yi; Yi, Licong; Lin, Yongjun; Zhang, Lili; Shao, Zongze; Liu, Ziduo

    2014-09-01

    The 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is a key enzyme in the aromatic amino acid biosynthetic pathway in microorganisms and plants, which catalyzes the formation of 5-enolpyruvylshikimate-3-phosphate (EPSP) from shikimate-3-phosphate (S3P) and phosphoenolpyruvate (PEP). In this study, a novel AroA-encoding gene was identified from the deep sea bacterium Alcanivorax sp. L27 through screening the genomic library and termed as AroAA.sp. A phylogenetic analysis revealed that AroAA.sp (1317 bp and 438 amino acids) is a class II AroA. This enzyme exhibited considerable activity between pH 5.5 and pH 8.0 and notable activity at low temperatures. The KM for PEP and IC50 [glyphosate] values (the concentration of glyphosate that inhibited enzyme activity by 50%) of AroAA.sp were 78 μM and 1.5 mM, respectively. Furthermore, site-directed mutagenesis revealed that the G100A mutant had a 30-fold increase in the IC50 [glyphosate] value; while the L105P mutant showed only 20% catalytic activity compared to wild-type AroAA.sp. The specific activity of the wild-type AroAA.sp, the G100A mutant and the L105P mutant were 7.78 U/mg, 7.26 U/mg and 1.76 U/mg, respectively. This is the first report showing that the G100A mutant of AroA displays considerably improved glyphosate resistance and demonstrates that Leu105 is essential for the enzyme's activity.

  2. 40 CFR 174.523 - CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase in all plants; exemption from the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false CP4 Enolpyruvylshikimate-3-phosphate... CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase in all plants; exemption from the requirement of a tolerance. Residues of the CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase...

  3. 40 CFR 174.523 - CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase in all plants; exemption from the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false CP4 Enolpyruvylshikimate-3-phosphate... CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase in all plants; exemption from the requirement of a tolerance. Residues of the CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase...

  4. 40 CFR 174.523 - CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase in all plants; exemption from the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false CP4 Enolpyruvylshikimate-3-phosphate... CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase in all plants; exemption from the requirement of a tolerance. Residues of the CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase...

  5. 40 CFR 174.523 - CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase in all plants; exemption from the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false CP4 Enolpyruvylshikimate-3-phosphate... CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase in all plants; exemption from the requirement of a tolerance. Residues of the CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase...

  6. 40 CFR 174.523 - CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase in all plants; exemption from the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false CP4 Enolpyruvylshikimate-3-phosphate... CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase in all plants; exemption from the requirement of a tolerance. Residues of the CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase...

  7. Molecular and phylogenetic characterization of the homoeologous EPSP Synthase genes of allohexaploid wheat, Triticum aestivum (L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: 5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) is the sixth and penultimate enzyme in the shikimate biosynthesis pathway. The EPSPS genes of allohexaploid wheat (Triticum aestivum, AABBDD) have not been well characterized. Herein, the three homoeologous copies of the wheat EPSPS gen...

  8. Functional characterization of 5-enopyruvylshikimate-3-phosphate synthase from Alkaliphilus metalliredigens in transgenic Arabidopsis.

    PubMed

    Xing, Xiao-Juan; Tian, Yong-Sheng; Peng, Ri-He; Xu, Jing; Zhao, Wei; Yao, Quan-Hong; Sun, Sheng

    2014-10-01

    Although a large number of AroA enzymes (EPSPS: 5-enopyruvylshikimate-3-phosphate synthase) have been identified, cloned, and tested for glyphosate resistance, only two AroA variants, derived from Agrobacterium tumefaciens strain CP4 and Zea mays, have been utilized to produce the commercial glyphosate-resistant crops. Here, we have used a PCR-based twostep DNA synthesis method to synthesize an aroA gene (aroAA. metalliredigens) from Alkaliphilus metalliredigens, encoding a new EPSPS. Furthermore, transgenic Arabidopsis with the new aroAA. metalliredigens gene was obtained to confirm the potential of the novel aroA gene in developing glyphosate-resistant crops.

  9. Cloning and characterization of 5-enopyruvylshikimate-3-phosphate synthase from Pantoea sp.

    PubMed

    Liu, F; Cao, Y P

    2015-12-29

    The shikimate pathway enzyme 5-enopyruvylshikimate-3-phosphate synthase (EPSPS) is the target of the broad spectrum herbicide glyphosate. A novel aroA gene encoding an EPSPS from Pantoea sp was identified and subcloned into the pET-28a vector to construct the recombinant pET-AroAPantoea sp plasmid. Amino acid sequence analysis indicated that AroAPantoea sp is a class I AroA enzyme. When expressed in Escherichia coli, it conveyed high tolerance to glyphosate. AroAPantoea sp may be used to generate transgenic glyphosate-tolerant plants.

  10. An EPSP synthase inhibitor joining shikimate 3-phosphate with glyphosate: synthesis and ligand binding studies.

    PubMed

    Marzabadi, M R; Gruys, K J; Pansegrau, P D; Walker, M C; Yuen, H K; Sikorski, J A

    1996-04-02

    A novel EPSP synthase inhibitor 4 has been designed and synthesized to probe the configurational details of glyphosate recognition in its herbicidal ternary complex with enzyme and shikimate 3-phosphate (S3P). A kinetic evaluation of the new 3-dephospho analog 12, as well as calorimetric and (31)P NMR spectroscopic studies of enzyme-bound 4, now provides a more precise quantitative definition for the molecular interactions of 4 with this enzyme. The very poor binding, relative to 4, displayed by the 3-dephospho analog 12 is indicative that 4 has a specific interaction with the S3P site. A comparison of Ki(calc) for 12 versus the Ki(app) for 4 indicates that the 3-phosphate group in 4 contributes about 4.8 kcal/mol to binding. This compares well with the 5.2 kcal/mol which the 3-phosphate group in S3P contributes to binding. Isothermal titration calorimetry demonstrates that 4 binds to free enzyme with an observed Kd of 0.53 +/- 0.04 microM. As such, 4 binds only 3-fold weaker than glyphosate and about 150-fold better than N-methylglyphosate. Consequently, 4 represents the most potent N-alkylglyphosate derivative identified to date. However, the resulting thermodynamic binding parameters clearly demonstrate that the formation of EPSPS x 4 is entropy driven like S3P. The binding characteristics of 4 are fully consistent with a primary interaction localized at the S3P subsite. Furthermore, (31)P NMR studies of enzyme-bound 4 confirm the expected interaction at the shikimate 3-phosphate site. However, the chemical shift observed for the phosphonate signal of EPSPS x 4 is in the opposite direction than that observed previously when glyphosate binds with enzyme and S3P. Therefore, when 4 occupies the S3P binding site, there is incomplete overlap at the glyphosate phosphonate subsite. As a glyphosate analog inhibitor, the potency of 4 most likely arises from predominant interactions which occur outside the normal glyphosate binding site. Consequently, 4 is best described

  11. The Inositol-3-Phosphate Synthase Biosynthetic Enzyme Has Distinct Catalytic and Metabolic Roles

    PubMed Central

    Frej, Anna D.; Clark, Jonathan; Le Roy, Caroline I.; Lilla, Sergio; Thomason, Peter A.; Otto, Grant P.; Churchill, Grant; Insall, Robert H.; Claus, Sandrine P.; Hawkins, Phillip; Stephens, Len

    2016-01-01

    Inositol levels, maintained by the biosynthetic enzyme inositol-3-phosphate synthase (Ino1), are altered in a range of disorders, including bipolar disorder and Alzheimer's disease. To date, most inositol studies have focused on the molecular and cellular effects of inositol depletion without considering Ino1 levels. Here we employ a simple eukaryote, Dictyostelium discoideum, to demonstrate distinct effects of loss of Ino1 and inositol depletion. We show that loss of Ino1 results in an inositol auxotrophy that can be rescued only partially by exogenous inositol. Removal of inositol supplementation from the ino1− mutant resulted in a rapid 56% reduction in inositol levels, triggering the induction of autophagy, reduced cytokinesis, and substrate adhesion. Inositol depletion also caused a dramatic generalized decrease in phosphoinositide levels that was rescued by inositol supplementation. However, loss of Ino1 triggered broad metabolic changes consistent with the induction of a catabolic state that was not rescued by inositol supplementation. These data suggest a metabolic role for Ino1 that is independent of inositol biosynthesis. To characterize this role, an Ino1 binding partner containing SEL1L1 domains (Q54IX5) and having homology to mammalian macromolecular complex adaptor proteins was identified. Our findings therefore identify a new role for Ino1, independent of inositol biosynthesis, with broad effects on cell metabolism. PMID:26951199

  12. Catalytic residues and an electrostatic sandwich that promote enolpyruvyl shikimate 3-phosphate synthase (AroA) catalysis.

    PubMed

    Berti, Paul J; Chindemi, Paul

    2009-05-05

    Enolpyruvylshikimate 3-phosphate synthase (EPSP synthase, AroA) catalyzes the sixth step in aromatic amino acid biosynthesis. It forms EPSP from shikimate 3-phosphate (S3P) and phosphoenolpyruvate (PEP) in an addition/elimination reaction that proceeds through a tetrahedral intermediate. In spite of numerous mechanistic studies, the catalytic roles of specific amino acid residues remain an open question. Recent experimental evidence for cationic intermediates or cationic transition states, and a consideration of the catalytic imperative, have guided this study on the catalytic roles of Lys22 (K22), Asp313 (D313), and Glu341 (E341). Steady-state and pre-steady-state kinetics and protein stability studies showed that mutations of D313 and E341 caused k(cat) to decrease up to 30,000-fold and 76,000-fold, respectively, while the effects on K(M) were modest, never more than 40-fold. Thus, both are identified as catalytic residues. In an active site that is overwhelmingly positively charged, the D313 and E341 side chains are positioned to form an "electrostatic sandwich" around the positive charge at C2 in cationic intermediates/transition states, stabilizing them and thereby promoting catalysis. Mutation of K22 showed large effects on K(M,S3P) (100-fold), K(M,PEP) (>760-fold), and up to 120-fold on k(cat). Thus, K22 had roles in both substrate-binding and transition-state stabilization. These results support the identification of E341 and K22 as general acid/base catalytic residues.

  13. Photo-oxidation of 5-enolpyruvoylshikimate-3-phosphate synthase from Escherichia coli: evidence for a reactive imidazole group (His385) at the herbicide glyphosate-binding site.

    PubMed

    Huynh, Q K

    1993-03-01

    Photo-oxidation of Escherichia coli 5-enolpyruvoylshikimate-3-phosphate synthase, a target for the non-selective herbicide glyphosate (N-phosphonomethylglycine), in the presence of pyridoxal 5'-phosphate resulted in irreversible inactivation of the enzyme. The inactivation followed pseudo-first-order and saturation kinetics with a Kinact. of 50 microM. The inactivation is specifically prevented by preincubation of the enzyme with the combination of shikimate 3-phosphate and glyphosate. Increasing glyphosate concentration during preincubation resulted in a decreasing rate of inactivation. On 95% inactivation, approximately one histidine per molecule of enzyme was oxidized. Tryptic mapping of the enzyme modified in the absence and presence of shikimate 3-phosphate and glyphosate as well as analyses of the histidine content in the isolated peptides indicated that His385, in the peptide Asn383-Asp-His-Arg386, was the site of oxidation. These results suggest that His385 is the most accessible reactive imidazole group under these conditions and is located close to the glyphosate-binding site.

  14. A novel 5-enolpyruvoylshikimate-3-phosphate (EPSP) synthase transgene for glyphosate resistance stimulates growth and fecundity in weedy rice (Oryza sativa) without herbicide.

    PubMed

    Wang, Wei; Xia, Hui; Yang, Xiao; Xu, Ting; Si, Hong Jiang; Cai, Xing Xing; Wang, Feng; Su, Jun; Snow, Allison A; Lu, Bao-Rong

    2014-04-01

    Understanding evolutionary interactions among crops and weeds can facilitate effective weed management. For example, gene flow from crops to their wild or weedy relatives can lead to rapid evolution in recipient populations. In rice (Oryza sativa), transgenic herbicide resistance is expected to spread to conspecific weedy rice (Oryza sativa f. spontanea) via hybridization. Here, we studied fitness effects of transgenic over-expression of a native 5-enolpyruvoylshikimate-3-phosphate synthase (epsps) gene developed to confer glyphosate resistance in rice. Controlling for genetic background, we examined physiological traits and field performance of crop-weed hybrid lineages that segregated for the presence or absence of this novel epsps transgene. Surprisingly, we found that transgenic F2 crop-weed hybrids produced 48-125% more seeds per plant than nontransgenic controls in monoculture- and mixed-planting designs without glyphosate application. Transgenic plants also had greater EPSPS protein levels, tryptophan concentrations, photosynthetic rates, and per cent seed germination compared with nontransgenic controls. Our findings suggest that over-expression of a native rice epsps gene can lead to fitness advantages, even without exposure to glyphosate. We hypothesize that over-expressed epsps may be useful to breeders and, if deployed, could result in fitness benefits in weedy relatives following transgene introgression.

  15. A novel 5-enolpyruvoylshikimate-3-phosphate (EPSP) synthase transgene for glyphosate resistance stimulates growth and fecundity in weedy rice (Oryza sativa) without herbicide

    PubMed Central

    Wang, Wei; Xia, Hui; Yang, Xiao; Xu, Ting; Si, Hong Jiang; Cai, Xing Xing; Wang, Feng; Su, Jun; Snow, Allison A; Lu, Bao-Rong

    2014-01-01

    Understanding evolutionary interactions among crops and weeds can facilitate effective weed management. For example, gene flow from crops to their wild or weedy relatives can lead to rapid evolution in recipient populations. In rice (Oryza sativa), transgenic herbicide resistance is expected to spread to conspecific weedy rice (Oryza sativa f. spontanea) via hybridization. Here, we studied fitness effects of transgenic over-expression of a native 5-enolpyruvoylshikimate-3-phosphate synthase (epsps) gene developed to confer glyphosate resistance in rice. Controlling for genetic background, we examined physiological traits and field performance of crop–weed hybrid lineages that segregated for the presence or absence of this novel epsps transgene. Surprisingly, we found that transgenic F2 crop–weed hybrids produced 48–125% more seeds per plant than nontransgenic controls in monoculture- and mixed-planting designs without glyphosate application. Transgenic plants also had greater EPSPS protein levels, tryptophan concentrations, photosynthetic rates, and per cent seed germination compared with nontransgenic controls. Our findings suggest that over-expression of a native rice epsps gene can lead to fitness advantages, even without exposure to glyphosate. We hypothesize that over-expressed epsps may be useful to breeders and, if deployed, could result in fitness benefits in weedy relatives following transgene introgression. PMID:23905647

  16. Reconstructed Ancestral Myo-Inositol-3-Phosphate Synthases Indicate That Ancestors of the Thermococcales and Thermotoga Species Were More Thermophilic than Their Descendants

    PubMed Central

    Butzin, Nicholas C.; Lapierre, Pascal; Green, Anna G.; Swithers, Kristen S.; Gogarten, J. Peter; Noll, Kenneth M.

    2013-01-01

    The bacterial genomes of Thermotoga species show evidence of significant interdomain horizontal gene transfer from the Archaea. Members of this genus acquired many genes from the Thermococcales, which grow at higher temperatures than Thermotoga species. In order to study the functional history of an interdomain horizontally acquired gene we used ancestral sequence reconstruction to examine the thermal characteristics of reconstructed ancestral proteins of the Thermotoga lineage and its archaeal donors. Several ancestral sequence reconstruction methods were used to determine the possible sequences of the ancestral Thermotoga and Archaea myo-inositol-3-phosphate synthase (MIPS). These sequences were predicted to be more thermostable than the extant proteins using an established sequence composition method. We verified these computational predictions by measuring the activities and thermostabilities of purified proteins from the Thermotoga and the Thermococcales species, and eight ancestral reconstructed proteins. We found that the ancestral proteins from both the archaeal donor and the Thermotoga most recent common ancestor recipient were more thermostable than their descendants. We show that there is a correlation between the thermostability of MIPS protein and the optimal growth temperature (OGT) of its host, which suggests that the OGT of the ancestors of these species of Archaea and the Thermotoga grew at higher OGTs than their descendants. PMID:24391933

  17. Reconstructed ancestral Myo-inositol-3-phosphate synthases indicate that ancestors of the Thermococcales and Thermotoga species were more thermophilic than their descendants.

    PubMed

    Butzin, Nicholas C; Lapierre, Pascal; Green, Anna G; Swithers, Kristen S; Gogarten, J Peter; Noll, Kenneth M

    2013-01-01

    The bacterial genomes of Thermotoga species show evidence of significant interdomain horizontal gene transfer from the Archaea. Members of this genus acquired many genes from the Thermococcales, which grow at higher temperatures than Thermotoga species. In order to study the functional history of an interdomain horizontally acquired gene we used ancestral sequence reconstruction to examine the thermal characteristics of reconstructed ancestral proteins of the Thermotoga lineage and its archaeal donors. Several ancestral sequence reconstruction methods were used to determine the possible sequences of the ancestral Thermotoga and Archaea myo-inositol-3-phosphate synthase (MIPS). These sequences were predicted to be more thermostable than the extant proteins using an established sequence composition method. We verified these computational predictions by measuring the activities and thermostabilities of purified proteins from the Thermotoga and the Thermococcales species, and eight ancestral reconstructed proteins. We found that the ancestral proteins from both the archaeal donor and the Thermotoga most recent common ancestor recipient were more thermostable than their descendants. We show that there is a correlation between the thermostability of MIPS protein and the optimal growth temperature (OGT) of its host, which suggests that the OGT of the ancestors of these species of Archaea and the Thermotoga grew at higher OGTs than their descendants.

  18. Phosphorus-31, sup 15 N, and sup 13 C NMR of glyphosate: Comparison of pH titrations to the herbicidal dead-end complex with 5-enolpyruvoylshikimate-3-phosphate synthase

    SciTech Connect

    Castellino, S.; Leo, G.C.; Sammons, R.D.; Sikorski, J.A. )

    1989-05-02

    The herbicidal dead-end ternary complex (E{sup S3P}{sub Glyph}) of glyphosate (N-(phosphonomethyl)glycine) with 5-enolpyruvoylshikimate-3-phosphate synthase (EPSPS) and the substrate shikimate 3-phosphate (S3P) has been characterized by {sup 31}P, {sup 15}N, and {sup 13}C NMR. The NMR spectra of EPSPS-bound glyphosate show unique chemical shifts ({delta}) for each of the three nuclei. By {sup 31}P NMR, glyphosate in the dead-end complex is a distinct species 3.5 ppm downfield from free glyphosate. The {sup 13}C signal of glyphosate in the dead-end complex is shifted 4 ppm downfield from that of free glyphosate. The {sup 15}N signal for glyphosate (99%) in the dead-end complex is 5 ppm further downfield than that of any free zwitterionic species and 10 ppm downfield from that of the average free species at pH 10.1. The structures of each ionic state of glyphosate are modeled with force field calculations by using MacroModel. A correlation is made for the {sup 31}P {delta} and the C-P-O bond angle, and the {sup 13}C and {sup 15}N {delta} values are postulated to be related to C-C-O and C-N-C bond angles, respectively. The downfield {sup 31}P chemical shift perturbation for S3P in the EPSPS binary complex is consistent with ionization of the 3-phosphate of S3P upon binding. Comparison with the S3P {sup 31}P {delta} vs pH titration curve specifies predominantly the dianion of the 3-phosphate in the E{sup S3P} binary complex, while the E{sup S3P}{sub Glyph} complex indicates net protonation at the 3-phosphate. Chemical shift perturbations of this latter type may be explained by changes in the O-P-O bond angle.

  19. Observation of thiamin-bound intermediates and microscopic rate constants for their interconversion on 1-deoxy-D-xylulose 5-phosphate synthase: 600-fold rate acceleration of pyruvate decarboxylation by D-glyceraldehyde-3-phosphate.

    PubMed

    Patel, Hetalben; Nemeria, Natalia S; Brammer, Leighanne A; Freel Meyers, Caren L; Jordan, Frank

    2012-11-07

    The thiamin diphosphate (ThDP)-dependent enzyme 1-deoxy-D-xylulose 5-phosphate (DXP) synthase carries out the condensation of pyruvate as a 2-hydroxyethyl donor with d-glyceraldehyde-3-phosphate (d-GAP) as acceptor forming DXP. Toward understanding catalysis of this potential anti-infective drug target, we examined the pathway of the enzyme using steady state and presteady state kinetic methods. It was found that DXP synthase stabilizes the ThDP-bound predecarboxylation intermediate formed between ThDP and pyruvate (C2α-lactylThDP or LThDP) in the absence of D-GAP, while addition of D-GAP enhanced the rate of decarboxylation by at least 600-fold. We postulate that decarboxylation requires formation of a ternary complex with both LThDP and D-GAP bound, and the central enzyme-bound enamine reacts with D-GAP to form DXP. This appears to be the first study of a ThDP enzyme where the individual rate constants could be evaluated by time-resolved circular dichroism spectroscopy, and the results could have relevance to other ThDP enzymes in which decarboxylation is coupled to a ligation reaction. The acceleration of the rate of decarboxylation of enzyme-bound LThDP in the presence of D-GAP suggests a new approach to inhibitor design.

  20. Generation of stable 'low phytic acid' transgenic rice through antisense repression of the 1D-myo-inositol 3-phosphate synthase gene (RINO1) using the 18-kDa oleosin promoter.

    PubMed

    Kuwano, Mio; Mimura, Tetsuro; Takaiwa, Fumio; Yoshida, Kaoru T

    2009-01-01

    Phytic acid acts as the major storage form of phosphorus in plant seeds and is poorly digested by monogastric animals. The degradation of phytic acid in animal diets is necessary to overcome both environmental and nutritional issues. The enzyme 1D-myo-inositol 3-phosphate [Ins(3)P(1)] synthase (EC 5.5.1.4) catalyses the first step of myo-inositol biosynthesis and directs phytic acid biosynthesis in seeds. The rice Ins(3)P(1) synthase gene (RINO1) is highly expressed in developing seed embryos and in the aleurone layer, where phytic acid is synthesized and stored. In rice seeds, 18-kDa oleosin (Ole18) is expressed in a seed-specific manner, and its transcripts are restricted to the embryo and the aleurone layer. Therefore, to effectively suppress phytic acid biosynthesis, antisense RINO1 cDNA was expressed under the control of the Ole18 promoter, directing the same spatial pattern in seeds as RINO1 in transgenic rice plants. The generated transgenic rice plants showed strong 'low phytic acid' (lpa) phenotypes, in which seed phytic acid was reduced by 68% and free available phosphate was concomitantly increased. No negative effects on seed weight, germination or plant growth were observed. The available phosphate levels of the stable transgenic plants surpassed those of currently available rice lpa mutants.

  1. Cloning and nucleotide sequence of the aroA gene of Bordetella pertussis.

    PubMed Central

    Maskell, D J; Morrissey, P; Dougan, G

    1988-01-01

    The aroA locus of Bordetella pertussis, encoding 5-enolpyruvylshikimate 3-phosphate synthase, has been cloned into Escherichia coli by using a cosmid vector. The gene is expressed in E. coli and complemented an E. coli aroA mutant. The nucleotide sequence of the B. pertussis aroA gene was determined and contains an open reading frame encoding 442 amino acids, with a calculated molecular weight for 5-enolpyruvylshikimate 3-phosphate synthase of 46,688. The amino acid sequence derived from the nucleotide sequence shows homology with the published amino acid sequences of aroA gene products of other microorganisms. PMID:2897356

  2. Gene Amplification Is A Mechanism For Rapid Weed Evolution To Herbicide Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The herbicide glyphosate became widely used in the U.S. and other parts of the world following the introduction of glyphosate-resistant crops. These crops were created by introduction of a modified 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene, the herbicide target site. Increased use of ...

  3. Characterization of glyphosate resistance in cloned Amaranthus palmeri plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate resistant Palmer amaranth from Georgia (GA) possesses multiple copies of the target site, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) of this herbicide. Cloned plants of glyphosate-resistant Palmer amaranth biotypes from Mississippi (MS) were compared with GA populations using le...

  4. Identification of genetic elements associated with EPSPS gene amplification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed populations can have high genetic plasticity and rapid responses to environmental selection pressures. For example, 100-fold amplification of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene evolved to confer resistance to glyphosate, the world's most important herbicide, in the wee...

  5. l-Glyceraldehyde 3-Phosphate, a Bactericidal Agent

    PubMed Central

    Tang, Chu-Tay; Engel, Robert; Tropp, Burton E.

    1977-01-01

    At a concentration of 2.5 mM, dl-glyceraldehyde 3-phosphate has a bactericidal effect upon Escherichia coli. The glycerol 3-phosphate transport system is required for the entry of the biologically active l-enantiomer. l-Glyceraldehyde must be phosphorylated by the cell to exert its full effect upon growth. The addition of dl-glyceraldehyde 3-phosphate to a culture of E. coli caused no preferential inhibition of the accumulation of deoxyribonucleic acid, ribonucleic acid, or phosphoglycerides, although protein accumulation was less affected. Studies with mutant strains ruled out catabolic glycerol 3-phosphate dehydrogenase, anabolic nicotinamide adenine dinucleotide (phosphate):sn-glycerol 3-phosphate oxidoreductase, and fructose 1,6-diphosphate aldolase as the primary sites of action. l-Glyceraldehyde 3-phosphate is a competitive inhibitor of sn-glycerol 3-phosphate in the reactions catalyzed by acyl coenzyme A:sn-glycerol 3-phosphate acyltransferase (Ki of 1.8 mM) and cytidine 5′-diphosphate-diglyceride:sn-glycerol 3-phosphate phosphatidyltransferase (Ki of 2.7 mM). A Km mutant for the former enzyme was susceptible to the inhibitor. l-Glyceraldehyde 3-phosphate does not affect acyl coenzyme A:lysophosphatidate acyltransferase activity. In vivo, phosphatidylethanolamine and phosphatidylglycerol accumulation are inhibited to the same extent by the addition of dl-glyceraldehyde 3-phosphate to a culture of E. coli. PMID:319747

  6. Two potential fish glycerol-3-phosphate phosphatases.

    PubMed

    Raymond, James A

    2015-06-01

    Winter-acclimated rainbow smelt (Osmerus mordax Mitchill) produce high levels of glycerol as an antifreeze. A common pathway to glycerol involves the enzyme glycerol-3-phosphate phosphatase (GPP), but no GPP has yet been identified in fish or any other animal. Here, two phosphatases assembled from existing EST libraries (from winter-acclimated smelt and cold-acclimated smelt hepatocytes) were found to resemble a glycerol-associated phosphatase from a glycerol-producing alga, Dunaliella salina, and a recently discovered GPP from a bacterium, Mycobacterium tuberculosis. Recombinant proteins were generated and were found to have GPP activity on the order of a few μMol Pi/mg enzyme/min. The two enzymes have acidic pH optima (~5.5) similar to that previously determined for GPP activity in liver tissue, with about 1/3 of their peak activities at neutral pH. The two enzymes appear to account for the GPP activity of smelt liver, but due to their reduced activities at neutral pH, their contributions to glycerol production in vivo remain unclear. Similar enzymes may be active in a glycerol-producing insect, Dendroctonus ponderosae.

  7. Iodination of glyceraldehyde 3-phosphate dehydrogenase

    PubMed Central

    Thomas, Jean O.; Harris, J. Ieuan

    1970-01-01

    1. A high degree of homology in the positions of tyrosine residues in glyceraldehyde 3-phosphate dehydrogenase from lobster and pig muscle, and from yeast, prompted an examination of the reactivity of tyrosine residues in the enzyme. 2. Iodination of the enzyme from lobster muscle with low concentrations of potassium tri-[125I]-iodide led to the identification of tyrosine residues of differing reactivity. Tyrosine-46 appeared to be the most reactive in the native enzyme. 3. When the monocarboxymethylated enzyme was briefly treated with small amounts of iodine, iodination could be confined almost entirely to tyrosine-46 in the lobster enzyme; tyrosine-39 or tyrosine-42, or both, were also beginning to react. 4. These three tyrosine residues were also those that reacted most readily in the carboxymethylated pig and yeast enzymes. 5. The difficulties in attaining specific reaction of the native enzyme are considered. 6. The differences between our results and those of other workers are discussed. ImagesPLATE 1PLATE 2 PMID:5530750

  8. THE HEME BINDING PROPERTIES OF GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE

    PubMed Central

    Hannibal, Luciana; Collins, Daniel; Brassard, Julie; Chakravarti, Ritu; Vempati, Rajesh; Dorlet, Pierre; Santolini, Jérôme; Dawson, John H.; Stuehr, Dennis J.

    2012-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a glycolytic enzyme that also functions in transcriptional regulation, oxidative stress, vesicular trafficking, and apoptosis. Because GAPDH is required for cellular heme insertion into inducible nitric oxide synthase (Chakravarti et al, PNAS 2010, 107(42):18004-9), we extensively characterized the heme binding properties of GAPDH. Substoichiometric amounts of ferric heme bound to GAPDH (1 heme per GAPDH tetramer) to form a low-spin complex with UV-visible maxima at 362, 418 and 537 nm, and when reduced to ferrous gave maxima at 424, 527 and 559 nm. Ferric heme association and dissociation rate constants at 10 °C were kon =17,800 M−1s−1 and koff1 = 7.0 × 10−3 s−1; koff2 = 3.3 × 10−4 s−1 respectively, giving approximate affinities of 19–390 nM. Ferrous heme bound more poorly to GAPDH and dissociated with a koff = 4.2 × 10−3 s−1. Magnetic circular dichroism (MCD), resonance Raman (rR) and EPR spectroscopic data on the ferric, ferrous, and ferrous-CO complexes of GAPDH showed that the heme is bis-ligated with His as the proximal ligand. The distal ligand in ferric complex was not displaced by CN− or N3− but in ferrous complex was displaceable by CO at a rate of 1.75 s−1 (for [CO]>0.2 mM). Studies with heme analogs revealed selectivity toward the coordinating metal and porphyrin ring structure. GAPDH-heme was isolated from bacteria induced to express rabbit GAPDH in the presence of δ-amino levulinic acid. Our finding of heme binding to GAPDH expands the protein’s potential roles. The strength, selectivity, reversibility, and redox sensitivity of heme binding to GAPDH is consistent with it performing heme sensing or heme chaperone-like functions in cells. PMID:22957700

  9. Structure of RNA 3'-phosphate cyclase bound to substrate RNA.

    PubMed

    Desai, Kevin K; Bingman, Craig A; Cheng, Chin L; Phillips, George N; Raines, Ronald T

    2014-10-01

    RNA 3'-phosphate cyclase (RtcA) catalyzes the ATP-dependent cyclization of a 3'-phosphate to form a 2',3'-cyclic phosphate at RNA termini. Cyclization proceeds through RtcA-AMP and RNA(3')pp(5')A covalent intermediates, which are analogous to intermediates formed during catalysis by the tRNA ligase RtcB. Here we present a crystal structure of Pyrococcus horikoshii RtcA in complex with a 3'-phosphate terminated RNA and adenosine in the AMP-binding pocket. Our data reveal that RtcA recognizes substrate RNA by ensuring that the terminal 3'-phosphate makes a large contribution to RNA binding. Furthermore, the RNA 3'-phosphate is poised for in-line attack on the P-N bond that links the phosphorous atom of AMP to N(ε) of His307. Thus, we provide the first insights into RNA 3'-phosphate termini recognition and the mechanism of 3'-phosphate activation by an Rtc enzyme.

  10. Metabolism of L-glyceraldehyde 3-phosphate in Escherichia coli

    SciTech Connect

    Kalyananda, M.K.G.S.

    1985-01-01

    E. coli is able to incorporate L-glyceraldehyde and L-glyceraldehyde 3-phosphate into phospholipids, L-(3-/sup 3/H)Glyceraldehyde was synthesized and the purity and the chemical identity of the product were checked by paper chromatography. L-(3-/sup 3/H)Glyceraldehyde 3-phosphate was synthesized from L-(3-/sup 3/H)glyceraldehyde in a reaction catalyzed by glycerokinase. E. coli extract contains a new enzyme activity which catalyzes an NADPH dependent reduction of L-glyceraldehyde 3-phosphate into sn-glycerol 3-phosphate. A procedure, specifically suitable for assaying the reductase activity in the crude extract, was developed. A more convenient spectrophotometric assay method was employed for the purified enzyme. At moderate concentrations sulfhydryl group inhibitors had no effect on the enzyme activity of L-GAP reductase. At 100..mu..M concentration Zn/sup +2/ inhibited the enzyme activity by about 30% while Mn/sup +2/ elevated the activity by about the same margin. Mg/sup +2/, Ca/sup +2/ and Fe/sup +2/ were without effect at this concentration. L-Glyceraldehyde 3-phosphate is known to be bactericidal at 1.25 ..mu..M concentration and the D-enantiomer is without effect. Furthermore, methylglyoxal is known to be bactericidal at or above 0.5 mM concentration. Strains of E. coli resistant to 1 mM methylglyoxal were isolated. The cell extract prepared from the mutant possessed increased capacity to transform methylglyoxal into D-lactate via a glutathione dependent reaction. These mutants were less sensitive to 2.5 mM DL-GAP suggesting that conversion of L-glyceraldehyde 3-phosphate into methylglyoxal may at least partly be responsible for the bactericidal activity of L-GAP.

  11. Toxic Neuronal Death by Glyeraldehyde-3-Phosphate Dehydrogenase and Mitochondria

    DTIC Science & Technology

    2003-08-01

    Neuroreport, 10(5), 1149-1153. Sioud, M., & Jespersen, L. (1996). Enhancement of hammerhead ribozyme catalysis by glyceraldehyde-3-phosphate dehydrogenase...1996) Enhancemen t of hammerhead r ibozyme cata lysis by glycera ldehyde-3- phospha te dehydrogenase. J Mol Biol 257:775–789. Sirover MA (1997) Role of

  12. sn-Glycerol-3-phosphate transport in Salmonella typhimurium.

    PubMed Central

    Hengge, R; Larson, T J; Boos, W

    1983-01-01

    Salmonella typhimurium contains a transport system for sn-glycerol-3-phosphate that is inducible by growth on glycerol and sn-glycerol-3-phosphate. In fully induced cells, the system exhibited an apparent Km of 50 microM and a Vmax of 2.2 nmol/min . 10(8) cells. The corresponding system in Escherichia coli exhibits, under comparable conditions, a Km of 14 microM and a Vmax of 2.2 nmol/min . 10(8) cells. Transport-defective mutants were isolated by selecting for resistance against the antibiotic fosfomycin. They mapped in glpT at 47 min in the S. typhimurium linkage map, 37% cotransducible with gyrA. In addition to the glpT-dependent system, S. typhimurium LT2 contains, like E. coli, a second, ugp-dependent transport system for sn-glycerol-3-phosphate that was derepressed by phosphate starvation. A S. typhimurium DNA bank containing EcoRI restriction fragments in phage lambda gt7 was used to clone the glpT gene in E. coli. Lysogens that were fully active in the transport of sn-glycerol-3-phosphate with a Km of 33 microM and a Vmax of 2.0 nmol/min . 10(8) cells were isolated in a delta glpT mutant of E. coli. The EcoRI fragment harboring glpT was 3.5 kilobases long and carried only part of glpQ, a gene distal to glpT but on the same operon. The fragment was subcloned in multicopy plasmid pACYC184. Strains carrying this hybrid plasmid produced large amounts of cytoplasmic membrane protein with an apparent molecular weight of 33,000, which was identified as the sn-glycerol-3-phosphate permease. Its properties were similar to the corresponding E. coli permease. The presence of the multicopy glpT hybrid plasmid had a strong influence on the synthesis or assembly of other cell envelope proteins of E. coli. For instance, the periplasmic ribose-binding protein was nearly absent. On the other hand, the quantity of an unidentified E. coli outer membrane protein usually present only in small amounts increased. Images PMID:6408060

  13. Toxic Neuronal Death by Glyceraldehyde-3-Phosphate Dehydrongenase and Mitochondria

    DTIC Science & Technology

    2001-08-01

    Parkinson’s Disease (PD) and after a number of forms of toxic exposure. If unique elements in the signaling pathways for the PD or toxic apoptosis can be identified and their apoptosis signaling impeded, neuronal loss may be slowed or reduced in the conditions. The research proposed in this grant was designed to examine the role of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in apoptotic neuronal signaling. Recent studies in postmortem brain have implicated GAPDH apoptosis signaling in Parkinson’s disease (PD). Propargylamines, with

  14. Model of early self-replication based on covalent complementarity for a copolymer of glycerate-3-phosphate and glycerol-3-phosphate

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1989-01-01

    Glyceraldehyde-3-phosphate acts as the substrate in a model of early self-replication of a phosphodiester copolymer of glycerate-3-phosphate and glycerol-3-phosphate. This model of self-replication is based on covalent complementarity in which information transfer is mediated by a single covalent bond, in contrast to multiple weak interactions that establish complementarity in nucleic acid replication. This replication model is connected to contemporary biochemistry through its use of glyceraldehyde-3-phosphate, a central metabolite of glycolysis and photosynthesis.

  15. Metabolism of L-glyceraldehyde 3-phosphate in Escherichia coli

    SciTech Connect

    Kalyananda, M.K.G.S.; Engel, R.; Tropp, B.E.

    1987-06-01

    When either /sup 3/H-labeled L-glyceraldehyde or /sup 3/H-labeled L-glyceraldehyde 3-phosphate (GAP) was added to cultures of Escherichia coli, the phosphoglycerides were labeled. More than 81% of the label appeared in the backbone of the phosphoglycerides. Chromatographic analyses of the labeled phosphoglycerides revealed that the label was normally distributed into phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin. These results suggest that L-glyceraldehyde is phosphorylated and the resultant L-GAP is converted into sn-glycerol 3-phosphate (G3P) before being incorporated into the bacterial phosphoglycerides. Cell-free bacterial extracts catalyzed an NADPH-dependent reduction of L-GAP to sn-G3P. The partially purified enzyme was specific for L-GAP and recognized neither D-GAP nor dihydroxyacetone phosphate as a substrate. NADH could not replace NADPH as a coenzyme. The L-GAP:NADPH oxidoreductase had an apparent K/sub m/ of 28 and 35 ..mu..M for L-GAP and NADPH, respectively. The enzyme was insensitive to sulfhydryl reagents and had a pH optimum of approximately 6.6. The phosphonic acid analog of GAP, 3-hydroxy-4-oxobutyl-1-phosphonate, was a substrate for the reductase, with an apparent K/sub m/ of 280 ..mu..M.

  16. Characterization of mitochondrial glycerol-3-phosphate acyltransferase in notothenioid fishes.

    PubMed

    Keenan, Kelly A; Grove, Theresa J; Oldham, Corey A; O'Brien, Kristin M

    2017-02-01

    Hearts of Antarctic icefishes (suborder Notothenioidei, family Channichthyidae) have higher densities of mitochondria, and mitochondria have higher densities of phospholipids, compared to red-blooded notothenioids. Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the rate-limiting step in glycerolipid biosynthesis. There are four isoforms of GPAT in vertebrates; GPAT1 and GPAT2 are localized to the outer mitochondrial membrane, whereas GPAT3 and GPAT4 are localized to the endoplasmic reticulum membrane. We hypothesized that transcript levels of GPAT1 and/or GPAT2 would mirror densities of mitochondrial phospholipids and be higher in the icefish Chaenocephalus aceratus compared to the red-blooded species Notothenia coriiceps. Transcript levels of GPAT1 were quantified in heart ventricles and liver using qRT-PCR. Additionally, GPAT1 cDNA was sequenced in the Antarctic notothenioids, C. aceratus and N. coriiceps, and in the sub-Antarctic notothenioid, Eleginops maclovinus, to identify amino acid substitutions that may maintain GPAT1 function at cold temperature. Transcript levels of GPAT1 were higher in liver compared to heart ventricles but were not significantly different between the two species. In contrast, transcripts of GPAT2 were only detected in ventricle where they were 6.6-fold higher in C. aceratus compared to N. coriiceps. These data suggest GPAT1 may be more important for synthesizing triacylglycerol, whereas GPAT2 may regulate synthesis of phospholipids. GPAT1 amino acid sequences are highly conserved among the three notothenioids with 97.9-98.7% identity. Four amino acid substitutions within the cytosolic region of Antarctic notothenioid GPAT1 may maintain conformational changes necessary for binding and catalysis at cold temperature.

  17. Buformin suppresses the expression of glyceraldehyde 3-phosphate dehydrogenase.

    PubMed

    Yano, Akiko; Kubota, Masafumi; Iguchi, Kazuhiro; Usui, Shigeyuki; Hirano, Kazuyuki

    2006-05-01

    The biguanides metformin and buformin, which are clinically used for diabetes mellitus, are known to improve resistance to insulin in patients. Biguanides were reported to cause lactic acidosis as a side effect. Since the mechanism of the side effect still remains obscure, we have examined genes whose expression changes by treating HepG2 cells with buformin in order to elucidate the mechanisms of the side effect. A subtraction cDNA library was constructed by the method of suppressive subtractive hybridization and the screening of the library was performed with cDNA probes prepared from HepG2 cells treated with or without buformin for 12 h. The expression of the gene and the protein obtained by the screening was monitored by real-time RT-PCR with specific primers and Western blotting with specific antibody. The amounts of ATP and NAD+ were determined with luciferase and alcohol dehydrogenase, respectively. We found that expression of the glyceraldehyde 3-phosphate dehydrogenase (GAPD) gene was suppressed by treating HepG2 cells with 0.25 mM buformin for 12 h as a result of the library screening. The decrease in the expression depended on the treatment period. The amount of GAPD protein also decreased simultaneously with the suppression of the gene expression by the treatment with buformin. The amount of ATP and NAD+ in the HepG2 cells treated with buformin decreased to 10 and 20% of the control, respectively. These observations imply that the biguanide causes deactivation of the glycolytic pathway and subsequently the accumulation of pyruvate and NADH and a decrease in NAD+. Therefore, the reaction equilibrium catalyzed by lactate dehydrogenase leans towards lactate production and this may result in lactic acidosis.

  18. Transport of 3,4-dihydroxybutyl-1-phosphonate, an analogue of sn-glycerol 3-phosphate.

    PubMed Central

    Leifer, Z; Engel, R; Tropp, B E

    1977-01-01

    3,4-Dihydroxybutyl-1-phosphonate (DHBP), an analogue of glycerol 3-phosphate, is actively transported by the sn-glycerol 3-phosphate transport system of Escherichia coli strain 8. The Km for the transport of DHBP is 200 microM. PMID:400804

  19. Direct nonchromatographic assay for 1-acyl-sn-glycerol-3-phosphate acyltransferase

    SciTech Connect

    Rajasekharan, R.; Ray, T.K.; Cronan, J.E. Jr.

    1988-09-01

    1-Acyl-sn-glycerol-3-phosphate acyltransferase (also called lysophosphatidic acid acyltransferase) which catalyzes the acylation of 1-acyl-sn-glycerol-3-phosphate to phosphatidic acid is generally assayed by the use of a radioactive substrate followed by a time-consuming chromatographic separation of substrate and product. We report a direct and highly sensitive nonchromatographic assay for this enzyme based on the ability of Escherichia coli alkaline phosphatase to dephosphorylate 1-acyl-sn-glycerol-3-phosphate but not phosphatidic acid. This selective hydrolysis coupled with the use of /sup 32/P-labeled 1-acyl-sn-glycerol-3-phosphate as substrate permits measurement of the product, /sup 32/P-labeled phosphatidic acid by solvent extraction or precipitation. We also report a series of enzymatic reactions for the efficient conversion of /sup 32/Pi to /sup 32/P-labeled 1-acyl-sn-glycerol-3-phosphate.

  20. Periplasmic protein related to the sn-glycerol-3-phosphate transport system of Escherichia coli.

    PubMed Central

    Silhavy, T J; Hartig-Beecken, I; Boos, W

    1976-01-01

    Two-dimensional gel electrophoresis of shock fluids of Escherichia coli K-12 revealed the presence of a periplasmic protein related to sn-glycerol-3-phosphate transport (GLPT) that is under the regulation of glpR, the regulatory gene of the glp regulon. Mutants selected for their resistance to phosphonomycin and found to be defective in sn-glycerol-3-phosphate transport either did not produce GLPT or produced it in reduced amounts. Other mutations exhibited no apparent effect of GLPT. Transductions of glpT+ nalA phage P1 into these mutants and selection for growth on sn-glycerol-3-phosphate revealed a 50% cotransduction frequency to nalA. Reversion of mutants taht did not produce GLPT to growth on sn-glycerol-3-phosphate resulted in strains that produce GLPT. This suggests a close relationship of GLPT to the glpT gene and to sn-glycerol-3-phosphate transport. Attempts to demonstrate binding activity of GLPT in crude shock fluid towards sn-glycerol-3-phosphate have failed so far. However, all shock fluids, independent of their GLPT content, exhibited an enzymatic activity that hydrolyzes under the conditions of the binding assay, 30 to 60% of the sn-glycerol-3-phosphate to glycerol and inorganic orthophosphate. Images PMID:770459

  1. Uptake of glycerol 3-phosphate and some of its analogs by the hexose phosphate transport system of Escherichia coli.

    PubMed Central

    Guth, A; Engel, R; Tropp, B E

    1980-01-01

    The hexose phosphate transport system transported glycerol 3-phosphate and its analogs 3,4-dihydroxybutyl-1-phosphonate, glyceraldehyde 3-phosphate, and 3-hydroxy-4-oxobutyl-1-phosphonate. PMID:6995450

  2. ATP synthase.

    PubMed

    Junge, Wolfgang; Nelson, Nathan

    2015-01-01

    Oxygenic photosynthesis is the principal converter of sunlight into chemical energy. Cyanobacteria and plants provide aerobic life with oxygen, food, fuel, fibers, and platform chemicals. Four multisubunit membrane proteins are involved: photosystem I (PSI), photosystem II (PSII), cytochrome b6f (cyt b6f), and ATP synthase (FOF1). ATP synthase is likewise a key enzyme of cell respiration. Over three billion years, the basic machinery of oxygenic photosynthesis and respiration has been perfected to minimize wasteful reactions. The proton-driven ATP synthase is embedded in a proton tight-coupling membrane. It is composed of two rotary motors/generators, FO and F1, which do not slip against each other. The proton-driven FO and the ATP-synthesizing F1 are coupled via elastic torque transmission. Elastic transmission decouples the two motors in kinetic detail but keeps them perfectly coupled in thermodynamic equilibrium and (time-averaged) under steady turnover. Elastic transmission enables operation with different gear ratios in different organisms.

  3. Mapping of a genetic locus that affects glycerol 3-phosphate transport in Bacillus subtilis.

    PubMed Central

    Lindgren, V

    1978-01-01

    Two types of fosfomycin-resistant mutants of Bacillus subtilis were isolated. Mutants of the first type (GlpT mutants) were resistant to at least 200 microgram of fosfomycin per ml and failed to take up exogenous glycerol 3-phosphate. Mutants of the second type were resistant to lower concentrations of fosfomycin and transported glycerol-3-phosphate as efficiently as wild-type bacteria. The glpT mutations, but not the mutations in the second type of fosfomycin-resistant mutants, map in the cysA-aroI region of the B. subtilis chromosome. PMID:415047

  4. A second transport system for sn-glycerol-3-phosphate in Escherichia coli.

    PubMed Central

    Argast, M; Ludtke, D; Silhavy, T J; Boos, W

    1978-01-01

    Strains containing phage Mucts inserted into glpT were isolated as fosfomycin-resistant clones. These mutants did not transport sn-glycerol-3-phosphate, and they lacked GLPT, a protein previously shown to be a product of the glpT operon. By plating these mutants on sn-glycerol-3-phosphate at 43 degrees C, we isolated revertants that regained the capacity to grow on G3P. Most of these revertants did not map in glpT and did not regain GLPT. These revertants exhibited a highly efficient uptake system for sn-glycerol-3-phosphate within an apparent Km of 5 micron. In addition, three new proteins (GP 1, 2, and 3) appeared in the periplasm of these revertants. None of these proteins were antigentically related to GLPT. However, like GLPT, GP1 exhibits abnormal behavior on sodium dodecyl sulfate-polyacrylamide gels. GP 2 is an efficient binding protein. The new uptake system showed different characteristics than the system that is coded for by the glpT operon. It was inhibited neither by phosphate nor fosfomycin. So far, none of the systems that transport organic acids in Escherichia coli could be implicated in the new sn-glycerol-3-phosphate uptake activity. The mutation ugp+, which was responsible for the appearance of the new transport system and the appearance of GP 1, 2, and 3 in the periplasm was cotransducible with araD by phage P1 transduction and was recessive in merodiploids. Images PMID:363686

  5. Chemical and enzymatic methodologies for the synthesis of enantiomerically pure glyceraldehyde 3-phosphates.

    PubMed

    Gauss, Dominik; Schoenenberger, Bernhard; Wohlgemuth, Roland

    2014-05-07

    Glyceraldehyde 3-phosphates are important intermediates of many central metabolic pathways in a large number of living organisms. d-Glyceraldehyde 3-phosphate (d-GAP) is a key intermediate during glycolysis and can as well be found in a variety of other metabolic pathways. The opposite enantiomer, l-glyceraldehyde 3-phosphate (l-GAP), has been found in a few exciting new pathways. Here, improved syntheses of enantiomerically pure glyceraldehyde 3-phosphates are reported. While d-GAP was synthesized by periodate cleavage of d-fructose 6-phosphate, l-GAP was obtained by enzymatic phosphorylation of l-glyceraldehyde. (1)H- and (31)P NMR spectroscopy was applied in order to examine pH-dependent behavior of GAP over time and to identify potential degradation products. It was found that GAP is stable in acidic aqueous solution below pH 4. At pH 7, methylglyoxal is formed, whereas under alkaline conditions, the formation of lactic acid could be observed.

  6. Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glycerol-3-phosphate (G3P) is an important metabolite that contributes to the growth and disease-related physiologies of prokaryotes, plants, animals and humans alike. Here we show that G3P serves as the inducer of an important form of broad-spectrum immunity in plants, termed systemic acquired resi...

  7. EXPRESSION OF THE SPERMATOGENIC CELL-SPECIFIC GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE (GAPDS) IN RAT TESTIS

    EPA Science Inventory

    The spermatogenic cell-specific variant of glyceraldehyde 3-phosphate dehydrogenase (GAPDS) has been cloned from a rat testis cDNA library and its pattern of expression determined. A 1417 nucleotide cDNA has been found to encode an enzyme with substantial homology to mouse GAPDS...

  8. Purification and properties of rabbit muscle l-glycerol 3-phosphate dehydrogenase

    PubMed Central

    Bentley, Philip; Dickinson, F. Mark; Jones, Ian G.

    1973-01-01

    A modified procedure has been developed for the purification of rabbit muscle l-glycerol 3-phosphate dehydrogenase. The product of the preparation satisfies all criteria of homogeneity. Some physical properties of the enzyme have been re-investigated. The results suggest that previous preparations may have been contaminated with significant amounts of heavy-molecular-weight protein. PMID:4778280

  9. Synthesis of sn-glycerol 3-phosphate, a key precursor of membrane lipids, in Bacillus subtilis.

    PubMed Central

    Morbidoni, H R; de Mendoza, D; Cronan, J E

    1995-01-01

    The Bacillus subtilis gpsA gene was cloned by complementation of an Escherichia coli gpsA strain auxotrophic for sn-glycerol 3-phosphate. The gene was sequenced and found to encode an NAD(P)H-dependent dihydroxyacetone phosphate reductase with a deduced molecular mass of 39.5 kDa. The deduced amino acid sequence showed strong conservation with that of the E. coli homolog and to other procaryotic and eucaryotic dihydroxyacetone phosphate reductases. The physical location of gpsA on the B. subtilis chromosome was at about 200 degrees. Disruption of the chromosomal gpsA gene yielded B. subtilis strains auxotrophic for glycerol, indicating that the gpsA gene product is responsible for synthesis of the sn-glycerol 3-phosphate required for phospholipid synthesis. We also found that transformation of the classical B. subtilis glycerol auxotrophs with a gpsA-containing genomic fragment yielded transformants that grew in the absence of glycerol. In agreement with prior work, our attempts to determine the reductase activity in B. subtilis extracts were unsuccessful. However, expression of the B. subtilis gpsA gene in E. coli gave reductase activity that was only slightly inhibited by sn-glycerol 3-phosphate. Since the E. coli GpsA dihydroxyacetone phosphate reductase is very sensitive to allosteric inhibition by sn-glycerol 3-phosphate, these results indicate that the B. subtilis gpsA-encoded reductase differs from that of E. coli. It seems that B. subtilis regulates sn-glycerol 3-phosphate synthesis at the level of gene expression rather than through the E. coli mechanism of strong allosteric inhibition of an enzyme produced in excess. PMID:7592341

  10. A thermodynamic investigation of reactions catalyzed by tryptophan synthase.

    PubMed

    Kishore, N; Tewari, Y B; Akers, D L; Goldberg, R N; Miles, E W

    1998-07-27

    Microcalorimetry and high-performance liquid chromatography have been used to conduct a thermodynamic investigation of the following reactions catalyzed by the tryptophan synthase alpha 2 beta 2 complex (EC 4.2.1.20) and its subunits: indole(aq) + L-serine(aq) = L-tryptophan(aq) + H2O(1); L-serine(aq) = pyruvate(aq) + ammonia(aq); indole(aq) + D-glyceraldehyde 3-phosphate(aq) = 1-(indol-3-yl)glycerol 3-phosphate(aq); L-serine(aq) + 1-(indol-3-yl)glycerol 3-phosphate(aq) = L-tryptophan(aq) + D-glyceraldehyde 3-phosphate(aq) + H2O(1). The calorimetric measurements led to standard molar enthalpy changes for all four of these reactions. Direct measurements yielded an apparent equilibrium constant for the third reaction; equilibrium constants for the remaining three reactions were obtained by using thermochemical cycle calculations. The results of the calorimetric and equilibrium measurements were analyzed in terms of a chemical equilibrium model that accounted for the multiplicity of the ionic states of the reactants and products. Thermodynamic quantities for chemical reference reactions involving specific ionic forms have been obtained. These quantities permit the calculation of the position of equilibrium of the above four reactions as a function of temperature, pH, and ionic strength. Values of the apparent equilibrium constants and standard transformed Gibbs free energy changes delta r G'(m) degree under approximately physiological conditions are given. Le Châtelier's principle provides an explanation as to why, in the metabolic pathway leading to the synthesis of L-tryptophan, the third reaction proceeds in the direction of formation of indole and D-glyceraldehyde 3-phosphate even though the apparent equilibrium constant greatly favors the formation of 1-(indol-3-yl)glycerol 3-phosphate.

  11. Structure of glycerol-3-phosphate dehydrogenase, an essential monotopic membrane enzyme involved in respiration and metabolism

    SciTech Connect

    Yeh, Joanne I.; Chinte, Unmesh; Du, Shoucheng

    2008-04-02

    Sn-glycerol-3-phosphate dehydrogenase (GlpD) is an essential membrane enzyme, functioning at the central junction of respiration, glycolysis, and phospholipid biosynthesis. Its critical role is indicated by the multitiered regulatory mechanisms that stringently controls its expression and function. Once expressed, GlpD activity is regulated through lipid-enzyme interactions in Escherichia coli. Here, we report seven previously undescribed structures of the fully active E. coli GlpD, up to 1.75 {angstrom} resolution. In addition to elucidating the structure of the native enzyme, we have determined the structures of GlpD complexed with substrate analogues phosphoenolpyruvate, glyceric acid 2-phosphate, glyceraldehyde-3-phosphate, and product, dihydroxyacetone phosphate. These structural results reveal conformational states of the enzyme, delineating the residues involved in substrate binding and catalysis at the glycerol-3-phosphate site. Two probable mechanisms for catalyzing the dehydrogenation of glycerol-3-phosphate are envisioned, based on the conformational states of the complexes. To further correlate catalytic dehydrogenation to respiration, we have additionally determined the structures of GlpD bound with ubiquinone analogues menadione and 2-n-heptyl-4-hydroxyquinoline N-oxide, identifying a hydrophobic plateau that is likely the ubiquinone-binding site. These structures illuminate probable mechanisms of catalysis and suggest how GlpD shuttles electrons into the respiratory pathway. Glycerol metabolism has been implicated in insulin signaling and perturbations in glycerol uptake and catabolism are linked to obesity in humans. Homologs of GlpD are found in practically all organisms, from prokaryotes to humans, with >45% consensus protein sequences, signifying that these structural results on the prokaryotic enzyme may be readily applied to the eukaryotic GlpD enzymes.

  12. Crystal structures capture three states in the catalytic cycle of a pyridoxal phosphate (PLP) synthase.

    PubMed

    Smith, Amber Marie; Brown, William Clay; Harms, Etti; Smith, Janet L

    2015-02-27

    PLP synthase (PLPS) is a remarkable single-enzyme biosynthetic pathway that produces pyridoxal 5'-phosphate (PLP) from glutamine, ribose 5-phosphate, and glyceraldehyde 3-phosphate. The intact enzyme includes 12 synthase and 12 glutaminase subunits. PLP synthesis occurs in the synthase active site by a complicated mechanism involving at least two covalent intermediates at a catalytic lysine. The first intermediate forms with ribose 5-phosphate. The glutaminase subunit is a glutamine amidotransferase that hydrolyzes glutamine and channels ammonia to the synthase active site. Ammonia attack on the first covalent intermediate forms the second intermediate. Glyceraldehyde 3-phosphate reacts with the second intermediate to form PLP. To investigate the mechanism of the synthase subunit, crystal structures were obtained for three intermediate states of the Geobacillus stearothermophilus intact PLPS or its synthase subunit. The structures capture the synthase active site at three distinct steps in its complicated catalytic cycle, provide insights into the elusive mechanism, and illustrate the coordinated motions within the synthase subunit that separate the catalytic states. In the intact PLPS with a Michaelis-like intermediate in the glutaminase active site, the first covalent intermediate of the synthase is fully sequestered within the enzyme by the ordering of a generally disordered 20-residue C-terminal tail. Following addition of ammonia, the synthase active site opens and admits the Lys-149 side chain, which participates in formation of the second intermediate and PLP. Roles are identified for conserved Asp-24 in the formation of the first intermediate and for conserved Arg-147 in the conversion of the first to the second intermediate.

  13. Relationship between a stress membrane protein of Oenococcus oeni and glyceraldehyde-3-phosphate dehydrogenases.

    PubMed

    Carreté, Ramon; Reguant, Cristina; Bordons, Albert; Constantí, Magda

    2005-10-01

    The goal of this study was to analyze how the profiles of membrane proteins of Oenococcus oeni change under particular stress conditions of wine. Sodium dodecyl sulfate polyacrylamide gel electrophoresis protein profiles of membrane fraction showed that a 40-kDa protein was overexpressed in the presence of SO2. The sequence of its N-terminal fragment showed a significant identity with glyceraldehyde-3-phosphate dehydrogenases (GAPDHs), but the protein showed no GAPDH activity. This sequence was compared with those of other GAPDHs with ClustalW alignment, and it was found to be somewhat similar to that of the cell-wall and membrane proteins of other lactic acid bacteria.

  14. Characterization of an Arabidopsis thaliana mutant lacking a cytosolic non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase.

    PubMed

    Rius, Sebastián P; Casati, Paula; Iglesias, Alberto A; Gomez-Casati, Diego F

    2006-08-01

    Non-phosphorylating glyceraldehyde- 3-phosphate dehydrogenase (NP-GAPDH) is a conserved cytosolic protein found in higher plants. In photosynthetic cells, the enzyme is involved in a shuttle transfer mechanism to export NADPH from the chloroplast to the cytosol. To investigate the role of this enzyme in plant tissues, we characterized a mutant from Arabidopsis thaliana having an insertion at the NP-GAPDH gene locus. The homozygous mutant was determined to be null respect to NP-GAPDH, as it exhibited undetectable levels of both transcription of NP-GAPDH mRNA, protein expression and enzyme activity. Transcriptome analysis demonstrated that the insertion mutant plant shows altered expression of several enzymes involved in carbohydrate metabolism. Significantly, cytosolic phosphorylating (NAD-dependent) glyceraldehyde-3-phosphate dehydrogenase mRNA levels are induced in the mutant, which correlates with an increase in enzyme activity. mRNA levels and enzymatic activity of glucose-6-phosphate dehydrogenase were also elevated, correlating with an increase in NADPH concentration. Moreover, increased ROS levels were measured in the mutant plants. Down-regulation of several glycolytic and photosynthetic genes suggests that NP-GAPDH is important for the efficiency of both metabolic processes. The results presented demonstrate that NP-GAPDH has a relevant role in plant growth and development.

  15. Cloning and characterization of glyceraldehyde-3-phosphate dehydrogenase encoding gene in Gracilaria/Gracilariopsis lemaneiformis

    NASA Astrophysics Data System (ADS)

    Xueying, Ren; Zhenghong, Sui; Xuecheng, Zhang

    2006-04-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays important roles in various cellular processes. A cytosolic GAPDH encoding gene ( gpd) of Gracilaria/Gracilariopsis lemaneiformis was cloned and characterized. Deduced amino acid sequence of the enzyme of G. lemaneiformis had high homology with those of seven red algae. The 5'-untranslated regions of the GAPDHs encoding genes of these red algae varied greatly. GAPDHs of these red algae shared the highly conserved glyceraldehyde 3-phosphate dehydrogenase active site ASCTTNCL. However, such active site of Cyanidium caldarium was different from those of the other six algae at the last two residues (CL to LF), thus the spatial structure of its GAPDH active center may be different from those of the other six. Phylogenetic analysis indicated that GAPDH of G. lemaneiformis might have undergone an evolution similar to those of Porphyra yezoensis, Chondrus crispus, and Gracilaria verrucosa. C. caldarium had a closer evolutionary relationship with Cyanidioschyzon merolae than with Cyanidium sp. Virtual Northern blot analysis revealed that gpd of G. lemaneiformis expressed constitutively, which suggested that it might be house-keeping and could be adapted as an inner control in gene expression analysis of G. lemaneiformis.

  16. Influence of heavy metals on glyceraldehyde-3-phosphate dehydrogenase interactions in Chironomus riparius larvae.

    PubMed

    Wai, Isaac; Chong, King; Ho, Wing Shing

    2013-08-01

    Some aquatic organisms can live in contaminated environment due to their adaptable defense mechanism related to their inducible detoxification and excretion. A recent study showed glyceraldehyde-3-phosphate dehydrogenase (GAPDH) can modulate different cellular activities including transcription activation and detoxification. In the present study, the authors report on experiments to test the GAPDH activity of Chironomus riparius toward heavy metals. Glyceraldehyde-3-phosphate dehydrogenase was isolated and purified from C. riparius. The kinetics of the enzyme was measured. The results showed that GAPDH was inhibited by heavy metals including Co(2+) , Cu(2+) , Fe(2+) , Ni(2+) , Pb(2+) , but was activated by zinc ions. The kinetics study of the enzyme showed maximum initial velocity (Vmax) of GAPDH increased by 50%. In addition, the substrate and cofactor affinity increased in the presence of zinc. The GAPDH from C. riparius had maximum activities at pH 8.5 and 37 °C. The protein sequence analysis shows that there are 2 additional cysteine and histidine residues in the conserved region of GAPDH from C. riparius, which is believed to play an important role in the interactions with heavy metals. The results suggest that exposure to zinc could modulate GAPDH, which could be related to response of antioxidant defense to other heavy metals.

  17. Conformational and activity changes during guanidine denaturation of D-glyceraldehyde-3-phosphate dehydrogenase.

    PubMed

    Xie, G F; Tsou, C L

    1987-01-05

    Changes in intrinsic protein fluorescence of lobster muscle D-glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate: NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12) have been compared with inactivation of the enzyme during denaturation in guanidine solutions. The holoenzyme is completely inactivated at guanidine concentrations less than 0.5 M and this is accompanied by a red shift of the emission maximum at 335 nm and a marked decrease in intensity of the intrinsic fluorescence. At 0.5 M guanidine, the inactivation is a slow process, with a first-order rate constant of 2.4 X 10(-3) s-1. A further red shift in the emission maximum and a decrease in intensity occur at guanidine concentrations higher than 1.5 M. The emission peak at 410 nm of the fluorescent NAD derivative introduced at the active site of this enzyme (Tsou, C.L. et al. (1983) Biochem. Soc. Trans. 11, 425-429) shows both a red shift and a marked decrease in intensity at the same guanidine concentration required to bring about the inactivation and the initial changes in the intrinsic fluorescence of the holoenzyme. It appears that treatment by low guanidine concentrations leads to both complete inactivation and perturbation of the active site conformation and that a tryptophan residue is situated at or near the active site.

  18. Moonlighting glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH): an evolutionarily conserved plasminogen receptor on mammalian cells.

    PubMed

    Chauhan, Anoop Singh; Kumar, Manoj; Chaudhary, Surbhi; Patidar, Anil; Dhiman, Asmita; Sheokand, Navdeep; Malhotra, Himanshu; Raje, Chaaya Iyengar; Raje, Manoj

    2017-03-15

    Prokaryotic pathogens establish infection in mammals by capturing the proteolytic enzyme plasminogen (Plg) onto their surface to digest host extracellular matrix (ECM). One of the bacterial surface Plg receptors is the multifunctional glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In a defensive response, the host mounts an inflammatory response, which involves infiltration of leukocytes to sites of inflammation. This requires macrophage exit from the blood and migration across basement membranes, a phenomenon dependent on proteolytic remodeling of the ECM utilizing Plg. The ability of Plg to facilitate inflammatory cell recruitment critically depends on receptors on the surface of phagocyte cells. Utilizing a combination of biochemical, cellular, knockdown, and in vivo approaches, we demonstrated that upon inflammation, macrophages recruit GAPDH onto their surface to carry out the same task of capturing Plg to digest ECM to aid rapid phagocyte migration and combat the invading pathogens. We propose that GAPDH is an ancient, evolutionarily conserved receptor that plays a key role in the Plg-dependent regulation of macrophage recruitment in the inflammatory response to microbial aggression, thus pitting prokaryotic GAPDH against mammalian GAPDH, with both involved in a conserved role of Plg activation on the surface of their respective cells, to conflicting ends.-Chauhan, A. S., Kumar, M., Chaudhary, S., Patidar, A., Dhiman, A., Sheokand, N., Malhotra, H., Raje, C. I., Raje, M. Moonlighting glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH): an evolutionarily conserved plasminogen receptor on mammalian cells.

  19. Folding domains and intramolecular ionic interactions of lysine residues in glyceraldehyde 3-phosphate dehydrogenase.

    PubMed Central

    Lambert, J M; Perham, R N

    1977-01-01

    1. Treatment with methyl acetimidate was used to probe the topography of several tetrameric glyceraldehyde 3-phosphate dehydrogenases, in particular the holoenzymes from rabbit muscle and Bacillus stearothermophilus. During the course of the reaction with the rabbit muscle enzyme, the number of amino groups fell rapidly from the starting value of 27 per subunit to a value of approx. five per subunit. This number could be lowered further to values between one and two per subunit by a second treatment with methyl acetimidate. The enzyme remained tetrameric throughout and retained 50% of its initial catalytic activity at the end of the experiment. 2. Use of methyl [1-14C]acetimidate and small-scale methods of protein chemistry showed that only one amino group per subunit, that of lysine-306, was completely unavailable for reaction with imido ester in the native enzyme. This results is consistent with the structure of the highly homologous glyceraldehyde 3-phosphate dehydrogenase of lobster muscle deduced from X-ray-crystallographic analysis, since lysine-306 can be seen to form an intrachain ion-pair with aspartic acid-241 in the hydrophobic environment of a subunit-subunit interface. 3. Several other amino groups in the rabbit muscle enzyme that reacted only slowly with the reagent were also identified chemically. These were found to be located entirely in the C-terminal half of the polypeptides chain, which comprises a folding domain associated with catalytic activity and subunit contact in the three-dimensional structure. Slow reaction of these 'surface' amino groups with methyl acetimidate is attributed to intramolecular ionic interactions of the amino groups with neighbouring side-chain carboxyl groups, a conclusion that is compatible with the reported three-dimensional structure and with the dependence of the reaction of ionic stength. 4. Very similar results were obtained with the enzymes from B. stearothermophilus and from ox muscle and ox liver, supporting

  20. Succination of proteins by fumarate: mechanism of inactivation of glyceraldehyde-3-phosphate dehydrogenase in diabetes.

    PubMed

    Blatnik, Matthew; Thorpe, Suzanne R; Baynes, John W

    2008-04-01

    S-(2-succinyl)cysteine (2SC) is a chemical modification of proteins formed by a Michael addition reaction between the Krebs cycle intermediate, fumarate, and thiol groups in protein--a process known as succination of protein. Succination causes irreversible inactivation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in vitro. GAPDH was immunoprecipitated from muscle of diabetic rats, then analyzed by ultra-performance liquid chromatography-electrospray ionization-mass spectroscopy. Succination of GAPDH was increased in muscle of diabetic rats, and the extent of succination correlated strongly with the decrease in specific activity of the enzyme. We propose that 2SC is a biomarker of mitochondrial and oxidative stress in diabetes and that succination of GAPDH and other thiol proteins may provide the chemical link between glucotoxicity and the pathogenesis of diabetic complications.

  1. Molecular cloning and characterization of the glyceraldehyde-3-phosphate dehydrogenase gene from Penicillium expansum PE-12.

    PubMed

    Zhang, T; Qi, Z; Yu, Q S; Tang, K X

    2013-07-15

    Penicillium expansum produces large amounts of lipase, which is widely used in laundry detergent and leather industry. We isolated the glyceraldehyde-3-phosphate dehydrogenase gene (PeGPD) from P. expansum PE-12 through reverse transcriptase PCR and 5'-3' rapid amplification of cDNA ends (RACE-PCR). The gene is 1266 bp long, including an ORF of 1014 bp, encoding a polypeptide chain of 337 amino acids. A phylogenetic tree based on GPD proteins showed that P. expansum is close to Aspergillus species, but comparatively distant from P. marneffei. Southern blot results revealed a single copy of PeGPD, and expression analysis gave evidence of high expression levels. PeGPD genes have potential for genetic engineering of P. expansum for industrial lipase production.

  2. Daily Variations in the Glycerol-3-Phosphate Dehydrogenase Isoforms Expression in Triatoma infestans Flight Muscles

    PubMed Central

    Stroppa, María M.; Carriazo, Carlota S.; Gerez de Burgos, Nelia M.; Garcia, Beatríz A.

    2014-01-01

    Triatoma infestans, the main vector of Chagas disease, is a blood-sucking insect. Flight dispersal of adults is the most important mechanism for reinfestation of houses after insecticide spraying. Flight muscles have two glycerol-3-phosphate dehydrogenase (GPDH) isoforms: GPDH-1 is involved in flight metabolism and GPDH-2 provides lipid precursors. In this study, we explored the profile of GPDH expression in females and males adult flight muscles under light/dark cycle, constant light, and constant dark conditions. Under constant dark conditions, GPDH-1 flight muscles of T. infestans showed a rhythmic pattern of transcription synchronous with a rhythmic profile of activity suggesting regulation by the endogenous circadian clock. Otherwise, the GPDH-2 expression analysis showed no regulation by the endogenous clock, but showed that an external factor, such as the dark/light period, was necessary for synchronization of GPDH-2 transcription and activity. PMID:24914000

  3. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a specific substrate of yeast metacaspase.

    PubMed

    Silva, A; Almeida, B; Sampaio-Marques, B; Reis, M I R; Ohlmeier, S; Rodrigues, F; Vale, A do; Ludovico, P

    2011-12-01

    Yeast metacaspase (Yca1p) is required for the execution of apoptosis upon a wide range of stimuli. However, the specific degradome of this yeast protease has not been unraveled so far. By combining different methodologies described as requisites for a protein to be considered a protease substrate, such as digestome analysis, cleavage of recombinant GAPDH by metacaspase and evaluation of protein levels in vivo, we show that upon H(2)O(2)-induced apoptosis, the metabolic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a specific target of metacaspase. Nitric oxide (NO) signaling, which mediates H(2)O(2)-induced apoptosis, is required for metacaspase specific GAPDH cleavage. In conclusion, in this work we identified GAPDH as the first direct yeast metacaspase substrate described so far. Although mammalian caspases and yeast metacaspase apparently have distinct target cleavage sites, GAPDH arises as a common substrate for these proteases.

  4. Atomic-level characterization of transport cycle thermodynamics in the glycerol-3-phosphate:phosphate antiporter

    NASA Astrophysics Data System (ADS)

    Moradi, Mahmoud; Enkavi, Giray; Tajkhorshid, Emad

    2015-09-01

    Membrane transporters actively translocate their substrate by undergoing large-scale structural transitions between inward- (IF) and outward-facing (OF) states (`alternating-access' mechanism). Despite extensive structural studies, atomic-level mechanistic details of such structural transitions, and as importantly, their coupling to chemical events supplying the energy, remain amongst the most elusive aspects of the function of these proteins. Here we present a quantitative, atomic-level description of the functional thermodynamic cycle for the glycerol-3-phosphate:phosphate antiporter GlpT by using a novel approach in reconstructing the free energy landscape governing the IF<-->OF transition along a cyclic transition pathway involving both apo and substrate-bound states. Our results provide a fully atomic description of the complete transport process, offering a structural model for the alternating-access mechanism and substantiating the close coupling between global structural transitions and local chemical events.

  5. Receptor protein kinase FERONIA controls leaf starch accumulation by interacting with glyceraldehyde-3-phosphate dehydrogenase.

    PubMed

    Yang, Tao; Wang, Long; Li, Chiyu; Liu, Ying; Zhu, Sirui; Qi, Yinyao; Liu, Xuanming; Lin, Qinglu; Luan, Sheng; Yu, Feng

    2015-09-11

    Cell expansion is coordinated by several cues, but available energy is the major factor determining growth. Receptor protein kinase FERONIA (FER) is a master regulator of cell expansion, but the details of its control mechanisms are not clear. Here we show that FER interacts with cytosolic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH, GAPC1 and GAPC2), that catalyzes a key reaction in glycolysis, which contributes to energy production. When there is an FER deficiency, there are corresponding decreases in the enzyme activity of GAPDH and increased amounts of starch. More importantly, gapc1/2 mutants mimic fer4 mutants. These data indicate that FER regulated starch content is an evolutionarily conserved function in plants that connects the cell expansion and energy metabolism pathways.

  6. Atomic-level characterization of transport cycle thermodynamics in the glycerol-3-phosphate:phosphate antiporter

    PubMed Central

    Moradi, Mahmoud; Enkavi, Giray; Tajkhorshid, Emad

    2015-01-01

    Membrane transporters actively translocate their substrate by undergoing large-scale structural transitions between inward- (IF) and outward-facing (OF) states (‘alternating-access' mechanism). Despite extensive structural studies, atomic-level mechanistic details of such structural transitions, and as importantly, their coupling to chemical events supplying the energy, remain amongst the most elusive aspects of the function of these proteins. Here we present a quantitative, atomic-level description of the functional thermodynamic cycle for the glycerol-3-phosphate:phosphate antiporter GlpT by using a novel approach in reconstructing the free energy landscape governing the IF↔OF transition along a cyclic transition pathway involving both apo and substrate-bound states. Our results provide a fully atomic description of the complete transport process, offering a structural model for the alternating-access mechanism and substantiating the close coupling between global structural transitions and local chemical events. PMID:26417850

  7. Lysine post-translational modification of glyceraldehyde-3-phosphate dehydrogenase regulates hepatic and systemic metabolism.

    PubMed

    Bond, Simon T; Howlett, Kirsten F; Kowalski, Greg M; Mason, Shaun; Connor, Timothy; Cooper, Adrian; Streltsov, Victor; Bruce, Clinton R; Walder, Ken R; McGee, Sean L

    2017-03-03

    Reciprocal regulation of hepatic glycolysis and gluconeogenesis contributes to systemic metabolic homeostasis. Recent evidence from lower order organisms has found that reversible post-translational modification of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), particularly acetylation, contributes to the reciprocal regulation of glycolysis/gluconeogenesis. However, whether this occurs in mammalian hepatocytes in vitro or in vivo is unknown. Several proteomics studies have identified 4 lysine residues in critical regions of mammalian GAPDH that are altered by multiple post-translational modifications. In FAO hepatoma cells, mutation of all 4 lysine residues (4K-R GAPDH) to mimic their unmodified state reduced GAPDH glycolytic activity and glycolytic flux and increased gluconeogenic GAPDH activity and glucose production. Hepatic expression of 4K-R GAPDH in mice increased GAPDH gluconeogenic activity and the contribution of gluconeogenesis to endogenous glucose production in the unfed state. Consistent with the increased reliance on the energy-consuming gluconeogenic pathway, plasma free fatty acids and ketones were elevated in mice expressing 4K-R GAPDH, suggesting enhanced lipolysis and hepatic fatty acid oxidation. In normal mice, food withholding and refeeding, as well as hormonal regulators of reciprocal glycolysis/gluconeogenesis, such as insulin, glucagon, and norepinephrine, had no effect on global GAPDH acetylation. However, GAPDH acetylation was reduced in obese and type 2 diabetic db/db mice. These findings show that post-translational modification of GAPDH lysine residues regulates hepatic and systemic metabolism, revealing an unappreciated role for hepatic GAPDH in substrate selection and utilization.-Bond, S. T., Howlett, K. F., Kowalski, G. M., Mason, S., Connor, T., Cooper, A., Streltsov, V., Bruce, C. R., Walder, K. R., McGee, S. L. Lysine post-translational modification of glyceraldehyde-3-phosphate dehydrogenase regulates hepatic and systemic

  8. Evidence for ligand-induced conformational changes in rabbit-muscle glyceraldehyde-3-phosphate dehydrogenase.

    PubMed

    Henis, Y I; Levitzki, A; Gafni, A

    1979-07-01

    The tetrameric glyceraldehyde-3-phosphate dehydrogenase from rabbit muscle binds NAD+ and some of its analogues in a negatively cooperative manner, whereas other NAD+ analogues bind non-cooperatively to this enzyme. Subsequent to alkylation of a fraction of the active sites of the enzyme with the fluorescent SH reagent N-iodoacetyl-N'-(5-sulfo-1-naphthyl)-ethylenediamine, it was found that the alkylated sites bind NAD+ and NAD+ analogues with a markedly reduced affinity as compared with non-alkylated sites. It was therefore feasible to measure the fluorescence and the circular polarization of the luminescence of the enzyme-bound alkyl groups as a function of binding of NAD+ and of NAD+ analogues to the non-alkylated sites. The changes observed indicate that ligand binding to the non-alkylated sites induces changes in the fluorescence properties of the alkyl groups bound to neighbouring subunits, most likely through the protein moiety. The nature of these changes appears to depend on the structure of the coenzyme analogue. The binding of the non-cooperative binders acetyl-pyridine--adenine dinucleotide, ATP and ADP-ribose induce different conformational changes in the neighbouring vacant subunit, as monitored by the spectroscopic properties of the bound alkyl group. These results in conjunction with other data support the view that the negative cooperativity in NAD+ binding to glyceraldehyde-3-phosphate dehydrogenase results from ligand-induced conformational changes. Furthermore, these results further support the view that subtle structural changes in the coenzyme molecule determine the nature of the conformational changes induced within the enzyme tetramer.

  9. Sperm-Specific Glyceraldehyde-3-Phosphate Dehydrogenase - An Evolutionary Acquisition of Mammals.

    PubMed

    Muronetz, V I; Kuravsky, M L; Barinova, K V; Schmalhausen, E V

    2015-12-01

    This review is focused on the mammalian sperm-specific glyceraldehyde-3-phosphate dehydrogenase (GAPDS). GAPDS plays the major role in the production of energy required for sperm cell movement and does not perform non-glycolytic functions that are characteristic of the somatic isoenzyme of glyceraldehyde-3-phosphate dehydrogenase. The GAPDS sequence is composed of 408 amino acid residues and includes an additional N-terminal region of 72 a.a. that binds the protein to the sperm tail cytoskeleton. GAPDS is present only in the sperm cells of mammals and lizards, possibly providing them with certain evolutionary advantages in reproduction. In this review, studies concerning the problems of GAPDS isolation, its catalytic properties, and its structural features are described in detail. GAPDS is much more stable compared to the somatic isoenzyme, perhaps due to the necessity of maintaining the enzyme function in the absence of protein expression. The site-directed mutagenesis approach revealed the two GAPDS-specific proline residues, as well as three salt bridges, which seem to be the basis of the increased stability of this protein. As distinct from the somatic isoenzyme, GAPDS exhibits positive cooperativity in binding of the coenzyme NAD+. The key role in transduction of structural changes induced by NAD+ is played by the salt bridge D311-H124. Disruption of this salt bridge cancels GAPDS cooperativity and twofold increases its enzymatic activity instead. The expression of GAPDS was detected in some melanoma cells as well. Its role in the development of certain pathologies, such as cancer and neurodegenerative diseases, is discussed.

  10. Dengue Virus NS1 Protein Modulates Cellular Energy Metabolism by Increasing Glyceraldehyde-3-Phosphate Dehydrogenase Activity

    PubMed Central

    Allonso, Diego; Andrade, Iamara S.; Conde, Jonas N.; Coelho, Diego R.; Rocha, Daniele C. P.; da Silva, Manuela L.; Ventura, Gustavo T.

    2015-01-01

    ABSTRACT Dengue is one of the main public health concerns worldwide. Recent estimates indicate that over 390 million people are infected annually with the dengue virus (DENV), resulting in thousands of deaths. Among the DENV nonstructural proteins, the NS1 protein is the only one whose function during replication is still unknown. NS1 is a 46- to 55-kDa glycoprotein commonly found as both a membrane-associated homodimer and a soluble hexameric barrel-shaped lipoprotein. Despite its role in the pathogenic process, NS1 is essential for proper RNA accumulation and virus production. In the present study, we identified that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts with intracellular NS1. Molecular docking revealed that this interaction occurs through the hydrophobic protrusion of NS1 and the hydrophobic residues located at the opposite side of the catalytic site. Moreover, addition of purified recombinant NS1 enhanced the glycolytic activity of GAPDH in vitro. Interestingly, we observed that DENV infection promoted the relocalization of GAPDH to the perinuclear region, where NS1 is commonly found. Both DENV infection and expression of NS1 itself resulted in increased GAPDH activity. Our findings indicate that the NS1 protein acts to increase glycolytic flux and, consequently, energy production, which is consistent with the recent finding that DENV induces and requires glycolysis for proper replication. This is the first report to propose that NS1 is an important modulator of cellular energy metabolism. The data presented here provide new insights that may be useful for further drug design and the development of alternative antiviral therapies against DENV. IMPORTANCE Dengue represents a serious public health problem worldwide and is caused by infection with dengue virus (DENV). Estimates indicate that half of the global population is at risk of infection, with almost 400 million cases occurring per year. The NS1 glycoprotein is found in both the

  11. Modeling of glycerol-3-phosphate transporter suggests a potential 'tilt' mechanism involved in its function.

    PubMed

    Tsigelny, Igor F; Greenberg, Jerry; Kouznetsova, Valentina; Nigam, Sanjay K

    2008-10-01

    Many major facilitator superfamily (MFS) transporters have similar 12-transmembrane alpha-helical topologies with two six-helix halves connected by a long loop. In humans, these transporters participate in key physiological processes and are also, as in the case of members of the organic anion transporter (OAT) family, of pharmaceutical interest. Recently, crystal structures of two bacterial representatives of the MFS family--the glycerol-3-phosphate transporter (GlpT) and lac-permease (LacY)--have been solved and, because of assumptions regarding the high structural conservation of this family, there is hope that the results can be applied to mammalian transporters as well. Based on crystallography, it has been suggested that a major conformational "switching" mechanism accounts for ligand transport by MFS proteins. This conformational switch would then allow periodic changes in the overall transporter configuration, resulting in its cyclic opening to the periplasm or cytoplasm. Following this lead, we have modeled a possible "switch" mechanism in GlpT, using the concept of rotation of protein domains as in the DynDom program17 and membranephilic constraints predicted by the MAPAS program.(23) We found that the minima of energies of intersubunit interactions support two alternate positions consistent with their transport properties. Thus, for GlpT, a "tilt" of 9 degrees -10 degrees rotation had the most favorable energetics of electrostatic interaction between the two halves of the transporter; moreover, this confirmation was sufficient to suggest transport of the ligand across the membrane. We conducted steered molecular dynamics simulations of the GlpT-ligand system to explore how glycerol-3-phosphate would be handled by the "tilted" structure, and obtained results generally consistent with experimental mutagenesis data. While biochemical data remain most consistent with a single-site alternating access model, our results raise the possibility that, while the

  12. GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE-S, A SPERM-SPECIFIC GLYCOLYTIC ENZYME, IS REQUIRED FOR SPERM MOTILITY AND MALE FERTILITY

    EPA Science Inventory

    While glycolysis is highly conserved, it is remarkable that several novel isozymes in this central metabolic pathway are found in mammalian sperm. Glyceraldehyde 3-phosphate dehydrogenase-S (GAPDS) is the product of a mouse gene expressed only during spermatogenesis and, like it...

  13. Enhanced resistance in Theobroma cacao against oomycete and fungal pathogens by secretion of phosphatidylinositol-3-phosphate-binding proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The internalization of oomycete and fungal pathogen effectors into host plant cells has been reported to be blocked by proteins that bind to the effectors’ cell entry receptor, phosphatidylinositol-3-phosphate (PI3P). This finding suggested a novel strategy for disease control by engineering plants ...

  14. Inactivation of glyceraldehyde-3-phosphate dehydrogenase of human malignant cells by methylglyoxal.

    PubMed

    Ray, M; Basu, N; Ray, S

    1997-12-01

    The effect of methylglyoxal on the activity of glyceraldehyde-3-phosphate dehydrogenase (GA3PD) of several normal human tissues and benign and malignant tumors has been tested. Methylglyoxal inactivated GA3PD of all the malignant cells (47 samples) and the degree of inactivation was in the range of 25-90%, but it had no inhibitory effect on this enzyme from several normal cells (24 samples) and benign tumors (13 samples). When the effect of methylglyoxal on other two dehydrogenases namely glucose 6-phosphate dehydrogenase (G6PD) and L-lactic dehydrogenase (LDH) of similar cells was tested as controls it has been observed that methylglyoxal has some inactivating effect on G6PD of all the normal, benign and malignant samples tested, whereas, LDH remained completely unaffected. These studies indicate that the inactivating effect of methylglyoxal on GA3PD specifically of the malignant cells may be a common feature of all the malignant cells, and this phenomenon can be used as a simple and rapid device for the detection of malignancy.

  15. Negative regulation of phosphatidylinositol 3-phosphate levels in early-to-late endosome conversion

    PubMed Central

    Liu, Kai; Jian, Youli; Sun, Xiaojuan; Yang, Chengkui; Gao, Zhiyang; Zhang, Zhili; Liu, Xuezhao; Li, Yang; Xu, Jing; Jing, Yudong; Mitani, Shohei; He, Sudan

    2016-01-01

    Phosphatidylinositol 3-phosphate (PtdIns3P) plays a central role in endosome fusion, recycling, sorting, and early-to-late endosome conversion, but the mechanisms that determine how the correct endosomal PtdIns3P level is achieved remain largely elusive. Here we identify two new factors, SORF-1 and SORF-2, as essential PtdIns3P regulators in Caenorhabditis elegans. Loss of sorf-1 or sorf-2 leads to greatly elevated endosomal PtdIns3P, which drives excessive fusion of early endosomes. sorf-1 and sorf-2 function coordinately with Rab switching genes to inhibit synthesis of PtdIns3P, allowing its turnover for endosome conversion. SORF-1 and SORF-2 act in a complex with BEC-1/Beclin1, and their loss causes elevated activity of the phosphatidylinositol 3-kinase (PI3K) complex. In mammalian cells, inactivation of WDR91 and WDR81, the homologs of SORF-1 and SORF-2, induces Beclin1-dependent enlargement of PtdIns3P-enriched endosomes and defective degradation of epidermal growth factor receptor. WDR91 and WDR81 interact with Beclin1 and inhibit PI3K complex activity. These findings reveal a conserved mechanism that controls appropriate PtdIns3P levels in early-to-late endosome conversion. PMID:26783301

  16. Glyceraldehyde-3-Phosphate Dehydrogenase-Encoding Gene as a Useful Taxonomic Tool for Staphylococcus spp.

    PubMed Central

    Yugueros, Javier; Temprano, Alejandro; Berzal, Beatriz; Sánchez, María; Hernanz, Carmen; Luengo, José María; Naharro, Germán

    2000-01-01

    The gap gene of Staphylococcus aureus, encoding glyceraldehyde-3-phosphate dehydrogenase, was used as a target to amplify a 933-bp DNA fragment by PCR with a pair of primers 26 and 25 nucleotides in length. PCR products, detected by agarose gel electrophoresis, were also amplified from 12 Staphylococcus spp. analyzed previously. Hybridization with an internal 279-bp DNA fragment probe was positive in all PCR-positive samples. No PCR products were amplified when other gram-positive and gram-negative bacterial genera were analyzed using the same pair of primers. AluI digestion of PCR-generated products gave 12 different restriction fragment length polymorphism (RFLP) patterns, one for each species analyzed. However, we could detect two intraspecies RFLP patterns in Staphylococcus epidermidis, Staphylococcus hominis, and Staphylococcus simulans which were different from the other species. An identical RFLP pattern was observed for 112 S. aureus isolates from humans, cows, and sheep. The sensitivity of the PCR assays was very high, with a detection limit for S. aureus cells of 20 CFU when cells were suspended in saline. PCR amplification of the gap gene has the potential for rapid identification of at least 12 species belonging to the genus Staphylococcus, as it is highly specific. PMID:11101563

  17. Bioreaction Engineering Leading to Efficient Synthesis of L-Glyceraldehyd-3-Phosphate.

    PubMed

    Molla, Getachew S; Kinfu, Birhanu M; Chow, Jennifer; Streit, Wolfgang; Wohlgemuth, Roland; Liese, Andreas

    2017-03-01

    Enantiopure L-glyceraldehyde-3-phosphate (L-GAP) is a useful building block in natural biological and synthetic processes. A biocatalytic process using glycerol kinase from Cellulomonas sp. (EC 2.7.1.30) catalyzed phosphorylation of L-glyceraldehyde (L-GA) by ATP is used for the synthesis of L-GAP. L-GAP has a half-life of 6.86 h under reaction conditions. The activity of this enzyme depends on the Mg(2+) to ATP molar ratio showing maximum activity at the optimum molar ratio of 0.7. A kinetic model is developed and validated showing a 2D correlation of 99.9% between experimental and numerical data matrices. The enzyme exhibits inhibition by ADP, AMP, methylglyoxal and Ca(2+) , but not by L-GAP and inorganic orthophosphate. Moreover, equal amount of Ca(2+) exerts a different degree of inhibition relative to the activity without the addition of Ca(2+) depending on the Mg(2+) to ATP molar ratio. If the Mg(2+) to ATP molar ratio is set to be at the optimum value or less, inorganic hexametaphosphate (PPi6) suppresses the enzyme activity; otherwise PPi6 enhances the enzyme activity. Based on reaction engineering parameters such as conversion, selectivity and specific productivity, evaluation of different reactor types reveals that batchwise operation via stirred-tank reactor is the most efficient process for the synthesis of L-GAP.

  18. Short-term hypothermia activates hepatic mitochondrial sn-glycerol-3-phosphate dehydrogenase and thermogenic systems.

    PubMed

    Bobyleva, V; Pazienza, L; Muscatello, U; Kneer, N; Lardy, H

    2000-08-15

    The contribution of the sn-glycerol-3-phosphate (G-3-P) shuttle in the control of energy metabolism is well established. It is also known that its activity may be modulated by hormones involved in thermogenesis, such as thyroid hormones or dehydroepiandrosterone and its metabolites, that act by inducing de novo synthesis of mitochondrial G-3-P dehydrogenase (mGPDH). However, little is known as to the factors that may influence the activity without enzyme induction. In the present study we investigated the possible role of the G-3-P shuttle in the thermogenic response to different hypothermic stresses. It was found that a decrease of body temperature causes the liver rapidly to enhance mGPDH activity and G-3-P-dependent respiration. The enhancement, which does not result from de novo synthesis of enzymes, has the potential of increasing heat production both by decreased ATP synthesis during the oxidation of G-3-P and by activation of the glycolytic pathway.

  19. Glyceraldehyde-3-phosphate dehydrogenase-encoding gene as a useful taxonomic tool for Staphylococcus spp.

    PubMed

    Yugueros, J; Temprano, A; Berzal, B; Sánchez, M; Hernanz, C; Luengo, J M; Naharro, G

    2000-12-01

    The gap gene of Staphylococcus aureus, encoding glyceraldehyde-3-phosphate dehydrogenase, was used as a target to amplify a 933-bp DNA fragment by PCR with a pair of primers 26 and 25 nucleotides in length. PCR products, detected by agarose gel electrophoresis, were also amplified from 12 Staphylococcus spp. analyzed previously. Hybridization with an internal 279-bp DNA fragment probe was positive in all PCR-positive samples. No PCR products were amplified when other gram-positive and gram-negative bacterial genera were analyzed using the same pair of primers. AluI digestion of PCR-generated products gave 12 different restriction fragment length polymorphism (RFLP) patterns, one for each species analyzed. However, we could detect two intraspecies RFLP patterns in Staphylococcus epidermidis, Staphylococcus hominis, and Staphylococcus simulans which were different from the other species. An identical RFLP pattern was observed for 112 S. aureus isolates from humans, cows, and sheep. The sensitivity of the PCR assays was very high, with a detection limit for S. aureus cells of 20 CFU when cells were suspended in saline. PCR amplification of the gap gene has the potential for rapid identification of at least 12 species belonging to the genus Staphylococcus, as it is highly specific.

  20. Phosphoinositol 3-phosphate acts as a timer for reactive oxygen species production in the phagosome.

    PubMed

    Song, Zhi Min; Bouchab, Leïla; Hudik, Elodie; Le Bars, Romain; Nüsse, Oliver; Dupré-Crochet, Sophie

    2017-01-17

    Production of reactive oxygen species (ROS) in the phagosome by the NADPH oxidase is critical for mammalian immune defense against microbial infections and phosphoinositides are important regulators in this process. Phosphoinositol 3-phosphate (PI(3)P) regulates ROS production at the phagosome via p40(phox) by an unknown mechanism. This study tested the hypothesis that PI(3)P controls ROS production by regulating the presence of p40(phox) and p67(phox) at the phagosomal membrane. Pharmacologic inhibition of PI(3)P synthesis at the phagosome decreased the ROS production both in differentiated PLB-985 cells and human neutrophils. It also releases p67(phox), the key cytosolic subunit of the oxidase, and p40(phox) from the phagosome. The knockdown of the PI(3)P phosphatase MTM1 or Rubicon or both increases the level of PI(3)P at the phagosome. That increase enhances ROS production inside the phagosome and triggers an extended accumulation of p67(phox) at the phagosome. Furthermore, the overexpression of MTM1 at the phagosomal membrane induces the disappearance of PI(3)P from the phagosome and prevents sustained ROS production. In conclusion, PI(3)P, indeed, regulates ROS production by maintaining p40(phox) and p67(phox) at the phagosomal membrane.

  1. The influence of cytosolic phosphorylating glyceraldehyde 3-phosphate dehydrogenase (GAPC) on potato tuber metabolism.

    PubMed

    Hajirezaei, Mohammad-Reza; Biemelt, Sophia; Peisker, Martin; Lytovchenko, Anna; Fernie, Alisdair R; Sonnewald, Uwe

    2006-01-01

    The aim of this work was to investigate the importance of cytosolic phosphorylating glyceraldehyde 3-phosphate dehydrogenase (GAPC) in potato carbohydrate metabolism. For this purpose, the cytosolic isoform of phosphorylating GAPC was cloned and used for an antisense approach to generate transgenic potato plants that exhibited constitutively decreased GAPDH activity. Potato lines with decreased activities of phosphorylating GAPC exhibited no major changes in either whole-plant or tuber morphology. However, the levels of 3-phosphoglycerate were decreased in leaves of the transformants. A broad metabolic phenotyping of tubers from the transformants revealed an increase in sucrose and UDPglucose content, a decrease in the glycolytic intermediates 3-phosphoglycerate and phosphoenolpyruvate but little change in the levels of other metabolites. Moreover, the transformants displayed no differences in cold sweetening with respect to the wild type. Taken together these data suggest that phosphorylating GAPC plays only a minor role in the regulation of potato metabolism. The results presented here are discussed in relation to current models regarding primary metabolism in the potato tuber parenchyma.

  2. Endosomal Phosphatidylinositol 3-Phosphate Promotes Gephyrin Clustering and GABAergic Neurotransmission at Inhibitory Postsynapses*♦

    PubMed Central

    Rhee, Hong Jun; Subramanian, Devaraj; Paraskevopoulou, Foteini; Mueller, Rainer; Schultz, Carsten; Brose, Nils; Rhee, Jeong-Seop; Betz, Heinrich

    2017-01-01

    The formation of neuronal synapses and the dynamic regulation of their efficacy depend on the proper assembly of the postsynaptic neurotransmitter receptor apparatus. Receptor recruitment to inhibitory GABAergic postsynapses requires the scaffold protein gephyrin and the guanine nucleotide exchange factor collybistin (Cb). In vitro, the pleckstrin homology domain of Cb binds phosphoinositides, specifically phosphatidylinositol 3-phosphate (PI3P). However, whether PI3P is required for inhibitory postsynapse formation is currently unknown. Here, we investigated the role of PI3P at developing GABAergic postsynapses by using a membrane-permeant PI3P derivative, time-lapse confocal imaging, electrophysiology, as well as knockdown and overexpression of PI3P-metabolizing enzymes. Our results provide the first in cellula evidence that PI3P located at early/sorting endosomes regulates the postsynaptic clustering of gephyrin and GABAA receptors and the strength of inhibitory, but not excitatory, postsynapses in cultured hippocampal neurons. In human embryonic kidney 293 cells, stimulation of gephyrin cluster formation by PI3P depends on Cb. We therefore conclude that the endosomal pool of PI3P, generated by the class III phosphatidylinositol 3-kinase, is important for the Cb-mediated recruitment of gephyrin and GABAA receptors to developing inhibitory postsynapses and thus the formation of postsynaptic membrane specializations. PMID:27941024

  3. Glyceraldehyde 3-phosphate dehydrogenase-telomere association correlates with redox status in Trypanosoma cruzi.

    PubMed

    Pariona-Llanos, Ricardo; Pavani, Raphael Souza; Reis, Marcelo; Noël, Vincent; Silber, Ariel Mariano; Armelin, Hugo Aguirre; Cano, Maria Isabel Nogueira; Elias, Maria Carolina

    2015-01-01

    Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a classical metabolic enzyme involved in energy production and plays a role in additional nuclear functions, including transcriptional control, recognition of misincorporated nucleotides in DNA and maintenance of telomere structure. Here, we show that the recombinant protein T. cruzi GAPDH (rTcGAPDH) binds single-stranded telomeric DNA. We demonstrate that the binding of GAPDH to telomeric DNA correlates with the balance between oxidized and reduced forms of nicotinamide adenine dinucleotides (NAD+/NADH). We observed that GAPDH-telomere association and NAD+/NADH balance changed throughout the T. cruzi life cycle. For example, in replicative epimastigote forms of T. cruzi, which show similar intracellular concentrations of NAD+ and NADH, GAPDH binds to telomeric DNA in vivo and this binding activity is inhibited by exogenous NAD+. In contrast, in the T. cruzi non-proliferative trypomastigote forms, which show higher NAD+ concentration, GAPDH was absent from telomeres. In addition, NAD+ abolishes physical interaction between recombinant GAPDH and synthetic telomere oligonucleotide in a cell free system, mimicking exogenous NAD+ that reduces GAPDH-telomere interaction in vivo. We propose that the balance in the NAD+/NADH ratio during T. cruzi life cycle homeostatically regulates GAPDH telomere association, suggesting that in trypanosomes redox status locally modulates GAPDH association with telomeric DNA.

  4. Glyceraldehyde 3-Phosphate Dehydrogenase-Telomere Association Correlates with Redox Status in Trypanosoma cruzi

    PubMed Central

    Pariona-Llanos, Ricardo; Pavani, Raphael Souza; Reis, Marcelo; Noël, Vincent; Silber, Ariel Mariano; Armelin, Hugo Aguirre; Cano, Maria Isabel Nogueira; Elias, Maria Carolina

    2015-01-01

    Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a classical metabolic enzyme involved in energy production and plays a role in additional nuclear functions, including transcriptional control, recognition of misincorporated nucleotides in DNA and maintenance of telomere structure. Here, we show that the recombinant protein T. cruzi GAPDH (rTcGAPDH) binds single-stranded telomeric DNA. We demonstrate that the binding of GAPDH to telomeric DNA correlates with the balance between oxidized and reduced forms of nicotinamide adenine dinucleotides (NAD+/NADH). We observed that GAPDH-telomere association and NAD+/NADH balance changed throughout the T. cruzi life cycle. For example, in replicative epimastigote forms of T. cruzi, which show similar intracellular concentrations of NAD+ and NADH, GAPDH binds to telomeric DNA in vivo and this binding activity is inhibited by exogenous NAD+. In contrast, in the T. cruzi non-proliferative trypomastigote forms, which show higher NAD+ concentration, GAPDH was absent from telomeres. In addition, NAD+ abolishes physical interaction between recombinant GAPDH and synthetic telomere oligonucleotide in a cell free system, mimicking exogenous NAD+ that reduces GAPDH-telomere interaction in vivo. We propose that the balance in the NAD+/NADH ratio during T. cruzi life cycle homeostatically regulates GAPDH telomere association, suggesting that in trypanosomes redox status locally modulates GAPDH association with telomeric DNA. PMID:25775131

  5. U(VI) Sequestration in Hydroxyapatite Produced by Microbial Glycerol 3-Phosphate Metabolism▿ †

    PubMed Central

    Shelobolina, Evgenya S.; Konishi, Hiromi; Xu, Huifang; Roden, Eric E.

    2009-01-01

    Previous studies have demonstrated the potential for removal of U(VI) from solution via precipitation of U(VI)-bearing calcium-phosphate (Ca-P) minerals coupled to microbial hydrolysis of glycerol phosphate compounds. We evaluated this process in circumneutral-pH groundwater from Area 2 of the U.S. Department of Energy Field Research Center at Oak Ridge National Laboratory. Area 2 groundwater contains high concentrations of dissolved calcium (ca. 4 mM), and thus, release of phosphate during glycerol phosphate metabolism has the potential to create conditions favorable for U(VI) sequestration in Ca-P minerals. Microbial enumeration and isolation studies verified the presence of aerobic and nitrate-reducing glycerol 3-phosphate (G3P)-metabolizing microorganisms in Area 2 sediments. Coprecipitation of U(VI) with Ca-P minerals coupled to microbial G3P hydrolysis was demonstrated in artificial groundwater under aerobic and nitrate-reducing conditions. Transmission electron microscopy analysis and mineral-washing experiments demonstrated that U(VI) was incorporated into the structure of the insoluble Ca-P mineral hydroxyapatite [Ca5(PO4)3OH]. Our results support the idea that U(VI) can be effectively removed from solution in contaminated aquifers through stimulation of microbial organophosphate metabolism. PMID:19633115

  6. Identification of Glyceraldehyde 3-Phosphate Dehydrogenase Sequence and Expression Profiles in Tree Shrew (Tupaia belangeri)

    PubMed Central

    Zheng, Yu; Wang, Yingjun; Smith, Wanli W.; Leng, Jing

    2014-01-01

    The tree shrews (Tupaia belangeri) diverged from the primate order (Primates) and are classified as Scandentia, a separate taxonomic group of mammals. The tree shrew has been suggested to use an animal model to study human disease but the genomic sequences of tree shrew is largely unidentified. Here we identified the full-length cDNA sequence of a housekeeping gene, Glyceraldehyde 3-phosphate Dehydrogenase (GAPDH), in tree shrew. We further constructed a phylogenetic family tree base on GAPDH molecules of various organisms and compared GAPDH sequences with human and other small experimental animals. These study revealed that tree shrew was closer to human than mouse, rat, rabbit and guinea pig. The Quantitative Reverse Transcription PCR and western blot analysis further demonstrated that GAPDH expressed in various tissues in tree shrew as a general conservative housekeeping proteins as in human. Our findings provide the novel genetic knowledge of the tree shrew and strong evidences that tree shrew can be an experimental model system to study human disorders. PMID:24887411

  7. Occurrence of a multimeric high-molecular-weight glyceraldehyde-3-phosphate dehydrogenase in human serum.

    PubMed

    Kunjithapatham, Rani; Geschwind, Jean-Francois; Devine, Lauren; Boronina, Tatiana N; O'Meally, Robert N; Cole, Robert N; Torbenson, Michael S; Ganapathy-Kanniappan, Shanmugasundaram

    2015-04-03

    Cellular glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a phylogenetically conserved, ubiquitous enzyme that plays an indispensable role in energy metabolism. Although a wealth of information is available on cellular GAPDH, there is a clear paucity of data on its extracellular counterpart (i.e., the secreted or extracellular GAPDH). Here, we show that the extracellular GAPDH in human serum is a multimeric, high-molecular-weight, yet glycolytically active enzyme. The high-molecular-weight multimers of serum GAPDH were identified by immunodetection on one- and two-dimensional gel electrophoresis using multiple antibodies specific for various epitopes of GAPDH. Partial purification of serum GAPDH by DEAE Affigel affinity/ion exchange chromatography further established the multimeric composition of serum GAPDH. In vitro data demonstrated that human cell lines secrete a multimeric, high-molecular-weight enzyme similar to that of serum GAPDH. Furthermore, LC-MS/MS analysis of extracellular GAPDH from human cell lines confirmed the presence of unique peptides of GAPDH in the high-molecular-weight subunits. Furthermore, data from pulse-chase experiments established the presence of high-molecular-weight subunits in the secreted, extracellular GAPDH. Taken together, our findings demonstrate the presence of a high-molecular-weight, enzymatically active secretory GAPDH in human serum that may have a hitherto unknown function in humans.

  8. Phosphatidic Acid Binds to Cytosolic Glyceraldehyde-3-phosphate Dehydrogenase and Promotes Its Cleavage in Arabidopsis *

    PubMed Central

    Kim, Sang-Chul; Guo, Liang; Wang, Xuemin

    2013-01-01

    Phosphatidic acid (PA) is a class of lipid messengers involved in a variety of physiological processes. To understand how PA mediates cell functions in plants, we used a PA affinity membrane assay to isolate PA-binding proteins from Camelina sativa followed by mass spectrometric sequencing. A cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC) was identified to bind to PA, and detailed analysis was carried out subsequently using GAPC1 and GAPC1 from Arabidopsis. The PA and GAPC binding was abolished by the cation zinc whereas oxidation of GAPCs promoted the PA binding. PA had little impact on the GAPC catalytic activity in vitro, but the PA treatment of Arabidopsis seedlings induced proteolytic cleavage of GAPC2 and inhibited Arabidopsis seedling growth. The extent of PA inhibition was greater in GAPC-overexpressing than wild-type seedlings, but the greater PA inhibition was abolished by application of zinc to the seedling. The PA treatment also reduced the expression of genes involved in PA synthesis and utilization, and the PA-reduced gene expression was partially recovered by zinc treatment. These data suggest that PA binds to oxidized GAPDH and promotes its cleavage and that the PA and GAPC interaction may provide a signaling link coordinating carbohydrate and lipid metabolism. PMID:23504314

  9. Comparative molecular analysis of evolutionarily distant glyceraldehyde-3-phosphate dehydrogenase from Sardina pilchardus and Octopus vulgaris.

    PubMed

    Baibai, Tarik; Oukhattar, Laila; Mountassif, Driss; Assobhei, Omar; Serrano, Aurelio; Soukri, Abdelaziz

    2010-12-01

    The NAD(+)-dependent cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12), which is recognized as a key to central carbon metabolism in glycolysis and gluconeogenesis and as an important allozymic polymorphic biomarker, was purified from muscles of two marine species: the skeletal muscle of Sardina pilchardus Walbaum (Teleost, Clupeida) and the incompressible arm muscle of Octopus vulgaris (Mollusca, Cephalopoda). Comparative biochemical studies have revealed that they differ in their subunit molecular masses and in pI values. Partial cDNA sequences corresponding to an internal region of the GapC genes from Sardina and Octopus were obtained by polymerase chain reaction using degenerate primers designed from highly conserved protein motifs. Alignments of the deduced amino acid sequences were used to establish the 3D structures of the active site of two enzymes as well as the phylogenetic relationships of the sardine and octopus enzymes. These two enzymes are the first two GAPDHs characterized so far from teleost fish and cephalopod, respectively. Interestingly, phylogenetic analyses indicated that the sardina GAPDH is in a cluster with the archetypical enzymes from other vertebrates, while the octopus GAPDH comes together with other molluscan sequences in a distant basal assembly closer to bacterial and fungal orthologs, thus suggesting their different evolutionary scenarios.

  10. Effector-induced dissociation of glyceraldehyde-3-phosphate dehydrogenase discriminated by urea solvation.

    PubMed

    Ivanova, V; Krusteva, N; Atanasov, B

    1995-08-01

    The dissociation of glyceraldehyde-3-phosphate dehydrogenase (GAPD) from pig muscle in water solutions (0.1 M phosphate, pH 7) at increased urea concentrations was studied by means of frontal-gel chromatography, intrinsic (TRP) fluorescence, differential absorption spectroscopy and selective chemical modification at TRP0193. The results are in agreement with a consecutive two-step model of dissociation of the tetramer and the dimer (C*T = 0.42 M urea < C*D = 1.39 M urea). The binding effector(s) destabilizes the oligomeric structures (delta GT changes from -1.00 to -0.54 kcal/mol; delta GD from -2.30 to -1.22 kcal/mol). The introduction of the bulky Koshland-reagent group to TRP-193 at the subunit-subunit interface leads to a decrease of the stability with delta delta G approximate to 1 kcal/mol, owing to TRP-193...TYR-39...TYR-92 cluster destruction. By using lobster GAPD atomic coordinates (PDB file 1GPD) and pig muscle GAPD amino-acid sequence, a tentative molecular model was constructed and the subunit contacts in terms of the Lee-Richard static accessibilities were described. A detailed analysis of the dissociation as a transfer of the buried residues from the molecular interface to the urea solutions was performed.

  11. Evidence for thiol/disulfide exchange reactions between tubulin and glyceraldehyde-3-phosphate dehydrogenase.

    PubMed

    Landino, Lisa M; Hagedorn, Tara D; Kennett, Kelly L

    2014-12-01

    While thiol redox reactions are a common mechanism to regulate protein structure and function, protein disulfide bond formation is a marker of oxidative stress that has been linked to neurodegeneration. Both tubulin and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) contain multiple cysteines that have been identified as targets for oxidation to disulfides, S-nitrosation and S-glutathionylation. We show that GAPDH is one of three prominent brain microtubule-associated proteins (MAPs), in addition to MAP-2 and tau, with reactive cysteines. We detected a threefold to fourfold increase in tubulin cysteine oxidation by hydrogen peroxide in the presence of rabbit muscle GAPDH by 5-iodoacetamidofluorescein labeling and by Western blot detection of higher molecular weight inter-chain tubulin disulfides. In thiol/disulfide exchange experiments, tubulin restored ∼50% of oxidized GAPDH cysteines and the equilibrium favored reduced GAPDH. Further, we report that oxidized GAPDH is repaired by the thioredoxin reductase system (TRS). Restoration of GAPDH activity after reduction by both tubulin and the TRS was time-dependent suggesting conformational changes near the active site cysteine149. The addition of brain MAPs to oxidized tubulin reduced tubulin disulfides and labeling of MAP-2 and of GAPDH decreased. Because the extent of tubulin repair of oxidized GAPDH was dependent on buffer strength, we conclude that electrostatics influence thiol/disulfide exchange between the two proteins. The novel interactions presented herein may protect GAPDH from inhibition under oxidative stress conditions.

  12. Chemical Synthesis and Molecular Recognition of Phosphatase-Resistant Analogues of Phosphatidylinositol-3-phosphate

    PubMed Central

    Xu, Yong; Lee, Stephanie A.; Kutateladze, Tatiana G.; Sbrissa, Diego; Shisheva, Assia; Prestwich, Glenn D.

    2008-01-01

    The remodeling of phosphatidylinositol polyphosphates in cellular membranes by phosphatases and kinases orchestrates the signaling by these lipids in space and time. In order to provide chemical tools to study of the changes in cell physiology mediated by these lipids, three new metabolically-stabilized (ms) analogues of phosphatidylinositol-3-phosphate (PtdIns(3)P were synthesized. We describe herein the total asymmetric synthesis of 3-methylphosphonate, 3-monofluoromethylphosphonate and 3-phosphorothioate analogues of PtdIns(3)P. From differentially protected D-myo-inositol key intermediates, a versatile phosphoramidite reagent was employed in the synthesis of PtdIns(3)P analogues with diacylglyceryl moieties containing dioleoyl, dipalmitoyl and dibutyryl chains. In addition, we introduce a new phosphorlyation reagent, monofluoromethylphosphonyl chloride, which has general applications for the preparation of “pKa-matched” monofluorophosphonates. These ms-PtdIns(3)P analogues exhibited reduced binding activities with 15N-labelled FYVE and PX domains, as significant 1H and 15N chemical shift changes in the FYVE domain were induced by titrating ms-PtdIns(3)Ps into membrane-mimetic dodecylphosphocholine (DPC) micelles. In addition, the PtdIns(3)P analogues with dioleyl and dipalmitoyl chains were substrates for the 5-kinase enzyme PIKfyve; the corresponding phosphorylated ms-PI(3,5)P2 products were detected by radio-TLC analysis. PMID:16417379

  13. Structure and kinetic characterization of human sperm-specific glyceraldehyde-3-phosphate dehydrogenase, GAPDS.

    PubMed

    Chaikuad, Apirat; Shafqat, Naeem; Al-Mokhtar, Ruby; Cameron, Gus; Clarke, Anthony R; Brady, R Leo; Oppermann, Udo; Frayne, Jan; Yue, Wyatt W

    2011-04-15

    hGAPDS (human sperm-specific glyceraldehyde-3-phosphate dehydrogenase) is a glycolytic enzyme essential for the survival of spermatozoa, and constitutes a potential target for non-hormonal contraception. However, enzyme characterization of GAPDS has been hampered by the difficulty in producing soluble recombinant protein. In the present study, we have overexpressed in Escherichia coli a highly soluble form of hGAPDS truncated at the N-terminus (hGAPDSΔN), and crystallized the homotetrameric enzyme in two ligand complexes. The hGAPDSΔN-NAD+-phosphate structure maps the two anion-recognition sites within the catalytic pocket that correspond to the conserved Ps site and the newly recognized Pi site identified in other organisms. The hGAPDSΔN-NAD+-glycerol structure shows serendipitous binding of glycerol at the Ps and new Pi sites, demonstrating the propensity of these anion-recognition sites to bind non-physiologically relevant ligands. A comparison of kinetic profiles between hGAPDSΔN and its somatic equivalent reveals a 3-fold increase in catalytic efficiency for hGAPDSΔN. This may be attributable to subtle amino acid substitutions peripheral to the active centre that influence the charge properties and protonation states of catalytic residues. Our data therefore elucidate structural and kinetic features of hGAPDS that might provide insightful information towards inhibitor development.

  14. [PCR detection of transgenic elements in feed raw material].

    PubMed

    Wang, Ying; Yu, Dao-Jian; Kang, Lin; Zhang, Gui-Ming; Jin, Xian-Zhong; Yang, Wei-Dong; Huang, Pei-Qing; Wu, Qiong; Chen, Zhi-Nan; Chu, Cheng-Cai; Cheng, Ying-Hui

    2002-05-01

    Based on the heterogeneous genes usually used in transgenic crops, the PCR technique was performed with primers derived from CaMV 35S promoter (35S-promoter,originated from cauliflower mosaic virus), NOS terminator (nopaline synthase-terminator,derived from Agrobacterium tumefaciens), EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) gene, and CryIA(b) (delta-endotoxin,evolved from Bacillus thuringiensis subsp. kurstaki) gene to detect transgenic agents from feed raw materials of soybean dregs and corn gluten meal, respectively. Endogenous corn Zein (a protein extracted from corn gluten) gene, soybean Lectin (chitin-binding protein) gene and negative, positive control were applied for avoiding false results. The method established here has been successfully applied in detecting transgenic elements in imported feed raw material.

  15. Glycerolipid biosynthesis in Saccharomyces cerevisiae: sn-glycerol-3-phosphate and dihydroxyacetone phosphate acyltransferase activities.

    PubMed Central

    Schlossman, D M; Bell, R M

    1978-01-01

    Yeast acyl-coenzyme A:dihydroxyacetone-phosphate O-acyltransferase (DHAP acyltransferase; EC 2.3.1.42) was investigated to (i) determine whether its activity and that of acyl-coenzyme A:sn-glycerol-3-phosphate O-acyltransferase (glycerol-P acyltransferase; EC 2.3.1.15) represent dual catalytic functions of a single membranous enzyme, (ii) estimate the relative contributions of the glycerol-P and DHAP pathways for yeast glycerolipid synthesis, and (iii) evaluate the suitability of yeast for future genetic investigations of the eucaryotic glycerol-P and DHAP acyltransferase activities. The membranous DHAP acyltransferase activity showed an apparent Km of 0.79 mM for DHAP, with a Vmax of 5.3 nmol/min per mg, whereas the glycerol-P acyltransferase activity showed an apparent Km of 0.05 mM for glycerol-P, with a Vmax of 3.4 nmol/min per mg. Glycerol-P was a competitive inhibitor (Ki, 0.07 mM) of the DHAP acyltransferase activity, and DHAP was a competitive inhibitor (Ki, 0.91 mM) of the glycerol-P acyltransferase activity. The two acyltransferase activities exhibited marked similarities in their pH dependence, acyl-coenzyme A chain length preference and substrate concentration dependencies, thermolability, and patterns of inactivation by N-ethylmaleimide, trypsin, and detergents. Thus, the data strongly suggest that yeast glycerol-P and DHAP acyltransferase activities represent dual catalytic functions of a single membrane-bound enzyme. Furthermore, since no acyl-DHAP oxidoreductase activity could be detected in yeast membranes, the DHAP pathway for glycerolipid synthesis may not operate in yeast. PMID:25265

  16. Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) Aggregation Causes Mitochondrial Dysfunction during Oxidative Stress-induced Cell Death*

    PubMed Central

    Itakura, Masanori; Kubo, Takeya; Kaneshige, Akihiro; Harada, Naoki; Izawa, Takeshi; Azuma, Yasu-Taka; Kuwamura, Mitsuru; Yamaji, Ryouichi; Takeuchi, Tadayoshi

    2017-01-01

    Glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional protein that also mediates cell death under oxidative stress. We reported previously that the active-site cysteine (Cys-152) of GAPDH plays an essential role in oxidative stress-induced aggregation of GAPDH associated with cell death, and a C152A-GAPDH mutant rescues nitric oxide (NO)-induced cell death by interfering with the aggregation of wild type (WT)-GAPDH. However, the detailed mechanism underlying GAPDH aggregate-induced cell death remains elusive. Here we report that NO-induced GAPDH aggregation specifically causes mitochondrial dysfunction. First, we observed a correlation between NO-induced GAPDH aggregation and mitochondrial dysfunction, when GAPDH aggregation occurred at mitochondria in SH-SY5Y cells. In isolated mitochondria, aggregates of WT-GAPDH directly induced mitochondrial swelling and depolarization, whereas mixtures containing aggregates of C152A-GAPDH reduced mitochondrial dysfunction. Additionally, treatment with cyclosporin A improved WT-GAPDH aggregate-induced swelling and depolarization. In doxycycline-inducible SH-SY5Y cells, overexpression of WT-GAPDH augmented NO-induced mitochondrial dysfunction and increased mitochondrial GAPDH aggregation, whereas induced overexpression of C152A-GAPDH significantly suppressed mitochondrial impairment. Further, NO-induced cytochrome c release into the cytosol and nuclear translocation of apoptosis-inducing factor from mitochondria were both augmented in cells overexpressing WT-GAPDH but ameliorated in C152A-GAPDH-overexpressing cells. Interestingly, GAPDH aggregates induced necrotic cell death via a permeability transition pore (PTP) opening. The expression of either WT- or C152A-GAPDH did not affect other cell death pathways associated with protein aggregation, such as proteasome inhibition, gene expression induced by endoplasmic reticulum stress, or autophagy. Collectively, these results suggest that NO-induced GAPDH

  17. Vaccine efficacy of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Edwardsiella ictaluri against E. tarda in tilapia.

    PubMed

    Trung Cao, Thanh; Tsai, Ming-An; Yang, Chung-Da; Wang, Pei-Chyi; Kuo, Tsun-Yung; Gabriel Chen, Hsu-Chung; Chen, Shih-Chu

    2014-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), derived from the outer-membrane protein (OMP) fraction, has been used as a potential candidate for vaccine development. The gene-encoding 37 kDa GAPDH outer membrane protein (OMP) from Edwardsiella ictaluri was amplified using polymerase chain reaction (PCR) and was cloned and expressed in Escherichia coli BL21 (DE3). Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), Western blotting, and nucleotide and amino acid sequencing were used to analyze the expressed antigenic protein and gene encoding this protein. Comparative DNA and protein sequence analysis of GAPDH from E. ictaluri GAPDHs from several Gram-negative bacterial species within the Enterobacteriaceae family revealed that the GAPDHs within this group are highly conserved and share a sequence similarity of 75-100% with E. ictaluri GDPDH. Rabbit antiserum raised against the E. ictaluri recombinant GAPDH (rGAPDH) protein recognized purified GADPH, indicating that it has a strong immunogenicity. Tilapia fish were intraperitoneally immunized with formalin-killed E. ictaluri whole cells, and rGAPDH (30 μg fish(-1)) from E. ictaluri, both of which were emulsified in ISA 763A adjuvant. At 3 months after immunization, fish were challenged with the E. tarda strain to assess vaccine efficacy; the relative percent survival (RPS) values were found to exceed 71.4%. The specific mean antibody titer log2 level of groups vaccinated with rGAPDH at 3 months was significantly higher than that of non-vaccinated fish (control group). Therefore, this recombinant protein can be considered a multi-purpose candidate vaccine against several pathogenic bacteria.

  18. Amperometric triglyceride bionanosensor based on nanoparticles of lipase, glycerol kinase, glycerol-3-phosphate oxidase.

    PubMed

    Pundir, C S; Aggarwal, V

    2017-01-15

    The nanoparticles (NPs) aggregates of lipase from porcine pancreas, glycerol kinase (GK) from Cellulomonas sp. and glycerol-3-phosphate oxidase (GPO) from Aerococcus viridanss were prepared by desolvation and glutaraldehyde crosslinking and functionalized by cysteamine. These enzyme nanoparticles (ENPs) were characterized by transmission electron microscopy (TEM) and Fourier transform infra red (FTIR) spectroscopy. The functionalzed ENPs aggregates were co-immobilized covalently onto polycrystalline Au electrode through thiolated bond. An improved amperometric triglyceride (TG) bionanosensor was constructed using this ENPs modified Au electrode as working electrode. Biosensor showed optimum current at 1.2 V within 5s, at pH 6.5 and 35 °C.A linear relationship was obtained between current (mA) and triolein concentration in lower concentration range,10-100 mg/dL and higher concentration range, 100-500 mg/dL. Limit of detection (LOD) of bionanosensor was 1.0 μg/ml. Percent analytical recovery of added trolein (50 and 100 mg/dL) in serum was 95.2 ± 0.5 and 96.0 ± 0.17. Within and between batch coefficients of variation (CV) were 2.33% and 2.15% respectively. A good correlation (R(2) = 0.99) was obtained between TG values in sera measured by present biosensor and standard enzymic colorimetric method with the regression equation: y= (0.993x + 0.967). ENPs/Au electrode was used 180 times over a period of 3 months with 50% loss in its initial activity, when stored dry at 4 °C.

  19. Oxidation of an Exposed Methionine Instigates the Aggregation of Glyceraldehyde-3-phosphate Dehydrogenase*

    PubMed Central

    Samson, Andre L.; Knaupp, Anja S.; Kass, Itamar; Kleifeld, Oded; Marijanovic, Emilia M.; Hughes, Victoria A.; Lupton, Chris J.; Buckle, Ashley M.; Bottomley, Stephen P.; Medcalf, Robert L.

    2014-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a ubiquitous and abundant protein that participates in cellular energy production. GAPDH normally exists in a soluble form; however, following necrosis, GAPDH and numerous other intracellular proteins convert into an insoluble disulfide-cross-linked state via the process of “nucleocytoplasmic coagulation.” Here, free radical-induced aggregation of GAPDH was studied as an in vitro model of nucleocytoplasmic coagulation. Despite the fact that disulfide cross-linking is a prominent feature of GAPDH aggregation, our data show that it is not a primary rate-determining step. To identify the true instigating event of GAPDH misfolding, we mapped the post-translational modifications that arise during its aggregation. Solvent accessibility and energy calculations of the mapped modifications within the context of the high resolution native GAPDH structure suggested that oxidation of methionine 46 may instigate aggregation. We confirmed this by mutating methionine 46 to leucine, which rendered GAPDH highly resistant to free radical-induced aggregation. Molecular dynamics simulations suggest that oxidation of methionine 46 triggers a local increase in the conformational plasticity of GAPDH that likely promotes further oxidation and eventual aggregation. Hence, methionine 46 represents a “linchpin” whereby its oxidation is a primary event permissive for the subsequent misfolding, aggregation, and disulfide cross-linking of GAPDH. A critical role for linchpin residues in nucleocytoplasmic coagulation and other forms of free radical-induced protein misfolding should now be investigated. Furthermore, because disulfide-cross-linked aggregates of GAPDH arise in many disorders and because methionine 46 is irrelevant to native GAPDH function, mutation of methionine 46 in models of disease should allow the unequivocal assessment of whether GAPDH aggregation influences disease progression. PMID:25086035

  20. Inhibition of glyceraldehyde-3-phosphate dehydrogenase in tissues of the rat by acrylamide and related compounds.

    PubMed

    Vyas, I; Lowndes, H E; Howland, R D

    1985-01-01

    In previous investigations acrylamide was found to inhibit several enzymes of glycolysis both in vitro and in vivo. The present study examines the characteristics of the in vitro inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and compares the in vivo effects of acrylamide on GAPDH activity to other analogs. Inhibition of GAPDH produced by acrylamide was characteristic of an irreversible or slowly reversible mechanism. In vivo, GAPDH activity was determined in sciatic nerve, brain, skeletal muscle and liver after cumulative doses of 250, 350 or 500 mg/kg of acrylamide. Specific activities were significantly lower in extensor muscle and liver after the 250 mg/kg dose. Activities in brain and sciatic nerve tended to be decreased but the differences were not statistically significant. Specific activity of GAPDH was decreased in medulla pons, cerebellum and the rest of the brain after a 350 mg/kg cumulative dose of acrylamide, although protein concentrations were not different from those in controls. The maximum decrease was about 20%. Treatment with acrylamide, methylene-bis-acrylamide (non-neurotoxic), or N-isopropylacrylamide (neurotoxic) significantly decreased the weight of the cortex and associated brain areas as well as general body weights. No signs of developing neuropathy were observed during treatment with methylene-bis-acrylamide to a cumulative dose (8.1 mmoles/kg) equivalent to that of acrylamide causing frank paralysis. Although the compound exhibited some ability to inhibit GAPDH in vitro, no decrease in GAPDH activity was found in rat brain. Treatment with N-isopropylacrylamide resulted in progressive neurologic impairment. After treatment to a cumulative dose of the compound causing a severe hind-limb paralysis (9.2 mmoles/kg), a small but significant decrease in GAPDH was found in the three areas of brain examined.

  1. The Plastidial Glyceraldehyde-3-Phosphate Dehydrogenase Is Critical for Viable Pollen Development in Arabidopsis1[W

    PubMed Central

    Muñoz-Bertomeu, Jesús; Cascales-Miñana, Borja; Irles-Segura, Asunción; Mateu, Isabel; Nunes-Nesi, Adriano; Fernie, Alisdair R.; Segura, Juan; Ros, Roc

    2010-01-01

    Plant metabolism is highly coordinated with development. However, an understanding of the whole picture of metabolism and its interactions with plant development is scarce. In this work, we show that the deficiency in the plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPCp) leads to male sterility in Arabidopsis (Arabidopsis thaliana). Pollen from homozygous gapcp double mutant plants (gapcp1gapcp2) displayed shrunken and collapsed forms and were unable to germinate when cultured in vitro. The pollen alterations observed in gapcp1gapcp2 were attributed to a disorganized tapetum layer. Accordingly, the expression of several of the genes involved in tapetum development was down-regulated in gapcp1gapcp2. The fertility of gapcp1gapcp2 was rescued by transforming this mutant with a construct carrying the GAPCp1 cDNA under the control of its native promoter (pGAPCp1::GAPCp1c). However, the GAPCp1 or GAPCp2 cDNA under the control of the 35S promoter (p35S::GAPCp), which is poorly expressed in the tapetum, did not complement the mutant fertility. Mutant GAPCp isoforms deficient in the catalytic activity of the enzyme were unable to complement the sterile phenotype of gapcp1gapcp2, thus confirming that both the expression and catalytic activity of GAPCp in anthers are necessary for mature pollen development. A metabolomic study in flower buds indicated that the most important difference between the sterile (gapcp1gapcp2, gapcp1gapcp2-p35S::GAPCp) and the fertile (wild-type plants, gapcp1gapcp2-pGAPCp1::GAPCp1c) lines was the increase in the signaling molecule trehalose. This work corroborates the importance of plastidial glycolysis in plant metabolism and provides evidence for the crucial role of GAPCps in pollen development. It additionally brings new insights into the complex interactions between metabolism and development. PMID:20107025

  2. Cellular recovery of glyceraldehyde-3-phosphate dehydrogenase activity and thiol status after exposure to hydroperoxides

    SciTech Connect

    Brodie, A.E.; Reed, D.J. )

    1990-01-01

    The activity of the thiol-dependent enzyme glyceraldehyde-3-phosphate dehydrogenase (GPD), in vertebrate cells, was modulated by a change in the intracellular thiol:disulfide redox status. Human lung carcinoma cells (A549) were incubated with 1-120 mM H2O2, 1-120 mM t-butyl hydroperoxide, 1-6 mM ethacrynic acid, or 0.1-10 mM N-ethylmaleimide for 5 min. Loss of reduced protein thiols, as measured by binding of the thiol reagent iodoacetic acid to GPD, and loss of GPD enzymatic activity occurred in a dose-dependent manner. Incubation of the cells, following oxidative treatment, in saline for 30 min or with 20 mM dithiothreitol (DTT) partially reversed both changes in GPD. The enzymatic recovery of GPD activity was observed either without addition of thiols to the medium or by incubation of a sonicated cell mixture with 2 mM cysteine, cystine, cysteamine, or glutathione (GSH); GSSG had no effect. Treatment of cells with buthionine sulfoximine (BSO) to decrease cellular GSH by varying amounts caused a dose-related increase in sensitivity of GPD activity to inactivation by H2O2 and decreased cellular ability for subsequent recovery. GPD responded in a similar fashion with oxidative treatment of another lung carcinoma cell line (A427) as well as normal lung tissue from human and rat. These findings indicate that the cellular thiol redox status can be important in determining GPD enzymatic activity.

  3. Halophilic class I aldolase and glyceraldehyde-3-phosphate dehydrogenase: some salt-dependent structural features.

    PubMed

    Krishnan, G; Altekar, W

    1993-01-26

    Aldolase and glyceraldehyde-3-phosphate dehydrogenase from the extremely halophilic archaebacterium Haloarcula vallismortis are stable only in high concentrations of KCl present within the physiological environment. Data concerning the structural changes in the two enzymes as a result of lowering of salt concentration and changes in pH were obtained by monitoring the intrinsic protein fluorescence in the presence of quenchers. When the KCl concentrations were lowered below 2 M or in the presence of 6 M guanidine hydrochloride, the emission maximum shifted to a longer wavelength, indicating enhanced exposure of tryptophyl residues to the solvent. The spectral characteristics of the two proteins in guanidine hydrochloride and 0.4 M KCl were identical. However, these denatured states appear to be different than those observed after acid denaturation. Further perturbation of fluorescence was observed due to I-, and application of the Stern-Volmer law showed that the total fluorescence was available to the quenchers only in 0.4 M KCl solutions. The unfolding of proteins in 0.4 M KCl was a gradual process which was accompanied by a time-dependent loss in enzyme activity. The activity loss was complete within 30 min for aldolase whereas in the case of GAPDH nearly 3 h was required for the destruction of activity. For both enzymes, inactivation and protein denaturation were strongly correlated. The data on activity and thermostability measurements of the two enzymes in varying concentrations of KCl and potassium phosphate revealed that though both proteins are halophilic, the forces in the maintenance of their stability could be different.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Glyceraldehyde-3-phosphate Dehydrogenase Aggregates Accelerate Amyloid-β Amyloidogenesis in Alzheimer Disease*

    PubMed Central

    Itakura, Masanori; Nakajima, Hidemitsu; Kubo, Takeya; Semi, Yuko; Kume, Satoshi; Higashida, Shusaku; Kaneshige, Akihiro; Kuwamura, Mitsuru; Harada, Naoki; Kita, Akinori; Azuma, Yasu-Taka; Yamaji, Ryoichi; Inui, Takashi; Takeuchi, Tadayoshi

    2015-01-01

    Alzheimer disease (AD) is a progressive neurodegenerative disorder characterized by loss of neurons and formation of pathological extracellular deposits induced by amyloid-β peptide (Aβ). Numerous studies have established Aβ amyloidogenesis as a hallmark of AD pathogenesis, particularly with respect to mitochondrial dysfunction. We have previously shown that glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) forms amyloid-like aggregates upon exposure to oxidative stress and that these aggregates contribute to neuronal cell death. Here, we report that GAPDH aggregates accelerate Aβ amyloidogenesis and subsequent neuronal cell death both in vitro and in vivo. Co-incubation of Aβ40 with small amounts of GAPDH aggregates significantly enhanced Aβ40 amyloidogenesis, as assessed by in vitro thioflavin-T assays. Similarly, structural analyses using Congo red staining, circular dichroism, and atomic force microscopy revealed that GAPDH aggregates induced Aβ40 amyloidogenesis. In PC12 cells, GAPDH aggregates augmented Aβ40-induced cell death, concomitant with disruption of mitochondrial membrane potential. Furthermore, mice injected intracerebroventricularly with Aβ40 co-incubated with GAPDH aggregates exhibited Aβ40-induced pyramidal cell death and gliosis in the hippocampal CA3 region. These observations were accompanied by nuclear translocation of apoptosis-inducing factor and cytosolic release of cytochrome c from mitochondria. Finally, in the 3×Tg-AD mouse model of AD, GAPDH/Aβ co-aggregation and mitochondrial dysfunction were consistently detected in an age-dependent manner, and Aβ aggregate formation was attenuated by GAPDH siRNA treatment. Thus, this study suggests that GAPDH aggregates accelerate Aβ amyloidogenesis, subsequently leading to mitochondrial dysfunction and neuronal cell death in the pathogenesis of AD. PMID:26359500

  5. Characterization and localization of phosphatidylglycerophosphate and phosphatidylserine synthases in Rhodobacter sphaeroides.

    PubMed

    Radcliffe, C W; Steiner, F X; Carman, G M; Niederman, R A

    1989-01-01

    Catalytic properties and membrane associations of the phosphatidylglycerophosphate (PGP) and phosphatidylserine (PS) synthases of Rhodobacter sphaeroides were examined to further characterize sites of phospholipid biosynthesis. In preparations of cytoplasmic membrane (CM) enriched in these activities, apparent Km values of PGP synthase were 90 microM for sn-glycerol-3-phosphate and 60 microM for CDP-diacylglycerol; the apparent Km of PS synthase for L-serine was near 165 microM. Both enzymes required Triton X-100 with optimal PS synthase activity at a detergent/CDP-diacylglycerol (mol/mol) ratio of 7.5:1.0, while for optimal PGP synthase, a range of 10-50:1.0 was observed. Unlike the enzyme in Escherichia coli and several other Gram-negative bacteria, the PS synthase activity had a specific requirement for magnesium and was tightly associated with membranes rather than ribosomes in crude cell extracts. Sedimentation studies suggested that the PGP synthase was distributed uniformly over the CM in both chemoheterotrophically and photoheterotrophically grown cells, while the PS synthase was confined mainly to a vesicular CM fraction. Solubilized PGP synthase activity migrated as a single band with a pI value near 5.5 in a chromato-focusing column and 5.8 on isoelectric focusing; in the latter procedure, the pI was shifted to 5.3 in the presence of CDP-diacylglycerol. The PGP synthase activity gave rise to a single polypeptide band in lithium dodecyl sulfate-polyacrylamide gel electrophoresis at 4 degrees C.

  6. PCR-mediated recombination of the amplification products of the Hibiscus tiliaceus cytosolic glyceraldehyde-3-phosphate dehydrogenase gene.

    PubMed

    Wu, Linghui; Tang, Tian; Zhou, Renchao; Shi, Suhua

    2007-03-31

    PCR-mediated recombination describes the process of in vitro chimera formation from related template sequences present in a single PCR amplification. The high levels of genetic redundancy in eukaryotic genomes should make recombination artifacts occur readily. However, few evolutionary biologists adequately consider this phenomenon when studying gene lineages. The cytosolic glyceraldehyde-3-phosphate dehydrogenase gene (GapC), which encodes a NADP-dependent nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase in the cytosol, is a classical low-copy nuclear gene marker and is commonly used in molecular evolutionary studies. Here, we report on the occurrence of PCR-mediated recombination in the GapC gene family of Hibiscus tiliaceus. The study suggests that recombinant areas appear to be correlated with DNA template secondary structures. Our observations highlight that recombination artifacts should be considered when studying specific and allelic phylogenies. The authors suggest that nested PCR be used to suppress PCR-mediated recombination.

  7. Sulfur mustard induced nuclear translocation of glyceraldehyde-3-phosphate-dehydrogenase (GAPDH).

    PubMed

    Steinritz, Dirk; Weber, Jana; Balszuweit, Frank; Thiermann, Horst; Schmidt, Annette

    2013-12-05

    Sulfur Mustard (SM) is a vesicant chemical warfare agent, which is acutely toxic to a variety of organ systems including skin, eyes, respiratory system and bone marrow. The underlying molecular pathomechanism was mainly attributed to the alkylating properties of SM. However, recent studies have revealed that cellular responses to SM exposure are of more complex nature and include increased protein expression and protein modifications that can be used as biomarkers. In order to confirm already known biomarkers, to detect potential new ones and to further elucidate the pathomechanism of SM, we conducted large-scale proteomic experiments based on a human keratinocyte cell line (HaCaT) exposed to SM. Surprisingly, our analysis identified glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) as one of the up-regulated proteins after exposure of HaCaT cells to SM. In this paper we demonstrate the sulfur mustard induced nuclear translocation of GAPDH in HaCaT cells by 2D gel-electrophoresis (2D GE), immunocytochemistry (ICC), Western Blot (WB) and a combination thereof. 2D GE in combination with MALDI-TOF MS/MS analysis identified GAPDH as an up-regulated protein after SM exposure. Immunocytochemistry revealed a distinct nuclear translocation of GAPDH after exposure to 300μM SM. This finding was confirmed by fractionated WB analysis. 2D GE and subsequent immunoblot staining of GAPDH demonstrated two different spot locations of GAPH (pI 7.0 and pI 8.5) that are related to cytosolic or nuclear GAPDH respectively. After exposure to 300μM SM a significant increase of nuclear GAPDH at pI 8.5 occurred. Nuclear GAPDH has been associated with apoptosis, detection of structural DNA alterations, DNA repair and regulation of genomic integrity and telomere structure. The results of our study add new aspects to the pathophysiology of sulfur mustard toxicity, yet further studies will be necessary to reveal the specific function of nuclear GAPDH in the pathomechanism of sulfur mustard.

  8. 4-Hydroxy-2-Nonenal-Modified Glyceraldehyde-3-Phosphate Dehydrogenase Is Degraded by Cathepsin G in Rat Neutrophils

    PubMed Central

    Tsuchiya, Yukihiro; Okada, Go; Kobayashi, Shigeki; Chikuma, Toshiyuki; Hojo, Hiroshi

    2011-01-01

    Degradation of oxidized or oxidatively modified proteins is an essential part of the antioxidant defenses of cells. 4-Hydroxy-2-nonenal, a major reactive aldehyde formed by lipid peroxidation, causes many types of cellular damage. It has been reported that 4-hydroxy-2-nonenal-modified proteins are degraded by the ubiquitin-proteasome pathway or, in some cases, by the lysosomal pathway. However, our previous studies using U937 cells showed that 4-hydroxy-2-nonenal-modified glyceraldehyde-3-phosphate dehydrogenase is degraded by cathepsin G. In the present study, we isolated the 4-hydroxy-2-nonenal-modified glyceraldehyde-3-phosphate dehydrogenase-degrading enzyme from rat neutrophils to an active protein fraction of 28 kDa. Using the specific antibody, the 28 kDa protein was identified as cathepsin G. Moreover, the degradation activity was inhibited by cathepsin G inhibitors. These results suggest that cathepsin G plays a crucial role in the degradation of 4-hydroxy-2-nonenal-modified glyceraldehyde-3-phosphate dehydrogenase. PMID:21904640

  9. Import of a precursor protein into chloroplasts is inhibited by the herbicide glyphosate.

    PubMed

    Della-Cioppa, G; Kishore, G M

    1988-05-01

    Import of the precursor to 5-enolpyruvylshikimate-3-phosphate synthase (pEPSPS) into chloroplasts is inhibited by the herbicide glyphosate. Inhibition of import is maximal at glyphosate concentrations of >/=10 mum and occurs only when pEPSPS is present as a ternary complex of enzyme-shikimate-3-phosphate-glyphosate. Glyphosate alone had no effect on the import of pEPSPS since it is not known to interact with the enzyme in the absence of shikimate-3-phosphate. Experiments with wild-type and glyphosate-resistant mutant forms of pEPSPS show that inhibition of import is directly proportional to the binding constants for glyphosate. Inhibition of import is thus a direct consequence of glyphosate binding to the enzyme-shikimate-3-phosphate complex. The potential for non-specific effects of glyphosate on the chloroplast transport mechanism has been discounted by showing that import of another chloroplast-designated protein was unaffected by high concentrations of glyphosate and shikimate-3-phosphate. The mechanism of import inhibition by glyphosate is consistent with a precursor unfolding/refolding model.

  10. Geranyl diphosphate synthase from mint

    DOEpatents

    Croteau, Rodney Bruce; Wildung, Mark Raymond; Burke, Charles Cullen; Gershenzon, Jonathan

    1999-01-01

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate.

  11. Geranyl diphosphate synthase from mint

    DOEpatents

    Croteau, R.B.; Wildung, M.R.; Burke, C.C.; Gershenzon, J.

    1999-03-02

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate. 5 figs.

  12. Cloning and characterization of the aroA gene from Mycobacterium tuberculosis.

    PubMed Central

    Garbe, T; Jones, C; Charles, I; Dougan, G; Young, D

    1990-01-01

    The aroA gene from Mycobacterium tuberculosis has been cloned by complementation of an aroA mutant of Escherichia coli after lysogenization with a recombinant DNA library in the lambda gt11 vector. Detailed characterization of the M. tuberculosis aroA gene by nucleotide sequencing and by immunochemical analysis of the expressed product indicates that it encodes a 5-enolpyruvylshikimate-3-phosphate synthase that is structurally related to analogous enzymes from other bacterial, fungal, and plant sources. The potential use of the cloned gene in construction of genetically defined mutant strains of M. tuberculosis by gene replacement is proposed as a novel approach to the rational attenuation of mycobacterial pathogens and the possible development of new antimycobacterial vaccines. Images PMID:2123856

  13. Real-Time PCR-Based Quantitation Method for the Genetically Modified Soybean Line GTS 40-3-2.

    PubMed

    Kitta, Kazumi; Takabatake, Reona; Mano, Junichi

    2016-01-01

    This chapter describes a real-time PCR-based method for quantitation of the relative amount of genetically modified (GM) soybean line GTS 40-3-2 [Roundup Ready(®) soybean (RRS)] contained in a batch. The method targets a taxon-specific soybean gene (lectin gene, Le1) and the specific DNA construct junction region between the Petunia hybrida chloroplast transit peptide sequence and the Agrobacterium 5-enolpyruvylshikimate-3-phosphate synthase gene (epsps) sequence present in GTS 40-3-2. The method employs plasmid pMulSL2 as a reference material in order to quantify the relative amount of GTS 40-3-2 in soybean samples using a conversion factor (Cf) equal to the ratio of the RRS-specific DNA to the taxon-specific DNA in representative genuine GTS 40-3-2 seeds.

  14. EPSPS Gene Copy Number and Whole-Plant Glyphosate Resistance Level in Kochia scoparia.

    PubMed

    Gaines, Todd A; Barker, Abigail L; Patterson, Eric L; Westra, Philip; Westra, Eric P; Wilson, Robert G; Jha, Prashant; Kumar, Vipan; Kniss, Andrew R

    2016-01-01

    Glyphosate-resistant (GR) Kochia scoparia has evolved in dryland chemical fallow systems throughout North America and the mechanism of resistance involves 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene duplication. Agricultural fields in four states were surveyed for K. scoparia in 2013 and tested for glyphosate-resistance level and EPSPS gene copy number. Glyphosate resistance was confirmed in K. scoparia populations collected from sugarbeet fields in Colorado, Wyoming, and Nebraska, and Montana. Glyphosate resistance was also confirmed in K. scoparia accessions collected from wheat-fallow fields in Montana. All GR samples had increased EPSPS gene copy number, with median population values up to 11 from sugarbeet fields and up to 13 in Montana wheat-fallow fields. The results indicate that glyphosate susceptibility can be accurately diagnosed using EPSPS gene copy number.

  15. Generation of insect-resistant and glyphosate-tolerant rice by introduction of a T-DNA containing two Bt insecticidal genes and an EPSPS gene*

    PubMed Central

    ZHAO, Qi-chao; LIU, Ming-hong; ZHANG, Xian-wen; LIN, Chao-yang; ZHANG, Qing; SHEN, Zhi-cheng

    2015-01-01

    Insect resistance and glyphosate tolerance have been two of the most important traits in the genetic improvement of various crops. In this study, two Bacillus thuringiensis (Bt) insecticidal genes, Cry1Ac and Cry1Ig, and a modified glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene (G10) were combined into a single transferred DNA (T-DNA) fragment and introduced into rice by Agrobacterium-mediated transformation. A transgenic line with single-copy T-DNA insertion named GAI-14 was found to be highly resistant to striped stem borer and rice leaf roller, and tolerant to glyphosate. Analysis of T-DNA border sequence suggested that the transgenes were inserted at the chromosome 3 and appeared to have not interrupted any known or putative genes. A field trial observed no significant difference in the basic agronomic traits between GAI-14 and the recipient rice. PMID:26465130

  16. The herbicide glyphosate.

    PubMed

    Malik, J; Barry, G; Kishore, G

    1989-03-01

    Glyphosate has broad spectrum herbicidal activity against a wide range of annual and perennial weeds. The environmental properties of this herbicide such as its soil immobility, rapid soil inactivation and soil biodegradation are outstanding. This herbicide is practically non-toxic to non-plant life forms such as aquatic and avian species, animals and man. Metabolism studies with pure bacterial cultures indicate that glyphosate is metabolized to either aminomethylphosphonate and glyoxylate or sarcosine and phosphate in most bacteria. The enzyme C-P lyase, which catalyzes the cleavage of the carbon-phosphorus bond of phosphonates including glyphosate, appears to be complex, containing multiple subunits. Mode of action studies have demonstrated that glyphosate kills plants by inhibiting the enzyme 5-enolpyruvylshikimate-3-phosphate synthase, involved in the biosynthesis of aromatic compounds. The status of our understanding of these aspects of glyphosate is reviewed.

  17. Functional characterization of aroA from Rhizobium leguminosarum with significant glyphosate tolerance in transgenic Arabidopsis.

    PubMed

    Han, Jing; Tian, Yong-Sheng; Xu, Jing; Wang, Li-Juan; Wang, Bo; Peng, Ri-He; Yao, Quan-Hong

    2014-09-01

    Glyphosate is the active component of the top-selling herbicide, the phytotoxicity of which is due to its inhibition of the shikimic acid pathway. 5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) is a key enzyme in the shikimic acid pathway. Glyphosate tolerance in plants can be achieved by the expression of a glyphosate-insensitive aroA gene (EPSPS). In this study, we used a PCR-based two-step DNA synthesis method to synthesize a new aroA gene (aroAR. leguminosarum) from Rhizobium leguminosarum. In vitro glyphosate sensitivity assays showed that aroAR. leguminosarum is glyphosate tolerant. The new gene was then expressed in E. coli and key kinetic values of the purified enzyme were determined. Furthermore, we transformed the aroA gene into Arabidopsis thaliana by the floral dip method. Transgenic Arabidopsis with the aroAR. leguminosarum gene was obtained to prove its potential use in developing glyphosate-resistant crops.

  18. EPSPS Gene Copy Number and Whole-Plant Glyphosate Resistance Level in Kochia scoparia

    PubMed Central

    Gaines, Todd A.; Barker, Abigail L.; Patterson, Eric L.; Westra, Philip; Westra, Eric P.; Wilson, Robert G.; Jha, Prashant; Kumar, Vipan

    2016-01-01

    Glyphosate-resistant (GR) Kochia scoparia has evolved in dryland chemical fallow systems throughout North America and the mechanism of resistance involves 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene duplication. Agricultural fields in four states were surveyed for K. scoparia in 2013 and tested for glyphosate-resistance level and EPSPS gene copy number. Glyphosate resistance was confirmed in K. scoparia populations collected from sugarbeet fields in Colorado, Wyoming, and Nebraska, and Montana. Glyphosate resistance was also confirmed in K. scoparia accessions collected from wheat-fallow fields in Montana. All GR samples had increased EPSPS gene copy number, with median population values up to 11 from sugarbeet fields and up to 13 in Montana wheat-fallow fields. The results indicate that glyphosate susceptibility can be accurately diagnosed using EPSPS gene copy number. PMID:27992501

  19. Screening of photosynthetic pigments for herbicidal activity with a new computational molecular approach.

    PubMed

    Krishnaraj, R Navanietha; Chandran, Saravanan; Pal, Parimal; Berchmans, Sheela

    2013-12-01

    There is an immense interest among the researchers to identify new herbicides which are effective against the herbs without affecting the environment. In this work, photosynthetic pigments are used as the ligands to predict their herbicidal activity. The enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase is a good target for the herbicides. Homology modeling of the target enzyme is done using Modeler 9.11 and the model is validated. Docking studies were performed with AutoDock Vina algorithm to predict the binding of the natural pigments such as β-carotene, chlorophyll a, chlorophyll b, phycoerythrin and phycocyanin to the target. β-carotene, phycoerythrin and phycocyanin have higher binding energies indicating the herbicidal activity of the pigments. This work reports a procedure to screen herbicides with computational molecular approach. These pigments will serve as potential bioherbicides in the future.

  20. Alteration of plant physiology by glyphosate and its by-product aminomethylphosphonic acid: an overview.

    PubMed

    Gomes, Marcelo P; Smedbol, Elise; Chalifour, Annie; Hénault-Ethier, Louise; Labrecque, Michel; Lepage, Laurent; Lucotte, Marc; Juneau, Philippe

    2014-09-01

    It is generally claimed that glyphosate kills undesired plants by affecting the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) enzyme, disturbing the shikimate pathway. However, the mechanisms leading to plant death may also be related to secondary or indirect effects of glyphosate on plant physiology. Moreover, some plants can metabolize glyphosate to aminomethylphosphonic acid (AMPA) or be exposed to AMPA from different environmental matrices. AMPA is a recognized phytotoxin, and its co-occurrence with glyphosate could modify the effects of glyphosate on plant physiology. The present review provides an overall picture of alterations of plant physiology caused by environmental exposure to glyphosate and its metabolite AMPA, and summarizes their effects on several physiological processes. It particularly focuses on photosynthesis, from photochemical events to C assimilation and translocation, as well as oxidative stress. The effects of glyphosate and AMPA on several plant physiological processes have been linked, with the aim of better understanding their phytotoxicity and glyphosate herbicidal effects.

  1. Cloning, heterologous expression and biochemical characterization of plastidial sn-glycerol-3-phosphate acyltransferase from Helianthus annuus.

    PubMed

    Payá-Milans, Miriam; Venegas-Calerón, Mónica; Salas, Joaquín J; Garcés, Rafael; Martínez-Force, Enrique

    2015-03-01

    The acyl-[acyl carrier protein]:sn-1-glycerol-3-phosphate acyltransferase (GPAT; E.C. 2.3.1.15) catalyzes the first step of glycerolipid assembly within the stroma of the chloroplast. In the present study, the sunflower (Helianthus annuus, L.) stromal GPAT was cloned, sequenced and characterized. We identified a single ORF of 1344base pairs that encoded a GPAT sharing strong sequence homology with the plastidial GPAT from Arabidopsis thaliana (ATS1, At1g32200). Gene expression studies showed that the highest transcript levels occurred in green tissues in which chloroplasts are abundant. The corresponding mature protein was heterologously overexpressed in Escherichia coli for purification and biochemical characterization. In vitro assays using radiolabelled acyl-ACPs and glycerol-3-phosphate as substrates revealed a strong preference for oleic versus palmitic acid, and weak activity towards stearic acid. The positional fatty acid composition of relevant chloroplast phospholipids from sunflower leaves did not reflect the in vitro GPAT specificity, suggesting a more complex scenario with mixed substrates at different concentrations, competition with other acyl-ACP consuming enzymatic reactions, etc. In summary, this study has confirmed the affinity of this enzyme which would partly explain the resistance to cold temperatures observed in sunflower plants.

  2. Metabolic engineering of enhanced glycerol-3-phosphate synthesis to increase lipid production in Synechocystis sp. PCC 6803.

    PubMed

    Wang, Xi; Xiong, Xiaochao; Sa, Na; Roje, Sanja; Chen, Shulin

    2016-07-01

    With the growing attention to global warming and energy sustainability, biosynthesis of lipids by photosynthetic microorganisms has attracted more interest for the production of renewable transportation fuels. Recently, the cyanobacterium Synechocystis sp. PCC 6803 has been widely used for biofuel production through metabolic engineering because of its efficient photosynthesis and well-developed genetic tools. In lipid biosynthesis, glycerol-3-phosphate (G3P) is a key node for both CO2 fixation and lipid metabolism in cyanobacteria. However, few studies have explored the use of G3P synthesis to improve photosynthetic lipid production. In this study, metabolic engineering combined with flux balance analysis (FBA) was conducted to reveal the effect of G3P synthesis on lipid production. Heterologous genes that encoded glycerol-3-phosphate dehydrogenase (GPD) and diacylglycerol acyltransferase (DGAT) were engineered into Synechocystis sp. PCC 6803 to enhance G3P supply and lipid production. The resultant recombinant Synechocystis produced higher levels of lipids without a significant reduction in cell growth. Compared with the wild-type strain, lipid content and productivity of the engineered cyanobacteria increased by up to 36 and 31 %, respectively, under autotrophic conditions. Lipid production under mixotrophic conditions of the engineered cyanobacteria was also investigated. This work demonstrated that enhanced G3P synthesis was an important factor in photosynthetic lipid production and that introducing heterologous GPD and DGAT genes was an effective strategy to increase lipid production in Synechocystis sp. PCC 6803.

  3. A critical role of plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase in the control of plant metabolism and development

    PubMed Central

    Muñoz-Bertomeu, Jesús; Cascales-Miñana, Borja; Alaiz, Manuel; Segura, Juan

    2010-01-01

    Glycolysis is a central metabolic pathway that provides energy and generates precursors for the synthesis of primary metabolites such as amino acids and fatty acids.1–3 In plants, glycolysis occurs in the cytosol and plastids, which complicates the understanding of this essential process.1 As a result, the contribution of each glycolytic pathway to the specific primary metabolite production and the degree of integration of both pathways is still unresolved. The glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the conversion of glyceraldehyde-3-phosphate to 1,3-bisphosphoglycerate. Both cytosolic (GAPCs) and plastidial (GAPCps) GAPDH activities have been described biochemically. But, up to now, little attention had been paid to GAPCps, probably because they have been considered as “minor isoforms” that catalyze a reversible reaction in plastids where it has been assumed that key glycolytic intermediates are in equilibrium with the cytosol. In the associated study,4 we have elucidated the crucial role of Arabidopsis GAPCps in the control of primary metabolism in plants. GAPCps deficiency affects amino acid and sugar metabolism and impairs plant development. Specifically, GAPCp deficiency affects the serine supply to roots, provoking a drastic phenotype of arrested root development. Also, we show that the phosphorylated serine biosynthesis pathway is critical to supply serine to non-photosynthetic organs such as roots. These studies provide new insights of the contribution of plastidial glycolysis to plant metabolism and evidence the complex interactions existing between metabolism and development. PMID:20592814

  4. Synergistic interaction of glyceraldehydes-3-phosphate dehydrogenase and ArsJ, a novel organoarsenical efflux permease, confers arsenate resistance.

    PubMed

    Chen, Jian; Yoshinaga, Masafumi; Garbinski, Luis D; Rosen, Barry P

    2016-06-01

    Microbial biotransformations are major contributors to the arsenic biogeocycle. In parallel with transformations of inorganic arsenic, organoarsenicals pathways have recently been recognized as important components of global cycling of arsenic. The well-characterized pathway of resistance to arsenate is reduction coupled to arsenite efflux. Here, we describe a new pathway of arsenate resistance involving biosynthesis and extrusion of an unusual pentavalent organoarsenical. A number of arsenic resistance (ars) operons have two genes of unknown function that are linked in these operons. One, gapdh, encodes the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase. The other, arsJ, encodes a major facilitator superfamily (MFS) protein. The two genes were cloned from the chromosome of Pseudomonas aeruginosa. When expressed together, but not alone, in Escherichia coli, gapdh and arsJ specifically conferred resistance to arsenate and decreased accumulation of As(V). Everted membrane vesicles from cells expressing arsJ accumulated As(V) in the presence of purified GAPDH, D-glceraldehylde 3-phosphate (G3P) and NAD(+) . GAPDH forms the unstable organoarsenical 1-arseno-3-phosphoglycerate (1As3PGA). We propose that ArsJ is an efflux permease that extrudes 1As3PGA from cells, where it rapidly dissociates into As(V) and 3-phosphoglycerate (3PGA), creating a novel pathway of arsenate resistance.

  5. Crystal Structures of Group B Streptococcus Glyceraldehyde-3-Phosphate Dehydrogenase: Apo-Form, Binary and Ternary Complexes

    PubMed Central

    Schormann, Norbert; Ayres, Chapelle A.; Fry, Alexandra; Green, Todd J.; Banerjee, Surajit; Ulett, Glen C.

    2016-01-01

    Glyceraldehyde 3-phosphate dehydrogenase or GAPDH is an evolutionarily conserved glycolytic enzyme. It catalyzes the two step oxidative phosphorylation of D-glyceraldehyde 3-phosphate into 1,3-bisphosphoglycerate using inorganic phosphate and NAD+ as cofactor. GAPDH of Group B Streptococcus is a major virulence factor and a potential vaccine candidate. Moreover, since GAPDH activity is essential for bacterial growth it may serve as a possible drug target. Crystal structures of Group B Streptococcus GAPDH in the apo-form, two different binary complexes and the ternary complex are described here. The two binary complexes contained NAD+ bound to 2 (mixed-holo) or 4 (holo) subunits of the tetrameric protein. The structure of the mixed-holo complex reveals the effects of NAD+ binding on the conformation of the protein. In the ternary complex, the phosphate group of the substrate was bound to the new Pi site in all four subunits. Comparison with the structure of human GAPDH showed several differences near the adenosyl binding pocket in Group B Streptococcus GAPDH. The structures also reveal at least three surface-exposed areas that differ in amino acid sequence compared to the corresponding areas of human GAPDH. PMID:27875551

  6. Characterization and partial purification of acyl-CoA:glycerol 3-phosphate acyltransferase from sunflower (Helianthus annuus L.) developing seeds.

    PubMed

    Ruiz-López, Noemí; Garcés, Rafael; Harwood, John L; Martínez-Force, Enrique

    2010-01-01

    The glycerol 3-phosphate acyltransferase (GPAT, EC 2.3.1.15) from sunflower (Helianthus annuus L.) microsomes has been characterised and partially purified. The in vitro determination of activity was optimized, and the maximum value for GPAT activity identified between 15 and 20 days after flowering. The apparent Michaelis-Menten K(m) for the glycerol 3-phosphate was 354 muM. The preferred substrates were palmitoyl-CoA = linoleoyl-CoA > oleoyl-CoA with the lowest activity using stearoyl-CoA. High solubilisation was achieved using 0.75% Tween80 and the solubilised GPAT was partially purified by ion-exchange chromatography using a Hi-Trap DEAE FF column, followed by gel filtration chromatography using a Superose 12 HR column. The fraction containing the GPAT activity was analysed by SDS-PAGE and contained a major band of 60.1 kDa. Finally, evidence is provided which shows the role of GPAT in the asymmetrical distribution, between positions sn-1 and sn-3, of saturated fatty acids in highly saturated sunflower triacylglycerols. This work provides background information on the sunflower endoplasmic reticulum GPAT which may prove valuable for future modification of oil deposition in this important crop.

  7. Cloning and characterisation of the glyceraldehyde 3-phosphate dehydrogenase gene of Candida bombicola and use of its promoter.

    PubMed

    Van Bogaert, Inge N A; De Maeseneire, Sofie L; Develter, Dirk; Soetaert, Wim; Vandamme, Erick J

    2008-10-01

    The glyceraldehyde-3-phosphate dehydrogenase gene (GPD) of the sophorolipid producing yeast Candida bombicola was isolated using degenerated PCR and genome walking. The obtained 3,740 bp contain the 1,008 bases of the coding sequence and 1,613 and 783 bp of the upstream and downstream regions, respectively. The corresponding protein shows high homology to the other known GPD genes and is 74% identical to the gyceraldehyde-3-phosphate dehydrogenase of Yarrowia lipolytica. The particular interest in the C. bombicola GPD gene sequence originates from the potential use of its promoter for high and constitutive expression of homologous and heterologous genes. Southern blot analysis did not give any indication for the presence of multiple GPD genes and it can therefore be expected that the promoter can be used for efficient and high expression. This hypothesis was further confirmed by the biased codon usage in the GPD gene. GDP promoter fragments of different lengths were used to construct hygromycin resistance cassettes. The constructs were used for the transformation of C. bombicola and all of them, even the ones with only 190 bp of the GPD promoter, were able to render the cells resistant to hygromycin. The efficacy of a short GPD promoter can be a convenient characteristic for the construction of compact expression cassettes or vectors for C. bombicola. The GenBank accession number of the sequence described in this article is EU315245.

  8. Crystal Structures of Group B Streptococcus Glyceraldehyde-3-Phosphate Dehydrogenase: Apo-Form, Binary and Ternary Complexes.

    PubMed

    Schormann, Norbert; Ayres, Chapelle A; Fry, Alexandra; Green, Todd J; Banerjee, Surajit; Ulett, Glen C; Chattopadhyay, Debasish

    2016-01-01

    Glyceraldehyde 3-phosphate dehydrogenase or GAPDH is an evolutionarily conserved glycolytic enzyme. It catalyzes the two step oxidative phosphorylation of D-glyceraldehyde 3-phosphate into 1,3-bisphosphoglycerate using inorganic phosphate and NAD+ as cofactor. GAPDH of Group B Streptococcus is a major virulence factor and a potential vaccine candidate. Moreover, since GAPDH activity is essential for bacterial growth it may serve as a possible drug target. Crystal structures of Group B Streptococcus GAPDH in the apo-form, two different binary complexes and the ternary complex are described here. The two binary complexes contained NAD+ bound to 2 (mixed-holo) or 4 (holo) subunits of the tetrameric protein. The structure of the mixed-holo complex reveals the effects of NAD+ binding on the conformation of the protein. In the ternary complex, the phosphate group of the substrate was bound to the new Pi site in all four subunits. Comparison with the structure of human GAPDH showed several differences near the adenosyl binding pocket in Group B Streptococcus GAPDH. The structures also reveal at least three surface-exposed areas that differ in amino acid sequence compared to the corresponding areas of human GAPDH.

  9. Hybrid polyketide synthases

    SciTech Connect

    Fortman, Jeffrey L.; Hagen, Andrew; Katz, Leonard; Keasling, Jay D.; Poust, Sean; Zhang, Jingwei; Zotchev, Sergey

    2016-05-10

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing an even-chain or odd-chain diacid or lactam or diamine. The present invention also provides for a host cell comprising the PKS and when cultured produces the even-chain diacid, odd-chain diacid, or KAPA. The present invention also provides for a host cell comprising the PKS capable of synthesizing a pimelic acid or KAPA, and when cultured produces biotin.

  10. Overexpression and nuclear accumulation of glyceraldehyde-3-phosphate dehydrogenase in a transgenic mouse model of Huntington's disease.

    PubMed

    Senatorov, Vladimir V; Charles, Vinod; Reddy, P H; Tagle, Dan A; Chuang, De-Maw

    2003-03-01

    Huntington's disease is due to an expansion of CAG repeats in the huntingtin gene. Huntingtin interacts with several proteins including glyceraldehyde-3-phosphate dehydrogenase (GAPDH). We performed immunohistochemical analysis of GAPDH expression in the brains of transgenic mice carrying the huntingtin gene with 89 CAG repeats. In all wild-type animals examined, GAPDH was evenly distributed among the different cell types throughout the brain. In contrast, the majority of transgenic mice showed GAPDH overexpression, with the most prominent GAPDH changes observed in the caudate putamen, globus pallidus, neocortex, and hippocampal formation. Double staining for NeuN and GFAP revealed that GAPDH overexpression occurred exclusively in neurons. Nissl staining analysis of the neocortex and caudate putamen indicated 24 and 27% of cell loss in transgenic mice, respectively. Subcellular fluorescence analysis revealed a predominant increase in GAPDH immunostaining in the nucleus. Thus, we conclude that mutation of huntingtin is associated with GAPDH overexpression and nuclear translocation in discrete populations of brain neurons.

  11. Analysis of l-glycerol-3-phosphate dehydrogenase mutants in Drosophila melanogaster: complementation for intracellular degradation of the mutant polypeptide.

    PubMed

    Bewley, G C; DeZurik, J M; Pagelson, G

    1980-01-01

    Null and low activity alleles at the genetic locus coding for L-Glycerol-3-phosphate dehydrogenase (alpha-GPDH, NAD+ oxidoreductase, E.C. 1.1.1.8) in Drosophila melanogaster have been analyzed by a combination of rocket immunoelectrophoresis, interallelic complementation, and two-dimensional gel electrophoresis. In addition to proving information on the molecular weight, charged state, and steady state level of CRM in each of these mutants, it is suggested that each mutation has resulted in a genetic lesion within the structural element, Gpdh+. CRM levels appear to be the result of differential sensitivity to the normal intracellular degradative process and the CRM- mutants represent "hypersensitive" alleles, such that the mutant polypeptide does not accumulate in the intracellular environment.

  12. Homocysteine induces glyceraldehyde-3-phosphate dehydrogenase acetylation and apoptosis in the neuroblastoma cell line Neuro2a

    PubMed Central

    Fang, M.; Jin, A.; Zhao, Y.; Liu, X.

    2016-01-01

    High plasma levels of homocysteine (Hcy) promote the progression of neurodegenerative diseases. However, the mechanism by which Hcy mediates neurotoxicity has not been elucidated. We observed that upon incubation with Hcy, the viability of a neuroblastoma cell line Neuro2a declined in a dose-dependent manner, and apoptosis was induced within 48 h. The median effective concentration (EC50) of Hcy was approximately 5 mM. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) nuclear translocation and acylation has been implicated in the regulation of apoptosis. We found that nuclear translocation and acetylation of GAPDH increased in the presence of 5 mM Hcy and that higher levels of acetyltransferase p300/CBP were detected in Neuro2a cells. These findings implicate the involvement of GAPDH in the mechanism whereby Hcy induces apoptosis in neurons. This study highlights a potentially important pathway in neurodegenerative disorders, and a novel target pathway for neuroprotective therapy. PMID:26785692

  13. Anaerobic energy-yielding reaction associated with transhydrogenation from glycerol 3-phosphate to fumarate by an Escherichia coli system.

    PubMed

    Miki, K; Lin, E C

    1975-12-01

    A particulate subcellular fraction from Escherichia coli K-12 induced in anaerobic sn-glycerol 3-phosphate (G3P) dehydrogenase and fumarate reductase can catalyze under anaerobic conditions the transfer of hydrogens from G3P to fumarate, with attendant generation of high-energy phosphate. The phsophorylation process is more sensitive than the transhydrogenation process to inhibition by the detergent Triton X-100. The same is true with respect to sensitivity to sodium azide, carbonyl cyanide m-chlorophenylhydrazone and N,N'-dicyclohexylcarbodiimide. Such a preparation derived from cells with beta-galactoside permease can accumulate thiomethyl beta-D-galactoside anaerobically, and the accumulation can be stimulated twofold by adding G3P and fumarate. Mutants lacking the membrane-associated Mg2+-dependent adenosine triphosphatase cannot grow anaerobically on glycerol with fumarate as the hydrogen acceptor, although they can grow aerobically on glycerol alone.

  14. Autonomous folding of the excised coenzyme-binding domain of D-glyceraldehyde 3-phosphate dehydrogenase from Thermotoga maritima.

    PubMed Central

    Jecht, M.; Tomschy, A.; Kirschner, K.; Jaenicke, R.

    1994-01-01

    An important question in protein folding is whether compact substructures or domains are autonomous units of folding and assembly. The protomer of the tetrameric D-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima has a complex coenzyme-binding domain, in which residues 1-146 form a compact substructure with the last 31 residues (313-333). Here it is shown that the gene of a single-chain protein can be expressed in Escherichia coli after deleting the 163 codons corresponding to the interspersed catalytic domain (150-312). The purified gene product is a soluble, monomeric protein that binds both NAD+ and NADH strongly and possesses the same unfolding transition induced by guanidinium chloride as the native tetramer. The autonomous folding of the coenzyme-binding domain has interesting implications for the folding, assembly, function, and evolution of the native enzyme. PMID:8019412

  15. Characterization of two proteins of Staphylococcus aureus isolated from bovine clinical mastitis with homology to glyceraldehyde-3-phosphate dehydrogenase.

    PubMed

    Goji, Noriko; Potter, Andrew A; Perez-Casal, Jose

    2004-04-19

    Staphylococcus aureus is the most common causative agent of bovine mastitis and vaccines developed to control this disease showed limited protection due in part to the lack of common antigens among the mastitis isolates. We isolated and identified two genes encoding proteins with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity from a S. aureus strain isolated from bovine clinical mastitis. The GapB and GapC proteins share considerable homology to the GapB and GapC products of human strains of S. aureus. These two proteins could be distinguished by their different GAPDH activities and binding to bovine transferrin properties. Both gapB and gapC genes were conserved in 11 strains tested, and the GapC protein was present on the surface of all S. aureus strains.

  16. Over-expression of PsGPD, a mushroom glyceraldehyde-3-phosphate dehydrogenase gene, enhances salt tolerance in rice plants.

    PubMed

    Cho, Jung-Il; Lim, Hye-Min; Siddiqui, Zamin Shaheed; Park, Sung-Han; Kim, A-Ram; Kwon, Taek-Ryoun; Lee, Seong-Kon; Park, Soo-Chul; Jeong, Mi-Jeong; Lee, Gang-Seob

    2014-08-01

    Transgenic potatoes expressing glyceraldehyde-3-phosphate dehydrogenase (GPD), isolated from the oyster mushroom, Pleurotus sajor-caju, had increased tolerance to salt stress (Jeong et al. Biochem Biophys Res Commun 278:192-196, 2000). To examine the physiological mechanisms enhancing salt tolerance in GPD-transgenic rice plants, the salt tolerance of five GPD transgenic rice lines (T1-T5) derived from Dongjin rice cultivar were evaluated in a fixed 150 mM saline environment in comparison to two known wild-type rice cultivars, Dongjin (salt sensitive) and Pokali (salt tolerant). Transgenic lines, T2, T3, and T5, had a substantial increase in biomass and relative water content compared to Dongjin. Stomatal conductance and osmotic potential were higher in the GPD transgenic lines and were similar to those in Pokali. The results are discussed based on the comparative physiological response of GPD transgenic lines with those of the salt-sensitive and salt-tolerant rice cultivars.

  17. The sweet side of RNA regulation: glyceraldehyde-3-phosphate dehydrogenase as a noncanonical RNA-binding protein

    PubMed Central

    White, Michael R.; Garcin, Elsa D.

    2016-01-01

    The glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), has a vast array of extraglycolytic cellular functions, including interactions with nucleic acids. GAPDH has been implicated in the translocation of transfer RNA (tRNA), the regulation of cellular messenger RNA (mRNA) stability and translation, as well as the regulation of replication and gene expression of many single-stranded RNA viruses. A growing body of evidence supports GAPDH–RNA interactions serving as part of a larger coordination between intermediary metabolism and RNA biogenesis. Despite the established role of GAPDH in nucleic acid regulation, it is still unclear how and where GAPDH binds to its RNA targets, highlighted by the absence of any conserved RNA-binding sequences. This review will summarize our current understanding of GAPDH-mediated regulation of RNA function. PMID:26564736

  18. Anaerobic energy-yielding reaction associated with transhydrogenation from glycerol 3-phosphate to fumarate by an Escherichia coli system.

    PubMed Central

    Miki, K; Lin, E C

    1975-01-01

    A particulate subcellular fraction from Escherichia coli K-12 induced in anaerobic sn-glycerol 3-phosphate (G3P) dehydrogenase and fumarate reductase can catalyze under anaerobic conditions the transfer of hydrogens from G3P to fumarate, with attendant generation of high-energy phosphate. The phsophorylation process is more sensitive than the transhydrogenation process to inhibition by the detergent Triton X-100. The same is true with respect to sensitivity to sodium azide, carbonyl cyanide m-chlorophenylhydrazone and N,N'-dicyclohexylcarbodiimide. Such a preparation derived from cells with beta-galactoside permease can accumulate thiomethyl beta-D-galactoside anaerobically, and the accumulation can be stimulated twofold by adding G3P and fumarate. Mutants lacking the membrane-associated Mg2+-dependent adenosine triphosphatase cannot grow anaerobically on glycerol with fumarate as the hydrogen acceptor, although they can grow aerobically on glycerol alone. PMID:127785

  19. cDNA, genomic sequence cloning and overexpression of glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH) from the Giant Panda.

    PubMed

    Hou, Wan-Ru; Hou, Yi-Ling; Du, Yu-Jie; Zhang, Tian; Hao, Yan-Zhe

    2010-01-01

    GAPDH (glyceraldehyde-3-phosphate dehydrogenase) is a key enzyme of the glycolytic pathway and it is related to the occurrence of some diseases. The cDNA and the genomic sequence of GAPDH were cloned successfully from the Giant Panda (Ailuropoda melanoleuca) using the RT-PCR technology and Touchdown-PCR, respectively. Both sequences were analyzed preliminarily. The cDNA of GAPDH cloned from the Giant Panda is 1191 bp in size, contains an open reading frame of 1002 bp encoding 333 amino acids. The genomic sequence is 3941 bp in length and was found to possess 10 exons and 9 introns. Alignment analysis indicates that the nucleotide sequence and the deduced amino acid sequence are highly conserved in some mammalian species, including Homo sapiens, Mu musculus, Rattus norvegicus, Canis lupus familiaris and Bos taurus. The homologies for the nucleotide sequences of the Giant Panda GAPDH to that of these species are 90.67, 90.92, 90.62, 95.01 and 92.32% respectively, while the homologies for the amino acid sequences are 94.93, 95.5, 95.8, 98.8 and 97.0%. Primary structure analysis revealed that the molecular weight of the putative GAPDH protein is 35.7899 kDa with a theoretical pI of 8.21. Topology prediction showed that there is one Glyceraldehyde 3-phosphate dehydrogenase active site, two N-glycosylation sites, four Casein kinase II phosphorylation sites, seven Protein kinase C phosphorylation sites and eight N-myristoylation sites in the GAPDH protein of the Giant Panda. The GAPDH gene was overexpressed in E. coli BL21. The results indicated that the fusion of GAPDH with the N-terminally His-tagged form gave rise to the accumulation of an expected 43 kDa polypeptide. The SDS-PAGE analysis also showed that the recombinant GAPDH was soluble and thus could be used for further functional studies.

  20. The role of glycerol-3-phosphate dehydrogenase 1 in the progression of fatty liver after acute ethanol administration in mice.

    PubMed

    Sato, Tomoki; Morita, Akihito; Mori, Nobuko; Miura, Shinji

    2014-02-21

    Acute ethanol consumption leads to the accumulation of triglycerides (TGs) in hepatocytes. The increase in lipogenesis and reduction of fatty acid oxidation are implicated as the mechanisms underlying ethanol-induced hepatic TG accumulation. Although glycerol-3-phosphate (Gro3P), formed by glycerol kinase (GYK) or glycerol-3-phosphate dehydrogenase 1 (GPD1), is also required for TG synthesis, the roles of GYK and GPD1 have been the subject of some debate. In this study, we examine (1) the expression of genes involved in Gro3P production in the liver of C57BL/6J mice in the context of hepatic TG accumulation after acute ethanol intake, and (2) the role of GPD1 in the progression of ethanol-induced fatty liver using GPD1 null mice. As a result, in C57BL/6J mice, ethanol-induced hepatic TG accumulation began within 2h and was 1.7-fold greater than that observed in the control group after 6h. The up-regulation of GPD1 began 2h after administering ethanol, and significantly increased 6h later with the concomitant escalation in the glycolytic gene expression. The incorporation of (14)C-labelled glucose into TG glycerol moieties increased during the same period. On the other hand, in GPD1 null mice carrying normal GYK activity, no significant increase in hepatic TG level was observed after acute ethanol intake. In conclusion, GPD1 and glycolytic gene expression is up-regulated by ethanol, and GPD1-mediated incorporation of glucose into TG glycerol moieties together with increased lipogenesis, is suggested to play an important role in ethanol-induced hepatic TG accumulation.

  1. Glyceraldehyde 3-phosphate dehydrogenase augments the intercellular transmission and toxicity of polyglutamine aggregates in a cell model of Huntington disease.

    PubMed

    Mikhaylova, Elena R; Lazarev, Vladimir F; Nikotina, Alina D; Margulis, Boris A; Guzhova, Irina V

    2016-03-01

    The common feature of Huntington disease is the accumulation of oligomers or aggregates of mutant huntingtin protein (mHTT), which causes the death of a subset of striatal neuronal populations. The cytotoxic species can leave neurons and migrate to other groups of cells penetrating and damaging them in a prion-like manner. We hypothesized that the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH), previously shown to elevate the aggregation of mHTT, is associated with an increased efficiency of intercellular propagation of mHTT. GAPDH, on its own or together with polyglutamine species, was shown to be released into the extracellular milieu mainly from dying cells as assessed by a novel enzyme immunoassay, western blotting, and ultrafiltration. The conditioned medium of cells with growing GAPDH-polyQ aggregates was toxic to naïve cells, whereas depletion of the aggregates from the medium lowered this cytotoxicity. The GAPDH component of the aggregates was found to increase their toxicity by two-fold in comparison with polyQ alone. Furthermore, GAPDH-polyQ complexes were shown to penetrate acceptor cells and to increase the capacity of polyQ to prionize its intracellular homolog containing a repeat of 25 glutamine residues. Finally, inhibitors of intracellular transport showed that polyQ-GAPDH complexes, as well as GAPDH itself, penetrated cells using clathrin-mediated endocytosis. This suggested a pivotal role of the enzyme in the intercellular transmission of Huntington disease pathogenicity. In conclusion, GAPDH occurring in complexes with polyglutamine strengthens the prion-like activity and toxicity of the migrating aggregates. Aggregating polygluatmine tracts were shown to release from the cells over-expressing mutant huntingtin in a complex with glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The enzyme enhances the intracellular transport of aggregates to healthy cells, prionization of normal cellular proteins and finally cell death, thus

  2. Purification and properties of glycerol-3-phosphate dehydrogenase from the liver of the hibernating ground squirrel, Urocitellus richardsonii.

    PubMed

    Ruberto, Anthony A; Childers, Christine L; Storey, Kenneth B

    2016-12-01

    Cytosolic glycerol-3-phosphate dehydrogenase (G3PDH, EC 1.1.1.8) is an important branch point enzyme connecting lipid metabolism and carbohydrate metabolism. We investigated the dynamic nature of G3PDH by purifying the enzyme from the liver of Richardson's ground squirrel (Urocitellus richardsonii), a hibernating species, and analyzing its structural and functional changes during hibernation. Kinetic parameters of purified G3PDH from ground squirrel liver were characterized at 37, 22 and 5°C and compared between euthermic and hibernating states. Relative to euthermic liver G3PDH, hibernator liver G3PDH had a decreased affinity for its substrate, glycerol-3-phosphate (G3P), at 37°C and 22°C. However, at 5°C, there was a significant increase in the affinity for G3P in the hibernating form of the enzyme, relative to the euthermic form. Furthermore, the structure of G3PDH in the species' hibernating state showed greater thermal stability compared to its structure in the euthermic state. Western blot analysis revealed greater tyrosine phosphorylation in hibernator G3PDH as compared to euthermic G3PDH. In addition, using the protein sequence of the hibernating thirteen-lined ground squirrel (Ictidomys tridecemlineatus) and bioinformatics tools, a three-dimensional model of G3PDH was built to identify the potential phosphorylation site ((83)Tyr) responsible for the differential phosphorylation between euthermic and hibernator G3PDH. The structural and functional changes in G3PDH support the enzyme's function at a low core body temperature experienced during the species hibernating season.

  3. Mammalian ceramide synthases.

    PubMed

    Levy, Michal; Futerman, Anthony H

    2010-05-01

    In mammals, ceramide, a key intermediate in sphingolipid metabolism and an important signaling molecule, is synthesized by a family of six ceramide synthases (CerS), each of which synthesizes ceramides with distinct acyl chain lengths. There are a number of common biochemical features between the CerS, such as their catalytic mechanism, and their structure and intracellular localization. Different CerS also display remarkable differences in their biological properties, with each of them playing distinct roles in processes as diverse as cancer and tumor suppression, in the response to chemotherapeutic drugs, in apoptosis, and in neurodegenerative diseases.

  4. Monoterpene synthases from common sage (Salvia officinalis)

    DOEpatents

    Croteau, Rodney Bruce; Wise, Mitchell Lynn; Katahira, Eva Joy; Savage, Thomas Jonathan

    1999-01-01

    cDNAs encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase from common sage (Salvia officinalis) have been isolated and sequenced, and the corresponding amino acid sequences has been determined. Accordingly, isolated DNA sequences (SEQ ID No:1; SEQ ID No:3 and SEQ ID No:5) are provided which code for the expression of (+)-bornyl diphosphate synthase (SEQ ID No:2), 1,8-cineole synthase (SEQ ID No:4) and (+)-sabinene synthase SEQ ID No:6), respectively, from sage (Salvia officinalis). In other aspects, replicable recombinant cloning vehicles are provided which code for (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase, or for a base sequence sufficiently complementary to at least a portion of (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant monoterpene synthases that may be used to facilitate their production, isolation and purification in significant amounts. Recombinant (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase may be used to obtain expression or enhanced expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase in plants in order to enhance the production of monoterpenoids, or may be otherwise employed for the regulation or expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase, or the production of their products.

  5. Expression, purification, crystallization and preliminary X-ray analysis of an NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Helicobacter pylori

    SciTech Connect

    Elliott, Paul R.; Evans, Daniel; Greenwood, Jacqueline A.; Moody, Peter C. E.

    2008-08-01

    Glyceraldehyde-3-phosphate dehydrogenase A has been cloned, expressed and purified. Apoprotein crystals have been grown which diffracted to 1.75 Å resolution and belonged to space group P2{sub 1}; holo crystals were grown in the presence of NADP, diffracted to 2.6 Å resolution and belonged to space group P3{sub 2}. The classical glycolytic pathway contains an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase, with NADP-dependent forms reserved for photosynthetic organisms and archaea. Here, the cloning, expression, purification, crystallization and preliminary X-ray analysis of an NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Helicobacter pylori is reported; crystals of the protein were grown both in the presence and the absence of NADP.

  6. Glyceraldehyde-3-phosphate ferredoxin oxidoreductase (GAPOR) and nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN), key enzymes of the respective modified Embden-Meyerhof pathways in the hyperthermophilic crenarchaeota Pyrobaculum aerophilum and Aeropyrum pernix.

    PubMed

    Reher, Matthias; Gebhard, Susanne; Schönheit, Peter

    2007-08-01

    The growth of Pyrobaculum aerophilum on yeast extract and nitrate was stimulated by the addition of maltose. Extracts of maltose/yeast extract/nitrate-grown cells contained all enzyme activities of a modified Embden-Meyerhof (EM) pathway, including ATP-dependent glucokinase, phosphoglucose isomerase, ATP-dependent 6-phosphofructokinase, fructose-1,6-phosphate aldolase, triose-phosphate isomerase, GAPOR, phosphoglycerate mutase, enolase and pyruvate kinase. The activity of GAPOR was stimulated about fourfold by maltose, indicating a role in sugar degradation. GAPOR was purified 200-fold to homogeneity and characterized as a 67 kDa monomeric, extremely thermostable protein. The enzyme showed high specificity for glyceraldehyde-3-phosphate and did not use glyceraldehyde, acetaldehyde or formaldehyde as substrates. By matrix-assisted laser desorption/ionization-time of flight analysis of the purified enzyme, ORF PA1029 was identified as a coding gene, gapor, in the sequenced genome of Pyrobaculum aerophilum. The data indicate that the (micro)aerophilic Pyrobaculum aerophilum contains a functional GAPOR as part of a modified EM pathway. Cells of the strictly aerobic crenarchaeon Aeropyrum pernix also contain enzyme activities of a modified EM pathway similar to that of Pyrobaculum aerophilum, except that a GAPN activity replaces GAPOR activity.

  7. The role of glycerol-3-phosphate dehydrogenase 1 in the progression of fatty liver after acute ethanol administration in mice

    SciTech Connect

    Sato, Tomoki; Morita, Akihito; Mori, Nobuko; Miura, Shinji

    2014-02-21

    Highlights: • Ethanol administration increased GPD1 mRNA expression. • Ethanol administration increased glucose incorporation into TG glycerol moieties. • No increase in hepatic TG levels was observed in ethanol-injected GPD1 null mice. • We propose that GPD1 is required for ethanol-induced TG accumulation in the liver. - Abstract: Acute ethanol consumption leads to the accumulation of triglycerides (TGs) in hepatocytes. The increase in lipogenesis and reduction of fatty acid oxidation are implicated as the mechanisms underlying ethanol-induced hepatic TG accumulation. Although glycerol-3-phosphate (Gro3P), formed by glycerol kinase (GYK) or glycerol-3-phosphate dehydrogenase 1 (GPD1), is also required for TG synthesis, the roles of GYK and GPD1 have been the subject of some debate. In this study, we examine (1) the expression of genes involved in Gro3P production in the liver of C57BL/6J mice in the context of hepatic TG accumulation after acute ethanol intake, and (2) the role of GPD1 in the progression of ethanol-induced fatty liver using GPD1 null mice. As a result, in C57BL/6J mice, ethanol-induced hepatic TG accumulation began within 2 h and was 1.7-fold greater than that observed in the control group after 6 h. The up-regulation of GPD1 began 2 h after administering ethanol, and significantly increased 6 h later with the concomitant escalation in the glycolytic gene expression. The incorporation of {sup 14}C-labelled glucose into TG glycerol moieties increased during the same period. On the other hand, in GPD1 null mice carrying normal GYK activity, no significant increase in hepatic TG level was observed after acute ethanol intake. In conclusion, GPD1 and glycolytic gene expression is up-regulated by ethanol, and GPD1-mediated incorporation of glucose into TG glycerol moieties together with increased lipogenesis, is suggested to play an important role in ethanol-induced hepatic TG accumulation.

  8. Mechanisms of acetohydroxyacid synthases.

    PubMed

    Chipman, David M; Duggleby, Ronald G; Tittmann, Kai

    2005-10-01

    Acetohydroxyacid synthases are thiamin diphosphate- (ThDP-) dependent biosynthetic enzymes found in all autotrophic organisms. Over the past 4-5 years, their mechanisms have been clarified and illuminated by protein crystallography, engineered mutagenesis and detailed single-step kinetic analysis. Pairs of catalytic subunits form an intimate dimer containing two active sites, each of which lies across a dimer interface and involves both monomers. The ThDP adducts of pyruvate, acetaldehyde and the product acetohydroxyacids can be detected quantitatively after rapid quenching. Determination of the distribution of intermediates by NMR then makes it possible to calculate individual forward unimolecular rate constants. The enzyme is the target of several herbicides and structures of inhibitor-enzyme complexes explain the herbicide-enzyme interaction.

  9. Nuclear translocation and accumulation of glyceraldehyde-3-phosphate dehydrogenase involved in diclazuril-induced apoptosis in Eimeria tenella (E. tenella).

    PubMed

    Wang, Congcong; Han, Chunzhou; Li, Tao; Yang, Dehao; Shen, Xiaojiong; Fan, Yinxin; Xu, Yang; Zheng, Wenli; Fei, Chenzhong; Zhang, Lifang; Xue, Feiqun

    2013-05-07

    In mammalian cells, GAPDH (glyceraldehyde-3-phosphate dehydrogenase) has recently been shown to be implicated in numerous apoptotic paradigms, especially in neuronal apoptosis, and has been demonstrated to play a vital role in some neurodegenerative disorders. However, this phenomenon has not been reported in protists. In the present study, we report for the first time that such a mechanism is involved in diclazuril-induced apoptosis in Eimeria tenella (E. tenella). We found that upon treatment of parasites with diclazuril, the expression levels of GAPDH transcript and protein were significantly increased in second-generation merozoites. Then, we examined the subcellular localization of GAPDH by fluorescence microscopy and Western blot analysis. The results show that a considerable amount of GAPDH protein appeared in the nucleus within diclazuril-treated second-generation merozoites; in contrast, the control group had very low levels of GAPDH in the nucleus. The glycolytic activity of GAPDH was kinetically analyzed in different subcellular fractions. A substantial decrease (48.5%) in glycolytic activity of GAPDH in the nucleus was displayed. Moreover, the activities of caspases-3, -9, and -8 were measured in cell extracts using specific caspase substrates. The data show significant increases in caspase-3 and caspase-9 activities in the diclazuril-treated group.

  10. Identification of a mammalian glycerol-3-phosphate phosphatase: Role in metabolism and signaling in pancreatic β-cells and hepatocytes.

    PubMed

    Mugabo, Yves; Zhao, Shangang; Seifried, Annegrit; Gezzar, Sari; Al-Mass, Anfal; Zhang, Dongwei; Lamontagne, Julien; Attane, Camille; Poursharifi, Pegah; Iglesias, José; Joly, Erik; Peyot, Marie-Line; Gohla, Antje; Madiraju, S R Murthy; Prentki, Marc

    2016-01-26

    Obesity, and the associated disturbed glycerolipid/fatty acid (GL/FA) cycle, contribute to insulin resistance, islet β-cell failure, and type 2 diabetes. Flux through the GL/FA cycle is regulated by the availability of glycerol-3-phosphate (Gro3P) and fatty acyl-CoA. We describe here a mammalian Gro3P phosphatase (G3PP), which was not known to exist in mammalian cells, that can directly hydrolyze Gro3P to glycerol. We identified that mammalian phosphoglycolate phosphatase, with an uncertain function, acts in fact as a G3PP. We found that G3PP, by controlling Gro3P levels, regulates glycolysis and glucose oxidation, cellular redox and ATP production, gluconeogenesis, glycerolipid synthesis, and fatty acid oxidation in pancreatic islet β-cells and hepatocytes, and that glucose stimulated insulin secretion and the response to metabolic stress, e.g., glucolipotoxicity, in β-cells. In vivo overexpression of G3PP in rat liver lowers body weight gain and hepatic glucose production from glycerol and elevates plasma HDL levels. G3PP is expressed at various levels in different tissues, and its expression varies according to the nutritional state in some tissues. As Gro3P lies at the crossroads of glucose, lipid, and energy metabolism, control of its availability by G3PP adds a key level of metabolic regulation in mammalian cells, and G3PP offers a potential target for type 2 diabetes and cardiometabolic disorders.

  11. Deficiency of glycerol-3-phosphate acyltransferase 1 decreases triacylglycerol storage and induces fatty acid oxidation in insect fat body.

    PubMed

    Alves-Bezerra, Michele; Ramos, Isabela B; De Paula, Iron F; Maya-Monteiro, Clarissa M; Klett, Eric L; Coleman, Rosalind A; Gondim, Katia C

    2017-03-01

    Glycerol-3-phosphate acyltransferases (GPAT) catalyze the initial and rate-limiting step for the de novo synthesis of triacylglycerol (TAG). Four mammalian GPAT isoforms have been identified: the mitochondria-associated GPAT1 and 2, and the endoplasmic reticulum (ER)-associated GPAT3 and 4. In the insect Rhodnius prolixus, a vector of Chagas' disease, we previously predicted a mitochondrial-like isoform (RhoprGPAT1) from genomic data. In the current study, we clone the RhoprGPAT1 coding sequence and identify an ER-associated GPAT (RhoprGPAT4) as the second isoform in the insect. RhoprGPAT1 contributes 15% of the total GPAT activity in anterior midgut, 50% in posterior midgut and fat body, and 70% in the ovary. The RhoprGpat1 gene is the predominant transcript in the midgut and fat body. To evaluate the physiological relevance of RhoprGPAT1, we generate RhoprGPAT1-deficient insects. The knockdown of RhoprGpat1 results in 50% and 65% decrease in TAG content in the posterior midgut and fat body, respectively. RhoprGpat1-deficient insects also exhibits impaired lipid droplet expansion and a 2-fold increase in fatty acid β-oxidation rates in the fat body. We propose that the RhoprGPAT1 mitochondrial-like isoform is required to channel fatty acyl chains towards TAG synthesis and away from β-oxidation. Such a process is crucial for the insect lipid homeostasis.

  12. Fatty acid synthesis and generation of glycerol-3-phosphate in brown adipose tissue from rats fed a cafeteria diet.

    PubMed

    Chaves, Valéria E; Frasson, Danúbia; Martins-Santos, Maria E S; Navegantes, Luiz C C; Galban, Victor D; Garófalo, Maria A R; Kettelhut, Isis C; Migliorini, Renato H

    2008-07-01

    In vivo fatty acid synthesis and the pathways of glycerol-3-phosphate (G3P) production were investigated in brown adipose tissue (BAT) from rats fed a cafeteria diet for 3 weeks. In spite of BAT activation, the diet promoted an increase in the carcass fatty acid content. Plasma insulin levels were markedly increased in cafeteria diet-fed rats. Two insulin-sensitive processes, in vivo fatty acid synthesis and in vivo glucose uptake (which was used to evaluate G3P generation via glycolysis) were increased in BAT from rats fed the cafeteria diet. Direct glycerol phosphorylation, evaluated by glycerokinase (GyK) activity and incorporation of [U-14C]glycerol into triacylglycerol (TAG)-glycerol, was also markedly increased in BAT from these rats. In contrast, the cafeteria diet induced a marked reduction of BAT glyceroneogenesis, evaluated by phosphoenolpyruvate carboxykinase-C activity and incorporation of [1-14C]pyruvate into TAG-glycerol. BAT denervation resulted in an approximately 50% reduction of GyK activity, but did not significantly affect BAT in vivo fatty acid synthesis, in vivo glucose uptake, or glyceroneogenesis. The data suggest that the supply of G3P for BAT TAG synthesis can be adjusted independently from the sympathetic nervous system and solely by reciprocal changes in the generation of G3P via glycolysis and via glyceroneogenesis, with no participation of direct phosphorylation of glycerol by GyK.

  13. Glycerol-3-phosphate acyltransferase 4 is essential for the normal development of reproductive organs and the embryo in Brassica napus.

    PubMed

    Chen, Xue; Chen, Guanqun; Truksa, Martin; Snyder, Crystal L; Shah, Saleh; Weselake, Randall J

    2014-08-01

    The enzyme sn-glycerol-3-phosphate acyltransferase 4 (GPAT4) is involved in the biosynthesis of plant lipid poly-esters. The present study further characterizes the enzymatic activities of three endoplasmic reticulum-bound GPAT4 isoforms of Brassica napus and examines their roles in the development of reproductive organs and the embryo. All three BnGPAT4 isoforms exhibited sn-2 acyltransferase and phosphatase activities with dicarboxylic acid-CoA as acyl donor. When non-substituted acyl-CoA was used as acyl donor, the rate of acylation was considerably lower and phosphatase activity was not manifested. RNA interference (RNAi)-mediated down-regulation of all GPAT4 homologues in B. napus under the control of the napin promoter caused abnormal development of several reproductive organs and reduced seed set. Microscopic examination and reciprocal crosses revealed that both pollen grains and developing embryo sacs of the B. napus gpat4 lines were affected. The gpat4 mature embryos showed decreased cutin content and altered monomer composition. The defective embryo development further affected the oil body morphology, oil content, and fatty acid composition in gpat4 seeds. These results suggest that GPAT4 has a critical role in the development of reproductive organs and the seed of B. napus.

  14. Glyceraldehyde 3-phosphate dehydrogenase protein and mRNA are both differentially expressed in adult chickens but not chick embryos.

    PubMed Central

    Milner, R J; Brow, M D; Cleveland, D W; Shinnick, T M; Sutcliffe, J G

    1983-01-01

    We have determined the 679 nucleotide sequence of a cDNA clone which, by hybridization-translation experiments, corresponds to a 36K chick brain protein. Our studies provide a partial amino acid sequence for this protein, identifying it as chicken glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Antisera raised against purified chicken GAPDH reacted with a 36K protein present in chick brain extracts and estimated to be the fourth most prevalent protein, as determined by either Coomassie Blue staining or by in vitro translation of chick brain mRNA. The amounts of GAPDH mRNA in chick brain, liver and muscle and adult chicken brain are similar, whereas the relative amount of adult chicken muscle GPDH mRNA is greatly elevated and that of adult liver lowered. The GAPDH protein levels showed a similar variation between tissues, suggesting that the levels of GAPDH protein are largely regulated by the amount of available GAPDH mRNA. The chicken GAPDH clone does not hybridize to rat mRNA, even though GAPDH is one of the most evolutionarily conserved proteins, indicating that selection pressures are heavier at the primary protein sequence level than at the nucleic acid sequence level for this gene, a situation contrasting to that of the tubulins. Images PMID:6687938

  15. Export of malaria proteins requires co-translational processing of the PEXEL motif independent of phosphatidylinositol-3-phosphate binding

    PubMed Central

    Boddey, Justin A.; O'Neill, Matthew T.; Lopaticki, Sash; Carvalho, Teresa G.; Hodder, Anthony N.; Nebl, Thomas; Wawra, Stephan; van West, Pieter; Ebrahimzadeh, Zeinab; Richard, Dave; Flemming, Sven; Spielmann, Tobias; Przyborski, Jude; Babon, Jeff J.; Cowman, Alan F.

    2016-01-01

    Plasmodium falciparum exports proteins into erythrocytes using the Plasmodium export element (PEXEL) motif, which is cleaved in the endoplasmic reticulum (ER) by plasmepsin V (PMV). A recent study reported that phosphatidylinositol-3-phosphate (PI(3)P) concentrated in the ER binds to PEXEL motifs and is required for export independent of PMV, and that PEXEL motifs are functionally interchangeable with RxLR motifs of oomycete effectors. Here we show that the PEXEL does not bind PI(3)P, and that this lipid is not concentrated in the ER. We find that RxLR motifs cannot mediate export in P. falciparum. Parasites expressing a mutated version of KAHRP, with the PEXEL motif repositioned near the signal sequence, prevented PMV cleavage. This mutant possessed the putative PI(3)P-binding residues but is not exported. Reinstatement of PEXEL to its original location restores processing by PMV and export. These results challenge the PI(3)P hypothesis and provide evidence that PEXEL position is conserved for co-translational processing and export. PMID:26832821

  16. The glyceraldehyde-3-phosphate dehydrogenase homologue is differentially regulated in phases of Paracoccidioides brasiliensis: molecular and phylogenetic analysis.

    PubMed

    Barbosa, Mônica S; Cunha Passos, Daniela A; Felipe, M Sueli S; Jesuíno, Rosália S A; Pereira, Maristela; de Almeida Soares, Célia M

    2004-07-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays important roles in various cellular processes. Here we report the sequence and analysis of a novel developmentally regulated gene and cDNA (Pbgadph), encoding a GAPDH homologue (PbGAPDH), of the pathogenic dimorphic fungus Paracoccidioides brasiliensis. We have analyzed the protein, the cDNA and genomic sequences to provide insights into the structure, function, and potential regulation of PbGAPDH. That Pbgapdh encodes PbGAPDH was demonstrated by micro-sequencing of the native protein homologue isolated from the fungus proteome. The deduced amino acid sequence of Pbgapdh showed identity to those of from other species (88-76%). Phylogenetic analysis indicated that GAPDH could be useful for the determination of evolutionary relationships. Expression of the Pbgapdh gene and the cognate protein were developmentally regulated in phases of P. brasiliensis, with a higher expression in the yeast parasitic phase and was induced during the transition from mycelium to yeast and decreased during the reverse process, transition from yeast to mycelium.

  17. Autophagy and endosomal trafficking inhibition by Vibrio cholerae MARTX toxin phosphatidylinositol-3-phosphate-specific phospholipase A1 activity

    PubMed Central

    Agarwal, Shivani; Kim, Hyunjin; Chan, Robin B.; Agarwal, Shivangi; Williamson, Rebecca; Cho, Wonhwa; Paolo, Gilbert D.; Satchell, Karla J. F.

    2015-01-01

    Vibrio cholerae, responsible for acute gastroenteritis secretes a large multifunctional-autoprocessing repeat-in-toxin (MARTX) toxin linked to evasion of host immune system, facilitating colonization of small intestine. Unlike other effector domains of the multifunctional toxin that target cytoskeleton, the function of alpha-beta hydrolase (ABH) remained elusive. This study demonstrates that ABH is an esterase/lipase with catalytic Ser–His–Asp triad. ABH binds with high affinity to phosphatidylinositol-3-phosphate (PtdIns3P) and cleaves the fatty acid in PtdIns3P at the sn1 position in vitro making it the first PtdIns3P-specific phospholipase A1 (PLA1). Expression of ABH in vivo reduces intracellular PtdIns3P levels and its PtdIns3P-specific PLA1 activity blocks endosomal and autophagic pathways. In accordance with recent studies acknowledging the potential of extracellular pathogens to evade or exploit autophagy to prevent their clearance and facilitate survival, this is the first report highlighting the role of ABH in inhibiting autophagy and endosomal trafficking induced by extracellular V. cholerae. PMID:26498860

  18. Enhanced resistance in Theobroma cacao against oomycete and fungal pathogens by secretion of phosphatidylinositol-3-phosphate-binding proteins.

    PubMed

    Helliwell, Emily E; Vega-Arreguín, Julio; Shi, Zi; Bailey, Bryan; Xiao, Shunyuan; Maximova, Siela N; Tyler, Brett M; Guiltinan, Mark J

    2016-03-01

    The internalization of some oomycete and fungal pathogen effectors into host plant cells has been reported to be blocked by proteins that bind to the effectors' cell entry receptor, phosphatidylinositol-3-phosphate (PI3P). This finding suggested a novel strategy for disease control by engineering plants to secrete PI3P-binding proteins. In this study, we tested this strategy using the chocolate tree Theobroma cacao. Transient expression and secretion of four different PI3P-binding proteins in detached leaves of T. cacao greatly reduced infection by two oomycete pathogens, Phytophthora tropicalis and Phytophthora palmivora, which cause black pod disease. Lesion size and pathogen growth were reduced by up to 85%. Resistance was not conferred by proteins lacking a secretory leader, by proteins with mutations in their PI3P-binding site, or by a secreted PI4P-binding protein. Stably transformed, transgenic T. cacao plants expressing two different PI3P-binding proteins showed substantially enhanced resistance to both P. tropicalis and P. palmivora, as well as to the fungal pathogen Colletotrichum theobromicola. These results demonstrate that secretion of PI3P-binding proteins is an effective way to increase disease resistance in T. cacao, and potentially in other plants, against a broad spectrum of pathogens.

  19. SIRT1 interacts with and protects glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from nuclear translocation: Implications for cell survival after irradiation

    SciTech Connect

    Joo, Hyun-Yoo; Woo, Seon Rang; Shen, Yan-Nan; Yun, Mi Yong; Shin, Hyun-Jin; Park, Eun-Ran; Kim, Su-Hyeon; Park, Jeong-Eun; Ju, Yeun-Jin; Hong, Sung Hee; Hwang, Sang-Gu; Cho, Myung-Haing; Kim, Joon; Lee, Kee-Ho

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer SIRT1 serves to retain GAPDH in the cytosol, preventing GAPDH nuclear translocation. Black-Right-Pointing-Pointer When SIRT1 is depleted, GAPDH translocation occurs even in the absence of stress. Black-Right-Pointing-Pointer Upon irradiation, SIRT1 interacts with GAPDH. Black-Right-Pointing-Pointer SIRT1 prevents irradiation-induced nuclear translocation of GAPDH. Black-Right-Pointing-Pointer SIRT1 presence rather than activity is essential for inhibiting GAPDH translocation. -- Abstract: Upon apoptotic stimulation, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a cytosolic enzyme normally active in glycolysis, translocates into the nucleus and activates an apoptotic cascade therein. In the present work, we show that SIRT1 prevents nuclear translocation of GAPDH via interaction with GAPDH. SIRT1 depletion triggered nuclear translocation of cytosolic GAPDH even in the absence of apoptotic stress. Such translocation was not, however, observed when SIRT1 enzymatic activity was inhibited, indicating that SIRT1 protein per se, rather than the deacetylase activity of the protein, is required to inhibit GAPDH translocation. Upon irradiation, SIRT1 prevented irradiation-induced nuclear translocation of GAPDH, accompanied by interaction of SIRT1 and GAPDH. Thus, SIRT1 functions to retain GAPDH in the cytosol, protecting the enzyme from nuclear translocation via interaction with these two proteins. This serves as a mechanism whereby SIRT1 regulates cell survival upon induction of apoptotic stress by means that include irradiation.

  20. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum.

    PubMed

    Axe, Elizabeth L; Walker, Simon A; Manifava, Maria; Chandra, Priya; Roderick, H Llewelyn; Habermann, Anja; Griffiths, Gareth; Ktistakis, Nicholas T

    2008-08-25

    Autophagy is the engulfment of cytosol and organelles by double-membrane vesicles termed autophagosomes. Autophagosome formation is known to require phosphatidylinositol 3-phosphate (PI(3)P) and occurs near the endoplasmic reticulum (ER), but the exact mechanisms are unknown. We show that double FYVE domain-containing protein 1, a PI(3)P-binding protein with unusual localization on ER and Golgi membranes, translocates in response to amino acid starvation to a punctate compartment partially colocalized with autophagosomal proteins. Translocation is dependent on Vps34 and beclin function. Other PI(3)P-binding probes targeted to the ER show the same starvation-induced translocation that is dependent on PI(3)P formation and recognition. Live imaging experiments show that this punctate compartment forms near Vps34-containing vesicles, is in dynamic equilibrium with the ER, and provides a membrane platform for accumulation of autophagosomal proteins, expansion of autophagosomal membranes, and emergence of fully formed autophagosomes. This PI(3)P-enriched compartment may be involved in autophagosome biogenesis. Its dynamic relationship with the ER is consistent with the idea that the ER may provide important components for autophagosome formation.

  1. Molecular basis for covalent inhibition of glyceraldehyde-3-phosphate dehydrogenase by a 2-phenoxy-1,4-naphthoquinone small molecule.

    PubMed

    Bruno, Stefano; Uliassi, Elisa; Zaffagnini, Mirko; Prati, Federica; Bergamini, Christian; Amorati, Riccardo; Paredi, Gianluca; Margiotta, Marilena; Conti, Paola; Costi, Maria Paola; Kaiser, Marcel; Cavalli, Andrea; Fato, Romana; Bolognesi, Maria Laura

    2017-01-12

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has recently gained attention as an antiprotozoan and anticancer drug target. We have previously identified 2-phenoxy-1,4-naphthoquinone as an inhibitor of both Trypanosoma brucei and human GAPDH. Herein, through multiple chemical, biochemical, and biological studies, and through the design of analogs, we confirmed the formation of a covalent adduct, we clarified the inhibition mechanism, and we demonstrated antitrypanosomal, antiplasmodial, and cytotoxic activities in cell cultures. The overall results lent support to the hypothesis that 2-phenoxy-1,4-naphthoquinone binds the GAPDH catalytic cysteine covalently through a phenolate displacement mechanism. By investigating the reactivity of 2-phenoxy-1,4-naphthoquinone and its analogs with four GAPDH homologs, we showed that the covalent inhibition is not preceded by the formation of a strong non-covalent complex. However, an up to fivefold difference in inactivation rates among homologs hinted at structural or electrostatic differences of their active sites that could be exploited to further design kinetically selective inhibitors. Moreover, we preliminarily showed that 2-phenoxy-1,4-naphthoquinone displays selectivity for GAPDHs over two other cysteine-dependent enzymes, supporting its suitability as a warhead starting fragment for the design of novel inhibitors.

  2. The influence of oxygen on radiation-induced structural and functional changes in glyceraldehyde-3-phosphate dehydrogenase and lactate dehydrogenase

    NASA Astrophysics Data System (ADS)

    Rodacka, Aleksandra; Serafin, Eligiusz; Bubinski, Michal; Krokosz, Anita; Puchala, Mieczyslaw

    2012-07-01

    Proteins are major targets for oxidative damage due to their abundance in cells and high reactivity with free radicals. In the present study we examined the influence of oxygen on radiation-induced inactivation and structural changes of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and lactate dehydrogenase (LDH). We chose these two enzymes because they occur at high concentrations and participate in the most important processes in organisms; furthermore, they show considerable similarity in their structure. Protein solutions were irradiated with X-rays in doses ranging from 0.1 to 0.7 kGy, in air and N2O. The much higher radiation inactivation of GAPDH as compared to LDH is correlated with substantially greater structural changes in this protein, mainly involving the loss of free thiol groups (-SH). Of lesser importance in the differentiation of the radiosensitivity of the studied enzymes are tryptophan residues. Molecular oxygen, present during irradiation, increased to a significantly greater extent the inactivation and structural changes of GAPDH than that of LDH. The results suggest that the greater effect of oxygen on GAPDH is due to the higher efficiency of the superoxide radical, the higher amount of hydroperoxides generated, and the higher degree of unfolding of this protein.

  3. The glyceraldehyde-3-phosphate dehydrogenase gene of Moniliophthoraperniciosa, the causal agent of witches' broom disease of Theobroma cacao.

    PubMed

    Lima, Juliana O; Pereira, Jorge F; Rincones, Johana; Barau, Joan G; Araújo, Elza F; Pereira, Gonçalo A G; Queiroz, Marisa V

    2009-04-01

    This report describes the cloning, sequence and expression analysis of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene of Moniliophthora perniciosa, the most important pathogen of cocoa in Brazil. Southern blot analysis revealed the presence of a single copy of the GAPDH gene in the M. perniciosa genome (MpGAPDH). The complete MpGAPDH coding sequence contained 1,461 bp with eight introns that were conserved in the GAPDH genes of other basidiomycete species. The cis-elements in the promoter region of the MpGAPDH gene were similar to those of other basidiomycetes. Likewise, the MpGAPDH gene encoded a putative 339 amino acid protein that shared significant sequence similarity with other GAPDH proteins in fungi, plants, and metazoans. Phylogenetic analyses clustered the MPGAPDH protein with other homobasidiomycete fungi of the family Tricholomataceae. Expression analysis of the MpGAPDH gene by real-time PCR showed that this gene was more expressed (~1.3X) in the saprotrophic stage of this hemibiotrophic plant pathogen than in the biotrophic stage when grown in cacao extracts.

  4. Chemical mechanism of glycerol 3-phosphate phosphatase: pH-dependent changes in the rate-limiting step.

    PubMed

    Larrouy-Maumus, Gérald; Kelly, Geoff; de Carvalho, Luiz Pedro Sório

    2014-01-14

    The halo-acid dehalogenase (HAD) superfamily comprises a large number of enzymes that share a conserved core domain responsible for a diverse array of chemical transformations (e.g., phosphonatase, dehalogenase, phosphohexomutase, and phosphatase) and a cap domain that controls substrate specificity. Phosphate hydrolysis is thought to proceed via an aspartyl-phosphate intermediate, and X-ray crystallography has shown that protein active site conformational changes are required for catalytic competency. Using a combination of steady-state and pre-steady-state kinetics, pL-rate studies, solvent kinetic isotope effects, (18)O molecular isotope exchange, and partition experiments, we provide a detailed description of the chemical mechanism of a glycerol 3-phosphate phosphatase. This phosphatase has been recently recognized as a rate-limiting factor in lipid polar head recycling in Mycobacterium tuberculosis [Larrouy-Maumus, G., et al. (2013) Proc. Natl. Acad. Sci. 110 (28), 11320-11325]. Our results clearly establish the existence of an aspartyl-phosphate intermediate in this newly discovered member of the HAD superfamily. No ionizable groups are rate-limiting from pH 5.5 to 9.5, consistent with the pK values of the catalytic aspartate residues. The formation and decay of this intermediate are partially rate-limiting below pH 7.0, and a conformational change preceding catalysis is rate-limiting above pH 7.0.

  5. Increased mitochondrial glycerol-3-phosphate acyltransferase protein and enzyme activity in rat epididymal fat upon cessation of wheel running.

    PubMed

    Kump, David S; Laye, Matthew J; Booth, Frank W

    2006-03-01

    Triacylglycerol synthesis in rat epididymal fat overshoots sedentary levels at 10, 29, and 53 h of physical inactivity after 21 days of wheel running. The purposes of the present study were to determine 1) whether this effect is also observed after an acute bout of physical activity and 2) what enzymatic changes might contribute to this effect. We show that more than one bout of physical activity, such as that which occurs with 21 days of wheel running, is necessary for palmitic acid incorporation into triacylglyceride (triglyceride synthesis) to overshoot sedentary values, which suggests that pretranslational mechanisms may be responsible for this overshoot effect. Ten hours after 21 days of wheel running, activity of the mitochondrial glycerol-3-phosphate acyltransferase-1 (mtGPAT1) isoform, a key regulator of triacylglycerol synthesis, overshot sedentary values by 48% and remained higher than sedentary values at 29 and 53 h of reduced physical activity. The overshoot in mtGPAT1 activity was accompanied by an increase in mtGPAT protein level. Cyclic AMP response element-binding protein-binding protein level was higher in sedentary 29 h after 21 days of wheel running. AMP kinase-alpha Thr(172) phosphorylation was increased immediately after treadmill running, but decreased to sedentary values by 5 h after activity. Casein kinase-2alpha protein level and activity were unchanged. We conclude that an increase in mtGPAT protein might contribute to the overshoot in triacylglycerol synthesis.

  6. Identification of a mammalian glycerol-3-phosphate phosphatase: Role in metabolism and signaling in pancreatic β-cells and hepatocytes

    PubMed Central

    Mugabo, Yves; Zhao, Shangang; Seifried, Annegrit; Gezzar, Sari; Al-Mass, Anfal; Zhang, Dongwei; Lamontagne, Julien; Attane, Camille; Poursharifi, Pegah; Iglesias, José; Joly, Erik; Peyot, Marie-Line; Gohla, Antje; Madiraju, S. R. Murthy; Prentki, Marc

    2016-01-01

    Obesity, and the associated disturbed glycerolipid/fatty acid (GL/FA) cycle, contribute to insulin resistance, islet β-cell failure, and type 2 diabetes. Flux through the GL/FA cycle is regulated by the availability of glycerol-3-phosphate (Gro3P) and fatty acyl-CoA. We describe here a mammalian Gro3P phosphatase (G3PP), which was not known to exist in mammalian cells, that can directly hydrolyze Gro3P to glycerol. We identified that mammalian phosphoglycolate phosphatase, with an uncertain function, acts in fact as a G3PP. We found that G3PP, by controlling Gro3P levels, regulates glycolysis and glucose oxidation, cellular redox and ATP production, gluconeogenesis, glycerolipid synthesis, and fatty acid oxidation in pancreatic islet β-cells and hepatocytes, and that glucose stimulated insulin secretion and the response to metabolic stress, e.g., glucolipotoxicity, in β-cells. In vivo overexpression of G3PP in rat liver lowers body weight gain and hepatic glucose production from glycerol and elevates plasma HDL levels. G3PP is expressed at various levels in different tissues, and its expression varies according to the nutritional state in some tissues. As Gro3P lies at the crossroads of glucose, lipid, and energy metabolism, control of its availability by G3PP adds a key level of metabolic regulation in mammalian cells, and G3PP offers a potential target for type 2 diabetes and cardiometabolic disorders. PMID:26755581

  7. Glycerol-3-Phosphate Acyltransferase Contributes to Triacylglycerol Biosynthesis, Lipid Droplet Formation, and Host Invasion in Metarhizium robertsii

    PubMed Central

    Gao, Qiang; Shang, Yanfang; Huang, Wei

    2013-01-01

    Enzymes involved in the triacylglycerol (TAG) biosynthesis have been well studied in the model organisms of yeasts and animals. Among these, the isoforms of glycerol-3-phosphate acyltransferase (GPAT) redundantly catalyze the first and rate-limiting step in glycerolipid synthesis. Here, we report the functions of mrGAT, a GPAT ortholog, in an insect-pathogenic fungus, Metarhizium robertsii. Unlike in yeasts and animals, a single copy of the mrGAT gene is present in the fungal genome and the gene deletion mutant is viable. Compared to the wild type and the gene-rescued mutant, the ΔmrGAT mutant demonstrated reduced abilities to produce conidia and synthesize TAG, glycerol, and total lipids. More importantly, we found that mrGAT is localized to the endoplasmic reticulum and directly linked to the formation of lipid droplets (LDs) in fungal cells. Insect bioassay results showed that mrGAT is required for full fungal virulence by aiding fungal penetration of host cuticles. Data from this study not only advance our understanding of GPAT functions in fungi but also suggest that filamentous fungi such as M. robertsii can serve as a good model to elucidate the role of the glycerol phosphate pathway in fungal physiology, particularly to determine the mechanistic connection of GPAT to LD formation. PMID:24077712

  8. A Dimer Interface Mutation in Glyceraldehyde-3-Phosphate Dehydrogenase Regulates Its Binding to AU-rich RNA*

    PubMed Central

    White, Michael R.; Khan, Mohd M.; Deredge, Daniel; Ross, Christina R.; Quintyn, Royston; Zucconi, Beth E.; Wysocki, Vicki H.; Wintrode, Patrick L.; Wilson, Gerald M.; Garcin, Elsa D.

    2015-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an enzyme best known for its role in glycolysis. However, extra-glycolytic functions of GAPDH have been described, including regulation of protein expression via RNA binding. GAPDH binds to numerous adenine-uridine rich elements (AREs) from various mRNA 3′-untranslated regions in vitro and in vivo despite its lack of a canonical RNA binding motif. How GAPDH binds to these AREs is still unknown. Here we discovered that GAPDH binds with high affinity to the core ARE from tumor necrosis factor-α mRNA via a two-step binding mechanism. We demonstrate that a mutation at the GAPDH dimer interface impairs formation of the second RNA-GAPDH complex and leads to changes in the RNA structure. We investigated the effect of this interfacial mutation on GAPDH oligomerization by crystallography, small-angle x-ray scattering, nano-electrospray ionization native mass spectrometry, and hydrogen-deuterium exchange mass spectrometry. We show that the mutation does not significantly affect GAPDH tetramerization as previously proposed. Instead, the mutation promotes short-range and long-range dynamic changes in regions located at the dimer and tetramer interface and in the NAD+ binding site. These dynamic changes are localized along the P axis of the GAPDH tetramer, suggesting that this region is important for RNA binding. Based on our results, we propose a model for sequential GAPDH binding to RNA via residues located at the dimer and tetramer interfaces. PMID:25451934

  9. Molecular basis for the herbicide resistance of Roundup Ready crops.

    PubMed

    Funke, Todd; Han, Huijong; Healy-Fried, Martha L; Fischer, Markus; Schönbrunn, Ernst

    2006-08-29

    The engineering of transgenic crops resistant to the broad-spectrum herbicide glyphosate has greatly improved agricultural efficiency worldwide. Glyphosate-based herbicides, such as Roundup, target the shikimate pathway enzyme 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase, the functionality of which is absolutely required for the survival of plants. Roundup Ready plants carry the gene coding for a glyphosate-insensitive form of this enzyme, obtained from Agrobacterium sp. strain CP4. Once incorporated into the plant genome, the gene product, CP4 EPSP synthase, confers crop resistance to glyphosate. Although widely used, the molecular basis for this glyphosate-resistance has remained obscure. We generated a synthetic gene coding for CP4 EPSP synthase and characterized the enzyme using kinetics and crystallography. The CP4 enzyme has unexpected kinetic and structural properties that render it unique among the known EPSP synthases. Glyphosate binds to the CP4 EPSP synthase in a condensed, noninhibitory conformation. Glyphosate sensitivity can be restored through a single-site mutation in the active site (Ala-100-Gly), allowing glyphosate to bind in its extended, inhibitory conformation.

  10. 1-Deoxy-d-Xylulose 5-Phosphate Synthase, the Gene Product of Open Reading Frame (ORF) 2816 and ORF 2895 in Rhodobacter capsulatus

    PubMed Central

    Hahn, Frederick M.; Eubanks, Lisa M.; Testa, Charles A.; Blagg, Brian S. J.; Baker, Jonathan A.; Poulter, C. Dale

    2001-01-01

    In eubacteria, green algae, and plant chloroplasts, isopentenyl diphosphate, a key intermediate in the biosynthesis of isoprenoids, is synthesized by the methylerythritol phosphate pathway. The five carbons of the basic isoprenoid unit are assembled by joining pyruvate and d-glyceraldehyde 3-phosphate. The reaction is catalyzed by the thiamine diphosphate-dependent enzyme 1-deoxy-d-xylulose 5-phosphate synthase. In Rhodobacter capsulatus, two open reading frames (ORFs) carry the genes that encode 1-deoxy-d-xylulose 5-phosphate synthase. ORF 2816 is located in the photosynthesis-related gene cluster, along with most of the genes required for synthesis of the photosynthetic machinery of the bacterium, whereas ORF 2895 is located elsewhere in the genome. The proteins encoded by ORF 2816 and ORF 2895, 1-deoxy-d-xylulose 5-phosphate synthase A and B, containing a His6 tag, were synthesized in Escherichia coli and purified to greater than 95% homogeneity in two steps. 1-Deoxy-d-xylulose 5-phosphate synthase A appears to be a homodimer with 68 kDa subunits. A new assay was developed, and the following steady-state kinetic constants were determined for 1-deoxy-d-xylulose 5-phosphate synthase A and B: Kmpyruvate = 0.61 and 3.0 mM, Kmd-glyceraldehyde 3-phosphate = 150 and 120 μM, and Vmax = 1.9 and 1.4 μmol/min/mg in 200 mM sodium citrate (pH 7.4). The ORF encoding 1-deoxy-d-xylulose 5-phosphate synthase B complemented the disrupted essential dxs gene in E. coli strain FH11. PMID:11114895

  11. Phosphanilic Acid Inhibits Dihydropteroate Synthase

    DTIC Science & Technology

    1989-11-01

    dihydropteroate synthases of P. aeruginosa and E . coli were about equally susceptible to inhibition by PA. These results suggest that cells of P. aeruginosa...are more permeable to PA than cells of E . coli . Although a weak inhibitor, PA acted on dihydropteroate synthase in the same manner as the sulfonamides...with which PA is structurally related. Inhibition of E . coli by PA in a basal salts-glucose medium was prevented by p-aminobenzoic acid (pABA). However

  12. Phylogenetic Analysis of Glycerol 3-Phosphate Acyltransferases in Opisthokonts Reveals Unexpected Ancestral Complexity and Novel Modern Biosynthetic Components

    PubMed Central

    Smart, Heather C.; Mast, Fred D.; Chilije, Maxwell F. J.; Tavassoli, Marjan; Dacks, Joel B.; Zaremberg, Vanina

    2014-01-01

    Glycerolipid synthesis represents a central metabolic process of all forms of life. In the last decade multiple genes coding for enzymes responsible for the first step of the pathway, catalyzed by glycerol 3-phosphate acyltransferase (GPAT), have been described, and characterized primarily in model organisms like Saccharomyces cerevisiae and mice. Notoriously, the fungal enzymes share low sequence identity with their known animal counterparts, and the nature of their homology is unclear. Furthermore, two mitochondrial GPAT isoforms have been described in animal cells, while no such enzymes have been identified in Fungi. In order to determine if the yeast and mammalian GPATs are representative of the set of enzymes present in their respective groups, and to test the hypothesis that metazoan orthologues are indeed absent from the fungal clade, a comparative genomic and phylogenetic analysis was performed including organisms spanning the breadth of the Opisthokonta supergroup. Surprisingly, our study unveiled the presence of ‘fungal’ orthologs in the basal taxa of the holozoa and ‘animal’ orthologues in the basal holomycetes. This includes a novel clade of fungal homologues, with putative peroxisomal targeting signals, of the mitochondrial/peroxisomal acyltransferases in Metazoa, thus potentially representing an undescribed metabolic capacity in the Fungi. The overall distribution of GPAT homologues is suggestive of high relative complexity in the ancestors of the opisthokont clade, followed by loss and sculpting of the complement in the descendent lineages. Divergence from a general versatile metabolic model, present in ancestrally deduced GPAT complements, points to distinctive contributions of each GPAT isoform to lipid metabolism and homeostasis in contemporary organisms like humans and their fungal pathogens. PMID:25340523

  13. Glyceraldehyde 3-Phosphate Dehydrogenase Negatively Regulates the Replication of Bamboo Mosaic Virus and Its Associated Satellite RNA▿†

    PubMed Central

    Prasanth, K. Reddisiva; Huang, Ying-Wen; Liou, Ming-Ru; Wang, Robert Yung-Liang; Hu, Chung-Chi; Tsai, Ching-Hsiu; Meng, Menghsiao; Lin, Na-Sheng; Hsu, Yau-Heiu

    2011-01-01

    The identification of cellular proteins associated with virus replicase complexes is crucial to our understanding of virus-host interactions, influencing the host range, replication, and virulence of viruses. A previous in vitro study has demonstrated that partially purified Bamboo mosaic virus (BaMV) replicase complexes can be employed for the replication of both BaMV genomic and satellite BaMV (satBaMV) RNAs. In this study, we investigated the BaMV and satBaMV 3′ untranslated region (UTR) binding proteins associated with these replicase complexes. Two cellular proteins with molecular masses of ∼35 and ∼55 kDa were specifically cross-linked with RNA elements, whereupon the ∼35-kDa protein was identified as the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Gel mobility shift assays confirmed the direct interaction of GAPDH with the 3′ UTR sequences, and competition gel shift analysis revealed that GAPDH binds preferentially to the positive-strand BaMV and satBaMV RNAs over the negative-strand RNAs. It was observed that the GAPDH protein binds to the pseudoknot poly(A) tail of BaMV and stem-loop-C poly(A) tail of satBaMV 3′ UTR RNAs. It is important to note that knockdown of GAPDH in Nicotiana benthamiana enhances the accumulation of BaMV and satBaMV RNA; conversely, transient overexpression of GAPDH reduces the accumulation of BaMV and satBaMV RNA. The recombinant GAPDH principally inhibits the synthesis of negative-strand RNA in exogenous RdRp assays. These observations support the contention that cytosolic GAPDH participates in the negative regulation of BaMV and satBaMV RNA replication. PMID:21715476

  14. A land-plant-specific glycerol-3-phosphate acyltransferase family in Arabidopsis: substrate specificity, sn-2 preference, and evolution.

    PubMed

    Yang, Weili; Simpson, Jeffrey P; Li-Beisson, Yonghua; Beisson, Fred; Pollard, Mike; Ohlrogge, John B

    2012-10-01

    Arabidopsis (Arabidopsis thaliana) has eight glycerol-3-phosphate acyltransferase (GPAT) genes that are members of a plant-specific family with three distinct clades. Several of these GPATs are required for the synthesis of cutin or suberin. Unlike GPATs with sn-1 regiospecificity involved in membrane or storage lipid synthesis, GPAT4 and -6 are unique bifunctional enzymes with both sn-2 acyltransferase and phosphatase activity resulting in 2-monoacylglycerol products. We present enzymology, pathway organization, and evolutionary analysis of this GPAT family. Within the cutin-associated clade, GPAT8 is demonstrated as a bifunctional sn-2 acyltransferase/phosphatase. GPAT4, -6, and -8 strongly prefer C16:0 and C18:1 ω-oxidized acyl-coenzyme As (CoAs) over unmodified or longer acyl chain substrates. In contrast, suberin-associated GPAT5 can accommodate a broad chain length range of ω-oxidized and unsubstituted acyl-CoAs. These substrate specificities (1) strongly support polyester biosynthetic pathways in which acyl transfer to glycerol occurs after oxidation of the acyl group, (2) implicate GPAT specificities as one major determinant of cutin and suberin composition, and (3) argue against a role of sn-2-GPATs (Enzyme Commission 2.3.1.198) in membrane/storage lipid synthesis. Evidence is presented that GPAT7 is induced by wounding, produces suberin-like monomers when overexpressed, and likely functions in suberin biosynthesis. Within the third clade, we demonstrate that GPAT1 possesses sn-2 acyltransferase but not phosphatase activity and can utilize dicarboxylic acyl-CoA substrates. Thus, sn-2 acyltransferase activity extends to all subbranches of the Arabidopsis GPAT family. Phylogenetic analyses of this family indicate that GPAT4/6/8 arose early in land-plant evolution (bryophytes), whereas the phosphatase-minus GPAT1 to -3 and GPAT5/7 clades diverged later with the appearance of tracheophytes.

  15. Sperm-specific glyceraldehyde-3-phosphate dehydrogenase is stabilized by additional proline residues and an interdomain salt bridge.

    PubMed

    Kuravsky, Mikhail; Barinova, Kseniya; Marakhovskaya, Aleksandra; Eldarov, Mikhail; Semenyuk, Pavel; Muronetz, Vladimir; Schmalhausen, Elena

    2014-10-01

    Sperm-specific glyceraldehyde-3-phosphate dehydrogenase (GAPDS) exhibits enhanced stability compared to the somatic isoenzyme (GAPD). A comparative analysis of the structures of these isoenzymes revealed characteristic features, which could be important for the stability of GAPDS: six specific proline residues and three buried salt bridges. To evaluate the impact of these structural elements into the stability of this isoenzyme, we obtained two series of mutant GAPDS: 1) six mutants each containing a substitution of one of the specific prolines by alanine, and 2) three mutants each containing a mutation breaking one of the salt bridges. Stability of the mutants was evaluated by differential scanning calorimetry and by their resistance towards guanidine hydrochloride (GdnHCl). The most effect on thermostability was observed for the mutants P326A and P164A: the Tm values of the heat-absorption curves decreased by 6.0 and 3.3°C compared to the wild type protein, respectively. The resistance towards GdnHCl was affected most by the mutation D311N breaking the salt bridge between the catalytic and NAD(+)-binding domains: the inactivation rate constant in the presence of GdnHCl increased six-fold, and the value of GdnHCl concentration corresponding to the protein half-denaturation decreased from 1.83 to 1.35M. Besides, the mutation D311N enhanced the enzymatic activity of the protein two-fold. The results suggest that the residues P164 (β-turn), P326 (first position of α-helix), and the interdomain salt bridge D311-H124 are significant for the enhanced stability of GAPDS. The salt bridge D311-H124 enhances stability of the active site of GAPDS at the expense of the catalytic activity.

  16. Identification of glyceraldehyde-3-phosphate dehydrogenase of epithelial cells as a second molecule that binds to Porphyromonas gingivalis fimbriae.

    PubMed

    Sojar, Hakimuddin T; Genco, Robert J

    2005-07-01

    Binding of Porphyromonas gingivalis to the host cells is an essential step in the pathogenesis of periodontal disease. P. gingivalis binds to and invades epithelial cells, and fimbriae are thought to be involved in this process. In our earlier studies, two major epithelial cell components of 40 and 50 kDa were identified as potential fimbrial receptors. Sequencing of a cyanogen bromide digestion fragment of the 50-kDa component resulted in an internal sequence identical to keratin I molecules, and hence this cytokeratin represents one of the epithelial cell receptors for P. gingivalis fimbriae. In this study, the 40-kDa component of KB cells was isolated and its amino-terminal sequence determined. The N-terminal amino sequence was found to be GKVKVGVNGF and showed perfect homology with human glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Furthermore, purified P. gingivalis fimbriae were found to bind to rabbit muscle GAPDH. Antibodies directed against internal peptide 49-68 and 69-90 of fimbrillin were shown to inhibit the binding of P. gingivalis and of fimbriae to epithelial cells. Antibodies against these peptides also inhibited the binding of fimbriae to GAPDH. Our results confirmed that the amino-terminal domain corresponding to amino residues 49-68 of the fimbrillin protein is the major GAPDH binding domain. These studies point to GAPDH as a major receptor for P. gingivalis major fimbriae and, as such, GAPDH likely plays a role in P. gingivalis adherence and colonization of the oral cavity, as well as triggering host cell processes involved in the pathogenesis of P. gingivalis infections.

  17. Glyceraldehyde 3-phosphate dehydrogenase and galectin from Dirofilaria immitis participate in heartworm disease endarteritis via plasminogen/plasmin system.

    PubMed

    González-Miguel, Javier; Larrazabal, Carmen; Loa-Mesón, Diana; Siles-Lucas, Mar; Simón, Fernando; Morchón, Rodrigo

    2016-06-15

    The interaction between parasitic protozoa and helminths, both in the blood and in tissues and the fibrinolytic system of their hosts is usually considered as a survival parasite mechanism since this system is the physiological route responsible for degrading fibrin clots. The broad-range proteolytic activity of plasmin, the final enzyme of the route, implies that its recruitment by these parasites is an important mechanism that mediates their invasion and establishment in the hosts. However, recent studies have proposed a dual role for plasmin by linking its over-production with pathological mechanisms at vascular level. Most of these studies have been conducted in Dirofilaria immitis, a blood-borne parasite that survives in the pulmonary arteries of its host for years while it produces a chronic inflammatory disease, whose main pathogenic mechanism is the appearance of proliferative endarteritis. Recently, the participation of two proteins from D. immitis, glyceraldehyde 3-phosphate dehydrogenase (DiGAPDH) and galectin (DiGAL), in the activation of the fibrinolytic system of its host has been demonstrated, which has been a priori associated with parasite survival mechanisms. The aim of the present paper was to study the role of plasmin generated by these proteins in the emergence of proliferative endarteritis. An in vitro model of canine endothelial and smooth muscle cells, as well as the two parasitic recombinant proteins were employed. The results show that DiGAPDH and DiGAL stimulate the proliferation and migration of both cell types, as well as the degradation of the extracellular matrix (ECM) via plasminogen (PLG)/plasmin system, being all of these mechanisms related to the appearance of proliferative endarteritis. Due to the high degree of evolutionary conservation of these antigens, these data support the hypothesis of the survival/pathology ambivalence in the interactions between parasites and the fibrinolytic system of their hosts and represent an

  18. Active site cysteine-null glyceraldehyde-3-phosphate dehydrogenase (GAPDH) rescues nitric oxide-induced cell death.

    PubMed

    Kubo, Takeya; Nakajima, Hidemitsu; Nakatsuji, Masatoshi; Itakura, Masanori; Kaneshige, Akihiro; Azuma, Yasu-Taka; Inui, Takashi; Takeuchi, Tadayoshi

    2016-02-29

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a homotetrameric enzyme involved in a key step of glycolysis, also has a role in mediating cell death under nitrosative stress. Our previous reports suggest that nitric oxide-induced intramolecular disulfide-bonding GAPDH aggregation, which occurs through oxidation of the active site cysteine (Cys-152), participates in a mechanism to account for nitric oxide-induced death signaling in some neurodegenerative/neuropsychiatric disorders. Here, we demonstrate a rescue strategy for nitric oxide-induced cell death accompanied by GAPDH aggregation in a mutant with a substitution of Cys-152 to alanine (C152A-GAPDH). Pre-incubation of purified wild-type GAPDH with C152A-GAPDH under exposure to nitric oxide inhibited wild-type GAPDH aggregation in a concentration-dependent manner in vitro. Several lines of structural analysis revealed that C152A-GAPDH extensively interfered with nitric oxide-induced GAPDH-amyloidogenesis. Overexpression of doxycycline-inducible C152A-GAPDH in SH-SY5Y neuroblastoma significantly rescued nitric oxide-induced death, concomitant with the decreased formation of GAPDH aggregates. Further, both co-immunoprecipitation assays and simulation models revealed a heterotetramer composed of one dimer each of wild-type GAPDH and C152A-GAPDH. These results suggest that the C152A-GAPDH mutant acts as a dominant-negative molecule against GAPDH aggregation via the formation of this GAPDH heterotetramer. This study may contribute to a new therapeutic approach utilizing C152A-GAPDH against brain damage in nitrosative stress-related disorders.

  19. Construction and immune effect of Haemophilus parasuis DNA vaccine encoding glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in mice.

    PubMed

    Fu, Shulin; Zhang, Minmin; Ou, Jiwen; Liu, Huazhen; Tan, Chen; Liu, Jinlin; Chen, Huanchun; Bei, Weicheng

    2012-11-06

    Haemophilus parasuis, the causative agent of swine polyserositis, polyarthritis, and meningitis, is one of the most important bacterial diseases of pigs worldwide. The development of a vaccine against H. parasuis has been impeded due to the lack of induction of reliable cross-serotype protection. In this study the gapA gene that encodes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was shown to be present and highly conserved in various serotypes of H. parasuis and we constructed a novel DNA vaccine encoding GAPDH (pCgap) to evaluate the immune response and protective efficacy against infection with H. parasuis MD0322 serovar 4 or SH0165 serovar 5 in mice. A significant antibody response against GAPDH was generated following pCgap intramuscular immunization; moreover, antibodies to the pCgap DNA vaccine were bactericidal, suggesting that it was expressed in vivo. The gapA transcript was detected in muscle, liver, spleen, and kidney of the mice seven days post-vaccination. The IgG subclass (IgG1 and IgG2a) analysis indicated that the DNA vaccine induced both Th1 and Th2 immune responses, but the IgG1 response was greater than the IgG2a response. Moreover, the groups vaccinated with the pCgap vaccine exhibited 83.3% and 50% protective efficacy against the H. parasuis MD0322 serovar 4 or SH0165 serovar 5 challenges, respectively. The pCgap DNA vaccine provided significantly greater protective efficacy compared to the negative control groups or blank control groups (P<0.05 for both). Taken together, these findings indicate that the pCgap DNA vaccine provides a novel strategy against infection of H. parasuis and offer insight concerning the underlying immune mechanisms of a bacterial DNA vaccine.

  20. Structure of holo-glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus at 1.8 A resolution.

    PubMed

    Skarzyński, T; Moody, P C; Wonacott, A J

    1987-01-05

    The structure of holo-glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus has been crystallographically refined at 1.8 A resolution using restrained least-squares refinement methods. The final crystallographic R-factor for 93,120 reflexions with F greater than 3 sigma (F) is 0.177. The asymmetric unit of the crystal contains a complete tetramer, the final model of which incorporates a total of 10,272 unique protein and coenzyme atoms together with 677 bound solvent molecules. The structure has been analysed with respect to molecular symmetry, intersubunit contacts, coenzyme binding and active site geometry. The refined model shows the four independent subunits to be remarkable similar apart from local deviations due to intermolecular contacts within the crystal lattice. A number of features are revealed that had previously been misinterpreted from an earlier 2.7 A electron density map. Arginine at position 195 (previously thought to be a glycine) contributes to the formation of the anion binding sites in the active site pocket, which are involved in binding of the substrate and inorganic phosphates during catalysis. This residue seems to be structurally equivalent to the conserved Arg194 in the enzyme from other sources. In the crystal both of the anion binding sites are occupied by sulphate ions. The ND atom of the catalytically important His176 is hydrogen-bonded to the main-chain carbonyl oxygen of Ser177, thus fixing the plane of the histidine imidazole ring and preventing rotation. The analysis has revealed the presence of several internal salt-bridges stabilizing the tertiary and quaternary structure. A significant number of buried water molecules have been found that play an important role in the structural integrity of the molecule.

  1. The Glycerol-3-Phosphate Acyltransferase GPAT6 from Tomato Plays a Central Role in Fruit Cutin Biosynthesis.

    PubMed

    Petit, Johann; Bres, Cécile; Mauxion, Jean-Philippe; Tai, Fabienne Wong Jun; Martin, Laetitia B B; Fich, Eric A; Joubès, Jérôme; Rose, Jocelyn K C; Domergue, Frédéric; Rothan, Christophe

    2016-06-01

    The thick cuticle covering and embedding the epidermal cells of tomato (Solanum lycopersicum) fruit acts not only as a protective barrier against pathogens and water loss but also influences quality traits such as brightness and postharvest shelf-life. In a recent study, we screened a mutant collection of the miniature tomato cultivar Micro-Tom and isolated several glossy fruit mutants in which the abundance of cutin, the polyester component of the cuticle, was strongly reduced. We employed a newly developed mapping-by-sequencing strategy to identify the causal mutation underlying the cutin deficiency in a mutant thereafter named gpat6-a (for glycerol-3-phosphate acyltransferase6). To this end, a backcross population (BC1F2) segregating for the glossy trait was phenotyped. Individuals displaying either a wild-type or a glossy fruit trait were then pooled into bulked populations and submitted to whole-genome sequencing prior to mutation frequency analysis. This revealed that the causal point mutation in the gpat6-a mutant introduces a charged amino acid adjacent to the active site of a GPAT6 enzyme. We further showed that this mutation completely abolished the GPAT activity of the recombinant protein. The gpat6-a mutant showed perturbed pollen formation but, unlike a gpat6 mutant of Arabidopsis (Arabidopsis thaliana), was not male sterile. The most striking phenotype was observed in the mutant fruit, where cuticle thickness, composition, and properties were altered. RNA sequencing analysis highlighted the main processes and pathways that were affected by the mutation at the transcriptional level, which included those associated with lipid, secondary metabolite, and cell wall biosynthesis.

  2. Bacterial nitric oxide synthases.

    PubMed

    Crane, Brian R; Sudhamsu, Jawahar; Patel, Bhumit A

    2010-01-01

    Nitric oxide synthases (NOSs) are multidomain metalloproteins first identified in mammals as being responsible for the synthesis of the wide-spread signaling and protective agent nitric oxide (NO). Over the past 10 years, prokaryotic proteins that are homologous to animal NOSs have been identified and characterized, both in terms of enzymology and biological function. Despite some interesting differences in cofactor utilization and redox partners, the bacterial enzymes are in many ways similar to their mammalian NOS (mNOS) counterparts and, as such, have provided insight into the structural and catalytic properties of the NOS family. In particular, spectroscopic studies of thermostable bacterial NOSs have revealed key oxyheme intermediates involved in the oxidation of substrate L-arginine (Arg) to product NO. The biological functions of some bacterial NOSs have only more recently come to light. These studies disclose new roles for NO in biology, such as taking part in toxin biosynthesis, protection against oxidative stress, and regulation of recovery from radiation damage.

  3. The acylation of sn-glycerol 3-phosphate and the metabolism of phosphatidate in microsomal preparations from the developing cotyledons of safflower (Carthamus tinctorius L.) seed.

    PubMed

    Griffiths, G; Stobart, A K; Stymne, S

    1985-09-01

    Microsomal preparations from the developing cotyledons of safflower (Carthamus tinctorius) catalysed the acylation of sn-glycerol 3-phosphate in the presence of acyl-CoA. The resulting phosphatidate was further utilized in the synthesis of diacyl- and tri-acylglycerol by the reactions of the so-called 'Kennedy pathway' [Kennedy (1961) Fed. Proc. Fed. Am. Soc. Exp. Biol. 20, 934-940]. Diacylglycerol equilibrated with the phosphatidylcholine pool when glycerol backbone, with the associated acyl groups, flowed from phosphatidate to triacylglycerol. The formation of diacylglycerol from phosphatidate through the action of a phosphatidate phosphohydrolase (phosphatidase) was substantially inhibited by EDTA and, under these conditions, phosphatidate accumulated in the microsomal membranes. The inhibition of the phosphatidase by EDTA was alleviated by Mg2+. The presence of Mg2+ in all incubation mixtures stimulated quite considerably the synthesis of triacylglycerol in vitro. Microsomal preparations incubated with acyl-CoA, sn-glycerol 3-phosphate and EDTA synthesized sufficient phosphatidate for the reliable analysis of its intramolecular fatty acid distribution. In the presence of mixed acyl-CoA substrates the sn-glycerol 3-phosphate was acylated exclusively in position 1 with the saturated fatty acids, palmitate and stearate. The polyunsaturated fatty acid linoleate was, however, utilized largely in the acylation of position 2 of sn-glycerol 3-phosphate. The affinity of the enzymes involved in the acylation of positions 1 and 2 of sn-glycerol 3-phosphate for specific species of acyl-CoA therefore governs the non-random distribution of the different acyl groups in the seed triacylglycerols. The acylation of sn-glycerol 3-phosphate in position 1 with saturated acyl components also accounts for the presence of these groups in position 1 of sn-phosphatidylcholine through the equilibration of diacylglycerol with the phosphatidylcholine pool, which occurs when phosphatidate

  4. Expression, purification, crystallization and preliminary X-ray analysis of an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase from Helicobacter pylori

    SciTech Connect

    Elliott, Paul R.; Mohammad, Shabaz; Melrose, Helen J.; Moody, Peter C. E.

    2008-08-01

    Glyceraldehyde-3-phosphate dehydrogenase B from H. pylori has been cloned, expressed, purified and crystallized in the presence of NAD. Crystals of GAPDHB diffracted to 2.8 Å resolution and belonged to space group P6{sub 5}22, with unit-cell parameters a = b = 166.1, c = 253.1 Å. Helicobacter pylori is a dangerous human pathogen that resides in the upper gastrointestinal tract. Little is known about its metabolism and with the onset of antibiotic resistance new treatments are required. In this study, the expression, purification, crystallization and preliminary X-ray diffraction of an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase from H. pylori are reported.

  5. The sequential 2',3'-cyclic phosphodiesterase and 3'-phosphate/5'-OH ligation steps of the RtcB RNA splicing pathway are GTP-dependent.

    PubMed

    Chakravarty, Anupam K; Shuman, Stewart

    2012-09-01

    The RNA ligase RtcB splices broken RNAs with 5'-OH and either 2',3'-cyclic phosphate or 3'-phosphate ends. The 3'-phosphate ligase activity requires GTP and entails the formation of covalent RtcB-(histidinyl)-GMP and polynucleotide-(3')pp(5')G intermediates. There are currently two models for how RtcB executes the strand sealing step. Scheme 1 holds that the RNA 5'-OH end attacks the 3'-phosphorus of the N(3')pp(5')G end to form a 3',5'-phosphodiester and release GMP. Scheme 2 posits that the N(3')pp(5')G end is converted to a 2',3'-cyclic phosphodiester, which is then attacked directly by the 5'-OH RNA end to form a 3',5'-phosphodiester. Here we show that the sealing of a 2',3'-cyclic phosphate end by RtcB requires GTP, is contingent on formation of the RtcB-GMP adduct, and involves a kinetically valid RNA(3')pp(5')G intermediate. Moreover, we find that RtcB catalyzes the hydrolysis of a 2',3'-cyclic phosphate to a 3'-phosphate at a rate that is at least as fast as the rate of ligation. These results weigh in favor of scheme 1. The cyclic phosphodiesterase activity of RtcB depends on GTP and the formation of the RtcB-GMP adduct, signifying that RtcB guanylylation precedes the cyclic phosphodiesterase and 3'-phosphate ligase steps of the RNA splicing pathway.

  6. Regulation of adenine nucleotide translocase and glycerol 3-phosphate dehydrogenase expression by thyroid hormones in different rat tissues.

    PubMed Central

    Dümmler, K; Müller, S; Seitz, H J

    1996-01-01

    Thyroid hormone (T3)-dependent gene expression of the adenine nucleotide translocase (ANT) and the FAD-linked glycerol 3-phosphate dehydrogenase (mGPDH) was investigated in several rat tissues. Both proteins provide an important link between cytosolic and mitochondrial metabolic pathways and seem to be involved in the stimulation of mitochondrial oxygen consumption in response to T3. Here we show that two ANT isoforms are expressed in rat, the muscle-specific ANT1 form and the ubiquitous ANT2 form. The expression of ANT1 mRNA is not sensitive to T3 whereas the amount of ANT2 mRNA is increased 7-9-fold in liver and heart within 12-48 h after T3 application. Little or no effect of T3 on ANT2 mRNA was observed in kidney and brain. The mRNA changes are paralleled by an increase in ANT protein, thus explaining the accelerated ADP/ATP exchange observed in mitochondria isolated from hyperthyroid rats. The key role of ANT2 in the control of hyperthyroid metabolism is evident because the expression of the mersalyl-sensitive phosphate carrier and the mitochondrial creatine kinase mRNA, which are functionally linked to ANT, did not respond to T3. Similarly to the ADP/ATP exchange, the transfer of cytosolic NADH to the respiratory chain via the glycerophosphate shuttle is very sensitive to T3. Recently we demonstrated the 10-15-fold induction of mGPDH mRNA in rat liver after administration of T3 [Müller and Seitz (1994) Proc. Natl. Acad. Sci. U.S.A. 91, 10581-10585]. Here we show that, in contrast with ANT2, the time course of induction is fast (4-6 h). Furthermore, mGPDH mRNA is induced 6-fold by T3 in heart and 4-fold in kidney. From these results we conclude that the T3-mediated transcriptional induction leading to increased activity of ANT2 and mGPDH contributes considerably to the increase in mitochondrial oxygen consumption in rat tissues. PMID:8760382

  7. Improving ethanol productivity by modification of glycolytic redox factor generation in glycerol-3-phosphate dehydrogenase mutants of an industrial ethanol yeast.

    PubMed

    Guo, Zhong-peng; Zhang, Liang; Ding, Zhong-yang; Wang, Zheng-Xiang; Shi, Gui-Yang

    2011-08-01

    The GPD2 gene, encoding NAD(+)-dependent glycerol-3-phosphate dehydrogenase in an industrial ethanol-producing strain of Saccharomyces cerevisiae, was deleted. And then, either the non-phosphorylating NADP(+)-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPN) from Bacillus cereus, or the NADP(+)-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Kluyveromyces lactis, was expressed in the obtained mutant AG2 deletion of GPD2, respectively. The resultant recombinant strain AG2A (gpd2Δ P (PGK)-gapN) exhibited a 48.70 ± 0.34% (relative to the amount of substrate consumed) decrease in glycerol production and a 7.60 ± 0.12% (relative to the amount of substrate consumed) increase in ethanol yield, while recombinant AG2B (gpd2Δ P (PGK)-GAPDH) exhibited a 52.90 ± 0.45% (relative to the amount of substrate consumed) decrease in glycerol production and a 7.34 ± 0.15% (relative to the amount of substrate consumed) increase in ethanol yield compared with the wild-type strain. More importantly, the maximum specific growth rates (μ (max)) of the recombinant AG2A and AG2B were higher than that of the mutant gpd2Δ and were indistinguishable compared with the wild-type strain in anaerobic batch fermentations. The results indicated that the redox imbalance of the mutant could be partially solved by expressing the heterologous genes.

  8. Sucrose Synthase: Expanding Protein Function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sucrose synthase (SUS: EC 2.4.1.13), a key enzyme in plant sucrose catabolism, is uniquely able to mobilize sucrose into multiple pathways involved in metabolic, structural, and storage functions. Our research indicates that the biological function of SUS may extend beyond its catalytic activity. Th...

  9. Glyceraldehyde-3-phosphate dehydrogenase acts as an adhesin in Erysipelothrix rhusiopathiae adhesion to porcine endothelial cells and as a receptor in recruitment of host fibronectin and plasminogen.

    PubMed

    Zhu, Weifeng; Zhang, Qiang; Li, Jingtao; Wei, Yanmin; Cai, Chengzhi; Liu, Liang; Xu, Zhongmin; Jin, Meilin

    2017-03-21

    Erysipelothrix rhusiopathiae is the causative agent of animal erysipelas and human erysipeloid. Previous studies suggested glyceraldehyde 3-phosphate dehydrogenase (GAPDH) plays a role in the pathogenesis of E. rhusiopathiae infection. We studied E. rhusiopathiae GAPDH interactions with pig vascular endothelial cells, fibronectin, and plasminogen. Recombinant GAPDH (rGAPDH) was successfully obtained, and it was shown that it plays a role in E. rhusiopathiae adhesion to pig vascular endothelial cells. Moreover, rGAPDH could bind fibronectin and plasminogen in a dose-dependent manner. To our knowledge, this is the first study demonstrating that a moonlighting protein plays a role in pathogenesis of E. rhusiopathiae infections.

  10. The 2',4'-dihydroxychalcone could be explored to develop new inhibitors against the glycerol-3-phosphate dehydrogenase from Leishmania species.

    PubMed

    Passalacqua, Thais G; Torres, Fábio A E; Nogueira, Camila T; de Almeida, Leticia; Del Cistia, Mayara L; dos Santos, Mariana B; Regasini, Luis O; Graminha, Márcia A S; Marchetto, Reinaldo; Zottis, Aderson

    2015-09-01

    The enzyme glycerol-3-phosphate dehydrogenase (G3PDH) from Leishmania species is considered as an attractive target to design new antileishmanial drugs and a previous in silico study reported on the importance of chalcones to achieve its inhibition. Here, we report the identification of a synthetic chalcone in our in vitro assays with promastigote cells from Leishmania amazonensis, its biological activity in animal models, and docking followed by molecular dynamics simulation to investigate the molecular interactions and structural patterns that are crucial to achieve the inhibition complex between this compound and G3PDH. A molecular fragment of this natural product derivative can provide new inhibitors with increased potency and selectivity.

  11. SIRT3 Deacetylates Ceramide Synthases

    PubMed Central

    Novgorodov, Sergei A.; Riley, Christopher L.; Keffler, Jarryd A.; Yu, Jin; Kindy, Mark S.; Macklin, Wendy B.; Lombard, David B.; Gudz, Tatyana I.

    2016-01-01

    Experimental evidence supports the role of mitochondrial ceramide accumulation as a cause of mitochondrial dysfunction and brain injury after stroke. Herein, we report that SIRT3 regulates mitochondrial ceramide biosynthesis via deacetylation of ceramide synthase (CerS) 1, 2, and 6. Reciprocal immunoprecipitation experiments revealed that CerS1, CerS2, and CerS6, but not CerS4, are associated with SIRT3 in cerebral mitochondria. Furthermore, CerS1, -2, and -6 are hyperacetylated in the mitochondria of SIRT3-null mice, and SIRT3 directly deacetylates the ceramide synthases in a NAD+-dependent manner that increases enzyme activity. Investigation of the SIRT3 role in mitochondrial response to brain ischemia/reperfusion (IR) showed that SIRT3-mediated deacetylation of ceramide synthases increased enzyme activity and ceramide accumulation after IR. Functional studies demonstrated that absence of SIRT3 rescued the IR-induced blockade of the electron transport chain at the level of complex III, attenuated mitochondrial outer membrane permeabilization, and decreased reactive oxygen species generation and protein carbonyls in mitochondria. Importantly, Sirt3 gene ablation reduced the brain injury after IR. These data support the hypothesis that IR triggers SIRT3-dependent deacetylation of ceramide synthases and the elevation of ceramide, which could inhibit complex III, leading to increased reactive oxygen species generation and brain injury. The results of these studies highlight a novel mechanism of SIRT3 involvement in modulating mitochondrial ceramide biosynthesis and suggest an important role of SIRT3 in mitochondrial dysfunction and brain injury after experimental stroke. PMID:26620563

  12. The specific role of plastidial glycolysis in photosynthetic and heterotrophic cells under scrutiny through the study of glyceraldehyde-3-phosphate dehydrogenase.

    PubMed

    Anoman, Armand Djoro; Flores-Tornero, María; Rosa-Telléz, Sara; Muñoz-Bertomeu, Jesús; Segura, Juan; Ros, Roc

    2016-01-01

    The cellular compartmentalization of metabolic processes is an important feature in plants where the same pathways could be simultaneously active in different compartments. Plant glycolysis occurs in the cytosol and plastids of green and non-green cells in which the requirements of energy and precursors may be completely different. Because of this, the relevance of plastidial glycolysis could be very different depending on the cell type. In the associated study, we investigated the function of plastidial glycolysis in photosynthetic and heterotrophic cells by specifically driving the expression of plastidial glyceraldehyde-3-phosphate dehydrogenase (GAPCp) in a glyceraldehyde-3-phosphate dehydrogenase double mutant background (gapcp1gapcp2). We showed that GAPCp is not functionally significant in photosynthetic cells, while it plays a crucial function in heterotrophic cells. We also showed that (i) GAPCp activity expression in root tips is necessary for primary root growth, (ii) its expression in heterotrophic cells of aerial parts and roots is necessary for plant growth and development, and (iii) GAPCp is an important metabolic connector of carbon and nitrogen metabolism through the phosphorylated pathway of serine biosynthesis (PPSB). We discuss here the role that this pathway could play in the control of plant growth and development.

  13. Overexpression of ACC gene from oleaginous yeast Lipomyces starkeyi enhanced the lipid accumulation in Saccharomyces cerevisiae with increased levels of glycerol 3-phosphate substrates.

    PubMed

    Wang, Jiancai; Xu, Ronghua; Wang, Ruling; Haque, Mohammad Enamul; Liu, Aizhong

    2016-06-01

    The conversion of acetyl-CoA to malonyl-CoA by acetyl-CoA carboxylase (ACC) is the rate-limiting step in fatty acid biosynthesis. In this study, a gene coding for ACC was isolated and characterized from an oleaginous yeast, Lipomyces starkeyi. Real-time quantitative PCR (qPCR) analysis of L. starkeyi acetyl-CoA carboxylase gene (LsACC1) showed that the expression levels were upregulated with the fast accumulation of lipids. The LsACC1 was co-overexpressed with the glycerol 3-phosphate dehydrogenase gene (GPD1), which regulates lipids biosynthesis by supplying another substrates glycerol 3-phosphate for storage lipid assembly, in the non-oleaginous yeast Saccharomyces cerevisiae. Further, the S. cerevisiae acetyl-CoA carboxylase (ScACC1) was transferred with GPD1 and its function was analyzed in comparison with LsACC1. The results showed that overexpressed LsACC1 and GPD1 resulted in a 63% increase in S. cerevisiae. This study gives new data in understanding of the molecular mechanisms underlying the regulation of fatty acids and lipid biosynthesis in yeasts.

  14. Acetohydroxyacid synthases: evolution, structure, and function.

    PubMed

    Liu, Yadi; Li, Yanyan; Wang, Xiaoyuan

    2016-10-01

    Acetohydroxyacid synthase, a thiamine diphosphate-dependent enzyme, can condense either two pyruvate molecules to form acetolactate for synthesizing L-valine and L-leucine or pyruvate with 2-ketobutyrate to form acetohydroxybutyrate for synthesizing L-isoleucine. Because the key reaction catalyzed by acetohydroxyacid synthase in the biosynthetic pathways of branched-chain amino acids exists in plants, fungi, archaea, and bacteria, but not in animals, acetohydroxyacid synthase becomes a potential target for developing novel herbicides and antimicrobial compounds. In this article, the evolution, structure, and catalytic mechanism of acetohydroxyacid synthase are summarized.

  15. Producing biofuels using polyketide synthases

    DOEpatents

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-04-16

    The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

  16. Differential response of the catalase, superoxide dismutase and glycerol-3-phosphate dehydrogenase to different environmental stresses in Debaryomyces nepalensis NCYC 3413.

    PubMed

    Kumar, Sawan; Kalyanasundaram, Gayathiri T; Gummadi, Sathyanarayana N

    2011-02-01

    The effect of salt, pH, and temperature stress on the cellular level of antioxidant enzymes, catalase and superoxide dismutase (SOD) and glycerol-3-phosphate dehydrogenase (G3PDH) was studied in Debaryomyces nepalensis NCYC 3413, a halotolerant yeast. The catalase activity increased in different phases, while SOD and G3PDH activities declined in late stationary phase. A significant increase in SOD activity was observed under different stress as compared to control. Salt and temperature stress enhanced the catalase activity where as it was suppressed by pH stress. G3PDH level increased with salt stress, however, no significant change was observed under pH and temperature stress. The observations recorded in this investigation suggested that D. nepalensis has an efficient protective mechanism of antioxidant enzymes and G3PDH against salt, pH, and temperature stresses.

  17. Polyester synthases: natural catalysts for plastics.

    PubMed Central

    Rehm, Bernd H A

    2003-01-01

    Polyhydroxyalkanoates (PHAs) are biopolyesters composed of hydroxy fatty acids, which represent a complex class of storage polyesters. They are synthesized by a wide range of different Gram-positive and Gram-negative bacteria, as well as by some Archaea, and are deposited as insoluble cytoplasmic inclusions. Polyester synthases are the key enzymes of polyester biosynthesis and catalyse the conversion of (R)-hydroxyacyl-CoA thioesters to polyesters with the concomitant release of CoA. These soluble enzymes turn into amphipathic enzymes upon covalent catalysis of polyester-chain formation. A self-assembly process is initiated resulting in the formation of insoluble cytoplasmic inclusions with a phospholipid monolayer and covalently attached polyester synthases at the surface. Surface-attached polyester synthases show a marked increase in enzyme activity. These polyester synthases have only recently been biochemically characterized. An overview of these recent findings is provided. At present, 59 polyester synthase structural genes from 45 different bacteria have been cloned and the nucleotide sequences have been obtained. The multiple alignment of the primary structures of these polyester synthases show an overall identity of 8-96% with only eight strictly conserved amino acid residues. Polyester synthases can been assigned to four classes based on their substrate specificity and subunit composition. The current knowledge on the organization of the polyester synthase genes, and other genes encoding proteins related to PHA metabolism, is compiled. In addition, the primary structures of the 59 PHA synthases are aligned and analysed with respect to highly conserved amino acids, and biochemical features of polyester synthases are described. The proposed catalytic mechanism based on similarities to alpha/beta-hydrolases and mutational analysis is discussed. Different threading algorithms suggest that polyester synthases belong to the alpha/beta-hydrolase superfamily, with

  18. Site-Directed Mutagenesis from Arg195 to His of a Microalgal Putatively Chloroplastidial Glycerol-3-Phosphate Acyltransferase Causes an Increase in Phospholipid Levels in Yeast

    PubMed Central

    Ouyang, Long-Ling; Li, Hui; Yan, Xiao-Jun; Xu, Ji-Lin; Zhou, Zhi-Gang

    2016-01-01

    To analyze the contribution of glycerol-3-phosphate acyltransferase (GPAT) to the first acylation of glycerol-3-phosphate (G-3-P), the present study focused on a functional analysis of the GPAT gene from Lobosphaera incisa (designated as LiGPAT). A full-length cDNA of LiGPAT consisting of a 1,305-bp ORF, a 1,652-bp 5′-UTR, and a 354-bp 3′-UTR, was cloned. The ORF encoded a 434-amino acid peptide, of which 63 residues at the N-terminus defined a chloroplast transit peptide. Multiple sequence alignment and phylogeny analysis of GPAT homologs provided the convincible bioinformatics evidence that LiGPAT was localized to chloroplasts. Considering the conservation of His among the G-3-P binding sites from chloroplastidial GPATs and the substitution of His by Arg at position 195 in the LiGPAT mature protein (designated mLiGPAT), we established the heterologous expression of either mLiGPAT or its mutant (Arg195His) (sdmLiGPAT) in the GPAT-deficient yeast mutant gat1Δ. Lipid profile analyses of these transgenic yeasts not only validated the acylation function of LiGPAT but also indicated that the site-directed mutagenesis from Arg195 to His led to an increase in the phospholipid level in yeast. Semi-quantitative analysis of mLiGPAT and sdmLiGPAT, together with the structural superimposition of their G-3-P binding sites, indicated that the increased enzymatic activity was caused by the enlarged accessible surface of the phosphate group binding pocket when Arg195 was mutated to His. Thus, the potential of genetic manipulation of GPAT to increase the glycerolipid level in L. incisa and other microalgae would be of great interest. PMID:27014309

  19. A multidomain enzyme, with glycerol-3-phosphate dehydrogenase and phosphatase activities, is involved in a chloroplastic pathway for glycerol synthesis in Chlamydomonas reinhardtii.

    PubMed

    Morales-Sánchez, Daniela; Kim, Yeongho; Terng, Ee Leng; Peterson, Laura; Cerutti, Heriberto

    2017-03-08

    Understanding the unique features of algal metabolism may be necessary to realize the full potential of algae as feedstock for the production of biofuels and biomaterials. Under nitrogen deprivation, the green alga C. reinhardtii showed substantial triacylglycerol (TAG) accumulation and up-regulation of a gene, GPD2, encoding a multidomain enzyme with a putative phosphoserine phosphatase (PSP) motif fused to glycerol-3-phosphate dehydrogenase (GPD) domains. Canonical GPD enzymes catalyze the synthesis of glycerol-3-phosphate (G3P) by reduction of dihydroxyacetone phosphate (DHAP). G3P forms the backbone of TAGs and membrane glycerolipids and it can be dephosphorylated to yield glycerol, an osmotic stabilizer and compatible solute under hypertonic stress. Recombinant Chlamydomonas GPD2 showed both reductase and phosphatase activities in vitro and it can work as a bifunctional enzyme capable of synthesizing glycerol directly from DHAP. In addition, GPD2 and a gene encoding glycerol kinase were up-regulated in Chlamydomonas cells exposed to high salinity. RNA-mediated silencing of GPD2 revealed that the multidomain enzyme was required for TAG accumulation under nitrogen deprivation and for glycerol synthesis under high salinity. Moreover, a GPD2-mCherry fusion protein was found to localize to the chloroplast, supporting the existence of a GPD2-dependent plastid pathway for the rapid synthesis of glycerol in response to hyperosmotic stress. We hypothesize that the reductase and phosphatase activities of PSP-GPD multidomain enzymes may be modulated by post-translational modifications/mechanisms, allowing them to synthesize primarily G3P or glycerol depending on environmental conditions and/or metabolic demands in algal species of the core Chlorophytes. This article is protected by copyright. All rights reserved.

  20. The Class II Phosphatidylinositol 3-Phosphate Kinase PIK3C2A Promotes Shigella flexneri Dissemination through Formation of Vacuole-Like Protrusions

    PubMed Central

    Dragoi, Ana-Maria

    2015-01-01

    Intracellular pathogens such as Shigella flexneri and Listeria monocytogenes achieve dissemination in the intestinal epithelium by displaying actin-based motility in the cytosol of infected cells. As they reach the cell periphery, motile bacteria form plasma membrane protrusions that resolve into vacuoles in adjacent cells, through a poorly understood mechanism. Here, we report on the role of the class II phosphatidylinositol 3-phosphate kinase PIK3C2A in S. flexneri dissemination. Time-lapse microscopy revealed that PIK3C2A was required for the resolution of protrusions into vacuoles through the formation of an intermediate membrane-bound compartment that we refer to as a vacuole-like protrusion (VLP). Genetic rescue of PIK3C2A depletion with RNA interference (RNAi)-resistant cDNA constructs demonstrated that VLP formation required the activity of PIK3C2A in primary infected cells. PIK3C2A expression was required for production of phosphatidylinositol 3-phosphate [PtdIns(3)P] at the plasma membrane surrounding protrusions. PtdIns(3)P production was not observed in the protrusions formed by L. monocytogenes, whose dissemination did not rely on PIK3C2A. PIK3C2A-mediated PtdIns(3)P production in S. flexneri protrusions was regulated by host cell tyrosine kinase signaling and relied on the integrity of the S. flexneri type 3 secretion system (T3SS). We suggest a model of S. flexneri dissemination in which the formation of VLPs is mediated by the PIK3C2A-dependent production of the signaling lipid PtdIns(3)P in the protrusion membrane, which relies on the T3SS-dependent activation of tyrosine kinase signaling in protrusions. PMID:25667265

  1. Seasonal freeze resistance of rainbow smelt (Osmerus mordax) is generated by differential expression of glycerol-3-phosphate dehydrogenase, phosphoenolpyruvate carboxykinase, and antifreeze protein genes.

    PubMed

    Liebscher, Ryan S; Richards, Robert C; Lewis, Johanne M; Short, Connie E; Muise, Denise M; Driedzic, William R; Ewart, K Vanya

    2006-01-01

    In winter, rainbow smelt (Osmerus mordax) accumulate glycerol and produce an antifreeze protein (AFP), which both contribute to freeze resistance. The role of differential gene expression in the seasonal pattern of these adaptations was investigated. First, cDNAs encoding smelt and Atlantic salmon (Salmo salar) phosphoenolpyruvate carboxykinase (PEPCK) and smelt glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were cloned so that all sequences required for expression analysis would be available. Using quantitative PCR, expression of beta actin in rainbow smelt liver was compared with that of GAPDH in order to determine its validity as a reference gene. Then, levels of glycerol-3-phosphate dehydrogenase (GPDH), PEPCK, and AFP relative to beta actin were measured in smelt liver over a fall-winter-spring interval. Levels of GPDH mRNA increased in the fall just before plasma glycerol accumulation, implying a driving role in glycerol synthesis. GPDH mRNA levels then declined during winter, well in advance of serum glycerol, suggesting the possibility of GPDH enzyme or glycerol conservation in smelt during the winter months. PEPCK mRNA levels rose in parallel with serum glycerol in the fall, consistent with an increasing requirement for amino acids as metabolic precursors, remained elevated for much of the winter, and then declined in advance of the decline in plasma glycerol. AFP mRNA was elevated at the onset of fall sampling in October and remained elevated until April, implying separate regulation from GPDH and PEPCK. Thus, winter freezing point depression in smelt appears to result from a seasonal cycle of GPDH gene expression, with an ensuing increase in the expression of PEPCK, and a similar but independent cycle of AFP gene expression.

  2. High-resolution crystal structures of the photoreceptor glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with three and four-bound NAD molecules.

    PubMed

    Baker, Bo Y; Shi, Wuxian; Wang, Benlian; Palczewski, Krzysztof

    2014-11-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the oxidative phosphorylation of d-glyceraldehyde 3-phosphate (G3P) into 1,3-diphosphoglycerate (BGP) in the presence of the NAD cofactor. GAPDH is an important drug target because of its central role in glycolysis, and nonglycolytic processes such as nuclear RNA transport, DNA replication/repair, membrane fusion and cellular apoptosis. Recent studies found that GAPDH participates in the development of diabetic retinopathy and its progression after the cessation of hyperglycemia. Here, we report two structures for native bovine photoreceptor GAPDH as a homotetramer with differing occupancy by NAD, bGAPDH(NAD)4 , and bGAPDH(NAD)3 . The bGAPDH(NAD)4 was solved at 1.52 Å, the highest resolution for GAPDH. Structural comparison of the bGAPDH(NAD)4 and bGAPDH(NAD)3 models revealed novel details of conformational changes induced by cofactor binding, including a loop region (residues 54-56). Structure analysis of bGAPDH confirmed the importance of Phe34 in NAD binding, and demonstrated that Phe34 was stabilized in the presence of NAD but displayed greater mobility in its absence. The oxidative state of the active site Cys149 residue is regulated by NAD binding, because this residue was found oxidized in the absence of dinucleotide. The distance between Cys149 and His176 decreased upon NAD binding and Cys149 remained in a reduced state when NAD was bound. These findings provide an important structural step for understanding the mechanism of GAPDH activity in vision and its pathological role in retinopathies.

  3. Molecular evolution and sequence divergence of plant chalcone synthase and chalcone synthase-Like genes.

    PubMed

    Han, Yingying; Zhao, Wenwen; Wang, Zhicui; Zhu, Jingying; Liu, Qisong

    2014-06-01

    Plant chalcone synthase (CHS) and CHS-Like (CHSL) proteins are polyketide synthases. In this study, we evaluated the molecular evolution of this gene family using representative types of CHSL genes, including stilbene synthase (STS), 2-pyrone synthase (2-PS), bibenzyl synthase (BBS), acridone synthase (ACS), biphenyl synthase (BIS), benzalacetone synthase, coumaroyl triacetic acid synthase (CTAS), and benzophenone synthase (BPS), along with their CHS homologs from the same species of both angiosperms and gymnosperms. A cDNA-based phylogeny indicated that CHSLs had diverse evolutionary patterns. STS, ACS, and 2-PS clustered with CHSs from the same species (late diverged pattern), while CTAS, BBS, BPS, and BIS were distant from their CHS homologs (early diverged pattern). The amino-acid phylogeny suggested that CHS and CHSL proteins formed clades according to enzyme function. The CHSs and CHSLs from Polygonaceae and Arachis had unique evolutionary histories. Synonymous mutation rates were lower in late diverged CHSLs than in early diverged ones, indicating that gene duplications occurred more recently in late diverged CHSLs than in early diverged ones. Relative rate tests proved that late diverged CHSLs had unequal rates to CHSs from the same species when using fatty acid synthase, which evolved from the common ancestor with the CHS superfamily, as the outgroup, while the early diverged lineages had equal rates. This indicated that late diverged CHSLs experienced more frequent mutation than early diverged CHSLs after gene duplication, allowing obtaining new functions in relatively short period of time.

  4. Reevaluating glyphosate as a transition-state inhibitor of EPSP synthase: identification of an EPSP synthase.EPSP.glyphosate ternary complex.

    PubMed

    Sammons, R D; Gruys, K J; Anderson, K S; Johnson, K A; Sikorski, J A

    1995-05-16

    Numerous studies have confirmed that glyphosate forms a tight ternary complex with EPSP synthase and shikimate 3-phosphate. It has been proposed [Anton, D., Hedstrom, L., Fish, S., & Abeles, R. (1983) Biochemistry 22, 5903-5908; Steinrücken, H. C., & Amrhein, N. (1984) Eur. J. Biochem. 143, 351-357] that in this complex glyphosate functions as a transition-state analog of the putative phosphoenolpyruvoyl oxonium ion. For this to be true, glyphosate must occupy the space in the enzyme active site that is normally associated with PEP and, through turnover, the carboxyvinyl group of the product EPSP. According to this model, one would predict that, in the reverse EPSP synthase reaction with EPSP and phosphate as substrates, there should be little if any interaction of glyphosate with enzyme or enzyme.substrate complexes. In contrast to this expectation, rapid gel filtration experiments provided direct evidence that glyphosate could be trapped on the enzyme in the presence of EPSP to form a ternary complex of EPSPS.EPSP.glyphosate. The experimentally determined stoichiometry for this complex, 0.62 equiv of glyphosate/mole of EPSPS, is similar to that found for the EPSPS.S3P.glyphosate ternary complex (0.66). This direct binding result was corroborated and quantitated by fluorescence titration experiments which demonstrated that glyphosate forms a reasonably tight (Kd = 56 +/- 1 microM) ternary complex with enzyme and EPSP. This finding was further verified, and its impact on substrate turnover analyzed, by steady-state kinetics. Glyphosate was found to be an uncompetitive inhibitor versus EPSP with Kii(app) = 54 +/- 2 microM.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Crystal structure of riboflavin synthase

    SciTech Connect

    Liao, D.-I.; Wawrzak, Z.; Calabrese, J.C.; Viitanen, P.V.; Jordan, D.B.

    2010-03-05

    Riboflavin synthase catalyzes the dismutation of two molecules of 6,7-dimethyl-8-(1'-D-ribityl)-lumazine to yield riboflavin and 4-ribitylamino-5-amino-2,6-dihydroxypyrimidine. The homotrimer of 23 kDa subunits has no cofactor requirements for catalysis. The enzyme is nonexistent in humans and is an attractive target for antimicrobial agents of organisms whose pathogenicity depends on their ability to biosynthesize riboflavin. The first three-dimensional structure of the enzyme was determined at 2.0 {angstrom} resolution using the multiwavelength anomalous diffraction (MAD) method on the Escherichia coli protein containing selenomethionine residues. The homotrimer consists of an asymmetric assembly of monomers, each of which comprises two similar {beta} barrels and a C-terminal {alpha} helix. The similar {beta} barrels within the monomer confirm a prediction of pseudo two-fold symmetry that is inferred from the sequence similarity between the two halves of the protein. The {beta} barrels closely resemble folds found in phthalate dioxygenase reductase and other flavoproteins. The three active sites of the trimer are proposed to lie between pairs of monomers in which residues conserved among species reside, including two Asp-His-Ser triads and dyads of Cys-Ser and His-Thr. The proposed active sites are located where FMN (an analog of riboflavin) is modeled from an overlay of the {beta} barrels of phthalate dioxygenase reductase and riboflavin synthase. In the trimer, one active site is formed, and the other two active sites are wide open and exposed to solvent. The nature of the trimer configuration suggests that only one active site can be formed and be catalytically competent at a time.

  6. The control of fatty acid and triglyceride synthesis in rat epididymal adipose tissue. Roles of coenzyme A derivatives, citrate and l-glycerol 3-phosphate

    PubMed Central

    Denton, R. M.; Halperin, M. L.

    1968-01-01

    1. Methods are described for the extraction and assay of acetyl-CoA and of total acid-soluble and total acid-insoluble CoA derivatives in rat epididymal adipose tissue. 2. The concentration ranges of the CoA derivatives in fat pads incubated in vitro under various conditions were: total acid-soluble CoA, 0·20–0·59mm; total acid-insoluble CoA, 0·08–0·23mm; acetyl-CoA, 0·03–0·14mm. 3. An investigation was made of some postulated mechanisms of control of fatty acid and triglyceride synthesis in rat epididymal fat pads incubated in vitro. The concentrations of intermediates of possible regulatory significance were measured at various rates of fatty acid and triglyceride synthesis produced by the addition to the incubation medium (Krebs bicarbonate buffer containing glucose) of insulin, adrenaline, albumin, palmitate or acetate. 4. The whole-tissue concentrations of glucose 6-phosphate, l-glycerol 3-phosphate, citrate, acetyl-CoA, total acid-soluble CoA and total acid-insoluble CoA were assayed after 30 or 60min. incubation. The rates of fatty acid and triglyceride synthesis, calculated from the incorporation of [U-14C]glucose into fatty acids and glyceride glycerol respectively, and the rates of glucose uptake, lactate plus pyruvate output and glycerol output were measured over a 60min. incubation. 5. The rate of triglyceride synthesis could not be correlated with the concentrations of either l-glycerol 3-phosphate or long-chain fatty acyl-CoA (measured as total acid-insoluble CoA). Factor(s) other than the whole-tissue concentrations of these recognized precursors appear to be involved in the determination of the rate of triglyceride synthesis. 6. No relationship was found between the rate of fatty acid synthesis and the whole-tissue concentrations of the intermediates, citrate or acetyl-CoA, or with the two proposed effectors of acetyl-CoA carboxylase, citrate (as activator) or long-chain fatty acyl-CoA (as inhibitor). The control of fatty acid synthesis

  7. The Expression of Glyceraldehyde-3-Phosphate Dehydrogenase Associated Cell Cycle (GACC) Genes Correlates with Cancer Stage and Poor Survival in Patients with Solid Tumors

    PubMed Central

    Wang, Dunrui; Moothart, Daniel R.; Lowy, Douglas R.; Qian, Xiaolan

    2013-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is often used as a stable housekeeping marker for constant gene expression. However, the transcriptional levels of GAPDH may be highly up-regulated in some cancers, including non-small cell lung cancers (NSCLC). Using a publically available microarray database, we identified a group of genes whose expression levels in some cancers are highly correlated with GAPDH up-regulation. The majority of the identified genes are cell cycle-dependent (GAPDH Associated Cell Cycle, or GACC). The up-regulation pattern of GAPDH positively associated genes in NSCLC is similar to that observed in cultured fibroblasts grown under conditions that induce anti-senescence. Data analysis demonstrated that up-regulated GAPDH levels are correlated with aberrant gene expression related to both glycolysis and gluconeogenesis pathways. Down-regulation of fructose-1,6-bisphosphatase (FBP1) in gluconeogenesis in conjunction with up-regulation of most glycolytic genes is closely related to high expression of GAPDH in the tumors. The data presented demonstrate that up-regulation of GAPDH positively associated genes is proportional to the malignant stage of various tumors and is associated with an unfavourable prognosis. Thus, this work suggests that GACC genes represent a potential new signature for cancer stage identification and disease prognosis. PMID:23620736

  8. Phosphatidylinositol 3-phosphate-binding protein AtPH1 controls the localization of the metal transporter NRAMP1 in Arabidopsis.

    PubMed

    Agorio, Astrid; Giraudat, Jérôme; Bianchi, Michele Wolfe; Marion, Jessica; Espagne, Christelle; Castaings, Loren; Lelièvre, Françoise; Curie, Catherine; Thomine, Sébastien; Merlot, Sylvain

    2017-04-03

    "Too much of a good thing" perfectly describes the dilemma that living organisms face with metals. The tight control of metal homeostasis in cells depends on the trafficking of metal transporters between membranes of different compartments. However, the mechanisms regulating the location of transport proteins are still largely unknown. Developing Arabidopsis thaliana seedlings require the natural resistance-associated macrophage proteins (NRAMP3 and NRAMP4) transporters to remobilize iron from seed vacuolar stores and thereby acquire photosynthetic competence. Here, we report that mutations in the pleckstrin homology (PH) domain-containing protein AtPH1 rescue the iron-deficient phenotype of nramp3nramp4 Our results indicate that AtPH1 binds phosphatidylinositol 3-phosphate (PI3P) in vivo and acts in the late endosome compartment. We further show that loss of AtPH1 function leads to the mislocalization of the metal uptake transporter NRAMP1 to the vacuole, providing a rationale for the reversion of nramp3nramp4 phenotypes. This work identifies a PH domain protein as a regulator of plant metal transporter localization, providing evidence that PH domain proteins may be effectors of PI3P for protein sorting.

  9. The complete sequence of a full length cDNA for human liver glyceraldehyde-3-phosphate dehydrogenase: evidence for multiple mRNA species.

    PubMed Central

    Arcari, P; Martinelli, R; Salvatore, F

    1984-01-01

    A recombinant M13 clone (O42) containing a 65 b.p. cDNA fragment from human fetal liver mRNA coding for glyceraldehyde-3-phosphate dehydrogenase has been identified and it has been used to isolate from a full-length human adult liver cDNA library a recombinant clone, pG1, which has been subcloned in M13 phage and completely sequenced with the chain terminator method. Besides the coding region of 1008 b.p., the cDNA sequence includes 60 nucleotides at the 5'-end and 204 nucleotides at the 3'-end up to the polyA tail. Hybridization of pG1 to human liver total RNA shows only one band about the size of pG1 cDNA. A much stronger hybridization signal was observed using RNA derived from human hepatocarcinoma and kidney carcinoma cell lines. Sequence homology between clone 042 and the homologous region of clone pG1 is 86%. On the other hand, homology among the translated sequences and the known human muscle protein sequence ranges between 77 and 90%; these data demonstrate the existence of more than one gene coding for G3PD. Southern blot of human DNA, digested with several restriction enzymes, also indicate that several homologous sequences are present in the human genome. Images PMID:6096821

  10. Re-evaluation of the glycerol-3-phosphate dehydrogenase/L-lactate dehydrogenase enzyme system. Evidence against the direct transfer of NADH between active sites.

    PubMed Central

    Brooks, S P; Storey, K B

    1991-01-01

    An investigation of the direct transfer of metabolites from rabbit muscle L-lactate dehydrogenase (LDH, EC 1.1.1.27) to glycerol-3-phosphate dehydrogenase (GPDH, EC 1.1.1.8) revealed discrepancies between theoretical predictions and experimental results. Measurements of the GPDH reaction rate at a fixed NADH concentration and in the presence of increasing LDH concentrations gave experimental results similar to those previously obtained by Srivastava, Smolen, Betts, Fukushima, Spivey & Bernhard [(1989) Proc. Natl. Acad. Sci. U.S.A. 86, 6464-6468]. However, a mathematical solution of the direct-transfer-mechanism equations as described by Srivastava et al. (1989) showed that the direct-transfer model did not adequately describe the experimental behaviour of the reaction rate at increasing LDH concentrations. In addition, experiments designed to measure the formation of an LDH4.NADH.GPDH2 complex, predicted by the direct-transfer model, indicated that no significant formation of tertiary complex occurred. An examination of other kinetic models, developed to describe the LDH/GPDH/NADH system better, revealed that the experimental results may be best explained by assuming that free NADH, and not E1.NADH, is the sole substrate for GPDH. These results suggest that direct transfer of NADH between rabbit muscle LDH and GPDH does not occur in vitro. PMID:1898374

  11. Plastidial Glycolytic Glyceraldehyde-3-Phosphate Dehydrogenase Is an Important Determinant in the Carbon and Nitrogen Metabolism of Heterotrophic Cells in Arabidopsis.

    PubMed

    Anoman, Armand D; Muñoz-Bertomeu, Jesús; Rosa-Téllez, Sara; Flores-Tornero, María; Serrano, Ramón; Bueso, Eduardo; Fernie, Alisdair R; Segura, Juan; Ros, Roc

    2015-11-01

    This study functionally characterizes the Arabidopsis (Arabidopsis thaliana) plastidial glycolytic isoforms of glyceraldehyde-3-phosphate dehydrogenase (GAPCp) in photosynthetic and heterotrophic cells. We expressed the enzyme in gapcp double mutants (gapcp1gapcp2) under the control of photosynthetic (Rubisco small subunit RBCS2B [RBCS]) or heterotrophic (phosphate transporter PHT1.2 [PHT]) cell-specific promoters. Expression of GAPCp1 under the control of RBCS in gapcp1gapcp2 had no significant effect on the metabolite profile or growth in the aerial part (AP). GAPCp1 expression under the control of the PHT promoter clearly affected Arabidopsis development by increasing the number of lateral roots and having a major effect on AP growth and metabolite profile. Our results indicate that GAPCp1 is not functionally important in photosynthetic cells but plays a fundamental role in roots and in heterotrophic cells of the AP. Specifically, GAPCp activity may be required in root meristems and the root cap for normal primary root growth. Transcriptomic and metabolomic analyses indicate that the lack of GAPCp activity affects nitrogen and carbon metabolism as well as mineral nutrition and that glycerate and glutamine are the main metabolites responding to GAPCp activity. Thus, GAPCp could be an important metabolic connector of glycolysis with other pathways, such as the phosphorylated pathway of serine biosynthesis, the ammonium assimilation pathway, or the metabolism of γ-aminobutyrate, which in turn affect plant development.

  12. A H2 very high frequency capacitively coupled plasma inactivates glyceraldehyde 3-phosphate dehydrogenase(GapDH) more efficiently than UV photons and heat combined

    NASA Astrophysics Data System (ADS)

    Stapelmann, Katharina; Lackmann, Jan-Wilm; Buerger, Ines; Bandow, Julia Elisabeth; Awakowicz, Peter

    2014-02-01

    Plasma sterilization is a promising alternative to commonly used sterilization techniques, because the conventional methods suffer from certain limitations, e.g. incompatibility with heat-sensitive materials, or use of toxic agents. However, plasma-based sterilization mechanisms are not fully understood yet. A low-pressure very high frequency capacitively coupled plasma is used to investigate the impact of a hydrogen discharge on the protein glyceraldehyde 3-phosphate dehydrogenase (GapDH). GapDH is an enzyme of glycolysis. As a part of the central metabolism, it occurs in nearly all organisms from bacteria to humans. The plasma is investigated with absolutely calibrated optical emission spectroscopy in order to identify and to quantify plasma components that can contribute to enzyme inactivation. The contribution of UV photons and heat to GapDH inactivation is investigated separately, and neither seems to be a major factor. In order to investigate the mechanisms of GapDH inactivation by the hydrogen discharge, samples are investigated for etching, induction of amino acid backbone breaks, and chemical modifications. While neither etching nor strand breaks are observed, chemical modifications occur at different amino acid residues of GapDH. Deamidations of asparagines as well as methionine and cysteine oxidations are detected after VHF-CCP treatment. In particular, oxidation of the cysteine in the active centre is known to lead to GapDH inactivation.

  13. Characterization of glyceraldehyde-3-phosphate dehydrogenase gene RtGPD1 and development of genetic transformation method by dominant selection in oleaginous yeast Rhodosporidium toruloides.

    PubMed

    Liu, Yanbin; Koh, Chong Mei John; Sun, Longhua; Hlaing, Mya Myintzu; Du, Minge; Peng, Ni; Ji, Lianghui

    2013-01-01

    The oleaginous yeast Rhodosporidium toruloides, which belongs to the Pucciniomycotina subphylum in the Basidiomycota, has attracted strong interest in the biofuel community recently due to its ability to accumulate more than 60% of dry biomass as lipid under high-density fermentation. A 3,543-nucleotide (nt) DNA fragment of the glyceraldehyde-3-phosphate dehydrogenase gene (GPD1) was isolated from R. toruloides ATCC 10657 and characterized in details. The 1,038-nt mRNA derived from seven exons encodes an open reading frame (ORF) of 345 amino acids that shows high identity (80%) to the Ustilago maydis homolog. Notably, the ORF is composed of codons strongly biased towards cytosine at the Wobble position. GPD1 is transcriptionally regulated by temperature shock, osmotic stress, and carbon source. Nested deletion analysis of the GPD1 promoter by GFP reporter assay revealed that two regions, -975 to -1,270 and -1,270 to -1,429, upstream from the translational start site of GPD1 were important for responses to various stress stimuli. Interestingly, a 176-bp short fragment maintained 42.2% promoter activity of the 795-bp version in U. maydis whereas it was reduced to 17.4% in R. toruloides. The GPD1 promoter drove strong expression of a codon-optimized enhanced green fluorescent protein gene (RtGFP) and a codon-optimized hygromycin phosphotransferase gene (hpt-3), which was critical for Agrobacterium tumefaciens-mediated transformation in R. toruloides.

  14. Iron starvation causes release from the group A streptococcus of the ADP-ribosylating protein called plasmin receptor or surface glyceraldehyde-3-phosphate-dehydrogenase.

    PubMed Central

    Eichenbaum, Z; Green, B D; Scott, J R

    1996-01-01

    In many pathogenic bacteria, iron starvation serves as an environmental signal that triggers the expression of virulence factors, many of which are found on the cell surface or secreted into the culture supernatant. Using the chelating agent nitrilotriacetic acid, we have established conditions for iron starvation of the important human pathogen Streptococcus pyogenes (the group A streptococcus) and determined that iron limitation results in the specific appearance of several new proteins in the culture supernatant. One of these supernatant proteins is the ADP-ribosylating protein known as streptococcal plasmin receptor (Plr) or as the streptococcal surface glyceraldehyde-3-phosphate-dehydrogenase because of its other activities. Upon iron starvation, Plr is specifically released into the culture supernatant in a time-dependent manner, and its appearance in the supernatant is not accompanied by induction of plr mRNA synthesis. Release of Plr from the bacteria may be important for the virulence of group A streptococci and the manifestation of diseases. PMID:8675293

  15. Comparison of the regulation, metabolic functions, and roles in virulence of the glyceraldehyde-3-phosphate dehydrogenase homologues gapA and gapB in Staphylococcus aureus.

    PubMed

    Purves, Joanne; Cockayne, Alan; Moody, Peter C E; Morrissey, Julie A

    2010-12-01

    The Gram-positive bacterium Staphylococcus aureus contains two glyceraldehyde-3-phosphate dehydrogenase (GAPDH) homologues known as GapA and GapB. GapA has been characterized as a functional GAPDH protein, but currently there is no biological evidence for the role of GapB in metabolism in S. aureus. In this study we show through a number of complementary methods that S. aureus GapA is essential for glycolysis while GapB is essential in gluconeogenesis. These proteins are reciprocally regulated in response to glucose concentrations, and both are influenced by the glycolysis regulator protein GapR, which is the first demonstration of the role of this regulator in S. aureus and the first indication that GapR homologues control genes other than those within the glycolytic operon. Furthermore, we show that both GapA and GapB are important in the pathogenesis of S. aureus in a Galleria mellonella model of infection, showing for the first time in any bacteria that both glycolysis and gluconeogenesis have important roles in virulence.

  16. Isolation and characterization of rat and human glyceraldehyde-3-phosphate dehydrogenase cDNAs: genomic complexity and molecular evolution of the gene.

    PubMed Central

    Tso, J Y; Sun, X H; Kao, T H; Reece, K S; Wu, R

    1985-01-01

    Full length cDNAs encoding the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from rat and man have been isolated and sequenced. Many GAPDH gene-related sequences have been found in both genomes based on genomic blot hybridization analysis. Only one functional gene product is known. Results from genomic library screenings suggest that there are 300-400 copies of these sequences in the rat genome and approximately 100 in the human genome. Some of these related sequences have been shown to be processed pseudogenes. We have isolated several rat cDNA clones corresponding to these pseudogenes indicating that some pseudogenes are transcribed. Rat and human cDNAs are 89% homologous in the coding region, and 76% homologous in the first 100 base pairs of the 3'-noncoding region. Comparison of these two cDNA sequences with those of the chicken, Drosophila and yeast genes allows the analysis of the evolution of the GAPDH genes in detail. Images PMID:2987855

  17. Plastidial Glycolytic Glyceraldehyde-3-Phosphate Dehydrogenase Is an Important Determinant in the Carbon and Nitrogen Metabolism of Heterotrophic Cells in Arabidopsis1

    PubMed Central

    Anoman, Armand D.; Muñoz-Bertomeu, Jesús; Rosa-Téllez, Sara; Flores-Tornero, María; Serrano, Ramón; Bueso, Eduardo; Fernie, Alisdair R.; Segura, Juan; Ros, Roc

    2015-01-01

    This study functionally characterizes the Arabidopsis (Arabidopsis thaliana) plastidial glycolytic isoforms of glyceraldehyde-3-phosphate dehydrogenase (GAPCp) in photosynthetic and heterotrophic cells. We expressed the enzyme in gapcp double mutants (gapcp1gapcp2) under the control of photosynthetic (Rubisco small subunit RBCS2B [RBCS]) or heterotrophic (phosphate transporter PHT1.2 [PHT]) cell-specific promoters. Expression of GAPCp1 under the control of RBCS in gapcp1gapcp2 had no significant effect on the metabolite profile or growth in the aerial part (AP). GAPCp1 expression under the control of the PHT promoter clearly affected Arabidopsis development by increasing the number of lateral roots and having a major effect on AP growth and metabolite profile. Our results indicate that GAPCp1 is not functionally important in photosynthetic cells but plays a fundamental role in roots and in heterotrophic cells of the AP. Specifically, GAPCp activity may be required in root meristems and the root cap for normal primary root growth. Transcriptomic and metabolomic analyses indicate that the lack of GAPCp activity affects nitrogen and carbon metabolism as well as mineral nutrition and that glycerate and glutamine are the main metabolites responding to GAPCp activity. Thus, GAPCp could be an important metabolic connector of glycolysis with other pathways, such as the phosphorylated pathway of serine biosynthesis, the ammonium assimilation pathway, or the metabolism of γ-aminobutyrate, which in turn affect plant development. PMID:26134167

  18. Apicoplast-Localized Lysophosphatidic Acid Precursor Assembly Is Required for Bulk Phospholipid Synthesis in Toxoplasma gondii and Relies on an Algal/Plant-Like Glycerol 3-Phosphate Acyltransferase

    PubMed Central

    Callahan, Damien L.; Dubois, David; van Dooren, Giel G.; Shears, Melanie J.; Cesbron-Delauw, Marie-France; Maréchal, Eric; McConville, Malcolm J.; McFadden, Geoffrey I.; Yamaryo-Botté, Yoshiki; Botté, Cyrille Y.

    2016-01-01

    Most apicomplexan parasites possess a non-photosynthetic plastid (the apicoplast), which harbors enzymes for a number of metabolic pathways, including a prokaryotic type II fatty acid synthesis (FASII) pathway. In Toxoplasma gondii, the causative agent of toxoplasmosis, the FASII pathway is essential for parasite growth and infectivity. However, little is known about the fate of fatty acids synthesized by FASII. In this study, we have investigated the function of a plant-like glycerol 3-phosphate acyltransferase (TgATS1) that localizes to the T. gondii apicoplast. Knock-down of TgATS1 resulted in significantly reduced incorporation of FASII-synthesized fatty acids into phosphatidic acid and downstream phospholipids and a severe defect in intracellular parasite replication and survival. Lipidomic analysis demonstrated that lipid precursors are made in, and exported from, the apicoplast for de novo biosynthesis of bulk phospholipids. This study reveals that the apicoplast-located FASII and ATS1, which are primarily used to generate plastid galactolipids in plants and algae, instead generate bulk phospholipids for membrane biogenesis in T. gondii. PMID:27490259

  19. Two glycerol 3-phosphate dehydrogenase isogenes from Candida versatilis SN-18 play an important role in glycerol biosynthesis under osmotic stress.

    PubMed

    Mizushima, Daiki; Iwata, Hisashi; Ishimaki, Yuki; Ogihara, Jun; Kato, Jun; Kasumi, Takafumi

    2016-05-01

    Two isogenes of glycerol 3-phosphate dehydrogenase (GPD) from Candida versatilis SN-18 were cloned and sequenced. These intronless genes (Cagpd1 and Cagpd2) were both predicted to encode a 378 amino acid polypeptide, and the deduced amino acid sequences mutually showed 76% identity. Interestingly, Cagpd1 and Cagpd2 were located tandemly in a locus of genomic DNA within a 262 bp interval. To our knowledge, this represents a novel instance of isogenic genes relating to glucose metabolism. The stress response element (STRE) was found respectively at -93 to -89 bp upstream of the 5'end of Cagpd1 and -707 to -703 bp upstream of Cagpd2, indicating that these genes are involved in osmotic stress response. In heterologous expression using a gpd1Δgpd2Δ double deletion mutant of Saccharomyces cerevisiae, Cagpd1 and Cagpd2 transformants complemented the function of GPD, with Cagpd2 being much more effective than Cagpd1 in promoting growth and glycerol synthesis. Phylogenetic analysis of the amino acid sequences suggested that Cagpd1p and Cagpd2p are NADP(+)-dependent GPDs (EC 1.1.1.94). However, crude enzyme extract from Cagpd1 and Cagpd2 transformants showed GPD activity with only NAD(+) as cofactor. Hence, both Cagpd1p and Cagpd2p are likely NAD(+)-dependent GPDs (EC 1.1.1.8), similar to GPDs from S. cerevisiae and Candida magnoliae.

  20. Detection of a mutation in the intron of Sperm-specific glyceraldehyde-3-phosphate dehydrogenase gene in patients with fibrous sheath dysplasia of the sperm flagellum.

    PubMed

    Elkina, Y L; Kuravsky, M L; Bragina, E E; Kurilo, L F; Khayat, S S; Sukhomlinova, M Y; Schmalhausen, E V

    2017-03-01

    The fibrous sheath is a unique cytoskeletal structure surrounding the axoneme and outer dense fibres of the sperm flagellum. Dysplasia of the fibrous sheath (DFS) is a defect of spermatozoa observed in severe asthenozoospermic patients and characterised by morphologically abnormal flagella with distorted fibrous sheaths. Sperm-specific glyceraldehyde-3-phosphate dehydrogenase (GAPDS) is a glycolytic enzyme that is tightly associated with the fibrous sheath of the sperm flagellum. The enzymatic activity of GAPDS was investigated in sperm samples of seven patients with DFS and compared to that of normal spermatozoa (n = 10). The difference in GAPDS activity in DFS and normal spermatozoa was statistically significant (0.19 ± 0.11 and 0.75 ± 0.11 μmol NADH per min per mg protein respectively). Immunochemical staining revealed irregular distribution of GAPDS in the flagellum of DFS spermatozoa. Other five samples with typical alterations in the fibrous sheath were assayed for mutations within human GAPDS gene. In all five cases, a replacement of guanine by adenine was revealed in the intron region between the sixth and the seventh exons of GAPDS. It is assumed that the deficiency in GAPDS observed in most DFS sperm samples is ascribable to a disorder in the regulation of GAPDS expression caused by the mutation in the intron region of GAPDS gene.

  1. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of glyceraldehyde-3-phosphate dehydrogenase from Streptococcus agalactiae NEM316

    PubMed Central

    Nagarajan, Revathi; Ponnuraj, Karthe

    2014-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an essential enzyme involved in glycolysis. Despite lacking the secretory signal sequence, this cytosolic enzyme has been found localized at the surface of several bacteria and fungi. As a surface protein, GAPDH exhibits various adhesive functions, thereby facilitating colonization and invasion of host tissues. Streptococcus agalactiae, also known as group B streptococcus (GBS), binds onto the host using its surface adhesins and causes sepsis and pneumonia in neonates. GAPDH is one of the surface adhesins of GBS binding to human plasminogen and is a virulent factor associated with host colonization. Although the surface-associated GAPDH has been shown to bind to a variety of host extracellular matrix (ECM) molecules in various bacteria, the molecular mechanism underlying their interaction is not fully understood. To investigate this, structural studies on GAPDH of S. agalactiae were initiated. The gapC gene of S. agalactiae NEM316 encoding GAPDH protein was cloned into pET-28a vector, overexpressed in Escherichia coli BL21(DE3) cells and purified to homogeneity. The purified protein was crystallized using the hanging-drop vapour-diffusion method. The GAPDH crystals obtained in two different crystallization conditions diffracted to 2.8 and 2.6 Å resolution, belonging to two different space groups P21 and P212121, respectively. The structure was solved by molecular replacement and structure refinement is now in progress. PMID:25005093

  2. Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase.

    PubMed

    Michnick, S; Roustan, J L; Remize, F; Barre, P; Dequin, S

    1997-07-01

    The possibility of the diversion of carbon flux from ethanol towards glycerol in Saccharomyces cerevisiae during alcoholic fermentation was investigated. Variations in the glycerol 3-phosphate dehydrogenase (GPDH) level and similar trends for alcohol dehydrogenase (ADH), pyruvate decarboxylase and glycerol-3-phosphatase were found when low and high glycerol-forming wine yeast strains were compared. GPDH is thus a limiting enzyme for glycerol production. Wine yeast strains with modulated GPD1 (encoding one of the two GPDH isoenzymes) expression were constructed and characterized during fermentation on glucose-rich medium. Engineered strains fermented glucose with a strongly modified [glycerol] : [ethanol] ratio. gpd1delta mutants exhibited a 50% decrease in glycerol production and increased ethanol yield. Overexpression of GPD1 on synthetic must (200 g/l glucose) resulted in a substantial increase in glycerol production ( x 4) at the expense of ethanol. Acetaldehyde accumulated through the competitive regeneration of NADH via GPDH. Accumulation of by-products such as pyruvate, acetate, acetoin, 2,3 butane-diol and succinate was observed, with a marked increase in acetoin production.

  3. Overexpression of the triose phosphate translocator (TPT) complements the abnormal metabolism and development of plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase mutants.

    PubMed

    Flores-Tornero, María; Anoman, Armand D; Rosa-Téllez, Sara; Toujani, Walid; Weber, Andreas P M; Eisenhut, Marion; Kurz, Samantha; Alseekh, Saleh; Fernie, Alisdair R; Muñoz-Bertomeu, Jesús; Ros, Roc

    2017-03-01

    The presence of two glycolytic pathways working in parallel in plastids and cytosol has complicated the understanding of this essential process in plant cells, especially the integration of the plastidial pathway into the metabolism of heterotrophic and autotrophic organs. It is assumed that this integration is achieved by transport systems, which exchange glycolytic intermediates across plastidial membranes. However, it is unknown whether plastidial and cytosolic pools of 3-phosphoglycerate (3-PGA) can equilibrate in non-photosynthetic tissues. To resolve this question, we employed Arabidopsis mutants of the plastidial glycolytic isoforms of glyceraldehyde-3-phosphate dehydrogenase (GAPCp) that express the triose phosphate translocator (TPT) under the control of the 35S (35S:TPT) or the native GAPCp1 (GAPCp1:TPT) promoters. TPT expression under the control of both promoters complemented the vegetative developmental defects and metabolic disorders of the GAPCp double mutants (gapcp1gapcp2). However, as the 35S is poorly expressed in the tapetum, full vegetative and reproductive complementation of gapcp1gapcp2 was achieved only by transforming this mutant with the GAPCp1:TPT construct. Our results indicate that the main function of GAPCp is to supply 3-PGA for anabolic pathways in plastids of heterotrophic cells and suggest that the plastidial glycolysis may contribute to fatty acid biosynthesis in seeds. They also suggest a 3-PGA deficiency in the plastids of gapcp1gapcp2, and that 3-PGA pools between cytosol and plastid do not equilibrate in heterotrophic cells.

  4. Proteome profiling of the dimorphic fungus Penicillium marneffei extracellular proteins and identification of glyceraldehyde-3-phosphate dehydrogenase as an important adhesion factor for conidial attachment.

    PubMed

    Lau, Susanna K P; Tse, Herman; Chan, Joanna S Y; Zhou, Anna C; Curreem, Shirly O T; Lau, Candy C Y; Yuen, Kwok-Yung; Woo, Patrick C Y

    2013-12-01

    Despite being the most important thermal dimorphic fungus causing systemic mycosis in Southeast Asia, the pathogenic mechanisms of Penicillium marneffei remain largely unknown. By comparing the extracellular proteomes of P. marneffei in mycelial and yeast phases, we identified 12 differentially expressed proteins among which glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and heat shock protein 60 (HSP60) were found to be upregulated in mycelial and yeast phases respectively. Based on previous findings in other pathogens, we hypothesized that these two extracellular proteins may be involved in adherence during P. marneffei-host interaction. Using inhibition assays with recombinant GAPDH (rGAPDH) proteins and anti-rGAPDH sera, we demonstrated that adhesion of P. marneffei conidia to fibronectin and laminin was inhibited by rGAPDH or rabbit anti-rGAPDH serum in a dose-dependent manner. Similarly, a dose-dependent inhibition of conidial adherence to A549 pneumocytes by rGAPDH or rabbit anti-rGAPDH serum was observed, suggesting that P. marneffei GAPDH can mediate binding of conidia to human extracellular matrix proteins and pneumocytes. However, HSP60 did not exhibit similar inhibition on conidia adherence, and neither GAPDH norHSP60 exhibited inhibition on adherence to J774 or THP-1 macrophage cell lines. This report demonstrates GAPDH as an adherence factor in P. marneffei by mediating conidia adherence to host bronchoalveolar epithelium during the early establishment phase of infection.

  5. Determination of Cellular Phosphatidylinositol-3-phosphate (PI3P) Levels Using a Fluorescently Labelled Selective PI3P Binding Domain (PX)

    PubMed Central

    Munson, Michael J.; Ganley, Ian G.

    2017-01-01

    The lipid Phosphatidylinositol-3-phosphate [PtdIns3P or PI(3)P] plays many membrane trafficking roles and is primarily produced by the Class III PI3K, VPS34. Determining the level of cellular PI(3)P however can be complex. Extraction of cellular lipids by methanol/chloroform can struggle to separate and identify distinct phospholipid species. Alternately mass spectrometry may be utilised but this requires significant set up of specialised equipment and time to utilise. Use of a PI(3)P-binding-specific recombinant protein domain is a quick method for ascertaining cellular PI(3)P levels and can also allow visualisation of sub-cellular localisation. The PX domain of p40phox (herein referred to as PX) is very specific for PI(3)P over other phospholipid species (Kanai et al., 2001). However, expressing PX directly in cells can be problematic, as it will act in a dominant negative manner to bind and sequester PI(3)P with greater affinity than endogenous proteins, thus disturbing cellular pathways and the normal balance of PI(3)P levels. Using fluorescently labelled PX following cell fixation is therefore more suitable, as it is able to highlight PI(3)P rich structures without risk of perturbing the system. PMID:28127574

  6. Evolutionary engineering of a glycerol-3-phosphate dehydrogenase-negative, acetate-reducing Saccharomyces cerevisiae strain enables anaerobic growth at high glucose concentrations.

    PubMed

    Guadalupe-Medina, Víctor; Metz, Benjamin; Oud, Bart; van Der Graaf, Charlotte M; Mans, Robert; Pronk, Jack T; van Maris, Antonius J A

    2014-01-01

    Glycerol production by Saccharomyces cerevisiae, which is required for redox-cofactor balancing in anaerobic cultures, causes yield reduction in industrial bioethanol production. Recently, glycerol formation in anaerobic S. cerevisiae cultures was eliminated by expressing Escherichia coli (acetylating) acetaldehyde dehydrogenase (encoded by mhpF) and simultaneously deleting the GPD1 and GPD2 genes encoding glycerol-3-phosphate dehydrogenase, thus coupling NADH reoxidation to reduction of acetate to ethanol. Gpd⁻ strains are, however, sensitive to high sugar concentrations, which complicates industrial implementation of this metabolic engineering concept. In this study, laboratory evolution was used to improve osmotolerance of a Gpd⁻ mhpF-expressing S. cerevisiae strain. Serial batch cultivation at increasing osmotic pressure enabled isolation of an evolved strain that grew anaerobically at 1 M glucose, at a specific growth rate of 0.12 h⁻¹. The evolved strain produced glycerol at low concentrations (0.64 ± 0.33 g l⁻¹). However, these glycerol concentrations were below 10% of those observed with a Gpd⁺ reference strain. Consequently, the ethanol yield on sugar increased from 79% of the theoretical maximum in the reference strain to 92% for the evolved strains. Genetic analysis indicated that osmotolerance under aerobic conditions required a single dominant chromosomal mutation, and one further mutation in the plasmid-borne mhpF gene for anaerobic growth.

  7. The complex of band 3 protein of the human erythrocyte membrane and glyceraldehyde-3-phosphate dehydrogenase: stoichiometry and competition by aldolase.

    PubMed

    von Rückmann, Bogdan; Schubert, Dieter

    2002-02-10

    The cytoplasmic domain of band 3, the main intrinsic protein of the erythrocyte membrane, possesses binding sites for a variety of other proteins of the membrane and the cytoplasm, including the glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and aldolase. We have studied the stoichiometry of the complexes of human band 3 protein and GAPDH and the competition by aldolase for the binding sites. In addition, we have tried to verify the existence of mixed band 3/GAPDH/aldolase complexes, which could represent the nucleus of a putative glycolytic multienzyme complex on the erythrocyte membrane. The technique applied was analytical ultracentrifugation, in particular sedimentation equilibrium analysis, on mixtures of detergent-solubilized band 3 and dye-labelled GAPDH, in part of the experiments supplemented by aldolase. The results obtained were analogous to those reported for the binding of hemoglobin, aldolase and band 4.1 to band 3: (1) the predominant or even sole band 3 oligomer forming the binding site is the tetramer. (2) The band 3 tetramer can bind up to four tetramers of GAPDH. (3) The band 3/GAPDH complexes are unstable. (4) Artificially stabilized band 3 dimers also represent GAPDH binding sites. In addition it was found that aldolase competes with GAPDH for binding to the band 3 tetramer, and that ternary complexes of band 3 tetramers, GAPDH and aldolase do exist.

  8. Ste12/Fab1 phosphatidylinositol-3-phosphate 5-kinase is required for nitrogen-regulated mitotic commitment and cell size control

    PubMed Central

    Schauries, Marie; Kaczmarek, Adrian; Franz-Wachtel, Mirita; Du, Wei; Krug, Karsten; Maček, Boris; Petersen, Janni

    2017-01-01

    Tight coupling of cell growth and cell cycle progression enable cells to adjust their rate of division, and therefore size, to the demands of proliferation in varying nutritional environments. Nutrient stress promotes inhibition of Target Of Rapamycin Complex 1 (TORC1) activity. In fission yeast, reduced TORC1 activity advances mitotic onset and switches growth to a sustained proliferation at reduced cell size. A screen for mutants, that failed to advance mitosis upon nitrogen stress, identified a mutant in the PIKFYVE 1-phosphatidylinositol-3-phosphate 5-kinase fission yeast homolog Ste12. Ste12PIKFYVE deficient mutants were unable to advance the cell cycle to reduce cell size after a nitrogen downshift to poor nitrogen (proline) growth conditions. While it is well established that PI(3,5)P2 signalling is required for autophagy and that Ste12PIKFYVE mutants have enlarged vacuoles (yeast lysosomes), neither a block to autophagy or mutants that independently have enlarged vacuoles had any impact upon nitrogen control of mitotic commitment. The addition of rapamycin to Ste12PIKFYVE deficient mutants reduced cell size at division to suggest that Ste12PIKFYVE possibly functions upstream of TORC1. ste12 mutants display increased Torin1 (TOR inhibitor) sensitivity. However, no major impact on TORC1 or TORC2 activity was observed in the ste12 deficient mutants. In summary, Ste12PIKFYVE is required for nitrogen-stress mediated advancement of mitosis to reduce cell size at division. PMID:28273166

  9. Effects of deletion of glycerol-3-phosphate dehydrogenase and glutamate dehydrogenase genes on glycerol and ethanol metabolism in recombinant Saccharomyces cerevisiae.

    PubMed

    Kim, Jin-Woo; Chin, Young-Wook; Park, Yong-Cheol; Seo, Jin-Ho

    2012-01-01

    Bioethanol is currently used as an alternative fuel for gasoline worldwide. For economic production of bioethanol by Saccharomyces cerevisiae, formation of a main by-product, glycerol, should be prevented or minimized in order to reduce a separation cost of ethanol from fermentation broth. In this study, S. cerevisiae was engineered to investigate the effects of the sole and double disruption of NADH-dependent glycerol-3-phosphate dehydrogenase 1 (GPD1) and NADPH-requiring glutamate dehydrogenase 1 (GDH1) on the production of glycerol and ethanol from glucose. Even though sole deletion of GPD1 or GDH1 reduced glycerol production, double deletion of GPD1 and GDH1 resulted in the lowest glycerol concentration of 2.31 g/L, which was 46.4% lower than the wild-type strain. Interestingly, the recombinant S. cerevisiae ∆GPD1∆GDH1 strain showed a slight improvement in ethanol yield (0.414 g/g) compared with the wild-type strain (0.406 g/g). Genetic engineering of the glycerol and glutamate metabolic pathways modified NAD(P)H-requiring metabolic pathways and exerted a positive effect on glycerol reduction without affecting ethanol production.

  10. Cloning and molecular characterization of a glycerol-3-phosphate O-acyltransferase (GPAT) gene from Echium (Boraginaceae) involved in the biosynthesis of cutin polyesters.

    PubMed

    Mañas-Fernández, Aurora; Li-Beisson, Yonghua; Alonso, Diego López; García-Maroto, Federico

    2010-09-01

    The glycerol-based lipid polyester called cutin is a main component of cuticle, the protective interface of aerial plant organs also controlling compound exchange with the environment. Though recent progress towards understanding of cutin biosynthesis has been made in Arabidopsis thaliana, little is known in other plants. One key step in this process is the acyl transfer reaction to the glycerol backbone. Here we report the cloning and molecular characterization of EpGPAT1, a gene encoding a glycerol-3-phosphate O-acyltransferase (GPAT) from Echium pitardii (Boraginaceae) with high similarity to the AtGPAT4/AtGPAT8 of Arabidopsis. Quantitative analysis by qRT-PCR showed highest expression of EpGPAT1 in seeds, roots, young leaves and flowers. Acyltransferase activity of EpGPAT1 was evidenced by heterologous expression in yeast. Ectopic expression in leaves of tobacco plants lead to an increase of C16 and C18 hydroxyacids and alpha,omega-diacids in the cell wall fraction, indicating a role in the biosynthesis of polyesters. Analysis of the genomic organization in Echium revealed the presence of EpGPAT2, a closely related gene which was found to be mostly expressed in developing leaves and flowers. The presence of a conserved HAD-like domain at the N-terminal moiety of GPATs from Echium, Arabidopsis and other plant species suggests a possible phosphohydrolase activity in addition to the reported acyltransferase activity. Evolutive implications of this finding are discussed.

  11. Metabolic and structural evidence for the existence of a third species of polyphosphoinositide in cells: D-phosphatidyl-myo-inositol 3-phosphate.

    PubMed Central

    Stephens, L; Hawkins, P T; Downes, C P

    1989-01-01

    When human 1321 N1 astrocytoma cells were labelled to steady state with [3H]inositol and briefly with [32P]orthophosphate, a compound which contained both radiotracers and which co-migrated with phosphatidylinositol-myo-inositol 4-phosphate during t.l.c. could be extracted in acidic chloroform/methanol. Treatment with methylamine under conditions which lead to deacylation of conventional glycerophospholipids yielded a water-soluble moiety which was labelled with both radioisotopes and was eluted from an anion-exchange h.p.l.c. column with a retention time similar to, but distinct from, that of glycerophosphoinositol 4-phosphate. Experiments using sodium periodate and selective phosphatase enzymes to degrade this compound systematically generated a series of products which suggested the structure of the parent phospholipid was phosphatidyl-myo-inositol 3-phosphate (PtdIns3P). PtdIns3P is metabolically closely related to the pool(s) of inositol phospholipid(s) that serves as substrate(s) for an agonist-sensitive phosphoinositidase C, as the levels of PtdIns3P fell significantly when 1321 N1 cells were stimulated with carbachol. The relative rate of turnover of the inositol moiety of PtdIns3P is similar to that of both of the major polyphosphoinositides and significantly higher than that of total cellular phosphatidyl-myo-inositol. This suggests that all three polyphosphoinositides are synthesized from a common, rapidly metabolized, pool of phosphatidyl-myo-inositol. PMID:2541684

  12. Genetics Home Reference: GM3 synthase deficiency

    MedlinePlus

    ... GM3 synthase deficiency is characterized by recurrent seizures (epilepsy) and problems with brain development. Within the first ... Testing (1 link) Genetic Testing Registry: Amish infantile epilepsy syndrome Other Diagnosis and Management Resources (2 links) ...

  13. Chitin synthase inhibitors as antifungal agents.

    PubMed

    Chaudhary, Preeti M; Tupe, Santosh G; Deshpande, Mukund V

    2013-02-01

    Increased risk of fungal diseases in immunocompromised patients, emerging fungal pathogens, limited repertoire of antifungal drugs and resistance development against the drugs demands for development of new and effective antifungal agents. With greater knowledge of fungal metabolism efforts are being made to inhibit specific enzymes involved in different biochemical pathways for the development of antifungal drugs. Chitin synthase is one such promising target as it is absent in plants and mammals. Nikkomycin Z, a chitin synthase inhibitor is under clinical development. Chitin synthesis in fungi, chitin synthase as a target for antifungal agent development, different chitin synthase inhibitors isolated from natural sources, randomly synthesized and modified from nikkomycin and polyoxin are discussed in this review.

  14. Terpene synthases from Cannabis sativa

    PubMed Central

    Booth, Judith K.; Page, Jonathan E.

    2017-01-01

    Cannabis (Cannabis sativa) plants produce and accumulate a terpene-rich resin in glandular trichomes, which are abundant on the surface of the female inflorescence. Bouquets of different monoterpenes and sesquiterpenes are important components of cannabis resin as they define some of the unique organoleptic properties and may also influence medicinal qualities of different cannabis strains and varieties. Transcriptome analysis of trichomes of the cannabis hemp variety ‘Finola’ revealed sequences of all stages of terpene biosynthesis. Nine cannabis terpene synthases (CsTPS) were identified in subfamilies TPS-a and TPS-b. Functional characterization identified mono- and sesqui-TPS, whose products collectively comprise most of the terpenes of ‘Finola’ resin, including major compounds such as β-myrcene, (E)-β-ocimene, (-)-limonene, (+)-α-pinene, β-caryophyllene, and α-humulene. Transcripts associated with terpene biosynthesis are highly expressed in trichomes compared to non-resin producing tissues. Knowledge of the CsTPS gene family may offer opportunities for selection and improvement of terpene profiles of interest in different cannabis strains and varieties. PMID:28355238

  15. Inhibitors of specific ceramide synthases.

    PubMed

    Schiffmann, Susanne; Hartmann, Daniela; Fuchs, Sina; Birod, Kerstin; Ferreiròs, Nerea; Schreiber, Yannick; Zivkovic, Aleksandra; Geisslinger, Gerd; Grösch, Sabine; Stark, Holger

    2012-02-01

    Ceramide synthases (CerSs) are key enzymes in the biosynthesis of ceramides and display a group of at least six different isoenzymes (CerS1-6). Ceramides itself are bioactive molecules. Ceramides with different N-acyl side chains (C(14:0)-Cer - C(26:0)-Cer) possess distinct roles in cell signaling. Therefore, the selective inhibition of specific CerSs which are responsible for the formation of a specific ceramide holds promise for a number of new clinical treatment strategies, e.g., cancer. Here, we identified four of hitherto unknown functional inhibitors of CerSs derived from the FTY720 (Fingolimod) lead structure and showed their inhibitory effectiveness by two in vitro CerS activity assays. Additionally, we tested the substances in two cell lines (HCT-116 and HeLa) with different ceramide patterns. In summary, the in vitro activity assays revealed out that ST1058 and ST1074 preferentially inhibit CerS2 and CerS4, while ST1072 inhibits most potently CerS4 and CerS6. Importantly, ST1060 inhibits predominately CerS2. First structure-activity relationships and the potential biological impact of these compounds are discussed.

  16. Malate synthase a membrane protein

    SciTech Connect

    Chapman, K.D.; Turley, R.B.; Hermerath, C.A.; Carrapico, F.; Trelease, R.N.

    1987-04-01

    Malate synthase (MS) is generally regarded as a peripheral membrane protein, and believed by some to be ontogenetically associated with ER. However, immuno- and cyto-chemical in situ localizations show MS throughout the matrix of cotton (and cucumber) glyoxysomes, not specifically near their boundary membranes, nor in ER. Only a maximum of 50% MS can be solubilized from cotton glyoxysomes with 1% Triton X-100, 2mM Zwittergen 14, or 10mM DOC +/- salts. Cotton MS does not incorporate /sup 3/H-glucosamine in vivo, nor does it react with Con A on columns or blots. Cotton MS banded with ER in sucrose gradients (20-40%) in Tricine after 3h, but not after 22h in Tricine or Hepes, or after 3h in Hepes or K-phosphate. Collectively the authors data are inconsistent with physiologically meaningful MS-membrane associations in ER or glyoxysomes. It appears that experimentally-induced aggregates of MS migrate in ER gradients and occur in isolated glyoxysomes. These data indicate that ER is not involved in synthesis or modification of cottonseed MS prior to its import into the glyoxysomal matrix.

  17. Functional characterization of the phosphorylating D-glyceraldehyde 3-phosphate dehydrogenase from the archaeon Methanothermus fervidus by comparative molecular modelling and site-directed mutagenesis.

    PubMed

    Talfournier, F; Colloc'h, N; Mornon, J P; Branlant, G

    1999-10-01

    Phosphorylating archaeal D-glyceraldehyde 3-phosphate dehydrogenases (GraP-DHs) share only 15-20% identity with their glycolytic bacterial and eukaryotic counterparts. Unlike the latter which are NAD-specific, archaeal GraP-DHs exhibit a dual-cofactor specificity with a marked preference for NADP. In the present study, we have constructed a three-dimensional model of the Methanothermus fervidus GraP-DH based upon the X-ray structures of the Bacillus stearothermophilus and Escherichia coli GraP-DHs. The overall structure of the archaeal enzyme is globally similar to homology modelling-derived structures, in particular for the cofactor binding domain, which might adopt a classical Rossmann fold. M. fervidus GraP-DH can be considered as a dimer of dimers which exhibits negative and positive cooperativity in binding the coenzymes NAD and NADP, respectively. As expected, the differences between the model and the templates are located mainly within the loops. Based on the predictions derived from molecular modelling, site-directed mutagenesis was performed to characterize better the cofactor binding pocket and the catalytic domain. The Lys32Ala, Lys32Glu and Lys32Asp mutants led to a drastic increase in the Km value for NADP (i.e. 165-, 500- and 1000-fold, respectively), thus demonstrating that the invariant Lys32 residue is one of the most important determinants favouring the adenosine 2'-PO42- binding of NADP. The involvement of the side chain of Asn281, which was postulated to play a role equivalent to that of the Asn313 of bacterial and eukaryotic GraP-DHs in fixing the position of the nicotinamide ring in a syn orientation [Fabry, S. & Hensel, R. (1988) Gene 64, 189-197], was ruled out. Most of the amino acids involved in catalysis and in substrate recognition in bacterial and eukaryotic GraP-DHs are not conserved in the archaeal enzyme except for the essential Cys149. Inspection of our model suggests that side chains of invariant residues Asn150, Arg176, Arg177 and

  18. Calcium- and Nitric Oxide-Dependent Nuclear Accumulation of Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenase in Response to Long Chain Bases in Tobacco BY-2 Cells.

    PubMed

    Testard, Ambroise; Da Silva, Daniel; Ormancey, Mélanie; Pichereaux, Carole; Pouzet, Cécile; Jauneau, Alain; Grat, Sabine; Robe, Eugénie; Brière, Christian; Cotelle, Valérie; Mazars, Christian; Thuleau, Patrice

    2016-10-01

    Sphinganine or dihydrosphingosine (d18:0, DHS), one of the most abundant free sphingoid long chain bases (LCBs) in plants, is known to induce a calcium-dependent programmed cell death (PCD) in plants. In addition, in tobacco BY-2 cells, it has been shown that DHS triggers a rapid production of H2O2 and nitric oxide (NO). Recently, in analogy to what is known in the animal field, plant cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC), a ubiquitous enzyme involved in glycolysis, has been suggested to fulfill other functions associated with its oxidative post-translational modifications such as S-nitrosylation on cysteine residues. In particular, in mammals, stress signals inducing NO production promote S-nitrosylation of GAPC and its subsequent translocation into the nucleus where the protein participates in the establishment of apoptosis. In the present study, we investigated the behavior of GAPC in tobacco BY-2 cells treated with DHS. We found that upon DHS treatment, an S-nitrosylated form of GAPC accumulated in the nucleus. This accumulation was dependent on NO production. Two genes encoding GAPCs, namely Nt(BY-2)GAPC1 and Nt(BY-2)GAPC2, were cloned. Transient overexpression of Nt(BY-2)GAPC-green fluorescent protein (GFP) chimeric constructs indicated that both proteins localized in the cytoplasm as well as in the nucleus. Mutating into serine the two cysteine residues thought to be S-nitrosylated in response to DHS did not modify the localization of the proteins, suggesting that S-nitrosylation of GAPCs was probably not necessary for their nuclear relocalization. Interestingly, using Förster resonance energy transfer experiments, we showed that Nt(BY-2)GAPCs interact with nucleic acids in the nucleus. When GAPCs were mutated on their cysteine residues, their interaction with nucleic acids was abolished, suggesting a role for GAPCs in the protection of nucleic acids against oxidative stress.

  19. A Land-Plant-Specific Glycerol-3-Phosphate Acyltransferase Family in Arabidopsis: Substrate Specificity, sn-2 Preference, and Evolution1[W][OA

    PubMed Central

    Yang, Weili; Simpson, Jeffrey P.; Li-Beisson, Yonghua; Beisson, Fred; Pollard, Mike; Ohlrogge, John B.

    2012-01-01

    Arabidopsis (Arabidopsis thaliana) has eight glycerol-3-phosphate acyltransferase (GPAT) genes that are members of a plant-specific family with three distinct clades. Several of these GPATs are required for the synthesis of cutin or suberin. Unlike GPATs with sn-1 regiospecificity involved in membrane or storage lipid synthesis, GPAT4 and -6 are unique bifunctional enzymes with both sn-2 acyltransferase and phosphatase activity resulting in 2-monoacylglycerol products. We present enzymology, pathway organization, and evolutionary analysis of this GPAT family. Within the cutin-associated clade, GPAT8 is demonstrated as a bifunctional sn-2 acyltransferase/phosphatase. GPAT4, -6, and -8 strongly prefer C16:0 and C18:1 ω-oxidized acyl-coenzyme As (CoAs) over unmodified or longer acyl chain substrates. In contrast, suberin-associated GPAT5 can accommodate a broad chain length range of ω-oxidized and unsubstituted acyl-CoAs. These substrate specificities (1) strongly support polyester biosynthetic pathways in which acyl transfer to glycerol occurs after oxidation of the acyl group, (2) implicate GPAT specificities as one major determinant of cutin and suberin composition, and (3) argue against a role of sn-2-GPATs (Enzyme Commission 2.3.1.198) in membrane/storage lipid synthesis. Evidence is presented that GPAT7 is induced by wounding, produces suberin-like monomers when overexpressed, and likely functions in suberin biosynthesis. Within the third clade, we demonstrate that GPAT1 possesses sn-2 acyltransferase but not phosphatase activity and can utilize dicarboxylic acyl-CoA substrates. Thus, sn-2 acyltransferase activity extends to all subbranches of the Arabidopsis GPAT family. Phylogenetic analyses of this family indicate that GPAT4/6/8 arose early in land-plant evolution (bryophytes), whereas the phosphatase-minus GPAT1 to -3 and GPAT5/7 clades diverged later with the appearance of tracheophytes. PMID:22864585

  20. A BAR-Domain Protein SH3P2, Which Binds to Phosphatidylinositol 3-Phosphate and ATG8, Regulates Autophagosome Formation in Arabidopsis[C][W

    PubMed Central

    Zhuang, Xiaohong; Wang, Hao; Lam, Sheung Kwan; Gao, Caiji; Wang, Xiangfeng; Cai, Yi; Jiang, Liwen

    2013-01-01

    Autophagy is a well-defined catabolic mechanism whereby cytoplasmic materials are engulfed into a structure termed the autophagosome. In plants, little is known about the underlying mechanism of autophagosome formation. In this study, we report that SH3 DOMAIN-CONTAINING PROTEIN2 (SH3P2), a Bin-Amphiphysin-Rvs domain–containing protein, translocates to the phagophore assembly site/preautophagosome structure (PAS) upon autophagy induction and actively participates in the membrane deformation process. Using the SH3P2–green fluorescent protein fusion as a reporter, we found that the PAS develops from a cup-shaped isolation membranes or endoplasmic reticulum–derived omegasome-like structures. Using an inducible RNA interference (RNAi) approach, we show that RNAi knockdown of SH3P2 is developmentally lethal and significantly suppresses autophagosome formation. An in vitro membrane/lipid binding assay demonstrates that SH3P2 is a membrane-associated protein that binds to phosphatidylinositol 3-phosphate. SH3P2 may facilitate membrane expansion or maturation in coordination with the phosphatidylinositol 3-kinase (PI3K) complex during autophagy, as SH3P2 promotes PI3K foci formation, while PI3K inhibitor treatment inhibits SH3P2 from translocating to autophagosomes. Further interaction analysis shows that SH3P2 associates with the PI3K complex and interacts with ATG8s in Arabidopsis thaliana, whereby SH3P2 may mediate autophagy. Thus, our study has identified SH3P2 as a novel regulator of autophagy and provided a conserved model for autophagosome biogenesis in Arabidopsis. PMID:24249832

  1. Mice deficient in mitochondrial glycerol-3-phosphate acyltransferase-1 have diminished myocardial triacylglycerol accumulation during lipogenic diet and altered phospholipid fatty acid composition

    PubMed Central

    Lewin, Tal M.; de Jong, Hendrik; Schwerbrock, Nicole J. M.; Hammond, Linda E.; Watkins, Steven M.; Combs, Terry P.; Coleman, Rosalind A.

    2008-01-01

    Glycerol-3-phosphate acyltransferase-1 (GPAT1), which is located on the outer mitochondrial membrane comprises up to 30% of total GPAT activity in the heart. It is one of at least four mammalian GPAT isoforms known to catalyze the initial, committed, and rate limiting step of glycerolipid synthesis. Because excess triacylglycerol (TAG) accumulates in cardiomyocytes in obesity and type 2 diabetes, we determined whether lack of GPAT1 would alter the synthesis of heart TAG and phospholipids after a 2-week high sucrose diet or a 3-month high fat diet. Even in the absence of hypertriglyceridemia, TAG increased 2-fold with both diets in hearts from wildtype mice. In contrast, hearts from Gpat1−/− mice contained 20–80% less TAG than the wildtype controls. In addition, hearts from Gpat1−/− mice fed the high-sucrose diet incorporate 60% less [14C]palmitate into heart TAG as compared to wildtype mice. Because GPAT1 prefers 16:0-CoA to other long chain acyl-CoA substrates, we determined the fatty acid composition of heart phospholipids. Compared to wildtype littermate controls, hearts from Gpat1−/− mice contained a lower amount of 16:0 in phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine/phosphatidylinositol and significantly more C20:4n6. Phosphatidylcholine and phosphatidylethanolamine from Gpat1−/− hearts also contained higher amounts of 18:0 and 18:1. Although at least three other GPAT isoforms are expressed in the heart, our data suggest that GPAT1 contributes significantly to cardiomyocyte TAG synthesis during lipogenic or high fat diets and influences the incorporation of 20:4n6 into heart phospholipids. PMID:18522808

  2. Glycerol-3-phosphate acyltransferase-4-deficient mice are protected from diet-induced insulin resistance by the enhanced association of mTOR and rictor.

    PubMed

    Zhang, Chongben; Cooper, Daniel E; Grevengoed, Trisha J; Li, Lei O; Klett, Eric L; Eaton, James M; Harris, Thurl E; Coleman, Rosalind A

    2014-08-01

    Glycerol-3-phosphate acyltransferase (GPAT) activity is highly induced in obese individuals with insulin resistance, suggesting a correlation between GPAT function, triacylglycerol accumulation, and insulin resistance. We asked whether microsomal GPAT4, an isoform regulated by insulin, might contribute to the development of hepatic insulin resistance. Compared with control mice fed a high fat diet, Gpat4(-/-) mice were more glucose tolerant and were protected from insulin resistance. Overexpression of GPAT4 in mouse hepatocytes impaired insulin-suppressed gluconeogenesis and insulin-stimulated glycogen synthesis. Impaired glucose homeostasis was coupled to inhibited insulin-stimulated phosphorylation of Akt(Ser⁴⁷³) and Akt(Thr³⁰⁸). GPAT4 overexpression inhibited rictor's association with the mammalian target of rapamycin (mTOR), and mTOR complex 2 (mTORC2) activity. Compared with overexpressed GPAT3 in mouse hepatocytes, GPAT4 overexpression increased phosphatidic acid (PA), especially di16:0-PA. Conversely, in Gpat4(-/-) hepatocytes, both mTOR/rictor association and mTORC2 activity increased, and the content of PA in Gpat4(-/-) hepatocytes was lower than in controls, with the greatest decrease in 16:0-PA species. Compared with controls, liver and skeletal muscle from Gpat4(-/-)-deficient mice fed a high-fat diet were more insulin sensitive and had a lower hepatic content of di16:0-PA. Taken together, these data demonstrate that a GPAT4-derived lipid signal, likely di16:0-PA, impairs insulin signaling in mouse liver and contributes to hepatic insulin resistance.

  3. Oxygen transfer as a tool for fine-tuning recombinant protein production by Pichia pastoris under glyceraldehyde-3-phosphate dehydrogenase promoter.

    PubMed

    Güneş, Hande; Çalık, Pınar

    2016-07-01

    Effects of oxygen transfer on recombinant protein production by Pichia pastoris under glyceraldehyde-3-phosphate dehydrogenase promoter were investigated. Recombinant glucose isomerase was chosen as the model protein. Two groups of oxygen transfer strategies were applied, one of which was based on constant oxygen transfer rate where aeration rate was Q O/V = 3 and 10 vvm, and agitation rate was N = 900 min(-1); while the other one was based on constant dissolved oxygen concentrations, C DO = 5, 10, 15, 20 and 40 % in the fermentation broth, by using predetermined exponential glucose feeding with μ o = 0.15 h(-1). The highest cell concentration was obtained as 44 g L(-1) at t = 9 h of the glucose fed-batch phase at C DO = 20 % operation while the highest volumetric and specific enzyme activities were obtained as 4440 U L(-1) and 126 U g(-1) cell, respectively at C DO = 15 % operation. Investigation of specific enzyme activities revealed that keeping C DO at 15 % was more advantageous with an expense of relatively higher by-product formation and lower specific cell growth rate. For this strategy, the highest oxygen transfer coefficient and oxygen uptake rate were K L a = 0.045 s(-1) and OUR = 8.91 mmol m(-3) s(-1), respectively.

  4. S100B impairs glycolysis via enhanced poly(ADP-ribosyl)ation of glyceraldehyde 3-phosphate dehydrogenase in rodent muscle cells.

    PubMed

    Hosokawa, Kaori; Hamada, Yoji; Fujiya, Atsushi; Murase, Masatoshi; Maekawa, Ryuya; Niwa, Yasuhiro; Izumoto, Takako; Seino, Yusuke; Tsunekawa, Shin; Arima, Hiroshi

    2017-02-07

    S100 calcium-binding protein B (S100B), a multifunctional macromolecule mainly expressed in nerve tissues and adipocytes, has been suggested to contribute to the pathogenesis of obesity. To clarify the role of S100B in insulin action and glucose metabolism in peripheral tissues, we investigated the effect of S100B on glycolysis in myoblast and myotube cells. Rat myoblast L6 cells were treated with recombinant mouse S100B to examine glucose consumption, lactate production, glycogen accumulation, glycolytic metabolites and enzyme activity, insulin signaling, and poly(ADP-ribosyl)ation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Glycolytic metabolites were investigated by enzyme assays or metabolome analysis, and insulin signaling was assessed by western blot analysis. Enzyme activity and poly(ADP-ribosyl)ation of GAPDH was evaluated by an enzyme assay and immunoprecipitation followed by dot blot with an anti-poly(ADP-ribose) antibody, respectively. S100B significantly decreased glucose consumption, glucose analog uptake, and lactate production in L6 cells, in either the presence or absence of insulin. In contrast, S100B had no effect on glycogen accumulation and insulin signaling. Metabolome analysis revealed that S100B increased the concentration of glycolytic intermediates upstream of GAPDH. S100B impaired GAPDH activity and increased poly(ADP-ribosyl)ated GAPDH proteins. The effects of S100B on glucose metabolism were mostly canceled by a poly(ADP-ribose) polymerase (PARP) inhibitor. Similar results were obtained in C2C12 myotube cells. We conclude that S100B as a humoral factor may impair glycolysis in muscle cells independently of insulin action, and the effect may be attributed to the inhibition of GAPDH activity from enhanced poly(ADP-ribosyl)ation of the enzyme.

  5. Genetic variability of Yersinia pestis isolates as predicted by PCR-based IS100 genotyping and analysis of structural genes encoding glycerol-3-phosphate dehydrogenase (glpD).

    PubMed

    Motin, Vladimir L; Georgescu, Anca M; Elliott, Jeffrey M; Hu, Ping; Worsham, Patricia L; Ott, Linda L; Slezak, Tomas R; Sokhansanj, Bahrad A; Regala, Warren M; Brubaker, Robert R; Garcia, Emilio

    2002-02-01

    A PCR-based genotyping system that detects divergence of IS100 locations within the Yersinia pestis genome was used to characterize a large collection of isolates of different biovars and geographical origins. Using sequences derived from the glycerol-negative biovar orientalis strain CO92, a set of 27 locus-specific primers was designed to amplify fragments between the end of IS100 and its neighboring gene. Geographically diverse members of the orientalis biovar formed a homogeneous group with identical genotype with the exception of strains isolated in Indochina. In contrast, strains belonging to the glycerol-positive biovar antiqua showed a variety of fingerprinting profiles. Moreover, strains of the biovar medievalis (also glycerol positive) clustered together with the antiqua isolates originated from Southeast Asia, suggesting their close phylogenetic relationships. Interestingly, a Manchurian biovar antiqua strain Nicholisk 51 displayed a genotyping pattern typical of biovar orientalis isolates. Analysis of the glycerol pathway in Y. pestis suggested that a 93-bp deletion within the glpD gene encoding aerobic glycerol-3-phosphate dehydrogenase might account for the glycerol-negative phenotype of the orientalis biovar. The glpD gene of strain Nicholisk 51 did not possess this deletion, although it contained two nucleotide substitutions characteristic of the glpD version found exclusively in biovar orientalis strains. To account for this close relationship between biovar orientalis strains and the antiqua Nicholisk 51 isolate, we postulate that the latter represents a variant of this biovar with restored ability to ferment glycerol. The fact that such a genetic lesion might be repaired as part of the natural evolutionary process suggests the existence of genetic exchange between different Yersinia strains in nature. The relevance of this observation on the emergence of epidemic Y. pestis strains is discussed.

  6. Genetic Variability of Yersinia pestis Isolates as Predicted by PCR-Based IS100 Genotyping and Analysis of Structural Genes Encoding Glycerol-3-Phosphate Dehydrogenase (glpD)

    PubMed Central

    Motin, Vladimir L.; Georgescu, Anca M.; Elliott, Jeffrey M.; Hu, Ping; Worsham, Patricia L.; Ott, Linda L.; Slezak, Tomas R.; Sokhansanj, Bahrad A.; Regala, Warren M.; Brubaker, Robert R.; Garcia, Emilio

    2002-01-01

    A PCR-based genotyping system that detects divergence of IS100 locations within the Yersinia pestis genome was used to characterize a large collection of isolates of different biovars and geographical origins. Using sequences derived from the glycerol-negative biovar orientalis strain CO92, a set of 27 locus-specific primers was designed to amplify fragments between the end of IS100 and its neighboring gene. Geographically diverse members of the orientalis biovar formed a homogeneous group with identical genotype with the exception of strains isolated in Indochina. In contrast, strains belonging to the glycerol-positive biovar antiqua showed a variety of fingerprinting profiles. Moreover, strains of the biovar medievalis (also glycerol positive) clustered together with the antiqua isolates originated from Southeast Asia, suggesting their close phylogenetic relationships. Interestingly, a Manchurian biovar antiqua strain Nicholisk 51 displayed a genotyping pattern typical of biovar orientalis isolates. Analysis of the glycerol pathway in Y. pestis suggested that a 93-bp deletion within the glpD gene encoding aerobic glycerol-3-phosphate dehydrogenase might account for the glycerol-negative phenotype of the orientalis biovar. The glpD gene of strain Nicholisk 51 did not possess this deletion, although it contained two nucleotide substitutions characteristic of the glpD version found exclusively in biovar orientalis strains. To account for this close relationship between biovar orientalis strains and the antiqua Nicholisk 51 isolate, we postulate that the latter represents a variant of this biovar with restored ability to ferment glycerol. The fact that such a genetic lesion might be repaired as part of the natural evolutionary process suggests the existence of genetic exchange between different Yersinia strains in nature. The relevance of this observation on the emergence of epidemic Y. pestis strains is discussed. PMID:11807062

  7. Insulin activation of vacuolar protein sorting 34 mediates localized phosphatidylinositol 3-phosphate production at lamellipodia and activation of mTOR/S6K1.

    PubMed

    Hirsch, Dianne S; Shen, Yi; Dokmanovic, Milos; Yu, Joyce; Mohan, Nishant; Elzarrad, Mohammed Khair; Wu, Wen Jin

    2014-06-01

    The class III phosphatidylinositol 3-kinase, VPS34, phosphorylates the D3 hydroxyl of inositol generating phosphatidylinositol 3-phosphate (ptdins(3)p). Initial studies suggested that ptdins(3)p solely functioned as a component of vesicular and endosomal membranes and that VPS34 did not function in signal transduction. However, VPS34 has recently been shown to be required for insulin-mediated activation of S6 kinase 1 (S6K1). Whether VPS34 activity is directly regulated by insulin is unclear. It is also not known whether VPS34 activity can be spatially restricted in response to extracellular stimuli. Data presented here demonstrate that in response to insulin, VPS34 is activated and translocated to lamellipodia where it produces ptdins(3)p. The localized production of ptdins(3)p is dependent on Src phosphorylation of VPS34. In cells expressing VPS34 with mutations at Y231 or Y310, which are Src-phosphorylation sites, insulin-stimulated VPS34 translocation to the plasma membrane and lamellipodia formation are blocked. mTOR also colocalizes with VPS34 and ptdins(3)p at lamellipodia following insulin-stimulation. In cells expressing the VPS34-Y231F mutant, which blocks lamellipodia formation, mTOR localization at the plasma membrane and insulin-mediated S6K1 activation are reduced. This suggests that mTOR localization at lamellipodia is important for full activation of S6K1 induced by insulin. These data demonstrate that insulin can spatially regulate VPS34 activity through Src-mediated tyrosine phosphorylation and that this membrane localized activity contributes to lamellipodia formation and activation of mTOR/S6K1signaling.

  8. An asynchronous unfolding among molecular different regions of lobster D-glyceraldehyde-3-phosphate dehydrogenase and maltotetraose-forming amylase from an Alcaligenes sp. during guanidine denaturation.

    PubMed

    He, R Q; Zhao, K Y; Yan, Z Z; Li, M

    1993-06-04

    Changes in ultraviolet absorbance and intrinsic protein fluorescence of 1,4-alpha-D-glucan maltotetrahydrolase (EC 3.2.1.60) from an Alcaligenes sp. (Gram-negative bacteria 537.1) and D-glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12) have been compared with their inactivation during denaturation in guanidinium-Cl solutions. The two enzymes were completely inactivated at GuHCl concentrations less than 0.6 M and this was accompanied by marked absorbance and intrinsic fluorescence changes suggesting exposure of aromatic residues. The changes of the intrinsic fluorescence of the amylase have a relatively constant plateau in emission intensities and maxima at GuHCl concentrations from 0.8-2.0 M, similar to that of muscle GAPDH. The relative activity of the enzyme increased markedly in dilute GuHCl solutions accompanied by very little change of its intrinsic fluorescence at 8 degrees C. The kinetic decrease in emission intensities, excited respectively by 230 nm and 292 nm, was different for the two enzymes. The inactivation was a biphasic process with a fast phase faster than the unfolding rate as measured by fluorescence changes in 0.5 M GuHCl solution. Similar to the inactivation process, changes in intensity of 410 nm NAD fluorescent derivative of GAPDH which is in situ at the active site is also a biphasic process under the same condition. It appears that there may be an unfolding intermediate state of the enzymes and an asynchronous unfolding process among the different regions in the molecules during GuHCl denaturation, this may be due to differences in their flexibility.

  9. DNA vaccine encoding the moonlighting protein Onchocerca volvulus glyceraldehyde-3-phosphate dehydrogenase (Ov-GAPDH) leads to partial protection in a mouse model of human filariasis.

    PubMed

    Steisslinger, Vera; Korten, Simone; Brattig, Norbert W; Erttmann, Klaus D

    2015-10-26

    River blindness, caused by the filarial parasite Onchocerca volvulus, is a major socio-economic and public health problem in Sub-Saharan Africa. In January 2015, The Onchocerciasis Vaccine for Africa (TOVA) Initiative has been launched with the aim of providing new tools to complement mass drug administration (MDA) of ivermectin, thereby promoting elimination of onchocerciasis in Africa. In this context we here present Onchocerca volvulus glyceraldehyde-3-phosphate dehydrogenase (Ov-GAPDH) as a possible DNA vaccine candidate. We report that in a laboratory model for filariasis, immunization with Ov-GAPDH led to a significant reduction of adult worm load and microfilaraemia in BALB/c mice after challenge infection with the filarial parasite Litomosoides sigmodontis. Mice were either vaccinated with Ov-GAPDH.DNA plasmid (Ov-pGAPDH.DNA) alone or in combination with recombinantly expressed Ov-GAPDH protein (Ov-rGAPDH). During the following challenge infection of immunized and control mice with L. sigmodontis, those formulations which included the DNA plasmid, led to a significant reduction of adult worm loads (up to 57% median reduction) and microfilaraemia (up to 94% reduction) in immunized animals. In a further experiment, immunization with a mixture of four overlapping, synthetic Ov-GAPDH peptides (Ov-GAPDHpept), with alum as adjuvant, did not significantly reduce worm loads. Our results indicate that DNA vaccination with Ov-GAPDH has protective potential against filarial challenge infection in the mouse model. This suggests a transfer of the approach into the cattle Onchocerca ochengi model, where it is possible to investigate the effects of this vaccination in the context of a natural host-parasite relationship.

  10. Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus.

    PubMed

    Schwender, J; Seemann, M; Lichtenthaler, H K; Rohmer, M

    1996-05-15

    Isoprenoid biosynthesis was investigated in the green alga Scenedesmus obliquus grown heterotrophically on 13C-labelled glucose and acetate. Several isoprenoid compounds were isolated and investigated by 13C-NMR spectroscopy. According to the 13C-labelling pattern indicated by the 13C-NMR spectra, the biosynthesis of all plastidic isoprenoids investigated (prenyl side-chains of chlorophylls and plastoquinone-9, and the carotenoids beta-carotene and lutein), as well as of the non-plastidic cytoplasmic sterols, does not proceed via the classical acetate/mevalonate pathway (which leads from acetyl-CoA via mevalonate to isopentenyl diphosphate), but via the novel glyceraldehyde 3-phosphate/pyruvate route recently detected in eubacteria. Formation of isopentenyl diphosphate involves the condensation of a C2 unit derived from pyruvate decarboxylation with glyceraldehyde 3-phosphate and a transposition yielding the branched C5 skeleton of isoprenic units.

  11. Strategies to improve low copy transgenic events in Agrobacterium-mediated transformation of maize.

    PubMed

    Sivamani, Elumalai; Li, Xianggan; Nalapalli, Samson; Barron, Yoshimi; Prairie, Anna; Bradley, David; Doyle, Michele; Que, Qiudeng

    2015-12-01

    Transgenic plants containing low copy transgene insertion free of vector backbone are highly desired for many biotechnological applications. We have investigated two different strategies for increasing the percentage of low copy events in Agrobacterium-mediated transformation experiments in maize. One of the strategies is to use a binary vector with two separate T-DNAs, one T-DNA containing an intact E.coli manA gene encoding phosphomannose isomerase (PMI) as selectable marker gene cassette and another T-DNA containing an RNAi cassette of PMI sequences. By using this strategy, low copy transgenic events containing the transgenes were increased from 43 to 60 % in maize. An alternate strategy is using selectable marker gene cassettes containing regulatory or coding sequences derived from essential plant genes such as 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) or MADS box transcription factor. In this paper we demonstrate that higher percentage of low copy transgenic events can be obtained in Agrobacterium-mediated maize transformation experiments using both strategies. We propose that the above two strategies can be used independently or in combination to increase transgenic events that contain low copy transgene insertion in Agrobacterium-mediated transformation experiments.

  12. Development of an innovative immunoassay for CP4EPSPS and Cry1AB genetically modified protein detection and quantification.

    PubMed

    Ermolli, M; Prospero, A; Balla, B; Querci, M; Mazzeo, A; Van Den Eede, G

    2006-09-01

    An innovative immunoassay, called enzyme-linked immunoabsorbant assay (ELISA) Reverse, based on a new conformation of the solid phase, was developed. The solid support was expressly designed to be immersed directly in liquid samples to detect the presence of protein targets. Its application is proposed in those cases where a large number of samples have to be screened simultaneously or when the simultaneous detection of different proteins is required. As a first application, a quantitative immunoassay for Cry1AB protein in genetically modified maize was optimized. The method was tested using genetically modified organism concentrations from 0.1 to 2.0%. The limit of detection and limit of quantitation of the method were determined as 0.0056 and 0.0168 (expressed as the percentage of genetically modified organisms content), respectively. A qualitative multiplex assay to assess the presence of two genetically modified proteins simultaneously was also established for the case of the Cry1AB and the CP4EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) present in genetically modified maize and soy, respectively.

  13. Construction of iron-polymer-graphene nanocomposites with low nonspecific adsorption and strong quenching ability for competitive immunofluorescent detection of biomarkers in GM crops.

    PubMed

    Yin, Kaifei; Liu, Anran; Shangguan, Li; Mi, Li; Liu, Xu; Liu, Yuanjian; Zhao, Yuewu; Li, Ying; Wei, Wei; Zhang, Yuanjian; Liu, Songqin

    2017-04-15

    We developed a new immunofluorescent biosensor by utilizing a novel nanobody (Nb) and iron-polymer-graphene nanocomposites for sensitive detection of 5-enolpyruvylshikimate-3-phosphate synthase from Agrobacdterium tumefaciens strain CP4 (CP4-EPSPS), which considered as biomarkers of genetically modified (GM) crops. Specifically, we prepared iron doped polyacrylic hydrazide modified reduced graphene nanocomposites (Fe@RGO/PAH) by in-situ polymerization approach and subsequent a one-pot reaction with hydrazine. The resulting Fe@RGO/PAH nanocomposites displayed low nonspecific adsorption to analytes (11% quenching caused by nonspecific adsorption) due to electrostatic, energetic and steric effect of the nanocomposites. After Nb immobilizing, the as-prepared Fe@RGO/PAH/Nbs showed good selectivity and high quenching ability (92% quenching) in the presence of antigen (Ag) and polyethylene glycol (PEG) modified CdTe QDs (Ag/QDs@PEG), which is a nearly 4 fold than that of the unmodified GO in same condition. The high quenching ability of Fe@RGO/PAH/Nbs can be used for detection of CP4-EPSPS based on competitive immunoassay with a linearly proportional concentration range of 5-100ng/mL and a detection limit of 0.34ng/mL. The good stability, reproducibility and specificity of the resulting immunofluorescent biosensor are demonstrated and might open a new window for investigation of fluorescent sensing with numerous multifunctional graphene based materials.

  14. Gene amplification confers glyphosate resistance in Amaranthus palmeri

    PubMed Central

    Gaines, Todd A.; Zhang, Wenli; Wang, Dafu; Bukun, Bekir; Chisholm, Stephen T.; Shaner, Dale L.; Nissen, Scott J.; Patzoldt, William L.; Tranel, Patrick J.; Culpepper, A. Stanley; Grey, Timothy L.; Webster, Theodore M.; Vencill, William K.; Sammons, R. Douglas; Jiang, Jiming; Preston, Christopher; Leach, Jan E.; Westra, Philip

    2009-01-01

    The herbicide glyphosate became widely used in the United States and other parts of the world after the commercialization of glyphosate-resistant crops. These crops have constitutive overexpression of a glyphosate-insensitive form of the herbicide target site gene, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Increased use of glyphosate over multiple years imposes selective genetic pressure on weed populations. We investigated recently discovered glyphosate-resistant Amaranthus palmeri populations from Georgia, in comparison with normally sensitive populations. EPSPS enzyme activity from resistant and susceptible plants was equally inhibited by glyphosate, which led us to use quantitative PCR to measure relative copy numbers of the EPSPS gene. Genomes of resistant plants contained from 5-fold to more than 160-fold more copies of the EPSPS gene than did genomes of susceptible plants. Quantitative RT-PCR on cDNA revealed that EPSPS expression was positively correlated with genomic EPSPS relative copy number. Immunoblot analyses showed that increased EPSPS protein level also correlated with EPSPS genomic copy number. EPSPS gene amplification was heritable, correlated with resistance in pseudo-F2 populations, and is proposed to be the molecular basis of glyphosate resistance. FISH revealed that EPSPS genes were present on every chromosome and, therefore, gene amplification was likely not caused by unequal chromosome crossing over. This occurrence of gene amplification as an herbicide resistance mechanism in a naturally occurring weed population is particularly significant because it could threaten the sustainable use of glyphosate-resistant crop technology. PMID:20018685

  15. A built-in strategy to mitigate transgene spreading from genetically modified corn.

    PubMed

    Li, Jing; Yu, Hui; Zhang, Fengzhen; Lin, Chaoyang; Gao, Jianhua; Fang, Jun; Ding, Xiahui; Shen, Zhicheng; Xu, Xiaoli

    2013-01-01

    Transgene spreading is a major concern in cultivating genetically modified (GM) corn. Cross-pollination may cause the spread of transgenes from GM cornfields to conventional fields. Occasionally, seed lot contamination, volunteers, mixing during sowing, harvest, and trade can also lead to transgene escape. Obviously, new biological confinement technologies are highly desired to mitigate transgene spreading in addition to physical separation and isolation methods. In this study, we report the development of a built-in containment method to mitigate transgene spreading in corn. In this method, an RNAi cassette for suppressing the expression of the nicosulfuron detoxifying enzyme CYP81A9 and an expression cassette for the glyphosate tolerant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene G10 were constructed and transformed into corn via Agrobacterium-mediated transformation. The GM corn plants that were generated were found to be sensitive to nicosulfuron but resistant to glyphosate, which is exactly the opposite of conventional corn. Field tests demonstrated that GM corn plants with silenced CYP81A9 could be killed by applying nicosulfuron at 40 g/ha, which is the recommended dose for weed control in cornfields. This study suggests that this built-in containment method for controlling the spread of corn transgenes is effective and easy to implement.

  16. Identification of regulated genes conferring resistance to high concentrations of glyphosate in a new strain of Enterobacter.

    PubMed

    Fei, Yun-Yan; Gai, Jun-Yi; Zhao, Tuan-Jie

    2013-12-01

    Glyphosate is a widely used herbicide that inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity. Most plants and microbes are sensitive to glyphosate. However, transgenic-resistant crops that contain a modified epsps obtained from the resistant microbes have been commercially successful and therefore, new resistance genes and their adaptive regulatory mechanisms are of great interest. In this study, a soil-borne, glyphosate-resistant bacterium was selected and identified as Enterobacter. The EPSPS in this strain was found to have been altered to a resistant one. A total of 42 differentially expressed genes (DEGs) in the glyphosate were screened using microarray techniques. Under treatment, argF, sdhA, ivbL, rrfA-H were downregulated, whereas the transcripts of speA, osmY, pflB, ahpC, fusA, deoA, uxaC, rpoD and a few ribosomal protein genes were upregulated. Data were verified by quantitative real-time PCR on selected genes. All transcriptional changes appeared to protect the bacteria from glyphosate and associated osmotic, acidic and oxidative stresses. Many DEGs may have the potential to confer resistance to glyphosate alone, and some may be closely related to the shikimate pathway, reflecting the complex gene interaction network for glyphosate resistance.

  17. A Built-In Strategy to Mitigate Transgene Spreading from Genetically Modified Corn

    PubMed Central

    Li, Jing; Yu, Hui; Zhang, Fengzhen; Lin, Chaoyang; Gao, Jianhua; Fang, Jun; Ding, Xiahui; Shen, Zhicheng; Xu, Xiaoli

    2013-01-01

    Transgene spreading is a major concern in cultivating genetically modified (GM) corn. Cross-pollination may cause the spread of transgenes from GM cornfields to conventional fields. Occasionally, seed lot contamination, volunteers, mixing during sowing, harvest, and trade can also lead to transgene escape. Obviously, new biological confinement technologies are highly desired to mitigate transgene spreading in addition to physical separation and isolation methods. In this study, we report the development of a built-in containment method to mitigate transgene spreading in corn. In this method, an RNAi cassette for suppressing the expression of the nicosulfuron detoxifying enzyme CYP81A9 and an expression cassette for the glyphosate tolerant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene G10 were constructed and transformed into corn via Agrobacterium-mediated transformation. The GM corn plants that were generated were found to be sensitive to nicosulfuron but resistant to glyphosate, which is exactly the opposite of conventional corn. Field tests demonstrated that GM corn plants with silenced CYP81A9 could be killed by applying nicosulfuron at 40 g/ha, which is the recommended dose for weed control in cornfields. This study suggests that this built-in containment method for controlling the spread of corn transgenes is effective and easy to implement. PMID:24324711

  18. Mechanism of resistance of evolved glyphosate-resistant Palmer amaranth (Amaranthus palmeri).

    PubMed

    Gaines, Todd A; Shaner, Dale L; Ward, Sarah M; Leach, Jan E; Preston, Christopher; Westra, Philip

    2011-06-08

    Evolved glyphosate resistance in weedy species represents a challenge for the continued success and utility of glyphosate-resistant crops. Glyphosate functions by inhibiting the plant enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). The resistance mechanism was determined in a population of glyphosate-resistant Palmer amaranth from Georgia (U.S.). Within this population, glyphosate resistance correlates with increases in (a) genomic copy number of EPSPS, (b) expression of the EPSPS transcript, (c) EPSPS protein level, and (d) EPSPS enzymatic activity. Dose response results from the resistant and an F(2) population suggest that between 30 and 50 EPSPS genomic copies are necessary to survive glyphosate rates between 0.5 and 1.0 kg ha(-1). These results further confirm the role of EPSPS gene amplification in conferring glyphosate resistance in this population of Palmer amaranth. Questions remain related to how the EPSPS amplification initially occurred and the occurrence of this mechanism in other Palmer amaranth populations and other glyphosate-resistant species.

  19. Bacterial glyphosate resistance conferred by overexpression of an E. coli membrane efflux transporter.

    PubMed

    Staub, Jeffrey M; Brand, Leslie; Tran, Minhtien; Kong, Yifei; Rogers, Stephen G

    2012-04-01

    Glyphosate herbicide-resistant crop plants, introduced commercially in 1994, now represent approximately 85% of the land area devoted to transgenic crops. Herbicide resistance in commercial glyphosate-resistant crops is due to expression of a variant form of a bacterial 5-enolpyruvylshikimate-3-phosphate synthase with a significantly decreased binding affinity for glyphosate at the target site of the enzyme. As a result of widespread and recurrent glyphosate use, often as the only herbicide used for weed management, increasing numbers of weedy species have evolved resistance to glyphosate. Weed resistance is most often due to changes in herbicide translocation patterns, presumed to be through the activity of an as yet unidentified membrane transporter in plants. To provide insight into glyphosate resistance mechanisms and identify a potential glyphosate transporter, we screened Escherichia coli genomic DNA for alternate sources of glyphosate resistance genes. Our search identified a single non-target gene that, when overexpressed in E. coli and Pseudomonas, confers high-level glyphosate resistance. The gene, yhhS, encodes a predicted membrane transporter of the major facilitator superfamily involved in drug efflux. We report here that an alternative mode of glyphosate resistance in E. coli is due to reduced accumulation of glyphosate in cells that overexpress this membrane transporter and discuss the implications for potential alternative resistance mechanisms in other organisms such as plants.

  20. The composition of grain and forage from glyphosate tolerant wheat MON 71800 is equivalent to that of conventional wheat (Triticum aestivum L.).

    PubMed

    Obert, Janet C; Ridley, William P; Schneider, Ronald W; Riordan, Susan G; Nemeth, Margaret A; Trujillo, William A; Breeze, Matthew L; Sorbet, Roy; Astwood, James D

    2004-03-10

    Glyphosate tolerant wheat MON 71800, simply referred to as MON 71800, contains a 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) protein from Agrobacterium sp. strain CP4 (CP4 EPSPS) that has a reduced affinity for glyphosate as compared to the endogenous plant EPSPS enzyme. The purpose of this work was to evaluate the compositional equivalence of MON 71800 to its nontransgenic parent as well as to conventional wheat varieties. The compositional assessment evaluated the levels of proximates, amino acids, fatty acids, minerals, vitamins, secondary metabolites, and antinutrients in wheat forage and grain grown during two field seasons across a total of eight sites in the United States and Canada. These data demonstrated that with respect to these important nutritional components, the forage and grain from MON 71800 were equivalent to those of its nontransgenic parent and commercial wheat varieties. These data, together with the previously established safety of the CP4 EPSPS protein, support the conclusion that glyphosate tolerant wheat MON 71800 is as safe and nutritious as commercial wheat varieties.

  1. Compositional equivalence of insect-protected glyphosate-tolerant soybean MON 87701 × MON 89788 to conventional soybean extends across different world regions and multiple growing seasons.

    PubMed

    Berman, Kristina H; Harrigan, George G; Nemeth, Margaret A; Oliveira, Wladecir S; Berger, Geraldo U; Tagliaferro, Fabio S

    2011-11-09

    The soybean product MON 87701 × MON 89788 expresses both the cry1Ac gene derived from Bacillus thuringiensis and the cp4 epsps (5-enolpyruvylshikimate-3-phosphate synthase) gene derived from Agrobacterium sp. strain CP4. Each biotechnology-derived trait confers specific benefits of insect resistance and glyphosate tolerance, respectively. The purpose of this study was to compare the composition of seed and forage from this combined-trait product to those of conventional soybean grown in geographically and climatically distinct regions. Field trials were conducted in the United States during the 2007 growing season, in Argentina during the 2007-2008 growing season, and in the northern and southern soybean regions of Brazil during the 2007-2008 and 2008-2009 growing seasons. Results demonstrated that the compositional equivalence of MON 87701 × MON 89788 to the conventional soybean extended across all regions and growing seasons. Further evaluation of the data showed that natural variation (region and growing season) contributed more to compositional variability in soybean, particularly for such components as isoflavones, fatty acids, and vitamin E, than transgene insertion.

  2. Population genetics structure of glyphosate-resistant Johnsongrass (Sorghum halepense L. Pers) does not support a single origin of the resistance

    PubMed Central

    Fernández, Luis; de Haro, Luis Alejandro; Distefano, Ana J; Carolina Martínez, Maria; Lía, Verónica; Papa, Juan C; Olea, Ignacio; Tosto, Daniela; Esteban Hopp, Horacio

    2013-01-01

    Single sequence repeats (SSR) developed for Sorghum bicolor were used to characterize the genetic distance of 46 different Sorghum halepense (Johnsongrass) accessions from Argentina some of which have evolved toward glyphosate resistance. Since Johnsongrass is an allotetraploid and only one subgenome is homologous to cultivated sorghum, some SSR loci amplified up to two alleles while others (presumably more conserved loci) amplified up to four alleles. Twelve SSR providing information of 24 loci representative of Johnsongrass genome were selected for genetic distance characterization. All of them were highly polymorphic, which was evidenced by the number of different alleles found in the samples studied, in some of them up to 20. UPGMA and Mantel analysis showed that Johnsongrass glyphosate-resistant accessions that belong to different geographic regions do not share similar genetic backgrounds. In contrast, they show closer similarity to their neighboring susceptible counterparts. Discriminant Analysis of Principal Components using the clusters identified by K-means support the lack of a clear pattern of association among samples and resistance status or province of origin. Consequently, these results do not support a single genetic origin of glyphosate resistance. Nucleotide sequencing of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) encoding gene from glyphosate-resistant and susceptible accessions collected from different geographic origins showed that none presented expected mutations in aminoacid positions 101 and 106 which are diagnostic of target-site resistance mechanism. PMID:24223277

  3. Involvement of facultative apomixis in inheritance of EPSPS gene amplification in glyphosate-resistant Amaranthus palmeri.

    PubMed

    Ribeiro, Daniela N; Pan, Zhiqiang; Duke, Stephen O; Nandula, Vijay K; Baldwin, Brian S; Shaw, David R; Dayan, Franck E

    2014-01-01

    The inheritance of glyphosate resistance in two Amaranthus palmeri populations (R1 and R2) was examined in reciprocal crosses (RC) and second reciprocal crosses (2RC) between glyphosate-resistant (R) and -susceptible (S) parents of this dioecious species. R populations and Female-R × Male-S crosses contain higher 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene copy numbers than the S population. EPSPS expression, EPSPS enzyme activity, EPSPS protein quantity, and level of resistance to glyphosate correlated positively with genomic EPSPS relative copy number. Transfer of resistance was more influenced by the female than the male parent in spite of the fact that the multiple copies of EPSPS are amplified in the nuclear genome. This led us to hypothesize that this perplexing pattern of inheritance may result from apomictic seed production in A. palmeri. We confirmed that reproductively isolated R and S female plants produced seeds, indicating that A. palmeri can produce seeds both sexually and apomictically (facultative apomixis). This apomictic trait accounts for the low copy number inheritance in the Female-S × Male-R offsprings. Apomixis may also enhance the stability of the glyphosate resistance trait in the R populations in the absence of reproductive partners.

  4. Cropping practices modulate the impact of glyphosate on arbuscular mycorrhizal fungi and rhizosphere bacteria in agroecosystems of the semiarid prairie.

    PubMed

    Sheng, Min; Hamel, Chantal; Fernandez, Myriam R

    2012-08-01

    A growing body of evidence obtained from studies performed under controlled conditions suggests that glyphosate use can modify microbial community assemblages. However, few studies have examined the influence of glyphosate in agroecosystems. We examined 4 wheat-based production systems typical of the Canadian prairie over 2 years to answer the following question: Does preseeding of glyphosate impact soil rhizosphere microorganisms? If so, do cropping practices influence this impact? Glyphosate caused a shift in the species dominating the arbuscular mycorrhizal fungal community in the rhizosphere, possibly through the modification of host plant physiology. Glyphosate stimulated rhizobacterial growth while having no influence on saprotrophic fungi, suggesting a greater abundance of glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) in bacteria than in fungi. Glyphosate stimulated rhizosphere bacteria in pea but not in urea-fertilized durum wheat, which is consistent with inhibition of EPSPS tolerance to residual glyphosate through high ammonium levels. Mitigation of the effects of glyphosate on rhizosphere bacteria through tillage suggests a reduction in residual glyphosate activity through increased adsorption to soil binding sites upon soil mixing. The influence of glyphosate on Gram-negative bacteria was mitigated under drought conditions in 2007. Our experiment suggests that interactions between soil fertility, tillage, and cropping practices shape the influence of glyphosate use on rhizosphere microorganisms.

  5. Quantification of genetically modified soya using strong anion exchange chromatography and time-of-flight mass spectrometry.

    PubMed

    Chang, Po-Chih; Reddy, P Muralidhar; Ho, Yen-Peng

    2014-09-01

    Stable-isotope dimethyl labeling was applied to the quantification of genetically modified (GM) soya. The herbicide-resistant gene-related protein 5-enolpyruvylshikimate-3-phosphate synthase (CP4 EPSPS) was labeled using a dimethyl labeling reagent, formaldehyde-H2 or -D2. The identification and quantification of CP4 EPSPS was performed using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The CP4 EPSPS protein was separated from high abundance proteins using strong anion exchange chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Then, the tryptic peptides from the samples and reference were labeled with formaldehyde-H2 and formaldehyde-D2, respectively. The two labeled pools were mixed and analyzed using MALDI-MS. The data showed a good correlation between the peak ratio of the H- and D-labeled peptides and the GM soya percentages at 0.5, 1, 3, and 5 %, with R (2) of 0.99. The labeling reagents are readily available. The labeling experiments and the detection procedures are simple. The approach is useful for the quantification of GM soya at a level as low as 0.5 %.

  6. Mass spectrometric detection of CP4 EPSPS in genetically modified soya and maize.

    PubMed

    Ocaña, Mireia Fernández; Fraser, Paul D; Patel, Raj K P; Halket, John M; Bramley, Peter M

    2007-01-01

    The potential of protein fractionation hyphenated to mass spectrometry (MS) to detect and characterize the transgenic protein present in Roundup Ready soya and maize has been investigated. Genetically modified (GM) soya and maize contain the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene from Agrobacterium tumefaciens CP4, which confers resistance to the herbicide glyphosate. The GM soya and maize proteomes were fractionated by gel filtration, anion-exchange chromatography and sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) prior to MS. This facilitated detection of a tryptic peptide map of CP4 EPSPS by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS and nanoelectrospray ionization quadrupole time-of-flight (nanoESI-QTOF) MS. Subsequently, sequence information from the CP4 EPSPS tryptic peptides was obtained by nanoESI-QTOF MS/MS. The identification was accomplished in 0.9% GM soya seeds, which is the current EU threshold for food-labeling requirements.

  7. Lack of glyphosate resistance gene transfer from Roundup Ready soybean to Bradyrhizobium japonicum under field and laboratory conditions.

    PubMed

    Isaza, Laura Arango; Opelt, Katja; Wagner, Tobias; Mattes, Elke; Bieber, Evi; Hatley, Elwood O; Roth, Greg; Sanjuán, Juan; Fischer, Hans-Martin; Sandermann, Heinrich; Hartmann, Anton; Ernst, Dieter

    2011-01-01

    A field study was conducted at the Russell E. Larson Agricultural Research Center to determine the effect of transgenic glyphosate-resistant soybean in combination with herbicide (Roundup) application on its endosymbiont Bradyrhizobium japonicum. DNA of bacteroids from isolated nodules was analysed for the presence of the transgenic 5-enolpyruvylshikimate-3-phosphate synthase (CP4-EPSPS) DNA sequence using polymerase chain reaction (PCR). To further assess the likelihood that the EPSPS gene may be transferred from the Roundup Ready (RR) soybean to B. japonicum, we have examined the natural transformation efficiency of B. japonicum strain 110spc4. Analyses of nodules showed the presence of the transgenic EPSPS DNA sequence. In bacteroids that were isolated from nodules of transgenic soybean plants and then cultivated in the presence of glyphosate this sequence could not be detected. This indicates that no stable horizontal gene transfer (HGT) of the EPSPS gene had occurred under field conditions. Under laboratory conditions, no natural transformation was detected in B. japonicum strain 110spc4 in the presence of various amounts of recombinant plasmid DNA. Our results indicate that no natural competence state exists in B. japonicum 110spc4. Results from field and laboratory studies indicate the lack of functional transfer of the CP4-EPSPS gene from glyphosate-tolerant soybean treated with glyphosate to root-associated B. japonicum.

  8. Collaborative trial validation studies of real-time PCR-based GMO screening methods for detection of the bar gene and the ctp2-cp4epsps construct.

    PubMed

    Grohmann, Lutz; Brünen-Nieweler, Claudia; Nemeth, Anne; Waiblinger, Hans-Ulrich

    2009-10-14

    Polymerase Chain Reaction (PCR)-based screening methods targeting genetic elements commonly used in genetically modified (GM) plants are important tools for the detection of GM materials in food, feed, and seed samples. To expand and harmonize the screening capability of enforcement laboratories, the German Federal Office of Consumer Protection and Food Safety conducted collaborative trials for interlaboratory validation of real-time PCR methods for detection of the phosphinothricin acetyltransferase (bar) gene from Streptomyces hygroscopicus and a construct containing the 5-enolpyruvylshikimate-3-phosphate synthase gene from Agrobacterium tumefaciens sp. strain CP4 (ctp2-cp4epsps), respectively. To assess the limit of detection, precision, and accuracy of the methods, laboratories had to analyze two sets of 18 coded genomic DNA samples of events LLRice62 and MS8 with the bar method and NK603 and GT73 with the ctp2-cp4epsps method at analyte levels of 0, 0.02, and 0.1% GM content, respectively. In addition, standard DNAs were provided to the laboratories to generate calibration curves for copy number quantification of the bar and ctp2-cp4epsps target sequences present in the test samples. The study design and the results obtained are discussed with respect to the difficult issue of developing general guidelines and concepts for the collaborative trial validation of qualitative PCR screening methods.

  9. Expression of an evolved engineered variant of a bacterial glycine oxidase leads to glyphosate resistance in alfalfa.

    PubMed

    Nicolia, A; Ferradini, N; Molla, G; Biagetti, E; Pollegioni, L; Veronesi, F; Rosellini, D

    2014-08-20

    The main strategy for resistance to the herbicide glyphosate in plants is the overexpression of an herbicide insensitive, bacterial 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). A glyphosate resistance strategy based on the ability to degrade the herbicide can be useful to reduce glyphosate phytotoxicity to the crops. Here we present the characterization of glyphosate resistance in transgenic alfalfa (Medicago sativa L.) expressing a plant-optimized variant of glycine oxidase (GO) from Bacillus subtilis, evolved in vitro by a protein engineering approach to efficiently degrade glyphosate. Two constructs were used, one with (GO(TP+)) and one without (GO(TP-)) the pea rbcS plastid transit peptide. Molecular and biochemical analyses confirmed the stable integration of the transgene and the correct localization of the plastid-imported GO protein. Transgenic alfalfa plants were tested for glyphosate resistance both in vitro and in vivo. Two GO(TP+) lines showed moderate resistance to the herbicide in both conditions. Optimization of expression of this GO variant may allow to attain sufficient field resistance to glyphosate herbicides, thus providing a resistance strategy based on herbicide degradation.

  10. Pollen-mediated gene flow from glyphosate-resistant common waterhemp (Amaranthus rudis Sauer): consequences for the dispersal of resistance genes

    PubMed Central

    Sarangi, Debalin; Tyre, Andrew J.; Patterson, Eric L.; Gaines, Todd A.; Irmak, Suat; Knezevic, Stevan Z.; Lindquist, John L.; Jhala, Amit J.

    2017-01-01

    Gene flow is an important component in evolutionary biology; however, the role of gene flow in dispersal of herbicide-resistant alleles among weed populations is poorly understood. Field experiments were conducted at the University of Nebraska-Lincoln to quantify pollen-mediated gene flow (PMGF) from glyphosate-resistant (GR) to -susceptible (GS) common waterhemp using a concentric donor-receptor design. More than 130,000 common waterhemp plants were screened and 26,199 plants were confirmed resistant to glyphosate. Frequency of gene flow from all distances, directions, and years was estimated with a double exponential decay model using Generalized Nonlinear Model (package gnm) in R. PMGF declined by 50% at <3 m distance from the pollen source, whereas 90% reduction was found at 88 m (maximum) depending on the direction of the pollen-receptor blocks. Amplification of the target site gene, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), was identified as the mechanism of glyphosate resistance in parent biotype. The EPSPS gene amplification was heritable in common waterhemp and can be transferred via PMGF, and also correlated with glyphosate resistance in pseudo-F2 progeny. This is the first report of PMGF in GR common waterhemp and the results are critical in explaining the rapid dispersal of GR common waterhemp in Midwestern United States. PMID:28327669

  11. Identification of novel sesterterpene/triterpene synthase from Bacillus clausii.

    PubMed

    Sato, Tsutomu; Yamaga, Hiroaki; Kashima, Shoji; Murata, Yusuke; Shinada, Tetsuro; Nakano, Chiaki; Hoshino, Tsutomu

    2013-05-10

    Basic enzyme: The tetraprenyl-β-curcumene synthase homologue from the alkalophilic Bacillus clausii catalyses conversions of a geranylfarnesyl diphosphate and a hexaprenyl diphosphate into novel head-to-tail acyclic sesterterpene and triterpene. Tetraprenyl-β-curcumene synthase homologues represent a new family of terpene synthases that form not only sesquarterpene but also sesterterpene and triterpene.

  12. Producing dicarboxylic acids using polyketide synthases

    DOEpatents

    Katz, Leonard; Fortman, Jeffrey L.; Keasling, Jay D.

    2015-05-26

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing a dicarboxylic acid (diacid). Such diacids include diketide-diacids and triketide-diacids. The invention includes recombinant nucleic acid encoding the PKS, and host cells comprising the PKS. The invention also includes methods for producing the diacids.

  13. Lessons from 455 Fusarium polyketide synthases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In fungi, polyketide synthases (PKSs) synthesize a structurally diverse array of secondary metabolites (SMs) with a range of biological activities. The most studied SMs are toxic to animals and/or plants, alter plant growth, have beneficial pharmaceutical activities, and/or are brightly colored pigm...

  14. Producing dicarboxylic acids using polyketide synthases

    SciTech Connect

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-10-29

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing a dicarboxylic acid (diacid). Such diacids include diketide-diacids and triketide-diacids. The invention includes recombinant nucleic acid encoding the PKS, and host cells comprising the PKS. The invention also includes methods for producing the diacids.

  15. Geranyl diphosphate synthase large subunit, and methods of use

    DOEpatents

    Croteau, Rodney B.; Burke, Charles C.; Wildung, Mark R.

    2001-10-16

    A cDNA encoding geranyl diphosphate synthase large subunit from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase large subunit). In another aspect, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase large subunit. In yet another aspect, the present invention provides isolated, recombinant geranyl diphosphate synthase protein comprising an isolated, recombinant geranyl diphosphate synthase large subunit protein and an isolated, recombinant geranyl diphosphate synthase small subunit protein. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase.

  16. Polymorphisms of methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTR), methionine synthase reductase (MTRR), and thymidylate synthase (TYMS) in multiple myeloma risk.

    PubMed

    Lima, Carmen S P; Ortega, Manoela M; Ozelo, Margareth C; Araujo, Renato C; De Souza, Cármino A; Lorand-Metze, Irene; Annichino-Bizzacchi, Joyce M; Costa, Fernando F

    2008-03-01

    We tested whether the polymorphisms of the methylenetetrahydrofolate reductase gene, MTHFR C677T and A1298C, the methionine synthase gene, MTR A2756G, the methionine synthase reductase gene, MTRR A66G, and the thymidylate synthase gene, TYMS 2R-->3R, involved in folate and methionine metabolism, altered the risk for multiple myeloma (MM). Genomic DNA from 123MM patients and 188 controls was analysed by polymerase chain reaction and restriction digestion for the polymorphism analyses. The frequency of the MTR 2756 AG plus GG genotype was higher in patients than in controls (39.8% versus 23.4%, P=0.001). Individual carriers of the variant allele G had a 2.31 (95% CI: 1.38-3.87)-fold increased risk for MM compared with others. In contrast, similar frequencies of the MTHFR, the MTRR and the TYMS genotypes were seen in patients and controls. These results suggest, for the first time, a role for the MTR A2756G polymorphism in MM risk in our country, but should be confirmed by large-scale epidemiological studies with patients and controls age matched.

  17. Caffeine synthase and related methyltransferases in plants.

    PubMed

    Misako, Kato; Kouichi, Mizuno

    2004-05-01

    Caffeine (1,3,7-trimethylxanthine) is a purine alkaloid present in high concentrations in tea and coffee and it is also found in a number of beverages such as coca cola. It is necessary to elucidate the caffeine biosynthetic pathway and to clone the genes related to the production of caffeine not only to determine the metabolism of the purine alkaloid but also to control the content of caffeine in tea and coffee. The available data support the operation of a xanthosine-->7-methylxanthosine-->7-methylxanthine-->theobromine-->caffeine pathway as the major route to caffeine. Since the caffeine biosynthetic pathway contains three S-adenosyl-L-methionine (SAM) dependent methylation steps, N-methyltransferases play important roles. This review focuses on the enzymes and genes involved in the methylation of purine ring. Caffeine synthase, the SAM-dependent methyltransferase involved in the last two steps of caffeine biosynthesis, was originally purified from young tea leaves (Camellia sinensis). The isolated cDNA, termed TCS1, consists of 1,483 base pairs and encodes a protein of 369 amino acids. Subsequently, the homologous genes that encode caffeine biosynthetic enzymes from coffee (Coffea arabica) were isolated. The recombinant proteins are classified into the three types on the basis of their substrate specificity i.e. 7-methylxanthosine synthase, theobromine synthase and caffeine synthase. The predicted amino acid sequences of caffeine biosynthetic enzymes derived from C. arabica exhibit more than 80% homology with those of the clones and but show only 40% homology with TCS1 derived from C. sinensis. In addition, they share 40% homology with the amino acid sequences of salicylic carboxyl methyltransferase, benzoic acid carboxyl methyltransferase and jasmonic acid carboxyl methyltransferase which belong to a family of motif B' methyltransferases which are novel plant methyltransferases with motif B' instead of motif B as the conserved region.

  18. Chrysanthemyl Diphosphate Synthase Operates in Planta as a Bifunctional Enzyme with Chrysanthemol Synthase Activity*

    PubMed Central

    Yang, Ting; Gao, Liping; Hu, Hao; Stoopen, Geert; Wang, Caiyun; Jongsma, Maarten A.

    2014-01-01

    Chrysanthemyl diphosphate synthase (CDS) is the first pathway-specific enzyme in the biosynthesis of pyrethrins, the most widely used plant-derived pesticide. CDS catalyzes c1′-2-3 cyclopropanation reactions of two molecules of dimethylallyl diphosphate (DMAPP) to yield chrysanthemyl diphosphate (CPP). Three proteins are known to catalyze this cyclopropanation reaction of terpene precursors. Two of them, phytoene and squalene synthase, are bifunctional enzymes with both prenyltransferase and terpene synthase activity. CDS, the other member, has been reported to perform only the prenyltransferase step. Here we show that the NDXXD catalytic motif of CDS, under the lower substrate conditions prevalent in plants, also catalyzes the next step, converting CPP into chrysanthemol by hydrolyzing the diphosphate moiety. The enzymatic hydrolysis reaction followed conventional Michaelis-Menten kinetics, with a Km value for CPP of 196 μm. For the chrysanthemol synthase activity, DMAPP competed with CPP as substrate. The DMAPP concentration required for half-maximal activity to produce chrysanthemol was ∼100 μm, and significant substrate inhibition was observed at elevated DMAPP concentrations. The N-terminal peptide of CDS was identified as a plastid-targeting peptide. Transgenic tobacco plants overexpressing CDS emitted chrysanthemol at a rate of 0.12–0.16 μg h−1 g−1 fresh weight. We propose that CDS should be renamed a chrysanthemol synthase utilizing DMAPP as substrate. PMID:25378387

  19. Establishment of a system based on universal multiplex-PCR for screening genetically modified crops.

    PubMed

    Lu, I-Jen; Lin, Chih-Hui; Pan, Tzu-Ming

    2010-03-01

    The rapid development of many genetically modified (GM) crops in the past two decades makes it necessary to introduce an alternative strategy for routine screening and identification. In this study, we established a universal multiplex PCR detection system which will effectively reduce the number of reactions needed for sample identification. The PCR targets of this system include the six most frequently used transgenic elements: cauliflower mosaic virus (CaMV) 35S promoter, Agrobacterium tumefaciens nopaline synthase (nos) promoter, Agrobacterium tumefaciens nopaline synthase (nos) terminator, the neomycin phosphotransferase II (nptII) gene, the 5-enolpyruvylshikimate-3-phosphate synthase (CP4 epsps) gene of Agrobacterium tumefaciens strain CP4, and the phosphinothricin N-acetyltransferase (pat) gene. According to the AGBIOS database, the coverage of this detection system is 93% of commercial GM crops. This detection system could detect all certified reference materials (CRMs) at the 1.0% level. The correct combination of all the CRM amplicon patterns proved the specificity of this multiplex PCR system. Furthermore, the amplicon patterns of this multiplex PCR detection system could be used as an index of classification which will narrow the range of possible GM products. The simulation result of this multiplex PCR detection system on all commercialized 139 GM products in the AGBIOS database showed that the maximum number of PCR reactions needed to identify an unknown sample can be reduced to 13. In this study, we established a high-throughput multiplex PCR detection system with feasible sensitivity, specificity, and cost. By incorporating this detection system, the routine GM crop-detection process will meet the challenges resulting from a rapid increase in the number of GM crops in the future.

  20. Structure of a modular polyketide synthase

    PubMed Central

    Dutta, Somnath; Whicher, Jonathan R.; Hansen, Douglas A.; Hale, Wendi A.; Chemler, Joseph A.; Congdon, Grady R.; Narayan, Alison R.; Håkansson, Kristina; Sherman, David H.; Smith, Janet L.

    2014-01-01

    Polyketide natural products constitute a broad class of compounds with diverse structural features and biological activities. Their biosynthetic machinery, represented by type I polyketide synthases, has an architecture in which successive modules catalyze two-carbon linear extensions and keto group processing reactions on intermediates covalently tethered to carrier domains. We employed electron cryo-microscopy to visualize a full-length module and determine sub-nanometer resolution 3D reconstructions that revealed an unexpectedly different architecture compared to the homologous dimeric mammalian fatty acid synthase. A single reaction chamber provides access to all catalytic sites for the intra-module carrier domain. In contrast, the carrier from the preceding module uses a separate entrance outside the reaction chamber to deliver the upstream polyketide intermediate for subsequent extension and modification. This study reveals for the first time the structural basis for both intra-module and inter-module substrate transfer in polyketide synthases, and establishes a new model for molecular dissection of these multifunctional enzyme systems. PMID:24965652

  1. Threonine Synthase of Lemna paucicostata Hegelm. 6746

    PubMed Central

    Giovanelli, John; Veluthambi, K.; Thompson, Gregory A.; Mudd, S. Harvey; Datko, Anne H.

    1984-01-01

    Threonine synthase (TS) was purified approximately 40-fold from Lemna paucicostata, and some of its properties determined by use of a sensitive and specific assay. During the course of its purification, TS was separated from cystathionine γ-synthase, establishing the separate identity of these enzymes. Compared to cystathionine γ-synthase, TS is relatively insensitive to irreversible inhibition by propargylglycine (both in vitro and in vivo) and to gabaculine, vinylglycine, or cysteine in vitro. TS is highly specific for O-phospho-l-homoserine (OPH) and water (hydroxyl ion). Nucleophilic attack by hydroxyl ion is restricted to carbon-3 of OPH and proceeds sterospecifically to form threonine rather than allo-threonine. The Km for OPH, determined at saturating S-adenosylmethionine (AdoMet), is 2.2 to 6.9 micromolar, two orders of magnitude less than values reported for TS from other plant tissues. AdoMet markedly stimulates the enzyme in a reversible and cooperative manner, consistent with its proposed role in regulation of methionine biosynthesis. Cysteine (1 millimolar) caused a slight (26%) reversible inhibition of the enzyme. Activities of TS isolated from Lemna were inversely related to the methionine nutrition of the plants. Down-regulation of TS by methionine may help to limit the overproduction of threonine that could result from allosteric stimulation of the enzyme by AdoMet. No evidence was obtained for feedback inhibition, repression, or covalent modification of TS by threonine and/or isoleucine. PMID:16663833

  2. Oligosaccharide Binding in Escherichia coli Glycogen Synthase

    SciTech Connect

    Sheng, Fang; Yep, Alejandra; Feng, Lei; Preiss, Jack; Geiger, James H.

    2010-11-17

    Glycogen/starch synthase elongates glucan chains and is the key enzyme in the synthesis of glycogen in bacteria and starch in plants. Cocrystallization of Escherichia coli wild-type glycogen synthase (GS) with substrate ADPGlc and the glucan acceptor mimic HEPPSO produced a closed form of GS and suggests that domain-domain closure accompanies glycogen synthesis. Cocrystallization of the inactive GS mutant E377A with substrate ADPGlc and oligosaccharide results in the first oligosaccharide-bound glycogen synthase structure. Four bound oligosaccharides are observed, one in the interdomain cleft (G6a) and three on the N-terminal domain surface (G6b, G6c, and G6d). Extending from the center of the enzyme to the interdomain cleft opening, G6a mostly interacts with the highly conserved N-terminal domain residues lining the cleft of GS. The surface-bound oligosaccharides G6c and G6d have less interaction with enzyme and exhibit a more curled, helixlike structural arrangement. The observation that oligosaccharides bind only to the N-terminal domain of GS suggests that glycogen in vivo probably binds to only one side of the enzyme to ensure unencumbered interdomain movement, which is required for efficient, continuous glucan-chain synthesis.

  3. Progress towards clinically useful aldosterone synthase inhibitors.

    PubMed

    Cerny, Matthew A

    2013-01-01

    Owing to the high degree of similarity between aldosterone synthase (CYP11B2) and cortisol synthase (CYP11B1), the design of selective inhibitors of one or the other of these two enzymes was, at one time, thought to be impossible. Through development of novel enzyme screening assays and significant medicinal chemistry efforts, highly potent inhibitors of CYP11B2 have been identified with selectivities approaching 1000-fold between the two enzymes. Many of these molecules also possess selectivity against other steroidogenic cytochromes P450 (e.g. CYP17A1 and CYP19A1) as well as hepatic drug metabolizing P450s. Though not as well developed or explored, inhibitors of CYP11B1, with selectivities approaching 50-fold, have also been identified. The therapeutic benefits of affecting the renin-angiotensin-aldosterone system have been well established with the therapeutically useful angiotensin-converting enzymes inhibitors, angiotensin receptor blockers, and mineralocorticoid receptor antagonists. Data regarding the additional benefits of an aldosterone synthase inhibitor (ASi) are beginning to emerge from animal models and human clinical trials. Despite great promise and much progress, additional challenges still exist in the path towards development of a therapeutically useful ASi.

  4. CTP synthase forms cytoophidia in the cytoplasm and nucleus

    SciTech Connect

    Gou, Ke-Mian; Chang, Chia-Chun; Shen, Qing-Ji; Sung, Li-Ying; Liu, Ji-Long

    2014-04-15

    CTP synthase is an essential metabolic enzyme responsible for the de novo synthesis of CTP. Multiple studies have recently showed that CTP synthase protein molecules form filamentous structures termed cytoophidia or CTP synthase filaments in the cytoplasm of eukaryotic cells, as well as in bacteria. Here we report that CTP synthase can form cytoophidia not only in the cytoplasm, but also in the nucleus of eukaryotic cells. Both glutamine deprivation and glutamine analog treatment promote formation of cytoplasmic cytoophidia (C-cytoophidia) and nuclear cytoophidia (N-cytoophidia). N-cytoophidia are generally shorter and thinner than their cytoplasmic counterparts. In mammalian cells, both CTP synthase 1 and CTP synthase 2 can form cytoophidia. Using live imaging, we have observed that both C-cytoophidia and N-cytoophidia undergo multiple rounds of fusion upon glutamine analog treatment. Our study reveals the coexistence of cytoophidia in the cytoplasm and nucleus, therefore providing a good opportunity to investigate the intracellular compartmentation of CTP synthase. - Highlights: • CTP synthase forms cytoophidia not only in the cytoplasm but also in the nucleus. • Glutamine deprivation and Glutamine analogs promotes cytoophidium formation. • N-cytoophidia exhibit distinct morphology when compared to C-cytoophidia. • Both CTP synthase 1 and CTP synthase 2 form cytoophidia in mammalian cells. • Fusions of cytoophidia occur in the cytoplasm and nucleus.

  5. Mutational analysis of a monoterpene synthase reaction: altered catalysis through directed mutagenesis of (-)-pinene synthase from Abies grandis.

    PubMed

    Hyatt, David C; Croteau, Rodney

    2005-07-15

    Two monoterpene synthases, (-)-pinene synthase and (-)-camphene synthase, from grand fir (Abies grandis) produce different product mixtures despite having highly homologous amino acid sequences and, presumably, very similar three-dimensional structures. The major product of (-)-camphene synthase, (-)-camphene, and the major products of (-)-pinene synthase, (-)-alpha-pinene, and (-)-beta-pinene, arise through distinct mechanistic variations of the electrophilic reaction cascade that is common to terpenoid synthases. Structural modeling followed by directed mutagenesis in (-)-pinene synthase was used to replace selected amino acid residues with the corresponding residues from (-)-camphene synthase in an effort to identify the amino acids responsible for the catalytic differences. This approach produced an enzyme in which more than half of the product was channeled through an alternative pathway. It was also shown that several (-)-pinene synthase to (-)-camphene synthase amino acid substitutions were necessary before catalysis was significantly altered. The data support a model in which the collective action of many key amino acids, located both in and distant from the active site pocket, regulate the course of the electrophilic reaction cascade.

  6. β-Glucan Synthase Gene Overexpression and β-Glucans Overproduction in Pleurotus ostreatus Using Promoter Swapping

    PubMed Central

    Liu, Dongren; Qi, Yuancheng; Gao, Yuqian; Shen, Jinwen; Qiu, Liyou

    2013-01-01

    Mushroom β-glucans are potent immunological stimulators in medicine, but their productivities are very low. In this study, we successfully improved its production by promoter engineering in Pleurotus ostreatus. The promoter for β-1,3-glucan synthase gene (GLS) was replaced by the promoter of glyceraldehyde-3-phosphate dehydrogenase gene of Aspergillus nidulans. The homologous recombination fragment for swapping GLS promoter comprised five segments, which were fused by two rounds of combined touchdown PCR and overlap extension PCR (TD-OE PCR), and was introduced into P. ostreatus through PEG/CaCl2-mediated protoplast transformation. The transformants exhibited one to three fold higher transcription of GLS gene and produced 32% to 131% higher yield of β-glucans than the wild type. The polysaccharide yields had a significant positive correlation to the GLS gene expression. The infrared spectra of the polysaccharides all displayed the typical absorption peaks of β-glucans. This is the first report of successful swapping of promoters in filamentous fungi. PMID:23637884

  7. Geranyl diphosphate synthase molecules, and nucleic acid molecules encoding same

    DOEpatents

    Croteau, Rodney Bruce; Burke, Charles Cullen

    2008-06-24

    In one aspect, the present invention provides isolated nucleic acid molecules that each encode a geranyl diphosphate synthase protein, wherein each isolated nucleic acid molecule hybridizes to a nucleic acid molecule consisting of the sequence set forth in SEQ ID NO:1 under conditions of 5.times.SSC at 45.degree. C. for one hour. The present invention also provides isolated geranyl diphosphate synthase proteins, and methods for altering the level of expression of geranyl diphosphate synthase protein in a host cell.

  8. Divinyl ether synthase gene, and protein and uses thereof

    DOEpatents

    Howe, Gregg A.; Itoh, Aya

    2006-12-26

    The present invention relates to divinyl ether synthase genes, proteins, and methods of their use. The present invention encompasses both native and recombinant wild-type forms of the synthase, as well as mutants and variant forms, some of which possess altered characteristics relative to the wild-type synthase. The present invention also relates to methods of using divinyl ether synthase genes and proteins, including in their expression in transgenic organisms and in the production of divinyl ether fatty acids, and to methods of suing divinyl ether fatty acids, including in the protection of plants from pathogens.

  9. Divinyl ether synthase gene and protein, and uses thereof

    DOEpatents

    Howe, Gregg A.; Itoh, Aya

    2011-09-13

    The present invention relates to divinyl ether synthase genes, proteins, and methods of their use. The present invention encompasses both native and recombinant wild-type forms of the synthase, as well as mutants and variant forms, some of which possess altered characteristics relative to the wild-type synthase. The present invention also relates to methods of using divinyl ether synthase genes and proteins, including in their expression in transgenic organisms and in the production of divinyl ether fatty acids, and to methods of suing divinyl ether fatty acids, including in the protection of plants from pathogens.

  10. Cellulose synthase interacting protein: a new factor in cellulose synthesis.

    PubMed

    Gu, Ying; Somerville, Chris

    2010-12-01

    Cellulose is the most abundant biopolymer on earth. The great abundance of cellulose places it at the forefront as a primary source of biomass for renewable biofuels. However, the knowledge of how plant cells make cellulose remains very rudimentary. Cellulose microfibrils are synthesized at the plasma membrane by hexameric protein complexes, also known as cellulose synthase complexes. The only known components of cellulose synthase complexes are cellulose synthase (CESA) proteins until the recent identification of a novel component. CSI1, which encodes CESA interacting protein 1 (CSI1) in Arabidopsis. CSI1, as the first non-CESA proteins associated with cellulose synthase complexes, opens up many opportunities.

  11. Novel family of terpene synthases evolved from trans-isoprenyl diphosphate synthases in a flea beetle

    PubMed Central

    Beran, Franziska; Rahfeld, Peter; Luck, Katrin; Nagel, Raimund; Vogel, Heiko; Wielsch, Natalie; Irmisch, Sandra; Ramasamy, Srinivasan; Gershenzon, Jonathan; Heckel, David G.; Köllner, Tobias G.

    2016-01-01

    Sesquiterpenes play important roles in insect communication, for example as pheromones. However, no sesquiterpene synthases, the enzymes involved in construction of the basic carbon skeleton, have been identified in insects to date. We investigated the biosynthesis of the sesquiterpene (6R,7S)-himachala-9,11-diene in the crucifer flea beetle Phyllotreta striolata, a compound previously identified as a male-produced aggregation pheromone in several Phyllotreta species. A (6R,7S)-himachala-9,11-diene–producing sesquiterpene synthase activity was detected in crude beetle protein extracts, but only when (Z,E)-farnesyl diphosphate [(Z,E)-FPP] was offered as a substrate. No sequences resembling sesquiterpene synthases from plants, fungi, or bacteria were found in the P. striolata transcriptome, but we identified nine divergent putative trans-isoprenyl diphosphate synthase (trans-IDS) transcripts. Four of these putative trans-IDSs exhibited terpene synthase (TPS) activity when heterologously expressed. Recombinant PsTPS1 converted (Z,E)-FPP to (6R,7S)-himachala-9,11-diene and other sesquiterpenes observed in beetle extracts. RNAi-mediated knockdown of PsTPS1 mRNA in P. striolata males led to reduced emission of aggregation pheromone, confirming a significant role of PsTPS1 in pheromone biosynthesis. Two expressed enzymes showed genuine IDS activity, with PsIDS1 synthesizing (E,E)-FPP, whereas PsIDS3 produced neryl diphosphate, (Z,Z)-FPP, and (Z,E)-FPP. In a phylogenetic analysis, the PsTPS enzymes and PsIDS3 were clearly separated from a clade of known coleopteran trans-IDS enzymes including PsIDS1 and PsIDS2. However, the exon–intron structures of IDS and TPS genes in P. striolata are conserved, suggesting that this TPS gene family evolved from trans-IDS ancestors. PMID:26936952

  12. Novel family of terpene synthases evolved from trans-isoprenyl diphosphate synthases in a flea beetle.

    PubMed

    Beran, Franziska; Rahfeld, Peter; Luck, Katrin; Nagel, Raimund; Vogel, Heiko; Wielsch, Natalie; Irmisch, Sandra; Ramasamy, Srinivasan; Gershenzon, Jonathan; Heckel, David G; Köllner, Tobias G

    2016-03-15

    Sesquiterpenes play important roles in insect communication, for example as pheromones. However, no sesquiterpene synthases, the enzymes involved in construction of the basic carbon skeleton, have been identified in insects to date. We investigated the biosynthesis of the sesquiterpene (6R,7S)-himachala-9,11-diene in the crucifer flea beetle Phyllotreta striolata, a compound previously identified as a male-produced aggregation pheromone in several Phyllotreta species. A (6R,7S)-himachala-9,11-diene-producing sesquiterpene synthase activity was detected in crude beetle protein extracts, but only when (Z,E)-farnesyl diphosphate [(Z,E)-FPP] was offered as a substrate. No sequences resembling sesquiterpene synthases from plants, fungi, or bacteria were found in the P. striolata transcriptome, but we identified nine divergent putative trans-isoprenyl diphosphate synthase (trans-IDS) transcripts. Four of these putative trans-IDSs exhibited terpene synthase (TPS) activity when heterologously expressed. Recombinant PsTPS1 converted (Z,E)-FPP to (6R,7S)-himachala-9,11-diene and other sesquiterpenes observed in beetle extracts. RNAi-mediated knockdown of PsTPS1 mRNA in P. striolata males led to reduced emission of aggregation pheromone, confirming a significant role of PsTPS1 in pheromone biosynthesis. Two expressed enzymes showed genuine IDS activity, with PsIDS1 synthesizing (E,E)-FPP, whereas PsIDS3 produced neryl diphosphate, (Z,Z)-FPP, and (Z,E)-FPP. In a phylogenetic analysis, the PsTPS enzymes and PsIDS3 were clearly separated from a clade of known coleopteran trans-IDS enzymes including PsIDS1 and PsIDS2. However, the exon-intron structures of IDS and TPS genes in P. striolata are conserved, suggesting that this TPS gene family evolved from trans-IDS ancestors.

  13. Acetylation of prostaglandin synthase by aspirin.

    PubMed Central

    Roth, G J; Stanford, N; Majerus, P W

    1975-01-01

    When microsomes of sheep or bovine seminal vesicles are incubated with [acetyl-3H]aspirin (acetyl salicylic acid), 200 Ci/mol, we observe acetylation of a single protein, as measured by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The protein has a molecular weight of 85,000 and corresponds to a similar acetylated protein found in the particulate fraction of aspirin-treated human platelets. The aspirin-mediated acetylation reaction proceeds with the same time course and at the same concentration as does the inhibition of prostaglandin synthase (cyclo-oxygenase) (EC 1.14.99.1; 8,11,14-eicosatrienoate, hydrogen-donor:oxygen oxidoreductase) by the drug. At 100 muM aspirin, 50% inhibition of prostaglandin synthase and 50% of maximal acetylation are observed after 15 min at 37 degrees. Furthermore, the substrate for cyclo-oxygenase, arachidonic acid, inhibits protein acetylation by aspirin at concentrations (50% inhibition at 10-30 muM) which correlate with the Michaelis constant of arachidonic acid as a substrate for cyclooxygenase. Arachidonic acid analogues and indomethacin inhibit the acetylation reaction in proportion to their effectiveness as cyclo-oxygenase inhibitors. The results suggest that aspirin acts as an active-site acetylating agent for the enzyme cyclo-oxygenase. This action of aspirin may account for its anti-inflammatory and anti-platelet action. PMID:810797

  14. Activities and regulation of peptidoglycan synthases.

    PubMed

    Egan, Alexander J F; Biboy, Jacob; van't Veer, Inge; Breukink, Eefjan; Vollmer, Waldemar

    2015-10-05

    Peptidoglycan (PG) is an essential component in the cell wall of nearly all bacteria, forming a continuous, mesh-like structure, called the sacculus, around the cytoplasmic membrane to protect the cell from bursting by its turgor. Although PG synthases, the penicillin-binding proteins (PBPs), have been studied for 70 years, useful in vitro assays for measuring their activities were established only recently, and these provided the first insights into the regulation of these enzymes. Here, we review the current knowledge on the glycosyltransferase and transpeptidase activities of PG synthases. We provide new data showing that the bifunctional PBP1A and PBP1B from Escherichia coli are active upon reconstitution into the membrane environment of proteoliposomes, and that these enzymes also exhibit DD-carboxypeptidase activity in certain conditions. Both novel features are relevant for their functioning within the cell. We also review recent data on the impact of protein-protein interactions and other factors on the activities of PBPs. As an example, we demonstrate a synergistic effect of multiple protein-protein interactions on the glycosyltransferase activity of PBP1B, by its cognate lipoprotein activator LpoB and the essential cell division protein FtsN.

  15. Subcellular localization and regulation of coenzyme A synthase.

    PubMed

    Zhyvoloup, Alexander; Nemazanyy, Ivan; Panasyuk, Ganna; Valovka, Taras; Fenton, Tim; Rebholz, Heike; Wang, Mong-Lien; Foxon, Richard; Lyzogubov, Valeriy; Usenko, Vasylij; Kyyamova, Ramziya; Gorbenko, Olena; Matsuka, Genadiy; Filonenko, Valeriy; Gout, Ivan T

    2003-12-12

    CoA synthase mediates the last two steps in the sequence of enzymatic reactions, leading to CoA biosynthesis. We have recently identified cDNA for CoA synthase and demonstrated that it encodes a bifunctional enzyme possessing 4'-phosphopantetheine adenylyltransferase and dephospho-CoA kinase activities. Molecular cloning of CoA synthase provided us with necessary tools to study subcellular localization and the regulation of this bifunctional enzyme. Transient expression studies and confocal microscopy allowed us to demonstrate that full-length CoA synthase is associated with the mitochondria, whereas the removal of the N-terminal region relocates the enzyme to the cytosol. In addition, we showed that the N-terminal sequence of CoA synthase (amino acids 1-29) exhibits a hydrophobic profile and targets green fluorescent protein exclusively to mitochondria. Further analysis, involving subcellular fractionation and limited proteolysis, indicated that CoA synthase is localized on the mitochondrial outer membrane. Moreover, we demonstrate for the first time that phosphatidylcholine and phosphatidylethanolamine, which are the main components of the mitochondrial outer membrane, are potent activators of both enzymatic activities of CoA synthase in vitro. Taken together, these data provide the evidence that the final stages of CoA biosynthesis take place on mitochondria and the activity of CoA synthase is regulated by phospholipids.

  16. Cloning and Characterization of 1-Deoxy-d-Xylulose 5-Phosphate Synthase from Streptomyces sp. Strain CL190, Which Uses both the Mevalonate and Nonmevalonate Pathways for Isopentenyl Diphosphate Biosynthesis

    PubMed Central

    Kuzuyama, Tomohisa; Takagi, Motoki; Takahashi, Shunji; Seto, Haruo

    2000-01-01

    In addition to the ubiquitous mevalonate pathway, Streptomyces sp. strain CL190 utilizes the nonmevalonate pathway for isopentenyl diphosphate biosynthesis. The initial step of this nonmevalonate pathway is the formation of 1-deoxy-d-xylulose 5-phosphate (DXP) by condensation of pyruvate and glyceraldehyde 3-phosphate catalyzed by DXP synthase. The corresponding gene, dxs, was cloned from CL190 by using PCR with two oligonucleotide primers synthesized on the basis of two highly conserved regions among dxs homologs from six genera. The dxs gene of CL190 encodes 631 amino acid residues with a predicted molecular mass of 68 kDa. The recombinant enzyme overexpressed in Escherichia coli was purified as a soluble protein and characterized. The molecular mass of the enzyme was estimated to be 70 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 130 kDa by gel filtration chromatography, suggesting that the enzyme is most likely to be a dimer. The enzyme showed a pH optimum of 9.0, with a Vmax of 370 U per mg of protein and Kms of 65 μM for pyruvate and 120 μM for d-glyceraldehyde 3-phosphate. The purified enzyme catalyzed the formation of 1-deoxyxylulose by condensation of pyruvate and glyceraldehyde as well, with a Km value of 35 mM for d-glyceraldehyde. To compare the enzymatic properties of CL190 and E. coli DXP synthases, the latter enzyme was also overexpressed and purified. Although these two enzymes had different origins, they showed the same enzymatic properties. PMID:10648511

  17. Argininosuccinate synthase: at the center of arginine metabolism.

    PubMed

    Haines, Ricci J; Pendleton, Laura C; Eichler, Duane C

    2011-01-01

    The levels of L-arginine, a cationic, semi-essential amino acid, are often controlled within a cell at the level of local availability through biosynthesis. The importance of this temporal and spatial control of cellular L-arginine is highlighted by the tissue specific roles of argininosuccinate synthase (argininosuccinate synthetase) (EC 6.3.4.5), as the rate-limiting step in the conversion of L-citrulline to L-arginine. Since its discovery, the function of argininosuccinate synthase has been linked almost exclusively to hepatic urea production despite the fact that alternative pathways involving argininosuccinate synthase were defined, such as its role in providing arginine for creatine and for polyamine biosynthesis. However, it was the discovery of nitric oxide that meaningfully extended our understanding of the metabolic importance of non-hepatic argininosuccinate synthase. Indeed, our knowledge of the number of tissues that manage distinct pools of arginine under the control of argininosuccinate synthase has expanded significantly.

  18. A Comparative Analysis of Acyl-Homoserine Lactone Synthase Assays.

    PubMed

    Shin, Daniel; Frane, Nicole D; Brecht, Ryan M; Keeler, Jesse; Nagarajan, Rajesh

    2015-12-01

    Quorum sensing is cell-to-cell communication that allows bacteria to coordinate attacks on their hosts by inducing virulent gene expression, biofilm production, and other cellular functions, including antibiotic resistance. AHL synthase enzymes synthesize N-acyl-l-homoserine lactones, commonly referred to as autoinducers, to facilitate quorum sensing in Gram-negative bacteria. Studying the synthases, however, has proven to be a difficult road. Two assays, including a radiolabeled assay and a colorimetric (DCPIP) assay are well-documented in literature to study AHL synthases. In this paper, we describe additional methods that include an HPLC-based, C-S bond cleavage and coupled assays to investigate this class of enzymes. In addition, we compare and contrast each assay for both acyl-CoA- and acyl-ACP-utilizing synthases. The expanded toolkit described in this study should facilitate mechanistic studies on quorum sensing signal synthases and expedite discovery of antivirulent compounds.

  19. Ubiquitination and filamentous structure of cytidine triphosphate synthase

    PubMed Central

    Pai, Li-Mei; Wang, Pei-Yu; Lin, Wei-Cheng; Chakraborty, Archan; Yeh, Chau-Ting; Lin, Yu-Hung

    2016-01-01

    ABSTRACT Living organisms respond to nutrient availability by regulating the activity of metabolic enzymes. Therefore, the reversible post-translational modification of an enzyme is a common regulatory mechanism for energy conservation. Recently, cytidine-5′-triphosphate (CTP) synthase was discovered to form a filamentous structure that is evolutionarily conserved from flies to humans. Interestingly, induction of the formation of CTP synthase filament is responsive to starvation or glutamine depletion. However, the biological roles of this structure remain elusive. We have recently shown that ubiquitination regulates CTP synthase activity by promoting filament formation in Drosophila ovaries during endocycles. Intriguingly, although the ubiquitination process was required for filament formation induced by glutamine depletion, CTP synthase ubiquitination was found to be inversely correlated with filament formation in Drosophila and human cell lines. In this article, we discuss the putative dual roles of ubiquitination, as well as its physiological implications, in the regulation of CTP synthase structure. PMID:27116391

  20. Taxonomic and life history bias in herbicide resistant weeds: implications for deployment of resistant crops.

    PubMed

    Holt, Jodie S; Welles, Shana R; Silvera, Katia; Heap, Ian M; Heredia, Sylvia M; Martinez-Berdeja, Alejandra; Palenscar, Kai T; Sweet, Lynn C; Ellstrand, Norman C

    2013-01-01

    Evolved herbicide resistance (EHR) is an important agronomic problem and consequently a food security problem, as it jeopardizes herbicide effectiveness and increases the difficulty and cost of weed management. EHR in weeds was first reported in 1970 and the number of cases has accelerated dramatically over the last two decades. Despite 40 years of research on EHR, why some weeds evolve resistance and others do not is poorly understood. Here we ask whether weed species that have EHR are different from weeds in general. Comparing taxonomic and life history traits of weeds with EHR to a control group ("the world's worst weeds"), we found weeds with EHR significantly over-represented in certain plant families and having certain life history biases. In particular, resistance is overrepresented in Amaranthaceae, Brassicaceae and Poaceae relative to all weeds, and annuality is ca. 1.5 times as frequent in weeds with EHR as in the control group. Also, for perennial EHR weeds, vegetative reproduction is only 60% as frequent as in the control group. We found the same trends for subsets of weeds with EHR to acetolactate synthase (ALS), photosystem II (PSII), and 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase-inhibitor herbicides and with multiple resistance. As herbicide resistant crops (transgenic or not) are increasingly deployed in developing countries, the problems of EHR could increase in those countries as it has in the USA if the selecting herbicides are heavily applied and appropriate management strategies are not employed. Given our analysis, we make some predictions about additional species that might evolve resistance.

  1. Regulators of floral fragrance production and their target genes in petunia are not exclusively active in the epidermal cells of petals.

    PubMed

    Van Moerkercke, Alex; Galván-Ampudia, Carlos S; Verdonk, Julian C; Haring, Michel A; Schuurink, Robert C

    2012-05-01

    In which cells of the flower volatile biosynthesis takes place is unclear. In rose and snapdragon, some enzymes of the volatile phenylpropanoid/benzenoid pathway have been shown to be present in the epidermal cells of petals. It is therefore generally believed that the production of these compounds occurs in these cells. However, whether the entire pathway is active in these cells and whether it is exclusively active in these cells remains to be proven. Cell-specific transcription factors activating these genes will determine in which cells they are expressed. In petunia, the transcription factor EMISSION OF BENZENOIDS II (EOBII) activates the ODORANT1 (ODO1) promoter and the promoter of the biosynthetic gene isoeugenol synthase (IGS). The regulator ODO1 in turn activates the promoter of the shikimate gene 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Here the identification of a new target gene of ODO1, encoding an ABC transporter localized on the plasma membrane, PhABCG1, which is co-expressed with ODO1, is described. PhABCG1 expression is up-regulated in petals overexpressing ODO1 through activation of the PhABCG1 promoter. Interestingly, the ODO1, PhABCG1, and IGS promoters were active in petunia protoplasts originating from both epidermal and mesophyll cell layers of the petal, suggesting that the volatile phenylpropanoid/benzenoid pathway in petunia is active in these different cell types. Since volatile release occurs from epidermal cells, trafficking of (volatile) compounds between cell layers must be involved, but the exact function of PhABCG1 remains to be resolved.

  2. Functional Contribution of Chorismate Synthase, Anthranilate Synthase, and Chorismate Mutase to Penetration Resistance in Barley-Powdery Mildew Interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant processes resulting from primary or secondary metabolism have been hypothesized to contribute to defense against microbial attack. Barley chorismate synthase (HvCS), anthranilate synthase alpha subunit 2 (HvASa2) and chorismate mutase 1 (HvCM1) occupy pivotal branch-points downstream of the s...

  3. A Comparison of the Effects of Neuronal Nitric Oxide Synthase and Inducible Nitric Oxide Synthase Inhibition on Cartilage Damage.

    PubMed

    Gokay, Nevzat Selim; Yilmaz, Ibrahim; Komur, Baran; Demiroz, Ahu Senem; Gokce, Alper; Dervisoglu, Sergülen; Gokay, Banu Vural

    2016-01-01

    The objective of this study was to investigate the effects of selective inducible nitric oxide synthase and neuronal nitric oxide synthase inhibitors on cartilage regeneration. The study involved 27 Wistar rats that were divided into five groups. On Day 1, both knees of 3 rats were resected and placed in a formalin solution as a control group. The remaining 24 rats were separated into 4 groups, and their right knees were surgically damaged. Depending on the groups, the rats were injected with intra-articular normal saline solution, neuronal nitric oxide synthase inhibitor 7-nitroindazole (50 mg/kg), inducible nitric oxide synthase inhibitor amino-guanidine (30 mg/kg), or nitric oxide precursor L-arginine (200 mg/kg). After 21 days, the right and left knees of the rats were resected and placed in formalin solution. The samples were histopathologically examined by a blinded evaluator and scored on 8 parameters. Although selective neuronal nitric oxide synthase inhibition exhibited significant (P = 0.044) positive effects on cartilage regeneration following cartilage damage, it was determined that inducible nitric oxide synthase inhibition had no statistically significant effect on cartilage regeneration. It was observed that the nitric oxide synthase activation triggered advanced arthrosis symptoms, such as osteophyte formation. The fact that selective neuronal nitric oxide synthase inhibitors were observed to have mitigating effects on the severity of the damage may, in the future, influence the development of new agents to be used in the treatment of cartilage disorders.

  4. A Comparison of the Effects of Neuronal Nitric Oxide Synthase and Inducible Nitric Oxide Synthase Inhibition on Cartilage Damage

    PubMed Central

    Gokay, Nevzat Selim; Yilmaz, Ibrahim; Demiroz, Ahu Senem; Gokce, Alper; Dervisoglu, Sergülen; Gokay, Banu Vural

    2016-01-01

    The objective of this study was to investigate the effects of selective inducible nitric oxide synthase and neuronal nitric oxide synthase inhibitors on cartilage regeneration. The study involved 27 Wistar rats that were divided into five groups. On Day 1, both knees of 3 rats were resected and placed in a formalin solution as a control group. The remaining 24 rats were separated into 4 groups, and their right knees were surgically damaged. Depending on the groups, the rats were injected with intra-articular normal saline solution, neuronal nitric oxide synthase inhibitor 7-nitroindazole (50 mg/kg), inducible nitric oxide synthase inhibitor amino-guanidine (30 mg/kg), or nitric oxide precursor L-arginine (200 mg/kg). After 21 days, the right and left knees of the rats were resected and placed in formalin solution. The samples were histopathologically examined by a blinded evaluator and scored on 8 parameters. Although selective neuronal nitric oxide synthase inhibition exhibited significant (P = 0.044) positive effects on cartilage regeneration following cartilage damage, it was determined that inducible nitric oxide synthase inhibition had no statistically significant effect on cartilage regeneration. It was observed that the nitric oxide synthase activation triggered advanced arthrosis symptoms, such as osteophyte formation. The fact that selective neuronal nitric oxide synthase inhibitors were observed to have mitigating effects on the severity of the damage may, in the future, influence the development of new agents to be used in the treatment of cartilage disorders. PMID:27382570

  5. The FAD-dependent glycerol-3-phosphate dehydrogenase of Giardia duodenalis: an unconventional enzyme that interacts with the g14-3-3 and it is a target of the antitumoral compound NBDHEX

    PubMed Central

    Lalle, Marco; Camerini, Serena; Cecchetti, Serena; Finelli, Renata; Sferra, Gabriella; Müller, Joachim; Ricci, Giorgio; Pozio, Edoardo

    2015-01-01

    The flagellated protozoan Giardia duodenalis is a worldwide parasite causing giardiasis, an acute and chronic diarrheal disease. Metabolism in G. duodenalis has a limited complexity thus making metabolic enzymes ideal targets for drug development. However, only few metabolic pathways (i.e., carbohydrates) have been described so far. Recently, the parasite homolog of the mitochondrial-like glycerol-3-phosphate dehydrogenase (gG3PD) has been identified among the interactors of the g14-3-3 protein. G3PD is involved in glycolysis, electron transport, glycerophospholipids metabolism, and hyperosmotic stress response, and is emerging as promising target in tumor treatment. In this work, we demonstrate that gG3PD is a functional flavoenzyme able to convert glycerol-3-phosphate into dihydroxyacetone phosphate and that its activity and the intracellular glycerol level increase during encystation. Taking advantage of co-immunoprecipitation assays and deletion mutants, we provide evidence that gG3PD and g14-3-3 interact at the trophozoite stage, the intracellular localization of gG3PD is stage dependent and it partially co-localizes with mitosomes during cyst development. Finally, we demonstrate that the gG3PD activity is affected by the antitumoral compound 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol, that results more effective in vitro at killing G. duodenalis trophozoites than the reference drug metronidazole. Overall, our results highlight the involvement of gG3PD in processes crucial for the parasite survival thus proposing this enzyme as target for novel antigiardial interventions. PMID:26082764

  6. The FAD-dependent glycerol-3-phosphate dehydrogenase of Giardia duodenalis: an unconventional enzyme that interacts with the g14-3-3 and it is a target of the antitumoral compound NBDHEX.

    PubMed

    Lalle, Marco; Camerini, Serena; Cecchetti, Serena; Finelli, Renata; Sferra, Gabriella; Müller, Joachim; Ricci, Giorgio; Pozio, Edoardo

    2015-01-01

    The flagellated protozoan Giardia duodenalis is a worldwide parasite causing giardiasis, an acute and chronic diarrheal disease. Metabolism in G. duodenalis has a limited complexity thus making metabolic enzymes ideal targets for drug development. However, only few metabolic pathways (i.e., carbohydrates) have been described so far. Recently, the parasite homolog of the mitochondrial-like glycerol-3-phosphate dehydrogenase (gG3PD) has been identified among the interactors of the g14-3-3 protein. G3PD is involved in glycolysis, electron transport, glycerophospholipids metabolism, and hyperosmotic stress response, and is emerging as promising target in tumor treatment. In this work, we demonstrate that gG3PD is a functional flavoenzyme able to convert glycerol-3-phosphate into dihydroxyacetone phosphate and that its activity and the intracellular glycerol level increase during encystation. Taking advantage of co-immunoprecipitation assays and deletion mutants, we provide evidence that gG3PD and g14-3-3 interact at the trophozoite stage, the intracellular localization of gG3PD is stage dependent and it partially co-localizes with mitosomes during cyst development. Finally, we demonstrate that the gG3PD activity is affected by the antitumoral compound 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol, that results more effective in vitro at killing G. duodenalis trophozoites than the reference drug metronidazole. Overall, our results highlight the involvement of gG3PD in processes crucial for the parasite survival thus proposing this enzyme as target for novel antigiardial interventions.

  7. Conversion of anthranilate synthase into isochorismate synthase: implications for the evolution of chorismate-utilizing enzymes.

    PubMed

    Plach, Maximilian G; Löffler, Patrick; Merkl, Rainer; Sterner, Reinhard

    2015-09-14

    Chorismate-utilizing enzymes play a vital role in the biosynthesis of metabolites in plants as well as free-living and infectious microorganisms. Among these enzymes are the homologous primary metabolic anthranilate synthase (AS) and secondary metabolic isochorismate synthase (ICS). Both catalyze mechanistically related reactions by using ammonia and water as nucleophiles, respectively. We report that the nucleophile specificity of AS can be extended from ammonia to water by just two amino acid exchanges in a channel leading to the active site. The observed ICS/AS bifunctionality demonstrates that a secondary metabolic enzyme can readily evolve from a primary metabolic enzyme without requiring an initial gene duplication event. In a general sense, these findings add to our understanding how nature has used the structurally predetermined features of enzyme superfamilies to evolve new reactions.

  8. Identification of cystathionine γ-synthase and threonine synthase from Cicer arietinum and Lens culinaris.

    PubMed

    Morneau, Dominique J K; Jaworski, Allison F; Aitken, Susan M

    2013-04-01

    In plants, cystathionine γ-synthase (CGS) and threonine synthase (TS) compete for the branch-point metabolite O-phospho-L-homoserine. These enzymes are potential targets for metabolic engineering studies, aiming to alter the flux through the competing methionine and threonine biosynthetic pathways, with the goal of increasing methionine production. Although CGS and TS have been characterized in the model organisms Escherichia coli and Arabidopsis thaliana, little information is available on these enzymes in other, particularly plant, species. The functional CGS and TS coding sequences from the grain legumes Cicer arietinum (chickpea) and Lens culinaris (lentil) identified in this study share approximately 80% amino acid sequence identity with the corresponding sequences from Glycine max. At least 7 active-site residues of grain legume CGS and TS are conserved in the model bacterial enzymes, including the catalytic base. Putative processing sites that remove the targeting sequence and result in functional TS were identified in the target species.

  9. Heterologous expression in Saccharopolyspora erythraea of a pentaketide synthase derived from the spinosyn polyketide synthase.

    PubMed

    Martin, Christine J; Timoney, Máire C; Sheridan, Rose M; Kendrew, Steven G; Wilkinson, Barrie; Staunton, James C; Leadlay, Peter F

    2003-12-07

    A truncated version of the spinosyn polyketide synthase comprising the loading module and the first four extension modules fused to the erythromycin thioesterase domain was expressed in Saccharopolyspora erythraea. A novel pentaketide lactone product was isolated, identifying cryptic steps of spinosyn biosynthesis and indicating the potential of this approach for the biosynthetic engineering of spinosyn analogues. A pathway for the formation of the tetracyclic spinosyn aglycone is proposed.

  10. Defining critical residues for substrate binding to 1-deoxy-d-xylulose 5-phosphate synthase: Active site substitutions stabilize the pre-decarboxylation intermediate C2α-lactylthiamin diphosphate

    PubMed Central

    Kakalis, Lazaros; Jordan, Frank; Meyers, Caren L. Freel

    2014-01-01

    1-Deoxy-d-xylulose 5-phosphate (DXP) synthase catalyzes formation of DXP from pyruvate and d-glyceraldehyde 3-phosphate (d-GAP) in a thiamin diphosphate (ThDP)-dependent manner, and is the first step in the essential pathway to isoprenoids in human pathogens. Understanding the mechanism of this unique enzyme is critical for developing new anti-infective agents that selectively target isoprenoid biosynthesis. The present study uses mutagenesis and a combination of protein fluorescence, circular dichroism and kinetics experiments to investigate the roles of Arg-420, Arg-478 and Tyr-392 in substrate binding and catalysis. The results support a random sequential, preferred order mechanism and predict Arg-420 and Arg-478 are involved in binding of the acceptor substrate, d-GAP. d-Glyceraldehyde, an alternative acceptor substrate lacking the phosphoryl group predicted to interact with Arg-420 and Arg-478, also accelerates decarboxylation of the pre-decarboxylation intermediate C2α-lactylthiamin diphosphate (LThDP) on DXP synthase, indicating this binding interaction is not absolutely required, and the hydroxyaldehyde sufficiently triggers decarboxylation. Unexpectedly, Tyr-392 contributes to d-GAP affinity and is not required for LThDP formation or its d-GAP-promoted decarboxylation. Time-resolved CD spectroscopy and NMR experiments indicate LThDP is significantly stabilized on R420A and Y392F variants compared to wild type DXP synthase in the absence of acceptor substrate, yet these substitutions do not appear to impact the rate of d-GAP-promoted LThDP decarboxylation in the presence of high d-GAP, and LThDP formation remains the rate-limiting step. These results suggest a role of these residues to promote d-GAP binding which in turn facilitates decarboxylation, and further highlight interesting differences between DXP synthase and other ThDP-dependent enzymes. PMID:24767541

  11. The Rotary Mechanism of the ATP Synthase

    PubMed Central

    Nakamoto, Robert K.; Scanlon, Joanne A. Baylis; Al-Shawi, Marwan K.

    2008-01-01

    The FOF1 ATP synthase is a large complex of at least 22 subunits, more than half of which are in the membranous FO sector. This nearly ubiquitous transporter is responsible for the majority of ATP synthesis in oxidative and photo-phosphorylation, and its overall structure and mechanism have remained conserved throughout evolution. Most examples utilize the proton motive force to drive ATP synthesis except for a few bacteria, which use a sodium motive force. A remarkable feature of the complex is the rotary movement of an assembly of subunits that plays essential roles in both transport and catalytic mechanisms. This review addresses the role of rotation in catalysis of ATP synthesis/hydrolysis and the transport of protons or sodium. PMID:18515057

  12. Nitric Oxide Synthases and Atrial Fibrillation

    PubMed Central

    Bonilla, Ingrid M.; Sridhar, Arun; Györke, Sandor; Cardounel, Arturo J.; Carnes, Cynthia A.

    2012-01-01

    Oxidative stress has been implicated in the pathogenesis of atrial fibrillation. There are multiple systems in the myocardium which contribute to redox homeostasis, and loss of homeostasis can result in oxidative stress. Potential sources of oxidants include nitric oxide synthases (NOS), which normally produce nitric oxide in the heart. Two NOS isoforms (1 and 3) are normally expressed in the heart. During pathologies such as heart failure, there is induction of NOS 2 in multiple cell types in the myocardium. In certain conditions, the NOS enzymes may become uncoupled, shifting from production of nitric oxide to superoxide anion, a potent free radical and oxidant. Multiple lines of evidence suggest a role for NOS in the pathogenesis of atrial fibrillation. Therapeutic approaches to reduce atrial fibrillation by modulation of NOS activity may be beneficial, although further investigation of this strategy is needed. PMID:22536189

  13. Endothelial nitric oxide synthase in the microcirculation

    PubMed Central

    Shu, Xiaohong; Keller, T.C. Stevenson; Begandt, Daniela; Butcher, Joshua T.; Biwer, Lauren; Keller, Alexander S.; Columbus, Linda; Isakson, Brant E.

    2015-01-01

    Endothelial nitric oxide synthase (eNOS, NOS3) is responsible for producing nitric oxide (NO) - a key molecule that can directly (or indirectly) act as a vasodilator and anti-inflammatory mediator. In this review, we examine the structural effects of regulation of the eNOS enzyme, including post-translational modifications and subcellular localization. After production, NO diffuses to surrounding cells with a variety of effects. We focus on the physiological role of NO and NO-derived molecules, including microvascular effects on vessel tone and immune response. Regulation of eNOS and NO action is complicated; we address endogenous and exogenous mechanisms of NO regulation with a discussion of pharmacological agents used in clinical and laboratory settings and a proposed role for eNOS in circulating red blood cells. PMID:26390975

  14. Endothelial nitric oxide synthase in the microcirculation.

    PubMed

    Shu, Xiaohong; Keller, T C Stevenson; Begandt, Daniela; Butcher, Joshua T; Biwer, Lauren; Keller, Alexander S; Columbus, Linda; Isakson, Brant E

    2015-12-01

    Endothelial nitric oxide synthase (eNOS, NOS3) is responsible for producing nitric oxide (NO)--a key molecule that can directly (or indirectly) act as a vasodilator and anti-inflammatory mediator. In this review, we examine the structural effects of regulation of the eNOS enzyme, including post-translational modifications and subcellular localization. After production, NO diffuses to surrounding cells with a variety of effects. We focus on the physiological role of NO and NO-derived molecules, including microvascular effects on vessel tone and immune response. Regulation of eNOS and NO action is complicated; we address endogenous and exogenous mechanisms of NO regulation with a discussion of pharmacological agents used in clinical and laboratory settings and a proposed role for eNOS in circulating red blood cells.

  15. A Single Amino Acid Substitution Converts Benzophenone Synthase into Phenylpyrone Synthase*

    PubMed Central

    Klundt, Tim; Bocola, Marco; Lütge, Maren; Beuerle, Till; Liu, Benye; Beerhues, Ludger

    2009-01-01

    Benzophenone metabolism provides a number of plant natural products with fascinating chemical structures and intriguing pharmacological activities. Formation of the carbon skeleton of benzophenone derivatives from benzoyl-CoA and three molecules of malonyl-CoA is catalyzed by benzophenone synthase (BPS), a member of the superfamily of type III polyketide synthases. A point mutation in the active site cavity (T135L) transformed BPS into a functional phenylpyrone synthase (PPS). The dramatic change in both substrate and product specificities of BPS was rationalized by homology modeling. The mutation may open a new pocket that accommodates the phenyl moiety of the triketide intermediate but limits polyketide elongation to two reactions, resulting in phenylpyrone formation. 3-Hydroxybenzoyl-CoA is the second best starter molecule for BPS but a poor substrate for PPS. The aryl moiety of the triketide intermediate may be trapped in the new pocket by hydrogen bond formation with the backbone, thereby acting as an inhibitor. PPS is a promising biotechnological tool for manipulating benzoate-primed biosynthetic pathways to produce novel compounds. PMID:19710020

  16. CLYBL is a polymorphic human enzyme with malate synthase and β-methylmalate synthase activity

    PubMed Central

    Strittmatter, Laura; Li, Yang; Nakatsuka, Nathan J.; Calvo, Sarah E.; Grabarek, Zenon; Mootha, Vamsi K.

    2014-01-01

    CLYBL is a human mitochondrial enzyme of unknown function that is found in multiple eukaryotic taxa and conserved to bacteria. The protein is expressed in the mitochondria of all mammalian organs, with highest expression in brown fat and kidney. Approximately 5% of all humans harbor a premature stop polymorphism in CLYBL that has been associated with reduced levels of circulating vitamin B12. Using comparative genomics, we now show that CLYBL is strongly co-expressed with and co-evolved specifically with other components of the mitochondrial B12 pathway. We confirm that the premature stop polymorphism in CLYBL leads to a loss of protein expression. To elucidate the molecular function of CLYBL, we used comparative operon analysis, structural modeling and enzyme kinetics. We report that CLYBL encodes a malate/β-methylmalate synthase, converting glyoxylate and acetyl-CoA to malate, or glyoxylate and propionyl-CoA to β-methylmalate. Malate synthases are best known for their established role in the glyoxylate shunt of plants and lower organisms and are traditionally described as not occurring in humans. The broader role of a malate/β-methylmalate synthase in human physiology and its mechanistic link to vitamin B12 metabolism remain unknown. PMID:24334609

  17. Enhanced gastric nitric oxide synthase activity in duodenal ulcer patients.

    PubMed Central

    Rachmilewitz, D; Karmeli, F; Eliakim, R; Stalnikowicz, R; Ackerman, Z; Amir, G; Stamler, J S

    1994-01-01

    Nitric oxide, the product of nitric oxide synthase in inflammatory cells, may have a role in tissue injury through its oxidative metabolism. Nitric oxide may have a role in the pathogenesis of duodenal ulcer and may be one of the mechanisms responsible for the association between gastric infection with Helicobacter pylori and peptic disease. In this study, calcium independent nitric oxide synthase activity was detected in human gastric mucosa suggesting expression of the inducible isoform. In 17 duodenal ulcer patients gastric antral and fundic nitric oxide synthase activity was found to be two and 1.5-fold respectively higher than its activity in the antrum and fundus of 14 normal subjects (p < 0.05). H pylori was detected in the antrum of 15 of 17 duodenal ulcer patients and only in 7 of 14 of the control subjects. Antral nitric oxide synthase activity in H pylori positive duodenal ulcer patients was twofold higher than in H pylori positive normal subjects (p < 0.05). In duodenal ulcer patients antral and fundic nitric oxide synthase activity resumed normal values after induction of ulcer healing with ranitidine. Eradication of H pylori did not further affect gastric nitric oxide synthase activity. These findings suggest that in duodenal ulcer patients stimulated gastric mucosal nitric oxide synthase activity, though independent of the H pylori state, may contribute to the pathogenesis of the disease. PMID:7525417

  18. Purification and Characterization of Chorismate Synthase from Euglena gracilis 1

    PubMed Central

    Schaller, Andreas; van Afferden, Manfred; Windhofer, Volker; Bülow, Sven; Abel, Gernot; Schmid, Jürg; Amrhein, Nikolaus

    1991-01-01

    Chorismate synthase was purified 1200-fold from Euglena gracilis. The molecular mass of the native enzyme is in the range of 110 to 138 kilodaltons as judged by gel filtration. The molecular mass of the subunit was determined to be 41.7 kilodaltons by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Purified chorismate synthase is associated with an NADPH-dependent flavin mononucleotide reductase that provides in vivo the reduced flavin necessary for catalytic activity. In vitro, flavin reduction can be mediated by either dithionite or light. The enzyme obtained from E. gracilis was compared with chorismate synthases purified from a higher plant (Corydalis sempervirens), a bacterium (Escherichia coli), and a fungus (Neurospora crassa). These four chorismate synthases were found to be very similar in terms of cofactor specificity, kinetic properties, isoelectric points, and pH optima. All four enzymes react with polyclonal antisera directed against chorismate synthases from C. sempervirens and E. coli. The closely associated flavin mononucleotide reductase that is present in chorismate synthase preparations from E. gracilis and N. crassa is the main difference between those synthases and the monofunctional enzymes from C. sempervirens and E. coli. ImagesFigure 2Figure 3 PMID:16668543

  19. Regulation of phosphatidylserine synthase from Saccharomyces cerevisiae by phospholipid precursors.

    PubMed Central

    Poole, M A; Homann, M J; Bae-Lee, M S; Carman, G M

    1986-01-01

    The addition of ethanolamine or choline to inositol-containing growth medium of Saccharomyces cerevisiae wild-type cells resulted in a reduction of membrane-associated phosphatidylserine synthase (CDPdiacylglycerol:L-serine O-phosphatidyltransferase, EC 2.7.8.8) activity in cell extracts. The reduction of activity did not occur when inositol was absent from the growth medium. Under the growth conditions where a reduction of enzyme activity occurred, there was a corresponding qualitative reduction of enzyme subunit as determined by immunoblotting with antiserum raised against purified phosphatidylserine synthase. Water-soluble phospholipid precursors did not effect purified phosphatidylserine synthase activity. Phosphatidylserine synthase (activity and enzyme subunit) was not regulated by the availability of water-soluble phospholipid precursors in S. cerevisiae VAL2C(YEp CHO1) and the opi1 mutant. VAL2C(YEp CHO1) is a plasmid-bearing strain that over produces phosphatidylserine synthase activity, and the opi1 mutant is an inositol biosynthesis regulatory mutant. The results of this study suggest that the regulation of phosphatidylserine synthase by the availability of phospholipid precursors occurs at the level of enzyme formation and not at the enzyme activity level. Furthermore, the regulation of phosphatidylserine synthase is coupled to inositol synthesis. Images PMID:3023284

  20. Subcellular localization of the homocitrate synthase in Penicillium chrysogenum.

    PubMed

    Bañuelos, O; Casqueiro, J; Steidl, S; Gutiérrez, S; Brakhage, A; Martín, J F

    2002-01-01

    There are conflicting reports regarding the cellular localization in Saccharomyces cerevisiae and filamentous fungi of homocitrate synthase, the first enzyme in the lysine biosynthetic pathway. The homocitrate synthase (HS) gene (lys1) of Penicillium chrysogenum was disrupted in three transformants (HS(-)) of the Wis 54-1255 pyrG strain. The three mutants named HS1(-), HS2(-) and HS3(-) all lacked homocitrate synthase activity and showed lysine auxotrophy, indicating that there is a single gene for homocitrate synthase in P. chrysogenum. The lys1 ORF was fused in frame to the gene for the green fluorescent protein (GFP) gene of the jellyfish Aequorea victoria. Homocitrate synthase-deficient mutants transformed with a plasmid containing the lys1-GFP fusion recovered prototrophy and showed similar levels of homocitrate synthase activity to the parental strain Wis 54-1255, indicating that the hybrid protein retains the biological function of wild-type homocitrate synthase. Immunoblotting analysis revealed that the HS-GFP fusion protein is maintained intact and does not release the GFP moiety. Fluorescence microscopy analysis of the transformants showed that homocitrate synthase was mainly located in the cytoplasm in P. chrysogenum; in S. cerevisiae the enzyme is targeted to the nucleus. The control nuclear protein StuA was properly targeted to the nucleus when the StuA (targeting domain)-GFP hybrid protein was expressed in P. chrysogenum. The difference in localization of homocitrate synthase between P. chrysogenum and S. cerevisiae suggests that this protein may play a regulatory function, in addition to its catalytic function, in S. cerevisiae but not in P. chrysogenum.

  1. Peroxisomal and mitochondrial citrate synthase in CAM plants.

    PubMed

    Zafra, M F; Segovia, J L; Alejandre, M J; García-Peregrín, E

    1981-12-01

    Citrate synthase wa studied for the first time in peroxisomes and mitochondria of crassulacean acid metabolism plants. Cellular organelles were isolated from Agave americana leaves by sucrose density gradient centrifugation and characterized by the use of catalase and cytochrome oxidase as marker enzymes, respectively. 48,000 X g centrifugation caused the breakdown of the cellular organelles. The presence of a glyoxylate cycle enzyme (citrate synthase) and a glycollate pathway enzyme (catalase) in the same organelles, besides the absence of another glyoxalate cycle enzyme (malate synthase) is reported for the first time, suggesting that peroxisomal and glyoxysomal proteins are synthesized at the same time and housed in he same organelle.

  2. Geranylfarnesyl diphosphate synthase from Methanosarcina mazei: Different role, different evolution

    SciTech Connect

    Ogawa, Takuya; Yoshimura, Tohru; Hemmi, Hisashi

    2010-02-26

    The gene of (all-E) geranylfarnesyl diphosphate synthase that is responsible for the biosynthesis of methanophenazine, an electron carrier utilized for methanogenesis, was cloned from a methanogenic archaeon Methanosarcina mazei Goe1. The properties of the recombinant enzyme and the results of phylogenetic analysis suggest that the enzyme is closely related to (all-E) prenyl diphosphate synthases that are responsible for the biosynthesis of respiratory quinones, rather than to the enzymes involved in the biosynthesis of archaeal membrane lipids, including (all-E) geranylfarnesyl diphosphate synthase from a thermophilic archaeon.

  3. O-Nucleoside, S-Nucleoside, and N-Nucleoside Probes of Lumazine Synthase and Riboflavin Synthase

    PubMed Central

    Talukdar, Arindam; Zhao, Yujie; Lv, Wei; Bacher, Adelbert; Illarionov, Boris; Fischer, Markus; Cushman, Mark

    2012-01-01

    Lumazine synthase catalyzes the penultimate step in the biosynthesis of riboflavin, while riboflavin synthase catalyzes the last step. O-Nucleoside, S-nucleoside and N-nucleoside analogues of hypothetical lumazine biosynthetic intermediates have been synthesized in order to obtain structure and mechanism probes of these two enzymes, as well as inhibitors of potential value as antibiotics. Methods were devised for the selective cleavage of benzyl protecting groups in the presence of other easily reduced functionality by controlled hydrogenolysis over Lindlar catalyst. The deprotection reaction was performed in the presence of other reactive functionality including nitro groups, alkenes, and halogens. The target compounds were tested as inhibitors of lumazine synthase and riboflavin synthase obtained from a variety of microorganisms. In general, the S-nucleosides and N-nucleosides were more potent than the corresponding O-nucleosides as lumazine synthase and riboflavin synthase inhibitors, while the C-nucleosides were the least potent. A series of molecular dynamics simulations followed by free energy calculations using the Poisson-Boltzmann/surface area (MM-PBSA) method were carried out in order to rationalize the results of ligand binding to lumazine synthase, and the results provide insight into the dynamics of ligand binding as well as the molecular forces stabilizing the intermediates in the enzyme-catalyzed reaction. PMID:22780198

  4. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth.

    PubMed

    Ahmad, Zulfiqar; Laughlin, Thomas F; Kady, Ismail O

    2015-01-01

    We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control cells demonstrates that ATP synthase is a molecular target for thymoquinone. This also links the beneficial dietary based antimicrobial and anticancer effects of thymoquinone to its inhibitory action on ATP synthase.

  5. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth

    PubMed Central

    Ahmad, Zulfiqar; Laughlin, Thomas F.; Kady, Ismail O.

    2015-01-01

    We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control cells demonstrates that ATP synthase is a molecular target for thymoquinone. This also links the beneficial dietary based antimicrobial and anticancer effects of thymoquinone to its inhibitory action on ATP synthase. PMID:25996607

  6. Rare structural variants of human and murine uroporphyrinogen I synthase

    SciTech Connect

    Meisler, M.H.; Carter, M.L.C.

    1980-05-01

    An isoelectric focusing method for detection of structural variants of the enzyme uroporphyrinogen I synthase (porphobilinogen ammonia-lyase (polymerizing), EC 4.3.1.8) in mammalian tissues has been developed. Mouse and human erythrocytes contain one or two major isozymes of uroporphyrinogen I synthase, respectively. Other tissues contain a set of more acidic isozymes that are encoded by the same structural gene as the erythrocyte isozymes. Mouse populations studied with this method were monomorphic for uroporphyrinogen I synthase, with the exception of one feral mouse population. The pedigree of a human family with a rare structural variant is consistent with autosomal linkage of the structural gene. This system provides a convenient isozyme marker for genetic studies and will facilitate determination of the chromosomal location of the uroporphyrinogen I synthase locus.

  7. Biosynthesis of riboflavin: an unusual riboflavin synthase of Methanobacterium thermoautotrophicum.

    PubMed Central

    Eberhardt, S; Korn, S; Lottspeich, F; Bacher, A

    1997-01-01

    Riboflavin synthase was purified by a factor of about 1,500 from cell extract of Methanobacterium thermoautotrophicum. The enzyme had a specific activity of about 2,700 nmol mg(-1) h(-1) at 65 degrees C, which is relatively low compared to those of riboflavin synthases of eubacteria and yeast. Amino acid sequences obtained after proteolytic cleavage had no similarity with known riboflavin synthases. The gene coding for riboflavin synthase (designated ribC) was subsequently cloned by marker rescue with a ribC mutant of Escherichia coli. The ribC gene of M. thermoautotrophicum specifies a protein of 153 amino acid residues. The predicted amino acid sequence agrees with the information gleaned from Edman degradation of the isolated protein and shows 67% identity with the sequence predicted for the unannotated reading frame MJ1184 of Methanococcus jannaschii. The ribC gene is adjacent to a cluster of four genes with similarity to the genes cbiMNQO of Salmonella typhimurium, which form part of the cob operon (this operon contains most of the genes involved in the biosynthesis of vitamin B12). The amino acid sequence predicted by the ribC gene of M. thermoautotrophicum shows no similarity whatsoever to the sequences of riboflavin synthases of eubacteria and yeast. Most notably, the M. thermoautotrophicum protein does not show the internal sequence homology characteristic of eubacterial and yeast riboflavin synthases. The protein of M. thermoautotrophicum can be expressed efficiently in a recombinant E. coli strain. The specific activity of the purified, recombinant protein is 1,900 nmol mg(-1) h(-1) at 65 degrees C. In contrast to riboflavin synthases from eubacteria and fungi, the methanobacterial enzyme has an absolute requirement for magnesium ions. The 5' phosphate of 6,7-dimethyl-8-ribityllumazine does not act as a substrate. The findings suggest that riboflavin synthase has evolved independently in eubacteria and methanobacteria. PMID:9139911

  8. Effects of supplementation on food intake, body weight and hepatic metabolites in the citrin/mitochondrial glycerol-3-phosphate dehydrogenase double-knockout mouse model of human citrin deficiency.

    PubMed

    Saheki, Takeyori; Inoue, Kanako; Ono, Hiromi; Katsura, Natsumi; Yokogawa, Mana; Yoshidumi, Yukari; Furuie, Sumie; Kuroda, Eishi; Ushikai, Miharu; Asakawa, Akihiro; Inui, Akio; Eto, Kazuhiro; Kadowaki, Takashi; Sinasac, David S; Yamamura, Ken-Ichi; Kobayashi, Keiko

    2012-11-01

    The C57BL/6:Slc23a13(-/-);Gpd2(-/-) double-knockout (a.k.a., citrin/mitochondrial glycerol 3-phosphate dehydrogenase double knockout or Ctrn/mGPD-KO) mouse displays phenotypic attributes of both neonatal intrahepatic cholestasis (NICCD) and adult-onset type II citrullinemia (CTLN2), making it a suitable model of human citrin deficiency. In the present study, we show that when mature Ctrn/mGPD-KO mice are switched from a standard chow diet (CE-2) to a purified maintenance diet (AIN-93M), this resulted in a significant loss of body weight as a result of reduced food intake compared to littermate mGPD-KO mice. However, supplementation of the purified maintenance diet with additional protein (from 14% to 22%; and concomitant reduction or corn starch), or with specific supplementation with alanine, sodium glutamate, sodium pyruvate or medium-chain triglycerides (MCT), led to increased food intake and body weight gain near or back to that on chow diet. No such effect was observed when supplementing the diet with other sources of fat that contain long-chain fatty acids. Furthermore, when these supplements were added to a sucrose solution administered enterally to the mice, which has been shown previously to lead to elevated blood ammonia as well as altered hepatic metabolite levels in Ctrn/mGPP-KO mice, this led to metabolic correction. The elevated hepatic glycerol 3-phosphate and citrulline levels after sucrose administration were suppressed by the administration of sodium pyruvate, alanine, sodium glutamate and MCT, although the effect of MCT was relatively small. Low hepatic citrate and increased lysine levels were only found to be corrected by sodium pyruvate, while alanine and sodium glutamate both corrected hepatic glutamate and aspartate levels. Overall, these results suggest that dietary factors including increased protein content, supplementation of specific amino acids like alanine and sodium glutamate, as well as sodium pyruvate and MCT all show beneficial

  9. Alendronate is a specific, nanomolar inhibitor of farnesyl diphosphate synthase.

    PubMed

    Bergstrom, J D; Bostedor, R G; Masarachia, P J; Reszka, A A; Rodan, G

    2000-01-01

    Alendronate, a nitrogen-containing bisphosphonate, is a potent inhibitor of bone resorption used for the treatment and prevention of osteoporosis. Recent findings suggest that alendronate and other N-containing bisphosphonates inhibit the isoprenoid biosynthesis pathway and interfere with protein prenylation, as a result of reduced geranylgeranyl diphosphate levels. This study identified farnesyl disphosphate synthase as the mevalonate pathway enzyme inhibited by bisphosphonates. HPLC analysis of products from a liver cytosolic extract narrowed the potential targets for alendronate inhibition (IC(50) = 1700 nM) to isopentenyl diphosphate isomerase and farnesyl diphosphate synthase. Recombinant human farnesyl diphosphate synthase was inhibited by alendronate with an IC(50) of 460 nM (following 15 min preincubation). Alendronate did not inhibit isopentenyl diphosphate isomerase or GGPP synthase, partially purified from liver cytosol. Recombinant farnesyl diphosphate synthase was also inhibited by pamidronate (IC(50) = 500 nM) and risedronate (IC(50) = 3.9 nM), negligibly by etidronate (IC50 = 80 microM), and not at all by clodronate. In osteoclasts, alendronate inhibited the incorporation of [(3)H]mevalonolactone into proteins of 18-25 kDa and into nonsaponifiable lipids, including sterols. These findings (i) identify farnesyl diphosphate synthase as the selective target of alendronate in the mevalonate pathway, (ii) show that this enzyme is inhibited by other N-containing bisphosphonates, such as risendronate, but not by clodronate, supporting a different mechanism of action for different bisphosphonates, and (iii) document in purified osteoclasts alendronate inhibition of prenylation and sterol biosynthesis.

  10. Human Isoprenoid Synthase Enzymes as Therapeutic Targets

    NASA Astrophysics Data System (ADS)

    Park, Jaeok; Matralis, Alexios; Berghuis, Albert; Tsantrizos, Youla

    2014-07-01

    The complex biochemical network known as the mevalonate pathway is responsible for the biosynthesis of all isoprenoids in the human body, which consists of a vast array of metabolites that are vital for proper cellular functions. Two key isoprenoids, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are responsible for the post-translational prenylation of small GTP-binding proteins, and serve as the biosynthetic precursors to numerous other biomolecules. The down-stream metabolite of FPP and GGPP is squalene, the precursor to steroids, bile acids, lipoproteins and vitamin D. In the past, interest in prenyl synthase inhibitors focused mainly on the role of the FPP in lytic bone diseases. More recently, pre-clinical and clinical studies have strongly implicated high levels of protein prenylation in a plethora of human diseases, including non-skeletal cancers, the progression of neurodegenerative diseases and cardiovascular diseases. In this review, we focus mainly on the potential therapeutic value of down-regulating the biosynthesis of FPP, GGPP and squalene. We summarize the most recent drug discovery efforts and the structural data available that support the current on-going studies.

  11. Human isoprenoid synthase enzymes as therapeutic targets

    PubMed Central

    Park, Jaeok; Matralis, Alexios N.; Berghuis, Albert M.; Tsantrizos, Youla S.

    2014-01-01

    In the human body, the complex biochemical network known as the mevalonate pathway is responsible for the biosynthesis of all isoprenoids, which consists of a vast array of metabolites that are vital for proper cellular functions. Two key isoprenoids, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are responsible for the post-translational prenylation of small GTP-binding proteins, and serve as the biosynthetic precursors to numerous other biomolecules. The down-stream metabolite of FPP and GGPP is squalene, the precursor to steroids, bile acids, lipoproteins, and vitamin D. In the past, interest in prenyl synthase inhibitors focused mainly on the role of the FPP in lytic bone diseases. More recently pre-clinical and clinical studies have strongly implicated high levels of protein prenylation in a plethora of human diseases, including non-skeletal cancers, the progression of neurodegenerative diseases and cardiovascular diseases. In this review, we focus mainly on the potential therapeutic value of down-regulating the biosynthesis of FPP, GGPP, and squalene. We summarize the most recent drug discovery efforts and the structural data available that support the current on-going studies. PMID:25101260

  12. Concerted versus Stepwise Mechanism in Thymidylate Synthase

    PubMed Central

    2015-01-01

    Thymidylate synthase (TSase) catalyzes the intracellular de novo formation of thymidylate (a DNA building block) in most living organisms, making it a common target for chemotherapeutic and antibiotic drugs. Two mechanisms have been proposed for the rate-limiting hydride transfer step in TSase catalysis: a stepwise mechanism in which the hydride transfer precedes the cleavage of the covalent bond between the enzymatic cysteine and the product and a mechanism where both happen concertedly. Striking similarities between the enzyme-bound enolate intermediates formed in the initial and final step of the reaction supported the first mechanism, while QM/MM calculations favored the concerted mechanism. Here, we experimentally test these two possibilities using secondary kinetic isotope effect (KIE), mutagenesis study, and primary KIEs. The findings support the concerted mechanism and demonstrate the critical role of an active site arginine in substrate binding, activation of enzymatic nucleophile, and the hydride transfer studied here. The elucidation of this reduction/substitution sheds light on the critical catalytic step in TSase and may aid future drug or biomimetic catalyst design. PMID:24949852

  13. Nitric oxide synthase in the pineal gland.

    PubMed

    López-Figueroa, M O; Møller, M

    1996-10-01

    The recent discovery of nitric oxide (NO) as a biological messenger molecule with unique characteristics has opened a new field in pineal research. This free radical gas is synthesized by the enzyme nitric oxide synthase (NOS) from L-arginine. The activation of adrenoreceptors in the membrane of the pinealocytes mediates the increase in NO through a mechanism that involves G proteins. In the pinealocyte, NO stimulates guanylyl cyclase resulting in an increased intracellular content of cGMP. The role of cGMP in pineal metabolism, however, is still enigmatic. Using enzyme histochemistry and immunohistochemistry, the presence of NOS has been confirmed in the pineal gland of some species. In the rat and especially in the sheep, NOS is located in nerve fibres innervating the gland. These nerve fibres also contain the neuropeptides vasoactive intestinal peptide (VIP) and peptide histidine isoleucine (PHI), and are probably of parasympathetic origin. In cell cultures and tissue sections NOS immunoreactivity has been shown to be present in pinealocytes of the rat and bovine but not in the sheep. Finally, NOS is also present in the endothelial cells of the blood vessels of the pineal gland. Accordingly, in the mammalian pineal gland, NO is synthesized in both presynaptic nerve fibers and pinealocytes, as well as in blood vessels. However, the anatomical location of NO synthesis varies considerably among species. NO released in the pineal gland, might influence both the pineal metabolism and the blood flow of the gland.

  14. Electric Field Driven Torque in ATP Synthase

    PubMed Central

    Miller, John H.; Rajapakshe, Kimal I.; Infante, Hans L.; Claycomb, James R.

    2013-01-01

    FO-ATP synthase (FO) is a rotary motor that converts potential energy from ions, usually protons, moving from high- to low-potential sides of a membrane into torque and rotary motion. Here we propose a mechanism whereby electric fields emanating from the proton entry and exit channels act on asymmetric charge distributions in the c-ring, due to protonated and deprotonated sites, and drive it to rotate. The model predicts a scaling between time-averaged torque and proton motive force, which can be hindered by mutations that adversely affect the channels. The torque created by the c-ring of FO drives the γ-subunit to rotate within the ATP-producing complex (F1) overcoming, with the aid of thermal fluctuations, an opposing torque that rises and falls with angular position. Using the analogy with thermal Brownian motion of a particle in a tilted washboard potential, we compute ATP production rates vs. proton motive force. The latter shows a minimum, needed to drive ATP production, which scales inversely with the number of proton binding sites on the c-ring. PMID:24040370

  15. Nitric Oxide Synthases in Heart Failure

    PubMed Central

    Carnicer, Ricardo; Crabtree, Mark J.; Sivakumaran, Vidhya

    2013-01-01

    Abstract Significance: The regulation of myocardial function by constitutive nitric oxide synthases (NOS) is important for the maintenance of myocardial Ca2+ homeostasis, relaxation and distensibility, and protection from arrhythmia and abnormal stress stimuli. However, sustained insults such as diabetes, hypertension, hemodynamic overload, and atrial fibrillation lead to dysfunctional NOS activity with superoxide produced instead of NO and worse pathophysiology. Recent Advances: Major strides in understanding the role of normal and abnormal constitutive NOS in the heart have revealed molecular targets by which NO modulates myocyte function and morphology, the role and nature of post-translational modifications of NOS, and factors controlling nitroso-redox balance. Localized and differential signaling from NOS1 (neuronal) versus NOS3 (endothelial) isoforms are being identified, as are methods to restore NOS function in heart disease. Critical Issues: Abnormal NOS signaling plays a key role in many cardiac disorders, while targeted modulation may potentially reverse this pathogenic source of oxidative stress. Future Directions: Improvements in the clinical translation of potent modulators of NOS function/dysfunction may ultimately provide a powerful new treatment for many hearts diseases that are fueled by nitroso-redox imbalance. Antioxid. Redox Signal. 18, 1078–1099. PMID:22871241

  16. Inducible nitric oxide synthase in the myocard.

    PubMed

    Buchwalow, I B; Schulze, W; Karczewski, P; Kostic, M M; Wallukat, G; Morwinski, R; Krause, E G; Müller, J; Paul, M; Slezak, J; Luft, F C; Haller, H

    2001-01-01

    Recognition of significance of nitric oxide synthases (NOS) in cardiovascular regulations has led to intensive research and development of therapies focused on NOS as potential therapeutic targets. However, the NOS isoform profile of cardiac tissue and subcellular localization of NOS isoforms remain a matter of debate. The aim of this study was to investigate the localization of an inducible NOS isoform (NOS2) in cardiomyocytes. Employing a novel immunocytochemical technique of a catalyzed reporter deposition system with tyramide and electron microscopical immunocytochemistry complemented with Western blotting and RT-PCR, we detected NOS2 both in rat neonatal and adult cultured cardiomyocytes and in the normal myocard of adult rats as well as in the human myocard of patients with dilative cardiomyopathy. NOS2 was targeted predominantly to a particulate component of the cardiomyocyte--along contractile fibers, in the plasma membrane including T-tubules, as well as in the nuclear envelope, mitochondria and Golgi complex. Our results point to an involvement of NOS2 in maintaining cardiac homeostasis and contradict to the notion that NOS2 is expressed in cardiac tissue only in response to various physiological and pathogenic factors. NOS2 targeting to mitochondria and contractile fibers suggests a relationship of NO with contractile function and energy production in the cardiac muscle.

  17. Undecaprenyl diphosphate synthase inhibitors: antibacterial drug leads.

    PubMed

    Sinko, William; Wang, Yang; Zhu, Wei; Zhang, Yonghui; Feixas, Ferran; Cox, Courtney L; Mitchell, Douglas A; Oldfield, Eric; McCammon, J Andrew

    2014-07-10

    There is a significant need for new antibiotics due to the rise in drug resistance. Drugs such as methicillin and vancomycin target bacterial cell wall biosynthesis, but methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE) have now arisen and are of major concern. Inhibitors acting on new targets in cell wall biosynthesis are thus of particular interest since they might also restore sensitivity to existing drugs, and the cis-prenyl transferase undecaprenyl diphosphate synthase (UPPS), essential for lipid I, lipid II, and thus, peptidoglycan biosynthesis, is one such target. We used 12 UPPS crystal structures to validate virtual screening models and then assayed 100 virtual hits (from 450,000 compounds) against UPPS from S. aureus and Escherichia coli. The most promising inhibitors (IC50 ∼2 μM, Ki ∼300 nM) had activity against MRSA, Listeria monocytogenes, Bacillus anthracis, and a vancomycin-resistant Enterococcus sp. with MIC or IC50 values in the 0.25-4 μg/mL range. Moreover, one compound (1), a rhodanine with close structural similarity to the commercial diabetes drug epalrestat, exhibited good activity as well as a fractional inhibitory concentration index (FICI) of 0.1 with methicillin against the community-acquired MRSA USA300 strain, indicating strong synergism.

  18. Structures of human constitutive nitric oxide synthases

    PubMed Central

    Li, Huiying; Jamal, Joumana; Plaza, Carla; Pineda, Stephanie Hai; Chreifi, Georges; Jing, Qing; Cinelli, Maris A.; Silverman, Richard B.; Poulos, Thomas L.

    2014-01-01

    Mammals produce three isoforms of nitric oxide synthase (NOS): neuronal NOS (nNOS), inducible NOS (iNOS) and endothelial NOS (eNOS). The overproduction of NO by nNOS is associated with a number of neurodegenerative disorders; therefore, a desirable therapeutic goal is the design of drugs that target nNOS but not the other isoforms. Crystallography, coupled with computational approaches and medicinal chemistry, has played a critical role in developing highly selective nNOS inhibitors that exhibit exceptional neuroprotective properties. For historic reasons, crystallography has focused on rat nNOS and bovine eNOS because these were available in high quality; thus, their structures have been used in structure–activity–relationship studies. Although these constitutive NOSs share more than 90% sequence identity across mammalian species for each NOS isoform, inhibitor-binding studies revealed that subtle differences near the heme active site in the same NOS isoform across species still impact enzyme–inhibitor interactions. Therefore, structures of the human constitutive NOSs are indispensible. Here, the first structure of human neuronal NOS at 2.03 Å resolution is reported and a different crystal form of human endothelial NOS is reported at 1.73 Å resolution. PMID:25286850

  19. Structure of Leishmania major cysteine synthase

    PubMed Central

    Fyfe, Paul K.; Westrop, Gareth D.; Ramos, Tania; Müller, Sylke; Coombs, Graham H.; Hunter, William N.

    2012-01-01

    Cysteine biosynthesis is a potential target for drug development against parasitic Leishmania species; these protozoa are responsible for a range of serious diseases. To improve understanding of this aspect of Leishmania biology, a crystallographic and biochemical study of L. major cysteine synthase has been undertaken, seeking to understand its structure, enzyme activity and modes of inhibition. Active enzyme was purified, assayed and crystallized in an orthorhombic form with a dimer in the asymmetric unit. Diffraction data extending to 1.8 Å resolution were measured and the structure was solved by molecular replacement. A fragment of γ-poly-d-glutamic acid, a constituent of the crystallization mixture, was bound in the enzyme active site. Although a d-­glutamate tetrapeptide had insignificant inhibitory activity, the enzyme was competitively inhibited (K i = 4 µM) by DYVI, a peptide based on the C-­terminus of the partner serine acetyltransferase with which the enzyme forms a complex. The structure surprisingly revealed that the cofactor pyridoxal phosphate had been lost during crystallization. PMID:22750854

  20. Anthranilate synthase subunit organization in Chromobacterium violaceum.

    PubMed

    Carminatti, C A; Oliveira, I L; Recouvreux, D O S; Antônio, R V; Porto, L M

    2008-09-16

    Tryptophan is an aromatic amino acid used for protein synthesis and cellular growth. Chromobacterium violaceum ATCC 12472 uses two tryptophan molecules to synthesize violacein, a secondary metabolite of pharmacological interest. The genome analysis of this bacterium revealed that the genes trpA-F and pabA-B encode the enzymes of the tryptophan pathway in which the first reaction is the conversion of chorismate to anthranilate by anthranilate synthase (AS), an enzyme complex. In the present study, the organization and structure of AS protein subunits from C. violaceum were analyzed using bioinformatics tools available on the Web. We showed by calculating molecular masses that AS in C. violaceum is composed of alpha (TrpE) and beta (PabA) subunits. This is in agreement with values determined experimentally. Catalytic and regulatory sites of the AS subunits were identified. The TrpE and PabA subunits contribute to the catalytic site while the TrpE subunit is involved in the allosteric site. Protein models for the TrpE and PabA subunits were built by restraint-based homology modeling using AS enzyme, chains A and B, from Salmonella typhimurium (PDB ID 1I1Q).

  1. Effect of chronologic age on induction of cystathionine synthase, uroporphyrinogen I synthase, and glucose-6-phosphate dehydrogenase activities in lymphocytes.

    PubMed Central

    Gartler, S M; Hornung, S K; Motulsky, A G

    1981-01-01

    The activities of cystathionine synthase [L-serine hydro-lyase (adding homocysteine), EC 4.2.1.22], uroporphyrinogen I synthase [porphobilinogen ammonia-lyase (polymerizing), EC 4.3.1.8], and glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate:NADP+ 1-oxidoreductase, EC 1.1.1.49) have been measured in phytohemagglutinin-stimulated lymphocytes of young and old human subjects. A significant decrease in activity with age was observed for cystathionine synthase and uroporphyrinogen I synthase but not for glucose-6-phosphate dehydrogenase. These changes could not be related to declining phytohemagglutinin response with aging. Age-related decreases in activity of some enzymes may be relevant for an understanding of the biology of aging. False assignment of heterozygosity, and even homozygosity, for certain genetic disorders, such as homocystinuria, may result when low enzyme levels are detected in the lymphocytes of older people. PMID:6940198

  2. Functional analysis of sucrose phosphate synthase (SPS) and sucrose synthase (SS) in sugarcane (Saccharum) cultivars.

    PubMed

    Verma, A K; Upadhyay, S K; Verma, P C; Solomon, S; Singh, S B

    2011-03-01

    Sucrose phosphate synthase (SPS; EC 2.4.1.14) and sucrose synthase (SS; EC 2.4.1.13) are key enzymes in the synthesis and breakdown of sucrose in sugarcane. The activities of internodal SPS and SS, as well as transcript expression were determined using semi-quantitative RT-PCR at different developmental stages of high and low sucrose accumulating sugarcane cultivars. SPS activity and transcript expression was higher in mature internodes compared with immature internodes in all the studied cultivars. However, high sugar cultivars showed increased transcript expression and enzyme activity of SPS compared to low sugar cultivars at all developmental stages. SS activity was higher in immature internodes than in mature internodes in all cultivars; SS transcript expression showed a similar pattern. Our studies demonstrate that SPS activity was positively correlated with sucrose and negatively correlated with hexose sugars. However, SS activity was negatively correlated with sucrose and positively correlated with hexose sugars. The present study opens the possibility for improvement of sugarcane cultivars by increasing expression of the respective enzymes using transgene technology.

  3. Cloning and characterization of squalene synthase and cycloartenol synthase from Siraitia grosvenorii.

    PubMed

    Zhao, Huan; Tang, Qi; Mo, Changming; Bai, Longhua; Tu, Dongping; Ma, Xiaojun

    2017-03-01

    Mogrosides and steroid saponins are tetracyclic triterpenoids found in Siraitia grosvenorii. Squalene synthase (SQS) and cycloartenol synthase (CAS) are key enzymes in triterpenoid and steroid biosynthesis. In this study, full-length cDNAs of SgSQS and SgCAS were cloned by a rapid amplification of cDNA-ends with polymerase chain reaction (RACE-PCR) approach. The SgSQS cDNA has a 1254 bp open reading frame (ORF) encoding 417 amino acids, and the SgCAS cDNA contains a 2298 bp ORF encoding 765 amino acids. Bioinformatic analysis showed that the deduced SgSQS protein has two transmembrane regions in the C-terminal. Both SgSQS and SgCAS have significantly higher levels in fruits than in other tissues, suggesting that steroids and mogrosides are competitors for the same precursors in fruits. Combined in silico prediction and subcellular localization, experiments in tobacco indicated that SgSQS was probably in the cytoplasm or on the cytoskeleton, and SgCAS was likely located in the nucleus or cytosol. These results will provide a foundation for further study of SgSQS and SgCAS gene functions in S. grosvenorii, and may facilitate improvements in mogroside content in fruit by regulating gene expression.

  4. Binding modes of zaragozic acid A to human squalene synthase and staphylococcal dehydrosqualene synthase.

    PubMed

    Liu, Chia-I; Jeng, Wen-Yih; Chang, Wei-Jung; Ko, Tzu-Ping; Wang, Andrew H-J

    2012-05-25

    Zaragozic acids (ZAs) belong to a family of fungal metabolites with nanomolar inhibitory activity toward squalene synthase (SQS). The enzyme catalyzes the committed step of sterol synthesis and has attracted attention as a potential target for antilipogenic and antiinfective therapies. Here, we have determined the structure of ZA-A complexed with human SQS. ZA-A binding induces a local conformational change in the substrate binding site, and its C-6 acyl group also extends over to the cofactor binding cavity. In addition, ZA-A effectively inhibits a homologous bacterial enzyme, dehydrosqualene synthase (CrtM), which synthesizes the precursor of staphyloxanthin in Staphylococcus aureus to cope with oxidative stress. Size reduction at Tyr(248) in CrtM further increases the ZA-A binding affinity, and it reveals a similar overall inhibitor binding mode to that of human SQS/ZA-A except for the C-6 acyl group. These structures pave the way for further improving selectivity and development of a new generation of anticholesterolemic and antimicrobial inhibitors.

  5. Identification of a Dolabellane Type Diterpene Synthase and other Root-Expressed Diterpene Synthases in Arabidopsis

    PubMed Central

    Wang, Qiang; Jia, Meirong; Huh, Jung-Hyun; Muchlinski, Andrew; Peters, Reuben J.; Tholl, Dorothea

    2016-01-01

    Arabidopsis thaliana maintains a complex metabolism for the production of secondary or specialized metabolites. Such metabolites include volatile and semivolatile terpenes, which have been associated with direct and indirect defensive activities in flowers and leaves. In comparison, the structural diversity and function of terpenes in Arabidopsis roots has remained largely unexplored despite a substantial number of root-expressed genes in the Arabidopsis terpene synthase (TPS) gene family. We show that five root-expressed TPSs of an expanded subfamily-a type clade in the Arabidopsis TPS family function as class I diterpene synthases that predominantly convert geranylgeranyl diphosphate (GGPP) to different semi-volatile diterpene products, which are in part detectable at low levels in the ecotypes Columbia (Col) and Cape Verde Island (Cvi). The enzyme TPS20 produces a macrocyclic dolabellane diterpene alcohol and a dolabellane-related diterpene olefin named dolathaliatriene with a so far unknown C6-C11 bicyclic scaffold besides several minor olefin products. The TPS20 compounds occur in all tissues of Cvi but are absent in the Col ecotype because of deletion and substitution mutations in the Col TPS20 sequence. The primary TPS20 diterpene products retard the growth of the root rot pathogen Pythium irregulare but only at concentrations exceeding those in planta. Together, our results demonstrate that divergence and pseudogenization in the Arabidopsis TPS gene family allow for structural plasticity in diterpene profiles of above- and belowground tissues. PMID:27933080

  6. The rice ent-KAURENE SYNTHASE LIKE 2 encodes a functional ent-beyerene synthase.

    PubMed

    Tezuka, Daisuke; Ito, Akira; Mitsuhashi, Wataru; Toyomasu, Tomonobu; Imai, Ryozo

    2015-05-08

    The rice genome contains a family of kaurene synthase-like (OsKSL) genes that are responsible for the biosynthesis of various diterpenoids, including gibberellins and phytoalexins. While many OsKSL genes have been functionally characterized, the functionality of OsKSL2 is still unclear and it has been proposed to be a pseudogene. Here, we found that OsKSL2 is drastically induced in roots by methyl jasmonate treatment and we successfully isolated a full-length cDNA for OsKSL2. Sequence analysis of the OsKSL2 cDNA revealed that the open reading frame of OsKSL2 is mispredicted in the two major rice genome databases, IRGSP-RAP and MSU-RGAP. In vitro conversion assay indicated that recombinant OsKSL2 catalyzes the cyclization of ent-CDP into ent-beyerene as a major and ent-kaurene as a minor product. ent-Beyerene is an antimicrobial compound and OsKSL2 is induced by methyl jasmonate; these data suggest that OsKSL2 is a functional ent-beyerene synthase that is involved in defense mechanisms in rice roots.

  7. The proline-rich region of glyceraldehyde-3-phosphate dehydrogenase from human sperm may bind SH3 domains, as revealed by a bioinformatic study of low-complexity protein segments.

    PubMed

    Tatjewski, Marcin; Gruca, Aleksandra; Plewczynski, Dariusz; Grynberg, Marcin

    2016-02-01

    Glyceraldehyde-3-phosphate dehydrogenase from human sperm (GAPDHS) provides energy to the sperm flagellum, and is therefore essential for sperm motility and male fertility. This isoform is distinct from somatic GAPDH, not only in being specific for the testis but also because it contains an additional amino-terminal region that encodes a proline-rich motif that is known to bind to the fibrous sheath of the sperm tail. By conducting a large-scale sequence comparison on low-complexity sequences available in databases, we identified a strong similarity between the proline-rich motif from GAPDHS and the proline-rich sequence from Ena/vasodilator-stimulated phosphoprotein-like (EVL), which is known to bind an SH3 domain of dynamin-binding protein (DNMBP). The putative binding partners of the proline-rich GAPDHS motif include SH3 domain-binding protein 4 (SH3BP4) and the IL2-inducible T-cell kinase/tyrosine-protein kinase ITK/TSK (ITK). This result implies that GAPDHS participates in specific signal-transduction pathways. Gene Ontology category-enrichment analysis showed several functional classes shared by both proteins, of which the most interesting ones are related to signal transduction and regulation of hydrolysis. Furthermore, a mutation of one EVL proline to leucine is known to cause colorectal cancer, suggesting that mutation of homologous amino acid residue in the GAPDHS motif may be functionally deleterious.

  8. Modulation of ceramide synthase activity via dimerization.

    PubMed

    Laviad, Elad L; Kelly, Samuel; Merrill, Alfred H; Futerman, Anthony H

    2012-06-15

    Ceramide, the backbone of all sphingolipids, is synthesized by a family of ceramide synthases (CerS) that each use acyl-CoAs of defined chain length for N-acylation of the sphingoid long chain base. CerS mRNA expression and enzymatic activity do not always correlate with the sphingolipid acyl chain composition of a particular tissue, suggesting post-translational mechanism(s) of regulation of CerS activity. We now demonstrate that CerS activity can be modulated by dimer formation. Under suitable conditions, high M(r) CerS complexes can be detected by Western blotting, and various CerS co-immunoprecipitate. CerS5 activity is inhibited in a dominant-negative fashion by co-expression with catalytically inactive CerS5, and CerS2 activity is enhanced by co-expression with a catalytically active form of CerS5 or CerS6. In a constitutive heterodimer comprising CerS5 and CerS2, the activity of CerS2 depends on the catalytic activity of CerS5. Finally, CerS dimers are formed upon rapid stimulation of ceramide synthesis by curcumin. Together, these data demonstrate that ceramide synthesis can be regulated by the formation of CerS dimers and suggest a novel way to generate the acyl chain composition of ceramide (and downstream sphingolipids), which may depend on the interaction of CerS with each other.

  9. Nitric oxide synthases: structure, function and inhibition.

    PubMed Central

    Alderton, W K; Cooper, C E; Knowles, R G

    2001-01-01

    This review concentrates on advances in nitric oxide synthase (NOS) structure, function and inhibition made in the last seven years, during which time substantial advances have been made in our understanding of this enzyme family. There is now information on the enzyme structure at all levels from primary (amino acid sequence) to quaternary (dimerization, association with other proteins) structure. The crystal structures of the oxygenase domains of inducible NOS (iNOS) and vascular endothelial NOS (eNOS) allow us to interpret other information in the context of this important part of the enzyme, with its binding sites for iron protoporphyrin IX (haem), biopterin, L-arginine, and the many inhibitors which interact with them. The exact nature of the NOS reaction, its mechanism and its products continue to be sources of controversy. The role of the biopterin cofactor is now becoming clearer, with emerging data implicating one-electron redox cycling as well as the multiple allosteric effects on enzyme activity. Regulation of the NOSs has been described at all levels from gene transcription to covalent modification and allosteric regulation of the enzyme itself. A wide range of NOS inhibitors have been discussed, interacting with the enzyme in diverse ways in terms of site and mechanism of inhibition, time-dependence and selectivity for individual isoforms, although there are many pitfalls and misunderstandings of these aspects. Highly selective inhibitors of iNOS versus eNOS and neuronal NOS have been identified and some of these have potential in the treatment of a range of inflammatory and other conditions in which iNOS has been implicated. PMID:11463332

  10. Tertiary model of a plant cellulose synthase

    PubMed Central

    Sethaphong, Latsavongsakda; Haigler, Candace H.; Kubicki, James D.; Zimmer, Jochen; Bonetta, Dario; DeBolt, Seth; Yingling, Yaroslava G.

    2013-01-01

    A 3D atomistic model of a plant cellulose synthase (CESA) has remained elusive despite over forty years of experimental effort. Here, we report a computationally predicted 3D structure of 506 amino acids of cotton CESA within the cytosolic region. Comparison of the predicted plant CESA structure with the solved structure of a bacterial cellulose-synthesizing protein validates the overall fold of the modeled glycosyltransferase (GT) domain. The coaligned plant and bacterial GT domains share a six-stranded β-sheet, five α-helices, and conserved motifs similar to those required for catalysis in other GT-2 glycosyltransferases. Extending beyond the cross-kingdom similarities related to cellulose polymerization, the predicted structure of cotton CESA reveals that plant-specific modules (plant-conserved region and class-specific region) fold into distinct subdomains on the periphery of the catalytic region. Computational results support the importance of the plant-conserved region and/or class-specific region in CESA oligomerization to form the multimeric cellulose–synthesis complexes that are characteristic of plants. Relatively high sequence conservation between plant CESAs allowed mapping of known mutations and two previously undescribed mutations that perturb cellulose synthesis in Arabidopsis thaliana to their analogous positions in the modeled structure. Most of these mutation sites are near the predicted catalytic region, and the confluence of other mutation sites supports the existence of previously undefined functional nodes within the catalytic core of CESA. Overall, the predicted tertiary structure provides a platform for the biochemical engineering of plant CESAs. PMID:23592721

  11. Nitric oxide synthase in cardiac sarcoplasmic reticulum.

    PubMed

    Xu, K Y; Huso, D L; Dawson, T M; Bredt, D S; Becker, L C

    1999-01-19

    NO. is a free radical that modulates heart function and metabolism. We report that a neuronal-type NO synthase (NOS) is located on cardiac sarcoplasmic reticulum (SR) membrane vesicles and that endogenous NO. produced by SR-associated NOS inhibits SR Ca2+ uptake. Ca2+-dependent biochemical conversion of L-arginine to L-citrulline was observed from isolated rabbit cardiac SR vesicles in the presence of NOS substrates and cofactors. Endogenous NO. was generated from the vesicles and detected by electron paramagnetic resonance spin-trapping measurements. Immunoelectron microscopy demonstrated labeling of cardiac SR vesicles by using anti-neuronal NOS (nNOS), but not anti-endothelial NOS (eNOS) or anti-inducible NOS (iNOS) antibodies, whereas skeletal muscle SR vesicles had no nNOS immunoreactivity. The nNOS immunoreactivity also displayed a pattern consistent with SR localization in confocal micrographs of sections of human myocardium. Western blotting demonstrated that cardiac SR NOS is larger than brain NOS (160 vs. 155 kDa). No immunodetection was observed in cardiac SR vesicles from nNOS knockout mice or with an anti-nNOS mu antibody, suggesting the possibility of a new nNOS-type isoform. 45Ca uptake by cardiac SR vesicles, catalyzed by Ca2+-ATPase, was inhibited by NO. produced endogenously from cardiac SR NOS, and 7-nitroindazole, a selective nNOS inhibitor, completely prevented this inhibition. These results suggest that a cardiac muscle nNOS isoform is located on SR of cardiac myocytes, where it may respond to intracellular Ca2+ concentration and modulate SR Ca2+ ion active transport in the heart.

  12. Nitric oxide synthase in cardiac sarcoplasmic reticulum

    PubMed Central

    Xu, Kai Y.; Huso, David L.; Dawson, Ted M.; Bredt, David S.; Becker, Lewis C.

    1999-01-01

    NO⋅ is a free radical that modulates heart function and metabolism. We report that a neuronal-type NO synthase (NOS) is located on cardiac sarcoplasmic reticulum (SR) membrane vesicles and that endogenous NO⋅ produced by SR-associated NOS inhibits SR Ca2+ uptake. Ca2+-dependent biochemical conversion of l-arginine to l-citrulline was observed from isolated rabbit cardiac SR vesicles in the presence of NOS substrates and cofactors. Endogenous NO⋅ was generated from the vesicles and detected by electron paramagnetic resonance spin-trapping measurements. Immunoelectron microscopy demonstrated labeling of cardiac SR vesicles by using anti-neuronal NOS (nNOS), but not anti-endothelial NOS (eNOS) or anti-inducible NOS (iNOS) antibodies, whereas skeletal muscle SR vesicles had no nNOS immunoreactivity. The nNOS immunoreactivity also displayed a pattern consistent with SR localization in confocal micrographs of sections of human myocardium. Western blotting demonstrated that cardiac SR NOS is larger than brain NOS (160 vs. 155 kDa). No immunodetection was observed in cardiac SR vesicles from nNOS knockout mice or with an anti-nNOSμ antibody, suggesting the possibility of a new nNOS-type isoform. 45Ca uptake by cardiac SR vesicles, catalyzed by Ca2+-ATPase, was inhibited by NO⋅ produced endogenously from cardiac SR NOS, and 7-nitroindazole, a selective nNOS inhibitor, completely prevented this inhibition. These results suggest that a cardiac muscle nNOS isoform is located on SR of cardiac myocytes, where it may respond to intracellular Ca2+ concentration and modulate SR Ca2+ ion active transport in the heart. PMID:9892689

  13. In vivo enzyme immobilization by use of engineered polyhydroxyalkanoate synthase.

    PubMed

    Peters, Verena; Rehm, Bernd H A

    2006-03-01

    This study demonstrated that engineered polyhydroxyalkanoate (PHA) synthases can be employed as molecular tools to covalently immobilize enzymes at the PHA granule surface. The beta-galactosidase was fused to the N terminus of the class II PHA synthase from Pseudomonas aeruginosa. The open reading frame was confirmed to encode the complete fusion protein by T7 promoter-dependent overexpression. Restoration of PHA biosynthesis in the PHA-negative mutant of P. aeruginosa PAO1 showed a PHA synthase function of the fusion protein. PHA granules were isolated and showed beta-galactosidase activity. PHA granule attached proteins were analyzed and confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and matrix-assisted laser desorption ionization-time of flight mass spectrometry. Surprisingly, the beta-galactosidase-PHA synthase fusion protein was detectable at a high copy number at the PHA granule, compared with PHA synthase alone, which was barely detectable at PHA granules. Localization of the beta-galactosidase at the PHA granule surface was confirmed by enzyme-linked immunosorbent assay using anti-beta-galactosidase antibodies. Treatment of these beta-galactosidase-PHA granules with urea suggested a covalent binding of the beta-galactosidase-PHA synthase to the PHA granule. The immobilized beta-galactosidase was enzymologically characterized, suggesting a Michaelis-Menten reaction kinetics. A Km of 630 microM and a Vmax of 17.6 nmol/min for orthonitrophenyl-beta-D-galactopyranoside as a substrate was obtained. The immobilized beta-galactosidase was stable for at least several months under various storage conditions. This study demonstrated that protein engineering of PHA synthase enables the manufacture of PHA granules with covalently attached enzymes, suggesting an application in recycling of biocatalysts, such as in fine-chemical production.

  14. Expression and characterization of glycogen synthase kinase-3 mutants and their effect on glycogen synthase activity in intact cells.

    PubMed Central

    Eldar-Finkelman, H; Argast, G M; Foord, O; Fischer, E H; Krebs, E G

    1996-01-01

    In these studies we expressed and characterized wild-type (WT) GSK-3 (glycogen synthase kinase-3) and its mutants, and examined their physiological effect on glycogen synthase activity. The GSK-3 mutants included mutation at serine-9 either to alanine (S9A) or glutamic acid (S9E) and an inactive mutant, K85,86MA. Expression of WT and the various mutants in a cell-free system indicated that S9A and S9E exhibit increased kinase activity as compared with WT. Subsequently, 293 cells were transiently transfected with WT GSK-3 and mutants. Cells expressing the S9A mutant exhibited higher kinase activity (2.6-fold of control cells) as compared with cells expressing WT and S9E (1.8- and 2.0-fold, respectively, of control cells). Combined, these results suggest serine-9 as a key regulatory site of GSK-3 inactivation, and indicate that glutamic acid cannot mimic the function of the phosphorylated residue. The GSK-3-expressing cell system enabled us to examine whether GSK-3 can induce changes in the endogenous glycogen synthase activity. A decrease in glycogen synthase activity (50%) was observed in cells expressing the S9A mutant. Similarly, glycogen synthase activity was suppressed in cells expressing WT and the S9E mutant (20-30%, respectively). These studies indicate that activation of GSK-3 is sufficient to inhibit glycogen synthase in intact cells, and provide evidence supporting a physiological role for GSK-3 in regulating glycogen synthase and glycogen metabolism. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8816781

  15. Insulin stimulation of glycogen synthase in cultured human diploid fibroblasts.

    PubMed

    Hidaka, H; Howard, B V; Kosmakos, F C; Fields, R M; Craig, J W; Bennett, P H; Larner, J

    1980-10-01

    The effect of insulin on glycogen synthase activity in human diploid fibroblasts has been studied. As little as 2 X 10(-10) M insulin increased the glycogen synthase / activity without changing the total activity. Stimulation occurred within 5 min and became maximal in 30 min. A half-maximal increase of / activity was achieved at 3 X 10(-9) M insulin. Glucose starvation increased the magnitude of response of glycogen synthase to insulin but did not change the insulin concentration necessary to give a half-maximal stimulation. Glucose increased the basal level of / activity in human diploid fibroblasts; the effect of insulin was additive. During in vitro senescence the total glycogen synthase activity declined, but the concentration of insulin that produced a half-maximal stimulation remained unchanged. These data indicate that regulation of glycogen synthase activity in human diploid fibroblasts is responsive to physiologic insulin levels and that the system provides a useful model for the in vitro study of insulin sensitivity.

  16. Heterologous expression of an active chitin synthase from Rhizopus oryzae.

    PubMed

    Salgado-Lugo, Holjes; Sánchez-Arreguín, Alejandro; Ruiz-Herrera, José

    2016-12-01

    Chitin synthases are highly important enzymes in nature, where they synthesize structural components in species belonging to different eukaryotic kingdoms, including kingdom Fungi. Unfortunately, their structure and the molecular mechanism of synthesis of their microfibrilar product remain largely unknown, probably because no fungal active chitin synthases have been isolated, possibly due to their extreme hydrophobicity. In this study we have turned to the heterologous expression of the transcript from a small chitin synthase of Rhizopus oryzae (RO3G_00942, Chs1) in Escherichia coli. The enzyme was active, but accumulated mostly in inclusion bodies. High concentrations of arginine or urea solubilized the enzyme, but their dilution led to its denaturation and precipitation. Nevertheless, use of urea permitted the purification of small amounts of the enzyme. The properties of Chs1 (Km, optimum temperature and pH, effect of GlcNAc) were abnormal, probably because it lacks the hydrophobic transmembrane regions characteristic of chitin synthases. The product of the enzyme showed that, contrasting with chitin made by membrane-bound Chs's and chitosomes, was only partially in the form of short microfibrils of low crystallinity. This approach may lead to future developments to obtain active chitin synthases that permit understanding their molecular mechanism of activity, and microfibril assembly.

  17. ATP synthases: cellular nanomotors characterized by LILBID mass spectrometry

    PubMed Central

    Hoffmann, Jan; Sokolova, Lucie; Preiss, Laura; Hicks, David B.; Krulwich, Terry A.; Morgner, Nina; Wittig, Ilka; Schägger, Hermann; Meier, Thomas; Brutschy, Bernd

    2010-01-01

    Mass spectrometry of membrane protein complexes is still a methodological challenge due to hydrophobic and hydrophilic parts of the species and the fact that all subunits are bound non-covalently together. The present study with the novel laser induced liquid bead ion desorption mass spectrometry (LILBID-MS) reports on the determination of the subunit composition of the F1Fo-ATP synthase from Bacillus pseudofirmus OF4, that of both bovine heart and, for the first time, of human heart mitochondrial F1Fo-ATP synthases. Under selected buffer conditions the mass of the intact F1Fo-ATP synthase of B. pseudofirmus OF4 could be measured, allowing the analysis of complex subunit stoichiometry. The agreement with theoretical masses derived from sequence databases is very good. A comparison of the ATP synthase subunit composition of 5 different ATPases reveals differences in the complexity of eukaryotic and bacterial ATP synthases. However, whereas the overall construction of eukaryotic enzymes is more complex than the bacterial ones, functionally important subunits are conserved among all ATPases. PMID:20820587

  18. Identification of two distinct Bacillus subtilis citrate synthase genes.

    PubMed

    Jin, S; Sonenshein, A L

    1994-08-01

    Two distinct Bacillus subtilis genes (citA and citZ) were found to encode citrate synthase isozymes that catalyze the first step of the Krebs cycle. The citA gene was cloned by genetic complementation of an Escherichia coli citrate synthase mutant strain (W620) and was in a monocistronic transcriptional unit. A divergently transcribed gene, citR, could encode a protein with strong similarity to the bacterial LysR family of regulatory proteins. A null mutation in citA had little effect on citrate synthase enzyme activity or sporulation. The residual citrate synthase activity was purified from a citA null mutant strain, and the partial amino acid sequence for the purified protein (CitZ) was determined. The citZ gene was cloned from B. subtilis chromosomal DNA by using a PCR-generated probe synthesized with oligonucleotide primers derived from the partial amino acid sequence of purified CitZ. The citZ gene proved to be the first gene in a tricistronic cluster that also included citC (coding for isocitrate dehydrogenase) and citH (coding for malate dehydrogenase). A mutation in citZ caused a substantial loss of citrate synthase enzyme activity, glutamate auxotrophy, and a defect in sporulation.

  19. Diversity of sesquiterpene synthases in the basidiomycete Coprinus cinereus

    PubMed Central

    Agger, Sean; Lopez-Gallego, Fernando; Schmidt-Dannert, Claudia

    2009-01-01

    SUMMARY Fungi are a rich source of bioactive secondary metabolites and mushroom-forming fungi (Agaricomycetes) are especially known for the synthesis of numerous bioactive and often cytotoxic sesquiterpenoid secondary metabolites. Compared to the large number of sesquiterpene synthases identified in plants, less than a handful of unique sesquiterpene synthases have been described from fungi. Here we describe the functional characterization of six sesquiterpene synthases (Cop1 to Cop6) and two terpene oxidizing cytochrome P450 monooxygenases (Cox1 and Cox2) from Coprinus cinereus. The genes were cloned and, except for cop5, functionally expressed in Escherichia coli and/or Saccharomyces cerevisiae. Cop1 and Cop2 each synthesize germacrene A as the major product. Cop3 was identified as a α-muurolene synthase, an enzyme that has not been described previously, while Cop4 synthesizes δ-cadinene as its major product. Cop6 was originally annotated as a trichodiene synthase homolog, but instead was found to catalyze highly specific the synthesis of α-cuprenene. Co-expression of cop6 and the two monooxygenase genes next to it yields oxygenated α-cuprenene derivatives, including cuparophenol, suggesting that these genes encode the enzymes for the biosynthesis of antimicrobial quinone sesquiterpenoids (known as lagopodins) that were previously isolated from C. cinereus and other Coprinus species. PMID:19400802

  20. Diversity of sesquiterpene synthases in the basidiomycete Coprinus cinereus.

    PubMed

    Agger, Sean; Lopez-Gallego, Fernando; Schmidt-Dannert, Claudia

    2009-06-01

    Fungi are a rich source of bioactive secondary metabolites, and mushroom-forming fungi (Agaricomycetes) are especially known for the synthesis of numerous bioactive and often cytotoxic sesquiterpenoid secondary metabolites. Compared with the large number of sesquiterpene synthases identified in plants, less than a handful of unique sesquiterpene synthases have been described from fungi. Here we describe the functional characterization of six sesquiterpene synthases (Cop1 to Cop6) and two terpene-oxidizing cytochrome P450 monooxygenases (Cox1 and Cox2) from Coprinus cinereus. The genes were cloned and, except for cop5, functionally expressed in Escherichia coli and/or Saccharomyces cerevisiae. Cop1 and Cop2 each synthesize germacrene A as the major product. Cop3 was identified as an alpha-muurolene synthase, an enzyme that has not been described previously, while Cop4 synthesizes delta-cadinene as its major product. Cop6 was originally annotated as a trichodiene synthase homologue but instead was found to catalyse the highly specific synthesis of alpha-cuprenene. Coexpression of cop6 and the two monooxygenase genes next to it yields oxygenated alpha-cuprenene derivatives, including cuparophenol, suggesting that these genes encode the enzymes for the biosynthesis of antimicrobial quinone sesquiterpenoids (known as lagopodins) that were previously isolated from C. cinereus and other Coprinus species.

  1. Identification of Genetic Elements Associated with EPSPS Gene Amplification

    PubMed Central

    Gaines, Todd A.; Wright, Alice A.; Molin, William T.; Lorentz, Lothar; Riggins, Chance W.; Tranel, Patrick J.; Beffa, Roland; Westra, Philip; Powles, Stephen B.

    2013-01-01

    Weed populations can have high genetic plasticity and rapid responses to environmental selection pressures. For example, 100-fold amplification of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene evolved in the weed species Amaranthus palmeri to confer resistance to glyphosate, the world’s most important herbicide. However, the gene amplification mechanism is unknown. We sequenced the EPSPS gene and genomic regions flanking EPSPS loci in A. palmeri, and searched for mobile genetic elements or repetitive sequences. The EPSPS gene was 10,229 bp, containing 8 exons and 7 introns. The gene amplification likely proceeded through a DNA-mediated mechanism, as introns exist in the amplified gene copies and the entire amplified sequence is at least 30 kb in length. Our data support the presence of two EPSPS loci in susceptible (S) A. palmeri, and that only one of these was amplified in glyphosate-resistant (R) A. palmeri. The EPSPS gene amplification event likely occurred recently, as no sequence polymorphisms were found within introns of amplified EPSPS copies from R individuals. Sequences with homology to miniature inverted-repeat transposable elements (MITEs) were identified next to EPSPS gene copies only in R individuals. Additionally, a putative Activator (Ac) transposase and a repetitive sequence region were associated with amplified EPSPS genes. The mechanism controlling this DNA-mediated amplification remains unknown. Further investigation is necessary to determine if the gene amplification may have proceeded via DNA transposon-mediated replication, and/or unequal recombination between different genomic regions resulting in replication of the EPSPS gene. PMID:23762434

  2. Glyphosate-Resistant and Conventional Canola (Brassica napus L.) Responses to Glyphosate and Aminomethylphosphonic Acid (AMPA) Treatment.

    PubMed

    Corrêa, Elza Alves; Dayan, Franck E; Owens, Daniel K; Rimando, Agnes M; Duke, Stephen O

    2016-05-11

    Glyphosate-resistant (GR) canola contains two transgenes that impart resistance to the herbicide glyphosate: (1) the microbial glyphosate oxidase gene (gox) encoding the glyphosate oxidase enzyme (GOX) that metabolizes glyphosate to aminomethylphosphonic acid (AMPA) and (2) cp4 that encodes a GR form of the glyphosate target enzyme 5-enolpyruvylshikimic acid-3-phosphate synthase. The objectives of this research were to determine the phytotoxicity of AMPA to canola, the relative metabolism of glyphosate to AMPA in GR and conventional non-GR (NGR) canola, and AMPA pool sizes in glyphosate-treated GR canola. AMPA applied at 1.0 kg ha(-1) was not phytotoxic to GR or NGR. At this AMPA application rate, NGR canola accumulated a higher concentration of AMPA in its tissues than GR canola. At rates of 1 and 3.33 kg ae ha(-1) of glyphosate, GR canola growth was stimulated. This stimulatory effect is similar to that of much lower doses of glyphosate on NGR canola. Both shikimate and AMPA accumulated in tissues of these glyphosate-treated plants. In a separate experiment in which young GR and NGR canola plants were treated with non-phytotoxic levels of [(14)C]-glyphosate, very little glyphosate was metabolized in NGR plants, whereas most of the glyphosate was metabolized to AMPA in GR plants at 7 days after application. Untreated leaves of GR plants accumulated only metabolites (mostly AMPA) of glyphosate, indicating that GOX activity is very high in the youngest leaves. These data indicate that more glyphosate is transformed to AMPA rapidly in GR canola and that the accumulated AMPA is not toxic to the canola plant.

  3. Compositions of forage and seed from second-generation glyphosate-tolerant soybean MON 89788 and insect-protected soybean MON 87701 from Brazil are equivalent to those of conventional soybean (Glycine max).

    PubMed

    Berman, Kristina H; Harrigan, George G; Riordan, Susan G; Nemeth, Margaret A; Hanson, Christy; Smith, Michelle; Sorbet, Roy; Zhu, Eddie; Ridley, William P

    2010-05-26

    Brazil has become one of the largest soybean producers. Two Monsanto Co. biotechnology-derived soybean products are designed to offer benefits in weed and pest management. These are second-generation glyphosate-tolerant soybean, MON 89788, and insect-protected soybean, MON 87701. The second-generation glyphosate-tolerant soybean product, MON 89788, contains the 5-enolpyruvylshikimate-3-phosphate synthase gene derived from Agrobacterium sp. strain CP4 (cp4 epsps). MON 87701 contains the cry1Ac gene and expression of the Cry1Ac protein providing protection from feeding damage caused by certain lepidopteran insect pests. The purpose of this assessment was to determine whether the compositions of seed and forage of MON 89788 and MON 87701 are comparable to those of conventional soybean grown in two geographically and climatically distinct regions in multiple replicated sites in Brazil during the 2007-2008 growing season. Overall, results demonstrated that the seed and forage of MON 89788 and MON 87701 are compositionally equivalent to those of conventional soybean. Strikingly, the results also showed that differences in mean component values of forage and seed from the two controls grown in the different geographical regions were generally greater than that observed in test and control comparisons. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) of compositional data generated on MON 89788, MON 87701, and their respective region-specific controls provide a graphical illustration of how natural variation contributes more than biotechnology-driven genetic modification to compositional variability in soybean. Levels of isoflavones and fatty acids were particularly variable.

  4. Comparison of broiler performance and carcass parameters when fed diets containing combined trait insect-protected and glyphosate-tolerant corn (MON 89034 x NK603), control, or conventional reference corn.

    PubMed

    Taylor, M; Lucas, D; Nemeth, M; Davis, S; Hartnell, G

    2007-09-01

    A 42-d floor pen study was conducted to compare broiler (Ross x Ross 308) performance and carcass measurements when fed diets containing lepidopteran-protected corn combined with glyphosate-tolerant corn (MON 89034 x NK603) with those of broilers fed diets containing corn grain from the conventional control (similar genetic background to the test corn) and 6 conventional corn hybrids. It has been found that MON 89034 produces the Cry1A.105 and Cry2Ab2 insecticidal proteins that protect corn plants from feeding damage caused by European corn borer (Ostrinia nubilalis) and other lepidopteran insect pests. In addition, NK603 produces the 5-enolpyruvylshikimate-3-phosphate synthase protein from Agrobacterium sp. strain CP4 (CP4 EPSPS), which confers tolerance to glyphosate, the active ingredient in Roundup agricultural herbicides. The traditional breeding of plants that express the individual traits produced MON 89034 x NK603. Broilers were fed starter diets (approximately 57% wt/wt corn grain) from d 0 to 21 and grower-finisher diets (approximately 59% wt/wt corn grain) from d 21 to 42. The study utilized a randomized complete block design with 8 dietary treatments assigned randomly within 5 blocks of 16 pens each (8 male and 8 female) with 10 birds per pen. There were 10 pens per treatment group (5 male and 5 female). Weight at d 0 and 42, feed intake, feed conversion, and all measured carcass and meat quality parameters were not different (P > 0.05) for birds fed MON 89034 x NK603 and control corn diets. In addition, comparisons of the MON 89034 x NK603 diet to the population of the control and 6 reference corn diets showed no difference (P > 0.05) in any performance, carcass, or meat quality parameter measured. In conclusion, the diets containing MON 89034 x NK603 were nutritionally equivalent to diets containing the control or conventional reference corn grain when fed to broilers.

  5. Composition of grain, forage, and processed fractions from second-generation glyphosate-tolerant soybean, MON 89788, is equivalent to that of conventional soybean (Glycine max L.).

    PubMed

    Lundry, Denise R; Ridley, William P; Meyer, Jiaying J; Riordan, Susan G; Nemeth, Margaret A; Trujillo, William A; Breeze, Matthew L; Sorbet, Roy

    2008-06-25

    Developments in biotechnology and molecular-assisted breeding have led to the development of a second-generation glyphosate-tolerant soybean product, MON 89788. The MON 89788 event was produced by direct transformation of a cp4 epsps (5-enolpyruvylshikimate-3-phosphate synthase) gene cassette derived from Agrobacterium sp. strain CP4 into an elite soybean germplasm known for its superior agronomic characteristics and high yielding property. The purpose of this work was to assess whether the nutrient and antinutrient levels in seed and forage tissues of MON 89788 are comparable to those in the conventional soybean variety, A3244, which has background genetics similar to MON 89788 but does not contain the cp4 epsps gene cassette. Additional conventional soybean varieties currently in the marketplace were also included in the analysis to establish a range of natural variability for each analyte, where the range of variability is defined by a 99% tolerance interval for that particular analyte. Compositional analyses were conducted on forage, seed and four processed fractions from soybeans grown in ten sites across both the United States and Argentina during the 2004-2005 growing seasons. Forage samples were analyzed for levels of proximates (ash, fat, moisture, and protein) and fiber. Seed samples were analyzed for proximates, fiber, antinutrients, and vitamin E. Defatted, toasted (DT) meal was analyzed for proximates, fiber, amino acids, and antinutrients. Refined, bleached, and deodorized (RBD) oil was analyzed for fatty acids and vitamin E. Protein isolate was analyzed for amino acids and moisture. Crude Lecithin was analyzed for phosphatides. Results of the comparisons indicate that MON 89788 is compositionally and nutritionally equivalent to conventional soybean varieties currently in commerce.

  6. Non-target Site Tolerance Mechanisms Describe Tolerance to Glyphosate in Avena sterilis

    PubMed Central

    Fernández-Moreno, Pablo T.; Alcantara-de la Cruz, Ricardo; Cruz-Hipólito, Hugo E.; Rojano-Delgado, Antonia M.; Travlos, Ilias; De Prado, Rafael

    2016-01-01

    Sterile wild oat (Avena sterilis L.) is an autogamous grass established in warm climate regions. This species has been used as a cover crop in Mediterranean perennial crops during the spring period prior to initiating competition with the main crop for water and nutrients. However, such cover crops need to be controlled (by glyphosate or tillage) before the beginning of summer period (due to the possibility of intense drought stress). In 2011, the olive grove farmers of southern Spain expressed dissatisfaction because of the ineffective control with glyphosate on A. sterilis. Experiments were conducted to determine whether the continued use of glyphosate over a 5 year period had selected a new resistant or tolerant species. The GR50 values obtained for A. sterilis were 297.12 and 245.23 g ae ha−1 for exposed (E) and un-exposed (UE) glyphosate accessions, respectively. The spray retention and shikimic acid accumulation exhibited a non-significant difference between the two accessions. The results of 14C- glyphosate absorption was the same in the two accessions (E and UE), while the translocation from the treated leaf to the rest of the shoots and roots was similar in A. sterilis accessions. Glyphosate metabolism to aminomethylphosphonic acid (AMPA) and glyoxylate was similar in both accessions, but increased after treatment with glyphosate, indicating that metabolism plays an important role in tolerance. Both A. sterilis accessions, present similarity in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity enzyme with different glyphosate concentrations and without glyphosate, confirming that both accessions present the same genomic characteristics. The above-mentioned results indicate that innate tolerance to glyphosate in A. sterilis is probably and partly due to reduced herbicide absorption and translocation and metabolism compared to the susceptibility of other grasses weeds like Chloris inflata, Eleusine indica, and Lolium rigidum. PMID:27570531

  7. Relative stability of transgene DNA fragments from GM rapeseed in mixed ruminal cultures.

    PubMed

    Sharma, Ranjana; Alexander, Trevor W; John, S Jacob; Forster, Robert J; McAllister, Tim A

    2004-05-01

    The use of transgenic crops as feeds for ruminant animals has prompted study of the possible uptake of transgene fragments by ruminal micro-organisms and/or intestinal absorption of fragments surviving passage through the rumen. The persistence in buffered ruminal contents of seven different recombinant DNA fragments from GM rapeseed expressing the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) transgene was tracked using PCR. Parental and transgenic (i.e. glyphosphate-tolerant; Roundup Ready, Monsanto Company, St Louis, MO, USA) rapeseed were incubated for 0, 2, 4, 8, 12, 24 and 48 h as whole seeds, cracked seeds, rapeseed meal, and as pelleted, barley-based diets containing 65 g rapeseed meal/kg. The seven transgene fragments ranged from 179 to 527 bp and spanned the entire 1363 bp EPSPS transgene. A 180 bp ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit fragment and a 466 bp 16S rDNA fragment were used as controls for endogenous rapeseed DNA and bacterial DNA respectively. The limit of detection of the PCR assay, established using negative controls spiked with known quantities of DNA, was 12.5 pg. Production of gas and NH3 was monitored throughout the incubation and confirmed active in vitro fermentation. Bacterial DNA was detected in all sample types at all time points. Persistence patterns of endogenous (Rubisco) and recombinant (EPSPS) rapeseed DNA were inversely related to substrate digestibility (amplifiable for 48, 8 and 4 h in whole or cracked seeds, meal and diets respectively), but did not differ between parental and GM rapeseed, nor among fragments. Detection of fragments was representative of persistence of the whole transgene. No EPSPS fragments were amplifiable in microbial DNA, suggesting that transformation had not occurred during the 48 h incubation. Uptake of transgenic DNA fragments by ruminal bacteria is probably precluded or time-limited by rapid degradation of plant DNA upon plant cell lysis.

  8. Conventional and real-time polymerase chain reaction assessment of the fate of transgenic DNA in sheep fed Roundup Ready rapeseed meal.

    PubMed

    Alexander, Trevor W; Reuter, Tim; Okine, Erasmus; Sharma, Ranjana; McAllister, Tim A

    2006-12-01

    Conventional and real-time PCR were used to detect transgenic DNA in digesta, faeces and blood collected from six ruminally and duodenally cannulated sheep fed forage-based (F) or concentrate-based (C) diets containing 15% Roundup Ready (RR) rapeseed meal (n 3). The sheep were adapted for 14 d to F or C diets containing non-GM rapeseed, then fed the RR diets for 11 d. On day 12, they were switched back to non-GM diets for a further 11 d. Ruminal and duodenal fluids (RF, DF) and faecal samples were collected at 3 or 4 h intervals over the 4 d immediately following the last feeding of GM diets. DNA was isolated from whole RF and DF, from the cell-free supernatant fraction, and from culture fermentation liquid. Blood was collected on days 1, 5 and 9 of feeding the RR rapeseed meal. The 1363 bp 5-enolpyruvylshikimate-3-phosphate synthase transgene (epsps) was quantifiable in whole RF and DF for up to 13 h, and a 108 bp epsps fragment for up to 29 h. Transgenic DNA was not detectable in faeces or blood, or in microbial DNA. Diet type (F v. C) did not affect (P>0.05) the quantity of transgenic DNA in digesta. More (P<0.05) transgenic DNA was detected in RF than in DF, but there was an interaction (P<0.05) between sample type and collection time. In supernatant fractions from RF and DF, three different fragments of transgenic DNA ranging in size from 62 to 420 bp were not amplifiable.

  9. Volatile Organic Compounds Induced by Herbivory of the Soybean Looper Chrysodeixis includens in Transgenic Glyphosate-Resistant Soybean and the Behavioral Effect on the Parasitoid, Meteorus rubens.

    PubMed

    Strapasson, Priscila; Pinto-Zevallos, Delia M; Da Silva Gomes, Sandra M; Zarbin, Paulo H G

    2016-08-01

    Transgenic soybean plants (RR) engineered to express resistance to glyphosate harbor a variant of the enzyme EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) involved in the shikimic acid pathway, the biosynthetic route of three aromatic amino acids: phenylalanine, tyrosine, and tryptophan. The insertion of the variant enzyme CP4 EPSPS confers resistance to glyphosate. During the process of genetic engineering, unintended secondary effects are likely to occur. In the present study, we quantified volatile organic compounds (VOCs) emitted constitutively or induced in response to herbivory by the soybean looper Chrysodeixis includens in transgenic soybean and its isogenic (untransformed) line. Since herbivore-induced plant volatiles (HIPVs) are known to play a role in the recruitment of natural enemies, we assessed whether changes in VOC profiles alter the foraging behavior of the generalist endoparasitic larval parasitoid, Meteorus rubens in the transgenic line. Additionally, we assessed whether there was a difference in plant quality by measuring the weight gain of the soybean looper. In response to herbivory, several VOCs were induced in both the conventional and the transgenic line; however, larger quantities of a few compounds were emitted by transgenic plants. Meteorus rubens females were able to discriminate between the odors of undamaged and C. includens-damaged plants in both lines, but preferred the odors emitted by herbivore-damaged transgenic plants over those emitted by herbivore-damaged conventional soybean plants. No differences were observed in the weight gain of the soybean looper. Our results suggest that VOC-mediated tritrophic interactions in this model system are not negatively affected. However, as the preference of the wasps shifted towards damaged transgenic plants, the results also suggest that genetic modification affects that tritrophic interactions in multiple ways in this model system.

  10. Comparison of broiler performance and carcass parameters when fed diets containing soybean meal produced from glyphosate-tolerant (MON 89788), control, or conventional reference soybeans.

    PubMed

    Taylor, M; Hartnell, G; Lucas, D; Davis, S; Nemeth, M

    2007-12-01

    A 42-d floor pen study was conducted to compare broiler (Ross x Ross 308) performance and carcass measurements when fed diets containing meal produced from glyphosate-tolerant soybeans (MON 89788) with those of broilers fed diets containing meal produced from control soybean (A3244) that has similar genetic background to MON 89788. Soybean meal produced from 6 conventional soybean varieties was included in the study to provide comparison measurements for broilers fed meal derived from conventional soybeans. It has been found that MON 89788 produces the 5-enolpyruvylshikimate-3-phosphate synthase protein from Agrobacterium sp. strain CP4 (cp4 epsps), which confers tolerance to glyphosate, the active ingredient in Roundup agricultural herbicides. Broilers were fed starter diets (approximately 33% wt/wt dehulled soybean meal) from d 0 to 21 and grower-finisher diets (approximately 30% wt/wt dehulled soybean meal) from d 21 to 42. The study utilized a randomized complete block design with 8 dietary treatments assigned randomly within 5 blocks of 16 pens each (8 male and 8 female) with 10 birds per pen. There were 10 pens per treatment group (5 male and 5 female). No treatment differences (P > 0.05) were detected among dietary treatments for feed intake, weight gain, adjusted feed conversion, or any measured carcass and meat quality parameters. Comparison of all performance, carcass, and meat quality parameters measured showed no differences (P > 0.05) between birds fed the MON 89788 soybean meal diet and the population of birds fed the control and 6 conventional reference soybean meal diets. It is concluded that the diets containing soybean meal produced from MON 89788 were nutritionally equivalent to diets containing soybean meal produced from the control and conventional reference soybean varieties when fed to broilers.

  11. Selection and characterization of glyphosate tolerance in birdsfoot trefoil (Lotus corniculatus)

    SciTech Connect

    Boerboom, C.M.

    1989-01-01

    If birdsfoot trefoil (Lotus corniculatus L.) was tolerant to glyphosate (N-(phosphonomethyl)glycine), Canada thistle (Cirsium arvense (L.) Scop.) and other dicot weeds could be selectively controlled in certified seed production fields. Glyphosate tolerance in birdsfoot trefoil was identified in plants from the cultivar Leo, plants regenerated from tolerant callus, and selfed progeny of plants regenerated from callus. Plants from the three sources were evaluated in field studies for tolerance to glyphosate at rates up to 1.6 kg ae/ha. Plants of Leo selected for tolerance exhibited a twofold range in the rate required to reduce shoot weight 50% (I{sub 50}s from 0.6 to 1.2 kg/ha glyphosate). Plants regenerated from tolerant callus had tolerance up to 66% greater than plants regenerated from unselected callus. Transgressive segregation for glyphosate tolerance was observed in the selfed progeny of two regenerated plants that both had I{sub 50}s of 0.7 kg/ha glyphosate. The selfed progeny ranged from highly tolerant (I{sub 50} of 1.5 kg/ha) to susceptible (I{sub 50} of 0.5 kg/ha). Spray retention, {sup 14}C-glyphosate absorption and translocation did not account for the differential tolerance of nine plants that were evaluated from the three sources. The specific activity of 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase ranged from 1.3 to 3.5 nmol/min{sm bullet}mg among the nine plants and was positively correlated with glyphosate tolerance. Leo birdsfoot trefoil was found to have significant variation in glyphosate tolerance which made it possible to initiate a recurrent selection program to select for glyphosate tolerance in birdsfoot trefoil. Two cycles of selection for glyphosate tolerance were practiced in three birdsfoot trefoil populations, Leo, Norcen, and MU-81.

  12. Expression of CP4 EPSPS in microspores and tapetum cells of cotton (Gossypium hirsutum) is critical for male reproductive development in response to late-stage glyphosate applications.

    PubMed

    Chen, Yun-Chia Sophia; Hubmeier, Christopher; Tran, Minhtien; Martens, Amy; Cerny, R Eric; Sammons, R Doug; CaJacob, Claire

    2006-09-01

    Plants expressing Agrobacterium sp. strain CP4 5-enolpyruvylshikimate-3-phosphate synthase (CP4 EPSPS) are known to be resistant to glyphosate, a potent herbicide that inhibits the activity of the endogenous plant EPSPS. The RR1445 transgenic cotton line (current commercial line for Roundup Ready Cotton) was generated using the figwort mosaic virus (FMV) 35S promoter to drive the expression of the CP4 EPSPS gene, and has excellent vegetative tolerance to glyphosate. However, with high glyphosate application rates at developmental stages later than the four-leaf stage (late-stage applications: applications that are inconsistent with the Roundup labels), RR1445 shows male sterility. Another transgenic cotton line, RR60, was generated using the FMV 35S promoter and the Arabidopsis elongation factor-1alpha promoter (AtEF1alpha) for the expression of CP4 EPSPS. RR60 has excellent vegetative and reproductive tolerance to applications of glyphosate at all developmental stages. Histochemical analyses were conducted to examine the male reproductive development at the cellular level of these cotton lines in response to glyphosate applications, and to investigate the correlation between glyphosate injury and the expression of CP4 EPSPS in male reproductive tissues. The expression of CP4 EPSPS in RR60 was found to be strong in all male reproductive cell types. Conversely, CP4 EPSPS expression in RR1445 was low in pollen mother cells, male gametophytes and tapetum, three crucial male reproductive cell types. Our results indicate that the FMV 35S promoter, although expressing strongly in most vegetative tissues in plants, has extremely low activity in these cell types.

  13. Non-target Site Tolerance Mechanisms Describe Tolerance to Glyphosate in Avena sterilis.

    PubMed

    Fernández-Moreno, Pablo T; Alcantara-de la Cruz, Ricardo; Cruz-Hipólito, Hugo E; Rojano-Delgado, Antonia M; Travlos, Ilias; De Prado, Rafael

    2016-01-01

    Sterile wild oat (Avena sterilis L.) is an autogamous grass established in warm climate regions. This species has been used as a cover crop in Mediterranean perennial crops during the spring period prior to initiating competition with the main crop for water and nutrients. However, such cover crops need to be controlled (by glyphosate or tillage) before the beginning of summer period (due to the possibility of intense drought stress). In 2011, the olive grove farmers of southern Spain expressed dissatisfaction because of the ineffective control with glyphosate on A. sterilis. Experiments were conducted to determine whether the continued use of glyphosate over a 5 year period had selected a new resistant or tolerant species. The GR50 values obtained for A. sterilis were 297.12 and 245.23 g ae ha(-1) for exposed (E) and un-exposed (UE) glyphosate accessions, respectively. The spray retention and shikimic acid accumulation exhibited a non-significant difference between the two accessions. The results of (14)C- glyphosate absorption was the same in the two accessions (E and UE), while the translocation from the treated leaf to the rest of the shoots and roots was similar in A. sterilis accessions. Glyphosate metabolism to aminomethylphosphonic acid (AMPA) and glyoxylate was similar in both accessions, but increased after treatment with glyphosate, indicating that metabolism plays an important role in tolerance. Both A. sterilis accessions, present similarity in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity enzyme with different glyphosate concentrations and without glyphosate, confirming that both accessions present the same genomic characteristics. The above-mentioned results indicate that innate tolerance to glyphosate in A. sterilis is probably and partly due to reduced herbicide absorption and translocation and metabolism compared to the susceptibility of other grasses weeds like Chloris inflata, Eleusine indica, and Lolium rigidum.

  14. Methionine synthase and thymidylate synthase gene polymorphisms and colorectal adenoma risk: the self defense forces study.

    PubMed

    Yoshimitsu, Shinichiro; Morita, Makiko; Hamachi, Tadamichi; Tabata, Shinji; Abe, Hiroshi; Tajima, Osamu; Uezono, Kousaku; Ohnaka, Keizo; Kono, Suminori

    2012-10-01

    Folate-mediated one-carbon metabolism has been implicated in colorectal carcinogenesis. We investigated associations of functional genetic polymorphisms of methionine synthase (MTR), MTR reductase (MTRR), and thymidylate synthase (TS) with colorectal adenomas. The study subjects were 455 cases of colorectal adenomas and 1052 controls with no polyp at colonoscopy. Genotypes were determined for MTR A2756G, MTRR A66G and two polymorphisms in the TS gene, 28-bp tandem repeat polymorphism in the promoter enhancer region (TSER) and 6-bp deletion polymorphism at position 1494 in the 3' untranslated region (TS 1494del6). We also examined the alcohol-genotype and gene-gene interactions on adenoma risk. The GG genotype of MTR A2756G was associated with an increased risk of colorectal adenomas; odds ratios for AG and GG versus AA genotype were 0.99 (95% confidence interval 0.78-1.26) and 1.72 (1.04-2.82), respectively. The increase in the risk associated with MTR 2756GG genotype was evident in men with high alcohol consumption (≥30 mL/d), but not in those with low alcohol consumption (interaction P = 0.03). Men who were homozygous for the TSER double-repeat allele had a slightly decreased risk of colorectal adenomas as compared with those homozygous for the TSER triple-repeat allele. Neither MTRR A66G nor TS 1494del6 was associated with colorectal adenomas. There was no measurable interaction either between MTR A2756G and MTRR A66G or between TSER and TS 1494del6. MTR A2756G appears to be associated with colorectal adenoma risk differently according to alcohol consumption. The MTR-catalyzed reaction may play an important role in the development of colorectal adenomas.

  15. Bornyl-diphosphate synthase from Lavandula angustifolia: A major monoterpene synthase involved in essential oil quality.

    PubMed

    Despinasse, Yolande; Fiorucci, Sébastien; Antonczak, Serge; Moja, Sandrine; Bony, Aurélie; Nicolè, Florence; Baudino, Sylvie; Magnard, Jean-Louis; Jullien, Frédéric

    2017-05-01

    Lavender essential oils (EOs) of higher quality are produced by a few Lavandula angustifolia cultivars and mainly used in the perfume industry. Undesirable compounds such as camphor and borneol are also synthesized by lavender leading to a depreciated EO. Here, we report the cloning of bornyl diphosphate synthase of lavender (LaBPPS), an enzyme that catalyzes the production of bornyl diphosphate (BPP) and then by-products such as borneol or camphor, from an EST library. Compared to the BPPS of Salvia officinalis, the functional characterization of LaBPPS showed several differences in amino acid sequence, and the distribution of catalyzed products. Molecular modeling of the enzyme's active site suggests that the carbocation intermediates are more stable in LaBPPS than in SoBPPS leading probably to a lower efficiency of LaBPPS to convert GPP into BPP. Quantitative RT-PCR performed from leaves and flowers at different development stages of L. angustifolia samples show a clear correlation between transcript level of LaBPPS and accumulation of borneol/camphor, suggesting that LaBPPS is mainly responsible of in vivo biosynthesis of borneol/camphor in fine lavender. A phylogenetic analysis of terpene synthases (TPS) pointed out the basal position of LaBPPS in the TPSb clade, suggesting that LaBPPS could be an ancestor of others lavender TPSb. Finally, borneol could be one of the first monoterpenes to be synthesized in the Lavandula subgenus. Knowledge gained from these experiments will facilitate future studies to improve the lavender oils through metabolic engineering or plant breeding. Accession numbers: LaBPPS: KM015221.

  16. Kinetic characteristics of nitric oxide synthase from rat brain.

    PubMed Central

    Knowles, R G; Palacios, M; Palmer, R M; Moncada, S

    1990-01-01

    The relationship between the rate of synthesis of nitric oxide (NO) and guanylate cyclase stimulation was used to characterize the kinetics of the NO synthase from rat forebrain and of some inhibitors of this enzyme. The NO synthase had an absolute requirement for L-arginine and NADPH and did not require any other cofactors. The enzyme had a Vmax. of 42 pmol of NO formed.min-1.mg of protein-1 and a Km for L-arginine of 8.4 microM. Three analogues of L-arginine, namely NG-monomethyl-L-arginine, NG-nitro-L-arginine and NG-iminoethyl-L-ornithine inhibited the brain NO synthase. All three compounds were competitive inhibitors of the enzyme with Ki values of 0.7, 0.4 and 1.2 microM respectively. PMID:1695842

  17. Properties of peroxisomal and mitochondrial citrate synthase from Agave americana.

    PubMed

    Segovia, J L; Zafra, M F; Alejandre, M J; García-Peregrín, E

    1982-09-01

    Adenine nucleotides were tested as effectors of peroxisomal and mitochondrial citrate synthase from Agave americana leaves in the presence of different concentrations of acetyl-CoA and oxalacetate substrates. ATP inhibited both enzyme activities but with a different inhibition profile. 1.0-7.5 mM ADP did not inhibit the peroxisomal citrate synthase in the presence of high substrate concentrations, while the mitochondrial enzyme was strongly inhibited by 1.0 mM ADP in the same conditions. Likewise, a different pattern was obtained with AMP on both peroxisomal and mitochondrial activities. The rate of citrate formation as function of acetyl-CoA and oxalacetate concentration was also studied in both fractions. Maximal velocity was highest in the peroxisomal fraction, whether acetyl-CoA or oxalacetate were the variable substrates. These differences indicate that peroxisomal and mitochondrial citrate synthases seem to be two different isoenzymes.

  18. Synthase-dependent exopolysaccharide secretion in Gram-negative bacteria

    PubMed Central

    Whitney, J.C.; Howell, P.L.

    2014-01-01

    The biosynthesis and export of bacterial cell-surface polysaccharides is known to occur through several distinct mechanisms. Recent advances in the biochemistry and structural biology of several proteins in synthase-dependent polysaccharide secretion systems have identified key conserved components of this pathway in Gram-negative bacteria. These components include an inner-membrane-embedded polysaccharide synthase, a periplasmic tetratricopeptide repeat (TPR)-containing scaffold protein, and an outer-membrane β-barrel porin. There is also increasing evidence that many synthase-dependent systems are post-translationally regulated by the bacterial second messenger bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP). Here, we compare these core proteins in the context of the alginate, cellulose, and poly-β-D-N-acetylglucosamine (PNAG) secretion systems. PMID:23117123

  19. The hyaluronate synthase from a eukaryotic cell line.

    PubMed Central

    Klewes, L; Turley, E A; Prehm, P

    1993-01-01

    The hyaluronate synthase complex was identified in plasma membranes from B6 cells. It contained two subunits of molecular masses 52 kDa and 60 kDa which bound the precursor UDP-GlcA in digitonin solution and partitioned into the aqueous phase, together with nascent hyaluronate upon Triton X-114 phase separation. The 52 kDa protein cross-reacted with poly- and monoclonal antibodies raised against the streptococcal hyaluronate synthase and the 60 kDa protein was recognized by monoclonal antibodies raised against a hyaluronate receptor. The 52 kDa protein was purified to homogeneity by affinity chromatography with monoclonal anti-hyaluronate synthase. Images Figure 1 Figure 2 Figure 4 Figure 5 Figure 7 PMID:8457208

  20. SbnG, a Citrate Synthase in Staphylococcus aureus

    PubMed Central

    Kobylarz, Marek J.; Grigg, Jason C.; Sheldon, Jessica R.; Heinrichs, David E.; Murphy, Michael E. P.

    2014-01-01

    In response to iron deprivation, Staphylococcus aureus produces staphyloferrin B, a citrate-containing siderophore that delivers iron back to the cell. This bacterium also possesses a second citrate synthase, SbnG, that is necessary for supplying citrate to the staphyloferrin B biosynthetic pathway. We present the structure of SbnG bound to the inhibitor calcium and an active site variant in complex with oxaloacetate. The overall fold of SbnG is structurally distinct from TCA cycle citrate synthases yet similar to metal-dependent class II aldolases. Phylogenetic analyses revealed that SbnG forms a separate clade with homologs from other siderophore biosynthetic gene clusters and is representative of a metal-independent subgroup in the phosphoenolpyruvate/pyruvate domain superfamily. A structural superposition of the SbnG active site to TCA cycle citrate synthases and site-directed mutagenesis suggests a case for convergent evolution toward a conserved catalytic mechanism for citrate production. PMID:25336653

  1. Utility of Aspergillus niger citrate synthase promoter for heterologous expression.

    PubMed

    Dave, Kashyap; Punekar, Narayan S

    2011-09-10

    Citrate synthase is a central player in the acidogenic metabolism of Aspergillus niger. The 5' upstream sequence (0.9kb DNA) of citrate synthase gene (citA) from A. niger NCIM 565 was analyzed and its promoter function demonstrated through the heterologous expression of two proteins. The cloned citrate synthase promoter (PcitA) sequence was able to express bar coding sequence thereby conferring phosphinothricin resistance. This sequence was further analyzed by systematic deletions to define an effective but compact functional promoter. The PcitA driven egfp expression showed that PcitA was active in all differentiation cell-stages of A. niger. EGFP expression was highest on non-repressible carbon sources like acetate and glycerol. Mycelial EGFP levels increased during acidogenic growth suggesting that PcitA is functional throughout this cultivation. A. niger PcitA is the first Krebs cycle gene promoter used to express heterologous proteins in filamentous fungi.

  2. Inactivation of Glyceraldehyde-3-Phosphate Dehydrogenase by Fumarate in Diabetes: Formation of S-(2-Succinyl)Cysteine, a Novel Chemical Modification of Protein and Possible Biomarker of Mitochondrial Stress

    PubMed Central

    Blatnik, Matthew; Frizzell, Norma; Thorpe, Suzanne R.; Baynes, John W.

    2008-01-01

    OBJECTIVE S-(2-succinyl)cysteine (2SC) is formed by a Michael addition reaction of the Krebs cycle intermediate, fumarate, with cysteine residues in protein. We investigated the role of fumarate in chemical modification and inhibition of the sulfhydryl enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), in vitro and in tissues of diabetic rats. RESEARCH DESIGN AND METHODS GAPDH was incubated with fumarate in PBS to assess effects of fumarate on enzyme activity in vitro. Sites of 2SC formation were determined by analysis of tryptic peptides by high-performance liquid chromatography–quadrupole/time-of-flight mass spectrometry. 2SC and fumarate in gastrocnemius muscle of control and streptozotocin-induced diabetic rats were measured by liquid chromatography/tandem mass spectrometry and by gas chromatography/mass spectrometry, respectively. GAPDH was isolated from muscle by immunoprecipitation, and sites of modification of GAPDH were determined by mass spectrometry analysis. RESULTS 2SC was found, both in vitro and in vivo, about equally at active-site Cys-149 and nucleophilic Cys-244. Inactivation of GAPDH by fumarate in vitro correlated with formation of 2SC. In diabetic compared with control rats, fumarate and 2SC concentration increased approximately fivefold, accompanied by an ~25% decrease in GAPDH specific activity. The fractional modification of GAPDH by 2SC was significantly increased in diabetic versus control animals, consistent with the decreased specific activity of GAPDH in muscle of diabetic animals. CONCLUSIONS Fumarate contributes to inactivation of GAPDH in diabetes. 2SC may be a useful biomarker of mitochondrial stress in diabetes. Modification of GAPDH and other enzymes and proteins by fumarate may contribute to the metabolic changes underlying the development of diabetes complications. PMID:17934141

  3. Allosteric regulation of glycogen synthase in liver. A physiological dilemma.

    PubMed

    Nuttall, F Q; Gannon, M C

    1993-06-25

    Glycogen synthase catalyzes the transfer of the glucosyl moiety from UDP-glucose to the terminal branch of the glycogen molecule and is considered to be the rate-limiting enzyme for glycogen synthesis. However, under ideal assay conditions, i.e. 37 degrees C with saturating concentrations of UDP-glucose and the activator, glucose-6-P, the maximal catalytic activity of glycogen synthase was only 78% of the in vivo glycogen synthetic rate. Using concentrations of UDP-glucose and glucose-6-P likely to be present in vivo, the rate was only approximately 30%. This prompted us to reassess a possible role of allosteric effectors on synthase activity. Glycogen synthase was assayed at 37 degrees C using dilute, pH 7.0, buffered extracts, initial rate conditions, and UDP-glucose and glucose-6-P concentrations, which approximate those calculated to be present in total liver cell water. Several allosteric effectors were tested. Magnesium and AMP had little effect on activity. Pi, ADP, ATP, and UTP inhibited activity. When a combination of effectors were added at concentrations approximating those present in cell water, synthase activity could account for only 2% of the glycogen synthetic rate. Thus, although allosteric effectors are likely to be playing a major role in regulating synthase enzymic activity in liver cells, to date, a metabolite that can stimulate activity and/or overcome nucleotide inhibition has yet to be identified. If such a metabolite cannot be identified, an additional or alternative pathway for glycogen synthesis must be considered.

  4. Brucella spp. lumazine synthase: a novel antigen delivery system.

    PubMed

    Sciutto, Edda; Toledo, Andrea; Cruz, Carmen; Rosas, Gabriela; Meneses, Gabriela; Laplagne, Diego; Ainciart, Natalia; Cervantes, Jacquelynne; Fragoso, Gladis; Goldbaum, Fernando A

    2005-04-15

    Lumazine synthase from Brucella spp. (BLS) was evaluated as a protein carrier to improve antigen delivery of KETc1, one of the peptides of the anti-cysticercosis vaccine. KETc1 becomes antigenic, preserved its immunogenicity and its protective capacity when expressed as a recombinant chimeric protein using Brucella spp. lumazine synthase. KETc1 and BLS-KETc1 were not MHC H-2(d), H-2(k) nor H-2(b) haplotype-restricted albeit KETc1 is preferentially presented in the H-2(b) haplotype. These findings support that BLS is a potent new delivery system for the improvement of subunit vaccines.

  5. Molecular aspects of beta-ketoacyl synthase (KAS) catalysis.

    PubMed

    von Wettstein-Knowles, P; Olsen, J; Arnvig Mcguire, K; Larsen, S

    2000-12-01

    Crystal structure data for Escherichia coli beta-ketoacyl synthase (KAS) I with C(10) and C(12) fatty acid substrates bound in conjunction with results from mutagenizing residues in the active site leads to a model for catalysis. Differences from and similarities to the other Claisen enzymes carrying out decarboxylations reveal two catalytic mechanisms, one for KAS I and KAS II, the other for KAS III and chalcone synthase. A comparison of the structures of KAS I and KAS II does not reveal the basis of chain-length specificity. The structures of the Arabidopsis thaliana KAS family are compared.

  6. Engineered biosynthesis of plant polyketides: manipulation of chalcone synthase.

    PubMed

    Abe, Ikuro; Watanabe, Tatsuya; Morita, Hiroyuki; Kohno, Toshiyuki; Noguchi, Hiroshi

    2006-02-02

    [reaction: see text]. Chalcone synthase (CHS) is a plant-specific type III polyketide synthase catalyzing condensation of 4-coumaroyl-CoA with three molecules of malonyl-CoA. Surprisingly, it was demonstrated that S338V mutant of Scutellaria baicalensis CHS produced octaketides SEK4/SEK4b from eight molecules of malonyl-CoA. Further, the octaketides-forming activity was dramatically increased in a CHS triple mutant (T197G/G256L/S338T). The functional conversion is based on the simple steric modulation of a chemically inert residue lining the active-site cavity.

  7. Analysis of the cercosporin polyketide synthase CTB1 reveals a new fungal thioesterase function

    PubMed Central

    Newman, Adam G.; Vagstad, Anna L.; Belecki, Katherine; Scheerer, Jonathan R.

    2012-01-01

    The polyketide synthase CTB1 is demonstrated to catalyze pyrone formation thereby expanding the known biosynthetic repertoire of thioesterase domains in iterative, non-reducing polyketide synthases. PMID:23108075

  8. Benzophenone Synthase and Chalcone Synthase Accumulate in the Mesophyll of Hypericum perforatum Leaves at Different Developmental Stages.

    PubMed

    Belkheir, Asma K; Gaid, Mariam; Liu, Benye; Hänsch, Robert; Beerhues, Ludger

    2016-01-01

    The active medicinal constituents in Hypericum perforatum, used to treat depression and skin irritation, include flavonoids and xanthones. The carbon skeletons of these compounds are formed by chalcone synthase (CHS) and benzophenone synthase (BPS), respectively. Polyclonal antisera were raised against the polyketide synthases from Hypericum androsaemum and their IgG fractions were isolated. Immunoblotting and immunotitration were used to test the IgGs for crossreactivity and monospecificity in H. perforatum leaf protein extract. Immunofluorescence localization revealed that both CHS and BPS are located in the mesophyll. The maximum fluorescence levels were observed in approx. 0.5 and 1 cm long leaves, respectively. The fluorescence intensity observed for CHS significantly exceeded that for BPS. Using histochemical staining, flavonoids were detected in the mesophyll, indicating that the sites of biosynthesis and accumulation coincide. Our results help understand the biosynthesis and underlying regulation of active H. perforatum constituents.

  9. Benzophenone Synthase and Chalcone Synthase Accumulate in the Mesophyll of Hypericum perforatum Leaves at Different Developmental Stages

    PubMed Central

    Belkheir, Asma K.; Gaid, Mariam; Liu, Benye; Hänsch, Robert; Beerhues, Ludger

    2016-01-01

    The active medicinal constituents in Hypericum perforatum, used to treat depression and skin irritation, include flavonoids and xanthones. The carbon skeletons of these compounds are formed by chalcone synthase (CHS) and benzophenone synthase (BPS), respectively. Polyclonal antisera were raised against the polyketide synthases from Hypericum androsaemum and their IgG fractions were isolated. Immunoblotting and immunotitration were used to test the IgGs for crossreactivity and monospecificity in H. perforatum leaf protein extract. Immunofluorescence localization revealed that both CHS and BPS are located in the mesophyll. The maximum fluorescence levels were observed in approx. 0.5 and 1 cm long leaves, respectively. The fluorescence intensity observed for CHS significantly exceeded that for BPS. Using histochemical staining, flavonoids were detected in the mesophyll, indicating that the sites of biosynthesis and accumulation coincide. Our results help understand the biosynthesis and underlying regulation of active H. perforatum constituents. PMID:27446151

  10. Enzymatic proof for the identity of the S-sulfocysteine synthase and cysteine synthase B of Salmonella typhimurium.

    PubMed Central

    Nakamura, T; Iwahashi, H; Eguchi, Y

    1984-01-01

    S-Sulfocysteine synthase was isolated from Salmonella typhimurium LT-2 to homogeneous form with polyacrylamide gel electrophoresis. The molecular weight of this enzyme was determined to be ca. 55,000. The enzyme consisted of two identically sized subunits, and it contained one pyridoxal phosphate per subunit. The enzyme catalyzed the biosynthesis of cysteine or S-methylcysteine from sulfide or methanethiol and O-acetylserine, respectively, in addition to the formation of S-sulfocysteine from thiosulfate and O-acetylserine. The enzyme is identical to cysteine synthase B. The intracellular level of this enzyme was regulated by lesser extents of the same factors as those effective for cysteine synthase A. Images PMID:6373737

  11. The Remarkable Character of Porphobilinogen Synthase.

    PubMed

    Jaffe, Eileen K

    2016-11-15

    Porphobilinogen synthase (PBGS), also known as 5-aminolevulinate dehydratase, is an essential enzyme in the biosynthesis of all tetrapyrroles, which function in respiration, photosynthesis, and methanogenesis. Throughout evolution, PBGS adapted to a diversity of cellular niches and evolved to use an unusual variety of metal ions both for catalytic function and to control protein multimerization. With regard to the active site, some PBGSs require Zn(2+); a subset of those, including human PBGS, contain a constellation of cysteine residues that acts as a sink for the environmental toxin Pb(2+). PBGSs that do not require the soft metal ion Zn(2+) at the active site instead are suspected of using the hard metal Mg(2+). The most unexpected property of the PBGS family of enzymes is a dissociative allosteric mechanism that utilizes an equilibrium of architecturally and functionally distinct protein assemblies. The high-activity assembly is an octamer in which intersubunit interactions modulate active-site lid motion. This octamer can dissociate to dimer, the dimer can undergo a hinge twist, and the twisted dimer can assemble to a low-activity hexamer. The hexamer does not have the intersubunit interactions required to stabilize a closed conformation of the active site lid. PBGS active site chemistry benefits from a closed lid because porphobilinogen biosynthesis includes Schiff base formation, which requires deprotonated lysine amino groups. N-terminal and C-terminal sequence extensions dictate whether a specific species of PBGS can sample the hexameric assembly. The bulk of species (nearly all except animals and yeasts) use Mg(2+) as an allosteric activator. Mg(2+) functions allosterically by binding to an intersubunit interface that is present in the octamer but absent in the hexamer. This conformational selection allosteric mechanism is purported to be essential to avoid the untimely accumulation of phototoxic chlorophyll precursors in plants. For those PBGSs that do

  12. Characterization of spermidine synthase and spermine synthase--The polyamine-synthetic enzymes that induce early flowering in Gentiana triflora.

    PubMed

    Imamura, Tomohiro; Fujita, Kohei; Tasaki, Keisuke; Higuchi, Atsumi; Takahashi, Hideyuki

    2015-08-07

    Polyamines are essential for several living processes in plants. However, regulatory mechanisms of polyamines in herbaceous perennial are almost unknown. Here, we identified homologs of two Arabidopsis polyamine-synthetic enzymes, spermidine synthase (SPDS) and spermine synthase (SPMS) denoted as GtSPDS and GtSPMS, from the gentian plant, Gentiana triflora. Our results showed that recombinant proteins of GtSPDS and GtSPMS possessed SPDS and SPMS activities, respectively. The expression levels of GtSPDS and GtSPMS increased transiently during vegetative to reproductive growth phase and overexpression of the genes hastened flowering, suggesting that these genes are involved in flowering induction in gentian plants.

  13. Benzophenone synthase and chalcone synthase from Hypericum androsaemum cell cultures: cDNA cloning, functional expression, and site-directed mutagenesis of two polyketide synthases.

    PubMed

    Liu, Benye; Falkenstein-Paul, Hildegard; Schmidt, Werner; Beerhues, Ludger

    2003-06-01

    Benzophenone derivatives, such as polyprenylated benzoylphloroglucinols and xanthones, are biologically active secondary metabolites. The formation of their C13 skeleton is catalyzed by benzophenone synthase (BPS; EC 2.3.1.151) that has been cloned from cell cultures of Hypericum androsaemum. BPS is a novel member of the superfamily of plant polyketide synthases (PKSs), also termed type III PKSs, with 53-63% amino acid sequence identity. Heterologously expressed BPS was a homodimer with a subunit molecular mass of 42.8 kDa. Its preferred starter substrate was benzoyl-CoA that was stepwise condensed with three malonyl-CoAs to give 2,4,6-trihydroxybenzophenone. BPS did not accept activated cinnamic acids as starter molecules. In contrast, recombinant chalcone synthase (CHS; EC 2.3.1.74) from the same cell cultures preferentially used 4-coumaroyl-CoA and also converted CoA esters of benzoic acids. The enzyme shared 60.1% amino acid sequence identity with BPS. In a phylogenetic tree, the two PKSs occurred in different clusters. One cluster was formed by CHSs including the one from H. androsaemum. BPS grouped together with the PKSs that functionally differ from CHS. Site-directed mutagenesis of amino acids shaping the initiation/elongation cavity of CHS yielded a triple mutant (L263M/F265Y/S338G) that preferred benzoyl-CoA over 4-coumaroyl-CoA.

  14. The polymorphisms in methylenetetrahydrofolate reductase, methionine synthase, methionine synthase reductase, and the risk of colorectal cancer.

    PubMed

    Zhou, Daijun; Mei, Qiang; Luo, Han; Tang, Bo; Yu, Peiwu

    2012-01-01

    Polymorphisms in genes involved in folate metabolism may modulate the risk of colorectal cancer (CRC), but data from published studies are conflicting. The current meta-analysis was performed to address a more accurate estimation. A total of 41 (17,552 cases and 26,238 controls), 24(8,263 cases and 12,033 controls), 12(3,758 cases and 5,646 controls), and 13 (5,511 cases and 7,265 controls) studies were finally included for the association between methylenetetrahydrofolate reductase (MTHFR) C677T and A1289C, methione synthase reductase (MTRR) A66G, methionine synthase (MTR) A2756G polymorphisms and the risk of CRC, respectively. The data showed that the MTHFR 677T allele was significantly associated with reduced risk of CRC (OR = 0.93, 95%CI 0.90-0.96), while the MTRR 66G allele was significantly associated with increased risk of CRC (OR = 1.11, 95%CI 1.01-1.18). Sub-group analysis by ethnicity revealed that MTHFR C677T polymorphism was significantly associated with reduced risk of CRC in Asians (OR = 0.80, 95%CI 0.72-0.89) and Caucasians (OR = 0.84, 95%CI 0.76-0.93) in recessive genetic model, while the MTRR 66GG genotype was found to significantly increase the risk of CRC in Caucasians (GG vs. AA: OR = 1.18, 95%CI 1.03-1.36). No significant association was found between MTHFR A1298C and MTR A2756G polymorphisms and the risk of CRC. Cumulative meta-analysis showed no particular time trend existed in the summary estimate. Probability of publication bias was low across all comparisons illustrated by the funnel plots and Egger's test. Collectively, this meta-analysis suggested that MTHFR 677T allele might provide protection against CRC in worldwide populations, while MTRR 66G allele might increase the risk of CRC in Caucasians. Since potential confounders could not be ruled out completely, further studies were needed to confirm these results.

  15. The Polymorphisms in Methylenetetrahydrofolate Reductase, Methionine Synthase, Methionine Synthase Reductase, and the Risk of Colorectal Cancer

    PubMed Central

    Zhou, Daijun; Mei, Qiang; Luo, Han; Tang, Bo; Yu, Peiwu

    2012-01-01

    Polymorphisms in genes involved in folate metabolism may modulate the risk of colorectal cancer (CRC), but data from published studies are conflicting. The current meta-analysis was performed to address a more accurate estimation. A total of 41 (17,552 cases and 26,238 controls), 24(8,263 cases and 12,033 controls), 12(3,758 cases and 5,646 controls), and 13 (5,511 cases and 7,265 controls) studies were finally included for the association between methylenetetrahydrofolate reductase (MTHFR) C677T and A1289C, methione synthase reductase (MTRR) A66G, methionine synthase (MTR) A2756G polymorphisms and the risk of CRC, respectively. The data showed that the MTHFR 677T allele was significantly associated with reduced risk of CRC (OR = 0.93, 95%CI 0.90-0.96), while the MTRR 66G allele was significantly associated with increased risk of CRC (OR = 1.11, 95%CI 1.01-1.18). Sub-group analysis by ethnicity revealed that MTHFR C677T polymorphism was significantly associated with reduced risk of CRC in Asians (OR = 0.80, 95%CI 0.72-0.89) and Caucasians (OR = 0.84, 95%CI 0.76-0.93) in recessive genetic model, while the MTRR 66GG genotype was found to significantly increase the risk of CRC in Caucasians (GG vs. AA: OR = 1.18, 95%CI 1.03-1.36). No significant association was found between MTHFR A1298C and MTR A2756G polymorphisms and the risk of CRC. Cumulative meta-analysis showed no particular time trend existed in the summary estimate. Probability of publication bias was low across all comparisons illustrated by the funnel plots and Egger's test. Collectively, this meta-analysis suggested that MTHFR 677T allele might provide protection against CRC in worldwide populations, while MTRR 66G allele might increase the risk of CRC in Caucasians. Since potential confounders could not be ruled out completely, further studies were needed to confirm these results. PMID:22719222

  16. Isoelectric focusing of wound-induced tomato ACC synthase

    SciTech Connect

    White, J.A.; Kende, H. )

    1990-05-01

    Several techniques of electrofocusing have been used to determine whether 1-aminocyclopropane-1-carboxylate (ACC) synthase isolated from wounded tomato pericarp tissue exists in different isoforms, each with its characteristic isoelectric point (pI). The pI of the native enzyme was found to be 6.0 {plus minus} 0.2. When radiolabeled, denatured ACC synthase was electrofocused by non-equilibrium pH gradient electrophoresis (NEpHGE), the enzyme separated into four discernible spots which, upon reaching equilibrium, ranged in pI from 6.6 to 6.9. Immunopurified ACC synthase from four tomato cultivars (Duke, Cornell, Mountain Pride and Pik Red) migrated in each case as a 50-kDa protein on sodium dodecyl sulfate polyacrylamide gels (SDS-PAGE). We propose that native ACC synthase in extracts of tomato pericarp tissue exists in one single form and that the charge heterogeneities observed upon electrofocusing of denatured enzyme result from modifications of preexisting protein.

  17. Substituted 2-aminopyridines as inhibitors of nitric oxide synthases.

    PubMed

    Hagmann, W K; Caldwell, C G; Chen, P; Durette, P L; Esser, C K; Lanza, T J; Kopka, I E; Guthikonda, R; Shah, S K; MacCoss, M; Chabin, R M; Fletcher, D; Grant, S K; Green, B G; Humes, J L; Kelly, T M; Luell, S; Meurer, R; Moore, V; Pacholok, S G; Pavia, T; Williams, H R; Wong, K K

    2000-09-04

    A series of substituted 2-aminopyridines was prepared and evaluated as inhibitors of human nitric oxide synthases (NOS). 4,6-Disubstitution enhanced both potency and specificity for the inducible NOS with the most potent compound having an IC50 of 28 nM.

  18. Mammalian fatty acid synthase: closure on a textbook mechanism?

    PubMed

    Leadlay, Peter; Baerga-Ortiz, Abel

    2003-02-01

    Mammalian fatty acid synthase is a classic example of a chain-building multienzyme. A cornerstone of its mechanism has been the obligatory collaboration of two identical subunits, with fatty acyl intermediates transferring between them. Now, fresh evidence has upset this view.

  19. Biosynthesis of polyketides by trans-AT polyketide synthases.

    PubMed

    Helfrich, Eric J N; Piel, Jörn

    2016-02-01

    This review discusses the biosynthesis of natural products that are generated by trans-AT polyketide synthases, a family of catalytically versatile enzymes that represents one of the major group of proteins involved in the production of bioactive polyketides. The article includes 609 references and covers the literature from 2009 through June 2015.

  20. Biosynthesis of polyketides by trans-AT polyketide synthases.

    PubMed

    Piel, Jörn

    2010-07-01

    This review discusses the biosynthesis of natural products that are generated by trans-AT polyketide synthases, a family of catalytically versatile enzymes that have recently been recognized as one of the major group of proteins involved in the production of bioactive polyketides. 436 references are cited.

  1. Insight into Biochemical Characterization of Plant Sesquiterpene Synthases

    PubMed Central

    Manczak, Tom; Simonsen, Henrik Toft

    2016-01-01

    A fast and reproducible protocol was established for enzymatic characterization of plant sesquiterpene synthases that can incorporate radioactivity in their products. The method utilizes the 96-well format in conjunction with cluster tubes and enables processing of >200 samples a day. Along with reduced reagent usage, it allows further reduction in the use of radioactive isotopes and flammable organic solvents. The sesquiterpene synthases previously characterized were expressed in yeast, and the plant-derived Thapsia garganica kunzeaol synthase TgTPS2 was tested in this method. KM for TgTPS2 was found to be 0.55 μM; the turnover number, kcat, was found to be 0.29 s−1, kcat for TgTPS2 is in agreement with that of terpene synthases of other plants, and kcat/KM was found to be 0.53 s−1 μM−1 for TgTPS2. The kinetic parameters were in agreement with previously published data. PMID:27721652

  2. Genetics Home Reference: N-acetylglutamate synthase deficiency

    MedlinePlus

    ... of reactions that occurs in liver cells. This cycle processes excess nitrogen, generated when protein is used by the body, to make a compound called urea that is excreted by the kidneys. The ... cycle. In people with N-acetylglutamate synthase deficiency , N- ...

  3. Glycerol-3-phosphate acyltransferase-1 upregulation by O-GlcNAcylation of Sp1 protects against hypoxia-induced mouse embryonic stem cell apoptosis via mTOR activation

    PubMed Central

    Lee, H J; Ryu, J M; Jung, Y H; Lee, K H; Kim, D I; Han, H J

    2016-01-01

    Oxygen signaling is critical for stem cell regulation, and oxidative stress-induced stem cell apoptosis decreases the efficiency of stem cell therapy. Hypoxia activates O-linked β-N-acetyl glucosaminylation (O-GlcNAcylation) of stem cells, which contributes to regulation of cellular metabolism, as well as cell fate. Our study investigated the role of O-GlcNAcylation via glucosamine in the protection of hypoxia-induced apoptosis of mouse embryonic stem cells (mESCs). Hypoxia increased mESCs apoptosis in a time-dependent manner. Moreover, hypoxia also slightly increased the O-GlcNAc level. Glucosamine treatment further enhanced the O-GlcNAc level and prevented hypoxia-induced mESC apoptosis, which was suppressed by O-GlcNAc transferase inhibitors. In addition, hypoxia regulated several lipid metabolic enzymes, whereas glucosamine increased expression of glycerol-3-phosphate acyltransferase-1 (GPAT1), a lipid metabolic enzyme producing lysophosphatidic acid (LPA). In addition, glucosamine-increased O-GlcNAcylation of Sp1, which subsequently leads to Sp1 nuclear translocation and GPAT1 expression. Silencing of GPAT1 by gpat1 siRNA transfection reduced glucosamine-mediated anti-apoptosis in mESCs and reduced mammalian target of rapamycin (mTOR) phosphorylation. Indeed, LPA prevented mESCs from undergoing hypoxia-induced apoptosis and increased phosphorylation of mTOR and its substrates (S6K1 and 4EBP1). Moreover, mTOR inactivation by rapamycin (mTOR inhibitor) increased pro-apoptotic proteins expressions and mESC apoptosis. Furthermore, transplantation of non-targeting siRNA and glucosamine-treated mESCs increased cell survival and inhibited flap necrosis in mouse skin flap model. Conversely, silencing of GPAT1 expression reversed those glucosamine effects. In conclusion, enhancing O-GlcNAcylation of Sp1 by glucosamine stimulates GPAT1 expression, which leads to inhibition of hypoxia-induced mESC apoptosis via mTOR activation. PMID:27010859

  4. Participation of analogues of lysophosphatidic acid (LPA): oleoyl-sn-glycero-3-phosphate (L-alpha-LPA) and 1-oleoyl-2-O-methyl-rac-glycerophosphothionate (OMPT) in uterine smooth muscle contractility of the pregnant pigs.

    PubMed

    Markiewicz, W; Kamińska, K; Bogacki, M; Maślanka, T; Jaroszewski, J

    2012-01-01

    Recent studies show that a representative of phospholipids, namely lysophosphatidic acid (LPA) and its receptors (LPA1.3) play a significant role in the reproductive processes, i. a, in the modulation of the uterine contractility. The participation of LPA3 in the reproductive processes has been revealed in mice and has not been studied in gilts. Therefore, in the present study we investigated the role/action of LPA and its receptors LPA1, LPA2 and LPA3 on the contraction activity in the porcine uterus. The study was conducted on an experimental model in which the pig uterus consisted of the one whole uterine horn and a part of the second horn, both connected with the uterine corpus. Uterine strips consisting of the endometrium with the myometrium (ENDO/MYO) and myometrium (MYO) alone were collected on days 12-14 of the estrous cycle (control group; n = 5) or pregnancy (experimental group; n = 5). Two analogues of LPA at increasing doses were used: oleoyl-sn-glycero-3-phosphate (L-alpha-LPA, a selective agonist of LPA1 and LPA2 receptors; 10(-7) M; 10(-6) M and 10(-5) M) and 1-oleoyl-2-O-methyl-rac-glycerophosphothionate (OMPT, a selective agonist of LPA3 receptor; 68 nM; 136 nM and 680 nM). L-alpha-LPA caused an increase in the contraction tension, amplitude and frequency of ENDO/MYO from the uterine horn with the developing embryos. This effect was not observed in MYO in both groups examined. In the ENDO/MYO strips of the uterine horn with developing embryos, OMPT significantly increased the contraction tension at the highest dose (680 nM) and amplitude at all doses examined, while frequency of contractions was decreased at doses of 136 nM and 680 nM. In the MYO strips of the uterine horn with embryos a significant increase in the contraction tension and amplitude after the highest dose of OMPT was observed. The results obtained imply the important role of receptors LPA1, LPA2 and LPA3 in the contraction activity of the porcine uterus during early pregnancy.

  5. Mechanism-oriented redesign of an isomaltulose synthase to an isomelezitose synthase by site-directed mutagenesis.

    PubMed

    Görl, Julian; Timm, Malte; Seibel, Jürgen

    2012-01-02

    An isomelezitose synthase was redesigned out of the sucrose isomerase from Protaminobacter rubrum for the synthesis of isomelezitose (6-O(F)-glucosylsucrose), a potential nutraceutical. The variants F297A, F297P, R333K, F321A_F319A and E428D catalyze the formation of isomelezitose in up to 70 % yield.

  6. Identifying the catalytic components of cellulose synthase and the maize mixed-linkage beta-glucan synthase

    SciTech Connect

    Nicholas C Carpita

    2009-04-20

    Five specific objectives of this project are to develop strategies to identify the genes that encode the catalytic components of "mixed-linkage" (1→3),(1→4)-beta-D-glucans in grasses, to determine the protein components of the synthase complex, and determine the biochemical mechanism of synthesis. We have used proteomic approaches to define intrinsic and extrinsic polypeptides of Golgi membranes that are associated with polysaccharide synthesis and trafficking. We were successful in producing recombinant catalytic domains of cellulose synthase genes and discovered that they dimerize upon concentration, indicating that two CesA proteins form the catalytic unit. We characterized a brittle stalk2 mutant as a defect in a COBRA-like protein that results in compromised lignin-cellulose interactions that decrease tissue flexibility. We used virus-induced gene silencing of barley cell wall polysaccharide synthesis by BSMV in an attempt to silence specific members of the cellulose synthase-like gene family. However, we unexpectedly found that regardless of the specificity of the target gene, whole gene interaction networks were silenced. We discovered the cause to be an antisense transcript of the cellulose synthase gene initiated small interfering RNAs that spread silencing to related genes.

  7. Transgene silencing of sucrose synthase in alfalfa stem vascular tissue by a truncated phosphoenolpyruvate carboxylase: sucrose synthase construct

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An important role of sucrose synthase (SUS, EC 2.4.1.13) in plants is to provide UDP-glucose needed for cellulose synthesis in cell walls. We examined if over-expressing SUS in alfalfa (Medicago sativa L.) would increase cellulose content of stem cell walls. Alfalfa plants were transformed with two ...

  8. Isolation and functional characterization of a τ-cadinol synthase, a new sesquiterpene synthase from Lavandula angustifolia.

    PubMed

    Jullien, Frédéric; Moja, Sandrine; Bony, Aurélie; Legrand, Sylvain; Petit, Cécile; Benabdelkader, Tarek; Poirot, Kévin; Fiorucci, Sébastien; Guitton, Yann; Nicolè, Florence; Baudino, Sylvie; Magnard, Jean-Louis

    2014-01-01

    In this paper we characterize three sTPSs: a germacrene D (LaGERDS), a (E)-β-caryophyllene (LaCARS) and a τ-cadinol synthase (LaCADS). τ-cadinol synthase is reported here for the first time and its activity was studied in several biological models including transiently or stably transformed tobacco species. Three dimensional structure models of LaCADS and Ocimum basilicum γ-cadinene synthase were built by homology modeling using the template structure of Gossypium arboreum δ-cadinene synthase. The depiction of their active site organization provides evidence of the global influence of the enzymes on the formation of τ-cadinol: instead of a unique amino-acid, the electrostatic properties and solvent accessibility of the whole active site in LaCADS may explain the stabilization of the cadinyl cation intermediate. Quantitative PCR performed from leaves and inflorescences showed two patterns of expression. LaGERDS and LaCARS were mainly expressed during early stages of flower development and, at these stages, transcript levels paralleled the accumulation of the corresponding terpene products (germacrene D and (E)-β-caryophyllene). By contrast, the expression level of LaCADS was constant in leaves and flowers. Phylogenetic analysis provided informative results on potential duplication process leading to sTPS diversification in lavender.

  9. Mechanism of Germacradien-4-ol Synthase-Controlled Water Capture

    PubMed Central

    2016-01-01

    The sesquiterpene synthase germacradiene-4-ol synthase (GdolS) from Streptomyces citricolor is one of only a few known high-fidelity terpene synthases that convert farnesyl diphosphate (FDP) into a single hydroxylated product. Crystals of unliganded GdolS-E248A diffracted to 1.50 Å and revealed a typical class 1 sesquiterpene synthase fold with the active site in an open conformation. The metal binding motifs were identified as D80DQFD and N218DVRSFAQE. Some bound water molecules were evident in the X-ray crystal structure, but none were obviously positioned to quench a putative final carbocation intermediate. Incubations in H218O generated labeled product, confirming that the alcohol functionality arises from nucleophilic capture of the final carbocation by water originating from solution. Site-directed mutagenesis of amino acid residues from both within the metal binding motifs and without identified by sequence alignment with aristolochene synthase from Aspergillus terreus generated mostly functional germacradien-4-ol synthases. Only GdolS-N218Q generated radically different products (∼50% germacrene A), but no direct evidence of the mechanism of incorporation of water into the active site was obtained. Fluorinated FDP analogues 2F-FDP and 15,15,15-F3-FDP were potent noncompetitive inhibitors of GdolS. 12,13-DiF-FDP generated 12,13-(E)-β-farnesene upon being incubated with GdolS, suggesting stepwise formation of the germacryl cation during the catalytic cycle. Incubation of GdolS with [1-2H2]FDP and (R)-[1-2H]FDP demonstrated that following germacryl cation formation a [1,3]-hydride shift generates the final carbocation prior to nucleophilic capture. The stereochemistry of this shift is not defined, and the deuteron in the final product was scrambled. Because no clear candidate residue for binding of a nucleophilic water molecule in the active site and no significant perturbation of product distribution from the replacement of active site residues were

  10. Kinetic mechanism of rabbit muscle glycogen synthase I.

    PubMed

    Gold, A M

    1980-08-05

    The kinetic mechanism of rabbit muscle glycogen synthase I was investigated by determining isotope-exchange rates at chemical equilibrium between uridine diphosphoglucose (UDPG) and glycogen and between UDPG and uridine 5'-diphosphate (UDP). The rates were followed simultaneously by use of UDPG labeled with 14C in the glucose moiety and with 3H in the uracil group. They were found to be independent of the concentrations of glycogen and the UDPG-UDP pair, averaging 6 X 10(-9) mol min-1 mg-1, with a ratio of UDPG-glycogen exchange to UDPG-UDP exchange of 0.85-0.95. The conclusion is that glycogen synthase has a rapid equilibrium random bi bi mechanism. The previously reported slow activation of glycogen-free synthase in the presence of glycogen was examined kinetically. The activation rate appears to be independent of glycogen concentration over a wide range, while the maximum activation is related to the third or fourth root of the glycogen concentration. This suggest that the slow bimolecular reaction mechanism proposed for human polymorphonuclear leucocyte glycogen synthase I [Sølling, H., & Esmann, V. (1977) Eur. J. Biochem. 81, 129] does not apply to rabbit muscle synthase I. The rate of exchange of glycogen molecules in the complex between glycogen and rabbit muscle synthase I under conditions where the enzyme is catalytically active was estimated by a novel method. The enzyme-glycogen complex was treated with [glucose-14C]UDPG and glycogen of different molecular weight. The distribution of isotope between the two forms of glycogen was determined after their separation by agarose gel chromatography. A rate constant of 0.3 min-1 was estimated for the exchange. It can be calculated, on the basis of the specific activity of the enzyme (20 mumol min-1 mg-1) and its action pattern, that hundreds of individual chains in the glycogen molecule must be available to the enzyme during the average lifetime of the complex. A mechanism is proposed for this process.

  11. Ectopic expression of ceramide synthase 2 in neurons suppresses neurodegeneration induced by ceramide synthase 1 deficiency

    PubMed Central

    Spassieva, Stefka D.; Ji, Xiaojie; Liu, Ye; Gable, Kenneth; Bielawski, Jacek; Dunn, Teresa M.; Bieberich, Erhard; Zhao, Lihong

    2016-01-01

    Sphingolipids exhibit extreme functional and chemical diversity that is in part determined by their hydrophobic moiety, ceramide. In mammals, the fatty acyl chain length variation of ceramides is determined by six (dihydro)ceramide synthase (CerS) isoforms. Previously, we and others showed that mutations in the major neuron-specific CerS1, which synthesizes 18-carbon fatty acyl (C18) ceramide, cause elevation of long-chain base (LCB) substrates and decrease in C18 ceramide and derivatives in the brain, leading to neurodegeneration in mice and myoclonus epilepsy with dementia in humans. Whether LCB elevation or C18 ceramide reduction leads to neurodegeneration is unclear. Here, we ectopically expressed CerS2, a nonneuronal CerS producing C22–C24 ceramides, in neurons of Cers1-deficient mice. Surprisingly, the Cers1 mutant pathology was almost completely suppressed. Because CerS2 cannot replenish C18 ceramide, the rescue is likely a result of LCB reduction. Consistent with this hypothesis, we found that only LCBs, the substrates common for all of the CerS isoforms, but not ceramides and complex sphingolipids, were restored to the wild-type levels in the Cers2-rescued Cers1 mutant mouse brains. Furthermore, LCBs induced neurite fragmentation in cultured neurons at concentrations corresponding to the elevated levels in the CerS1-deficient brain. The strong association of LCB levels with neuronal survival both in vivo and in vitro suggests high-level accumulation of LCBs is a possible underlying cause of the CerS1 deficiency-induced neuronal death. PMID:27162368

  12. Deficiency of sphingomyelin synthase-1 but not sphingomyelin synthase-2 causes hearing impairments in mice.

    PubMed

    Lu, Mei-Hong; Takemoto, Makoto; Watanabe, Ken; Luo, Huan; Nishimura, Masataka; Yano, Masato; Tomimoto, Hidekazu; Okazaki, Toshiro; Oike, Yuichi; Song, Wen-Jie

    2012-08-15

    Sphingomyelin (SM) is a sphingolipid reported to function as a structural component of plasma membranes and to participate in signal transduction. The role of SM metabolism in the process of hearing remains controversial. Here, we examined the role of SM synthase (SMS), which is subcategorized into the family members SMS1 and SMS2, in auditory function. Measurements of auditory brainstem response (ABR) revealed hearing impairment in SMS1−/− mice in a low frequency range (4–16 kHz). As a possible mechanism of this impairment, we found that the stria vascularis (SV) in these mice exhibited atrophy and disorganized marginal cells. Consequently, SMS1−/− mice exhibited significantly smaller endocochlear potentials (EPs). As a possible mechanism for EP reduction, we found altered expression patterns and a reduced level of KCNQ1 channel protein in the SV of SMS1−/− mice. These mice also exhibited reduced levels of distortion product otoacoustic emissions. Quantitative comparison of the SV atrophy, KCNQ1 expression, and outer hair cell density at the cochlear apical and basal turns revealed no location dependence, but more macrophage invasion into the SV was observed in the apical region than the basal region, suggesting a role of cochlear location-dependent oxidative stress in producing the frequency dependence of hearing loss in SMS1−/− mice. Elevated ABR thresholds, decreased EPs, and abnormal KCNQ1 expression patterns in SMS1−/− mice were all found to be progressive with age. Mice lacking SMS2, however, exhibited neither detectable hearing loss nor changes in their EPs. Taken together, our results suggest that hearing impairments occur in SMS1−/− but not SMS2−/− mice. Defects in the SV with subsequent reductions in EPs together with hair cell dysfunction may account, at least partially, for hearing impairments in SMS1−/− mice.

  13. Structure of isochorismate synthase DhbC from Bacillus anthracis.

    PubMed

    Domagalski, M J; Tkaczuk, K L; Chruszcz, M; Skarina, T; Onopriyenko, O; Cymborowski, M; Grabowski, M; Savchenko, A; Minor, W

    2013-09-01

    The isochorismate synthase DhbC from Bacillus anthracis is essential for the biosynthesis of the siderophore bacillibactin by this pathogenic bacterium. The structure of the selenomethionine-substituted protein was determined to 2.4 Å resolution using single-wavelength anomalous diffraction. B. anthracis DhbC bears the strongest resemblance to the Escherichia coli isochorismate synthase EntC, which is involved in the biosynthesis of another siderophore, namely enterobactin. Both proteins adopt the characteristic fold of other chorismate-utilizing enzymes, which are involved in the biosynthesis of various products, including siderophores, menaquinone and tryptophan. The conservation of the active-site residues, as well as their spatial arrangement, suggests that these enzymes share a common Mg(2+)-dependent catalytic mechanism.

  14. Defining the Product Chemical Space of Monoterpenoid Synthases

    PubMed Central

    Tian, Boxue; Poulter, C. Dale; Jacobson, Matthew P.

    2016-01-01

    Terpenoid synthases create diverse carbon skeletons by catalyzing complex carbocation rearrangements, making them particularly challenging for enzyme function prediction. To begin to address this challenge, we have developed a computational approach for the systematic enumeration of terpenoid carbocations. Application of this approach allows us to systematically define a nearly complete chemical space for the potential carbon skeletons of products from monoterpenoid synthases. Specifically, 18758 carbocations were generated, which we cluster into 74 cyclic skeletons. Five of the 74 skeletons are found in known natural products; some of the others are plausible for new functions, either in nature or engineered. This work systematizes the description of function for this class of enzymes, and provides a basis for predicting functions of uncharacterized enzymes. To our knowledge, this is the first computational study to explore the complete product chemical space of this important class of enzymes. PMID:27517297

  15. Structure of isochorismate synthase DhbC from Bacillus anthracis

    PubMed Central

    Domagalski, M. J.; Tkaczuk, K. L.; Chruszcz, M.; Skarina, T.; Onopriyenko, O.; Cymborowski, M.; Grabowski, M.; Savchenko, A.; Minor, W.

    2013-01-01

    The isochorismate synthase DhbC from Bacillus anthracis is essential for the biosynthesis of the siderophore bacillibactin by this pathogenic bacterium. The structure of the selenomethionine-substituted protein was determined to 2.4 Å resolution using single-wavelength anomalous diffraction. B. anthracis DhbC bears the strongest resemblance to the Escherichia coli isochorismate synthase EntC, which is involved in the biosynthesis of another siderophore, namely enterobactin. Both proteins adopt the characteristic fold of other chorismate-utilizing enzymes, which are involved in the biosynthesis of various products, including siderophores, menaquinone and tryptophan. The conservation of the active-site residues, as well as their spatial arrangement, suggests that these enzymes share a common Mg2+-dependent catalytic mechanism. PMID:23989140

  16. Use of linalool synthase in genetic engineering of scent production

    DOEpatents

    Pichersky, Eran

    1998-01-01

    A purified S-linalool synthase polypeptide from Clarkia breweri is disclosed as is the recombinant polypeptide and nucleic acid sequences encoding the polypeptide. Also disclosed are antibodies immunoreactive with the purified peptide and with recombinant versions of the polypeptide. Methods of using the nucleic acid sequences, as well as methods of enhancing the smell and the flavor of plants expressing the nucleic acid sequences are also disclosed.

  17. Isolation and characterization of terpene synthases in cotton (Gossypium hirsutum).

    PubMed

    Yang, Chang-Qing; Wu, Xiu-Ming; Ruan, Ju-Xin; Hu, Wen-Li; Mao, Yin-Bo; Chen, Xiao-Ya; Wang, Ling-Jian

    2013-12-01

    Cotton plants accumulate gossypol and related sesquiterpene aldehydes, which function as phytoalexins against pathogens and feeding deterrents to herbivorous insects. However, to date little is known about the biosynthesis of volatile terpenes in this crop. Herein is reported that 5 monoterpenes and 11 sesquiterpenes from extracts of a glanded cotton cultivar, Gossypium hirsutum cv. CCRI12, were detected by gas chromatography-mass spectrometry (GC-MS). By EST data mining combined with Rapid Amplification of cDNA Ends (RACE), full-length cDNAs of three terpene synthases (TPSs), GhTPS1, GhTPS2 and GhTPS3 were isolated. By in vitro assays of the recombinant proteins, it was found that GhTPS1 and GhTPS2 are sesquiterpene synthases: the former converted farnesyl pyrophosphate (FPP) into β-caryophyllene and α-humulene in a ratio of 2:1, whereas the latter produced several sesquiterpenes with guaia-1(10),11-diene as the major product. By contrast, GhTPS3 is a monoterpene synthase, which produced α-pinene, β-pinene, β-phellandrene and trace amounts of other monoterpenes from geranyl pyrophosphate (GPP). The TPS activities were also supported by Virus Induced Gene Silencing (VIGS) in the cotton plant. GhTPS1 and GhTPS3 were highly expressed in the cotton plant overall, whereas GhTPS2 was expressed only in leaves. When stimulated by mechanical wounding, Verticillium dahliae (Vde) elicitor or methyl jasmonate (MeJA), production of terpenes and expression of the corresponding synthase genes were induced. These data demonstrate that the three genes account for the biosynthesis of volatile terpenes of cotton, at least of this Upland cotton.

  18. Use of linalool synthase in genetic engineering of scent production

    DOEpatents

    Pichersky, E.

    1998-12-15

    A purified S-linalool synthase polypeptide from Clarkia breweri is disclosed as is the recombinant polypeptide and nucleic acid sequences encoding the polypeptide. Also disclosed are antibodies immunoreactive with the purified peptide and with recombinant versions of the polypeptide. Methods of using the nucleic acid sequences, as well as methods of enhancing the smell and the flavor of plants expressing the nucleic acid sequences are also disclosed. 5 figs.

  19. Piriformospora indica requires kaurene synthase activity for successful plant colonization.

    PubMed

    Li, Liang; Chen, Xi; Ma, Chaoyang; Wu, Hongqing; Qi, Shuting

    2016-05-01

    Ent-kaurene (KS) synthases and ent-kaurene-like (KSL) synthases are involved in the biosynthesis of phytoalexins and/or gibberellins which play a role in plant immunity and development. The relationship between expression of five synthase genes (HvKSL1, HvKS2, HvKS4, HvKS5, HvKSL4) and plant colonization by the endophytic fungus Piriformospora indica was assessed in barley (Hordeum vulgare). The KS gene family is differently up-regulated at 1, 3 and 7 day after P. indica inoculation. By comparison, the HvKSL4 gene expression pattern is more significantly affected by UV irradiation and P. indica colonization. The characterizations of two silencing lines (HvKSL1-RNAi, HvKSL4-RNAi) also were analyzed. HvKSL1-RNAi and HvKSL4-RNAi lines in the first generation lead to less dark green leaves and slower plant development. Further, reduced spikelet fertility in progenies of RNAi plants heterozygous for HvKSL1 were observed, but not for HvKSL4. T2 generation of HvKSL1-RNAi line showed semi-dwarf phenotype while the wild type phenotype could be restored by applying GA3. Silencing of HvKSL4 and HvKSL1 resulted in reduced colonization by P. indica especially in the HvKSL1-RNAi line. These results probably suggest the presence of two ent-KS synthase in barley, one (HvKSL1) that participates in the biosynthesis of GAs and another (HvKSL4) that is involved in the biosynthesis of phytoalexins.

  20. Screening for latent acute intermittent porphyria: the value of measuring both leucocyte delta-aminolaevulinic acid synthase and erythrocyte uroporphyrinogen-1-synthase activities.

    PubMed Central

    McColl, K E; Moore, M R; Thompson, G G; Goldberg, A

    1982-01-01

    Acute intermittent porphyria (AIP) is an autosomal dominantly inherited disorder of haem biosynthesis characterised by reduced activity of the enzyme uroporphyrinogen-1-(URO) synthase and compensatory increased activity of the rate controlling enzyme delta-aminolaevulinic acid (ALA) synthase. Subjects with the disorder should be identified as they are at risk of developing severe porphyric attacks if exposed to a variety of drugs or chemicals. We have assessed the value of measuring the activities of ALA synthase and URO synthase in peripheral blood cells as a means of identifying latent cases in affected families. In AIP subjects, ALA synthase activity was increased and URO synthase decreased compared to controls, through there was considerable overlap between the two groups when either enzyme was examined alone. When both enzymes were examined together, all but one of the 19 AIP patients had both increased ALA synthase activity (greater than 250 nmol ALA/g protein/h) and reduced URO synthase activity (less than 25.1 nmol URO/l RBC/h), whereas none of the 62 controls showed this enzyme pattern. Examination of 35 asymptomatic first degree blood relatives of AIP patients showed that 17 (49%) had the porphyric enzyme pattern with no sex bias. The combined study of these two enzymes permits accurate detection of latent cases of AIP and confirms its autosomal dominant inheritance. PMID:7120315

  1. Iterative Polyketide Biosynthesis by Modular Polyketide Synthases in Bacteria

    PubMed Central

    Chen, Haotong; Du, Liangcheng

    2015-01-01

    Modular polyketide synthases (type I PKSs) in bacteria are responsible for synthesizing a significant percentage of bioactive natural products. This group of synthases has a characteristic modular organization, and each module within a PKS carries out one cycle of polyketide chain elongation; thus each module is “non-iterative” in function. It was possible to predict the basic structure of a polyketide product from the module organization of the PKSs, since there generally existed a co-linearity between the number of modules and the number of chain elongations. However, more and more bacterial modular PKSs fail to conform to the “canonical rules”, and a particularly noteworthy group of non-canonical PKSs is the bacterial iterative type I PKSs. This review covers recent examples of iteratively-used modular PKSs in bacteria. These non-canonical PKSs give rise to a large array of natural products with impressive structural diversity. The molecular mechanism behind the iterations is often unclear, presenting a new challenge to the rational engineering of these PKSs with the goal of generating new natural products. Structural elucidation of these synthase complexes and better understanding of potential PKS-PKS interactions as well as PKS-substrate recognition may provide new prospects and inspirations for the discovery and engineering of new bioactive polyketides. PMID:26549236

  2. The Spatial Distribution of Sucrose Synthase Isozymes in Barley.

    PubMed Central

    Guerin, J.; Carbonero, P.

    1997-01-01

    The sucrose (Suc) synthase enzyme purified from barley (Hordeum vulgare L.) roots is a homotetramer that is composed of 90-kD type 1 Suc synthase (SS1) subunits. Km values for Suc and UDP were 30 mM and 5 [mu]M, respectively. This enzyme can also utilize ADP at 25% of the UDP rate. Anti-SS1 polyclonal antibodies, which recognized both SS1 and type 2 Suc synthase (SS2) (88-kD) subunits, and antibodies raised against a synthetic peptide, LANGSTDNNFV, which were specific for SS2, were used to study the spatial distribution of these subunits by immunoblot analysis and immunolocalization. Both SS1 and SS2 were abundantly expressed in endosperm, where they polymerize to form the five possible homo- and heterotetramers. Only SS1 homotetramers were detected in young leaves, where they appeared exclusively in phloem cells, and in roots, where expression was associated with cap cells and the vascular bundle. In the seed both SS1 and SS2 were present in endosperm, but only SS1 was apparent in the chalazal region, the nucellar projection, and the vascular bundle. The physiological implications for the difference in expression patterns observed are discussed with respect to the maize (Zea mays L.) model. PMID:12223688

  3. [Progress and application prospects of glutamine synthase in plants].

    PubMed

    Feng, Wanjun; Xing, Guofang; Niu, Xulong; Dou, Chen; Han, Yuanhuai

    2015-09-01

    Nitrogen is one of the most important nutrient elements for plants and a major limiting factor in plant growth and crop productivity. Glutamine synthase (GS) is a key enzyme involved in the nitrogen assimilation and recycling in plants. So far, members of the glutamine synthase gene family have been characterized in many plants such as Arabidopsis, rice, wheat, and maize. Reports show that GS are involved in the growth and development of plants, in particular its role in seed production. However, the outcome has generally been inconsistent, which are probably derived from the transcriptional and post-translational regulation of GS genes. In this review, we outlined studies on GS gene classification, QTL mapping, the relationship between GS genes and plant growth with nitrogen and the distribution characters, the biological functions of GS genes, as well as expression control at different regulation levels. In addition, we summarized the application prospects of glutamine synthetase genes in enhancing plant growth and yield by improving the nitrogen use efficiency. The prospects were presented on the improvement of nitrogen utility efficiency in crops and plant nitrogen status diagnosis on the basis of glutamine synthase gene regulation.

  4. The structural basis of Erwinia rhapontici isomaltulose synthase.

    PubMed

    Xu, Zheng; Li, Sha; Li, Jie; Li, Yan; Feng, Xiaohai; Wang, Renxiao; Xu, Hong; Zhou, Jiahai

    2013-01-01

    Sucrose isomerase NX-5 from Erwiniarhapontici efficiently catalyzes the isomerization of sucrose to isomaltulose (main product) and trehalulose (by-product). To investigate the molecular mechanism controlling sucrose isomer formation, we determined the crystal structures of native NX-5 and its mutant complexes E295Q/sucrose and D241A/glucose at 1.70 Å, 1.70 Å and 2.00 Å, respectively. The overall structure and active site architecture of NX-5 resemble those of other reported sucrose isomerases. Strikingly, the substrate binding mode of NX-5 is also similar to that of trehalulose synthase from Pseudomonasmesoacidophila MX-45 (MutB). Detailed structural analysis revealed the catalytic RXDRX motif and the adjacent 10-residue loop of NX-5 and isomaltulose synthase PalI from Klebsiella sp. LX3 adopt a distinct orientation from those of trehalulose synthases. Mutations of the loop region of NX-5 resulted in significant changes of the product ratio between isomaltulose and trehalulose. The molecular dynamics simulation data supported the product specificity of NX-5 towards isomaltulose and the role of the loop(330-339) in NX-5 catalysis. This work should prove useful for the engineering of sucrose isomerase for industrial carbohydrate biotransformations.

  5. The Structural Basis of Erwinia rhapontici Isomaltulose Synthase

    PubMed Central

    Xu, Zheng; Li, Sha; Li, Jie; Li, Yan; Feng, Xiaohai; Wang, Renxiao; Xu, Hong; Zhou, Jiahai

    2013-01-01

    Sucrose isomerase NX-5 from Erwiniarhapontici efficiently catalyzes the isomerization of sucrose to isomaltulose (main product) and trehalulose (by-product). To investigate the molecular mechanism controlling sucrose isomer formation, we determined the crystal structures of native NX-5 and its mutant complexes E295Q/sucrose and D241A/glucose at 1.70 Å, 1.70 Å and 2.00 Å, respectively. The overall structure and active site architecture of NX-5 resemble those of other reported sucrose isomerases. Strikingly, the substrate binding mode of NX-5 is also similar to that of trehalulose synthase from Pseudomonasmesoacidophila MX-45 (MutB). Detailed structural analysis revealed the catalytic RXDRX motif and the adjacent 10-residue loop of NX-5 and isomaltulose synthase PalI from Klebsiella sp. LX3 adopt a distinct orientation from those of trehalulose synthases. Mutations of the loop region of NX-5 resulted in significant changes of the product ratio between isomaltulose and trehalulose. The molecular dynamics simulation data supported the product specificity of NX-5 towards isomaltulose and the role of the loop330-339 in NX-5 catalysis. This work should prove useful for the engineering of sucrose isomerase for industrial carbohydrate biotransformations. PMID:24069347

  6. Effect of calcofluor white on chitin synthases from Saccharomyces cerevisiae.

    PubMed Central

    Roncero, C; Valdivieso, M H; Ribas, J C; Durán, A

    1988-01-01

    The growths of Saccharomyces cerevisiae wild-type strain and another strain containing a disrupted structural gene for chitin synthase (chs1::URA3), defective in chitin synthase 1 (Chs1) but showing a new chitin synthase activity (Chs2), were affected by Calcofluor. To be effective, the interaction of Calcofluor with growing cells had to occur at around pH 6. Treatment of growing cells from these strains with the fluorochrome led to an increase in the total levels of Chs1 and Chs2 activities measured on permeabilized cells. During treatment, basal levels (activities expressed in the absence of exogenous proteolytic activation) of Chs1 and Chs2 increased nine- and fourfold, respectively, through a mechanism dependent on protein synthesis, since the effect was abolished by cycloheximide. During alpha-factor treatment, both Chs1 and Chs2 levels increased; however, as opposed to what occurred during the mitotic cell cycle, there was no further increase in Chs1 or Chs2 activities by Calcofluor treatment. Images PMID:2965145

  7. Mechanism of Action and Inhibition of dehydrosqualene Synthase

    SciTech Connect

    F Lin; C Liu; Y Liu; Y Zhang; K Wang; W Jeng; T Ko; R Cao; A Wang; E Oldfield

    2011-12-31

    'Head-to-head' terpene synthases catalyze the first committed steps in sterol and carotenoid biosynthesis: the condensation of two isoprenoid diphosphates to form cyclopropylcarbinyl diphosphates, followed by ring opening. Here, we report the structures of Staphylococcus aureus dehydrosqualene synthase (CrtM) complexed with its reaction intermediate, presqualene diphosphate (PSPP), the dehydrosqualene (DHS) product, as well as a series of inhibitors. The results indicate that, on initial diphosphate loss, the primary carbocation so formed bends down into the interior of the protein to react with C2,3 double bond in the prenyl acceptor to form PSPP, with the lower two-thirds of both PSPP chains occupying essentially the same positions as found in the two farnesyl chains in the substrates. The second-half reaction is then initiated by the PSPP diphosphate returning back to the Mg{sup 2+} cluster for ionization, with the resultant DHS so formed being trapped in a surface pocket. This mechanism is supported by the observation that cationic inhibitors (of interest as antiinfectives) bind with their positive charge located in the same region as the cyclopropyl carbinyl group; that S-thiolo-diphosphates only inhibit when in the allylic site; activity results on 11 mutants show that both DXXXD conserved domains are essential for PSPP ionization; and the observation that head-to-tail isoprenoid synthases as well as terpene cyclases have ionization and alkene-donor sites which spatially overlap those found in CrtM.

  8. From bacterial to human dihydrouridine synthase: automated structure determination

    SciTech Connect

    Whelan, Fiona Jenkins, Huw T.; Griffiths, Samuel C.; Byrne, Robert T.; Dodson, Eleanor J.; Antson, Alfred A.

    2015-06-30

    The crystal structure of a human dihydrouridine synthase, an enzyme associated with lung cancer, with 18% sequence identity to a T. maritima enzyme, has been determined at 1.9 Å resolution by molecular replacement after extensive molecular remodelling of the template. The reduction of uridine to dihydrouridine at specific positions in tRNA is catalysed by dihydrouridine synthase (Dus) enzymes. Increased expression of human dihydrouridine synthase 2 (hDus2) has been linked to pulmonary carcinogenesis, while its knockdown decreased cancer cell line viability, suggesting that it may serve as a valuable target for therapeutic intervention. Here, the X-ray crystal structure of a construct of hDus2 encompassing the catalytic and tRNA-recognition domains (residues 1–340) determined at 1.9 Å resolution is presented. It is shown that the structure can be determined automatically by phenix.mr-rosetta starting from a bacterial Dus enzyme with only 18% sequence identity and a significantly divergent structure. The overall fold of the human Dus2 is similar to that of bacterial enzymes, but has a larger recognition domain and a unique three-stranded antiparallel β-sheet insertion into the catalytic domain that packs next to the recognition domain, contributing to domain–domain interactions. The structure may inform the development of novel therapeutic approaches in the fight against lung cancer.

  9. Cellulose Microfibril Formation by Surface-Tethered Cellulose Synthase Enzymes.

    PubMed

    Basu, Snehasish; Omadjela, Okako; Gaddes, David; Tadigadapa, Srinivas; Zimmer, Jochen; Catchmark, Jeffrey M

    2016-02-23

    Cellulose microfibrils are pseudocrystalline arrays of cellulose chains that are synthesized by cellulose synthases. The enzymes are organized into large membrane-embedded complexes in which each enzyme likely synthesizes and secretes a β-(1→4) glucan. The relationship between the organization of the enzymes in these complexes and cellulose crystallization has not been explored. To better understand this relationship, we used atomic force microscopy to visualize cellulose microfibril formation from nickel-film-immobilized bacterial cellulose synthase enzymes (BcsA-Bs), which in standard solution only form amorphous cellulose from monomeric BcsA-B complexes. Fourier transform infrared spectroscopy and X-ray diffraction techniques show that surface-tethered BcsA-Bs synthesize highly crystalline cellulose II in the presence of UDP-Glc, the allosteric activator cyclic-di-GMP, as well as magnesium. The cellulose II cross section/diameter and the crystal size and crystallinity depend on the surface density of tethered enzymes as well as the overall concentration of substrates. Our results provide the correlation between cellulose microfibril formation and the spatial organization of cellulose synthases.

  10. Multi-Substrate Terpene Synthases: Their Occurrence and Physiological Significance

    PubMed Central

    Pazouki, Leila; Niinemets, Ülo

    2016-01-01

    Terpene synthases are responsible for synthesis of a large number of terpenes in plants using substrates provided by two distinct metabolic pathways, the mevalonate-dependent pathway that is located in cytosol and has been suggested to be responsible for synthesis of sesquiterpenes (C15), and 2-C-methyl-D-erythritol-4-phosphate pathway located in plastids and suggested to be responsible for the synthesis of hemi- (C5), mono- (C10), and diterpenes (C20). Recent advances in characterization of genes and enzymes responsible for substrate and end product biosynthesis as well as efforts in metabolic engineering have demonstrated existence of a number of multi-substrate terpene synthases. This review summarizes the progress in the characterization of such multi-substrate terpene synthases and suggests that the presence of multi-substrate use might have been significantly underestimated. Multi-substrate use could lead to important changes in terpene product profiles upon substrate profile changes under perturbation of metabolism in stressed plants as well as under certain developmental stages. We therefore argue that multi-substrate use can be significant under physiological conditions and can result in complicate modifications in terpene profiles. PMID:27462341

  11. Suites of Terpene Synthases Explain Differential Terpenoid Production in Ginger and Turmeric Tissues

    PubMed Central

    Koo, Hyun Jo; Gang, David R.

    2012-01-01

    The essential oils of ginger (Zingiber officinale) and turmeric (Curcuma longa) contain a large variety of terpenoids, some of which possess anticancer, antiulcer, and antioxidant properties. Despite their importance, only four terpene synthases have been identified from the Zingiberaceae family: (+)-germacrene D synthase and (S)-β-bisabolene synthase from ginger rhizome, and α-humulene synthase and β-eudesmol synthase from shampoo ginger (Zingiber zerumbet) rhizome. We report the identification of 25 mono- and 18 sesquiterpene synthases from ginger and turmeric, with 13 and 11, respectively, being functionally characterized. Novel terpene synthases, (−)-caryolan-1-ol synthase and α-zingiberene/β-sesquiphellandrene synthase, which is responsible for formation of the major sesquiterpenoids in ginger and turmeric rhizomes, were also discovered. These suites of enzymes are responsible for formation of the majority of the terpenoids present in these two plants. Structures of several were modeled, and a comparison of sets of paralogs suggests how the terpene synthases in ginger and turmeric evolved. The most abundant and most important sesquiterpenoids in turmeric rhizomes, (+)-α-turmerone and (+)-β-turmerone, are produced from (−)-α-zingiberene and (−)-β-sesquiphellandrene, respectively, via α-zingiberene/β-sesquiphellandrene oxidase and a still unidentified dehydrogenase. PMID:23272109

  12. Two branches of the lupeol synthase gene in the molecular evolution of plant oxidosqualene cyclases.

    PubMed

    Shibuya, M; Zhang, H; Endo, A; Shishikura, K; Kushiro, T; Ebizuka, Y

    1999-11-01

    Two new triterpene synthase cDNAs, named as OEW and TRW, were cloned from olive leaves (Olea europaea) and from dandelion roots (Taraxacum officinale), respectively, by the PCR method with primers designed from the conserved sequences found in the known oxidosqualene cyclases. Their ORFs consisted of 2274 bp nucleotides and coded for 758 amino acid long polypeptides. They shared high sequence identity (78%) to each other, while they showed only about 60% identities to the known triterpene synthases LUPI (lupeol synthase clone from Arabidopsis thaliana) and PNY (beta-amyrin synthase clone from Panax ginseng) at amino acid level. To determine the enzyme functions of the translates, they were expressed in an ERG7 deficient yeast mutant. Accumulation of lupeol in the cells of yeast transformants proved both of these clones code for lupeol synthase proteins. An EST (expression sequence tag) clone isolated from Medicago truncatula roots as a homologue of cycloartenol synthase gene, exhibits high sequence identity (75-77%) to these two lupeol synthase cDNAs, suggesting it to be another lupeol synthase clone. Comparatively low identity (approximately 57%) of LUP1 from Arabidopsis thaliana to either one of these clones leaves LUP1 as a distinct clone among lupeol synthases. From these sequence comparisons, now we propose that two branches of lupeol synthase gene have been generated in higher plants during the course of evolution.

  13. Vanadate and selenium inhibit the triiodothyronine induced enzyme activity and mRNA level for both fatty acid synthase and malic enzyme

    SciTech Connect

    Zhu, Y.; Mirmiran, R.; Goodridge, A.G.; Stapleton, S.R. Western Michigan Univ., Kalamazoo )

    1991-03-15

    In chick-embryo hepatocytes in culture, triiodothyronine stimulates enzyme activity, mRNA level and transcription rate for both fatty acid synthase (FAS) and malic enzyme (ME). Insulin alone has no effect but amplifies the induction by T3. Recent evidence has demonstrated the insulin-mimicking action of vanadate and selenium on various physiological processes. Little information, however, is available on the affects of vanadate and selenium on the expression of genes that are regulated by insulin. These studies were initiated to test the potential of vanadate and selenium to mimic the amplification affect of insulin on the T3 induction of FAS and ME. In chick-embryo hepatocytes incubated in a chemically defined medium, addition of T3 for 48h causes an increase in the enzyme activity and mRNA level for both FAS and ME. Addition of sodium vanadate or sodium selenate (20 {mu}M) coincident with the T3 almost completely inhibited the stimulation of FAS and ME activity and accumulation of their respective mRNA's. Fifty percent maximal inhibition occurred at about 3-40{mu}M vanadate or 5-10{mu}M selenium. Vanadate and selenium similarity inhibited FAS and ME enzyme activity and mRNA level when the cells were incubated in the presence of insulin and T3. The effect of these metals was selective; isocitrate dehydrogenase activity as well as the level of glyceraldehyde 3-phosphate mRNA were not affected by any of the additions made to the cells in culture. This effect by vanadate and selenium also does not appear to be a generalized effect of metals on lipogenic enzymes as molydate under similar experimental conditions has no effect on either the enzyme activity or mRNA level of FAS or ME. Studies are continuing to determine the mechanism of action of these agents on the regulation of lipogenic enzymes.

  14. Myo-inositol phosphate synthase expression in the European eel (Anguilla anguilla) and Nile tilapia (Oreochromis niloticus): effect of seawater acclimation.

    PubMed

    Kalujnaia, Svetlana; Hazon, Neil; Cramb, Gordon

    2016-08-01

    A single MIPS gene (Isyna1/Ino1) exists in eel and tilapia genomes with a single myo-d-inositol 3-phosphate synthase (MIPS) transcript identified in all eel tissues, although two MIPS spliced variants [termed MIPS(s) and MIPS(l)] are found in all tilapia tissues. The larger tilapia transcript [MIPS(l)] results from the inclusion of the 87-nucleotide intron between exons 5 and 6 in the genomic sequence. In most tilapia tissues, the MIPS(s) transcript exhibits much higher abundance (generally >10-fold) with the exception of white skeletal muscle and oocytes, in which the MIPS(l) transcript predominates. SW acclimation resulted in large (6- to 32-fold) increases in mRNA expression for both MIPS(s) and MIPS(l) in all tilapia tissues tested, whereas in the eel, changes in expression were limited to a more modest 2.5-fold increase and only in the kidney. Western blots identified a number of species- and tissue-specific immunoreactive MIPS proteins ranging from 40 to 67 kDa molecular weight. SW acclimation failed to affect the abundance of any immunoreactive protein in any tissue tested from the eel. However, a major 67-kDa immunoreactive protein (presumed to be MIPS) found in tilapia tissues exhibited 11- and 54-fold increases in expression in gill and fin samples from SW-acclimated fish. Immunohistochemical investigations revealed specific immunoreactivity in the gill, fin, skin, and intestine taken from only SW-acclimated tilapia. Immunofluorescence indicated that MIPS was expressed within gill chondrocytes and epithelial cells of the primary filaments, basal epithelial cell layers of the skin and fin, the cytosol of columnar intestinal epithelial and mucous cells, as well as unknown entero-endocrine-like cells.

  15. Myo-inositol phosphate synthase expression in the European eel (Anguilla anguilla) and Nile tilapia (Oreochromis niloticus): effect of seawater acclimation

    PubMed Central

    Kalujnaia, Svetlana; Hazon, Neil

    2016-01-01

    A single MIPS gene (Isyna1/Ino1) exists in eel and tilapia genomes with a single myo-d-inositol 3-phosphate synthase (MIPS) transcript identified in all eel tissues, although two MIPS spliced variants [termed MIPS(s) and MIPS(l)] are found in all tilapia tissues. The larger tilapia transcript [MIPS(l)] results from the inclusion of the 87-nucleotide intron between exons 5 and 6 in the genomic sequence. In most tilapia tissues, the MIPS(s) transcript exhibits much higher abundance (generally >10-fold) with the exception of white skeletal muscle and oocytes, in which the MIPS(l) transcript predominates. SW acclimation resulted in large (6- to 32-fold) increases in mRNA expression for both MIPS(s) and MIPS(l) in all tilapia tissues tested, whereas in the eel, changes in expression were limited to a more modest 2.5-fold increase and only in the kidney. Western blots identified a number of species- and tissue-specific immunoreactive MIPS proteins ranging from 40 to 67 kDa molecular weight. SW acclimation failed to affect the abundance of any immunoreactive protein in any tissue tested from the eel. However, a major 67-kDa immunoreactive protein (presumed to be MIPS) found in tilapia tissues exhibited 11- and 54-fold increases in expression in gill and fin samples from SW-acclimated fish. Immunohistochemical investigations revealed specific immunoreactivity in the gill, fin, skin, and intestine taken from only SW-acclimated tilapia. Immunofluorescence indicated that MIPS was expressed within gill chondrocytes and epithelial cells of the primary filaments, basal epithelial cell layers of the skin and fin, the cytosol of columnar intestinal epithelial and mucous cells, as well as unknown entero-endocrine-like cells. PMID:27252471

  16. CELLULOSE SYNTHASE INTERACTIVE1 Is Required for Fast Recycling of Cellulose Synthase Complexes to the Plasma Membrane in Arabidopsis

    PubMed Central

    Lei, Lei; Bashline, Logan; Li, Shundai

    2015-01-01

    Plants are constantly subjected to various biotic and abiotic stresses and have evolved complex strategies to cope with these stresses. For example, plant cells endocytose plasma membrane material under stress and subsequently recycle it back when the stress conditions are relieved. Cellulose biosynthesis is a tightly regulated process that is performed by plasma membrane-localized cellulose synthase (CESA) complexes (CSCs). However, the regulatory mechanism of cellulose biosynthesis under abiotic stress has not been well explored. In this study, we show that small CESA compartments (SmaCCs) or microtubule-associated cellulose synthase compartments (MASCs) are critical for fast recovery of CSCs to the plasma membrane after stress is relieved in Arabidopsis thaliana. This SmaCC/MASC-mediated fast recovery of CSCs is dependent on CELLULOSE SYNTHASE INTERACTIVE1 (CSI1), a protein previously known to represent the link between CSCs and cortical microtubules. Independently, AP2M, a core component in clathrin-mediated endocytosis, plays a role in the formation of SmaCCs/MASCs. Together, our study establishes a model in which CSI1-dependent SmaCCs/MASCs are formed through a process that involves endocytosis, which represents an important mechanism for plants to quickly regulate cellulose synthesis under abiotic stress. PMID:26443667

  17. 4-Hydroxy-2-pyrone formation by chalcone and stilbene synthase with nonphysiological substrates.

    PubMed

    Zuurbier, K W; Leser, J; Berger, T; Hofte, A J; Schröder, G; Verpoorte, R; Schröder, J

    1998-12-01

    Valerophenone synthase (VPS) is a polyketide synthase that catalyzes the formation of the phloroglucinol derivatives in the synthesis of the bitter acids in hop (Humulus lupulus). The reaction uses isovaleryl-CoA or isobutyryl-CoA, but otherwise it is identical to that of the chalcone synthase in flavonoid biosynthesis. Our study showed that chalcone synthase can perform the function of VPS, but not perfectly, because the majority of the reactions terminated after two condensation reactions (products: 4-hydroxy-2-pyrone derivatives). The same experiments with stilbene synthase yielded exclusively the 4-hydroxy-2-pyrone derivatives, not the products expected from three condensation reactions. The results are discussed in the context of the functional diversity and evolution in the family of CHS-related polyketide synthases.

  18. A stable organic free radical in anaerobic benzylsuccinate synthase of Azoarcus sp. strain T.

    PubMed

    Krieger, C J; Roseboom, W; Albracht, S P; Spormann, A M

    2001-04-20

    The novel enzyme benzylsuccinate synthase initiates anaerobic toluene metabolism by catalyzing the addition of toluene to fumarate, forming benzylsuccinate. Based primarily on its sequence similarity to the glycyl radical enzymes, pyruvate formate-lyase and anaerobic ribonucleotide reductase, benzylsuccinate synthase was speculated to be a glycyl radical enzyme. In this report we use EPR spectroscopy to demonstrate for the first time that active benzylsuccinate synthase from the denitrifying bacterium Azoarcus sp. strain T harbors an oxygen-sensitive stable organic free radical. The EPR signal of the radical was centered at g = 2.0021 and was characterized by a major 2-fold splitting of about 1.5 millitesla. The strong similarities between the EPR signal of the benzylsuccinate synthase radical and that of the glycyl radicals of pyruvate formate-lyase and anaerobic ribonucleotide reductase provide evidence that the benzylsuccinate synthase radical is located on a glycine residue, presumably glycine 828 in Azoarcus sp. strain T benzylsuccinate synthase.

  19. Activation of Casein Kinase II and Inhibition of Phosphatase and Tensin Homologue Deleted on Chromosome 10 Phosphatase by Nerve Growth Factor/p75NTR Inhibit Glycogen Synthase Kinase-3β and Stimulate Axonal Growth

    PubMed Central

    Arevalo, María-Angeles

    2006-01-01

    Axonal elongation and guidance are controlled by extracellular factors such as the neurotrophins. Indeed, nerve growth factor (NGF) seems to promote axon growth through binding to its p75NTR receptor and inactivating RhoA. Furthermore, the local inhibition of glycogen synthase kinase (GSK)-3β by NGF also favors microtubule polymerization and axon extension. Inactivation of GSK-3β may be due to the NGF/TrkA-mediated activation of phosphatidylinositol-3 kinase (PI-3 kinase), which increases the levels of phosphatydilinositol 3-phosphate [PI(3)P]. However, we show here that NGF may inactivate GSK-3β through an alternative mechanism. In cultured hippocampal neurons, the capacity of NGF to promote axon elongation is mostly mediated by p75NTR, and the activation of this pathway leads to the inactivation of GSK-3β. However, the signaling pathway triggered by NGF/p75NTR acts through casein kinase II (CK2). NGF/p75NTR-activated CK2 phosphorylates the phosphatase and tensin homologue deleted on chromosome 10 (PTEN), thus rendering this phosphatase inactive. Like activation of the PI-3 kinase, PTEN inactivation allows PI(3)P levels to increase, thus favoring GSK-3β inactivation and axon outgrowth. This newly disclosed mechanism may help to extend the repertoire of pharmacological agents that activate CK2 or that inhibit PTEN to stimulate axon regeneration after trauma or disease. PMID:16723502

  20. Purification, Structure and Properties of Escherichia coli tRNA Pseudouridine Synthase 1.

    DTIC Science & Technology

    1987-01-01

    RD-8193 9" PURIFICATION STRUCTURE AMD PROPERTIES OF ESCNERICHIA 11 COLI TRt4A PSEUDOURIDINE SYNTHASE 1(U) CALIFORNIA UNY OAKLAND NAVAL BIOSCIENCES...Keywo rd S: tN Pseudou ridine Synthase 1, Escherichia Cal i, 03 Plasmid, 19. ABSTRACT (Continue on reverse if necessary and identify by block number...The RNA modification enzyme, tRNA pseudouridine synthase I (PSUI) has been isolated in 95% purity from an Escherichia coli strain harboring a

  1. Inhibition of Fatty Acid Synthase in Prostate Cancer by Orlistat, a Novel Therapeutic

    DTIC Science & Technology

    2007-11-01

    C.W. Fatty acid synthase inhibitors: new directions for oncology. Expert Opinion on Investigational Drugs (2007) 16(11): 1817-29 (Invited Review...acid synthase inhibitors: new directions for oncology. Expert Opinion on Investigational Drugs (2007) 16(11): 1817-29 (Invited Review) Abstracts...Kuhajda FP: Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology. Nutrition 2000, 16:202-208. 3. Smith S: The animal fatty

  2. Effect of ions of potassium and lithium on NO synthase expression in the human adrenal cortex.

    PubMed

    Kovzun, E I; Lukashenya, O S; Pushkarev, V M; Mikosha, A S; Tron'ko, N D

    2014-01-01

    The expression of endothelial and inducible NO synthase in the human adrenal glands was studied under a change in the concentration of K(+), which plays a regulatory role in aldosterone secretion. K(+) ions stimulated the expression of both isoforms of NO synthase in the human adrenal cortex. A stimulatory effect of K(+) on NO synthase is probably related to activation of the calmodulin system and potassium-induced translocation of protein kinase C. Lithium produced n inhibitory effect on both isoforms of NO synthase, which suggests that protein kinase C serves a major regulator of expression in the human adrenal glands.

  3. Molecular Diversity of Terpene Synthases in the Liverwort Marchantia polymorpha[OPEN

    PubMed Central

    Zhuang, Xun; Jiang, Zuodong; Jia, Qidong; Babbitt, Patricia C.

    2016-01-01

    Marchantia polymorpha is a basal terrestrial land plant, which like most liverworts accumulates structurally diverse terpenes believed to serve in deterring disease and herbivory. Previous studies have suggested that the mevalonate and methylerythritol phosphate pathways, present in evolutionarily diverged plants, are also operative in liverworts. However, the genes and enzymes responsible for the chemical diversity of terpenes have yet to be described. In this study, we resorted to a HMMER search tool to identify 17 putative terpene synthase genes from M. polymorpha transcriptomes. Functional characterization identified four diterpene synthase genes phylogenetically related to those found in diverged plants and nine rather unusual monoterpene and sesquiterpene synthase-like genes. The presence of separate monofunctional diterpene synthases for ent-copalyl diphosphate and ent-kaurene biosynthesis is similar to orthologs found in vascular plants, pushing the date of the underlying gene duplication and neofunctionalization of the ancestral diterpene synthase gene family to >400 million years ago. By contrast, the mono- and sesquiterpene synthases represent a distinct class of enzymes, not related to previously described plant terpene synthases and only distantly so to microbial-type terpene synthases. The absence of a Mg2+ binding, aspartate-rich, DDXXD motif places these enzymes in a noncanonical family of terpene synthases. PMID:27650333

  4. Mechanistic studies on class I polyhydroxybutyrate (PHB) synthase from Ralstonia eutropha: class I and III synthases share a similar catalytic mechanism.

    PubMed

    Jia, Y; Yuan, W; Wodzinska, J; Park, C; Sinskey, A J; Stubbe, J

    2001-01-30

    The Class I and III polyhydroxybutyrate (PHB) synthases from Ralstonia eutropha and Chromatium vinosum, respectively, catalyze the polymerization of beta-hydroxybutyryl-coenzyme A (HBCoA) to generate PHB. These synthases have different molecular weights, subunit composition, and kinetic properties. Recent studies with the C. vinosum synthase suggested that it is structurally homologous to bacterial lipases and allowed identification of active site residues important for catalysis [Jia, Y., Kappock, T. J., Frick, T., Sinskey, A. J., and Stubbe, J. (2000) Biochemistry 39, 3927-3936]. Sequence alignments between the Class I and III synthases revealed similar residues in the R. eutropha synthase. Site-directed mutants of these residues were prepared and examined using HBCoA and a terminally saturated trimer of HBCoA (sT-CoA) as probes. These studies reveal that the R. eutropha synthase possesses an essential catalytic dyad (C319-H508) in which the C319 is involved in covalent catalysis. A conserved Asp, D480, was shown not to be required for acylation of C319 by sT-CoA and is proposed to function as a general base catalyst to activate the hydroxyl of HBCoA for ester formation. Studies of the [(3)H]sT-CoA with wild-type and mutant synthases reveal that 0.5 equiv of radiolabel is covalently bound per monomer of synthase, suggesting that a dimeric form of the enzyme is involved in elongation. These studies, in conjunction with search algorithms for secondary structure, suggest that the Class I and III synthases are mechanistically similar and structurally homologous, despite their physical and kinetic differences.

  5. Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe.

    PubMed Central

    Ha, S B; Smith, A P; Howden, R; Dietrich, W M; Bugg, S; O'Connell, M J; Goldsbrough, P B; Cobbett, C S

    1999-01-01

    Phytochelatins (PCs), a family of heavy metal-inducible peptides important in the detoxification of heavy metals, have been identified in plants and some microorganisms, including Schizosaccharomyces pombe, but not in animals. PCs are synthesized enzymatically from glutathione (GSH) by PC synthase in the presence of heavy metal ions. In Arabidopsis, the CAD1 gene, identified by using Cd-sensitive, PC-deficient cad1 mutants, has been proposed to encode PC synthase. Using a positional cloning strategy, we have isolated the CAD1 gene. Database searches identified a homologous gene in S. pombe, and a mutant with a targeted deletion of this gene was also Cd sensitive and PC deficient. Extracts of Escherichia coli cells expressing a CAD1 cDNA or the S. pombe gene catalyzing GSH-dependent, heavy metal-activated synthesis of PCs in vitro demonstrated that both genes encode PC synthase activity. Both enzymes were activated by a range of metal ions. In contrast, reverse transcription-polymerase chain reaction experiments showed that expression of the CAD1 mRNA is not influenced by the presence of Cd. A comparison of the two predicted amino acid sequences revealed a highly conserved N-terminal region, which is presumed to be the catalytic domain, and a variable C-terminal region containing multiple Cys residues, which is proposed to be involved in activation of the enzyme by metal ions. Interestingly, a similar gene was identified in the nematode, Caenorhabditis elegans, suggesting that PCs may also be expressed in some animal species. PMID:10368185

  6. Assembly Line Polyketide Synthases: Mechanistic Insights and Unsolved Problems

    PubMed Central

    2015-01-01

    Two hallmarks of assembly line polyketide synthases have motivated an interest in these unusual multienzyme systems, their stereospecificity and their capacity for directional biosynthesis. In this review, we summarize the state of knowledge regarding the mechanistic origins of these two remarkable features, using the 6-deoxyerythronolide B synthase as a prototype. Of the 10 stereocenters in 6-deoxyerythronolide B, the stereochemistry of nine carbon atoms is directly set by ketoreductase domains, which catalyze epimerization and/or diastereospecific reduction reactions. The 10th stereocenter is established by the sequential action of three enzymatic domains. Thus, the problem has been reduced to a challenge in mainstream enzymology, where fundamental gaps remain in our understanding of the structural basis for this exquisite stereochemical control by relatively well-defined active sites. In contrast, testable mechanistic hypotheses for the phenomenon of vectorial biosynthesis are only just beginning to emerge. Starting from an elegant theoretical framework for understanding coupled vectorial processes in biology [Jencks, W. P. (1980) Adv. Enzymol. Relat. Areas Mol. Biol. 51, 75–106], we present a simple model that can explain assembly line polyketide biosynthesis as a coupled vectorial process. Our model, which highlights the important role of domain–domain interactions, not only is consistent with recent observations but also is amenable to further experimental verification and refinement. Ultimately, a definitive view of the coordinated motions within and between polyketide synthase modules will require a combination of structural, kinetic, spectroscopic, and computational tools and could be one of the most exciting frontiers in 21st Century enzymology. PMID:24779441

  7. Synthesis of antifungal glucan synthase inhibitors from enfumafungin.

    PubMed

    Zhong, Yong-Li; Gauthier, Donald R; Shi, Yao-Jun; McLaughlin, Mark; Chung, John Y L; Dagneau, Philippe; Marcune, Benjamin; Krska, Shane W; Ball, Richard G; Reamer, Robert A; Yasuda, Nobuyoshi

    2012-04-06

    An efficient, new, and scalable semisynthesis of glucan synthase inhibitors 1 and 2 from the fermentation product enfumafungin 3 is described. The highlights of the synthesis include a high-yielding ether bond-forming reaction between a bulky sulfamidate 17 and alcohol 4 and a remarkably chemoselective, improved palladium(II)-mediated Corey-Yu allylic oxidation at the highly congested C-12 position of the enfumafungin core. Multi-hundred gram quantities of the target drug candidates 1 and 2 were prepared, in 12 linear steps with 25% isolated yield and 13 linear steps with 22% isolated yield, respectively.

  8. Modified Deacetylcephalosporin C Synthase for the Biotransformation of Semisynthetic Cephalosporins

    PubMed Central

    Balakrishnan, Nataraj; Ganesan, Sadhasivam; Rajasekaran, Padma; Rajendran, Lingeshwaran; Teddu, Sivaprasad

    2016-01-01

    ABSTRACT Deacetylcephalosporin C synthase (DACS), a 2-oxoglutarate-dependent oxygenase synthesized by Streptomyces clavuligerus, transforms an inert methyl group of deacetoxycephalosporin C (DAOC) into an active hydroxyl group of deacetylcephalosporin C (DAC) during the biosynthesis of cephalosporin. It is a step which is chemically difficult to accomplish, but its development by use of an enzymatic method with DACS can facilitate a cost-effective technology for the manufacture of semisynthetic cephalosporin intermediates such as 7-amino-cephalosporanic acid (7ACA) and hydroxymethyl-7-amino-cephalosporanic acid (HACA) from cephalosporin G. As the native enzyme showed negligible activity toward cephalosporin G, an unnatural and less expensive substrate analogue, directed-evolution strategies such as random, semirational, rational, and computational methods were used for systematic engineering of DACS for improved activity. In comparison to the native enzyme, several variants with improved catalytic efficiency were found. The enzyme was stable for several days and is expressed in soluble form at high levels with significantly higher kcat/Km values. The efficacy and industrial scalability of one of the selected variants, CefFGOS, were demonstrated in a process showing complete bioconversion of 18 g/liter of cephalosporin G into deacetylcephalosporin G (DAG) in about 80 min and showed reproducible results at higher substrate concentrations as well. DAG could be converted completely into HACA in about 30 min by a subsequent reaction, thus facilitating scalability toward commercialization. The experimental findings with several mutants were also used to rationalize the functional conformation deduced from homology modeling, and this led to the disclosure of critical regions involved in the catalysis of DACS. IMPORTANCE 7ACA and HACA serve as core intermediates for the manufacture of several semisynthetic cephalosporins. As they are expensive, a cost-effective enzyme

  9. Producing a trimethylpentanoic acid using hybrid polyketide synthases

    DOEpatents

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2014-10-07

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing trimethylpentanoic acid. The present invention also provides for a host cell comprising the PKS and when cultured produces the trimethylpentanoic acid. The present invention also provides for a method of producing the trimethylpentanoic acid, comprising: providing a host cell of the present invention, and culturing said host cell in a suitable culture medium such that the trimethylpentanoic acid is produced, optionally isolating the trimethylpentanoic acid, and optionally, reducing the isolated trimethylpentanoic acid into a trimethylpentanol or an iso-octane.

  10. Preliminary crystallographic analysis of a polyadenylate synthase from Megavirus

    PubMed Central

    Lartigue, Audrey; Jeudy, Sandra; Bertaux, Lionel; Abergel, Chantal

    2013-01-01

    Megavirus chilensis, a close relative of the Mimivirus giant virus, is also the most complex virus sequenced to date, with a 1.26 Mb double-stranded DNA genome encoding 1120 genes. The two viruses share common regulatory elements such as a peculiar palindrome governing the termination/polyadenylation of viral transcripts. They also share a predicted polyadenylate synthase that presents a higher than average percentage of residue conservation. The Megavirus enzyme Mg561 was overexpressed in Escherichia coli, purified and crystallized. A 2.24 Å resolution MAD data set was recorded from a single crystal on the ID29 beamline at the ESRF. PMID:23295487

  11. Structural and functional characterization of Staphylococcus aureus dihydrodipicolinate synthase.

    PubMed

    Girish, Tavarekere S; Sharma, Eshita; Gopal, B

    2008-08-20

    Lysine biosynthesis is crucial for cell-wall formation in bacteria. Enzymes involved in lysine biosynthesis are thus potential targets for anti-microbial therapeutics. Dihydrodipicolinate synthase (DHDPS) catalyzes the first step of this pathway. Unlike its homologues, Staphylococcus aureus DHDPS is a dimer both in solution and in the crystal and is not feedback inhibited by lysine. The crystal structure of S. aureus DHDPS in the free and substrate bound forms provides a structural rationale for its catalytic mechanism. The structure also reveals unique conformational features of the S. aureus enzyme that could be crucial for the design of specific non-competitive inhibitors.

  12. Fine structure analysis of Salmonella typhimurium glutamate synthase genes.

    PubMed Central

    Madonna, M J; Fuchs, R L; Brenchley, J E

    1985-01-01

    Glutamate synthase activity is required for the growth of Salmonella typhimurium on media containing a growth-rate-limiting nitrogen source. Mutations that alter glutamate synthase activity had been identified in the gltB gene, but it was not known which of the two nonidentical subunits of the enzyme was altered. To examine the gene-protein relationship of the glt region, two nonsense mutations were identified and used to demonstrate that gltB encodes the large subunit of the enzyme. Six strains with independent Mu cts d1 (lac bla) insertions were isolated, from which a collection of deletion mutations was obtained. The deletions were transduced with the nonsense mutations and 38 other glt point mutations to construct a fine-structure genetic map. Chromosome mobilization studies, mediated by Hfr derivatives of Mu cts d1 lysogens, showed that gltB is transcribed in a clockwise direction, as shown in the S. typhimurium linkage map. Studies of the polar effects of three Mu cts d1 insertions indicated that the gene for the small subunit maps clockwise to gltB and that the two genes are cotranscribed to form a glt operon. Images PMID:3881392

  13. Eugenol synthase genes in floral scent variation in Gymnadenia species.

    PubMed

    Gupta, Alok K; Schauvinhold, Ines; Pichersky, Eran; Schiestl, Florian P

    2014-12-01

    Floral signaling, especially through floral scent, is often highly complex, and little is known about the molecular mechanisms and evolutionary causes of this complexity. In this study, we focused on the evolution of "floral scent genes" and the associated changes in their functions in three closely related orchid species of the genus Gymnadenia. We developed a benchmark repertoire of 2,571 expressed sequence tags (ESTs) in Gymnadenia odoratissima. For the functional characterization and evolutionary analysis, we focused on eugenol synthase, as eugenol is a widespread and important scent compound. We obtained complete coding complementary DNAs (cDNAs) of two copies of putative eugenol synthase genes in each of the three species. The proteins encoded by these cDNAs were characterized by expression and testing for activity in Escherichia coli. While G. odoratissima and Gymnadenia conopsea enzymes were found to catalyze the formation of eugenol only, the Gymnadenia densiflora proteins synthesize eugenol, as well as a smaller amount of isoeugenol. Finally, we showed that the eugenol and isoeugenol producing gene copies of G. densiflora are evolutionarily derived from the ancestral genes of the other species producing only eugenol. The evolutionary switch from production of one to two compounds evolved under relaxed purifying selection. In conclusion, our study shows the molecular bases of eugenol and isoeugenol production and suggests that an evolutionary transition in a single gene can lead to an increased complexity in floral scent emitted by plants.

  14. [Cloning, expression and charaterization of chalcone synthase from Saussurea medusa].

    PubMed

    Xia, Fang; Li, Houhua; Fu, Chunxiang; Yu, Zhenzhen; Xu, Yanjun; Zhao, Dexiu

    2011-09-01

    A fragment of chalcone synthase gene (SmCHS) was cloned from the cDNA library constructed in Saussurea medusa. The full-length cDNA sequence of SmCHS was obtained by RT-PCR. Sequence analysis showed that the full length of SmCHS was 1313 bp, containing an open reading frame (1170 bp) encoding 389 amino acids. The molecular weight of the protein was estimated to be 43 kDa. The prokaryotic expression plasmids pET28a(+)-SmCHS was constructed and transformed into Escherichia coli BL21(DE3) for expression. SDS-PAGE indicated that the fusion protein was expressed partially in soluble form after induction by IPTG. The recombinant protein was collected and purified by Ni-NTA affinity column. The enzymatic activity assay of the purified recombinant protein showed that the fusion protein had chalcone synthase activity. It could catalyze the condensation of a 4-coumaroyl-CoA with three malonyl-CoAs to produce naringenin chalcone.

  15. Manipulation of pulmonary prostacyclin synthase expression prevents murine lung cancer.

    PubMed

    Keith, Robert L; Miller, York E; Hoshikawa, Yasushi; Moore, Mark D; Gesell, Tracy L; Gao, Bifeng; Malkinson, Alvin M; Golpon, Heiko A; Nemenoff, Raphael A; Geraci, Mark W

    2002-02-01

    Inhibition of cyclooxygenase (COX) activity decreases eicosanoid production and prevents lung cancer in animal models. Prostaglandin (PG) I(2) (PGI(2), prostacyclin) is a PGH(2) metabolite with anti-inflammatory, antiproliferative, and antimetastatic properties. The instability of PGI(2) has limited its evaluation in animal models of cancer. We hypothesized that pulmonary overexpression of prostacyclin synthase may prevent the development of murine lung tumors. Transgenic mice with selective pulmonary prostacyclin synthase overexpression were exposed to two distinct carcinogenesis protocols: an initiation/promotion model and a simple carcinogen model. The transgenic mice exhibited significantly reduced lung tumor multiplicity (tumor number) in proportion to transgene expression, a dose-response effect. Moreover, the highest expressing mice demonstrated reduced tumor incidence. To investigate the mechanism for protection, we evaluated PG levels and inflammatory responses. At the time of sacrifice following one carcinogenesis model, the transgenics exhibited only an increase in 6-keto-PGF(1alpha), not a decrease in PGE(2). Thus, elevated PGI(2) levels and not decreased PGE(2) levels appear to be necessary for the chemopreventive effects. When exposed to a single dose of butylated hydroxytoluene, transgenic mice exhibited a survival advantage; however, reduction in alveolar inflammatory response was not observed. These studies demonstrate that manipulation of PG metabolism downstream from COX produces even more profound lung cancer reduction than COX inhibition alone and could be the basis for new approaches to understanding the pathogenesis and prevention of lung cancer.

  16. Modulation of hyaluronan synthase activity in cellular membrane fractions.

    PubMed

    Vigetti, Davide; Genasetti, Anna; Karousou, Evgenia; Viola, Manuela; Clerici, Moira; Bartolin