Science.gov

Sample records for 5-ht firing activity

  1. Cellular resilience: 5-HT neurons in Tph2(-/-) mice retain normal firing behavior despite the lack of brain 5-HT.

    PubMed

    Montalbano, Alberto; Waider, Jonas; Barbieri, Mario; Baytas, Ozan; Lesch, Klaus-Peter; Corradetti, Renato; Mlinar, Boris

    2015-11-01

    Considerable evidence links dysfunction of serotonin (5-hydroxytryptamine, 5-HT) transmission to neurodevelopmental and psychiatric disorders characterized by compromised "social" cognition and emotion regulation. It is well established that the brain 5-HT system is under autoregulatory control by its principal transmitter 5-HT via its effects on activity and expression of 5-HT system-related proteins. To examine whether 5-HT itself also has a crucial role in the acquisition and maintenance of characteristic rhythmic firing of 5-HT neurons, we compared their intrinsic electrophysiological properties in mice lacking brain 5-HT, i.e. tryptophan hydroxylase-2 null mice (Tph2(-/-)) and their littermates, Tph2(+/-) and Tph2(+/+), by using whole-cell patch-clamp recordings in a brainstem slice preparation and single unit recording in anesthetized animals. We report that the active properties of dorsal raphe nucleus (DRN) 5-HT neurons in vivo (firing rate magnitude and variability; the presence of spike doublets) and in vitro (firing in response to depolarizing current pulses; action potential shape) as well as the resting membrane potential remained essentially unchanged across Tph2 genotypes. However, there were subtle differences in subthreshold properties, most notably, an approximately 25% higher input conductance in Tph2(-/-) mice compared with Tph2(+/-) and Tph2(+/+) littermates (p<0.0001). This difference may at least in part be a consequence of slightly bigger size of the DRN 5-HT neurons in Tph2(-/-) mice (approximately 10%, p<0.0001). Taken together, these findings show that 5-HT neurons acquire and maintain their signature firing properties independently of the presence of their principal neurotransmitter 5-HT, displaying an unexpected functional resilience to complete brain 5-HT deficiency. PMID:26409296

  2. 5-HT1A and 5-HT1B receptors control the firing of serotoninergic neurons in the dorsal raphe nucleus of the mouse: studies in 5-HT1B knock-out mice.

    PubMed

    Evrard, A; Laporte, A M; Chastanet, M; Hen, R; Hamon, M; Adrien, J

    1999-11-01

    The characteristics of the spontaneous firing of serotoninergic neurons in the dorsal raphe nucleus and its control by serotonin (5-hydroxytryptamine, 5-HT) receptors were investigated in wild-type and 5-HT1B knock-out (5-HT1B-/-) mice of the 129/Sv strain, anaesthetized with chloral hydrate. In both groups of mice, 5-HT neurons exhibited a regular activity with an identical firing rate of 0.5-4.5 spikes/s. Intravenous administration of the 5-HT reuptake inhibitor citalopram or the 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) induced a dose-dependent inhibition of 5-HT neuronal firing which could be reversed by the selective 5-HT1A antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohe xane carboxamide (WAY 100635). Both strains were equally sensitive to 8-OH-DPAT (ED50 approximately 6.3 microgram/kg i.v.), but the mutants were less sensitive than wild-type animals to citalopram (ED50 = 0.49 +/- 0.02 and 0.28 +/- 0.01 mg/kg i.v., respectively, P < 0.05). This difference could be reduced by pre-treatment of wild-type mice with the 5-HT1B/1D antagonist 2'-methyl-4'-(5-methyl-[1,2,4]oxadiazol-3-yl)-biphenyl-4-carbox yli c acid [4-methoxy-3-(4-methyl-piperazine-1-yl)-phenyl]amide (GR 127935), and might be accounted for by the lack of 5-HT1B receptors and a higher density of 5-HT reuptake sites (specifically labelled by [3H]citalopram) in 5-HT1B-/- mice. In wild-type but not 5-HT1B-/- mice, the 5-HT1B agonists 3-(1,2,5, 6-tetrahydro-4-pyridyl)-5-propoxypyrrolo[3,2-b]pyridine (CP 94253, 3 mg/kg i.v.) and 5-methoxy-3-(1,2,3, 6-tetrahydropyridin-4-yl)-1H-indole (RU 24969, 0.6 mg/kg i.v.) increased the firing rate of 5-HT neurons (+22.4 +/- 2.8% and +13.7 +/- 6.0%, respectively, P < 0.05), and this effect could be prevented by the 5-HT1B antagonist GR 127935 (1 mg/kg i.v.). Altogether, these data indicate that in the mouse, the firing of 5-HT neurons in the dorsal raphe nucleus is under both an inhibitory control through 5-HT1A

  3. Constitutively Active 5-HT Receptors: An Explanation of How 5-HT Antagonists Inhibit Gut Motility in Species Where 5-HT is Not an Enteric Neurotransmitter?

    PubMed Central

    Spencer, Nick J.

    2015-01-01

    Antagonists of 5-Hydroxytryptamine (5-HT) receptors are well known to inhibit gastrointestinal (GI)-motility and transit in a variety of mammals, including humans. Originally, these observations had been interpreted by many investigators (including us) as evidence that endogenous 5-HT plays a major role in GI motility. This seemed a logical assumption. However, the story changed dramatically after recent studies revealed that 5-HT antagonists still blocked major GI motility patterns (peristalsis and colonic migrating motor complexes) in segments of intestine depleted of all 5-HT. Then, these results were further supported by Dr. Gershons' laboratory, which showed that genetic deletion of all genes that synthesizes 5-HT had minor, or no inhibitory effects on GI transit in vivo. If 5-HT was essential for GI motility patterns and transit, then one would expect major disruptions in motility and transit when 5-HT synthesis was genetically ablated. This does not occur. The inhibitory effects of 5-HT antagonists on GI motility clearly occur independently of any 5-HT in the gut. Evidence now suggests that 5-HT antagonists act on 5-HT receptors in the gut which are constitutively active, and don't require 5-HT for their activation. This would explain a long-standing mystery of how 5-HT antagonists inhibit gut motility in species like mice, rats, and humans where 5-HT is not an enteric neurotransmitter. Studies are now increasingly demonstrating that the presence of a neurochemical in enteric neurons does not mean they function as neurotransmitters. Caution should be exercised when interpreting any inhibitory effects of 5-HT antagonists on GI motility. PMID:26732863

  4. Chronic activation of 5-HT4 receptors or blockade of 5-HT6 receptors improve memory performances.

    PubMed

    Quiedeville, Anne; Boulouard, Michel; Hamidouche, Katia; Da Silva Costa-Aze, Virginie; Nee, Gerald; Rochais, Christophe; Dallemagne, Patrick; Fabis, Frédéric; Freret, Thomas; Bouet, Valentine

    2015-10-15

    5-HT4 and 5-HT6 serotonergic receptors are located in brain structures involved in memory processes. Neurochemical and behavioural studies have demonstrated that acute activation of 5-HT4 receptors (5-HT4R) or blockade of 5-HT6 receptors (5-HT6R) improves memory. To evaluate the potential of these two receptors as targets in the treatment of memory disorders encountered in several situations (ageing, Alzheimer's disease, schizophrenia, etc.), it is necessary to assess whether their beneficial effects occur after chronic administration, and if such treatment induces adverse effects. The goal of this study was to assess the effects of chronic 5-HT4R or 5-HT6R modulation on recognition memory, and to observe the possible manifestation of side effects (modification of weight gain, locomotor activity or exploratory behaviour, etc.). Mice were treated for 14 days with a 5-HT4R partial agonist (RS-67333) or a 5-HT6R antagonist (SB-271046) at increasing doses. Memory performances, locomotor activity, and exploration were assessed. Both chronic 5-HT4R activation and 5-HT6R blockade extended memory traces in an object recognition test, and were not associated with any adverse effects in the parameters assessed. Chronic modulation of one or both of these receptors thus seems promising as a potential strategy for the treatment memory deficits. PMID:26187692

  5. (1R, 3S)-(−)-Trans-PAT: A novel full-efficacy serotonin 5-HT2C receptor agonist with 5-HT2A and 5-HT2B receptor inverse agonist/antagonist activity

    PubMed Central

    Booth, Raymond G.; Fang, Lijuan; Huang, Yingsu; Wilczynski, Andrzej; Sivendran, Sashikala

    2009-01-01

    The serotonin 5-HT2A, 5-HT2B, and 5-HT2C G protein-coupled receptors signal primarily through Gαq to activate phospholipase C (PLC) and formation of inositol phosphates (IP) and diacylglycerol. The human 5-HT2C receptor, expressed exclusively in the central nervous system, is involved in several physiological and psychological processes. Development of 5-HT2C agonists that do not also activate 5-HT2A or 5-HT2B receptors is challenging because transmembrane domain identity is about 75% among 5-HT2 subtypes. This paper reports 5-HT2 receptor affinity and function of (1R,3S)-(−)-trans-1-phenyl-3-dimethylamino-1,2,3,4-tetrahydronaphthalene (PAT), a small molecule that produces anorexia and weight-loss after peripheral administration to mice. (−)-Trans-PAT is a stereoselective full-efficacy agonist at human 5-HT2C receptors, plus, it is a 5-HT2A/5-HT2B inverse agonist and competitive antagonist. The Ki of (−)-trans-PAT at 5-HT2A, 5-HT2B, and 5-HT2C receptors is 410, 1200, and 37 nM, respectively. Functional studies measured activation of PLC/[3H]-IP formation in clonal cells expressing human 5-HT2 receptors. At 5-HT2C receptors, (−)-trans-PAT is an agonist (EC50 = 20 nM) comparable to serotonin in potency and efficacy. At 5-HT2A and 5-HT2B receptors, (−)-trans-PAT is an inverse agonist (IC50 = 490 and 1,000 nM, respectively) and competitive antagonist (KB = 460 and 1400 nM, respectively) of serotonin. Experimental results are interpreted in light of molecular modeling studies indicating the (−)-trans-PAT protonated amine can form an ionic bond with D3.32 of 5-HT2A and 5-HT2C receptors, but, not with 5-HT2B receptors. In addition to probing 5-HT2 receptor structure and function, (−)-trans-PAT is a novel lead regarding 5-HT2C agonist/5-HT2A inverse agonist drug development for obesity and neuropsychiatric disorders. PMID:19397907

  6. 5-HT2A receptor activation is necessary for CO2-induced arousal.

    PubMed

    Buchanan, Gordon F; Smith, Haleigh R; MacAskill, Amanda; Richerson, George B

    2015-07-01

    Hypercapnia-induced arousal from sleep is an important protective mechanism pertinent to a number of diseases. Most notably among these are the sudden infant death syndrome, obstructive sleep apnea and sudden unexpected death in epilepsy. Serotonin (5-HT) plays a significant role in hypercapnia-induced arousal. The mechanism of 5-HT's role in this protective response is unknown. Here we sought to identify the specific 5-HT receptor subtype(s) involved in this response. Wild-type mice were pretreated with antagonists against 5-HT receptor subtypes, as well as antagonists against adrenergic, cholinergic, histaminergic, dopaminergic, and orexinergic receptors before challenge with inspired CO2 or hypoxia. Antagonists of 5-HT(2A) receptors dose-dependently blocked CO2-induced arousal. The 5-HT(2C) receptor antagonist, RS-102221, and the 5-HT1A receptor agonist, 8-OH-DPAT, attenuated but did not completely block CO2-induced arousal. Blockade of non-5-HT receptors did not affect CO2-induced arousal. None of these drugs had any effect on hypoxia-induced arousal. 5-HT2 receptor agonists were given to mice in which 5-HT neurons had been genetically eliminated during embryonic life (Lmx1b(f/f/p)) and which are known to lack CO2-induced arousal. Application of agonists to 5-HT(2A), but not 5-HT(2C), receptors, dose-dependently restored CO2-induced arousal in these mice. These data identify the 5-HT(2A) receptor as an important mediator of CO2-induced arousal and suggest that, while 5-HT neurons can be independently activated to drive CO2-induced arousal, in the absence of 5-HT neurons and endogenous 5-HT, 5-HT receptor activation can act in a permissive fashion to facilitate CO2-induced arousal via another as yet unidentified chemosensor system. PMID:25925320

  7. 5-HT2A receptor activation is necessary for CO2-induced arousal

    PubMed Central

    Smith, Haleigh R.; MacAskill, Amanda; Richerson, George B.

    2015-01-01

    Hypercapnia-induced arousal from sleep is an important protective mechanism pertinent to a number of diseases. Most notably among these are the sudden infant death syndrome, obstructive sleep apnea and sudden unexpected death in epilepsy. Serotonin (5-HT) plays a significant role in hypercapnia-induced arousal. The mechanism of 5-HT's role in this protective response is unknown. Here we sought to identify the specific 5-HT receptor subtype(s) involved in this response. Wild-type mice were pretreated with antagonists against 5-HT receptor subtypes, as well as antagonists against adrenergic, cholinergic, histaminergic, dopaminergic, and orexinergic receptors before challenge with inspired CO2 or hypoxia. Antagonists of 5-HT2A receptors dose-dependently blocked CO2-induced arousal. The 5-HT2C receptor antagonist, RS-102221, and the 5-HT1A receptor agonist, 8-OH-DPAT, attenuated but did not completely block CO2-induced arousal. Blockade of non-5-HT receptors did not affect CO2-induced arousal. None of these drugs had any effect on hypoxia-induced arousal. 5-HT2 receptor agonists were given to mice in which 5-HT neurons had been genetically eliminated during embryonic life (Lmx1bf/f/p) and which are known to lack CO2-induced arousal. Application of agonists to 5-HT2A, but not 5-HT2C, receptors, dose-dependently restored CO2-induced arousal in these mice. These data identify the 5-HT2A receptor as an important mediator of CO2-induced arousal and suggest that, while 5-HT neurons can be independently activated to drive CO2-induced arousal, in the absence of 5-HT neurons and endogenous 5-HT, 5-HT receptor activation can act in a permissive fashion to facilitate CO2-induced arousal via another as yet unidentified chemosensor system. PMID:25925320

  8. The human 5-HT7 serotonin receptor splice variants: constitutive activity and inverse agonist effects

    PubMed Central

    Krobert, Kurt A; Levy, Finn Olav

    2002-01-01

    Using membranes from stably or transiently transfected HEK293 cells cultured in 5-HT-free medium and expressing the recombinant human 5-HT7 receptor splice variants (h5-HT7(a), h5-HT7(b) and h5-HT7(d)), we compared their abilities to constitutively activate adenylyl cyclase (AC).All h5-HT7 splice variants elevated basal and forskolin-stimulated AC. The basal AC activity was reduced by the 5-HT7 antagonist methiothepin and this effect was blocked by mesulergine (neutral 5-HT7 antagonist) indicating that the inhibitory effect of methiothepin is inverse agonism at the 5-HT7 receptor.Receptor density correlated poorly with constitutive AC activity in stable clonal cell lines and transiently transfected cells. Mean constitutive AC activity as a percentage of forskolin-stimulated AC was significantly higher for the h5-HT7(b) splice variant compared to the h5-HT7(a) and h5-HT7(d) splice variants but only in stable cell lines.All eight 5-HT antagonists tested inhibited constitutive AC activity of all splice variants in a concentration-dependent manner. No differences in inverse agonist potencies (pIC50) were observed between the splice variants. The rank order of potencies was in agreement and highly correlated with antagonist potencies (pKb) determined by antagonism of 5-HT-stimulated AC activity (methiothepin>metergoline>mesulergine⩾clozapine⩾spiperone⩾ritanserin>methysergide>ketanserin).The efficacy of inverse agonism was not receptor level dependent and varied for several 5-HT antagonists between membrane preparations of transiently and stably transfected cells.It is concluded that the h5-HT7 splice variants display similar constitutive activity and inverse agonist properties. PMID:11906971

  9. Interaction of 5-HT1B/D ligands with recombinant h 5-HT1A receptors: intrinsic activity and modulation by G-protein activation state.

    PubMed

    Pauwels, P J; Palmier, C; Dupuis, D S; Colpaert, F C

    1998-05-01

    Many 5-HT1B/D receptor ligands have affinity for 5-HT1A receptors. In the present study, the intrinsic activity of a series of 5-HT1B/D ligands was investigated at human 5-HT1A (h 5-HT1A) receptors by measuring G-protein activation in recombinant C6-glial and HeLa membranes, using agonist-stimulated [35S]GTPgammaS binding. In these two membrane preparations, the density of h 5-HT1A receptors (i.e., 246 to 320 fmol mg(-1) protein) and of their G-proteins, and the receptor: G-protein density ratio (0.08 to 0.18) appeared to be similar. It was found that: (i) the maximal [35S]GTPgammaS binding responses induced by the 5-HT1B/D receptor ligands in the HeLa preparation at 30 microM GDP were comparable to that of the native agonist 5-HT; (ii) as compared to 5-HT (1.00), similar potencies but lower maximal responses were observed in the C6-glial preparation at 0.3 microM GDP for zolmitriptan (0.89), dihydroergotamine (0.81), rizatriptan (0.71), CP122638 (0.69), naratriptan (0.60) and sumatriptan (0.53); and that (iii) maximal [35S]GTPgammaS binding responses induced by 5-HT1B/D ligands in the C6-glial preparation were either unaffected or significantly enhanced by increasing the GDP concentration from 0.3 to 30 microM and higher concentrations. These features differ from those observed with 5-HT1A receptor agonists; the latter display the same rank order of potency and efficacy in both membrane preparations, and increasing the amount of GDP with C6-glial membranes results in an attenuation of both the agonist's maximal effect and the apparent potency of partial agonists. The differential regulation of 5-HT1A and 5-HT1B/D agonist responses by GDP suggests that different G-protein subtypes are involved upon 5-HT1A receptor activation by 5-HT1A and 5-HT1B/D agonists. PMID:9650800

  10. Genotype-Dependent Difference in 5-HT2C Receptor-Induced Hypolocomotion: Comparison with 5-HT2A Receptor Functional Activity

    PubMed Central

    Bazovkina, Darya V.; Kondaurova, Elena M.; Naumenko, Vladimir S.; Ponimaskin, Evgeni

    2015-01-01

    In the present study behavioral effects of the 5-HT2C serotonin receptor were investigated in different mouse strains. The 5-HT2C receptor agonist MK-212 applied intraperitoneally induced significant dose-dependent reduction of distance traveled in the open field test in CBA/Lac mice. This effect was receptor-specific because it was inhibited by the 5-HT2C receptor antagonist RS102221. To study the role of genotype in 5-HT2C receptor-induced hypolocomotion, locomotor activity of seven inbred mouse strains was measured after MK-212 acute treatment. We found that the 5-HT2C receptor stimulation by MK-212 decreased distance traveled in the open field test in CBA/Lac, C57Bl/6, C3H/He, and ICR mice, whereas it failed to affect locomotor activity in DBA/2J, Asn, and Balb/c mice. We also compared the interstrain differences in functional response to 5-HT2C and 5-HT2A receptors activation measured by the quantification of receptor-mediated head-twitches. These experiments revealed significant positive correlation between 5-HT2C and 5-HT2A receptors functional responses for all investigated mouse strains. Moreover, we found that 5-HT2A receptor activation with DOI did not change locomotor activity in CBA/Lac mice. Taken together, our data indicate the implication of 5-HT2C receptors in regulation of locomotor activity and suggest the shared mechanism for functional responses mediated by 5-HT2C and 5-HT2A receptors. PMID:26380122

  11. Genotype-Dependent Difference in 5-HT2C Receptor-Induced Hypolocomotion: Comparison with 5-HT2A Receptor Functional Activity.

    PubMed

    Bazovkina, Darya V; Kondaurova, Elena M; Naumenko, Vladimir S; Ponimaskin, Evgeni

    2015-01-01

    In the present study behavioral effects of the 5-HT2C serotonin receptor were investigated in different mouse strains. The 5-HT2C receptor agonist MK-212 applied intraperitoneally induced significant dose-dependent reduction of distance traveled in the open field test in CBA/Lac mice. This effect was receptor-specific because it was inhibited by the 5-HT2C receptor antagonist RS102221. To study the role of genotype in 5-HT2C receptor-induced hypolocomotion, locomotor activity of seven inbred mouse strains was measured after MK-212 acute treatment. We found that the 5-HT2C receptor stimulation by MK-212 decreased distance traveled in the open field test in CBA/Lac, C57Bl/6, C3H/He, and ICR mice, whereas it failed to affect locomotor activity in DBA/2J, Asn, and Balb/c mice. We also compared the interstrain differences in functional response to 5-HT2C and 5-HT2A receptors activation measured by the quantification of receptor-mediated head-twitches. These experiments revealed significant positive correlation between 5-HT2C and 5-HT2A receptors functional responses for all investigated mouse strains. Moreover, we found that 5-HT2A receptor activation with DOI did not change locomotor activity in CBA/Lac mice. Taken together, our data indicate the implication of 5-HT2C receptors in regulation of locomotor activity and suggest the shared mechanism for functional responses mediated by 5-HT2C and 5-HT2A receptors. PMID:26380122

  12. Analysis of the agonist activity of fenoldopam (SKF 82526) at the vascular 5-HT2 receptor.

    PubMed Central

    Christie, M. I.; Harper, D.; Smith, G. W.

    1992-01-01

    1. The 5-HT2 receptor agonist activity of fenoldopam (SKF 82526) was characterized in the rabbit isolated aorta preparation. 2. Fenoldopam was an agonist at the vascular 5-HT2 receptor with lower affinity and efficacy than the naturally occurring agonist 5-hydroxytryptamine (5-HT). Fenoldopam had an affinity (pKA) of 5.84 +/- 0.04 and efficacy (tau) of 0.57 +/- 0.04, whereas 5-HT had a pKA of 6.65 +/- 0.12 and tau of 2.66 +/- 0.41. 3. The constrictor effects of fenoldopam and 5-HT were competitively antagonized by the 5-HT2 antagonist, ketanserin, with pKB values of 8.81 +/- 0.11 and 8.83 +/- 0.10 respectively. 4. Prior incubation with fenoldopam produced a concentration-related rightward shift of a subsequent 5-HT concentration-response curve. This inhibition was specific for 5-HT since constrictor responses to angiotensin II were unaffected. 5. This study indicates that the D1 receptor agonist, fenoldopam, acts as an agonist at the vascular 5-HT2 receptor, but with an affinity and efficacy less than that of the naturally occurring agonist, 5-HT. PMID:1361397

  13. Medial hypothalamic 5-hydroxytryptamine (5-HT)1A receptors regulate neuroendocrine responses to stress and exploratory locomotor activity: application of recombinant adenovirus containing 5-HT1A sequences.

    PubMed

    Li, Qian; Holmes, Andrew; Ma, Li; Van de Kar, Louis D; Garcia, Francisca; Murphy, Dennis L

    2004-12-01

    Our previous studies found that serotonin transporter (SERT) knock-out mice showed increased sensitivity to minor stress and increased anxiety-like behavior but reduced locomotor activity. These mice also showed decreased density of 5-hydroxytryptamine (5-HT1A) receptors in the hypothalamus, amygdala, and dorsal raphe. To evaluate the contribution of hypothalamic 5-HT1A receptors to these phenotypes of SERT knock-out mice, two studies were conducted. Recombinant adenoviruses containing 5-HT1A sense and antisense sequences (Ad-1AP-sense and Ad-1AP-antisense) were used to manipulate 5-HT1A receptors in the hypothalamus. The expression of the 5-HT1A genes is controlled by the 5-HT1A promoter, so that they are only expressed in 5-HT1A receptor-containing cells. (1) Injection of Ad-1AP-sense into the hypothalamus of SERT knock-out mice restored 5-HT1A receptors in the medial hypothalamus; this effect was accompanied by elimination of the exaggerated adrenocorticotropin responses to a saline injection (minor stress) and reduced locomotor activity but not by a change in increased exploratory anxiety-like behavior. (2) To further confirm the observation in SERT-/- mice, Ad-1AP-antisense was injected into the hypothalamus of normal mice. The density and the function of 5-HT1A receptors in the medial hypothalamus were significantly reduced in Ad-1AP-antisense-treated mice. Compared with the control group (injected with Ad-track), Ad-1A-antisense-treated mice showed a significant reduction in locomotor activity, but again no changes in exploratory anxiety-like behaviors, tested by elevated plus-maze and open-field tests. Thus, the present results demonstrate that medial hypothalamic 5-HT1A receptors regulate stress responses and locomotor activity but may not regulate exploratory anxiety-like behaviors. PMID:15574737

  14. 5-HT(2A) receptor blockade and 5-HT(2C) receptor activation interact to reduce cocaine hyperlocomotion and Fos protein expression in the caudate-putamen.

    PubMed

    Pockros, Lara A; Pentkowski, Nathan S; Conway, Sineadh M; Ullman, Teresa E; Zwick, Kimberly R; Neisewander, Janet L

    2012-12-01

    Both the 5-HT(2A) receptor (R) antagonist M100907 and the 5-HT(2C) R agonist MK212 attenuate cocaine-induced dopamine release and hyperlocomotion. This study examined whether these drugs interact to reduce cocaine hyperlocomotion and Fos expression in the striatum and prefrontal cortex. We first determined from dose-effect functions a low dose of both M100907 and MK212 that failed to alter cocaine (15 mg/kg, i.p.) hyperlocomotion. Subsequently, we examined whether these subthreshold doses given together would attenuate cocaine hyperlocomotion, consistent with a 5-HT(2A)/5-HT(2C) R interaction. Separate groups of rats received two sequential drug injections 5 min apart immediately before a 1-h locomotion test as follows: (1) saline + saline, (2) saline + cocaine, (3) 0.025 mg/kg M100907 + cocaine, (4) 0.125 mg/kg MK212 + cocaine, or (5) cocktail combination of 0.025 mg/kg M100907 and 0.125 mg/kg MK212 + cocaine. Brains were extracted for Fos immunohistochemistry 90 min after the second injection. We next examined the effects of 0.025 mg/kg M100907 and 0.125 mg/kg MK212, alone and in combination, on spontaneous locomotor activity. While neither drug given alone produced any effects, the M100907/MK212 cocktail attenuated cocaine hyperlocomotion as well as cocaine-induced Fos expression in the dorsolateral caudate-putamen (CPu), but had no effect on spontaneous locomotion. The findings suggest that 5-HT(2A) Rs and 5-HT(2C) Rs interact to attenuate cocaine hyperlocomotion and Fos expression in the CPu, and that the CPu is a potential locus of the interactive effects between these 5-HT(2) R subtypes on behavior. Further research investigating combined 5-HT(2A) R antagonism and 5-HT(2C) R agonism as a treatment for cocaine dependence is warranted. PMID:22886755

  15. 5-HT2A receptor blockade and 5-HT2C receptor activation interact to reduce cocaine hyperlocomotion and Fos protein expression in the caudate-putamen

    PubMed Central

    Pockros, Lara A.; Pentkowski, Nathan S.; Conway, Sineadh M.; Ullman, Teresa E.; Zwick, Kimberly R.; Neisewander, Janet L.

    2012-01-01

    Both the 5-HT2A receptor (R) antagonist M100907 and the 5-HT2CR agonist MK212 attenuate cocaine-induced dopamine release and hyperlocomotion. This study examined whether these drugs interact to reduce cocaine hyperlocomotion and Fos expression in the striatum and prefrontal cortex. We first determined from dose-effect functions a low dose of both M100907 and MK212 that failed to alter cocaine (15 mg/kg, i.p.) hyperlocomotion. Subsequently we examined whether these subthreshold doses given together would attenuate cocaine hyperlocomotion, consistent with a 5-HT2A/5-HT2CR interaction. Separate groups of rats received two sequential drug injections 5 min apart immediately before a 1-h locomotion test as follows: 1) saline + saline, 2) saline + cocaine, 3) 0.025 mg/kg M100907 + cocaine, 4) 0.125 mg/kg MK212 + cocaine, or 5) cocktail combination of 0.025 mg/kg M100907 and 0.125 mg/kg MK212 + cocaine. Brains were extracted for Fos immunohistochemistry 90 min after the second injection. We next examined the effects of 0.025 mg/kg M100907 and 0.125 mg/kg MK212, alone and in combination, on spontaneous locomotor activity. While neither drug given alone produced any effects, the M100907/MK212 cocktail attenuated cocaine hyperlocomotion as well as cocaine-induced Fos expression in the dorsolateral caudate-putamen (CPu), but had no effect on spontaneous locomotion. The findings suggest that 5-HT2ARs and 5-HT2CRs interact to attenuate cocaine hyperlocomotion and Fos expression in the CPu, and that the CPu is a potential locus of the interactive effects between these 5-HT2R subtypes on behavior. Further research investigating combined 5-HT2AR antagonism and 5-HT2CR agonism as a treatment for cocaine dependence is warranted. PMID:22886755

  16. NMDA receptors trigger neurosecretion of 5-HT within dorsal raphé nucleus of the rat in the absence of action potential firing

    PubMed Central

    de Kock, C P J; Cornelisse, L N; Burnashev, N; Lodder, J C; Timmerman, A J; Couey, J J; Mansvelder, H D; Brussaard, A B

    2006-01-01

    Activity and calcium-dependent release of neurotransmitters from the somatodendritic compartment is an important signalling mechanism between neurones throughout the brain. NMDA receptors and vesicles filled with neurotransmitters occur in close proximity in many brain areas. It is unknown whether calcium influx through these receptors can trigger the release of somatodendritic vesicles directly, or whether postsynaptic action potential firing is necessary for release of these vesicles. Here we addressed this question by studying local release of serotonin (5-HT) from dorsal raphé nucleus (DRN) neurones. We performed capacitance measurements to monitor the secretion of vesicles in giant soma patches, in response to short depolarizations and action potential waveforms. Amperometric measurements confirmed that secreted vesicles contained 5-HT. Surprisingly, two-photon imaging of DRN neurones in slices revealed that dendritic calcium concentration changes in response to somatic firing were restricted to proximal dendritic areas. This implied that alternative calcium entry pathways may dominate the induction of vesicle secretion from distal dendrites. In line with this, transient NMDA receptor activation, in the absence of action potential firing, was sufficient to induce capacitance changes. By monitoring GABAergic transmission onto DRN 5-HT neurones in slices, we show that endogenous NMDA receptor activation, in the absence of postsynaptic firing, induced release of 5-HT, which in turn increased the frequency of GABAergic inputs through activation of 5-HT2 receptors. We propose here that calcium influx through NMDA receptors can directly induce postsynaptic 5-HT release from DRN neurones, which in turn may facilitate GABAergic input onto these cells. PMID:17053037

  17. Design, Synthesis, and Structure–Activity Relationships of Highly Potent 5-HT3 Receptor Ligands

    PubMed Central

    2012-01-01

    The 5-HT3 receptor, a pentameric ligand-gated ion channel (pLGIC), is an important therapeutic target. During a recent fragment screen, 6-chloro-N-methyl-2-(4-methyl-1,4-diazepan-1-yl)quinazolin-4-amine (1) was identified as a 5-HT3R hit fragment. Here we describe the synthesis and structure–activity relationships (SAR) of a series of (iso)quinoline and quinazoline compounds that were synthesized and screened for 5-HT3R affinity using a [3H]granisetron displacement assay. These studies resulted in the discovery of several high affinity ligands of which compound 22 showed the highest affinity (pKi > 10) for the 5-HT3 receptor. The observed SAR is in agreement with established pharmacophore models for 5-HT3 ligands and is used for ligand–receptor binding mode prediction using homology modeling and in silico docking approaches. PMID:23006041

  18. An Orally Active Phenylaminotetralin-Chemotype Serotonin 5-HT7 and 5-HT1A Receptor Partial Agonist that Corrects Motor Stereotypy in Mouse Models.

    PubMed

    Canal, Clinton E; Felsing, Daniel E; Liu, Yue; Zhu, Wanying; Wood, JodiAnne T; Perry, Charles K; Vemula, Rajender; Booth, Raymond G

    2015-07-15

    Stereotypy (e.g., repetitive hand waving) is a key phenotype of autism spectrum disorder, Fragile X and Rett syndromes, and other neuropsychiatric disorders, and its severity correlates with cognitive and attention deficits. There are no effective treatments, however, for stereotypy. Perturbation of serotonin (5-HT) neurotransmission contributes to stereotypy, suggesting that distinct 5-HT receptors may be pharmacotherapeutic targets to treat stereotypy and related neuropsychiatric symptoms. For example, preclinical studies indicate that 5-HT7 receptor activation corrects deficits in mouse models of Fragile X and Rett syndromes, and clinical trials for autism are underway with buspirone, a 5-HT1A partial agonist with relevant affinity at 5-HT7 receptors. Herein, we report the synthesis, in vitro molecular pharmacology, behavioral pharmacology, and pharmacokinetic parameters in mice after subcutaneous and oral administration of (+)-5-(2'-fluorophenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine ((+)-5-FPT), a new, dual partial agonist targeting both 5-HT7 (Ki = 5.8 nM, EC50 = 34 nM) and 5-HT1A (Ki = 22 nM, EC50 = 40 nM) receptors. Three unique, heterogeneous mouse models were used to assess the efficacy of (+)-5-FPT to reduce stereotypy: idiopathic jumping in C58/J mice, repetitive body rotations in C57BL/6J mice treated with the NMDA antagonist, MK-801, and repetitive head twitching in C57BL/6J mice treated with the 5-HT2 agonist, DOI. Systemic (+)-5-FPT potently and efficaciously reduced or eliminated stereotypy in each of the mouse models without altering locomotor behavior on its own, and additional tests showed that (+)-5-FPT, at the highest behaviorally active dose tested, enhanced social interaction and did not cause behaviors indicative of serotonin syndrome. These data suggest that (+)-5-FPT is a promising medication for treating stereotypy in psychiatric disorders. PMID:26011730

  19. Effects of physical training on functional activity of 5-HT1B receptors in rat central nervous system: role of 5-HT-moduline.

    PubMed

    Chennaoui, M; Grimaldi, B; Fillion, M P; Bonnin, A; Drogou, C; Fillion, G; Guezennec, C Y

    2000-06-01

    The effect of physical exercise was examined on the sensitivity of 5-HT1B receptors and on 5-HT-moduline tissue concentration in the central nervous system of rats. Rats were trained for 7 consecutive weeks to run on a treadmill. Three groups of animals were selected: group 1, sedentary rats (controls); group 2, animals running for 1 h at 18 m/min for 5 days per week (moderate training) and group 3, animals running for 2 h, at 30 m/min on a 7% grade for 5 days per week (intensive training). The animals were sacrificed 24 h after the last running. Rat brains were dissected out to obtain hippocampus and substantia nigra and kept at -80 degrees C until use. 5-HT1B receptor activity was determined by studying [35S]GTPgammaS binding in a substantia nigra membrane preparation from individual animals, after stimulation by a selective 5-HT1B receptor agonist (CP 93,129). 5-HT-moduline tissue content in hippocampus from individual animals was determined by ELISA using a polyclonal anti-5-HT-moduline antibody. In moderately trained animals (n=5), the CP 93,129-stimulated [35S]GTPgammaS binding curve was shifted to the right compared with controls (n=6), whereas the binding was totally suppressed in intensely trained animals (n=5). In parallel, 5-HT-moduline tissue concentration in the hippocampus was slightly increased in moderately trained animals (117.3 +/- 8.9%) (n=5), whereas it was significantly increased in intensely trained animals (182.6 +/- 29.5%) (n=5) compared to controls (100 +/- 6.11%) (n=6). These results show that 5-HT1B receptors are slightly desensitized in moderately trained animals and totally desensitized in intensely trained animals; moreover, they suggest that the observed desensitization is related to an increase of 5-HT-moduline tissue content; this mechanism may play a role in various pathophysiological conditions. PMID:10882034

  20. Anxiolytic effects of prelimbic 5-HT(1A) receptor activation in the hemiparkinsonian rat.

    PubMed

    Hui, Yan Ping; Wang, Tao; Han, Ling Na; Li, Li Bo; Sun, Yi Na; Liu, Jian; Qiao, Hong Fei; Zhang, Qiao Jun

    2015-01-15

    This study sought to assess whether unilateral lesions of the medial forebrain bundle (MFB) using 6-hydroxydopamine in rats are able to induce anxiety-like behaviors, the role of serotonin-1A (5-HT1A) receptors of the prelimbic (PrL) sub-region of ventral medial prefrontal cortex in the regulation of these behaviors, the density of 5-HT neurons in the dorsal raphe nucleus (DRN) and co-localization of 5-HT1A receptor and neuronal glutamate transporter EAAC1-immunoreactive (EAAC1-ir) cells in the PrL. Unilaterally lesioning the MFB induced anxiety-like behaviors as measured by the open-field and elevated plus maze tests when compared to sham-operated rats. Intra-PrL injection of 5-HT1A receptor agonist 8-OH-DPAT (50, 100, and 500 ng/rat) decreased the percentage of time spent in the center of the open-field and percentages of open arm entries and open arm time in sham-operated rats, indicating the induction of anxiogenic responses, and administration of 5-HT1A receptor antagonist WAY-100635 (60, 120, and 240 ng/rat) showed anxiolytic effects. However, 8-OH-DPAT, at the same doses, increased the percentage of time spent in the center of the open-field and percentages of open arm entries and open arm time in the lesioned rats, indicating the induction of anxiolytic effects, and WAY-100635 produced anxiogenic responses. Unilateral MFB lesion decreased the density of 5-HT neurons in the DRN, and percentage of EAAC1-ir cells expressing 5-HT1A receptors in the PrL. These results suggest that unilateral lesions of the MFB in rats may induce anxiety-like behaviors, and activation of 5-HT1A receptors in the PrL has anxiolytic effects in the rat model of Parkinson's disease. PMID:24906197

  1. Application of an Integrated GPCR SAR-Modeling Platform To Explain the Activation Selectivity of Human 5-HT2C over 5-HT2B.

    PubMed

    Heifetz, Alexander; Storer, R Ian; McMurray, Gordon; James, Tim; Morao, Inaki; Aldeghi, Matteo; Bodkin, Mike J; Biggin, Philip C

    2016-05-20

    Agonism of the 5-HT2C serotonin receptor has been associated with the treatment of a number of diseases including obesity, psychiatric disorders, sexual health, and urology. However, the development of effective 5-HT2C agonists has been hampered by the difficulty in obtaining selectivity over the closely related 5-HT2B receptor, agonism of which is associated with irreversible cardiac valvulopathy. Understanding how to design selective agonists requires exploration of the structural features governing the functional uniqueness of the target receptor relative to related off targets. X-ray crystallography, the major experimental source of structural information, is a slow and challenging process for integral membrane proteins, and so is currently not feasible for every GPCR or GPCR-ligand complex. Therefore, the integration of existing ligand SAR data with GPCR modeling can be a practical alternative to provide this essential structural insight. To demonstrate this, we integrated SAR data from 39 azepine series 5-HT2C agonists, comprising both selective and unselective examples, with our hierarchical GPCR modeling protocol (HGMP). Through this work we have been able to demonstrate how relatively small differences in the amino acid sequences of GPCRs can lead to significant differences in secondary structure and function, as supported by experimental data. In particular, this study suggests that conformational differences in the tilt of TM7 between 5-HT2B and 5-HT2C, which result from differences in interhelical interactions, may be the major source of selectivity in G-protein activation between these two receptors. Our approach also demonstrates how the use of GPCR models in conjunction with SAR data can be used to explain activity cliffs. PMID:26900768

  2. 5-HT obesity medication efficacy via POMC activation is maintained during aging.

    PubMed

    Burke, Luke K; Doslikova, Barbora; D'Agostino, Giuseppe; Garfield, Alastair S; Farooq, Gala; Burdakov, Denis; Low, Malcolm J; Rubinstein, Marcelo; Evans, Mark L; Billups, Brian; Heisler, Lora K

    2014-10-01

    The phenomenon commonly described as the middle-age spread is the result of elevated adiposity accumulation throughout adulthood until late middle-age. It is a clinical imperative to gain a greater understanding of the underpinnings of age-dependent obesity and, in turn, how these mechanisms may impact the efficacy of obesity treatments. In particular, both obesity and aging are associated with rewiring of a principal brain pathway modulating energy homeostasis, promoting reduced activity of satiety pro-opiomelanocortin (POMC) neurons within the arcuate nucleus of the hypothalamus (ARC). Using a selective ARC-deficient POMC mouse line, here we report that former obesity medications augmenting endogenous 5-hydroxytryptamine (5-HT) activity d-fenfluramine and sibutramine require ARC POMC neurons to elicit therapeutic appetite-suppressive effects. We next investigated whether age-related diminished ARC POMC activity therefore impacts the potency of 5-HT obesity pharmacotherapies, lorcaserin, d-fenfluramine, and sibutramine and report that all compounds reduced food intake to a comparable extent in both chow-fed young lean (3-5 months old) and middle-aged obese (12-14 months old) male and female mice. We provide a mechanism through which 5-HT anorectic potency is maintained with age, via preserved 5-HT-POMC appetitive anatomical machinery. Specifically, the abundance and signaling of the primary 5-HT receptor influencing appetite via POMC activation, the 5-HT2CR, is not perturbed with age. These data reveal that although 5-HT obesity medications require ARC POMC neurons to achieve appetitive effects, the anorectic efficacy is maintained with aging, findings of clinical significance to the global aging obese population. PMID:25051442

  3. Molecular and behavioral pharmacology of two novel orally-active 5HT2 modulators: potential utility as antipsychotic medications

    PubMed Central

    Morgan, Drake; Kondabolu, Krishnakanth; Kuipers, Allison; Sakhuja, Rajeev; Robertson, Kimberly L.; Rowland, Neil E.; Booth, Raymond G.

    2013-01-01

    Background Desired serotonin 5HT2 receptor pharmacology for treatment of psychoses is 5HT2A antagonism and/or 5HT2C agonism. No selective 5HT2A antagonist has been approved for psychosis and the only approved 5HT2C agonist (for obesity) also activates 5HT2A and 5HT2B receptors, which can lead to clinical complications. Studies herein tested the hypothesis that a dual-function 5HT2A antagonist/5HT2C agonist that does not activate 5HT2B receptors would be suitable for development as an antipsychotic drug, without liability for weight gain. Methods The novel compounds (+)- and (−)-trans-4-(4′-chlorophenyl)-N,N-dimethyl-2-aminotetralin (p-Cl-PAT) were synthesized, characterized in vitro for affinity and functional activity at human 5HT2 receptors, and administered by intraperitoneal (i.p.) and oral (gavage) routes to mice in behavioral paradigms that assessed antipsychotic efficacy and effects on feeding behavior. Results (+)- and (−)-p-Cl-PAT activated 5HT2C receptors, with (+)-p-Cl-PAT being 12-times more potent, consistent with its higher affinity across 5HT2 receptors. Neither p-Cl-PAT enantiomer activated 5HT2A or 5HT2B receptors at concentrations up to 300-times greater than their respective affinity (Ki), and (+)-p-Cl-PAT was shown to be a 5HT2A competitive antagonist. When administered i.p. or orally, (+)- and (−)-p-Cl-PAT attenuated the head-twitch response (HTR) in mice elicited by the 5HT2 agonist (−)-2,5-dimethoxy-4-iodoamphetamine (DOI) and reduced intake of a highly palatable food in non-food-deprived mice, with (+)-p-Cl-PAT being more potent across behavioral assays. Conclusions The novel in vitro pharmacology of (+)-p-Cl-PAT (5HT2A antagonism/5HT2C agonism without activation of 5HT2B) translated in vivo to an orally-active drug candidate with preclinical efficacy to treat psychoses without liability for weight gain. PMID:23665356

  4. [Design, synthesis and 5-HT/NE dual reuptake inhibitory activity of aromatic heterocyclic arylamidine derivatives].

    PubMed

    Wen, Hui; Yang, Jing; Zhang, Jian-jun; Wang, Ya-fang; Ji, Cheng-xue; Yang, Guang-zhong

    2009-03-01

    Based on the pharmacophore information and the analysis of structure-activity relationship of SSRIs and SNRIs, a series of substituted aromatic heterocyclic arylamidine derivatives were designed and synthesized in order to search for lead compounds with dual activity. All of them were new compounds, and their structures were confirmed by 1H NMR and HRMS. Preliminary in vitro pharmacological tests showed that all target compounds exhibited 5-HT reuptake inhibitory activity and some compounds exhibited NE reuptake inhibitory activity. These aromatic heterocyclic arylamidine designed can be further optimized for finding more potent 5-HT/NE dual reuptake inhibitors and antidepressant candidates as well. PMID:19449528

  5. Potentiation of 5-methoxy-N,N-dimethyltryptamine-induced hyperthermia by harmaline and the involvement of activation of 5-HT1A and 5-HT2A receptors.

    PubMed

    Jiang, Xi-Ling; Shen, Hong-Wu; Yu, Ai-Ming

    2015-02-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and harmaline are serotonin (5-HT) analogs often abused together, which alters thermoregulation that may indicate the severity of serotonin toxicity. Our recent studies have revealed that co-administration of monoamine oxidase inhibitor harmaline leads to greater and prolonged exposure to 5-HT agonist 5-MeO-DMT that might be influenced by cytochrome P450 2D6 (CYP2D6) status. This study was to define the effects of harmaline and 5-MeO-DMT on thermoregulation in wild-type and CYP2D6-humanized (Tg-CYP2D6) mice, as well as the involvement of 5-HT receptors. Animal core body temperatures were monitored noninvasively in the home cages after implantation of telemetry transmitters and administration of drugs. Harmaline (5 and 15 mg/kg, i.p.) alone was shown to induce hypothermia that was significantly affected by CYP2D6 status. In contrast, higher doses of 5-MeO-DMT (10 and 20 mg/kg) alone caused hyperthermia. Co-administration of harmaline (2, 5 or 15 mg/kg) remarkably potentiated the hyperthermia elicited by 5-MeO-DMT (2 or 10 mg/kg), which might be influenced by CYP2D6 status at certain dose combination. Interestingly, harmaline-induced hypothermia was only attenuated by 5-HT1A receptor antagonist WAY-100635, whereas 5-MeO-DMT- and harmaline-5-MeO-DMT-induced hyperthermia could be suppressed by either WAY-100635 or 5-HT2A receptor antagonists (MDL-100907 and ketanserin). Moreover, stress-induced hyperthermia under home cage conditions was not affected by WAY-100635 but surprisingly attenuated by MDL-100907 and ketanserin. Our results indicate that co-administration of monoamine oxidase inhibitor largely potentiates 5-MeO-DMT-induced hyperthermia that involves the activation of both 5-HT1A and 5-HT2A receptors. These findings shall provide insights into development of anxiolytic drugs and new strategies to relieve the lethal hyperthermia in serotonin toxicity. PMID:25446678

  6. Potentiation of 5-methoxy-N,N-dimethyltryptamine-induced hyperthermia by harmaline and the involvement of activation of 5-HT1A and 5-HT2A receptors

    PubMed Central

    Jiang, Xi-Ling; Shen, Hong-Wu; Yu, Ai-Ming

    2014-01-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and harmaline are serotonin (5-HT) analogs often abused together, which alters thermoregulation that may indicate the severity of serotonin toxicity. Our recent studies have revealed that co-administration of monoamine oxidase inhibitor harmaline leads to greater and prolonged exposure to 5-HT agonist 5-MeO-DMT that might be influenced by cytochrome P450 2D6 (CYP2D6) status. This study was to define the effects of harmaline and 5-MeO-DMT on thermoregulation in wild-type and CYP2D6-humanized (Tg-CYP2D6) mice, as well as the involvement of 5-HT receptors. Animal core body temperatures were monitored noninvasively in the home cages after implantation of telemetry transmitters and administration of drugs. Harmaline (5 and 15 mg/kg, i.p.) alone was shown to induce hypothermia that was significantly affected by CYP2D6 status. In contrast, higher doses of 5-MeO-DMT (10 and 20 mg/kg) alone caused hyperthermia. Co-administration of harmaline (2, 5 or 15 mg/kg) remarkably potentiated the hyperthermia elicited by 5-MeO-DMT (2 or 10 mg/kg), which might be influenced by CYP2D6 status at certain dose combination. Interestingly, harmaline-induced hypothermia was only attenuated by 5-HT1A receptor antagonist WAY-100635, whereas 5-MeO-DMT- and harmaline-5-MeO-DMT-induced hyperthermia could be suppressed by either WAY-100635 or 5-HT2A receptor antagonists (MDL-100907 and ketanserin). Moreover, stress-induced hyperthermia under home cage conditions was not affected by WAY-100635 but surprisingly attenuated by MDL-100907 and ketanserin. Our results indicate that co-administration of monoamine oxidase inhibitor largely potentiates 5-MeO-DMT-induced hyperthermia that involves the activation of both 5-HT1A and 5-HT2A receptors. These findings shall provide insights into development of anxiolytic drugs and new strategies to relieve the lethal hyperthermia in serotonin toxicity. PMID:25446678

  7. 5-HT Obesity Medication Efficacy via POMC Activation is Maintained During Aging

    PubMed Central

    Burke, Luke K.; Doslikova, Barbora; D'Agostino, Giuseppe; Garfield, Alastair S.; Farooq, Gala; Burdakov, Denis; Low, Malcolm J.; Rubinstein, Marcelo; Evans, Mark L.; Billups, Brian

    2014-01-01

    The phenomenon commonly described as the middle-age spread is the result of elevated adiposity accumulation throughout adulthood until late middle-age. It is a clinical imperative to gain a greater understanding of the underpinnings of age-dependent obesity and, in turn, how these mechanisms may impact the efficacy of obesity treatments. In particular, both obesity and aging are associated with rewiring of a principal brain pathway modulating energy homeostasis, promoting reduced activity of satiety pro-opiomelanocortin (POMC) neurons within the arcuate nucleus of the hypothalamus (ARC). Using a selective ARC-deficient POMC mouse line, here we report that former obesity medications augmenting endogenous 5-hydroxytryptamine (5-HT) activity d-fenfluramine and sibutramine require ARC POMC neurons to elicit therapeutic appetite-suppressive effects. We next investigated whether age-related diminished ARC POMC activity therefore impacts the potency of 5-HT obesity pharmacotherapies, lorcaserin, d-fenfluramine, and sibutramine and report that all compounds reduced food intake to a comparable extent in both chow-fed young lean (3–5 months old) and middle-aged obese (12–14 months old) male and female mice. We provide a mechanism through which 5-HT anorectic potency is maintained with age, via preserved 5-HT–POMC appetitive anatomical machinery. Specifically, the abundance and signaling of the primary 5-HT receptor influencing appetite via POMC activation, the 5-HT2CR, is not perturbed with age. These data reveal that although 5-HT obesity medications require ARC POMC neurons to achieve appetitive effects, the anorectic efficacy is maintained with aging, findings of clinical significance to the global aging obese population. PMID:25051442

  8. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation

    PubMed Central

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S.; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G.; Beazely, Michael A.

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands. PMID:25426041

  9. Design, synthesis, and pharmacological evaluation of multitarget-directed ligands with both serotonergic subtype 4 receptor (5-HT4R) partial agonist and 5-HT6R antagonist activities, as potential treatment of Alzheimer's disease.

    PubMed

    Yahiaoui, Samir; Hamidouche, Katia; Ballandonne, Céline; Davis, Audrey; de Oliveira Santos, Jana Sopkova; Freret, Thomas; Boulouard, Michel; Rochais, Christophe; Dallemagne, Patrick

    2016-10-01

    5-HT4 receptor (5-HT4R) activation and blockade of the 5-HT6 receptor (5-HT6R) are known to enhance the release of numerous neurotransmitters whose depletion is implicated in Alzheimer's disease (AD). Furthermore, 5-HT4R agonists seem to favor production of the neurotrophic soluble amyloid protein precursor alpha (sAPPα). Consequently, combining 5-HT4R agonist/5-HT6R antagonist activities in a single chemical compound would constitute a novel approach able to display both a symptomatic and disease-modifying effect in AD. Seventeen novel derivatives of RS67333 (1) were synthesized and evaluated as potential dual-target compounds. Among them, four agents showed nanomolar and submicromolar affinities toward 5-HT4R and 5-HT6R, respectively; one of them, 7m, was selected on the basis of its in vitro affinity (Ki5-HT4R = 5.3 nM, Ki5-HT6R = 219 nM) for further in vivo experiments, where 7m showed an antiamnesic effect in the mouse at 1 mg/kg ip. PMID:27266998

  10. Activation of 5-HT3 receptors leads to altered responses 6 months after MDMA treatment.

    PubMed

    Gyongyosi, Norbert; Balogh, Brigitta; Katai, Zita; Molnar, Eszter; Laufer, Rudolf; Tekes, Kornelia; Bagdy, Gyorgy

    2010-03-01

    The recreational drug "Ecstasy" [3,4-methylenedioxymethamphetamine (MDMA)] has a well-characterised neurotoxic effect on the 5-hydroxytryptamine (5-HT) neurons in animals. Despite intensive studies, the long-term functional consequencies of the 5-HT neurodegeneration remains elusive. The aim of this study was to investigate whether any alteration of 5-hydroxytryptamine-3 (5-HT(3)) receptor functions on the sleep-wake cycle, motor activity, and quantitative EEG could be detected 6 months after a single dose of 15 mg/kg of MDMA. The selective 5-HT(3) receptor agonist m-chlorophenylbiguanide (mCPBG; 1 mg/kg, i.p.) or vehicle was administered to freely moving rats pre-treated with MDMA (15 mg/kg, i.p.) or vehicle 6 months earlier. Polysomnographic and motor activity recordings were performed. Active wake (AW), passive wake (PW), light slow wave sleep (SWS-1), deep slow wave sleep (SWS-2), and paradoxical sleep were classified. In addition, EEG power spectra were calculated for the second hour after mCPBG treatment for each stage. AW increased and SWS-1 decreased in the second hour after mCPBG treatment in control animals. mCPBG caused significant changes in the EEG power in states with cortical activation (AW, PW, paradoxical sleep). In addition, mCPBG had a biphasic effect on hippocampal theta power in AW with a decrease in 7 Hz and a stage-selective increase in the upper range (8-9 Hz). Effects of mCPBG on the time spent in AW and SWS-1 were eliminated or reduced in MDMA-treated animals. In addition, mCPBG did not increase the upper theta power of AW in rats pre-treated with MDMA. These data suggest long-term changes in 5-HT(3) receptor function after MDMA. PMID:20052506

  11. Buspirone requires the intact nigrostriatal pathway to reduce the activity of the subthalamic nucleus via 5-HT1A receptors.

    PubMed

    Sagarduy, A; Llorente, J; Miguelez, C; Morera-Herreras, T; Ruiz-Ortega, J A; Ugedo, L

    2016-03-01

    The most effective treatment for Parkinson's disease (PD), l-DOPA, induces dyskinesia after prolonged use. We have previously shown that in 6-hydroxydopamine (6-OHDA) lesioned rats rendered dyskinetic by prolonged l-DOPA administration, lesion of the subthalamic nucleus (STN) reduces not only dyskinesias but also buspirone antidyskinetic effect. This study examined the effect of buspirone on STN neuron activity. Cell-attached recordings in parasagittal slices from naïve rats showed that whilst serotonin excited the majority of STN neurons, buspirone showed an inhibitory main effect but only in 27% of the studied cells which was prevented by the 5-HT1A receptor selective antagonist WAY-100635. Conversely, single-unit extracellular recordings were performed in vivo on STN neurons from four different groups, i.e., control, chronically treated with l-DOPA, 6-OHDA lesioned and lesioned treated with l-DOPA (dyskinetic) rats. In control animals, systemic-buspirone administration decreased the firing rate in a dose-dependent manner in every cell studied. This effect, prevented by WAY-100635, was absent in 6-OHDA lesioned rats and was not modified by prolonged l-DOPA administration. Altogether, buspirone in vivo reduces consistently the firing rate of the STN neurons through 5-HT1A receptors whereas ex vivo buspirone seems to affect only a small population of STN neurons. Furthermore, the lack of effect of buspirone in 6-OHDA lesioned rats, suggests the requirement of not only the activation of 5-HT1A receptors but also an intact nigrostriatal pathway for buspirone to inhibit the STN activity. PMID:26687972

  12. Single-Channel Kinetic Analysis for Activation and Desensitization of Homomeric 5-HT3A Receptors

    PubMed Central

    Corradi, Jeremías; Gumilar, Fernanda; Bouzat, Cecilia

    2009-01-01

    Abstract The 5-HT3A receptor is a member of the Cys-loop family of ligand-gated ion channels. To perform kinetic analysis, we mutated the 5-HT3A subunit to obtain a high-conductance form so that single-channel currents can be detected. At all 5-HT concentrations (>0.1 μM), channel activity appears as openings in quick succession that form bursts, which coalesce into clusters. By combining single-channel and macroscopic data, we generated a kinetic model that perfectly describes activation, deactivation, and desensitization. The model shows that full activation arises from receptors with three molecules of agonist bound. It reveals an earlier conformational change of the fully liganded receptor that occurs while the channel is still closed. From this pre-open closed state, the receptor enters into an open-closed cycle involving three open states, which form the cluster whose duration parallels the time constant of desensitization. A similar model lacking the pre-open closed state can describe the data only if the opening rates are fixed to account for the slow activation rate. The application of the model to M4 mutant receptors shows that position 10′ contributes to channel opening and closing rates. Thus, our kinetic model provides a foundation for understanding structural bases of activation and drug action. PMID:19720021

  13. Neurochemical effects of buspirone in rat hippocampus: evidence for selective activation of 5HT neurons.

    PubMed

    Mennini, T; Gobbi, M; Ponzio, F; Garattini, S

    1986-01-01

    The effect of buspirone on neurotransmitter systems in rat hippocampus has been evaluated in vitro and in vivo. In vitro buspirone does not affect the specific binding of 3H-flunitrazepam, 3H-GABA, 3H-dexetimide, but displaces 3H-5HT binding with nanomolar affinity. Oral administration of buspirone does not modify the hippocampal concentrations of GABA, acetylcholine, choline and of 3H-flunitrazepam specifically bound in vivo, but results in a dose-dependent reduction of 5HIAA and noradrenaline concentrations. While the effect on noradrenaline is also obtained in striatum of buspirone-treated animals, the effect on 5HIAA shows a regional specificity. The in vitro and in vivo data suggest that buspirone specifically activates 5HT neurons in hippocampus, and are compared with those obtained with diazepam. PMID:2421657

  14. Structure-Activity Relationships of Constrained Phenylethylamine Ligands for the Serotonin 5-HT2 Receptors

    PubMed Central

    Isberg, Vignir; Paine, James; Leth-Petersen, Sebastian; Kristensen, Jesper L.; Gloriam, David E.

    2013-01-01

    Serotonergic ligands have proven effective drugs in the treatment of migraine, pain, obesity, and a wide range of psychiatric and neurological disorders. There is a clinical need for more highly 5-HT2 receptor subtype-selective ligands and the most attention has been given to the phenethylamine class. Conformationally constrained phenethylamine analogs have demonstrated that for optimal activity the free lone pair electrons of the 2-oxygen must be oriented syn and the 5-oxygen lone pairs anti relative to the ethylamine moiety. Also the ethyl linker has been constrained providing information about the bioactive conformation of the amine functionality. However, combined 1,2-constriction by cyclization has only been tested with one compound. Here, we present three new 1,2-cyclized phenylethylamines, 9–11, and describe their synthetic routes. Ligand docking in the 5-HT2B crystal structure showed that the 1,2-heterocyclized compounds can be accommodated in the binding site. Conformational analysis showed that 11 can only bind in a higher-energy conformation, which would explain its absent or low affinity. The amine and 2-oxygen interactions with D3.32 and S3.36, respectively, can form but shift the placement of the core scaffold. The constraints in 9–11 resulted in docking poses with the 4-bromine in closer vicinity to 5.46, which is polar only in the human 5-HT2A subtype, for which 9–11 have the lowest affinity. The new ligands, conformational analysis and docking expand the structure-activity relationships of constrained phenethylamines and contributes towards the development of 5-HT2 receptor subtype-selective ligands. PMID:24244317

  15. Inhibitory activity of antibodies against the human atrial 5-HT(4)receptor.

    PubMed

    Sallé, L; Eftekhari, P; Aupart, M; Cosnay, P; Hoebeke, J; Argibay, J A

    2001-03-01

    Antibodies directed against the second extracellular loop of G protein-coupled receptors have been shown to exert "agonist-like" activities. In order to test the hypothesis that this is a general phenomenon, antibodies were raised in rabbits against a synthetic peptide corresponding to the second extracellular loop of the newly sequenced human cardiac 5-HT(4)receptor. The antibodies were affinity-purified and shown to recognize the 5-HT(4)receptor in immunoblots of Chinese hamster ovary (CHO) cells expressing the receptor. The antibodies had no intrinsic effect but could depress the activation of L -type calcium channel induced by serotonin in human atrial cells. This antagonist-like effect was exerted both by intact IgG and by Fab fragments. These results are physiologically important since it has been shown that the 5-HT(4)receptor could be a target for autoantibodies in mothers at risk of giving birth to children with neonatal atrio-ventricular block. PMID:11181010

  16. Serotonin 5-HT(2A) receptor activation induces 2-arachidonoylglycerol release through a phospholipase c-dependent mechanism.

    PubMed

    Parrish, Jason C; Nichols, David E

    2006-11-01

    To date, several studies have demonstrated that phospholipase C-coupled receptors stimulate the production of endocannabinoids, particularly 2-arachidonoylglycerol. There is now evidence that endocannabinoids are involved in phospholipase C-coupled serotonin 5-HT(2A) receptor-mediated behavioral effects in both rats and mice. The main objective of this study was to determine whether activation of the 5-HT(2A) receptor leads to the production and release of the endocannabinoid 2-arachidonoylglycerol. NIH3T3 cells stably expressing the rat 5-HT(2A) receptor were first incubated with [(3)H]-arachidonic acid for 24 h. Following stimulation with 10 mum serotonin, lipids were extracted from the assay medium, separated by thin layer chromatography, and analyzed by liquid scintillation counting. Our results indicate that 5-HT(2A) receptor activation stimulates the formation and release of 2-arachidonoylglycerol. The 5-HT(2A) receptor-dependent release of 2-arachidonoylglycerol was partially dependent on phosphatidylinositol-specific phospholipase C activation. Diacylglycerol produced downstream of 5-HT(2A) receptor-mediated phospholipase D or phosphatidylcholine-specific phospholipase C activation did not appear to contribute to 2-arachidonoylglycerol formation in NIH3T3-5HT(2A) cells. In conclusion, our results support a functional model where neuromodulatory neurotransmitters such as serotonin may act as regulators of endocannabinoid tone at excitatory synapses through the activation of phospholipase C-coupled G-protein coupled receptors. PMID:17010161

  17. Synthesis and Structure–Activity Relationships of N-Benzyl Phenethylamines as 5-HT2A/2C Agonists

    PubMed Central

    2014-01-01

    N-Benzyl substitution of 5-HT2A receptor agonists of the phenethylamine structural class of psychedelics (such as 4-bromo-2,5-dimethoxyphenethylamine, often referred to as 2C-B) confer a significant increase in binding affinity as well as functional activity of the receptor. We have prepared a series of 48 compounds with structural variations in both the phenethylamine and N-benzyl part of the molecule to determine the effects on receptor binding affinity and functional activity at 5-HT2A and 5-HT2C receptors. The compounds generally had high affinity for the 5-HT2A receptor with 8b having the highest affinity at 0.29 nM but with several other compounds also exhibiting subnanomolar binding affinities. The functional activity of the compounds was distributed over a wider range with 1b being the most potent at 0.074 nM. Most of the compounds exhibited low to moderate selectivity (1- to 40-fold) for the 5-HT2A receptor in the binding assays, although one compound 6b showed an impressive 100-fold selectivity for the 5-HT2A receptor. In the functional assay, selectivity was generally higher with 1b being more than 400-fold selective for the 5-HT2A receptor. PMID:24397362

  18. 5-HT3 Receptors

    PubMed Central

    Thompson, A. J.; Lummis, S. C. R.

    2009-01-01

    The 5-HT3 receptor is a member of the Cys-loop family of ligand-gated ion channels. These receptors are located in both the peripheral and central nervous systems, where functional receptors are constructed from five subunits. These subunits may be the same (homopentameric 5-HT3A receptors) or different (heteropentameric receptors, usually comprising of 5-HT3A and 5-HT3B receptor subunits), with the latter having a number of distinct properties. The 5-HT3 receptor binding site is comprised of six loops from two adjacent subunits, and critical ligand binding amino acids in these loops have been largely identified. There are a range of selective agonists and antagonists for these receptors and the pharmacophore is reasonably well understood. There are also a wide range of compounds that can modulate receptor activity. Studies have suggested many diverse potential disease targets that might be amenable to alleviation by 5-HT3 receptor selective compounds but to date only two applications have been fully realised in the clinic: the treatment of emesis and irritable-bowel syndrome. PMID:17073663

  19. Synergistic effect of 5-HT1A and σ1 receptor activation on prefrontal dopaminergic transmission under circulating steroid deficiency.

    PubMed

    Hiramatsu, Naoki; Ago, Yukio; Hasebe, Shigeru; Nishimura, Akira; Mori, Kazuya; Takuma, Kazuhiro; Matsuda, Toshio

    2013-12-01

    Serotonin (5-HT)1A and σ1 receptors have been implicated in psychiatric disorders. We previously found that combined 5-HT reuptake inhibition and σ1 receptor activation has a synergistic effect on prefrontal dopaminergic transmission in adrenalectomized/castrated mice lacking circulating steroid hormones. In the present study, we examined the mechanisms underlying this neurochemical synergism. Systemic administration of fluvoxamine, a selective 5-HT reuptake inhibitor with agonistic activity towards the σ1 receptor, increased prefrontal dopamine (DA) levels, and adrenalectomy/castration potentiated this fluvoxamine-induced increase in DA. This enhancement of DA release was blocked by WAY100635 (a 5-HT1A receptor antagonist), but not by ritanserin (a 5-HT2 receptor antagonist), azasetron (a 5-HT3 receptor antagonist) or SB269970 (a 5-HT7 receptor antagonist). Individually, osemozotan (a 5-HT1A receptor agonist) and (+)-SKF-10,047 (a σ1 receptor agonist) did not alter prefrontal monoamine levels in adrenalectomized/castrated and sham-operated mice differentially. In contrast, co-administration of these drugs increased prefrontal DA levels to a greater extent in adrenalectomized/castrated mice than in sham-operated animals. Furthermore, co-administration of osemozotan and (+)-SKF-10,047 increased expression of the neuronal activity marker c-Fos in the ventral tegmental area of adrenalectomized/castrated mice, but not in sham-operated animals. These findings suggest that combined activation of 5-HT1A and σ1 receptors has a synergistic effect on prefrontal dopaminergic transmission under circulating steroid deficiency, and that this interaction may play an important role in the regulation of the prefrontal DA system. PMID:23851260

  20. Serotonin 5-HT7 receptor agents: structure-activity relationships and potential therapeutic applications in central nervous system disorders

    PubMed Central

    Leopoldo, Marcello; Lacivita, Enza; Berardi, Francesco; Perrone, Roberto; Hedlund, Peter B.

    2010-01-01

    Since its discovery in the 1940s in serum, the mammalian intestinal mucosa, and in the central nervous system, serotonin (5-HT) has been shown to be involved in virtually all cognitive and behavioral human functions, and alterations in its neurochemistry have been implicated in the etiology of a plethora of neuropsychiatric disorders. The cloning of 5-HT receptor subtypes has been of importance in enabling them to be classified as specific protein molecules encoded by specific genes. The 5-HT7 receptor is the most recently classified member of the serotonin receptor family. Since its identification, it has been the subject of intense research efforts driven by its presence in functionally relevant regions of the brain. The availability of some selective antagonists and agonists, in combination with genetically modified mice lacking the 5-HT7 receptor, has allowed for a better understanding of the pathophysiological role of this receptor. This paper reviews data on localization and pharmacological properties of the 5-HT7 receptor, and summarizes the results of structure-activity relationship studies aimed at the discovery of selective 5-HT7 receptor ligands. Additionally, an overview of the potential therapeutic applications of 5-HT7 receptor agonists and antagonists in central nervous system disorders is presented. PMID:20923682

  1. High efficiency activation of L-type Ca2+ current by 5-HT in human atrial myocytes.

    PubMed

    Di Scala, Emmanuella; Findlay, Ian; Rose, Stephanie; Aupart, Michel; Argibay, Jorge; Cosnay, Pierre; Bozon, Veronique

    2004-01-01

    In human atrial myocytes, serotonin rather than sympathetic, stimulation is more frequently associated with atrial fibrillation. So does the arrhythmogenic effect of serotonin result from the mechanism of action of the receptor or the context of its action upon cardiac myocytes? The capacity of agonists to produce cAMP followed the sequence 5-HT < Iso < Forskolin to increase ICaL with 5-HT = Iso = Forskolin. The simultaneous application of threshold concentrations of 5-HT and Iso maximally increased ICaL. We will show that the effect of 5-HT upon human atrial myocytes is an imbalance between low production of cAMP and maximal activation of ICaL. PMID:15989080

  2. Hydrogen sulfide activates TRPA1 and releases 5-HT from epithelioid cells of the chicken thoracic aorta.

    PubMed

    Delgermurun, Dugar; Yamaguchi, Soichiro; Ichii, Osamu; Kon, Yasuhiro; Ito, Shigeo; Otsuguro, Ken-Ichi

    2016-09-01

    Epithelioid cells in the chicken thoracic aorta are chemoreceptor cells that release 5-HT in response to hypoxia. It is likely that these cells play a role in chemoreception similar to that of glomus cells in the carotid bodies of mammals. Recently, H2S was reported to be a key mediator of carotid glomus cell responses to hypoxia. The aim of the present study was to reveal the mechanism of action of H2S on 5-HT outflow from chemoreceptor cells in the chicken thoracic aorta. The 5-HT outflow induced by NaHS, an H2S donor, and Na2S3, a polysulfide, was measured by using a HPLC equipped with an electrochemical detector. NaHS (0.3-3mM) caused a concentration-dependent increase in 5-HT outflow, which was significantly inhibited by the removal of extracellular Ca(2+). 5-HT outflow induced by NaHS (0.3mM) was also significantly inhibited by voltage-dependent L- and N-type Ca(2+) channel blockers and a selective TRPA1 channel blocker. Cinnamaldehyde, a TRPA1 agonist, mimicked the secretory response to H2S. 5-HT outflow induced by Na2S3 (10μM) was also inhibited by the TRPA1 channel blocker. Furthermore, the expression of TRPA1 was localized to 5-HT-containing chemoreceptor cells in the aortic wall. These findings suggest that the activation of TRPA1 and voltage-dependent Ca(2+) channels is involved in H2S-evoked 5-HT release from chemoreceptor cells in the chicken aorta. PMID:27183534

  3. Pharmacological analysis of G-protein activation mediated by guinea-pig recombinant 5-HT1B receptors in C6-glial cells: similarities with the human 5-HT1B receptor.

    PubMed

    Pauwels, P J; Wurch, T; Palmier, C; Colpaert, F C

    1998-01-01

    1. The guinea-pig recombinant 5-hydroxytryptamine1B (gp 5-HT1B) receptor stably transfected in rat C6-glial cells was characterized by monitoring G-protein activation in a membrane preparation with agonist-stimulated [35S]-GTPgammaS binding. The intrinsic activity of 5-HT receptor ligands was compared with that determined previously at the human recombinant 5-HT1B (h 5-HT1B) receptor under similar experimental conditions. 2. Membrane preparations of C6-glial/gp 5-HT1B cells exhibited [3H]-5-carboxamidotryptamine (5-CT) and [3H]-N-[4-methoxy-3,4-methylpiperazin-1-yl) phenyl]-3-methyl-4-(4-pyridinyl)benzamide (GR 125743) binding sites with a pKd of 9.62 to 9.85 and a Bmax between 2.1 to 6.4 fmol mg(-1) protein. The binding affinities of a series of 5-HT receptor ligands determined with [3H]-5-CT and [3H]-GR 125743 were similar. Ligand affinities were comparable to and correlated (r2: 0.74, P<0.001) with those determined at the recombinant h 5-HT1B receptor. 3. [35S]-GTPgammaS binding to membrane preparations of C6-glial/gp 5-HT1B cells was stimulated by the 5-HT receptor agonists that were being investigated. The maximal responses of naratriptan, zolmitriptan, sumatriptan, N-methyl-3-[pyrrolidin-2(R)-ylmethyl]-1H-indol-5-ylmethyl sulphonamide (CP 122638), rizatriptan and dihydroergotamine were between 0.76 and 0.85 compared to 5-HT. The potency of these agonists showed a positive correlation (r2: 0.72, P=0.015) with their potency at the recombinant h 5-HT1B receptor. 1-naphthylpiperazine, (+/-)-cyanopindolol and (2'-methyl-4'-(5-methyl[1,2,4] oxadiazole-3-yl)biphenyl-4-carboxylic acid [4-methoxy-3-(4-methylpiperazin-1-yl)phenyl]amide (GR 127935) elicited an even smaller response (Emax: 0.32 to 0.63). 4. The ligands 1'-methyl-5-(2'-methyl-4'-(5-methyl-1,2,4-oxadiazole-3-yl) biphenyl-4-carbonyl)-2,3,6,7tetrahydrospiro [furo[2,3-f]indole-3-spiro-4'-piperidine] (SB224289), methiothepin and ritanserin displayed inhibition of basal [35S]-GTPgammaS binding at concentrations

  4. Serotonin 5-HT2 Receptors Induce a Long-Lasting Facilitation of Spinal Reflexes Independent of Ionotropic Receptor Activity

    PubMed Central

    Shay, Barbara L.; Sawchuk, Michael; Machacek, David W.; Hochman, Shawn

    2009-01-01

    Dorsal root-evoked stimulation of sensory afferents in the hemisected in vitro rat spinal cord produces reflex output, recorded on the ventral roots. Transient spinal 5-HT2C receptor activation induces a long-lasting facilitation of these reflexes (LLFR) by largely unknown mechanisms. Two Sprague-Dawley substrains were used to characterize network properties involved in this serotonin (5-HT) receptor-mediated reflex plasticity. Serotonin more easily produced LLFR in one substrain and a long-lasting depression of reflexes (LLDR) in the other. Interestingly, LLFR and LLDR were bidirectionally interconvertible using 5-HT2A/2C and 5-HT1A receptor agonists, respectively, regardless of substrain. LLFR was predominantly Aβ afferent fiber mediated, consistent with prominent 5-HT2C receptor expression in the Aβ fiber projection territories (deeper spinal laminae). Reflex facilitation involved an unmasking of polysynaptic pathways and an increased receptive field size. LLFR emerged even when reflexes were evoked three to five times/h, indicating an activity independent induction. Both the NMDA and AMPA/kainate receptor-mediated components of the reflex could be facilitated, and facilitation was dependent on 5-HT receptor activation alone, not on coincident reflex activation in the presence of 5-HT. Selective blockade of GABAA and/or glycine receptors also did not prevent reflex amplification and so are not required for LLFR. Indeed, a more robust response was seen after blockade of spinal inhibition, indicating that inhibitory processes serve to limit reflex amplification. Overall we demonstrate that the serotonergic system has the capacity to induce long-lasting bidirectional changes in reflex strength in a manner that is nonassociative and independent of evoked activity or activation of ionotropic excitatory and inhibitory receptors. PMID:16033939

  5. The serotonergic hallucinogen 5-methoxy-N,N-dimethyltryptamine disrupts cortical activity in a regionally-selective manner via 5-HT(1A) and 5-HT(2A) receptors.

    PubMed

    Riga, Maurizio S; Bortolozzi, Analia; Campa, Letizia; Artigas, Francesc; Celada, Pau

    2016-02-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a natural hallucinogen, acting as a non-selective serotonin 5-HT(1A)/5-HT(2A)-R agonist. Psychotomimetic agents such as the non-competitive NMDA-R antagonist phencyclidine and serotonergic hallucinogens (DOI and 5-MeO-DMT) disrupt cortical synchrony in the low frequency range (<4 Hz) in rat prefrontal cortex (PFC), an effect reversed by antipsychotic drugs. Here we extend these observations by examining the effect of 5-MeO-DMT on low frequency cortical oscillations (LFCO, <4 Hz) in PFC, visual (V1), somatosensory (S1) and auditory (Au1) cortices, as well as the dependence of these effects on 5-HT(1A)-R and 5-HT(2A)-R, using wild type (WT) and 5-HT(2A)-R knockout (KO2A) anesthetized mice. 5-MeO-DMT reduced LFCO in the PFC of WT and KO2A mice. The effect in KO2A mice was fully prevented by the 5-HT(1A)-R antagonist WAY-100635. Systemic and local 5-MeO-DMT reduced 5-HT release in PFC mainly via 5-HT(1A)-R. Moreover, 5-MeO-DMT reduced LFCO in S1, Au1 and V1 of WT mice and only in V1 of KO2A mice, suggesting the involvement of 5-HT(1A)-R activation in the 5-MeO-DMT-induced disruption of V1 activity. In addition, antipsychotic drugs reversed 5-MeO-DMT effects in WT mice. The present results suggest that the hallucinogen action of 5-MeO-DMT is mediated by simultaneous alterations of the activity of sensory (S1, Au1, V1) and associative (PFC) cortical areas, also supporting a role of 5-HT(1A)-R stimulation in V1 and PFC, in addition to the well-known action on 5-HT(2A)-R. Moreover, the reversal by antipsychotic drugs of 5-MeO-DMT effects adds to previous literature supporting the usefulness of the present model in antipsychotic drug development. PMID:26477571

  6. Seizure-dependent mTOR activation in 5-HT neurons promotes autism-like behaviors in mice

    PubMed Central

    McMahon, John J.; Yu, Wilson; Yang, Jun; Feng, Haihua; Helm, Meghan; McMahon, Elizabeth; Zhu, Xinjun; Shin, Damian; Huang, Yunfei

    2014-01-01

    Epilepsy and autism spectrum disorder (ASD) are common comorbidities of one another. Despite the prevalent correlation between the two disorders, few studies have been able to elucidate a mechanistic link. We demonstrate that forebrain specific Tsc1 deletion in mice causes epilepsy and autism-like behaviors, concomitant with disruption of 5-HT neurotransmission. We find that epileptiform activity propagates to the raphe nuclei, resulting in seizure-dependent hyperactivation of mTOR in 5-HT neurons. To dissect whether mTOR hyperactivity in 5-HT neurons alone was sufficient to recapitulate an autism-like phenotype we utilized Tsc1flox/flox;Slc6a4-cre mice, in which mTOR is restrictively hyperactivated in 5-HT neurons. Tsc1flox/flox;Slc6a4-cre mice displayed alterations of the 5-HT system and autism-like behaviors, without causing epilepsy. Rapamycin treatment in these mice was sufficient to rescue the phenotype. We conclude that the spread of seizure activity to the brainstem is capable of promoting hyperactivation of mTOR in the raphe nuclei, which in turn promotes autism-like behaviors. Thus our study provides a novel mechanism describing how epilepsy can contribute to the development of autism-like behaviors, suggesting new therapeutic strategies for autism. PMID:25315683

  7. Impact of intracellular domain flexibility upon properties of activated human 5-HT3 receptors*

    PubMed Central

    Kozuska, J L; Paulsen, I M; Belfield, W J; Martin, I L; Cole, D J; Holt, A; Dunn, S M J

    2014-01-01

    Background and Purpose It has been proposed that arginine residues lining the intracellular portals of the homomeric 5-HT3A receptor cause electrostatic repulsion of cation flow, accounting for a single-channel conductance substantially lower than that of the 5-HT3AB heteromer. However, comparison of receptor homology models for wild-type pentamers suggests that salt bridges in the intracellular domain of the homomer may impart structural rigidity, and we hypothesized that this rigidity could account for the low conductance. Experimental Approach Mutations were introduced into the portal region of the human 5-HT3A homopentamer, such that putative salt bridges were broken by neutralizing anionic partners. Single-channel and whole cell currents were measured in transfected tsA201 cells and in Xenopus oocytes respectively. Computational simulations of protein flexibility facilitated comparison of wild-type and mutant receptors. Key Results Single-channel conductance was increased substantially, often to wild-type heteromeric receptor values, in most 5-HT3A mutants. Conversely, introduction of arginine residues to the portal region of the heteromer, conjecturally creating salt bridges, decreased conductance. Gating kinetics varied significantly between different mutant receptors. EC50 values for whole-cell responses to 5-HT remained largely unchanged, but Hill coefficients for responses to 5-HT were usually significantly smaller in mutants. Computational simulations suggested increased flexibility throughout the protein structure as a consequence of mutations in the intracellular domain. Conclusions and Implications These data support a role for intracellular salt bridges in maintaining the quaternary structure of the 5-HT3 receptor and suggest a role for the intracellular domain in allosteric modulation of cooperativity and agonist efficacy. Linked Article This article is commented on by Vardy and Kenakin, pp. 1614–1616 of volume 171 issue 7. To view this commentary

  8. Direct and Indirect 5-HT receptor agonists produce gender-specific effects on locomotor and vertical activity in C57 BL/6J mice

    PubMed Central

    Brookshire, Bethany R.; Jones, Sara R.

    2009-01-01

    It is well established that the dopamine (DA) and serotonin (5-HT) systems have extensive and complex interactions. However, the effects of specific 5-HT receptor agonists on traditionally DA-related behaviors remain unclear. Our goal in these studies was to characterize the effects of 5-HT receptor agonists on measures of locomotor activity and vertical rearing. The SSRIs fluoxetine and citalopram produced significant decreases in locomotor activity and vertical rearing at the highest doses used with females significant more sensitive to citalopram. The 5-HT1A agonist 8-OH-DPAT and the 5-HT2C agonist MK 212 significantly decreased activity in both male and female mice, with females more sensitive to 8-OH-DPAT. In contrast, the 5-HT1B agonist RU 24969 and the 5-HT2A agonist DOI both increased activity, with DOI exhibiting differential effects with regard to sex. Finally, the 5-HT3 agonist SR 57227 produced significant locomotor increases only in female mice at the lowest dose. The results of these experiments define locomotor profiles of several 5-HT agonists in male and female C57BL/6J mice, providing a foundation for further explorations of 5-HT receptor effects on activity. PMID:19698737

  9. The antidepressant-like activity of 6-methoxy-2-[4-(2-methoxyphenyl)piperazin-1-yl]-9H-xanthen-9-one involves serotonergic 5-HT(1A) and 5-HT(2A/C) receptors activation.

    PubMed

    Pytka, Karolina; Walczak, Maria; Kij, Agnieszka; Rapacz, Anna; Siwek, Agata; Kazek, Grzegorz; Olczyk, Adrian; Gałuszka, Adam; Waszkielewicz, Anna; Marona, Henryk; Sapa, Jacek; Filipek, Barbara

    2015-10-01

    Xanthone derivatives have been shown to posses many biological properties. Some of them act within the central nervous system and show neuroprotective or antidepressant-like properties. Taking this into account we investigated antidepressant-like activity in mice and the possible mechanism of action of 6-methoxy-2-[4-(2-methoxyphenyl)piperazin-1-yl]-9H-xanthen-9-one (HBK-11) - a new xanthone derivative. We demonstrated that HBK-11 produced antidepressant-like effects in the forced swim test and tail suspension test, comparable to that of venlafaxine. The combined treatment with sub-effective doses of HBK-11 and fluoxetine (but not reboxetine or bupropion) significantly reduced the immobility in the forced swim test. Moreover, the antidepressant-like activity of HBK-11 in the aforementioned test was blocked by p-chlorophenylalanine, and significantly reduced by serotonergic 5HT1A receptor antagonist - WAY-1006335 and 5HT2A/C receptor antagonist - ritanserin. As none of the above treatments influenced the spontaneous locomotor activity, it can be concluded that HBK-11 mediates its activity through a serotonergic system, and its antidepressant-like effect involves 5HT1A and 5HT2A/C receptor activation. Furthermore, at antidepressant-like doses HBK-11 did not cause the mice to display locomotor deficits in rotarod or chimney tests. Considering the pharmacokinetic profile, HBK-11 demonstrated rapid absorption after i.p. administration, high clearance value, short terminal half-life, very high volume of distribution and incomplete bioavailability. The compound studied had good penetration into the brain tissue of mice. Since studied xanthone derivative seems to present interesting, untypical mechanism of antidepressant-like action i.e. 5HT2A/C receptor activation, it may have a potential in the treatment of depressive disorders, and surely requires further studies. PMID:26210317

  10. Aggressive Encounters Alter the Activation of Serotonergic Neurons and the Expression of 5-HT1A mRNA in the Hamster Dorsal Raphe Nucleus

    PubMed Central

    Cooper, Matthew A.; Grober, Matthew S.; Nicholas, Christopher; Huhman, Kim L.

    2009-01-01

    Serotonergic (5-HT) neurons in the dorsal raphe nucleus (DRN) have been implicated in stress-induced changes in behavior. Previous research indicates that stressful stimuli activate 5-HT neurons in select subregions of the DRN. Uncontrollable stress is thought to sensitize 5-HT neurons in the DRN and allow for an exaggerated 5-HT response to future stimuli. In the current study, we tested the hypothesis that following aggressive encounters, losing male Syrian hamsters would exhibit increased c-Fos immunoreactivity in 5-HT DRN neurons compared to winners or controls. In addition, we tested the hypothesis that losers would have decreased 5-HT1A mRNA levels in the DRN compared to winners or controls. We found that a single 15-min aggressive encounter increased c-Fos expression in 5-HT and non-5-HT neurons in losers compared to winners and controls. The increased c-Fos expression in losers was restricted to ventral regions of the rostral DRN. We also found that four 5-min aggressive encounters reduced total 5-HT1A mRNA levels in the DRN in losers compared to winners and controls, and that differences in mRNA levels were not restricted to specific DRN subregions. These results suggest that social defeat activates neurons in select subregions of the DRN and reduces message for DRN 5-HT1A autoreceptors. Our results support the hypothesis that social stress can activate 5-HT neurons in the DRN, reduce 5-HT1A autoreceptor-mediated inhibition, and lead to hyperactivity of 5-HT neurons. PMID:19362123

  11. Antidepressant-like activity of Tagetes lucida Cav. is mediated by 5-HT(1A) and 5-HT(2A) receptors.

    PubMed

    Bonilla-Jaime, H; Guadarrama-Cruz, G; Alarcon-Aguilar, F J; Limón-Morales, O; Vazquez-Palacios, G

    2015-10-01

    It has been demonstrated that the aqueous extract of Tagetes lucida Cav. shows an antidepressant-like effect on the forced swimming test (FST) in rats. The aim of this study was to analyze the participation of the serotoninergic system in the antidepressant-like effect of the aqueous extract of T. lucida. Different doses of the extract of T. lucida were administered at 72, 48, 24, 18 and 1 h before FST. The animals were pretreated with a 5-HT1A receptor antagonist (WAY-100635, 0.5 mg/kg), a 5-HT2A receptor antagonist (ketanserin, 5 mg/kg), a β-noradrenergic receptor antagonist (propranolol, 200 mg/kg), and with a α2-noradrenergic receptor antagonist (yohimbine, 1 mg/kg) alone or combined with the extract and pretreated with a serotonin synthesis inhibitor (PCPA) before treatment with 8-OH-DPAT + the extract of T. lucida. In addition, suboptimal doses of the 5-HT1A agonist (8-OH-DPAT) + non-effective dose of extract was analyzed in the FST. To determine the presence of flavonoids, the aqueous extract of T. lucida (20 µl, 4 mg/ml) was injected in HPLC; however, a quercetin concentration of 7.72 mg/g of extract weight was detected. A suboptimal dose of 8-OH-DPAT + extract of T. lucida decreased immobility and increased swimming and climbing. An antidepressant-like effect with the aqueous extract of T. lucida at doses of 100 and 200 mg/kg was observed on the FST with decreased immobility behavior and increased swimming; however, this effect was blocked by WAY-100635, ketanserin and PCPA but not by yohimbine and propranolol, suggesting that the extract of T. lucida could be modulating the release/reuptake of serotonin. PMID:26062718

  12. Selective serotonin 5-HT1A receptor biased agonists elicitdistinct brain activation patterns: a pharmacoMRI study.

    PubMed

    Becker, G; Bolbos, R; Costes, N; Redouté, J; Newman-Tancredi, A; Zimmer, L

    2016-01-01

    Serotonin 1A (5-HT1A) receptors are involved in several physiological and pathological processes and constitute therefore an important therapeutic target. The recent pharmacological concept of biased agonism asserts that highly selective agonists can preferentially direct receptor signaling to specific intracellular responses, opening the possibility of drugs targeting a receptor subtype in specific brain regions. The present study brings additional support to this concept thanks to functional magnetic resonance imaging (7 Tesla-fMRI) in anaesthetized rats. Three 5-HT1A receptor agonists (8-OH-DPAT, F13714 and F15599) and one 5-HT1A receptor antagonist (MPPF) were compared in terms of influence on the brain blood oxygen level-dependent (BOLD) signal. Our study revealed for the first time contrasting BOLD signal patterns of biased agonists in comparison to a classical agonist and a silent antagonist. By providing functional information on the influence of pharmacological activation of 5-HT1A receptors in specific brain regions, this neuroimaging approach, translatable to the clinic, promises to be useful in exploring the new concept of biased agonism in neuropsychopharmacology. PMID:27211078

  13. Lemon oil vapor causes an anti-stress effect via modulating the 5-HT and DA activities in mice.

    PubMed

    Komiya, Migiwa; Takeuchi, Takashi; Harada, Etsumori

    2006-09-25

    We examined the anti-stress action of the essential oils of lavender, rose, and lemon using an elevated plus-maze task (EPM), a forced swimming task (FST), and an open field task (OFT) in mice. Lemon oil had the strongest anti-stress effect in all three behavioral tasks. We further investigated a regulatory mechanism of the lemon oil by pre-treatments with agonists or antagonists to benzodiazepine, 5-HT, DA, and adrenaline receptors by the EPM and the FST. The anti-stress effect of lemon oil was significantly blocked by pre-treatment with frumazenil, benzodiazepine receptor antagonist, or apomorphine, a nonselective DA receptor agonist. In contrast, agonists or antagonists to the 5-HT receptor and the alpha-2 adrenaline receptor did not affect the anti-stress effect of lemon oil. Buspirone, DOI, and mianserine blocked the antidepressant-like effect of lemon oil in the FST, but WAY100,635 did not. These findings suggest that the antidepressant-like effect of lemon oil is closely related with the 5-HTnergic pathway, especially via 5-HT(1A) receptor. Moreover, the lemon oil significantly accelerated the metabolic turnover of DA in the hippocampus and of 5-HT in the prefrontal cortex and striatum. These results suggest that lemon oil possesses anxiolytic, antidepressant-like effects via the suppression of DA activity related to enhanced 5-HTnergic neurons. PMID:16780969

  14. Selective serotonin 5-HT1A receptor biased agonists elicitdistinct brain activation patterns: a pharmacoMRI study

    PubMed Central

    Becker, G.; Bolbos, R.; Costes, N.; Redouté, J.; Newman-Tancredi, A.; Zimmer, L.

    2016-01-01

    Serotonin 1A (5-HT1A) receptors are involved in several physiological and pathological processes and constitute therefore an important therapeutic target. The recent pharmacological concept of biased agonism asserts that highly selective agonists can preferentially direct receptor signaling to specific intracellular responses, opening the possibility of drugs targeting a receptor subtype in specific brain regions. The present study brings additional support to this concept thanks to functional magnetic resonance imaging (7 Tesla-fMRI) in anaesthetized rats. Three 5-HT1A receptor agonists (8-OH-DPAT, F13714 and F15599) and one 5-HT1A receptor antagonist (MPPF) were compared in terms of influence on the brain blood oxygen level-dependent (BOLD) signal. Our study revealed for the first time contrasting BOLD signal patterns of biased agonists in comparison to a classical agonist and a silent antagonist. By providing functional information on the influence of pharmacological activation of 5-HT1A receptors in specific brain regions, this neuroimaging approach, translatable to the clinic, promises to be useful in exploring the new concept of biased agonism in neuropsychopharmacology. PMID:27211078

  15. Influence of the 5-HT3A Receptor Gene Polymorphism and Childhood Sexual Trauma on Central Serotonin Activity

    PubMed Central

    Huh, Hyu Jung; Chae, Jeong-Ho

    2015-01-01

    Background Gene-environment interactions are important for understanding alterations in human brain function. The loudness dependence of auditory evoked potential (LDAEP) is known to reflect central serotonergic activity. Single nucleotide polymorphisms (SNPs) in the 5-HT3A serotonin receptor gene are associated with psychiatric disorders. This study aimed to investigate the effect between 5-HT3A receptor gene polymorphisms and childhood sexual trauma on the LDAEP as an electrophysiological marker in healthy subjects. Methods A total of 206 healthy subjects were recruited and evaluated using the childhood trauma questionnaire (CTQ) and hospital anxiety and depression scale (HADS). Peak-to-peak N1/P2 was measured at five stimulus intensities, and the LDAEP was calculated as the linear-regression slope. In addition, the rs1062613 SNPs of 5-HT3A (CC, CT, and TT) were analyzed in healthy subjects. Results There was a significant interaction between scores on the CTQ-sexual abuse subscale and 5-HT3A genotype on the LDAEP. Subjects with the CC polymorphism had a significantly higher LDEAP than T carriers in the sexually abused group. In addition, CC genotype subjects in the sexually abused group showed a significantly higher LDAEP compared with CC genotype subjects in the non-sexually abused group. Conclusions Our findings suggest that people with the CC polymorphism of the 5-HT3A gene have a greater risk of developing mental health problems if they have experienced childhood sexual abuse, possibly due to low central serotonin activity. Conversely, the T polymorphism may be protective against any central serotonergic changes following childhood sexual trauma. PMID:26701104

  16. Activation of 5-HT4 receptors facilitates neurogenesis from transplanted neural stem cells in the anastomotic ileum.

    PubMed

    Goto, Kei; Kawahara, Isao; Inada, Hiroyuki; Misawa, Hiromi; Kuniyasu, Hiroki; Nabekura, Junich; Takaki, Miyako

    2016-01-01

    An orally administered serotonin-4 (5-HT4) receptor agonist, mosapride citrate (MOS), promotes enteric neurogenesis in anastomoses after gut surgery. We performed gut surgery and transplanted 2 × 10(5) neural stem cells (NSCs) from the embryonic central nervous system after marking them with the cell linker, PKH26. We found that neurons differentiated from transplanted NSCs (PKH [+]) and newborn enteric neurons differentiated from mobilized (host) NSCs (YFP [+]) in the deep granulation tissue of the anastomotic ileum. MOS significantly increased the number of PKH (+) and YFP (+) neurons by 2.5-fold (P < 0.005) (n = 4). The distribution patterns of PKH (+) neurons and YFP (+) neurons were similar along the depth of the anastomosis. A 5-HT4 receptor antagonist, SB-207266, abolished these effects of MOS (n = 4). Our results indicate that neurogenesis from transplanted NSCs is potentiated by activation of 5-HT4 receptors. Thus, a combination of drug administration and cell transplantation could be more beneficial than cell transplantation alone in treating Hirschsprung's disease and related disorders. PMID:26335766

  17. Mechanism for the acute effects of organophosphate pesticides on the adult 5-HT system.

    PubMed

    Judge, Sarah J; Savy, Claire Y; Campbell, Matthew; Dodds, Rebecca; Gomes, Larissa Kruger; Laws, Grace; Watson, Anna; Blain, Peter G; Morris, Christopher M; Gartside, Sarah E

    2016-02-01

    The neurotransmitter serotonin (5-HT) is involved in mood disorder aetiology and it has been reported that (organophosphate) OP exposure affects 5-HT turnover. The aim of this study was to elucidate the mechanism underlying OP effects on the adult 5-HT system. First, acute in vivo administration of the OP diazinon (0, 1.3, 13 or 39 mg/kg i.p.) to male Hooded Lister rats inhibited the activity of the cholinergic enzyme acetylcholinesterase in blood and in the hippocampus, dorsal raphe nucleus (DRN), striatum and prefrontal cortex. Diazinon-induced cholinesterase inhibition was greatest in the DRN, the brain's major source of 5-HT neurones. Second, acute in vivo diazinon exposure (0 or 39 mg/kg i.p.) increased the basal firing rate of DRN neurones measured ex vivo in brain slices. The excitatory responses of DRN neurones to α1-adrenoceptor or AMPA/kainate receptor activation were not affected by in vivo diazinon exposure but the inhibitory response to 5-HT was attenuated, indicating 5-HT1A autoreceptor down-regulation. Finally, direct application of the diazinon metabolite diazinon oxon to naive rat brain slices increased the firing rate of DRN 5-HT neurones, as did chlorpyrifos-oxon, indicating the effect was not unique to diazinon. The oxon-induced augmentation of firing was blocked by the nicotinic acetylcholine receptor antagonist mecamylamine and the AMPA/kainate glutamate receptor antagonist DNQX. Together these data indicate that 1) acute OP exposure inhibits DRN cholinesterase, leading to acetylcholine accumulation, 2) the acetylcholine activates nicotinic receptors on 5-HT neurones and also on glutamatergic neurones, thus releasing glutamate and activating 5-HT neuronal AMPA/kainate receptors 3) the increase in 5-HT neuronal activity, and resulting 5-HT release, may lead to 5-HT1A autoreceptor down-regulation. This mechanism may be involved in the reported increase in risk of developing anxiety and depression following occupational OP exposure. PMID

  18. 5-HT1A Autoreceptors in the Dorsal Raphe Nucleus Convey Vulnerability to Compulsive Cocaine Seeking.

    PubMed

    You, In-Jee; Wright, Sherie R; Garcia-Garcia, Alvaro L; Tapper, Andrew R; Gardner, Paul D; Koob, George F; David Leonardo, E; Bohn, Laura M; Wee, Sunmee

    2016-04-01

    Cocaine addiction and depression are comorbid disorders. Although it is well recognized that 5-hydroxytryptamine (5-HT; serotonin) plays a central role in depression, our understanding of its role in addiction is notably lacking. The 5-HT system in the brain is carefully controlled by a combined process of regulating 5-HT neuron firing through 5-HT autoreceptors, neurotransmitter release, enzymatic degradation, and reuptake by transporters. This study tests the hypothesis that activation of 5-HT1A autoreceptors, which would lessen 5-HT neuron firing, contributes to cocaine-seeking behaviors. Using 5-HT neuron-specific reduction of 5-HT1A autoreceptor gene expression in mice, we demonstrate that 5-HT1A autoreceptors are necessary for cocaine conditioned place preference. In addition, using designer receptors exclusively activated by designer drugs (DREADDs) technology, we found that stimulation of the serotonergic dorsal raphe nucleus (DRN) afferents to the nucleus accumbens (NAc) abolishes cocaine reward and promotes antidepressive-like behaviors. Finally, using a rat model of compulsive-like cocaine self-administration, we found that inhibition of dorsal raphe 5-HT1A autoreceptors attenuates cocaine self-administration in rats with 6 h extended access, but not 1 h access to the drug. Therefore, our findings suggest an important role for 5-HT1A autoreceptors, and thus DRNNAc 5-HT neuronal activity, in the etiology and vulnerability to cocaine reward and addiction. Moreover, our findings support a strategy for antagonizing 5-HT1A autoreceptors for treating cocaine addiction. PMID:26324408

  19. 5-HT1A autoreceptor modulation of locomotor activity induced by nitric oxide in the rat dorsal raphe nucleus.

    PubMed

    Gualda, L B; Martins, G G; Müller, B; Guimarães, F S; Oliveira, R M W

    2011-04-01

    The dorsal raphe nucleus (DRN) is the origin of ascending serotonergic projections and is considered to be an important component of the brain circuit that mediates anxiety- and depression-related behaviors. A large fraction of DRN serotonin-positive neurons contain nitric oxide (NO). Disruption of NO-mediated neurotransmission in the DRN by NO synthase inhibitors produces anxiolytic- and antidepressant-like effects in rats and also induces nonspecific interference with locomotor activity. We investigated the involvement of the 5-HT(1A) autoreceptor in the locomotor effects induced by NO in the DRN of male Wistar rats (280-310 g, N = 9-10 per group). The NO donor 3-morpholinosylnomine hydrochloride (SIN-1, 150, and 300 nmol) and the NO scavenger S-3-carboxy-4-hydroxyphenylglycine (carboxy-PTIO, 0.1-3.0 nmol) were injected into the DRN of rats immediately before they were exposed to the open field for 10 min. To evaluate the involvement of the 5-HT(1A) receptor and the N-methyl-D-aspartate (NMDA) glutamate receptor in the locomotor effects of NO, animals were pretreated with the 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 8 nmol), the 5-HT(1A) receptor antagonist N-(2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl)-N-2-pyridinyl-cyclohexanecarboxamide maleate (WAY-100635, 0.37 nmol), and the NMDA receptor antagonist DL-2-amino-7-phosphonoheptanoic acid (AP7, 1 nmol), followed by microinjection of SIN-1 into the DRN. SIN-1 increased the distance traveled (mean ± SEM) in the open-field test (4431 ± 306.1 cm; F(7,63) = 2.44, P = 0.028) and this effect was blocked by previous 8-OH-DPAT (2885 ± 490.4 cm) or AP7 (3335 ± 283.5 cm) administration (P < 0.05, Duncan test). These results indicate that 5-HT(1A) receptor activation and/or facilitation of glutamate neurotransmission can modulate the locomotor effects induced by NO in the DRN. PMID:21445531

  20. Activation of serotonin 5-HT(2C) receptor suppresses behavioral sensitization and naloxone-precipitated withdrawal symptoms in morphine-dependent mice.

    PubMed

    Zhang, Gongliang; Wu, Xian; Zhang, Yong-Mei; Liu, Huan; Jiang, Qin; Pang, Gang; Tao, Xinrong; Dong, Liuyi; Stackman, Robert W

    2016-02-01

    Opioid abuse and dependence have evolved into an international epidemic as a significant clinical and societal problem with devastating consequences. Repeated exposure to the opioid, for example morphine, can induce profound, long-lasting behavioral sensitization and physical dependence, which are thought to reflect neuroplasticity in neural circuitry. Central serotonin (5-HT) neurotransmission participates in the development of dependence on and the expression of withdrawal from morphine. Serotonin 5-HT(2C) receptor (5-HT(2C)R) agonists suppress psychostimulant nicotine or cocaine-induced behavioral sensitization and drug-seeking behavior; however, the impact of 5-HT(2C)R agonists on behaviors relevant to opioid abuse and dependence has not been reported. In the present study, the effects of 5-HT(2C)R activation on the behavioral sensitization and naloxone-precipitated withdrawal symptoms were examined in mice underwent repeated exposure to morphine. Male mice received morphine (10 mg/kg, s.c.) to develop behavioral sensitization. Lorcaserin, a 5-HT(2C)R agonist, prevented the induction and expression, but not the development, of morphine-induced behavioral sensitization. Another cohort of mice received increasing doses of morphine over a 7-day period to induce morphine-dependence. Pretreatment of lorcaserin, or the positive control clonidine (an alpha 2-adrenoceptor agonist), ameliorated the naloxone-precipitated withdrawal symptoms. SB 242084, a selective 5-HT(2C)R antagonist, prevented the lorcaserin-mediated suppression of behavioral sensitization and withdrawal. Chronic morphine treatment was associated with an increase in the expression of 5-HT(2C)R protein in the ventral tegmental area, locus coeruleus and nucleus accumbens. These findings suggest that 5-HT(2C)R can modulate behavioral sensitization and withdrawal in morphine-dependent mice, and the activation of 5-HT(2C)R may represent a new avenue for the treatment of opioid addiction. PMID:26432939

  1. Study of a mechanism responsible for potential antidepressant activity of EMD 386088, a 5-HT6 partial agonist in rats.

    PubMed

    Jastrzębska-Więsek, Magdalena; Siwek, Agata; Partyka, Anna; Antkiewicz-Michaluk, Lucyna; Michaluk, Jerzy; Romańska, Irena; Kołaczkowski, Marcin; Wesołowska, Anna

    2016-08-01

    It was shown that 5-HT6 receptor agonists can exert pharmacological activity due to various modifications in monoamines' level and metabolism activity in rats' brain structures. This finding was correlated with antidepressant- or anxiolytic-like properties of these compounds. The study was designed to establish a possible mechanism of the antidepressant-like activity of the partial 5-HT6 receptor agonist EMD386088 (5-chloro-2-methyl-3-(1,2,3,6-tetrahydro-4-pyridinyl)-1H-indole hydrochloride) in rats. The concentrations of monoamines (dopamine (DA), noradrenaline (NA), and serotonin (5-HT)) and the rate of their metabolism were measured ex vivo in the brain structures (hippocampus, nucleus accumbens, striatum) using high-performance liquid chromatography (HPLC). The rats were killed after the forced swim test (FST); the collected tissue samples were used to ex vivo experiments. The potency of EMD386088 to blockade dopamine transporter (DAT) was tested in a functional in vitro study. FST was used to assess the involvement of D1- and D2-like receptor subfamilies in antidepressant-like properties of EMD386088. Neurochemical data from ex vivo experiments showed that antiimmobility activity of EMD386088 may be connected with the activation of dopaminergic system, while neither noradrenergic nor serotonergic ones are involved in its effect. EMD386088 also possesses a significant affinity for DAT which may be a mechanism in the abovementioned effect. Behavioral data seem to confirm the importance of dopaminergic system activation in antidepressant-like activity of EMD386088, since this effect, observed in the FST, was abolished by the preferential D1- and D2-like receptor subfamily antagonists SCH23390 and sulpiride, respectively. Dopaminergic system is involved in antidepressant-like activity of EMD386088. PMID:27106213

  2. 5-HT7 receptor modulates GABAergic transmission in the rat dorsal raphe nucleus and controls cortical release of serotonin

    PubMed Central

    Kusek, Magdalena; Sowa, Joanna; Kamińska, Katarzyna; Gołembiowska, Krystyna; Tokarski, Krzysztof; Hess, Grzegorz

    2015-01-01

    The 5-HT7 receptor is one of the several serotonin (5-HT) receptor subtypes that are expressed in the dorsal raphe nucleus (DRN). Some earlier findings suggested that 5-HT7 receptors in the DRN were localized on GABAergic interneurons modulating the activity of 5-HT projection neurons. The aim of the present study was to find out how the 5-HT7 receptor modulates the GABAergic synaptic input to putative 5-HT DRN neurons, and whether blockade of the 5-HT7 receptor would affect the release of 5-HT in the target structure. Male Wistar rats with microdialysis probes implanted in the prefrontal cortex (PFC) received injections of the 5-HT7 receptor antagonist (2R)-1-[(3-hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]pyrrolidine hydrochloride (SB 269970), which induced an increase in the levels of 5-HT and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA) in the PFC. In another set of experiments whole-cell recordings from presumed projection neurons were carried out using DRN slices. SB 269970 application resulted in depolarization and in an increase in the firing frequency of the cells. In order to activate 5-HT7 receptors, 5-carboxamidotryptamine (5-CT) was applied in the presence of N-[2-[4-(2-methoxyphenyl)-1piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide (WAY100635). Hyperpolarization of cells and a decrease in the firing frequency were observed after activation of the 5-HT7 receptor. Blockade of 5-HT7 receptors caused a decrease in the mean frequency of spontaneous inhibitory postsynaptic currents (sIPSCs), while its activation induced an increase. The mechanism of these effects appears to involve tonically-active 5-HT7 receptors modulating firing and/or GABA release from inhibitory interneurons which regulate the activity of DRN serotonergic projection neurons. PMID:26347612

  3. ADN-1184 a monoaminergic ligand with 5-HT6/7 receptor antagonist activity: pharmacological profile and potential therapeutic utility

    PubMed Central

    Kołaczkowski, M; Mierzejewski, P; Bieńkowski, P; Wesołowska, A; Newman-Tancredi, A

    2014-01-01

    Background and Purpose Many dementia patients exhibit behavioural and psychological symptoms (BPSD) that include psychosis, aggressivity, depression and anxiety. Antipsychotic drugs are frequently prescribed but fail to significantly attenuate mood deficits, may interfere with cognitive function and are associated with motor and cardiac side effects, which are problematic in elderly patients. A need therefore exists for drugs that are better suited for the treatment of BPSD. Experimental Approach We used in vitro cellular and in vivo behavioural tests to characterize ADN-1184, a novel arylsulfonamide ligand with potential utility for treatment of BPSD. Key Results ADN-1184 exhibits substantial 5-HT6/5-HT7/5-HT2A/D2 receptor affinity and antagonist properties in vitro. In tests of antipsychotic-like activity, it reversed MK-801-induced hyperactivity and stereotypies and inhibited conditioned avoidance response (MED = 3 mg·kg−1 i.p.). Remarkably, ADN-1184 also reduced immobility time in the forced swim test at low doses (0.3 and 1 mg·kg−1 i.p.; higher doses were not significantly active). Notably, up to 30 mg·kg−1 ADN-1184 did not impair memory performance in the passive avoidance test or elicit significant catalepsy and only modestly inhibited spontaneous locomotor activity (MED = 30 mg·kg−1 i.p.). Conclusions and Implications ADN-1184 combines antipsychotic-like with antidepressant-like properties without interfering with memory function or locomotion. This profile is better than that of commonly used atypical antipsychotics tested under the same conditions and suggests that it is feasible to identify drugs that improve BPSD, without exacerbating cognitive deficit or movement impairment, which are of particular concern in patients with dementia. PMID:24199650

  4. The Functional Activity of the Human Serotonin 5-HT1A Receptor Is Controlled by Lipid Bilayer Composition.

    PubMed

    Gutierrez, M Gertrude; Mansfield, Kylee S; Malmstadt, Noah

    2016-06-01

    Although the properties of the cell plasma membrane lipid bilayer are broadly understood to affect integral membrane proteins, details of these interactions are poorly understood. This is particularly the case for the large family of G protein-coupled receptors (GPCRs). Here, we examine the lipid dependence of the human serotonin 5-HT1A receptor, a GPCR that is central to neuronal function. We incorporate the protein in synthetic bilayers of controlled composition together with a fluorescent reporting system that detects GPCR-catalyzed activation of G protein to measure receptor-catalyzed oligonucleotide exchange. Our results show that increased membrane order induced by sterols and sphingomyelin increases receptor-catalyzed oligonucleotide exchange. Increasing membrane elastic curvature stress also increases this exchange. These results reveal the broad dependence that the 5-HT1A receptor has on plasma membrane properties, demonstrating that membrane lipid composition is a biochemical control parameter and highlighting the possibility that compositional changes related to aging, diet, or disease could impact cell signaling functions. PMID:27276266

  5. 5-HT induces temporomandibular joint nociception in rats through the local release of inflammatory mediators and activation of local β adrenoceptors.

    PubMed

    Oliveira-Fusaro, Maria Cláudia G; Clemente-Napimoga, Juliana Trindade; Teixeira, Juliana Maia; Torres-Chávez, Karla Elena; Parada, Carlos Amílcar; Tambeli, Cláudia Herrera

    2012-09-01

    The 5-hydroxytryptamine (serotonin, 5-HT) is an important inflammatory mediator found in high levels in the synovial fluid of the temporomandibular joint (TMJ) of patients with inflammatory pain. In this study, we used the nociceptive behavior responses, measured as flinching the head and rubbing the orofacial region, as a nociceptive assay. We demonstrated that the local blockade of the 5-HT₃ receptor and β₁ or β₂-adrenoceptors, the depletion of norepinephrine in the sympathetic terminals and the local inhibition of cyclooxygenase significantly reduced 5-HT-induced TMJ nociception. These results demonstrated that 5-HT induces nociception in the TMJ region by the activation of β₁ and β₂ adrenoceptors located in the TMJ region and local release of sympathetic amines and prostaglandins. Therefore, the high levels of 5-HT in the synovial fluid of patients with TMJ inflammatory pain may contribute to TMJ pain by similar mechanisms. PMID:22683622

  6. Autoradiography of serotonin 5-HT1A receptor-activated G proteins in guinea pig brain sections by agonist-stimulated [35S]GTPgammaS binding.

    PubMed

    Dupuis, D S; Palmier, C; Colpaert, F C; Pauwels, P J

    1998-03-01

    G protein activation mediated by serotonin 5-HT1A and 5-HT(1B/D) receptors in guinea pig brain was investigated by using quantitative autoradiography of agonist-stimulated [35S]GTPgammaS binding to brain sections. [35S]GTPgammaS binding was stimulated by the mixed 5-HT1A/5-HT(1B/D) agonist L694247 in brain structures enriched in 5-HT1A binding sites, i.e., hippocampus (+140 +/- 14%), dorsal raphe (+70 +/- 8%), lateral septum (+52 +/- 12%), cingulate (+36 +/- 8%), and entorhinal cortex (+34 +/- 5%). L694247 caused little or no stimulation of [35S]GTPgammaS binding in brain regions with high densities of 5-HT(1B/D) binding sites (e.g., substantia nigra, striatum, central gray, and dorsal subiculum). The [35S]GTPgammaS binding response was antagonized by WAY100635 (10 microM) and methiothepin (10 microM). In contrast, the 5-HT1B inverse agonist SB224289 (10 microM) did not affect the L694247-mediated [35S]GTPgammaS binding response, and the mixed 5-HT(1B/D) antagonist GR127935 (10 microM) yielded a partial blockade. The distribution pattern of the [35S]GTPgammaS binding response and the antagonist profile suggest the L694247-mediated response in guinea pig brain to be mediated by 5-HT1A receptors. In addition to L694247, 8-hydroxy-2-(di-n-propylamino)tetralin, and flesinoxan also stimulated [35S]GTPgammaS binding; their maximal responses varied between 46 and 52% compared with L694247, irrespective of the brain structure being considered. Sumatriptan, rizatriptan, and zolmitriptan (10 microM) stimulated [35S]GTPgammaS binding in the hippocampus by 20-50%. Naratriptan, CP122638, and dihydroergotamine stimulated [35S]GTPgammaS binding to a similar level as L694247 in hippocampus, lateral septum, and dorsal raphe. It appears that under the present experimental conditions, G protein activation through 5-HT1A but not 5-HT(1B/D) receptors can be measured in guinea pig brain sections. PMID:9489749

  7. Dorsal Raphe Neurons Signal Reward through 5-HT and Glutamate

    PubMed Central

    Liu, Zhixiang; Zhou, Jingfeng; Li, Yi; Hu, Fei; Lu, Yao; Ma, Ming; Feng, Qiru; Zhang, Ju-en; Wang, Daqing; Zeng, Jiawei; Bao, Junhong; Kim, Ji-Young; Chen, Zhou-Feng; Mestikawy, Salah El; Luo, Minmin

    2015-01-01

    Summary The dorsal raphe nucleus (DRN) in the midbrain is a key center for serotonin (5-hydroxytryptamine; 5-HT) expressing neurons. Serotonergic neurons in the DRN have been theorized to encode punishment by opposing the reward signaling of dopamine neurons. Here, we show that DRN neurons encode reward, but not punishment, through 5-HT and glutamate. Optogenetic stimulation of DRN Pet-1 neurons reinforces mice to explore the stimulation-coupled spatial region, shifts sucrose preference, drives optical self-stimulation, and directs sensory discrimination learning. DRN Pet-1 neurons increase their firing activity during reward tasks and this activation can be used to rapidly change neuronal activity patterns in the cortnassociated with 5-HT, they also release glutamate, and both neurotransmitters contribute to reward signaling. These experiments demonstrate the ability of DRN neurons to organize reward behaviors and might provide insights into the underlying mechanisms of learning facilitation and anhedonia treatment. PMID:24656254

  8. Anorexia induced by activation of serotonin 5-HT4 receptors is mediated by increases in CART in the nucleus accumbens

    PubMed Central

    Jean, Alexandra; Conductier, Grégory; Manrique, Christine; Bouras, Constantin; Berta, Philippe; Hen, René; Charnay, Yves; Bockaert, Joël; Compan, Valérie

    2007-01-01

    Anorexia nervosa is a growing concern in mental health, often inducing death. The potential neuronal deficits that may underlie abnormal inhibitions of food intake, however, remain largely unexplored. We hypothesized that anorexia may involve altered signaling events within the nucleus accumbens (NAc), a brain structure involved in reward. We show here that direct stimulation of serotonin (5-hydroxytryptamine, 5-HT) 4 receptors (5-HT4R) in the NAc reduces the physiological drive to eat and increases CART (cocaine- and amphetamine-regulated transcript) mRNA levels in fed and food-deprived mice. It further shows that injecting 5-HT4R antagonist or siRNA-mediated 5-HT4R knockdown into the NAc induced hyperphagia only in fed mice. This hyperphagia was not associated with changes in CART mRNA expression in the NAc in fed and food-deprived mice. Results include that 5-HT4R control CART mRNA expression into the NAc via a cAMP/PKA signaling pathway. Considering that CART may interfere with food- and drug-related rewards, we tested whether the appetite suppressant properties of 3,4-N-methylenedioxymethamphetamine (MDMA, ecstasy) involve the 5-HT4R. Using 5-HT4R knockout mice, we demonstrate that 5-HT4R are required for the anorectic effect of MDMA as well as for the MDMA-induced enhancement of CART mRNA expression in the NAc. Directly injecting CART peptide or CART siRNA into the NAc reduces or increases food consumption, respectively. Finally, stimulating 5-HT4R- and MDMA-induced anorexia were both reduced by injecting CART siRNA into the NAc. Collectively, these results demonstrate that 5-HT4R-mediated up-regulation of CART in the NAc triggers the appetite-suppressant effects of ecstasy. PMID:17913892

  9. Melatonin reversal of DOI-induced hypophagia in rats; possible mechanism by suppressing 5-HT(2A) receptor-mediated activation of HPA axis.

    PubMed

    Raghavendra, V; Kulkarni, S K

    2000-03-31

    Serotonin type 2A (5-HT(2A)) receptor-mediated neurotransmitter is known to activate hypothalamic-pituitary-adrenal (HPA) axis, regulate sleep-awake cycle, induce anorexia and hyperthermia. Interaction between melatonin and 5-HT(2A) receptors in the regulation of the sleep-awake cycle and head-twitch response in rat have been reported. Previous studies have shown that melatonin has suppressant effect on HPA axis activation, decreases core body temperature and induces hyperphagia in animals. However, melatonin interaction with 5-HT(2A) receptors in mediation of these actions is not yet reported. We have studied the acute effect of melatonin and its antagonist, luzindole on centrally administered (+/-)-1-(2, 5-dimethoxy-4-iodophenyl) 2-amino propane (DOI; a 5-HT(2A/2C) agonist)-induced activation of HPA axis, hypophagia and hyperthermia in 24-h food-deprived rats. Like ritanserin [(1 mg/kg, i.p.) 5-HT(2A/2C) antagonist], peripherally administered melatonin (1.5 and 3 mg/kg, i.p.) did not affect the food intake, rectal temperature or basal adrenal ascorbic acid level. However, pretreatment of rats with it significantly reversed DOI (10 microgram, intraventricular)-induced anorexia and activation of HPA axis. But the hyperthermia induced by DOI was not sensitive to reversal by melatonin. Mel(1) receptor subtype antagonist luzindole (5 microgram, intraventricular) did not modulate the DOI effect but antagonized the melatonin (3 mg/kg, i.p.) reversal of 5-HT(2A) agonist response. The present data suggest that melatonin reversal of DOI-induced hypophagia could be due to suppression of 5-HT(2A) mediated activation of HPA axis. PMID:10727629

  10. Selective pharmacological blockade of the 5-HT7 receptor attenuates light and 8-OH-DPAT induced phase shifts of mouse circadian wheel running activity

    PubMed Central

    Shelton, Jonathan; Yun, Sujin; Losee Olson, Susan; Turek, Fred; Bonaventure, Pascal; Dvorak, Curt; Lovenberg, Timothy; Dugovic, Christine

    2015-01-01

    Recent reports have illustrated a reciprocal relationship between circadian rhythm disruption and mood disorders. The 5-HT7 receptor may provide a crucial link between the two sides of this equation since the receptor plays a critical role in sleep, depression, and circadian rhythm regulation. To further define the role of the 5-HT7 receptor as a potential pharmacotherapy to correct circadian rhythm disruptions, the current study utilized the selective 5-HT7 antagonist JNJ-18038683 (10 mg/kg) in three different circadian paradigms. While JNJ-18038683 was ineffective at phase shifting the onset of wheel running activity in mice when administered at different circadian time (CT) points across the circadian cycle, pretreatment with JNJ-18038683 blocked non-photic phase advance (CT6) induced by the 5-HT1A/7 receptor agonist 8-OH-DPAT (3 mg/kg). Since light induced phase shifts in mammals are partially mediated via the modulation of the serotonergic system, we determined if JNJ-18038683 altered phase shifts induced by a light pulse at times known to phase delay (CT15) or advance (CT22) wheel running activity in free running mice. Light exposure resulted in a robust shift in the onset of activity in vehicle treated animals at both times tested. Administration of JNJ-18038683 significantly attenuated the light induced phase delay and completely blocked the phase advance. The current study demonstrates that pharmacological blockade of the 5-HT7 receptor by JNJ-18038683 blunts both non-photic and photic phase shifts of circadian wheel running activity in mice. These findings highlight the importance of the 5-HT7 receptor in modulating circadian rhythms. Due to the opposite modulating effects of light resetting between diurnal and nocturnal species, pharmacotherapy targeting the 5-HT7 receptor in conjunction with bright light therapy may prove therapeutically beneficial by correcting the desynchronization of internal rhythms observed in depressed individuals. PMID:25642174

  11. Differential interactions of dimethyltryptamine (DMT) with 5-HT1A and 5-HT2 receptors.

    PubMed

    Deliganis, A V; Pierce, P A; Peroutka, S J

    1991-06-01

    The interactions of the indolealkylamine N,N-dimethyltryptamine (DMT) with 5-hydroxytryptamine1A (5-HT1A) and 5-HT2 receptors in rat brain were analyzed using radioligand binding techniques and biochemical functional assays. The affinity of DMT for 5-HT1A sites labeled by [3H]-8-hydroxy-2-(di-n-propylamino)tetralin ([3H]-8-OH-DPAT) was decreased in the presence of 10(-4) M GTP, suggesting agonist activity of DMT at this receptor. Adenylate cyclase studies in rat hippocampi showed that DMT inhibited forskolin-stimulated cyclase activity, a 5-HT1A agonist effect. DMT displayed full agonist activity with an EC50 of 4 x 10(-6) M in the cyclase assay. In contrast to the agonist actions of DMT at 5-HT1A receptors, DMT appeared to have antagonistic properties at 5-HT2 receptors. The ability of DMT to compete for [3H]-ketanserin-labeled 5-HT2 receptors was not affected by the presence of 10(-4) M GTP, suggesting antagonist activity of DMT at 5-HT2 receptors. In addition, DMT antagonized 5-HT2-receptor-mediated phosphatidylinositol (PI) turnover in rat cortex at concentrations above 10(-7) M, with 70% of the 5-HT-induced PI response inhibited at 10(-4) M DMT. Micromolar concentrations of DMT produced a slight PI stimulation that was not blocked by the 5-HT2 antagonist ketanserin. These studies suggest that DMT has opposing actions on 5-HT receptor subtypes, displaying agonist activity at 5-HT1A receptors and antagonist activity at 5-HT2 receptors. PMID:1828347

  12. Potentiating action of MKC-242, a selective 5-HT1A receptor agonist, on the photic entrainment of the circadian activity rhythm in hamsters

    PubMed Central

    Moriya, T; Yoshinobu, Y; Ikeda, M; Yokota, S; Akiyama, M; Shibata, S

    1998-01-01

    Serotonergic projections from the midbrain raphe nuclei to the suprachiasmatic nuclei (SCN) are known to regulate the photic entrainment of circadian clocks. However, it is not known which 5-hydroxytryptamine (5-HT) receptor subtypes are involved in the circadian regulation. In order to verify the role of 5-HT1A receptors, we examined the effects of 5-{3-[((2S)-1,4-benzodioxan-2-ylmethyl)amino]propoxy}-1,3-benzodioxole HCl (MKC-242), a selective 5-HT1A receptor agonist, on photic entrainment of wheel-running circadian rhythms of hamsters.MKC-242 (3 mg kg−1, i.p.) significantly accelerated the re-entrainment of wheel-running rhythms to a new 8 h delayed or advanced light-dark cycle.MKC-242 (3 mg kg−1, i.p.) also potentiated the phase advance of the wheel-running rhythm produced by low (5 lux) or high (60 lux) intensity light pulses. In contrast, 8-hydroxy-dipropylaminotetralin (8-OH-DPAT)(5 mg kg−1, i.p.), a well known 5-HT1A/5-HT7 receptor agonist, only suppressed low intensity (5 lux) light-induced phase advances.The potentiating actions of MKC-242 on light pulse-induced phase advances were observed even when injected 20 or 60 min after the light exposure.The potentiating action of MKC-242 was antagonized by WAY100635, a selective 5-HT1A receptor blocker, but not by ritanserin, a 5-HT2/5-HT7 receptor blocker, indicating that MKC-242 is activating 5-HT1A receptors.Light pulse-induced c-fos expression in the SCN and the intergeniculate leaflet (IGL) were unaffected by MKC-242 (3 mg kg−1, i.p.).HPLC analysis demonstrated that MKC-242 (3 mg kg−1, i.p.) decreased the 5-HIAA content in the SCN.The present results suggest that presynaptic 5-HT1A receptor activation may be involved in the potentiation of photic entrainment by MKC-242 in hamsters. PMID:9863658

  13. Potentiating action of MKC-242, a selective 5-HT1A receptor agonist, on the photic entrainment of the circadian activity rhythm in hamsters.

    PubMed

    Moriya, T; Yoshinobu, Y; Ikeda, M; Yokota, S; Akiyama, M; Shibata, S

    1998-11-01

    Serotonergic projections from the midbrain raphe nuclei to the suprachiasmatic nuclei (SCN) are known to regulate the photic entrainment of circadian clocks. However, it is not known which 5-hydroxytryptamine (5-HT) receptor subtypes are involved in the circadian regulation. In order to verify the role of 5-HT1A receptors, we examined the effects of 5-¿3-[((2S)-1,4-benzodioxan-2-ylmethyl)amino]-propoxy¿-1,3-b enzodioxole HCl (MKC-242), a selective 5-HT1A receptor agonist, on photic entrainment of wheel-running circadian rhythms of hamsters. MKC-242 (3 mg kg(-1), i.p.) significantly accelerated the re-entrainment of wheel-running rhythms to a new 8 h delayed or advanced light-dark cycle. MKC-242 (3 mg kg(-1), i.p.) also potentiated the phase advance of the wheel-running rhythm produced by low (5 lux) or high (60 lux) intensity light pulses. In contrast, 8-hydroxydipropylaminotetralin (8-OH-DPAT)(5 mg kg(-1), i.p.), a well known 5-HT1A/5-HT7 receptor agonist, only suppressed low intensity (5 lux) light-induced phase advances. The potentiating actions of MKC-242 on light pulse-induced phase advances were observed even when injected 20 or 60 min after the light exposure. The potentiating action of MKC-242 was antagonized by WAY100635, a selective 5-HT1A receptor blocker, but not by ritanserin, a 5-HT2/5-HT7 receptor blocker, indicating that MKC-242 is activating 5-HT1A receptors. Light pulse-induced c-fos expression in the SCN and the intergeniculate leaflet (IGL) were unaffected by MKC-242 (3 mg kg(-1), i.p.). HPLC analysis demonstrated that MKC-242 (3 mg kg(-1), i.p.) decreased the 5-HIAA content in the SCN. The present results suggest that presynaptic 5-HT1A receptor activation may be involved in the potentiation of photic entrainment by MKC-242 in hamsters. PMID:9863658

  14. Design, synthesis and evaluation of antidepressant activity of novel 2-methoxy 1, 8 naphthyridine 3-carboxamides as 5-HT3 receptor antagonists.

    PubMed

    Mahesh, Radhakrishnan; Dhar, Arghya Kusum; Jindal, Ankur; Bhatt, Shvetank

    2014-05-01

    A series of novel 1,8-naphthyridine-3-carboxamides as 5-HT3 receptor antagonists were synthesized with an intention to explore the antidepressant activity of these compounds. The title carboxamides were designed using ligand-based approach keeping in consideration the structural requirement of the pharmacophore of 5-HT3 receptor antagonists. The compounds were synthesized using appropriate synthetic route from the starting material nicotinamide. 5-HT3 receptor antagonism of all the compounds, which was denoted in the form of pA2 value, was determined in longitudinal muscle myenteric plexus preparation from guinea-pig ileum against 5-HT3 agonist, 2-methyl-5-HT. Compound 8g (2-methoxy-1, 8-naphthyridin-3-yl) (2-methoxy phenyl piperazine-1-yl) methanone was identified as the most active compound, which expressed a pA2 value of 7.67. The antidepressant activity of all the compounds was examined in mice model of forced swim test (FST); importantly, none of the compounds was found to cause any significant changes in the locomotor activity of mice at the tested dose levels. In FST, the compounds with considerably higher pA2 value exhibited promising antidepressant-like activity, whereas compounds with lower pA2 value did not show antidepressant-like activity as compared to the control group. PMID:24330585

  15. Activation of serotonin 5-HT(2C) receptor suppresses behavioral sensitization and naloxone-precipitated withdrawal symptoms in heroin-treated mice.

    PubMed

    Wu, Xian; Pang, Gang; Zhang, Yong-Mei; Li, Guangwu; Xu, Shengchun; Dong, Liuyi; Stackman, Robert W; Zhang, Gongliang

    2015-10-21

    Abuse and dependence to heroin has evolved into a global epidemic as a significant clinical and societal problem with devastating consequences. Repeated exposure to heroin can induce long-lasting behavioral sensitization and withdrawal. Pharmacological activation of 5-HT2C receptors (5-HT2CRs) suppresses psychostimulant-induced drug-seeking and behavioral sensitization. The present study examined the effect of a selective 5-HT2CR agonist lorcaserin on behavioral sensitization and naloxone-precipitated withdrawal symptoms in heroin-treated mice. Male mice received heroin (1.0 mg/kg, s.c.) twice a day for 3 days and then drug treatment was suspended for 5 days. On day 9, a challenge dose of heroin (1.0 mg/kg) was administered to examine the expression of behavioral sensitization. Lorcaserin administered during the development, withdrawal or expression stage suppressed heroin-induced behavioral sensitization on day 9. Another cohort of mice received increasing doses of heroin over a 4.5-day period. Lorcaserin, or the positive control clonidine (an α2-adrenoceptor agonist) suppressed naloxone-precipitated withdrawal symptoms in heroin-treated mice. These findings suggest that activation of 5-HT2CRs suppresses behavioral sensitization and withdrawal in heroin-treated mice. Thus, pharmacological activation of 5-HT2CRs may represent a new avenue for the treatment of heroin addiction. PMID:26375926

  16. 5-HT1A receptor agonist-antagonist binding affinity difference as a measure of intrinsic activity in recombinant and native tissue systems

    PubMed Central

    Watson, J; Collin, L; Ho, M; Riley, G; Scott, C; Selkirk, J V; Price, G W

    2000-01-01

    It has been reported that radiolabelled agonist : antagonist binding affinity ratios can predict functional efficacy at several different receptors. This study investigates whether this prediction is true for recombinant and native tissue 5-HT1A receptors. Saturation studies using [3H]-8-OH-DPAT and [3H]-MPPF revealed a single, high affinity site (KD∼1 nM) in HEK293 cells expressing human 5-HT1A receptors and rat cortex. In recombinant cells, [3H]-MPPF labelled 3–4 fold more sites than [3H]-8-OH-DPAT suggesting the presence of more than one affinity state of the receptor. [3H]-Spiperone labelled a single, lower affinity site in HEK293 cells expressing h5-HT1A receptors but did not bind to native tissue 5-HT1A receptors. These data suggest that, in transfected HEK293 cells, human 5-HT1A receptors exist in different affinity states but in native rat cortical tissue the majority of receptors appear to exist in the high agonist affinity state. Receptor agonists inhibited [3H]-MPPF binding from recombinant 5-HT1A receptors in a biphasic manner, whereas antagonists and partial agonists gave monophasic inhibition curves. All compounds displaced [3H]-8-OH-DPAT and [3H]-spiperone binding in a monophasic manner. In rat cortex, all compounds displaced [3H]-MPPF and [3H]-8-OH-DPAT in a monophasic manner. Functional evaluation of compounds, using [35S]-GTPγS binding, produced a range of intrinsic activities from full agonism, displayed by 5-HT and 5-CT to inverse agonism displayed by spiperone. [3H]-8-OH-DPAT : [3H]-MPPF pKi difference correlated well with functional intrinsic activity (r=0.86) as did [3H]-8-OH-DPAT : [3H]-spiperone pKi difference with functional intrinsic activity (r=0.96). Thus agonist : antagonist binding affinity differences may be used to predict functional efficacy at human 5-HT1A receptors expressed in HEK293 cells where both high and low agonist affinity states are present but not at native rat cortical 5-HT1A receptors in which

  17. Activation of 5-HT2 receptors enhances the release of acetylcholine in the prefrontal cortex and hippocampus of the rat.

    PubMed

    Nair, Sunila G; Gudelsky, Gary A

    2004-09-15

    The role of 5-HT2 receptors in the regulation of acetylcholine (ACh) release was examined in the medial prefrontal cortex and dorsal hippocampus using in vivo microdialysis. The 5-HT(2A/2C) agonist +/-1-(2,5-dimethoxy-4-iodophenyl) -2- aminopropane hydrochloride (DOI) (1 and 2 mg/kg, i.p.) significantly increased the extracellular concentration of ACh in both brain regions, and this response was attenuated in rats treated with the 5-HT(2A/2B/2C) antagonist LY-53,857 (3 mg/kg, i.p.). Treatment with LY-53,857 alone did not significantly alter ACh release in either brain region The 5-HT(2C) agonist 6-chloro-2-(1-piperazinyl)-pyrazine) (MK-212) (5 mg/kg, i.p.) significantly enhanced the release of ACh in both the prefrontal cortex and hippocampus, whereas the 5-HT2 agonist mescaline (10 mg/kg, i.p.) produced a 2-fold increase in ACh release only in the prefrontal cortex. Intracortical, but not intrahippocampal, infusion of DOI (100 microM) significantly enhanced the release of ACh, and intracortical infusion of LY-53,857 (100 microM) significantly attenuated this response. These results suggest that the release of ACh in the prefrontal cortex and hippocampus is influenced by 5-HT2 receptor mechanisms. The increase in release of ACh induced by DOI in the prefrontal cortex, but not in the hippocampus, appears to be due to 5-HT2 receptor mechanisms localized within this brain region. Furthermore, it appears that the prefrontal cortex is more sensitive than the dorsal hippocampus to the stimulatory effect of 5-HT2 agonists on ACh release. PMID:15266551

  18. The spatial relationship between the musculature and the NADPH-diaphorase activity, 5-HT and FMRFamide immunoreactivities in redia, cercaria and adult Echinoparyphium aconiatum (Digenea).

    PubMed

    Terenina, N B; Tolstenkov, O; Fagerholm, H-P; Serbina, E A; Vodjanitskaja, S N; Gustafsson, M K S

    2006-04-01

    The spatial relationship between the musculature and the NADPH-diaphorase (NADPH-d) activity, 5-HT and FMRFamide immunoreactivities in redia, cercaria and adult Echinoparyphium aconiatum was studied using scanning electron microscopy (SEM), NADPH-d histochemistry, immunocytochemistry, and confocal scanning laser microscopy (CSLM). TRITC-conjugated phalloidin was used to stain the musculature. Staining for NADPH-d was observed in the central (CNS) and peripheral nervous system (PNS) of all three stages. NADPH-d positive nerves occurred very close to muscle fibres. 5-HT-immunoreactive (5-HT-IR) nerve cells and fibres occurred in the CNS and PNS and close to muscle fibres. FMRFamide-IR nerve fibres were observed in the CNS and PNS of adult worms. This is the first time, the presence of the NADPH-d has been demonstrated in the larval as well as the adult stages of a fluke. PMID:16494908

  19. Activation of 5-HT2a receptors in the basolateral amygdala promotes defeat-induced anxiety and the acquisition of conditioned defeat in Syrian hamsters.

    PubMed

    Clinard, Catherine T; Bader, Lauren R; Sullivan, Molly A; Cooper, Matthew A

    2015-03-01

    Conditioned defeat is a model in Syrian hamsters (Mesocricetus auratus) in which normal territorial aggression is replaced by increased submissive and defensive behavior following acute social defeat. The conditioned defeat response involves both a fear-related memory for a specific opponent as well as anxiety-like behavior indicated by avoidance of novel conspecifics. We have previously shown that systemic injection of a 5-HT2a receptor antagonist reduces the acquisition of conditioned defeat. Because neural activity in the basolateral amygdala (BLA) is critical for the acquisition of conditioned defeat and BLA 5-HT2a receptors can modulate anxiety but have a limited effect on emotional memories, we investigated whether 5-HT2a receptor modulation alters defeat-induced anxiety but not defeat-related memories. We injected the 5-HT2a receptor antagonist MDL 11,939 (0 mM, 1.7 mM or 17 mM) or the 5-HT2a receptor agonist TCB-2 (0 mM, 8 mM or 80 mM) into the BLA prior to social defeat. We found that injection of MDL 11,939 into the BLA impaired acquisition of the conditioned defeat response and blocked defeat-induced anxiety in the open field, but did not significantly impair avoidance of former opponents in the Y-maze. Furthermore, we found that injection of TCB-2 into the BLA increased the acquisition of conditioned defeat and increased anxiety-like behavior in the open field, but did not alter avoidance of former opponents. Our data suggest that 5-HT2a receptor signaling in the BLA is both necessary and sufficient for the development of conditioned defeat, likely via modulation of defeat-induced anxiety. PMID:25458113

  20. Activation of 5-HT2a Receptors in the Basolateral Amygdala Promotes Defeat-Induced Anxiety and the Acquisition of Conditioned Defeat in Syrian Hamsters

    PubMed Central

    Clinard, Catherine T.; Bader, Lauren R.; Sullivan, Molly A.; Cooper, Matthew A.

    2014-01-01

    Conditioned defeat is a model in Syrian hamsters (Mesocricetus auratus) in which normal territorial aggression is replaced by increased submissive and defensive behavior following acute social defeat. The conditioned defeat response involves both a fear-related memory for a specific opponent as well as anxiety-like behavior indicated by avoidance of novel conspecifics. We have previously shown that systemic injection of a 5-HT2a receptor antagonist reduces the acquisition of conditioned defeat. Because neural activity in the basolateral amygdala (BLA) is critical for the acquisition of conditioned defeat and BLA 5-HT2a receptors can modulate anxiety but have a limited effect on emotional memories, we investigated whether 5-HT2a receptor modulation alters defeat-induced anxiety but not defeat-related memories. We injected the 5-HT2a receptor antagonist MDL 11,939 (0 mM, 1.7 mM or 17 mM) or the 5-HT2a receptor agonist TCB-2 (0 mM, 8 mM or 80 mM) into the BLA prior to social defeat. We found that injection of MDL 11,939 into the BLA impaired acquisition of the conditioned defeat response and blocked defeat-induced anxiety in the open field, but did not significantly impair avoidance of former opponents in the Y-maze. Furthermore, we found that injection of TCB-2 into the BLA increased the acquisition of conditioned defeat and increased anxiety-like behavior in the open field, but did not alter avoidance of former opponents. Our data suggest that 5-HT2a receptor signaling in the BLA is both necessary and sufficient for the development of conditioned defeat, likely via modulation of defeat-induced anxiety. PMID:25458113

  1. Activation of GABAA or 5HT1A receptors in the raphé pallidus abolish the cardiovascular responses to exogenous stress in conscious rats.

    PubMed

    Pham-Le, Nhut Minh; Cockburn, Chelsea; Nowell, Katherine; Brown, Justin

    2011-11-25

    Dysfunction in serotonin (5HT) neurotransmission in the brainstem of infants may disrupt protective responses to stress and increase the risk for Sudden Infant Death Syndrome (SIDS). The raphé pallidus (NRP) and other brainstem nuclei are rich in 5HT and are thought to mediate stress responses, including increases in blood pressure (BP) and heart rate (HR). Determining how 5HT neurotransmission in the brainstem mediates responses to stress will help to explain how dysfunction in neurotransmission could increase the risk of SIDS. It was hypothesized that alterations in neurotransmission in the NRP, specifically activation of the 5HT(1A) receptor subtype, would block cardiovascular responses to various types of exogenous stress. Using aseptic techniques, male Sprague-Dawley rats were instrumented with radiotelemetry probes which enabled non-invasive measurement of BP and HR. An indwelling microinjection cannula was also stereotaxically implanted into the NRP for injection of drugs that altered local 5HT neurotransmission. Following a one week recovery period, rats were microinjected with either muscimol (GABA(A) receptor agonist), 8-OH-DPAT (agonist to the inhibitory 5HT(1A) receptor), or a vehicle control (artificial cerebral spinal fluid; ACSF) immediately prior to exposure to one of three stressors: handling, air jet, or restraint. Physical handling and restraint of the animal were designed to elicit a mild and a maximal stress response respectively; while an air jet directed at the rat's face was used to provoke a psychological stress that did not require physical contact. All three stressors elicited similar and significant elevations in HR and BP following ACSF that persisted for at least 15 min with BP and HR elevated by ∼14.0 mmHg and ∼56.3 bpm respectively. The similarity in the stress responses suggest even mild handling of a rat elicits a maximal sympathoexcitatory response. The stress response was abolished following 8-OH-DPAT or muscimol

  2. Mirtazapine exerts an anxiolytic-like effect through activation of the median raphe nucleus-dorsal hippocampal 5-HT pathway in contextual fear conditioning in rats.

    PubMed

    An, Yan; Chen, Chong; Inoue, Takeshi; Nakagawa, Shin; Kitaichi, Yuji; Wang, Ce; Izumi, Takeshi; Kusumi, Ichiro

    2016-10-01

    The functional role of serotonergic projections from the median raphe nucleus (MRN) to the dorsal hippocampus (DH) in anxiety remains understood poorly. The purpose of the present research was to examine the functional role of this pathway, using the contextual fear conditioning (CFC) model of anxiety. We show that intra-MRN microinjection of mirtazapine, a noradrenergic and specific serotonergic antidepressant, reduced freezing in CFC without affecting general motor activity dose-dependently, suggesting an anxiolytic-like effect. In addition, intra-MRN microinjection of mirtazapine dose-dependently increased extracellular concentrations of serotonin (5-HT) but not dopamine in the DH. Importantly, intra-DH pre-microinjection of WAY-100635, a 5-HT1A antagonist, significantly attenuated the effect of mirtazapine on freezing. These results, for the first time, suggest that activation of the MRN-DH 5-HT1A pathway exerts an anxiolytic-like effect in CFC. This is consistent with the literature that the hippocampus is essential for retrieval of contextual memory and that 5-HT1A receptor activation in the hippocampus primarily exerts an inhibitory effect on the neuronal activity. PMID:27137833

  3. Identification of essential residues for binding and activation in the human 5-HT7(a) serotonin receptor by molecular modeling and site-directed mutagenesis.

    PubMed

    Impellizzeri, Agata Antonina Rita; Pappalardo, Matteo; Basile, Livia; Manfra, Ornella; Andressen, Kjetil Wessel; Krobert, Kurt Allen; Messina, Angela; Levy, Finn Olav; Guccione, Salvatore

    2015-01-01

    The human 5-HT7 receptor is expressed in both the central nervous system and peripheral tissues and is a potential drug target in behavioral and psychiatric disorders. We examined molecular determinants of ligand binding and G protein activation by the human 5-HT7(a) receptor. The role of several key residues in the 7th transmembrane domain (TMD) and helix 8 were elucidated combining in silico and experimental mutagenesis. Several single and two double point mutations of the 5-HT7(a) wild type receptor were made (W7.33V, E7.35T, E7.35R, E7.35D, E7.35A, R7.36V, Y7.43A, Y7.43F, Y7.43T, R8.52D, D8.53K; E7.35T-R7.36V, R8.52D-D8.53K), and their effects upon ligand binding were assessed by radioligand binding using a potent agonist (5-CT) and a potent antagonist (SB269970). In addition, the ability of the mutated 5-HT7(a) receptors to activate G protein after 5-HT-stimulation was determined through activation of adenylyl cyclase. In silico investigation on mutated receptors substantiated the predicted importance of TM7 and showed critical roles of residues E7.35, W7.33, R7.36 and Y7.43 in agonist and antagonist binding and conformational changes of receptor structure affecting adenylyl cyclase activation. Experimental data showed that mutants E7.35T and E7.35R were incapable of ligand binding and adenylyl cyclase activation, consistent with a requirement for a negatively charged residue at this position. The mutant R8.52D was unable to activate adenylyl cyclase, despite unaffected ligand binding, consistent with the R8.52 residue playing an important role in the receptor-G protein interface. The mutants Y7.43A and Y7.43T displayed reduced agonist binding and AC agonist potency, not seen in Y7.43F, consistent with a requirement for an aromatic residue at this position. Knowledge of the molecular interactions important in h5-HT7 receptor ligand binding and G protein activation will aid the design of selective h5-HT7 receptor ligands for potential pharmacological use. PMID

  4. Identification of essential residues for binding and activation in the human 5-HT7(a) serotonin receptor by molecular modeling and site-directed mutagenesis

    PubMed Central

    Impellizzeri, Agata Antonina Rita; Pappalardo, Matteo; Basile, Livia; Manfra, Ornella; Andressen, Kjetil Wessel; Krobert, Kurt Allen; Messina, Angela; Levy, Finn Olav; Guccione, Salvatore

    2015-01-01

    The human 5-HT7 receptor is expressed in both the central nervous system and peripheral tissues and is a potential drug target in behavioral and psychiatric disorders. We examined molecular determinants of ligand binding and G protein activation by the human 5-HT7(a) receptor. The role of several key residues in the 7th transmembrane domain (TMD) and helix 8 were elucidated combining in silico and experimental mutagenesis. Several single and two double point mutations of the 5-HT7(a) wild type receptor were made (W7.33V, E7.35T, E7.35R, E7.35D, E7.35A, R7.36V, Y7.43A, Y7.43F, Y7.43T, R8.52D, D8.53K; E7.35T-R7.36V, R8.52D-D8.53K), and their effects upon ligand binding were assessed by radioligand binding using a potent agonist (5-CT) and a potent antagonist (SB269970). In addition, the ability of the mutated 5-HT7(a) receptors to activate G protein after 5-HT-stimulation was determined through activation of adenylyl cyclase. In silico investigation on mutated receptors substantiated the predicted importance of TM7 and showed critical roles of residues E7.35, W7.33, R7.36 and Y7.43 in agonist and antagonist binding and conformational changes of receptor structure affecting adenylyl cyclase activation. Experimental data showed that mutants E7.35T and E7.35R were incapable of ligand binding and adenylyl cyclase activation, consistent with a requirement for a negatively charged residue at this position. The mutant R8.52D was unable to activate adenylyl cyclase, despite unaffected ligand binding, consistent with the R8.52 residue playing an important role in the receptor-G protein interface. The mutants Y7.43A and Y7.43T displayed reduced agonist binding and AC agonist potency, not seen in Y7.43F, consistent with a requirement for an aromatic residue at this position. Knowledge of the molecular interactions important in h5-HT7 receptor ligand binding and G protein activation will aid the design of selective h5-HT7 receptor ligands for potential pharmacological use. PMID

  5. 5-HT4 and 5-HT2 receptors antagonistically influence gap junctional coupling between rat auricular myocytes.

    PubMed

    Derangeon, Mickaël; Bozon, Véronique; Defamie, Norah; Peineau, Nicolas; Bourmeyster, Nicolas; Sarrouilhe, Denis; Argibay, Jorge A; Hervé, Jean-Claude

    2010-01-01

    5-hydroxytryptamine-4 (5-HT(4)) receptors have been proposed to contribute to the generation of atrial fibrillation in human atrial myocytes, but it is unclear if these receptors are present in the hearts of small laboratory animals (e.g. rat). In this study, we examined presence and functionality of 5-HT(4) receptors in auricular myocytes of newborn rats and their possible involvement in regulation of gap junctional intercellular communication (GJIC, responsible for the cell-to-cell propagation of the cardiac excitation). Western-blotting assays showed that 5-HT(4) receptors were present and real-time RT-PCR analysis revealed that 5-HT(4b) was the predominant isoform. Serotonin (1 microM) significantly reduced cAMP concentration unless a selective 5-HT(4) inhibitor (GR113808 or ML10375, both 1 microM) was present. Serotonin also reduced the amplitude of L-type calcium currents and influenced the strength of GJIC without modifying the phosphorylation profiles of the different channel-forming proteins or connexins (Cxs), namely Cx40, Cx43 and Cx45. GJIC was markedly increased when serotonin exposure occurred in presence of a 5-HT(4) inhibitor but strongly reduced when 5-HT(2A) and 5-HT(2B) receptors were inhibited, showing that activation of these receptors antagonistically regulated GJIC. The serotoninergic response was completely abolished when 5-HT(4), 5-HT(2A) and 5-HT(2B) were simultaneously inhibited. A 24 h serotonin exposure strongly reduced Cx40 expression whereas Cx45 was less affected and Cx43 still less. In conclusion, this study revealed that 5-HT(4) (mainly 5-HT(4b)), 5-HT(2A) and 5-HT(2B) receptors coexisted in auricular myocytes of newborn rat, that 5-HT(4) activation reduced cAMP concentration, I(Ca)(L) and intercellular coupling whereas 5-HT(2A) or 5-HT(2B) activation conversely enhanced GJIC. PMID:19615378

  6. 5-HT(1A) receptor antagonist improves behavior performance of delirium rats through inhibiting PI3K/Akt/mTOR activation-induced NLRP3 activity.

    PubMed

    Qiu, Yimin; Huang, Xiaojing; Huang, Lina; Tang, Liang; Jiang, Jihong; Chen, Lianhua; Li, Shitong

    2016-04-01

    Postoperative delirium is a common complication that often results in poor outcomes in surgical and elderly patients. Accumulating evidences suggest that the pathophysiology of delirium results from multiple neurotransmitter system dysfunctions. To further clarify the effects of the selective serotonin (5-HT) (1A) antagonist WAY-100635 on the behaviors in scopolamine induced-delirium rats and to explore the molecular mechanism, in this study, we investigated the change of monoamine levels in the cerebrospinal fluid (CSF) and different brain regions using high-performance liquid chromatography and assessed the behavioral retrieval of delirium rats treated with WAY-100635. It was found that 5-hydroxy-3-indoleacetic acid (5-HIAA), 3,4-dihydroxyphenylacetic acid, and homovanillic acid concentrations in the CSF of scopolamine-induced delirium rats were significantly increased, among which 5-HIAA was also increased in hippocampus and basolateral amygdala (BLA), and 5-HT(1A) receptor was significantly higher in the hippocampuses and BLA than other brain regions. Furthermore, intrahippocampus and intra-BLA stereotactic injection of WAY-100635 improved the delirium-like behavior of rats. Mechanistically, after WAY-100635 treatment, significant reduction of IL-1β release into CSF and NOD-like receptor family, pyrin domain containing 3 (NLRP3) expression, phosphorylated phosphatidylinositol-3-kinase (PI3K), protein kinase B (AKT), and S6K was observed. Altogether, these results suggest that delirium rats induced by scopolamine may be correlated with an increased cerebral concentration of 5-HT and dopamine neurotransmitters system; the selective 5-HT(1A) antagoniszts can reverse the delirium symptoms at some extent through tendering PI3K/Akt/mammalian target of rapamycin complex 1 (mTOR) activation-induced NLRP3 activity and then reducing IL-1β release. © 2016 IUBMB Life, 68(4):311-319, 2016. PMID:26946964

  7. Mechanism for the acute effects of organophosphate pesticides on the adult 5-HT system

    PubMed Central

    Judge, Sarah J.; Savy, Claire Y.; Campbell, Matthew; Dodds, Rebecca; Gomes, Larissa Kruger; Laws, Grace; Watson, Anna; Blain, Peter G.; Morris, Christopher M.; Gartside, Sarah E.

    2016-01-01

    The neurotransmitter serotonin (5-HT) is involved in mood disorder aetiology and it has been reported that (organophosphate) OP exposure affects 5-HT turnover. The aim of this study was to elucidate the mechanism underlying OP effects on the adult 5-HT system. First, acute in vivo administration of the OP diazinon (0, 1.3, 13 or 39 mg/kg i.p.) to male Hooded Lister rats inhibited the activity of the cholinergic enzyme acetylcholinesterase in blood and in the hippocampus, dorsal raphe nucleus (DRN), striatum and prefrontal cortex. Diazinon-induced cholinesterase inhibition was greatest in the DRN, the brain's major source of 5-HT neurones. Second, acute in vivo diazinon exposure (0 or 39 mg/kg i.p.) increased the basal firing rate of DRN neurones measured ex vivo in brain slices. The excitatory responses of DRN neurones to α1-adrenoceptor or AMPA/kainate receptor activation were not affected by in vivo diazinon exposure but the inhibitory response to 5-HT was attenuated, indicating 5-HT1A autoreceptor down-regulation. Finally, direct application of the diazinon metabolite diazinon oxon to naive rat brain slices increased the firing rate of DRN 5-HT neurones, as did chlorpyrifos-oxon, indicating the effect was not unique to diazinon. The oxon-induced augmentation of firing was blocked by the nicotinic acetylcholine receptor antagonist mecamylamine and the AMPA/kainate glutamate receptor antagonist DNQX. Together these data indicate that 1) acute OP exposure inhibits DRN cholinesterase, leading to acetylcholine accumulation, 2) the acetylcholine activates nicotinic receptors on 5-HT neurones and also on glutamatergic neurones, thus releasing glutamate and activating 5-HT neuronal AMPA/kainate receptors 3) the increase in 5-HT neuronal activity, and resulting 5-HT release, may lead to 5-HT1A autoreceptor down-regulation. This mechanism may be involved in the reported increase in risk of developing anxiety and depression following occupational OP exposure. PMID

  8. DSP-1053, a novel serotonin reuptake inhibitor with 5-HT1A partial agonistic activity, displays fast antidepressant effect with minimal undesirable effects in juvenile rats

    PubMed Central

    Kato, Taro; Matsumoto, Yuji; Yamamoto, Masanori; Matsumoto, Kenji; Baba, Satoko; Nakamichi, Keiko; Matsuda, Harumi; Nishimuta, Haruka; Yabuuchi, Kazuki

    2015-01-01

    Enhancement of serotonergic neurotransmission has been the main stream of treatment for patients with depression. However, delayed therapeutic onset and undesirable side effects are major drawbacks for conventional serotonin reuptake inhibitors. Here, we show that DSP-1053, a novel serotonin reuptake inhibitor with 5-HT1A partial agonistic activity, displays fast antidepressant efficacy with minimal undesirable effects, especially nausea and emesis in animal models. DSP-1053 bound human serotonin transporter and 5-HT1A receptor with the Ki values of 1.02 ± 0.06 and 5.05 ± 1.07 nmol/L, respectively. This compound inhibited the serotonin transporter with an IC50 value of 2.74 ± 0.41 nmol/L and had an intrinsic activity for 5-HT1A receptors of 70.0 ± 6.3%. In rat microdialysis, DSP-1053, given once at 3 and 10 mg kg−1, dose-dependently increased extracellular 5-HT levels. In the rat forced swimming test, 2-week administration of DSR-1053 (1 mg kg−1) significantly reduced rats immobility time after treatment, whereas paroxetine (3 and 10 mg kg−1) required 3-week administration to reduce rats immobility time. In olfactory bulbectomy model, 1- and 2-week administration of DSP-1053 reduced both of emotional scores and activity in the open field, whereas paroxetine required 2 weeks to show similar beneficial effects. Although single administration of DSP-1053-induced emesis and vomiting in the rat and Suncus murinus, multiple treatment with this compound, but not with paroxetine, decreased the number of vomiting episodes. These results highlight the important role of 5-HT1A receptors in both the efficacy and tolerability of DSP-1053 as a new therapeutic option for the treatment of depression. PMID:26171224

  9. Agonist activity of a novel compound, 1-[3-(3,4-methylenedioxyphenoxy)propyl]-4-phenyl piperazine (BP-554), at central 5-HT1A receptors.

    PubMed

    Matsuda, T; Seong, Y H; Aono, H; Kanda, T; Baba, A; Saito, K; Tobe, A; Iwata, H

    1989-10-24

    We used an in vitro radioligand receptor binding assay with rat cerebral cortex, hippocampus and striatum membrane preparations to show that 1-[3-(3,4-methylenedioxyphenoxy)propyl]-4-phenyl piperazine (BP-554) had much higher affinity for 5-HT1A recognition sites than for 5-HT1-non-A, 5-HT2, benzodiazepine, dopamine D-2 and alpha 2-adrenergic recognition sites. The compound inhibited the activity of forskolin-stimulated adenylate cyclase in rat hippocampal membranes. Intraperitoneal injection of BP-554 to mice decreased the concentration of only 5-hydroxy-indoleacetic acid of the amines and their metabolites in the brain and decreased the accumulation of 5-hydroxytryptophan in the brain after decarboxylase inhibition by 3-hydroxybenzylhydrazine. Furthermore, the administration of BP-554 caused hypothermia and increased serum corticosterone levels in mice. The observed effects of BP-554 were similar to those of 8-hydroxy-2-(di-n-propylamino)tetralin. These results suggest that BP-554 acts as a selective 5-HT1A receptor agonist in vivo. PMID:2533078

  10. 5-HT6 receptors and Alzheimer's disease

    PubMed Central

    2013-01-01

    During the past 20 years, the 5-HT6 receptor has received increasing attention and become a promising target for improving cognition. Several studies with structurally different compounds have shown that not only antagonists but also 5-HT6 receptor agonists improve learning and memory in animal models. A large number of publications describing the development of ligands for this receptor have come to light, and it is now quite evident that 5-HT6 receptors have great pharmaceutical potential in terms of related patents. However, 5-HT6 receptor functionality is much more complex than initially defined. According to the existing data, different cellular pathways may be activated, depending on the drug being used. This article reviews preclinical and clinical evidence of the effects that 5-HT6 receptor compounds have on cognition. In addition, the biochemical and neurochemical mechanisms of action through which 5-HT6 receptor compounds can influence cognition will be described. Overall, several 5-HT6-targeted compounds can reasonably be regarded as powerful drug candidates for the treatment of Alzheimer's disease. PMID:23607787

  11. Centrally acting hypotensive agents with affinity for 5-HT1A binding sites inhibit forskolin-stimulated adenylate cyclase activity in calf hippocampus.

    PubMed Central

    Schoeffter, P.; Hoyer, D.

    1988-01-01

    1. A number of centrally acting hypotensive agents and other ligands with high affinity for 5-hydroxytryptamine1A (5-HT1A) recognition sites have been tested on forskolin-stimulated adenylate cyclase activity in calf hippocampus, a functional model for 5-HT1A-receptors. 2. Concentration-dependent inhibition of forskolin-stimulated adenylate cyclase activity was elicited by the reference 5-HT1-receptor agonists (mean EC50 value, nM): 5-HT (22), 5-carboxamidotryptamine (5-CT, 3.2), 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT, 8.6), N,N-dipropyl-5-carboxamidotryptamine (DP-5-CT, 2.3), 1-[2-(4-aminophenyl)ethyl]-4-(3-trifluoromethylphenyl)-piperazine (PAPP or LY 165163, 20), 5-methoxy-3-(1,2,3,6-tetrahydro-4-pyridinyl)-1H indole (RU 24969, 20), buspirone (65) and ipsapirone (56). Emax amounted to 18-20% inhibition for all but the latter two agonists (14%). 3. The following hypotensive agents with high affinity for 5-HT1A sites were potent agonists in this system (mean EC50 value, nM): flesinoxan (24), indorenate (99), erythro-1-(1-[2-(1,4-benzodioxan-2-yl)-2-hydroxyethyl]-4-piperidyl )- 2-benzimidazolinone (R 28935, 2.5), urapidil (390) and 5-methyl-urapidil (3.5). The first two agents were full agonists, whereas the latter three acted as partial agonists with 60-80% efficacy. 4. Metergoline and methysergide behaved as full agonists and cyanopindolol as a partial agonist with low efficacy. Spiroxatrine and 2-(2,6-dimethoxyphenoxyethyl)aminomethyl- 1,4-benzodioxane (WB 4101) which bind to 5-HT1A sites with nanomolar affinity, were agonists and inhibited potently forskolin-stimulated adenylate cyclase in calf hippocampus, showing mean EC50 values of 23 and 15 nM, respectively. Spiroxatrine and WB 4101 yielded 90% and 50% efficacy, respectively. 5. Spiperone and methiothepin (each 1 microM) caused rightward shifts of the concentration-effect curve to 8-OH-DPAT, without loss of the maximal effect, as did the partial agonist cyanopindolol (0.1 microM) and the

  12. Endogenous 5-HT2C Receptors Phosphorylate the cAMP Response Element Binding Protein via Protein Kinase C-Promoted Activation of Extracellular-Regulated Kinases-1/2 in Hypothalamic mHypoA-2/10 Cells.

    PubMed

    Lauffer, Lisa; Glas, Evi; Gudermann, Thomas; Breit, Andreas

    2016-07-01

    Serotonin 5-HT2C receptors (5-HT2CR) activate Gq proteins and are expressed in the central nervous system (CNS). 5-HT2CR regulate emotion, feeding, reward, or cognition and may serve as promising drug targets to treat psychiatric disorders or obesity. Owing to technical difficulties in isolating cells from the CNS and the lack of suitable cell lines endogenously expressing 5-HT2CR, our knowledge about this receptor subtype in native environments is rather limited. The hypothalamic mHypoA-2/10 cell line was recently established and resembles appetite-regulating hypothalamic neurons of the paraventricular nucleus (PVN), where 5-HT2CR have been detected in vivo. Therefore, we tested mHypoA-2/10 cells for endogenous 5-HT2CR expression. Serotonin or the 5-HT2CR preferential agonist WAY-161,503 initiated cAMP response element (CRE)-dependent gene transcription with EC50 values of 15.5 ± 9.8 and 1.1 ± 0.9 nM, respectively. Both responses were blocked by two unrelated 5-HT2CR-selective antagonists (SB-242,084, RS-102,221) but not by a 5-HT2AR (EMD-281,014) or 5-HT2BR (RS-127,455) antagonists. By single-cell calcium imaging, we found that serotonin and WAY-161,503 induced robust calcium transients, which were also blunted by both 5-HT2CR antagonists. Additionally we revealed, first, that 5-HT2CR induced CRE activation via protein kinase C (PKC)-mediated engagement of extracellular-regulated kinases-1/2 and, second, that intrinsic activity of WAY-161,503 was in the range of 0.3-0.5 compared with serotonin, defining the frequently used 5-HT2CR agonist as a partial agonist of endogenous 5-HT2CR. In conclusion, we have shown that hypothalamic mHypoA-2/10 cells endogenously express 5-HT2CR and thus are the first cell line in which to analyze 5-HT2CR pharmacology, signaling, and regulation in its natural environment. PMID:27189964

  13. Kampo Medicine: Evaluation of the Pharmacological Activity of 121 Herbal Drugs on GABAA and 5-HT3A Receptors.

    PubMed

    Hoffmann, Katrin M; Herbrechter, Robin; Ziemba, Paul M; Lepke, Peter; Beltrán, Leopoldo; Hatt, Hanns; Werner, Markus; Gisselmann, Günter

    2016-01-01

    Kampo medicine is a form of Japanese phytotherapy originating from traditional Chinese medicine (TCM). During the last several decades, much attention has been paid to the pharmacological effects of these medical plants and their constituents. However, in many cases, a systematic screening of Kampo remedies to determine pharmacologically relevant targets is still lacking. In this study, a broad screening of Kampo remedies was performed to look for pharmacologically relevant 5-HT3A and GABAA receptor ligands. Several of the Kampo remedies are currently used for symptoms such as nausea, emesis, gastrointestinal motility disorders, anxiety, restlessness, or insomnia. Therefore, the pharmacological effects of 121 herbal drugs from Kampo medicine were analyzed as ethanol tinctures on heterologously expressed 5-HT3A and GABAA receptors, due to the involvement of these receptors in such pathophysiological processes. The tinctures of Lindera aggregata (radix) and Leonurus japonicus (herba) were the most effective inhibitory compounds on the 5-HT3A receptor. Further investigation of known ingredients in these compounds led to the identification of leonurine from Leonurus as a new natural 5-HT3A receptor antagonist. Several potentiating herbs (e.g., Magnolia officinalis (cortex), Syzygium aromaticum (flos), and Panax ginseng (radix)) were also identified for the GABAA receptor, which are all traditionally used for their sedative or anxiolytic effects. A variety of tinctures with antagonistic effects Salvia miltiorrhiza (radix) were also detected. Therefore, this study reveals new insights into the pharmacological action of a broad spectrum of herbal drugs from Kampo, allowing for a better understanding of their physiological effects and clinical applications. PMID:27524967

  14. Kampo Medicine: Evaluation of the Pharmacological Activity of 121 Herbal Drugs on GABAA and 5-HT3A Receptors

    PubMed Central

    Hoffmann, Katrin M.; Herbrechter, Robin; Ziemba, Paul M.; Lepke, Peter; Beltrán, Leopoldo; Hatt, Hanns; Werner, Markus; Gisselmann, Günter

    2016-01-01

    Kampo medicine is a form of Japanese phytotherapy originating from traditional Chinese medicine (TCM). During the last several decades, much attention has been paid to the pharmacological effects of these medical plants and their constituents. However, in many cases, a systematic screening of Kampo remedies to determine pharmacologically relevant targets is still lacking. In this study, a broad screening of Kampo remedies was performed to look for pharmacologically relevant 5-HT3A and GABAA receptor ligands. Several of the Kampo remedies are currently used for symptoms such as nausea, emesis, gastrointestinal motility disorders, anxiety, restlessness, or insomnia. Therefore, the pharmacological effects of 121 herbal drugs from Kampo medicine were analyzed as ethanol tinctures on heterologously expressed 5-HT3A and GABAA receptors, due to the involvement of these receptors in such pathophysiological processes. The tinctures of Lindera aggregata (radix) and Leonurus japonicus (herba) were the most effective inhibitory compounds on the 5-HT3A receptor. Further investigation of known ingredients in these compounds led to the identification of leonurine from Leonurus as a new natural 5-HT3A receptor antagonist. Several potentiating herbs (e.g., Magnolia officinalis (cortex), Syzygium aromaticum (flos), and Panax ginseng (radix)) were also identified for the GABAA receptor, which are all traditionally used for their sedative or anxiolytic effects. A variety of tinctures with antagonistic effects Salvia miltiorrhiza (radix) were also detected. Therefore, this study reveals new insights into the pharmacological action of a broad spectrum of herbal drugs from Kampo, allowing for a better understanding of their physiological effects and clinical applications. PMID:27524967

  15. Mosapride, a selective serotonin 5-HT4 receptor agonist, and alogliptin, a selective dipeptidyl peptidase-4 inhibitor, exert synergic effects on plasma active GLP-1 levels and glucose tolerance in mice.

    PubMed

    Nonogaki, Katsunori; Kaji, Takao

    2015-12-01

    Pharmacologic stimulation of serotonin 5-HT4 receptors increased plasma active glucagon-like-peptide-1 (GLP-1) levels independent of feeding, and that pharmacologic stimulation of 5-HT4 receptors and pharmacologic inhibition of dipeptidyl peptidase-4 exerted synergic effects on plasma active GLP-1 levels and glucose tolerance in mice. PMID:26497774

  16. Circadian 5-HT production regulated by adrenergic signaling

    PubMed Central

    Sun, Xing; Deng, Jie; Liu, Tiecheng; Borjigin, Jimo

    2002-01-01

    Using on-line microdialysis, we have characterized in vivo dynamics of pineal 5-hydroxytryptamine (5-HT; serotonin) release. Daily pineal 5-HT output is triphasic: (i) 5-HT levels are constant and high during the day; (ii) early in the night, there is a novel sharp rise in 5-HT synthesis and release, which precedes the nocturnal rise in melatonin synthesis; and (iii) late in the night, levels are low. This triphasic 5-HT production persists in constant darkness and is influenced strongly by intrusion of light at night. We demonstrate that both diurnal 5-HT synthesis and 5-HT release are activated by sympathetic innervation from the superior cervical ganglion and show that these processes are controlled by distinct receptors. The increase in 5-HT synthesis is controlled by β-adrenergic receptors, whereas the increase in 5-HT release is mediated by α-adrenergic signaling. On the other hand, the marked decrease in 5-HT content and release late at night is a passive process, influenced by the extent of melatonin synthesis. In the absence of melatonin synthesis, the late-night decline in 5-HT release is prevented, reaching levels roughly twice as high as that of the day value. In summary, our results demonstrate that 5-HT levels display marked circadian rhythms that depend on adrenergic signaling. PMID:11917109

  17. Aryl biphenyl-3-ylmethylpiperazines as 5-HT7 receptor antagonists.

    PubMed

    Kim, Jeeyeon; Kim, Youngjae; Tae, Jinsung; Yeom, Miyoung; Moon, Bongjin; Huang, Xi-Ping; Roth, Bryan L; Lee, Kangho; Rhim, Hyewhon; Choo, Il Han; Chong, Youhoon; Keum, Gyochang; Nam, Ghilsoo; Choo, Hyunah

    2013-11-01

    The 5-HT7 receptor (5-HT7 R) is a promising therapeutic target for the treatment of depression and neuropathic pain. The 5-HT7 R antagonist SB-269970 exhibited antidepressant-like activity, whereas systemic administration of the 5-HT7 R agonist AS-19 significantly inhibited mechanical hypersensitivity and thermal hyperalgesia. In our efforts to discover selective 5-HT7 R antagonists or agonists, aryl biphenyl-3-ylmethylpiperazines were designed, synthesized, and biologically evaluated against the 5-HT7 R. Among the synthesized compounds, 1-([2'-methoxy-(1,1'-biphenyl)-3-yl]methyl)-4-(2-methoxyphenyl)piperazine (28) was the best binder to the 5-HT7 R (pKi =7.83), and its antagonistic property was confirmed by functional assays. The selectivity profile of compound 28 was also recorded for the 5-HT7 R over other serotonin receptor subtypes, such as 5-HT1 R, 5-HT2 R, 5-HT3 R, and 5-HT6 R. In a molecular modeling study, the 2-methoxyphenyl moiety attached to the piperazine ring of compound 28 was proposed to be essential for the antagonistic function. PMID:24039134

  18. Ligand-Dependent Conformations and Dynamics of the Serotonin 5-HT2A Receptor Determine Its Activation and Membrane-Driven Oligomerization Properties

    PubMed Central

    Shan, Jufang; Khelashvili, George; Mondal, Sayan; Mehler, Ernest L.; Weinstein, Harel

    2012-01-01

    From computational simulations of a serotonin 2A receptor (5-HT2AR) model complexed with pharmacologically and structurally diverse ligands we identify different conformational states and dynamics adopted by the receptor bound to the full agonist 5-HT, the partial agonist LSD, and the inverse agonist Ketanserin. The results from the unbiased all-atom molecular dynamics (MD) simulations show that the three ligands affect differently the known GPCR activation elements including the toggle switch at W6.48, the changes in the ionic lock between E6.30 and R3.50 of the DRY motif in TM3, and the dynamics of the NPxxY motif in TM7. The computational results uncover a sequence of steps connecting these experimentally-identified elements of GPCR activation. The differences among the properties of the receptor molecule interacting with the ligands correlate with their distinct pharmacological properties. Combining these results with quantitative analysis of membrane deformation obtained with our new method (Mondal et al, Biophysical Journal 2011), we show that distinct conformational rearrangements produced by the three ligands also elicit different responses in the surrounding membrane. The differential reorganization of the receptor environment is reflected in (i)-the involvement of cholesterol in the activation of the 5-HT2AR, and (ii)-different extents and patterns of membrane deformations. These findings are discussed in the context of their likely functional consequences and a predicted mechanism of ligand-specific GPCR oligomerization. PMID:22532793

  19. Agonist-like activity of antibodies directed against the second extracellular loop of the human cardiac serotonin 5-HT4(e) receptor in transfected COS-7 cells.

    PubMed

    Bozon, V; Di Scala, E; Eftekhari, P; Hoebeke, J; Lezoualc'h, F; Fischmeister, R; Argibay, J

    2002-01-01

    We have previously reported that antipeptide antibodies directed against the second extracellular loop of the cardiac h5-HT4 receptor could block the activation of the L-type Ca channel in human atrial cardiomyocytes. In this paper we investigate the immunological and physiological activity of these antibodies, in a cell system expressing a larger amount of receptors than the atrial cells. The recombinant receptor was expressed at the surface of COS-7 cells under an active form (serotonin, EC50 = 1.81 x 10(-7) M), at a high level (375 +/- 25 fmol receptor/mg total protein) and was able to bind a specific ligand (GR113808) with a high affinity (Kd = 0.28 +/- 0.05 nM). In this system, the same anti-peptide antibodies used for the cardiac cells induced an "agonist-like" effect on the recombinant h5-HT4 receptor. These results are in line with those shown for others G-protein coupled receptors, as adrenoreceptors. In addition, this work showed that the effect of the antibodies is not only dependent on the epitopic region recognised but also on the molecular density and/or the cellular environment of the target receptors. Finally, our results support the hypothesis that the h5-HT4 receptor could be a new target for autoantibodies in patients with atrial arrhythmia. PMID:12448792

  20. The 5-HT3B subunit affects high-potency inhibition of 5-HT3 receptors by morphine

    PubMed Central

    Baptista-Hon, Daniel T; Deeb, Tarek Z; Othman, Nidaa A; Sharp, Douglas; Hales, Tim G

    2012-01-01

    BACKGROUND AND PURPOSE Morphine is an antagonist at 5-HT3A receptors. 5-HT3 and opioid receptors are expressed in many of the same neuronal pathways where they modulate gut motility, pain and reinforcement. There is increasing interest in the 5-HT3B subunit, which confers altered pharmacology to 5-HT3 receptors. We investigated the mechanisms of inhibition by morphine of 5-HT3 receptors and the influence of the 5-HT3B subunit. EXPERIMENTAL APPROACH 5-HT-evoked currents were recorded from voltage-clamped HEK293 cells expressing human 5-HT3A subunits alone or in combination with 5-HT3B subunits. The affinity of morphine for the orthosteric site of 5-HT3A or 5-HT3AB receptors was assessed using radioligand binding with the antagonist [3H]GR65630. KEY RESULTS When pre-applied, morphine potently inhibited 5-HT-evoked currents mediated by 5-HT3A receptors. The 5-HT3B subunit reduced the potency of morphine fourfold and increased the rates of inhibition and recovery. Inhibition by pre-applied morphine was insurmountable by 5-HT, was voltage-independent and occurred through a site outside the second membrane-spanning domain. When applied simultaneously with 5-HT, morphine caused a lower potency, surmountable inhibition of 5-HT3A and 5-HT3AB receptors. Morphine also fully displaced [3H]GR65630 from 5-HT3A and 5-HT3AB receptors with similar potency. CONCLUSIONS AND IMPLICATIONS These findings suggest that morphine has two sites of action, a low-affinity, competitive site and a high-affinity, non-competitive site that is not available when the channel is activated. The affinity of morphine for the latter is reduced by the 5-HT3B subunit. Our results reveal that morphine causes a high-affinity, insurmountable and subunit-dependent inhibition of human 5-HT3 receptors. PMID:21740409

  1. 5-HT2A and 5-HT2C receptors as hypothalamic targets of developmental programming in male rats.

    PubMed

    Martin-Gronert, Malgorzata S; Stocker, Claire J; Wargent, Edward T; Cripps, Roselle L; Garfield, Alastair S; Jovanovic, Zorica; D'Agostino, Giuseppe; Yeo, Giles S H; Cawthorne, Michael A; Arch, Jonathan R S; Heisler, Lora K; Ozanne, Susan E

    2016-04-01

    Although obesity is a global epidemic, the physiological mechanisms involved are not well understood. Recent advances reveal that susceptibility to obesity can be programmed by maternal and neonatal nutrition. Specifically, a maternal low-protein diet during pregnancy causes decreased intrauterine growth, rapid postnatal catch-up growth and an increased risk for diet-induced obesity. Given that the synthesis of the neurotransmitter 5-hydroxytryptamine (5-HT) is nutritionally regulated and 5-HT is a trophic factor, we hypothesised that maternal diet influences fetal 5-HT exposure, which then influences development of the central appetite network and the subsequent efficacy of 5-HT to control energy balance in later life. Consistent with our hypothesis, pregnant rats fed a low-protein diet exhibited elevated serum levels of 5-HT, which was also evident in the placenta and fetal brains at embryonic day 16.5. This increase was associated with reduced levels of 5-HT2CR, the primary 5-HT receptor influencing appetite, in the fetal, neonatal and adult hypothalamus. As expected, a reduction of 5-HT2CR was associated with impaired sensitivity to 5-HT-mediated appetite suppression in adulthood. 5-HT primarily achieves effects on appetite by 5-HT2CR stimulation of pro-opiomelanocortin (POMC) peptides within the arcuate nucleus of the hypothalamus (ARC). We show that 5-HT2ARs are also anatomically positioned to influence the activity of ARC POMC neurons and that mRNA encoding 5-HT2AR is increased in the hypothalamus ofin uterogrowth-restricted offspring that underwent rapid postnatal catch-up growth. Furthermore, these animals at 3 months of age are more sensitive to appetite suppression induced by 5-HT2AR agonists. These findings not only reveal a 5-HT-mediated mechanism underlying the programming of susceptibility to obesity, but also provide a promising means to correct it, by treatment with a 5-HT2AR agonist. PMID:26769798

  2. 5-HT2A and 5-HT2C receptors as hypothalamic targets of developmental programming in male rats

    PubMed Central

    Martin-Gronert, Malgorzata S.; Stocker, Claire J.; Wargent, Edward T.; Cripps, Roselle L.; Garfield, Alastair S.; Jovanovic, Zorica; D'Agostino, Giuseppe; Yeo, Giles S. H.; Cawthorne, Michael A.; Arch, Jonathan R. S.; Heisler, Lora K.; Ozanne, Susan E.

    2016-01-01

    ABSTRACT Although obesity is a global epidemic, the physiological mechanisms involved are not well understood. Recent advances reveal that susceptibility to obesity can be programmed by maternal and neonatal nutrition. Specifically, a maternal low-protein diet during pregnancy causes decreased intrauterine growth, rapid postnatal catch-up growth and an increased risk for diet-induced obesity. Given that the synthesis of the neurotransmitter 5-hydroxytryptamine (5-HT) is nutritionally regulated and 5-HT is a trophic factor, we hypothesised that maternal diet influences fetal 5-HT exposure, which then influences development of the central appetite network and the subsequent efficacy of 5-HT to control energy balance in later life. Consistent with our hypothesis, pregnant rats fed a low-protein diet exhibited elevated serum levels of 5-HT, which was also evident in the placenta and fetal brains at embryonic day 16.5. This increase was associated with reduced levels of 5-HT2CR, the primary 5-HT receptor influencing appetite, in the fetal, neonatal and adult hypothalamus. As expected, a reduction of 5-HT2CR was associated with impaired sensitivity to 5-HT-mediated appetite suppression in adulthood. 5-HT primarily achieves effects on appetite by 5-HT2CR stimulation of pro-opiomelanocortin (POMC) peptides within the arcuate nucleus of the hypothalamus (ARC). We show that 5-HT2ARs are also anatomically positioned to influence the activity of ARC POMC neurons and that mRNA encoding 5-HT2AR is increased in the hypothalamus of in utero growth-restricted offspring that underwent rapid postnatal catch-up growth. Furthermore, these animals at 3 months of age are more sensitive to appetite suppression induced by 5-HT2AR agonists. These findings not only reveal a 5-HT-mediated mechanism underlying the programming of susceptibility to obesity, but also provide a promising means to correct it, by treatment with a 5-HT2AR agonist. PMID:26769798

  3. Fluvoxamine alleviates seizure activity and downregulates hippocampal GAP-43 expression in pentylenetetrazole-kindled mice: role of 5-HT3 receptors.

    PubMed

    Alhaj, Momen W; Zaitone, Sawsan A; Moustafa, Yasser M

    2015-06-01

    Epilepsy has been documented to lead to many changes in the nervous system including cell loss and mossy fiber sprouting. Neuronal loss and aberrant neuroplastic changes in the dentate gyrus of the hippocampus have been identified in the pentylenetetrazole (PTZ) kindling model. Antiseizure activity of selective serotonin reuptake inhibitors has been reported in several studies. In the current study, the protective effect of fluvoxamine against PTZ-kindling was investigated in terms of seizure scores, neuronal loss, and regulation of hippocampal neuroplasticity. Further, the role of 5-HT3 receptors was determined. Kindling was induced by repeated injections of PTZ (35 mg/kg) thrice weekly, for a total of 13 injections. One hundred male albino mice were allocated into 10 groups: (1) saline, (2) PTZ, (3) diazepam (1 mg/kg)+PTZ, (4-6) fluvoxamine (5, 10 or 20 mg/kg)+PTZ, (7) ondansetron+fluvoxamine (20 mg/kg)+PTZ, (8) ondansetron+PTZ group, (9) ondansetron (2 mg/kg, i.p.)+saline, and (10) fluvoxamine (20 mg/kg)+saline. PTZ-kindled mice showed high seizure activity, hippocampal neuronal loss, and expression of growth-associated phosphoprotein (GAP-43) compared with saline-treated mice. Repeated administration of fluvoxamine (20 mg/kg) in PTZ-kindled mice suppressed seizure scores, protected against hippocampal neuronal loss, and downregulated GAP-43 expression, without producing any signs of the 5-HT syndrome in healthy rats. Importantly, pretreatment with a selective 5-HT3 receptor blocker (ondansetron) attenuated the aforementioned effects of fluvoxamine. In conclusion, the ameliorating effect of fluvoxamine on hippocampal neurons and neuroplasticity in PTZ-kindled mice was, at least in part, dependent on enhancement of hippocampal serotoninergic transmission at 5-HT3 receptors. PMID:25590967

  4. Development of a Multiplex Assay for Studying Functional Selectivity of Human Serotonin 5-HT2A Receptors and Identification of Active Compounds by High-Throughput Screening.

    PubMed

    Iglesias, Alba; Lage, Sonia; Cadavid, Maria Isabel; Loza, Maria Isabel; Brea, José

    2016-09-01

    G protein-coupled receptors (GPCRs) exist as collections of conformations in equilibrium, and the efficacy of drugs has been proposed to be associated with their absolute and relative affinities for these different conformations. The serotonin 2A (5-HT2A) receptor regulates multiple physiological functions, is involved in the pathophysiology of schizophrenia, and serves as an important target of atypical antipsychotic drugs. This receptor was one of the first GPCRs for which the functional selectivity phenomenon was observed, with its various ligands exerting differential effects on the phospholipase A2 (PLA2) and phospholipase C (PLC) signaling pathways. We aimed to develop a multiplex functional assay in 96-well plates for the simultaneous measurement of the PLA2 and PLC pathways coupled to 5-HT2A receptors; this approach enables the detection of either functional selectivity or cooperativity phenomena in early drug screening stages. The suitability of the method for running screening campaigns was tested using the Prestwick Chemical Library, and 22 confirmed hits with activities of more than 90% were identified; 11 of these hits produced statistically significant differences between the two effector pathways. Thus, we have developed a miniaturized multiplex assay in 96-well plates to measure functional selectivity for 5-HT2A receptors in the early stages of the drug discovery process. PMID:27095818

  5. Rat exposure in mice with neuropathic pain induces fear and antinociception that is not reversed by 5-HT2C receptor activation in the dorsal periaqueductal gray.

    PubMed

    Furuya-da-Cunha, Elke Mayumi; Souza, Rimenez Rodrigues de; Canto-de-Souza, Azair

    2016-07-01

    Previous studies have demonstrated that serotonin 5-HT2C receptors in the dorsal periaqueductal gray (dPAG) mediate both anxiety and antinociception in mice submitted to the elevated plus maze. The present study examined the effects of intra-dPAG infusion of the serotonin 5-HT2C receptor agonist (MK-212) in the defensive reactions and antinociception in mice with neurophatic pain confronted by a predator. Neuropathic pain was induced by chronic constriction injury (CCI) of the sciatic nerve, and predator confrontation was performed using the rat exposure test (RET). Our results demonstrated that both sham-operated and CCI mice exhibited intense defensive reactions when confronted by rats. However, rat-exposed CCI mice showed reduced pain reactivity in comparison to CCI mice exposed to a toy rat. Intra-dPAG infusion of MK-212 prior to predator exposure did not significantly alter defensive or antinociceptive responses. To our knowledge, our results represent the first evidence of RET-induced antinociception in mice. Moreover, the results of the present study suggest that 5-HT2C receptor activation in the dPAG is not critically involved in the control of predator-evoked fearful or antinociceptive responses. PMID:27059332

  6. L-type calcium channels contribute to 5-HT3-receptor-evoked CaMKIIα and ERK activation and induction of emesis in the least shrew (Cryptotis parva).

    PubMed

    Hutchinson, Tarun E; Zhong, Weixia; Chebolu, Seetha; Wilson, Sean M; Darmani, Nissar A

    2015-05-15

    Activation of serotonergic 5-HT3 receptors by its selective agonist 2-methyl serotonin (2-Me-5-HT) induces vomiting, which is sensitive to selective antagonists of both 5-HT3 receptors (palonosetron) and L-type calcium channels (LTCC) (amlodipine or nifedipine). Previously we demonstrated that 5-HT3 receptor activation also causes increases in a palonosetron-sensitive manner in: i) intracellular Ca(2+) concentration, ii) attachment of calmodulin (CaM) to 5-HT3 receptor, and iii) phosphorylation of Ca(2+)/calmodulin-dependent protein kinase IIα (CaMKIIα) and extracellular-signal-regulated kinase 1/2 (ERK1/2). Here, we investigate the role of the short-acting LTCC blocker nifedipine on 2-Me-5-HT-evoked intracellular Ca(2+) increase and on downstream intracellular emetic signaling, which have been shown to be coupled with 2-Me-5-HT׳s emetic effects in the least shrew. Using the cell-permeant Ca(2+) indicator fluo-4 AM, here we present evidence for the contribution of Ca(2+) influx through LTCCs (sensitive to nifedipine) in 2-Me-5-HT (1µM) -evoked rise in cytosolic Ca(2+) levels in least shrew brainstem slices. Nifedipine pretreatment (10mg/kg, s.c.) also suppressed 2-Me-5-HT-evoked interaction of 5-HT3 receptors with CaM as well as phosphorylation of CaMKIIα and ERK1/2 in the least shrew brainstem, and 5-HT3 receptors -CaM colocalization in jejunum of the small intestine. In vitro exposure of isolated enterochromaffin cells of the small intestine to 2-Me-5-HT (1µM) caused CaMKIIα phosphorylation, which was also abrogated by nifedipine pretreatment (0.1µM). In addition, pretreatment with the CaMKII inhibitor KN62 (10mg/kg, i.p.) suppressed emesis and also the activation of CaMKIIα, and ERK in brainstem caused by 2-Me-5-HT (5mg/kg, i.p.). This study provides further mechanistic explanation for our published findings that nifedipine can dose-dependently protect shrews from 2-Me-5-HT-induced vomiting. PMID:25748600

  7. L-tetrahydropalmatine inhibits methamphetamine-induced locomotor activity via regulation of 5-HT neuronal activity and dopamine D3 receptor expression.

    PubMed

    Yun, Jaesuk

    2014-09-25

    Methamphetamine (METH) is a psychomotor stimulant that produces hyperlocomotion in rodents. l-tetrahydropalmatine (l-THP) is an active ingredient found in Corydalis ternata which has been used as a traditional herbal preparation in Asian countries for centuries, however, the effect of l-THP on METH-induced phenotypes largely unknown. In this study, to evaluate the effect of l-THP on METH-induced psychotropic effects, rats were pretreated with l-THP (10 and 15 mg/kg) before acute METH injection, following which the total distance the rats moved in an hour was measured. To clarify a possible mechanism underlying the effect of l-THP on METH-induced behavioral changes, dopamine receptor mRNA expression levels in the striatum of the rats was measured following the locomotor activity study. In addition, the effect of l-THP (10 and 15 mg/kg) on serotonergic (5-HTergic) neuronal pathway activation was studied by measurement of 5-HT (80 μg/10μl/mouse)-induced head twitch response (HTR) in mice. l-THP administration significantly inhibited both hyperlocomotion in rats and HTR in mice. l-THP inhibited climbing behavior-induced by dopaminergic (DAergic) neuronal activation in mice. Furthermore, l-THP attenuated the decrease in dopamine D3 receptor mRNA expression levels in the striatum of the rats induced by METH. These results suggest that l-THP can ameliorate behavioral phenotype induced by METH through regulation of 5-HT neuronal activity and dopamine D3 receptor expression. PMID:25172791

  8. Antidepressant-like activity of EMD 386088, a 5-HT6 receptor partial agonist, following systemic acute and chronic administration to rats.

    PubMed

    Jastrzębska-Więsek, Magdalena; Siwek, Agata; Partyka, Anna; Szewczyk, Bernadeta; Sowa-Kućma, Magdalena; Wasik, Anna; Kołaczkowski, Marcin; Wesołowska, Anna

    2015-10-01

    The study was designed to examine the potency of EMD 386088, a 5-HT6 receptor partial agonist, to exert antidepressant-like properties in animal models following acute and chronic intraperitoneal administration to rats. The modified rat forced swim test (FST) was utilized to examine a potential antidepressant effect of EMD 386088 after acute treatment (30 min before the test) and three times in a 24-h administration scheme (24 h, 5 h, and 30 min prior to the FST). The olfactory bulbectomy (OB) model was used to assess its antidepressant-like properties after chronic treatment (the drug was administered once daily for 14 days). EMD 386088 showed an antidepressant-like effect in all conducted tests. Its activity in FST after its acute administration (5 mg/kg) was blocked by the selective 5-HT6 receptor antagonist SB 271046. The obtained results seem to be specific, as there was no observed locomotor stimulation by the drug given at a lower/antidepressant dose. In the three times in the 24-h treatment scheme, EMD 386088 (2.5 mg/kg) exerted antidepressant properties in FST as well as increased locomotor activity in the open field test. Chronic administration of EMD 386088 (2.5 mg/kg) significantly improved the learning deficit in OB rats without affecting performance in Sham-operated (SH) animals in the passive avoidance test, and reduced OB-related rats' locomotor hyperactivity, but did not change the number of rearing + peeping episodes. The obtained findings suggest that EMD 386088 produces antidepressant-like activity after systemic acute and chronic administration which may result from direct stimulation of 5-HT6 receptors. PMID:26077660

  9. Cannabidiolic acid prevents vomiting in Suncus murinus and nausea-induced behaviour in rats by enhancing 5-HT1A receptor activation

    PubMed Central

    Bolognini, D; Rock, EM; Cluny, NL; Cascio, MG; Limebeer, CL; Duncan, M; Stott, CG; Javid, FA; Parker, LA; Pertwee, RG

    2013-01-01

    Background and Purpose To evaluate the ability of cannabidiolic acid (CBDA) to reduce nausea and vomiting and enhance 5-HT1A receptor activation in animal models. Experimental Approach We investigated the effect of CBDA on (i) lithium chloride (LiCl)-induced conditioned gaping to a flavour (nausea-induced behaviour) or a context (model of anticipatory nausea) in rats; (ii) saccharin palatability in rats; (iii) motion-, LiCl- or cisplatin-induced vomiting in house musk shrews (Suncus murinus); and (iv) rat brainstem 5-HT1A receptor activation by 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) and mouse whole brain CB1 receptor activation by CP55940, using [35S]GTPγS-binding assays. Key Results In shrews, CBDA (0.1 and/or 0.5 mg·kg−1 i.p.) reduced toxin- and motion-induced vomiting, and increased the onset latency of the first motion-induced emetic episode. In rats, CBDA (0.01 and 0.1 mg·kg−1 i.p.) suppressed LiCl- and context-induced conditioned gaping, effects that were blocked by the 5-HT1A receptor antagonist, WAY100635 (0.1 mg·kg−1 i.p.), and, at 0.01 mg·kg−1 i.p., enhanced saccharin palatability. CBDA-induced suppression of LiCl-induced conditioned gaping was unaffected by the CB1 receptor antagonist, SR141716A (1 mg·kg−1 i.p.). In vitro, CBDA (0.1–100 nM) increased the Emax of 8-OH-DPAT. Conclusions and Implications Compared with cannabidiol, CBDA displays significantly greater potency at inhibiting vomiting in shrews and nausea in rats, and at enhancing 5-HT1A receptor activation, an action that accounts for its ability to attenuate conditioned gaping in rats. Consequently, CBDA shows promise as a treatment for nausea and vomiting, including anticipatory nausea for which no specific therapy is currently available. PMID:23121618

  10. Regulator of G-protein signaling 6 (RGS6) promotes anxiety and depression by attenuating serotonin-mediated activation of the 5-HT(1A) receptor-adenylyl cyclase axis.

    PubMed

    Stewart, Adele; Maity, Biswanath; Wunsch, Amanda M; Meng, Fantao; Wu, Qi; Wemmie, John A; Fisher, Rory A

    2014-04-01

    Targeting serotonin (5-HT) bioavailability with selective 5-HT reuptake inhibitors (SSRIs) remains the most widely used treatment for mood disorders. However, their limited efficacy, delayed onset of action, and side effects restrict their clinical utility. Endogenous regulator of G-protein signaling (RGS) proteins have been implicated as key inhibitors of 5-HT(1A)Rs, whose activation is believed to underlie the beneficial effects of SSRIs, but the identity of the specific RGS proteins involved remains unknown. We identify RGS6 as the critical negative regulator of 5-HT(1A)R-dependent antidepressant actions. RGS6 is enriched in hippocampal and cortical neurons, 5-HT(1A)R-expressing cells implicated in mood disorders. RGS6(-/-) mice exhibit spontaneous anxiolytic and antidepressant behavior rapidly and completely reversibly by 5-HT(1A)R blockade. Effects of the SSRI fluvoxamine and 5-HT(1A)R agonist 8-OH-DPAT were also potentiated in RGS6(+/-) mice. The phenotype of RGS6(-/-) mice was associated with decreased CREB phosphorylation in the hippocampus and cortex, implicating enhanced Gα(i)-dependent adenylyl cyclase inhibition as a possible causative factor in the behavior observed in RGS6(-/-) animals. Our results demonstrate that by inhibiting serotonergic innervation of the cortical-limbic neuronal circuit, RGS6 exerts powerful anxiogenic and prodepressant actions. These findings indicate that RGS6 inhibition may represent a viable means to treat mood disorders or enhance the efficacy of serotonergic agents. PMID:24421401

  11. Circadian variation in the activity of the 5-HT1B autoreceptor in the region of the suprachiasmatic nucleus, measured by microdialysis in the conscious freely-moving rat

    PubMed Central

    Garabette, M L; Martin, K F; Redfern, P H

    2000-01-01

    Intracerebral microdialysis was used to examine the function of the terminal 5-hydroxytryptamine1B (5-HT1B) autoreceptor in the region of the suprachiasmatic nuclei (SCN) of freely moving conscious rats at six time points or zeitgeber times (ZTs) across the light:dark cycle. Infusion of the 5-HT1A/1B agonist 5-methoxy-3-(1,2,3,6-tetrahydro-4-pyridyl)-1H-indole (RU24969) (1 μM) via the microdialysis probe produced a decrease in 5-HT output when applied at ZTs 3, 6, 15 and 21 (69.8±11.9, 59±11.7, 43.9±17.2 and 45.7±17.0% respectively). At ZTs 9 and 18 RU24969 (1 μm) failed to affect the 5-HT output significantly (28.0±11 and 32.8±24.6% decrease respectively). The profile of inhibition of 5-HT output following infusion of RU24969 (1 μM) at ZT 6 was unaffected by concurrent infusion of the specific 5-HT1A antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexanecarboxamide trihydrochloride (WAY100635) (1 μM) (52.48±17.5% decrease). The data demonstrate a circadian rhythm in the activity of the 5-HT1B autoreceptor in the region of the SCN. PMID:11139433

  12. Spinal neuronal activation during locomotor-like activity enabled by epidural stimulation and 5-HT agonists in spinal rats

    PubMed Central

    Duru, Paul O.; Tillakaratne, Niranjala J.K.; Kim, Jung A.; Zhong, Hui; Stauber, Stacey M.; Pham, Trinh T.; Xiao, Mei S.; Edgerton, V. Reggie; Roy, Roland R.

    2015-01-01

    The neural networks that generate stepping in complete spinal adult rats remain poorly defined. To address this problem we used c-fos (an activity-dependent marker) to identify active interneurons and motoneurons in the lumbar spinal cord of adult spinal rats during a 30-minute bout of bipedal stepping. Spinal rats were either step trained (30 min/day, 3 days/week for 7.5 weeks) or not step-trained. Stepping was enabled by epidural stimulation and the administration of the serotonergic agonists quipazine and 8-OHDPAT. A third group of spinal rats served as untreated (no stimulation, drugs, or stepping) controls. The number of activated cholinergic central canal cluster cells and partition neurons was higher in both step-trained and non-trained than untreated rats, and higher in non-trained than step-trained rats. The latter finding suggests that daily treatment with epidural stimulation plus serotonergic agonist treatment without step training enhanced the excitability of a broader cholinergic interneuronal population than step training. The number of activated interneurons in laminae II-VI of lumbar cross sections was higher in both step-trained and non-trained than untreated rats, and highest in step-trained rats. This finding suggests that this population of interneurons was responsive to epidural stimulation plus serotonergic treatment and that load-bearing induced when stepping had an additive effect. The number of activated motoneurons of all size categories was higher in the step-trained than the other two groups, reflecting a strong effect of loading on motoneuron recruitment. In general, these results indicate that the spinal networks for locomotion are similar with and without brain input. PMID:25789848

  13. Activation of 5-HT1A receptors in the preBötzinger region has little impact on the respiratory pattern.

    PubMed

    Radocaj, Tomislav; Mustapic, Sanda; Prkic, Ivana; Stucke, Astrid G; Hopp, Francis A; Stuth, Eckehard A E; Zuperku, Edward J

    2015-07-01

    The preBötzinger (preBötC) complex has been suggested as the primary site where systemically administered selective serotonin agonists have been shown to reduce or prevent opioid-induced depression of breathing. However, this hypothesis has not been tested pharmacologically in vivo. This study sought to determine whether 5-HT1A receptors within the preBötC and ventral respiratory column (VRC) mediate the tachypneic response induced by intravenous (IV) (±)-8-Hydroxy-2-diproplyaminotetralin hydrobromide (8-OH-DPAT) in a decerebrated dog model. IV 8-OH-DPAT (19 ± 2 μg/kg) reduced both inspiratory (I) and expiratory (E) durations by ∼ 40%, but had no effect on peak phrenic activity (PPA). Picoejection of 1, 10, and 100 μM 8-OH-DPAT on I and E preBötC neurons produced dose-dependent decreases up to ∼ 40% in peak discharge. Surprisingly, microinjections of 8-OH-DPAT and 5-HT within the VRC from the obex to 9 mm rostral had no effect on timing and PPA. These results suggest that the tachypneic effects of IV 8-OH-DPAT are due to receptors located outside of the areas we studied. PMID:25850079

  14. Examination of the hippocampal contribution to serotonin 5-HT2A receptor-mediated facilitation of object memory in C57BL/6J mice.

    PubMed

    Zhang, Gongliang; Cinalli, David; Cohen, Sarah J; Knapp, Kristina D; Rios, Lisa M; Martínez-Hernández, José; Luján, Rafael; Stackman, Robert W

    2016-10-01

    The rodent hippocampus supports non-spatial object memory. Serotonin 5-HT2A receptors (5-HT2AR) are widely expressed throughout the hippocampus. We previously demonstrated that the activation of 5-HT2ARs enhanced the strength of object memory assessed 24 h after a limited (i.e., weak memory) training procedure. Here, we examined the subcellular distribution of 5-HT2ARs in the hippocampal CA1 region and underlying mechanisms of 5-HT2AR-mediated object memory consolidation. Analyses with immuno-electron microscopy revealed the presence of 5-HT2ARs on the dendritic spines and shafts of hippocampal CA1 neurons, and presynaptic terminals in the CA1 region. In an object recognition memory procedure that places higher demand on the hippocampus, only post-training systemic or intrahippocampal administration of the 5-HT2AR agonist TCB-2 enhanced object memory. Object memory enhancement by TCB-2 was blocked by the 5-HT2AR antagonist, MDL 11,937. The memory-enhancing dose of systemic TCB-2 increased extracellular glutamate levels in hippocampal dialysate samples, and increased the mean in vivo firing rate of hippocampal CA1 neurons. In summary, these data indicate a pre- and post-synaptic distribution of 5-HT2ARs, and activation of 5-HT2ARs selectively enhanced the consolidation of object memory, without affecting encoding or retrieval. The 5-HT2AR-mediated facilitation of hippocampal memory may be associated with an increase in hippocampal neuronal firing and glutamate efflux during a post-training time window in which recently encoded memories undergo consolidation. PMID:27114257

  15. Functional effects of the muscarinic receptor agonist, xanomeline, at 5-HT1 and 5-HT2 receptors

    PubMed Central

    Watson, J; Brough, S; Coldwell, M C; Gager, T; Ho, M; Hunter, A J; Jerman, J; Middlemiss, D N; Riley, G J; Brown, A M

    1998-01-01

    Xanomeline [3(3-hexyloxy-1,2,5-thiadiazol-4-yl)-1,2,5,6-tetrahydro-1-methylpyridine] has been reported to act as a functionally selective muscarinic partial agonist with potential use in the treatment of Alzheimer's disease. This study examined the functional activity of xanomeline at 5-HT1 and 5-HT2 receptors in native tissue and/or human cloned receptors.Xanomeline had affinity for muscarinic receptors in rat cortical membranes where the ratio of the displacement affinity of [3H]-Quinuclidinyl benzilate vs that of [3H]-Oxotremorine-M was 16, indicative of partial agonist activity. Radioligand binding studies on human cloned receptors confirmed that xanomeline had substantial affinity for M1, M2, M3, M4, M5 receptors and also for 5-HT1 and 5-HT2 receptor subtypes.Carbachol and xanomeline stimulated basal [35S]-GTPγS binding in rat cortical membranes with micromolar affinity. The response to carbachol was attenuated by himbacine and pirenzepine with pA2 of 8.2, 6.9 respectively consistent with the response being mediated, predominantly, via M2 and M4 receptors. Xanomeline-induced stimulation of [35S]-GTPγS binding was inhibited by himbacine with an apparent pKb of 6.3, was not attenuated by pirenzepine up to 3 μM and was inhibited by the selective 5-HT1A antagonist WAY100635 with an apparent pKb of 9.4. These data suggest the agonist effect of xanomeline in this tissue is, in part, via 5-HT1A receptors. Similar studies on human cloned receptors confirmed that xanomeline is an agonist at human cloned 5-HT1A and 5-HT1B receptors.In studies using the fluorescent cytoplasmic Ca2+ indicator FLUO-3AM, xanomeline induced an increase in cytoplasmic Ca2+ concentration in SH-SY5Y cells expressing recombinant human 5-HT2C receptors. Atropine antagonized this response, consistent with mediation via endogenously-expressed muscarinic receptors. In the presence of atropine, xanomeline antagonized 5-HT-induced cytoplasmic changes in Ca2+ concentration in cells expressing h5

  16. Pharmacological Characterization of 5-HT1A Autoreceptor-Coupled GIRK Channels in Rat Dorsal Raphe 5-HT Neurons

    PubMed Central

    Montalbano, Alberto; Corradetti, Renato; Mlinar, Boris

    2015-01-01

    G protein-activated inwardly rectifying potassium (GIRK) channels in 5-HT neurons are assumed to be principal effectors of 5-hydroxytryptamine 1A (5-HT1A) autoreceptors, but their pharmacology, subunit composition and the role in regulation of 5-HT neuron activity have not been fully elucidated. We sought for a pharmacological tool for assessing the functional role of GIRK channels in 5-HT neurons by characterizing the effects of drugs known to block GIRK channels in the submicromolar range of concentrations. Whole-cell voltage-clamp recording in brainstem slices were used to determine concentration-response relationships for the selected GIRK channel blockers on 5-HT1A autoreceptor-activated inwardly rectifying K+ conductance in rat dorsal raphe 5-HT neurons. 5-HT1A autoreceptor-activated GIRK conductance was completely blocked by the nonselective inwardly rectifying potassium channels blocker Ba2+ (EC50 = 9.4 μM, full block with 100 μM) and by SCH23390 (EC50 = 1.95 μM, full block with 30 μM). GIRK-specific blocker tertiapin-Q blocked 5-HT1A autoreceptor-activated GIRK conductance with high potency (EC50 = 33.6 nM), but incompletely, i.e. ~16% of total conductance resulted to be tertiapin-Q-resistant. U73343 and SCH28080, reported to block GIRK channels with submicromolar EC50s, were essentially ineffective in 5-HT neurons. Our data show that inwardly rectifying K+ channels coupled to 5-HT1A autoreceptors display pharmacological properties generally expected for neuronal GIRK channels, but different from GIRK1-GIRK2 heteromers, the predominant form of brain GIRK channels. Distinct pharmacological properties of GIRK channels in 5-HT neurons should be explored for the development of new therapeutic agents for mood disorders. PMID:26460748

  17. Vortioxetine, but not escitalopram or duloxetine, reverses memory impairment induced by central 5-HT depletion in rats: evidence for direct 5-HT receptor modulation.

    PubMed

    Jensen, Jesper Bornø; du Jardin, Kristian Gaarn; Song, Dekun; Budac, David; Smagin, Gennady; Sanchez, Connie; Pehrson, Alan Lars

    2014-01-01

    Depressed patients suffer from cognitive dysfunction, including memory deficits. Acute serotonin (5-HT) depletion impairs memory and mood in vulnerable patients. The investigational multimodal acting antidepressant vortioxetine is a 5-HT3, 5-HT7 and 5-HT1D receptor antagonist, 5-HT1B receptor partial agonist, 5-HT1A receptor agonist and 5-HT transporter (SERT) inhibitor that enhances memory in normal rats in novel object recognition (NOR) and conditioned fear (Mørk et al., 2013). We hypothesized that vortioxetine's 5-HT receptor mechanisms are involved in its memory effects, and therefore investigated these effects in 5-HT depleted rats. Four injections of the irreversible tryptophan hydroxylase inhibitor 4-chloro-dl-phenylalanine methyl ester hydrochloride (PCPA, 86mg/kg, s.c.) induced 5-HT depletion, as measured in hippocampal homogenate and microdialysate. The effects of acute challenge with vortioxetine or the 5-HT releaser fenfluramine on extracellular 5-HT were measured in PCPA-treated and control rats. PCPA's effects on NOR and spontaneous alternation (SA) performance were assessed along with the effects of acute treatment with 5-hydroxy-l-tryptophan (5-HTP), vortioxetine, the selective 5-HT reuptake inhibitor escitalopram, or the 5-HT norepinephrine reuptake inhibitor duloxetine. SERT occupancies were estimated by ex vivo autoradiography. PCPA depleted central 5-HT by >90% in tissue and microdialysate, and impaired NOR and SA performance. Restoring central 5-HT with 5-HTP reversed these deficits. At similar SERT occupancies (>90%) vortioxetine, but not escitalopram or duloxetine, restored memory performance. Acute fenfluramine significantly increased extracellular 5-HT in control and PCPA-treated rats, while vortioxetine did so only in control rats. Thus, vortioxetine restores 5-HT depletion impaired memory performance in rats through one or more of its receptor activities. PMID:24284262

  18. Agonist properties of N,N-dimethyltryptamine at serotonin 5-HT2A and 5-HT2C receptors.

    PubMed

    Smith, R L; Canton, H; Barrett, R J; Sanders-Bush, E

    1998-11-01

    Extensive behavioral and biochemical evidence suggests an agonist role at the 5-HT2A receptor, and perhaps the 5-HT2C receptor, in the mechanism of action of hallucinogenic drugs. However the published in vitro pharmacological properties of N,N-dimethyltryptamine (DMT), an hallucinogenic tryptamine analog, are not consistent with this hypothesis. We, therefore, undertook an extensive investigation into the properties of DMT at 5-HT2A and 5-HT2C receptors. In fibroblasts transfected with the 5-HT2A receptor or the 5-HT2C receptor, DMT activated the major intracellular signaling pathway (phosphoinositide hydrolysis) to an extent comparable to that produced by serotonin. Because drug efficacy changes with receptor density and cellular microenvironment, we also examined the properties of DMT in native preparations using a behavioral and biochemical approach. Rats were trained to discriminate an antagonist ketanserin from an agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) in a two-lever choice paradigm. Pharmacological studies showed that responding on the DOI and ketanserin lever reflected agonist and antagonist activity at 5-HT2A receptors, and hence, was a suitable model for evaluating the in vivo functional properties of DMT. Like other 5-HT2A receptor agonists, DMT substituted fully for DOI. Intact choroid plexus was used to evaluate the agonist properties at endogenous 5-HT2C receptors; DMT was a partial agonist at 5-HT2C receptors in this native preparation. Thus, we conclude that DMT behaves as an agonist at both 5-HT2A and 5-HT2A receptors. One difference was evident in that the 5-HT2C, but not the 5-HT2A, receptor showed a profound desensitization to DMT over time. This difference is interesting in light of the recent report that the hallucinogenic activity of DMT does not tolerate in humans and suggests the 5-HT2C receptor plays a less prominent role in the action of DMT. PMID:9768567

  19. The peptidic antidepressant spadin interacts with prefrontal 5-HT(4) and mGluR(2) receptors in the control of serotonergic function.

    PubMed

    Moha ou Maati, Hamid; Bourcier-Lucas, Céline; Veyssiere, Julie; Kanzari, Ameni; Heurteaux, Catherine; Borsotto, Marc; Haddjeri, Nasser; Lucas, Guillaume

    2016-01-01

    This study investigates the mechanism of action of spadin, a putative fast-acting peptidic antidepressant (AD) and a functional blocker of the K(+) TREK-1 channel, in relation with the medial prefrontal cortex (mPFC)-dorsal raphé (DRN) serotonergic (5-HT) neurons connectivity. Spadin increased 5-HT neuron firing rate by 113%, an augmentation abolished after electrolytic lesion of the mPFC. Among the few receptor subtypes known to modulate TREK-1, the stimulation of 5-HT4 receptors and the blockade of mGluR2/3 ones both activated 5-HT impulse flow, effects also suppressed by mPFC lesion. The combination of spadin with the 5-HT4 agonist RS 67333 paradoxically reduced 5-HT firing, an effect reversed by acutely administering the 5-HT1A agonist flesinoxan. It also had a robust synergetic effect on the expression of Zif268 within the DRN. Together, these results strongly suggest that 5-HT neurons underwent a state of depolarization block, and that the mechanisms underlying the influences exerted by spadin and RS 67333 are additive and independent from each other. In contrast, the mGluR2/3 antagonist LY 341495 occluded the effect of spadin, showing that it likely depends on mPFC TREK-1 channels coupled to mGluR2/3 receptors. These in vivo electrophysiological data were confirmed by in vitro Ca(2+) cell imaging performed in cultured cortical neurons. Altogether, our results indicate that spadin, as a natural compound, constitutes a very good candidate to explore the "glutamatergic path" of fast-acting AD research. In addition, they provide the first evidence of 5-HT depolarization block, showing that the combination of 5-HT activators for strategies of AD augmentation should be performed with extreme caution. PMID:25233810

  20. Structure-affinity/activity relationships of 1,4-dioxa-spiro[4.5]decane based ligands at α1 and 5-HT1A receptors.

    PubMed

    Franchini, Silvia; Battisti, Umberto M; Baraldi, Annamaria; Prandi, Adolfo; Fossa, Paola; Cichero, Elena; Tait, Annalisa; Sorbi, Claudia; Marucci, Gabriella; Cilia, Antonio; Pirona, Lorenza; Brasili, Livio

    2014-11-24

    Recently, 1-(1,4-dioxaspiro[4,5]dec-2-ylmethyl)-4-(2-methoxyphenyl)piperazine (1) was reported as a highly selective and potent 5-HT1AR ligand. In the present work we adopted an in-parallel synthetic strategy to rapidly explore a new set of arylpiperazine (7-32) that is structurally related to 1. The compounds were tested for binding affinity and functional activity at 5-HT1AR and α1-adrenoceptor subtypes and SAR studies were drawn. In particular, compounds 9, 27 and 30 emerged as promising α1 receptor antagonists, while compound 10 behaves as the most potent and efficacious 5-HT1AR agonist. All the compounds were docked into the 5HT1AR theoretical model and the results were in agreement with the biological experimental data. These findings may represent a new starting point for developing more selective α1 or 5-HT1AR ligands. PMID:25261823

  1. The 5-HT4 receptor: molecular cloning and pharmacological characterization of two splice variants.

    PubMed Central

    Gerald, C; Adham, N; Kao, H T; Olsen, M A; Laz, T M; Schechter, L E; Bard, J A; Vaysse, P J; Hartig, P R; Branchek, T A

    1995-01-01

    Molecular cloning efforts have provided primary amino acid sequence and signal transduction data for a large collection of serotonin receptor subtypes. These include five 5-HT1-like receptors, three 5-HT2 receptors, one 5-HT3 receptor, two 5-HT5 receptors, one 5-HT6 receptor and one 5-HT7 receptor. Molecular biological information on the 5-HT4 receptor is notably absent from this list. We now report the cloning of the pharmacologically defined 5-HT4 receptor. Using degenerate oligonucleotide primers, we identified a rat brain PCR fragment which encoded a '5-HT receptor-like' amino acid sequence. The corresponding full length cDNA was isolated from a rat brain cDNA library. Transiently expressed in COS-7 cells, this receptor stimulates adenylyl cyclase activity and is sensitive to the benzamide derivative cisapride. The response is also blocked by ICS-205930. Interestingly, we isolated two splice variants of the receptor, 5-HT4L and 5-HT4S, differing in the length and sequence of their C-termini. In rat brain, the 5-HT4S transcripts are restricted to the striatum, but the 5-HT4L transcripts are expressed throughout the brain, except in the cerebellum where it was barely detectable. In peripheral tissues, differential expression was also observed in the atrium of the heart where only the 5-HT4S isoform was detectable. Images PMID:7796807

  2. Long-term Stress with Hyperglucocorticoidemia-induced Hepatic Steatosis with VLDL Overproduction Is Dependent on both 5-HT2 Receptor and 5-HT Synthesis in Liver

    PubMed Central

    Fu, Jihua; Ma, Shaoxin; Li, Xin; An, Shanshan; Li, Tao; Guo, Keke; Lin, Min; Qu, Wei; Wang, Shanshan; Dong, Xinyue; Han, Xiaoyu; Fu, Ting; Huang, Xinping; Wang, Tianying; He, Siyu

    2016-01-01

    Hepatic triglycerides production and adipose lipolysis are pivotal for long-term stress (LTS) or hyperglucocorticoidemia-induced insulin resistance. 5-hydroxytryptamine (5-HT) has been demonstrated to induce hepatic lipid metabolic abnormality by activating mammalian target of rapamycin (mTOR). In present study, we explored whether 5-HT is involved in LTS effects in liver using restraint stress-exposed rats and cultured primary rat hepatocytes and HepG2 cells. LTS with hyperglucocorticoidemia induced hepatic 5-HT synthetic increase with tryptophan hydroxylase 1 (Tph1) up-regulation, and 5-HT2 receptor (5-HT2R, including 5-HT2A, 2B receptor) up-regulation in liver and visceral adipose, as well as hepatic mTOR activation with triglycerides and VLDL overproduction with steatosis, and visceral adipose lipolytic increase with high blood free fatty acids (FFAs) level. 5-HT exposure exhibited LTS-like effects in both tissues, and both LTS and 5-HT effects could be abolished significantly by blocking 5-HT2R. In HepG2 cells dexamethasone or palmitate-induced mTOR activation with triglycerides and VLDL overproduction were accompanied by up-regulations of 5-HT synthesis and 5-HT2R, which were significantly abolished by gene silencing Tph1 or 5-HT2R and were almost fully abolished by co-silencing of both, especially on VLDL overproduction. Chemical inhibition of Tph1 or/and 5-HT2R in both hepatocytes exhibited similar abolishment with genetic inhibition on dexamethason-induced effects. 5-HT-stimulated effects in both hepatocytes were fully abolished by blocking 5-HT2R, while 5-HT itself also up-regulated 5-HT2R. In conclusion, up-regulated hepatic 5-HT synthesis and 5-HT2R induced by both glucocorticoid and FFAs are crucial for LTS-induced hepatic steatosis with VLDL overproduction, while 5-HT by acting on 5-HT2R mediates mTOR activation in liver. PMID:26884719

  3. The action of SDZ 205,557 at 5-hydroxytryptamine (5-HT3 and 5-HT4) receptors.

    PubMed Central

    Eglen, R. M.; Alvarez, R.; Johnson, L. G.; Leung, E.; Wong, E. H.

    1993-01-01

    1. The interaction of the novel antagonist, SDZ 205,557 (2-methoxy-4-amino-5-chloro benzoic acid 2-(diethylamino) ethyl ester), at 5-HT3 and 5-HT4 receptors has been assessed in vitro and in vivo. 2. In guinea-pig hippocampus and in the presence of 0.4 microM 5-carboxamidotryptamine, 5-HT4-mediated stimulation of adenylyl cyclase was competitively antagonized by SDZ 205,557, with a pA2 value of 7.5, and a Schild slope of 0.81. In rat carbachol-contracted oesophagus, 5-HT4-receptor mediated relaxations were surmountably antagonized by SDZ 205,557 with a similar pA2 value (7.3). This value was agonist-independent with the exception of (R)-zacopride, against which a significantly lower value (6.4) was observed. 3. In functional studies of 5-HT3 receptors, SDZ 205,557 exhibited an affinity of 6.2 in guinea-pig ileum compared with 6.9 at binding sites labelled by [3H]-quipazine in NG108-15 cells. In the anaesthetized, vagotomized micropig, SDZ 205,557 produced only a transient blockade of 5-HT4-mediated tachycardia. This contrasted with tropisetron, which was active for over 60 min after administration. The half-lives for the inhibitory responses of SDZ 205,557 and tropisetron were 23 and 116 min, respectively. 4. In conclusion, SDZ 205,557 has similar affinity for 5-HT3 and 5-HT4 receptors. The apparent selectivity observed in guinea-pig is due to the atypical nature of the 5-HT3 receptor in this species. The short duration of action of this novel antagonist may complicate its use in vivo. SDZ 205,557 should, therefore, be used with appropriate caution in studies defining the 5-HT4 receptor. PMID:8448587

  4. Functional characterization of 5-HT1D autoreceptors on the modulation of 5-HT release in guinea-pig mesencephalic raphe, hippocampus and frontal cortex.

    PubMed Central

    el Mansari, M.; Blier, P.

    1996-01-01

    1. The aims of the present study were (i) to characterize further the pharmacology of 5-HT1D autoreceptors modulating 5-HT release in guinea-pig mesencephalic raphe, hippocampus and frontal cortex; (ii) to determine whether 5-HT1D receptors in the mesencephalic raphe are located on 5-HT neurones; (iii) to determine whether 5-HT1D autoreceptors are coupled to G proteins; and (iv) to assess their sensitivity following long-term 5-HT reuptake blockade and inhibition of type-A monoamine oxidase. 2. In mesencephalic raphe, hippocampus and frontal cortex slices, the 5-HT1D/1B receptor agonist, sumatriptan and the 5-HT1 receptor agonist, 5-methoxytryptamine (5-MeOT) but not the 5-HT1B receptor agonist, CP93129, inhibited electrically the evoked release of [3H]-5-HT in a concentration-dependent manner. This effect was antagonized by the 5-HT1D/1B receptor antagonist GR127935 in the three structures, but not by the 5-HT1A receptor antagonist, (+)-WAY100635 in mesencephalic raphe slices. These results confirm the presence of functional 5-HT1D autoreceptors controlling 5-HT release within the mesencephalic raphe as well as in terminal regions. 3. The inhibitory effect of sumatriptan on K(+)-evoked release of [3H]-5-HT was not reduced by the addition of the Na+ channel blocker, tetrodotoxin to the superfusion medium, suggesting that these 5-HT1D receptors in the mesencephalic raphe are located on 5-HT neurones and may be considered autoreceptors. 4. The in vitro treatment with the alkylating agent N-ethylmaleimide (NEM) was used to determine whether these 5-HT1D autoreceptors are coupled to G proteins. The inhibitory effect of sumatriptan on electrically evoked release of [3H]-5-HT was attenuated in NEM-pretreated slices from mesencephalic raphe, hippocampus and frontal cortex, indicating that the 5-HT1D autoreceptors activated by sumatriptan are coupled to G proteins in these three structures. Taken together with our previous results, this suggests that, in addition to the 5

  5. Conjunctive effects of the 5HT(2) receptor antagonist, sarpogrelate, on thrombolysis with modified tissue plasminogen activator in different laser-induced thrombosis models.

    PubMed

    Yamashita, T; Kitamori, K; Hashimoto, M; Watanabe, S; Giddings, J C; Yamamoto, J

    2000-01-01

    The effect of the serotonin (5HT(2)) receptor antagonist, sarpogrelate, was compared with that of the selective thrombin inhibitor, argatroban, in modified tissue plasminogen activator (mt-PA)-induced thrombolysis using two laser-induced thrombosis models reflecting different levels of vascular endothelial cell damage. Bolus intravenous infusions of mt-PA (0.1, 0.2, 0.4 mg/kg) induced thrombolysis in a dose-dependent manner. Sarpogrelate (4.7 mg/kg b.i. + 1.0 mg/kg/h i.v.) given together with mt-PA (0.2 mg/kg b.i.) optimally enhanced thrombolysis (p < 0.05) in a helium-neon laser-induced model where endothelial damage was minimal but not in an argon laser model where desquamation of endothelial cells was recognized. In contrast, argatroban (0.5 mg/kg b.i. + 0.1 mg/kg/h i.v.) given with mt-PA (0.2 mg/kg b.i.) significantly enhanced thrombolysis in both laser models. The findings indicate that the effectiveness of sarpogrelate in thrombolytic therapy might depend on the extent of vascular damage. PMID:11357001

  6. Altered serotonin and dopamine metabolism in the CNS of serotonin 5-HT(1A) or 5-HT(1B) receptor knockout mice.

    PubMed

    Ase, A R; Reader, T A; Hen, R; Riad, M; Descarries, L

    2000-12-01

    Measurements of serotonin (5-HT), dopamine (DA), and noradrenaline, and of 5-HT and DA metabolites, were obtained by HPLC from 16 brain regions and the spinal cord of 5-HT(1A) or 5-HT(1B) knockout and wild-type mice of the 129/Sv strain. In 5-HT(1A) knockouts, 5-HT concentrations were unchanged throughout, but levels of 5-HT metabolites were higher than those of the wild type in dorsal/medial raphe nuclei, olfactory bulb, substantia nigra, and locus coeruleus. This was taken as an indication of increased 5-HT turnover, reflecting an augmented basal activity of midbrain raphe neurons and consequent increase in their somatodendritic and axon terminal release of 5-HT. It provided a likely explanation for the increased anxious-like behavior observed in 5-HT(1A) knockout mice. Concomitant increases in DA content and/or DA turnover were interpreted as the result of a disinhibition of DA, whereas increases in noradrenaline concentration in some territories of projection of the locus coeruleus could reflect a diminished activity of its neurons. In 5-HT(1B) knockouts, 5-HT concentrations were lower than those of the wild type in nucleus accumbens, locus coeruleus, spinal cord, and probably also several other territories of 5-HT innervation. A decrease in DA, associated with increased DA turnover, was measured in nucleus accumbens. These changes in 5-HT and DA metabolism were consistent with the increased aggressiveness and the supersensitivity to cocaine reported in 5-HT(1B) knockout mice. Thus, markedly different alterations in CNS monoamine metabolism may contribute to the opposite behavioral phenotypes of these two knockouts. PMID:11080193

  7. 5-HT1B receptor modulation of the serotonin transporter in vivo: studies using KO mice.

    PubMed

    Montañez, Sylvia; Munn, Jaclyn L; Owens, W Anthony; Horton, Rebecca E; Daws, Lynette C

    2014-07-01

    The serotonin transporter (SERT) controls the strength and duration of serotonergic neurotransmission by the high-affinity uptake of serotonin (5-HT) from extracellular fluid. SERT is a key target for many psychotherapeutic and abused drugs, therefore understanding how SERT activity and expression are regulated is of fundamental importance. A growing literature suggests that SERT activity is under regulatory control of the 5-HT1B autoreceptor. The present studies made use of mice with a constitutive reduction (5-HT1B+/-) or knockout of 5-HT1B receptors (5-HT1B-/-), as well as mice with a constitutive knockout of SERT (SERT-/-) to further explore the relationship between SERT activity and 5-HT1B receptor expression. High-speed chronoamperometry was used to measure clearance of 5-HT from CA3 region of hippocampus in vivo. Serotonin clearance rate, over a range of 5-HT concentrations, did not differ among 5-HT1B receptor genotypes, nor did [(3)H]cyanoimipramine binding to SERT in this brain region, suggesting that SERT activity is not affected by constitutive reduction or loss of 5-HT1B receptors; alternatively, it might be that other transport mechanisms for 5-HT compensate for loss of 5-HT1B receptors. Consistent with previous reports, we found that the 5-HT1B receptor antagonist, cyanopindolol, inhibited 5-HT clearance in wild-type mice. However, this effect of cyanopindolol was lost in 5-HT1B-/- mice and diminished in 5-HT1B+/- mice, indicating that the 5-HT1B receptor is necessary for cyanopindolol to inhibit 5-HT clearance. Likewise, cyanopindolol was without effect on 5-HT clearance in SERT-/- mice, demonstrating a requirement for the presence of both SERT and 5-HT1B receptors in order for cyanopindolol to inhibit 5-HT clearance in CA3 region of hippocampus. Our findings are consistent with SERT being under the regulatory control of 5-HT1B autoreceptors. Future studies to identify signaling pathways involved may help elucidate novel therapeutic targets for the

  8. Serotonin acts as a novel regulator of interleukin-6 secretion in osteocytes through the activation of the 5-HT(2B) receptor and the ERK1/2 signalling pathway.

    PubMed

    Li, Xianxian; Ma, Yuanyuan; Wu, Xiangnan; Hao, Zhichao; Yin, Jian; Shen, Jiefei; Li, Xiaoyu; Zhang, Ping; Wang, Hang

    2013-11-29

    Interleukin-6 (IL-6) is a potent stimulator of osteoclastic bone resorption. Osteocyte secretion of IL-6 plays an important role in bone metabolism. Serotonin (5-HT) has recently been reported to regulate bone metabolism. The aim of this study was to evaluate the effect of serotonin on osteocyte expression of IL-6. The requirement for the 5-HT receptor(s) and the role of the extracellular signal-regulated kinase 1/2 (ERK1/2) in serotonin-induced IL-6 synthesis were examined. In this study, real-time PCR and ELISA were used to analyse IL-6 gene and protein expression in serotonin-stimulated MLO-Y4 cells. ERK1/2 pathway activation was determined by Western blot. We found that serotonin significantly activated the ERK1/2 pathway and induced IL-6 mRNA expression and protein synthesis in cultured MLO-Y4 cells. However, these effects were abolished by pre-treatment of MLO-Y4 cells with a 5-HT2B receptor antagonist, RS127445 or the ERK1/2 inhibitor, PD98059. Our results indicate that serotonin stimulates osteocyte secretion of IL-6 and that this effect is associated with activation of 5-HT2B receptor and the ERK1/2 pathway. These findings provide support for a role of serotonin in bone metabolism by indicating serotonin regulates bone remodelling by mediating an inflammatory cytokine. PMID:24211588

  9. Hippocampal 5-HT1A Receptor and Spatial Learning and Memory

    PubMed Central

    Glikmann-Johnston, Yifat; Saling, Michael M.; Reutens, David C.; Stout, Julie C.

    2015-01-01

    Spatial cognition is fundamental for survival in the topographically complex environments inhabited by humans and other animals. The hippocampus, which has a central role in spatial cognition, is characterized by high concentration of serotonin (5-hydroxytryptamine; 5-HT) receptor binding sites, particularly of the 1A receptor (5-HT1A) subtype. This review highlights converging evidence for the role of hippocampal 5-HT1A receptors in spatial learning and memory. We consider studies showing that activation or blockade of the 5-HT1A receptors using agonists or antagonists, respectively, lead to changes in spatial learning and memory. For example, pharmacological manipulation to induce 5-HT release, or to block 5-HT uptake, have indicated that increased extracellular 5-HT concentrations maintain or improve memory performance. In contrast, reduced levels of 5-HT have been shown to impair spatial memory. Furthermore, the lack of 5-HT1A receptor subtype in single gene knockout mice is specifically associated with spatial memory impairments. These findings, along with evidence from recent cognitive imaging studies using positron emission tomography (PET) with 5-HT1A receptor ligands, and studies of individual genetic variance in 5-HT1A receptor availability, strongly suggests that 5-HT, mediated by the 5-HT1A receptor subtype, plays a key role in spatial learning and memory. PMID:26696889

  10. Active Fire Mapping Program

    MedlinePlus

    ... Incidents (Home) New Large Incidents Fire Detection Maps MODIS Satellite Imagery VIIRS Satellite Imagery Fire Detection GIS ... Data Web Services Latest Detected Fire Activity Other MODIS Products Frequently Asked Questions About Active Fire Maps ...

  11. Endogenous 5-HT outflow from chicken aorta by 5-HT uptake inhibitors and amphetamine derivatives

    PubMed Central

    DELGERMURUN, Dugar; ITO, Shigeo; OHTA, Toshio; YAMAGUCHI, Soichiro; OTSUGURO, Ken-ichi

    2015-01-01

    Chemoreceptor cells aggregating in clusters in the chicken thoracic aorta contain 5-hydroxytryptamine (5-HT) and have voltage-dependent ion channels and nicotinic acetylcholine receptors, which are characteristics typically associated with neurons. The aim of the present study was to investigate the effects of 5-HT uptake inhibitors, fluvoxamine, fluoxetine and clomipramine (CLM), and amphetamine derivatives, p-chloroamphetamine (PCA) and methamphetamine (MET), on endogenous 5-HT outflow from the isolated chick thoracic aorta in vitro. 5-HT was measured by using a HPLC system with electrochemical detection. The amphetamine derivatives and 5-HT uptake inhibitors caused concentration-dependent increases in endogenous 5-HT outflow. PCA was about ten times more effective in eliciting 5-HT outflow than MET. The 5-HT uptake inhibitors examined had similar potency for 5-HT outflow. PCA and CLM increased 5-HT outflow in a temperature-dependent manner. The outflow of 5-HT induced by PCA or 5-HT uptake inhibitors was independent of extracellular Ca2+ concentration. The 5-HT outflow induced by CLM, but not that by PCA, was dependent on the extracellular NaCl concentration. These results suggest that the 5-HT uptake system of 5-HT-containing chemoreceptor cells in the chicken thoracic aorta has characteristics similar to those of 5-HT-containing neurons in the mammalian central nervous system (CNS). PMID:26321443

  12. Endogenous 5-HT outflow from chicken aorta by 5-HT uptake inhibitors and amphetamine derivatives.

    PubMed

    Delgermurun, Dugar; Ito, Shigeo; Ohta, Toshio; Yamaguchi, Soichiro; Otsuguro, Ken-ichi

    2016-01-01

    Chemoreceptor cells aggregating in clusters in the chicken thoracic aorta contain 5-hydroxytryptamine (5-HT) and have voltage-dependent ion channels and nicotinic acetylcholine receptors, which are characteristics typically associated with neurons. The aim of the present study was to investigate the effects of 5-HT uptake inhibitors, fluvoxamine, fluoxetine and clomipramine (CLM), and amphetamine derivatives, p-chloroamphetamine (PCA) and methamphetamine (MET), on endogenous 5-HT outflow from the isolated chick thoracic aorta in vitro. 5-HT was measured by using a HPLC system with electrochemical detection. The amphetamine derivatives and 5-HT uptake inhibitors caused concentration-dependent increases in endogenous 5-HT outflow. PCA was about ten times more effective in eliciting 5-HT outflow than MET. The 5-HT uptake inhibitors examined had similar potency for 5-HT outflow. PCA and CLM increased 5-HT outflow in a temperature-dependent manner. The outflow of 5-HT induced by PCA or 5-HT uptake inhibitors was independent of extracellular Ca(2+) concentration. The 5-HT outflow induced by CLM, but not that by PCA, was dependent on the extracellular NaCl concentration. These results suggest that the 5-HT uptake system of 5-HT-containing chemoreceptor cells in the chicken thoracic aorta has characteristics similar to those of 5-HT-containing neurons in the mammalian central nervous system (CNS). PMID:26321443

  13. Therapeutic Potential of 5-HT6 Receptor Agonists.

    PubMed

    Karila, Delphine; Freret, Thomas; Bouet, Valentine; Boulouard, Michel; Dallemagne, Patrick; Rochais, Christophe

    2015-10-22

    Given its predominant expression in the central nervous system (CNS), 5-hydroxytryptamine (5-HT: serotonin) subtype 6 receptor (5-HT6R) has been considered as a valuable target for the development of CNS drugs with limited side effects. After 2 decades of intense research, numerous selective ligands have been developed to target this receptor; this holds potential interest for the treatment of neuropathological disorders. In fact, some agents (mainly antagonists) are currently undergoing clinical trial. More recently, a series of potent and selective agonists have been developed, and preclinical studies have been conducted that suggest the therapeutic interest of 5-HT6R agonists. This review details the medicinal chemistry of these agonists, highlights their activities, and discusses their potential for treating cognitive issues associated with Alzheimer's disease (AD), depression, or obesity. Surprisingly, some studies have shown that both 5-HT6R agonists and antagonists exert similar procognitive activities. This article summarizes the hypotheses that could explain this paradox. PMID:26099069

  14. A Subpopulation of Serotonergic Neurons That Do Not Express the 5-HT1A Autoreceptor

    PubMed Central

    2012-01-01

    5-HT neurons are topographically organized in the hindbrain, and have been implicated in the etiology and treatment of psychiatric diseases such as depression and anxiety. Early studies suggested that the raphe 5-HT neurons were a homogeneous population showing similar electrical properties, and feedback inhibition mediated by 5-HT1A autoreceptors. We utilized histochemistry techniques in ePet1-eGFP and 5-HT1A-iCre/R26R mice to show that a subpopulation of 5-HT neurons do not express the somatodendritic 5-HT1A autoreceptor mRNA. In addition, we performed patch-clamp recordings followed by single-cell PCR in ePet1-eGFP mice. From 134 recorded 5-HT neurons located in the dorsal, lateral, and median raphe, we found lack of 5-HT1A mRNA expression in 22 cells, evenly distributed across raphe subfields. We compared the cellular characteristics of these neuronal types and found no difference in passive membrane properties and general excitability. However, when injected with large depolarizing current, 5-HT1A-negative neurons fired more action potentials, suggesting a lack of autoinhibitory action of local 5-HT release. Our results support the hypothesis that the 5-HT system is composed of subpopulations of serotonergic neurons with different capacity for adaptation. PMID:23336048

  15. The role of serotonin 5-HT2A receptors in memory and cognition

    PubMed Central

    Zhang, Gongliang; Stackman, Robert W.

    2015-01-01

    Serotonin 5-HT2A receptors (5-HT2ARs) are widely distributed in the central nervous system, especially in brain region essential for learning and cognition. In addition to endogenous 5-HT, several hallucinogens, antipsychotics, and antidepressants function by targeting 5-HT2ARs. Preclinical studies show that 5-HT2AR antagonists have antipsychotic and antidepressant properties, whereas agonist ligands possess cognition-enhancing and hallucinogenic properties. Abnormal 5-HT2AR activity is associated with a number of psychiatric disorders and conditions, including depression, schizophrenia, and drug addiction. In addition to its traditional activity as a G protein-coupled receptor (GPCR), recent studies have defined novel operations of 5-HT2ARs. Here we review progress in the (1) receptor anatomy and biology: distribution, signaling, polymerization and allosteric modulation; and (2) receptor functions: learning and memory, hallucination and spatial cognition, and mental disorders. Based on the recent progress in basic research on the 5-HT2AR, it appears that post-training 5-HT2AR activation enhances non-spatial memory consolidation, while pre-training 5-HT2AR activation facilitates fear extinction. Further, the potential influence that 5-HT2AR-elicited visual hallucinations may have on visual cue (i.e., landmark) guided spatial cognition is discussed. We conclude that the development of selective 5-HT2AR modulators to target distinct signaling pathways and neural circuits represents a new possibility for treating emotional, neuropsychiatric, and neurodegenerative disorders. PMID:26500553

  16. Modulation of dopamine transmission by 5HT2C and 5HT3 receptors: a role in the antidepressant response.

    PubMed

    Dremencov, Eliyahu; Weizmann, Yifat; Kinor, Noa; Gispan-Herman, Iris; Yadid, Gal

    2006-02-01

    Dopaminergic mesolimbic and mesocortical systems are fundamental in hedonia and motivation. Therefore their regulation should be central in understanding depression treatment. This review highlights the dopaminergic activity in relation to depressive behavior and suggests two putative receptors as potential targets for research and development of future antidepressants. In this article we review data that describe the role of serotonin in regulating dopamine release, via 5HT2C and 5HT3 receptors. This action of serotonin appears to be linked to depressive-like behavior and to onset of behavioral effects of antidepressants in an animal model of depression. We suggest that drugs or strategies that decrease 5HT2C and increase 5HT3 receptor-mediated dopamine release in the limbic areas of the brain may provide a fast onset of therapeutic effect. Clinical and basic research data supporting this hypothesis are discussed. PMID:16475958

  17. Localization and Function of a 5-HT Transporter in Crypt Epithelia of the Gastrointestinal Tract

    PubMed Central

    Wade, P. R.; Chen, J.; Jaffe, B.; Kassem, I. S.; Blakely, R. D.; Gershon, M. D.

    2012-01-01

    The peristaltic reflex can be evoked in the absence of input from the CNS because the responsible neural pathways are intrinsic to the intestine. Mucosal enterochromaffin cells have been postulated to be pressure transducers, which activate the intrinsic sensory neurons that initiate the reflex by secreting 5-HT. All of the criteria necessary to establish 5-HT as this transmitter have been fulfilled previously, except that no mucosal mechanism for 5-HT inactivation was known. In the current investigation, desensitization of 5-HT receptors was demonstrated to inhibit the peristaltic reflex in the guinea pig large intestine in vitro. At low concentration (1.0 nM), the 5-HT uptake inhibitor fluoxetine potentiated the reflex, but higher concentrations blocked it, suggesting that the peristaltic reflex depends on the 5-HT transporter-mediated inactivation of 5-HT. Specific (Na+-dependent, fluoxetine-sensitive) uptake of 3H- 5-HT by intestinal crypt epithelial cells was found by radioautography. mRNA encoding the neuronal 5-HT transporter was demonstrated in the intestinal mucosa by Northern analysis and located in crypt epithelial cells as well as in myenteric neurons by in situ hybridization. cDNA encoding the 5-HT transporter was cloned from the mucosa and completely sequenced. 5-HT transporter immunoreactivity was detected in crypt epithelial cells and enteric neurons. Mucosal epithelial cells thus express a plasmalemmal 5-HT transporter identical to that of serotonergic neurons. This molecule seems to play a critical role in the peristaltic reflex. PMID:8601815

  18. Preclinical profile of the mixed 5-HT1A/5-HT2A receptor antagonist S 21,357.

    PubMed

    Griebel, G; Blanchard, D C; Rettori, M C; Guardiola-Lemaître, B; Blanchard, R J

    1996-06-01

    This study evaluated the pharmacological and behavioral effects of S 21,357, a drug with high affinity for both 5-HT1A and 5-HT2A receptors. The drug behaved as antagonist at both 5-HT1A autoreceptors and postsynaptic 5-HT1A receptors, as it prevented the inhibitory effect of lesopitron on the electrical discharge of the dorsal raphé nucleus (DRN) 5-HT neurons and the activity of forskolin-stimulated adenylate cyclase in hippocampal homogenates. In addition, S 21,357 (4 and 128 mg/kg, PO) inhibited 5-HTP-induced head-twitch responses in mice, indicating that it possesses 5-HT2A antagonistic properties. In a test battery designed to assess defensive behaviors of Swiss-Webster mice to the presence of, or situations associated with, a natural threat stimulus (i.e., rat), S 21,357 (0.12-2 mg/kg, IP) reduced contextual defense reactions after the rat was removed, risk assessment activities when the subject was chased, and finally, defensive attack behavior. These behavioral changes are consistent with fear/anxiety reduction. Furthermore, the drug strongly reduced flight reactions in response to the approaching rat. This last finding, taken together with recent results with panic-modulating drugs, suggest that S 21,357 may have potential efficacy against panic attack. Finally, our results suggest that compounds sharing high affinities for both 5-HT1A and 5-HT2A receptors may directly or synergistically increase the range of defensive behaviors affected. PMID:8743616

  19. Synthesis and structure-activity relationship studies in serotonin 5-HT4 receptor ligands based on a benzo[de][2,6]naphthridine scaffold.

    PubMed

    Castriconi, Federica; Paolino, Marco; Giuliani, Germano; Anzini, Maurizio; Campiani, Giuseppe; Mennuni, Laura; Sabatini, Chiara; Lanza, Marco; Caselli, Gianfranco; De Rienzo, Francesca; Menziani, Maria Cristina; Sbraccia, Maria; Molinari, Paola; Costa, Tommaso; Cappelli, Andrea

    2014-07-23

    A small series of serotonin 5-HT4 receptor ligands has been designed from flexible 2-methoxyquinoline compounds 7a,b by applying the conformational constraint approach. Ligands 7a,b and the corresponding conformationally constrained analogues 8a-g were synthesized and their interactions with the 5-HT4 receptor were examined by measuring both binding affinity and the ability to promote or inhibit receptor-G protein coupling. Ester derivative 7a and conformationally constrained compound 8b were demonstrated to be the most interesting compounds showing a nanomolar 5-HT4R affinity similar to that shown by reference ligands cisapride (1) and RS-23,597-190 (4). The result was rationalized by docking studies in term of high similarity in the binding modalities of flexible 7a and conformationally constrained 8b. The intrinsic efficacy of some selected ligands was determined by evaluating the receptor-G protein coupling and the results obtained demonstrated that the nature and the position of substituents play a critical role in the interaction of these ligands with their receptor. PMID:24871995

  20. The Role of 5-HT3 Receptors in Signaling from Taste Buds to Nerves.

    PubMed

    Larson, Eric D; Vandenbeuch, Aurelie; Voigt, Anja; Meyerhof, Wolfgang; Kinnamon, Sue C; Finger, Thomas E

    2015-12-01

    Activation of taste buds triggers the release of several neurotransmitters, including ATP and serotonin (5-hydroxytryptamine; 5-HT). Type III taste cells release 5-HT directly in response to acidic (sour) stimuli and indirectly in response to bitter and sweet tasting stimuli. Although ATP is necessary for activation of nerve fibers for all taste stimuli, the role of 5-HT is unclear. We investigated whether gustatory afferents express functional 5-HT3 receptors and, if so, whether these receptors play a role in transmission of taste information from taste buds to nerves. In mice expressing GFP under the control of the 5-HT(3A) promoter, a subset of cells in the geniculate ganglion and nerve fibers in taste buds are GFP-positive. RT-PCR and in situ hybridization confirmed the presence of 5-HT(3A) mRNA in the geniculate ganglion. Functional studies show that only those geniculate ganglion cells expressing 5-HT3A-driven GFP respond to 10 μM 5-HT and this response is blocked by 1 μM ondansetron, a 5-HT3 antagonist, and mimicked by application of 10 μM m-chlorophenylbiguanide, a 5-HT3 agonist. Pharmacological blockade of 5-HT3 receptors in vivo or genetic deletion of the 5-HT3 receptors reduces taste nerve responses to acids and other taste stimuli compared with controls, but only when urethane was used as the anesthetic. We find that anesthetic levels of pentobarbital reduce taste nerve responses apparently by blocking the 5-HT3 receptors. Our results suggest that 5-HT released from type III cells activates gustatory nerve fibers via 5-HT3 receptors, accounting for a significant proportion of the neural taste response. PMID:26631478

  1. Participation of 5-HT1-like and 5-HT2A receptors in the contraction of human temporal artery by 5-hydroxytryptamine and related drugs.

    PubMed Central

    Verheggen, R.; Freudenthaler, S.; Meyer-Dulheuer, F.; Kaumann, A. J.

    1996-01-01

    1. We investigated the hypothesis that, as in some other large human arteries, 5-HT-induced contraction of the temporal artery is mediated through two co-existing receptor populations, 5-HT1-like- and 5-HT2A. Temporal arterial segments were obtained from patients undergoing brain surgery and rings prepared set up to contract with 5-HT and related agents. Fractions of maximal 5-HT responses mediated through 5-HT1-like and 5-HT2A receptors, f1 and f2 = 1-f1, were estimated by use of the 5-HT2A-selective antagonist ketanserin. 2. In rings with intact endothelium 5-HT evoked contractions with a -log EC50, M of 7.0. Ketanserin (10-1000 nM) antagonized part of the 5-HT-induced contractions. Ketanserin-resistant components of 5-HT-induced contractions were found with -log EC50, M of 6.9 and f1 of 0.17 (100 nM ketanserin) and -log EC50, M of 6.4 and f1 of 0.20 (1000 nM ketanserin). 3. In rings with endothelial function attenuated by enzymatic treatment, 5-HT caused contractions with a -log EC50, M of 7.2 that were partially blocked by ketanserin. Ketanserin-resistant components of 5-HT-induced contractions were found with -log EC50, M 7.4 and f1 of 0.16 (100 nM ketanserin) and -log EC50, M of 7.5 and f1 of 0.14 (1000 nM ketanserin). 4. The ketanserin-resistant component of 5-HT-evoked contraction was blocked by methiothepin (100-1000 nM) consistent with mediation through 5-HT1-like receptors. 5. In rings with intact endothelium the 5-HT1-like-selective agonist, sumatriptan, caused small contractions with a -log EC50, M of 6.5 and intrinsic activity of 0.21 with respect to 5-HT that were resistant to blockade by 1000 nM ketanserin but antagonized by 100 nM methiothepin. 6. In rings with intact endothelium the 5-HT2A receptor partial agonist SK&F 103829 (2,3,4,5-tetrahydro-8[methyl sulphonyl]-1H3-benzazepin-7-ol methensulphonate) contracted rings with a -log EC50, M of 5.0 and an intrinsic activity of 0.49 with respect to 5-HT; the effects were antagonized by ketanserin 1000

  2. Distribution of cells responsive to 5-HT6 receptor antagonist-induced hypophagia

    PubMed Central

    Garfield, Alastair S.; Burke, Luke K.; Shaw, Jill; Evans, Mark L.; Heisler, Lora K.

    2014-01-01

    The central 5-hydroxytryptamine (5-HT; serotonin) system is well established as an important regulator of appetite and continues to remain a focus of obesity research. While much emphasis has focussed on the 5-HT2C receptor (5-HT2CR) in 5-HT's anorectic effect, pharmacological manipulation of the 5-HT6 receptor (5-HT6R) also reduces appetite and body weight and may be amenable to obesity treatment. However, the neurological circuits that underlie 5-HT6R-induced hypophagia remain to be identified. Using c-fos immunoreactivity (FOS-IR) as a marker of neuronal activation, here we mapped the neuroanatomical targets activated by an anorectic dose of the 5-HT6R antagonist SB-399885 throughout the brain. Furthermore, we quantified SB-399855 activated cells within brain appetitive nuclei, the hypothalamus, dorsal raphe nucleus (DRN) and nucleus of the solitary tract (NTS). Our results reveal that 5-HT6R antagonist-induced hypophagia is associated with significantly increased neuronal activation in two nuclei with an established role in the central control of appetite, the paraventricular nucleus of the hypothalamus (PVH) and the NTS. In contrast, no changes in FOS-IR were observed between treatment groups within other hypothalamic nuclei or DRN. The data presented here provide a first insight into the neural circuitry underlying 5-HT6R antagonist-induced appetite suppression and highlight the PVH and NTS in the coordination of 5-HT6R hypophagia. PMID:24566060

  3. The effects of 5-HT on sensory, central and motor neurons driving the abdominal superficial flexor muscles in the crayfish.

    PubMed

    Strawn, J R; Neckameyer, W S; Cooper, R L

    2000-12-01

    Serotonin (5-HT) induces a variety of physiological and behavioral effects in crustaceans. However, the mechanisms employed by 5-HT to effect behavioral changes are not fully understood. Among the mechanisms by which these changes might occur are alterations in synaptic drive and efficacy of sensory, interneurons and motor neurons, as well as direct effects on muscles. We investigated these aspects with the use of a defined sensory-motor system, which is entirely contained within a single abdominal segment and consists of a 'cuticular sensory neurons segmental ganglia abdominal superficial flexor motor neurons-muscles' circuit. Our studies address the role of 5-HT in altering (1) the activity of motor neurons induced by sensory stimulation; (2) the inherent excitability of superficial flexor motor neurons; (3) transmitter release properties of the motor nerve terminal and (4) input resistance of the muscle. Using en passant recordings from the motor nerve, with and without sensory stimulation, and intracellular recordings from the muscle, we show that 5-HT enhances sensory drive and output from the ventral nerve cord resulting in an increase in the firing frequency of the motor neurons. Also, 5-HT increases transmitter release at the neuromuscular junction, and alters input resistance of the muscle fibers. PMID:11281271

  4. Synthesis and serotonergic activity of substituted 2, N-benzylcarboxamido-5-(2-ethyl-1-dioxoimidazolidinyl)-N, N-dimethyltryptamine derivatives: novel antagonists for the vascular 5-HT(1B)-like receptor.

    PubMed

    Moloney, G P; Martin, G R; Mathews, N; Milne, A; Hobbs, H; Dodsworth, S; Sang, P Y; Knight, C; Williams, M; Maxwell, M; Glen, R C

    1999-07-15

    The synthesis and vascular 5-HT(1B)-like receptor activity of a novel series of substituted 2, N-benzylcarboxamido-5-(2-ethyl-1-dioxoimidazolidinyl)-N, N-dimethyltryptamine derivatives are described. Modifications to the 5-ethylene-linked heterocycle and to substituents on the 2-benzylamide side chain have been explored. Several compounds were identified which exhibited affinity at the vascular 5-HT(1B)-like receptor of pK(B) > 7.0, up to 100-fold selectivity over alpha(1)-adrenoceptor affinity and 5-HT(2A) receptor affinity, and which exhibited a favorable pharmacokinetic profile. N-Benzyl-3-[2-(dimethylamino)ethyl]-5-[2-(4,4-dimethyl-2, 5-dioxo-1-imidazolidinyl)ethyl]-1H-indole-2-carboxamide (23) was identified as a highly potent, silent (as judged by the inability of angiotensin II to unmask 5-HT(1B)-like receptor-mediated agonist activity in the rabbit femoral artery), and competitive vascular 5-HT(1B)-like receptor antagonist with a plasma elimination half-life of approximately 4 h in dog plasma and with good oral bioavailability. The selectivity of compounds from this series for the vascular 5-HT(1B)-like receptors over other receptor subtypes is discussed as well as a proposed mode of binding to the receptor pharmacophore. It has been proposed that the aromatic ring of the 2, N-benzylcarboxamide group can occupy an aromatic binding site rather than the indole ring. The resulting conformation allows an amine-binding site to be occupied by the ethylamine nitrogen and a hydrogen-bonding site to be occupied by one of the hydantoin carbonyls. The electronic nature of the 2,N-benzylcarboxamide aromatic group as well as the size of substituents on this aromatic group is crucial for producing potent and selective antagonists. The structural requirement on the 3-ethylamine side chain incorporating the protonatable nitrogen is achieved by the bulky 2, N-benzylcarboxamide group and its close proximity to the 3-side chain. PMID:10411472

  5. Role for serotonin2A (5-HT2A) and 2C (5-HT2C) receptors in experimental absence seizures.

    PubMed

    Venzi, Marcello; David, François; Bellet, Joachim; Cavaccini, Anna; Bombardi, Cristiano; Crunelli, Vincenzo; Di Giovanni, Giuseppe

    2016-09-01

    Absence seizures (ASs) are the hallmark of childhood/juvenile absence epilepsy. Monotherapy with first-line anti-absence drugs only controls ASs in 50% of patients, indicating the need for novel therapeutic targets. Since serotonin family-2 receptors (5-HT2Rs) are known to modulate neuronal activity in the cortico-thalamo-cortical loop, the main network involved in AS generation, we investigated the effect of selective 5-HT2AR and 5-HT2CR ligands on ASs in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS), a well established polygenic rat model of these non-convulsive seizures. GAERS rats were implanted with fronto-parietal EEG electrodes under general anesthesia, and their ASs were later recorded under freely moving conditions before and after intraperitoneal administration of various 5-HT2AR and 5-HT2CR ligands. The 5-HT2A agonist TCB-2 dose-dependently decreased the total time spent in ASs, an effect that was blocked by the selective 5-HT2A antagonist MDL11,939. Both MDL11,939 and another selective 5-HT2A antagonist (M100,907) increased the length of individual seizures when injected alone. The 5-HT2C agonists lorcaserin and CP-809,101 dose-dependently suppressed ASs, an effect blocked by the selective 5-HT2C antagonist SB 242984. In summary, 5-HT2ARs and 5-HT2CRs negatively control the expression of experimental ASs, indicating that selective agonists at these 5-HT2R subtypes might be potential novel anti-absence drugs. PMID:27085605

  6. Pharmacological Characterization of a 5-HT1-Type Serotonin Receptor in the Red Flour Beetle, Tribolium castaneum

    PubMed Central

    Vleugels, Rut; Lenaerts, Cynthia; Baumann, Arnd; Vanden Broeck, Jozef; Verlinden, Heleen

    2013-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) is known for its key role in modulating diverse physiological processes and behaviors by binding various 5-HT receptors. However, a lack of pharmacological knowledge impedes studies on invertebrate 5-HT receptors. Moreover, pharmacological information is urgently needed in order to establish a reliable classification system for invertebrate 5-HT receptors. In this study we report on the molecular cloning and pharmacological characterization of a 5-HT1 receptor from the red flour beetle, Tribolium castaneum (Trica5-HT1). The Trica5-HT1 receptor encoding cDNA shows considerable sequence similarity with members of the 5-HT1 receptor class. Real time PCR showed high expression in the brain (without optic lobes) and the optic lobes, consistent with the role of 5-HT as neurotransmitter. Activation of Trica5-HT1 in mammalian cells decreased NKH-477-stimulated cyclic AMP levels in a dose-dependent manner, but did not influence intracellular Ca2+ signaling. We studied the pharmacological profile of the 5-HT1 receptor and demonstrated that α-methylserotonin, 5-methoxytryptamine and 5-carboxamidotryptamine acted as agonists. Prazosin, methiothepin and methysergide were the most potent antagonists and showed competitive inhibition in presence of 5-HT. This study offers important information on a 5-HT1 receptor from T. castaneum facilitating functional research of 5-HT receptors in insects and other invertebrates. The pharmacological profiles may contribute to establish a reliable classification scheme for invertebrate 5-HT receptors. PMID:23741451

  7. Behavioral effects of D3 receptor inhibition and 5-HT4 receptor activation on animals undergoing chronic cannabinoid exposure during adolescence.

    PubMed

    Abboussi, Oualid; Said, Nadia; Fifel, Karim; Lakehayli, Sara; Tazi, Abdelouahhab; El Ganouni, Soumaya

    2016-04-01

    Chronic exposure to cannabinoids during adolescence results in long-lasting behavioral deficits that match some symptomatologic aspects of schizophrenia. The aim of this study was to investigate the reversibility of the emotional and the cognitive effects of chronic exposure to cannabinoids during adolescence, via subsequent modulation of the serotoninergic 5-HT4 and dopaminergic D3 receptors. RS67333 as a 5-HT4 agonist and U-99194A as a D3 antagonist were administered separately at 1 mg/kg and 20 mg/kg, and in combination at 0.5 mg/kg and 10 mg/kg to adult animals undergoing chronic treatment with the synthetic cannabinoid receptor agonist WIN55,212-2 (1 mg/kg) during adolescence. Animals were tested for anxiety-like behavior and episodic-like memory in the open field and novel object recognition tests respectively 30 minutes after the last drug administration. Chronic WIN55,212-2 treated animals exhibited a lasting disruption of episodic memory and increased anxiety levels. The effect on episodic-like memory were partially restored by acute administration of RS67333 and U-99194A and completely by administration of both drugs in combination at lower doses. However, only RS67333 (20 mg/kg) improved the anxiogenic-like effect of WIN55,212-2. These findings give further support that chronic exposure to cannabinoids during adolescence may be used as an animal model for schizophrenia, and highlight D3 and 5-HT4 receptors as potential targets for an enhanced treatment of the cognitive aspect of this disease. PMID:26497809

  8. Proopiomelanocortin but not vasopressin or renin-angiotensin system induces resuscitative effects of central 5-HT1A activation in haemorrhagic shock in rats.

    PubMed

    Sowa, P; Adamczyk-Sowa, M; Zwirska-Korczala, K; Pierzchala, K; Adamczyk, D; Paluch, Z; Misiolek, M

    2014-10-01

    The aim of this study was to determine the effectory mechanisms: vasopressin, renin-angiotensin system and proopiomelanocortin-derived peptides (POMC), partaking in the effects of serotonin through central serotonin 1A receptor (5-HT1A) receptors in haemorrhagic shock in rats. The study was conducted on male Wistar rats. All experimental procedures were carried out under full anaesthesia. The principal experiment included a 2 hour observation period in haemorrhagic shock. Drugs used - a selective 5-HT1A agonist 8-OH-DPAT (5 μg/5 μl); V1a receptor antagonist [β-mercapto-β, β-cyclo-pentamethylenepropionyl(1),O-me-Tyr(2),Arg(8)]AVP (10 μg/kg); angiotensin type I receptor antagonist (AT1) ZD7155 (0.5 mg/kg, i.v.); angiotensin-converting-enzyme inhibitor captopril (30 mg/kg, i.v.); melanocortin type 4 (MC4) receptor antagonist HS014 (5 μg, i.c.v.). There was no influence of ZD715, captopril or blocking of the V1a receptors on changes in the heart rate (HR), mean arterial pressure (MAP), peripheral blood flow or resistance caused by the central stimulation of 5-HT1A receptors (P≥0.05). However, selective blocking of central MC4 receptors caused a slight, but significant decrease in HR and MAP (P<0.05). POMC derivatives acting via the central MC4 receptor participate in the resuscitative effects of 8-OH-DPAT. The angiotensin and vasopressin systems do not participate in these actions. PMID:25371525

  9. Deletion of the 5-HT3A-receptor subunit blunts the induction of cocaine sensitization

    PubMed Central

    Hodge, C. W.; Bratt, A. M.; Kelley, S. P.

    2008-01-01

    Serotonin (5-HT) receptors are classified into seven groups (5-HT1–7), comprising at least 14 structurally and pharmacologically distinct receptor subtypes. Pharma-cological antagonism of ionotropic 5-HT3 receptors has been shown to modulate both behavioral and neuro-chemical aspects of the induction of sensitization to cocaine. It is not known, however, if specific molecular subunits of the 5-HT3 receptor influence the development of cocaine sensitization. To address this question, we studied the effects of acute and chronic intermittent cocaine administration in mice with a targeted deletion of the gene for the 5-HT3A-receptor subunit (5-HT3A −/−). 5-HT3A (−/−) mice showed blunted induction of cocaine-induced locomotor sensitization as compared with wild-type littermate controls. 5-HT3A (−/−) mice did not differ from wild-type littermate controls on measures of basal motor activity or response to acute cocaine treatment. Enhanced locomotor response to saline injection following cocaine sensitization was observed equally in 5-HT3A (−/−) and wild-type mice suggesting similar conditioned effects associated with chronic cocaine treatment. These data show a role for the 5-HT3A-receptor subunit in the induction of behavioral sensitization to cocaine and suggest that the 5-HT3A molecular subunit modulates neurobehavioral adaptations to cocaine, which may underlie aspects of addiction. PMID:17559417

  10. Agonist actions of dihydroergotamine at 5-HT2B and 5-HT2C receptors and their possible relevance to antimigraine efficacy

    PubMed Central

    Schaerlinger, B; Hickel, P; Etienne, N; Guesnier, L; Maroteaux, L

    2003-01-01

    The pharmaceutical compound, dihydroergotamine (DHE) is dispensed to prevent and reduce the occurrence of migraine attacks. Although still controversial, the prophylactic effect of this drug is believed to be caused through blockade and/or activation of numerous receptors including serotonin (5-HT) receptors of the 5-HT2 subtype. To elucidate if 5-HT2 receptors (5-HT2Rs) may be involved in DHE prophylactic effect, we performed investigations aimed to determine the respective pharmacological profile of DHE and of its major metabolite 8′-hydroxy-DHE (8′-OH-DHE) at the 5-HT2B and 5-HT2CRs by binding, inositol triphosphate (IP3) or cyclic GMP (cGMP) coupling studies in transfected fibroblasts. DHE and 8′-OH-DHE are competitive compounds at 5-HT2B and 5-HT2CRs. 8′-OH-DHE interaction at (5-HT2BRs) was best fitted by a biphasic competition curve and displayed the highest affinity with a Ki of 5 nM. These two compounds acted as agonists for both receptors in respect to cGMP production with pEC50 of 8.32±0.09 for 8′-OH-DHE at 5-HT2B and 7.83±0.06 at 5-HT2CRs. Knowing that the antimigraine prophylactic effect of DHE is only observed after long-term treatment, we chronically exposed the recombinant cells to DHE and 8′-OH-DHE. The number of 5-HT2BR-binding sites was always more affected than 5-HT2CRs. At 5-HT2BRs, 8′-OH-DHE was more effective than DHE, with an uncoupling that persisted for more than 40 h for IP3 or cGMP. By contrast, the 5-HT2CR coupling was reversible after either treatment. Chronic exposure to 8′-OH-DHE caused a persistent agonist-mediated desensitisation of 5-HT2B, but not 5-HT2CRs. This may be of relevance to therapeutic actions of the compound. PMID:12970106

  11. The Role of 5-HT3 Receptors in Signaling from Taste Buds to Nerves

    PubMed Central

    Vandenbeuch, Aurelie; Voigt, Anja; Meyerhof, Wolfgang; Kinnamon, Sue C.; Finger, Thomas E.

    2015-01-01

    Activation of taste buds triggers the release of several neurotransmitters, including ATP and serotonin (5-hydroxytryptamine; 5-HT). Type III taste cells release 5-HT directly in response to acidic (sour) stimuli and indirectly in response to bitter and sweet tasting stimuli. Although ATP is necessary for activation of nerve fibers for all taste stimuli, the role of 5-HT is unclear. We investigated whether gustatory afferents express functional 5-HT3 receptors and, if so, whether these receptors play a role in transmission of taste information from taste buds to nerves. In mice expressing GFP under the control of the 5-HT3A promoter, a subset of cells in the geniculate ganglion and nerve fibers in taste buds are GFP-positive. RT-PCR and in situ hybridization confirmed the presence of 5-HT3A mRNA in the geniculate ganglion. Functional studies show that only those geniculate ganglion cells expressing 5-HT3A-driven GFP respond to 10 μm 5-HT and this response is blocked by 1 μm ondansetron, a 5-HT3 antagonist, and mimicked by application of 10 μm m-chlorophenylbiguanide, a 5-HT3 agonist. Pharmacological blockade of 5-HT3 receptors in vivo or genetic deletion of the 5-HT3 receptors reduces taste nerve responses to acids and other taste stimuli compared with controls, but only when urethane was used as the anesthetic. We find that anesthetic levels of pentobarbital reduce taste nerve responses apparently by blocking the 5-HT3 receptors. Our results suggest that 5-HT released from type III cells activates gustatory nerve fibers via 5-HT3 receptors, accounting for a significant proportion of the neural taste response. SIGNIFICANCE STATEMENT Historically, serotonin (5-hydroxytryptamine; 5-HT) has been described as a candidate neurotransmitter in the gustatory system and recent studies show that type III taste receptor cells release 5-HT in response to various taste stimuli. In the present study, we demonstrate that a subset of gustatory sensory neurons express functional

  12. The 5-HT(2C) receptor agonist lorcaserin reduces cocaine self-administration, reinstatement of cocaine-seeking and cocaine induced locomotor activity.

    PubMed

    Harvey-Lewis, Colin; Li, Zhaoxia; Higgins, Guy A; Fletcher, Paul J

    2016-02-01

    Lorcaserin (Lorqess, Belviq(®)) is a selective 5-HT(2C) receptor agonist that has received FDA approval for the treatment of obesity. 5-HT(2C) receptor agonists are also efficacious in decreasing multiple aspects of cocaine motivation and reward in preclinical models. This would suggest that lorcaserin is a clinically available therapeutic with the potential to treat cocaine addiction. Here we report the effects of lorcaserin (0.1 mg/kg-1.0 mg/kg) on multiple aspects of cocaine-related behaviours in rats. We find that lorcaserin dose-dependently decreases cocaine self-administration on progressive and fixed ratio schedules of reinforcement. Lorcaserin also reduces reinstatement of cocaine-seeking behaviour in response to priming injections of cocaine and/or reintroduction of cocaine-associated cues. Finally, lorcaserin dose-dependently decreases cocaine-induced hyperlocomotion. Our results, when considered in concert with similar emergent findings in non-human primates, strongly support continued research into the potential of lorcaserin as a clinical treatment for cocaine addiction. PMID:26427596

  13. Critical role of 5-HT1A, 5-HT3, and 5-HT7 receptor subtypes in the initiation, generation, and propagation of the murine colonic migrating motor complex.

    PubMed

    Dickson, Eamonn J; Heredia, Dante J; Smith, Terence K

    2010-07-01

    The colonic migrating motor complex (CMMC) is necessary for fecal pellet propulsion in the murine colon. We have previously shown that 5-hydroxytryptamine (5-HT) released from enterochromaffin cells activates 5-HT(3) receptors on the mucosal processes of myenteric Dogiel type II neurons to initiate the events underlying the CMMC. Our aims were to further investigate the roles of 5-HT(1A), 5-HT(3), and 5-HT(7) receptor subtypes in generating and propagating the CMMC using intracellular microelectrodes or tension recordings from the circular muscle (CM) in preparations with and without the mucosa. Spontaneous CMMCs were recorded from the CM in isolated murine colons but not in preparations without the mucosa. In mucosaless preparations, ondansetron (3 microM; 5-HT(3) antagonist) plus hexamethonium (100 microM) completely blocked spontaneous inhibitory junction potentials, depolarized the CM. Ondansetron blocked the preceding hyperpolarization associated with a CMMC. Spontaneous CMMCs and CMMCs evoked by spritzing 5-HT (10 and 100 microM) or nerve stimulation in preparations without the mucosa were blocked by SB 258719 or SB 269970 (1-5 microM; 5-HT(7) antagonists). Both NAN-190 and (S)-WAY100135 (1-5 microM; 5-HT(1A) antagonists) blocked spontaneous CMMCs and neurally evoked CMMCs in preparations without the mucosa. Both NAN-190 and (S)-WAY100135 caused an atropine-sensitive depolarization of the CM. The precursor of 5-HT, 5-hydroxytryptophan (5-HTP) (10 microM), and 5-carboxamidotryptamine (5-CT) (5 microM; 5-HT(1/5/7) agonist) increased the frequency of spontaneous CMMCs. 5-HTP and 5-CT also induced CMMCs in preparations with and without the mucosa, which were blocked by SB 258719. 5-HT(1A), 5-HT(3), and 5-HT(7) receptors, most likely on Dogiel Type II/AH neurons, are important in initiating, generating, and propagating the CMMC. Tonic inhibition of the CM appears to be driven by ongoing activity in descending serotonergic interneurons; by activating 5-HT(7

  14. Functional Status of the Serotonin 5-HT2C Receptor (5-HT2CR) Drives Interlocked Phenotypes that Precipitate Relapse-Like Behaviors in Cocaine Dependence

    PubMed Central

    Anastasio, Noelle C; Stutz, Sonja J; Fox, Robert G; Sears, Robert M; Emeson, Ronald B; DiLeone, Ralph J; O'Neil, Richard T; Fink, Latham H; Li, Dingge; Green, Thomas A; Gerard Moeller, F; Cunningham, Kathryn A

    2014-01-01

    Relapse vulnerability in cocaine dependence is rooted in genetic and environmental determinants, and propelled by both impulsivity and the responsivity to cocaine-linked cues (‘cue reactivity'). The serotonin (5-hydroxytryptamine, 5-HT) 5-HT2C receptor (5-HT2CR) within the medial prefrontal cortex (mPFC) is uniquely poised to serve as a strategic nexus to mechanistically control these behaviors. The 5-HT2CR functional capacity is regulated by a number of factors including availability of active membrane receptor pools, the composition of the 5-HT2CR macromolecular protein complex, and editing of the 5-HT2CR pre-mRNA. The one-choice serial reaction time (1-CSRT) task was used to identify impulsive action phenotypes in an outbred rat population before cocaine self-administration and assessment of cue reactivity in the form of lever presses reinforced by the cocaine-associated discrete cue complex during forced abstinence. The 1-CSRT task reliably and reproducibly identified high impulsive (HI) and low impulsive (LI) action phenotypes; HI action predicted high cue reactivity. Lower cortical 5-HT2CR membrane protein levels concomitant with higher levels of 5-HT2CR:postsynaptic density 95 complex distinguished HI rats from LI rats. The frequency of edited 5-HT2CR mRNA variants was elevated with the prediction that the protein population in HI rats favors those isoforms linked to reduced signaling capacity. Genetic loss of the mPFC 5-HT2CR induced aggregate impulsive action/cue reactivity, suggesting that depressed cortical 5-HT2CR tone confers vulnerability to these interlocked behaviors. Thus, impulsive action and cue reactivity appear to neuromechanistically overlap in rodents, with the 5-HT2CR functional status acting as a neural rheostat to regulate, in part, the intersection between these vulnerability behaviors. PMID:23939424

  15. New therapeutic opportunities for 5-HT2C receptor ligands in neuropsychiatric disorders.

    PubMed

    Di Giovanni, Giuseppe; De Deurwaerdère, Philippe

    2016-01-01

    The 5-HT2C receptor (R) displays a widespread distribution in the CNS and is involved in the action of 5-HT in all brain areas. Knowledge of its functional role in the CNS pathophysiology has been impaired for many years due to the lack of drugs capable of discriminating among 5-HT2R subtypes, and to a lesser extent to the 5-HT1B, 5-HT5, 5-HT6 and 5-HT7Rs. The situation has changed since the mid-90s due to the increased availability of new and selective synthesized compounds, the creation of 5-HT2C knock out mice, and the progress made in molecular biology. Many pharmacological classes of drugs including antipsychotics, antidepressants and anxiolytics display affinities toward 5-HT2CRs and new 5-HT2C ligands have been developed for various neuropsychiatric disorders. The 5-HT2CR is presumed to mediate tonic/constitutive and phasic controls on the activity of different central neurobiological networks. Preclinical data illustrate this complexity to a point that pharmaceutical companies developed either agonists or antagonists for the same disease. In order to better comprehend this complexity, this review will briefly describe the molecular pharmacology of 5-HT2CRs, as well as their cellular impacts in general, before addressing its central distribution in the mammalian brain. Thereafter, we review the preclinical efficacy of 5-HT2C ligands in numerous behavioral tests modeling human diseases, highlighting the multiple and competing actions of the 5-HT2CRs in neurobiological networks and monoaminergic systems. Notably, we will focus this evidence in the context of the physiopathology of psychiatric and neurological disorders including Parkinson's disease, levodopa-induced dyskinesia, and epilepsy. PMID:26617215

  16. Involvement of 5-HT3 receptors in the action of vortioxetine in rat brain: Focus on glutamatergic and GABAergic neurotransmission.

    PubMed

    Riga, Maurizio S; Sánchez, Connie; Celada, Pau; Artigas, Francesc

    2016-09-01

    The antidepressant vortioxetine is a 5-HT3-R, 5-HT7-R and 5-HT1D-R antagonist, 5-HT1B-R partial agonist, 5-HT1A-R agonist, and serotonin (5-HT) transporter (SERT) inhibitor. Vortioxetine occupies all targets at high therapeutic doses and only SERT and 5-HT3-R at low doses. Vortioxetine increases extracellular monoamine concentrations in rat forebrain more than selective serotonin reuptake inhibitors (SSRI) and shows pro-cognitive activity in preclinical models. Given its high affinity for 5-HT3-R (Ki = 3.7 nM), selectively expressed in GABA interneurons, we hypothesized that vortioxetine may disinhibit glutamatergic and monoaminergic neurotransmission following 5-HT3-R blockade. Here we assessed vortioxetine effect on pyramidal neuron activity and extracellular 5-HT concentration using in vivo extracellular recordings of rat medial prefrontal cortex (mPFC) pyramidal neurons and microdialysis in mPFC and ventral hippocampus (vHPC). Vortioxetine, but not escitalopram, increased pyramidal neuron discharge in mPFC. This effect was prevented by SR57227A (5-HT3-R agonist) and was mimicked by ondansetron (5-HT3-R antagonist) and by escitalopram/ondansetron combinations. In microdialysis experiments, ondansetron augmented the 5-HT-enhancing effect of escitalopram in mPFC and vHPC. Local ondansetron in vHPC augmented escitalopram effect, indicating the participation of intrinsic mechanisms. Since 5-HT neurons express GABAB receptors, we examined their putative involvement in controlling 5-HT release after 5-HT3-R blockade. Co-perfusion of baclofen (but not muscimol) reversed the increased 5-HT levels produced by vortioxetine and escitalopram/ondansetron combinations in vHPC. The present results suggest that vortioxetine increases glutamatergic and serotonergic neurotransmission in rat forebrain by blocking 5-HT3 receptors in GABA interneurons. PMID:27106166

  17. Effects of metformin on intestinal 5-hydroxytryptamine (5-HT) release and on 5-HT3 receptors.

    PubMed

    Cubeddu, L X; Bönisch, H; Göthert, M; Molderings, G; Racké, K; Ramadori, G; Miller, K J; Schwörer, H

    2000-01-01

    Nearly 30% of patients treated with metformin experience gastrointestinal side effects. Since release of 5-hydroxytryptamine (5-HT) from the intestine is associated with nausea, vomiting, and diarrhea, we examined whether metformin induces 5-HT release from the intestinal mucosa. In 40% of tissue biopsy specimens of human duodenal mucosa, metformin (1, 10, and 30 microM) caused an increase in 5-HT outflow by 35, 70, and 98%, respectively. Peak increases in 5-HT outflow were observed after 10-15 min exposure to metformin, returning to baseline levels after 25 min. Tetrodotoxin (1 microM) reduced by about 50% the metformin-evoked increase in 5-HT outflow (P<0.05). Metformin-evoked release was not affected by scopolamine + hexamethonium, propranolol, the 5-HT3 receptor antagonist dolasetron, naloxone, or the NK1 receptor antagonist L703606. In the presence of tetrodotoxin (1 microM), somatostatin (1 microM) further reduced metformin-induced 5-HT release by 15-20%. In view of the 5-HT releasing effects of selective 5-HT3 receptor agonists to which metformin (N-N-dimethylbiguanide) is structurally related, we investigated whether metformin directly interacts with 5-HT3 receptors. Receptor binding (inhibition of [3H]-GR65630 binding) and agonist effects (stimulation of [14C]-guanidinium influx) at 5-HT3 receptors were studied in murine neuroblastoma N1E-115 cells, which express functional 5-HT3 receptors. Metformin up to 0.3 mM failed to inhibit [3H]-GR65630 binding and to modify displacement of [3H]-GR65630 binding induced by 5-HT. 5-HT (3 microM) stimulated the influx of [14C]-guanidinium in intact N1E-115 cells. Metformin up to 1 mM failed to modify basal influx, 5-HT-induced influx, and 5-HT+ substance P-induced influx of [14C]-guanidinium. Our results indicate that metformin induces 5-HT3 receptor-independent release of 5-HT from human duodenal mucosa via neuronal and non-neuronal mechanisms. Part of the gastrointestinal side effects observed during treatment with

  18. 5-HT2A receptors are involved in cognitive but not antidepressant effects of fluoxetine.

    PubMed

    Castañé, Anna; Kargieman, Lucila; Celada, Pau; Bortolozzi, Analía; Artigas, Francesc

    2015-08-01

    The prefrontal cortex (PFC) plays a crucial role in cognitive and affective functions. It contains a rich serotonergic (serotonin, 5-HT) innervation and a high density of 5-HT receptors. Endogenous 5-HT exerts robust actions on the activity of pyramidal neurons in medial PFC (mPFC) via excitatory 5-HT2A and inhibitory 5-HT1A receptors, suggesting the involvement of 5-HT neurotransmission in cortical functions. However, the underlying mechanisms must be elucidated. Here we examine the role of 5-HT2A receptors in the processing of emotional and cognitive signals evoked by increasing the 5-HT tone after acute blockade of the 5-HT transporter. Fluoxetine (5-20mg/kg i.p.) dose-dependently reduced the immobility time in the tail-suspension test in wild-type (WT) and 5-HT2Aknockout (KO2A) mice, with non-significant differences between genotypes. Fluoxetine (10mg/kg i.p.) significantly impaired mice performance in the novel object recognition test 24h post-administration in WT, but not in KO2A mice. The comparable effect of fluoxetine on extracellular 5-HT in the mPFC of both genotypes suggests that presynaptic differences are not accountable. In contrast, single unit recordings of mPFC putative pyramidal neurons showed that fluoxetine (1.8-7.2mg/kg i.v.) significantly increased neuronal discharge in KO2A but not in WT mice. This effect is possibly mediated by an altered excitatory/inhibitory balance in the PFC in KO2A mice. Overall, the present results suggest that 5-HT2A receptors play a detrimental role in long-term memory deficits mediated by an excess 5-HT in PFC. PMID:25914158

  19. 5-HT potentiation of the GABAA response in the rat sacral dorsal commissural neurones

    PubMed Central

    Xu, Tian-Le; Pang, Zhi-Ping; Li, Ji-Shuo; Akaike, Norio

    1998-01-01

    The modulatory effect of 5-hydroxytryptamine (5-HT) on the γ-aminobutyric acidA (GABAA) response was investigated in the neurones freshly dissociated from the rat sacral dorsal commissural nucleus (SDCN) using the nystatin perforated patch recording configuration under the voltage-clamp conditions.5-HT potentiated GABA-induced Cl− current (IGABA) without affecting the reversal potential of IGABA and the apparent affinity of GABA to its receptor.α-Methyl-5-HT mimicked the potentiation effect of 5-HT on IGABA while ketanserine blocked it. 1-Oleoyl-2-acetyl-glycerol (OAG) potentiated IGABA, and the effect of 5-HT on IGABA was occluded by OAG pretreatment. In the presence of chelerythrine, 5-HT failed to potentiate IGABA, suggesting that protein kinase C (PKC) is involved in the pathway through which the activation of the 5-HT2 receptor potentiates the IGABA.The facilitatory effect of 5-HT on IGABA remained in the presence of BAPTA-AM. LiCl also had no effect on 5-HT-induced potentiation of IGABA.H-89, genistein, okadaic acid and pervanadate all had no effects on 5-HT potentiation of IGABA. Pertussis toxin treatment for 6–8 h did not block the facilitatory effect of 5-HT on IGABA.The present results show that GABAA receptor in the rat SDCN could be modulated in situ by 5-HT, one of the major transmitters involved in the supraspinal control of nociception, and that the phosphorylation of GABAA receptor by PKC may be sufficient to support such modulation. The results also strongly support the hypothesis that the cotransmission by 5-HT and GABA has an important role in the spinal cord. PMID:9690871

  20. Vortioxetine restores reversal learning impaired by 5-HT depletion or chronic intermittent cold stress in rats.

    PubMed

    Wallace, Ashley; Pehrson, Alan L; Sánchez, Connie; Morilak, David A

    2014-10-01

    Current treatments for depression, including serotonin-specific reuptake inhibitors (SSRIs), are only partially effective, with a high incidence of residual symptoms, relapse, and treatment resistance. Loss of cognitive flexibility, a component of depression, is associated with dysregulation of the prefrontal cortex. Reversal learning, a form of cognitive flexibility, is impaired by chronic stress, a risk factor for depression, and the stress-induced impairment in reversal learning is sensitive to chronic SSRI treatment, and is mimicked by serotonin (5-HT) depletion. Vortioxetine, a novel, multimodal-acting antidepressant, is a 5-HT3, 5-HT7 and 5-HT1D receptor antagonist, a 5-HT1B receptor partial agonist, a 5-HT1A receptor agonist, and inhibits the 5-HT transporter. Using adult male rats, we first investigated the direct effects of vortioxetine, acting at post-synaptic 5-HT receptors, on reversal learning that was compromised by 5-HT depletion using 4-chloro-DL-phenylalanine methyl ester hydrochloride (PCPA), effectively eliminating any contribution of 5-HT reuptake blockade. PCPA induced a reversal learning impairment that was alleviated by acute or sub-chronic vortioxetine administration, suggesting that post-synaptic 5-HT receptor activation contributes to the effects of vortioxetine. We then investigated the effects of chronic dietary administration of vortioxetine on reversal learning that had been compromised in intact animals exposed to chronic intermittent cold (CIC) stress, to assess vortioxetine's total pharmacological effect. CIC stress impaired reversal learning, and chronic vortioxetine administration prevented the reversal-learning deficit. Together, these results suggest that the direct effect of vortioxetine at 5-HT receptors may contribute to positive effects on cognitive flexibility deficits, and may enhance the effect of 5-HT reuptake blockade. PMID:24852131

  1. Evidence of 5-HT components in human sperm: implications for protein tyrosine phosphorylation and the physiology of motility

    PubMed Central

    Jiménez-Trejo, Francisco; Tapia-Rodríguez, Miguel; Cerbón, Marco; Kuhn, Donald M; Manjarrez-Gutiérrez, Gabriel; Mendoza-Rodríguez, C Adriana; Picazo, Ofir

    2016-01-01

    Serotonin (5-hydroxytryptamine; C10H12N2O (5-HT)) is produced in the CNS and in some cells of peripheral tissues. In the mammalian male reproductive system, both 5-HT and tryptophan hydroxylase (TPH) have been described in Leydig cells of the testis and in principal cells of the caput epididymis. In capacitated hamster sperm, it has been shown that 5-HT promotes the acrosomal reaction. The aim of this work was to explore the existence of components of the serotoninergic system and their relevance in human sperm physiology. We used both immunocytochemistry and western blot to detect serotoninergic markers such as 5-HT, TPH1, MAOA, 5-HT1B, 5-HT3, and 5HTT; HPLC for TPH enzymatic activity; Computer Assisted Semen Analysis assays to measure sperm motility parameters and pharmacological approaches to show the effect of 5-HT in sperm motility and tyrosine phosphorylation was assessed by western blot. We found the presence of serotoninergic markers (5-HT, TPH1, MAOA, 5-HT1B, 5-HT2A, 5-HT3, 5-HTT, and TPH enzymatic activity) in human sperm. In addition, we observed a significant increase in tyrosine phosphorylation and changes in sperm motility after 5-HT treatment. In conclusion, our data demonstrate the existence of components of a serotoninergic system in human sperm and support the notion for a functional role of 5-HT in mammalian sperm physiology, which can be modulated pharmacologically. PMID:23028123

  2. Evaluation of the ocular hypotensive response of serotonin 5-HT1A and 5-HT2 receptor ligands in conscious ocular hypertensive cynomolgus monkeys.

    PubMed

    May, Jesse A; McLaughlin, Marsha A; Sharif, Najam A; Hellberg, Mark R; Dean, Thomas R

    2003-07-01

    Published investigations of serotonin-1A (5-hydroxytryptamine1A; 5-HT1A) receptor agonists and serotonin-2A (5-hydroxytryptamine2A; 5-HT2A) receptor antagonists in nonprimate species provide conflicting results with regard to their intraocular pressure-lowering efficacy. Thus, their therapeutic utility in the treatment of human glaucoma has been confusing. We evaluated the effect of selected 5-HT1A agonists and 5-HT2A receptor antagonists on intraocular pressure in a nonhuman primate model, the conscious cynomolgus monkey with laser-induced ocular hypertension. Neither selective 5-HT1A agonists [e.g., R-8-hydroxy-2-(di-n-propylamino)tetralin and flesinoxan] nor selective 5-HT2 receptor antagonists [e.g., R-(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl]-4-piperidinemethanol (M-100907) and 6-chloro-2,3-dihydro-5-methyl-N-[6-[(2-methyl-3-pyridinyl)oxy]-3-pyridinyl]-1H-indole-1-carboxamide (SB-242084)] lowered intraocular pressure in the primate model following topical ocular administration. However, compounds that function as agonists at both the 5-HT1A and 5-HT2 receptors were found to effectively lower intraocular pressure in the model: 5-hydroxy-alpha-methyltryptamine, 5-methoxy-alpha-methyltryptamine, 5-hydroxy-N,N-dimethyltryptamine (bufotenine), and 5-methoxy-N,N-dimethyltryptamine. Furthermore, the selective 5-HT2 receptor agonist R-(-)-1-(4-iodo-2,5-dimethoxyphenyl)-2-aminopropane lowered intraocular pressure in the primate model, demonstrating a pharmacological response associated with activation of the 5-HT2 receptor. These observations suggest that compounds that function as efficient agonists at 5-HT2 receptors should be considered as potential agents for the control of intraocular pressure in the treatment of ocular hypertension and glaucoma in humans. PMID:12676887

  3. Role of 5-HT5A and 5-HT1B/1D receptors in the antinociception produced by ergotamine and valerenic acid in the rat formalin test.

    PubMed

    Vidal-Cantú, Guadalupe C; Jiménez-Hernández, Mildred; Rocha-González, Héctor I; Villalón, Carlos M; Granados-Soto, Vinicio; Muñoz-Islas, Enriqueta

    2016-06-15

    Sumatriptan, dihydroergotamine and methysergide inhibit 1% formalin-induced nociception by activation of peripheral 5-HT1B/1D receptors. This study set out to investigate the pharmacological profile of the antinociception produced by intrathecal and intraplantar administration of ergotamine (a 5-HT1B/1D and 5-HT5A/5B receptor agonist) and valerenic acid (a partial agonist at 5-HT5A receptors). Intraplantar injection of 1% formalin in the right hind paw resulted in spontaneous flinching behavior of the injected hindpaw of female Wistar rats. Intrathecal ergotamine (15nmol) or valerenic acid (1 nmol) blocked in a dose dependent manner formalin-induced nociception. The antinociception by intrathecal ergotamine (15nmol) or valerenic acid (1nmol) was partly or completely blocked by intrathecal administration of the antagonists: (i) methiothepin (non-selective 5-HT5A/5B; 0.01-0.1nmol); (ii) SB-699551 (selective 5-HT5A; up to 10nmol); (iii) anti-5-HT5A antibody; (iv) SB-224289 (selective 5-HT1B; 0.1-1nmol); or (v) BRL-15572 (selective 5-HT1D; 0.1-1nmol). Likewise, antinociception by intraplantar ergotamine (15nmol) and valerenic acid (10nmol) was: (i) partially blocked by methiothepin (1nmol), SB-699551 (10nmol) or SB-224289 (1nmol); and (ii) abolished by BRL-15572 (1nmol). The above doses of antagonists (which did not affect per se the formalin-induced nociception) were high enough to completely block their respective receptors. Our results suggest that ergotamine and valerenic acid produce antinociception via 5-HT5A and 5-HT1B/1D receptors located at both spinal and peripheral sites. This provides new evidence for understanding the modulation of nociceptive pathways in inflammatory pain. PMID:27068146

  4. Novel multitarget-directed ligands (MTDLs) with acetylcholinesterase (AChE) inhibitory and serotonergic subtype 4 receptor (5-HT4R) agonist activities as potential agents against Alzheimer's disease: the design of donecopride.

    PubMed

    Rochais, Christophe; Lecoutey, Cédric; Gaven, Florence; Giannoni, Patrizia; Hamidouche, Katia; Hedou, Damien; Dubost, Emmanuelle; Genest, David; Yahiaoui, Samir; Freret, Thomas; Bouet, Valentine; Dauphin, François; Sopkova de Oliveira Santos, Jana; Ballandonne, Céline; Corvaisier, Sophie; Malzert-Fréon, Aurélie; Legay, Remi; Boulouard, Michel; Claeysen, Sylvie; Dallemagne, Patrick

    2015-04-01

    In this work, we describe the synthesis and in vitro evaluation of a novel series of multitarget-directed ligands (MTDL) displaying both nanomolar dual-binding site (DBS) acetylcholinesterase inhibitory effects and partial 5-HT4R agonist activity, among which donecopride was selected for further in vivo evaluations in mice. The latter displayed procognitive and antiamnesic effects and enhanced sAPPα release, accounting for a potential symptomatic and disease-modifying therapeutic benefit in the treatment of Alzheimer's disease. PMID:25793650

  5. Density and Function of Central Serotonin (5-HT) Transporters, 5-HT1A and 5-HT2A Receptors, and Effects of their Targeting on BTBR T+tf/J Mouse Social Behavior

    PubMed Central

    Gould, Georgianna G.; Hensler, Julie G.; Burke, Teresa F.; Benno, Robert H.; Onaivi, Emmanuel S.; Daws, Lynette C.

    2010-01-01

    BTBR mice are potentially useful tools for autism research because their behavior parallels core social interaction impairments and restricted-repetitive behaviors. Altered regulation of central serotonin (5-HT) neurotransmission may underlie such behavioral deficits. To test this, we compared 5-HT transporter (SERT), 5-HT1A and 5-HT2A receptor densities among BTBR and C57 strains. Autoradiographic [3H] cyanoimipramine (1nM) binding to SERT was 20–30% lower throughout the adult BTBR brain as compared to C57BL/10J mice. In hippocampal membrane homogenates [3H] citalopram maximal binding (Bmax) to SERT was 95 ± 13 fmol/mg protein in BTBR and 171 ± 20 fmol/mg protein in C57BL/6J mice, and the BTBR dissociation constant (KD) was 2 ± 0.3 nM vs. 1.1 ± 0.2 in C57BL/6J mice. Hippocampal 5-HT1A and 5-HT2A receptor binding was similar among strains. However, 8-OH-DPAT-stimulated [35S] GTPγS binding in the BTBR hippocampal CA1 region was 28% higher, indicating elevated 5-HT1A capacity to activate G-proteins. In BTBR mice, the SERT blocker, fluoxetine (10 mg/kg) and the 5-HT1A receptor partial-agonist, buspirone (2 mg/kg) enhanced social interactions. The D2/5-HT2 receptor antagonist, risperidone (0.1 mg/kg) reduced marble burying but failed to improve sociability. Overall, altered SERT and/or 5-HT1A functionality in hippocampus could contribute to the relatively low sociability of BTBR mice. PMID:21070242

  6. No evidence that MDMA-induced enhancement of emotional empathy is related to peripheral oxytocin levels or 5-HT1a receptor activation.

    PubMed

    Kuypers, Kim P C; de la Torre, Rafael; Farre, Magi; Yubero-Lahoz, Samanta; Dziobek, Isabel; Van den Bos, Wouter; Ramaekers, Johannes G

    2014-01-01

    The present study aimed at investigating the effect of MDMA on measures of empathy and social interaction, and the roles of oxytocin and the 5-HT1A receptor in these effects. The design was placebo-controlled within-subject with 4 treatment conditions: MDMA (75 mg), with or without pindolol (20 mg), oxytocin nasal spray (40 IU+16 IU) or placebo. Participants were 20 healthy poly-drug MDMA users, aged between 18-26 years. Cognitive and emotional empathy were assessed by means of the Reading the Mind in the Eyes Test and the Multifaceted Empathy Test. Social interaction, defined as trust and reciprocity, was assessed by means of a Trust Game and a Social Ball Tossing Game. Results showed that MDMA selectively affected emotional empathy and left cognitive empathy, trust and reciprocity unaffected. When combined with pindolol, these effects remained unchanged. Oxytocin did not affect measures of empathy and social interaction. Changes in emotional empathy were not related to oxytocin plasma levels. It was concluded that MDMA (75 mg) selectively enhances emotional empathy in humans. While the underlying neurobiological mechanism is still unknown, it is suggested that peripheral oxytocin does not seem to be the main actor in this; potential candidates are the serotonin 2A and the vasopressin 1A receptors. Trial registration: MDMA & PSB NTR 2636. PMID:24972084

  7. Phosphotidylinositol turnover in vascular, uterine, fundal, and tracheal smooth muscle: effect of serotonin (5HT)

    SciTech Connect

    Cohen, M.L.; Wittenauer, L.A.

    1986-03-01

    In brain, platelets, and aorta, 5HT has been reported to increase phosphotidylinositol turnover, an effect linked to 5HT/sub 2/ receptors. The authors examined the effect of 5HT on /sup 3/H-inositol-1-phosphate (/sup 3/H-I-P) in tissues possessing 5HT/sub 2/ receptors that mediate contraction to 5HT (rat jugular vein, aorta, uterus and guinea pig trachea) and in a tissue in which contraction to 5HT is not mediated by 5HT/sub 2/ receptors (rat stomach fundus). Tissues were incubated (37/sup 0/C, 95% O/sub 2/, 5% CO/sub 2/) with /sup 3/H-inositol (90 min), washed, LiCl/sub 2/ (10 mM) and 5HT added for 90 min, extracted, and /sup 3/H-I-P eluted from a Dowex-1 column. Basal /sup 3/H-I-P was 10-fold higher in the uterus than in the other tissues. 5HT (10/sup -6/-10/sup -4/M) increased /sup 3/H-I-P in the jugular vein, aorta, and uterus but not in the trachea or fundus. Maximum increase was greatest in the jugular vein (8-fold) with an ED/sub 50/ of 0.4 ..mu..M 5HT. The selective 5HT/sub 2/ receptor blocker, LY53857 (10/sup -8/M) antagonized the increase in /sup 3/H-I-P by 5HT in the jugular vein, aorta and uterus. Pargyline (10/sup -5/M) added to the trachea and fundus did not unmask an effect of 5HT (10/sup -4/M). These data suggest that (1) the jugular vein produced the most sensitive response to 5HT-induced increases in /sup 3/H-I-P, (2) increases in /sup 3/H-I-P by 5HT in smooth muscle may be linked to 5HT/sub 2/ receptors and (3) activation of 5HT/sub 2/ receptors as occurred in the trachea will not always increase /sup 3/H-I-P.

  8. Synthesis and biological evaluation of 4-nitroindole derivatives as 5-HT2A receptor antagonists.

    PubMed

    Hayat, Faisal; Viswanath, Ambily Nath Indu; Pae, Ae Nim; Rhim, Hyewhon; Park, Woo-Kyu; Choo, Hea-Young Park

    2015-03-15

    A novel series of 4-nitroindole sulfonamides containing a methyleneamino-N,N-dimethylformamidine were prepared. The binding of these compounds to 5-HT2A and 5-HT2C was evaluated, and most of the compounds showed IC50 values of less than 1μM, and exhibited high selectivity for the 5-HT2C receptor. However, little selectivity was observed in the functional assay for 5-HT6 receptors. The computational modeling studies further validated the biological results and also demonstrated a reasonable correlation between the activity of compounds and the mode of superimposition with specified pharmacophoric features. PMID:25684421

  9. Down-regulation of 5-HT1B and 5-HT1D receptors inhibits proliferation, clonogenicity and invasion of human pancreatic cancer cells.

    PubMed

    Gurbuz, Nilgun; Ashour, Ahmed A; Alpay, S Neslihan; Ozpolat, Bulent

    2014-01-01

    Pancreatic ductal adenocarcinoma is characterized by extensive local tumor invasion, metastasis and early systemic dissemination. The vast majority of pancreatic cancer (PaCa) patients already have metastatic complications at the time of diagnosis, and the death rate of this lethal type of cancer has increased over the past decades. Thus, efforts at identifying novel molecularly targeted therapies are priorities. Recent studies have suggested that serotonin (5-HT) contributes to the tumor growth in a variety of cancers including prostate, colon, bladder and liver cancer. However, there is lack of evidence about the impact of 5-HT receptors on promoting pancreatic cancer. Having considered the role of 5-HT-1 receptors, especially 5-HT1B and 5-HT1D subtypes in different types of malignancies, the aim of this study was to investigate the role of 5-HT1B and 5-HT1D receptors in PaCa growth and progression and analyze their potential as cytotoxic targets. We found that knockdown of 5-HT1B and 5-HT1D receptors expression, using specific small interfering RNA (siRNA), induced significant inhibition of proliferation and clonogenicity of PaCa cells. Also, it significantly suppressed PaCa cells invasion and reduced the activity of uPAR/MMP-2 signaling and Integrin/Src/Fak-mediated signaling, as integral tumor cell pathways associated with invasion, migration, adhesion, and proliferation. Moreover, targeting 5-HT1B and 5-HT1D receptors down-regulates zinc finger ZEB1 and Snail proteins, the hallmarks transcription factors regulating epithelial-mesenchymal transition (EMT), concomitantly with up-regulating of claudin-1 and E-Cadherin. In conclusion, our data suggests that 5-HT1B- and 5-HT1D- mediated signaling play an important role in the regulation of the proliferative and invasive phenotype of PaCa. It also highlights the therapeutic potential of targeting of 5-HT1B/1D receptors in the treatment of PaCa, and opens a new avenue for biomarkers identification, and valuable new

  10. Down-regulation of 5-HT1B and 5-HT1D receptors inhibits proliferation, clonogenicity and invasion of human pancreatic cancer cells.

    PubMed

    Gurbuz, Nilgun; Ashour, Ahmed A; Alpay, S Neslihan; Ozpolat, Bulent

    2014-01-01

    Pancreatic ductal adenocarcinoma is characterized by extensive local tumor invasion, metastasis and early systemic dissemination. The vast majority of pancreatic cancer (PaCa) patients already have metastatic complications at the time of diagnosis, and the death rate of this lethal type of cancer has increased over the past decades. Thus, efforts at identifying novel molecularly targeted therapies are priorities. Recent studies have suggested that serotonin (5-HT) contributes to the tumor growth in a variety of cancers including prostate, colon, bladder and liver cancer. However, there is lack of evidence about the impact of 5-HT receptors on promoting pancreatic cancer. Having considered the role of 5-HT-1 receptors, especially 5-HT1B and 5-HT1D subtypes in different types of malignancies, the aim of this study was to investigate the role of 5-HT1B and 5-HT1D receptors in PaCa growth and progression and analyze their potential as cytotoxic targets. We found that knockdown of 5-HT1B and 5-HT1D receptors expression, using specific small interfering RNA (siRNA), induced significant inhibition of proliferation and clonogenicity of PaCa cells. Also, it significantly suppressed PaCa cells invasion and reduced the activity of uPAR/MMP-2 signaling and Integrin/Src/Fak-mediated signaling, as integral tumor cell pathways associated with invasion, migration, adhesion, and proliferation. Moreover, targeting 5-HT1B and 5-HT1D receptors down-regulates zinc finger ZEB1 and Snail proteins, the hallmarks transcription factors regulating epithelial-mesenchymal transition (EMT), concomitantly with up-regulating of claudin-1 and E-Cadherin. In conclusion, our data suggests that 5-HT1B- and 5-HT1D-mediated signaling play an important role in the regulation of the proliferative and invasive phenotype of PaCa. It also highlights the therapeutic potential of targeting of 5-HT1B/1D receptors in the treatment of PaCa, and opens a new avenue for biomarkers identification, and valuable new

  11. Serotonin receptor diversity in the human colon: Expression of serotonin type 3 receptor subunits 5-HT3C, 5-HT3D, and 5-HT3E

    PubMed Central

    Kapeller, Johannes; Möller, Dorothee; Lasitschka, Felix; Autschbach, Frank; Hovius, Ruud; Rappold, Gudrun; Brüss, Michael; Gershon, Michael D.

    2011-01-01

    Since the first description of 5-HT3 receptors more than 50 years ago, there has been speculation about the molecular basis of their receptor heterogeneity. We have cloned the genes encoding novel 5-HT3 subunits 5-HT3C, 5-HT3D, and 5-HT3E and have shown that these subunits are able to form functional heteromeric receptors when coexpressed with the 5-HT3A subunit. However, whether these subunits are actually expressed in human tissue remained to be confirmed. In the current study, we performed immunocytochemistry to locate the 5-HT3A as well as the 5-HT3C, 5-HT3D, and 5-HT3E subunits within the human colon. Western blot analysis was used to confirm subunit expression, and RT-PCR was employed to detect transcripts encoding 5-HT3 receptor subunits in microdissected tissue samples. This investigation revealed, for the first time, that 5-HT3C, 5-HT3D, and 5-HT3E subunits are coexpressed with 5-HT3A in cell bodies of myenteric neurons. Furthermore, 5-HT3A and 5-HT3D were found to be expressed in submucosal plexus of the human large intestine. These data provide a strong basis for future studies of the roles that specific 5-HT3 receptor subtypes play in the function of the enteric and central nervous systems and the contribution that specific 5-HT3 receptors make to the pathophysiology of gastrointestinal disorders such as irritable bowel syndrome and dyspepsia. PMID:21192076

  12. Characterization of a ( sub 3 H)-5-hydroxtyryptamine binding site in rabbit caudate nucleus that differs from the 5-HT sub 1A , 5-HT sub 1B , 5-HT sub 1C and 5-HT sub 1D subtypes

    SciTech Connect

    Xiong, Wencheng; Nelson, D.L. )

    1989-01-01

    ({sup 3}H)5-HT binding sites were analyzed in membranes prepared from the rabbit caudate nucleus (CN). ({sup 3}H)5-HT labeled both 5-HT{sub 1A} and 5-HT{sub 1C} recognition sites, defined by nanomolar affinity for 8-OH-DPAT and mesulergine respectively; however, these represented only a fraction of total specific ({sup 3}H)5-HT binding. Saturation experiments of ({sup 3}H)5-HT binding in the presence of 100 nM 8-OH-DPAT and 100 nM mesulergine to block 5-HT{sub 1A} and 5-HT{sub 1C} sites revealed that non-5-HT{sub 1A}/non-5-HT{sub 1C} sites represented about 60% of the total 5-HT{sub 1} sites and that they exhibited saturable, high affinity, and homogeneous binding. The pharmacological profile of the non-5-HT{sub 1A}/non-5-HT{sub 1C} sites (designated 5-HT{sub 1R}) also differed from that of 5-HT{sub 1B} and 5-HT{sub 2} sites, but was similar to that of the 5-HT{sub 1D} site. However, significant differences existed between the 5-HT{sub 1D} and 5-HT{sub 1B} sites for their K{sub i} values for spiperone, spirilene, metergoline, and methiothepin. The study of modulatory agents also showed differences between the 5-HT{sub 1R} and 5-HT{sub 1D} sites. In addition, calcium enhanced the effects of GTP on the 5-HT{sub 1R} sites, whereas calcium inhibited the GTP effect on the 5-HT{sub 1D} sites.

  13. 5-HT1A-receptor agonist modified amygdala activity and amygdala-associated social behavior in a valproate-induced rat autism model.

    PubMed

    Wang, Chao-Chuan; Lin, Hui-Ching; Chan, Yun-Han; Gean, Po-Wu; Yang, Yen Kung; Chen, Po See

    2013-10-01

    Accumulating evidence suggests that dysfunction of the amygdala is related to abnormal fear processing, anxiety, and social behaviors noted in autistic spectrum disorders (ASDs). In addition, studies have shown that disrupted brain serotonin homeostasis is linked to ASD. With a valproate (VPA)-induced rat ASD model, we investigated the possible role of amygdala serotonin homeostasis in autistic phenotypes and further explored the underlying mechanism. We first discovered that the distribution of tryptophan hydroxylase immunoreactivity in the caudal raphe system was modulated on postnatal day (PD) 28 of the VPA-exposed offspring. Then, we found a significantly higher serotonin transporter availability in the amygdala of the VPA-exposed offspring on PD 56 by using single photon emission computed tomography and computed tomography co-registration following injection of (123)I-labeled 2-((2-(dimethylamino)methyl)phenyl)thio)-5-iodophenylamine((123)I[ADAM]). Furthermore, treatment with 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), a 5-HT1A receptor agonist, increased social interaction and improved fear memory extinction in the VPA-exposed offspring. 8-OH-DPAT treatment also reversed the characteristics of miniature excitatory post-synaptic currents as well as paired pulse facilitation observed in lateral amygdala slices. These results provided further evidence to support the role of the amygdala in characteristic behavioral changes in the rat ASD model. The serotonergic projections that modulate the amygdala function might play a certain role in the development and treatment of behavioral symptoms exhibited in individuals with ASD. PMID:23823694

  14. Characterisation of the 5-HT receptor binding profile of eletriptan and kinetics of [3H]eletriptan binding at human 5-HT1B and 5-HT1D receptors.

    PubMed

    Napier, C; Stewart, M; Melrose, H; Hopkins, B; McHarg, A; Wallis, R

    1999-03-01

    The affinity of eletriptan ((R)-3-(1-methyl-2-pyrrolidinylmethyl)-5-[2-(phenylsulphonyl )ethyl]-1H-indole) for a range of 5-HT receptors was compared to values obtained for other 5-HT1B/1D receptor agonists known to be effective in the treatment of migraine. Eletriptan, like sumatriptan, zolmitriptan, naratriptan and rizatriptan had highest affinity for the human 5-HT1B, 5-HT1D and putative 5-ht1f receptor. Kinetic studies comparing the binding of [3H]eletriptan and [3H]sumatriptan to the human recombinant 5-HT1B and 5-HT1D receptors expressed in HeLa cells revealed that both radioligands bound with high specificity (>90%) and reached equilibrium within 10-15 min. However, [3H]eletriptan had over 6-fold higher affinity than [3H]sumatriptan at the 5-HT1D receptor (K(D)): 0.92 and 6.58 nM, respectively) and over 3-fold higher affinity than [3H]sumatriptan at the 5-HT1B receptor (K(D): 3.14 and 11.07 nM, respectively). Association and dissociation rates for both radioligands could only be accurately determined at the 5-HT1D receptor and then only at 4 degrees C. At this temperature, [3H]eletriptan had a significantly (P<0.05) faster association rate (K(on) 0.249 min(-1) nM(-1)) than [3H]sumatriptan (K(on) 0.024 min(-1) nM(-1)) and a significantly (P<0.05) slower off-rate (K(off) 0.027 min(-1) compared to 0.037 min(-1) for [3H]sumatriptan). These data indicate that eletriptan is a potent ligand at the human 5-HT1B, 5-HT1D, and 5-ht1f receptors and are consistent with its potent vasoconstrictor activity and use as a drug for the acute treatment of migraine headache. PMID:10193663

  15. Serotonin 5-HT4 receptors and forebrain cholinergic system: receptor expression in identified cell populations.

    PubMed

    Peñas-Cazorla, Raúl; Vilaró, M Teresa

    2015-11-01

    Activation of serotonin 5-HT4 receptors has pro-cognitive effects on memory performance. The proposed underlying neurochemical mechanism is the enhancement of acetylcholine release in frontal cortex and hippocampus elicited by 5-HT4 agonists. Although 5-HT4 receptors are present in brain areas related to cognition, e.g., hippocampus and cortex, the cellular localization of the receptors that might modulate acetylcholine release is unknown at present. We have analyzed, using dual label in situ hybridization, the cellular localization of 5-HT4 receptor mRNA in identified neuronal populations of the rat basal forebrain, which is the source of the cholinergic innervation to cortex and hippocampus. 5-HT4 receptor mRNA was visualized with isotopically labeled oligonucleotide probes, whereas cholinergic, glutamatergic, GABAergic and parvalbumin-synthesizing neurons were identified with digoxigenin-labeled oligonucleotide probes. 5-HT4 receptor mRNA was not detected in the basal forebrain cholinergic cell population. In contrast, basal forebrain GABAergic, parvalbumin synthesizing, and glutamatergic cells contained 5-HT4 receptor mRNA. Hippocampal and cortical glutamatergic neurons also express this receptor. These results indicate that 5-HT4 receptors are not synthesized by cholinergic cells, and thus would be absent from cholinergic terminals. In contrast, several non-cholinergic cell populations within the basal forebrain and its target hippocampal and cortical areas express these receptors and are thus likely to mediate the enhancement of acetylcholine release elicited by 5-HT4 agonists. PMID:25183542

  16. Role of central vagal 5-HT3 receptors in gastrointestinal physiology and pathophysiology

    PubMed Central

    Browning, Kirsteen N.

    2015-01-01

    Vagal neurocircuits are vitally important in the co-ordination and modulation of GI reflexes and homeostatic functions. 5-hydroxytryptamine (5-HT; serotonin) is critically important in the regulation of several of these autonomic gastrointestinal (GI) functions including motility, secretion and visceral sensitivity. While several 5-HT receptors are involved in these physiological responses, the ligand-gated 5-HT3 receptor appears intimately involved in gut-brain signaling, particularly via the afferent (sensory) vagus nerve. 5-HT is released from enterochromaffin cells in response to mechanical or chemical stimulation of the GI tract which leads to activation of 5-HT3 receptors on the terminals of vagal afferents. 5-HT3 receptors are also present on the soma of vagal afferent neurons, including GI vagal afferent neurons, where they can be activated by circulating 5-HT. The central terminals of vagal afferents also exhibit 5-HT3 receptors that function to increase glutamatergic synaptic transmission to second order neurons of the nucleus tractus solitarius within the brainstem. While activation of central brainstem 5-HT3 receptors modulates visceral functions, it is still unclear whether central vagal neurons, i.e., nucleus of the tractus solitarius (NTS) and dorsal motor nucleus of the vagus (DMV) neurons themselves also display functional 5-HT3 receptors. Thus, activation of 5-HT3 receptors may modulate the excitability and activity of gastrointestinal vagal afferents at multiple sites and may be involved in several physiological and pathophysiological conditions, including distention- and chemical-evoked vagal reflexes, nausea, and vomiting, as well as visceral hypersensitivity. PMID:26578870

  17. Design and synthesis of dual 5-HT1A and 5-HT7 receptor ligands.

    PubMed

    Ofori, Edward; Zhu, Xue Y; Etukala, Jagan R; Peprah, Kwakye; Jordan, Kamanski R; Adkins, Adia A; Bricker, Barbara A; Kang, Hye J; Huang, Xi-Ping; Roth, Bryan L; Ablordeppey, Seth Y

    2016-08-15

    5-HT1A and 5-HT7 receptors have been at the center of discussions recently due in part to their major role in the etiology of major central nervous system diseases such as depression, sleep disorders, and schizophrenia. As part of our search to identify dual targeting ligands for these receptors, we have carried out a systematic modification of a selective 5HT7 receptor ligand culminating in the identification of several dual 5-HT1A and 5-HT7 receptor ligands. Compound 16, a butyrophenone derivative of tetrahydroisoquinoline (THIQ), was identified as the most potent agent with low nanomolar binding affinities to both receptors. Interestingly, compound 16 also displayed moderate affinity to other clinically relevant dopamine receptors. Thus, it is anticipated that compound 16 may serve as a lead for further exploitation in our quest to identify new ligands with the potential to treat diseases of CNS origin. PMID:27312422

  18. Cervical spinal cord injury upregulates ventral spinal 5-HT2A receptors.

    PubMed

    Fuller, David D; Baker-Herman, Tracy L; Golder, Francis J; Doperalski, Nicholas J; Watters, Jyoti J; Mitchell, Gordon S

    2005-02-01

    Following chronic C2 spinal hemisection (C2HS), crossed spinal pathways to phrenic motoneurons exhibit a slow, spontaneous increase in efficacy by a serotonin (5-HT)-dependent mechanism associated with 5-HT2A receptor activation. Further, the spontaneous appearance of cross-phrenic activity following C2HS is accelerated and enhanced by exposure to chronic intermittent hypoxia (CIH). We hypothesized that chronic C2HS would increase 5-HT and 5-HT2A receptor expression in ventral cervical spinal segments containing phrenic motoneurons. In addition, we hypothesized that CIH exposure would further increase 5-HT and 5-HT2A receptor density in this region. Control, sham-operated, and C2HS Sprague-Dawley rats were studied following normoxia or CIH (11% O2-air; 5-min intervals; nights 7-14 post-surgery). At 2 weeks post-surgery, ventral spinal gray matter extending from C4 and C5 was isolated ipsilateral and contralateral to C2HS. Neither C2HS nor CIH altered 5-HT concentration measured with an ELISA on either side of the spinal cord. However, 5-HT2A receptor expression assessed with immunoblots increased in ipsilateral gray matter following C2HS, an effect independent of CIH. Immunocytochemistry revealed increased 5-HT2A receptor expression on identified phrenic motoneurons (p<0.05), as well as in the surrounding gray matter. Contralateral to injury, 5-HT2A receptor expression was elevated in CIH, but not normoxic C2HS rats (p<0.05). Our data are consistent with the hypothesis that spontaneous increase in 5-HT2A receptor expression on or near phrenic motoneurons contributes to strengthened crossed-spinal synaptic pathways to phrenic motoneurons following C2HS. PMID:15716627

  19. 5-Chloroindole: a potent allosteric modulator of the 5-HT3 receptor

    PubMed Central

    Newman, Amy S; Batis, Nikolaos; Grafton, Gillian; Caputo, Francesca; Brady, Catherine A; Lambert, Jeremy J; Peters, John A; Gordon, John; Brain, Keith L; Powell, Andrew D; Barnes, Nicholas M

    2013-01-01

    Background and Purpose The 5-HT3 receptor is a ligand-gated ion channel that is modulated allosterically by various compounds including colchicine, alcohols and volatile anaesthetics. However the positive allosteric modulators (PAMs) identified to date have low affinity, which hinders investigation because of non-selective effects at pharmacologically active concentrations. The present study identifies 5-chloroindole (Cl-indole) as a potent PAM of the 5-HT3 receptor. Experimental Approach 5-HT3 receptor function was assessed by the increase in intracellular calcium and single-cell electrophysiological recordings in HEK293 cells stably expressing the h5-HT3A receptor and also the mouse native 5-HT3 receptor that increases neuronal contraction of bladder smooth muscle. Key Results Cl-indole (1–100 μM) potentiated agonist (5-HT) and particularly partial agonist [(S)-zacopride, DDP733, RR210, quipazine, dopamine, 2-methyl-5-HT, SR57227A, meta chlorophenyl biguanide] induced h5-HT3A receptor-mediated responses. This effect of Cl-indole was also apparent at the mouse native 5-HT3 receptor. Radioligand-binding studies identified that Cl-indole induced a small (∼twofold) increase in the apparent affinity of 5-HT for the h5-HT3A receptor, whereas there was no effect upon the affinity of the antagonist, tropisetron. Cl-indole was able to reactivate desensitized 5-HT3 receptors. In contrast to its effect on the 5-HT3 receptor, Cl-indole did not alter human nicotinic α7 receptor responses. Conclusions and Implications The present study identifies Cl-indole as a relatively potent and selective PAM of the 5-HT3 receptor; such compounds will aid investigation of the molecular basis for allosteric modulation of the 5-HT3 receptor and may assist the discovery of novel therapeutic drugs targeting this receptor. Linked Articles Recent reviews on allosteric modulation can be found at: Kenakin, T (2013). New concepts in pharmacological efficacy at 7TM receptors: IUPHAR Review 2

  20. Cholecystokinin release mediated by 5-HT3 receptors in rat cerebral cortex and nucleus accumbens.

    PubMed Central

    Paudice, P.; Raiteri, M.

    1991-01-01

    1. The effects of 5-hydroxytryptamine (5-HT) on the release of cholexystokinin-like immunoreactivity (CCK-LI) were examined in synaptosomes prepared from rat cerebral cortex and nucleus accumbens and depolarized by superfusion with 15 mM KCl. 2. In both areas 5-HT, tested between 0.1 and 100 nM, increased the calcium-dependent, depolarization-evoked CCK-LI release in a concentration-related manner. The concentration-response curves did not differ significantly between the two brain areas (EC50: 0.4 +/- 0.045 nM and 0.48 +/- 0.053 nM, respectively, in cortical and n. accumbens synaptosomes; maximal effect: about 60% at 10 nM 5-HT). 3. The 5-HT1/5-HT2 receptor antagonist methiothepin (300 nM) did not affect the CCK-LI release elicited by 10 nM 5-HT. However, the effects of 10 nM 5-HT were antagonized in a concentration-dependent manner by the 5-HT3 receptor antagonists (3 alpha-tropanyl)-1H-indole-3-carboxylic acid ester (ICS 205-930; 0.1-100 nM; IC50: 3.56 +/- 0.42 nM in the cortex and 3.90 +/- 0.50 nM in the n. accumbens) and ondasetron (IC50: 8.15 +/- 0.73 nM in the cerebral cortex). 5-HT (10 nM) was also strongly antagonized by 100 nM 1 alpha H, 3 alpha 5 alpha H-tropan-3-yl-3,5-dichlorobenzoate (MDL 72222) another blocker of the 5-HT3 receptor. Moreover, the 5-HT3 receptor agonist 1-phenylbiguanide (tested in the cerebral cortex between 0.1 and 100 nM) enhanced CCK-LI release in a manner almost identical to that of 5-HT (EC50 = 0.64 +/- 0.071 nM). 4. It is concluded that 5-HT can act as a potent releaser of CCK-LI in rat cerebrocortex and nucleus accumbens through the activation of receptors of the 5-HT3 type situated on the CCK-releasing terminals. This interaction may provide a rationale for the clinical development of both 5-HT3 and CCK receptor antagonists as novel anxiolytic drugs. PMID:1933141

  1. Functional selectivity of hallucinogenic phenethylamine and phenylisopropylamine derivatives at human 5-hydroxytryptamine (5-HT)2A and 5-HT2C receptors.

    PubMed

    Moya, Pablo R; Berg, Kelly A; Gutiérrez-Hernandez, Manuel A; Sáez-Briones, Patricio; Reyes-Parada, Miguel; Cassels, Bruce K; Clarke, William P

    2007-06-01

    2,5-Dimethoxy-4-substituted phenylisopropylamines and phenethylamines are 5-hydroxytryptamine (serotonin) (5-HT)(2A/2C) agonists. The former are partial to full agonists, whereas the latter are partial to weak agonists. However, most data come from studies analyzing phospholipase C (PLC)-mediated responses, although additional effectors [e.g., phospholipase A(2) (PLA(2))] are associated with these receptors. We compared two homologous series of phenylisopropylamines and phenethylamines measuring both PLA(2) and PLC responses in Chinese hamster ovary-K1 cells expressing human 5-HT(2A) or 5-HT(2C) receptors. In addition, we assayed both groups of compounds as head shake inducers in rats. At the 5-HT(2C) receptor, most compounds were partial agonists for both pathways. Relative efficacy of some phenylisopropylamines was higher for both responses compared with their phenethylamine counterparts, whereas for others, no differences were found. At the 5-HT(2A) receptor, most compounds behaved as partial agonists, but unlike findings at 5-HT(2C) receptors, all phenylisopropylamines were more efficacious than their phenethylamine counterparts. 2,5-Dimethoxyphenylisopropylamine activated only the PLC pathway at both receptor subtypes, 2,5-dimethoxyphenethylamine was selective for PLC at the 5-HT(2C) receptor, and 2,5-dimethoxy-4-nitrophenethylamine was PLA(2)-specific at the 5-HT(2A) receptor. For both receptors, the rank order of efficacy of compounds differed depending upon which response was measured. The phenylisopropylamines were strong head shake inducers, whereas their phenethylamine congeners were not, in agreement with in vitro results and the involvement of 5-HT(2A) receptors in the head shake response. Our results support the concept of functional selectivity and indicate that subtle changes in ligand structure can result in significant differences in the cellular signaling profile. PMID:17337633

  2. Spinal 5-HT7 receptors induce phrenic motor facilitation via EPAC-mTORC1 signaling.

    PubMed

    Fields, D P; Springborn, S R; Mitchell, G S

    2015-09-01

    Spinal serotonin type 7 (5-HT7) receptors elicit complex effects on motor activity. Whereas 5-HT7 receptor activation gives rise to long-lasting phrenic motor facilitation (pMF), it also constrains 5-HT2 receptor-induced pMF via "cross-talk inhibition." We hypothesized that divergent cAMP-dependent signaling pathways give rise to these distinct 5-HT7 receptor actions. Specifically, we hypothesized that protein kinase A (PKA) mediates cross-talk inhibition of 5-HT2 receptor-induced pMF whereas 5-HT7 receptor-induced pMF results from exchange protein activated by cAMP (EPAC) signaling. Anesthetized, paralyzed, and ventilated rats receiving intrathecal (C4) 5-HT7 receptor agonist (AS-19) injections expressed pMF for >90 min, an effect abolished by pretreatment with a selective EPAC inhibitor (ESI-05) but not a selective PKA inhibitor (KT-5720). Furthermore, intrathecal injections of a selective EPAC activator (8-pCPT-2'-Me-cAMP) were sufficient to elicit pMF. Finally, spinal mammalian target of rapamycin complex-1 (mTORC1) inhibition via intrathecal rapamycin abolished 5-HT7 receptor- and EPAC-induced pMF, demonstrating that spinal 5-HT7 receptors elicit pMF by an EPAC-mTORC1 signaling pathway. Thus 5-HT7 receptors elicit and constrain spinal phrenic motor plasticity via distinct signaling mechanisms that diverge at cAMP (EPAC vs. PKA). Selective manipulation of these molecules may enable refined regulation of serotonin-dependent spinal motor plasticity for therapeutic advantage. PMID:26269554

  3. A novel aminotetralin-type serotonin (5-HT) 2C receptor-specific agonist and 5-HT2A competitive antagonist/5-HT2B inverse agonist with preclinical efficacy for psychoses.

    PubMed

    Canal, Clinton E; Morgan, Drake; Felsing, Daniel; Kondabolu, Krishnakanth; Rowland, Neil E; Robertson, Kimberly L; Sakhuja, Rajeev; Booth, Raymond G

    2014-05-01

    Development of 5-HT2C agonists for treatment of neuropsychiatric disorders, including psychoses, substance abuse, and obesity, has been fraught with difficulties, because the vast majority of reported 5-HT2C selective agonists also activate 5-HT2A and/or 5-HT2B receptors, potentially causing hallucinations and/or cardiac valvulopathy. Herein is described a novel, potent, and efficacious human 5-HT2C receptor agonist, (-)-trans-(2S,4R)-4-(3'[meta]-bromophenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine (-)-MBP), that is a competitive antagonist and inverse agonist at human 5-HT2A and 5-HT2B receptors, respectively. (-)-MBP has efficacy comparable to the prototypical second-generation antipsychotic drug clozapine in three C57Bl/6 mouse models of drug-induced psychoses: the head-twitch response elicited by [2,5]-dimethoxy-4-iodoamphetamine; hyperlocomotion induced by MK-801 [(5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (dizocilpine maleate)]; and hyperlocomotion induced by amphetamine. (-)-MBP, however, does not alter locomotion when administered alone, distinguishing it from clozapine, which suppresses locomotion. Finally, consumption of highly palatable food by mice was not increased by (-)-MBP at a dose that produced at least 50% maximal efficacy in the psychoses models. Compared with (-)-MBP, the enantiomer (+)-MBP was much less active across in vitro affinity and functional assays using mouse and human receptors and also translated in vivo with comparably lower potency and efficacy. Results indicate a 5-HT2C receptor-specific agonist, such as (-)-MBP, may be pharmacotherapeutic for psychoses, without liability for obesity, hallucinations, heart disease, sedation, or motoric disorders. PMID:24563531

  4. A Novel Aminotetralin-Type Serotonin (5-HT) 2C Receptor-Specific Agonist and 5-HT2A Competitive Antagonist/5-HT2B Inverse Agonist with Preclinical Efficacy for Psychoses

    PubMed Central

    Morgan, Drake; Felsing, Daniel; Kondabolu, Krishnakanth; Rowland, Neil E.; Robertson, Kimberly L.; Sakhuja, Rajeev; Booth, Raymond G.

    2014-01-01

    Development of 5-HT2C agonists for treatment of neuropsychiatric disorders, including psychoses, substance abuse, and obesity, has been fraught with difficulties, because the vast majority of reported 5-HT2C selective agonists also activate 5-HT2A and/or 5-HT2B receptors, potentially causing hallucinations and/or cardiac valvulopathy. Herein is described a novel, potent, and efficacious human 5-HT2C receptor agonist, (−)-trans-(2S,4R)-4-(3′[meta]-bromophenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine (−)-MBP), that is a competitive antagonist and inverse agonist at human 5-HT2A and 5-HT2B receptors, respectively. (−)-MBP has efficacy comparable to the prototypical second-generation antipsychotic drug clozapine in three C57Bl/6 mouse models of drug-induced psychoses: the head-twitch response elicited by [2,5]-dimethoxy-4-iodoamphetamine; hyperlocomotion induced by MK-801 [(5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (dizocilpine maleate)]; and hyperlocomotion induced by amphetamine. (−)-MBP, however, does not alter locomotion when administered alone, distinguishing it from clozapine, which suppresses locomotion. Finally, consumption of highly palatable food by mice was not increased by (−)-MBP at a dose that produced at least 50% maximal efficacy in the psychoses models. Compared with (−)-MBP, the enantiomer (+)-MBP was much less active across in vitro affinity and functional assays using mouse and human receptors and also translated in vivo with comparably lower potency and efficacy. Results indicate a 5-HT2C receptor-specific agonist, such as (−)-MBP, may be pharmacotherapeutic for psychoses, without liability for obesity, hallucinations, heart disease, sedation, or motoric disorders. PMID:24563531

  5. The 5-HT7 receptor triggers cerebellar long-term synaptic depression via PKC-MAPK.

    PubMed

    Lippiello, Pellegrino; Hoxha, Eriola; Speranza, Luisa; Volpicelli, Floriana; Ferraro, Angela; Leopoldo, Marcello; Lacivita, Enza; Perrone-Capano, Carla; Tempia, Filippo; Miniaci, Maria Concetta

    2016-02-01

    The 5-HT7 receptor (5-HT7R) mediates important physiological effects of serotonin, such as memory and emotion, and is emerging as a therapeutic target for the treatment of cognitive disorders and depression. Although previous studies have revealed an expression of 5-HT7R in cerebellum, particularly at Purkinje cells, its functional role and signaling mechanisms have never been described. Using patch-clamp recordings in cerebellar slices of adult mice, we investigated the effects of a selective 5-HT7R agonist, LP-211, on the main plastic site of the cerebellar cortex, the parallel fiber-Purkinje cell synapse. Here we show that 5-HT7R activation induces long-term depression of parallel fiber-Purkinje cell synapse via a postsynaptic mechanism that involves the PKC-MAPK signaling pathway. Moreover, a 5-HT7R antagonist abolished the expression of PF-LTD, produced by pairing parallel fiber stimulation with Purkinje cell depolarization; whereas, application of a 5-HT7R agonist impaired LTP induced by 1 Hz parallel fiber stimulation. Our results indicate for the first time that 5-HT7R exerts a fine regulation of cerebellar bidirectional synaptic plasticity that might be involved in cognitive processes and neuropsychiatric disorders involving the cerebellum. PMID:26482421

  6. Compulsive behavior in the 5-HT2C receptor knockout mouse.

    PubMed

    Chou-Green, Jennifer M; Holscher, Todd D; Dallman, Mary F; Akana, Susan F

    2003-04-01

    The efficacy of serotonergic pharmacotherapy indicates that serotonin (5-HT) plays a role in the treatment, if not the etiology, of obsessive-compulsive disorder (OCD). While some clinical evidence implicates 5-HT(2C) receptors in this disorder, a definitive function has yet to be validated. We hypothesized that 5-HT(2C) receptor knockout (KO) mice may display compulsive-like behavior. This paper describes characterization of several distinct, highly organized behaviors in mice lacking functional 5-HT(2C) receptors, which supports a compulsive-like syndrome.Compulsive-like behavior was assessed in male 5-HT(2C) receptor KO and wildtype (WT) mice. Chewing of non-nutritive clay, chewing patterns on plastic-mesh screens, and the frequency of head dipping were measured. 5-HT(2C) receptor KO mice chewed more clay, produced a distinct pattern of "neat" chewing of plastic screens and exhibited reduced habituation of head dipping activity compared to WT mice. We conclude that the 5-HT(2C) receptor null mutant mouse provides a promising model of compulsive behavior and a means to further explore the role of 5-HT in OCD. PMID:12782219

  7. Highly potent, non-basic 5-HT6 ligands. Site mutagenesis evidence for a second binding mode at 5-HT6 for antagonism.

    PubMed

    Harris, Ralph N; Stabler, Russel S; Repke, David B; Kress, James M; Walker, Keith A; Martin, Renee S; Brothers, Julie M; Ilnicka, Mariola; Lee, Simon W; Mirzadegan, Tara

    2010-06-01

    A series of 5-HT(6) ligands derived from (R)-1-(amino)methyl-6-(phenyl)sulfonyltetralin was prepared that yielded several non-basic analogs having sub-nanomolar affinity. Ligand structure-activity relationships, receptor point mutation studies, and molecular modeling of these novel ligands all combined to reveal a new alternative binding mode to 5-HT(6) for antagonism. PMID:20434910

  8. Serotonin 5-HT1A receptors as targets for agents to treat psychiatric disorders: rationale and current status of research.

    PubMed

    Celada, Pau; Bortolozzi, Analía; Artigas, Francesc

    2013-09-01

    Psychiatric disorders represent a large economic burden in modern societies. However, pharmacological treatments are still far from optimal. Drugs used in the treatment of major depressive disorder (MDD) and anxiety disorders (selective serotonin [5-HT] reuptake inhibitors [SSRIs] and serotonin-noradrenaline reuptake inhibitors [SNRIs]) are pharmacological refinements of first-generation tricyclic drugs, discovered by serendipity, and show low efficacy and slowness of onset. Moreover, antipsychotic drugs are partly effective in positive symptoms of schizophrenia, yet they poorly treat negative symptoms and cognitive deficits. The present article reviews the neurobiological basis of 5-HT1A receptor (5-HT1A-R) function and the role of pre- and postsynaptic 5-HT1A-Rs in the treatment of MDD, anxiety and psychotic disorders. The activation of postsynaptic 5-HT1A-Rs in corticolimbic areas appears beneficial for the therapeutic action of antidepressant drugs. However, presynaptic 5-HT1A-Rs play a detrimental role in MDD, since individuals with high density or function of presynaptic 5-HT1A-Rs are more susceptible to mood disorders and suicide, and respond poorly to antidepressant drugs. Moreover, the indirect activation of presynaptic 5-HT1A-Rs by SSRIs/SNRIs reduces 5-HT neuron activity and terminal 5-HT release, thus opposing the elevation of extracellular 5-HT produced by blockade of the serotonin transporter (SERT) in the forebrain. Chronic antidepressant treatment desensitizes presynaptic 5-HT1A-Rs, thus reducing the effectiveness of the 5-HT1A autoreceptor-mediated negative feedback. The prevention of this process by the non-selective partial agonist pindolol accelerates clinical antidepressant effects. Two new antidepressant drugs, vilazodone (marketed in the USA) and vortioxetine (in development) incorporate partial 5-HT1A-R agonist properties with SERT blockade. Several studies with transgenic mice have also established the respective role of pre- and

  9. Intrathecal 5-methoxy-N,N-dimethyltryptamine in mice modulates 5-HT1 and 5-HT3 receptors.

    PubMed

    Alhaider, A A; Hamon, M; Wilcox, G L

    1993-11-01

    The antinociceptive effects of intrathecally administered 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT), a potent 5-HT receptor agonist, were studied in three behavioral tests in mice: the tail-flick test and the intrathecal substance P and N-methyl-D-aspartic acid (NMDA) assays. Intrathecal administration of 5-MeO-DMT (4.6-92 nmol/mouse) produced a significant prolongation of the tail-flick latency. This action was blocked by 5-HT3 and gamma-aminobutyric acidA (GABAA) receptor antagonists but not by 5-HT2, 5-HT1A, 5-HT1B or 5-HT1S receptor antagonists. Binding studies indicated that 5-MeO-DMT had very low affinity for 5-HT3 receptors. 5-MeO-DMT inhibited biting behavior while increasing scratching behavior induced by intrathecally administered substance P. The inhibition of biting behavior was antagonized by intrathecal co-administration of 5-HT1B and GABAA receptor antagonists while 5-HT1A, 5-HT1S, 5-HT2 and 5-HT3 receptor antagonists had no effect. 5-MeO-DMT-enhanced scratching behavior was inhibited by all the antagonists used except ketanserin and bicuculline, suggesting the involvement of 5-HT1A, 5-HT1B, 5-HT1S, 5-HT3 and GABAA receptors. NMDA-induced biting behavior was inhibited by 5-MeO-DMT pretreatment; this action was antagonized by 5-HT1B, 5-HT3 and GABAA receptor antagonists. The involvement of these receptors in 5-MeO-DMT action suggests that it may promote release of 5-HT (5-hydroxytryptamine, serotonin). PMID:7507056

  10. Food intake inhibition in rainbow trout induced by activation of serotonin 5-HT2C receptors is associated with increases in POMC, CART and CRF mRNA abundance in hypothalamus.

    PubMed

    Pérez-Maceira, Jorge J; Otero-Rodiño, Cristina; Mancebo, María J; Soengas, José L; Aldegunde, Manuel

    2016-04-01

    In rainbow trout, the food intake inhibition induced by serotonin occurs through 5-HT2C and 5-HT1A receptors, though the mechanisms involved are still unknown. Therefore, we assessed if a direct stimulation of 5-HT2C and 5-HT1A serotonin receptors (resulting in decreased food intake in rainbow trout), affects gene expression of neuropeptides involved in the control of food intake, such as pro-opiomelanocortin (POMC), cocaine- and amphetamine-regulated transcript (CART), corticotrophin releasing factor (CRF), and agouti-related peptide (AgRP). In a first set of experiments, the injection of the 5-HT2C receptor agonists MK212 (60 μg kg(-1) icv) and WAY 161503 (1 mg kg(-1) ip), and of the 5-HT1A receptor agonist 8-OH-DPAT (1 mg kg(-1) ip and 30 μg kg(-1) icv) induced food intake inhibition. In a second set of experiments, we observed that the injection of MK212 or WAY 161503 (1 and 3 mg kg(-1)) significantly increased hypothalamic POMC mRNA abundance. CART mRNA abundance in hypothalamus was enhanced by treatment with MK212 and unaffected by WAY 161503. The administration of the 5-HT1A receptor agonist 8-OH-DPAT did not induce any significant variation in the hypothalamic POMC or CART mRNA levels. CRF mRNA abundance was only affected by MK212 that increased hypothalamic values. Finally, hypothalamic AgRP mRNA abundance was only evaluated with the agonist 5-HT2C MK212 resulting in no significant effects. The results show that the reduction in food intake mediated by 5-HT2C receptors is associated with increases in hypothalamic POMC, CART and CRF mRNA abundance. PMID:26832922

  11. Analysis of free ACh and 5-HT in milk from four different species and their bioactivity on 5-HT(3) and nACh receptors.

    PubMed

    Gallegos-Perez, Jose-Luis; Limon, Agenor; Reyes-Ruiz, Jorge M; Alshanqeeti, Ali S; Aljohi, Mohammad A; Miledi, Ricardo

    2014-07-25

    Milk is one of the most beneficial aliments and is highly recommended in normal conditions; however, in certain disorders, like irritable bowel syndrome, cow milk and dairy products worsen the gastric symptoms and their use is not recommended. Among the most recognized milk-induced gatrointestinal symptoms are abdominal pain, nausea and vomiting, which are processes controlled by cholinergic and serotonergic transmission. Whether the presence of bioavailable ACh and 5-HT in milk may contribute to normal peristalsis, or to the developing of these symptoms, is not known. In this work we attempt to determine whether the content of free ACh and 5-HT is of physiological significance in milk from four different species: cow (bovine), goat, camel and human. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was used to identify and quantify free ACh and 5-HT in milk, and activation of the serotonergic and cholinergic ionotropic receptors was investigated using electrophysiological experiments. Our principal hypothesis was that milk from these four species had sufficient free ACh and 5-HT to activate their correspondent receptors expressed in a heterologous system. Our results showed a more complex picture, in which free ACh and 5-HT and their ability to activate cholinergic and serotonergic receptors are not correlated. This work is a first step to elucidate whether 5-HT and ACh, at the concentrations present in the milk, can be associated to a direct function in the GI. PMID:24820623

  12. The 5-HT1-like receptors mediating inhibition of sympathetic vasopressor outflow in the pithed rat: operational correlation with the 5-HT1A, 5-HT1B and 5-HT1D subtypes

    PubMed Central

    Villalón, Carlos M; Centurión, David; Rabelo, Gonzalo; de Vries, Peter; Saxena, Pramod R; Sánchez-López, Araceli

    1998-01-01

    It has been suggested that the inhibition of sympathetically-induced vasopressor responses produced by 5-hydroxytryptamine (5-HT) in pithed rats is mediated by 5-HT1-like receptors. The present study has re-analysed this suggestion with regard to the classification schemes recently proposed by the NC-IUPHAR subcommittee on 5-HT receptors.Intravenous (i.v.) continuous infusions of 5-HT and the 5-HT1 receptor agonists, 8-OH-DPAT (5-HT1A), indorenate (5-HT1A), CP 93,129 (5-HT1B) and sumatriptan (5-HT1B/1D), resulted in a dose-dependent inhibition of sympathetically-induced vasopressor responses.The sympatho-inhibitory responses induced by 5-HT, 8-OH-DPAT, indorenate, CP 93,129 or sumatriptan were analysed before and after i.v. treatment with blocking doses of the putative 5-HT receptor antagonists, WAY 100635 (5-HT1A), cyanopindolol (5-HT1A/1B) or GR 127935 (5-HT1B/1D). Thus, after WAY 100635, the responses to 5-HT and indorenate, but not to 8-OH-DPAT, CP 93,129 and sumatriptan, were blocked. After cyanopindolol, the responses to 5-HT, indorenate and CP 93,129 were abolished, whilst those to 8-OH-DPAT and sumatriptan (except at the lowest frequency of stimulation) remained unaltered. In contrast, after GR 127935, the responses to 5-HT, CP 93,129 and sumatriptan, but not to 8-OH-DPAT and indorenate, were abolished.In additional experiments, the inhibition induced by 5-HT was not modified after 5-HT7 receptor blocking doses of mesulergine.The above results suggest that the 5-HT1-like receptors, which inhibit the sympathetic vasopressor outflow in pithed rats, display the pharmacological profile of the 5-HT1A, 5-HT1B and 5-HT1D, but not that of 5-HT7, receptors. PMID:9692787

  13. Unraveling mechanisms underlying partial agonism in 5-HT3A receptors.

    PubMed

    Corradi, Jeremías; Bouzat, Cecilia

    2014-12-10

    Partial agonists have emerged as attractive therapeutic molecules. 2-Me-5HT and tryptamine have been defined as partial agonists of 5-HT3 receptors on the basis of macroscopic measurements. Because several mechanisms may limit maximal responses, we took advantage of the high-conductance form of the mouse serotonin type 3A (5-HT3A) receptor to understand their molecular actions. Individual 5-HT-bound receptors activate in long episodes of high open probability, consisting of groups of openings in quick succession. The activation pattern is similar for 2-Me-5HT only at very low concentrations since profound channel blockade takes place within the activating concentration range. In contrast, activation episodes are significantly briefer in the presence of tryptamine. Generation of a full activation scheme reveals that the fully occupied receptor overcomes transitions to closed preopen states (primed states) before opening. Reduced priming explains the partial agonism of tryptamine. In contrast, 2-Me-5HT is not a genuine partial agonist since priming is not dramatically affected and its low apparent efficacy is mainly due to channel blockade. The analysis also shows that the first priming step is the rate-limiting step and partial agonists require an increased number of priming steps for activation. Molecular docking suggests that interactions are similar for 5-HT and 2-Me-5HT but slightly different for tryptamine. Our study contributes to understanding 5-HT3A receptor activation, extends the novel concept of partial agonism within the Cys-loop family, reveals novel aspects of partial agonism, and unmasks molecular actions of classically defined partial agonists. Unraveling mechanisms underlying partial responses has implications in the design of therapeutic compounds. PMID:25505338

  14. Altered responsiveness to 5-HT at the crayfish neuromuscular junction due to chronic p-CPA and m-CPP treatment.

    PubMed

    Cooper, R L; Chase, R J; Tabor, J

    2001-10-19

    Serotonin (5-HT) levels in the hemolymph of crustaceans has been implied to alter aggressiveness which influences social interactions. The activation of IP3 as a second messenger cascade within crayfish motor neurons in response to application of 5-HT, suggests that the 5-HT receptor subtypes on the motor neurons are analogous to the vertebrate 5-HT2A receptors. Based on evidence in other systems, it would be expected that chronically sustained 5-HT levels in aggressive individuals would result in a compensatory negative feed-back regulation and/or that target tissues would diminish their sensitivity to high levels of circulating, free 5-HT. We addressed the issue of up- and down-regulation in the sensitivity of the responsiveness to exogenously applied 5-HT at the NMJs of crayfish in which the animals have altered endogenous 5-HT levels. Injections of the 5-HT1 and 5-HT2 vertebrate receptor agonist, 1-(3-Chlorophenyl) piperazine dihydrochloride (m-CPP), for 1 week resulted in a decreased responsiveness to application of 5-HT. The compound p-chlorophenylalanine (p-CPA) blocks the enzymatic synthesis of 5-HT and following 7 days of p-CPA injections, a super-sensitivity to exogenous application of 5-HT for both tonic and phasic neuromuscular junctions (NMJs) was observed. However, acute applications of p-CPA and m-CPP, followed by extensive saline washing, did not reveal any altered receptivity to 5-HT application. PMID:11597601

  15. Delineation of the functional properties and the mechanism of action of TMPPAA, an allosteric agonist and positive allosteric modulator of 5-HT3 receptors.

    PubMed

    Gasiorek, Agnes; Trattnig, Sarah M; Ahring, Philip K; Kristiansen, Uffe; Frølund, Bente; Frederiksen, Kristen; Jensen, Anders A

    2016-06-15

    We have previously identified a novel class of 5-hydroxytryptamine type 3 receptor (5-HT3R) agonists sharing little structural similarity with orthosteric 5-HT3R ligands (Jørgensen et al., 2011). In the present study we have elucidated the functional characteristics and the mechanism of action of one of these compounds, trans-3-(4-methoxyphenyl)-N-(pentan-3-yl)acrylamide (TMPPAA). In electrophysiological recordings TMPPAA was found to be a highly-efficacious partial agonist equipotent with 5-HT at the 5-HT3A receptor (5-HT3AR) expressed in COS-7 cells and somewhat less potent at the receptor expressed in Xenopus oocytes. The desensitization kinetics of TMPPAA-evoked currents were very different from those mediated by 5-HT. Moreover, repeated TMPPAA applications resulted in progressive current run-down and persistent non-responsiveness of the receptor to TMPPAA, but not to 5-HT. In addition to its direct activation, TMPPAA potentiated 5-HT-mediated 5-HT3AR signalling, and the allosteric link between the two binding sites was corroborated by the analogous ability of 5-HT to potentiate TMPPAA-evoked responses. The agonism and potentiation exerted by TMPPAA at a chimeric α7-nACh/5-HT3A receptor suggested that the ligand acts through the transmembrane domain of 5-HT3AR, a notion further substantiated by its functional properties at chimeric and mutant human/murine 5-HT3ARs. A residue in the transmembrane helix 4 of 5-HT3A was identified as an important molecular determinant for the different agonist potencies exhibited by TMPPAA at human and murine 5-HT3ARs. In conclusion, TMPPAA is a novel allosteric agonist and positive allosteric modulator of 5-HT3Rs, and its aberrant signalling characteristics compared to 5-HT at the 5-HT3AR underline the potential in Cys-loop receptor modulation and activation through allosteric sites. PMID:27086281

  16. 5-HT1A autoreceptor levels determine vulnerability to stress and response to antidepressants

    PubMed Central

    Richardson-Jones, Jesse W; Craige, Caryne P; Guiard, Bruno P; Stephen, Alisson; Metzger, Kayla L; Kung, Hank F; Gardier, Alain M; Dranovsky, Alex; David, Denis J; Beck, Sheryl G; Hen, René; Leonardo, E David

    2010-01-01

    Summary Most depressed patients don't respond to their first drug treatment, and the reasons for this treatment resistance remain enigmatic. Human studies implicate a polymorphism in the promoter of the serotonin-1A (5-HT1A) receptor gene in increased susceptibility to depression and decreased treatment response. Here we develop a new strategy to manipulate 5-HT1A autoreceptors in raphe nuclei without affecting 5-HT1A heteroreceptors, generating mice with higher (1A-High) or lower (1A-Low) autoreceptor levels. We show that this robustly affects raphe firing rates, but has no effect on either basal forebrain serotonin levels or conflict-anxiety measures. However, compared to 1A-Low mice, 1A-High mice show a blunted physiological response to acute stress, increased behavioral despair, and no behavioral response to antidepressant, modeling patients with the 5-HT1A risk allele. Furthermore, reducing 5-HT1A autoreceptor levels prior to antidepressant treatment is sufficient to convert non-responders into responders. These results establish a causal relationship between 5-HT1A autoreceptor levels, resilience under stress, and response to antidepressants. PMID:20152112

  17. Human serotonin 1D receptor is encoded by a subfamily of two distinct genes: 5-HT1D alpha and 5-HT1D beta.

    PubMed Central

    Weinshank, R L; Zgombick, J M; Macchi, M J; Branchek, T A; Hartig, P R

    1992-01-01

    The serotonin 1D (5-HT1D) receptor is a pharmacologically defined binding site and functional receptor site. Observed variations in the properties of 5-HT1D receptors in different tissues have led to the speculation that multiple receptor proteins with slightly different properties may exist. We report here the cloning, deduced amino acid sequences, pharmacological properties, and second-messenger coupling of a pair of human 5-HT1D receptor genes, which we have designated 5-HT1D alpha and 5-HT1D beta due to their strong similarities in sequence, pharmacological properties, and second-messenger coupling. Both genes are free of introns in their coding regions, are expressed in the human cerebral cortex, and can couple to inhibition of adenylate cyclase activity. The pharmacological binding properties of these two human receptors are very similar, and match closely the pharmacological properties of human, bovine, and guinea pig 5-HT1D sites. Both receptors exhibit high-affinity binding of sumatriptan, a new anti-migraine medication, and thus are candidates for the pharmacological site of action of this drug. Images PMID:1565658

  18. Systemic inflammation alters central 5-HT function as determined by pharmacological MRI.

    PubMed

    Couch, Yvonne; Martin, Chris J; Howarth, Clare; Raley, Josie; Khrapitchev, Alexandre A; Stratford, Michael; Sharp, Trevor; Sibson, Nicola R; Anthony, Daniel C

    2013-07-15

    Considerable evidence indicates a link between systemic inflammation and central 5-HT function. This study used pharmacological magnetic resonance imaging (phMRI) to study the effects of systemic inflammatory events on central 5-HT function. Changes in blood oxygenation level dependent (BOLD) contrast were detected in selected brain regions of anaesthetised rats in response to intravenous administration of the 5-HT-releasing agent, fenfluramine (10 mg/kg). Further groups of rats were pre-treated with the bacterial lipopolysaccharide (LPS; 0.5 mg/kg), to induce systemic inflammation, or the selective 5-HT2A receptor antagonist MDL100907 prior to fenfluramine. The resultant phMRI data were investigated further through measurements of cortical 5-HT release (microdialysis), and vascular responsivity, as well as a more thorough investigation of the role of the 5-HT2A receptor in sickness behaviour. Fenfluramine evoked a positive BOLD response in the motor cortex (+15.9±2%) and a negative BOLD response in the dorsal raphe nucleus (-9.9±4.2%) and nucleus accumbens (-7.7±5.3%). In all regions, BOLD responses to fenfluramine were significantly attenuated by pre-treatment with LPS (p<0.0001), but neurovascular coupling remained intact, and fenfluramine-evoked 5-HT release was not affected. However, increased expression of the 5-HT2A receptor mRNA and decreased 5-HT2A-dependent behaviour (wet-dog shakes) was a feature of the LPS treatment and may underpin the altered phMRI signal. MDL100907 (0.5 mg/kg), 5-HT2A antagonist, significantly reduced the BOLD responses to fenfluramine in all three regions (p<0.0001) in a similar manner to LPS. Together these results suggest that systemic inflammation decreases brain 5-HT activity as assessed by phMRI. However, these effects do not appear to be mediated by changes in 5-HT release, but are associated with changes in 5-HT2A-receptor-mediated downstream signalling pathways. PMID:23473937

  19. 5-HT2 Receptor Regulation of Mitochondrial Genes: Unexpected Pharmacological Effects of Agonists and Antagonists.

    PubMed

    Harmon, Jennifer L; Wills, Lauren P; McOmish, Caitlin E; Demireva, Elena Y; Gingrich, Jay A; Beeson, Craig C; Schnellmann, Rick G

    2016-04-01

    In acute organ injuries, mitochondria are often dysfunctional, and recent research has revealed that recovery of mitochondrial and renal functions is accelerated by induction of mitochondrial biogenesis (MB). We previously reported that the nonselective 5-HT2 receptor agonist DOI [1-(4-iodo-2,5-dimethoxyphenyl)propan-2-amine] induced MB in renal proximal tubular cells (RPTCs). The goal of this study was to determine the role of 5-HT2 receptors in the regulation of mitochondrial genes and oxidative metabolism in the kidney. The 5-HT2C receptor agonist CP-809,101 [2-[(3-chlorophenyl)methoxy]-6-(1-piperazinyl)pyrazine] and antagonist SB-242,084 [6-chloro-2,3-dihydro-5-methyl-N-[6-[(2-methyl-3-pyridinyl)oxy]-3-pyridinyl]-1H-indole-1-carboxyamide dihydrochloride] were used to examine the induction of renal mitochondrial genes and oxidative metabolism in RPTCs and in mouse kidneys in the presence and absence of the 5-HT2C receptor. Unexpectedly, both CP-809,101 and SB-242,084 increased RPTC respiration and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) mRNA expression in RPTCs at 1-10 nM. In addition, CP-809,101 and SB-242,084 increased mRNA expression of PGC-1α and the mitochondrial proteins NADH dehydrogenase subunit 1 and NADH dehydrogenase (ubiquinone) β subcomplex 8 in mice. These compounds increased mitochondrial genes in RPTCs in which the 5-HT2C receptor was downregulated with small interfering RNA and in the renal cortex of mice lacking the 5-HT2C receptor. By contrast, the ability of these compounds to increase PGC-1α mRNA and respiration was blocked in RPTCs treated with 5-HT2A receptor small interfering RNA or the 5-HT2A receptor antagonist eplivanserin. In addition, the 5-HT2A receptor agonist NBOH-2C-CN [4-[2-[[(2-hydroxyphenyl)methyl]amino]ethyl]-2,5-dimethoxybenzonitrile] increased RPTC respiration at 1-100 nM. These results suggest that agonism of the 5-HT2A receptor induces MB and that the classic 5-HT2C receptor agonist CP

  20. Systemic inflammation alters central 5-HT function as determined by pharmacological MRI

    PubMed Central

    Couch, Yvonne; Martin, Chris J.; Howarth, Clare; Raley, Josie; Khrapitchev, Alexandre A.; Stratford, Michael; Sharp, Trevor; Sibson, Nicola R.; Anthony, Daniel C.

    2013-01-01

    Considerable evidence indicates a link between systemic inflammation and central 5-HT function. This study used pharmacological magnetic resonance imaging (phMRI) to study the effects of systemic inflammatory events on central 5-HT function. Changes in blood oxygenation level dependent (BOLD) contrast were detected in selected brain regions of anaesthetised rats in response to intravenous administration of the 5-HT-releasing agent, fenfluramine (10 mg/kg). Further groups of rats were pre-treated with the bacterial lipopolysaccharide (LPS; 0.5 mg/kg), to induce systemic inflammation, or the selective 5-HT2A receptor antagonist MDL100907 prior to fenfluramine. The resultant phMRI data were investigated further through measurements of cortical 5-HT release (microdialysis), and vascular responsivity, as well as a more thorough investigation of the role of the 5-HT2A receptor in sickness behaviour. Fenfluramine evoked a positive BOLD response in the motor cortex (+ 15.9 ± 2%) and a negative BOLD response in the dorsal raphe nucleus (− 9.9 ± 4.2%) and nucleus accumbens (− 7.7 ± 5.3%). In all regions, BOLD responses to fenfluramine were significantly attenuated by pre-treatment with LPS (p < 0.0001), but neurovascular coupling remained intact, and fenfluramine-evoked 5-HT release was not affected. However, increased expression of the 5-HT2A receptor mRNA and decreased 5-HT2A-dependent behaviour (wet-dog shakes) was a feature of the LPS treatment and may underpin the altered phMRI signal. MDL100907 (0.5 mg/kg), 5-HT2A antagonist, significantly reduced the BOLD responses to fenfluramine in all three regions (p < 0.0001) in a similar manner to LPS. Together these results suggest that systemic inflammation decreases brain 5-HT activity as assessed by phMRI. However, these effects do not appear to be mediated by changes in 5-HT release, but are associated with changes in 5-HT2A-receptor-mediated downstream signalling pathways. PMID:23473937

  1. High trait aggression in men is associated with low 5-HT levels, as indexed by 5-HT4 receptor binding.

    PubMed

    da Cunha-Bang, Sofi; Mc Mahon, Brenda; Fisher, Patrick MacDonald; Jensen, Peter Steen; Svarer, Claus; Knudsen, Gitte Moos

    2016-04-01

    Impulsive aggression has commonly been associated with a dysfunction of the serotonin (5-HT) system: many, but not all, studies point to an inverse relationship between 5-HT and aggression. As cerebral 5-HT4 receptor (5-HT4R) binding has recently been recognized as a proxy for stable brain levels of 5-HT, we here test the hypothesis in healthy men and women that brain 5-HT levels, as indexed by cerebral 5-HT4R, are inversely correlated with trait aggression and impulsivity. Sixty-one individuals (47 men) underwent positron emission tomography scanning with the radioligand [(11)C]SB207145 for quantification of brain 5-HT4R binding. The Buss-Perry Aggression Questionnaire (BPAQ) and the Barratt Impulsiveness Scale were used for assessment of trait aggression and trait impulsivity. Among male subjects, there was a positive correlation between global 5-HT4R and BPAQ total score (P = 0.037) as well as BPAQ physical aggression (P = 0.025). No main effect of global 5-HT4R on trait aggression or impulsivity was found in the mixed gender sample, but there was evidence for sex interaction effects in the relationship between global 5-HT4R and BPAQ physical aggression. In conclusion we found that low cerebral 5-HT levels, as indexed by 5-HT4R binding were associated with high trait aggression in males, but not in females. PMID:26772668

  2. 5-Hydroxytryptamine (5-HT) Cellular Sequestration during Chronic Exposure Delays 5-HT3 Receptor Resensitization due to Its Subsequent Release*

    PubMed Central

    Hothersall, J. Daniel; Alexander, Amy; Samson, Andrew J.; Moffat, Christopher; Bollan, Karen A.; Connolly, Christopher N.

    2014-01-01

    The serotonergic synapse is dynamically regulated by serotonin (5-hydroxytryptamine (5-HT)) with elevated levels leading to the down-regulation of the serotonin transporter and a variety of 5-HT receptors, including the 5-HT type-3 (5-HT3) receptors. We report that recombinantly expressed 5-HT3 receptor binding sites are reduced by chronic exposure to 5-HT (IC50 of 154.0 ± 45.7 μm, t½ = 28.6 min). This is confirmed for 5-HT3 receptor-induced contractions in the guinea pig ileum, which are down-regulated after chronic, but not acute, exposure to 5-HT. The loss of receptor function does not involve endocytosis, and surface receptor levels are unaltered. The rate and extent of down-regulation is potentiated by serotonin transporter function (IC50 of 2.3 ± 1.0 μm, t½ = 3.4 min). Interestingly, the level of 5-HT uptake correlates with the extent of down-regulation. Using TX-114 extraction, we find that accumulated 5-HT remains soluble and not membrane-bound. This cytoplasmically sequestered 5-HT is readily releasable from both COS-7 cells and the guinea pig ileum. Moreover, the 5-HT level released is sufficient to prevent recovery from receptor desensitization in the guinea pig ileum. Together, these findings suggest the existence of a novel mechanism of down-regulation where the chronic release of sequestered 5-HT prolongs receptor desensitization. PMID:25281748

  3. Serotonin (5-HT) and 5-HT2A receptor agonists suppress lipolysis in primary rat adipose cells.

    PubMed

    Hansson, Björn; Medina, Anya; Fryklund, Claes; Fex, Malin; Stenkula, Karin G

    2016-05-27

    Serotonin (5-HT) is a biogenic monoamine that functions both as a neurotransmitter and a circulating hormone. Recently, the metabolic effects of 5-HT have gained interest and peripheral 5-HT has been proposed to influence lipid metabolism in various ways. Here, we investigated the metabolic effects of 5-HT in isolated, primary rat adipose cells. Incubation with 5-HT suppressed β-adrenergically stimulated glycerol release and decreased phosphorylation of protein kinase A (PKA)-dependent substrates, hormone sensitive lipase (Ser563) and perilipin (Ser522). The inhibitory effect of 5-HT on lipolysis enhanced the anti-lipolytic effect of insulin, but sustained in the presence of phosphodiesterase inhibitors, OPC3911 and isobuthylmethylxanthine (IBMX). The relative expression of 5-HT1A, -2B and -4 receptor class family were significantly higher in adipose tissue compared to adipose cells, whereas 5-HT1D, -2A and -7 were highly expressed in isolated adipose cells. Similar to 5-HT, 5-HT2 receptor agonists reduced lipolysis while 5-HT1 receptor agonists rather decreased non-stimulated and insulin-stimulated glucose uptake. Together, these data provide evidence of a direct effect of 5-HT on adipose cells, where 5-HT suppresses lipolysis and glucose uptake, which could contribute to altered systemic lipid- and glucose metabolism. PMID:27109474

  4. Side effect profile of 5-HT treatments for Parkinson's disease and L-DOPA-induced dyskinesia in rats

    PubMed Central

    Lindenbach, D; Palumbo, N; Ostock, C Y; Vilceus, N; Conti, M M; Bishop, C

    2015-01-01

    BACKGROUND AND PURPOSE Treatment of Parkinson's disease (PD) with L-DOPA eventually causes abnormal involuntary movements known as dyskinesias in most patients. Dyskinesia can be reduced using compounds that act as direct or indirect agonists of the 5-HT1A receptor, but these drugs have been reported to worsen PD features and are known to produce ‘5-HT syndrome’, symptoms of which include tremor, myoclonus, rigidity and hyper-reflexia. EXPERIMENTAL APPROACH Sprague-Dawley rats were given unilateral nigrostriatal dopamine lesions with 6-hydroxydopamine. Each of the following three purportedly anti-dyskinetic 5-HT compounds were administered 15 min before L-DOPA: the full 5-HT1A agonist ±-8-hydroxy-2-dipropylaminotetralin (±8-OH-DPAT), the partial 5-HT1A agonist buspirone or the 5-HT transporter inhibitor citalopram. After these injections, animals were monitored for dyskinesia, 5-HT syndrome, motor activity and PD akinesia. KEY RESULTS Each 5-HT drug dose-dependently reduced dyskinesia by relatively equal amounts (±8-OH-DPAT ≥ citalopram ≥ buspirone), but 5-HT syndrome was higher with ±8-OH-DPAT, lower with buspirone and not present with citalopram. Importantly, with or without L-DOPA, all three compounds provided an additional improvement of PD akinesia. All drugs tempered the locomotor response to L-DOPA suggesting dyskinesia reduction, but vertical rearing was reduced with 5-HT drugs, potentially reflecting features of 5-HT syndrome. CONCLUSIONS AND IMPLICATIONS The results suggest that compounds that indirectly facilitate 5-HT1A receptor activation, such as citalopram, may be more effective therapeutics than direct 5-HT1A receptor agonists because they exhibit similar anti-dyskinesia efficacy, while possessing a reduced side effect profile. PMID:25175895

  5. Regulatory role of a neurotransmitter (5-HT) on glial Na+/K(+)-ATPase in the rat brain.

    PubMed

    Mercado, R; Hernández, J

    1992-07-01

    In the present work we studied the effect of serotonin (5-HT) on the kinetics of Na+/K(+)-ATPase in subcellular preparations of the cerebral cortex from male Wistar rats using various concentrations of ATP and K+ with and without added 5-HT. Also we studied the effect of 5-HT on the enzyme in glial or neuronal preparations. The results indicated that there was a significant increase (P < 0.05) of the Vmax in the presence of 5-HT in the whole tissue preparation (homogenate) but not in the subcellular fractions, suggesting that the interaction could be preferentially with the glial pump. Further results supported that this was the case since activation by 5-HT was mainly in the glial preparations. Kinetic data and the binding of [3H]ouabain supported that the enzyme is activated by 5-HT through the exposure of more enzymatic active sites. PMID:1303137

  6. ADN-1184, a monoaminergic ligand with 5-HT6/7 receptor antagonist action, exhibits activity in animal models of anxiety.

    PubMed

    Partyka, Anna; Wasik, Anna; Jastrzębska-Więsek, Magdalena; Mierzejewski, Paweł; Bieńkowski, Przemysław; Kołaczkowski, Marcin; Wesołowska, Anna

    2016-06-01

    Behavioral and psychological symptoms of dementia (BPSD) include apathy, sleep problems, irritability, wandering, elation, agitation/aggression, and mood disorders such as depression and/or anxiety. Elderly patients are usually treated with second-generation antipsychotics; however, they present not enough efficacy against all symptoms observed. Hence, there still is an unmet need for novel pharmacotherapeutic agents targeted BPSD. A novel arylsulfonamide derivative ADN-1184 has been developed that possesses a preclinical profile of activity corresponding to criteria required for treatment of both psychosis and depressive symptoms of BPSD without exacerbating cognitive impairment or inducing motor disturbances. To broaden its pharmacological efficacy toward anxiety symptoms, its anxiolytic properties have been examined in common animal preclinical models in rats and mice. ADN-1184 significantly increased the number of entries into open arms measured in the elevated plus-maze test; however, it simultaneously increased parameters of exploratory activity. In the Vogel conflict drinking test, ADN-1184 dose-dependently and significantly increased the number of shocks accepted and the number of licks. Moreover, in mice, it also had specific anxiolytic-like activity in the four-plate test, and only negligible one at a specific mid-range dose measured in the spontaneous marble burying test. The obtained findings reveal that ADN-1184 displays anxiolytic-like activity in animal models of anxiety which employed punished stimuli. In its unusual combination of some anxiolytic action with already proven antipsychotic and antidepressant properties, and lack of any disruptive impact on learning and memory processes and motor coordination, ADN-1184 displays a profile that would be desired for a novel therapeutic for BPSD. PMID:26979176

  7. Prepuberal stimulation of 5-HT7-R by LP-211 in a rat model of hyper-activity and attention-deficit: permanent effects on attention, brain amino acids and synaptic markers in the fronto-striatal interface.

    PubMed

    Ruocco, Lucia A; Treno, Concetta; Gironi Carnevale, Ugo A; Arra, Claudio; Boatto, Gianpiero; Nieddu, Maria; Pagano, Cristina; Illiano, Placido; Barbato, Fabiana; Tino, Angela; Carboni, Ezio; Laviola, Giovanni; Lacivita, Enza; Leopoldo, Marcello; Adriani, Walter; Sadile, Adolfo G

    2014-01-01

    The cross-talk at the prefronto-striatal interface involves excitatory amino acids, different receptors, transducers and modulators. We investigated long-term effects of a prepuberal, subchronic 5-HT7-R agonist (LP-211) on adult behaviour, amino acids and synaptic markers in a model for Attention-Deficit/Hyperactivity Disorder (ADHD). Naples High Excitability rats (NHE) and their Random Bred controls (NRB) were daily treated with LP-211 in the 5th and 6th postnatal week. One month after treatment, these rats were tested for indices of activity, non selective (NSA), selective spatial attention (SSA) and emotionality. The quantity of L-Glutamate (L-Glu), L-Aspartate (L-Asp) and L-Leucine (L-Leu), dopamine transporter (DAT), NMDAR1 subunit and CAMKIIα, were assessed in prefrontal cortex (PFC), dorsal (DS) and ventral striatum (VS), for their role in synaptic transmission, neural plasticity and information processing. Prepuberal LP-211 (at lower dose) reduced horizontal activity and (at higher dose) increased SSA, only for NHE but not in NRB rats. Prepuberal LP-211 increased, in NHE rats, L-Glu in the PFC and L-Asp in the VS (at 0.250 mg/kg dose), whereas (at 0.125 mg/kg dose) it decreased L-Glu and L-Asp in the DS. The L-Glu was decreased, at 0.125 mg/kg, only in the VS of NRB rats. The DAT levels were decreased with the 0.125 mg/kg dose (in the PFC), and increased with the 0.250 mg/kg dose (in the VS), significantly for NHE rats. The basal NMDAR1 level was higher in the PFC of NHE than NRB rats; LP-211 treatment (at 0.125 mg/kg dose) decreased NMDAR1 in the VS of NRB rats. This study represents a starting point about the impact of developmental 5-HT7-R activation on neuro-physiology of attentive processes, executive functions and their neural substrates. PMID:24709857

  8. Prepuberal Stimulation of 5-HT7-R by LP-211 in a Rat Model of Hyper-Activity and Attention-Deficit: Permanent Effects on Attention, Brain Amino Acids and Synaptic Markers in the Fronto-Striatal Interface

    PubMed Central

    Treno, Concetta; Gironi Carnevale, Ugo A.; Arra, Claudio; Nieddu, Maria; Pagano, Cristina; Illiano, Placido; Barbato, Fabiana; Carboni, Ezio; Laviola, Giovanni; Lacivita, Enza; Leopoldo, Marcello; Adriani, Walter; Sadile, Adolfo G.

    2014-01-01

    The cross-talk at the prefronto-striatal interface involves excitatory amino acids, different receptors, transducers and modulators. We investigated long-term effects of a prepuberal, subchronic 5-HT7-R agonist (LP-211) on adult behaviour, amino acids and synaptic markers in a model for Attention-Deficit/Hyperactivity Disorder (ADHD). Naples High Excitability rats (NHE) and their Random Bred controls (NRB) were daily treated with LP-211 in the 5th and 6th postnatal week. One month after treatment, these rats were tested for indices of activity, non selective (NSA), selective spatial attention (SSA) and emotionality. The quantity of L-Glutamate (L-Glu), L-Aspartate (L-Asp) and L-Leucine (L-Leu), dopamine transporter (DAT), NMDAR1 subunit and CAMKIIα, were assessed in prefrontal cortex (PFC), dorsal (DS) and ventral striatum (VS), for their role in synaptic transmission, neural plasticity and information processing. Prepuberal LP-211 (at lower dose) reduced horizontal activity and (at higher dose) increased SSA, only for NHE but not in NRB rats. Prepuberal LP-211 increased, in NHE rats, L-Glu in the PFC and L-Asp in the VS (at 0.250 mg/kg dose), whereas (at 0.125 mg/kg dose) it decreased L-Glu and L-Asp in the DS. The L-Glu was decreased, at 0.125 mg/kg, only in the VS of NRB rats. The DAT levels were decreased with the 0.125 mg/kg dose (in the PFC), and increased with the 0.250 mg/kg dose (in the VS), significantly for NHE rats. The basal NMDAR1 level was higher in the PFC of NHE than NRB rats; LP-211 treatment (at 0.125 mg/kg dose) decreased NMDAR1 in the VS of NRB rats. This study represents a starting point about the impact of developmental 5-HT7-R activation on neuro-physiology of attentive processes, executive functions and their neural substrates. PMID:24709857

  9. Synergism Between a Serotonin 5-HT2A Receptor (5-HT2AR) Antagonist and 5-HT2CR Agonist Suggests New Pharmacotherapeutics for Cocaine Addiction

    PubMed Central

    2012-01-01

    Relapse to cocaine dependence, even after extended abstinence, involves a number of liability factors including impulsivity (predisposition toward rapid, unplanned reactions to stimuli without regard to negative consequences) and cue reactivity (sensitivity to cues associated with cocaine-taking which can promote cocaine-seeking). These factors have been mechanistically linked to serotonin (5-hydroxytryptamine, 5-HT) signaling through the 5-HT2A receptor (5-HT2AR) and 5-HT2CR; either a selective 5-HT2AR antagonist or a 5-HT2CR agonist suppresses impulsivity and cocaine-seeking in preclinical models. We conducted proof-of-concept analyses to evaluate whether a combination of 5-HT2AR antagonist plus 5-HT2CR agonist would have synergistic effects over these liability factors for relapse as measured in a 1-choice serial reaction time task and cocaine self-administration/reinstatement assay. Combined administration of a dose of the selective 5-HT2AR antagonist M100907 plus the 5-HT2CR agonist WAY163909, each ineffective alone, synergistically suppressed cocaine-induced hyperactivity, inherent and cocaine-evoked impulsive action, as well as cue- and cocaine-primed reinstatement of cocaine-seeking behavior. The identification of synergism between a 5-HT2AR antagonist plus a 5-HT2CR agonist to attenuate these factors important in relapse indicates the promise of a bifunctional ligand as an anti-addiction pharmacotherapeutic, setting the stage to develop new ligands with improved efficacy, potency, selectivity, and in vivo profiles over the individual molecules. PMID:23336050

  10. Synergism between a serotonin 5-HT2A receptor (5-HT2AR) antagonist and 5-HT2CR agonist suggests new pharmacotherapeutics for cocaine addiction.

    PubMed

    Cunningham, Kathryn A; Anastasio, Noelle C; Fox, Robert G; Stutz, Sonja J; Bubar, Marcy J; Swinford, Sarah E; Watson, Cheryl S; Gilbertson, Scott R; Rice, Kenner C; Rosenzweig-Lipson, Sharon; Moeller, F Gerard

    2013-01-16

    Relapse to cocaine dependence, even after extended abstinence, involves a number of liability factors including impulsivity (predisposition toward rapid, unplanned reactions to stimuli without regard to negative consequences) and cue reactivity (sensitivity to cues associated with cocaine-taking which can promote cocaine-seeking). These factors have been mechanistically linked to serotonin (5-hydroxytryptamine, 5-HT) signaling through the 5-HT(2A) receptor (5-HT(2A)R) and 5-HT(2C)R; either a selective 5-HT(2A)R antagonist or a 5-HT(2C)R agonist suppresses impulsivity and cocaine-seeking in preclinical models. We conducted proof-of-concept analyses to evaluate whether a combination of 5-HT(2A)R antagonist plus 5-HT(2C)R agonist would have synergistic effects over these liability factors for relapse as measured in a 1-choice serial reaction time task and cocaine self-administration/reinstatement assay. Combined administration of a dose of the selective 5-HT(2A)R antagonist M100907 plus the 5-HT(2C)R agonist WAY163909, each ineffective alone, synergistically suppressed cocaine-induced hyperactivity, inherent and cocaine-evoked impulsive action, as well as cue- and cocaine-primed reinstatement of cocaine-seeking behavior. The identification of synergism between a 5-HT(2A)R antagonist plus a 5-HT(2C)R agonist to attenuate these factors important in relapse indicates the promise of a bifunctional ligand as an anti-addiction pharmacotherapeutic, setting the stage to develop new ligands with improved efficacy, potency, selectivity, and in vivo profiles over the individual molecules. PMID:23336050

  11. Pet imaging of human pituitary 5-HT2 receptors with F-18 setoperone

    SciTech Connect

    Fischman, A.J.; Bonab, A.A.; Babich, J.W.

    1995-05-01

    Serotonin (5-HT) receptors play an important role in the regulation of pituitary function. In particular, 5HT agonists stimulate ACTH, {beta}-endorphin, prolactin and growth hormone secretion but inhibit TSH release. 5-HT binding sites have been identified by autoradiographic studies of rat and human pituitary. In the present investigation, we used PET with F-18 setoperone to image 5-HT2 receptors in normal humans. Setoperone, a piperidine derivative with potent 5-HT2 receptor blocking properties was labelled with F-18 by nucleophilic substitution on the nitro derivative. After HPLC purification, specific activity was between 10,000 and 15,000 mCi/{mu} mole and radiochemical purity was >98%. Six healthy male volunteers were injected with 5-7 mCi of F-18. Setoperone and serial PET images and arterial blood samples were collected over 2 hrs. Specific binding to 5-HT2 receptors in the frontal cortex (FC), striatum (ST) and pituitary (P) was quantitated using the cerebellum (C) as reference. The tracer showed clear retention in FC, ST and P (known to contain a high density of 5-HT2 receptors) relative to C (known to be devoid of 5-HT2 receptors). In all subjects, FC/C, ST/C and P/C ratios increased during the first hr. and remained stable thereafter. For FC and ST, the ratios reached similar values; 3.92{plus_minus}0.73 and 3.53{plus_minus}0.32. For pituitary, a significantly higher ratio, was measured at all times; 6.53{plus_minus}1.82 (p<0.01). These results indicate that F-18 setoperone is an effective PET radiopharmaceutical for imaging 5-HT2 receptors in the human pituitary. Future applications of this agent could provide important new insights into neuroendocrine function.

  12. Vascular reactivity, 5-HT uptake, and blood pressure in the serotonin transporter knockout rat.

    PubMed

    Linder, A Elizabeth; Diaz, Jessica; Ni, Wei; Szasz, Theo; Burnett, Robert; Watts, Stephanie W

    2008-04-01

    The handling of serotonin [5-hydroxytryptamine (5-HT)] depends on the serotonin transporter (SERT). A SERT knockout (KO) rat is a useful model to test the hypothesis that SERT is the primary mechanism for arterial 5-HT uptake and to investigate the impact of SERT removal on blood pressure. Wild-type (WT) and KO rats were used to measure 5-HT content (plasma, raphe, aorta, carotid, and mesenteric artery), aortic isometric contraction, and blood pressure. HPLC supported the lack of circulating 5-HT in plasma (ng/ml plasma, WT, 310 +/- 96; and KO, 1.0 +/- 0.5; P < 0.05). Immunohistochemistry and Western blot analyses validated the presence of the SERT protein in the WT rats and a lesser expression in the KO rat. The aorta isolated from KO rats had a normal contraction to phenylephrine and norepinephrine and a normal relaxation to the endothelium-dependent agonist acetylcholine compared with the aorta from WT. In contrast, the potency of 5-HT was increased in the aorta from KO rats compared with WT rats [-log EC(50) (M); WT, 5.71 +/- 0.08; and KO, 6.7 +/- 0.18] and maximum contraction was reduced [%phenylephrine (10 muM) contraction, WT, 113 +/- 6%; and KO, 52 +/- 12%]. 5-HT uptake was reduced but not abolished in arteries of the KO compared with the WT rats. Diurnal mean arterial blood pressure, heart rate, and locomotor activity level of the KO rats were similar to the WT rats. These data suggest that there are other mechanisms of 5-HT uptake in the arteries of the rat and that although the absence of circulating 5-HT and/or SERT function sensitizes arteries to 5-HT, SERT dysfunction does not impair normal blood pressure. PMID:18263707

  13. Serotonin 5-ht2c receptor agonists: potential for the treatment of obesity.

    PubMed

    Miller, Keith J

    2005-10-01

    Obesity continues to be a burgeoning health problem worldwide. Before their removal from the market, fenfluramine and the more active enantiomer dexfenfluramine were considered to be among the most effective of weight loss agents. Much of the weight loss produced by fenfluramine was attributed to the direct activation of serotonin 5-HT(2C) receptors in the central nervous system via the desmethyl-metabolite of fenfluramine, norfenfluramine. Norfenfluramine, however, is non-selective, activating additional serotonin receptors, such as 5-HT(2A) and 5-HT(2B), which likely mediated the heart valve hypertrophy seen in many patients. Development of highly selective 5-HT(2C) agonists may recapitulate the clinical anti-obesity properties observed with fenfluramine while avoiding the significant cardiovascular and pulmonary side effects. PMID:16249524

  14. Arterial expression of 5-HT2B and 5-HT1B receptors during development of DOCA-salt hypertension

    PubMed Central

    Banes, Amy KL; Watts, Stephanie W

    2003-01-01

    Background 5-hydroxytryptamine (5-HT)2B and 5-HT1B receptors are upregulated in arteries from hypertensive DOCA-salt rats and directly by mineralocorticoids. We hypothesized that increased 5-HT2B and 5-HT1B receptor density and contractile function would precede increased blood pressure in DOCA-high salt rats. We performed DOCA-salt time course (days 1, 3, 5 and 7) studies using treatment groups of: DOCA-high salt, DOCA-low salt, Sham and Sham-high salt rats. Results In isolated-tissue baths, DOCA-high salt aorta contracted to the 5-HT2B receptor agonist BW723C86 on day 1; Sham aorta did not contract. The 5-HT1B receptor agonist CP93129 had no effect in arteries from any group. On days 3, 5 and 7 CP93129 and BW723C86 contracted DOCA-high salt and Sham-high salt aorta; Sham and DOCA-low salt aorta did not respond. Western analysis of DOCA-high salt aortic homogenates revealed increased 5-HT2B receptor levels by day 3; 5-HT1B receptor density was unchanged. Aortic homogenates from the other groups showed unchanged 5-HT2B and 5-HT1B receptor levels. Conclusion These data suggest that functional changes of 5-HT2B but not 5-HT1B receptors may play a role in the development of DOCA-salt hypertension. PMID:12974983

  15. Identification of ginsenoside interaction sites in 5-HT3A receptors.

    PubMed

    Lee, Byung-Hwan; Lee, Jun-Ho; Lee, Sang-Mok; Jeong, Sang Min; Yoon, In-Soo; Lee, Joon-Hee; Choi, Sun-Hye; Pyo, Mi Kyung; Rhim, Hyewhon; Kim, Hyoung-Chun; Jang, Choon-Gon; Lee, Byoung-Cheol; Park, Chul-Seung; Nah, Seung-Yeol

    2007-03-01

    We previously demonstrated that 20(S)-ginsenoside Rg(3) (Rg(3)), one of the active components of Panax ginseng, non-competitively inhibits 5-HT(3A) receptor channel activity on extracellular side of the cell. Here, we sought to elucidate the molecular mechanisms underlying Rg(3)-induced 5-HT(3A) receptor regulation. We used the two-microelectrode voltage-clamp technique to investigate the effect of Rg(3) on 5-HT-mediated ion currents (I(5-HT)) in Xenopus oocytes expressing wild-type or 5-HT(3A) receptors harboring mutations in the gating pore region of transmembrane domain 2 (TM2). In oocytes expressing wild-type 5-HT(3A) receptors, Rg(3) dose-dependently inhibited peak I(5-HT) with an IC(50) of 27.6+/-4.3microM. Mutations V291A, F292A, and I295A in TM2 greatly attenuated or abolished the Rg(3)-induced inhibition of peak I(5-HT). Mutation V291A but not F292A and I295A induced constitutively active ion currents with decrease of current decay rate. Rg(3) accelerated the rate of current decay with dose-dependent manner in the presence of 5-HT. Rg(3) and TMB-8, an open channel blocker, dose-dependently inhibited constitutively active ion currents. The IC(50) values of constitutively active ion currents in V291A mutant receptor were 72.4+/-23.1 and 6.5+/-0.7microM for Rg(3) and TMB-8, respectively. Diltiazem did not prevent Rg(3)-induced inhibition of constitutively active ion currents in occlusion experiments. These results indicate that Rg(3) inhibits 5-HT(3A) receptor channel activity through interactions with residues V291, F292, and I295 in the channel gating region of TM2 and further demonstrate that Rg(3) regulates 5-HT(3A) receptor channel activity in the open state at different site(s) from those of TMB-8 and diltiazem. PMID:17257631

  16. Functional expression of 5-HT{sub 2A} receptor in osteoblastic MC3T3-E1 cells

    SciTech Connect

    Hirai, Takao; Kaneshige, Kota; Kurosaki, Teruko; Nishio, Hiroaki

    2010-05-28

    In the previous study, we reported the gene expression for proteins related to the function of 5-hydroxytryptamine (5-HT, serotonin) and elucidated the expression patterns of 5-HT{sub 2} receptor subtypes in mouse osteoblasts. In the present study, we evaluated the possible involvement of 5-HT receptor subtypes and its inactivation system in MC3T3-E1 cells, an osteoblast cell line. DOI, a 5-HT{sub 2A} and 5-HT{sub 2C} receptor selective agonist, as well as 5-HT concentration-dependently increased proliferative activities of MC3T3-E1 cells in their premature period. This effect of 5-HT on cell proliferation were inhibited by ketanserin, a 5-HT{sub 2A} receptor specific antagonist. Moreover, both DOI-induced cell proliferation and phosphorylation of ERK1 and 2 proteins were inhibited by PD98059 and U0126, selective inhibitors of MEK in a concentration-dependent manner. Furthermore, treatment with fluoxetine, a 5-HT specific re-uptake inhibitor which inactivate the function of extracellular 5-HT, significantly increased the proliferative activities of MC3T3-E1 cells in a concentration-dependent manner. Our data indicate that 5-HT fill the role for proliferation of osteoblast cells in their premature period. Notably, 5-HT{sub 2A} receptor may be functionally expressed to regulate mechanisms underlying osteoblast cell proliferation, at least in part, through activation of ERK/MAPK pathways in MC3T3-E1 cells.

  17. Regulation of the amyloid precursor protein ectodomain shedding by the 5-HT4 receptor and Epac.

    PubMed

    Robert, Sylvain; Maillet, Marjorie; Morel, Eric; Launay, Jean-Marie; Fischmeister, Rodolphe; Mercken, Luc; Lezoualc'h, Frank

    2005-02-14

    The serotonin 5-hydroxytryptamine (5-HT4) receptor is of potential interest for the treatment of Alzheimer's disease because it increases memory and learning. In this study, we investigated the effect of zinc metalloprotease inhibitors on the amyloid precursor protein (APP) processing induced by the serotonin 5-HT4 receptor in vitro. We show that secretion of the non-amyloidogenic form of APP, sAPPalpha induced by the 5-HT4(e) receptor isoform was not due to a general boost of the constitutive secretory pathway but rather to its specific effect on alpha-secretase activity. Although the h5-HT4(e) receptor increased IP3 production, inhibition of PKC did not modify its effect on sAPPalpha secretion. In addition, we found that alpha secretase activity is regulated by the cAMP-regulated guanine nucleotide exchange factor, Epac and the small GTPase Rac. PMID:15710402

  18. 5-HT2C Receptor Desensitization Moderates Anxiety in 5-HTT Deficient Mice: From Behavioral to Cellular Evidence

    PubMed Central

    Martin, Cédric BP; Martin, Vincent S.; Trigo, José M.; Chevarin, Caroline; Maldonado, Rafael; Fink, Latham H.; Cunningham, Kathryn A.; Hamon, Michel; Lanfumey, Laurence

    2015-01-01

    Background: Desensitization and blockade of 5-HT2C receptors (5-HT2CR) have long been thought to be central in the therapeutic action of antidepressant drugs. However, besides behavioral pharmacology studies, there is little in vivo data documenting antidepressant-induced 5-HT2CR desensitization in specific brain areas. Methods: Mice lacking the 5-HT reuptake carrier (5-HTT-/-) were used to model the consequences of chronic 5-HT reuptake inhibition with antidepressant drugs. The effect of this mutation on 5-HT2CR was evaluated at the behavioral (social interaction, novelty-suppressed feeding, and 5-HT2CR–induced hypolocomotion tests), the neurochemical, and the cellular (RT-qPCR, mRNA editing, and c-fos–induced expression) levels. Results: Although 5-HTT-/- mice had an anxiogenic profile in the novelty-suppressed feeding test, they displayed less 5-HT2CR–mediated anxiety in response to the agonist m-chlorophenylpiperazine in the social interaction test. In addition, 5-HT2CR–mediated inhibition of a stress-induced increase in 5-HT turnover, measured in various brain areas, was markedly reduced in 5-HTT-/- mutants. These indices of tolerance to 5-HT2CR stimulation were associated neither with altered levels of 5-HT2CR protein and mRNA nor with changes in pre-mRNA editing in the frontal cortex. However, basal c-fos mRNA production in cells expressing 5-HT2CR was higher in 5-HTT-/- mutants, suggesting an altered basal activity of these cells following sustained 5-HT reuptake carrier inactivation. Furthermore, the increased c-fos mRNA expression in 5-HT2CR–like immune-positive cortical cells observed in wild-type mice treated acutely with the 5-HT2CR agonist RO-60,0175 was absent in 5-HTT-/- mutants. Conclusions: Such blunted responsiveness of the 5-HT2CR system, observed at the cell signaling level, probably contributes to the moderation of the anxiety phenotype in 5-HTT-/- mice. PMID:25522398

  19. Poly-Alizarin red S/multiwalled carbon nanotube modified glassy carbon electrode for the boost up of electrocatalytic activity towards the investigation of dopamine and simultaneous resolution in the presence of 5-HT: A voltammetric study.

    PubMed

    Reddaiah, K; Madhusudana Reddy, T; Venkata Ramana, D K; Subba Rao, Y

    2016-05-01

    Poly-Alizarin red S/multiwalled carbon nanotube film on the surface of glassy carbon electrode (poly-AzrS/MWCNT/GCE) was synthesized by electrochemical process and was used for the sensitive and selective determination of dopamine (DA) by employing voltammetric techniques. The electrocatalytic response of the modified electrode was found to exhibit admirable activity. The simultaneous determination of dopamine in the presence of serotonin (5-HT) was found to exhibit very good response at poly-AzrS/MWCNTs/GCE. The effect of pH, scan rate, accumulation time and concentration of dopamine was studied at the developed poly-AzrS/MWCNTs/GCE. The poly-AzrS/MWCNTs/GCE exhibited an efficient electron mediating behavior together with well resolved peaks for dopamine, in 0.1mol/dm(3) phosphate buffer (PBS) solution of pH7.0. The limit of detection (LOD) and limit of quantification (LOQ) were found to be as 1.89×10(-7)mol/dm(3) and 6.312×10(-7)mol/dm(3) respectively with a dynamic range from 1×10(-6) to 1.8×10(-5)mol/dm(3). The interfacial electron transfer behavior of DA was studied by electrochemical impedance spectroscopy (EIS); the studies showed that the charge transfer rate was enhanced at poly-AzrS/MWCNTs/GCE when compared with bare GCE and poly-AzrS/GCE. PMID:26952453

  20. 5-hydroxytryptamine receptor (5-HT1DR) promotes colorectal cancer metastasis by regulating Axin1/β-catenin/MMP-7 signaling pathway

    PubMed Central

    Ji, Qing; Liu, Xuan; Zhou, Lihong; Song, Haiyan; Zhou, Xiqiu; Xu, Yangxian; Chen, Zhesheng; Cai, Jianfeng; Ji, Guang; Li, Qi

    2015-01-01

    Overexpression of 5-hydroxytryptamine (5-HT) in human cancer contributes to tumor metastasis, but the role of 5-HT receptor family in cancer has not been thoroughly explored. Here, we report overexpression of 5-HT1D receptor (5-HT1DR) was associated with Wnt signaling pathway and advanced tumor stage. The underlying mechanism of 5-HT1DR-promoted tumor invasion was through its activation on the Axin1/β-catenin/MMP-7 pathway. In an orthotopic colorectal cancer mouse model, we demonstrated that a 5-HT1DR antagonist (GR127935) effectively inhibited tumor metastasis through targeting Axin1. Furthermore, in intestinal epithelium cells, we observed that 5-HT1DR played an important role in cell invasion via Axin1/β-catenin/MMP-7 pathway. Together, our findings reveal an essential role of the physiologic level of 5-HT1DR in pulmonary metastasis of colorectal cancer. PMID:26214021

  1. 5-HT spatial distribution imaging with multiphoton excitation of 5-HT correlative visible fluorescence in live cells

    NASA Astrophysics Data System (ADS)

    Zhang, Zhihong; Zeng, Shaoqun; Liu, Yafeng; Zhou, Wei; Chen, Tongsheng; Luo, Qingming

    2002-04-01

    The autofluorescence of 5-Hydroxytryptamine (5-HT) loaded rat mucosal mast cells (RBL-2H3 cells) is imaged with multiphoton excitation laser scanning microscope (MPELSM). 5-HT correlative visible fluorescence (Fco-vis) excited with 740-nm multiphoton excitation is observed in live cells for the first time, and the generating mechanism of 5-HT Fco-vis is studied. The spatial distribution of 5-HT in live cells is imaged at high spatial resolution in our experiment, which provides a new way to study the correlation between 5-HT spatial distribution and content, and the cellular functional state in live tissue or cells.

  2. Selective 5-HT2C receptor agonists: Design and synthesis of pyridazine-fused azepines.

    PubMed

    Green, Martin P; McMurray, Gordon; Storer, R Ian

    2016-08-15

    Heterocycle-fused azepines are discussed as potent 5-HT2C receptor agonists with excellent selectivity over 5-HT2B agonism. Synthesis and structure activity relationships are outlined for a series of bicyclic pyridazino[3,4-d]azepines. By comparison with earlier published work, in vitro assays predict a high probability for achieving CNS penetration for a potent and selective compound 15a, a pre-requisite to achieve in vivo efficacy. PMID:27381086

  3. Function and Distribution of 5-HT2 Receptors in the Honeybee (Apis mellifera)

    PubMed Central

    Thamm, Markus; Rolke, Daniel; Jordan, Nadine; Balfanz, Sabine; Schiffer, Christian; Baumann, Arnd; Blenau, Wolfgang

    2013-01-01

    Background Serotonin plays a pivotal role in regulating and modulating physiological and behavioral processes in both vertebrates and invertebrates. In the honeybee (Apis mellifera), serotonin has been implicated in division of labor, visual processing, and learning processes. Here, we present the cloning, heterologous expression, and detailed functional and pharmacological characterization of two honeybee 5-HT2 receptors. Methods Honeybee 5-HT2 receptor cDNAs were amplified from brain cDNA. Recombinant cell lines were established constitutively expressing receptor variants. Pharmacological properties of the receptors were investigated by Ca2+ imaging experiments. Quantitative PCR was applied to explore the expression patterns of receptor mRNAs. Results The honeybee 5-HT2 receptor class consists of two subtypes, Am5-HT2α and Am5-HT2β. Each receptor gene also gives rise to alternatively spliced mRNAs that possibly code for truncated receptors. Only activation of the full-length receptors with serotonin caused an increase in the intracellular Ca2+ concentration. The effect was mimicked by the agonists 5-methoxytryptamine and 8-OH-DPAT at low micromolar concentrations. Receptor activities were blocked by established 5-HT receptor antagonists such as clozapine, methiothepin, or mianserin. High transcript numbers were detected in exocrine glands suggesting that 5-HT2 receptors participate in secretory processes in the honeybee. Conclusions This study marks the first molecular and pharmacological characterization of two 5-HT2 receptor subtypes in the same insect species. The results presented should facilitate further attempts to unravel central and peripheral effects of serotonin mediated by these receptors. PMID:24324783

  4. Modulatory effect of the 5-HT1A agonist buspirone and the mixed non-hallucinogenic 5-HT1A/2A agonist ergotamine on psilocybin-induced psychedelic experience.

    PubMed

    Pokorny, Thomas; Preller, Katrin H; Kraehenmann, Rainer; Vollenweider, Franz X

    2016-04-01

    The mixed serotonin (5-HT) 1A/2A/2B/2C/6/7 receptor agonist psilocybin dose-dependently induces an altered state of consciousness (ASC) that is characterized by changes in sensory perception, mood, thought, and the sense of self. The psychological effects of psilocybin are primarily mediated by 5-HT2A receptor activation. However, accumulating evidence suggests that 5-HT1A or an interaction between 5-HT1A and 5-HT2A receptors may contribute to the overall effects of psilocybin. Therefore, we used a double-blind, counterbalanced, within-subject design to investigate the modulatory effects of the partial 5-HT1A agonist buspirone (20mg p.o.) and the non-hallucinogenic 5-HT2A/1A agonist ergotamine (3mg p.o.) on psilocybin-induced (170 µg/kg p.o.) psychological effects in two groups (n=19, n=17) of healthy human subjects. Psychological effects were assessed using the Altered State of Consciousness (5D-ASC) rating scale. Buspirone significantly reduced the 5D-ASC main scale score for Visionary Restructuralization (VR) (p<0.001), which was mostly driven by a reduction of the VR item cluster scores for elementary and complex visual hallucinations. Further, buspirone also reduced the main scale score for Oceanic Boundlessness (OB) including derealisation and depersonalisation phenomena at a trend level (p=0.062), whereas ergotamine did not show any effects on the psilocybin-induced 5D-ASC main scale scores. The present finding demonstrates that buspirone exerts inhibitory effects on psilocybin-induced effects, presumably via 5-HT1A receptor activation, an interaction between 5-HT1A and 5-HT2A receptors, or both. The data suggest that the modulation of 5-HT1A receptor activity may be a useful target in the treatment of visual hallucinations in different psychiatric and neurological diseases. PMID:26875114

  5. (+)Lysergic acid diethylamide, but not its nonhallucinogenic congeners, is a potent serotonin 5HT1C receptor agonist

    SciTech Connect

    Burris, K.D.; Breeding, M.; Sanders-Bush, E. )

    1991-09-01

    Activation of central serotonin 5HT2 receptors is believed to be the primary mechanism whereby lysergic acid diethylamide (LSD) and other hallucinogens induce psychoactive effects. This hypothesis is based on extensive radioligand binding and electrophysiological and behavioral studies in laboratory animals. However, the pharmacological profiles of 5HT2 and 5HT1C receptors are similar, making it difficult to distinguish between effects due to activation of one or the other receptor. For this reason, it was of interest to investigate the interaction of LSD with 5HT1C receptors. Agonist-stimulated phosphoinositide hydrolysis in rat choroid plexus was used as a direct measure of 5HT1C receptor activation. (+)LSD potently stimulated phosphoinositide hydrolysis in intact choroid plexus and in cultures of choroid plexus epithelial cells, with EC50 values of 9 and 26 nM, respectively. The effect of (+)LSD in both systems was blocked by 5HT receptor antagonists with an order of activity consistent with interaction at 5HT1C receptors. Neither (+)-2-bromo-LSD nor lisuride, two nonhallucinogenic congeners of LSD, were able to stimulate 5HT1C receptors in cultured cells or intact choroid plexus. In contrast, lisuride, like (+)LSD, is a partial agonist at 5HT2 receptors in cerebral cortex slices and in NIH 3T3 cells transfected with 5HT2 receptor cDNA. The present finding that (+)LSD, but not its nonhallucinogenic congeners, is a 5HT1C receptor agonist suggests a possible role for these receptors in mediating the psychoactive effects of LSD.

  6. Memory formation, amnesia, improved memory and reversed amnesia: 5-HT role.

    PubMed

    Perez-Garcia, G; Meneses, A

    2008-12-16

    Traditionally, the search for memory circuits has been focused on examinations of amnesic and AD patients, cerebral lesions and neuroimaging. A complementary alternative has become the use of autoradiography with radioligands, aiming to identify neurobiological markers associated with memory formation, amnesia states and (more recently) recovery from memory deficits. Indeed, ex vivo autoradiographic studies offer the advantage of detecting functionally active receptors altered by pharmacological tools during memory formation, amnesia states and memory recovery. Moreover, serotonin (5-hydroxytryptamine, 5-HT) systems have become a pharmacological and genetic target in the treatment of memory disorders. Herein evidence from studies involving expression of 5-HT(1A), 5-HT(2A), 5-HT(4), and 5-HT(6) receptors in memory formation, amnesia conditions (e.g., pharmacological models or aging) and recovery of memory is reviewed. Thus, specific 5-HT receptors were expressed in trained animals relative to untrained in brain areas such as cortex, hippocampus and amygdala. However, relative to the control group, rats showing amnesia or recovered memory, showed in the hippocampus, region where explicit memory is formed, a complex pattern of 5-HT receptor expression. An intermediate expression occurred in amygdala, septum and some cortical areas in charge of explicit memory storage. Even in brain areas thought to be in charge of procedural memory such as basal ganglia, animals showing recovered memory displayed an intermediate expression, while amnesic groups, depending on the pharmacological amnesia model, showed up- or down-regulation. In conclusion, evidence indicates that autoradiography, by using specific radioligands, offers excellent opportunities to map dynamic changes in brain areas engaged in these cognitive processes. The 5-HT modulatory role strengthens or suppresses memory is critically depend on the timing of the memory formation. PMID:18221797

  7. Impaired Social Behavior in 5-HT3A Receptor Knockout Mice

    PubMed Central

    Smit-Rigter, Laura A.; Wadman, Wytse J.; van Hooft, Johannes A.

    2010-01-01

    The 5-HT3 receptor is a ligand-gated ion channel expressed on interneurons throughout the brain. So far, analysis of the 5-HT3A knockout mouse revealed changes in nociceptive processing and a reduction in anxiety related behavior. Recently, it was shown that the 5-HT3 receptor is also expressed on Cajal-Retzius cells which play a key role in cortical development and that knockout mice lacking this receptor showed aberrant growth of the dendritic tree of cortical layer II/III pyramidal neurons. Other mouse models in which serotonergic signaling was disrupted during development showed similar morphological changes in the cortex, and in addition, also deficits in social behavior. Here, we subjected male and female 5-HT3A knockout mice and their non-transgenic littermates to several tests of social behavior. We found that 5-HT3A knockout mice display impaired social communication in the social transmission of food preference task. Interestingly, we showed that in the social interaction test only female 5-HT3A knockout mice spent less time in reciprocal social interaction starting after 5 min of testing. Moreover, we observed differences in preference for social novelty for male and female 5-HT3A knockout mice during the social approach test. However, no changes in olfaction, exploratory activity and anxiety were detected. These results indicate that the 5-HT3A knockout mouse displays impaired social behavior with specific changes in males and females, reminiscent to other mouse models in which serotonergic signaling is disturbed in the developing brain. PMID:21103015

  8. Distinct effect of 5-HT1A and 5-HT2A receptors in the medial nucleus of the amygdala on tonic immobility behavior.

    PubMed

    de Paula, Bruna Balbino; Leite-Panissi, Christie Ramos Andrade

    2016-07-15

    The tonic immobility (TI) response is an innate fear behavior associated with intensely dangerous situations, exhibited by many species of invertebrate and vertebrate animals. In humans, it is possible that TI predicts the severity of posttraumatic stress disorder symptoms. This behavioral response is initiated and sustained by the stimulation of various groups of neurons distributed in the telencephalon, diencephalon and brainstem. Previous research has found the highest Fos-IR in the posteroventral part of the medial nucleus of the amygdala (MEA) during TI behavior; however, the neurotransmission of this amygdaloid region involved in the modulation of this innate fear behavior still needs to be clarified. Considering that a major drug class used for the treatment of psychopathology is based on serotonin (5-HT) neurotransmission, we investigated the effects of serotonergic receptor activation in the MEA on the duration of TI. The results indicate that the activation of the 5HT1A receptors or the blocking of the 5HT2 receptors of the MEA can promote a reduction in fear and/or anxiety, consequently decreasing TI duration in guinea pigs. In contrast, blocking the 5HT1A receptors or activating the 5HT2 receptors in this amygdalar region increased the TI duration, suggesting an increase in fear and/or anxiety. These alterations do not appear to be due to a modification of spontaneous motor activity, which might non-specifically affect TI duration. Thus, these results suggest a distinct role of the 5HT receptors in the MEA in innate fear modulation. PMID:27150816

  9. Convergence of melatonin and serotonin (5-HT) signaling at MT2/5-HT2C receptor heteromers.

    PubMed

    Kamal, Maud; Gbahou, Florence; Guillaume, Jean-Luc; Daulat, Avais M; Benleulmi-Chaachoua, Abla; Luka, Marine; Chen, Patty; Kalbasi Anaraki, Dina; Baroncini, Marc; Mannoury la Cour, Clotilde; Millan, Mark J; Prevot, Vincent; Delagrange, Philippe; Jockers, Ralf

    2015-05-01

    Inasmuch as the neurohormone melatonin is synthetically derived from serotonin (5-HT), a close interrelationship between both has long been suspected. The present study reveals a hitherto unrecognized cross-talk mediated via physical association of melatonin MT2 and 5-HT2C receptors into functional heteromers. This is of particular interest in light of the "synergistic" melatonin agonist/5-HT2C antagonist profile of the novel antidepressant agomelatine. A suite of co-immunoprecipitation, bioluminescence resonance energy transfer, and pharmacological techniques was exploited to demonstrate formation of functional MT2 and 5-HT2C receptor heteromers both in transfected cells and in human cortex and hippocampus. MT2/5-HT2C heteromers amplified the 5-HT-mediated Gq/phospholipase C response and triggered melatonin-induced unidirectional transactivation of the 5-HT2C protomer of MT2/5-HT2C heteromers. Pharmacological studies revealed distinct functional properties for agomelatine, which shows "biased signaling." These observations demonstrate the existence of functionally unique MT2/5-HT2C heteromers and suggest that the antidepressant agomelatine has a distinctive profile at these sites potentially involved in its therapeutic effects on major depression and generalized anxiety disorder. Finally, MT2/5-HT2C heteromers provide a new strategy for the discovery of novel agents for the treatment of psychiatric disorders. PMID:25770211

  10. Serotonin decreases aggression via 5-HT1A receptors in the fighting fish Betta splendens.

    PubMed

    Clotfelter, Ethan D; O'Hare, Erin P; McNitt, Meredith M; Carpenter, Russ E; Summers, Cliff H

    2007-01-01

    The role of the monoamine neurotransmitter serotonin (5-HT) in the modulation of conspecific aggression in the fighting fish (Betta splendens) was investigated using pharmacological manipulations. We used a fish's response to its mirror image as our index of aggressive behavior. We also investigated the effects of some manipulations on monoamine levels in the B. splendens brain. Acute treatment with 5-HT and with the 5-HT1A receptor agonist 8-OH-DPAT both decreased aggressive behavior; however, treatment with the 5-HT1A receptor antagonist WAY-100635 did not increase aggression. Chronic treatment with the selective serotonin reuptake inhibitor fluoxetine caused no significant changes in aggressive behavior and a significant decline in 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) concentrations. Treatment with the serotonin synthesis inhibitor p-chlorophenylalanine resulted in no change in aggression, yet serotonergic activity decreased significantly. Finally, a diet supplemented with L-tryptophan (Trp), the precursor to 5-HT, showed no consistent effects on aggressive behavior or brain monoamine concentrations. These results suggest a complex role for serotonin in the expression of aggression in teleost fishes, and that B. splendens may be a useful model organism in pharmacological and toxicological studies. PMID:17553555

  11. The 5-HT2A serotonin receptor in executive function: Implications for neuropsychiatric and neurodegenerative diseases.

    PubMed

    Aznar, Susana; Hervig, Mona El-Sayed

    2016-05-01

    Executive function entails the interplay of a group of cognitive processes enabling the individual to anticipate consequences, attain self-control, and undertake appropriate goal-directed behaviour. Serotonin signalling at serotonin 2A receptors (5-HT2AR) has important effects on these behavioural and cognitive pathways, with the prefrontal cortex (PFC) as the central actor. Indeed, the 5-HT2ARs are highly expressed in PFC, where they modulate cortical activity and local network oscillations (brain waves). Numerous psychiatric and neurodegenerative diseases result in disrupted executive function. Animal and human studies have linked these disorders with alterations in the 5-HT2AR system, making this an important pharmacological target for the treatment of disorders with impaired cognitive function. This review aims to describe the current state of knowledge on the role of 5-HT2AR signalling in components of executive function, and how 5-HT2AR systems may relate to executive dysfunctions occurring in psychiatric and neurodegenerative diseases. We hope thereby to provide insight into how pharmacotherapy targeting the 5-HT2AR may ameliorate (or exacerbate) aspects of these disorders. PMID:26891819

  12. RU 24969-induced emesis in the cat - 5-HT1 sites other than 5-HT1A, 5-HT1B or 5-HT1C implicated

    NASA Technical Reports Server (NTRS)

    Lucot, James B.

    1990-01-01

    RU 24969 was administered s.c. to cats and found to elicit emesis with a maximally effective dose of 1.0 mg/kg 5-Methoxytryptamine was found to have lower efficacy and to produce a higher incidence of nonspecific effects while trifluoromethylphenylpiperizine (TFMPP) was devoid of emetic effects. The emesis elicited by 1.0 mg/kg of RU 24969 was not altered by pretreatment with phentolamine, haloperidol, yohimbine or (-)-propranolol, indicating that catecholamines played no role in this response. The emesis was prevented by metergoline and methysergide but not by ketanserin, cyproheptadine, mesulergine, ICS 205 930, methiothepin, trimethobenzamide or BMY 7378. An indirect argument is presented that implicates a role for 5-HT1D sites. This conclusion must remain tentative until drugs selective for this site are synthesized and tested. The emesis was also prevented by 8-hydroxy-2-(di-n-propylamine)tetralin (8-OH-DPAT), confirming that this drug has a general antiemetic effect in cats.

  13. Incubation of cocaine cue reactivity associates with neuroadaptations in the cortical serotonin (5-HT) 5-HT2C receptor (5-HT2CR) system.

    PubMed

    Swinford-Jackson, S E; Anastasio, N C; Fox, R G; Stutz, S J; Cunningham, K A

    2016-06-01

    Intensification of craving elicited by drug-associated cues during abstinence occurs over time in human cocaine users while elevation of cue reactivity ("incubation") is observed in rats exposed to extended forced abstinence from cocaine self-administration. Incubation in rodents has been linked to time-dependent neuronal plasticity in the medial prefrontal cortex (mPFC). We tested the hypothesis that incubation of cue reactivity during abstinence from cocaine self-administration is accompanied by lower potency and/or efficacy of the selective serotonin (5-HT) 5-HT2C​ receptor (5-HT2CR) agonist WAY163909 to suppress cue reactivity and a shift in the subcellular localization profile of the mPFC 5-HT2CR protein. We observed incubation of cue reactivity (measured as lever presses reinforced by the discrete cue complex) between Day 1 and Day 30 of forced abstinence from cocaine relative to sucrose self-administration. Pharmacological and biochemical analyses revealed that the potency of the selective 5-HT2CR agonist WAY163909 to suppress cue reactivity, the expression of synaptosomal 5-HT2CR protein in the mPFC, and the membrane to cytoplasmic expression of the 5-HT2CR in mPFC were lower on Day 30 vs. Day 1 of forced abstinence from cocaine self-administration. Incubation of cue reactivity assessed during forced abstinence from sucrose self-administration did not associate with 5-HT2CR protein expression in the mPFC. Collectively, these outcomes are the first indication that neuroadaptations in the 5-HT2CR system may contribute to incubation of cocaine cue reactivity. PMID:26926963

  14. Recombinant saphenous vein 5-HT1B receptors of the rabbit: comparative pharmacology with human 5-HT1B receptors.

    PubMed

    Wurch, T; Palmier, C; Colpaert, F C; Pauwels, P J

    1997-01-01

    1. The rabbit recombinant saphenous vein 5-hydroxytryptamine1B (r 5-HT1B) receptor stably transfected in rat C6-glial cells was characterized by measuring adenosine 3':5'-cyclic monophosphate (cycle AMP) formation upon exposure to various 5-HT receptor ligands. The effects of agonists and antagonists were compared with their effects determined previously at the human cloned 5-HT1B (h 5-HT1B) receptor under similar experimental conditions. 2. Intact C6-glial cells expressing rb HT1B receptors exhibited [3H]-5-carboxamidotryptamine (5-CT) binding sites with a Kd of 0.80 +/- 0.13 nM and a Bmax between 225 to 570 fmol mg-1 protein. The binding affinities of a series of 5-HT receptor ligands determined in a membrane preparation with [3H]-5-CT or [3H]-N-[4-methoxy-3-(4-methylpiperazin-1-yl)phenyl]-3-methyl-4-(-4 -pyridyl) benzamide (GR 125,743) were similar. With the exception of ketanserin, ligand affinities were comparable to those determined at the clones h 5-HT1B receptor site. 3. rb 5-HT1B receptors were negatively coupled to cyclic AMP formation upon stimulation with 5-HT agonists. Of the several 5-HT agonists tested, 5-CT was the most potent, the potency rank order being: 5-CT > 5-HT > zolmitriptan > naratriptan > rizatriptan > sumatriptan > R (+)-8-(hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). The maximal responses of these agonists were similar to those induced by 5-HT. The potency of these agonists showed a positive correlation (r2 = 0.87; P < 0.002) with their potency at the cloned h 5-HT1B receptor subtype. 4. 2'-Methyl-4-(5-methyl-[1,2,4]oxadiazol-3-yl)-biphenyl-4-carboxylic acid [4-methoxy-e-(4-methyl-piperazin-1-yl)-phenyl]-amide (GR 127,935), methiothepin and ketanserin each behaved as silent, competitive antagonists at rb 5HT1B receptors; pKB values were 8.41, 8.32 and 7.05, respectively when naratriptan was used as an agonist. These estimates accorded with their binding affinities and the potencies found on 5-HT and/or sumatriptan

  15. Am5-HT7: molecular and pharmacological characterization of the first serotonin receptor of the honeybee (Apis mellifera).

    PubMed

    Schlenstedt, Jana; Balfanz, Sabine; Baumann, Arnd; Blenau, Wolfgang

    2006-09-01

    The biogenic amine serotonin (5-HT) plays a key role in the regulation and modulation of many physiological and behavioural processes in both vertebrates and invertebrates. These functions are mediated through the binding of serotonin to its receptors, of which 13 subtypes have been characterized in vertebrates. We have isolated a cDNA from the honeybee Apis mellifera (Am5-ht7) sharing high similarity to members of the 5-HT(7) receptor family. Expression of the Am5-HT(7) receptor in HEK293 cells results in an increase in basal cAMP levels, suggesting that Am5-HT(7) is expressed as a constitutively active receptor. Serotonin application to Am5-ht7-transfected cells elevates cyclic adenosine 3',5'-monophosphate (cAMP) levels in a dose-dependent manner (EC(50) = 1.1-1.8 nm). The Am5-HT(7) receptor is also activated by 5-carboxamidotryptamine, whereas methiothepin acts as an inverse agonist. Receptor expression has been investigated by RT-PCR, in situ hybridization, and western blotting experiments. Receptor mRNA is expressed in the perikarya of various brain neuropils, including intrinsic mushroom body neurons, and in peripheral organs. This study marks the first comprehensive characterization of a serotonin receptor in the honeybee and should facilitate further analysis of the role(s) of the receptor in mediating the various central and peripheral effects of 5-HT. PMID:16945110

  16. Rational design in search for 5-phenylhydantoin selective 5-HT7R antagonists. Molecular modeling, synthesis and biological evaluation.

    PubMed

    Kucwaj-Brysz, Katarzyna; Warszycki, Dawid; Podlewska, Sabina; Witek, Jagna; Witek, Karolina; González Izquierdo, Andrea; Satała, Grzegorz; Loza, María I; Lubelska, Annamaria; Latacz, Gniewomir; Bojarski, Andrzej J; Castro, Marián; Kieć-Kononowicz, Katarzyna; Handzlik, Jadwiga

    2016-04-13

    A series of novel arylpiperazine 5-(4-fluorophenyl)-5-methylhydantoins with 2-hydroxypropyl linker (2-15) was synthesized and evaluated on their affinity towards serotonin 5-HT7 receptor (5-HT7R) in comparison to other closely related GPCRs: serotonin 5-HT1A, and dopamine D2 receptors. The functional activity studied through the measurement of 5-HT7R-mediated cyclic AMP production in Human Embryonic Kidney 293 cells (HEK293) stably expressing human 5-HT7 proved their antagonistic properties. The lead structure was also examined in the preliminary metabolic stability study using human liver microsomes (HMLs). The process of selection of candidates for synthesis was supported by a special molecular modeling workflow including combinatorial library generation, docking, and machine learning-based assessment. Additionally, in silico predictions of selectivity over 5-HT1AR and D2R, as well as functional activity were carried out. The newly synthesized compounds were proved to possess a potent affinity for 5-HT7R, similar to that of the lead structure of 5-(4-fluorophenyl)-3-(3-(4-(2-methoxyphenyl)piperazin-1-yl)-2-hydroxypropyl)-5-methylimidazolidine-2,4-dione (1). For several derivatives, significant selectivity both over 5-HT1AR and D2R was found. PMID:26900658

  17. Identification of a cys-ser substitution in the 5-HT{sub 2C} (HTR2C) receptor gene and allelic association to violent behavior and alcoholism

    SciTech Connect

    Lappalainen, J.; Ozaki, N.; Goldman, D.

    1994-09-01

    Several lines of evidence suggest that brain serotonergic functions, including behavioral and neurochemical responses to 5-HT{sub 2C} agonist, are abnormal in some individuals with alcoholism and aggressive behaviors. The aim of the present study was to identify coding sequence variants in the human 5-HT{sub 2C} receptor gene which may cause abnormal or variant function of this receptor. Using SSCP analysis, a non-conservative cys-ser substitution was found in the 5-HT{sub 2C} receptor (designated 5-HT{sub 2Ccys} and 5-HT{sub 2Cser}). The polymorphism was typed in CEPH families to genetically map the gene. To test for association of the variant to alcoholism, violent behavior and serotonin function, the 5-HT{sub 2C} genotypes of 151 non-related Finnish male alcoholic violent offenders and impulsive fire setters and 127 Finnish psychiatrically interviewed healthy male volunteers were determined. CSF 5-HIAA concentrations were available for 74 alcoholic violent offenders and 25 healthy volunteers. Linkage analysis placed the 5-HT{sub 2C} gene on Xq21, a region that has been previously shown to contain genes for several mental retardation syndromes. The 5-HT{sub 2Ccys}/5-HT{sub 2Cser} genotype frequencies in alcoholic violent offenders and controls differed significantly (0.90/0.10 and 0.82/0.18, respectively, P=0.048). The association was found to be strongest in the violent offenders who did not fulfill the criteria for antisocial personality disorder (5-HT{sub 2Ccys}/5-HT{sub 2Cser} 0.93/0.07, p=0.021). No association was found between CSF 5-HIAA concentrations and 5-HT{sub 2C} genotype. These results implicate a 5-HT{sub 2C} receptor amino acid substitution in predisposition to alcohol abuse and violent behavior in a subgroup of alcoholics.

  18. Presynaptic modulation of 5-HT release in the rat septal region.

    PubMed

    Rutz, S; Riegert, C; Rothmaier, A K; Jackisch, R

    2007-05-11

    5-HT released from serotonergic axon terminals in the septal nuclei modulates the activity of septal output neurons (e.g. septohippocampal cholinergic neurons) bearing somatodendritic 5-HT receptors. Therefore, we studied the mechanisms involved in the presynaptic modulation of 5-HT release in the lateral (LS) and medial septum (MS), and the diagonal band of Broca (DB). HPLC analysis showed that tissue concentrations of noradrenaline, dopamine and 5-HT were highest in DB (DB>MS>LS). Slices prepared from LS, MS and DB regions were preincubated with [(3)H]5-HT, superfused in the presence of 6-nitro-2-(1-piperazinyl)-quinoline (6-nitroquipazine) and electrically stimulated up to three times (first electrical stimulation period (S(1)), S(2), S(3); 360 pulses, 3 Hz, 2 ms, 26-28 mA). In all septal regions the Ca(2+)-dependent and tetrodotoxin-sensitive electrically-evoked overflow of [(3)H] was inhibited by the 5-HT(1B) agonist CP-93,129 and the alpha(2)-adrenoceptor agonist 5-bromo-6-(2-imidazolin-2-ylamino)-quinoxaline tartrate (UK-14,304). Also the mu- and kappa-opioid receptor agonists (d-Ala(2), N-Me-Phe(4), glycinol(5))-enkephalin (DAMGO) and [trans-(1S,2S(-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl) cyclohexyl]-benzenacetamide hydro-chloride] (U-50,488H), respectively, acted inhibitory (although less potently), whereas the delta-opioid receptor agonist (d-Pen(2), d-Pen(5))-enkephalin (DPDPE), the dopamine D(2) receptor agonist quinpirole and the adenosine A(1) receptor agonist N(6)-cyclopentyladenosine were all ineffective; the GABA(B) receptor agonist baclofen had weak effects. All inhibitory effects of the agonists were antagonized by the corresponding antagonists (3-[3-(dimethylamino)propyl]-4-hydroxy-N-[4-(4-pyridinyl)phenyl]benzamide dihydrochloride (GR-55,562), idazoxan, naloxone, nor-binaltorphimine), which also significantly enhanced the evoked release of 5-HT at S(1). It is concluded that 5-HT release in septal nuclei of the rat is modulated by

  19. 5-HT7 receptors as modulators of neuronal excitability, synaptic transmission and plasticity: physiological role and possible implications in autism spectrum disorders

    PubMed Central

    Ciranna, Lucia; Catania, Maria Vincenza

    2014-01-01

    Serotonin type 7 receptors (5-HT7) are expressed in several brain areas, regulate brain development, synaptic transmission and plasticity, and therefore are involved in various brain functions such as learning and memory. A number of studies suggest that 5-HT7 receptors could be potential pharmacotherapeutic target for cognitive disorders. Several abnormalities of serotonergic system have been described in patients with autism spectrum disorder (ASD), including abnormal activity of 5-HT transporter, altered blood and brain 5-HT levels, reduced 5-HT synthesis and altered expression of 5-HT receptors in the brain. A specific role for 5-HT7 receptors in ASD has not yet been demonstrated but some evidence implicates their possible involvement. We have recently shown that 5-HT7 receptor activation rescues hippocampal synaptic plasticity in a mouse model of Fragile X Syndrome, a monogenic cause of autism. Several other studies have shown that 5-HT7 receptors modulate behavioral flexibility, exploratory behavior, mood disorders and epilepsy, which include core and co-morbid symptoms of ASD. These findings further suggest an involvement of 5-HT7 receptors in ASD. Here, we review the physiological roles of 5-HT7 receptors and their implications in Fragile X Syndrome and other ASD. PMID:25221471

  20. Nonexocytotic serotonin release tonically suppresses serotonergic neuron activity

    PubMed Central

    Montalbano, Alberto; Baccini, Gilda; Tatini, Francesca; Palmini, Rolando Berlinguer; Corradetti, Renato

    2015-01-01

    The firing activity of serotonergic neurons in raphe nuclei is regulated by negative feedback exerted by extracellular serotonin (5-HT)o acting through somatodendritic 5-HT1A autoreceptors. The steady-state [5-HT]o, sensed by 5-HT1A autoreceptors, is determined by the balance between the rates of 5-HT release and reuptake. Although it is well established that reuptake of 5-HTo is mediated by 5-HT transporters (SERT), the release mechanism has remained unclear. It is also unclear how selective 5-HT reuptake inhibitor (SSRI) antidepressants increase the [5-HT]o in raphe nuclei and suppress serotonergic neuron activity, thereby potentially diminishing their own therapeutic effect. Using an electrophysiological approach in a slice preparation, we show that, in the dorsal raphe nucleus (DRN), continuous nonexocytotic 5-HT release is responsible for suppression of phenylephrine-facilitated serotonergic neuron firing under basal conditions as well as for autoinhibition induced by SSRI application. By using 5-HT1A autoreceptor-activated G protein–gated inwardly rectifying potassium channels of patched serotonergic neurons as 5-HTo sensors, we show substantial nonexocytotic 5-HT release under conditions of abolished firing activity, Ca2+ influx, vesicular monoamine transporter 2–mediated vesicular accumulation of 5-HT, and SERT-mediated 5-HT transport. Our results reveal a cytosolic origin of 5-HTo in the DRN and suggest that 5-HTo may be supplied by simple diffusion across the plasma membrane, primarily from the dense network of neurites of serotonergic neurons surrounding the cell bodies. These findings indicate that the serotonergic system does not function as a sum of independently acting neurons but as a highly interdependent neuronal network, characterized by a shared neurotransmitter pool and the regulation of firing activity by an interneuronal, yet activity-independent, nonexocytotic mechanism. PMID:25712017

  1. Deletion of GIRK2 Subunit of GIRK Channels Alters the 5-HT1A Receptor-Mediated Signaling and Results in a Depression-Resistant Behavior

    PubMed Central

    Llamosas, Nerea; Bruzos-Cidón, Cristina; Rodríguez, José Julio; Ugedo, Luisa

    2015-01-01

    Background: Targeting dorsal raphe 5-HT1A receptors, which are coupled to G-protein inwardly rectifying potassium (GIRK) channels, has revealed their contribution not only to behavioral and functional aspects of depression but also to the clinical response to its treatment. Although GIRK channels containing GIRK2 subunits play an important role controlling excitability of several brain areas, their impact on the dorsal raphe activity is still unknown. Thus, the goal of the present study was to investigate the involvement of GIRK2 subunit-containing GIRK channels in depression-related behaviors and physiology of serotonergic neurotransmission. Methods: Behavioral, functional, including in vivo extracellular recordings of dorsal raphe neurons, and neurogenesis studies were carried out in wild-type and GIRK2 mutant mice. Results: Deletion of the GIRK2 subunit promoted a depression-resistant phenotype and determined the behavioral response to the antidepressant citalopram without altering hippocampal neurogenesis. In dorsal raphe neurons of GIRK2 knockout mice, and also using GIRK channel blocker tertiapin-Q, the basal firing rate was higher than that obtained in wild-type animals, although no differences were observed in other firing parameters. 5-HT1A receptors were desensitized in GIRK2 knockout mice, as demonstrated by a lower sensitivity of dorsal raphe neurons to the inhibitory effect of the 5-HT1A receptor agonist, 8-OH-DPAT, and the antidepressant citalopram. Conclusions: Our results indicate that GIRK channels formed by GIRK2 subunits determine depression-related behaviors as well as basal and 5-HT1A receptor-mediated dorsal raphe neuronal activity, becoming alternative therapeutic targets for psychiatric diseases underlying dysfunctional serotonin transmission. PMID:25956878

  2. Targeting the Serotonin 5-HT7 Receptor in the Search for Treatments for CNS Disorders: Rationale and Progress to Date.

    PubMed

    Nikiforuk, Agnieszka

    2015-04-01

    The 5-HT7 (5-hydroxytryptamine 7, serotonin 7) receptor is one of the most recently identified members of the serotonin receptor family. Pharmacological tools, including selective antagonists and, more recently, agonists, along with 5-HT7 receptor (5-HT7R) knock-out mice have revealed the involvement of this receptor in central nervous system processes. Its well-established role in controlling body temperature and regulating sleep and circadian rhythms has implicated this receptor in mood disorders. Thus, the 5-HT7R has gained much attention as a possible target for the treatment of depression. Although preclinical data support the antidepressant-like actions of 5-HT7R antagonists, their clinical efficacy has not been yet established. Other evidence has implicated the 5-HT7R in learning and memory. Preclinical findings suggest that blockade of this receptor may be beneficial against schizophrenia-like cognitive deficits. Other possible indications include nociception, epilepsy, migraine, autism spectrum disorders, and Rett Syndrome. However, the question is whether the beneficial effects may be achieved by activation or blockade of 5-HT7Rs. Hence, this review briefly summarises the recent findings on the role of 5-HT7Rs and their ligands in CNS disorders. PMID:25721336

  3. Serotonin-induced inhibition of locomotor rhythm of the rat isolated spinal cord is mediated by the 5-HT1 receptor class.

    PubMed Central

    Beato, M; Nistri, A

    1998-01-01

    The neurotransmitter serotonin (5-HT) induces rhythmic motor patterns (fictive locomotion) of the neonatal rat spinal cord in vitro; this is a useful experimental model to study the generation of a motor programme at exclusively spinal level. Nevertheless, 5-HT slows down the fictive locomotion typically elicited by activation of NMDA glutamate receptors, suggesting a complex action of this monoamine. By means of electrophysiological recordings from multiple ventral roots we demonstrated that the decrease caused by 5-HT in NMDA-induced periodicity was dose-dependent, enhanced after pharmacological blocking of 5-HT2 excitatory receptors, and imitated by pharmacological agonists of the 5-HT1 receptor family. Selective blockers of the 5-HT1A or 5-HT1B/D receptor classes, either alone or in combination, largely (but not completely) attenuated this inhibitory action of 5-HT. It is concluded that the principal inhibitory action of 5-HT on the spinal locomotor network was mediated by certain subtypes of the 5-HT1 receptor class, which tends to oppose the 5-HT2 receptor-mediated excitation of the same network. PMID:9842733

  4. Memory consolidation and amnesia modify 5-HT6 receptors expression in rat brain: an autoradiographic study.

    PubMed

    Meneses, A; Manuel-Apolinar, L; Castillo, C; Castillo, E

    2007-03-12

    Traditionally, the search for memory circuits has been centered on examinations of amnesic and AD patients, cerebral lesions and, neuroimaging. A complementary alternative might be the use of autoradiography with radioligands. Indeed, ex vivo autoradiographic studies offer the advantage to detect functionally active receptors altered by pharmacological tools and memory formation. Hence, herein the 5-HT(6) receptor antagonist SB-399885 and the amnesic drugs scopolamine or dizocilpine were used to manipulate memory consolidation and 5-HT(6) receptors expression was determined by using [(3)H]-SB-258585. Thus, memory consolidation was impaired in scopolamine and dizocilpine treated groups relative to control vehicle but improved it in SB-399885-treated animals. SB-399885 improved memory consolidation seems to be associated with decreased 5-HT(6) receptors expression in 15 out 17 brain areas. Scopolamine or dizocilpine decreased 5-HT(6) receptors expression in nine different brain areas and increased it in CA3 hippocampus or other eight areas, respectively. In brain areas thought to be in charge of procedural memory such basal ganglia (i.e., nucleus accumbens, caudate putamen, and fundus striate) data showed that relative to control animals amnesic groups showed diminished (scopolamine) or augmented (dizocilpine) 5-HT(6) receptor expression. SB-399885 showing improved memory displayed an intermediate expression in these same brain regions. A similar intermediate expression occurs with regard to amygdala, septum, and some cortical areas in charge of explicit memory storage. However, relative to control group amnesic and SB-399885 rats in the hippocampus, region where explicit memory is formed, showed a complex 5-HT(6) receptors expression. In conclusion, these results indicate neural circuits underlying the effects of 5-HT(6) receptor antagonists in autoshaping task and offer some general clues about cognitive processes in general. PMID:17267053

  5. Pathways and Barriers for Ion Translocation through the 5-HT3A Receptor Channel

    PubMed Central

    Di Maio, Danilo; Chandramouli, Balasubramanian; Brancato, Giuseppe

    2015-01-01

    Pentameric ligand gated ion channels (pLGICs) are ionotropic receptors that mediate fast intercellular communications at synaptic level and include either cation selective (e.g., nAChR and 5-HT3) or anion selective (e.g., GlyR, GABAA and GluCl) membrane channels. Among others, 5-HT3 is one of the most studied members, since its first cloning back in 1991, and a large number of studies have successfully pinpointed protein residues critical for its activation and channel gating. In addition, 5-HT3 is also the target of a few pharmacological treatments due to the demonstrated benefits of its modulation in clinical trials. Nonetheless, a detailed molecular analysis of important protein features, such as the origin of its ion selectivity and the rather low conductance as compared to other channel homologues, has been unfeasible until the recent crystallization of the mouse 5-HT3A receptor. Here, we present extended molecular dynamics simulations and free energy calculations of the whole 5-HT3A protein with the aim of better understanding its ion transport properties, such as the pathways for ion permeation into the receptor body and the complex nature of the selectivity filter. Our investigation unravels previously unpredicted structural features of the 5-HT3A receptor, such as the existence of alternative intersubunit pathways for ion translocation at the interface between the extracellular and the transmembrane domains, in addition to the one along the channel main axis. Moreover, our study offers a molecular interpretation of the role played by an arginine triplet located in the intracellular domain on determining the characteristic low conductance of the 5-HT3A receptor, as evidenced in previous experiments. In view of these results, possible implications on other members of the superfamily are suggested. PMID:26465896

  6. Pathways and Barriers for Ion Translocation through the 5-HT3A Receptor Channel.

    PubMed

    Di Maio, Danilo; Chandramouli, Balasubramanian; Brancato, Giuseppe

    2015-01-01

    Pentameric ligand gated ion channels (pLGICs) are ionotropic receptors that mediate fast intercellular communications at synaptic level and include either cation selective (e.g., nAChR and 5-HT3) or anion selective (e.g., GlyR, GABAA and GluCl) membrane channels. Among others, 5-HT3 is one of the most studied members, since its first cloning back in 1991, and a large number of studies have successfully pinpointed protein residues critical for its activation and channel gating. In addition, 5-HT3 is also the target of a few pharmacological treatments due to the demonstrated benefits of its modulation in clinical trials. Nonetheless, a detailed molecular analysis of important protein features, such as the origin of its ion selectivity and the rather low conductance as compared to other channel homologues, has been unfeasible until the recent crystallization of the mouse 5-HT3A receptor. Here, we present extended molecular dynamics simulations and free energy calculations of the whole 5-HT3A protein with the aim of better understanding its ion transport properties, such as the pathways for ion permeation into the receptor body and the complex nature of the selectivity filter. Our investigation unravels previously unpredicted structural features of the 5-HT3A receptor, such as the existence of alternative intersubunit pathways for ion translocation at the interface between the extracellular and the transmembrane domains, in addition to the one along the channel main axis. Moreover, our study offers a molecular interpretation of the role played by an arginine triplet located in the intracellular domain on determining the characteristic low conductance of the 5-HT3A receptor, as evidenced in previous experiments. In view of these results, possible implications on other members of the superfamily are suggested. PMID:26465896

  7. Decreased Incentive Motivation Following Knockout or Acute Blockade of the Serotonin Transporter: Role of the 5-HT2C Receptor.

    PubMed

    Browne, Caleb J; Fletcher, Paul J

    2016-09-01

    Acute pharmacological elevation of serotonin (5-hydroxytryptamine; 5-HT) activity decreases operant responding for primary reinforcers, suggesting that 5-HT reduces incentive motivation. The mechanism by which 5-HT alters incentive motivation is unknown, but parallel evidence that 5-HT2C receptor agonists also reduce responding for primary reinforcers implicates this receptor as a potential candidate. These experiments examined whether chronic and acute disruptions of serotonin transporter (SERT) activity altered incentive motivation, and whether the 5-HT2C receptor mediated the effects of elevated 5-HT on behavior. To assess incentive motivation, we measured responding for three different reinforcers: a primary reinforcer (saccharin), a conditioned reinforcer (CRf), and an unconditioned sensory reinforcer (USRf). In the chronic condition, responding was compared between SERT knockout (SERT-KO) mice and their wild-type littermates. In the acute condition, responding was examined in wild-type mice following treatment with 10 or 20 mg/kg citalopram, or its vehicle. The ability of the selective 5-HT2C antagonist SB 242084 to prevent the effects of SERT-KO and citalopram on responding was subsequently examined. Both SERT-KO and citalopram reduced responding for saccharin, a CRf, and a USRf. Treatment with SB 242084 enhanced responding for a CRf and a USRf in SERT-KO mice and blocked the effects of citalopram on CRf and USRf responding. However, SB 242084 was unable to prevent the effects of SERT-KO or citalopram on responding for saccharin. These results support a powerful inhibitory function for 5-HT in the control of incentive motivation, and indicate that the 5-HT2C receptor mediates these effects of 5-HT in a reinforcer-dependent manner. PMID:27125304

  8. 3D Pharmacophore, hierarchical methods, and 5-HT4 receptor binding data.

    PubMed

    Varin, Thibault; Saettel, Nicolas; Villain, Jonathan; Lesnard, Aurelien; Dauphin, François; Bureau, Ronan; Rault, Sylvain

    2008-10-01

    5-Hydroxytryptamine subtype-4 (5-HT(4)) receptors have stimulated considerable interest amongst scientists and clinicians owing to their importance in neurophysiology and potential as therapeutic targets. A comparative analysis of hierarchical methods applied to data from one thousand 5-HT(4) receptor-ligand binding interactions was carried out. The chemical structures were described as chemical and pharmacophore fingerprints. The definitions of indices, related to the quality of the hierarchies in being able to distinguish between active and inactive compounds, revealed two interesting hierarchies with the Unity (1 active cluster) and pharmacophore fingerprints (4 active clusters). The results of this study also showed the importance of correct choice of metrics as well as the effectiveness of a new alternative of the Ward clustering algorithm named Energy (Minimum E-Distance method). In parallel, the relationship between these classifications and a previously defined 3D 5-HT(4) antagonist pharmacophore was established. PMID:18821249

  9. Peptide Inhibitors Disrupt the Serotonin 5-HT2C Receptor Interaction with Phosphatase and Tensin Homolog to Allosterically Modulate Cellular Signaling and Behavior

    PubMed Central

    Anastasio, Noelle C.; Gilbertson, Scott R.; Bubar, Marcy J.; Agarkov, Anton; Stutz, Sonja J.; Jeng, Yowjiun; Bremer, Nicole M.; Smith, Thressa D.; Fox, Robert G.; Swinford, Sarah E.; Seitz, Patricia K.; Charendoff, Marc N.; Craft, John W.; Laezza, Fernanda M.; Watson, Cheryl S.; Briggs, James M.; Cunningham, Kathryn A.

    2013-01-01

    Serotonin (5-hydroxytryptamine; 5-HT) signaling through the 5-HT2C receptor (5-HT2CR) is essential in normal physiology, whereas aberrant 5-HT2CR function is thought to contribute to the pathogenesis of multiple neural disorders. The 5-HT2CR interacts with specific protein partners, but the impact of such interactions on 5-HT2CR function is poorly understood. Here, we report convergent cellular and behavioral data that the interaction between the 5-HT2CR and protein phosphatase and tensin homolog (PTEN) serves as a regulatory mechanism to control 5-HT2CR-mediated biology but not that of the closely homologous 5-HT2AR. A peptide derived from the third intracellular loop of the human 5-HT2CR [3L4F (third loop, fourth fragment)] disrupted the association, allosterically augmented 5-HT2CR-mediated signaling in live cells, and acted as a positive allosteric modulator in rats in vivo. We identified the critical residues within an 8 aa fragment of the 3L4F peptide that maintained efficacy (within the picomolar range) in live cells similar to that of the 3L4F peptide. Last, molecular modeling identified key structural features and potential interaction sites of the active 3L4F peptides against PTEN. These compelling data demonstrate the specificity and importance of this protein assembly in cellular events and behaviors mediated by 5-HT2CR signaling and provide a chemical guidepost to the future development of drug-like peptide or small-molecule inhibitors as neuroprobes to study 5-HT2CR allostery and therapeutics for 5-HT2CR-mediated disorders. PMID:23345234

  10. The modulation by 5-HT of glutamatergic inputs from the raphe pallidus to rat hypoglossal motoneurones, in vitro

    PubMed Central

    Bouryi, Vitali A; Lewis, David I

    2003-01-01

    Decreases in the activity of 5-HT-containing caudal raphe neurones during sleep are thought to be partially responsible for the resultant disfacilitation of hypoglossal motoneurones. Whilst 5-HT has a direct excitatory action on hypoglossal motoneurones as a result of activation of 5-HT2 receptors, microinjection of 5-HT2 antagonists into the hypoglossal nucleus reduces motor activity to a much lesser extent compared to the suppression observed during sleep suggesting other transmitters co-localised in caudal raphe neurones may also be involved. The aim of the present study was therefore to characterise raphe pallidus inputs to hypoglossal motoneurones. Whole cell recordings were made from hypoglossal motoneurones in vitro. 5-HT evoked a direct membrane depolarisation (8.45 ± 3.8 mV, P < 0.001) and increase in cell input resistance (53 ± 40 %, P < 0.001) which was blocked by the 5-HT2 antagonist, ritanserin (2.40 ± 2.7 vs. 7.04 ± 4.6 mV). Stimulation within the raphe pallidus evoked a monosynaptic EPSC that was significantly reduced by the AMPA/kainateantagonist, NBQX (22.8 ± 16 % of control, P < 0.001). In contrast, the 5-HT2 antagonist, ritanserin, had no effect on the amplitude of these EPSCs (106 ± 31 % of control, P = n.s.). 5-HT reduced these EPSCs to 50.0 ± 13 % of control (P < 0.001), as did the 5-HT1A agonist, 8-OH-DPAT (52.5 ± 17 %, P < 0.001) and the 5-HT1B agonist, CP 93129 (40.6 ± 29 %, P < 0.01). 8-OH-DPAT and CP 93129 increased the paired pulse ratio (1.38 ± 0.27 to 1.91 ± 0.54, P < 0.05 & 1.27 ± 0.08 to 1.44 ± 0.13, P < 0.01 respectively) but had no effect on the postsynaptic glutamate response (99 ± 4.4 % and 100 ± 2.5 %, P = n.s.). They also increased the frequency (P < 0.001), but not the amplitude, of miniature glutamatergic EPSCs in hypoglossal motoneurones. These data demonstrate that raphe pallidus inputs to hypoglossal motoneurones are predominantly glutamatergic in nature, with 5-HT decreasing the release of glutamate from

  11. The 5-HT(7) receptor in learning and memory.

    PubMed

    Roberts, Amanda J; Hedlund, Peter B

    2012-04-01

    The 5-HT(7) receptor is a more recently discovered G-protein-coupled receptor for serotonin. The functions and possible clinical relevance of this receptor are not yet fully understood. The present paper reviews to what extent the use of animal models of learning and memory and other techniques have implicated the 5-HT(7) receptor in such processes. The studies have used a combination of pharmacological and genetic tools targeting the receptor to evaluate effects on behavior and cellular mechanisms. In tests such as the Barnes maze, contextual fear conditioning and novel location recognition that involve spatial learning and memory there is a considerable amount of evidence supporting an involvement of the 5-HT(7) receptor. Supporting evidence has also been obtained in studies of mRNA expression and cellular signaling as well as in electrophysiological experiments. Especially interesting are the subtle but distinct effects observed in hippocampus-dependent models of place learning where impairments have been described in mice lacking the 5-HT(7) receptor or after administration of a selective antagonist. While more work is required, it appears that 5-HT(7) receptors are particularly important in allocentric representation processes. In instrumental learning tasks both procognitive effects and impairments in memory have been observed using pharmacological tools targeting the 5-HT(7) receptor. In conclusion, the use of pharmacological and genetic tools in animal studies of learning and memory suggest a potentially important role for the 5-HT(7) receptor in cognitive processes. PMID:21484935

  12. Novel N-acyl-carbazole derivatives as 5-HT7R antagonists.

    PubMed

    Kim, Youngjae; Yeom, Miyoung; Tae, Jinsung; Rhim, Hyewhon; Choo, Hyunah

    2016-03-01

    To discover a novel 5-HT7R antagonist for treatment of depression, we designed N-acyl-carbazole derivatives which were synthesized and biologically evaluated against 5-HT7R. Among total 30 compounds synthesized, four compounds 27-30 showed good binding affinities with Ki values of <100 nM. The compound 28, 1-(9H-carbazol-9-yl)-6-(4-(2-methoxyphenyl)piperazin-1-yl)hexan-1-one, showed good selectivity over other serotonin receptor subtypes and turned out to be a novel selective 5-HT7R antagonist following functional assays. The compound 28 showed moderate activity on hERG channel and good stability in microsomal stability test. The compound 28 exhibited a good pharmacokinetic profile with 67.8% oral bioavailability and good penetration to the brain. The compound 28 was also tested in in vivo depression animal model and showed antidepressant effect in the forced swimming test. Therefore, the selective 5-HT7R antagonist 28 can be considered as a good lead for discovery of novel 5-HT7R antagonists as antidepressants. PMID:26852005

  13. The Role of Hippocampal 5HT3 Receptors in Harmaline-Induced Memory Deficit

    PubMed Central

    Nasehi, Mohammad

    2015-01-01

    Introduction: The plethora of studies indicated that there is a cross talk relationship between harmaline and serotonergic (5-HT) system on cognitive and non-cognitive behaviors. Thus, the purpose of this study is to assess the effects of hippocampal 5-HT4 receptor on memory acquisition deficit induced by harmaline. Methods: Harmaline was injected peritoneally, while 5-HT4 receptor agonist (RS67333) and antagonist (RS23597-190) were injected intra-hippocampal. A single-trial step-down passive avoidance, open field and tail flick tasks were used for measurement of memory, locomotor activity and pain responses, respectively. Results: The data revealed that pre-training injection of higher dose of harmaline (1 mg/kg), RS67333 (0.5 ng/mouse) and RS23597-190 (0.5 ng/mouse) decreased memory acquisition process in the adult mice. Moreover, concurrent pre-training administration of subthreshold dose of RS67333 (0.005 ng/mouse) or RS23597-190 (0.005 ng/mouse) with subthreshold dose of harmaline (0.5 mg/kg, i.p.) intensify impairment of memory acquisition. All above interventions did not change locomotion and tail flick behaviors. Discussion: The results demonstrated that the synergistic effect between both hippocampal 5-HT4 receptor agonist and antagonist with impairment of memory acquisition induced by harmaline, indicating a modulatory effect for hippocampal 5HT4 receptor on Harmaline induced amnesia. PMID:26904173

  14. Life Beyond Kinases: Structure-based Discovery of Sorafenib as Nanomolar Antagonist of 5-HT Receptors

    PubMed Central

    Lin, Xingyu; Huang, Xi-Ping; Chen, Gang; Whaley, Ryan; Peng, Shiming; Wang, Yanli; Zhang, Guoliang; Wang, Simon X.; Wang, Shaohui; Roth, Bryan L.; Huang, Niu

    2012-01-01

    Of great interest in recent years has been computationally predicting the novel polypharmacology of drug molecules. Here, we applied an “induced-fit” protocol to improve the homology models of 5-HT2A receptor, and we assessed the quality of these models in retrospective virtual screening. Subsequently, we computationally screened the FDA approved drug molecules against the best induced-fit 5-HT2A models, and chose six top scoring hits for experimental assays. Surprisingly, one well-known kinase inhibitor, sorafenib has shown unexpected promiscuous 5-HTRs binding affinities, Ki = 1959, 56 and 417 nM against 5-HT2A, 5-HT2B and 5-HT2C, respectively. Our preliminary SAR exploration supports the predicted binding mode, and further suggests sorafenib to be a novel lead compound for 5HTR ligand discovery. Although it has been well known that sorafenib produces anticancer effects through targeting multiple kinases, carefully designed experimental studies are desirable to fully understand whether its “off-target” 5-HTR binding activities contribute to its therapeutic efficacy or otherwise undesirable side effects. PMID:22694093

  15. SB 242084, a selective and brain penetrant 5-HT2C receptor antagonist.

    PubMed

    Kennett, G A; Wood, M D; Bright, F; Trail, B; Riley, G; Holland, V; Avenell, K Y; Stean, T; Upton, N; Bromidge, S; Forbes, I T; Brown, A M; Middlemiss, D N; Blackburn, T P

    1997-01-01

    SB 242084 has a high affinity (pKi 9.0) for the cloned human 5-HT2C receptor and 100- and 158-fold selectivity over the closely related cloned human 5-HT2B and 5-HT2A subtypes respectively. SB 242084 had over 100-fold selectivity over a range of other 5-HT, dopamine and adrenergic receptors. In studies of 5-HT-stimulated phosphatidylinositol hydrolysis using SH-SY5Y cells stably expressing the cloned human 5-HT2C receptor, SB 242084 acted as an antagonist with a pKb of 9.3, which closely resembled its corresponding receptor binding affinity. SB 242084 potently inhibited m-chlorophenylpiperazine (mCPP, 7 mgkg i.p. 20 min pre-test)-induced hypolocomotion in rats, a model of in vivo central 5-HT2C receptor function, with an ID50 of 0.11 mg/kg i.p., and 2.0 mg/kg p.o. SB 242084 (0.1-1 mg/kg i.p.) exhibited an anxiolytic-like profile in the rat social interaction test, increasing time spent in social interaction, but having no effect on locomotion. SB 242084 (0.1-1 mg/kg i.p.) also markedly increased punished responding in a rat Geller-Seifter conflict test of anxiety, but had no consistent effect on unpunished responding. A large acute dose of SB 242084 (30 mg/kg p.o.) had no effect on seizure susceptibility in the rat maximal electroshock seizure threshold test. Also, while SB 242084 (2 and 6 mg/kg p.o. 1 hr pre-test) antagonized the hypophagic response to mCPP, neither acute nor subchronic administration of the drug, for 5 days at 2 or 6 mg/kg p.o. twice daily, affected food intake or weight gain. The results suggest that SB 242084 is the first reported selective potent and brain penetrant 5-HT2C receptor antagonist and has anxiolytic-like activity, but does not possess either proconvulsant or hyperphagic properties which are characteristic of mutant mice lacking the 5-HT2C receptor. PMID:9225286

  16. The phytocannabinoid, Δ9-tetrahydrocannabivarin, can act through 5-HT1A receptors to produce antipsychotic effects

    PubMed Central

    Cascio, Maria Grazia; Zamberletti, Erica; Marini, Pietro; Parolaro, Daniela; Pertwee, Roger G

    2015-01-01

    Background and Purpose This study aimed to address the questions of whether Δ9-tetrahydrocannabivarin (THCV) can (i) enhance activation of 5-HT1A receptors in vitro and (ii) induce any apparent 5-HT1A receptor-mediated antipsychotic effects in vivo. Experimental Approach In vitro studies investigated the effect of THCV on targeting by 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) of 5-HT1A receptors in membranes obtained from rat brainstem or human 5-HT1A CHO cells, using [35S]-GTPγS and 8-[3H]-OH-DPAT binding assays. In vivo studies investigated whether THCV induces signs of 5-HT1A receptor-mediated antipsychotic effects in rats. Key Results THCV (i) potently, albeit partially, displaced 8-[3H]-OH-DPAT from specific binding sites in rat brainstem membranes; (ii) at 100 nM, significantly enhanced 8-OH-DPAT-induced activation of receptors in these membranes; (iii) produced concentration-related increases in 8-[3H]-OH-DPAT binding to specific sites in membranes of human 5-HT1A receptor-transfected CHO cells; and (iv) at 100 nM, significantly enhanced 8-OH-DPAT-induced activation of these human 5-HT1A receptors. In phencyclidine-treated rats, THCV, like clozapine (i) reduced stereotyped behaviour; (ii) decreased time spent immobile in the forced swim test; and (iii) normalized hyperlocomotor activity, social behaviour and cognitive performance. Some of these effects were counteracted by the 5-HT1A receptor antagonist, WAY100635, or could be reproduced by the CB1 antagonist, AM251. Conclusions and Implications Our findings suggest that THCV can enhance 5-HT1A receptor activation, and that some of its apparent antipsychotic effects may depend on this enhancement. We conclude that THCV has therapeutic potential for ameliorating some of the negative, cognitive and positive symptoms of schizophrenia. PMID:25363799

  17. Inhibition of trigeminal neurones after intravenous administration of naratriptan through an action at 5-hydroxy-tryptamine (5-HT1B/1D) receptors

    PubMed Central

    Goadsby, Peter J; Knight, Yolande

    1997-01-01

    The observation that 5-hydroxytryptamine (5-HT) is effective in treating acute attacks of migraine when administered intravenously resulted in a research effort that led to the discovery of the 5-HT1B/1D receptor agonist sumatriptan. Clinical experience has shown sumatriptan to be an effective treatment with some limitations, such as relatively poor bioavailability, which naratriptan was developed to address. Increasing bioavailability has been achieved with greater lipophilicity and thus the potential for greater activity in the central nervous system. In this study the increased access to central sites has been exploited in an attempt to characterize the pharmacology of those central receptors with the newer tools available. Trigeminovascular activation was examined in the model of superior sagittal sinus stimulation. Cats were anaesthetized with α-chloralose (60 mg kg−1, intraperitoneal), paralyzed (gallamine 6 mg kg−1, intravenously) and ventilated. The superior sagittal sinus was accessed and isolated for electrical stimulation (250 μs pulses, 0.3 Hz, 100 V) by a mid-line circular craniotomy. The region of the dorsal surface of C2 spinal cord was exposed by a laminectomy and an electrode placed for recording evoked activity from sinus stimulation. Stimulation of the superior sagittal sinus resulted in activation of cells in the dorsal horn of C2. Cells fired with a probability of 0.69±0.1 at a latency of 9.2±0.2 ms. Intravenous (i.v.) administration of naratriptan at clinically relevant doses (30 and 100 μg kg−1), inhibited neuronal activity in trigeminal neurones of the C2 dorsal horn, reducing probability of firing without affecting latency. The effect of naratriptan could be reversed by administration of the selective 5-HT1B/1D receptor antagonist GR127935 (100 μg kg−1, i.v.). These data establish that naratriptan acts on central trigeminal neurones since sagittal sinus stimulation activates axons within the tentorial

  18. Ion permeation and conduction in a human recombinant 5-HT3 receptor subunit (h5-HT3A)

    PubMed Central

    Brown, A M; Hope, A G; Lambert, J J; Peters, J A

    1998-01-01

    A human recombinant homo-oligomeric 5-HT3 receptor (h5-HT3A) expressed in a human embryonic kidney cell line (HEK 293) was characterized using the whole-cell recording configuration of the patch clamp technique. 5-HT evoked transient inward currents (EC50 = 3.4 μm; Hill coefficient = 1.8) that were blocked by the 5-HT3 receptor antagonist ondansetron (IC50 = 103 pm) and by the non-selective agents metoclopramide (IC50 = 69 nm), cocaine (IC50 = 459 nm) and (+)-tubocurarine (IC50 = 2.8 μm). 5-HT-induced currents rectified inwardly and reversed in sign (E5-HT) at a potential of −2.2 mV. N-Methyl-d-glucamine was finitely permeant. Permeability ratios PNa/PCs and PNMDG/PCs were 0.90 and 0.083, respectively. Permeability towards divalent cations was assessed from measurements of E5-HT in media where Ca2+ and Mg2+ replaced Na+. PCa/PCs and PMg/PCs were calculated to be 1.00 and 0.61, respectively. Single channel chord conductance (γ) estimated from fluctuation analysis of macroscopic currents increased with membrane hyperpolarization from 243 fS at −40 mV to 742 fS at −100 mV. Reducing [Ca2+]o from 2 to 0.1 mm caused an increase in the whole-cell current evoked by 5-HT. A concomitant reduction in [Mg2+]o produced further potentiation. Fluctuation analysis indicates that a voltage-independent augmentation of γ contributes to this phenomenon. The data indicate that homo-oligomeric receptors composed of h5-HT3A subunits form inwardly rectifying cation-selective ion channels of low conductance that are permeable to Ca2+ and Mg2+. PMID:9508827

  19. Spinal 5-HT1A, not the 5-HT1B or 5-HT3 receptors, mediates descending serotonergic inhibition for late-phase mechanical allodynia of carrageenan-induced peripheral inflammation.

    PubMed

    Kim, Joung Min; Jeong, Seong Wook; Yang, Jihoon; Lee, Seong Heon; Kim, Woon Mo; Jeong, Seongtae; Bae, Hong Beom; Yoon, Myung Ha; Choi, Jeong Il

    2015-07-23

    Previous electrophysiological studies demonstrated a limited role of 5-hydroxytryptamine 3 receptor (5-HT3R), but facilitatory role of 5-HT1AR and 5-HT1BR in spinal nociceptive processing of carrageenan-induced inflammatory pain. The release of spinal 5-HT was shown to peak in early-phase and return to baseline in late-phase of carrageenan inflammation. We examined the role of the descending serotonergic projections involving 5-HT1AR, 5-HT1BR, and 5-HT3R in mechanical allodynia of early- (first 4h) and late-phase (24h after) carrageenan-induced inflammation. Intrathecal administration of 5-HT produced a significant anti-allodynic effect in late-phase, but not in early-phase. Similarly, intrathecal 5-HT1AR agonist (8-OH-DPAT) attenuated the intensity of late-phase allodynia in a dose dependent fashion which was antagonized by 5-HT1AR antagonist (WAY-100635), but produced no effect on the early-phase allodynia. However, other agonists or antagonists of 5-HT1BR (CP-93129, SB-224289) and 5-HT3R (m-CPBG, ondansetron) did not produce any anti- or pro-allodynic effect in both early- and late- phase allodynia. These results suggest that spinal 5-HT1A, but not 5-HT1B or 5-HT3 receptors mediate descending serotonergic inhibition on nociceptive processing of late-phase mechanical allodynia in carrageenan-induced inflammation. PMID:26037417

  20. Posttranslational regulation of TPH1 is responsible for the nightly surge of 5-HT output in the rat pineal gland

    PubMed Central

    Huang, Zheping; Liu, Tiecheng; Chattoraj, Asamanja; Ahmed, Samreen; Wang, Michael M.; Deng, Jie; Sun, Xing; Borjigin, Jimo

    2009-01-01

    Serotonin (5-hydroxytryptamine, 5-HT), a precursor for melatonin production, is produced abundantly in the pineal gland of all vertebrate animals. The synthesis of 5-HT in the pineal gland is rate limited by tryptophan hydroxylase 1 (TPH1) whose activity displays a twofold increase at night. Earlier studies from our laboratory demonstrate that pineal 5-HT secretion exhibits dynamic circadian rhythms with elevated levels during the early night, and that the increase is controlled by adrenergic signaling at night. In this study, we report that (a) 5-HT total output from the pineal gland and TPH1 protein levels both display diurnal rhythms with a twofold increase at night; (b) stimulation of cAMP signaling elevates 5-HT output in vivo; (c) 5-HT total output and TPH1 protein content in rat pineal gland are both acutely inhibited by light exposure at night. Consistent with these findings, molecular analysis of TPH1 protein revealed that (a) TPH1 is phosphorylated at the serine 58 in vitro and in the night pineal gland; and (b) phosphorylation of TPH1 at this residue is required for cAMP-enhanced TPH1 protein stability. These data support the model that increased nocturnal 5-HT synthesis in the pineal gland is mediated by the phosphorylation of TPH1 at the serine 58, which elevates the TPH1 protein content and activity at night. PMID:18705647

  1. TREK1 channel blockade induces an antidepressant-like response synergizing with 5-HT1A receptor signaling.

    PubMed

    Ye, Dongqing; Li, Yang; Zhang, Xiangrong; Guo, Fei; Geng, Leiyu; Zhang, Qi; Zhang, Zhijun

    2015-12-01

    Current antidepressants often remain the inadequate efficacy for many depressive patients, which warrant the necessary endeavor to develop the new molecules and targets for treating depression. Recently, the two-pore domain potassium channel TREK1 has been implicated in mood regulation and TREK-1 antagonists could be the promising antidepressant. This study has screened a TREK1 blocker (SID1900) with a satisfactory blood-brain barrier permeation and bioavailability. Electrophysiological research has shown that SID1900 and the previously reported TREK1 blocker (spadin) efficiently blocked TREK-1 current in HEK293 cells and specifically blocked two-pore domain potassium channels in primary-cultured rat hippocampal neurons. SID1900 and spadin induced a significant antidepressant-like response in the rat model of chronic unpredictable mild stress (CUMS). Both two TREK1 blockers substantially increased the firing rate of 5-HT-ergic neurons in the dorsal raphe nuclei (DRN) and PFC of CUMS rats. SID1900 and spadin significantly up-regulated the expression of PKA-pCREB-BDNF signaling in DRN, hippocampus and PFC of CUMS rats, which were enhanced and reversed by a 5-HTR1A agonist (8-OH-DPAT) and antagonist (WAY100635) respectively. The present findings suggested that TREK1 channel blockers posses the substantial antidepressant-like effect and have the potential synergistic effect with 5-HT1A receptor activation through the common CREB-BDNF signal transduction. PMID:26441141

  2. Selective 5-HT2C agonists as potential antidepressants.

    PubMed

    Leysen, D C

    1999-02-01

    The antidepressants currently used need improvement, especially in terms of efficacy, relapse rate and onset of action. In this review the clinical and experimental data which support the rationale for 5-HT2C agonists in the treatment of depression are listed. Next, the results obtained with the non-selective 5-HT2C agonists on the market and in clinical development are described. Finally, the preclinical data on the more selective 5-HT2C agonists are summarized. These recent preclinical results reveal a greater potency and effect size compared to fluoxetine, good tolerability and no evidence of tolerance development. Selective 5-HT2C agonists might become innovative drugs for the treatment of depression, panic, obsessive-compulsive disorder (OCD), some forms of aggression and eating disorders. PMID:16160946

  3. Differential expression of 5-HT-related genes in symptomatic pulmonary embolism patients

    PubMed Central

    Jin, Yun; Wang, Lemin; Duan, Qianglin; Gong, Zhu; Yang, Fan; Song, Yanli

    2015-01-01

    Objective: Whole human genome oligo microarrays were employed to systematically investigate the mRNA expression profile of 5-HT synthetase, transporter, receptor, and factors in 5-HT signaling pathway in peripheral blood karyocytes from pulmonary embolism (PE) patients. Methods: A total of 20 PE patients and 20 healthy subjects matched in gender and age were recruited. The human genome microarrays were performed to detect the mRNA expression profile of 5-HT synthetase, transporter, receptor, and factors in 5-HT signal pathway of two groups. The random variance model corrected t-test was used for analysis. Results: Our results showed (1) tryptophan hydroxylase (TPH1)-related gene expression was markedly down-regulated in PE patients (P < 0.01); (2) monoamine oxidases (MAO)-related gene (MAOB) expression was significantly up-regulated in PE patients (P < 0.01); (3) the expression of 17 genes of 7 5-HT receptors showed a down-regulated tendency in PE patients, and significant difference was observed in the expression of HTR1E, HTR3B, HTR4 and HTR5A between them (P < 0.05); (4) the expression of DalDAG-GEF I, Tubby, PKA and EPAC in 5-HT signal pathways was dramatically up-regulated in PE patients (P < 0.05); the expression of SPA1, RIAM, RAPL, Talin, PKC, PLC and Pyk2 was remarkably up-regulated in PE patients (P < 0.05); (5) the expression of integrin genes ITGA2B, ITGB1 and ITGB3 was significantly up-regulated in PE patients (P < 0.05). Conclusion: In PE patients, the expression of TPH1 and HTR4 was down-regulated as a negative feedback; the MAOB expression was up-regulated. Consistent with the expression of 5-HTR1E and 5-HTR4 and the abnormally activated Tubby, the expression of integrins in platelets was activated. PMID:25785024

  4. In Vivo Electrochemical Evidence for Simultaneous 5-HT and Histamine Release in the Rat Substantia Nigra pars Reticulata Following Medial Forebrain Bundle Stimulation

    PubMed Central

    Hashemi, Parastoo; Dankoski, Elyse C.; Wood, Kevin M.; Ambrose, R. Ellen; Wightman, R. Mark

    2011-01-01

    Exploring the mechanisms of serotonin (5-hydoxytryptophan (5-HT)) in the brain requires an in vivo method that combines fast temporal resolution with chemical selectivity. Fast-scan cyclic voltammetry (FSCV) is a technique with sufficient temporal and chemical resolution for probing dynamic 5-HT neurotransmission events; however, traditionally it has not been possible to probe in vivo 5-HT mechanisms. Recently, we optimized FSCV for measuring 5-HT release and uptake in vivo in the substantia nigra pars reticulata (SNR) with electrical stimulation of the dorsal raphe nucleus (DRN) in the rat brain. Here, we address technical challenges associated with rat DRN surgery by electrically stimulating 5-HT projections in the medial forebrain bundle (MFB), a more accessible anatomical location. MFB stimulation elicits 5-HT in the SNR; furthermore, we find simultaneous release of an additional species. We use electrochemical and pharmacological methods and describe physiological, anatomical and independent chemical analyses to identify this species as histamine. We also show pharmacologically that increasing the lifetime of extracellular histamine significantly decreases 5-HT release, most likely due to increased activation of histamine H-3 receptors that inhibit 5-HT release. Despite this, under physiological conditions, we find by kinetic comparisons of DRN and MFB stimulations that the simultaneous release of histamine does not interfere with the quantitative 5-HT concentration profile. We therefore present a novel and robust electrical stimulation of the MFB that is technically less challenging than DRN stimulation to study 5-HT and histamine release in the SNR. PMID:21682723

  5. Subtypes of the 5-HT receptor mediating the behavioural responses to 5-methoxy-N,N-dimethyltryptamine in the rat.

    PubMed

    Tricklebank, M D; Forler, C; Middlemiss, D N; Fozard, J R

    1985-10-29

    The 5-HT receptor subtypes involved in the mediation of reciprocal forepaw treading and the flat body posture induced by the central 5-HT receptor agonist, 5-methoxy-N,N-dimethyltryptamine (5-MeODMT), were examined in intact rats and in rats depleted of monoamines with reserpine. Forepaw treading in non-reserpinised rats was antagonised by the 5-HT2 receptor antagonist, ketanserin, only at doses in excess of those required for occupation of a large proportion of 5-HT2 receptors in brain, and at which there was significant inhibition of stereotyped sniffing induced by the dopamine receptor agonist, apomorphine. Since forepaw treading induced by 5-MeODMT was also blocked in intact rats by haloperidol, blockade of the behaviour by ketanserin may more accurately reflect antagonism at dopamine receptors than at 5-HT2 receptors. In reserpinised rats, i.e. with minimised contributions from other monoamine systems, neither forepaw treading nor the flat body posture were significantly altered by ketanserin, haloperidol or the beta 1- and beta 2-selective adrenoceptor antagonists, betaxolol and ICI 118.551, making a key role for 5-HT2 receptors, dopamine receptors and beta-adrenoceptors unlikely. In contrast, forepaw treading in both reserpinised and non-reserpinised rats was antagonised stereoselectively by pindolol and by spiperone, which interact with 5-HT1 and 5-HT1A recognition sites. The results are consistent with the hypothesis that forepaw treading induced by 5-MeODMT arises by activation of the putative 5-HT1A receptor. Antagonism of the flat body posture by pindolol could be demonstrated only in non-reserpinised rats and the mechanism of induction of this behaviour remains to be established. PMID:2935408

  6. Effects of dominance status on conditioned defeat and expression of 5-HT1A and 5-HT2A receptors

    PubMed Central

    Morrison, Kathleen E.; Swallows, Cody L.; Cooper, Matthew A.

    2011-01-01

    Past experience can alter how individuals respond to stressful events. The brain serotonin system is a key factor modulating stress-related behavior and may contribute to individual variation in coping styles. In this study we investigated whether dominant and subordinate hamsters respond differently to social defeat and whether their behavioral responses are associated with changes in 5-HT1A and 5-HT2A receptor immunoreactivity in several limbic brain regions. We paired weight-matched hamsters in daily aggressive encounters for two weeks so that they formed a stable dominance relationship. We also included controls that were exposed to an empty cage each day for two weeks. Twenty-four hours after the final pairing or empty cage exposure, subjects were socially defeated in 3, 5-min encounters with a more aggressive hamster. Twenty-four hours after social defeat, animals were tested for conditioned defeat in a 5-min social interaction test with a non-aggressive intruder. We collected brains following conditioned defeat testing and performed immunohistochemistry for 5-HT1A and 5-HT2A receptors. We found that dominants showed less submissive and defensive behavior at conditioned defeat testing compared to both subordinates and controls. Additionally, both dominants and subordinates had an increased number of 5-HT1A immunopositive cells in the basolateral amygdala compared to controls. Subordinates also had more 5-HT1A immunopositive cells in the dorsal medial amygdala than did controls. Finally, dominants had fewer 5-HT1A immunopositive cells in the paraventricular nucleus of the hypothalamus compared to controls. Our results indicate that dominant social status results in a blunted conditioned defeat response and a distinct pattern of 5-HT1A receptor expression, which may contribute to resistance to conditioned defeat. PMID:21362435

  7. Testosterone and its metabolites modulate 5HT1A and 5HT1B agonist effects on intermale aggression.

    PubMed

    Simon, N G; Cologer-Clifford, A; Lu, S F; McKenna, S E; Hu, S

    1998-01-01

    Our understanding of the neurochemical and neuroendocrine systems' regulating the display of offensive intermale aggression has progressed substantially over the past twenty years. Pharmacological studies have shown that serotonin, via its action at 5HT1A and/or 5HT1B receptor sites, modulates the display of intermale aggressive behavior and that its effects serve to decrease behavioral expression. Neuroendocrine investigations, in turn, have demonstrated that male-typical aggression is testosterone-dependent and studies of genetic effects, metabolic function and steroid receptor binding have shown that facilitation of behavioral displays can occur via independent androgen-sensitive or estrogen-sensitive pathways. Remarkably, there have been virtually no studies that examined the interrelationship between these facilitative and inhibitory systems. As an initial step toward characterizing the interaction between the systems, studies were conducted that assessed hormonal modulation of serotonin function at 5HT1A and 5HT1B receptor sites. They demonstrated: (1) that the androgenic and estrogenic metabolites of testosterone differentially modulate the ability of systemically administered 8-OH-DPAT (a 5HT1A agonist) and CGS12066B (a 5HT1B agonist) to decrease offensive aggression; and (2) when microinjected into the lateral septum (LS) or medial preoptic area (MPO), the aggression-attenuating effects of 1A and 1B agonists differ regionally and vary with the steroidal milieu. In general, the results suggest that estrogens establish a restrictive environment for attenuation of T-dependent aggression by 8-OH-DPAT and CGS 12066B, while androgens either do not inhibit, or perhaps even facilitate, the ability of 5HT1A and 5HT1B agonists to reduce aggression. Potential mechanisms involved in the production of these steroidal effects are discussed and emerging issues that may impact on efforts to develop an integrative neurobiological model of offensive, intermale aggression

  8. Synthesis and structure-activity relationships of a new model of arylpiperazines. Part 7: Study of the influence of lipophilic factors at the terminal amide fragment on 5-HT(1A) affinity/selectivity.

    PubMed

    López-Rodríguez, María L; Ayala, David; Viso, Alma; Benhamú, Bellinda; de La Pradilla, Roberto Fernández; Zarza, Fernando; Ramos, José A

    2004-03-15

    The influence of lipophilic factors at the amide fragment of a new series of (+/-)-7a-alkyl-2-[4-(4-arylpiperazin-1-yl)butyl]-1,3-dioxoperhydropyrrolo[1,2-c]imidazoles 2 and of (+/-)-7a-alkyl-2-[(4-arylpiperazin-1-yl)methyl]-1,3-dioxoperhydropyrrolo[1,2-c]imidazoles 3 has been studied. Variations of logP have been carried out by introducing different hydrocarbonated substituents (R(1)) at the position 7a of the bicyclohydantoin, namely the non-pharmacophoric part. All the new compounds exhibit high potency for the 5-HT(1A) receptor; however, affinities for the alpha(1) receptor are high for compounds 2a-l while compounds 3a-f are selective over this adrenergic receptor. On the other hand, differences in logP do not notably affect the K(i) values for the above receptors. PMID:15018929

  9. Modulation of the firing activity of female dorsal raphe nucleus serotonergic neurons by neuroactive steroids.

    PubMed

    Robichaud, M; Debonnel, G

    2004-07-01

    Important gender differences in mood disorders result in a greater susceptibility for women. Accumulating evidence suggests a reciprocal modulation between the 5-hydroxytryptamine (5-HT) system and neuroactive steroids. Previous data from our laboratory have shown that during pregnancy, the firing activity of 5-HT neurons increases in parallel with progesterone levels. This study was undertaken to evaluate the putative modulation of the 5-HT neuronal firing activity by different neurosteroids. Female rats received i.c.v. for 7 days a dose of 50 micro g/kg per day of one of the following steroids: progesterone, pregnenolone, 5beta-pregnane-3,20-dione (5beta-DHP), 5beta-pregnan-3alpha-ol,20-one, 5beta-pregnan-3beta-ol,20-one, 5alpha-pregnane-3,20-dione, 5alpha-pregnan-3alpha-ol,20-one (allopregnanolone, 3alpha,5alpha-THP), 5alpha-pregnane-3beta-ol,20-one and dehydroepiandrosterone (DHEA). 5beta-DHP and DHEA were also administered for 14 and 21 days (50 micro g/kg per day, i.c.v.) as well as concomitantly with the selective sigma 1 (sigma1) receptor antagonist NE-100. In vivo, extracellular unitary recording of 5-HT neurons performed in the dorsal raphe nucleus of these rats revealed that DHEA, 5beta-DHP and 3alpha,5alpha-THP significantly increased the firing activity of the 5-HT neurons. Interestingly, 5beta-DHP and DHEA showed different time-frames for their effects with 5beta-DHP having its greatest effect after 7 days to return to control values after 21 days, whereas DHEA demonstrated a sustained effect over the 21 day period. NE-100 prevented the effect of DHEA but not of 5beta-DHP, thus indicating that its sigma1 receptors mediate the effect of DHEA but not that of 5beta-DHP. In conclusion, our results offer a cellular basis for potential antidepressant effects of neurosteroids, which may prove important particularly for women with affective disorders. PMID:15225127

  10. Neurochemical evaluation of the novel 5-HT1A receptor partial agonist/serotonin reuptake inhibitor, vilazodone.

    PubMed

    Hughes, Zoë A; Starr, Kathryn R; Langmead, Christopher J; Hill, Matthew; Bartoszyk, Gerd D; Hagan, James J; Middlemiss, Derek N; Dawson, Lee A

    2005-03-01

    Vilazodone has been reported to be an inhibitor of 5-hydoxytryptamine (5-HT) reuptake and a partial agonist at 5-HT1A receptors. Using [35S]GTPgammaS binding in rat hippocampal tissue, vilazodone was demonstrated to have an intrinsic activity comparable to the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). Vilazodone (1-10 mg/kg p.o.) dose-dependently displaced in vivo [3H]DASB (N,N-dimethyl-2-(2-amino-4-cyanophenylthio)benzylamine) binding from rat cortex and hippocampus, indicating that vilazodone occupies 5-HT transporters in vivo. Using in vivo microdialysis, vilazodone (10 mg/kg p.o.) was demonstrated to cause a 2-fold increase in extracellular 5-HT but no change in noradrenaline or dopamine levels in frontal cortex of freely moving rats. In contrast, administration of 8-OH-DPAT (0.3 mg/kg s.c.), either alone or in combination with a serotonin specific reuptake inhibitor (SSRI; paroxetine, 3 mg/kg p.o.), produced no increase in cortical 5-HT whilst increasing noradrenaline and dopamine 2 and 4 fold, respectively. A 2-fold increase in extracellular 5-HT levels (but no change in noradrenaline or dopamine levels) was observed after combination of the 5-HT(1A) receptor antagonist, N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(pyridinyl)cyclohexanecarboxamide) (WAY-100635; 0.3 mg/kg s.c.) and paroxetine (3 mg/kg p.o.). In summary, vilazodone behaved as a high efficacy partial agonist at the rat hippocampal 5-HT1A receptors in vitro and occupied 5-HT transporters in vivo. In vivo vilazodone induced a selective increase in extracellular levels of 5-HT in the rat frontal cortex. This profile was similar to that seen with a 5-HT1A receptor antagonist plus an SSRI but in contrast to 8-OH-DPAT either alone or in combination with paroxetine. PMID:15740724

  11. Lesions in Guddesn's tegmental nuclei produce behavioral and 5-HT effects similar to those after raphe lesions.

    PubMed

    Lorens, S A; Köhler, C; Guldberg, H C

    1975-01-01

    Lesions largely restricted to the dorsal and ventral tegmental nuclei of Gudden (GTN) produced several effects similar to those seen after midbrain raphe lesions. GTN lesions significantly reduced the 5-hydroxytryptamine (5-HT) concentration of the diencephalon (31 percent), hippocampus (59 percent), and remaining portion of the telencephalon (29 percent). Striatal 5-HT, however, was not affected. GTN lesions enhanced activity in an enclosed field and facilitated two-way avoidance acquisition. Pain sensitivity as measured by the flinch-jump method was not affected. These results suggest that the GTN may be the origin of ascending 5-HT fides and may be involved in the regulation of activity level and the adaptation of an animal to aversive situations. Thus, some of the behavioral and 5-HT effects of lesions in the midbrain raphe nuclei may be due to their involvement of the GTN and associated pathways. PMID:1187729

  12. 5-HT2B antagonism arrests non-canonical TGF-β1-induced valvular myofibroblast differentiation

    PubMed Central

    Hutcheson, Joshua D.; Ryzhova, Larisa M.; Setola, Vincent; Merryman, W. David

    2012-01-01

    Transforming growth factor-β1 (TGF-β1) induces myofibroblast activation of quiescent aortic valve interstitial cells (AVICs), a differentiation process implicated in calcific aortic valve disease (CAVD). The ubiquity of TGF-β1 signaling makes it difficult to target in a tissue specific manner; however, the serotonin 2B receptor (5-HT2B) is highly localized to cardiopulmonary tissues and agonism of this receptor displays pro-fibrotic effects in a TGF-β1-dependent manner. Therefore, we hypothesized that antagonism of 5-HT2B opposes TGF-β1-induced pathologic differentiation of AVICs and may offer a druggable target to prevent CAVD. To test this hypothesis, we assessed the interaction of 5-HT2B antagonism with canonical and non-canonical TGF-β1 pathways to inhibit TGF-β1-induced activation of isolated porcine AVICs in vitro. Here we show that AVIC activation and subsequent calcific nodule formation is completely mitigated by 5-HT2B antagonism. Interestingly, 5-HT2B antagonism does not inhibit canonical TGF-β1 signaling as identified by Smad3 phosphorylation and activation of a partial plasminogen activator inhibitor-1 promoter (PAI-1, a transcriptional target of Smad3), but prevents non-canonical p38 MAPK phosphorylation. It was initially suspected that 5-HT2B antagonism prevents Src tyrosine kinase phosphorylation; however, we found that this is not the case and time-lapse microscopy indicates that 5-HT2B antagonism prevents non-canonical TGF-β1 signaling by physically arresting Src tyrosine kinase. This study demonstrates the necessity of non-canonical TGF-β1 signaling in leading to pathologic AVIC differentiation. Moreover, we believe that the results of this study suggest 5-HT2B antagonism as a novel therapeutic approach for CAVD that merits further investigation. PMID:22940605

  13. Effect of 5-HT2A and 5-HT2C receptors on temporal discrimination by mice.

    PubMed

    Halberstadt, Adam L; Sindhunata, Ivan S; Scheffers, Kees; Flynn, Aaron D; Sharp, Richard F; Geyer, Mark A; Young, Jared W

    2016-08-01

    Timing deficits are observed in patients with schizophrenia. Serotonergic hallucinogens can also alter the subjective experience of time. Characterizing the mechanism through which the serotonergic system regulates timing will increase our understanding of the linkage between serotonin (5-HT) and schizophrenia, and will provide insight into the mechanism of action of hallucinogens. We investigated whether interval timing in mice is altered by hallucinogens and other 5-HT2 receptor ligands. C57BL/6J mice were trained to perform a discrete-trials temporal discrimination task. In the discrete-trials task, mice were presented with two levers after a variable interval. Responding on lever A was reinforced if the interval was <6.5 s, and responding on lever B was reinforced if the interval was >6.5 s. A 2-parameter logistic function was fitted to the proportional choice for lever B (%B responding), yielding estimates of the indifference point (T50) and the Weber fraction (a measure of timing precision). The 5-HT2A antagonist M100907 increased T50, whereas the 5-HT2C antagonist SB-242,084 reduced T50. The results indicate that 5-HT2A and 5-HT2C receptors have countervailing effects on the speed of the internal pacemaker. The hallucinogen 2,5-dimethoxy-4-iodoamphetamine (DOI; 3 mg/kg IP), a 5-HT2 agonist, flattened the response curve at long stimulus intervals and shifted it to the right, causing both T50 and the Weber fraction to increase. The effect of DOI was antagonized by M100907 (0.03 mg/kg SC) but was unaffected by SB-242,084 (0.1 mg/kg SC). Similar to DOI, the selective 5-HT2A agonist 25CN-NBOH (6 mg/kg SC) reduced %B responding at long stimulus intervals, and increased T50 and the Weber fraction. These results demonstrate that hallucinogens alter temporal perception in mice, effects that are mediated by the 5-HT2A receptor. It appears that 5-HT regulates temporal perception, suggesting that altered serotonergic signaling may contribute to the timing deficits

  14. Antidepressant- and Anxiolytic-Like Effects of New Dual 5-HT1A and 5-HT7 Antagonists in Animal Models

    PubMed Central

    Pytka, Karolina; Partyka, Anna; Jastrzębska-Więsek, Magdalena; Siwek, Agata; Głuch-Lutwin, Monika; Mordyl, Barbara; Kazek, Grzegorz; Rapacz, Anna; Olczyk, Adrian; Gałuszka, Adam; Błachuta, Marian; Waszkielewicz, Anna; Marona, Henryk; Sapa, Jacek; Filipek, Barbara; Wesołowska, Anna

    2015-01-01

    The aim of this study was to further characterize pharmacological properties of two phenylpiperazine derivatives: 1-{2-[2-(2,6-dimethlphenoxy)ethoxy]ethyl}-4-(2-methoxyphenyl)piperazynine hydrochloride (HBK-14) and 2-[2-(2-chloro-6-methylphenoxy)ethoxy]ethyl-4-(2- methoxyphenyl)piperazynine dihydrochloride (HBK-15) in radioligand binding and functional in vitro assays as well as in vivo models. Antidepressant-like properties were investigated in the forced swim test (FST) in mice and rats. Anxiolytic-like activity was evaluated in the four-plate test in mice and elevated plus maze test (EPM) in rats. Imipramine and escitalopram were used as reference drugs in the FST, and diazepam was used as a standard anxiolytic drug in animal models of anxiety. Our results indicate that HBK-14 and HBK-15 possess high or moderate affinity for serotonergic 5-HT2, adrenergic α1, and dopaminergic D2 receptors as well as being full 5-HT1A and 5-HT7 receptor antagonists. We also present their potent antidepressant-like activity (HBK-14—FST mice: 2.5 and 5 mg/kg; FST rats: 5 mg/kg) and (HBK-15—FST mice: 1.25, 2.5 and 5 mg/kg; FST rats: 1.25 and 2.5 mg/kg). We show that HBK-14 (four-plate test: 2.5 and 5 mg/kg; EPM: 2.5 mg/kg) and HBK-15 (four-plate test: 2.5 and 5 mg/kg; EPM: 5 mg/kg) possess anxiolytic-like properties. Among the two, HBK-15 has stronger antidepressant-like properties, and HBK-14 displays greater anxiolytic-like activity. Lastly, we demonstrate the involvement of serotonergic system, particularly 5-HT1A receptor, in the antidepressant- and anxiolytic-like actions of investigated compounds. PMID:26554929

  15. Serotonin 5-HT1B receptor-mediated calcium influx-independent presynaptic inhibition of GABA release onto rat basal forebrain cholinergic neurons.

    PubMed

    Nishijo, Takuma; Momiyama, Toshihiko

    2016-07-01

    Modulatory roles of serotonin (5-HT) in GABAergic transmission onto basal forebrain cholinergic neurons were investigated, using whole-cell patch-clamp technique in the rat brain slices. GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs) were evoked by focal stimulation. Bath application of 5-HT (0.1-300 μm) reversibly suppressed the amplitude of evoked IPSCs in a concentration-dependent manner. Application of a 5-HT1B receptor agonist, CP93129, also suppressed the evoked IPSCs, whereas a 5-HT1A receptor agonist, 8-OH-DPAT had little effect on the evoked IPSCs amplitude. In the presence of NAS-181, a 5-HT1B receptor antagonist, 5-HT-induced suppression of evoked IPSCs was antagonised, whereas NAN-190, a 5-HT1A receptor antagonist did not antagonise the 5-HT-induced suppression of evoked IPSCs. Bath application of 5-HT reduced the frequency of spontaneous miniature IPSCs without changing their amplitude distribution. The effect of 5-HT on miniature IPSCs remained unchanged when extracellular Ca(2+) was replaced by Mg(2+) . The paired-pulse ratio was increased by CP93129. In the presence of ω-CgTX, the N-type Ca(2+) channel blocker, ω-Aga-TK, the P/Q-type Ca(2+) channel blocker, or SNX-482, the R-type Ca(2+) channel blocker, 5-HT could still inhibit the evoked IPSCs. 4-AP, a K(+) channel blocker, enhanced the evoked IPSCs, and CP93129 had no longer inhibitory effect in the presence of 4-AP. CP93129 increased the number of action potentials elicited by depolarising current pulses. These results suggest that activation of presynaptic 5-HT1B receptors on the terminals of GABAergic afferents to basal forebrain cholinergic neurons inhibits GABA release in Ca(2+) influx-independent manner by modulation of K(+) channels, leading to enhancement of neuronal activities. PMID:27177433

  16. Human Serotonin 5-HT2C G Protein-Coupled Receptor Homology Model from the β2 Adrenoceptor Structure: Ligand Docking and Mutagenesis Studies

    PubMed Central

    RDOVA-SINTJAGO, TANIA CÓ; VILLA, NANCY; CANAL, CLINTON; BOOTH, RAYMOND

    2013-01-01

    Activation of the serotonin (5-hydroxytryptamine, 5-HT) 5HT2C G protein-coupled receptor (GPCR) is proposed as novel pharmacotherapy for obesity and neuropsychiatric disorders. In contrast, activation of the 5-HT2A and 5-HT2B GPCRs is associated with untoward hallucinogenic and cardiopulmonary effects, respectively. There is no crystal structure available to guide design of 5-HT2C receptor-specific ligands. For this reason, a homology model of the 5-HT2C receptor was built based on the crystal structure of the human β2 adrenoceptor GPCR to delineate molecular determinants of ligand–receptor interactions for drug design purposes. Computational and experimental studies were carried out to validate the model. Binding of N(CH3)2-PAT [(1R, 3S)-(−)-trans-1-phenyl-3-N,N-dimethylamino-1,2,3,4-tetrahydronaphthalene], a novel 5-HT2C agonist/5-HT2A/2B inverse agonist, and its secondary [NH(CH3)-PAT] and primary (NH2-PAT) amine analogs were studied at the 5-HT2C wild type (WT) and D3.32A, S3.36A, and Y7.43A 5-HT2C point-mutated receptors. Reference ligands included the tertiary amines lisuride and mesulergine and the primary amine 5-HT. Modeling results indicated that 5-HT2C residues D3.32, S3.36, and Y7.43 play a role in ligand binding. Experimental ligand binding results with WT and point-mutated receptors confirmed the impact of D3.32, S3.36, and Y7.43 on ligand affinity. PMID:24244046

  17. Effects of (−)-tertatolol, (−)-penbutolol and (±)-pindolol in combination with paroxetine on presynaptic 5-HT function: an in vivo microdialysis and electrophysiological study

    PubMed Central

    Gartside, S E; Clifford, E M; Cowen, P J; Sharp, T

    1999-01-01

    The antidepressant efficacy of selective serotonin reuptake inhibitors (SSRIs) might be enhanced by co-administration of 5-HT1A receptor antagonists. Thus, we have recently shown that the selective 5-HT1A receptor antagonist, WAY 100635, blocks the inhibitory effect of an SSRI on 5-HT cell firing, and enhances its ability to elevate extracellular 5-HT in the forebrain. Here we determined whether the β-adrenoceptor/5-HT1A receptor ligands (±)-pindolol, (−)-tertatolol and (−)-penbutolol, interact with paroxetine in a similar manner.Both (−)-tertatolol (2.4 mg kg−1 i.v.) and (−)-penbutolol (2.4 mg kg−1 i.v.) enhanced the effect of paroxetine (0.8 mg kg−1 i.v.) on extracellular 5-HT in the frontal cortex, whilst (±)-pindolol (4 mg kg−1 i.v.) did not. (−)-Tertatolol (2.4 mg kg−1 i.v.) alone caused a slight increase in 5-HT however, (−)-penbutolol (2.4 mg kg−1 i.v.) alone had no effect.In electrophysiological studies (−)-tertatolol (2.4 mg kg−1 i.v.) alone had no effect on 5-HT cell firing but blocked the inhibitory effect of paroxetine. In contrast, (−)-penbutolol (0.1–0.8 mg kg−1 i.v.) itself inhibited 5-HT cell firing, and this effect was reversed by WAY 100635 (0.1 mg kg−1 i.v.). We have recently shown that (±)-pindolol inhibits 5-HT cell firing via a WAY 100635-sensitive mechanism.Our data suggest that (−)-tertatolol enhances the effect of paroxetine on forebrain 5-HT via blockade of 5-HT1A autoreceptors which mediate paroxetine-induced inhibition of 5-HT cell firing. In comparison, the mechanisms by which (−)-penbutolol enhances the effect of paroxetine on extracellular 5-HT is unclear, since (−)-penbutolol itself appears to have agonist properties at the 5-HT1A autoreceptor. Indeed, the agonist action of (±)-pindolol at 5-HT1A autoreceptors probably explains its inability to enhance the effect of paroxetine on 5-HT in the frontal cortex.Overall, our data suggest that both (

  18. Tph2 gene deletion enhances amphetamine-induced hypermotility: effect of 5-HT restoration and role of striatal noradrenaline release.

    PubMed

    Carli, Mirjana; Kostoula, Chrysaugi; Sacchetti, Giuseppina; Mainolfi, Pierangela; Anastasia, Alessia; Villani, Claudia; Invernizzi, Roberto William

    2015-11-01

    Variants of tryptophan hydroxylase-2 (Tph2), the gene encoding enzyme responsible for the synthesis of brain serotonin (5-HT), have been associated with neuropsychiatric disorders, substance abuse and addiction. This study assessed the effect of Tph2 gene deletion on motor behavior and found that motor activity induced by 2.5 and 5 mg/kg amphetamine was enhanced in Tph2(-/-) mice. Using the in vivo microdialysis technique we found that the ability of amphetamine to stimulate noradrenaline (NA) release in the striatum was reduced by about 50% in Tph2(-/-) mice while the release of dopamine (DA) was not affected. Tph2 deletion did not affect the release of NA and DA in the prefrontal cortex. The role of endogenous 5-HT in enhancing the effect of amphetamine was confirmed showing that treatment with the 5-HT precursor 5-hydroxytryptophan (10 mg/kg) restored tissue and extracellular levels of brain 5-HT and the effects of amphetamine on striatal NA release and motor activity in Tph2(-/-) mice. Treatment with the NA precursor dihydroxyphenylserine (400 mg/kg) was sufficient to restore the effect of amphetamine on striatal NA release and motor activity in Tph2(-/-) mice. These findings indicate that amphetamine-induced hyperactivity is attenuated by endogenous 5-HT through the inhibition of striatal NA release. Tph2(-/-) mice may be a useful preclinical model to assess the role of 5-HT-dependent mechanisms in the action of psychostimulants. Acute sensitivity to the motor effects of amphetamine has been associated to increased risk of psychostimulant abuse. Here, we show that deletion of Tph2, the gene responsible for brain 5-HT synthesis, enhances the motor effect of amphetamine in mice through the inhibition of striatal NA release. This suggests that Tph2(-/-) mice is a useful preclinical model to assess the role of 5-HT-dependent mechanisms in psychostimulants action. Tph2, tryptophan hydroxylase-2. PMID:26259827

  19. Distinct neurochemical and functional properties of GAD67-containing 5-HT neurons in the rat dorsal raphe nucleus.

    PubMed

    Shikanai, Hiroki; Yoshida, Takayuki; Konno, Kohtarou; Yamasaki, Miwako; Izumi, Takeshi; Ohmura, Yu; Watanabe, Masahiko; Yoshioka, Mitsuhiro

    2012-10-10

    The serotonergic (5-HTergic) system arising from the dorsal raphe nucleus (DRN) is implicated in various physiological and behavioral processes, including stress responses. The DRN is comprised of several subnuclei, serving specific functions with distinct afferent and efferent connections. Furthermore, subsets of 5-HTergic neurons are known to coexpress other transmitters, including GABA, glutamate, or neuropeptides, thereby generating further heterogeneity. However, despite the growing evidence for functional variations among DRN subnuclei, relatively little is known about how they map onto neurochemical diversity of 5-HTergic neurons. In the present study, we characterized functional properties of GAD67-expressing 5-HTergic neurons (5-HT/GAD67 neurons) in the rat DRN, and compared with those of neurons expressing 5-HTergic molecules (5-HT neurons) or GAD67 alone. While 5-HT/GAD67 neurons were absent in the dorsomedial (DRD) or ventromedial (DRV) parts of the DRN, they were selectively distributed in the lateral wing of the DRN (DRL), constituting 12% of the total DRL neurons. They expressed plasmalemmal GABA transporter 1, but lacked vesicular inhibitory amino acid transporter. By using whole-cell patch-clamp recording, we found that 5-HT/GAD67 neurons had lower input resistance and firing frequency than 5-HT neurons. As revealed by c-Fos immunohistochemistry, neurons in the DRL, particularly 5-HT/GAD67 neurons, showed higher responsiveness to exposure to an open field arena than those in the DRD and DRV. By contrast, exposure to contextual fear conditioning stress showed no such regional differences. These findings indicate that 5-HT/GAD67 neurons constitute a unique neuronal population with distinctive neurochemical and electrophysiological properties and high responsiveness to innocuous stressor. PMID:23055511

  20. 5-HT(1A) receptors transactivate the platelet-derived growth factor receptor type beta in neuronal cells.

    PubMed

    Kruk, Jeff S; Vasefi, Maryam S; Liu, Hui; Heikkila, John J; Beazely, Michael A

    2013-01-01

    In the absence of ligand, certain growth factor receptors can be activated via G-protein coupled receptor (GPCR) activation in a process termed transactivation. Serotonin (5-HT) receptors can transactivate platelet-derived growth factor (PDGF) β receptors in smooth muscle cells, but it is not known if similar pathways occur in neuronal cells. Here we show that 5-HT can transiently increase the phosphorylation of PDGFβ receptors through 5-HT(1A) receptors in a time- and dose-dependent manner in SH-SY5Y neuroblastoma cells. 5-HT also transactivates PDGFβ receptors in primary cortical neurons. This transactivation pathway is pertussis-toxin sensitive and Src tyrosine kinase-dependent. This pathway is also dependent on phospholipase C activity and intracellular calcium signaling. Several studies involving PDGFβ receptor transactivation by GPCRs have also demonstrated a PDGFβ receptor-dependent increase in the phosphorylation of ERK1/2. Yet in SH-SY5Y cells, 5-HT treatment causes a PDGFβ receptor-independent increase in ERK1/2 phosphorylation. This crosstalk between 5-HT and PDGFβ receptors identifies a potentially important signaling link between the serotonergic system and growth factor signaling in neurons. PMID:23006663

  1. Vortioxetine dose-dependently reverses 5-HT depletion-induced deficits in spatial working and object recognition memory: a potential role for 5-HT1A receptor agonism and 5-HT3 receptor antagonism.

    PubMed

    du Jardin, Kristian Gaarn; Jensen, Jesper Bornø; Sanchez, Connie; Pehrson, Alan L

    2014-01-01

    We previously reported that the investigational multimodal antidepressant, vortioxetine, reversed 5-HT depletion-induced memory deficits while escitalopram and duloxetine did not. The present report studied the effects of vortioxetine and the potential impact of its 5-HT1A receptor agonist and 5-HT3 receptor antagonist properties on 5-HT depletion-induced memory deficits. Recognition and spatial working memory were assessed in the object recognition (OR) and Y-maze spontaneous alternation (SA) tests, respectively. 5-HT depletion was induced in female Long-Evans rats using 4-cholro-DL-phenylalanine methyl ester HCl (PCPA) and receptor occupancies were determined by ex vivo autoradiography. Rats were acutely dosed with vortioxetine, ondansetron (5-HT3 receptor antagonist) or flesinoxan (5-HT1A receptor agonist). The effects of chronic vortioxetine administration on 5-HT depletion-induced memory deficits were also assessed. 5-HT depletion reliably impaired memory performance in both the tests. Vortioxetine reversed PCPA-induced memory deficits dose-dependently with a minimal effective dose (MED) ≤0.1mg/kg (∼80% 5-HT3 receptor occupancy; OR) and ≤3.0mg/kg (5-HT1A, 5-HT1B, 5-HT3 receptor occupancy: ∼15%, 60%, 95%) in SA. Ondansetron exhibited a MED ≤3.0μg/kg (∼25% 5-HT3 receptor occupancy; OR), but was inactive in the SA test. Flesinoxan had a MED ≤1.0mg/kg (∼25% 5-HT1A receptor occupancy; SA); only 1.0mg/kg ameliorated deficits in the NOR. Chronic p.o. vortioxetine administration significantly improved memory performance in OR and occupied 95%, 66%, and 9.5% of 5-HT3, 5-HT1B, and 5-HT1A receptors, respectively. Vortioxetine's effects on SA performance may involve 5-HT1A receptor agonism, but not 5-HT3 receptor antagonism, whereas the effects on OR performance may involve 5-HT3 receptor antagonism and 5-HT1A receptor agonism. PMID:23916504

  2. Differential and additive suppressive effects of 5-HT3 (palonosetron)- and NK1 (netupitant)-receptor antagonists on cisplatin-induced vomiting and ERK1/2, PKA and PKC activation.

    PubMed

    Darmani, Nissar A; Zhong, Weixia; Chebolu, Seetha; Mercadante, Frank

    2015-04-01

    To better understand the anti-emetic profile of the 5-HT3 (palonosetron)- and the tachykinin NK1 (netupitant) -receptor antagonists, either alone or in combination, we evaluated the effects of palonosetron and/or netupitant pretreatment on cisplatin-evoked vomiting and changes in the phosphorylation of brainstem kinases such as the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), protein kinase C alpha/beta (PKCα/β), and protein kinase A (PKA) in the least shrew. Our results demonstrate that cisplatin (10mg/kg, i.p.) causes emesis in the least shrew over 40h with respective peak early- and delayed-phases occurring at 1 - 2 and 32 - 34h post-injection. During the early phase (0 - 16h post cisplatin), palonosetron (0.1mg/kg, s.c.) significantly protected shrews from vomiting with a near complete suppression of vomit frequency. Palonosetron also significantly protected shrews from vomiting during the delayed phase (27 - 40h post cisplatin), but the reduction in mean vomit frequency failed to achieve significance. On the other hand, netupitant (5mg/kg, i.p.) totally abolished vomiting during the delayed phase, and tended to suppress the mean vomit frequency during the acute phase. The combined treatment protected shrews almost completely from vomiting during both phases. Brainstem pERK1/2 levels were significantly elevated at all time-points except at 40h post-cisplatin administration. PKA phosphorylation tended to be elevated throughout the delayed phase, but a significant increase only occurred at 33h. Brainstem pPKCα/β levels were enhanced during acute-phase with a significant elevation at 2h. Palonosetron, netupitant or their combination had no effect on elevated pERK1/2 levels during acute phase, but the combination reversed ERK1/2 phosphorylation at 33h post-cisplatin treatment. In addition, only the combined regimen prevented the cisplatin-induced PKCα/β phosphorylation observed at the acute phase. On the other hand, palonosetron and

  3. Selective reduction by isolation rearing of 5-HT1A receptor-mediated dopamine release in vivo in the frontal cortex of mice.

    PubMed

    Ago, Y; Sakaue, M; Baba, A; Matsuda, T

    2002-10-01

    Serotonin (5-HT)1A receptors modulate in vivo release of brain monoaminergic neurotransmitters which may be involved in isolation-induced aggressive behavior. The present study examined the effect of isolation rearing on the 5-HT1A receptor-mediated modulation of dopamine (DA), 5-HT and noradrenaline (NA) release in the frontal cortex of mice. The selective 5-HT1A receptor agonist (S)-5-[-[(1,4-benzodioxan-2-ylmethyl)amino]propoxy]-1,3-benzodioxole HCl (MKC-242) increased the release of DA and NA and decreased the release of 5-HT in the frontal cortex of mice. The effect of MKC-242 on DA release was significantly less in isolation-reared mice than in group-reared mice, while effects of the drug on NA and 5-HT release did not differ between both groups. The effect of the other 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin on cortical DA release was also less in isolation-reared mice than in group-reared mice, and that of the drug on cortical 5-HT release did not differ between both groups. In contrast to MKC-242-induced DA release, amphetamine-induced increase in cortical DA release in vivo was greater in isolation-reared mice. The present findings suggest that isolation rearing enhances the activity of cortical dopaminergic neurons and reduces selectively the 5-HT1A receptor-mediated release of DA in the cortex. PMID:12423245

  4. Role of 5-HT2C Receptors in Effects of Monoamine Releasers on Intracranial Self-Stimulation in Rats

    PubMed Central

    Bauer, Clayton T.; Banks, Matthew L.; Blough, Bruce E.; Negus, S. Stevens

    2015-01-01

    Rationale Many monoamine releasers are abused by humans and produce abuse-related facilitation of intracranial self-stimulation (ICSS) in rats. Facilitation of ICSS in rats can be limited by monoamine releaser-induced serotonin (5-HT) release, but receptors that mediate 5-HT effects of monoamine releasers are unknown. Objectives Investigate whether 5-HT2C receptor activation is necessary for rate-decreasing effects produced in an ICSS procedure in rats by the 5-HT-selective monoamine releaser fenfluramine and the non-selective releasers napthylisopropylamine (PAL-287) and (+)-3,4-methylenedioxymethamphetamine ((+)-MDMA). Methods Adult male Sprague-Dawley rats with electrodes implanted in the medial forebrain bundle were trained to lever press for brain stimulation under a “frequency-rate” ICSS procedure. Effectiveness of the 5-HT2C antagonist SB 242,084 was evaluated to block rate-decreasing effects produced by (1) the 5-HT2C agonist Ro 60-0175, (2) the 5-HT-selective releaser fenfluramine, and (3) the mixed-action dopamine (DA)/norepinephrine (NE)/5-HT releasers PAL-287 (1.0-5.6 mg/kg), and (+)-MDMA (1.0-3.2 mg/kg). For comparison, effectiveness of SB 242,084 to alter rate-decreasing effects of the kappa opioid receptor agonist U69,593 and rate-increasing effects of the DA>5-HT releaser amphetamine were also examined. Results SB 242,084 pretreatment blocked rate-decreasing effects of Ro 60-0175 and fenfluramine, but not the rate-decreasing effects of U69,593 or the rate-increasing effects of amphetamine. SB 242,084 blunted the rate-decreasing effects and enhanced expression of rate-increasing effects of PAL-287 and (+)-MDMA. Conclusions These data suggest that 5-HT2C receptor activation contributes to rate-decreasing effects that are produced by selective and mixed-action 5-HT releasers in rats and that may oppose and limit the expression of abuse-related ICSS facilitation by these compounds. PMID:26041338

  5. 5-HT3 receptor-dependent modulation of respiratory burst frequency, regularity, and episodicity in isolated adult turtle brainstems

    PubMed Central

    Bartman, Michelle E.; Wilkerson, Julia E.R.; Johnson, Stephen M.

    2010-01-01

    To determine the role of central serotonin 5-HT3 receptors in respiratory motor control, respiratory motor bursts were recorded from hypoglossal (XII) nerve rootlets on isolated adult turtle brainstems during bath-application of 5-HT3 receptor agonists and antagonists. mCPBG and PBG (5-HT3 receptor agonists) acutely increased XII burst frequency and regularity, and decreased bursts/episode. Tropisetron and MDL72222 (5-HT3 antagonists) increased bursts/episode, suggesting endogenous 5-HT3 receptor activation modulates burst timing in vitro. Tropisetron blocked all mCPBG effects, and the PBG-induced reduction in bursts/episode. Tropisetron application following mCPBG application did not reverse the long-lasting (2 h) mCPBG-induced decrease in bursts/episode. We conclude that endogenous 5-HT3 receptor activation regulates respiratory frequency, regularity, and episodicity in turtles and may induce a form of respiratory plasticity with the long-lasting changes in respiratory regularity. PMID:20399913

  6. The silent and selective 5-HT1A antagonist, WAY 100635, produces via an indirect mechanism, a 5-HT2A receptor-mediated behaviour in mice during the day but not at night. Short communication.

    PubMed

    Darmani, N A

    1998-01-01

    The head-twitch response (HTR) in rodents is considered to be a functional index for the activation of 5-HT2A receptors. Intraperitoneal administration of the silent and selective 5-HT1A receptor antagonist, WAY 100635, produced the HTR in mice in a dose-dependent bell-shaped manner. The induced behaviour followed a diurnal pattern in that WAY 100635 only produced a robust HTR frequency during the light period of the 24h daily cycle. Pretreatment with the selective 5-HT2A/C receptor antagonist, SR 46349B, potently, and in a dose-dependent manner attenuated the induced behaviour. It appears that WAY 100635 produces the HTR indirectly via disinhibition of endogenous serotonergic inhibitory tone operating on the somatodenritic pulse-modulating 5-HT1A autoreceptors. The latter antagonism seems to potentiate endogenous 5-HT release in serotonergic terminal field synapses which subsequently stimulates postsynaptic 5-HT2A receptors to produce the head-twitch behaviour. PMID:9826108

  7. How efficacious are 5-HT1B/D receptor ligands: an answer from GTP gamma S binding studies with stably transfected C6-glial cell lines.

    PubMed

    Pauwels, P J; Tardif, S; Palmier, C; Wurch, T; Colpaert, F C

    1997-01-01

    The intrinsic activity of a series of 5-hydroxytryptamine (serotonin, 5-HT) receptor ligands was analysed at recombinant h5-HT1B and h5-HT1D receptor sites using a [35S]GTP gamma S binding assay and membrane preparations of stably transfected C6-glial cell lines. Compounds either stimulated or inhibited [35S]GTP gamma S binding to a membrane preparation containing either h5-HT1B or h5-HT1D receptors. The potencies observed for most of the compounds at the h5-HT1B receptor subtype correlated with their potencies measured by inhibition of stimulated cAMP formation on intact cells. Apparent agonist potencies in the [35S]GTP gamma S binding assay to C6-glial/h5-HT1D membranes were, with the exception of 2-[5-[3-(4-methylsulphonylamino)benzyl-1 2,4-oxadiazol-5-yl]-1H-indol-3-yl] ethanamine (L694247), 5- to 13-times lower than in the cAMP assay on intact cells. This suggests that receptor coupling in the h5-HT1D membrane preparation is less efficient than that in the intact cell. It further appeared that 6-times more h5-HT1D than h5-HT1B binding sites were required to attain a similar, maximal (73%), 5-HT-stimulated [35S]GTP gamma S binding response: Hence, the h5-HT1B receptor in C6-glial cell membranes could be more efficiently coupled, even though some compounds more readily displayed intrinsic activity at h5-HT1D receptor sites [e.g. dihydroergotamine and (2'-methyl-4'-(5-methyl[1,2,4]oxadiazol-3-yl)biphenyl-4-carboxylic acid [4-methoxy-3-(4-methylpiperazin-1-yl)phenyl]amide (GR127935)]. Efficacy differences were apparent for most of the compounds (sumatriptan, zolmitriptan, rizatriptan, N-methyl-3-[pyrrolidin-2(R)-ylmethyl]-1H-indol-5-ylmethyl sulfonamide (CP122638), dihydroergotamine, naratriptan and GR127935) that stimulated [35S]GTP gamma S binding compared to the native agonist 5-HT. The observed maximal responses were different for the h5-HT1B and h5-HT1D receptor subtypes. Few compounds behaved as full agonists: L694247, zolmitriptan and sumatriptan did so at

  8. Evidence for 5-HT7 receptors mediating relaxation of human colonic circular smooth muscle

    PubMed Central

    Prins, Nicolaas H; Briejer, Michel R; Van Bergen, Patrick J E; Akkermans, Louis M A; Schuurkes, Jan A J

    1999-01-01

    5-HT4 receptors mediate relaxation of human colon circular muscle. However, after 5-HT4 receptor blockade (SB 204070 10 nM), 5-HT still induced a relaxation (pEC50 6.3). 5-HT4 receptors were sufficiently blocked, as the curves to 5-HT obtained in the presence of 10 and 100 nM SB 204070 were indistinguishable. This 5-HT-induced relaxation was tetrodotoxin-insensitive, indicative of a smooth muscle relaxant 5-HT receptor. This, and the rank order of potency (5-CT=5-MeOT=5-HT) suggested involvement of 5-HT1 or 5-HT7 receptors. Mesulergine, a 5-HT7 receptor antagonist at nanomolar concentrations, and a 5-HT1 receptor antagonist at micromolar concentrations, competitively antagonized the 5-HT-induced relaxation (pKB 8.3) and antagonized the relaxation to 5-CT. Methysergide antagonized the 5-HT-induced relaxation (pA2 7.6). It is concluded that the profile of the smooth muscle inhibitory 5-HT receptor resembles that of the 5-HT7 receptor. These data provide the first evidence for functional human 5-HT7 receptors. PMID:10556917

  9. 5-HT2B receptor-mediated calcium release from ryanodine-sensitive intracellular stores in human pulmonary artery endothelial cells.

    PubMed Central

    Ullmer, C.; Boddeke, H. G.; Schmuck, K.; Lübbert, H.

    1996-01-01

    1. We have characterized the 5-hydroxytryptamine (5-HT)-induced calcium signalling in endothelial cells from the human pulmonary artery. Using RT-PCR we show, that of all cloned G-protein coupled 5-HT receptors, these cells express only 5-HT1D beta, 5-HT2B and little 5-HT4 receptor mRNA. 2. In endothelial cells 5-HT inhibits the formation of adenosine 3':5'-cyclic monophosphate (cyclic AMP) via 5-HT1D beta receptors but fails to activate phosphoinositide (PI) turnover. However, the latter pathway is strongly activated by histamine. 3. Despite the lack of detectable inositol phosphate (IP) formation in human pulmonary artery endothelial cells, 5-HT (pD2 = 5.82 +/- 0.06, n = 6) or the selective 5-HT2 agonist, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) (pD2 = 5.66 +/- 0.03, n = 7) elicited transient calcium signals comparable to those evoked by histamine (pD2 = 6.44 +/- 0.01, n = 7). Since 5-HT2A and 5-HT2C receptor mRNAs are not detectable in pulmonary artery endothelial cells, activation of 5-HT2B receptors is responsible for the transient calcium release. The calcium transients are independent of the inhibition of adenylate cyclase, since DOI does not stimulate 5-HT1D beta receptors. 4. Both, the 5-HT- and histamine-stimulated calcium signals were also observed when the cells were placed in calcium-free medium. This indicates that 5-HT triggers calcium release from intracellular stores. 5. Heparin is an inhibitor of the IP3-activated calcium release channels on the endoplasmic reticulum. Intracellular infusion of heparin through patch pipettes in voltage clamp experiments failed to block 5-HT-induced calcium signals, whereas it abolished the histamine response. This supports the conclusion that the 5-HT-induced calcium release is independent of IP3 formation. 6. Unlike the histamine response, the 5-HT response was sensitive to micromolar concentrations of ryanodine and, to a lesser extent, ruthenium red. This implies that 5-HT2B receptors trigger calcium

  10. Differential effect of viral overexpression of nucleus accumbens shell 5-HT1B receptors on stress- and cocaine priming-induced reinstatement of cocaine seeking

    PubMed Central

    Nair, Sunila G.; Furay, Amy R.; Liu, Yusha; Neumaier, John F.

    2013-01-01

    5-HT1B receptors are densely expressed on terminals of medium spiny neurons projecting from the nucleus accumbens shell (NAccSh) to the ventral tegmental area, where 5-HT1B receptors modulate GABA release directly, and firing of dopaminergic neurons indirectly. While interactions between NAccSh 5-HT1B receptors and stress have been reported in early stages of psychostimulant-induced neuroadaptations, specifically psychomotor sensitization, the effect of this interaction on later stages of drug seeking is currently unknown. Here, we examined the effect of herpes simplex virus (HSV)-mediated overexpression of NAccSh 5-HT1B receptors on reinstatement of cocaine seeking induced by exposure to stress or a cocaine prime. Rats were trained to self-administer cocaine (0.75 mg/kg/infusion) and the operant response was extinguished. Rats were then injected with viral vector expressing 5-HT1B and green fluorescent protein (GFP) or GFP alone into the NAccSh. The effect of 5-HT1B receptor overexpression was assessed on reinstatement induced by intermittent footshock (0.5 mA for 15 minutes) or a cocaine prime (10 mg/kg, ip). Results indicate that NAccSh 5-HT1B receptor overexpression had no effect on footshock reinstatement while significantly decreasing cocaine priming-induced reinstatement. We also found that NAccSh overexpression of 5-HT1B receptors had no effect on saccharin intake following social defeat stress. These results suggest that the efficacy of pharmacological agents targeting 5-HT1B receptors for the treatment of cocaine relapse will depend largely on the nature of the reinstating stimulus. Taken together with previous results it appears that NAccSh 5-HT1B receptors influence stress responses in early, but not in the later stages of psychostimulant-induced neuroadaptations. PMID:24075973

  11. Direct interaction and functional coupling between human 5-HT6 receptor and the light chain 1 subunit of the microtubule-associated protein 1B (MAP1B-LC1).

    PubMed

    Kim, Soon-Hee; Kim, Dong Hyuk; Lee, Kang Ho; Im, Sun-Kyoung; Hur, Eun-Mi; Chung, Kwang Chul; Rhim, Hyewhon

    2014-01-01

    Serotonin (5-HT) receptors of type 6 (5-HT6R) play important roles in mood, psychosis, and eating disorders. Recently, a growing number of studies support the use of 5-HT6R-targeting compounds as promising drug candidates for treating cognitive dysfunction associated with Alzheimer's disease. However, the mechanistic linkage between 5-HT6R and such functions remains poorly understood. By using yeast two-hybrid, GST pull-down, and co-immunoprecipitation assays, here we show that human 5-HT6R interacts with the light chain 1 (LC1) subunit of MAP1B protein (MAP1B-LC1), a classical microtubule-associated protein highly expressed in the brain. Functionally, we have found that expression of MAP1B-LC1 regulates serotonin signaling in a receptor subtype-specific manner, specifically controlling the activities of 5-HT6R, but not those of 5-HT4R and 5-HT7R. In addition, we have demonstrated that MAP1B-LC1 increases the surface expression of 5-HT6R and decreases its endocytosis, suggesting that MAP1B-LC1 is involved in the desensitization and trafficking of 5-HT6R via a direct interaction. Together, we suggest that signal transduction pathways downstream of 5-HT6R are regulated by MAP1B, which might play a role in 5-HT6R-mediated signaling in the brain. PMID:24614691

  12. Direct Interaction and Functional Coupling between Human 5-HT6 Receptor and the Light Chain 1 Subunit of the Microtubule-Associated Protein 1B (MAP1B-LC1)

    PubMed Central

    Kim, Soon-Hee; Kim, Dong Hyuk; Lee, Kang Ho; Im, Sun-Kyoung; Hur, Eun-Mi; Chung, Kwang Chul; Rhim, Hyewhon

    2014-01-01

    Serotonin (5-HT) receptors of type 6 (5-HT6R) play important roles in mood, psychosis, and eating disorders. Recently, a growing number of studies support the use of 5-HT6R-targeting compounds as promising drug candidates for treating cognitive dysfunction associated with Alzheimer’s disease. However, the mechanistic linkage between 5-HT6R and such functions remains poorly understood. By using yeast two-hybrid, GST pull-down, and co-immunoprecipitation assays, here we show that human 5-HT6R interacts with the light chain 1 (LC1) subunit of MAP1B protein (MAP1B-LC1), a classical microtubule-associated protein highly expressed in the brain. Functionally, we have found that expression of MAP1B-LC1 regulates serotonin signaling in a receptor subtype-specific manner, specifically controlling the activities of 5-HT6R, but not those of 5-HT4R and 5-HT7R. In addition, we have demonstrated that MAP1B-LC1 increases the surface expression of 5-HT6R and decreases its endocytosis, suggesting that MAP1B-LC1 is involved in the desensitization and trafficking of 5-HT6R via a direct interaction. Together, we suggest that signal transduction pathways downstream of 5-HT6R are regulated by MAP1B, which might play a role in 5-HT6R-mediated signaling in the brain. PMID:24614691

  13. Modulation of cannabinoid signaling by hippocampal 5-HT4 serotonergic system in fear conditioning.

    PubMed

    Nasehi, Mohammad; Farrahizadeh, Maryam; Ebrahimi-Ghiri, Mohaddeseh; Zarrindast, Mohammad-Reza

    2016-09-01

    Behavioral studies have suggested a key role for the cannabinoid system in the modulation of conditioned fear memory. Likewise, much of the literature has revealed that the serotonergic system affects Pavlovian fear conditioning and extinction. A high level of functional overlap between the serotonin and cannabinoid systems has also been reported. To clarify the interaction between the hippocampal serotonin (5-HT4) receptor and the cannabinoid CB1 receptor in the acquisition of fear memory, the effects of 5-HT4 agents, arachidonylcyclopropylamide (ACPA; CB1 receptor agonist), and the combined use of these drugs on fear learning were studied in a fear conditioning task in adult male NMRI mice. Pre-training intraperitoneal administration of ACPA (0.1 mg/kg) decreased the percentage of freezing time in both context- and tone-dependent fear conditions, suggesting impairment of the acquisition of fear memory. Pre-training, intra-hippocampal (CA1) microinjection of RS67333, a 5-HT4 receptor agonist, at doses of 0.1 and 0.2 or 0.2 µg/mouse impaired contextual and tone fear memory, respectively. A subthreshold dose of RS67333 (0.005 µg/mouse) did not alter the ACPA response in either condition. Moreover, intra-CA1 microinjection of RS23597 as a 5-HT4 receptor antagonist did not alter context-dependent fear memory acquisition, but it did impair tone-dependent fear memory acquisition. However, a subthreshold dose of the RS23597 (0.01 µg/mouse) potentiated ACPA-induced fear memory impairment in both conditions. Therefore, we suggest that the blockade of hippocampal 5-HT4 serotonergic system modulates cannabinoid signaling induced by the activation of CB1 receptors in conditioned fear. PMID:27296273

  14. Characterization of the 5-HT1A receptor of the honeybee (Apis mellifera) and involvement of serotonin in phototactic behavior.

    PubMed

    Thamm, Markus; Balfanz, Sabine; Scheiner, Ricarda; Baumann, Arnd; Blenau, Wolfgang

    2010-07-01

    Serotonin plays a key role in modulating various physiological and behavioral processes in both protostomes and deuterostomes. The vast majority of serotonin receptors belong to the superfamily of G-protein-coupled receptors. We report the cloning of a cDNA from the honeybee (Am5-ht1A) sharing high similarity with members of the 5-HT(1) receptor class. Activation of Am5-HT(1A) by serotonin inhibited the production of cAMP in a dose-dependent manner (EC(50) = 16.9 nM). Am5-HT(1A) was highly expressed in brain regions known to be involved in visual information processing. Using in vivo pharmacology, we could demonstrate that Am5-HT(1A) receptor ligands had a strong impact on the phototactic behavior of individual bees. The data presented here mark the first comprehensive study-from gene to behavior-of a 5-HT(1A) receptor in the honeybee, paving the way for the eventual elucidation of additional roles of this receptor subtype in the physiology and behavior of this social insect. PMID:20349263

  15. Variation within the serotonin (5-HT) 5-HT2C receptor system aligns with vulnerability to cocaine cue reactivity

    PubMed Central

    Anastasio, N C; Liu, S; Maili, L; Swinford, S E; Lane, S D; Fox, R G; Hamon, S C; Nielsen, D A; Cunningham, K A; Moeller, F G

    2014-01-01

    Cocaine dependence remains a challenging public health problem with relapse cited as a major determinant in its chronicity and severity. Environmental contexts and stimuli become reliably associated with its use leading to durable conditioned responses (‘cue reactivity') that can predict relapse as well as treatment success. Individual variation in the magnitude and influence of cue reactivity over behavior in humans and animals suggest that cue-reactive individuals may be at greater risk for the progression to addiction and/or relapse. In the present translational study, we investigated the contribution of variation in the serotonin (5-HT) 5-HT2C receptor (5-HT2CR) system in individual differences in cocaine cue reactivity in humans and rodents. We found that cocaine-dependent subjects carrying a single nucleotide polymorphism (SNP) in the HTR2C gene that encodes for the conversion of cysteine to serine at codon 23 (Ser23 variant) exhibited significantly higher attentional bias to cocaine cues in the cocaine-word Stroop task than those carrying the Cys23 variant. In a model of individual differences in cocaine cue reactivity in rats, we identified that high cocaine cue reactivity measured as appetitive approach behavior (lever presses reinforced by the discrete cue complex) correlated with lower 5-HT2CR protein expression in the medial prefrontal cortex and blunted sensitivity to the suppressive effects of the selective 5-HT2CR agonist WAY163909. Our translational findings suggest that the functional status of the 5-HT2CR system is a mechanistic factor in the generation of vulnerability to cocaine-associated cues, an observation that opens new avenues for future development of biomarker and therapeutic approaches to suppress relapse in cocaine dependence. PMID:24618688

  16. 5-HT3 Receptor Brain-Type B-Subunits are Differentially Expressed in Heterologous Systems

    PubMed Central

    2015-01-01

    Genes for five different 5-HT3 receptor subunits have been identified. Most of the subunits have multiple isoforms, but two isoforms of the B subunits, brain-type 1 (Br1) and brain-type 2 (Br2) are of particular interest as they appear to be abundantly expressed in human brain, where 5-HT3B subunit RNA consists of approximately 75% 5-HT3Br2, 24% 5-HT3Br1, and <1% 5-HT3B. Here we use two-electrode voltage-clamp, radioligand binding, fluorescence, whole cell, and single channel patch-clamp studies to characterize the roles of 5-HT3Br1 and 5-HT3Br2 subunits on function and pharmacology in heterologously expressed 5-HT3 receptors. The data show that the 5-HT3Br1 transcriptional variant, when coexpressed with 5-HT3A subunits, alters the EC50, nH, and single channel conductance of the 5-HT3 receptor, but has no effect on the potency of competitive antagonists; thus, 5-HT3ABr1 receptors have the same characteristics as 5-HT3AB receptors. There were some differences in the shapes of 5-HT3AB and 5-HT3ABr1 receptor responses, which were likely due to a greater proportion of homomeric 5-HT3A versus heteromeric 5-HT3ABr1 receptors in the latter, as expression of the 5-HT3Br1 compared to the 5-HT3B subunit is less efficient. Conversely, the 5-HT3Br2 subunit does not appear to form functional channels with the 5-HT3A subunit in either oocytes or HEK293 cells, and the role of this subunit is yet to be determined. PMID:25951416

  17. The 5-HT[subscript 3A] Receptor Is Essential for Fear Extinction

    ERIC Educational Resources Information Center

    Kondo, Makoto; Nakamura, Yukiko; Ishida, Yusuke; Yamada, Takahiro; Shimada, Shoichi

    2014-01-01

    The 5-HT [subscript 3] receptor, the only ionotropic 5-HT receptor, is expressed in limbic regions, including the hippocampus, amygdala, and cortex. However, it is not known whether it has a role in fear memory processes. Analysis of 5-HT [subscript 3A] receptor knockout mice in fear conditioning paradigms revealed that the 5-HT [subscript 3A]…

  18. 5-HT2CRs expressed by pro-opiomelanocortin neurons regulate insulin sensitivity in liver

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mice lacking 5-HT 2C receptors displayed hepatic insulin resistance, a phenotype normalized by re-expression of 5-HT2CRs only in pro-opiomelanocortin (POMC) neurons. 5-HT2CR deficiency also abolished the anti-diabetic effects of meta-chlorophenylpiperazine (a 5-HT2CR agonist); these effects were re...

  19. Opposing actions of 5HT1A and 5HT2-like serotonin receptors on modulations of the electric signal waveform in the electric fish Brachyhypopomus pinnicaudatus

    PubMed Central

    Allee, Susan J.; Markham, Michael R.; Salazar, Vielka L.; Stoddard, Philip K.

    2008-01-01

    Serotonin (5-HT) is an indirect modulator of the electric organ discharge (EOD) in the weakly electric gymnotiform fish, Brachyhypopomus pinnicaudatus. Injections of 5-HT enhance EOD waveform “masculinity”, increasing both waveform amplitude and the duration of the second phase. This study investigated the pharmacological identity of 5-HT receptors that regulate the electric waveform and their effects on EOD amplitude and duration. We present evidence that two sets of serotonin receptors modulate the EOD in opposite directions. We found that the 5HT1AR agonist 8-OH-DPAT diminishes EOD duration and amplitude while the 5HT1AR antagonist WAY100635 increases these parameters. In contrast, the 5HT2R agonist α-Me-5-HT increases EOD amplitude but not duration, yet 5-HT-induced increases in EOD duration can be inhibited by blocking 5HT2A/2C-like receptors with ketanserin. These results show that 5-HT exerts bi-directional control of EOD modulations in B. pinnicaudatus via action at receptors similar to mammalian 5HT1A and 5HT2 receptors. The discordant amplitude and duration response suggests separate mechanisms for modulating these waveform parameters. PMID:18206154

  20. Repeated lysergic acid diethylamide in an animal model of depression: Normalisation of learning behaviour and hippocampal serotonin 5-HT2 signalling.

    PubMed

    Buchborn, Tobias; Schröder, Helmut; Höllt, Volker; Grecksch, Gisela

    2014-06-01

    A re-balance of postsynaptic serotonin (5-HT) receptor signalling, with an increase in 5-HT1A and a decrease in 5-HT2A signalling, is a final common pathway multiple antidepressants share. Given that the 5-HT1A/2A agonist lysergic acid diethylamide (LSD), when repeatedly applied, selectively downregulates 5-HT2A, but not 5-HT1A receptors, one might expect LSD to similarly re-balance the postsynaptic 5-HT signalling. Challenging this idea, we use an animal model of depression specifically responding to repeated antidepressant treatment (olfactory bulbectomy), and test the antidepressant-like properties of repeated LSD treatment (0.13 mg/kg/d, 11 d). In line with former findings, we observe that bulbectomised rats show marked deficits in active avoidance learning. These deficits, similarly as we earlier noted with imipramine, are largely reversed by repeated LSD administration. Additionally, bulbectomised rats exhibit distinct anomalies of monoamine receptor signalling in hippocampus and/or frontal cortex; from these, only the hippocampal decrease in 5-HT2 related [(35)S]-GTP-gamma-S binding is normalised by LSD. Importantly, the sham-operated rats do not profit from LSD, and exhibit reduced hippocampal 5-HT2 signalling. As behavioural deficits after bulbectomy respond to agents classified as antidepressants only, we conclude that the effect of LSD in this model can be considered antidepressant-like, and discuss it in terms of a re-balance of hippocampal 5-HT2/5-HT1A signalling. PMID:24785760

  1. Novel 5-HT6 receptor antagonists/D2 receptor partial agonists targeting behavioral and psychological symptoms of dementia.

    PubMed

    Kołaczkowski, Marcin; Marcinkowska, Monika; Bucki, Adam; Śniecikowska, Joanna; Pawłowski, Maciej; Kazek, Grzegorz; Siwek, Agata; Jastrzębska-Więsek, Magdalena; Partyka, Anna; Wasik, Anna; Wesołowska, Anna; Mierzejewski, Paweł; Bienkowski, Przemyslaw

    2015-03-01

    We describe a novel class of designed multiple ligands (DMLs) combining serotonin 5-HT6 receptor (5-HT6R) antagonism with dopamine D2 receptor (D2R) partial agonism. Prototype hybrid molecules were designed using docking to receptor homology models. Diverse pharmacophore moieties yielded 3 series of hybrids with varying in vitro properties at 5-HT6R and D2R, and at M1 receptor and hERG channel antitargets. 4-(piperazin-1-yl)-1H-indole derivatives showed highest antagonist potency at 5-HT6R, with 7-butoxy-3,4-dihydroquinolin-2(1H)-one and 2-propoxybenzamide derivatives having promising D2R partial agonism. 2-(3-(4-(1-(phenylsulfonyl)-1H-indol-4-yl)piperazin-1-yl)propoxy)benzamide (47) exhibited nanomolar affinity at both 5-HT6R and D2R and was evaluated in rat models. It displayed potent antidepressant-like and anxiolytic-like activity in the Porsolt and Vogel tests, respectively, more pronounced than that of a reference selective 5-HT6R antagonist or D2R partial agonist. In addition, 47 also showed antidepressant-like activity (Porsolt's test) and anxiolytic-like activity (open field test) in aged (>18-month old) rats. In operant conditioning tests, 47 enhanced responding for sweet reward in the saccharin self-administration test, consistent with anti-anhedonic properties. Further, 47 facilitated extinction of non-reinforced responding for sweet reward, suggesting potential procognitive activity. Taken together, these studies suggest that DMLs combining 5-HT6R antagonism and D2R partial agonism may successfully target affective disorders in patients from different age groups without a risk of cognitive deficits. PMID:25557493

  2. Evidence that mCPP may have behavioural effects mediated by central 5-HT1C receptors.

    PubMed Central

    Kennett, G. A.; Curzon, G.

    1988-01-01

    1. The effects of 1-(3-chlorophenyl)piperazine (mCPP) and 1-[3-(trifluoromethyl)phenyl] piperazine (TFMPP) on activity of rats in a novel cage, and on the rotorod and elevated bar co-ordination tests was examined. 2. Peripherally administered mCPP and TFMPP dose-dependently reduced locomotion, rearing, and feeding scores but not grooming of freely fed rats placed in a novel observation cage. Yawning behaviour was increased. Similar effects were also observed after injection of mCPP into the 3rd ventricle. 3. Co-ordination on a rotating drum of both untrained and trained rats was impaired following mCPP but co-ordination on an elevated bar was not. 4. The hypoactivity induced by mCPP was opposed by three antagonists with high affinity for the 5-hydroxytryptamine (5-HT1C) site; metergoline, mianserin, cyproheptadine and possibly also by a fourth antagonist mesulergine. Metergoline, mianserin and cyproheptadine also opposed the reduction in feeding scores. However, neither effect of mCPP was antagonized by the 5-HT2-receptor antagonists ketanserin or ritanserin, the 5-HT3-receptor antagonist ICS 205-930, the 5-HT1A and 5-HT1B-receptor antagonists (-)-pindolol, (-)-propranolol and (+/-)-cyanopindolol or the 5-HT1A-, 5-HT2- and dopamine receptor antagonist spiperone. The specific alpha 2-adrenoceptor antagonist idazoxan was also without effect. 5. Hypoactivity induced by TFMPP was similarly antagonized by mianserin but unaffected by (+/-)-cyanopindolol. 6. These results suggest that the hypoactivity is mediated by central 5-HT1C-receptors and that mCPP and possibly TFMPP may be 5-HT1C-receptor agonists. 7. As mianserin, cyproheptadine and mesulergine in the absence of mCPP did not increase locomotion but increased the number of feeding scores, the activation of 5-HT1C-receptors may be of physiological importance in the control of appetite. The possible relevance of these results to the therapeutic and side-effects of clinically used antidepressants (particularly

  3. Buspirone and gepirone: partial agonists at the 5HT/sub 1/A receptor linked to adenylate cyclase (AC) in rat and guinea pig hippocampal preparations

    SciTech Connect

    Yocca, F.D.; Hyslop, D.K.; Taylor, D.P.; Maayani, S.

    1986-03-01

    The pharmacologic nature of the 5-HT receptor that is negatively linked to AC in membrane preparations from rat and guinea pig (gp) brain in cell culture and in gp hippocampal homogenates positively linked to AC seem to be indistinguishable from the 5HT/sub 1A/ binding site in similar preparations. Affinity values of chemically unrelated but selective drugs for a binding site are useful for taxonomy of functional receptors. The novel anxiolytic drug buspirone (B) and its analog gepirone (G) exhibit selectivity and affinity for spiperone-sensitive (/sup 3/H)-5-HT and (/sup 3/H)-8-OH-DPAT binding sites in gp and rat hippocampus. In the two species tested, B and G were partial agonists (intrinsic activity approx. = 0.5) compared to 5-HT and its potent analog 5-carboxamideotryptamine (5-COAT) at the 5-HT/sub 1A/ receptor linked to AC. The K/sub B/ value of spiperone determined with B and G was indistinguishable from that determined with 5-HT and 5-COAT (20-30 nM). Since B and G exert unique agonist effects at the functional 5HT/sub 1A/ receptor, their structures may be important for identifying chemical groups necessary for recognition and activation of the 5HT/sub 1A/ receptor.

  4. Decreased frontal serotonin 5-HT 2a receptor binding index in deliberate self-harm patients.

    PubMed

    Audenaert, K; Van Laere, K; Dumont, F; Slegers, G; Mertens, J; van Heeringen, C; Dierckx, R A

    2001-02-01

    Studies of serotonin metabolites in body fluids in attempted suicide patients and of post-mortem brain tissue of suicide victims have demonstrated the involvement of the serotonergic neurotransmission system in the pathogenesis of suicidal behaviour. Recently developed neuroimaging techniques offer the unique possibility of investigating in vivo the functional characteristics of this system. In this study the 5-HT2a receptor population of patients who had recently attempted suicide was studied by means of the highly specific radio-iodinated 5-HT2a receptor antagonist 4-amino-N-[1-[3-(4-fluorophenoxy) propyl]-4-methyl-4-piperidinyl]-5-iodo-2-methoxybenzamide or 123I-5-I-R91150. Nine patients who had recently (1-7 days) attempted suicide and 12 age-matched healthy controls received an intravenous injection of 185 MBq 123I-5-I-R91150 and were scanned with high-resolution brain single-photon emission tomography (SPET). Stereotactic realigned images were analysed semi-quantitatively using predefined volumes of interest. Serotonin binding capacity was expressed as the ratio of specific to non-specific activity. The cerebellum was used as a measure of non-specific activity. An age-dependent 5-HT2a binding index was found, in agreement with previous literature. Deliberate self-harm patients had a significantly reduced mean frontal binding index after correction for age (P=0.002) when compared with controls. The reduction was more pronounced among deliberate self-injury patients (DSI) (P<0.001) than among deliberate self-poisoning patients (DSP). Frontal binding index was significantly lower in DSI patients than in DSP suicide attempters (P<0.001). It is concluded that brain SPET of the 5-HT2a serotonin receptor system in attempted suicide patients who are free of drugs influencing the serotonergic system shows in vivo evidence of a decreased frontal binding index of the 5-HT2a receptor, indicating a decrease in the number and/or in the binding affinity of 5-HT2a receptors

  5. The effects of benzofury (5-APB) on the dopamine transporter and 5-HT2-dependent vasoconstriction in the rat.

    PubMed

    Dawson, Patrick; Opacka-Juffry, Jolanta; Moffatt, James D; Daniju, Yusuf; Dutta, Neelakshi; Ramsey, John; Davidson, Colin

    2014-01-01

    5-APB, commonly marketed as 'benzofury' is a new psychoactive substance and erstwhile 'legal high' which has been implicated in 10 recent drug-related deaths in the UK. This drug was available on the internet and in 'head shops' and was one of the most commonly sold legal highs up until its recent UK temporary ban (UK Home Office). Despite its prominence, very little is known about its pharmacology. This study was undertaken to examine the pharmacology of 5-APB in vitro. We hypothesised that 5-APB would activate the dopamine and 5-HT systems which may underlie its putative stimulant and hallucinogenic effects. Autoradiographic studies showed that 5-APB displaced both [(125)I] RTI-121 and [(3)H] ketanserin from rat brain tissue suggesting affinity at the dopamine transporter and 5-HT2 receptor sites respectively. Voltammetric studies in rat accumbens brain slices revealed that 5-APB slowed dopamine reuptake, and at high concentrations caused reverse transport of dopamine. 5-APB also caused vasoconstriction of rat aorta, an effect antagonised by the 5-HT2A receptor antagonist ketanserin, and caused contraction of rat stomach fundus, which was reversed by the 5-HT2B receptor antagonist RS-127445. These data show that 5-APB interacts with the dopamine transporter and is an agonist at the 5-HT2A and 5-HT2B receptors in the rat. Thus 5-APB's pharmacology is consistent with it having both stimulant and hallucinogenic properties. In addition, 5-APB's activity at the 5-HT2B receptor may cause cardiotoxicity. PMID:24012617

  6. 5-HT2 receptors mediate functional modulation of GABAa receptors and inhibitory synaptic transmissions in human iPS-derived neurons

    PubMed Central

    Wang, Haitao; Hu, Lingli; Liu, Chunhua; Su, Zhenghui; Wang, Lihui; Pan, Guangjin; Guo, Yiping; He, Jufang

    2016-01-01

    Neural progenitors differentiated from induced pluripotent stem cells (iPS) hold potentials for treating neurological diseases. Serotonin has potent effects on neuronal functions through multiple receptors, underlying a variety of neural disorders. Glutamate and GABA receptors have been proven functional in neurons differentiated from iPS, however, little is known about 5-HT receptor-mediated modulation in such neuronal networks. In the present study, human iPS were differentiated into cells possessing featured physiological properties of cortical neurons. Whole-cell patch-clamp recording was used to examine the involvement of 5-HT2 receptors in functional modulation of GABAergic synaptic transmission. We found that serotonin and DOI (a selective agonist of 5-HT2A/C receptor) reversibly reduced GABA-activated currents, and this 5-HT2A/C receptor mediated inhibition required G protein, PLC, PKC, and Ca2+ signaling. Serotonin increased the frequency of miniature inhibitory postsynaptic currents (mIPSCs), which could be mimicked by α-methylserotonin, a 5-HT2 receptor agonist. In contrast, DOI reduced both frequency and amplitude of mIPSCs. These findings suggested that in iPS-derived human neurons serotonin postsynaptically reduced GABAa receptor function through 5-HT2A/C receptors, but presynaptically other 5-HT2 receptors counteracted the action of 5-HT2A/C receptors. Functional expression of serotonin receptors in human iPS-derived neurons provides a pre-requisite for their normal behaviors after grafting. PMID:26837719

  7. 5-hydroxytryptamine receptor (5-HT1DR) promotes colorectal cancer metastasis by regulating Axin1/β-catenin/MMP-7 signaling pathway.

    PubMed

    Sui, Hua; Xu, Hanchen; Ji, Qing; Liu, Xuan; Zhou, Lihong; Song, Haiyan; Zhou, Xiqiu; Xu, Yangxian; Chen, Zhesheng; Cai, Jianfeng; Ji, Guang; Li, Qi

    2015-09-22

    Overexpression of 5-hydroxytryptamine (5-HT) in human cancer contributes to tumor metastasis, but the role of 5-HT receptor family in cancer has not been thoroughly explored. Here, we report overexpression of 5-HT(1D) receptor (5-HT(1D)R) was associated with Wnt signaling pathway and advanced tumor stage. The underlying mechanism of 5-HT(1D)R-promoted tumor invasion was through its activation on the Axin1/β-catenin/MMP-7 pathway. In an orthotopic colorectal cancer mouse model, we demonstrated that a 5-HT(1D)R antagonist (GR127935) effectively inhibited tumor metastasis through targeting Axin1. Furthermore, in intestinal epithelium cells, we observed that 5-HT(1D)R played an important role in cell invasion via Axin1/β-catenin/MMP-7 pathway. Together, our findings reveal an essential role of the physiologic level of 5-HT(1D)R in pulmonary metastasis of colorectal cancer. PMID:26214021

  8. Evidence for 5-HT1-like receptor-mediated vasoconstriction in human pulmonary artery.

    PubMed Central

    MacLean, M. R.; Clayton, R. A.; Templeton, A. G.; Morecroft, I.

    1996-01-01

    1. The 5-hydroxytryptamine (5-HT) receptors mediating contraction of human isolated pulmonary artery rings were investigated. Responses to the agonists 5-carboximidotryptamine (5-CT, non-selective 5-HT1 agonist), sumatriptan (5-HT1D-like receptor agonist), 5-HT and 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT, 5-HT1A receptor agonist) were studied. Responses to 5-HT and sumatriptan in the presence of the antagonists, methiothepin (non-selective 5-HT1+2-receptor antagonist), ketanserin (5-HT2A receptor antagonist) and the novel antagonist, GR55562 (5-HT1D receptor antagonist) were also studied. 2. All agonists contracted human pulmonary artery ring preparations in the following order of potency 5-CT > 5-HT = sumatriptan > 8-OH-DPAT. Maximum responses to 5-HT, 5-CT and sumatriptan were not significantly different. 3. Methiothepin 1 nM and 10 nM, but not 0.1 nM reduced the maximum contractile responses to 5-HT but did not alter tissue sensitivity to 5-HT. Methiothepin 0.1 nM, 1 nM and 10 nM had a similar effect on responses to sumatriptan. 4. The 5-HT2A receptor antagonist ketanserin (10 nM, 100 nM and 1 microM) also reduced the maximum contractile response to both 5-HT and sumatriptan without affecting tissue sensitivity to these agonists. 5. The novel 5-HT1D receptor antagonist, GR55562, inhibited responses to 5-HT and sumatriptan in a true competitive fashion. 6. The results suggest that the human pulmonary artery has a functional population of 5-HT1D-like receptors which are involved in the contractile response to 5-HT. PMID:8886409

  9. The 5-HT1A receptor in Major Depressive Disorder.

    PubMed

    Kaufman, Joshua; DeLorenzo, Christine; Choudhury, Sunia; Parsey, Ramin V

    2016-03-01

    Major Depressive Disorder (MDD) is a highly prevalent psychiatric diagnosis that is associated with a high degree of morbidity and mortality. This debilitating disorder is currently one of the leading causes of disability nationwide and is predicted to be the leading cause of disease burden by the year 2030. A large body of previous research has theorized that serotonergic dysfunction, specifically of the serotonin (5-HT) 1A receptor, plays a key role in the development of MDD. The purpose of this review is to describe the evolution of our current understanding of the serotonin 1A (5-HT1A) receptor and its role in the pathophysiology MDD through the discussion of animal, post-mortem, positron emission tomography (PET), pharmacologic and genetic studies. PMID:26851834

  10. Glossopharyngeal long-term facilitation requires serotonin 5-HT2 and NMDA receptors in rats

    PubMed Central

    Cao, Ying; Liu, Chun; Ling, Liming

    2009-01-01

    Although the glossopharyngeal nerve (IX) is mainly a sensory nerve, it innervates stylopharyngeus and some other pharyngeal muscles, whose excitations would likely improve upper airway patency since electrical IX stimulation increases pharyngeal airway size. As acute intermittent hypoxia (AIH) induces hypoglossal and genioglossal long-term facilitation (LTF), we hypothesized that AIH induces glossopharyngeal LTF, which requires serotonin 5-HT2 and NMDA receptors. Integrated IX activity was recorded in anesthetized, vagotomized, paralyzed and ventilated rats before, during and after 5 episodes of 3-min isocapnic 12% O2 with 3-min intervals of 50% O2. Either saline, ketanserin (5-HT2 antagonist, 2 mg/kg) or MK-801 (NMDA antagonist, 0.2 mg/kg) was (i.v.) injected 30–60 min before AIH. Both phasic and tonic IX activities were persistently increased (both P<0.05) after AIH in vehicle, but not ketanserin or MK-801, rats. Hypoxic glossopharyngeal responses were minimally changed after either drug. These data suggest that AIH induces both phasic and tonic glossopharyngeal LTF, which requires activation of 5-HT2 and NMDA receptors. PMID:20026287

  11. Native serotonin 5-HT2C receptors are expressed as homodimers on the apical surface of choroid plexus epithelial cells.

    PubMed

    Herrick-Davis, Katharine; Grinde, Ellinor; Lindsley, Tara; Teitler, Milt; Mancia, Filippo; Cowan, Ann; Mazurkiewicz, Joseph E

    2015-04-01

    G protein-coupled receptors (GPCRs) are a prominent class of plasma membrane proteins that regulate physiologic responses to a wide variety of stimuli and therapeutic agents. Although GPCR oligomerization has been studied extensively in recombinant cells, it remains uncertain whether native receptors expressed in their natural cellular environment are monomers, dimers, or oligomers. The goal of this study was to determine the monomer/oligomer status of a native GPCR endogenously expressed in its natural cellular environment. Native 5-HT2C receptors in choroid plexus epithelial cells were evaluated using fluorescence correlation spectroscopy (FCS) with photon counting histogram (PCH). An anti-5-HT2C fragment antigen binding protein was used to label native 5-HT2C receptors. A known monomeric receptor (CD-86) served as a control for decoding the oligomer status of native 5-HT2C receptors by molecular brightness analysis. FCS with PCH revealed molecular brightness values for native 5-HT2C receptors equivalent to the molecular brightness of a homodimer. 5-HT2C receptors displayed a diffusion coefficient of 5 × 10(-9) cm(2)/s and were expressed at 32 receptors/μm(2) on the apical surface of choroid plexus epithelial cells. The functional significance and signaling capabilities of the homodimer were investigated in human embryonic kidney 293 cells using agonists that bind in a wash-resistant manner to one or both protomers of the homodimer. Whereas agonist binding to one protomer resulted in G protein activation, maximal stimulation required occupancy of both protomers. This study is the first to demonstrate the homodimeric structure of 5-HT2C receptors endogenously expressed in their native cellular environment, and identifies the homodimer as a functional signaling unit. PMID:25609374

  12. Native Serotonin 5-HT2C Receptors Are Expressed as Homodimers on the Apical Surface of Choroid Plexus Epithelial Cells

    PubMed Central

    Grinde, Ellinor; Lindsley, Tara; Teitler, Milt; Mancia, Filippo; Cowan, Ann; Mazurkiewicz, Joseph E.

    2015-01-01

    G protein–coupled receptors (GPCRs) are a prominent class of plasma membrane proteins that regulate physiologic responses to a wide variety of stimuli and therapeutic agents. Although GPCR oligomerization has been studied extensively in recombinant cells, it remains uncertain whether native receptors expressed in their natural cellular environment are monomers, dimers, or oligomers. The goal of this study was to determine the monomer/oligomer status of a native GPCR endogenously expressed in its natural cellular environment. Native 5-HT2C receptors in choroid plexus epithelial cells were evaluated using fluorescence correlation spectroscopy (FCS) with photon counting histogram (PCH). An anti–5-HT2C fragment antigen binding protein was used to label native 5-HT2C receptors. A known monomeric receptor (CD-86) served as a control for decoding the oligomer status of native 5-HT2C receptors by molecular brightness analysis. FCS with PCH revealed molecular brightness values for native 5-HT2C receptors equivalent to the molecular brightness of a homodimer. 5-HT2C receptors displayed a diffusion coefficient of 5 × 10−9 cm2/s and were expressed at 32 receptors/μm2 on the apical surface of choroid plexus epithelial cells. The functional significance and signaling capabilities of the homodimer were investigated in human embryonic kidney 293 cells using agonists that bind in a wash-resistant manner to one or both protomers of the homodimer. Whereas agonist binding to one protomer resulted in G protein activation, maximal stimulation required occupancy of both protomers. This study is the first to demonstrate the homodimeric structure of 5-HT2C receptors endogenously expressed in their native cellular environment, and identifies the homodimer as a functional signaling unit. PMID:25609374

  13. Chronic 5-HT transporter blockade reduces DA signaling to elicit basal ganglia dysfunction.

    PubMed

    Morelli, Emanuela; Moore, Holly; Rebello, Tahilia J; Gray, Neil; Steele, Kelly; Esposito, Ennio; Gingrich, Jay A; Ansorge, Mark S

    2011-11-01

    Serotonin (5-HT)-selective reuptake inhibitors (SSRIs) are widely administered for the treatment of depression, anxiety, and other neuropsychiatric disorders, but response rates are low, and side effects often lead to discontinuation. Side effect profiles suggest that SSRIs inhibit dopaminergic activity, but mechanistic insight remains scarce. Here we show that in mice, chronic 5-HT transporter (5-HTT) blockade during adulthood but not during development impairs basal ganglia-dependent behaviors in a dose-dependent and reversible fashion. Furthermore, chronic 5-HTT blockade reduces striatal dopamine (DA) content and metabolism. A causal relationship between reduced DA signaling and impaired basal ganglia-dependent behavior is indicated by the reversal of behavioral deficits through L-DOPA administration. Our data suggest that augmentation of DA signaling would reduce side effects and increase efficacies of SSRI-based therapy. PMID:22049417

  14. The serotonin 5-HT7 receptors: two decades of research.

    PubMed

    Gellynck, Evelien; Heyninck, Karen; Andressen, Kjetil W; Haegeman, Guy; Levy, Finn Olav; Vanhoenacker, Peter; Van Craenenbroeck, Kathleen

    2013-10-01

    Like most neurotransmitters, serotonin possesses a simple structure. However, the pharmacological consequences are more complex and diverse. Serotonin is involved in numerous functions in the human body including the control of appetite, sleep, memory and learning, temperature regulation, mood, behavior, cardiovascular function, muscle contraction, endocrine regulation, and depression. Low levels of serotonin may be associated with several disorders, namely increase in aggressive and angry behaviors, clinical depression, Parkinson's disease, obsessive-compulsive disorder, eating disorders, migraine, irritable bowel syndrome, tinnitus, and bipolar disease. These effects are mediated via different serotonin (5-HT) receptors. In this review, we will focus on the last discovered member of this serotonin receptor family, the 5-HT7 receptor. This receptor belongs to the G protein-coupled receptor superfamily and was cloned two decades ago. Later, different splice variants were described but no major functional differences have been described so far. All 5-HT7 receptor variants are coupled to Gαs proteins and stimulate cAMP formation. Recently, several interacting proteins have been reported, which can influence receptor signaling and trafficking. PMID:24042216

  15. Expression of the spinal 5-HT7 receptor and p-ERK pathway in the carrageenan inflammatory pain of rats

    PubMed Central

    Cho, Soo Young; Ki, Hyoung Gon; Kim, Joung Min; Oh, Jin Myung; Yang, Ji Hoon; Kim, Woong Mo; Lee, Hyung Gon; Yoon, Myung Ha

    2015-01-01

    Background Although the inhibitory role of the 5-hydroxytrypatmine receptor 7(5-HT7R) on nociceptive processing is generally recognized, an excitatory effect associated with a reduced 5-HT7R expression has also been observed in the nerve injury model. In the carrageenan model, no significant effect is produced by the 5-HT7R activation, but the change in 5-HT7R expression has not been examined. Lesioning of the spinal serotonergic pathway enhances allodynia in the carrageenan model, but it also relieves several other pain states, including in the formalin model. While lesioning suppresses the activation of the extracellular signal-regulated kinase (ERK) of the spinal cord in the formalin model, its role in the carrageenan model has not been reported. Methods Following intraplantar injections of carrageenan, the spinal 5-HT7R expression was examined using Western blotting in male Sprague-Dawley rats. The effect of serotonergic pathway lesioning with intrathecal 5,7-dihydroxytryptamine (5,7-DHT) on the expression of the phospho-ERK was measured. Results The expression of the 5-HT7R in the carrageenan model was not significantly different from that of naive animals. The expression of the spinal p-ERK in the carrageenan model was significantly increased, but returned to the level of a naive rat 1 hour after the carrageenan injection. However, it remained significantly higher 1 hour after the injection in the animals treated with 5,7-DHT than in the naive and control rats. Conclusions The expression of the spinal 5-HT7R is not altered by peripheral inflammation with carrageenan, suggesting that the lack of antinociceptive effect of the 5-HT7R activation is partly attributable to the absence of changes in the expression of the 5-HT7R in the spinal cord. The extended increase of the spinal p-ERK might be related to the enhanced pain behavior in the animals with lesions of the spinal serotonergic pathway in the carrageenan model. PMID:25844136

  16. [Regulation of potential-dependant calcium channels by 5-HT1B serotonin receptors in various populations of hippocampal cells].

    PubMed

    Kononov, A V; Ivanov, S V; Zinchenko, V P

    2013-01-01

    Metabotropic serotonin receptors of 5HT1-type in brain neurons participate in regulation of such human emotional states as aggression, fear and dependence on alcohol. Activated presynaptic 5-HT1B receptors suppress the Ca2+ influx through the potential-dependent calcium channels in certain neurons. The Ca2+ influx into the cells has been measured by increase of calcium ions concentration in cytoplasm in reply to the depolarization caused by 35mM KC1. Using system of image analysis in hippocampal cells culture we found out that Ca2+-signals to depolarization oin various populations of neurons differed in form, speed and amplitude. 5HT1B receptor agonists in 86 +/- 3 % of neurons slightly suppressed the activity of potential-dependent calcium channels. Two minor cell populations (5-8 % of cells each) were found out, that strongly differed in Ca2+ signal desensitization. Calcium signal caused by depolarization in one cells population differed in characteristic delay and high rate of decay. 5HT1B receptor agonists strongly inhibited the amplitude of the Ca2+ response on KCl only in this population of neurons. The calcium signal in second cell population differed by absence desensitization and smaller amplitude which constantly increased during depolarization. 5HT 1 B receptor agonists increased the calcium response amplitude to depolarization in this population of neurons. Thus we show various sensitivity of potential-dependent calcium channels of separate neurons to 5HTB1 receptor agonist. PMID:23659057

  17. Characterization of SB-269970-A, a selective 5-HT7 receptor antagonist

    PubMed Central

    Hagan, Jim J; Price, Gary W; Jeffrey, Phillip; Deeks, Nigel J; Stean, Tania; Piper, David; Smith, Martin I; Upton, Neil; Medhurst, Andrew D; Middlemiss, Derek N; Riley, Graham J; Lovell, Peter J; Bromidge, Steven M; Thomas, David R

    2000-01-01

    The novel 5-HT7 receptor antagonist, SB-269970-A, potently displaced [3H]-5-CT from human 5-HT7(a) (pKi 8.9±0.1) and 5-HT7 receptors in guinea-pig cortex (pKi 8.3±0.2).5-CT stimulated adenylyl cyclase activity in 5-HT7(a)/HEK293 membranes (pEC50 7.5±0.1) and SB-269970-A (0.03–1 μM) inhibited the 5-CT concentration-response with no significant alteration in the maximal response. The pA2 (8.5±0.2) for SB-269970-A agreed well with the pKi determined from [3H]-5-CT binding studies.5-CT-stimulated adenylyl cyclase activity in guinea-pig hippocampal membranes (pEC50 of 8.4±0.2) was inhibited by SB-269970-A (0.3 μM) with a pKB (8.3±0.1) in good agreement with its antagonist potency at the human cloned 5-HT7(a) receptor and its binding affinity at guinea-pig cortical membranes.5-HT7 receptor mRNA was highly expressed in human hypothalamus, amygdala, thalamus, hippocampus and testis.SB-269970-A was CNS penetrant (steady-state brain : blood ratio of ca. 0.83 : 1 in rats) but was rapidly cleared from the blood (CLb=ca. 140 ml min−1 kg−1). Following a single dose (3 mg kg−1) SB-269970 was detectable in rat brain at 30 (87 nM) and 60 min (58 nM). In guinea-pigs, brain levels averaged 31 and 51 nM respectively at 30 and 60 min after dosing, although the compound was undetectable in one of the three animals tested.5-CT (0.3 mg kg−1 i.p.) induced hypothermia in guinea-pigs was blocked by SB-269970-A (ED50 2.96 mg kg−1 i.p.) and the non-selective 5-HT7 receptor antagonist metergoline (0.3–3 mg kg−1 s.c.), suggesting a role for 5-HT7 receptor stimulation in 5-CT induced hypothermia in guinea-pigs.SB-269970-A (30 mg kg−1) administered at the start of the sleep period, significantly reduced time spent in Paradoxical Sleep (PS) during the first 3  h of EEG recording in conscious rats. PMID:10821781

  18. GR-127935-sensitive mechanism mediating hypotension in anesthetized rats: are 5-HT5B receptors involved?

    PubMed

    Sánchez-Maldonado, Carolina; López-Sánchez, Pedro; Anguiano-Robledo, Liliana; Leopoldo, Marcello; Lacivita, Enza; Terrón, José A

    2015-04-01

    The 5-HT1B/1D receptor antagonist, GR-127935, inhibits hypotensive responses produced by the 5-HT1A, 5-HT1B/1D and 5-HT7 receptor agonist, and 5-HT5A/5B receptor ligand, 5-carboxamidotryptamine (5-CT), in rats. This work further characterized the above mechanism using more selective 5-HT1B and 5-HT1D receptor antagonists. Also, expression of 5-HT5A and 5-HT5B receptor mRNAs in blood vessels was searched by reverse transcription polymerase chain reaction. Decreases in diastolic blood pressure induced by 5-CT (0.001-10 μg/kg, intravenously) were analyzed in anesthetized rats that had received intravenous vehicle (1 mL/kg), SB-224289 (5-HT1B antagonist; 0.3 and 1.0 mg/kg), BRL15572 (5-HT1D antagonist; 0.3 and 1.0 mg/kg), SB-224289 + BRL15572 (0.3 mg/kg, each), or SB-224289 + BRL15572 (0.3 mg/kg, each) + GR-127935 (1 mg/kg). Because only the latter treatment inhibited 5-CT-induced hypotension, suggestive of a mechanism unrelated to 5-HT1B/1D receptors, the effects of antagonists/ligands at 5-HT5A (SB-699551, 1 mg/kg), 5-HT6 (SB-399885, 1 mg/kg), and 5-HT1B/1D/5A/5B/7 receptors (ergotamine, 0.1 mg/kg) on 5-CT-induced hypotension were tested. Interestingly, only ergotamine blocked 5-CT-induced responses; this effect closely paralleled that of SB-224289 + BRL-15572 + GR-127935. Neither did ergotamine nor GR-127935 inhibit hypotensive responses induced by the 5-HT7 receptor agonist, LP-44. Faint but clear bands corresponding to 5-HT5A and 5-HT5B receptor mRNAs in aorta and mesenteric arteries were detected. Results suggest that the GR-127935-sensitive mechanism mediating hypotension in rats is unrelated to 5-HT1B, 5-HT1D, 5-HT5A, 5-HT6, and 5-HT7 receptors. This mechanism, however, resembles putative 5-HT5B receptors. PMID:25502305

  19. Cardiovascular afferents cause the release of 5-HT in the nucleus tractus solitarii; this release is regulated by the low- (PMAT) not the high-affinity transporter (SERT).

    PubMed

    Hosford, Patrick S; Millar, Julian; Ramage, Andrew G

    2015-04-01

    The nucleus tractus solitarii (NTS) integrates inputs from cardiovascular afferents and thus is crucial for cardiovascular homeostasis. These afferents primarily release glutamate, although 5-HT has also been shown to play a role in their actions. Using fast-cyclic voltammetry, an increase in 5-HT concentrations (range 12-50 nm) could be detected in the NTS in anaesthetized rats in response to electrical stimulation of the vagus and activation of cardiopulmonary, chemo- and baroreceptor reflexes. This 5-HT signal was not potentiated by the serotonin transporter (SERT) or the noradrenaline transporter (NET) inhibitors citalopram and desipramine (1 mg kg(-1) ). However, decynium-22 (600 μg kg(-1) ), an organic cation 3 transporter (OCT3)/plasma membrane monoamine transporter (PMAT) inhibitor, increased the 5-HT signal by 111 ± 21% from 29 ± 10 nm. The effectiveness of these inhibitors was tested against the removal time of 5-HT and noradrenaline applied by microinjection to the NTS. Citalopram and decynium-22 attenuated the removal of 5-HT but not noradrenaline, whereas desipramine had the reverse action. The OCT3 inhibitor corticosterone (10 mg kg(-1) ) had no effect. Blockade of glutamate receptors with topical kynurenate (10-50 nm) reduced the vagally evoked 5-HT signal by 50%, indicating that this release was from at least two sources. It is concluded that vagally evoked 5-HT release is under the regulation of the high-capacity, low-affinity transporter PMAT, not the low-capacity, high-affinity transporter SERT. This is the first demonstration that PMAT may be playing a physiological role in the regulation of 5-HT transmission and this could indicate that 5-HT is acting, in part, as a volume transmitter within the NTS. PMID:25694117

  20. Nucleus accumbens shell excitability is decreased by methamphetamine self-administration and increased by 5-HT2C receptor inverse agonism and agonism

    PubMed Central

    Graves, Steven M.; Clark, Mary J.; Traynor, John R.; Hu, Xiu-Ti; Napier, T. Celeste

    2014-01-01

    Methamphetamine profoundly increases brain monoamines and is a widely abused psychostimulant. The effects of methamphetamine self-administration on neuron function are not known for the nucleus accumbens, a brain region involved in addictive behaviors, including drug-seeking. One therapeutic target showing preclinical promise at attenuating psychostimulant-seeking is 5-HT2C receptors; however, the effects of 5-HT2C receptor ligands on neuronal physiology are unclear. 5-HT2C receptor agonism decreases psychostimulant-mediated behaviors, and the putative 5-HT2C receptor inverse agonist, SB 206553, attenuates methamphetamine-seeking in rats. To ascertain the effects of methamphetamine, and 5-HT2C receptor inverse agonism and agonism, on neuronal function in the nucleus accumbens, we evaluated methamphetamine, SB 206553, and the 5-HT2C receptor agonist and Ro 60-0175, on neuronal excitability within the accumbens shell subregion using whole-cell current-clamp recordings in forebrain slices ex vivo. We reveal that methamphetamine self-administration decreased generation of evoked action potentials. In contrast, SB 206553 and Ro 60-0175 increased evoked spiking, effects that were prevented by the 5-HT2C receptor antagonist, SB 242084. We also assessed signaling mechanisms engaged by 5-HT2C receptors, and determined that accumbal 5-HT2C receptors stimulated Gq, but not Gi/o. These findings demonstrate that methamphetamine-induced decreases in excitability of neurons within the nucleus accumbens shell were abrogated by both 5-HT2C inverse agonism and agonism, and this effect likely involved activation of Gq–mediated signaling pathways. PMID:25229719

  1. 5-HT-1A receptor-mediated modulation of medullary expiratory neurones in the cat.

    PubMed Central

    Lalley, P M; Bischoff, A M; Richter, D W

    1994-01-01

    The involvement of the 5-HT-1A receptor in serotoninergic responses of stage 2 expiratory (E-2) neurones was investigated in pentobarbitone-anaesthetized, mechanically ventilated cats. The specific agonist of the 5-HT-1A receptor, 8-hydroxy-diproplaminotetralin (8-OH-DPAT), administered systemically or by ionophoresis directly on to the neurones, had a clear depressant effect. Administration of 8-OH-DPAT at doses of 10-50 micrograms kg-1 (I.V.) increased the membrane hyperpolarizations of E-2 neurones during the inspiratory and postinspiratory phases, and shortened their duration of activity in association with shortening of phrenic nerve activity. Discharges of E-2 neurones were also less intense. At doses of 50-90 micrograms kg-1, 8-OH-DPAT reduced or abolished inspiratory hyperpolarizations, and reduced expiratory depolarizations of membrane potential and discharge in parallel with inhibition of phrenic nerve discharges. The effects of the larger doses were reversed by I.V. injection of NAN-190, an antagonist at the 5-HT-1A receptor. Dose-dependent effects on the membrane potential and discharge of E-2 neurones, but not on phrenic nerve activity, were also seen by ionophoretic administration of 8-OH-DPAT on to E-2 neurones. At low currents, ejection of 8-OH-DPAT hyperpolarized the neurones without affecting the duration of inspiratory hyperpolarization and expiratory depolarization. This hyperpolarization depressed the intensity and the duration of expiratory discharges. Ejection with larger currents hyperpolarized the E-2 neurones further, and depressed expiratory depolarization leading to blockade of expiratory discharges. The effects on membrane potential were accompanied by decreased neuronal input resistance. This depressed the excitability of E-2 neurones as tested by discharge evoked by intracellular current injection. The amplitudes of action potentials decreased in parallel with the changes in input resistance. The effects were attributed to a

  2. SIGNALING MECHANISMS INVOLVED IN THE ACUTE EFFECTS OF ESTRADIOL ON 5-HT CLEARANCE

    PubMed Central

    Benmansour, Saloua; Privratsky, Anthony A.; Adeniji, Opeyemi S.; Frazer, Alan

    2014-01-01

    Estradiol was found previously to have an antidepressant-like effect and to block the ability of selective serotonin reuptake inhibitors (SSRIs) to have an antidepressant-like effect. The antidepressant-like effect of estradiol was due to estrogen receptor β (ERβ) and/or GPR30 activation whereas estradiol’s blockade of the effect of an SSRI was mediated by ERα. This study focuses on investigating signaling pathways as well as interacting receptors associated with these two effects of estradiol. In vivo chronoamperometry was used to measure serotonin transporter (SERT) function. The effect of local application of estradiol or selective agonists for ERα (PPT) or ERβ (DPN) into the CA3 region of the hippocampus of ovariectomized (OVX) rats on 5-hydroxytryptamine (5-HT, serotonin) clearance as well as on the ability of fluvoxamine to slow 5-HT clearance was examined after selective blockade of signaling pathways or that of interacting receptors. Estradiol- or DPN-induced slowing of 5-HT clearance mediated by ERβ was blocked after inhibition of MAPK/ERK1/2 but not of PI3K/Akt signaling pathways. This effect also involved interactions with TrkB, and IGF-1 receptors. Estradiol’s or PPT’s inhibition of the fluvoxamine-induced slowing of 5-HT clearance mediated by ERα, was blocked after inhibition of either MAPK/ERK1/2 or PI3K/Akt signaling pathways. This effect involved interactions with the IGF-1 receptor and with the metabotropic glutamate receptor 1 but not with TrkB. This study illustrates some of the signaling pathways required for the effects of estradiol on SERT function and particularly shows that ER subtypes elicit different as well as common signaling pathways for their actions. PMID:24423185

  3. Signaling mechanisms involved in the acute effects of estradiol on 5-HT clearance.

    PubMed

    Benmansour, Saloua; Privratsky, Anthony A; Adeniji, Opeyemi S; Frazer, Alan

    2014-05-01

    Estradiol was found previously to have an antidepressant-like effect and to block the ability of selective serotonin reuptake inhibitors (SSRIs) to have an antidepressant-like effect. The antidepressant-like effect of estradiol was due to estrogen receptor β (ERβ) and/or GPR30 activation, whereas estradiol's blockade of the effect of an SSRI was mediated by ERα. This study focuses on investigating signaling pathways as well as interacting receptors associated with these two effects of estradiol. In vivo chronoamperometry was used to measure serotonin transporter (SERT) function. The effect of local application of estradiol or selective agonists for ERα (PPT) or ERβ (DPN) into the CA3 region of the hippocampus of ovariectomized (OVX) rats on 5-hydroxytryptamine (5-HT) clearance as well as on the ability of fluvoxamine to slow 5-HT clearance was examined after selective blockade of signaling pathways or that of interacting receptors. Estradiol- or DPN-induced slowing of 5-HT clearance mediated by ERβ was blocked after inhibition of MAPK/ERK1/2 but not of PI3K/Akt signaling pathways. This effect also involved interactions with TrkB, and IGF-1 receptors. Estradiol's or PPT's inhibition of the fluvoxamine-induced slowing of 5-HT clearance mediated by ERα, was blocked after inhibition of either MAPK/ERK1/2 or PI3K/Akt signaling pathways. This effect involved interactions with the IGF-1 receptor and with the metabotropic glutamate receptor 1, but not with TrkB. This study illustrates some of the signaling pathways required for the effects of estradiol on SERT function, and particularly shows that ER subtypes elicit different as well as common signaling pathways for their actions. PMID:24423185

  4. Serotonin (5-HT) 2C Receptor (5-HT2CR) Protein Expression is Enriched in Synaptosomal and Postsynaptic Compartments of Rat Cortex

    PubMed Central

    Anastasio, Noelle C.; Lanfranco, Maria Fe; Bubar, Marcy J.; Seitz, Patricia K.; Stutz, Sonja J.; McGinnis, Andrew G.; Watson, Cheryl S.; Cunningham, Kathryn A.

    2010-01-01

    The action of serotonin (5-HT) at the 5-HT2C receptor (5-HT2CR) in cerebral cortex is emerging as a candidate modulator of neural processes that mediate core phenotypic facets of several psychiatric and neurological disorders. However, our understanding of the neurobiology of the cortical 5-HT2CR protein complex is currently limited. The goal of the present study was to explore the subcellular localization of the 5-HT2CR in synaptosomes and the postsynaptic density, an electron-dense thickening specialized for postsynaptic signaling and neuronal plasticity. Utilizing multiples tissues (brain, peripheral tissues), protein fractions (synaptosomal, postsynaptic density), and controls (peptide neutralization, 5-HT2CR stable-expressing cells), we established the selectivity of two commercially available 5-HT2CR antibodies and employed the antibodies in Western blot and immunoprecipitation studies of PFC and motor cortex, two regions implicated in cognitive, emotional and motor dysfunction. For the first time, we demonstrated the expression of the 5-HT2CR in postsynaptic density-enriched fractions from both PFC and motor cortex. Co-immunoprecipitation studies revealed the presence of PSD-95 within the 5-HT2CR protein complex expressed in PFC and motor cortex. Taken together, these data support the hypothesis that the 5-HT2CR is localized within the postsynaptic thickening of synapses and is therefore positioned to directly modulate synaptic plasticity in cortical neurons. PMID:20345755

  5. Downregulation of 5-HT7 Serotonin Receptors by the Atypical Antipsychotics Clozapine and Olanzapine. Role of Motifs in the C-Terminal Domain and Interaction with GASP-1.

    PubMed

    Manfra, Ornella; Van Craenenbroeck, Kathleen; Skieterska, Kamila; Frimurer, Thomas; Schwartz, Thue W; Levy, Finn Olav; Andressen, Kjetil Wessel

    2015-07-15

    The human 5-HT7 serotonin receptor, a G-protein-coupled receptor (GPCR), activates adenylyl cyclase constitutively and upon agonist activation. Biased ligands differentially activate 5-HT7 serotonin receptor desensitization, internalization and degradation in addition to G protein activation. We have previously found that the atypical antipsychotics clozapine and olanzapine inhibited G protein activation and, surprisingly, induced both internalization and lysosomal degradation of 5-HT7 receptors. Here, we aimed to determine the mechanism of clozapine- and olanzapine-mediated degradation of 5-HT7 receptors. In the C-terminus of the 5-HT7 receptor, we identified two YXXΦ motifs, LR residues, and a palmitoylated cysteine anchor as potential sites involved in receptor trafficking to lysosomes followed by receptor degradation. Mutating either of these sites inhibited clozapine- and olanzapine-mediated degradation of 5-HT7 receptors and also interfered with G protein activation. In addition, we tested whether receptor degradation was mediated by the GPCR-associated sorting protein-1 (GASP-1). We show that GASP-1 binds the 5-HT7 receptor and regulates the clozapine-mediated degradation. Mutations of the identified motifs and residues, located in or close to Helix-VIII of the 5-HT7 receptor, modified antipsychotic-stimulated binding of proteins (such as GASP-1), possibly by altering the flexibility of Helix-VIII, and also interfered with G protein activation. Taken together, our data demonstrate that binding of clozapine or olanzapine to the 5-HT7 receptor leads to antagonist-mediated lysosomal degradation by exposing key residues in the C-terminal tail that interact with GASP-1. PMID:25706089

  6. Low-dose prazosin in combination with 5-HT6 antagonist PRX-07034 has antipsychotic effects.

    PubMed

    Abraham, Renny; Nirogi, Ramakrishna; Shinde, Anil; Irupannanavar, Shantaveer

    2015-01-01

    An extensive amount of research has focused on the development of new pharmacological agents to treat schizophrenia. Varying from person to person, schizophrenia is a heterogeneous disease with symptoms of positive, negative, and cognitive deficits. PRX-07034, a 5-hydroxytryptamine6 (5-HT6) receptor antagonist has been evaluated for its potential in treating obesity and cognitive deficits. This study evaluated PRX-07034 (0.1, 0.3, and 1.0 mg/kg body mass, by intraperitoneal (i.p.) injection), in combination with a low dose of prazosin (0.3 mg/kg, i.p.), for its antipsychotic potential. The research utilized a stereotypy assay, an open field test, an object recognition task, and prepulse inhibition. Dizocilpine, a non-competitive N-methyl-d-aspartate (NMDA) antagonist, was also administered in the above-mentioned assays as a psychomimetic. The combination of PRX-07034 and prazosin alleviated stereotypy and hyperlocomotor activity while enhancing memory in an object recognition task, and reversed sensory-gating deficits induced by dizocilpine. Examination of the medial prefrontal cortex revealed that a combination of PRX-07034 and prazosin reduced the dizocilpine-mediated increase of 5-HT. These results suggest that the combination of a 5-HT6 antagonist with low doses of prazosin could have therapeutic potential in the treatment of schizophrenia. PMID:25429515

  7. Effects of ginger constituents on the gastrointestinal tract: role of cholinergic M3 and serotonergic 5-HT3 and 5-HT4 receptors.

    PubMed

    Pertz, Heinz H; Lehmann, Jochen; Roth-Ehrang, René; Elz, Sigurd

    2011-07-01

    The herbal drug ginger (Zingiber officinale Roscoe) may be effective for treating nausea, vomiting, and gastric hypomotility. In these conditions, cholinergic M (3) receptors and serotonergic 5-HT (3) and 5-HT (4) receptors are involved. The major chemical constituents of ginger are [6]-gingerol, [8]-gingerol, [10]-gingerol, and [6]-shogaol. We studied the interaction of [6]-gingerol, [8]-gingerol, [10]-gingerol (racemates), and [6]-shogaol with guinea pig M (3) receptors, guinea pig 5-HT (3) receptors, and rat 5-HT (4) receptors. In whole segments of guinea pig ileum (bioassay for contractile M (3) receptors), [6]-gingerol, [8]-gingerol, [10]-gingerol, and [6]-shogaol slightly but significantly depressed the maximal carbachol response at an antagonist concentration of 10 µM. In the guinea pig myenteric plexus preparation (bioassay for contractile 5-HT (3) receptors), 5-HT maximal responses were depressed by [10]-gingerol from 93 ± 3 % to 65 ± 6 % at an antagonist concentration of 3 µM and to 48 ± 3 % at an antagonist concentration of 5 µM following desensitization of 5-HT (4) receptors and blockade of 5-HT (1) and 5-HT (2) receptors. [6]-Shogaol (3 µM) induced depression to 61 ± 3 %. In rat esophageal tunica muscularis mucosae (bioassay for relaxant 5-HT (4) receptors), [6]-gingerol, [8]-gingerol, [10]-gingerol, and [6]-shogaol (2-6.3 µM) showed no agonist effects. The maximal 5-HT response remained unaffected in the presence of the compounds. It is concluded that the efficiency of ginger in reducing nausea and vomiting may be based on a weak inhibitory effect of gingerols and shogaols at M (3) and 5-HT (3) receptors. 5-HT (4) receptors, which play a role in gastroduodenal motility, appear not to be involved in the action of these compounds. PMID:21305447

  8. The opposite effect of a 5-HT1B receptor agonist on 5-HT synthesis, as well as its resistant counterpart, in an animal model of depression

    PubMed Central

    Skelin, Ivan; Kovačević, Tomislav; Sato, Hiroki; Diksic, Mirko

    2013-01-01

    Flinders Sensitive Line (FSL) rat is as an animal model of depression with altered parameters of the serotonergic (5-HT) system function (5-HT synthesis rates, tissue concentrations, release, receptor density and affinity), as well as an altered sensitivity of these parameters to different 5-HT based antidepressants. The effects of acute and chronic treatments with the 5-HT1B agonist, CP-94253 on 5-HT synthesis, in the FSL rats and the Flinders Resistant Line (FRL) controls were measured using α-[14C]methyl-L-tryptophan (α-MTrp) autoradiography. CP-94253 (5 mg/kg), or an adequate volume of saline, was injected i.p. as a single dose in the acute experiment or delivered via the subcutaneously implanted osmotic minipump (5 mg/kg/day for 14 days) in the chronic experiment. The acute treatment with CP-94253 significantly decreased the 5-HT synthesis in both the FRL and FSL rats, with a more widespread effect in the FRL rats. Chronic treatment with CP-94253 significantly decreased 5-HT synthesis in the FRL rats, while 5-HT synthesis in the FSL rats was significantly increased throughout the brain. In both the acute and chronic experiment, the FRL rats had higher brain 5-HT synthesis rates, relative to the FSL rats. The shift in the direction of the treatment effect from acute to chronic, using the 5-HT1B agonist, CP-94253, on 5-HT synthesis in the FSL model of depression, with an opposite effect on the control FRL rats, suggests the differential adaptation of the 5-HT system in the FSL and FRL rats to chronic stimulation of 5-HT1B receptors. PMID:22542420

  9. An Algorithm to Identify Target-Selective Ligands – A Case Study of 5-HT7/5-HT1A Receptor Selectivity

    PubMed Central

    Kurczab, Rafał; Canale, Vittorio; Zajdel, Paweł; Bojarski, Andrzej J.

    2016-01-01

    A computational procedure to search for selective ligands for structurally related protein targets was developed and verified for serotonergic 5-HT7/5-HT1A receptor ligands. Starting from a set of compounds with annotated activity at both targets (grouped into four classes according to their activity: selective toward each target, not-selective and not-selective but active) and with an additional set of decoys (prepared using DUD methodology), the SVM (Support Vector Machines) models were constructed using a selective subset as positive examples and four remaining classes as negative training examples. Based on these four component models, the consensus classifier was then constructed using a data fusion approach. The combination of two approaches of data representation (molecular fingerprints vs. structural interaction fingerprints), different training set sizes and selection of the best SVM component models for consensus model generation, were evaluated to determine the optimal settings for the developed algorithm. The results showed that consensus models with molecular fingerprints, a larger training set and the selection of component models based on MCC maximization provided the best predictive performance. PMID:27271158

  10. Serotonin stimulates lateral habenula via activation of the post-synaptic serotonin 2/3 receptors and transient receptor potential channels.

    PubMed

    Zuo, Wanhong; Zhang, Yong; Xie, Guiqin; Gregor, Danielle; Bekker, Alex; Ye, Jiang-Hong

    2016-02-01

    There is growing interest on the role of the lateral habenula (LHb) in depression, because it closely and bilaterally connects with the serotoninergic raphe nuclei. The LHb sends glutamate efferents to the raphe nuclei, while it receives serotoninergic afferents, and expresses a high density of serotonin (5-HT) receptors. Recent studies suggest that 5-HT receptors exist both in the presynaptic and postsynaptic sites of LHb neurons, and activation of these receptors may have different effects on the activity of LHb neurons. The current study focused on the effect of 5-HT on the postsynaptic membrane. We found that 5-HT initiated a depolarizing inward current (I((5-HTi))) and accelerated spontaneous firing in ∼80% of LHb neurons in rat brain slices. I((5-HTi)) was also induced by the 5-HT uptake blocker citalopram, indicating activity of endogenous 5-HT. I((5-HTi)) was diminished by 5-HT(2/3) receptor antagonists (ritanserin, SB-200646 or ondansetron), and activated by the selective 5-HT(2/3) agonists 1-(3-Chlorophenyl) piperazine hydrochloride or 1-(3-Chlorophenyl) biguanide hydrochloride. Furthermore, I((5-HTi)) was attenuated by 2-Aminoethyl diphenylborinate, a blocker of transient receptor potential channels, and an IP3 receptor inhibitor, indicating the involvement of transient receptor potential channels. These results demonstrate that the reciprocal connection between the LHb and the 5-HT system highlights a key role for 5-HT stimulation of LHb neurons that may be important in the pathogenesis of depression. PMID:26471419

  11. Physiologically identified 5-HT2-like receptors at the crayfish neuromuscular junction.

    PubMed

    Tabor, Jami N; Cooper, Robin L

    2002-04-01

    The model synaptic preparation of the crayfish opener neuromuscular junction is known to be responsive to exogenous application of 5-HT. The primary effect of 5-HT is an enhancement of vesicular release from the presynaptic motor nerve terminal. 5-HT is known to act through an IP(3) cascade which suggests the presence of a 5-HT(2) receptor subtype; however, this is based on vertebrate 5-HT receptor classification. We examined this possibility by using a selective agonist and two antagonists of the vertebrate 5-HT(2) receptor subtypes. The antagonist ketanserin and spiperone reduce the responsiveness of 5-HT in a dose-dependent manner. The broad 5-HT(2) receptor agonist, alpha-methyl-5-hydroxytryptamine (alpha-Me-5-HT) enhances synaptic transmission, in a concentration-dependent manner, but it is not as potent as 5-HT. These results support the notion that a 5-HT(2) receptor subtype is present presynaptically on the crayfish motor nerve terminals. By knowing the types of 5-HT receptors present on the presynaptic motor nerve terminals in this model synaptic preparation, a better understanding of the mechanisms of action of 5-HT on vesicular release will be forthcoming. PMID:11911865

  12. Spinal 5-HT3 receptors mediate descending facilitation and contribute to behavioral hypersensitivity via a reciprocal neuron-glial signaling cascade

    PubMed Central

    2014-01-01

    Background It has been recently recognized that the descending serotonin (5-HT) system from the rostral ventromedial medulla (RVM) in the brainstem and the 5-HT3 receptor subtype in the spinal dorsal horn are involved in enhanced descending pain facilitation after tissue and nerve injury. However, the mechanisms underlying the activation of the 5-HT3 receptor and its contribution to facilitation of pain remain unclear. Results In the present study, activation of spinal 5-HT3 receptors by intrathecal injection of a selective 5-HT3 receptor agonist SR 57227 induced spinal glial hyperactivity, neuronal hyperexcitability and pain hypersensitivity in rats. We found that there was neuron-to-microglia signaling via the chemokine fractalkine, microglia to astrocyte signaling via cytokine IL-18, astrocyte to neuronal signaling by IL-1β, and enhanced activation of NMDA receptors in the spinal dorsal horn. Glial hyperactivation in spinal dorsal horn after hindpaw inflammation was also attenuated by molecular depletion of the descending 5-HT system by intra-RVM Tph-2 shRNA interference. Conclusions These findings offer new insights into the cellular and molecular mechanisms at the spinal level responsible for descending 5-HT-mediated pain facilitation during the development of persistent pain after tissue and nerve injury. New pain therapies should focus on prime targets of descending facilitation-induced glial involvement, and in particular the blocking of intercellular signaling transduction between neurons and glia. PMID:24913307

  13. The 4′lysine in the putative channel lining domain affects desensitization but not the single-channel conductance of recombinant homomeric 5-HT3A receptors

    PubMed Central

    Gunthorpe, Martin J; Peters, John A; Gill, Catherine H; Lambert, Jeremy J; Lummis, Sarah C R

    2000-01-01

    The 5-HT3 receptor is a transmitter-gated ion channel of the Cys-loop superfamily. Uniquely, 5-HT3 receptor subunits (5-HT3A and 5-HT3B) possess a positively charged lysine residue within the putative channel lining M2 domain (4′ position). Using whole cell recording techniques, we examined the role of this residue in receptor function using wild-type (WT) and mutant 5-HT3A receptor subunits of murine origin transiently expressed in human embryonic kidney (HEK 293) cells. WT 5-HT3A receptors mediated rapidly activating currents in response to 5-HT (10–90 % rise time, 103 ms; EC50, 2.34 μm; Hill coefficient, nH, 2.87). The currents rectified inwardly, reversed in sign at a potential of −9 mV and desensitized in the continuous presence of agonist (half-time of desensitization, t1/2, 2.13 s). 5-HT3A receptor subunits in which the 4′lysine was mutated to arginine, glutamine, serine or glycine formed functional receptors. 5-HT EC50 values were approximately 2-fold lower than for WT 5-HT3A receptors, but Hill coefficients, kinetics of current activation, rectification, and reversal potentials were unaltered. Each of the mutants desensitized more slowly than the WT 5-HT3A receptor, with the arginine and glycine mutations exhibiting the greatest effect (5-fold reduction). The rank order of effect was arginine > glycine > serine > glutamine. The single-channel conductance of the WT 5-HT3A receptor, as assessed by fluctuation analysis of macroscopic currents, was 390 fS. A similar value was obtained for the 4′lysine mutant receptors. Thus it appears unlikely that 4′lysine is exposed to the channel lumen. Mutation of residues immediately adjacent to 4′lysine to glutamate or lysine resulted in lack of receptor expression or function. We conclude that 4′lysine does not form part of the channel lining, but may play an important role in 5-HT3 receptor desensitization. PMID:10639097

  14. Comparison of the effects of trimebutine and YM114 (KAE-393), a novel 5-HT3 receptor antagonist, on stress-induced defecation.

    PubMed

    Miyata, K; Ito, H; Yamano, M; Hidaka, K; Kamato, T; Nishida, A; Yuki, H

    1993-12-01

    YM114 (KAE-393), (R)-5-[(2,3-dihydro-1-indolyl)carbonyl]-4,5,6,7- tetrahydro-1H-benzimidazole hydrochloride, is a derivative of YM060, a potent 5-HT3 receptor antagonist. We investigated the effects of YM114 on 5-HT3 receptors, both in vitro and in vivo, and on bowel dysfunction induced by restraint stress, 5-HT and thyrotropin-releasing hormone (TRH), and compared them with the effect of trimebutine. YM114 dose dependently inhibited the reduction in heart rate induced by 5-HT (30 micrograms/kg i.v.) in rats (ED50 = 0.31 micrograms/kg i.v.), and the potency of YM114 was almost the same as that of the racemate. The S-form of YM114 also inhibited 5-HT-induced bradycardia, but 1350 times less potent than the R-form. YM114 and its S-form inhibited [3H]GR65630 binding to N1E-115 cell membranes in a concentration-dependent manner with Ki values of 0.341 and 616 nM, respectively, showing the isomeric activity ratio (R-/S-form) of YM114 to be much greater (1800). YM114 antagonized 5-HT-induced depolarization of the nodose ganglion (EC50 = 1.39 nM). Trimebutine (1 mg/kg i.v.) failed to inhibit 5-HT-induced bradycardia, implying that it does not possess 5-HT3 receptor antagonistic activity. YM114 significantly and dose dependently prevented restraint stress-, 5-HT- and TRH-induced increases in fecal pellet output, and restraint stress- and 5-HT-induced diarrhea in rats and mice (ED50 = 6.9, 72.5, 154.6, 9.7 and 52.4 micrograms/kg p.o., respectively). Trimebutine significantly prevented stress- and 5-HT-induced diarrhea (ED50 = 29.4 and 87.3 mg/kg p.o., respectively), but only partially affected stress-, 5-HT- and TRH-induced increases in fecal pellet output. Thus, YM114 is a potent and stereoselective 5-HT3 receptor antagonist with much greater protective effects against stress-induced defecation than trimebutine. PMID:8112388

  15. Towards novel 5-HT7versus 5-HT1A receptor ligands among LCAPs with cyclic amino acid amide fragments: design, synthesis, and antidepressant properties. Part II.

    PubMed

    Canale, Vittorio; Kurczab, Rafał; Partyka, Anna; Satała, Grzegorz; Witek, Jagna; Jastrzębska-Więsek, Magdalena; Pawłowski, Maciej; Bojarski, Andrzej J; Wesołowska, Anna; Zajdel, Paweł

    2015-03-01

    A 26-membered library of novel long-chain arylpiperazines, which contained primary and tertiary amides of cyclic amino acids (proline and 1,2,3,4-tetrahydroisoquinoline-3-carboxamide) in the terminal fragment was synthesized and biologically evaluated for binding affinity for 5-HT7 and 5-HT1A receptors. Docking studies confirmed advantages of Tic-amide over Pro-amide fragment for interaction with 5-HT7 receptors. Selected compounds 32 and 28, which behaved as 5-HT7Rs antagonist and 5-HT1A partial agonist, respectively, produced antidepressant-like effects in the forced swim test in mice after acute treatment in doses of 10 mg/kg (32) and 1.25 mg/kg (28). Compound 32 reduced immobility in a manner similar to the selective 5-HT7 antagonist SB-269970. PMID:25555143

  16. CREB-mediated synaptogenesis and neurogenesis is crucial for the role of 5-HT1a receptors in modulating anxiety behaviors

    PubMed Central

    Zhang, Jing; Cai, Cheng-Yun; Wu, Hai-Yin; Zhu, Li-Juan; Luo, Chun-Xia; Zhu, Dong-Ya

    2016-01-01

    Serotonin 1a-receptor (5-HT1aR) has been specifically implicated in the pathogenesis of anxiety. However, the mechanism underlying the role of 5-HT1aR in anxiety remains poorly understood. Here we show in mice that the transcription factor cAMP response element binding protein (CREB) in the hippocampus functions as an effector of 5-HT1aR in modulating anxiety-related behaviors. We generated recombinant lentivirus LV-CREB133-GFP expressing a dominant negative CREB which could not be phosphorylated at Ser133 to specifically reduce CREB activity, and LV-VP16-CREB-GFP expressing a constitutively active fusion protein VP16-CREB which could be phosphorylated by itself to specifically enhance CREB activity. LV-CREB133-GFP neutralized 5-HT1aR agonist-induced up-regulation of synapse density, spine density, dendrite complexity, neurogenesis, and the expression of synapsin and spinophilin, two well-characterized synaptic proteins, and abolished the anxiolytic effect of 5-HT1aR agonist; whereas LV-VP16-CREB-GFP rescued the 5-HT1aR antagonist-induced down-regulation of synapse density, spine density, dendrite complexity, neurogenesis and synapsin and spinophilin expression, and reversed the anxiogenic effect of 5-HT1aR antagonist. The deletion of neurogenesis by irradiation or the diminution of synaptogenesis by knockdown of synapsin expression abolished the anxiolytic effects of both CREB and 5-HT1aR activation. These findings suggest that CREB-mediated hippoacampus structural plasticity is crucial for the role of 5-HT1aR in modulating anxiety-related behaviors. PMID:27404655

  17. Ondansetron and Granisetron Binding Orientation in the 5-HT3 Receptor Determined by Unnatural Amino Acid Mutagenesis

    PubMed Central

    Duffy, Noah H.; Lester, Henry A.; Dougherty, Dennis A.

    2012-01-01

    The serotonin type 3 receptor (5-HT3R) is a ligand-gated ion channel that mediates fast synaptic transmission in the central and peripheral nervous systems. The 5-HT3R is a therapeutic target, and the clinically available drugs ondansetron and granisetron inhibit receptor activity. Their inhibitory action is through competitive binding to the native ligand binding site, although the binding orientation of the drugs at the receptor has been a matter of debate. Here we heterologously express mouse 5-HT3A receptors in Xenopus oocytes and use unnatural amino acid mutagenesis to establish a cation-π interaction for both ondansetron and granisetron to tryptophan 183 in the ligand binding pocket. This cation-π interaction establishes a binding orientation for both ondansetron and granisetron within the binding pocket. PMID:22873819

  18. N-Benzyl-5-methoxytryptamines as Potent Serotonin 5-HT2 Receptor Family Agonists and Comparison with a Series of Phenethylamine Analogues

    PubMed Central

    2015-01-01

    A series of N-benzylated-5-methoxytryptamine analogues was prepared and investigated, with special emphasis on substituents in the meta position of the benzyl group. A parallel series of several N-benzylated analogues of 2,5-dimethoxy-4-iodophenethylamine (2C-I) also was included for comparison of the two major templates (i.e., tryptamine and phenethylamine). A broad affinity screen at serotonin receptors showed that most of the compounds had the highest affinity at the 5-HT2 family receptors. Substitution at the para position of the benzyl group resulted in reduced affinity, whereas substitution in either the ortho or the meta position enhanced affinity. In general, introduction of a large lipophilic group improved affinity, whereas functional activity often followed the opposite trend. Tests of the compounds for functional activity utilized intracellular Ca2+ mobilization. Function was measured at the human 5-HT2A, 5-HT2B, and 5-HT2C receptors, as well as at the rat 5-HT2A and 5-HT2C receptors. There was no general correlation between affinity and function. Several of the tryptamine congeners were very potent functionally (EC50 values from 7.6 to 63 nM), but most were partial agonists. Tests in the mouse head twitch assay revealed that many of the compounds induced the head twitch and that there was a significant correlation between this behavior and functional potency at the rat 5-HT2A receptor. PMID:25547199

  19. Effect of Dopaminergic D1 Receptors on Plasticity Is Dependent of Serotoninergic 5-HT1A Receptors in L5-Pyramidal Neurons of the Prefrontal Cortex

    PubMed Central

    Meunier, Claire Nicole Jeanne; Callebert, Jacques; Cancela, José-Manuel; Fossier, Philippe

    2015-01-01

    Major depression and schizophrenia are associated with dysfunctions of serotoninergic and dopaminergic systems mainly in the prefrontal cortex (PFC). Both serotonin and dopamine are known to modulate synaptic plasticity. 5-HT1A receptors (5-HT1ARs) and dopaminergic type D1 receptors are highly represented on dendritic spines of layer 5 pyramidal neurons (L5PyNs) in PFC. How these receptors interact to tune plasticity is poorly understood. Here we show that D1-like receptors (D1Rs) activation requires functional 5HT1ARs to facilitate LTP induction at the expense of LTD. Using 129/Sv and 5-HT1AR-KO mice, we recorded post-synaptic currents evoked by electrical stimulation in layer 2/3 after activation or inhibition of D1Rs. High frequency stimulation resulted in the induction of LTP, LTD or no plasticity. The D1 agonist markedly enhanced the NMDA current in 129/Sv mice and the percentage of L5PyNs displaying LTP was enhanced whereas LTD was reduced. In 5-HT1AR-KO mice, the D1 agonist failed to increase the NMDA current and orientated the plasticity towards L5PyNs displaying LTD, thus revealing a prominent role of 5-HT1ARs in dopamine-induced modulation of plasticity. Our data suggest that in pathological situation where 5-HT1ARs expression varies, dopaminergic treatment used for its ability to increase LTP could turn to be less and less effective. PMID:25775449

  20. Electrophysiological evidence for rapid 5-HT₁A autoreceptor inhibition by vilazodone, a 5-HT₁A receptor partial agonist and 5-HT reuptake inhibitor.

    PubMed

    Ashby, Charles R; Kehne, John H; Bartoszyk, Gerd D; Renda, Matthew J; Athanasiou, Maria; Pierz, Kerri A; Seyfried, Christoph A

    2013-08-15

    This study examined the effect of vilazodone, a combined serotonin (5-HT) reuptake inhibitor and 5-HT(1A) receptor partial agonist, paroxetine and fluoxetine on the sensitivity of 5-HT(1A) autoreceptors of serotonergic dorsal raphe nucleus neurons in rats. These effects were assessed by determining the intravenous dose of (±)-8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) required to suppress the basal firing rate of these neurons by 50% (ID₅₀) in anesthetized rats using in vivo electrophysiology. 5-HT uptake inhibition was determined by the ability of the compounds to reverse (±)-p-chloroamphetamine (PCA)-induced rat hypothalamic 5-HT depletion ex vivo. Acute vilazodone administration (0.63 and 2.1 µmol/kg, s.c.), compared with vehicle, significantly increased (2-3-fold) the ID₅₀ of 8-OH-DPAT at 4 h, but not 24h after administration. Subchronic administration (3 days) significantly increased the ID₅₀ value at 4 h (3-4-fold) and at 24 h (~2-fold). In contrast, paroxetine and fluoxetine at doses that were supramaximal for 5-HT uptake inhibition did not significantly alter the ID₅₀ value of 8-OH-DPAT after acute or subchronic administration. Vilazodone antagonized the action of PCA 3.5 h and 5 h after a single dose (ID₅₀ 1.49 and 0.46 µmol/kg, s.c., respectively), but was inactive 18 h post-administration, corroborating the electrophysiological results at 24 h following acute administration. The results are consistent with the concept of rapid and, following repeated treatment, prolonged inhibition of 5-HT(1A) autoreceptors by vilazodone. This effect could occur by either direct interaction with, or desensitization of, these receptors, an effect which cannot be ascribed to vilazodone's 5-HT reuptake inhibiting properties. PMID:23872377

  1. 5-HT6 receptor agonism facilitates emotional learning

    PubMed Central

    Pereira, Marcela; Martynhak, Bruno J.; Andreatini, Roberto; Svenningsson, Per

    2015-01-01

    Serotonin (5-HT) and its receptors play crucial roles in various aspects of mood and cognitive functions. However, the role of specific 5-HT receptors in these processes remains to be better understood. Here, we examined the effects of the selective and potent 5-HT6 agonist (WAY208466) on mood, anxiety and emotional learning in mice. Male C57Bl/6J mice were therefore tested in the forced swim test (FST), elevated plus-maze (EPM), and passive avoidance tests (PA), respectively. In a dose-response experiment, mice were treated intraperitoneally with WAY208466 at 3, 9, or 27 mg/kg and examined in an open field arena open field test (OFT) followed by the FST. 9 mg/kg of WAY208466 reduced immobility in the FST, without impairing the locomotion. Thus, the dose of 9 mg/kg was subsequently used for tests of anxiety and emotional learning. There was no significant effect of WAY208466 in the EPM. In the PA, mice were trained 30 min before the treatment with saline or WAY208466. Two separate sets of animals were used for short term memory (tested 1 h post-training) or long term memory (tested 24 h post-training). WAY208466 improved both short and long term memories, evaluated by the latency to enter the dark compartment, in the PA. The WAY208466-treated animals also showed more grooming and rearing in the light compartment. To better understand the molecular mechanisms and brain regions involved in the facilitation of emotional learning by WAY208466, we studied its effects on signal transduction and immediate early gene expression. WAY208466 increased the levels of phospho-Ser845-GluA1 and phospho-Ser217/221-MEK in the caudate-putamen. Levels of phospho-Thr202/204-Erk1/2 and the ratio mature BDNF/proBDNF were increased in the hippocampus. Moreover, WAY208466 increased c-fos in the hippocampus and Arc expression in both hippocampus and prefrontal cortex (PFC). The results indicate antidepressant efficacy and facilitation of emotional learning by 5-HT6 receptor agonism via

  2. Expression of α(1)-adrenergic receptors in rat prefrontal cortex: cellular co-localization with 5-HT(2A) receptors.

    PubMed

    Santana, Noemí; Mengod, Guadalupe; Artigas, Francesc

    2013-06-01

    The prefrontal cortex (PFC) is involved in behavioural control and cognitive processes that are altered in schizophrenia. The brainstem monoaminergic systems control PFC function, yet the cells/networks involved are not fully known. Serotonin (5-HT) and norepinephrine (NE) increase PFC neuronal activity through the activation of α(1)-adrenergic receptors (α(1)ARs) and 5-HT(2A) receptors (5-HT(2A)Rs), respectively. Neurochemical and behavioural interactions between these receptors have been reported. Further, classical and atypical antipsychotic drugs share nm in vitro affinity for α(1)ARs while having preferential affinity for D(2) and 5-HT(2A)Rs, respectively. Using double in situ hybridization we examined the cellular expression of α(1)ARs in pyramidal (vGluT1-positive) and GABAergic (GAD(65/67)-positive) neurons in rat PFC and their co-localization with 5-HT(2A)Rs. α(1)ARs are expressed by a high proportion of pyramidal (59-85%) and GABAergic (52-79%) neurons. The expression in pyramidal neurons exhibited a dorsoventral gradient, with a lower percentage of α(1)AR-positive neurons in infralimbic cortex compared to anterior cingulate and prelimbic cortex. The expression of α(1A), α(1B) and α(1D) adrenergic receptors was segregated in different layers and subdivisions. In all them there is a high co-expression with 5-HT(2A)Rs (∼80%). These observations indicate that NE controls the activity of most PFC pyramidal neurons via α(1)ARs, either directly or indirectly, via GABAergic interneurons. Antipsychotic drugs can thus modulate the activity of PFC via α(1)AR blockade. The high co-expression with 5-HT(2A)Rs indicates a convergence of excitatory serotonergic and noradrenergic inputs onto the same neuronal populations. Moreover, atypical antipsychotics may exert a more powerful control of PFC function through the simultaneous blockade of α(1)ARs and 5-HT(2A)Rs. PMID:23195622

  3. Behavioural evidence of agonist-like effect of isoteoline at 5-HT1B serotonergic receptors in mice.

    PubMed

    Zhelyazkova-Savova, Maria D; Zhelyazkov, Delcho K

    2003-01-01

    Isoteoline is a compound of aporphine structure derived from the alkaloid glaucine. Previous studies with isoteoline have shown antagonistic activity at 5-HT(2C) serotonergic receptors. We have investigated whether isoteoline interacts with 5-HT(1B) receptors. An isolation-induced social behavioural deficit test in mice was used as a model of stimulation of these receptors. The deficit in the behaviour of isolated mice in this experimental procedure was reported to be sensitive to 5-HT(1B)-receptor stimulation, since agonists at these receptors are capable of reversing it. In our study, we used N-(3-trifluoromethylphenyl)piperazine (TFMPP) (2 mg kg(-1)) as a reference agonist at these receptor sites. TFMPP completely restored the normal behaviour of the isolated mice. Its effect was prevented by propranolol (4 mg kg(-1)), a beta-adrenergic receptor antagonist with a high affinity for 5-HT(1B) receptors, which was inactive by itself. When isoteoline was given before TFMPP, it did not prevent the effect of the latter. Given alone at doses of 0.25, 1, 4 or 8 mg kg(-1), isoteoline showed an effect of its own to normalize the behaviour of isolated mice. The effect of isoteoline (1 mg kg(-1), i.p.) was antagonized by pretreatment with propranolol, indicating that it was mediated through stimulation of 5-HT(1B) receptors. Repeated treatment with isoteoline (1 mg kg(-1), 2 x 3 days, i.p.) produced tolerance to its effect and significantly attenuated the effect of TFMPP, when animals were tested 16 h after the last injection. In conclusion, the results provided functional evidence of agonist-like activity of isoteoline at the 5-HT(1B) receptors. PMID:12625876

  4. Rapid Anxiolytic Effects of a 5-HT4 Receptor Agonist Are Mediated by a Neurogenesis-Independent Mechanism

    PubMed Central

    Mendez-David, Indira; David, Denis J; Darcet, Flavie; Wu, Melody V; Kerdine-Römer, Saadia; Gardier, Alain M; Hen, René

    2014-01-01

    Selective serotonin reuptake inhibitors (SSRIs) display a delayed onset of action of several weeks. Past work in naive rats showed that 5-HT4 receptor agonists had rapid effects on depression-related behaviors and on hippocampal neurogenesis. We decided to investigate whether 5-HT4 receptor stimulation was necessary for the effects of SSRIs in a mouse model of anxiety/depression, and whether hippocampal neurogenesis contributed to these effects. Using the mouse corticosterone model of anxiety/depression, we assessed whether chronic treatment with a 5-HT4 receptor agonist (RS67333, 1.5 mg/kg/day) had effects on anxiety- and depression-related behaviors, as well as on hippocampal neurogenesis in comparison with chronic fluoxetine treatment (18 mg/kg/day). Then, using our anxiety/depression model combined with ablation of hippocampal neurogenesis, we investigated whether neurogenesis was necessary for the behavioral effects of subchronic (7 days) or chronic (28 days) RS67333 treatment. We also assessed whether a 5-HT4 receptor antagonist (GR125487, 1 mg/kg/day) could prevent the behavioral and neurogenic effects of fluoxetine. Chronic treatment with RS67333, similar to fluoxetine, induced anxiolytic/antidepressant-like activity and stimulated adult hippocampal neurogenesis, specifically facilitating maturation of newborn neurons. However, unlike fluoxetine, anxiolytic effects of RS67333 were already present after 7 days and did not require hippocampal neurogenesis. Chronic treatment with GR125487 prevented both anxiolytic/antidepressant-like and neurogenic effects of fluoxetine, indicating that 5-HT4 receptor activation is necessary for these effects of SSRIs. 5-HT4 receptor stimulation could represent an innovative and rapid onset therapeutic approach to treat depression with comorbid anxiety. PMID:24287720

  5. Evaluation of gene expression changes of serotonin receptors, 5-HT3AR and 5-HT2AR as main stress factors in breast cancer patients.

    PubMed

    Hejazi, Seyed Hesam; Ahangari, Ghasem; Pornour, Majid; Deezagi, Abdolkhaleagh; Aminzadeh, Saeed; Ahmadkhaniha, Hamid Reza; Akbari, Mohamad Esmail

    2014-01-01

    Breast cancer is a serious and potentially lethal multi-factor disease among 40-50 aged women in both developed and developing countries. Also, various studies have pointed to roles of neurotransmitters like serotonin in development of cancers, through action on various types of receptors. This study was conducted to evaluate serotonin receptor (5HT2AR and 5HT3AR) genes expression in peripheral blood mononuclear cells (PBMCs) of breast cancer patients in comparison with the healthy people and in the MCF7 cell line. Peripheral blood samples were obtained from 30 patients and 30 healthy individuals. Total RNA was extracted from PBMCs and MCF-7 cells. and 5HT2AR and 5HT3AR were detected by RT-PCR techniques. Finally, serotonin receptor gene expression variation in breast cancer patients and MCF-7 cells were determined by real time-PCR. This latter indicated significant promotion in expression of 5HT3AR and 5HT2AR in PBMCs in breast cancer patients but expression of 5HT2AR in the MCF-7 cell line was significantly decreased. In conclusion, after performing complimentary tests, determine of gene expression changes in serotonin receptors (5HT2AR and 5HT3AR) may be useful as a new approach in treatment of breast cancer based on use of antagonists. PMID:24969868

  6. Aromatic interactions impact ligand binding and function at serotonin 5-HT2C G protein-coupled receptors: receptor homology modelling, ligand docking, and molecular dynamics results validated by experimental studies

    NASA Astrophysics Data System (ADS)

    Córdova-Sintjago, Tania; Villa, Nancy; Fang, Lijuan; Booth, Raymond G.

    2014-02-01

    The serotonin (5-hydroxytryptamine, 5-HT) 5-HT2 G protein-coupled receptor (GPCR) family consists of types 2A, 2B, and 2C that share ∼75% transmembrane (TM) sequence identity. Agonists for 5-HT2C receptors are under development for psychoses; whereas, at 5-HT2A receptors, antipsychotic effects are associated with antagonists - in fact, 5-HT2A agonists can cause hallucinations and 5-HT2B agonists cause cardiotoxicity. It is known that 5-HT2A TM6 residues W6.48, F6.51, and F6.52 impact ligand binding and function; however, ligand interactions with these residues at the 5-HT2C receptor have not been reported. To predict and validate molecular determinants for 5-HT2C-specific activation, results from receptor homology modelling, ligand docking, and molecular dynamics simulation studies were compared with experimental results for ligand binding and function at wild type and W6.48A, F6.51A, and F6.52A point-mutated 5-HT2C receptors.

  7. Immunohistological localization of 5-HT in the CNS and feeding system of the Stable Fly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    5-HT immunoreactive neurons were detected in the CNS of the stable fly. The finding of strong innervations of the cibarial pump muscles and the foregut by 5-HT IR neurons in the feeding-related systems suggests that 5-HT may play a crucial role in the control of the feeding behavior in both the larv...

  8. Selective 5-HT7 receptor agonists LP 44 and LP 211 elicit an analgesic effect on formalin-induced orofacial pain in mice

    PubMed Central

    DEMİRKAYA, Kadriye; AKGÜN, Özlem Martı; ŞENEL, Buğra; ÖNCEL TORUN, Zeynep; SEYREK, Melik; LACİVİTA, Enza; LEOPOLDO, Marcello; DOĞRUL, Ahmet

    2016-01-01

    ABSTRACT The most recently identified serotonin (5-HT) receptor is the 5-HT7 receptor. The antinociceptive effects of a 5-HT7 receptor agonist have been shown in neuropathic and inflammatory animal models of pain. A recent study demonstrated the functional expression of 5-HT7 receptors in the substantia gelatinosa (SG) of the trigeminal subnucleus caudalis, which receives and processes orofacial nociceptive inputs. Objective To investigate the antinociceptive effects of pharmacological activation of 5-HT7 receptors on orofacial pain in mice. Material and Methods Nociception was evaluated by using an orofacial formalin test in male Balb-C mice. Selective 5-HT7 receptor agonists, LP 44 and LP 211 (1, 5, and 10 mg/kg), were given intraperitoneally 30 min prior to a formalin injection. A bolus of 10 µl of 4% subcutaneous formalin was injected into the upper lip of mice and facial grooming behaviors were monitored. The behavioral responses consisted of two distinct periods, the early phase corresponding to acute pain (Phase I: 0–12 min) and the late phase (Phase II: 12–30 min). Results LP 44 and LP 211 (1, 5, and 10 mg/kg) produced an analgesic effect with reductions in face rubbing time in both Phase I and Phase II of the formalin test. Conclusion Our results suggest that 5-HT7 receptor agonists may be promising analgesic drugs in the treatment of orofacial pain. PMID:27383702

  9. The Type 7 Serotonin Receptor, 5-HT7, Is Essential in the Mammary Gland for Regulation of Mammary Epithelial Structure and Function

    PubMed Central

    Pai, Vaibhav P.; Hernandez, Laura L.; Stull, Malinda A.; Horseman, Nelson D.

    2015-01-01

    Autocrine-paracrine activity of serotonin (5-hydroxytryptamine, 5-HT) is a crucial homeostatic parameter in mammary gland development during lactation and involution. Published studies suggested that the 5-HT7 receptor type was important for mediating several effects of 5-HT in the mammary epithelium. Here, using 5-HT7 receptor-null (HT7KO) mice we attempt to understand the role of this receptor in mediating 5-HT actions within the mammary gland. We demonstrate for the first time that HT7KO dams are inefficient at sustaining their pups. Histologically, the HT7KO mammary epithelium shows a significant deviation from the normal secretory epithelium in morphological architecture, reduced secretory vesicles, and numerous multinucleated epithelial cells with atypically displaced nuclei, during lactation. Mammary epithelial cells in HT7KO dams also display an inability to transition from lactation to involution as normally seen by transition from a columnar to a squamous cell configuration, along with alveolar cell apoptosis and cell shedding. Our results show that 5-HT7 is required for multiple actions of 5-HT in the mammary glands including core functions that contribute to changes in cell shape and cell turnover, as well as specialized secretory functions. Understanding these actions may provide new interventions to improve lactation performance and treat diseases such as mastitis and breast cancer. PMID:25664318

  10. 5-HT1B receptors inhibit glutamate release from primary afferent terminals in rat medullary dorsal horn neurons

    PubMed Central

    Choi, I-S; Cho, J-H; An, C-H; Jung, J-K; Hur, Y-K; Choi, J-K; Jang, I-S

    2012-01-01

    BACKGROUND AND PURPOSE Although 5-HT1B receptors are expressed in trigeminal sensory neurons, it is still not known whether these receptors can modulate nociceptive transmission from primary afferents onto medullary dorsal horn neurons. EXPERIMENTAL APPROACH Primary afferent-evoked EPSCs were recorded from medullary dorsal horn neurons of rat horizontal brain stem slices using a conventional whole-cell patch clamp technique under a voltage-clamp condition. KEY RESULTS CP93129, a selective 5-HT1B receptor agonist, reversibly and concentration-dependently decreased the amplitude of glutamatergic EPSCs and increased the paired-pulse ratio. In addition, CP93129 reduced the frequency of spontaneous miniature EPSCs without affecting the current amplitude. The CP93129-induced inhibition of EPSCs was significantly occluded by GR55562, a 5-HT1B/1D receptor antagonist, but not LY310762, a 5-HT1D receptor antagonist. Sumatriptan, an anti-migraine drug, also decreased EPSC amplitude, and this effect was partially blocked by either GR55562 or LY310762. On the other hand, primary afferent-evoked EPSCs were mediated by the Ca2+ influx passing through both presynaptic N-type and P/Q-type Ca2+ channels. The CP93129-induced inhibition of EPSCs was significantly occluded by ω-conotoxin GVIA, an N-type Ca2+ channel blocker. CONCLUSIONS AND IMPLICATIONS The present results suggest that the activation of presynaptic 5-HT1B receptors reduces glutamate release from primary afferent terminals onto medullary dorsal horn neurons, and that 5-HT1B receptors could be, at the very least, a potential target for the treatment of pain from orofacial tissues. LINKED ARTICLE This article is commented on by Connor, pp. 353–355 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2012.01963.x PMID:22462474

  11. 5-HT2A receptors control body temperature in mice during LPS-induced inflammation via regulation of NO production.

    PubMed

    Voronova, Irina P; Khramova, Galina M; Kulikova, Elizabeth A; Petrovskii, Dmitrii V; Bazovkina, Daria V; Kulikov, Alexander V

    2016-01-01

    G protein-coupled 5-HT2A receptors are involved in the regulation of numerous normal and pathological physiological functions. At the same time, its involvement in the regulation of body temperature (Tb) in normal conditions is obscure. Here we study the effect of the 5-HT2A receptor activation or blockade on Tb in sick animals. The experiments were carried out on adult C57BL/6 mouse males. Systemic inflammation and sickness were produced by lipopolysaccharide (LPS, 0.1mg/kg, ip), while the 5-HT2A receptor was stimulated or blocked through the administration of the receptor agonist DOI or antagonist ketanserin (1mg/kg), respectively. LPS, DOI or ketanserin alone produced no effect on Tb. However, administration of LPS together with a peripheral or central ketanserin injection reduced Tb (32.2°C). Ketanserin reversed the LPS-induced expression of inducible NO synthase in the brain. Consequently, an involvement of NO in the mechanism of the hypothermic effect of ketanserin in sick mice was hypothesized. Administration of LPS together with NO synthase inhibitor, l-nitro-arginine methyl ester (60mg/kg, ip) resulted in deep (28.5°C) and prolonged (8h) hypothermia, while administration of l-nitro-arginine methyl ester alone produced no effect on Tb. Thus, 5-HT2A receptors play a key role in Tb control in sick mice. Blockade of this GPCR produces hypothermia in mice with systemic inflammation via attenuation of LPS-induced NO production. These results indicate an unexpected role of 5-HT2A receptors in inflammation and NO production and have a considerable biological impact on understanding the mechanism of animal adaptation to pathogens and parasites. Moreover, adverse side effects of 5-HT2A receptor antagonists in patients with inflammation may be expected. PMID:26621247

  12. The influence of 5-HT2 and 5-HT4 receptor antagonists to modify drug induced disinhibitory effects in the mouse light/dark test

    PubMed Central

    Costall, Brenda; Naylor, Robert J

    1997-01-01

    The ability of 5-HT2 and 5-HT4 receptor antagonists to modify the disinhibitory profile of diazepam and other agents was investigated in male BKW mice in the light/dark test box. The 5-HT2A/2B/2C receptor antagonists ritanserin, MDL11939 and RP62203 and also methysergide, which failed to modify mouse behaviour when administered alone, caused dose-related enhancements (4 to 8 fold) in the potency of diazepam to disinhibit behavioural responding to the aversive situation of the test box. Ritanserin was shown to enhance the disinhibitory potency of other benzodiazepines, chlordiazepoxide (4 fold), temazepam (10 fold) and lorazepam (10 fold), the 5-HT1A receptor ligands, 8-OH-DPAT (25 fold), buspirone (100 fold) and lesopitron (500 fold), the 5-HT3 receptor antagonists, ondansetron (100 fold) R(+)-zacopride (100 fold) and S(−)-zacopride (greater than a 1000 fold), the substituted benzamides, sulpiride (10 fold) and tiapride (5 to 10 fold) and the cholecystokinin (CCK)A receptor antagonist, devazepide (100 fold). It also reduced the onset of action of disinhibition following treatment with the 5-HT synthesis inhibitor parachlorophenylalanine. Ritanserin failed to enhance the disinhibitory effects of the CCKB receptor antagonist CI-988, the angiotensin AT1 receptor antagonist losarten or the angiotensin converting enzyme inhibitor ceranapril. The 5-HT4 receptor antagonists SDZ205-557, GR113808 and SB204070 caused dose-related reductions in the disinhibitory effect of diazepam, returning values to those shown in vehicle treated controls. The antagonists failed to modify mouse behaviour when administered alone. GR113808 was also shown to cause a dose-related antagonism of the disinhibitory effects of chlordiazepoxide, lorazepam, 8-OH-DPAT, buspirone, lesopitron, ondansetron, R(+)-zacopride, sulpiride, tiapride, devazepide, CI-988, losarten, ceranapril and parachlorophenylalanine. It was concluded that in BKW mice (a) the failure of 5-HT2 and 5-HT4 receptor antagonists

  13. Effects of chronic citalopram treatment on 5-HT1A and 5-HT2A receptors in group- and isolation-housed mice.

    PubMed

    Günther, Lydia; Liebscher, Sabine; Jähkel, Monika; Oehler, Jochen

    2008-09-28

    Selective serotonin reuptake inhibitors (SSRI) are characterized by high clinical effectiveness and good tolerability. A 2-3 week delay in the onset of effects is caused by adaptive mechanisms, probably at the serotonergic (5-HT) receptor level. To analyze this in detail, we measured 5-HT(1A) and 5-HT(2A) receptor bindings in vitro after 3 weeks of citalopram treatment (20 mg/kg i.p. daily) in group-housed as well as isolation-housed mice, reflecting neurobiological aspects seen in psychiatric patients. Isolation housing increased somatodendritic (+52%) and postsynaptic (+30-95%) 5-HT(1A) as well as postsynaptic 5-HT(2A) receptor binding (+25-34%), which confirms previous findings. Chronic citalopram treatment did not induce alterations in raphe 5-HT(1A) autoreceptor binding, independent of housing conditions. Housing-dependent citalopram effects on postsynaptic 5-HT(1A) receptor binding were found with increases in group- (+11-42%) but decreases in isolation-housed (-11 to 35%) mice. Forebrain 5-HT(2A) receptor binding decreased between 11 and 38% after chronic citalopram administration, independent of housing conditions. Citalopram's long-term action comprises alterations at the postsynaptic 5-HT(1A) and 5-HT(2A) receptor binding levels. Housing conditions interact with citalopram effects, especially on 5-HT(1A) receptor binding, and should be more strongly considered in pharmacological studies. In general, SSRI-induced alterations were more pronounced and affected more brain regions in isolates, supporting the concept of a higher responsiveness in "stressed" animals. Isolation-induced receptor binding changes were partly normalized by chronic citalopram treatment, suggesting the isolation housing model for further analyses of SSRI effects, especially at the behavioral level. PMID:18657534

  14. Increased expression of 5-HT(2A) and 5-HT(2B) receptors in detrusor muscle after partial bladder outlet obstruction in rats.

    PubMed

    Michishita, Mai; Yano, Kazuo; Kasahara, Ken-ichi; Tomita, Ken-ichi; Matsuzaki, Osamu

    2015-01-01

    Serotonin (5-hydroxytryptamine; 5-HT)-induced bladder contraction is enhanced after partial bladder outlet obstruction (pBOO) in rats. We investigated time-dependent changes in bladder contraction and expression of 5-HT(2A) and 5-HT(2B) receptor mRNA in bladder tissue to elucidate the mechanism of this enhancement. On day 3 and 7 after pBOO, contractile responses of isolated rat bladder strips to 5-HT were increased compared with that in sham-operated rats; on day 14, the response had decreased to the same level as that in sham rat bladders. In contrast, carbacholinduced contraction was not enhanced by pBOO at any time point. In sham rats, 5-HT(2A) receptor mRNA was expressed in the urothelium, and 5-HT(2B) receptor mRNA was expressed in the detrusor muscle layer. In pBOO rats, both receptor mRNAs were increased in the detrusor muscle and subserosal layers, but not in the urothelium. The increase of 5-HT(2A) receptor mRNA was maintained from day 3 to day 14 after pBOO, and 5-HT(2B) receptor mRNA was increased on day 7 after pBOO. These results suggested that pBOO induced up-regulation of the 5-HT(2A) and 5-HT(2B) receptors in the detrusor muscle and subserosal layers of the bladder, and such up-regulation may be related to the enhanced bladder contractile response to 5-HT. PMID:26106048

  15. Identification of Glycyrrhiza as the rikkunshito constituent with the highest antagonistic potential on heterologously expressed 5-HT3A receptors due to the action of flavonoids

    PubMed Central

    Herbrechter, Robin; Ziemba, Paul M.; Hoffmann, Katrin M.; Hatt, Hanns; Werner, Markus; Gisselmann, Günter

    2015-01-01

    The traditional Japanese phytomedicine rikkunshito is traditionally used for the treatment of gastrointestinal motility disorders, cachexia and nausea. These effects indicate 5-HT3 receptor antagonism, due to the involvement of these receptors in such pathophysiological processes. E.g., setrons, specific 5-HT3 receptor antagonists are the strongest antiemetics, developed so far. Therefore, the antagonistic effects of the eight rikkunshito constituents at heterologously expressed 5-HT3Areceptors were analyzed using the two-electrode voltage-clamp technique. The results indicate that tinctures from Aurantii, Ginseng, Zingiberis, Atractylodis and Glycyrrhiza inhibited the 5-HT3A receptor response, whereas the tinctures of Poria cocos, Jujubae and Pinellia exhibited no effect. Surprisingly, the strongest antagonism was found for Glycyrrhiza, whereas the Zingiberis tincture, which is considered to be primarily responsible for the effect of rikkunshito, exhibited the weakest antagonism of 5-HT3A receptors. Rikkunshito contains various vanilloids, ginsenosides and flavonoids, a portion of which show an antagonistic effect on 5-HT3 receptors. A screening of the established ingredients of the active rikkunshito constituents and related substances lead to the identification of new antagonists within the class of flavonoids. The flavonoids (-)-liquiritigenin, glabridin and licochalcone A from Glycyrrhiza species were found to be the most effective inhibitors of the 5-HT-induced currents in the screening. The flavonoids (-)-liquiritigenin and hesperetin from Aurantii inhibited the receptor response in a non-competitive manner, whereas glabridin and licochalcone A exhibited a potential competitive antagonism. Furthermore, licochalcone A acts as a partial antagonist of 5-HT3A receptors. Thus, this study reveals new 5-HT3A receptor antagonists with the aid of increasing the comprehension of the complex effects of rikkunshito. PMID:26191003

  16. New halogenated tris-(phenylalkyl)amines as h5-HT2B receptor ligands.

    PubMed

    Kapadia, Nirav; Ahmed, Shahrear; Harding, Wayne W

    2016-07-15

    A series of compounds in which various halogen substituents were incorporated into a phenyl ring of a tris-(phenylalkyl)amine scaffold, was synthesized and evaluated for affinity to h5-HT2 receptors. In general, all compounds were found to have good affinity for the 5-HT2B receptor and were selective over 5-HT2A and 5-HT2C receptors. Compound 9i was the most selective compound in this study and is the highest affinity 5-HT2B receptor ligand bearing a tris-(phenylalkyl)amine scaffold to date. PMID:27261181

  17. HBK-7 - A new xanthone derivative and a 5-HT1A receptor antagonist with antidepressant-like properties.

    PubMed

    Pytka, Karolina; Kazek, Grzegorz; Siwek, Agata; Mordyl, Barbara; Głuch-Lutwin, Monika; Rapacz, Anna; Olczyk, Adrian; Gałuszka, Adam; Waszkielewicz, Anna; Marona, Henryk; Sapa, Jacek; Filipek, Barbara; Zygmunt, Małgorzata

    2016-01-01

    Xanthone derivatives possess many biological properties, including neuroprotective, antioxidant or antidepressant-like. In this study we aimed to investigate antidepressant- and anxiolytic-like properties of a new xanthone derivative - 6-methoxy-4-[4-(2-methoxyphenyl)piperazin-1-yl]-9H-xanthen-9-one (HBK-7), as well as its possible mechanism of action, and the influence on cognitive and motor function. HBK-7 in our earlier studies showed high affinity for serotonergic 5-HT1A receptor. We determined the affinity of HBK-7 for CNS receptors and transporters using radioligand assays and examined its intrinsic activity towards 5-HT1A receptor. We evaluated antidepressant- and anxiolytic-like activity of HBK-7 in the mouse forced swim test, and four-plate test, respectively. We examined the influence on locomotor activity in mice to determine if the effect observed in the forced swim test was specific. We used step-through passive avoidance and rotarod tests to evaluate the influence of HBK-7 on cognitive and motor function, respectively. HBK-7 showed moderate affinity for dopaminergic D2 receptor and very low for serotonergic 5-HT2A, adrenergic α2 receptors, as well as serotonin transporter. Functional studies revealed that HBK-7 was a 5-HT1A receptor antagonist. HBK-7 (10mg/kg) decreased immobility time in the forced swim test. Combined treatment with sub-effective doses of HBK-7 and fluoxetine reduced immobility of mice in the forced swim test. Pretreatment with p-chlorophenylalanine and WAY-100,635 antagonized the antidepressant-like effect of HBK-7. Neither of the treatments influenced locomotor activity of mice. HBK-7 at antidepressant-like dose did not impair memory or motor coordination in mice. We demonstrated that HBK-7 was a 5-HT1A receptor antagonist with potent, comparable to mianserin, antidepressant-like activity. HBK-7 mediated its effect through serotonergic system and its antidepressant-like action required the activation of 5-HT1A receptors. At active

  18. Increased hypothalamic 5-HT2A receptor gene expression and effects of pharmacologic 5-HT2A receptor inactivation in obese A{sup y} mice

    SciTech Connect

    Nonogaki, Katsunori . E-mail: knonogaki-tky@umin.ac.jp; Nozue, Kana; Oka, Yoshitomo

    2006-12-29

    Serotonin (5-hydroxytryptamine; 5-HT) 2A receptors contribute to the effects of 5-HT on platelet aggregation and vascular smooth muscle cell proliferation, and are reportedly involved in decreases in plasma levels of adiponectin, an adipokine, in diabetic subjects. Here, we report that systemic administration of sarpogrelate, a 5-HT2A receptor antagonist, suppressed appetite and increased hypothalamic pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript, corticotropin releasing hormone, 5-HT2C, and 5-HT1B receptor gene expression. A{sup y} mice, which have ectopic expression of the agouti protein, significantly increased hypothalamic 5-HT2A receptor gene expression in association with obesity compared with wild-type mice matched for age. Systemic administration of sarpogrelate suppressed overfeeding, body weight gain, and hyperglycemia in obese A{sup y} mice, whereas it did not increase plasma adiponectin levels. These results suggest that obesity increases hypothalamic 5-HT2A receptor gene expression, and pharmacologic inactivation of 5-HT2A receptors inhibits overfeeding and obesity in A{sup y} mice, but did not increase plasma adiponectin levels.

  19. Conformational state of human cardiac 5-HT(4(g)) receptors influences the functional effects of polyclonal anti-5-HT(4) receptor antibodies.

    PubMed

    Di Scala, Emmanuella; Rose, Stéphanie; Hérault, Olivier; Argibay, Jorge; Cosnay, Pierre; Bozon, Véronique

    2007-04-01

    The functional effects of the anti-G21V antibody directed against the second extracellular loop of human heart 5-HT(4) receptors can differ when the receptors are expressed in different cell lines. Here, we extend these studies to show variation in the responses of 5-HT(4(g)) receptors to the antibody within the same expression system. In a previous report no effect of the anti-G21V antibodies had been shown upon 5-HT(4(g)) receptors expressed in CHO cells. Here the same antibodies alone or when added before 5-HT had a functional "inverse-agonist like" effect upon 5-HT(4(g)) receptors expressed in a separate line of CHO cells. Although these CHO cells showed a lower efficacy of cAMP production evoked by 5-HT than the previous report they express a similar h5-HT(4(g)) receptor density. Inhibition of either phosphodiesterases or Gi proteins had no effect upon the action of the antibody. Conformational states of the 5-HT(4) receptor and/or equilibrium between different states of receptors may then determine the functional effect of antibodies against this receptor. PMID:17222392

  20. Cloning, expression and pharmacology of a truncated splice variant of the human 5-HT7 receptor (h5-HT7(b))

    PubMed Central

    Jasper, J R; Kosaka, A; To, Z P; Chang, D J; Eglen, R M

    1997-01-01

    The rat 5-hydroxytryptamine (5-HT)7 receptor displays two splice variations, a long form, and a truncated splice isoform, arising from the introduction of a stop codon near the carboxy-terminus. The human 5-HT7 receptor gene contains at least two introns and encodes a 445 amino acid 5-HT receptor. A truncated splice variation in the human 5-HT7 receptor was isolated from a human placental cDNA library. In accordance with current NC-IUPHAR nomenclature guidelines, it is suggested that this receptor be denoted as the h5-HT7(b) receptor and the long form of the receptor as h5-HT7(a). The h5-HT7(b) receptor was stably expressed in HEK 293 cells and ligand affinities were determined by displacement of [3H]-5-carboxyamidotryptamine (5-CT; Kd=0.28±0.06 nM, Bmax=7.3±1.7 pmol mg−1 protein). The rank order of affinities (pKi) for a series of ligands was: 5-carboxamidotryptamine (5-CT, 9.65)>5-hydroxytryptamine (5-HT, 9.41)>methiothepin (8.87)>mesulergine (7.87)>8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT, 6.85)>ketanserin (6.44). The h5-HT7(b) receptor coupled positively to adenylyl cyclase in HEK 293 cells. This response was elicited by a number of agonists with the following order of potency (pEC50): 5-CT (8.7±0.11)>5-MeOT (5-methoxytryptamine; 8.1±0.20)>5-HT (7.5±0.13)>tryptamine (5.6±0.36)>8-OH-DPAT (5.3±0.28)>5-methoxytryptamine (5.0±0.06). This rank order was comparable to that observed in the radioligand binding studies. In a similar fashion to that described for the 5-HT7(a) receptor, PCR studies suggested that the 5-HT7(b) receptor mRNA is found in great abundance throughout the brain, in the small intestine and aorta. It is concluded that the h5-HT7 receptor, like the rat receptor, exists as splice variants exhibiting similar pharmacology, signal transduction and distribution. It is thus likely that there exists a complex physiological role for alternate splicing products of the 5-HT7 receptor gene. PMID:9298538

  1. 5-HT1D receptor inhibits renal sympathetic neurotransmission by nitric oxide pathway in anesthetized rats.

    PubMed

    García-Pedraza, José-Ángel; García, Mónica; Martín, María-Luisa; Morán, Asunción

    2015-09-01

    Although serotonin has been shown to inhibit peripheral sympathetic outflow, serotonin regulation on renal sympathetic outflow has not yet been elucidated. This study investigated which 5-HT receptor subtypes are involved. Wistar rats were anesthetized (sodium pentobarbital; 60mg/kg, i.p.), and prepared for in situ autoperfused rat kidney, which allows continuous measurement of systemic blood pressure (SBP), heart rate (HR) and renal perfusion pressure (PP). Electrical stimulation of renal sympathetic nerves resulted in frequency-dependent increases in PP (18.3±1.0, 43.7±2.7 and 66.7±4.0 for 2, 4 and 6Hz, respectively), without altering SBP or HR. 5-HT, 5-carboxamidotryptamine (5-HT1/7 agonist) (0.00000125-0.1μg/kg each) or l-694,247 (5-HT1D agonist; 0.0125μg/kg) i.a. bolus inhibited vasopressor responses by renal nerve electrical stimulation, unlike i.a. bolus of agonists α-methyl-5-HT (5-HT2), 1-PBG (5-HT3), cisapride (5-HT4), AS-19 (5-HT7), CGS-12066B (5-HT1B) or 8-OH-DPAT (5-HT1A) (0.0125μg/kg each). The effect of l-694,247 did not affect the exogenous norepinephrine-induced vasoconstrictions, whereas was abolished by antagonist LY310762 (5-HT1D; 1mg/kg) or l-NAME (nitric oxide; 10mg/kg), but not by indomethacin (COX1/2; 2mg/kg) or glibenclamide (ATP-dependent K(+) channel; 20mg/kg). These results suggest that 5-HT mechanism-induced inhibition of rat vasopressor renal sympathetic outflow is mainly mediated by prejunctional 5-HT1D receptors via nitric oxide release. PMID:26003124

  2. Asymmetric Clustering Index in a Case Study of 5-HT1A Receptor Ligands

    PubMed Central

    Śmieja, Marek; Warszycki, Dawid; Tabor, Jacek; Bojarski, Andrzej J.

    2014-01-01

    The automatic clustering of chemical compounds is an important branch of chemoinformatics. In this paper the Asymmetric Clustering Index (Aci) is proposed to assess how well an automatically created partition reflects the reference. The asymmetry allows for a distinction between the fixed reference and the numerically constructed partition. The introduced index is applied to evaluate the quality of hierarchical clustering procedures for 5-HT1A receptor ligands. We find that the most appropriate combination of parameters for the hierarchical clustering of compounds with a determined activity for this biological target is the Klekota Roth fingerprint combined with the complete linkage function and the Buser similarity metric. PMID:25019251

  3. Nicotine alters limbic function in adolescent rat by a 5-HT1A receptor mechanism.

    PubMed

    Dao, Jasmin M; McQuown, Susan C; Loughlin, Sandra E; Belluzzi, James D; Leslie, Frances M

    2011-06-01

    Epidemiological studies have shown that adolescent smoking is associated with health risk behaviors, including high-risk sexual activity and illicit drug use. Using rat as an animal model, we evaluated the behavioral and biochemical effects of a 4-day, low-dose nicotine pretreatment (60 μg/kg; intravenous) during adolescence and adulthood. Nicotine pretreatment significantly increased initial acquisition of cocaine self-administration, quinpirole-induced locomotor activity, and penile erection in adolescent rats, aged postnatal day (P)32. These effects were long lasting, remaining evident 10 days after the last nicotine treatment, and were observed when nicotine pretreatment was administered during early adolescence (P28-31), but not late adolescence (P38-41) or adulthood (P86-89). Neurochemical analyses of c-fos mRNA expression, and of monoamine transmitter and transporter levels, showed that forebrain limbic systems are continuing to develop during early adolescence, and that this maturation is critically altered by brief nicotine exposure. Nicotine selectively increased c-fos mRNA expression in the nucleus accumbens shell and basolateral amygdala in adolescent, but not adult animals, and altered serotonin markers in these regions as well as the prefrontal cortex. Nicotine enhancement of cocaine self-administration and quinpirole-induced locomotor activity was blocked by co-administration of WAY 100 635 (N-{2-[4-(2-methoxyphenyl)-1-piperazinyl] ethyl}-N-(2-pyridinyl)cyclohexanecarboxamide), a selective serotonin 1A (5-HT1A) receptor antagonist. Early adolescent pretreatment with the mixed autoreceptor/heteroceptor 5-HT1A receptor agonist, 8-OH-DPAT, but not the autoreceptor-selective agonist, S-15535, also enhanced quinpirole-induced locomotor activation. Nicotine enhancement of quinpirole-induced penile erection was not blocked by WAY 100 635 nor mimicked by 8-OH-DPAT. These findings indicate that early adolescent nicotine exposure uniquely alters limbic

  4. A Model of Post-Infection Fatigue Is Associated with Increased TNF and 5-HT2A Receptor Expression in Mice.

    PubMed

    Couch, Yvonne; Xie, Qin; Lundberg, Louise; Sharp, Trevor; Anthony, Daniel C

    2015-01-01

    It is well documented that serotonin (5-HT) plays an important role in psychiatric illness. For example, myalgic encephalomyelitis (ME/CFS), which is often provoked by infection, is a disabling illness with an unknown aetiology and diagnosis is based on symptom-specific criteria. However, 5-HT2A receptor expression and peripheral cytokines are known to be upregulated in ME. We sought to examine the relationship between the 5-HT system and cytokine expression following systemic bacterial endotoxin challenge (LPS, 0.5 mg/kg i.p.), at a time when the acute sickness behaviours have largely resolved. At 24 hours post-injection mice exhibit no overt changes in locomotor behaviour, but do show increased immobility in a forced swim test, as well as decreased sucrose preference and reduced marble burying activity, indicating a depressive-like state. While peripheral IDO activity was increased after LPS challenge, central activity levels remained stable and there was no change in total brain 5-HT levels or 5-HIAA/5-HT. However, within the brain, levels of TNF and 5-HT2A receptor mRNA within various regions increased significantly. This increase in receptor expression is reflected by an increase in the functional response of the 5-HT2A receptor to agonist, DOI. These data suggest that regulation of fatigue and depressive-like moods after episodes of systemic inflammation may be regulated by changes in 5-HT receptor expression, rather than by levels of enzyme activity or cytokine expression in the CNS. PMID:26147001

  5. A Model of Post-Infection Fatigue Is Associated with Increased TNF and 5-HT2A Receptor Expression in Mice

    PubMed Central

    Couch, Yvonne; Xie, Qin; Lundberg, Louise; Sharp, Trevor; Anthony, Daniel C.

    2015-01-01

    It is well documented that serotonin (5-HT) plays an important role in psychiatric illness. For example, myalgic encephalomyelitis (ME/CFS), which is often provoked by infection, is a disabling illness with an unknown aetiology and diagnosis is based on symptom-specific criteria. However, 5-HT2A receptor expression and peripheral cytokines are known to be upregulated in ME. We sought to examine the relationship between the 5-HT system and cytokine expression following systemic bacterial endotoxin challenge (LPS, 0.5mg/kg i.p.), at a time when the acute sickness behaviours have largely resolved. At 24 hours post-injection mice exhibit no overt changes in locomotor behaviour, but do show increased immobility in a forced swim test, as well as decreased sucrose preference and reduced marble burying activity, indicating a depressive-like state. While peripheral IDO activity was increased after LPS challenge, central activity levels remained stable and there was no change in total brain 5-HT levels or 5-HIAA/5-HT. However, within the brain, levels of TNF and 5-HT2A receptor mRNA within various regions increased significantly. This increase in receptor expression is reflected by an increase in the functional response of the 5-HT2A receptor to agonist, DOI. These data suggest that regulation of fatigue and depressive-like moods after episodes of systemic inflammation may be regulated by changes in 5-HT receptor expression, rather than by levels of enzyme activity or cytokine expression in the CNS. PMID:26147001

  6. 1-Sulfonyl-6-Piperazinyl-7-Azaindoles as potent and pseudo-selective 5-HT6 receptor antagonists.

    PubMed

    Fabritius, Charles-Henry; Pesonen, Ullamari; Messinger, Josef; Horvath, Raymond; Salo, Harri; Gałęzowski, Michał; Galek, Mariusz; Stefańska, Klaudia; Szeremeta-Spisak, Joanna; Olszak-Płachta, Marta; Buda, Anna; Adamczyk, Justyna; Król, Marcin; Prusis, Peteris; Sieprawska-Lupa, Magdalena; Mikulski, Maciej; Kuokkanen, Katja; Chapman, Hugh; Obuchowicz, Radosław; Korjamo, Timo; Jalava, Niina; Nowak, Mateusz

    2016-06-01

    A series of 1-Sulfonyl-6-Piperazinyl-7-Azaindoles, showing strong antagonistic activity to 5-HT6 receptor (5-HT6R) was synthesized and characterized. The series was optimized to reduce activity on D2 receptor. Based on the selectivity against this off-target and the analysis of the ADME-tox profile, compound 1c was selected for in vivo efficacy assessment, which demonstrated procognitive effects as shown in reversal of scopolamine induced amnesia in an elevated plus maze test in mice. Compound 3, the demethylated version of compound 1c, was profiled against a panel of 106 receptors, channels and transporters, indicating only D3 receptor as a major off-target. Compound 3 has been selected for this study over compound 1c because of the higher 5-HT6R/D2R binding ratio. These results have defined a new direction for the design of our pseudo-selective 5-HT6R antagonists. PMID:27117428

  7. Novel and selective partial agonists of 5-HT3 receptors. 2. Synthesis and biological evaluation of piperazinopyridopyrrolopyrazines, piperazinopyrroloquinoxalines, and piperazinopyridopyrroloquinoxalines.

    PubMed

    Prunier, H; Rault, S; Lancelot, J C; Robba, M; Renard, P; Delagrange, P; Pfeiffer, B; Caignard, D H; Misslin, R; Guardiola-Lemaitre, B; Hamon, M

    1997-06-01

    In continuation of our previous work on piperazinopyrrolothienopyrazine derivatives, three series of piperazinopyridopyrrolopyrazines, piperazinopyrroloquinoxalines, and piperazinopyridopyrroloquinoxalines were prepared and evaluated as 5-HT3 receptor ligands. The chemical modifications performed within these new series led to structure-activity relationships regarding both high affinity and selectivity for the 5-HT3 receptors that are in agreement with those established previously for the pyrrolothienopyrazine series. The best compound (8a) obtained in these new series is in the picomolar range of affinity for 5-HT3 receptors with a selectivity higher than 10(6). Four of the high-affinity 5-HT3 ligands (8a, 15a,b, and 16d) were selected in both the pyridopyrrolopyrazine and the pyrroloquinoxaline series and were characterized in vitro and in vivo as agonists or partial agonists. Compound 8a was also evaluated in the light/dark test where it showed potential anxiolytic-like activity at very low doses per os. PMID:9191957

  8. Blockade of uptake for dopamine, but not norepinephrine or 5-HT, increases selection of high effort instrumental activity: Implications for treatment of effort-related motivational symptoms in psychopathology.

    PubMed

    Yohn, Samantha E; Errante, Emily E; Rosenbloom-Snow, Aaron; Somerville, Matthew; Rowland, Margaret; Tokarski, Kristin; Zafar, Nadia; Correa, Merce; Salamone, John D

    2016-10-01

    Deficits in behavioral activation, exertion of effort, and other psychomotor/motivational symptoms are frequently seen in people with depression and other disorders. Depressed people show a decision bias towards selection of low effort activities, and animal tests of effort-related decision making are being used as models of motivational dysfunctions seen in psychopathology. The present studies investigated the ability of drugs that block dopamine transport (DAT), norepinephrine transport (NET), and serotonin transport (SERT) to modulate work output in rats responding on a test of effort-related decision making (i.e., a progressive ratio (PROG)/chow feeding choice task). With this task, rats choose between working for a preferred food (high carbohydrate pellets) by lever pressing on a PROG schedule vs. obtaining a less preferred lab chow that is freely available in the chamber. The present studies focused on the effects of the selective DAT inhibitor GBR12909, the selective SERT inhibitor fluoxetine, and the selective NET inhibitors desipramine and atomoxetine. Acute and repeated administration of GBR12909 shifted choice behavior, increasing measures of PROG lever pressing but decreasing chow intake. In contrast, fluoxetine, desipramine and atomoxetine failed to increase lever pressing output, and actually decreased it at higher doses. In the behaviorally effective dose range, GBR12909 elevated extracellular dopamine levels in accumbens core as measured by microdialysis, but fluoxetine, desipramine and atomoxetine decreased extracellular dopamine. Thus, blockade of DAT increases selection of the high effort instrumental activity, while inhibition of SERT or NET does not. These results have implications for the use of monoamine uptake inhibitors for the treatment of effort-related psychiatric symptoms in humans. PMID:27329556

  9. Controls on fire activity over the Holocene

    NASA Astrophysics Data System (ADS)

    Kloster, S.; Brucher, T.; Brovkin, V.;