Science.gov

Sample records for 5-ht receptor activation

  1. Chronic activation of 5-HT4 receptors or blockade of 5-HT6 receptors improve memory performances.

    PubMed

    Quiedeville, Anne; Boulouard, Michel; Hamidouche, Katia; Da Silva Costa-Aze, Virginie; Nee, Gerald; Rochais, Christophe; Dallemagne, Patrick; Fabis, Frédéric; Freret, Thomas; Bouet, Valentine

    2015-10-15

    5-HT4 and 5-HT6 serotonergic receptors are located in brain structures involved in memory processes. Neurochemical and behavioural studies have demonstrated that acute activation of 5-HT4 receptors (5-HT4R) or blockade of 5-HT6 receptors (5-HT6R) improves memory. To evaluate the potential of these two receptors as targets in the treatment of memory disorders encountered in several situations (ageing, Alzheimer's disease, schizophrenia, etc.), it is necessary to assess whether their beneficial effects occur after chronic administration, and if such treatment induces adverse effects. The goal of this study was to assess the effects of chronic 5-HT4R or 5-HT6R modulation on recognition memory, and to observe the possible manifestation of side effects (modification of weight gain, locomotor activity or exploratory behaviour, etc.). Mice were treated for 14 days with a 5-HT4R partial agonist (RS-67333) or a 5-HT6R antagonist (SB-271046) at increasing doses. Memory performances, locomotor activity, and exploration were assessed. Both chronic 5-HT4R activation and 5-HT6R blockade extended memory traces in an object recognition test, and were not associated with any adverse effects in the parameters assessed. Chronic modulation of one or both of these receptors thus seems promising as a potential strategy for the treatment memory deficits.

  2. Constitutively Active 5-HT Receptors: An Explanation of How 5-HT Antagonists Inhibit Gut Motility in Species Where 5-HT is Not an Enteric Neurotransmitter?

    PubMed Central

    Spencer, Nick J.

    2015-01-01

    Antagonists of 5-Hydroxytryptamine (5-HT) receptors are well known to inhibit gastrointestinal (GI)-motility and transit in a variety of mammals, including humans. Originally, these observations had been interpreted by many investigators (including us) as evidence that endogenous 5-HT plays a major role in GI motility. This seemed a logical assumption. However, the story changed dramatically after recent studies revealed that 5-HT antagonists still blocked major GI motility patterns (peristalsis and colonic migrating motor complexes) in segments of intestine depleted of all 5-HT. Then, these results were further supported by Dr. Gershons' laboratory, which showed that genetic deletion of all genes that synthesizes 5-HT had minor, or no inhibitory effects on GI transit in vivo. If 5-HT was essential for GI motility patterns and transit, then one would expect major disruptions in motility and transit when 5-HT synthesis was genetically ablated. This does not occur. The inhibitory effects of 5-HT antagonists on GI motility clearly occur independently of any 5-HT in the gut. Evidence now suggests that 5-HT antagonists act on 5-HT receptors in the gut which are constitutively active, and don't require 5-HT for their activation. This would explain a long-standing mystery of how 5-HT antagonists inhibit gut motility in species like mice, rats, and humans where 5-HT is not an enteric neurotransmitter. Studies are now increasingly demonstrating that the presence of a neurochemical in enteric neurons does not mean they function as neurotransmitters. Caution should be exercised when interpreting any inhibitory effects of 5-HT antagonists on GI motility. PMID:26732863

  3. Genotype-Dependent Difference in 5-HT2C Receptor-Induced Hypolocomotion: Comparison with 5-HT2A Receptor Functional Activity

    PubMed Central

    Bazovkina, Darya V.; Kondaurova, Elena M.; Naumenko, Vladimir S.; Ponimaskin, Evgeni

    2015-01-01

    In the present study behavioral effects of the 5-HT2C serotonin receptor were investigated in different mouse strains. The 5-HT2C receptor agonist MK-212 applied intraperitoneally induced significant dose-dependent reduction of distance traveled in the open field test in CBA/Lac mice. This effect was receptor-specific because it was inhibited by the 5-HT2C receptor antagonist RS102221. To study the role of genotype in 5-HT2C receptor-induced hypolocomotion, locomotor activity of seven inbred mouse strains was measured after MK-212 acute treatment. We found that the 5-HT2C receptor stimulation by MK-212 decreased distance traveled in the open field test in CBA/Lac, C57Bl/6, C3H/He, and ICR mice, whereas it failed to affect locomotor activity in DBA/2J, Asn, and Balb/c mice. We also compared the interstrain differences in functional response to 5-HT2C and 5-HT2A receptors activation measured by the quantification of receptor-mediated head-twitches. These experiments revealed significant positive correlation between 5-HT2C and 5-HT2A receptors functional responses for all investigated mouse strains. Moreover, we found that 5-HT2A receptor activation with DOI did not change locomotor activity in CBA/Lac mice. Taken together, our data indicate the implication of 5-HT2C receptors in regulation of locomotor activity and suggest the shared mechanism for functional responses mediated by 5-HT2C and 5-HT2A receptors. PMID:26380122

  4. Genotype-Dependent Difference in 5-HT2C Receptor-Induced Hypolocomotion: Comparison with 5-HT2A Receptor Functional Activity.

    PubMed

    Bazovkina, Darya V; Kondaurova, Elena M; Naumenko, Vladimir S; Ponimaskin, Evgeni

    2015-01-01

    In the present study behavioral effects of the 5-HT2C serotonin receptor were investigated in different mouse strains. The 5-HT2C receptor agonist MK-212 applied intraperitoneally induced significant dose-dependent reduction of distance traveled in the open field test in CBA/Lac mice. This effect was receptor-specific because it was inhibited by the 5-HT2C receptor antagonist RS102221. To study the role of genotype in 5-HT2C receptor-induced hypolocomotion, locomotor activity of seven inbred mouse strains was measured after MK-212 acute treatment. We found that the 5-HT2C receptor stimulation by MK-212 decreased distance traveled in the open field test in CBA/Lac, C57Bl/6, C3H/He, and ICR mice, whereas it failed to affect locomotor activity in DBA/2J, Asn, and Balb/c mice. We also compared the interstrain differences in functional response to 5-HT2C and 5-HT2A receptors activation measured by the quantification of receptor-mediated head-twitches. These experiments revealed significant positive correlation between 5-HT2C and 5-HT2A receptors functional responses for all investigated mouse strains. Moreover, we found that 5-HT2A receptor activation with DOI did not change locomotor activity in CBA/Lac mice. Taken together, our data indicate the implication of 5-HT2C receptors in regulation of locomotor activity and suggest the shared mechanism for functional responses mediated by 5-HT2C and 5-HT2A receptors. PMID:26380122

  5. Genotype-Dependent Difference in 5-HT2C Receptor-Induced Hypolocomotion: Comparison with 5-HT2A Receptor Functional Activity.

    PubMed

    Bazovkina, Darya V; Kondaurova, Elena M; Naumenko, Vladimir S; Ponimaskin, Evgeni

    2015-01-01

    In the present study behavioral effects of the 5-HT2C serotonin receptor were investigated in different mouse strains. The 5-HT2C receptor agonist MK-212 applied intraperitoneally induced significant dose-dependent reduction of distance traveled in the open field test in CBA/Lac mice. This effect was receptor-specific because it was inhibited by the 5-HT2C receptor antagonist RS102221. To study the role of genotype in 5-HT2C receptor-induced hypolocomotion, locomotor activity of seven inbred mouse strains was measured after MK-212 acute treatment. We found that the 5-HT2C receptor stimulation by MK-212 decreased distance traveled in the open field test in CBA/Lac, C57Bl/6, C3H/He, and ICR mice, whereas it failed to affect locomotor activity in DBA/2J, Asn, and Balb/c mice. We also compared the interstrain differences in functional response to 5-HT2C and 5-HT2A receptors activation measured by the quantification of receptor-mediated head-twitches. These experiments revealed significant positive correlation between 5-HT2C and 5-HT2A receptors functional responses for all investigated mouse strains. Moreover, we found that 5-HT2A receptor activation with DOI did not change locomotor activity in CBA/Lac mice. Taken together, our data indicate the implication of 5-HT2C receptors in regulation of locomotor activity and suggest the shared mechanism for functional responses mediated by 5-HT2C and 5-HT2A receptors.

  6. 5-HT2A receptor activation is necessary for CO2-induced arousal

    PubMed Central

    Smith, Haleigh R.; MacAskill, Amanda; Richerson, George B.

    2015-01-01

    Hypercapnia-induced arousal from sleep is an important protective mechanism pertinent to a number of diseases. Most notably among these are the sudden infant death syndrome, obstructive sleep apnea and sudden unexpected death in epilepsy. Serotonin (5-HT) plays a significant role in hypercapnia-induced arousal. The mechanism of 5-HT's role in this protective response is unknown. Here we sought to identify the specific 5-HT receptor subtype(s) involved in this response. Wild-type mice were pretreated with antagonists against 5-HT receptor subtypes, as well as antagonists against adrenergic, cholinergic, histaminergic, dopaminergic, and orexinergic receptors before challenge with inspired CO2 or hypoxia. Antagonists of 5-HT2A receptors dose-dependently blocked CO2-induced arousal. The 5-HT2C receptor antagonist, RS-102221, and the 5-HT1A receptor agonist, 8-OH-DPAT, attenuated but did not completely block CO2-induced arousal. Blockade of non-5-HT receptors did not affect CO2-induced arousal. None of these drugs had any effect on hypoxia-induced arousal. 5-HT2 receptor agonists were given to mice in which 5-HT neurons had been genetically eliminated during embryonic life (Lmx1bf/f/p) and which are known to lack CO2-induced arousal. Application of agonists to 5-HT2A, but not 5-HT2C, receptors, dose-dependently restored CO2-induced arousal in these mice. These data identify the 5-HT2A receptor as an important mediator of CO2-induced arousal and suggest that, while 5-HT neurons can be independently activated to drive CO2-induced arousal, in the absence of 5-HT neurons and endogenous 5-HT, 5-HT receptor activation can act in a permissive fashion to facilitate CO2-induced arousal via another as yet unidentified chemosensor system. PMID:25925320

  7. Activated astrocytes display increased 5-HT2a receptor expression in pathological states.

    PubMed

    Wu, C; Singh, S K; Dias, P; Kumar, S; Mann, D M

    1999-08-01

    In human brain tissues from patients dying with cerebral infarction, hypertensive encephalopathy, Alzheimer's disease, Huntington's disease, frontotemporal dementia, and Creutzfeldt-Jakob disease there is an activation of astrocytes. Such activated astrocytes display GFAP and strong 5-HT(2A), but not 5-HT(2B) or 5-HT(2C), receptor immunoreactivity; this 5-HT(2A) reaction has not been observed in normal, nonactivated astrocytes. It is suggested that an up-regulation of 5-HT(2A) receptors may be part of an early response reaction in astrocytes, possibly designed to maintain homeostasis or to induce secondary message pathways involving trophic factors or glycogenolysis. PMID:10415157

  8. Interaction of 5-HT1B/D ligands with recombinant h 5-HT1A receptors: intrinsic activity and modulation by G-protein activation state.

    PubMed

    Pauwels, P J; Palmier, C; Dupuis, D S; Colpaert, F C

    1998-05-01

    Many 5-HT1B/D receptor ligands have affinity for 5-HT1A receptors. In the present study, the intrinsic activity of a series of 5-HT1B/D ligands was investigated at human 5-HT1A (h 5-HT1A) receptors by measuring G-protein activation in recombinant C6-glial and HeLa membranes, using agonist-stimulated [35S]GTPgammaS binding. In these two membrane preparations, the density of h 5-HT1A receptors (i.e., 246 to 320 fmol mg(-1) protein) and of their G-proteins, and the receptor: G-protein density ratio (0.08 to 0.18) appeared to be similar. It was found that: (i) the maximal [35S]GTPgammaS binding responses induced by the 5-HT1B/D receptor ligands in the HeLa preparation at 30 microM GDP were comparable to that of the native agonist 5-HT; (ii) as compared to 5-HT (1.00), similar potencies but lower maximal responses were observed in the C6-glial preparation at 0.3 microM GDP for zolmitriptan (0.89), dihydroergotamine (0.81), rizatriptan (0.71), CP122638 (0.69), naratriptan (0.60) and sumatriptan (0.53); and that (iii) maximal [35S]GTPgammaS binding responses induced by 5-HT1B/D ligands in the C6-glial preparation were either unaffected or significantly enhanced by increasing the GDP concentration from 0.3 to 30 microM and higher concentrations. These features differ from those observed with 5-HT1A receptor agonists; the latter display the same rank order of potency and efficacy in both membrane preparations, and increasing the amount of GDP with C6-glial membranes results in an attenuation of both the agonist's maximal effect and the apparent potency of partial agonists. The differential regulation of 5-HT1A and 5-HT1B/D agonist responses by GDP suggests that different G-protein subtypes are involved upon 5-HT1A receptor activation by 5-HT1A and 5-HT1B/D agonists. PMID:9650800

  9. Volunteer models for predicting antiemetic activity of 5-HT3-receptor antagonists.

    PubMed Central

    Minton, N A

    1994-01-01

    1. Selective 5-HT3-receptor antagonists are highly effective in preventing nausea and vomiting associated with chemotherapy, radiotherapy and surgery. Their pharmacological activity may be determined in vitro and in animal models of emesis. However, these methods may not give an accurate indication of the antiemetic dose range of 5-HT3-receptor antagonists in patients. Two volunteer models have been used to predict more accurately clinically effective antiemetic doses of 5-HT3-receptor antagonists. 2. The flare response to intradermal 5-HT is thought to be mediated by excitation of 5-HT3-receptors on cutaneous afferents, with release of substance P and subsequent vasodilation. Antagonism of the flare response appears to provide an indication of the effective antiemetic dose of 5-HT3-receptor antagonists but data on duration of action are conflicting. 3. Ipecacuanha-induced emesis is thought to be mediated through both peripheral and central 5-HT3-receptors. Antagonism of this response has demonstrated a close correlation with clinically effective antiemetic doses of the specific 5-HT3-receptor antagonist, ondansetron, and has the advantage of being more conceptually relevant than the flare model. 4. Further work, with newer 5-HT3-receptor antagonists, will clarify the role of these models as predictive of the use of these drugs in clinical practice. PMID:7917768

  10. Pharmacology of the hypothermic response to 5-HT1A receptor activation in humans.

    PubMed

    Lesch, K P; Poten, B; Söhnle, K; Schulte, H M

    1990-01-01

    The selective 5-HT1A receptor ligand ipsapirone (IPS) caused dose-related hypothermia in humans. The response was attenuated by the nonselective 5-HT1/2 receptor antagonist metergoline and was completely antagonized by the nonselective beta-adrenoceptor antagonist pindolol, which interacts stereoselectively with the 5-HT1A receptor. The selective beta 1-adrenergic antagonist betaxolol had no effect. The findings indicate that IPS-induced hypothermia specifically involves activation of (presynaptic) 5-HT1A receptors. Therefore, the hypothermic response to IPS may provide a convenient in vivo paradigma to assess the function of the presynaptic 5-HT receptor in affective disorders and its involvement in the effects of psychotropic drugs. PMID:1980461

  11. Pharmacology of the hypothermic response to 5-HT1A receptor activation in humans.

    PubMed

    Lesch, K P; Poten, B; Söhnle, K; Schulte, H M

    1990-01-01

    The selective 5-HT1A receptor ligand ipsapirone (IPS) caused dose-related hypothermia in humans. The response was attenuated by the nonselective 5-HT1/2 receptor antagonist metergoline and was completely antagonized by the nonselective beta-adrenoceptor antagonist pindolol, which interacts stereoselectively with the 5-HT1A receptor. The selective beta 1-adrenergic antagonist betaxolol had no effect. The findings indicate that IPS-induced hypothermia specifically involves activation of (presynaptic) 5-HT1A receptors. Therefore, the hypothermic response to IPS may provide a convenient in vivo paradigma to assess the function of the presynaptic 5-HT receptor in affective disorders and its involvement in the effects of psychotropic drugs.

  12. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation

    PubMed Central

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S.; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G.; Beazely, Michael A.

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands. PMID:25426041

  13. Adult AMPA GLUA1 receptor subunit loss in 5-HT neurons results in a specific anxiety-phenotype with evidence for dysregulation of 5-HT neuronal activity.

    PubMed

    Weber, Tillmann; Vogt, Miriam A; Gartside, Sarah E; Berger, Stefan M; Lujan, Rafael; Lau, Thorsten; Herrmann, Elke; Sprengel, Rolf; Bartsch, Dusan; Gass, Peter

    2015-05-01

    Both the glutamatergic and serotonergic (5-HT) systems are implicated in the modulation of mood and anxiety. Descending cortical glutamatergic neurons regulate 5-HT neuronal activity in the midbrain raphe nuclei through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors. To analyze the functional role of GLUA1-containing AMPA receptors in serotonergic neurons, we used the Cre-ERT2/loxP-system for the conditional inactivation of the GLUA1-encoding Gria1 gene selectively in 5-HT neurons of adult mice. These Gria1(5-HT-/-) mice exhibited a distinct anxiety phenotype but showed no alterations in locomotion, depression-like behavior, or learning and memory. Increased anxiety-related behavior was associated with significant decreases in tryptophan hydroxylase 2 (TPH2) expression and activity, and subsequent reductions in tissue levels of 5-HT, its metabolite 5-hydroxyindoleacetic acid (5-HIAA), and norepinephrine in the raphe nuclei. However, TPH2 expression and activity as well as monoamine levels were unchanged in the projection areas of 5-HT neurons. Extracellular electrophysiological recordings of 5-HT neurons revealed that, while α1-adrenoceptor-mediated excitation was unchanged, excitatory responses to AMPA were enhanced and the 5-HT1A autoreceptor-mediated inhibitory response to 5-HT was attenuated in Gria1(5-HT-/-) mice. Our data show that a loss of GLUA1 protein in 5-HT neurons enhances AMPA receptor function and leads to multiple local molecular and neurochemical changes in the raphe nuclei that dysregulate 5-HT neuronal activity and induce anxiety-like behavior.

  14. Medial hypothalamic 5-hydroxytryptamine (5-HT)1A receptors regulate neuroendocrine responses to stress and exploratory locomotor activity: application of recombinant adenovirus containing 5-HT1A sequences.

    PubMed

    Li, Qian; Holmes, Andrew; Ma, Li; Van de Kar, Louis D; Garcia, Francisca; Murphy, Dennis L

    2004-12-01

    Our previous studies found that serotonin transporter (SERT) knock-out mice showed increased sensitivity to minor stress and increased anxiety-like behavior but reduced locomotor activity. These mice also showed decreased density of 5-hydroxytryptamine (5-HT1A) receptors in the hypothalamus, amygdala, and dorsal raphe. To evaluate the contribution of hypothalamic 5-HT1A receptors to these phenotypes of SERT knock-out mice, two studies were conducted. Recombinant adenoviruses containing 5-HT1A sense and antisense sequences (Ad-1AP-sense and Ad-1AP-antisense) were used to manipulate 5-HT1A receptors in the hypothalamus. The expression of the 5-HT1A genes is controlled by the 5-HT1A promoter, so that they are only expressed in 5-HT1A receptor-containing cells. (1) Injection of Ad-1AP-sense into the hypothalamus of SERT knock-out mice restored 5-HT1A receptors in the medial hypothalamus; this effect was accompanied by elimination of the exaggerated adrenocorticotropin responses to a saline injection (minor stress) and reduced locomotor activity but not by a change in increased exploratory anxiety-like behavior. (2) To further confirm the observation in SERT-/- mice, Ad-1AP-antisense was injected into the hypothalamus of normal mice. The density and the function of 5-HT1A receptors in the medial hypothalamus were significantly reduced in Ad-1AP-antisense-treated mice. Compared with the control group (injected with Ad-track), Ad-1A-antisense-treated mice showed a significant reduction in locomotor activity, but again no changes in exploratory anxiety-like behaviors, tested by elevated plus-maze and open-field tests. Thus, the present results demonstrate that medial hypothalamic 5-HT1A receptors regulate stress responses and locomotor activity but may not regulate exploratory anxiety-like behaviors. PMID:15574737

  15. Evaluation of structural effects on 5-HT2A receptor antagonism by aporphines: identification of a new aporphine with 5-HT2A antagonist activity

    PubMed Central

    Ponnala, Shashikanth; Gonzales, Junior; Kapadia, Nirav; Navarro, Hernan A.; Harding, Wayne W.

    2014-01-01

    A set of aporphine analogs related to nantenine was evaluated for antagonist activity at 5-HT2A and α1A adrenergic receptors. With regards to 5-HT2A receptor antagonism, a C2 allyl group is detrimental to activity. The chiral center of nantenine is not important for 5-HT2A antagonist activity, however the N6 nitrogen atom is a critical feature for 5-HT2A antagonism. Compound 12b was the most potent 5-HT2A aporphine antagonist identified in this study and has similar potency to previously identified aporphine antagonists 2 and 3. The ring A and N6 modifications examined were detrimental to α1A antagonism. A slight eutomeric preference for the R enantiomer of nantenine was observed in relation to α1A antagonism. PMID:24630561

  16. The antidepressant activity of inositol in the forced swim test involves 5-HT(2) receptors.

    PubMed

    Einat, H; Clenet, F; Shaldubina, A; Belmaker, R H; Bourin, M

    2001-01-01

    The effect of inositol as an antidepressant was previously demonstrated in both animal models of depression-like behavior and in clinical trials. Unlike most antidepressant drugs, inositol does not have a clear target in the synapse and was not demonstrated to alter monoamine levels in the brain. The present study attempted to draw a psychopharmacological profile of inositol's behavioral effects by exploring the interactions between the drug and specific receptor agonists and antagonists in the forced swim test. Rats received inositol treatment (or control) in combination with the serotonergic metabolism inhibitor PCPA or with the noradrenergic neurotoxin DSP-4. Results indicated that PCPA but not DSP-4 abolished the ability of inositol to cause a reduction in immobility time in the forced swim test. In mice, the specific 5-HT(2A)/5-HT(2C) antagonist ritanserin, but not the 5-HT(1A)/5-HT(1B)/beta adrenergic antagonist pindolol, abolished inositol's effect in the forced swim test. The 5-HT(2A)/5-HT(2C) agonist DOI and the 5-HT(1A) agonist 8-OH-DPAT did not have any significant effects on inositol's activity. The present data indicates that the antidepressant effect of inositol may involve 5-HT(2) receptors. It is thus possible that the effects of reuptake antidepressant drugs and the effects of inositol may have a common final pathway.

  17. Adult AMPA GLUA1 Receptor Subunit Loss in 5-HT Neurons Results in a Specific Anxiety-Phenotype with Evidence for Dysregulation of 5-HT Neuronal Activity

    PubMed Central

    Weber, Tillmann; Vogt, Miriam A; Gartside, Sarah E; Berger, Stefan M; Lujan, Rafael; Lau, Thorsten; Herrmann, Elke; Sprengel, Rolf; Bartsch, Dusan; Gass, Peter

    2015-01-01

    Both the glutamatergic and serotonergic (5-HT) systems are implicated in the modulation of mood and anxiety. Descending cortical glutamatergic neurons regulate 5-HT neuronal activity in the midbrain raphe nuclei through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors. To analyze the functional role of GLUA1-containing AMPA receptors in serotonergic neurons, we used the Cre-ERT2/loxP-system for the conditional inactivation of the GLUA1-encoding Gria1 gene selectively in 5-HT neurons of adult mice. These Gria15-HT−/− mice exhibited a distinct anxiety phenotype but showed no alterations in locomotion, depression-like behavior, or learning and memory. Increased anxiety-related behavior was associated with significant decreases in tryptophan hydroxylase 2 (TPH2) expression and activity, and subsequent reductions in tissue levels of 5-HT, its metabolite 5-hydroxyindoleacetic acid (5-HIAA), and norepinephrine in the raphe nuclei. However, TPH2 expression and activity as well as monoamine levels were unchanged in the projection areas of 5-HT neurons. Extracellular electrophysiological recordings of 5-HT neurons revealed that, while α1-adrenoceptor-mediated excitation was unchanged, excitatory responses to AMPA were enhanced and the 5-HT1A autoreceptor-mediated inhibitory response to 5-HT was attenuated in Gria15-HT−/− mice. Our data show that a loss of GLUA1 protein in 5-HT neurons enhances AMPA receptor function and leads to multiple local molecular and neurochemical changes in the raphe nuclei that dysregulate 5-HT neuronal activity and induce anxiety-like behavior. PMID:25547714

  18. Partial role of 5-HT2 and 5-HT3 receptors in the activity of antidepressants in the mouse forced swimming test.

    PubMed

    Redrobe, J P; Bourin, M

    1997-05-01

    The present study was designed to evaluate the roles of 5-HT2 and 5-HT3 receptors in the mouse forced swimming test, by using selective agonists and antagonists of 5-HT(2A/C) and 5-HT3 receptor sites. Agonists/antagonists and antidepressants were administered 45 min and 30 min, respectively, prior to testing. Pretreatment with (+/-)-2,5-dimethoxy-4-iodoamphetamine (DOI) (4 mg/kg, i.p.) or 2-methyl-5-HT (4 mg/kg, i.p.) had no effect on the anti-immobility effects of any antidepressant tested. Prior administration of ritanserin (4 mg/kg, i.p.) or ketanserin (8 mg/kg, i.p.), on the other hand, potentiated the effects of sub-active doses of imipramine (8 mg/kg, i.p.) and desipramine (16 mg/kg, i.p.) but not of maprotiline (8 mg/kg, i.p.), fluoxetine (16 mg/kg, i.p.), citalopram (16 mg/kg, i.p.) or fluvoxamine (8 mg/kg, i.p.). Pretreatment with ondansetron (1 X 10(-5) mg/kg, i.p.) enhanced the antidepressant-like effects of sub-active doses of the selective serotonin reuptake inhibitors. The results of the present study suggested that, in the forced swimming test, the selective serotonin reuptake inhibitors act partially through 5-HT3 receptor sites, whereas the tricyclic antidepressants exert effects at 5-HT(2A/C) receptor sites. Anti-immobility effects of the selective noradrenaline reuptake inhibitor, maprotiline, do not seem to be mediated by 5-HT(2A/C) or 5-HT3 receptor function.

  19. Control of sensory neuron excitability by serotonin involves 5HT2C receptors and Ca(2+)-activated chloride channels.

    PubMed

    Salzer, Isabella; Gantumur, Enkhbileg; Yousuf, Arsalan; Boehm, Stefan

    2016-11-01

    Serotonin (5HT) is a constituent of the so-called "inflammatory soup" that sensitizes nociceptors during inflammation. Nevertheless, receptors and signaling mechanisms that mediate an excitation of dorsal root ganglion (DRG) neurons by 5HT remained controversial. Therefore, capsaicin-sensitive nociceptive neurons dissociated from rat DRGs were used to investigate effects of 5HT on membrane excitability and currents through ligand- as well as voltage-gated ion channels. In 58% of the neurons tested, 5HT increased action potential firing, an effect that was abolished by the 5HT2 receptor antagonist ritanserin, but not by the 5HT3 antagonist tropisetron. Unlike other algogenic mediators, such as PGE2 and bradykinin, 5HT did not affect currents through TTX-resistant Na(+) channels or Kv7 K(+) channels. In all neurons investigated, 5HT potentiated capsaicin-evoked currents through TRPV1 channels, an effect that was attenuated by antagonists at 5HT2A (4 F 4 PP), 5HT2B (SB 204741), as well as 5HT2C (RS 102221) receptors. 5HT triggered slowly arising inward Cl(-) currents in 53% of the neurons. This effect was antagonized by the 5HT2C receptor blocker only, and the current was prevented by an inhibitor of Ca(2+)-activated chloride channels (CaCC). The 5HT-induced increase in action potential firing was also abolished by this CaCC blocker and by the TRPV1 inhibitor capsazepine. Amongst the subtype selective 5HT2 antagonists, only RS 102221 (5HT2C-selectively) counteracted the rise in action potential firing elicited by 5HT. These results show that 5HT excites DRG neurons mainly via 5HT2C receptors which concomitantly mediate a sensitization of TRPV1 channels and an opening of CaCCs.

  20. An Orally Active Phenylaminotetralin-Chemotype Serotonin 5-HT7 and 5-HT1A Receptor Partial Agonist that Corrects Motor Stereotypy in Mouse Models.

    PubMed

    Canal, Clinton E; Felsing, Daniel E; Liu, Yue; Zhu, Wanying; Wood, JodiAnne T; Perry, Charles K; Vemula, Rajender; Booth, Raymond G

    2015-07-15

    Stereotypy (e.g., repetitive hand waving) is a key phenotype of autism spectrum disorder, Fragile X and Rett syndromes, and other neuropsychiatric disorders, and its severity correlates with cognitive and attention deficits. There are no effective treatments, however, for stereotypy. Perturbation of serotonin (5-HT) neurotransmission contributes to stereotypy, suggesting that distinct 5-HT receptors may be pharmacotherapeutic targets to treat stereotypy and related neuropsychiatric symptoms. For example, preclinical studies indicate that 5-HT7 receptor activation corrects deficits in mouse models of Fragile X and Rett syndromes, and clinical trials for autism are underway with buspirone, a 5-HT1A partial agonist with relevant affinity at 5-HT7 receptors. Herein, we report the synthesis, in vitro molecular pharmacology, behavioral pharmacology, and pharmacokinetic parameters in mice after subcutaneous and oral administration of (+)-5-(2'-fluorophenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine ((+)-5-FPT), a new, dual partial agonist targeting both 5-HT7 (Ki = 5.8 nM, EC50 = 34 nM) and 5-HT1A (Ki = 22 nM, EC50 = 40 nM) receptors. Three unique, heterogeneous mouse models were used to assess the efficacy of (+)-5-FPT to reduce stereotypy: idiopathic jumping in C58/J mice, repetitive body rotations in C57BL/6J mice treated with the NMDA antagonist, MK-801, and repetitive head twitching in C57BL/6J mice treated with the 5-HT2 agonist, DOI. Systemic (+)-5-FPT potently and efficaciously reduced or eliminated stereotypy in each of the mouse models without altering locomotor behavior on its own, and additional tests showed that (+)-5-FPT, at the highest behaviorally active dose tested, enhanced social interaction and did not cause behaviors indicative of serotonin syndrome. These data suggest that (+)-5-FPT is a promising medication for treating stereotypy in psychiatric disorders.

  1. Activation of 5-HT2A/2C receptors reduces the excitability of cultured cortical neurons.

    PubMed

    Hu, Lingli; Liu, Chunhua; Dang, Minyan; Luo, Bin; Guo, Yiping; Wang, Haitao

    2016-10-01

    The abundant forebrain serotonergic projections are believed to modulate the activities of cortical neurons. 5-HT2 receptor among multiple subtypes of serotonin receptors contributes to the modulation of excitability, synaptic transmissions and plasticity. In the present study, whole-cell patch-clamp recording was adopted to examine whether activation of 5-HT2A/2C receptors would have any impact on the excitability of cultured cortical neurons. We found that 2,5-Dimethoxy-4-iodoamphetamine (DOI), a selective 5-HT2A/2C receptor agonist, rapidly and reversibly depressed spontaneous action potentials mimicking the effect of serotonin. The decreased excitability was also observed for current-evoked firing. Additionally DOI increased neuronal input resistance. Hyperpolarization-activated cyclic nucleotide-gated cationic channels (HCN) did not account for the inhibition of spontaneous firing. The synaptic contribution was ruled out in that DOI augmented excitation and attenuated inhibition to actually favor an increase in the excitability. Our findings revealed that activation of 5-HT2A/2C receptors reduces neuronal excitability, which would deepen our understanding of serotonergic modulation of cortical activities. PMID:27585751

  2. Interaction of the alpha-adrenoceptor agonist oxymetazoline with serotonin 5-HT1A, 5-HT1B, 5-HT1C and 5-HT1D receptors.

    PubMed

    Schoeffter, P; Hoyer, D

    1991-04-17

    Oxymetazoline was recognized with nanomolar affinity by 5-HT1A, 5-HT1B and 5-HT1D binding sites and mimicked the effects of 5-hydroxytryptamine with about the same potency and intrinsic activity as the endogenous amine in the corresponding functional tests. At 5-HT1C receptors, oxymetazoline behaved as a mixed agonist-antagonist. Clonidine had minimal activity. Methiothepin antagonized the effects of oxymetazoline (7.4 less than pKB less than 8.8). Thus, oxymetazoline is a full and potent agonist at 5-HT1A, 5-HT1B and 5-HT1D receptors and a partial agonist at 5-HT1C receptors.

  3. Application of Quantitative Structure–Activity Relationship Models of 5-HT1A Receptor Binding to Virtual Screening Identifies Novel and Potent 5-HT1A Ligands

    PubMed Central

    2015-01-01

    The 5-hydroxytryptamine 1A (5-HT1A) serotonin receptor has been an attractive target for treating mood and anxiety disorders such as schizophrenia. We have developed binary classification quantitative structure–activity relationship (QSAR) models of 5-HT1A receptor binding activity using data retrieved from the PDSP Ki database. The prediction accuracy of these models was estimated by external 5-fold cross-validation as well as using an additional validation set comprising 66 structurally distinct compounds from the World of Molecular Bioactivity database. These validated models were then used to mine three major types of chemical screening libraries, i.e., drug-like libraries, GPCR targeted libraries, and diversity libraries, to identify novel computational hits. The five best hits from each class of libraries were chosen for further experimental testing in radioligand binding assays, and nine of the 15 hits were confirmed to be active experimentally with binding affinity better than 10 μM. The most active compound, Lysergol, from the diversity library showed very high binding affinity (Ki) of 2.3 nM against 5-HT1A receptor. The novel 5-HT1A actives identified with the QSAR-based virtual screening approach could be potentially developed as novel anxiolytics or potential antischizophrenic drugs. PMID:24410373

  4. Application of quantitative structure-activity relationship models of 5-HT1A receptor binding to virtual screening identifies novel and potent 5-HT1A ligands.

    PubMed

    Luo, Man; Wang, Xiang Simon; Roth, Bryan L; Golbraikh, Alexander; Tropsha, Alexander

    2014-02-24

    The 5-hydroxytryptamine 1A (5-HT1A) serotonin receptor has been an attractive target for treating mood and anxiety disorders such as schizophrenia. We have developed binary classification quantitative structure-activity relationship (QSAR) models of 5-HT1A receptor binding activity using data retrieved from the PDSP Ki database. The prediction accuracy of these models was estimated by external 5-fold cross-validation as well as using an additional validation set comprising 66 structurally distinct compounds from the World of Molecular Bioactivity database. These validated models were then used to mine three major types of chemical screening libraries, i.e., drug-like libraries, GPCR targeted libraries, and diversity libraries, to identify novel computational hits. The five best hits from each class of libraries were chosen for further experimental testing in radioligand binding assays, and nine of the 15 hits were confirmed to be active experimentally with binding affinity better than 10 μM. The most active compound, Lysergol, from the diversity library showed very high binding affinity (Ki) of 2.3 nM against 5-HT1A receptor. The novel 5-HT1A actives identified with the QSAR-based virtual screening approach could be potentially developed as novel anxiolytics or potential antischizophrenic drugs.

  5. 5-HT6 receptors and Alzheimer's disease.

    PubMed

    Ramírez, María Javier

    2013-01-01

    During the past 20 years, the 5-HT6 receptor has received increasing attention and become a promising target for improving cognition. Several studies with structurally different compounds have shown that not only antagonists but also 5-HT6 receptor agonists improve learning and memory in animal models. A large number of publications describing the development of ligands for this receptor have come to light, and it is now quite evident that 5-HT6 receptors have great pharmaceutical potential in terms of related patents. However, 5-HT6 receptor functionality is much more complex than initially defined. According to the existing data, different cellular pathways may be activated, depending on the drug being used. This article reviews preclinical and clinical evidence of the effects that 5-HT6 receptor compounds have on cognition. In addition, the biochemical and neurochemical mechanisms of action through which 5-HT6 receptor compounds can influence cognition will be described. Overall, several 5-HT6-targeted compounds can reasonably be regarded as powerful drug candidates for the treatment of Alzheimer's disease.

  6. Activation of 5-HT3 receptors leads to altered responses 6 months after MDMA treatment.

    PubMed

    Gyongyosi, Norbert; Balogh, Brigitta; Katai, Zita; Molnar, Eszter; Laufer, Rudolf; Tekes, Kornelia; Bagdy, Gyorgy

    2010-03-01

    The recreational drug "Ecstasy" [3,4-methylenedioxymethamphetamine (MDMA)] has a well-characterised neurotoxic effect on the 5-hydroxytryptamine (5-HT) neurons in animals. Despite intensive studies, the long-term functional consequencies of the 5-HT neurodegeneration remains elusive. The aim of this study was to investigate whether any alteration of 5-hydroxytryptamine-3 (5-HT(3)) receptor functions on the sleep-wake cycle, motor activity, and quantitative EEG could be detected 6 months after a single dose of 15 mg/kg of MDMA. The selective 5-HT(3) receptor agonist m-chlorophenylbiguanide (mCPBG; 1 mg/kg, i.p.) or vehicle was administered to freely moving rats pre-treated with MDMA (15 mg/kg, i.p.) or vehicle 6 months earlier. Polysomnographic and motor activity recordings were performed. Active wake (AW), passive wake (PW), light slow wave sleep (SWS-1), deep slow wave sleep (SWS-2), and paradoxical sleep were classified. In addition, EEG power spectra were calculated for the second hour after mCPBG treatment for each stage. AW increased and SWS-1 decreased in the second hour after mCPBG treatment in control animals. mCPBG caused significant changes in the EEG power in states with cortical activation (AW, PW, paradoxical sleep). In addition, mCPBG had a biphasic effect on hippocampal theta power in AW with a decrease in 7 Hz and a stage-selective increase in the upper range (8-9 Hz). Effects of mCPBG on the time spent in AW and SWS-1 were eliminated or reduced in MDMA-treated animals. In addition, mCPBG did not increase the upper theta power of AW in rats pre-treated with MDMA. These data suggest long-term changes in 5-HT(3) receptor function after MDMA. PMID:20052506

  7. 5-HT3 receptor-channels coupled with Na+ influx in human T cells: role in T cell activation.

    PubMed

    Khan, N A; Poisson, J P

    1999-09-01

    The study was conducted on a human (Jurkat) T cell line, loaded with a Na+ fluorescent probe, SBFI/AM. Serotonin and an agonist of 5-HT3 receptor-channels, 2-methyl-5HT, evoked Na+ influx, whereas the agonists of other serotonergic receptor subtypes, i.e., 5-HT1A and 5-HT1B receptors, failed to induce Na+ influx in these cells. By using 3H-BRL43694, an agonist of 5-HT3 receptor-channels, we characterized 5-HT3 lymphocyte receptors which exhibited a density (Bmax) of 300 +/- 20 fmol/10(6) cells and a Kd of 30 nM in Jurkat T cells. The T-cell 5-HT3 receptor-channel is not regulated either by the protein kinase C or by the free intracellular calcium concentrations as the agents known to activate the PKC and to induce increases in intracellular free calcium concentrations failed to influence the free intracellular Na+ concentrations, [Na+]i, in these cells. Furthermore, an increase in [Na+]i, induced by 2-methyl-5HT, via 5-HT3 receptor-channels seems to stimulate T-cell activation by facilitating the progression of T cells from S to G2/M phase of the cell cycle.

  8. Spinal 5-HT7 receptor activation induces long-lasting phrenic motor facilitation

    PubMed Central

    Hoffman, M S; Mitchell, G S

    2011-01-01

    Abstract Acute intermittent hypoxia elicits a form of serotonin-dependent respiratory plasticity known as phrenic long term facilitation (pLTF). Episodic spinal serotonin-2 (5-HT2) receptor activation on or near phrenic motor neurons is necessary for pLTF. A hallmark of pLTF is the requirement for serotonin-dependent synthesis of brain-derived neurotrophic factor (BDNF), and activation of its high affinity receptor, TrkB. Activation of spinal Gs protein-coupled adenosine 2A receptors (GsPCRs) elicits a unique form of long-lasting phrenic motor facilitation (PMF), but via unique mechanisms (BDNF independent TrkB trans-activation). We hypothesized that other GsPCRs elicit PMF, specifically serotonin-7 (5-HT7) receptors, which are expressed in phrenic motor neurons. Cervical spinal (C4) injections of a selective 5-HT7 receptor agonist, AS-19 (10 μm, 5 μl; 3 × 5 min), in anaesthetized, vagotomized and ventilated male Sprague–Dawley rats elicited long-lasting PMF (>120 min), an effect prevented by pretreatment with a 5-HT7 receptor antagonist (SB 269970; 5 mm, 7 μl). GsPCR activation ‘trans-activates’ TrkB by increasing synthesis of an immature TrkB isoform. Spinal injection of a TrkB inhibitor (k252a) and siRNAs that prevent TrkB (but not BDNF) mRNA translation both blocked 5-HT7 agonist-induced PMF, confirming a requirement for TrkB synthesis and activity. k252a affected late PMF (≥90 min) only. Spinal inhibition of the PI3K/AKT pathway blocked 5-HT7 agonist-induced PMF, whereas MEK/ERK inhibition delayed, but did not block, PMF. An understanding of signalling mechanisms giving rise to PMF may guide development of novel therapeutic strategies to treat ventilatory control disorders associated with respiratory insufficiency, such as spinal injury and motor neuron disease. PMID:21242254

  9. The influence of 5-HT(2A) activity on a 5-HT(2C) specific in vivo assay used for early identification of multiple acting SERT and 5-HT(2C) receptor ligands.

    PubMed

    Éliás, Olivér; Nógrádi, Katalin; Domány, György; Szakács, Zoltán; Kóti, János; Szántay, Csaba; Tarcsay, Ákos; Keserű, György M; Gere, Anikó; Kiss, Béla; Kurkó, Dalma; Kolok, Sándor; Némethy, Zsolt; Kapui, Zoltán; Hellinger, Éva; Vastag, Mónika; Sághy, Katalin; Kedves, Rita; Gyertyán, István

    2016-02-01

    As a result of our exploratory programme aimed at elaborating dually acting compounds towards the serotonin (5-HT) transporter (SERT) and the 5-HT2C receptor a novel series of 3-amino-1-phenylpropoxy substituted diphenylureas was identified. From that collection two promising compounds (2 and 3) exhibiting highest 5-HT2C receptor affinity strongly inhibited the 5-HT2C receptor agonist 1-(3-chlorophenyl)piperazine (mCPP) induced hypomotility in mice. In further pursuance of that objective (2-aminoethyl)(benzyl)sulfamoyl diphenylureas and diphenylpiperazines have also been elaborated. Herein we report the synthesis of potent multiple-acting compounds from this new class. However, when two optimized representatives (6 and 14) possessing the desired in vitro profile were tested neither reduced the motor activity of mCPP treated animals. Comparative albeit limited in vitro structure-activity relationship (SAR) analysis and detailed in vivo studies are discussed and explanation for their intricate behaviour is proposed.

  10. Potentiation of 5-methoxy-N,N-dimethyltryptamine-induced hyperthermia by harmaline and the involvement of activation of 5-HT1A and 5-HT2A receptors.

    PubMed

    Jiang, Xi-Ling; Shen, Hong-Wu; Yu, Ai-Ming

    2015-02-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and harmaline are serotonin (5-HT) analogs often abused together, which alters thermoregulation that may indicate the severity of serotonin toxicity. Our recent studies have revealed that co-administration of monoamine oxidase inhibitor harmaline leads to greater and prolonged exposure to 5-HT agonist 5-MeO-DMT that might be influenced by cytochrome P450 2D6 (CYP2D6) status. This study was to define the effects of harmaline and 5-MeO-DMT on thermoregulation in wild-type and CYP2D6-humanized (Tg-CYP2D6) mice, as well as the involvement of 5-HT receptors. Animal core body temperatures were monitored noninvasively in the home cages after implantation of telemetry transmitters and administration of drugs. Harmaline (5 and 15 mg/kg, i.p.) alone was shown to induce hypothermia that was significantly affected by CYP2D6 status. In contrast, higher doses of 5-MeO-DMT (10 and 20 mg/kg) alone caused hyperthermia. Co-administration of harmaline (2, 5 or 15 mg/kg) remarkably potentiated the hyperthermia elicited by 5-MeO-DMT (2 or 10 mg/kg), which might be influenced by CYP2D6 status at certain dose combination. Interestingly, harmaline-induced hypothermia was only attenuated by 5-HT1A receptor antagonist WAY-100635, whereas 5-MeO-DMT- and harmaline-5-MeO-DMT-induced hyperthermia could be suppressed by either WAY-100635 or 5-HT2A receptor antagonists (MDL-100907 and ketanserin). Moreover, stress-induced hyperthermia under home cage conditions was not affected by WAY-100635 but surprisingly attenuated by MDL-100907 and ketanserin. Our results indicate that co-administration of monoamine oxidase inhibitor largely potentiates 5-MeO-DMT-induced hyperthermia that involves the activation of both 5-HT1A and 5-HT2A receptors. These findings shall provide insights into development of anxiolytic drugs and new strategies to relieve the lethal hyperthermia in serotonin toxicity.

  11. Blockade of 5-HT1A receptors by (+/-)-pindolol potentiates cortical 5-HT outflow, but not antidepressant-like activity of paroxetine: microdialysis and behavioral approaches in 5-HT1A receptor knockout mice.

    PubMed

    Guilloux, Jean-Philippe; David, Denis J P; Guiard, Bruno P; Chenu, Franck; Repérant, Christelle; Toth, Miklos; Bourin, Michel; Gardier, Alain M

    2006-10-01

    Selective serotonin reuptake inhibitors like paroxetine (Prx) often requires 4-6 weeks to achieve clinical benefits in depressed patients. Pindolol shortens this delay and it has been suggested that this effect is mediated by somatodendritic 5-hydroxytryptamine (5-HT) 1A autoreceptors. However clinical data on the beneficial effects of pindolol are conflicting. To study the effects of (+/-)-pindolol-paroxetine administration, we used genetical and pharmacological approaches in 5-HT1A knockout mice (5-HT1A-/-). Two assays, in vivo intracerebral microdialysis in awake mice and the forced swimming test (FST), were used to assess the antidepressant-like effects of this drug combination. Basal levels of extracellular serotonin, 5-HT ([5-HT]ext) in the frontal cortex (FCX) and the dorsal raphe nucleus (DRN) did not differ between the two strains of mice, suggesting a lack of tonic control of 5-HT1A autoreceptors on nerve terminal 5-HT release. Prx (1 and 4 mg/kg) dose-dependently increased cortical [5-HT]ext in both genotypes, but the effects were greater in mutants. The selective 5-HT1A receptor antagonist, WAY-100635 (0.5 mg/kg), or (+/-)-pindolol (5 and 10 mg/kg) potentiated the effects of Prx (4 mg/kg) on cortical [5-HT]ext in 5-HT1A+/+, but not in 5-HT1A-/- mice. Similar responses were obtained following local intra-raphe perfusion by reverse microdialysis of either WAY-100635 or (+/-)-pindolol (100 microM each). In the FST, Prx administration dose-dependently decreased the immobility time in both strains of mice, but the response was much greater in 5HT1A-/- mice. In contrast, (+/-)-pindolol blocked Prx-induced decreases in the immobility time while WAY-100635 had no effect in both genotypes. These findings using 5-HT1A-/- mice confirm that (+/-)-pindolol behaves as an antagonist of 5-HT1A autoreceptor in mice, but its blockade of paroxetine-induced antidepressant-like effects in the FST may be due to its binding to other neurotransmitter receptors.

  12. Serotonin 5-HT(2A) receptor activation induces 2-arachidonoylglycerol release through a phospholipase c-dependent mechanism.

    PubMed

    Parrish, Jason C; Nichols, David E

    2006-11-01

    To date, several studies have demonstrated that phospholipase C-coupled receptors stimulate the production of endocannabinoids, particularly 2-arachidonoylglycerol. There is now evidence that endocannabinoids are involved in phospholipase C-coupled serotonin 5-HT(2A) receptor-mediated behavioral effects in both rats and mice. The main objective of this study was to determine whether activation of the 5-HT(2A) receptor leads to the production and release of the endocannabinoid 2-arachidonoylglycerol. NIH3T3 cells stably expressing the rat 5-HT(2A) receptor were first incubated with [(3)H]-arachidonic acid for 24 h. Following stimulation with 10 mum serotonin, lipids were extracted from the assay medium, separated by thin layer chromatography, and analyzed by liquid scintillation counting. Our results indicate that 5-HT(2A) receptor activation stimulates the formation and release of 2-arachidonoylglycerol. The 5-HT(2A) receptor-dependent release of 2-arachidonoylglycerol was partially dependent on phosphatidylinositol-specific phospholipase C activation. Diacylglycerol produced downstream of 5-HT(2A) receptor-mediated phospholipase D or phosphatidylcholine-specific phospholipase C activation did not appear to contribute to 2-arachidonoylglycerol formation in NIH3T3-5HT(2A) cells. In conclusion, our results support a functional model where neuromodulatory neurotransmitters such as serotonin may act as regulators of endocannabinoid tone at excitatory synapses through the activation of phospholipase C-coupled G-protein coupled receptors. PMID:17010161

  13. Structure-Activity Relationships of Constrained Phenylethylamine Ligands for the Serotonin 5-HT2 Receptors

    PubMed Central

    Isberg, Vignir; Paine, James; Leth-Petersen, Sebastian; Kristensen, Jesper L.; Gloriam, David E.

    2013-01-01

    Serotonergic ligands have proven effective drugs in the treatment of migraine, pain, obesity, and a wide range of psychiatric and neurological disorders. There is a clinical need for more highly 5-HT2 receptor subtype-selective ligands and the most attention has been given to the phenethylamine class. Conformationally constrained phenethylamine analogs have demonstrated that for optimal activity the free lone pair electrons of the 2-oxygen must be oriented syn and the 5-oxygen lone pairs anti relative to the ethylamine moiety. Also the ethyl linker has been constrained providing information about the bioactive conformation of the amine functionality. However, combined 1,2-constriction by cyclization has only been tested with one compound. Here, we present three new 1,2-cyclized phenylethylamines, 9–11, and describe their synthetic routes. Ligand docking in the 5-HT2B crystal structure showed that the 1,2-heterocyclized compounds can be accommodated in the binding site. Conformational analysis showed that 11 can only bind in a higher-energy conformation, which would explain its absent or low affinity. The amine and 2-oxygen interactions with D3.32 and S3.36, respectively, can form but shift the placement of the core scaffold. The constraints in 9–11 resulted in docking poses with the 4-bromine in closer vicinity to 5.46, which is polar only in the human 5-HT2A subtype, for which 9–11 have the lowest affinity. The new ligands, conformational analysis and docking expand the structure-activity relationships of constrained phenethylamines and contributes towards the development of 5-HT2 receptor subtype-selective ligands. PMID:24244317

  14. Subunit rotation models activation of serotonin 5-HT3AB receptors by agonists.

    PubMed

    Maksay, Gábor; Simonyi, Miklós; Bikádi, Zsolt

    2004-10-01

    The N-terminal extracellular regions of heterooligomeric 3AB-type human 5-hydroxytryptamine receptors (5-HT3ABR) were modelled based on the crystal structure of snail acetylcholine binding protein AChBP. Stepwise rotation of subunit A by 5 degrees was performed between -10 degrees and 15 degrees to mimic agonist binding and receptor activation. Anticlockwise rotation reduced the size of the binding cavity in interface AB and reorganised the network of hydrogen bonds along the interface. AB subunit dimers with different rotations were applied for docking of ligands with different efficacies: 5-HT, m-chlorophenylbiguanide, SR 57227, quinolinyl piperazine and lerisetron derivatives. All ligands were docked into the dimer with -10 degrees rotation representing ligand-free, open binding cavities similarly, without pharmacological discrimination. Their ammonium ions were in hydrogen bonding distance to the backbone carbonyl of W183. Anticlockwise rotation and contraction of the binding cavity led to distinctive docking interactions of agonists with E129 and cation-pi interactions of their ammonium ions. Side chains of several further amino acids participating in docking (Y143, Y153, Y234 and E236) are in agreement with the effects of point mutations in the binding loops. Our model postulates that 5-HT binds to W183 in a hydrophobic cleft as well as to E236 in a hydrophilic vestibule. Then it elicits anticlockwise rotation to draw in loop C via pi-cation-pi interactions of its ammonium ion with W183 and Y234. Finally, closure of the binding cavity might end in rebinding of 5-HT to E129 in the hydrophilic vestibule.

  15. Pharmacological profile of DA-6886, a novel 5-HT4 receptor agonist to accelerate colonic motor activity in mice.

    PubMed

    Lee, Min Jung; Cho, Kang Hun; Park, Hyun Min; Sung, Hyun Jung; Choi, Sunghak; Im, Weonbin

    2014-07-15

    DA-6886, the gastrointestinal prokinetic benzamide derivative is a novel 5-HT4 receptor agonist being developed for the treatment of constipation-predominant irritable bowel syndrome (IBS-C). The purpose of this study was to characterize in vitro and in vivo pharmacological profile of DA-6886. We used various receptor binding assay, cAMP accumulation assay, organ bath experiment and colonic transit assay in normal and chemically constipated mice. DA-6886 exhibited high affinity and selectivity to human 5-HT4 receptor splice variants, with mean pKi of 7.1, 7.5, 7.9 for the human 5-HT4a, 5-HT4b and 5-HT4d, respectively. By contrast, DA-6886 did not show significant affinity for several receptors including dopamine D2 receptor, other 5-HT receptors except for 5-HT2B receptor (pKi value of 6.2). The affinity for 5-HT4 receptor was translated into functional agonist activity in Cos-7 cells expressing 5-HT4 receptor splice variants. Furthermore, DA-6886 induced relaxation of the rat oesophagus preparation (pEC50 value of 7.4) in a 5-HT4 receptor antagonist-sensitive manner. The evaluation of DA-6886 in CHO cells expressing hERG channels revealed that it inhibited hERG channel current with an pIC50 value of 4.3, indicating that the compound was 1000-fold more selective for the 5-HT4 receptor over hERG channels. In the normal ICR mice, oral administration of DA-6886 (0.4 and 2mg/kg) resulted in marked stimulation of colonic transit. Furthermore, in the loperamide-induced constipation mouse model, 2mg/kg of DA-6886 significantly improved the delay of colonic transit, similar to 10mg/kg of tegaserod. Taken together, DA-6886 is a highly potent and selective 5-HT4 receptor agonist to accelerate colonic transit in mice, which might be therapeutic agent having a favorable safety profile in the treatment of gastrointestinal motor disorders such as IBS-C and chronic constipation.

  16. Impact of intracellular domain flexibility upon properties of activated human 5-HT3 receptors*

    PubMed Central

    Kozuska, J L; Paulsen, I M; Belfield, W J; Martin, I L; Cole, D J; Holt, A; Dunn, S M J

    2014-01-01

    Background and Purpose It has been proposed that arginine residues lining the intracellular portals of the homomeric 5-HT3A receptor cause electrostatic repulsion of cation flow, accounting for a single-channel conductance substantially lower than that of the 5-HT3AB heteromer. However, comparison of receptor homology models for wild-type pentamers suggests that salt bridges in the intracellular domain of the homomer may impart structural rigidity, and we hypothesized that this rigidity could account for the low conductance. Experimental Approach Mutations were introduced into the portal region of the human 5-HT3A homopentamer, such that putative salt bridges were broken by neutralizing anionic partners. Single-channel and whole cell currents were measured in transfected tsA201 cells and in Xenopus oocytes respectively. Computational simulations of protein flexibility facilitated comparison of wild-type and mutant receptors. Key Results Single-channel conductance was increased substantially, often to wild-type heteromeric receptor values, in most 5-HT3A mutants. Conversely, introduction of arginine residues to the portal region of the heteromer, conjecturally creating salt bridges, decreased conductance. Gating kinetics varied significantly between different mutant receptors. EC50 values for whole-cell responses to 5-HT remained largely unchanged, but Hill coefficients for responses to 5-HT were usually significantly smaller in mutants. Computational simulations suggested increased flexibility throughout the protein structure as a consequence of mutations in the intracellular domain. Conclusions and Implications These data support a role for intracellular salt bridges in maintaining the quaternary structure of the 5-HT3 receptor and suggest a role for the intracellular domain in allosteric modulation of cooperativity and agonist efficacy. Linked Article This article is commented on by Vardy and Kenakin, pp. 1614–1616 of volume 171 issue 7. To view this commentary

  17. Pharmacological analysis of G-protein activation mediated by guinea-pig recombinant 5-HT1B receptors in C6-glial cells: similarities with the human 5-HT1B receptor

    PubMed Central

    Pauwels, Petrus J; Wurch, Thierry; Palmier, Christiane; Colpaert, Francis C

    1998-01-01

    The guinea-pig recombinant 5-hydroxytryptamine1B (gp 5-HT1B) receptor stably transfected in rat C6-glial cells was characterized by monitoring G-protein activation in a membrane preparation with agonist-stimulated [35S]-GTPγS binding. The intrinsic activity of 5-HT receptor ligands was compared with that determined previously at the human recombinant 5-HT1B (h 5-HT1B) receptor under similar experimental conditions.Membrane preparations of C6-glial/gp 5-HT1B cells exhibited [3H]-5-carboxamidotryptamine (5-CT) and [3H] - N- [4-methoxy-3,4 - methylpiperazin-1-yl) phenyl] -3 - methyl - 4-(4 - pyridinyl)benzamide (GR 125743) binding sites with a pKd of 9.62 to 9.85 and a Bmax between 2.1 to 6.4 fmol mg−1 protein. The binding affinities of a series of 5-HT receptor ligands determined with [3H]-5-CT and [3H]-GR 125743 were similar. Ligand affinities were comparable to and correlated (r2: 0.74, P<0.001) with those determined at the recombinant h 5-HT1B receptor.[35S]-GTPγS binding to membrane preparations of C6-glial/gp 5-HT1B cells was stimulated by the 5-HT receptor agonists that were being investigated. The maximal responses of naratriptan, zolmitriptan, sumatriptan, N-methyl-3-[pyrrolidin-2(R)-ylmethyl]-1H-indol-5-ylmethylsulphonamide (CP122638), rizatriptan and dihydroergotamine were between 0.76 and 0.85 compared to 5-HT. The potency of these agonists showed a positive correlation (r2: 0.72, P=0.015) with their potency at the recombinant h 5-HT1B receptor. 1-naphthylpiperazine, (±)-cyanopindolol and (2′-methyl-4′-(5-methyl[1,2,4] oxadiazole-3-yl)biphenyl-4-carboxylic acid [4-methoxy-3-(4-methylpiperazin-1-yl)phenyl]amide (GR 127935) elicited an even smaller response (Emax: 0.32 to 0.63).The ligands 1′-methyl-5-(2′-methyl-4′-(5-methyl-1,2,4-oxadiazole-3-yl) biphenyl-4-carbonyl)-2,3,6,7-tetrahydrospiro [furo[2,3-f]indole-3-spiro-4′-piperidine] (SB224289), methiothepin and ritanserin displayed inhibition of basal [35S

  18. Pharmacological analysis of G-protein activation mediated by guinea-pig recombinant 5-HT1B receptors in C6-glial cells: similarities with the human 5-HT1B receptor.

    PubMed

    Pauwels, P J; Wurch, T; Palmier, C; Colpaert, F C

    1998-01-01

    1. The guinea-pig recombinant 5-hydroxytryptamine1B (gp 5-HT1B) receptor stably transfected in rat C6-glial cells was characterized by monitoring G-protein activation in a membrane preparation with agonist-stimulated [35S]-GTPgammaS binding. The intrinsic activity of 5-HT receptor ligands was compared with that determined previously at the human recombinant 5-HT1B (h 5-HT1B) receptor under similar experimental conditions. 2. Membrane preparations of C6-glial/gp 5-HT1B cells exhibited [3H]-5-carboxamidotryptamine (5-CT) and [3H]-N-[4-methoxy-3,4-methylpiperazin-1-yl) phenyl]-3-methyl-4-(4-pyridinyl)benzamide (GR 125743) binding sites with a pKd of 9.62 to 9.85 and a Bmax between 2.1 to 6.4 fmol mg(-1) protein. The binding affinities of a series of 5-HT receptor ligands determined with [3H]-5-CT and [3H]-GR 125743 were similar. Ligand affinities were comparable to and correlated (r2: 0.74, P<0.001) with those determined at the recombinant h 5-HT1B receptor. 3. [35S]-GTPgammaS binding to membrane preparations of C6-glial/gp 5-HT1B cells was stimulated by the 5-HT receptor agonists that were being investigated. The maximal responses of naratriptan, zolmitriptan, sumatriptan, N-methyl-3-[pyrrolidin-2(R)-ylmethyl]-1H-indol-5-ylmethyl sulphonamide (CP 122638), rizatriptan and dihydroergotamine were between 0.76 and 0.85 compared to 5-HT. The potency of these agonists showed a positive correlation (r2: 0.72, P=0.015) with their potency at the recombinant h 5-HT1B receptor. 1-naphthylpiperazine, (+/-)-cyanopindolol and (2'-methyl-4'-(5-methyl[1,2,4] oxadiazole-3-yl)biphenyl-4-carboxylic acid [4-methoxy-3-(4-methylpiperazin-1-yl)phenyl]amide (GR 127935) elicited an even smaller response (Emax: 0.32 to 0.63). 4. The ligands 1'-methyl-5-(2'-methyl-4'-(5-methyl-1,2,4-oxadiazole-3-yl) biphenyl-4-carbonyl)-2,3,6,7tetrahydrospiro [furo[2,3-f]indole-3-spiro-4'-piperidine] (SB224289), methiothepin and ritanserin displayed inhibition of basal [35S]-GTPgammaS binding at concentrations

  19. 5-HT(1A)-like receptor activation inhibits abstinence-induced methamphetamine withdrawal in planarians.

    PubMed

    Rawls, Scott M; Shah, Hardik; Ayoub, George; Raffa, Robert B

    2010-10-29

    No pharmacological therapy is approved to treat methamphetamine physical dependence, but it has been hypothesized that serotonin (5-HT)-enhancing drugs might limit the severity of withdrawal symptoms. To test this hypothesis, we used a planarian model of physical dependence that quantifies withdrawal as a reduction in planarian movement. Planarians exposed to methamphetamine (10 μM) for 60 min, and then placed (tested) into drug-free water for 5 min, displayed less movement (i.e., withdrawal) than either methamphetamine-naïve planarians tested in water or methamphetamine-exposed planarians tested in methamphetamine. A concentration-related inhibition of withdrawal was observed when methamphetamine-exposed planarians were placed into a solution containing either methamphetamine and 5-HT (0.1-100 μM) or methamphetamine and the 5-HT(1A) receptor agonist 8-hydroxy-N,N-dipropyl-2-aminotetralin (8-OH-DPAT) (10, 20 μM). Planarians with prior methamphetamine exposure displayed enhanced withdrawal when tested in a solution of the 5-HT(1A) receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridyl)cyclohexanecarboxamide (WAY 100635) (1 μM). Methamphetamine-induced withdrawal was not affected by the 5-HT(2B/2C) receptor agonist meta-chlorophenylpiperazine (m-CPZ) (0.1-20 μM). These results provide pharmacological evidence that serotonin-enhancing drugs inhibit expression of methamphetamine physical dependence in an invertebrate model of withdrawal, possibly through a 5-HT(1A)-like receptor-dependent mechanism.

  20. Cannabidiol injected into the bed nucleus of the stria terminalis modulates baroreflex activity through 5-HT1A receptors.

    PubMed

    Alves, Fernando H F; Crestani, Carlos C; Gomes, Felipe V; Guimarães, Francisco S; Correa, Fernando M A; Resstel, Leonardo B M

    2010-09-01

    Cannabidiol (CBD) is a non-psychotomimetic constituent of the Cannabis sativa plant that inhibits behavioral and cardiovascular responses to aversive situations, facilitating 5-HT1A-mediated neurotransmission. Previous results from our group suggest that the bed nucleus of the stria terminalis (BNST) may be involved in CBD's anti-aversive effects. To investigate whether the cardiovascular effects of the CBD could involve a direct drug effect on the BNST, we evaluated the effects of CBD microinjection into this structure on baroreflex activity. We also verified whether these effects were mediated by the activation of 5-HT(1A) receptors. Bilateral microinjection of CBD (60 nmol/100 nL) into the BNST increased the bradycardiac response to arterial pressure increases. However, no changes were observed in tachycardiac responses evoked by arterial pressure decreases. Pretreatment of the BNST with the selective 5-HT(1A) receptor antagonist WAY100635 (0.37 nmol/100 nL) prevented CBD effects on the baroreflex activity. Moreover, microinjection of the 5-HT(1A) receptor agonist 8-OH-DPAT (4 nmol/100 nL) caused effects that were similar to those observed after the microinjection of CBD, which were also blocked by pretreatment with WAY100635. In conclusion, the present studies show that the microinjection of CBD into the BNST has a facilitatory influence on the baroreflex response to blood pressure increases, acting through the activation of 5-HT1A receptors. PMID:20621717

  1. Activation of 5-HT7 receptor stimulates neurite elongation through mTOR, Cdc42 and actin filaments dynamics

    PubMed Central

    Speranza, Luisa; Giuliano, Teresa; Volpicelli, Floriana; De Stefano, M. Egle; Lombardi, Loredana; Chambery, Angela; Lacivita, Enza; Leopoldo, Marcello; Bellenchi, Gian C.; di Porzio, Umberto; Crispino, Marianna; Perrone-Capano, Carla

    2015-01-01

    Recent studies have indicated that the serotonin receptor subtype 7 (5-HT7R) plays a crucial role in shaping neuronal morphology during embryonic and early postnatal life. Here we show that pharmacological stimulation of 5-HT7R using a highly selective agonist, LP-211, enhances neurite outgrowth in neuronal primary cultures from the cortex, hippocampus and striatal complex of embryonic mouse brain, through multiple signal transduction pathways. All these signaling systems, involving mTOR, the Rho GTPase Cdc42, Cdk5, and ERK, are known to converge on the reorganization of cytoskeletal proteins that subserve neurite outgrowth. Indeed, our data indicate that neurite elongation stimulated by 5-HT7R is modulated by drugs affecting actin polymerization. In addition, we show, by 2D Western blot analyses, that treatment of neuronal cultures with LP-211 alters the expression profile of cofilin, an actin binding protein involved in microfilaments dynamics. Furthermore, by using microfluidic chambers that physically separate axons from the soma and dendrites, we demonstrate that agonist-dependent activation of 5-HT7R stimulates axonal elongation. Our results identify for the first time several signal transduction pathways, activated by stimulation of 5-HT7R, that converge to promote cytoskeleton reorganization and consequent modulation of axonal elongation. Therefore, the activation of 5-HT7R might represent one of the key elements regulating CNS connectivity and plasticity during development. PMID:25814944

  2. Activation of 5-HT7 receptor stimulates neurite elongation through mTOR, Cdc42 and actin filaments dynamics.

    PubMed

    Speranza, Luisa; Giuliano, Teresa; Volpicelli, Floriana; De Stefano, M Egle; Lombardi, Loredana; Chambery, Angela; Lacivita, Enza; Leopoldo, Marcello; Bellenchi, Gian C; di Porzio, Umberto; Crispino, Marianna; Perrone-Capano, Carla

    2015-01-01

    Recent studies have indicated that the serotonin receptor subtype 7 (5-HT7R) plays a crucial role in shaping neuronal morphology during embryonic and early postnatal life. Here we show that pharmacological stimulation of 5-HT7R using a highly selective agonist, LP-211, enhances neurite outgrowth in neuronal primary cultures from the cortex, hippocampus and striatal complex of embryonic mouse brain, through multiple signal transduction pathways. All these signaling systems, involving mTOR, the Rho GTPase Cdc42, Cdk5, and ERK, are known to converge on the reorganization of cytoskeletal proteins that subserve neurite outgrowth. Indeed, our data indicate that neurite elongation stimulated by 5-HT7R is modulated by drugs affecting actin polymerization. In addition, we show, by 2D Western blot analyses, that treatment of neuronal cultures with LP-211 alters the expression profile of cofilin, an actin binding protein involved in microfilaments dynamics. Furthermore, by using microfluidic chambers that physically separate axons from the soma and dendrites, we demonstrate that agonist-dependent activation of 5-HT7R stimulates axonal elongation. Our results identify for the first time several signal transduction pathways, activated by stimulation of 5-HT7R, that converge to promote cytoskeleton reorganization and consequent modulation of axonal elongation. Therefore, the activation of 5-HT7R might represent one of the key elements regulating CNS connectivity and plasticity during development.

  3. Activation of 5-HT1A receptors in the rat basolateral amygdala induces both anxiolytic and antipanic-like effects.

    PubMed

    Strauss, Christiana Villela de Andrade; Vicente, Maria Adrielle; Zangrossi, Helio

    2013-06-01

    The relevance of 5-HT1A and 5-HT2C receptors of the basolateral nucleus of the amygdala (BLA) in the mediation of anxiety-related defensive responses has long been acknowledged. Whereas strong evidence supports that activation of the latter receptors provokes anxiety, conflicting findings have been reported on the role played by the former binding site. In this study we further investigated the involvement of 5-HT1A receptors (5-HT1A-Rs) in the regulation of anxiety- and panic-related defensive behaviors. The results showed that intra-BLA injection of the 5-HT1A-R agonist 8-OH-DPAT (0.4-16nmol) in male Wistar rats impaired the acquisition of inhibitory avoidance in the elevated T-maze, increased the percentage of time spent in the lit compartment of the light-dark transition model and enhanced the number of punished drinking events in the Vogel conflict test, all changes compatible with an anxiolytic effect. This agonist also impaired escape expression in the elevated T-maze, suggestive of a panicolytic-like effect. 8-OH-DPAT-induced changes in the elevated T-maze and light-dark tests were blocked by previous local administration of the 5-HT1A-R antagonist WAY-100635 (0.37nmol) and were also observed after intra-BLA microinjection of the benzodiazepine receptor agonist midazolam (10-40nmol). Thus, stimulation of 5-HT1A-Rs in the BLA causes both anxiolytic- and panicolytic-like effects, what may have implications for the pathophysiology and treatment of generalized anxiety and panic disorders.

  4. The 5-HT1A receptor agonist flesinoxan shares discriminative stimulus properties with some 5-HT2 receptor antagonists.

    PubMed

    Herremans, A H; van der Heyden, J A; van Drimmelen, M; Olivier, B

    1999-10-01

    Ten homing pigeons were trained to discriminate the selective 5-HT1A receptor agonist flesinoxan (0.25 mg/kg p.o.) from its vehicle in a fixed-ratio (FR) 30 two-key operant drug discrimination procedure. The 5-HT2 receptor antagonist mianserin (ED50 = 4.8 mg/kg) fully substituted for flesinoxan, whereas ketanserin, ritanserin, mesulergine, and SB200646A substituted only partially, suggesting an interaction between 5-HT1A and 5-HT2 receptors. However, the 5-HT2 receptor agonists [DOI (0.6 mg/kg), TFMPP (10 mg/kg), mCPP (4 mg/kg)] were unable to antagonize the flesinoxan cue. The 5-HT1A receptor antagonists DU125530 (0.5-13 mg/kg) and WAY100,635 (0.1-1 mg/kg) partially antagonized the generalization of mianserin to flesinoxan. Taken together, these results are in accordance with the hypothesis that 5-HT1A receptor activation exerts an inhibitory effect on activation of 5-HT2 receptors. These results are in broad agreement with existing theories on 5-HT1A and 5-HT2 receptor interaction. Furthermore, it is argued that the discriminative stimulus properties of a drug may undergo qualitative changes with prolonged training.

  5. Activity-dependent bidirectional regulation of GABAA receptor channels by the 5-HT4 receptor-mediated signalling in rat prefrontal cortical pyramidal neurons

    PubMed Central

    Cai, Xiang; Flores-Hernandez, Jorge; Feng, Jian; Yan, Zhen

    2002-01-01

    Emerging evidence has implicated a potential role for 5-HT4 receptors in cognition and anxiolysis. One of the main target structures of 5-HT4 receptors on ‘cognitive and emotional’ pathways is the prefrontal cortex (PFC). As GABAergic signalling plays a key role in regulating PFC functions, we examined the effect of 5-HT4 receptors on GABAA receptor channels in PFC pyramidal neurons. Application of 5-HT4 receptor agonists produced either an enhancement or a reduction of GABA-evoked currents in PFC neurons, which are both mediated by anchored protein kinase A (PKA). Although PKA phosphorylation of GABAA receptor β3 or β1 subunits leads to current enhancement or reduction respectively in heterologous expression systems, we found that β3 and β1 subunits are co-expressed in PFC pyramidal neurons. Interestingly, altering PKA activation levels can change the direction of the dual effect, switching enhancement to reduction and vice versa. In addition, increased neuronal activity in PFC slices elevated the PKA activation level, changing the enhancing effect of 5-HT4 receptors on the amplitude of GABAergic inhibitory postsynaptic currents (IPSCs) to a reduction. These results suggest that 5-HT4 receptors can modulate GABAergic signalling bidirectionally, depending on the basal PKA activation levels that are determined by neuronal activity. This modulation provides a unique and flexible mechanism for 5-HT4 receptors to dynamically regulate synaptic transmission and neuronal excitability in the PFC network. PMID:11986365

  6. The serotonin 5-HT2A and 5-HT2C receptors interact with specific sets of PDZ proteins.

    PubMed

    Bécamel, Carine; Gavarini, Sophie; Chanrion, Benjamin; Alonso, Gérard; Galéotti, Nathalie; Dumuis, Aline; Bockaert, Joël; Marin, Philippe

    2004-05-01

    The 5-hydroxytryptamine type 2A (5-HT(2A)) receptor and the 5-HT(2C) receptor are closely related members of the G-protein-coupled receptors activated by serotonin that share very similar pharmacological profiles and cellular signaling pathways. These receptors express a canonical class I PDZ ligand (SXV) at their C-terminal extremity. Here, we have identified proteins that interact with the PDZ ligand of the 5-HT(2A) and 5-HT(2C) receptors by a proteomic approach associating affinity chromatography using immobilized synthetic peptides encompassing the PDZ ligand and mass spectrometry. We report that both receptor C termini interact with specific sets of PDZ proteins in vitro. The 5-HT(2C) receptor but not the 5-HT(2A) receptor binds to the Veli-3.CASK.Mint1 ternary complex and to SAP102. In addition, the 5-HT(2C) receptor binds more strongly to PSD-95 and MPP-3 than the 5-HT(2A) receptor. In contrast, a robust interaction between the 5-HT(2A) receptor and the channel-interacting PDZ protein CIPP was found, whereas CIPP did not significantly associate with the 5-HT(2C) receptor. We also show that residues located at the -1 position and upstream the PDZ ligand in the C terminus of the 5-HT(2A) and 5-HT(2C) receptors are major determinants in their interaction with specific PDZ proteins. Immunofluorescence and electron microscopy studies strongly suggested that these specific interactions also take place in living cells and that the 5-HT(2) receptor-PDZ protein complexes occur in intracellular compartments. The interaction of the 5-HT(2A) and the 5-HT(2C) receptor with specific sets of PDZ proteins may contribute to their different signal transduction properties.

  7. Selective serotonin 5-HT1A receptor biased agonists elicitdistinct brain activation patterns: a pharmacoMRI study

    PubMed Central

    Becker, G.; Bolbos, R.; Costes, N.; Redouté, J.; Newman-Tancredi, A.; Zimmer, L.

    2016-01-01

    Serotonin 1A (5-HT1A) receptors are involved in several physiological and pathological processes and constitute therefore an important therapeutic target. The recent pharmacological concept of biased agonism asserts that highly selective agonists can preferentially direct receptor signaling to specific intracellular responses, opening the possibility of drugs targeting a receptor subtype in specific brain regions. The present study brings additional support to this concept thanks to functional magnetic resonance imaging (7 Tesla-fMRI) in anaesthetized rats. Three 5-HT1A receptor agonists (8-OH-DPAT, F13714 and F15599) and one 5-HT1A receptor antagonist (MPPF) were compared in terms of influence on the brain blood oxygen level-dependent (BOLD) signal. Our study revealed for the first time contrasting BOLD signal patterns of biased agonists in comparison to a classical agonist and a silent antagonist. By providing functional information on the influence of pharmacological activation of 5-HT1A receptors in specific brain regions, this neuroimaging approach, translatable to the clinic, promises to be useful in exploring the new concept of biased agonism in neuropsychopharmacology. PMID:27211078

  8. 5-HT1A Receptor Activation Reduces Fear-related Behavior Following Social Defeat in Syrian Hamsters

    PubMed Central

    Bader, Lauren R.; Carboni, Joseph D.; Burleson, Cody A.; Cooper, Matthew A.

    2014-01-01

    Social defeat leads to selective avoidance of familiar opponents as well as general avoidance of novel, non-threatening intruders. Avoidance of familiar opponents represents a fear-related memory whereas generalized social avoidance indicates anxiety-like behavior. We have previously shown that serotonin signaling alters responses to social defeat in Syrian hamsters, although it is unclear whether serotonin modulates defeat-induced fear, anxiety, or both. In this study we focus on 5-HT1A receptors, in part, because their activation had been linked to the acquisition of conditioned fear. We hypothesized that pharmacological activation of 5-HT1A receptors prior to social defeat would reduce avoidance of familiar opponents, impair Arc expression in the basolateral amygdala (BLA), but not alter anxiety-like behavior. We administered 8-OH-DPAT, a 5-HT1A receptor agonist, prior to 3, 5-minute social defeats and 24-hours later exposed hamsters to a social interaction test to measure the conditioned defeat response immediately followed by either a Y-maze test or an open field test. In a separate experiment, we administered 8-OH-DPAT prior to 3, 5-minute social defeats and later removed brains for Arc immunohistochemistry. Social defeat increased the number of Arc immunopositive cells in the central amygdala (CeA), prelimbic cortex (PL), and BLA, and 8-OH-DPAT treatment reduced Arc immunoreactivity in the PL. These results suggest that 5-HT1A receptor activation impairs the fear memory associated with social defeat, but does not alter defeat-induced anxiety. Overall, 5-HT1A receptor activation may impair Arc expression in select brain regions such as the PL and thereby disrupt the development of a fear memory essential for the conditioned defeat response. PMID:24726709

  9. 5-HT1A receptor activation reduces fear-related behavior following social defeat in Syrian hamsters.

    PubMed

    Bader, Lauren R; Carboni, Joseph D; Burleson, Cody A; Cooper, Matthew A

    2014-07-01

    Social defeat leads to selective avoidance of familiar opponents as well as general avoidance of novel, non-threatening intruders. Avoidance of familiar opponents represents a fear-related memory whereas generalized social avoidance indicates anxiety-like behavior. We have previously shown that serotonin signaling alters responses to social defeat in Syrian hamsters, although it is unclear whether serotonin modulates defeat-induced fear, anxiety, or both. In this study we focus on 5-HT1A receptors, in part, because their activation had been linked to the acquisition of conditioned fear. We hypothesized that pharmacological activation of 5-HT1A receptors prior to social defeat would reduce avoidance of familiar opponents and impair Arc expression in the basolateral amygdala (BLA), but not alter anxiety-like behavior. We administered 8-OH-DPAT, a 5-HT1A receptor agonist, prior to 3, 5-minute social defeats and 24h later exposed hamsters to a social interaction test to measure the conditioned defeat response immediately followed by either a Y-maze test or an open field test. In a separate experiment, we administered 8-OH-DPAT prior to 3, 5-minute social defeats and later removed the brains for Arc immunohistochemistry. Social defeat increased the number of Arc immunopositive cells in the central amygdala (CeA), prelimbic cortex (PL), and BLA, and 8-OH-DPAT treatment reduced Arc immunoreactivity in the PL. These results suggest that 5-HT1A receptor activation impairs the fear memory associated with social defeat, but does not alter defeat-induced anxiety. Overall, 5-HT1A receptor activation may impair Arc expression in select brain regions such as the PL and thereby disrupt the development of a fear memory essential for the conditioned defeat response.

  10. Antidepressant-like activity of Tagetes lucida Cav. is mediated by 5-HT(1A) and 5-HT(2A) receptors.

    PubMed

    Bonilla-Jaime, H; Guadarrama-Cruz, G; Alarcon-Aguilar, F J; Limón-Morales, O; Vazquez-Palacios, G

    2015-10-01

    It has been demonstrated that the aqueous extract of Tagetes lucida Cav. shows an antidepressant-like effect on the forced swimming test (FST) in rats. The aim of this study was to analyze the participation of the serotoninergic system in the antidepressant-like effect of the aqueous extract of T. lucida. Different doses of the extract of T. lucida were administered at 72, 48, 24, 18 and 1 h before FST. The animals were pretreated with a 5-HT1A receptor antagonist (WAY-100635, 0.5 mg/kg), a 5-HT2A receptor antagonist (ketanserin, 5 mg/kg), a β-noradrenergic receptor antagonist (propranolol, 200 mg/kg), and with a α2-noradrenergic receptor antagonist (yohimbine, 1 mg/kg) alone or combined with the extract and pretreated with a serotonin synthesis inhibitor (PCPA) before treatment with 8-OH-DPAT + the extract of T. lucida. In addition, suboptimal doses of the 5-HT1A agonist (8-OH-DPAT) + non-effective dose of extract was analyzed in the FST. To determine the presence of flavonoids, the aqueous extract of T. lucida (20 µl, 4 mg/ml) was injected in HPLC; however, a quercetin concentration of 7.72 mg/g of extract weight was detected. A suboptimal dose of 8-OH-DPAT + extract of T. lucida decreased immobility and increased swimming and climbing. An antidepressant-like effect with the aqueous extract of T. lucida at doses of 100 and 200 mg/kg was observed on the FST with decreased immobility behavior and increased swimming; however, this effect was blocked by WAY-100635, ketanserin and PCPA but not by yohimbine and propranolol, suggesting that the extract of T. lucida could be modulating the release/reuptake of serotonin.

  11. Interaction between 5-HT(1A) and 5-HT(1B) receptors: effects of 8-OH-DPAT-induced hypothermia in 5-HT(1B) receptor knockout mice.

    PubMed

    Gardier, A M; Gruwez, B; Trillat, A C; Jacquot, C; Hen, R; Bourin, M

    2001-06-15

    To test for adaptive compensatory changes that may have occurred in the functional activity of somatodendritic 5-HT(1A) receptors during the development of constitutive "knockout" mice lacking the 5-HT(1B) receptor subtype (5-HT(1B) -/- KO), we assayed for decrease in body temperature induced by an acute subcutaneous injection of the 5-HT(1A) receptor agonist, 8-hydroxy 2(di-n-propyl(amino)tetralin (8-OH-DPAT), either alone or in the presence of a selective 5-HT(1A) receptor antagonist, N-[4-(2-methoxyphenyl)-1-piperazinyl]-N-(2-pyridinyl) cyclo-hexanecarboxamide (WAY 100635). We compared dose-response curves, time course study, calculated ED(50) values (potency), maximal response to 8-OH-DPAT (efficacy) as well as measurements of the dose-dependent blockade of this response by WAY 100635 between wild-type controls and mutant mice. We found a higher efficacy of 8-OH-DPAT-induced hypothermia in 5-HT(1B) -/- KO compared to wild-type mice suggesting that an adaptive thermoregulatory process involving the functional activity of somatodendritic 5-HT(1A) receptors is altered in mutant mice lacking 5-HT(1B) receptors.

  12. Distribution of 5-HT3, 5-HT4, and 5-HT7 Receptors Along the Human Colon

    PubMed Central

    Yaakob, Nor S; Chinkwo, Kenneth A; Chetty, Navinisha; Coupar, Ian M; Irving, Helen R

    2015-01-01

    Background/Aims Several disorders of the gastrointestinal tract are associated with abnormal serotonin (5-HT) signaling or metabolism where the 5-HT3 and 5-HT4 receptors are clinically relevant. The aim was to examine the distribution of 5-HT3, 5-HT4, and 5-HT7 receptors in the normal human colon and how this is associated with receptor interacting chaperone 3, G protein coupled receptor kinases, and protein LIN-7 homologs to extend previous observations limited to the sigmoid colon or the upper intestine. Methods Samples from ascending, transverse, descending, and sigmoid human colon were dissected into 3 separate layers (mucosa, longitudinal, and circular muscles) and ileum samples were dissected into mucosa and muscle layers (n = 20). Complementary DNA was synthesized by reverse transcription from extracted RNA and expression was determined by quantitative or end point polymerase chain reaction. Results The 5-HT3 receptor subunits were found in all tissues throughout the colon and ileum. The A subunit was detected in all samples and the C subunit was expressed at similar levels while the B subunit was expressed at lower levels and less frequently. The 5-HT3 receptor E subunit was mainly found in the mucosa layers. All splice variants of the 5-HT4 and 5-HT7 receptors were expressed throughout the colon although the 5-HT4 receptor d, g, and i variants were expressed less often. Conclusions The major differences in 5-HT receptor distribution within the human colon are in relation to the mucosa and muscular tissue layers where the 5-HT3 receptor E subunit is predominantly found in the mucosal layer which may be of therapeutic relevance. PMID:26130632

  13. 5-HT2C receptors in psychiatric disorders: A review.

    PubMed

    Chagraoui, A; Thibaut, F; Skiba, M; Thuillez, C; Bourin, M

    2016-04-01

    5-HT2Rs have a different genomic organization from other 5-HT2Rs. 5HT2CR undergoes post-transcriptional pre-mRNA editing generating diversity among RNA transcripts. Selective post-transcriptional editing could be involved in the pathophysiology of psychiatric disorders through impairment in G-protein interactions. Moreover, it may influence the therapeutic response to agents such as atypical antipsychotic drugs. Additionally, 5-HT2CR exhibits alternative splicing. Central serotonergic and dopaminergic systems interact to modulate normal and abnormal behaviors. Thus, 5HT2CR plays a crucial role in psychiatric disorders. 5HT2CR could be a relevant pharmacological target in the treatment of neuropsychiatric disorders. The development of drugs that specifically target 5-HT2C receptors will allow for better understanding of their involvement in the pathophysiology of psychiatric disorders including schizophrenia, anxiety, and depression. Among therapeutic means currently available, most drugs used to treat highly morbid psychiatric diseases interact at least partly with 5-HT2CRs. Pharmacologically, 5HT2CRs, have the ability to generate differentially distinct response signal transduction pathways depending on the type of 5HT2CR agonist. Although this receptor property has been clearly demonstrated, in vitro, the eventual beneficial impact of this property opens new perspectives in the development of agonists that could activate signal transduction pathways leading to better therapeutic efficiency with fewer adverse effects.

  14. 5-HT1A receptor-responsive pedunculopontine tegmental neurons suppress REM sleep and respiratory motor activity.

    PubMed

    Grace, Kevin P; Liu, Hattie; Horner, Richard L

    2012-02-01

    Serotonin type 1A (5-HT(1A)) receptor-responsive neurons in the pedunculopontine tegmental nucleus (PPTn) become maximally active immediately before and during rapid eye movement (REM) sleep. A prevailing model of REM sleep generation indicates that activation of such neurons contributes significantly to the generation of REM sleep, and if correct then inactivation of such neurons ought to suppress REM sleep. We test this hypothesis using bilateral microperfusion of the 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 10 μm) into the PPTn; this tool has been shown to selectively silence REM sleep-active PPTn neurons while the activity of wake/REM sleep-active PPTn neurons is unaffected. Contrary to the prevailing model, bilateral microperfusion of 8-OH-DPAT into the PPTn (n = 23 rats) significantly increased REM sleep both as a percentage of the total recording time and sleep time, compared with both within-animal vehicle controls and between-animal time-controls. This increased REM sleep resulted from an increased frequency of REM sleep bouts but not their duration, indicating an effect on mechanisms of REM sleep initiation but not maintenance. Furthermore, an increased proportion of the REM sleep bouts stemmed from periods of low REM sleep drive quantified electrographically. Targeted suppression of 5-HT(1A) receptor-responsive PPTn neurons also increased respiratory rate and respiratory-related genioglossus activity, and increased the frequency and amplitude of the sporadic genioglossus activations occurring during REM sleep. These data indicate that 5-HT(1A) receptor-responsive PPTn neurons normally function to restrain REM sleep by elevating the drive threshold for REM sleep induction, and restrain the expression of respiratory rate and motor activities.

  15. The effect of 5-HT1A receptor agonists on locomotor activity in the guinea-pig.

    PubMed Central

    Evenden, J. L.

    1994-01-01

    1. The present study examined the effects of 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT), flesinoxan, ipsapirone and buspirone, all agonists at the 5-HT1A receptor, on the locomotor activity of guinea-pigs. The effects of these drugs were contrasted with those of the non-selective 5-HT agonist, 5-methoxy-N,N-dimethyl tryptamine (5-MeO-DMT) and the dopamine D2 antagonist, raclopride. 2. 8-OH-DPAT, flesinoxan and 5-MeO-DMT markedly increased the locomotor activity of naive, unhabituated guinea-pigs in a dose-dependent manner. Buspirone also did so, although to a lesser extent and for a shorter time. The doses at which this effect was seen were higher than those normally employed in rats. Ipsapirone and raclopride had no significant effects on locomotor activity. 3. The locomotor activity increasing effect of 1.0 mg kg-1 8-OH-DPAT was blocked by the selective 5-HT1A antagonist (S)-UH-301 (3.0 and 10.0 mg kg-1), but not by (-)-alprenolol (15.0 mg kg-1). Ipsapirone (30.0 mg kg-1) and raclopride (3.0 mg kg-1) antagonized 8-OH-DPAT-induced locomotor activity but only to a small extent. The 5-HT reuptake inhibitor, zimelidine (10.0 mg kg-1) had no effect. 4. The effect of the 5-HT1A agonists in the guinea-pig contrasts with the effects of 8-OH-DPAT on the locomotor activity of unhabituated rats and mice tested in the same apparatus, but are similar to the effects of 8-OH-DPAT on habituated rats, which show a low baseline of activity.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7921613

  16. Influence of the 5-HT3A Receptor Gene Polymorphism and Childhood Sexual Trauma on Central Serotonin Activity

    PubMed Central

    Huh, Hyu Jung; Chae, Jeong-Ho

    2015-01-01

    Background Gene-environment interactions are important for understanding alterations in human brain function. The loudness dependence of auditory evoked potential (LDAEP) is known to reflect central serotonergic activity. Single nucleotide polymorphisms (SNPs) in the 5-HT3A serotonin receptor gene are associated with psychiatric disorders. This study aimed to investigate the effect between 5-HT3A receptor gene polymorphisms and childhood sexual trauma on the LDAEP as an electrophysiological marker in healthy subjects. Methods A total of 206 healthy subjects were recruited and evaluated using the childhood trauma questionnaire (CTQ) and hospital anxiety and depression scale (HADS). Peak-to-peak N1/P2 was measured at five stimulus intensities, and the LDAEP was calculated as the linear-regression slope. In addition, the rs1062613 SNPs of 5-HT3A (CC, CT, and TT) were analyzed in healthy subjects. Results There was a significant interaction between scores on the CTQ-sexual abuse subscale and 5-HT3A genotype on the LDAEP. Subjects with the CC polymorphism had a significantly higher LDEAP than T carriers in the sexually abused group. In addition, CC genotype subjects in the sexually abused group showed a significantly higher LDAEP compared with CC genotype subjects in the non-sexually abused group. Conclusions Our findings suggest that people with the CC polymorphism of the 5-HT3A gene have a greater risk of developing mental health problems if they have experienced childhood sexual abuse, possibly due to low central serotonin activity. Conversely, the T polymorphism may be protective against any central serotonergic changes following childhood sexual trauma. PMID:26701104

  17. The antidepressant-like activity of 6-methoxy-2-[4-(2-methoxyphenyl)piperazin-1-yl]-9H-xanthen-9-one involves serotonergic 5-HT(1A) and 5-HT(2A/C) receptors activation.

    PubMed

    Pytka, Karolina; Walczak, Maria; Kij, Agnieszka; Rapacz, Anna; Siwek, Agata; Kazek, Grzegorz; Olczyk, Adrian; Gałuszka, Adam; Waszkielewicz, Anna; Marona, Henryk; Sapa, Jacek; Filipek, Barbara

    2015-10-01

    Xanthone derivatives have been shown to posses many biological properties. Some of them act within the central nervous system and show neuroprotective or antidepressant-like properties. Taking this into account we investigated antidepressant-like activity in mice and the possible mechanism of action of 6-methoxy-2-[4-(2-methoxyphenyl)piperazin-1-yl]-9H-xanthen-9-one (HBK-11) - a new xanthone derivative. We demonstrated that HBK-11 produced antidepressant-like effects in the forced swim test and tail suspension test, comparable to that of venlafaxine. The combined treatment with sub-effective doses of HBK-11 and fluoxetine (but not reboxetine or bupropion) significantly reduced the immobility in the forced swim test. Moreover, the antidepressant-like activity of HBK-11 in the aforementioned test was blocked by p-chlorophenylalanine, and significantly reduced by serotonergic 5HT1A receptor antagonist - WAY-1006335 and 5HT2A/C receptor antagonist - ritanserin. As none of the above treatments influenced the spontaneous locomotor activity, it can be concluded that HBK-11 mediates its activity through a serotonergic system, and its antidepressant-like effect involves 5HT1A and 5HT2A/C receptor activation. Furthermore, at antidepressant-like doses HBK-11 did not cause the mice to display locomotor deficits in rotarod or chimney tests. Considering the pharmacokinetic profile, HBK-11 demonstrated rapid absorption after i.p. administration, high clearance value, short terminal half-life, very high volume of distribution and incomplete bioavailability. The compound studied had good penetration into the brain tissue of mice. Since studied xanthone derivative seems to present interesting, untypical mechanism of antidepressant-like action i.e. 5HT2A/C receptor activation, it may have a potential in the treatment of depressive disorders, and surely requires further studies. PMID:26210317

  18. 5-HT2A and 5-HT2C receptors as hypothalamic targets of developmental programming in male rats

    PubMed Central

    Martin-Gronert, Malgorzata S.; Stocker, Claire J.; Wargent, Edward T.; Cripps, Roselle L.; Garfield, Alastair S.; Jovanovic, Zorica; D'Agostino, Giuseppe; Yeo, Giles S. H.; Cawthorne, Michael A.; Arch, Jonathan R. S.; Heisler, Lora K.; Ozanne, Susan E.

    2016-01-01

    ABSTRACT Although obesity is a global epidemic, the physiological mechanisms involved are not well understood. Recent advances reveal that susceptibility to obesity can be programmed by maternal and neonatal nutrition. Specifically, a maternal low-protein diet during pregnancy causes decreased intrauterine growth, rapid postnatal catch-up growth and an increased risk for diet-induced obesity. Given that the synthesis of the neurotransmitter 5-hydroxytryptamine (5-HT) is nutritionally regulated and 5-HT is a trophic factor, we hypothesised that maternal diet influences fetal 5-HT exposure, which then influences development of the central appetite network and the subsequent efficacy of 5-HT to control energy balance in later life. Consistent with our hypothesis, pregnant rats fed a low-protein diet exhibited elevated serum levels of 5-HT, which was also evident in the placenta and fetal brains at embryonic day 16.5. This increase was associated with reduced levels of 5-HT2CR, the primary 5-HT receptor influencing appetite, in the fetal, neonatal and adult hypothalamus. As expected, a reduction of 5-HT2CR was associated with impaired sensitivity to 5-HT-mediated appetite suppression in adulthood. 5-HT primarily achieves effects on appetite by 5-HT2CR stimulation of pro-opiomelanocortin (POMC) peptides within the arcuate nucleus of the hypothalamus (ARC). We show that 5-HT2ARs are also anatomically positioned to influence the activity of ARC POMC neurons and that mRNA encoding 5-HT2AR is increased in the hypothalamus of in utero growth-restricted offspring that underwent rapid postnatal catch-up growth. Furthermore, these animals at 3 months of age are more sensitive to appetite suppression induced by 5-HT2AR agonists. These findings not only reveal a 5-HT-mediated mechanism underlying the programming of susceptibility to obesity, but also provide a promising means to correct it, by treatment with a 5-HT2AR agonist. PMID:26769798

  19. The 5-HT4 receptor: molecular cloning and pharmacological characterization of two splice variants.

    PubMed Central

    Gerald, C; Adham, N; Kao, H T; Olsen, M A; Laz, T M; Schechter, L E; Bard, J A; Vaysse, P J; Hartig, P R; Branchek, T A

    1995-01-01

    Molecular cloning efforts have provided primary amino acid sequence and signal transduction data for a large collection of serotonin receptor subtypes. These include five 5-HT1-like receptors, three 5-HT2 receptors, one 5-HT3 receptor, two 5-HT5 receptors, one 5-HT6 receptor and one 5-HT7 receptor. Molecular biological information on the 5-HT4 receptor is notably absent from this list. We now report the cloning of the pharmacologically defined 5-HT4 receptor. Using degenerate oligonucleotide primers, we identified a rat brain PCR fragment which encoded a '5-HT receptor-like' amino acid sequence. The corresponding full length cDNA was isolated from a rat brain cDNA library. Transiently expressed in COS-7 cells, this receptor stimulates adenylyl cyclase activity and is sensitive to the benzamide derivative cisapride. The response is also blocked by ICS-205930. Interestingly, we isolated two splice variants of the receptor, 5-HT4L and 5-HT4S, differing in the length and sequence of their C-termini. In rat brain, the 5-HT4S transcripts are restricted to the striatum, but the 5-HT4L transcripts are expressed throughout the brain, except in the cerebellum where it was barely detectable. In peripheral tissues, differential expression was also observed in the atrium of the heart where only the 5-HT4S isoform was detectable. Images PMID:7796807

  20. Quantitative Structure-Activity Relationship for High Affinity 5-HT1A Receptor Ligands Based on Norm Indexes.

    PubMed

    Jia, Qingzhu; Cui, Xue; Li, Lei; Wang, Qiang; Liu, Ying; Xia, Shuqian; Ma, Peisheng

    2015-12-24

    Arylpiperazine derivatives are promising 5-hydroxytryptamine (5-HT) receptor ligands which can inhibit serotonin reuptake effectively. In this work, some norm index descriptors were proposed and further utilized to develop a model for predicting 5-HT1A receptor affinity (pKi) of 88 arylpiperazine derivatives. Results showed that this new model could provide satisfactory predictions with the square of the correction coefficient (R(2)) of 0.8891 and the squared correlation coefficient of cross-validation (Q(2)) of 0.8082, respectively. In addition, the applicability domain of this model was validated by using the leverage approach and results which suggested potential large scale for further utilization of this model. The results of statistical values and validation tests demonstrated that our proposed norm index based model could be successfully applied for predicting the affinity 5-HT1A receptor ligands of arylpiperazine derivatives.

  1. The antidepressant effects of curcumin in the forced swimming test involve 5-HT1 and 5-HT2 receptors.

    PubMed

    Wang, Rui; Xu, Ying; Wu, Hong-Li; Li, Ying-Bo; Li, Yu-Hua; Guo, Jia-Bin; Li, Xue-Jun

    2008-01-01

    Curcuma longa is a main constituent of many traditional Chinese medicines, such as Xiaoyao-san, used to manage mental disorders effectively. Curcumin is a major active component of C. longa and its antidepressant-like effect has been previously demonstrated in the forced swimming test. The purpose of this study was to explore the possible contribution of serotonin (5-HT) receptors in the behavioral effects induced by curcumin in this animal model of depression. 5-HT was depleted by the tryptophan hydroxylase inhibitor p-chlorophenylalanine (PCPA, 100 mg/kg, i.p.) prior to the administration of curcumin, and the consequent results showed that PCPA blocked the anti-immobility effect of curcumin in forced swimming test, suggesting the involvement of the serotonergic system. Moreover, pre-treatment of pindolol (10 mg/kg, i.p., a beta-adrenoceptors blocker/5-HT(1A/1B) receptor antagonist), 4-(2'-methoxy-phenyl)-1-[2'-(n-2''-pyridinyl)-p-iodobenzamino-]ethyl-piperazine (p-MPPI, 1 mg/kg, s.c., a selective 5-HT(1A) receptor antagonist), or 1-(2-(1-pyrrolyl)-phenoxy)-3-isopropylamino-2-propanol (isamoltane, 2.5 mg/kg, i.p., a 5-HT(1B) receptor antagonist) was found to prevent the effect of curcumin (10 mg/kg) in forced swimming test. On the other hand, a sub-effective dose of curcumin (2.5 mg/kg, p.o.) produced a synergistic effect when given jointly with (+)-8-hydroxy-2-(di-n-propylamino)tetralin, (8-OH-DPAT, 1 mg/kg, i.p., a 5-HT(1A) receptor agonist), anpirtoline (0.25 mg/kg, i.p., a 5-HT(1B) receptor agonist) or ritanserin (4 mg/kg, i.p., a 5-HT(2A/2C) receptor antagonist), but not with ketanserin (5 mg/kg, i.p., a 5-HT(2A/2C) receptor antagonist with higher affinity to 5-HT(2A) receptor) or R(-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI, 1 mg/kg, i.p., a 5-HT(2A) receptor agonist). Taken together, these results indicate that the antidepressant-like effect of curcumin in the forced swimming test is related to serotonergic system and may be mediated by, at least

  2. Activation of serotonin 5-HT(2C) receptor suppresses behavioral sensitization and naloxone-precipitated withdrawal symptoms in morphine-dependent mice.

    PubMed

    Zhang, Gongliang; Wu, Xian; Zhang, Yong-Mei; Liu, Huan; Jiang, Qin; Pang, Gang; Tao, Xinrong; Dong, Liuyi; Stackman, Robert W

    2016-02-01

    Opioid abuse and dependence have evolved into an international epidemic as a significant clinical and societal problem with devastating consequences. Repeated exposure to the opioid, for example morphine, can induce profound, long-lasting behavioral sensitization and physical dependence, which are thought to reflect neuroplasticity in neural circuitry. Central serotonin (5-HT) neurotransmission participates in the development of dependence on and the expression of withdrawal from morphine. Serotonin 5-HT(2C) receptor (5-HT(2C)R) agonists suppress psychostimulant nicotine or cocaine-induced behavioral sensitization and drug-seeking behavior; however, the impact of 5-HT(2C)R agonists on behaviors relevant to opioid abuse and dependence has not been reported. In the present study, the effects of 5-HT(2C)R activation on the behavioral sensitization and naloxone-precipitated withdrawal symptoms were examined in mice underwent repeated exposure to morphine. Male mice received morphine (10 mg/kg, s.c.) to develop behavioral sensitization. Lorcaserin, a 5-HT(2C)R agonist, prevented the induction and expression, but not the development, of morphine-induced behavioral sensitization. Another cohort of mice received increasing doses of morphine over a 7-day period to induce morphine-dependence. Pretreatment of lorcaserin, or the positive control clonidine (an alpha 2-adrenoceptor agonist), ameliorated the naloxone-precipitated withdrawal symptoms. SB 242084, a selective 5-HT(2C)R antagonist, prevented the lorcaserin-mediated suppression of behavioral sensitization and withdrawal. Chronic morphine treatment was associated with an increase in the expression of 5-HT(2C)R protein in the ventral tegmental area, locus coeruleus and nucleus accumbens. These findings suggest that 5-HT(2C)R can modulate behavioral sensitization and withdrawal in morphine-dependent mice, and the activation of 5-HT(2C)R may represent a new avenue for the treatment of opioid addiction.

  3. The action of SDZ 205,557 at 5-hydroxytryptamine (5-HT3 and 5-HT4) receptors.

    PubMed Central

    Eglen, R. M.; Alvarez, R.; Johnson, L. G.; Leung, E.; Wong, E. H.

    1993-01-01

    1. The interaction of the novel antagonist, SDZ 205,557 (2-methoxy-4-amino-5-chloro benzoic acid 2-(diethylamino) ethyl ester), at 5-HT3 and 5-HT4 receptors has been assessed in vitro and in vivo. 2. In guinea-pig hippocampus and in the presence of 0.4 microM 5-carboxamidotryptamine, 5-HT4-mediated stimulation of adenylyl cyclase was competitively antagonized by SDZ 205,557, with a pA2 value of 7.5, and a Schild slope of 0.81. In rat carbachol-contracted oesophagus, 5-HT4-receptor mediated relaxations were surmountably antagonized by SDZ 205,557 with a similar pA2 value (7.3). This value was agonist-independent with the exception of (R)-zacopride, against which a significantly lower value (6.4) was observed. 3. In functional studies of 5-HT3 receptors, SDZ 205,557 exhibited an affinity of 6.2 in guinea-pig ileum compared with 6.9 at binding sites labelled by [3H]-quipazine in NG108-15 cells. In the anaesthetized, vagotomized micropig, SDZ 205,557 produced only a transient blockade of 5-HT4-mediated tachycardia. This contrasted with tropisetron, which was active for over 60 min after administration. The half-lives for the inhibitory responses of SDZ 205,557 and tropisetron were 23 and 116 min, respectively. 4. In conclusion, SDZ 205,557 has similar affinity for 5-HT3 and 5-HT4 receptors. The apparent selectivity observed in guinea-pig is due to the atypical nature of the 5-HT3 receptor in this species. The short duration of action of this novel antagonist may complicate its use in vivo. SDZ 205,557 should, therefore, be used with appropriate caution in studies defining the 5-HT4 receptor. PMID:8448587

  4. Cannabidiol attenuates catalepsy induced by distinct pharmacological mechanisms via 5-HT1A receptor activation in mice.

    PubMed

    Gomes, Felipe V; Del Bel, Elaine A; Guimarães, Francisco S

    2013-10-01

    Cannabidiol (CBD) is a non-psychotomimetic compound from Cannabis sativa plant that produces antipsychotic effects in rodents and humans. It also reverses L-dopa-induced psychotic symptoms and improves motor function in Parkinson's patients. This latter effect raised the possibility that CBD could have beneficial effects on motor related striatal disorders. To investigate this possibility we evaluated if CBD would prevent catalepsy induced by drugs with distinct pharmacological mechanisms. The catalepsy test is largely used to investigate impairments of motor function caused by interference on striatal function. Male Swiss mice received acute pretreatment with CBD (5, 15, 30 or 60mg/kg, ip) 30min prior to the D2 receptor antagonist haloperidol (0.6mg/kg), the non-selective nitric oxide synthase (NOS) inhibitor L-nitro-N-arginine (L-NOARG, 80mg/kg) or the CB1 receptor agonist WIN55,212-2 (5mg/kg). The mice were tested 1, 2 or 4h after haloperidol, L-NOARG or WIN55,212-2 injection. These drugs significantly increased catalepsy time and this effect was attenuated dose-dependently by CBD. CBD, by itself, did not induce catalepsy. In a second set of experiments the mechanism of CBD effects was investigated. Thirty minutes before CBD (30mg/kg) the animals received the 5-HT1A receptor antagonist WAY100635 (0.1mg/kg). The anticataleptic effect of CBD was prevented by WAY100635. These findings indicate that CBD can attenuate catalepsy caused by different mechanisms (D2 blockade, NOS inhibition and CB1 agonism) via 5-HT1A receptor activation, suggesting that it could be useful in the treatment of striatal disorders.

  5. Selective pharmacological blockade of the 5-HT7 receptor attenuates light and 8-OH-DPAT induced phase shifts of mouse circadian wheel running activity.

    PubMed

    Shelton, Jonathan; Yun, Sujin; Losee Olson, Susan; Turek, Fred; Bonaventure, Pascal; Dvorak, Curt; Lovenberg, Timothy; Dugovic, Christine

    2014-01-01

    Recent reports have illustrated a reciprocal relationship between circadian rhythm disruption and mood disorders. The 5-HT7 receptor may provide a crucial link between the two sides of this equation since the receptor plays a critical role in sleep, depression, and circadian rhythm regulation. To further define the role of the 5-HT7 receptor as a potential pharmacotherapy to correct circadian rhythm disruptions, the current study utilized the selective 5-HT7 antagonist JNJ-18038683 (10 mg/kg) in three different circadian paradigms. While JNJ-18038683 was ineffective at phase shifting the onset of wheel running activity in mice when administered at different circadian time (CT) points across the circadian cycle, pretreatment with JNJ-18038683 blocked non-photic phase advance (CT6) induced by the 5-HT1A/7 receptor agonist 8-OH-DPAT (3 mg/kg). Since light induced phase shifts in mammals are partially mediated via the modulation of the serotonergic system, we determined if JNJ-18038683 altered phase shifts induced by a light pulse at times known to phase delay (CT15) or advance (CT22) wheel running activity in free running mice. Light exposure resulted in a robust shift in the onset of activity in vehicle treated animals at both times tested. Administration of JNJ-18038683 significantly attenuated the light induced phase delay and completely blocked the phase advance. The current study demonstrates that pharmacological blockade of the 5-HT7 receptor by JNJ-18038683 blunts both non-photic and photic phase shifts of circadian wheel running activity in mice. These findings highlight the importance of the 5-HT7 receptor in modulating circadian rhythms. Due to the opposite modulating effects of light resetting between diurnal and nocturnal species, pharmacotherapy targeting the 5-HT7 receptor in conjunction with bright light therapy may prove therapeutically beneficial by correcting the desynchronization of internal rhythms observed in depressed individuals.

  6. Potentiating action of MKC-242, a selective 5-HT1A receptor agonist, on the photic entrainment of the circadian activity rhythm in hamsters.

    PubMed

    Moriya, T; Yoshinobu, Y; Ikeda, M; Yokota, S; Akiyama, M; Shibata, S

    1998-11-01

    Serotonergic projections from the midbrain raphe nuclei to the suprachiasmatic nuclei (SCN) are known to regulate the photic entrainment of circadian clocks. However, it is not known which 5-hydroxytryptamine (5-HT) receptor subtypes are involved in the circadian regulation. In order to verify the role of 5-HT1A receptors, we examined the effects of 5-¿3-[((2S)-1,4-benzodioxan-2-ylmethyl)amino]-propoxy¿-1,3-b enzodioxole HCl (MKC-242), a selective 5-HT1A receptor agonist, on photic entrainment of wheel-running circadian rhythms of hamsters. MKC-242 (3 mg kg(-1), i.p.) significantly accelerated the re-entrainment of wheel-running rhythms to a new 8 h delayed or advanced light-dark cycle. MKC-242 (3 mg kg(-1), i.p.) also potentiated the phase advance of the wheel-running rhythm produced by low (5 lux) or high (60 lux) intensity light pulses. In contrast, 8-hydroxydipropylaminotetralin (8-OH-DPAT)(5 mg kg(-1), i.p.), a well known 5-HT1A/5-HT7 receptor agonist, only suppressed low intensity (5 lux) light-induced phase advances. The potentiating actions of MKC-242 on light pulse-induced phase advances were observed even when injected 20 or 60 min after the light exposure. The potentiating action of MKC-242 was antagonized by WAY100635, a selective 5-HT1A receptor blocker, but not by ritanserin, a 5-HT2/5-HT7 receptor blocker, indicating that MKC-242 is activating 5-HT1A receptors. Light pulse-induced c-fos expression in the SCN and the intergeniculate leaflet (IGL) were unaffected by MKC-242 (3 mg kg(-1), i.p.). HPLC analysis demonstrated that MKC-242 (3 mg kg(-1), i.p.) decreased the 5-HIAA content in the SCN. The present results suggest that presynaptic 5-HT1A receptor activation may be involved in the potentiation of photic entrainment by MKC-242 in hamsters. PMID:9863658

  7. Potentiating action of MKC-242, a selective 5-HT1A receptor agonist, on the photic entrainment of the circadian activity rhythm in hamsters

    PubMed Central

    Moriya, T; Yoshinobu, Y; Ikeda, M; Yokota, S; Akiyama, M; Shibata, S

    1998-01-01

    Serotonergic projections from the midbrain raphe nuclei to the suprachiasmatic nuclei (SCN) are known to regulate the photic entrainment of circadian clocks. However, it is not known which 5-hydroxytryptamine (5-HT) receptor subtypes are involved in the circadian regulation. In order to verify the role of 5-HT1A receptors, we examined the effects of 5-{3-[((2S)-1,4-benzodioxan-2-ylmethyl)amino]propoxy}-1,3-benzodioxole HCl (MKC-242), a selective 5-HT1A receptor agonist, on photic entrainment of wheel-running circadian rhythms of hamsters.MKC-242 (3 mg kg−1, i.p.) significantly accelerated the re-entrainment of wheel-running rhythms to a new 8 h delayed or advanced light-dark cycle.MKC-242 (3 mg kg−1, i.p.) also potentiated the phase advance of the wheel-running rhythm produced by low (5 lux) or high (60 lux) intensity light pulses. In contrast, 8-hydroxy-dipropylaminotetralin (8-OH-DPAT)(5 mg kg−1, i.p.), a well known 5-HT1A/5-HT7 receptor agonist, only suppressed low intensity (5 lux) light-induced phase advances.The potentiating actions of MKC-242 on light pulse-induced phase advances were observed even when injected 20 or 60 min after the light exposure.The potentiating action of MKC-242 was antagonized by WAY100635, a selective 5-HT1A receptor blocker, but not by ritanserin, a 5-HT2/5-HT7 receptor blocker, indicating that MKC-242 is activating 5-HT1A receptors.Light pulse-induced c-fos expression in the SCN and the intergeniculate leaflet (IGL) were unaffected by MKC-242 (3 mg kg−1, i.p.).HPLC analysis demonstrated that MKC-242 (3 mg kg−1, i.p.) decreased the 5-HIAA content in the SCN.The present results suggest that presynaptic 5-HT1A receptor activation may be involved in the potentiation of photic entrainment by MKC-242 in hamsters. PMID:9863658

  8. No contractile effect for 5-HT1D and 5-HT1F receptor agonists in human and bovine cerebral arteries: similarity with human coronary artery

    PubMed Central

    Bouchelet, Isabelle; Case, Bruce; Olivier, André; Hamel, Edith

    2000-01-01

    Using subtype-selective 5-HT1 receptor agonists and/or the 5-HT1 receptor antagonist GR127935, we characterized in vitro the 5-HT receptor that mediates the contraction of human and bovine cerebral arteries. Further, we investigated which sumatriptan-sensitive receptors are present in human coronary artery by reverse-transcriptase polymerase chain reaction (RT–PCR). Agonists with affinity at the 5-HT1B receptor, such as sumatriptan, alniditan and/or IS-159, elicited dose-dependent contraction in both human and bovine cerebral arteries. They behaved as full agonists at the sumatriptan-sensitive 5-HT1 receptors in both species. In contrast, PNU-109291 and LY344864, selective agonists at 5-HT1D and 5-HT1F receptors, respectively, were devoid of any significant vasocontractile activity in cerebral arteries, or did not affect the sumatriptan-induced vasocontraction. The rank order of agonist potency was similar in both species and could be summarized as 5-HT=alniditan>sumatriptan=IS-159>>>PNU-109291=LY344864. In bovine cerebral arteries, the 5-HT1 receptor antagonist GR127935 dose-dependently inhibited the vasoconstrictions elicited by both 5-HT and sumatriptan, with respective pA2 values of 8.0 and 8.6. RT–PCR studies in human coronary arteries showed a strong signal for the 5-HT1B receptor while message for the 5-HT1F receptor was weak and less frequently detected. Expression of 5-HT1D receptor mRNA was not detected in any sample. The present results demonstrate that the triptan-induced contraction in brain vessels is mediated exclusively by the 5-HT1B receptor, which is also present in a majority of human coronary arteries. These results suggest that selective 5-HT1D and 5-HT1F receptor agonists might represent new antimigraine drugs devoid of cerebro- and cardiovascular effects. PMID:10711348

  9. Alterations of 5-HT1A receptor-induced G-protein functional activation and relationship to memory deficits in patients with pharmacoresistant temporal lobe epilepsy.

    PubMed

    Cuellar-Herrera, Manola; Velasco, Ana Luisa; Velasco, Francisco; Trejo, David; Alonso-Vanegas, Mario; Nuche-Bricaire, Avril; Vázquez-Barrón, Daruni; Guevara-Guzmán, Rosalinda; Rocha, Luisa

    2014-12-01

    The 5-hydroxytryptamine-1A (5-HT1A) receptors are known to be involved in the inhibition of seizures in epilepsy. Moreover, studies propose a role for the 5-HT1A receptor in memory function; it is believed that the higher density of this receptor in the hippocampus plays an important role in its regulation. Positron emission tomography (PET) studies in patients with mesial temporal lobe epilepsy (mTLE) have demonstrated that a decrease in 5-HT1A receptor binding in temporal regions may play a role in memory impairment. The evidences lead us to speculate whether this decrease in receptor binding is associated with a reduced receptor number or if the functionality of the 5-HT1A receptor-induced G-protein activation and/or the second messenger cascade is modified. The purpose of the present study is to determine 5-HT1A receptor-induced G-protein functional activation by 8-OH-DPAT-stimulated [(35)S]GTPγS binding assay in hippocampal tissue of surgical patients with mTLE. We correlate functional activity with epilepsy history and neuropsychological assessment of memory. We found that maximum functional activation stimulation values (Emax) of [(35)S]GTPγS binding were significantly increased in mTLE group when compared to autopsy samples. Furthermore, significant correlations were found: (1) positive coefficients between the Emax with the age of patient and frequency of seizures; (2) negative coefficients between the Emax and working memory, immediate recall and delayed recall memory tasks. Our data suggest that the epileptic hippocampus of patients with mTLE presents an increase in 5-HT1A receptor-induced G-protein functional activation, and that this altered activity is related to age and seizure frequency, as well as to memory consolidation deficit.

  10. Alterations of 5-HT1A receptor-induced G-protein functional activation and relationship to memory deficits in patients with pharmacoresistant temporal lobe epilepsy.

    PubMed

    Cuellar-Herrera, Manola; Velasco, Ana Luisa; Velasco, Francisco; Trejo, David; Alonso-Vanegas, Mario; Nuche-Bricaire, Avril; Vázquez-Barrón, Daruni; Guevara-Guzmán, Rosalinda; Rocha, Luisa

    2014-12-01

    The 5-hydroxytryptamine-1A (5-HT1A) receptors are known to be involved in the inhibition of seizures in epilepsy. Moreover, studies propose a role for the 5-HT1A receptor in memory function; it is believed that the higher density of this receptor in the hippocampus plays an important role in its regulation. Positron emission tomography (PET) studies in patients with mesial temporal lobe epilepsy (mTLE) have demonstrated that a decrease in 5-HT1A receptor binding in temporal regions may play a role in memory impairment. The evidences lead us to speculate whether this decrease in receptor binding is associated with a reduced receptor number or if the functionality of the 5-HT1A receptor-induced G-protein activation and/or the second messenger cascade is modified. The purpose of the present study is to determine 5-HT1A receptor-induced G-protein functional activation by 8-OH-DPAT-stimulated [(35)S]GTPγS binding assay in hippocampal tissue of surgical patients with mTLE. We correlate functional activity with epilepsy history and neuropsychological assessment of memory. We found that maximum functional activation stimulation values (Emax) of [(35)S]GTPγS binding were significantly increased in mTLE group when compared to autopsy samples. Furthermore, significant correlations were found: (1) positive coefficients between the Emax with the age of patient and frequency of seizures; (2) negative coefficients between the Emax and working memory, immediate recall and delayed recall memory tasks. Our data suggest that the epileptic hippocampus of patients with mTLE presents an increase in 5-HT1A receptor-induced G-protein functional activation, and that this altered activity is related to age and seizure frequency, as well as to memory consolidation deficit. PMID:25304920

  11. Hippocampal 5-HT1A Receptor and Spatial Learning and Memory

    PubMed Central

    Glikmann-Johnston, Yifat; Saling, Michael M.; Reutens, David C.; Stout, Julie C.

    2015-01-01

    Spatial cognition is fundamental for survival in the topographically complex environments inhabited by humans and other animals. The hippocampus, which has a central role in spatial cognition, is characterized by high concentration of serotonin (5-hydroxytryptamine; 5-HT) receptor binding sites, particularly of the 1A receptor (5-HT1A) subtype. This review highlights converging evidence for the role of hippocampal 5-HT1A receptors in spatial learning and memory. We consider studies showing that activation or blockade of the 5-HT1A receptors using agonists or antagonists, respectively, lead to changes in spatial learning and memory. For example, pharmacological manipulation to induce 5-HT release, or to block 5-HT uptake, have indicated that increased extracellular 5-HT concentrations maintain or improve memory performance. In contrast, reduced levels of 5-HT have been shown to impair spatial memory. Furthermore, the lack of 5-HT1A receptor subtype in single gene knockout mice is specifically associated with spatial memory impairments. These findings, along with evidence from recent cognitive imaging studies using positron emission tomography (PET) with 5-HT1A receptor ligands, and studies of individual genetic variance in 5-HT1A receptor availability, strongly suggests that 5-HT, mediated by the 5-HT1A receptor subtype, plays a key role in spatial learning and memory. PMID:26696889

  12. Autoradiography of serotonin 5-HT1A receptor-activated G proteins in guinea pig brain sections by agonist-stimulated [35S]GTPgammaS binding.

    PubMed

    Dupuis, D S; Palmier, C; Colpaert, F C; Pauwels, P J

    1998-03-01

    G protein activation mediated by serotonin 5-HT1A and 5-HT(1B/D) receptors in guinea pig brain was investigated by using quantitative autoradiography of agonist-stimulated [35S]GTPgammaS binding to brain sections. [35S]GTPgammaS binding was stimulated by the mixed 5-HT1A/5-HT(1B/D) agonist L694247 in brain structures enriched in 5-HT1A binding sites, i.e., hippocampus (+140 +/- 14%), dorsal raphe (+70 +/- 8%), lateral septum (+52 +/- 12%), cingulate (+36 +/- 8%), and entorhinal cortex (+34 +/- 5%). L694247 caused little or no stimulation of [35S]GTPgammaS binding in brain regions with high densities of 5-HT(1B/D) binding sites (e.g., substantia nigra, striatum, central gray, and dorsal subiculum). The [35S]GTPgammaS binding response was antagonized by WAY100635 (10 microM) and methiothepin (10 microM). In contrast, the 5-HT1B inverse agonist SB224289 (10 microM) did not affect the L694247-mediated [35S]GTPgammaS binding response, and the mixed 5-HT(1B/D) antagonist GR127935 (10 microM) yielded a partial blockade. The distribution pattern of the [35S]GTPgammaS binding response and the antagonist profile suggest the L694247-mediated response in guinea pig brain to be mediated by 5-HT1A receptors. In addition to L694247, 8-hydroxy-2-(di-n-propylamino)tetralin, and flesinoxan also stimulated [35S]GTPgammaS binding; their maximal responses varied between 46 and 52% compared with L694247, irrespective of the brain structure being considered. Sumatriptan, rizatriptan, and zolmitriptan (10 microM) stimulated [35S]GTPgammaS binding in the hippocampus by 20-50%. Naratriptan, CP122638, and dihydroergotamine stimulated [35S]GTPgammaS binding to a similar level as L694247 in hippocampus, lateral septum, and dorsal raphe. It appears that under the present experimental conditions, G protein activation through 5-HT1A but not 5-HT(1B/D) receptors can be measured in guinea pig brain sections. PMID:9489749

  13. Design, synthesis and evaluation of antidepressant activity of novel 2-methoxy 1, 8 naphthyridine 3-carboxamides as 5-HT3 receptor antagonists.

    PubMed

    Mahesh, Radhakrishnan; Dhar, Arghya Kusum; Jindal, Ankur; Bhatt, Shvetank

    2014-05-01

    A series of novel 1,8-naphthyridine-3-carboxamides as 5-HT3 receptor antagonists were synthesized with an intention to explore the antidepressant activity of these compounds. The title carboxamides were designed using ligand-based approach keeping in consideration the structural requirement of the pharmacophore of 5-HT3 receptor antagonists. The compounds were synthesized using appropriate synthetic route from the starting material nicotinamide. 5-HT3 receptor antagonism of all the compounds, which was denoted in the form of pA2 value, was determined in longitudinal muscle myenteric plexus preparation from guinea-pig ileum against 5-HT3 agonist, 2-methyl-5-HT. Compound 8g (2-methoxy-1, 8-naphthyridin-3-yl) (2-methoxy phenyl piperazine-1-yl) methanone was identified as the most active compound, which expressed a pA2 value of 7.67. The antidepressant activity of all the compounds was examined in mice model of forced swim test (FST); importantly, none of the compounds was found to cause any significant changes in the locomotor activity of mice at the tested dose levels. In FST, the compounds with considerably higher pA2 value exhibited promising antidepressant-like activity, whereas compounds with lower pA2 value did not show antidepressant-like activity as compared to the control group.

  14. Serotonin increases ERK1/2 phosphorylation in astrocytes by stimulation of 5-HT2B and 5-HT2C receptors.

    PubMed

    Li, Baoman; Zhang, Shiquen; Li, Min; Hertz, Leif; Peng, Liang

    2010-11-01

    We have previously shown that fluoxetine causes ERK(1/2) phosphorylation in cultured mouse astrocytes mediated exclusively by stimulation of 5-HT(2B) receptors (Li et al., 2008b). This raises the question whether this is also the case for serotonin (5-HT) itself. In the present study serotonin was found to induce ERK(1/2) phosphorylation by stimulation of 5-HT(2B) receptors with high affinity (EC(50): 20-30 pM), and by stimulation of 5-HT(2C) receptor with low affinity (EC(50): 1 microM or higher). ERK(1/2) phosphorylation induced by stimulation of either 5-HT(2B) or 5-HT(2C) receptors was mediated by epidermal growth factor (EGF) receptor transactivation (Peng et al., this issue), shown by the inhibitory effect of AG1478, an inhibitor of the EGF receptor tyrosine kinase, and GM6001, an inhibitor of Zn-dependent metalloproteinases, and thus of 5-HT(2B) receptor-mediated EGF receptor agonist release. It is discussed that the high potency of the 5-HT(2B)-mediated effect is consistent with literature data for binding affinity of serotonin to cloned human 5-HT(2B) receptors and with observations of low extracellular concentrations of serotonin in brain, which would allow a demonstrated moderate and modality-dependent increase in specific brain areas to activate 5-HT(2B) receptors. In contrast the relevance of the observed 5-HT(2C) receptors on astrocytes is questioned.

  15. Kampo Medicine: Evaluation of the Pharmacological Activity of 121 Herbal Drugs on GABAA and 5-HT3A Receptors.

    PubMed

    Hoffmann, Katrin M; Herbrechter, Robin; Ziemba, Paul M; Lepke, Peter; Beltrán, Leopoldo; Hatt, Hanns; Werner, Markus; Gisselmann, Günter

    2016-01-01

    Kampo medicine is a form of Japanese phytotherapy originating from traditional Chinese medicine (TCM). During the last several decades, much attention has been paid to the pharmacological effects of these medical plants and their constituents. However, in many cases, a systematic screening of Kampo remedies to determine pharmacologically relevant targets is still lacking. In this study, a broad screening of Kampo remedies was performed to look for pharmacologically relevant 5-HT3A and GABAA receptor ligands. Several of the Kampo remedies are currently used for symptoms such as nausea, emesis, gastrointestinal motility disorders, anxiety, restlessness, or insomnia. Therefore, the pharmacological effects of 121 herbal drugs from Kampo medicine were analyzed as ethanol tinctures on heterologously expressed 5-HT3A and GABAA receptors, due to the involvement of these receptors in such pathophysiological processes. The tinctures of Lindera aggregata (radix) and Leonurus japonicus (herba) were the most effective inhibitory compounds on the 5-HT3A receptor. Further investigation of known ingredients in these compounds led to the identification of leonurine from Leonurus as a new natural 5-HT3A receptor antagonist. Several potentiating herbs (e.g., Magnolia officinalis (cortex), Syzygium aromaticum (flos), and Panax ginseng (radix)) were also identified for the GABAA receptor, which are all traditionally used for their sedative or anxiolytic effects. A variety of tinctures with antagonistic effects Salvia miltiorrhiza (radix) were also detected. Therefore, this study reveals new insights into the pharmacological action of a broad spectrum of herbal drugs from Kampo, allowing for a better understanding of their physiological effects and clinical applications. PMID:27524967

  16. Kampo Medicine: Evaluation of the Pharmacological Activity of 121 Herbal Drugs on GABAA and 5-HT3A Receptors

    PubMed Central

    Hoffmann, Katrin M.; Herbrechter, Robin; Ziemba, Paul M.; Lepke, Peter; Beltrán, Leopoldo; Hatt, Hanns; Werner, Markus; Gisselmann, Günter

    2016-01-01

    Kampo medicine is a form of Japanese phytotherapy originating from traditional Chinese medicine (TCM). During the last several decades, much attention has been paid to the pharmacological effects of these medical plants and their constituents. However, in many cases, a systematic screening of Kampo remedies to determine pharmacologically relevant targets is still lacking. In this study, a broad screening of Kampo remedies was performed to look for pharmacologically relevant 5-HT3A and GABAA receptor ligands. Several of the Kampo remedies are currently used for symptoms such as nausea, emesis, gastrointestinal motility disorders, anxiety, restlessness, or insomnia. Therefore, the pharmacological effects of 121 herbal drugs from Kampo medicine were analyzed as ethanol tinctures on heterologously expressed 5-HT3A and GABAA receptors, due to the involvement of these receptors in such pathophysiological processes. The tinctures of Lindera aggregata (radix) and Leonurus japonicus (herba) were the most effective inhibitory compounds on the 5-HT3A receptor. Further investigation of known ingredients in these compounds led to the identification of leonurine from Leonurus as a new natural 5-HT3A receptor antagonist. Several potentiating herbs (e.g., Magnolia officinalis (cortex), Syzygium aromaticum (flos), and Panax ginseng (radix)) were also identified for the GABAA receptor, which are all traditionally used for their sedative or anxiolytic effects. A variety of tinctures with antagonistic effects Salvia miltiorrhiza (radix) were also detected. Therefore, this study reveals new insights into the pharmacological action of a broad spectrum of herbal drugs from Kampo, allowing for a better understanding of their physiological effects and clinical applications. PMID:27524967

  17. Piperazine analogs of naphthyridine-3-carboxamides and indole-2-carboxamides: novel 5-HT3 receptor antagonists with antidepressant-like activity.

    PubMed

    Dhar, Arghya K; Mahesh, Radhakrishnan; Jindal, Ankur; Bhatt, Shvetank

    2015-01-01

    Series of piperazine analogs of naphthyridine-3-carboxamides and indole-2-carboxamides were designed using a ligand-based approach with consideration of the pharmacophoric requirements for 5-HT3 receptor antagonists. The title carboxamides were synthesized using appropriate synthetic routes. Initially, the 5-HT3 receptor antagonistic activity of all the compounds was determined on isolated guinea pig ileum tissue against the 5-HT3 agonist, 2-methyl-5-hydroxytryptamine, which was denoted in the form of pA2 values. The structure-activity relationship regarding the influence of the aromatic part and basic moiety as features in the 5-HT3 pharmacophore was derived. Among all the compounds screened, the piperazine derivatives of indole-2-carboxamide 13i and naphthyridine-3-carboxamide 8h exhibited prominent 5-HT3 receptor antagonism with pA2 values of 7.5 and 7.3, respectively. Subsequent investigation of the antidepressant activities of selected compounds in the mouse forced swim test (FST) led to the identification of the piperazine analogs of indole-2-carboxamide 13i and naphthyridine-3-carboxamide 8h as the most promising compounds. Both 13i and 8h demonstrated significant reduction in the duration of immobility as compared to the control. Importantly, none of the tested compounds affected the baseline locomotion of mice at the tested dose levels.

  18. Activation of serotonin 5-HT(1B) receptor in the dorsal raphe nucleus affects REM sleep in the rat.

    PubMed

    Monti, Jaime M; Jantos, Héctor; Lagos, Patricia

    2010-01-01

    The effects of CP-94253, a selective 5-HT(1B) receptor agonist, and of SB 224-289, a selective 5-HT(1B) receptor antagonist, on spontaneous sleep were studied in adult rats implanted for chronic sleep recordings. The 5-HT(1B) receptor ligands were microinjected directly into the dorsal raphe nucleus (DRN) during the light period of the 12-h light/12-h dark cycle. Infusion of CP-94253 (1-4 mM) into the DRN induced a significant reduction of rapid-eye-movement sleep (REMS) and of the mean duration of REM episodes. On the other hand, SB 224-289 (0.25-0.5 mM) decreased REMS and the number of REM periods. Pretreatment with SB 224-289 (0.125-0.25 mM) antagonized the CP-94253 (4 mM)-induced reduction of REMS and of the mean duration of REM periods. Administration of the GABA(A) receptor agonist muscimol (1.5mM), which by itself did not significantly affect sleep variables, prevented the effect of CP-94253 (4 mM) on REMS suppression. It is proposed that the suppression of REMS after microinjection of CP-94253 into the DRN is related to the inhibition of GABAergic interneurons that make synaptic contacts with serotonergic cells. The resultant increase of serotonin release at postsynaptic sites involved in the induction and maintenance of REMS would induce the suppression of the behavioral state.

  19. Activation of 5-HT2a Receptors in the Basolateral Amygdala Promotes Defeat-Induced Anxiety and the Acquisition of Conditioned Defeat in Syrian Hamsters

    PubMed Central

    Clinard, Catherine T.; Bader, Lauren R.; Sullivan, Molly A.; Cooper, Matthew A.

    2014-01-01

    Conditioned defeat is a model in Syrian hamsters (Mesocricetus auratus) in which normal territorial aggression is replaced by increased submissive and defensive behavior following acute social defeat. The conditioned defeat response involves both a fear-related memory for a specific opponent as well as anxiety-like behavior indicated by avoidance of novel conspecifics. We have previously shown that systemic injection of a 5-HT2a receptor antagonist reduces the acquisition of conditioned defeat. Because neural activity in the basolateral amygdala (BLA) is critical for the acquisition of conditioned defeat and BLA 5-HT2a receptors can modulate anxiety but have a limited effect on emotional memories, we investigated whether 5-HT2a receptor modulation alters defeat-induced anxiety but not defeat-related memories. We injected the 5-HT2a receptor antagonist MDL 11,939 (0 mM, 1.7 mM or 17 mM) or the 5-HT2a receptor agonist TCB-2 (0 mM, 8 mM or 80 mM) into the BLA prior to social defeat. We found that injection of MDL 11,939 into the BLA impaired acquisition of the conditioned defeat response and blocked defeat-induced anxiety in the open field, but did not significantly impair avoidance of former opponents in the Y-maze. Furthermore, we found that injection of TCB-2 into the BLA increased the acquisition of conditioned defeat and increased anxiety-like behavior in the open field, but did not alter avoidance of former opponents. Our data suggest that 5-HT2a receptor signaling in the BLA is both necessary and sufficient for the development of conditioned defeat, likely via modulation of defeat-induced anxiety. PMID:25458113

  20. The role of the serotonin receptor subtypes 5-HT1A and 5-HT7 and its interaction in emotional learning and memory

    PubMed Central

    Stiedl, Oliver; Pappa, Elpiniki; Konradsson-Geuken, Åsa; Ögren, Sven Ove

    2015-01-01

    Serotonin [5-hydroxytryptamine (5-HT)] is a multifunctional neurotransmitter innervating cortical and limbic areas involved in cognition and emotional regulation. Dysregulation of serotonergic transmission is associated with emotional and cognitive deficits in psychiatric patients and animal models. Drugs targeting the 5-HT system are widely used to treat mood disorders and anxiety-like behaviors. Among the fourteen 5-HT receptor (5-HTR) subtypes, the 5-HT1AR and 5-HT7R are associated with the development of anxiety, depression and cognitive function linked to mechanisms of emotional learning and memory. In rodents fear conditioning and passive avoidance (PA) are associative learning paradigms to study emotional memory. This review assesses the role of 5-HT1AR and 5-HT7R as well as their interplay at the molecular, neurochemical and behavioral level. Activation of postsynaptic 5-HT1ARs impairs emotional memory through attenuation of neuronal activity, whereas presynaptic 5-HT1AR activation reduces 5-HT release and exerts pro-cognitive effects on PA retention. Antagonism of the 5-HT1AR facilitates memory retention possibly via 5-HT7R activation and evidence is provided that 5HT7R can facilitate emotional memory upon reduced 5-HT1AR transmission. These findings highlight the differential role of these 5-HTRs in cognitive/emotional domains of behavior. Moreover, the results indicate that tonic and phasic 5-HT release can exert different and potentially opposing effects on emotional memory, depending on the states of 5-HT1ARs and 5-HT7Rs and their interaction. Consequently, individual differences due to genetic and/or epigenetic mechanisms play an essential role for the responsiveness to drug treatment, e.g., by SSRIs which increase intrasynaptic 5-HT levels thereby activating multiple pre- and postsynaptic 5-HTR subtypes. PMID:26300776

  1. Identification of essential residues for binding and activation in the human 5-HT7(a) serotonin receptor by molecular modeling and site-directed mutagenesis

    PubMed Central

    Impellizzeri, Agata Antonina Rita; Pappalardo, Matteo; Basile, Livia; Manfra, Ornella; Andressen, Kjetil Wessel; Krobert, Kurt Allen; Messina, Angela; Levy, Finn Olav; Guccione, Salvatore

    2015-01-01

    The human 5-HT7 receptor is expressed in both the central nervous system and peripheral tissues and is a potential drug target in behavioral and psychiatric disorders. We examined molecular determinants of ligand binding and G protein activation by the human 5-HT7(a) receptor. The role of several key residues in the 7th transmembrane domain (TMD) and helix 8 were elucidated combining in silico and experimental mutagenesis. Several single and two double point mutations of the 5-HT7(a) wild type receptor were made (W7.33V, E7.35T, E7.35R, E7.35D, E7.35A, R7.36V, Y7.43A, Y7.43F, Y7.43T, R8.52D, D8.53K; E7.35T-R7.36V, R8.52D-D8.53K), and their effects upon ligand binding were assessed by radioligand binding using a potent agonist (5-CT) and a potent antagonist (SB269970). In addition, the ability of the mutated 5-HT7(a) receptors to activate G protein after 5-HT-stimulation was determined through activation of adenylyl cyclase. In silico investigation on mutated receptors substantiated the predicted importance of TM7 and showed critical roles of residues E7.35, W7.33, R7.36 and Y7.43 in agonist and antagonist binding and conformational changes of receptor structure affecting adenylyl cyclase activation. Experimental data showed that mutants E7.35T and E7.35R were incapable of ligand binding and adenylyl cyclase activation, consistent with a requirement for a negatively charged residue at this position. The mutant R8.52D was unable to activate adenylyl cyclase, despite unaffected ligand binding, consistent with the R8.52 residue playing an important role in the receptor-G protein interface. The mutants Y7.43A and Y7.43T displayed reduced agonist binding and AC agonist potency, not seen in Y7.43F, consistent with a requirement for an aromatic residue at this position. Knowledge of the molecular interactions important in h5-HT7 receptor ligand binding and G protein activation will aid the design of selective h5-HT7 receptor ligands for potential pharmacological use. PMID

  2. THE SEROTONIN (5-HT) 5-HT2A RECEPTOR: ASSOCIATION WITH INHERENT AND COCAINE-EVOKED BEHAVIORAL DISINHIBITION IN RATS

    PubMed Central

    Anastasio, Noelle C.; Stoffel, Erin C.; Fox, Robert G.; Bubar, Marcy J.; Rice, Kenner C.; Moeller, F. Gerard; Cunningham, Kathryn A.

    2011-01-01

    Alterations in the balance of functional activity within the serotonin (5-HT) system are hypothesized to underlie impulse control. Cocaine-dependent subjects consistently demonstrate greater impulsivity relative to non-drug using control subjects. Preclinical studies suggest that the 5-HT2A receptor (5-HT2AR) contributes to the regulation of impulsive behavior and also mediates some of the behavioral effects of cocaine. We hypothesized that the selective 5-HT2AR antagonist M100907 would reduce inherent levels of impulsivity and attenuate impulsive responding induced by cocaine in two animal models of impulsivity, the differential reinforcement of low rate (DRL) task and the one-choice serial reaction time (1-CSRT) task. M100907 reduced rates of responding in the DRL task and premature responding in the 1-CSRT task. Conversely, cocaine disrupted rates of responding in the DRL task and increased premature responding in the 1-CSRT task. M100907 attenuated cocaine-induced increases in specific markers of behavioral disinhibition in the DRL and 1-CSRT tasks. These results suggest that the 5-HT2AR regulates inherent impulsivity, and that blockade of the 5-HT2AR alleviates specific aspects of elevated levels of impulsivity induced by cocaine exposure. These data point to the 5-HT2AR as an important regulatory substrate in impulse control. PMID:21499079

  3. Serotonin acts through 5-HT1 and 5-HT2 receptors to exert biphasic actions on GnRH neuron excitability in the mouse.

    PubMed

    Bhattarai, Janardhan P; Roa, Juan; Herbison, Allan E; Han, Seong Kyu

    2014-02-01

    The effect of serotonin (5-HT) on the electrical excitability of GnRH neurons was examined using gramicidin perforated-patch electrophysiology in transgenic GnRH-green fluorescent protein mice. In diestrous female, the predominant effect of 5-HT was inhibition (70%) with 50% of these cells also exhibiting a late-onset excitation. Responses were dose dependent (EC(50) = 1.2μM) and persisted in the presence of amino acid receptor antagonists and tetrodotoxin, indicating a predominant postsynaptic action of 5-HT. Studies in neonatal, juvenile, peripubertal, and adult mice revealed that 5-HT exerted less potent responses from GnRH neurons with advancing postnatal age in both sexes. In adult male mice, 5-HT exerted less potent hyperpolarizing responses with more excitations compared with females. In addition, adult proestrous female GnRH neurons exhibited reduced inhibition and a complete absence of biphasic hyperpolarization-excitation responses. Studies using 5-HT receptor antagonists demonstrated that the activation of 5-HT(1A) receptors mediated the inhibitory responses, whereas the excitation was mediated by the activation of 5-HT(2A) receptors. The 5-HT-mediated hyperpolarization involved both potassium channels and adenylate cyclase activation, whereas the 5-HT excitation was dependent on protein kinase C. The effects of exogenous 5-HT were replicated using fluoxetine, which enhances endogenous 5-HT levels. These studies demonstrate that 5-HT exerts a biphasic action on most GnRH neurons whereby a fast 5HT(1A)-mediated inhibition occurs alongside a slow 5-HT(2A) excitation. The balance of 5-HT-evoked inhibition vs excitation is developmentally regulated, sexually differentiated, and variable across the estrous cycle and may play a role in regulation of hypothalamic-pituitary-gonadal axis throughout postnatal development.

  4. The role of serotonin 5-HT2A receptors in memory and cognition

    PubMed Central

    Zhang, Gongliang; Stackman, Robert W.

    2015-01-01

    Serotonin 5-HT2A receptors (5-HT2ARs) are widely distributed in the central nervous system, especially in brain region essential for learning and cognition. In addition to endogenous 5-HT, several hallucinogens, antipsychotics, and antidepressants function by targeting 5-HT2ARs. Preclinical studies show that 5-HT2AR antagonists have antipsychotic and antidepressant properties, whereas agonist ligands possess cognition-enhancing and hallucinogenic properties. Abnormal 5-HT2AR activity is associated with a number of psychiatric disorders and conditions, including depression, schizophrenia, and drug addiction. In addition to its traditional activity as a G protein-coupled receptor (GPCR), recent studies have defined novel operations of 5-HT2ARs. Here we review progress in the (1) receptor anatomy and biology: distribution, signaling, polymerization and allosteric modulation; and (2) receptor functions: learning and memory, hallucination and spatial cognition, and mental disorders. Based on the recent progress in basic research on the 5-HT2AR, it appears that post-training 5-HT2AR activation enhances non-spatial memory consolidation, while pre-training 5-HT2AR activation facilitates fear extinction. Further, the potential influence that 5-HT2AR-elicited visual hallucinations may have on visual cue (i.e., landmark) guided spatial cognition is discussed. We conclude that the development of selective 5-HT2AR modulators to target distinct signaling pathways and neural circuits represents a new possibility for treating emotional, neuropsychiatric, and neurodegenerative disorders. PMID:26500553

  5. Discovering the mechanisms underlying serotonin (5-HT)2A and 5-HT2C receptor regulation following nicotine withdrawal in rats.

    PubMed

    Zaniewska, Magdalena; Alenina, Natalia; Wydra, Karolina; Fröhler, Sebastian; Kuśmider, Maciej; McCreary, Andrew C; Chen, Wei; Bader, Michael; Filip, Małgorzata

    2015-08-01

    We have previously demonstrated that nicotine withdrawal produces depression-like behavior and that serotonin (5-HT)2A/2C receptor ligands modulate that mood-like state. In the present study we aimed to identify the mechanisms (changes in radioligand binding, transcription or RNA-editing) related to such a behavioral outcome. Rats received vehicle or nicotine (0.4 mg/kg, s.c.) for 5 days in home cages. Brain 5-HT2A/2C receptors were analyzed on day 3 of nicotine withdrawal. Nicotine withdrawal increased [(3)H]ketanserin binding to 5-HT2A receptors in the ventral tegmental area and ventral dentate gyrus, yet decreased binding in the nucleus accumbens shell. Reduction in [(3)H]mesulergine binding to 5-HT2C receptors was seen in the ventral dentate gyrus. Profound decrease in the 5-HT2A receptor transcript level was noted in the hippocampus and ventral tegmental area. Out of five 5-HT2C receptor mRNA editing sites, deep sequencing data showed a reduction in editing at the E site and a trend toward reduction at the C site in the hippocampus. In the ventral tegmental area, a reduction for the frequency of CD 5-HT2C receptor transcript was seen. These results show that the reduction in the 5-HT2A receptor transcript level may be an auto-regulatory response to the increased receptor density in the hippocampus and ventral tegmental area during nicotine withdrawal, while decreased 5-HT2C receptor mRNA editing may explain the reduction in receptor labeling in the hippocampus. Serotonin (5-HT)2A/2C receptor ligands alleviate depression-like state in nicotine-withdrawn rats. Here, we show that the reduction in 5-HT2A receptor transcript level may be an auto-regulatory response to the increased receptor number in the hippocampus and ventral tegmental area during nicotine withdrawal, while attenuated 5-HT2C receptor mRNA editing in the hippocampus might explain reduced inverse agonist binding to 5-HT2C receptor and suggest a shift toward a population of more active receptors. 5

  6. Activation of serotonin 5-HT(2C) receptor suppresses behavioral sensitization and naloxone-precipitated withdrawal symptoms in heroin-treated mice.

    PubMed

    Wu, Xian; Pang, Gang; Zhang, Yong-Mei; Li, Guangwu; Xu, Shengchun; Dong, Liuyi; Stackman, Robert W; Zhang, Gongliang

    2015-10-21

    Abuse and dependence to heroin has evolved into a global epidemic as a significant clinical and societal problem with devastating consequences. Repeated exposure to heroin can induce long-lasting behavioral sensitization and withdrawal. Pharmacological activation of 5-HT2C receptors (5-HT2CRs) suppresses psychostimulant-induced drug-seeking and behavioral sensitization. The present study examined the effect of a selective 5-HT2CR agonist lorcaserin on behavioral sensitization and naloxone-precipitated withdrawal symptoms in heroin-treated mice. Male mice received heroin (1.0 mg/kg, s.c.) twice a day for 3 days and then drug treatment was suspended for 5 days. On day 9, a challenge dose of heroin (1.0 mg/kg) was administered to examine the expression of behavioral sensitization. Lorcaserin administered during the development, withdrawal or expression stage suppressed heroin-induced behavioral sensitization on day 9. Another cohort of mice received increasing doses of heroin over a 4.5-day period. Lorcaserin, or the positive control clonidine (an α2-adrenoceptor agonist) suppressed naloxone-precipitated withdrawal symptoms in heroin-treated mice. These findings suggest that activation of 5-HT2CRs suppresses behavioral sensitization and withdrawal in heroin-treated mice. Thus, pharmacological activation of 5-HT2CRs may represent a new avenue for the treatment of heroin addiction.

  7. Activation of serotonin 5-HT(2C) receptor suppresses behavioral sensitization and naloxone-precipitated withdrawal symptoms in heroin-treated mice.

    PubMed

    Wu, Xian; Pang, Gang; Zhang, Yong-Mei; Li, Guangwu; Xu, Shengchun; Dong, Liuyi; Stackman, Robert W; Zhang, Gongliang

    2015-10-21

    Abuse and dependence to heroin has evolved into a global epidemic as a significant clinical and societal problem with devastating consequences. Repeated exposure to heroin can induce long-lasting behavioral sensitization and withdrawal. Pharmacological activation of 5-HT2C receptors (5-HT2CRs) suppresses psychostimulant-induced drug-seeking and behavioral sensitization. The present study examined the effect of a selective 5-HT2CR agonist lorcaserin on behavioral sensitization and naloxone-precipitated withdrawal symptoms in heroin-treated mice. Male mice received heroin (1.0 mg/kg, s.c.) twice a day for 3 days and then drug treatment was suspended for 5 days. On day 9, a challenge dose of heroin (1.0 mg/kg) was administered to examine the expression of behavioral sensitization. Lorcaserin administered during the development, withdrawal or expression stage suppressed heroin-induced behavioral sensitization on day 9. Another cohort of mice received increasing doses of heroin over a 4.5-day period. Lorcaserin, or the positive control clonidine (an α2-adrenoceptor agonist) suppressed naloxone-precipitated withdrawal symptoms in heroin-treated mice. These findings suggest that activation of 5-HT2CRs suppresses behavioral sensitization and withdrawal in heroin-treated mice. Thus, pharmacological activation of 5-HT2CRs may represent a new avenue for the treatment of heroin addiction. PMID:26375926

  8. Activation of GABAA or 5HT1A receptors in the raphé pallidus abolish the cardiovascular responses to exogenous stress in conscious rats.

    PubMed

    Pham-Le, Nhut Minh; Cockburn, Chelsea; Nowell, Katherine; Brown, Justin

    2011-11-25

    Dysfunction in serotonin (5HT) neurotransmission in the brainstem of infants may disrupt protective responses to stress and increase the risk for Sudden Infant Death Syndrome (SIDS). The raphé pallidus (NRP) and other brainstem nuclei are rich in 5HT and are thought to mediate stress responses, including increases in blood pressure (BP) and heart rate (HR). Determining how 5HT neurotransmission in the brainstem mediates responses to stress will help to explain how dysfunction in neurotransmission could increase the risk of SIDS. It was hypothesized that alterations in neurotransmission in the NRP, specifically activation of the 5HT(1A) receptor subtype, would block cardiovascular responses to various types of exogenous stress. Using aseptic techniques, male Sprague-Dawley rats were instrumented with radiotelemetry probes which enabled non-invasive measurement of BP and HR. An indwelling microinjection cannula was also stereotaxically implanted into the NRP for injection of drugs that altered local 5HT neurotransmission. Following a one week recovery period, rats were microinjected with either muscimol (GABA(A) receptor agonist), 8-OH-DPAT (agonist to the inhibitory 5HT(1A) receptor), or a vehicle control (artificial cerebral spinal fluid; ACSF) immediately prior to exposure to one of three stressors: handling, air jet, or restraint. Physical handling and restraint of the animal were designed to elicit a mild and a maximal stress response respectively; while an air jet directed at the rat's face was used to provoke a psychological stress that did not require physical contact. All three stressors elicited similar and significant elevations in HR and BP following ACSF that persisted for at least 15 min with BP and HR elevated by ∼14.0 mmHg and ∼56.3 bpm respectively. The similarity in the stress responses suggest even mild handling of a rat elicits a maximal sympathoexcitatory response. The stress response was abolished following 8-OH-DPAT or muscimol

  9. The Role of 5-HT3 Receptors in Signaling from Taste Buds to Nerves.

    PubMed

    Larson, Eric D; Vandenbeuch, Aurelie; Voigt, Anja; Meyerhof, Wolfgang; Kinnamon, Sue C; Finger, Thomas E

    2015-12-01

    Activation of taste buds triggers the release of several neurotransmitters, including ATP and serotonin (5-hydroxytryptamine; 5-HT). Type III taste cells release 5-HT directly in response to acidic (sour) stimuli and indirectly in response to bitter and sweet tasting stimuli. Although ATP is necessary for activation of nerve fibers for all taste stimuli, the role of 5-HT is unclear. We investigated whether gustatory afferents express functional 5-HT3 receptors and, if so, whether these receptors play a role in transmission of taste information from taste buds to nerves. In mice expressing GFP under the control of the 5-HT(3A) promoter, a subset of cells in the geniculate ganglion and nerve fibers in taste buds are GFP-positive. RT-PCR and in situ hybridization confirmed the presence of 5-HT(3A) mRNA in the geniculate ganglion. Functional studies show that only those geniculate ganglion cells expressing 5-HT3A-driven GFP respond to 10 μM 5-HT and this response is blocked by 1 μM ondansetron, a 5-HT3 antagonist, and mimicked by application of 10 μM m-chlorophenylbiguanide, a 5-HT3 agonist. Pharmacological blockade of 5-HT3 receptors in vivo or genetic deletion of the 5-HT3 receptors reduces taste nerve responses to acids and other taste stimuli compared with controls, but only when urethane was used as the anesthetic. We find that anesthetic levels of pentobarbital reduce taste nerve responses apparently by blocking the 5-HT3 receptors. Our results suggest that 5-HT released from type III cells activates gustatory nerve fibers via 5-HT3 receptors, accounting for a significant proportion of the neural taste response.

  10. The Role of 5-HT3 Receptors in Signaling from Taste Buds to Nerves.

    PubMed

    Larson, Eric D; Vandenbeuch, Aurelie; Voigt, Anja; Meyerhof, Wolfgang; Kinnamon, Sue C; Finger, Thomas E

    2015-12-01

    Activation of taste buds triggers the release of several neurotransmitters, including ATP and serotonin (5-hydroxytryptamine; 5-HT). Type III taste cells release 5-HT directly in response to acidic (sour) stimuli and indirectly in response to bitter and sweet tasting stimuli. Although ATP is necessary for activation of nerve fibers for all taste stimuli, the role of 5-HT is unclear. We investigated whether gustatory afferents express functional 5-HT3 receptors and, if so, whether these receptors play a role in transmission of taste information from taste buds to nerves. In mice expressing GFP under the control of the 5-HT(3A) promoter, a subset of cells in the geniculate ganglion and nerve fibers in taste buds are GFP-positive. RT-PCR and in situ hybridization confirmed the presence of 5-HT(3A) mRNA in the geniculate ganglion. Functional studies show that only those geniculate ganglion cells expressing 5-HT3A-driven GFP respond to 10 μM 5-HT and this response is blocked by 1 μM ondansetron, a 5-HT3 antagonist, and mimicked by application of 10 μM m-chlorophenylbiguanide, a 5-HT3 agonist. Pharmacological blockade of 5-HT3 receptors in vivo or genetic deletion of the 5-HT3 receptors reduces taste nerve responses to acids and other taste stimuli compared with controls, but only when urethane was used as the anesthetic. We find that anesthetic levels of pentobarbital reduce taste nerve responses apparently by blocking the 5-HT3 receptors. Our results suggest that 5-HT released from type III cells activates gustatory nerve fibers via 5-HT3 receptors, accounting for a significant proportion of the neural taste response. PMID:26631478

  11. Recombinant saphenous vein 5-HT1B receptors of the rabbit: comparative pharmacology with human 5-HT1B receptors.

    PubMed

    Wurch, T; Palmier, C; Colpaert, F C; Pauwels, P J

    1997-01-01

    1. The rabbit recombinant saphenous vein 5-hydroxytryptamine1B (r 5-HT1B) receptor stably transfected in rat C6-glial cells was characterized by measuring adenosine 3':5'-cyclic monophosphate (cycle AMP) formation upon exposure to various 5-HT receptor ligands. The effects of agonists and antagonists were compared with their effects determined previously at the human cloned 5-HT1B (h 5-HT1B) receptor under similar experimental conditions. 2. Intact C6-glial cells expressing rb HT1B receptors exhibited [3H]-5-carboxamidotryptamine (5-CT) binding sites with a Kd of 0.80 +/- 0.13 nM and a Bmax between 225 to 570 fmol mg-1 protein. The binding affinities of a series of 5-HT receptor ligands determined in a membrane preparation with [3H]-5-CT or [3H]-N-[4-methoxy-3-(4-methylpiperazin-1-yl)phenyl]-3-methyl-4-(-4 -pyridyl) benzamide (GR 125,743) were similar. With the exception of ketanserin, ligand affinities were comparable to those determined at the clones h 5-HT1B receptor site. 3. rb 5-HT1B receptors were negatively coupled to cyclic AMP formation upon stimulation with 5-HT agonists. Of the several 5-HT agonists tested, 5-CT was the most potent, the potency rank order being: 5-CT > 5-HT > zolmitriptan > naratriptan > rizatriptan > sumatriptan > R (+)-8-(hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). The maximal responses of these agonists were similar to those induced by 5-HT. The potency of these agonists showed a positive correlation (r2 = 0.87; P < 0.002) with their potency at the cloned h 5-HT1B receptor subtype. 4. 2'-Methyl-4-(5-methyl-[1,2,4]oxadiazol-3-yl)-biphenyl-4-carboxylic acid [4-methoxy-e-(4-methyl-piperazin-1-yl)-phenyl]-amide (GR 127,935), methiothepin and ketanserin each behaved as silent, competitive antagonists at rb 5HT1B receptors; pKB values were 8.41, 8.32 and 7.05, respectively when naratriptan was used as an agonist. These estimates accorded with their binding affinities and the potencies found on 5-HT and/or sumatriptan

  12. Modulation of brainstem 5-HT1C receptors by serotonergic drugs in the rat.

    PubMed

    Pranzatelli, M R; Tailor, P T

    1994-10-01

    1. The sparse population of brainstem 5-hydroxytryptamine1C (5-HT1C) (also called 5-HT2C) receptors has received little attention despite its possible role in the serotonin syndrome and 5-HT-mediated shaking behavior. We characterized [3H]mesulergine binding in rat brainstem and, to determine if brainstem 5-HT1C sites respond to serotonergic manipulations, performed saturation studies of [3H]mesulergine binding in brainstem from rats treated chronically with 11 different 5-HT1C/2 agonists and antagonists. 2. In competition studies in vitro, the rank order of drug potency was most compatible with a 5-HT1C receptor binding site: mianserin, 5-HT, cinanserin, 1-(3-chlorophenyl)piperazine (m-CPP), 1-(2-5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), MDL 100,907, RU 24969, 5-carboxamidotryptamine (5-CT), 8-OH-DPAT, MDL 72,222. 3. Chronic treatment with the agonists quipazine and trifluoromethylphenylpiperazine (TFMPP) and the antagonists ritanserin and methiothepin significantly down-regulated brainstem 5-HT1C sites, which were 65% of [3H]mesulergine-labeled sites in brainstem. Only metergoline and ritanserin significantly increased pKD. 4. Chronic treatment in vivo with DOI, m-CPP, mianserin, methysergide, spiperone, cyproheptadine, and metergoline had no significant effect on BMAX at the dose studied. 5. These data suggest similarities in the regulation of 5-HT1C and 5-HT2 sites at which both 5-HT1C 2 agonists and antagonists also induce receptor down-regulation. 6. 5-HT1C/2 agonists and antagonists that did not down-regulate brainstem 5-HT1C sites may be more active in vivo at 5-HT2 sites, at 5-HT1C sites in other brain regions, have effects on 5-HT1C receptors not detectable at the recognition site, or differ for pharmacokinetic reasons.

  13. The serotonergic hallucinogen 5-methoxy-N,N-dimethyltryptamine disrupts cortical activity in a regionally-selective manner via 5-HT(1A) and 5-HT(2A) receptors.

    PubMed

    Riga, Maurizio S; Bortolozzi, Analia; Campa, Letizia; Artigas, Francesc; Celada, Pau

    2016-02-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a natural hallucinogen, acting as a non-selective serotonin 5-HT(1A)/5-HT(2A)-R agonist. Psychotomimetic agents such as the non-competitive NMDA-R antagonist phencyclidine and serotonergic hallucinogens (DOI and 5-MeO-DMT) disrupt cortical synchrony in the low frequency range (<4 Hz) in rat prefrontal cortex (PFC), an effect reversed by antipsychotic drugs. Here we extend these observations by examining the effect of 5-MeO-DMT on low frequency cortical oscillations (LFCO, <4 Hz) in PFC, visual (V1), somatosensory (S1) and auditory (Au1) cortices, as well as the dependence of these effects on 5-HT(1A)-R and 5-HT(2A)-R, using wild type (WT) and 5-HT(2A)-R knockout (KO2A) anesthetized mice. 5-MeO-DMT reduced LFCO in the PFC of WT and KO2A mice. The effect in KO2A mice was fully prevented by the 5-HT(1A)-R antagonist WAY-100635. Systemic and local 5-MeO-DMT reduced 5-HT release in PFC mainly via 5-HT(1A)-R. Moreover, 5-MeO-DMT reduced LFCO in S1, Au1 and V1 of WT mice and only in V1 of KO2A mice, suggesting the involvement of 5-HT(1A)-R activation in the 5-MeO-DMT-induced disruption of V1 activity. In addition, antipsychotic drugs reversed 5-MeO-DMT effects in WT mice. The present results suggest that the hallucinogen action of 5-MeO-DMT is mediated by simultaneous alterations of the activity of sensory (S1, Au1, V1) and associative (PFC) cortical areas, also supporting a role of 5-HT(1A)-R stimulation in V1 and PFC, in addition to the well-known action on 5-HT(2A)-R. Moreover, the reversal by antipsychotic drugs of 5-MeO-DMT effects adds to previous literature supporting the usefulness of the present model in antipsychotic drug development.

  14. Discovery of 2-substituted benzoxazole carboxamides as 5-HT3 receptor antagonists.

    PubMed

    Yang, Zhicai; Fairfax, David J; Maeng, Jun-Ho; Masih, Liaqat; Usyatinsky, Alexander; Hassler, Carla; Isaacson, Soshanna; Fitzpatrick, Kevin; DeOrazio, Russell J; Chen, Jianqing; Harding, James P; Isherwood, Matthew; Dobritsa, Svetlana; Christensen, Kevin L; Wierschke, Jonathan D; Bliss, Brian I; Peterson, Lisa H; Beer, Cathy M; Cioffi, Christopher; Lynch, Michael; Rennells, W Martin; Richards, Justin J; Rust, Timothy; Khmelnitsky, Yuri L; Cohen, Marlene L; Manning, David D

    2010-11-15

    A new class of 2-substituted benzoxazole carboxamides are presented as potent functional 5-HT(3) receptor antagonists. The chemical series possesses nanomolar in vitro activity against human 5-HT(3)A receptors. A chemistry optimization program was conducted and identified 2-aminobenzoxazoles as orally active 5-HT(3) receptor antagonists with good metabolic stability. These novel analogues possess drug-like characteristics and have potential utility for the treatment of diseases attributable to improper 5-HT(3) receptor function, especially diarrhea predominant irritable bowel syndrome (IBS-D).

  15. Pindolol does not act only on 5-HT1A receptors in augmenting antidepressant activity in the mouse forced swimming test.

    PubMed

    Bourin, M; Redrobe, J P; Baker, G B

    1998-04-01

    The present study was undertaken to identify the receptor subtypes involved in (+/-) pindolol's ability to enhance the effects of antidepressant drugs in the mouse forced swimming test. Interaction studies were performed with S 15535 (presynaptic 5-HT1A receptor agonist) and methiothepin (5-HT1B autoreceptor antagonist) in an attempt to attenuate or potentiate antidepressant-like activity. (+/-) Pindolol was tested in combination with selective agonists and antagonists at 5-HT1, 5-HT2 and 5-HT3 receptor subtypes. Pretreatment with S 15535 and methiothepin attenuated the activity of paroxetine, fluvoxamine and citalopram (32 mg/kg, i.p.; P < 0.01). (+/-) Pindolol (32 mg/kg, i.p.) induced significant anti-immobility effects when tested in combination with 5-methoxy-3-(1,2,3,6-tetrahydro-4-pyridyl)-1H-indole (RU 24969) (1 mg/kg, i.p.; P < 0.05), 1-(2-methoxyphenyl)-4-[-(2-phthalimido) butyl]piperazine) (NAN 190) (0.5 mg/kg; P < 0.05) and ondansetron (0.00001 mg/kg, i.p.; P < 0.01). Pretreatment with NAN 190 (0.5 mg/kg, i.p.) potentiated the effects of RU 24969 (1 mg/kg, i.p.; P < 0.05) and (+/-) pindolol (32 mg/kg, i.p.; P < 0.05) in the forced swimming test, as did ondansetron (0.00001 mg/kg, i.p.). Significant additive effects were induced when RU 24969 (1 mg/kg, i.p.) was tested in combination with NAN 190 (0.5 mg/kg, i.p.; P < 0.05), (+/-) pindolol (32 mg/kg, i.p.; P < 0.05) and ondansetron (0.0000 mg/kg, i.p.; P < 0.05). 8-Hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) (1 mg/kg, i.p.) or ketanserin (8 mg/kg, i.p.) did not induce significant antidepressant-like effects with any of the agonists/antagonists tested. The results of the present study suggest that pindolol is acting at presynaptic 5-HT1B serotonergic receptors, in addition to the 5-HT1A subtype, in augmenting the activity of antidepressants in the mouse forced swimming test.

  16. Long-term Stress with Hyperglucocorticoidemia-induced Hepatic Steatosis with VLDL Overproduction Is Dependent on both 5-HT2 Receptor and 5-HT Synthesis in Liver

    PubMed Central

    Fu, Jihua; Ma, Shaoxin; Li, Xin; An, Shanshan; Li, Tao; Guo, Keke; Lin, Min; Qu, Wei; Wang, Shanshan; Dong, Xinyue; Han, Xiaoyu; Fu, Ting; Huang, Xinping; Wang, Tianying; He, Siyu

    2016-01-01

    Hepatic triglycerides production and adipose lipolysis are pivotal for long-term stress (LTS) or hyperglucocorticoidemia-induced insulin resistance. 5-hydroxytryptamine (5-HT) has been demonstrated to induce hepatic lipid metabolic abnormality by activating mammalian target of rapamycin (mTOR). In present study, we explored whether 5-HT is involved in LTS effects in liver using restraint stress-exposed rats and cultured primary rat hepatocytes and HepG2 cells. LTS with hyperglucocorticoidemia induced hepatic 5-HT synthetic increase with tryptophan hydroxylase 1 (Tph1) up-regulation, and 5-HT2 receptor (5-HT2R, including 5-HT2A, 2B receptor) up-regulation in liver and visceral adipose, as well as hepatic mTOR activation with triglycerides and VLDL overproduction with steatosis, and visceral adipose lipolytic increase with high blood free fatty acids (FFAs) level. 5-HT exposure exhibited LTS-like effects in both tissues, and both LTS and 5-HT effects could be abolished significantly by blocking 5-HT2R. In HepG2 cells dexamethasone or palmitate-induced mTOR activation with triglycerides and VLDL overproduction were accompanied by up-regulations of 5-HT synthesis and 5-HT2R, which were significantly abolished by gene silencing Tph1 or 5-HT2R and were almost fully abolished by co-silencing of both, especially on VLDL overproduction. Chemical inhibition of Tph1 or/and 5-HT2R in both hepatocytes exhibited similar abolishment with genetic inhibition on dexamethason-induced effects. 5-HT-stimulated effects in both hepatocytes were fully abolished by blocking 5-HT2R, while 5-HT itself also up-regulated 5-HT2R. In conclusion, up-regulated hepatic 5-HT synthesis and 5-HT2R induced by both glucocorticoid and FFAs are crucial for LTS-induced hepatic steatosis with VLDL overproduction, while 5-HT by acting on 5-HT2R mediates mTOR activation in liver. PMID:26884719

  17. Signalling properties and pharmacology of a 5-HT7 -type serotonin receptor from Tribolium castaneum.

    PubMed

    Vleugels, R; Lenaerts, C; Vanden Broeck, J; Verlinden, H

    2014-04-01

    In the last decade, genome sequence data and gene structure information on invertebrate receptors has been greatly expanded by large sequencing projects and cloning studies. This information is of great value for the identification of receptors; however, functional and pharmacological data are necessary for an accurate receptor classification and for practical applications. In insects, an important group of neurotransmitter and neurohormone receptors, for which ample sequence information is available but pharmacological information is missing, are the biogenic amine G protein-coupled receptors (GPCRs). In the present study, we investigated the sequence information, pharmacology and signalling properties of a 5-HT7 -type serotonin receptor from the red flour beetle, Tribolium castaneum (Trica5-HT7 ). The receptor encoding cDNA shows considerable sequence similarity with cognate 5-HT7 receptors and phylogenetic analysis also clusters the receptor within this 5-HT receptor group. Real-time reverse transcription PCR demonstrated high expression levels in the brain, indicating the possible importance of this receptor in neural processes. Trica5-HT7 was dose-dependently activated by 5-HT, which induced elevated intracellular cyclic AMP levels but had no effect on calcium signalling. The synthetic agonists, α-methyl 5-HT, 5-methoxytryptamine, 5-carboxamidotryptamine and 8-hydroxy-2-(dipropylamino)tetralin hydrobromide, showed a response, although with a much lower potency and efficacy than 5-HT. Ketanserin and methiothepin were the most potent antagonists. Both showed characteristics of competitive inhibition on Trica5-HT7 . The signalling pathway and pharmacological profile offer important information that will facilitate functional and comparative studies of 5-HT receptors in insects and other invertebrates. The pharmacology of invertebrate 5-HT receptors differs considerably from that of vertebrates. The present study may therefore contribute to establishing a more

  18. The Role of 5-HT3 Receptors in Signaling from Taste Buds to Nerves

    PubMed Central

    Vandenbeuch, Aurelie; Voigt, Anja; Meyerhof, Wolfgang; Kinnamon, Sue C.; Finger, Thomas E.

    2015-01-01

    Activation of taste buds triggers the release of several neurotransmitters, including ATP and serotonin (5-hydroxytryptamine; 5-HT). Type III taste cells release 5-HT directly in response to acidic (sour) stimuli and indirectly in response to bitter and sweet tasting stimuli. Although ATP is necessary for activation of nerve fibers for all taste stimuli, the role of 5-HT is unclear. We investigated whether gustatory afferents express functional 5-HT3 receptors and, if so, whether these receptors play a role in transmission of taste information from taste buds to nerves. In mice expressing GFP under the control of the 5-HT3A promoter, a subset of cells in the geniculate ganglion and nerve fibers in taste buds are GFP-positive. RT-PCR and in situ hybridization confirmed the presence of 5-HT3A mRNA in the geniculate ganglion. Functional studies show that only those geniculate ganglion cells expressing 5-HT3A-driven GFP respond to 10 μm 5-HT and this response is blocked by 1 μm ondansetron, a 5-HT3 antagonist, and mimicked by application of 10 μm m-chlorophenylbiguanide, a 5-HT3 agonist. Pharmacological blockade of 5-HT3 receptors in vivo or genetic deletion of the 5-HT3 receptors reduces taste nerve responses to acids and other taste stimuli compared with controls, but only when urethane was used as the anesthetic. We find that anesthetic levels of pentobarbital reduce taste nerve responses apparently by blocking the 5-HT3 receptors. Our results suggest that 5-HT released from type III cells activates gustatory nerve fibers via 5-HT3 receptors, accounting for a significant proportion of the neural taste response. SIGNIFICANCE STATEMENT Historically, serotonin (5-hydroxytryptamine; 5-HT) has been described as a candidate neurotransmitter in the gustatory system and recent studies show that type III taste receptor cells release 5-HT in response to various taste stimuli. In the present study, we demonstrate that a subset of gustatory sensory neurons express functional

  19. Serotonin (5-HT) and 5-HT2A receptor agonists suppress lipolysis in primary rat adipose cells.

    PubMed

    Hansson, Björn; Medina, Anya; Fryklund, Claes; Fex, Malin; Stenkula, Karin G

    2016-05-27

    Serotonin (5-HT) is a biogenic monoamine that functions both as a neurotransmitter and a circulating hormone. Recently, the metabolic effects of 5-HT have gained interest and peripheral 5-HT has been proposed to influence lipid metabolism in various ways. Here, we investigated the metabolic effects of 5-HT in isolated, primary rat adipose cells. Incubation with 5-HT suppressed β-adrenergically stimulated glycerol release and decreased phosphorylation of protein kinase A (PKA)-dependent substrates, hormone sensitive lipase (Ser563) and perilipin (Ser522). The inhibitory effect of 5-HT on lipolysis enhanced the anti-lipolytic effect of insulin, but sustained in the presence of phosphodiesterase inhibitors, OPC3911 and isobuthylmethylxanthine (IBMX). The relative expression of 5-HT1A, -2B and -4 receptor class family were significantly higher in adipose tissue compared to adipose cells, whereas 5-HT1D, -2A and -7 were highly expressed in isolated adipose cells. Similar to 5-HT, 5-HT2 receptor agonists reduced lipolysis while 5-HT1 receptor agonists rather decreased non-stimulated and insulin-stimulated glucose uptake. Together, these data provide evidence of a direct effect of 5-HT on adipose cells, where 5-HT suppresses lipolysis and glucose uptake, which could contribute to altered systemic lipid- and glucose metabolism. PMID:27109474

  20. Participation of 5-HT1-like and 5-HT2A receptors in the contraction of human temporal artery by 5-hydroxytryptamine and related drugs.

    PubMed Central

    Verheggen, R.; Freudenthaler, S.; Meyer-Dulheuer, F.; Kaumann, A. J.

    1996-01-01

    1. We investigated the hypothesis that, as in some other large human arteries, 5-HT-induced contraction of the temporal artery is mediated through two co-existing receptor populations, 5-HT1-like- and 5-HT2A. Temporal arterial segments were obtained from patients undergoing brain surgery and rings prepared set up to contract with 5-HT and related agents. Fractions of maximal 5-HT responses mediated through 5-HT1-like and 5-HT2A receptors, f1 and f2 = 1-f1, were estimated by use of the 5-HT2A-selective antagonist ketanserin. 2. In rings with intact endothelium 5-HT evoked contractions with a -log EC50, M of 7.0. Ketanserin (10-1000 nM) antagonized part of the 5-HT-induced contractions. Ketanserin-resistant components of 5-HT-induced contractions were found with -log EC50, M of 6.9 and f1 of 0.17 (100 nM ketanserin) and -log EC50, M of 6.4 and f1 of 0.20 (1000 nM ketanserin). 3. In rings with endothelial function attenuated by enzymatic treatment, 5-HT caused contractions with a -log EC50, M of 7.2 that were partially blocked by ketanserin. Ketanserin-resistant components of 5-HT-induced contractions were found with -log EC50, M 7.4 and f1 of 0.16 (100 nM ketanserin) and -log EC50, M of 7.5 and f1 of 0.14 (1000 nM ketanserin). 4. The ketanserin-resistant component of 5-HT-evoked contraction was blocked by methiothepin (100-1000 nM) consistent with mediation through 5-HT1-like receptors. 5. In rings with intact endothelium the 5-HT1-like-selective agonist, sumatriptan, caused small contractions with a -log EC50, M of 6.5 and intrinsic activity of 0.21 with respect to 5-HT that were resistant to blockade by 1000 nM ketanserin but antagonized by 100 nM methiothepin. 6. In rings with intact endothelium the 5-HT2A receptor partial agonist SK&F 103829 (2,3,4,5-tetrahydro-8[methyl sulphonyl]-1H3-benzazepin-7-ol methensulphonate) contracted rings with a -log EC50, M of 5.0 and an intrinsic activity of 0.49 with respect to 5-HT; the effects were antagonized by ketanserin 1000

  1. Development of a Multiplex Assay for Studying Functional Selectivity of Human Serotonin 5-HT2A Receptors and Identification of Active Compounds by High-Throughput Screening.

    PubMed

    Iglesias, Alba; Lage, Sonia; Cadavid, Maria Isabel; Loza, Maria Isabel; Brea, José

    2016-09-01

    G protein-coupled receptors (GPCRs) exist as collections of conformations in equilibrium, and the efficacy of drugs has been proposed to be associated with their absolute and relative affinities for these different conformations. The serotonin 2A (5-HT2A) receptor regulates multiple physiological functions, is involved in the pathophysiology of schizophrenia, and serves as an important target of atypical antipsychotic drugs. This receptor was one of the first GPCRs for which the functional selectivity phenomenon was observed, with its various ligands exerting differential effects on the phospholipase A2 (PLA2) and phospholipase C (PLC) signaling pathways. We aimed to develop a multiplex functional assay in 96-well plates for the simultaneous measurement of the PLA2 and PLC pathways coupled to 5-HT2A receptors; this approach enables the detection of either functional selectivity or cooperativity phenomena in early drug screening stages. The suitability of the method for running screening campaigns was tested using the Prestwick Chemical Library, and 22 confirmed hits with activities of more than 90% were identified; 11 of these hits produced statistically significant differences between the two effector pathways. Thus, we have developed a miniaturized multiplex assay in 96-well plates to measure functional selectivity for 5-HT2A receptors in the early stages of the drug discovery process. PMID:27095818

  2. Serotonin increases ERK1/2 phosphorylation in astrocytes by stimulation of 5-HT2B and 5-HT2C receptors.

    PubMed

    Li, Baoman; Zhang, Shiquen; Li, Min; Hertz, Leif; Peng, Liang

    2010-11-01

    We have previously shown that fluoxetine causes ERK(1/2) phosphorylation in cultured mouse astrocytes mediated exclusively by stimulation of 5-HT(2B) receptors (Li et al., 2008b). This raises the question whether this is also the case for serotonin (5-HT) itself. In the present study serotonin was found to induce ERK(1/2) phosphorylation by stimulation of 5-HT(2B) receptors with high affinity (EC(50): 20-30 pM), and by stimulation of 5-HT(2C) receptor with low affinity (EC(50): 1 microM or higher). ERK(1/2) phosphorylation induced by stimulation of either 5-HT(2B) or 5-HT(2C) receptors was mediated by epidermal growth factor (EGF) receptor transactivation (Peng et al., this issue), shown by the inhibitory effect of AG1478, an inhibitor of the EGF receptor tyrosine kinase, and GM6001, an inhibitor of Zn-dependent metalloproteinases, and thus of 5-HT(2B) receptor-mediated EGF receptor agonist release. It is discussed that the high potency of the 5-HT(2B)-mediated effect is consistent with literature data for binding affinity of serotonin to cloned human 5-HT(2B) receptors and with observations of low extracellular concentrations of serotonin in brain, which would allow a demonstrated moderate and modality-dependent increase in specific brain areas to activate 5-HT(2B) receptors. In contrast the relevance of the observed 5-HT(2C) receptors on astrocytes is questioned. PMID:20450948

  3. Activation of 5-HT2B receptors in the medial amygdala causes anxiolysis in the social interaction test in the rat.

    PubMed

    Duxon, M S; Kennett, G A; Lightowler, S; Blackburn, T P; Fone, K C

    1997-01-01

    In a recent study, we reported the presence of neurones expressing 5-HT2B receptor protein in the medial amygdaloid nucleus of the adult rat brain. In the present study, bilateral micro-injection of the 5-HT2B receptor agonist 1-[5-(2-thienylmethoxy)-1H-3-indolyl]propan-2-amine hydrochloride (BW 723C86, 0.09 and 0.93 nmol, 5 min pretest) into the medial amygdaloid nuclei increased the total interaction time of a pair of male rats in the social interaction test, to a comparable extent to chlordiazepoxide (5 mg/kg p.o., 1 hr pretest) without altering locomotor activity; indicative of anxiolytic activity. The increase in social interaction was prevented by pretreatment with the 5-HT2C/2B receptor antagonist N-(1-methyl-5-indoyl)-N'-(3-pyridyl) urea hydrochloride (SB 200646A, at 2 but not 1 mg/kg p.o., 1 hr pretest), which did not alter behaviour when given alone. Intra-amygdala BW 723C86 (0.09, 0.31 and 0.93 nmol, 5 min pretest) did not significantly alter the number of punished responses made when the same rats were examined seven days later in a Vogel punished drinking test, although chlordiazepoxide (5 mg/kg p.o., 1 hr pretest) produced the expected anxiolytic profile. The results are consistent with the proposal that activation of 5-HT2B receptors in the medial amygdala induces anxiolysis in the social interaction model but has little effect on behaviour in a punished conflict model of anxiety. These data suggest that serotonergic neurotransmission in this nucleus may selectively affect specific kinds of anxiety generated by different animal models.

  4. A comparison of the behavioural effects of 5-HT2A and 5-HT2C receptor agonists in the pigeon.

    PubMed

    Wolff, M C; Leander, J D

    2000-08-01

    Activity at the 5-HT2A receptor versus that of the 5-HT2C receptor was studied in three behavioural paradigms. In pigeons trained to discriminate 0.32 mg/kg of 1-(2,5-diemethoxy-4-iodophenyl)-2-aminopropane (DOI) (a mixed 5-HT2A/C receptor agonist) from vehicle, quipazine (0.1-1 mg/kg) and m-chlorophenylpiperazine (mCPP) (1-3 mg/kg) substituted for DOI in a dose-related manner, and this generalization was blocked by MDL100907 (0.0001-0.01 mg/kg), a selective 5-HT2A receptor antagonist. RO60-0175 (a relatively selective 5-HT2C agonist) induced partial substitution at 3 mg/kg that was antagonized by both MDL100907 and by 3 mg/kg of SB242084, a relatively selective 5-HT2C antagonist. MK212 (a mixed 5-HT2C/A agonist) induced partial substitution that was antagonized by SB242084, but not by MDL100907. On a progressive ratio 5 operant schedule (PR5) for food reinforcement, DOI, quipazine, mCPP, MK212 and R060-0175 decreased the break point; mCPP, DOI, MK212 and quipazine also induced vomiting. Although MDL100907 antagonized both the reductions of break point and vomiting, SB242084 only partially attenuated the decrease in break point observed with MK212 and DOI, and was unable to eliminate vomiting. Thus pharmacological activity at the 5-HT2A receptor can be behaviourally distinguished from pharmacological activity at the 5-HT2C receptor in the pigeon. Furthermore, the decrease in the break point of a PR5 schedule induced by 5-HT2C receptor agonists may be related to decreased appetite, whereas that induced by 5-HT2A receptor agonists may be due to unrelated factors, such as emesis. PMID:11103887

  5. 5-HT4 receptors in isolated human corpus cavernosum?

    PubMed

    Hayes, E S; Adaikan, P G; Ratnam, S S; Ng, S C

    1999-08-01

    The novel serotonin subtype-4 (5-HT4) receptor agonist, SC53116 (SC), produced a limited relaxation of noradrenaline (NA) pre-contracted human corpus cavernosum (CC) smooth muscle in vitro. This effect was not significantly attenuated by the 5-HT4 antagonist SDZ250557 (SDZ). In the presence of (+/-) pindolol (1 microM) and methysergide (1 microM), employed to mask 5-HT1 and beta-adrenergic, and 5-HT2 receptors respectively, SC failed to relax NA pre-contracted CC strips to a greater extent than saline. Functional cAMP dependent relaxation pathways were demonstrated by a significant reduction in NA induced tone by prostaglandin E1 (PGE1) and isopropylnoradrenaline (IPNA), the action of the latter compound was effectively eliminated in the presence of (+/-) pindolol. Relaxation of NA induced tone caused by the nitric oxide donor nitro-glycerine (NTG) was significant and similar in the absence and presence of the 5-HT and beta-adrenergic antagonists. The results of this present study indicate that human corporal smooth muscle does not contain 5-HT4 receptors and that, although compounds like SC act to relax non-vascular smooth muscle via cAMP dependent mechanisms, 5-HT4 receptor agonists may be expected to be of limited utility in triggering cAMP dependent relaxation responses in human CC.

  6. Receptor mechanisms for 5-hydroxytryptamine (5-HT) in isolated ovine umbilical vein.

    PubMed

    Zhang, L; Dyer, D C

    1990-08-10

    5-Hydroxytryptamine (5-HT) and 2,5-dimethoxy-4-methyl-amphetamine (DOM) produced a concentration-dependent contraction in isolated umbilical veins obtained from fetal lambs within 2 weeks of term. Contractions to 5-HT were antagonized by ketanserin, mianserin and methiothepin with the dissociation constants (KB) being 2.17 +/- 0.36, 1.37 +/- 0.55 and 1.98 +/- 0.48 nM, respectively. The order of potency of serotonergic agonists in this tissue was: DOM greater than 5-HT greater than alpha-methyl-5-HT greater than 1(3-chlorophenyl) piperazine (mCPP) greater than m-trifluoromethyl-phenylpiperazine (TFMPP) greater than 8-hydroxy-dipropylaminotetralin (8-OH-DPAT) = 2-methyl-5-HT. alpha-Methyl-5-HT was a full agonist compared to 5-HT. DOM possessed greater affinity but less efficacy than that of 5-HT. The affinities and efficacies of the other agonists studied were lower than those of 5-HT. Variation in the sensitivity and potency of agonists is primarily due to variations in their affinity for 5-HT receptors. Assessment of receptor occupancy vs. functional response demonstrated very little, if any, receptor reserve for 5-HT receptors in this tissue. Contractile responses to DOM, 8-OH-DPAT, mCPP and 2-methyl-5-HT were effectively blocked by ketanserin. The dissociation constants (KB) of ketanserin against these agonists were as follows: DOM, 2.78 +/- 0.85 nM; 8-OH-DPAT, 3.47 +/- 1.12 nM; mCPP, 1.45 +/- 0.51 nM; 2-methyl-5-HT, 1.99 +/- 0.74 nM. The dissociation constant of MDL 72222 (3-tropanyl-3,5-dichlorobenzoate) vs. 5-HT was 13833 nM. No antagonism by prazosin (10(-7) M) or yohimbine (10(-7) M) of the responses to 5-HT was observed. These results indicate that 5-HT2 receptors are present in the ovine umbilical vein. 5-HT3 receptors were not present in this tissue. Activation of alpha-adrenoceptors was not involved in the contractions to 5-HT.

  7. Rat exposure in mice with neuropathic pain induces fear and antinociception that is not reversed by 5-HT2C receptor activation in the dorsal periaqueductal gray.

    PubMed

    Furuya-da-Cunha, Elke Mayumi; Souza, Rimenez Rodrigues de; Canto-de-Souza, Azair

    2016-07-01

    Previous studies have demonstrated that serotonin 5-HT2C receptors in the dorsal periaqueductal gray (dPAG) mediate both anxiety and antinociception in mice submitted to the elevated plus maze. The present study examined the effects of intra-dPAG infusion of the serotonin 5-HT2C receptor agonist (MK-212) in the defensive reactions and antinociception in mice with neurophatic pain confronted by a predator. Neuropathic pain was induced by chronic constriction injury (CCI) of the sciatic nerve, and predator confrontation was performed using the rat exposure test (RET). Our results demonstrated that both sham-operated and CCI mice exhibited intense defensive reactions when confronted by rats. However, rat-exposed CCI mice showed reduced pain reactivity in comparison to CCI mice exposed to a toy rat. Intra-dPAG infusion of MK-212 prior to predator exposure did not significantly alter defensive or antinociceptive responses. To our knowledge, our results represent the first evidence of RET-induced antinociception in mice. Moreover, the results of the present study suggest that 5-HT2C receptor activation in the dPAG is not critically involved in the control of predator-evoked fearful or antinociceptive responses. PMID:27059332

  8. Role of central vagal 5-HT3 receptors in gastrointestinal physiology and pathophysiology

    PubMed Central

    Browning, Kirsteen N.

    2015-01-01

    Vagal neurocircuits are vitally important in the co-ordination and modulation of GI reflexes and homeostatic functions. 5-hydroxytryptamine (5-HT; serotonin) is critically important in the regulation of several of these autonomic gastrointestinal (GI) functions including motility, secretion and visceral sensitivity. While several 5-HT receptors are involved in these physiological responses, the ligand-gated 5-HT3 receptor appears intimately involved in gut-brain signaling, particularly via the afferent (sensory) vagus nerve. 5-HT is released from enterochromaffin cells in response to mechanical or chemical stimulation of the GI tract which leads to activation of 5-HT3 receptors on the terminals of vagal afferents. 5-HT3 receptors are also present on the soma of vagal afferent neurons, including GI vagal afferent neurons, where they can be activated by circulating 5-HT. The central terminals of vagal afferents also exhibit 5-HT3 receptors that function to increase glutamatergic synaptic transmission to second order neurons of the nucleus tractus solitarius within the brainstem. While activation of central brainstem 5-HT3 receptors modulates visceral functions, it is still unclear whether central vagal neurons, i.e., nucleus of the tractus solitarius (NTS) and dorsal motor nucleus of the vagus (DMV) neurons themselves also display functional 5-HT3 receptors. Thus, activation of 5-HT3 receptors may modulate the excitability and activity of gastrointestinal vagal afferents at multiple sites and may be involved in several physiological and pathophysiological conditions, including distention- and chemical-evoked vagal reflexes, nausea, and vomiting, as well as visceral hypersensitivity. PMID:26578870

  9. Characterisation of the 5-HT receptor binding profile of eletriptan and kinetics of [3H]eletriptan binding at human 5-HT1B and 5-HT1D receptors.

    PubMed

    Napier, C; Stewart, M; Melrose, H; Hopkins, B; McHarg, A; Wallis, R

    1999-03-01

    The affinity of eletriptan ((R)-3-(1-methyl-2-pyrrolidinylmethyl)-5-[2-(phenylsulphonyl )ethyl]-1H-indole) for a range of 5-HT receptors was compared to values obtained for other 5-HT1B/1D receptor agonists known to be effective in the treatment of migraine. Eletriptan, like sumatriptan, zolmitriptan, naratriptan and rizatriptan had highest affinity for the human 5-HT1B, 5-HT1D and putative 5-ht1f receptor. Kinetic studies comparing the binding of [3H]eletriptan and [3H]sumatriptan to the human recombinant 5-HT1B and 5-HT1D receptors expressed in HeLa cells revealed that both radioligands bound with high specificity (>90%) and reached equilibrium within 10-15 min. However, [3H]eletriptan had over 6-fold higher affinity than [3H]sumatriptan at the 5-HT1D receptor (K(D)): 0.92 and 6.58 nM, respectively) and over 3-fold higher affinity than [3H]sumatriptan at the 5-HT1B receptor (K(D): 3.14 and 11.07 nM, respectively). Association and dissociation rates for both radioligands could only be accurately determined at the 5-HT1D receptor and then only at 4 degrees C. At this temperature, [3H]eletriptan had a significantly (P<0.05) faster association rate (K(on) 0.249 min(-1) nM(-1)) than [3H]sumatriptan (K(on) 0.024 min(-1) nM(-1)) and a significantly (P<0.05) slower off-rate (K(off) 0.027 min(-1) compared to 0.037 min(-1) for [3H]sumatriptan). These data indicate that eletriptan is a potent ligand at the human 5-HT1B, 5-HT1D, and 5-ht1f receptors and are consistent with its potent vasoconstrictor activity and use as a drug for the acute treatment of migraine headache. PMID:10193663

  10. [5-HT1B serotonin receptors and antidepressant effects of selective serotonin reuptake inhibitors ].

    PubMed

    Gardier, A M; Trillat, A C; Malagié, I; David, D; Hascoët, M; Colombel, M C; Jolliet, P; Jacquot, C; Hen, R; Bourin, M

    2001-05-01

    We used knockout mice and receptor antagonist strategies to investigate the contribution of the serotonin (5-hydroxytryptamine, 5-HT) 5-HT1B receptor subtype in mediating the effects of selective serotonin reuptake inhibitors (SSRIs). Using in vivo intracerebral microdialysis in awake mice, we show that a single systemic administration of paroxetine (1 or 5 mg/kg, i.p.) increased extracellular serotonin levels [5-HT]ext in the ventral hippocampus and frontal cortex of wild-type and mutant mice. However, in the ventral hippocampus, paroxetine at the two doses studied induced a larger increase in [5-HT]ext in knockout than in wild-type mice. In the frontal cortex, the effect of paroxetine was larger in mutants than in wild-type mice at the 1 mg/kg dose but not at 5 mg/kg. In addition, either the absence of the 5-HT1B receptor or its blockade with the mixed 5-HT1B/1D receptor antagonist, GR 127935, potentiates the effect of a single administration of paroxetine on [5-HT]ext more in the ventral hippocampus than in the frontal cortex. Furthermore, we demonstrate that SSRIs decrease immobility in the forced swimming test; this effect is absent in 5-HT1B knockout mice and blocked by GR 127935 in wild-type suggesting therefore that activation of 5-HT1B receptors mediate the antidepressant-like effects of SSRIs. Taken together these data demonstrate that 5-HT1B autoreceptors appear to limit the effects of SSRI on dialysate 5-HT levels particularly in the hippocampus while presynaptic 5-HT1B heteroreceptors are likely to be required for the antidepressant activity of SSRIs.

  11. Serotonin 5-HT3 Receptor-Mediated Vomiting Occurs via the Activation of Ca2+/CaMKII-Dependent ERK1/2 Signaling in the Least Shrew (Cryptotis parva)

    PubMed Central

    Zhong, Weixia; Hutchinson, Tarun E.; Chebolu, Seetha; Darmani, Nissar A.

    2014-01-01

    Stimulation of 5-HT3 receptors (5-HT3Rs) by 2-methylserotonin (2-Me-5-HT), a selective 5-HT3 receptor agonist, can induce vomiting. However, downstream signaling pathways for the induced emesis remain unknown. The 5-HT3R channel has high permeability to extracellular calcium (Ca2+) and upon stimulation allows increased Ca2+ influx. We examined the contribution of Ca2+/calmodulin-dependent protein kinase IIα (Ca2+/CaMKIIα), interaction of 5-HT3R with calmodulin, and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling to 2-Me-5-HT-induced emesis in the least shrew. Using fluo-4 AM dye, we found that 2-Me-5-HT augments intracellular Ca2+ levels in brainstem slices and that the selective 5-HT3R antagonist palonosetron, can abolish the induced Ca2+ signaling. Pre-treatment of shrews with either: i) amlodipine, an antagonist of L-type Ca2+ channels present on the cell membrane; ii) dantrolene, an inhibitor of ryanodine receptors (RyRs) Ca2+-release channels located on the endoplasmic reticulum (ER); iii) a combination of their less-effective doses; or iv) inhibitors of CaMKII (KN93) and ERK1/2 (PD98059); dose-dependently suppressed emesis caused by 2-Me-5-HT. Administration of 2-Me-5-HT also significantly: i) enhanced the interaction of 5-HT3R with calmodulin in the brainstem as revealed by immunoprecipitation, as well as their colocalization in the area postrema (brainstem) and small intestine by immunohistochemistry; and ii) activated CaMKIIα in brainstem and in isolated enterochromaffin cells of the small intestine as shown by Western blot and immunocytochemistry. These effects were suppressed by palonosetron. 2-Me-5-HT also activated ERK1/2 in brainstem, which was abrogated by palonosetron, KN93, PD98059, amlodipine, dantrolene, or a combination of amlodipine plus dantrolene. However, blockade of ER inositol-1, 4, 5-triphosphate receptors by 2-APB, had no significant effect on the discussed behavioral and biochemical parameters. This study demonstrates

  12. Spinal 5-HT7 receptors induce phrenic motor facilitation via EPAC-mTORC1 signaling.

    PubMed

    Fields, D P; Springborn, S R; Mitchell, G S

    2015-09-01

    Spinal serotonin type 7 (5-HT7) receptors elicit complex effects on motor activity. Whereas 5-HT7 receptor activation gives rise to long-lasting phrenic motor facilitation (pMF), it also constrains 5-HT2 receptor-induced pMF via "cross-talk inhibition." We hypothesized that divergent cAMP-dependent signaling pathways give rise to these distinct 5-HT7 receptor actions. Specifically, we hypothesized that protein kinase A (PKA) mediates cross-talk inhibition of 5-HT2 receptor-induced pMF whereas 5-HT7 receptor-induced pMF results from exchange protein activated by cAMP (EPAC) signaling. Anesthetized, paralyzed, and ventilated rats receiving intrathecal (C4) 5-HT7 receptor agonist (AS-19) injections expressed pMF for >90 min, an effect abolished by pretreatment with a selective EPAC inhibitor (ESI-05) but not a selective PKA inhibitor (KT-5720). Furthermore, intrathecal injections of a selective EPAC activator (8-pCPT-2'-Me-cAMP) were sufficient to elicit pMF. Finally, spinal mammalian target of rapamycin complex-1 (mTORC1) inhibition via intrathecal rapamycin abolished 5-HT7 receptor- and EPAC-induced pMF, demonstrating that spinal 5-HT7 receptors elicit pMF by an EPAC-mTORC1 signaling pathway. Thus 5-HT7 receptors elicit and constrain spinal phrenic motor plasticity via distinct signaling mechanisms that diverge at cAMP (EPAC vs. PKA). Selective manipulation of these molecules may enable refined regulation of serotonin-dependent spinal motor plasticity for therapeutic advantage. PMID:26269554

  13. Spinal 5-HT7 receptors induce phrenic motor facilitation via EPAC-mTORC1 signaling

    PubMed Central

    Fields, D. P.; Springborn, S. R.

    2015-01-01

    Spinal serotonin type 7 (5-HT7) receptors elicit complex effects on motor activity. Whereas 5-HT7 receptor activation gives rise to long-lasting phrenic motor facilitation (pMF), it also constrains 5-HT2 receptor-induced pMF via “cross-talk inhibition.” We hypothesized that divergent cAMP-dependent signaling pathways give rise to these distinct 5-HT7 receptor actions. Specifically, we hypothesized that protein kinase A (PKA) mediates cross-talk inhibition of 5-HT2 receptor-induced pMF whereas 5-HT7 receptor-induced pMF results from exchange protein activated by cAMP (EPAC) signaling. Anesthetized, paralyzed, and ventilated rats receiving intrathecal (C4) 5-HT7 receptor agonist (AS-19) injections expressed pMF for >90 min, an effect abolished by pretreatment with a selective EPAC inhibitor (ESI-05) but not a selective PKA inhibitor (KT-5720). Furthermore, intrathecal injections of a selective EPAC activator (8-pCPT-2′-Me-cAMP) were sufficient to elicit pMF. Finally, spinal mammalian target of rapamycin complex-1 (mTORC1) inhibition via intrathecal rapamycin abolished 5-HT7 receptor- and EPAC-induced pMF, demonstrating that spinal 5-HT7 receptors elicit pMF by an EPAC-mTORC1 signaling pathway. Thus 5-HT7 receptors elicit and constrain spinal phrenic motor plasticity via distinct signaling mechanisms that diverge at cAMP (EPAC vs. PKA). Selective manipulation of these molecules may enable refined regulation of serotonin-dependent spinal motor plasticity for therapeutic advantage. PMID:26269554

  14. Fluvoxamine increased glutamate release by activating both 5-HT(3) and sigma-1 receptors in prelimbic cortex of chronic restraint stress C57BL/6 mice.

    PubMed

    Fu, Yingmei; Yu, Shunying; Guo, Xiaoyun; Li, Xia; Li, Ting; Li, Huafang; Dong, Yi

    2012-04-01

    Emerging evidence from therapeutic trials in humans and animal models suggests that in the treatment of depression, antidepressants play a role by targeting the glutamatergic system. Fluvoxamine is one of the widely used SSRIs which has been considered to target monoamine neurotransmitter reuptake mechanisms. However, whether fluvoxamine has an effect on the glutamate release is still unclear. The present experiment studied the effect of fluvoxamine on presynaptic glutamate release in prelimbic cortex, both in control C57BL/6 mice and chronic restraint stress C57BL/6 mice, and further investigated the mechanism underlying this effect by using patch clamp, on-line fluorimetry, pharmacological approaches combined with other techniques. The results showed that fluvoxamine increased the glutamate release in the depression model mice but it had no effect on the glutamate release in the control mice. The mechanism underlying these effects in depression model mice was that, fluvoxamine firstly activated presynaptic 5-HT(3) receptors, which transiently increased the Ca(2+) concentration. The increase of Ca(2+) concentration via 5-HT(3) receptors caused the activation of sigma-1 receptors, which were activated by fluvoxamine. The activation of sigma-1 receptors increased the intrasynaptosomal Ca(2+) concentration significantly through the outflow of endoplasmic reticulum calcium and finally activated PKC. These results suggested that fluvoxamine may have a selective effect and different mechanism based on the condition of animal. PMID:22306004

  15. Implication of 5-HT2A subtype receptors in DOI activity in the four-plates test-retest paradigm in mice.

    PubMed

    Ripoll, Nadège; Hascoët, Martine; Bourin, Michel

    2006-01-01

    The four-plates test (FPT) is an animal model of anxiety which allows the detection of anxiolytic effect not only of benzodiazepines (BZDs) but also of other non-BZDs anxiolytic compounds such as antidepressants (ADs). Furthermore, DOI, a 5-HT(2A/2C) agonist, has been shown to exert an anxiolytic-like effect in this model. Retesting mice in animal models of anxiety (test-retest paradigm) induces an anxiogenic-like and a loss of anxiolytic-like effects in response to BZDs and ADs. On the contrary, DOI has been reported to oppose the fear potentiation induced by trial 1 in the FPT. Despite DOI is considered as one of the most selective 5-HT(2A) available, it acts as agonist at all three 5-HT(2) receptor subtypes (5-HT(2A), 5-HT(2B) and 5-HT(2C)). The aim of this study was thus to investigate in the FPT test-retest paradigm, which 5-HT(2) receptor subtype(s) was involved in the DOI-induced effect in experienced mice. The effect of DOI (0.25-4 mg/kg) and the agonists, 5-HT(2B), BW 723C86 (1-16 mg/kg) and 5-HT(2C), RO 60-0175 (0.25-4 mg/kg) have also been studied. Then, antagonism studies were conducted combinating the 5-HT(2A) receptor antagonist SR 46349B, the 5-HT(2B/2C) receptor antagonist SB 206553 or the selective 5-HT(2C) receptor antagonist RS 10-2221 (at the doses of 0.1 and 1 mg/kg) with the DOI (1 mg/kg). Our study shows that the BW 723C86 had no effect on retesting mice, whereas it exerted an anxiolytic-like effect in naive mice. By contrast to DOI, the RO 60-0175 had no effect neither in naive nor experienced mice. Furthermore, only the SR 46349B antagonized the DOI-induced anti-punishment effect. Diazepam included as a positive control also increased in each case the number of punished passages in naive mice. Our findings altogether also suggest that DOI exerts its anxiolytic-like effect in the FPT test-retest paradigm through 5-HT(2A) receptors.

  16. Role for serotonin2A (5-HT2A) and 2C (5-HT2C) receptors in experimental absence seizures.

    PubMed

    Venzi, Marcello; David, François; Bellet, Joachim; Cavaccini, Anna; Bombardi, Cristiano; Crunelli, Vincenzo; Di Giovanni, Giuseppe

    2016-09-01

    Absence seizures (ASs) are the hallmark of childhood/juvenile absence epilepsy. Monotherapy with first-line anti-absence drugs only controls ASs in 50% of patients, indicating the need for novel therapeutic targets. Since serotonin family-2 receptors (5-HT2Rs) are known to modulate neuronal activity in the cortico-thalamo-cortical loop, the main network involved in AS generation, we investigated the effect of selective 5-HT2AR and 5-HT2CR ligands on ASs in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS), a well established polygenic rat model of these non-convulsive seizures. GAERS rats were implanted with fronto-parietal EEG electrodes under general anesthesia, and their ASs were later recorded under freely moving conditions before and after intraperitoneal administration of various 5-HT2AR and 5-HT2CR ligands. The 5-HT2A agonist TCB-2 dose-dependently decreased the total time spent in ASs, an effect that was blocked by the selective 5-HT2A antagonist MDL11,939. Both MDL11,939 and another selective 5-HT2A antagonist (M100,907) increased the length of individual seizures when injected alone. The 5-HT2C agonists lorcaserin and CP-809,101 dose-dependently suppressed ASs, an effect blocked by the selective 5-HT2C antagonist SB 242984. In summary, 5-HT2ARs and 5-HT2CRs negatively control the expression of experimental ASs, indicating that selective agonists at these 5-HT2R subtypes might be potential novel anti-absence drugs.

  17. Role for serotonin2A (5-HT2A) and 2C (5-HT2C) receptors in experimental absence seizures.

    PubMed

    Venzi, Marcello; David, François; Bellet, Joachim; Cavaccini, Anna; Bombardi, Cristiano; Crunelli, Vincenzo; Di Giovanni, Giuseppe

    2016-09-01

    Absence seizures (ASs) are the hallmark of childhood/juvenile absence epilepsy. Monotherapy with first-line anti-absence drugs only controls ASs in 50% of patients, indicating the need for novel therapeutic targets. Since serotonin family-2 receptors (5-HT2Rs) are known to modulate neuronal activity in the cortico-thalamo-cortical loop, the main network involved in AS generation, we investigated the effect of selective 5-HT2AR and 5-HT2CR ligands on ASs in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS), a well established polygenic rat model of these non-convulsive seizures. GAERS rats were implanted with fronto-parietal EEG electrodes under general anesthesia, and their ASs were later recorded under freely moving conditions before and after intraperitoneal administration of various 5-HT2AR and 5-HT2CR ligands. The 5-HT2A agonist TCB-2 dose-dependently decreased the total time spent in ASs, an effect that was blocked by the selective 5-HT2A antagonist MDL11,939. Both MDL11,939 and another selective 5-HT2A antagonist (M100,907) increased the length of individual seizures when injected alone. The 5-HT2C agonists lorcaserin and CP-809,101 dose-dependently suppressed ASs, an effect blocked by the selective 5-HT2C antagonist SB 242984. In summary, 5-HT2ARs and 5-HT2CRs negatively control the expression of experimental ASs, indicating that selective agonists at these 5-HT2R subtypes might be potential novel anti-absence drugs. PMID:27085605

  18. Role of spinal 5-HT receptors in cutaneous hypersensitivity induced by REM sleep deprivation.

    PubMed

    Wei, Hong; Ma, Ainiu; Wang, Yong-Xiang; Pertovaara, Antti

    2008-06-01

    Previous studies indicate that rapid eye movement (REM) sleep deprivation facilitates pain sensitivity. Since serotoninergic raphe neurons are involved both in regulation of sleep and descending pain modulation, we studied whether spinal 5-HT receptors have a role in sleep deprivation-induced facilitation of pain-related behavior. REM sleep deprivation of 48h was induced by the flower pot method in the rat. The pain modulatory influence of various serotoninergic compounds administered intrathecally was assessed by determining limb withdrawal response to monofilaments. REM sleep deprivation produced a marked hypersensitivity. Sleep deprivation-induced hypersensitivity and normal sensitivity in controls were reduced both by a 5-HT(1A) receptor antagonist (WAY-100635) and a 5-HT(2C) receptor antagonist (RS-102221). An antagonist of the 5-HT(3) receptor (LY-278584) failed to modulate hypersensitivity in sleep-deprived or control animals. Paradoxically, sensitivity in sleep-deprived and control animals was reduced not only by a 5-HT(1A) receptor antagonist but also by a 5-HT(1A) receptor agonist (8-OHDPAT). The results indicate that serotoninergic receptors in the spinal cord have a complex role in the control of sleep-deprivation induced cutaneous hypersensitivity as well as baseline sensitivity in control conditions. While endogenous serotonin acting on 5-HT(1A) and 5-HT(2C) receptors may facilitate mechanical sensitivity in animals with a sleep deprivation-induced hypersensitivity as well as in controls, increased activation of spinal 5-HT(1A) receptors by an exogenous agonist leads to suppression of mechanical sensitivity in both conditions. Spinal 5-HT(3) receptors do not contribute to cutaneous hypersensitivity induced by sleep deprivation.

  19. Functional Status of the Serotonin 5-HT2C Receptor (5-HT2CR) Drives Interlocked Phenotypes that Precipitate Relapse-Like Behaviors in Cocaine Dependence

    PubMed Central

    Anastasio, Noelle C; Stutz, Sonja J; Fox, Robert G; Sears, Robert M; Emeson, Ronald B; DiLeone, Ralph J; O'Neil, Richard T; Fink, Latham H; Li, Dingge; Green, Thomas A; Gerard Moeller, F; Cunningham, Kathryn A

    2014-01-01

    Relapse vulnerability in cocaine dependence is rooted in genetic and environmental determinants, and propelled by both impulsivity and the responsivity to cocaine-linked cues (‘cue reactivity'). The serotonin (5-hydroxytryptamine, 5-HT) 5-HT2C receptor (5-HT2CR) within the medial prefrontal cortex (mPFC) is uniquely poised to serve as a strategic nexus to mechanistically control these behaviors. The 5-HT2CR functional capacity is regulated by a number of factors including availability of active membrane receptor pools, the composition of the 5-HT2CR macromolecular protein complex, and editing of the 5-HT2CR pre-mRNA. The one-choice serial reaction time (1-CSRT) task was used to identify impulsive action phenotypes in an outbred rat population before cocaine self-administration and assessment of cue reactivity in the form of lever presses reinforced by the cocaine-associated discrete cue complex during forced abstinence. The 1-CSRT task reliably and reproducibly identified high impulsive (HI) and low impulsive (LI) action phenotypes; HI action predicted high cue reactivity. Lower cortical 5-HT2CR membrane protein levels concomitant with higher levels of 5-HT2CR:postsynaptic density 95 complex distinguished HI rats from LI rats. The frequency of edited 5-HT2CR mRNA variants was elevated with the prediction that the protein population in HI rats favors those isoforms linked to reduced signaling capacity. Genetic loss of the mPFC 5-HT2CR induced aggregate impulsive action/cue reactivity, suggesting that depressed cortical 5-HT2CR tone confers vulnerability to these interlocked behaviors. Thus, impulsive action and cue reactivity appear to neuromechanistically overlap in rodents, with the 5-HT2CR functional status acting as a neural rheostat to regulate, in part, the intersection between these vulnerability behaviors. PMID:23939424

  20. Functional selectivity of hallucinogenic phenethylamine and phenylisopropylamine derivatives at human 5-hydroxytryptamine (5-HT)2A and 5-HT2C receptors.

    PubMed

    Moya, Pablo R; Berg, Kelly A; Gutiérrez-Hernandez, Manuel A; Sáez-Briones, Patricio; Reyes-Parada, Miguel; Cassels, Bruce K; Clarke, William P

    2007-06-01

    2,5-Dimethoxy-4-substituted phenylisopropylamines and phenethylamines are 5-hydroxytryptamine (serotonin) (5-HT)(2A/2C) agonists. The former are partial to full agonists, whereas the latter are partial to weak agonists. However, most data come from studies analyzing phospholipase C (PLC)-mediated responses, although additional effectors [e.g., phospholipase A(2) (PLA(2))] are associated with these receptors. We compared two homologous series of phenylisopropylamines and phenethylamines measuring both PLA(2) and PLC responses in Chinese hamster ovary-K1 cells expressing human 5-HT(2A) or 5-HT(2C) receptors. In addition, we assayed both groups of compounds as head shake inducers in rats. At the 5-HT(2C) receptor, most compounds were partial agonists for both pathways. Relative efficacy of some phenylisopropylamines was higher for both responses compared with their phenethylamine counterparts, whereas for others, no differences were found. At the 5-HT(2A) receptor, most compounds behaved as partial agonists, but unlike findings at 5-HT(2C) receptors, all phenylisopropylamines were more efficacious than their phenethylamine counterparts. 2,5-Dimethoxyphenylisopropylamine activated only the PLC pathway at both receptor subtypes, 2,5-dimethoxyphenethylamine was selective for PLC at the 5-HT(2C) receptor, and 2,5-dimethoxy-4-nitrophenethylamine was PLA(2)-specific at the 5-HT(2A) receptor. For both receptors, the rank order of efficacy of compounds differed depending upon which response was measured. The phenylisopropylamines were strong head shake inducers, whereas their phenethylamine congeners were not, in agreement with in vitro results and the involvement of 5-HT(2A) receptors in the head shake response. Our results support the concept of functional selectivity and indicate that subtle changes in ligand structure can result in significant differences in the cellular signaling profile.

  1. 5-HT2 Receptor Regulation of Mitochondrial Genes: Unexpected Pharmacological Effects of Agonists and Antagonists.

    PubMed

    Harmon, Jennifer L; Wills, Lauren P; McOmish, Caitlin E; Demireva, Elena Y; Gingrich, Jay A; Beeson, Craig C; Schnellmann, Rick G

    2016-04-01

    In acute organ injuries, mitochondria are often dysfunctional, and recent research has revealed that recovery of mitochondrial and renal functions is accelerated by induction of mitochondrial biogenesis (MB). We previously reported that the nonselective 5-HT2 receptor agonist DOI [1-(4-iodo-2,5-dimethoxyphenyl)propan-2-amine] induced MB in renal proximal tubular cells (RPTCs). The goal of this study was to determine the role of 5-HT2 receptors in the regulation of mitochondrial genes and oxidative metabolism in the kidney. The 5-HT2C receptor agonist CP-809,101 [2-[(3-chlorophenyl)methoxy]-6-(1-piperazinyl)pyrazine] and antagonist SB-242,084 [6-chloro-2,3-dihydro-5-methyl-N-[6-[(2-methyl-3-pyridinyl)oxy]-3-pyridinyl]-1H-indole-1-carboxyamide dihydrochloride] were used to examine the induction of renal mitochondrial genes and oxidative metabolism in RPTCs and in mouse kidneys in the presence and absence of the 5-HT2C receptor. Unexpectedly, both CP-809,101 and SB-242,084 increased RPTC respiration and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) mRNA expression in RPTCs at 1-10 nM. In addition, CP-809,101 and SB-242,084 increased mRNA expression of PGC-1α and the mitochondrial proteins NADH dehydrogenase subunit 1 and NADH dehydrogenase (ubiquinone) β subcomplex 8 in mice. These compounds increased mitochondrial genes in RPTCs in which the 5-HT2C receptor was downregulated with small interfering RNA and in the renal cortex of mice lacking the 5-HT2C receptor. By contrast, the ability of these compounds to increase PGC-1α mRNA and respiration was blocked in RPTCs treated with 5-HT2A receptor small interfering RNA or the 5-HT2A receptor antagonist eplivanserin. In addition, the 5-HT2A receptor agonist NBOH-2C-CN [4-[2-[[(2-hydroxyphenyl)methyl]amino]ethyl]-2,5-dimethoxybenzonitrile] increased RPTC respiration at 1-100 nM. These results suggest that agonism of the 5-HT2A receptor induces MB and that the classic 5-HT2C receptor agonist CP

  2. Enhanced effects of amphetamine but reduced effects of the hallucinogen, 5-MeO-DMT, on locomotor activity in 5-HT(1A) receptor knockout mice: implications for schizophrenia.

    PubMed

    van den Buuse, Maarten; Ruimschotel, Emma; Martin, Sally; Risbrough, Victoria B; Halberstadt, Adam L

    2011-01-01

    Serotonin-1A (5-HT(1A)) receptors may play a role in schizophrenia and the effects of certain antipsychotic drugs. However, the mechanism of interaction of 5-HT(1A) receptors with brain systems involved in schizophrenia, remains unclear. Here we show that 5-HT(1A) receptor knockout mice display enhanced locomotor hyperactivity to acute treatment with amphetamine, a widely used animal model of hyperdopaminergic mechanisms in psychosis. In contrast, the effect of MK-801 on locomotor activity, modeling NMDA receptor hypoactivity, was unchanged in the knockouts. The effect of the hallucinogen 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) was markedly reduced in 5-HT(1A) receptor knockout mice. There were no changes in apomorphine-induced disruption of PPI, a model of sensory gating deficits seen in schizophrenia. Similarly, there were no major changes in density of dopamine transporters (DAT) or dopamine D(1) or D(2) receptors which could explain the behavioural changes observed in 5-HT(1A) receptor knockout mice. These results extend our insight into the possible role of these receptors in aspects of schizophrenia. As also suggested by previous studies using agonist and antagonist drugs, 5-HT(1A) receptors may play an important role in hallucinations and to modulate dopaminergic activity in the brain.

  3. Effects of chronic paroxetine treatment on dialysate serotonin in 5-HT1B receptor knockout mice.

    PubMed

    Gardier, A M; David, D J; Jego, G; Przybylski, C; Jacquot, C; Durier, S; Gruwez, B; Douvier, E; Beauverie, P; Poisson, N; Hen, R; Bourin, M

    2003-07-01

    the medial prefrontal cortex and ventral hippocampus of wild-type and KO 5-HT1B mice, we found that basal [5-HT]ext and the extraction fraction of 5-HT were similar in the medial prefrontal cortex and ventral hippocampus of both genotypes, suggesting that no compensatory response to the constitutive deletion of the 5-HT1B receptor involving changes in 5-HT uptake capacity occurred in vivo. As steady-state brain concentrations of paroxetine at day 14 were similar in both genotypes, it is unlikely that differences in the effects of a paroxetine challenge on hippocampal [5-HT]ext are due to alterations of the drug's pharmacokinetic properties in mutants. These data suggest that there are differences between the ventral hippocampus and medial prefrontal cortex in activation of terminal 5-HT1B autoreceptors and their role in regulating dialysate 5-HT levels. These presynaptic receptors retain their capacity to limit 5-HT release mainly in the ventral hippocampus following chronic paroxetine treatment in mice.

  4. Down-regulation of 5-HT1B and 5-HT1D receptors inhibits proliferation, clonogenicity and invasion of human pancreatic cancer cells.

    PubMed

    Gurbuz, Nilgun; Ashour, Ahmed A; Alpay, S Neslihan; Ozpolat, Bulent

    2014-01-01

    Pancreatic ductal adenocarcinoma is characterized by extensive local tumor invasion, metastasis and early systemic dissemination. The vast majority of pancreatic cancer (PaCa) patients already have metastatic complications at the time of diagnosis, and the death rate of this lethal type of cancer has increased over the past decades. Thus, efforts at identifying novel molecularly targeted therapies are priorities. Recent studies have suggested that serotonin (5-HT) contributes to the tumor growth in a variety of cancers including prostate, colon, bladder and liver cancer. However, there is lack of evidence about the impact of 5-HT receptors on promoting pancreatic cancer. Having considered the role of 5-HT-1 receptors, especially 5-HT1B and 5-HT1D subtypes in different types of malignancies, the aim of this study was to investigate the role of 5-HT1B and 5-HT1D receptors in PaCa growth and progression and analyze their potential as cytotoxic targets. We found that knockdown of 5-HT1B and 5-HT1D receptors expression, using specific small interfering RNA (siRNA), induced significant inhibition of proliferation and clonogenicity of PaCa cells. Also, it significantly suppressed PaCa cells invasion and reduced the activity of uPAR/MMP-2 signaling and Integrin/Src/Fak-mediated signaling, as integral tumor cell pathways associated with invasion, migration, adhesion, and proliferation. Moreover, targeting 5-HT1B and 5-HT1D receptors down-regulates zinc finger ZEB1 and Snail proteins, the hallmarks transcription factors regulating epithelial-mesenchymal transition (EMT), concomitantly with up-regulating of claudin-1 and E-Cadherin. In conclusion, our data suggests that 5-HT1B- and 5-HT1D- mediated signaling play an important role in the regulation of the proliferative and invasive phenotype of PaCa. It also highlights the therapeutic potential of targeting of 5-HT1B/1D receptors in the treatment of PaCa, and opens a new avenue for biomarkers identification, and valuable new

  5. Down-regulation of 5-HT1B and 5-HT1D receptors inhibits proliferation, clonogenicity and invasion of human pancreatic cancer cells.

    PubMed

    Gurbuz, Nilgun; Ashour, Ahmed A; Alpay, S Neslihan; Ozpolat, Bulent

    2014-01-01

    Pancreatic ductal adenocarcinoma is characterized by extensive local tumor invasion, metastasis and early systemic dissemination. The vast majority of pancreatic cancer (PaCa) patients already have metastatic complications at the time of diagnosis, and the death rate of this lethal type of cancer has increased over the past decades. Thus, efforts at identifying novel molecularly targeted therapies are priorities. Recent studies have suggested that serotonin (5-HT) contributes to the tumor growth in a variety of cancers including prostate, colon, bladder and liver cancer. However, there is lack of evidence about the impact of 5-HT receptors on promoting pancreatic cancer. Having considered the role of 5-HT-1 receptors, especially 5-HT1B and 5-HT1D subtypes in different types of malignancies, the aim of this study was to investigate the role of 5-HT1B and 5-HT1D receptors in PaCa growth and progression and analyze their potential as cytotoxic targets. We found that knockdown of 5-HT1B and 5-HT1D receptors expression, using specific small interfering RNA (siRNA), induced significant inhibition of proliferation and clonogenicity of PaCa cells. Also, it significantly suppressed PaCa cells invasion and reduced the activity of uPAR/MMP-2 signaling and Integrin/Src/Fak-mediated signaling, as integral tumor cell pathways associated with invasion, migration, adhesion, and proliferation. Moreover, targeting 5-HT1B and 5-HT1D receptors down-regulates zinc finger ZEB1 and Snail proteins, the hallmarks transcription factors regulating epithelial-mesenchymal transition (EMT), concomitantly with up-regulating of claudin-1 and E-Cadherin. In conclusion, our data suggests that 5-HT1B- and 5-HT1D-mediated signaling play an important role in the regulation of the proliferative and invasive phenotype of PaCa. It also highlights the therapeutic potential of targeting of 5-HT1B/1D receptors in the treatment of PaCa, and opens a new avenue for biomarkers identification, and valuable new

  6. Function and Distribution of 5-HT2 Receptors in the Honeybee (Apis mellifera)

    PubMed Central

    Thamm, Markus; Rolke, Daniel; Jordan, Nadine; Balfanz, Sabine; Schiffer, Christian; Baumann, Arnd; Blenau, Wolfgang

    2013-01-01

    Background Serotonin plays a pivotal role in regulating and modulating physiological and behavioral processes in both vertebrates and invertebrates. In the honeybee (Apis mellifera), serotonin has been implicated in division of labor, visual processing, and learning processes. Here, we present the cloning, heterologous expression, and detailed functional and pharmacological characterization of two honeybee 5-HT2 receptors. Methods Honeybee 5-HT2 receptor cDNAs were amplified from brain cDNA. Recombinant cell lines were established constitutively expressing receptor variants. Pharmacological properties of the receptors were investigated by Ca2+ imaging experiments. Quantitative PCR was applied to explore the expression patterns of receptor mRNAs. Results The honeybee 5-HT2 receptor class consists of two subtypes, Am5-HT2α and Am5-HT2β. Each receptor gene also gives rise to alternatively spliced mRNAs that possibly code for truncated receptors. Only activation of the full-length receptors with serotonin caused an increase in the intracellular Ca2+ concentration. The effect was mimicked by the agonists 5-methoxytryptamine and 8-OH-DPAT at low micromolar concentrations. Receptor activities were blocked by established 5-HT receptor antagonists such as clozapine, methiothepin, or mianserin. High transcript numbers were detected in exocrine glands suggesting that 5-HT2 receptors participate in secretory processes in the honeybee. Conclusions This study marks the first molecular and pharmacological characterization of two 5-HT2 receptor subtypes in the same insect species. The results presented should facilitate further attempts to unravel central and peripheral effects of serotonin mediated by these receptors. PMID:24324783

  7. Role of 5-HT(1A) and 5-HT(1B) receptors in the antidepressant-like effect of piperine in the forced swim test.

    PubMed

    Mao, Qing-Qiu; Huang, Zhen; Ip, Siu-Po; Xian, Yan-Fang; Che, Chun-Tao

    2011-10-24

    Our previous studies have showed that treating mice with piperine significantly decreased the immobility time of the animals in the forced swim test and tail suspension test, which was related to up-regulation of serotonin (5-HT) level in the brain. The purpose of this study is to explore the contribution of 5-HT receptors in the antidepressant-like effect of piperine. The results showed that pre-treating mice with methiothepin (a non-selective 5-HT receptor antagonist, 0.1mg/kg, intraperitoneally), 4-(2'-methoxy-phenyl)-1-[2'-(n-2″-pyridinyl)-p-iodobenzamino-]ethyl-piperazine (a selective 5-HT(1A) receptor antagonist, 1mg/kg, subcutaneously) or 1-(2-(1-pyrrolyl)-phenoxy)-3-isopropylamino-2-propanol (a 5-HT(1B) receptor antagonist, 2.5mg/kg, intraperitoneally) was found to abolish the anti-immobility effect of piperine (10mg/kg, intraperitoneally) in the forced swim test. On the other hand, a sub-effective dose of piperine (1mg/kg, intraperitoneally) produced a synergistic antidepressant-like effect with (+)-8-hydroxy-2-(di-n-propylamino)tetralin (a 5-HT(1A) receptor agonist, 1mg/kg, intraperitoneally) or anpirtoline (a 5-HT(1B) receptor agonist, 0.25mg/kg, intraperitoneally). Taken together, these results suggest that the antidepressant-like effect of piperine in the mouse forced swim test may be mediated, at least in part, by the activation of 5-HT(1A) and 5-HT(1B) receptors.

  8. Differential effects of the 5-hydroxytryptamine (5-HT)1A receptor inverse agonists Rec 27/0224 and Rec 27/0074 on electrophysiological responses to 5-HT1A receptor activation in rat dorsal raphe nucleus and hippocampus in vitro.

    PubMed

    Corradetti, Renato; Mlinar, Boris; Falsini, Chiara; Pugliese, Anna Maria; Cilia, Antonio; Destefani, Carla; Testa, Rodolfo

    2005-10-01

    The pharmacological properties of cyclohexanecarboxylic acid, {2-[4-(2-bromo-5-methoxybenzyl)piperazin-1-yl]ethyl}-(2-trifluoromethoxyphenyl)amide (Rec 27/0224), and cyclohexanecarboxylic acid, (2-methoxy-phenyl)-{2-[4-(2-methoxyphenyl)-piperazin-1-yl]ethyl}amide (Rec 27/0074), were characterized using radioligand displacement and guanosine 5'-O-(3-[35S]thiotriphosphate) ([35S]GTPgammaS) binding assays, as well as electrophysiological experiments, in rat hippocampal and dorsal raphe nucleus (DRN) slices. Both compounds showed a high affinity (Ki, approximately 1 nM) and selectivity (>70-fold) at human 5-hydroxytryptamine (5-HT)1A receptors versus other 5-HT receptors. In [35S]GTPgammaS binding assays on HeLa cells stably expressing human 5-HT1A receptors, Rec 27/0224 and Rec 27/0074 inhibited basal [35S]GTPgammaS binding by 44.8 +/- 1.7% (pEC50 = 8.58) and 25 +/- 2.5% (pEC50 = 8.86), respectively. In intracellularly recorded CA1 pyramidal cells, 5-HT1A (hetero)receptor-mediated hyperpolarization, elicited by 100 nM 5-carboxamidoytryptamine (5-CT), was partially antagonized by Rec 27/0224 (approximately 50%; IC50 = 18.0 nM) and Rec 27/0074 (74%; IC50 = 0.8 nM). In extracellularly recorded DRN serotonergic neurons, Rec 27/0224 and Rec 27/0074 fully antagonized the inhibition of firing caused by the activation of 5-HT1A (auto)receptors by 30 nM 5-CT with an IC50 of 34.9 nM and 16.5 nM, respectively. The antagonism had a slow time course, reaching a steady state within 60 min. Both compounds also antagonized the citalopram-elicited, endogenous 5-HT-mediated inhibition of cell firing. In conclusion, Rec 27/0224 and Rec 27/0074 exhibited inverse agonism in [35S]GTPgammaS binding assays and differential antagonistic properties on 5-HT1A receptor-mediated responses in the hippocampus but not in the DRN. Whether this differential effect is causally related to inverse agonist activity is unclear. The qualitatively different nature of the antagonism in the hippocampus versus

  9. Support for 5-HT2C receptor functional selectivity in vivo utilizing structurally diverse, selective 5-HT2C receptor ligands and the 2,5-dimethoxy-4-iodoamphetamine elicited head-twitch response model

    PubMed Central

    Canal, Clinton E.; Booth, Raymond G.; Morgan, Drake

    2013-01-01

    There are seemingly conflicting data in the literature regarding the role of serotonin (5-HT) 5-HT2C receptors in the mouse head-twitch response (HTR) elicited by the hallucinogenic 5-HT2A/2B/2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI). Namely, both 5-HT2C receptor agonists and antagonists, regarding 5-HT2C receptor-mediated Gq-phospholipase C (PLC) signaling, reportedly attenuate the HTR response. The present experiments tested the hypothesis that both classes of 5-HT2C receptor compounds could attenuate the DOI-elicited-HTR in a single strain of mice, C57Bl/6J. The expected results were considered in accordance with ligand functional selectivity. Commercially-available 5-HT2C agonists (CP 809101, Ro 60-0175, WAY 161503, mCPP, and 1-methylpsilocin), novel 4-phenyl-2-N,N-dimethyl-aminotetralin (PAT)-type 5-HT2C agonists (with 5-HT2A/2B antagonist activity), and antagonists selective for 5-HT2A (M100907), 5-HT2C (SB-242084), and 5-HT2B/2C (SB-206553) receptors attenuated the DOI-elicited-HTR. In contrast, there were differential effects on locomotion across classes of compounds. The 5-HT2C agonists and M100907 decreased locomotion, SB-242084 increased locomotion, SB-206553 resulted in dose-dependent biphasic effects on locomotion, and the PATs did not alter locomotion. In vitro molecular pharmacology studies showed that 5-HT2C agonists potent for attenuating the DOI-elicited-HTR also reduced the efficacy of DOI to activate mouse 5-HT2C receptor-mediated PLC signaling in HEK cells. Although there were differences in affinities of a few compounds at mouse compared to human 5-HT2A or 5-HT2C receptors, all compounds tested retained their selectivity for either receptor, regardless of receptor species. Results indicate that 5-HT2C receptor agonists and antagonists attenuate the DOI-elicited-HTR in C57Bl/6J mice, and suggest that structurally diverse 5-HT2C ligands result in different 5-HT2C receptor signaling outcomes compared to DOI. PMID:23353901

  10. Central PGE2 exhibits anxiolytic-like activity via EP1 and EP4 receptors in a manner dependent on serotonin 5-HT1A, dopamine D1 and GABAA receptors.

    PubMed

    Suzuki, Chihiro; Miyamoto, Chihiro; Furuyashiki, Tomoyuki; Narumiya, Shuh; Ohinata, Kousaku

    2011-07-21

    We found that centrally administered prostaglandin (PG) E(2) exhibited anxiolytic-like activity in the elevated plus-maze and open field test in mice. Agonists selective for EP(1) and EP(4) receptors, among four receptor subtypes for PGE(2), mimicked the anxiolytic-like activity of PGE(2). The anxiolytic-like activity of PGE(2) was blocked by an EP(1) or EP(4) antagonist, as well as in EP(4) but not EP(1) knockout mice. Central activation of either EP(1) or EP(4) receptors resulted in anxiolytic-like activity. The PGE(2)-induced anxiolytic-like activity was inhibited by antagonists for serotonin 5-HT(1A), dopamine D(1) and GABA(A) receptors. Taken together, PGE(2) exhibits anxiolytic-like activity via EP(1) and EP(4) receptors, with downstream involvement of 5-HT(1A), D(1) and GABA(A) receptor systems.

  11. Involvement of 5-HT3 receptors in the action of vortioxetine in rat brain: Focus on glutamatergic and GABAergic neurotransmission.

    PubMed

    Riga, Maurizio S; Sánchez, Connie; Celada, Pau; Artigas, Francesc

    2016-09-01

    The antidepressant vortioxetine is a 5-HT3-R, 5-HT7-R and 5-HT1D-R antagonist, 5-HT1B-R partial agonist, 5-HT1A-R agonist, and serotonin (5-HT) transporter (SERT) inhibitor. Vortioxetine occupies all targets at high therapeutic doses and only SERT and 5-HT3-R at low doses. Vortioxetine increases extracellular monoamine concentrations in rat forebrain more than selective serotonin reuptake inhibitors (SSRI) and shows pro-cognitive activity in preclinical models. Given its high affinity for 5-HT3-R (Ki = 3.7 nM), selectively expressed in GABA interneurons, we hypothesized that vortioxetine may disinhibit glutamatergic and monoaminergic neurotransmission following 5-HT3-R blockade. Here we assessed vortioxetine effect on pyramidal neuron activity and extracellular 5-HT concentration using in vivo extracellular recordings of rat medial prefrontal cortex (mPFC) pyramidal neurons and microdialysis in mPFC and ventral hippocampus (vHPC). Vortioxetine, but not escitalopram, increased pyramidal neuron discharge in mPFC. This effect was prevented by SR57227A (5-HT3-R agonist) and was mimicked by ondansetron (5-HT3-R antagonist) and by escitalopram/ondansetron combinations. In microdialysis experiments, ondansetron augmented the 5-HT-enhancing effect of escitalopram in mPFC and vHPC. Local ondansetron in vHPC augmented escitalopram effect, indicating the participation of intrinsic mechanisms. Since 5-HT neurons express GABAB receptors, we examined their putative involvement in controlling 5-HT release after 5-HT3-R blockade. Co-perfusion of baclofen (but not muscimol) reversed the increased 5-HT levels produced by vortioxetine and escitalopram/ondansetron combinations in vHPC. The present results suggest that vortioxetine increases glutamatergic and serotonergic neurotransmission in rat forebrain by blocking 5-HT3 receptors in GABA interneurons. PMID:27106166

  12. (Phenylpiperazinyl-butyl)oxindoles as selective 5-HT7 receptor antagonists.

    PubMed

    Volk, Balázs; Barkóczy, József; Hegedus, Endre; Udvari, Szabolcs; Gacsályi, István; Mezei, Tibor; Pallagi, Katalin; Kompagne, Hajnalka; Lévay, György; Egyed, András; Hársing, László G; Spedding, Michael; Simig, Gyula

    2008-04-24

    A series of potent 5-hydroxytryptamine 7 (5-HT 7) ligands has been synthesized that contain a 1,3-dihydro-2 H-indol-2-one (oxindole) skeleton. The binding of these compounds to the 5-HT 7 and 5-HT 1A receptors was measured. Despite the structural similarity of these two serotonin receptor subtypes, several derivatives exhibited a high selectivity to the 5-HT 7 receptor. According to the structure-activity relationship observations, compounds unsubstituted at the oxindole nitrogen atom and containing a tetramethylene spacer between the oxindole skeleton and the basic nitrogen atom are the most potent ligands. Concerning the basic group, besides the moieties of the 4-phenylpiperazine type, halophenyl-1,2,3,6-tetrahydropyridines also proved to be 5-HT 7 receptor-ligands. Because of halogen substitution on the aromatic rings, good metabolic stability could be achieved. A representative of the family, 3-{4-[4-(4-chlorophenyl)-piperazin-1-yl]-butyl}-3-ethyl-6-fluoro-1,3-dihydro-2 H-indol-2-one ( 9e') exhibited selective 5-HT 7 antagonist activity ( K i = 0.79 nM). The in vivo pharmacological potencies of these 5-HT 7 receptor-ligands were estimated by the conflict drinking (Vogel) and the light-dark anxiolytic tests.

  13. The role of the 5-HT2A and 5-HT2C receptors in the stimulus effects of hallucinogenic drugs. I: Antagonist correlation analysis.

    PubMed

    Fiorella, D; Rabin, R A; Winter, J C

    1995-10-01

    Investigations conducted over the past 3 decades have demonstrated that serotonergic receptors, specifically the 5-HT2A and 5-HT2C subtypes, play an important role in the behavioral effects of hallucinogenic compounds. The present study was designed to determine the respective significance of these two receptors in the stimulus effects of LSD and (-)DOM in the rat. Specifically, the interactions of a series of serotonergic antagonists (risperidone, pirenpirone, metergoline, ketanserin, loxapine, LY53857, pizotyline, spiperone, cyprohepatadine, mesulergine, promethazine, and thioridazine) with the LSD stimulus and the (-)DOM stimulus in LSD-trained subjects was defined. From these data, IC50 values were determined for the inhibition of the LSD-appropriate responding elicited by either 0.1 mg/kg LSD (15-min pretreatment time) or 0.4 mg/kg (-)DOM (75-min pretreatment). In addition, the affinities of these antagonists for 5-HT2A and 5-HT2C receptors were determined in radioligand competition studies, 5-HT2A affinity correlated significantly with IC50 values for the blockade of the LSD (r = +0.75, P < 0.05) and (-)DOM (r = +0.95, P < 0.001) stimuli in the LSD trained subjects. 5-HT2C affinity did not correlate significantly with either series of IC50 values. These data indicate that (1) the stimulus effects of LSD, and (2) the substitution of (-)DOM for the LSD stimulus are mediated by agonist activity at 5-HT2A receptors.

  14. Reduced signal transduction by 5-HT4 receptors after long-term venlafaxine treatment in rats

    PubMed Central

    Vidal, R; Valdizan, EM; Vilaró, MT; Pazos, A; Castro, E

    2010-01-01

    BACKGROUND AND PURPOSE The 5-HT4 receptor may be a target for antidepressant drugs. Here we have examined the effects of the dual antidepressant, venlafaxine, on 5-HT4 receptor-mediated signalling events. EXPERIMENTAL APPROACH The effects of 21 days treatment (p.o.) with high (40 mg·kg−1) and low (10 mg·kg−1) doses of venlafaxine, were evaluated at different levels of 5-HT4 receptor-mediated neurotransmission by using in situ hybridization, receptor autoradiography, adenylate cyclase assays and electrophysiological recordings in rat brain. The selective noradrenaline reuptake inhibitor, reboxetine (10 mg·kg−1, 21 days) was also evaluated on 5-HT4 receptor density. KEY RESULTS Treatment with a high dose (40 mg·kg−1) of venlafaxine did not alter 5-HT4 mRNA expression, but decreased the density of 5-HT4 receptors in caudate-putamen (% reduction = 26 ± 6), hippocampus (% reduction = 39 ± 7 and 39 ± 8 for CA1 and CA3 respectively) and substantia nigra (% reduction = 49 ± 5). Zacopride-stimulated adenylate cyclase activation was unaltered following low-dose treatment (10 mg·kg−1) while it was attenuated in rats treated with 40 mg·kg−1 of venlafaxine (% reduction = 51 ± 2). Furthermore, the amplitude of population spike in pyramidal cells of CA1 of hippocampus induced by zacopride was significantly attenuated in rats receiving either dose of venlafaxine. Chronic reboxetine did not modify 5-HT4 receptor density. CONCLUSIONS AND IMPLICATIONS Our data indicate a functional desensitization of 5-HT4 receptors after chronic venlafaxine, similar to that observed after treatment with the classical selective inhibitors of 5-HT reuptake. PMID:20880406

  15. Cartography of 5-HT1A and 5-HT2A Receptor Subtypes in Prefrontal Cortex and Its Projections.

    PubMed

    Mengod, Guadalupe; Palacios, José M; Cortés, Roser

    2015-07-15

    Since the development of chemical neuroanatomical tools in the 1960s, a tremendous wealth of information has been generated on the anatomical components of the serotonergic system, at the microscopic level in the brain including the prefrontal cortex (PFC). The PFC receives a widespread distribution of serotonin (5-hydroxytryptamine, 5-HT) terminals from the median and dorsal raphe nuclei. 5-HT receptors were first visualized using radioligand autoradiography in the late 1980s and early 1990s and showed, in contrast to 5-HT innervation, a differential distribution of binding sites associated with different 5-HT receptor subtypes. Due to the cloning of the different 5-HT receptor subtype genes in the late 1980s and early 1990s, it was possible, using in situ hybridization histochemistry, to localize cells expressing mRNA for these receptors. Double in situ hybridization histochemistry and immunohistochemistry allowed for the chemical characterization of the phenotype of cells expressing 5-HT receptors. Tract tracing technology allowed a detailed cartography of the neuronal connections of PFC and other brain areas. Based on these data, maps have been constructed that reflect our current understanding of the different circuits where 5-HT receptors can modulate the electrophysiological, pharmacological, and behavioral functions of the PFC. We will review current knowledge regarding the cellular localization of 5-HT1A and 5-HT2A receptors in mammalian PFC and their possible functions in the neuronal circuits of the PFC. We will discuss data generated in our laboratory as well as in others, focusing on localization in the pyramidal and GABAergic neuronal cell populations in different mammalian species using molecular neuroanatomy and on the connections with other brain regions. PMID:25739427

  16. Cartography of 5-HT1A and 5-HT2A Receptor Subtypes in Prefrontal Cortex and Its Projections.

    PubMed

    Mengod, Guadalupe; Palacios, José M; Cortés, Roser

    2015-07-15

    Since the development of chemical neuroanatomical tools in the 1960s, a tremendous wealth of information has been generated on the anatomical components of the serotonergic system, at the microscopic level in the brain including the prefrontal cortex (PFC). The PFC receives a widespread distribution of serotonin (5-hydroxytryptamine, 5-HT) terminals from the median and dorsal raphe nuclei. 5-HT receptors were first visualized using radioligand autoradiography in the late 1980s and early 1990s and showed, in contrast to 5-HT innervation, a differential distribution of binding sites associated with different 5-HT receptor subtypes. Due to the cloning of the different 5-HT receptor subtype genes in the late 1980s and early 1990s, it was possible, using in situ hybridization histochemistry, to localize cells expressing mRNA for these receptors. Double in situ hybridization histochemistry and immunohistochemistry allowed for the chemical characterization of the phenotype of cells expressing 5-HT receptors. Tract tracing technology allowed a detailed cartography of the neuronal connections of PFC and other brain areas. Based on these data, maps have been constructed that reflect our current understanding of the different circuits where 5-HT receptors can modulate the electrophysiological, pharmacological, and behavioral functions of the PFC. We will review current knowledge regarding the cellular localization of 5-HT1A and 5-HT2A receptors in mammalian PFC and their possible functions in the neuronal circuits of the PFC. We will discuss data generated in our laboratory as well as in others, focusing on localization in the pyramidal and GABAergic neuronal cell populations in different mammalian species using molecular neuroanatomy and on the connections with other brain regions.

  17. On the role of 5-HT(1A) receptor gene in behavioral effect of brain-derived neurotrophic factor.

    PubMed

    Naumenko, Vladimir S; Kondaurova, Elena M; Bazovkina, Daria V; Tsybko, Anton S; Il'chibaeva, Tatyana V; Popova, Nina K

    2014-08-01

    Experiments were made on a congenic AKR.CBA-D13Mit76C (76C) mouse strain created by transferring a chromosome 13 fragment containing the 5-HT1A receptor gene from a CBA strain to an AKR background. It was shown that 76C mice differed from AKR mice by decreased 5-HT1A receptor and tryptophan hydroxylase-2 (tph-2) genes expression in the midbrain. Functional activity of 5-HT2A receptors and 5-HT(2A) receptor mRNA levels in the midbrain and hippocampus of 76C mice were decreased compared with AKR mice. Central brain-derived neurotrophic factor (BDNF) administration (300 ng i.c.v.) reduced 5-HT1A and 5-HT(2A) receptor mRNA levels in the frontal cortex and tph-2 mRNA level in the midbrain of AKR mice. However, BDNF failed to produce any effect on the expression of 5-HT(1A) , 5-HT(2A) , and tph-2 genes in 76C mice but decreased functional activity of 5-HT(2A) receptors in 76C mice and increased it in AKR mice. BDNF restored social deficiency in 76C mice but produced asocial behavior (aggressive attacks towards young mice) in AKR mice. The data indicate that a small genetic variation altered the response to BDNF and show an important role of 5-HT(1A) receptor gene in the 5-HT system response to BDNF treatment and in behavioral effects of BDNF.

  18. Development of 5-HT1A receptor radioligands to determine receptor density and changes in endogenous 5-HT.

    PubMed

    Jagoda, Elaine M; Lang, Lixin; Tokugawa, Joji; Simmons, Ashlie; Ma, Ying; Contoreggi, Carlo; Kiesewetter, Dale; Eckelman, William C

    2006-05-01

    [(18)F]FCWAY and [(18)F]FPWAY, analogues of the high affinity 5-HT(1A) receptor (5-HT(1A)R) antagonist WAY100635, were evaluated in rodents as potential radiopharmaceuticals for determining 5-HT(1A)R density and changes in receptor occupancy due to changes in endogenous serotonin (5-HT) levels. The in vivo hippocampus specific binding ratio [(hippocampus(uptake)/cerebellum(uptake))-1] of [(18)F]FPWAY was decreased to 32% of the ratio of [(18)F]FCWAY, indicating that [(18)F]FPWAY has lower affinity than [(18)F]FCWAY. The 5-HT(1A)R selectivity of [(18)F]FPWAY was confirmed using ex vivo autoradiography studies with 5-HT(1A)R knockout, heterozygous, and wildtype mice.Pre- or post-treatment of awake rodents in tissue dissection studies with paroxetine had no effect on hippocampal binding of [(18)F]FCWAY or [(18)F]FPWAY compared to controls, indicating neither tracer was sensitive to changes in endogenous 5-HT. In mouse ex vivo autoradiography studies in which awake mice were treated with fenfluramine following the [(18)F]FPWAY, a significant decrease was not observed in the hippocampus specific binding ratios. In rat dissection studies with fenfluramine administered following [(18)F]FPWAY or [(18)F]FBWAY ([(18)F]-MPPF) in awake or urethane-anesthetized rats, no significant differences in the specific binding ratios of the hippocampus were observed compared to their respective controls. [(18)F]FPWAY and [(18)F]FBWAY uptakes in all brain regions were increased variably in the anesthetized group (with the greatest increase in the hippocampus) vs. the awake group, but were decreased in the fenfluramine-treated anesthetized group vs. the anesthetized group. These data are best explained by changes in blood flow caused by urethane and fenfluramine, which varies from region to region in the brain. PMID:16440292

  19. Human serotonin 1D receptor is encoded by a subfamily of two distinct genes: 5-HT1D alpha and 5-HT1D beta.

    PubMed Central

    Weinshank, R L; Zgombick, J M; Macchi, M J; Branchek, T A; Hartig, P R

    1992-01-01

    The serotonin 1D (5-HT1D) receptor is a pharmacologically defined binding site and functional receptor site. Observed variations in the properties of 5-HT1D receptors in different tissues have led to the speculation that multiple receptor proteins with slightly different properties may exist. We report here the cloning, deduced amino acid sequences, pharmacological properties, and second-messenger coupling of a pair of human 5-HT1D receptor genes, which we have designated 5-HT1D alpha and 5-HT1D beta due to their strong similarities in sequence, pharmacological properties, and second-messenger coupling. Both genes are free of introns in their coding regions, are expressed in the human cerebral cortex, and can couple to inhibition of adenylate cyclase activity. The pharmacological binding properties of these two human receptors are very similar, and match closely the pharmacological properties of human, bovine, and guinea pig 5-HT1D sites. Both receptors exhibit high-affinity binding of sumatriptan, a new anti-migraine medication, and thus are candidates for the pharmacological site of action of this drug. Images PMID:1565658

  20. The 5-HT[subscript 3A] Receptor Is Essential for Fear Extinction

    ERIC Educational Resources Information Center

    Kondo, Makoto; Nakamura, Yukiko; Ishida, Yusuke; Yamada, Takahiro; Shimada, Shoichi

    2014-01-01

    The 5-HT [subscript 3] receptor, the only ionotropic 5-HT receptor, is expressed in limbic regions, including the hippocampus, amygdala, and cortex. However, it is not known whether it has a role in fear memory processes. Analysis of 5-HT [subscript 3A] receptor knockout mice in fear conditioning paradigms revealed that the 5-HT [subscript 3A]…

  1. Activation and blockade of prelimbic 5-HT6 receptors produce different effects on depressive-like behaviors in unilateral 6-hydroxydopamine-induced Parkinson's rats.

    PubMed

    Zhang, Yu-Ming; Zhang, Li; Wang, Yong; Sun, Yi-Na; Guo, Yuan; Du, Cheng-Xue; Zhang, Jin; Yao, Lu; Yu, Shu-Qi; Liu, Jian

    2016-11-01

    The role of prelimbic (PrL) 5-HT6 receptors in depression is poorly understood, particularly in Parkinson's disease-related depression. Here we reported that 6-hydroxydopamine lesions in rats decreased sucrose preference and increased immobility time as measured by the sucrose preference and forced swim tests when compared to sham-operated rats, indicating the induction of depressive-like behaviors. Intra-PrL injection of 5-HT6 receptor agonist WAY208466 induced depressive-like responses in sham-operated rats, and produced antidepressant-like effects in the lesioned rats. However, 5-HT6 receptor antagonist SB258585 produced antidepressant-like effects in sham-operated rats, and increased the expression of depressive-like behaviors in the lesioned rats. Neurochemical results showed that intra-PrL injection of WAY208466 and SB258585 decreased or increased dopamine (DA) and noradrenaline (NA) levels in the medial prefrontal cortex, amygdala, habenula and ventral hippocampus in sham-operated and the lesioned rats, respectively. WAY208466 increased the firing rate of PrL glutamate neurons in the two groups of rats, while SB258585 decreased the firing rate of the neurons. Compared to sham-operated rats, the duration of WAY208466 and SB258585 action on the firing rate of glutamate neurons was markedly prolonged in the lesioned rats. The lesion did not change the co-localization of 5-HT6 receptor and glutamate neurons in the PrL. These findings indicate that 5-HT6 receptors in the PrL are involved in the regulation of depressive-like behaviors, which attribute to changes in DA and NA levels in the limbic and limbic-related brain regions. Additionally, the results suggest that the lesion leads to a supersensitization of 5-HT6 receptors on glutamate neurons in the PrL.

  2. Serotonin via 5-HT7 receptors activates p38 mitogen-activated protein kinase and protein kinase C epsilon resulting in interleukin-6 synthesis in human U373 MG astrocytoma cells.

    PubMed

    Lieb, Klaus; Biersack, Lisa; Waschbisch, Anne; Orlikowski, Sonja; Akundi, Ravi Shankar; Candelario-Jalil, Eduardo; Hüll, Michael; Fiebich, Bernd L

    2005-05-01

    Serotonin [5-hydroxytryptamine (5-HT)] is a widely distributed neurotransmitter which is involved in neuroimmunomodulatory processes. Previously, it has been demonstrated that 5-HT may induce interleukin (IL)-6 expression in primary rat hippocampal astrocytes. The present study was undertaken to investigate the molecular pathways underlying this induction of IL-6 synthesis. As a model system, we used the human astrocytoma cell line U373 MG, which synthesizes IL-6 upon stimulation with various inducers. 5-HT dose- and time-dependently induced IL-6 protein synthesis. We identified several 5-HT receptors to be expressed on U373 MG cells, including the 5-HT1D, 5-HT2A, 5-HT3 and 5-HT7 receptors. In this report, we show that the 5-HT-induced IL-6 release is mediated by the 5-HT7 receptor based on several agonist/antagonists that were used. 5-HT-induced IL-6 synthesis is inhibited by the partially selective 5-HT7 receptor antagonist, pimozide, and the selective antagonist SB269970. Furthermore, IL-6 synthesis was induced by the 5-HT7 receptor agonist carboxamidotryptamin. In addition, we found p38 MAPKs and protein kinase C (PKC) epsilon to be involved in 5-HT-induced IL-6 synthesis as specific inhibitors of these enzymes (SB202190 and RO-31-8425, respectively) blocked 5-HT-induced IL-6 synthesis. Furthermore, 5-HT mediated the phosphorylation of both p38 MAPK as well as the PKC epsilon isoform. The p42/44 MAPKs, however, were not involved in 5-HT-induced IL-6 synthesis. This study shows, for the first time, a central role of 5-HT7 receptor linked to p38 MAPK and PKC epsilon for the induction of cytokine synthesis in astrocytic cells. PMID:15836614

  3. Activation of 5-HT(2C) receptors in the dorsal periaqueductal gray increases antinociception in mice exposed to the elevated plus-maze.

    PubMed

    Baptista, Daniela; Nunes-de-Souza, Ricardo Luiz; Canto-de-Souza, Azair

    2012-11-01

    Several findings have pointed to the role of the dorsal periaqueductal gray (dPAG) serotonin 5-HT(1A) and 5-HT(2A-C) receptor subtypes in the modulation of defensive behavior in animals exposed to the elevated plus-maze (EPM). Besides displaying anxiety-like behavior, rodents also exhibit antinociception in the EPM. This study investigated the effects of intra-dPAG injections of 5-HT(1A) and 5-HT(2B/2C) receptor ligands on EPM-induced antinociception in mice. Male Swiss mice received 0.1 μl intra-dPAG injections of vehicle, 5.6 and 10 nmol of 8-OHDPAT, a 5-HT(1A) receptor agonist (Experiment 1), or 0.01, 0.03 and 0.1 nmol of mCPP, a 5-HT(2B/2C) receptor agonist (Experiment 2). Five minutes later, each mouse received an intraperitoneal injection of 0.6% acetic acid (0.1 ml/10 g body weight; nociceptive stimulus) and was individually confined in the open (OA) or enclosed (EA) arms of the EPM for 5 min, during which the number of abdominal writhes induced by the acetic acid was recorded. While intra-dPAG injection of 8-OHDPAT did not change open-arm antinociception (OAA), mCPP (0.01 nmol) enhanced it. Combined injections of ketanserin (10 nmol/0.1 μl), a 5-HT(2A/2C) receptor antagonist, and 0.01 nmol of mCPP (Experiment 3), selectively and completely blocked the OAA enhancement induced by mCPP. Although intra-dPAG injection of mCPP (0.01 nmol) also produced antinociception in EA-confined mice (Experiment 2), this effect was not confirmed in Experiment 3. Moreover, no other compound changed the nociceptive response in EA-confined animals. These results suggest that the 5-HT(2C) receptors located within the PAG play a role in this type of environmentally induced pain inhibition in mice.

  4. A double dissociation in the effects of 5-HT2A and 5-HT2C receptors on the acquisition and expression of conditioned defeat in Syrian hamsters

    PubMed Central

    Harvey, Marquinta L.; Swallows, Cody L.; Cooper, Matthew A.

    2012-01-01

    Previous research indicates that serotonin enhances the development of stress-induced changes in behavior, although it is unclear which serotonin receptors mediate this effect. 5-HT2 receptors are potential candidates because activation at these receptors is associated with increased fear and anxiety. In this study we investigated whether pharmacological treatments targeting 5-HT2 receptors would alter the acquisition and expression of conditioned defeat. Conditioned defeat is a social defeat model in Syrian hamsters in which individuals display increased submissive and defensive behavior and a loss of territorial aggression when tested with a novel intruder 24 hours after an acute social defeat. The nonselective 5-HT2 receptor agonist mCPP (0.0, 0.3, 1.0 or 3.0 mg/kg) was injected either prior to social defeat training or prior to conditioned defeat testing. Also, the 5-HT2A receptor antagonist MDL 11,939 (0.0, 0.5 or 2.0 mg/kg) was injected either prior to social defeat training or prior to conditioned defeat testing. Injection of mCPP prior to testing increased the expression of conditioned defeat, but injection of mCPP prior to training did not alter the acquisition of conditioned defeat. Conversely, injection of MDL 11,939 prior to training reduced the acquisition of conditioned defeat, but injection of MDL 11,939 prior to testing did not alter the expression of conditioned defeat. Our data suggest that mCPP activates 5-HT2C receptors during testing to enhance the display of submissive and defensive behavior, whereas MDL 11,939 blocks 5-HT2A receptors during social defeat to disrupt the development of the conditioned defeat response. In sum, these results suggest that serotonin acts at separate 5-HT2 receptors to facilitate the acquisition and expression of defeat-induced changes in social behavior. PMID:22708954

  5. A Novel Aminotetralin-Type Serotonin (5-HT) 2C Receptor-Specific Agonist and 5-HT2A Competitive Antagonist/5-HT2B Inverse Agonist with Preclinical Efficacy for Psychoses

    PubMed Central

    Morgan, Drake; Felsing, Daniel; Kondabolu, Krishnakanth; Rowland, Neil E.; Robertson, Kimberly L.; Sakhuja, Rajeev; Booth, Raymond G.

    2014-01-01

    Development of 5-HT2C agonists for treatment of neuropsychiatric disorders, including psychoses, substance abuse, and obesity, has been fraught with difficulties, because the vast majority of reported 5-HT2C selective agonists also activate 5-HT2A and/or 5-HT2B receptors, potentially causing hallucinations and/or cardiac valvulopathy. Herein is described a novel, potent, and efficacious human 5-HT2C receptor agonist, (−)-trans-(2S,4R)-4-(3′[meta]-bromophenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine (−)-MBP), that is a competitive antagonist and inverse agonist at human 5-HT2A and 5-HT2B receptors, respectively. (−)-MBP has efficacy comparable to the prototypical second-generation antipsychotic drug clozapine in three C57Bl/6 mouse models of drug-induced psychoses: the head-twitch response elicited by [2,5]-dimethoxy-4-iodoamphetamine; hyperlocomotion induced by MK-801 [(5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (dizocilpine maleate)]; and hyperlocomotion induced by amphetamine. (−)-MBP, however, does not alter locomotion when administered alone, distinguishing it from clozapine, which suppresses locomotion. Finally, consumption of highly palatable food by mice was not increased by (−)-MBP at a dose that produced at least 50% maximal efficacy in the psychoses models. Compared with (−)-MBP, the enantiomer (+)-MBP was much less active across in vitro affinity and functional assays using mouse and human receptors and also translated in vivo with comparably lower potency and efficacy. Results indicate a 5-HT2C receptor-specific agonist, such as (−)-MBP, may be pharmacotherapeutic for psychoses, without liability for obesity, hallucinations, heart disease, sedation, or motoric disorders. PMID:24563531

  6. Altered photic and non-photic phase shifts in 5-HT(1A) receptor knockout mice.

    PubMed

    Smith, V M; Sterniczuk, R; Phillips, C I; Antle, M C

    2008-12-01

    The mammalian circadian clock located in the suprachiasmatic nucleus (SCN) is thought to be modulated by 5-HT. 5-HT is though to inhibit photic phase shifts by inhibiting the release of glutamate from retinal terminals, as well as by decreasing the responsiveness of retinorecipient cells in the SCN. Furthermore, there is also evidence that 5-HT may underlie, in part, non-photic phase shifts of the circadian system. Understanding the mechanism by which 5-HT accomplishes these goals is complicated by the wide variety of 5-HT receptors found in the SCN, the heterogeneous organization of both the circadian clock and the location of 5-HT receptors, and by a lack of sufficiently selective pharmacological agents for the 5-HT receptors of interest. Genetically modified animals engineered to lack a specific 5-HT receptor present an alternative avenue of investigation to understand how 5-HT regulates the circadian system. Here we examine behavioral and molecular responses to both photic and non-photic stimuli in mice lacking the 5-HT(1A) receptor. When compared with wild-type controls, these mice exhibit larger phase advances to a short late-night light pulse and larger delays to long 12 h light pulses that span the whole subjective night. Fos and mPer1 expression in the retinorecipient SCN is significantly attenuated following late-night light pulses in the 5-HT(1A) knockout animals. Finally, non-photic phase shifts to (+/-)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT) are lost in the knockout animals, while attenuation of the phase shift to the long light pulse due to rebound activity following a wheel lock is unaffected. These findings suggest that the 5-HT(1A) receptor plays an inhibitory role in behavioral phase shifts, a facilitatory role in light-induced gene expression, a necessary role in phase shifts to 8-OH-DPAT, and is not necessary for activity-induced phase advances that oppose photic phase shifts to long light pulses.

  7. The atypical antipsychotics clozapine and olanzapine promote down-regulation and display functional selectivity at human 5-HT7 receptors

    PubMed Central

    Andressen, K W; Manfra, O; Brevik, C H; Ulsund, A H; Vanhoenacker, P; Levy, F O; Krobert, K A

    2015-01-01

    Background and Purpose Classically, ligands of GPCRs have been classified primarily upon their affinity and efficacy to activate a signal transduction pathway. Recent reports indicate that the efficacy of a particular ligand can vary depending on the receptor-mediated response measured (e.g. activating G proteins, other downstream responses, internalization). Previously, we reported that inverse agonists induce both homo- and heterologous desensitization, similar to agonist stimulation, at the Gs-coupled 5-HT7 receptor. The primary objective of this study was to determine whether different inverse agonists at the 5-HT7 receptor also induce internalization and/or degradation of 5-HT7 receptors. Experimental Approach HEK293 cells expressing 5-HT7(a, b or d) receptors were pre-incubated with 5-HT, clozapine, olanzapine, mesulergine or SB269970 and their effects upon receptor density, AC activity, internalization, recruitment of β-arrestins and lysosomal trafficking were measured. Key Results The agonist 5-HT and three out of four inverse agonists tested increased internalization independently of β-arrestin recruitment. Among these, only the atypical antipsychotics clozapine and olanzapine promoted lysosomal sorting and reduced 5-HT7 receptor density (∼60% reduction within 24 h). Inhibition of lysosomal degradation with chloroquine blocked the clozapine- and olanzapine-induced down-regulation of 5-HT7 receptors. Incubation with SB269970 decreased both 5-HT7(b) constitutive internalization and receptor density but increased 5-HT7(d) receptor density, indicating differential ligand regulation among the 5-HT7 splice variants. Conclusions and Implications Taken together, we found that various ligands differentially activate regulatory processes governing receptor internalization and degradation in addition to signal transduction. Thus, these data extend our understanding of functional selectivity at the 5-HT7 receptor. PMID:25884989

  8. Analysis of free ACh and 5-HT in milk from four different species and their bioactivity on 5-HT(3) and nACh receptors.

    PubMed

    Gallegos-Perez, Jose-Luis; Limon, Agenor; Reyes-Ruiz, Jorge M; Alshanqeeti, Ali S; Aljohi, Mohammad A; Miledi, Ricardo

    2014-07-25

    Milk is one of the most beneficial aliments and is highly recommended in normal conditions; however, in certain disorders, like irritable bowel syndrome, cow milk and dairy products worsen the gastric symptoms and their use is not recommended. Among the most recognized milk-induced gatrointestinal symptoms are abdominal pain, nausea and vomiting, which are processes controlled by cholinergic and serotonergic transmission. Whether the presence of bioavailable ACh and 5-HT in milk may contribute to normal peristalsis, or to the developing of these symptoms, is not known. In this work we attempt to determine whether the content of free ACh and 5-HT is of physiological significance in milk from four different species: cow (bovine), goat, camel and human. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was used to identify and quantify free ACh and 5-HT in milk, and activation of the serotonergic and cholinergic ionotropic receptors was investigated using electrophysiological experiments. Our principal hypothesis was that milk from these four species had sufficient free ACh and 5-HT to activate their correspondent receptors expressed in a heterologous system. Our results showed a more complex picture, in which free ACh and 5-HT and their ability to activate cholinergic and serotonergic receptors are not correlated. This work is a first step to elucidate whether 5-HT and ACh, at the concentrations present in the milk, can be associated to a direct function in the GI.

  9. On the structural and mechanistic basis of function, classification, and ligand design for 5-HT receptors.

    PubMed

    Weinstein, H; Osman, R

    1990-01-01

    We review our results from the first computational simulations of a mechanism by which ligands can activate a 5-HT1A receptor, and relate the findings to information on the structure and function of the authentic receptor. The computational exploration of the recognition and activation mechanisms is carried out inside a protein selected as a model for the receptor based on cognate physicochemical and experimental data. A similar approach is applied to the 5-HT2 receptor. The interaction mechanisms at the two 5-HT receptor subtypes differ in the nature of the forces determining ligand-receptor interactions and the types of receptor activation mechanisms they entail. The main molecular property related to recognition at 5-HT1A receptors was shown to be the directional character of the electrostatic potential generated by the ligands in the molecular region corresponding to the indole in 5-HT. The corresponding recognition site was shown to have properties of a positively-charged (imidazolium) form of the side chain of a His residue. The mechanism of recognition at the 5-HT1A receptor was shown to be electrostatic, and conducive to a triggering of the receptor response through the change in the electronic structure of the imidazolium recognition site when it interacts with an activating ligand (agonist). This effect was shown to induce a proton transfer from the ring to a neighboring residue to which it can be hydrogen-bonded in the resting state. We show how this model for recognition and activation defines in molecular terms the mechanisms underlying the classical pharmacologic properties of agonists, partial agonists, and antagonists. The molecular correlates of pharmacologic efficacy emerge from the calculations of the effect of the ligands on the barriers for proton transfer, and on the energy drive for the proton transfer reaction. A different model is proposed for selective recognition at the 5-HT2 receptors, based on structural details of 5-HT-binding peptides

  10. Effects of dominance status on conditioned defeat and expression of 5-HT1A and 5-HT2A receptors

    PubMed Central

    Morrison, Kathleen E.; Swallows, Cody L.; Cooper, Matthew A.

    2011-01-01

    Past experience can alter how individuals respond to stressful events. The brain serotonin system is a key factor modulating stress-related behavior and may contribute to individual variation in coping styles. In this study we investigated whether dominant and subordinate hamsters respond differently to social defeat and whether their behavioral responses are associated with changes in 5-HT1A and 5-HT2A receptor immunoreactivity in several limbic brain regions. We paired weight-matched hamsters in daily aggressive encounters for two weeks so that they formed a stable dominance relationship. We also included controls that were exposed to an empty cage each day for two weeks. Twenty-four hours after the final pairing or empty cage exposure, subjects were socially defeated in 3, 5-min encounters with a more aggressive hamster. Twenty-four hours after social defeat, animals were tested for conditioned defeat in a 5-min social interaction test with a non-aggressive intruder. We collected brains following conditioned defeat testing and performed immunohistochemistry for 5-HT1A and 5-HT2A receptors. We found that dominants showed less submissive and defensive behavior at conditioned defeat testing compared to both subordinates and controls. Additionally, both dominants and subordinates had an increased number of 5-HT1A immunopositive cells in the basolateral amygdala compared to controls. Subordinates also had more 5-HT1A immunopositive cells in the dorsal medial amygdala than did controls. Finally, dominants had fewer 5-HT1A immunopositive cells in the paraventricular nucleus of the hypothalamus compared to controls. Our results indicate that dominant social status results in a blunted conditioned defeat response and a distinct pattern of 5-HT1A receptor expression, which may contribute to resistance to conditioned defeat. PMID:21362435

  11. Effects of dominance status on conditioned defeat and expression of 5-HT1A and 5-HT2A receptors.

    PubMed

    Morrison, Kathleen E; Swallows, Cody L; Cooper, Matthew A

    2011-08-01

    Past experience can alter how individuals respond to stressful events. The brain serotonin system is a key factor modulating stress-related behavior and may contribute to individual variation in coping styles. In this study we investigated whether dominant and subordinate hamsters respond differently to social defeat and whether their behavioral responses are associated with changes in 5-HT1A and 5-HT2A receptor immunoreactivity in several limbic brain regions. We paired weight-matched hamsters in daily aggressive encounters for two weeks so that they formed a stable dominance relationship. We also included controls that were exposed to an empty cage each day for two weeks. Twenty-four hours after the final pairing or empty cage exposure, subjects were socially defeated in 3, 5-min encounters with a more aggressive hamster. Twenty-four hours after social defeat, animals were tested for conditioned defeat in a 5-min social interaction test with a non-aggressive intruder. We collected brains following conditioned defeat testing and performed immunohistochemistry for 5-HT1A and 5-HT2A receptors. We found that dominants showed less submissive and defensive behavior at conditioned defeat testing compared to both subordinates and controls. Additionally, both dominants and subordinates had an increased number of 5-HT1A immunopositive cells in the basolateral amygdala compared to controls. Subordinates also had more 5-HT1A immunopositive cells in the dorsal medial amygdala than did controls. Finally, dominants had fewer 5-HT1A immunopositive cells in the paraventricular nucleus of the hypothalamus compared to controls. Our results indicate that dominant social status results in a blunted conditioned defeat response and a distinct pattern of 5-HT1A receptor expression, which may contribute to resistance to conditioned defeat.

  12. [Homozygote mice deficient in serotonin 5-HT1B receptor and antidepressant effect of selective serotonin reuptake inhibitors].

    PubMed

    Trillat, A C; Malagié, I; Bourin, M; Jacquot, C; Hen, R; Gardier, A M

    1998-01-01

    We use the knockout mice strategy to investigate the contribution of the 5-HT1B receptor in mediating the effects of selective serotonin reuptake inhibitors (SSRI). Using microdialysis in awake 129/Sv mice, we show that the absence of the 5-HT1B receptor in mutant mice (KO 1B -/-) potentiated the effect of paroxetine on extracellular 5-HT levels in the ventral hippocampus, but not in the frontal cortex compared to wild-type mice (WT). Furthermore, using the forced swimming test, we demonstrate that SSRIs decreased immobility of WT mice, and this effect is absent in KO 1B -/- mice showing therefore that activation of 5-HT1B receptors mediate the antidepressant-like effects of SSRIs. Taken together these findings suggest that 5-HT1B autoreceptors limit the effects of SSRI particularly in the hippocampus while postsynaptic 5-HT1B receptors are required for the antidepressant activity of SSRIs.

  13. 5-HT-moduline, a 5-HT(1B/1D) receptor endogenous modulator, interacts with dopamine release measured in vivo by microdialysis.

    PubMed

    Bentué-Ferrer, D; Reymann, J M; Rousselle, J C; Massot, O; Bourin, M; Allain, H; Fillion, G

    1998-10-01

    5-Hydroxytryptamine-moduline (5-HT-moduline) is an endogenous tetrapeptide (Leu-Ser-Ala-Leu) recently isolated and characterized from mammalian brain. This compound interacts with 5-HT1B receptors as a non-competitive, high-affinity antagonist and has the properties of an allosteric modulator. 5-HT-moduline could play an important role in the regulation of serotonergic transmission and also, through heteroreceptors, dopaminergic transmission. The aim of this work was to examine the potential ability of 5-HT-moduline to modify the basal extracellular concentration of dopamine and its metabolites (3-methoxytyramine, dihydroxyphenylacetic acid and homovanillic acid), in the rat striatum and to determine its potential interaction with the stimulating activity of a specific 5-HT1B receptor agonist, 3-(1,2,5,6-tetrahydropyrid-4-yl) pyrrolo [3,2-b] pyrid-5-one (CP-93,129), on the release of dopamine. The technique is based on in vivo microdialysis using probes implanted in the striatum of the conscious rat. Results showed that the perfusion of 5-HT-moduline directly into this structure (1.25 mM) increased the striatal level of dopamine by two-fold (104% of the absolute basal release values, P = 0.0015) and that of 3-methoxytyramine by 3-fold (293%, P = 0.0001) without any change in the terminal metabolite concentrations. The intrastriatal administration of CP-93,129 induced a statistically significant, dose-dependent increase of dopamine levels (P < 0.0001). Coperfusion of 5-HT-moduline did not significantly alter the effect of CP-93,129 at 0.1 and 0.5 mM, but appeared to have an additive effect on the lowest dose (P = 0.0406). The results obtained show that 5-HT-moduline directly administered into the striatum increases the release of dopamine in this area. Presumably, this effect results from the desensitization of 5-HT1B receptors located on dopamine terminals. However, the fact that a 5-HT1B receptor agonist (CP-93,129) also increased the release of dopamine in the

  14. Tianeptine: 5-HT uptake sites and 5-HT(1-7) receptors modulate memory formation in an autoshaping Pavlovian/instrumental task.

    PubMed

    Meneses, Alfredo

    2002-05-01

    Recent studies using invertebrate and mammal species have revealed that, endogenous serotonin (5-hydroxytryptamine, 5-HT) modulates cognitive processes, particularly learning and memory, though, at present, it is unclear the manner, where, and how long 5-HT systems are involved. Hence in this work, an attempt was made to study the effects of 5-HT endogenous on memory formation, using a 5-HT uptake facilitator (tianeptine) and, selective 5-HT(1-7) receptor antagonists to determine whether 5-HT uptake sites and which 5-HT receptors are involved, respectively. Results showed that post-training tianeptine injection enhanced memory consolidation in an autoshaping Pavlovian/instrumental learning task, which has been useful to detect changes on memory formation elicited by drugs or aging. On interaction experiments, ketanserin (5-HT(1D/2A/2C) antagonist) slightly enhanced tianeptine effects, while WAY 100635 (5-HT(1A) antagonist), SB-224289 (5-HT(1B) inverse agonist), SB-200646 (5-HT(2B/2C) antagonist), ondansetron (5-HT(3) antagonist), GR 127487 (5-HT(4) antagonist), Ro 04-6790 (5-HT(6) antagonist), DR 4004 (5-HT(7) antagonist), or fluoxetine (an inhibitor of 5-HT reuptake) blocked the facilitatory tianeptine effect. Notably, together tianeptine and Ro 04-6790 impaired learning consolidation. Moreover, 5-HT depletion completely reversed the tianeptine effect. Tianeptine also normalized an impaired memory elicited by scopolamine (an antimuscarinic) or dizocilpine (non-competitive glutamatergic antagonist), while partially reversed that induced by TFMPP (5-HT(1B/1D/2A-2C/7) agonist/antagonist). Finally, tianeptine-fluoxetine coadministration had no effect on learning consolidation; nevertheless, administration of an acetylcholinesterase inhibitor, phenserine, potentiated subeffective tianeptine or fluoxetine doses. Collectively, these data confirmed that endogenously 5-HT modulates, via uptake sites and 5-HT(1-7) receptors, memory consolidation, and are consistent with the

  15. Blockade of 5-HT3 receptor-mediated currents in dissociated frog sensory neurones by benzoxazine derivative, Y-25130.

    PubMed Central

    Yakushiji, T.; Akaike, N.

    1992-01-01

    1. The effect of Y-25130, ((+-)-N-(1-azabicyclo[2.2.2]oct-3-yl)-6-chloro-4-methyl-3-oxo-3,4-dih ydr o- 2H-1,4-benzoxazine-8-carboxamide hydrochloride), a high affinity 5-hydroxytryptamine3 (5-HT3) receptor ligand, was examined on the 5-HT-induced response in dissociated frog dorsal root ganglion (DRG) neurones by use of the extremely rapid concentration-jump ('concentration-clamp') and the conventional whole-cell patch-clamp techniques. 2. 5-HT induced a rapid transient inward current associated with an increase in membrane conductance at a holding potential of -70 mV. The current amplitude increased sigmoidally as 5-HT concentration increased. The half-maximum value (Ka) and the Hill coefficient estimated from the concentration-response curve were 1.7 x 10(-5) M and 1.7, respectively. 3. The current-voltage (I-V) relationship of 5-HT-induced current (I5-HT) showed inward rectification at potentials more positive than -40 mV. The reversal potential (E5-HT) was -11 mV. The E5-HT value was unaffected by total replacement of intracellular K+ by Cs+, indicating that the 5-HT-gated channels might be large cation channels. 4. Both the activation and inactivation phases of I5-HT were single exponentials. The time constants of activation and inactivation (tau a and tau i) decreased with increasing 5-HT concentration. 5. The 5-HT response was mimicked by a selective 5-HT3 receptor agonist, 2-methyl-5-HT, but the maximum response induced was approximately 25% that of 5-HT.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1472977

  16. (+)Lysergic acid diethylamide, but not its nonhallucinogenic congeners, is a potent serotonin 5HT1C receptor agonist

    SciTech Connect

    Burris, K.D.; Breeding, M.; Sanders-Bush, E. )

    1991-09-01

    Activation of central serotonin 5HT2 receptors is believed to be the primary mechanism whereby lysergic acid diethylamide (LSD) and other hallucinogens induce psychoactive effects. This hypothesis is based on extensive radioligand binding and electrophysiological and behavioral studies in laboratory animals. However, the pharmacological profiles of 5HT2 and 5HT1C receptors are similar, making it difficult to distinguish between effects due to activation of one or the other receptor. For this reason, it was of interest to investigate the interaction of LSD with 5HT1C receptors. Agonist-stimulated phosphoinositide hydrolysis in rat choroid plexus was used as a direct measure of 5HT1C receptor activation. (+)LSD potently stimulated phosphoinositide hydrolysis in intact choroid plexus and in cultures of choroid plexus epithelial cells, with EC50 values of 9 and 26 nM, respectively. The effect of (+)LSD in both systems was blocked by 5HT receptor antagonists with an order of activity consistent with interaction at 5HT1C receptors. Neither (+)-2-bromo-LSD nor lisuride, two nonhallucinogenic congeners of LSD, were able to stimulate 5HT1C receptors in cultured cells or intact choroid plexus. In contrast, lisuride, like (+)LSD, is a partial agonist at 5HT2 receptors in cerebral cortex slices and in NIH 3T3 cells transfected with 5HT2 receptor cDNA. The present finding that (+)LSD, but not its nonhallucinogenic congeners, is a 5HT1C receptor agonist suggests a possible role for these receptors in mediating the psychoactive effects of LSD.

  17. Central effects of 5-HT on respiratory and hypoglossal activities in the adult cat.

    PubMed

    Rose, D; Khater-Boidin, J; Toussaint, P; Duron, B

    1995-07-01

    The activities of the diaphragmatic, internal intercostal and hypoglossal-innervated muscles were studied in adult decerebrate cats in response to 5-HT and related agents (8-OH-DPAT and DOI). The drugs were placed on the floor of the IVth ventricle. The mean respiratory frequency (Fi) increased (124-193% of the control value) within 3 min of the 5-HT application, and decreased thereafter (30-90%). The mean Ti and Te changed similarly, but opposite to Fi. With some delay, the hypoglossal-innervated muscles were tonically activated or exhibited increased activities. Methysergide pretreatment completely blocked the effect of 5-HT on all the respiratory parameters and the hypoglossal-innervated muscles activities. The responses to 8-OH-DPAT and DOI indicate that 5-HT modulates the respiratory frequency via activation of both 5-HT1A and 5-HT2 receptors. Nevertheless, the effect of 5-HT on both the expiratory and hypoglossal-innervated muscles seems to depend on 5-HT2 receptors activation only.

  18. 5-HT(1A) receptors transactivate the platelet-derived growth factor receptor type beta in neuronal cells.

    PubMed

    Kruk, Jeff S; Vasefi, Maryam S; Liu, Hui; Heikkila, John J; Beazely, Michael A

    2013-01-01

    In the absence of ligand, certain growth factor receptors can be activated via G-protein coupled receptor (GPCR) activation in a process termed transactivation. Serotonin (5-HT) receptors can transactivate platelet-derived growth factor (PDGF) β receptors in smooth muscle cells, but it is not known if similar pathways occur in neuronal cells. Here we show that 5-HT can transiently increase the phosphorylation of PDGFβ receptors through 5-HT(1A) receptors in a time- and dose-dependent manner in SH-SY5Y neuroblastoma cells. 5-HT also transactivates PDGFβ receptors in primary cortical neurons. This transactivation pathway is pertussis-toxin sensitive and Src tyrosine kinase-dependent. This pathway is also dependent on phospholipase C activity and intracellular calcium signaling. Several studies involving PDGFβ receptor transactivation by GPCRs have also demonstrated a PDGFβ receptor-dependent increase in the phosphorylation of ERK1/2. Yet in SH-SY5Y cells, 5-HT treatment causes a PDGFβ receptor-independent increase in ERK1/2 phosphorylation. This crosstalk between 5-HT and PDGFβ receptors identifies a potentially important signaling link between the serotonergic system and growth factor signaling in neurons. PMID:23006663

  19. Citrus aurantium L. essential oil exhibits anxiolytic-like activity mediated by 5-HT1A-receptors and reduces cholesterol after repeated oral treatment

    PubMed Central

    2013-01-01

    Background The current treatments for anxiety disorders and depression have multiple adverse effects in addition to a delayed onset of action, which has prompted efforts to find new substances with potential activity in these disorders. Citrus aurantium was chosen based on ethnopharmacological data because traditional medicine refers to the Citrus genus as useful in diminishing the symptoms of anxiety or insomnia, and C. aurantium has more recently been proposed as an adjuvant for antidepressants. In the present work, we investigated the biological activity underlying the anxiolytic and antidepressant effects of C. aurantium essential oil (EO), the putative mechanism of the anxiolytic-like effect, and the neurochemical changes in specific brain structures of mice after acute treatment. We also monitored the mice for possible signs of toxicity after a 14-day treatment. Methods The anxiolytic-like activity of the EO was investigated in a light/dark box, and the antidepressant activity was investigated in a forced swim test. Flumazenil, a competitive antagonist of benzodiazepine binding, and the selective 5-HT1A receptor antagonist WAY100635 were used in the experimental procedures to determine the mechanism of action of the EO. To exclude false positive results due to motor impairment, the mice were submitted to the rotarod test. Results The data suggest that the anxiolytic-like activity observed in the light/dark box procedure after acute (5 mg/kg) or 14-day repeated (1 mg/kg/day) dosing was mediated by the serotonergic system (5-HT1A receptors). Acute treatment with the EO showed no activity in the forced swim test, which is sensitive to antidepressants. A neurochemical evaluation showed no alterations in neurotransmitter levels in the cortex, the striatum, the pons, and the hypothalamus. Furthermore, no locomotor impairment or signs of toxicity or biochemical changes, except a reduction in cholesterol levels, were observed after treatment with the EO. Conclusion

  20. Agonist- and antagonist-induced up-regulation of surface 5-HT3A receptors

    PubMed Central

    Morton, Russell A; Baptista-Hon, Daniel T; Hales, Tim G; Lovinger, David M

    2015-01-01

    Background and Purpose The 5-HT3 receptor is a member of the pentameric ligand-gated ion channel family and is pharmacologically targeted to treat irritable bowel syndrome and nausea/emesis. Furthermore, many antidepressants elevate extracellular concentrations of 5-HT. This study investigates the functional consequences of exposure of recombinant 5-HT3A receptors to agonists and antagonists. Experimental Approach We used HEK cells stably expressing recombinant 5-HT3A receptors and the ND7/23 (mouse neuroblastoma/dorsal root ganglion hybrid) cell line, which expresses endogenous 5-HT3 receptors. Surface expression of recombinant 5-HT3A receptors, modified to contain the bungarotoxin (BTX) binding sequence, was quantified using fluorescence microscopy to image BTX-conjugated fluorophores. Whole cell voltage-clamp electrophysiology was used to measure the density of current mediated by 5-HT3A receptors. Key Results 5-HT3A receptors were up-regulated by the prolonged presence of agonists (5-HT and m-chlorophenylbiguanide) and antagonists (MDL-72222 and morphine). The up-regulation of 5-HT3A receptors by 5-HT and MDL-72222 was time- and concentration-dependent but was independent of newly translated receptors. The phenomenon was observed for recombinant rodent and human 5-HT3A receptors and for endogenous 5-HT3 receptors in neuronal ND7/23 cells. Conclusions and Implications Up-regulation of 5-HT3A receptors, following exposure to either agonists or antagonists suggests that this phenomenon may occur in response to different therapeutic agents. Medications that elevate 5-HT levels, such as the antidepressant inhibitors of 5-HT reuptake and antiemetic inhibitors of 5-HT3 receptor function, may both raise receptor expression. However, this will require further investigation in vivo. PMID:25989383

  1. Regulator of G-protein signaling 6 (RGS6) promotes anxiety and depression by attenuating serotonin-mediated activation of the 5-HT1A receptor-adenylyl cyclase axis

    PubMed Central

    Stewart, Adele; Maity, Biswanath; Wunsch, Amanda M.; Meng, Fantao; Wu, Qi; Wemmie, John A.; Fisher, Rory A.

    2014-01-01

    Targeting serotonin (5-HT) bioavailability with selective 5-HT reuptake inhibitors (SSRIs) remains the most widely used treatment for mood disorders. However, their limited efficacy, delayed onset of action, and side effects restrict their clinical utility. Endogenous regulator of G-protein signaling (RGS) proteins have been implicated as key inhibitors of 5-HT1ARs, whose activation is believed to underlie the beneficial effects of SSRIs, but the identity of the specific RGS proteins involved remains unknown. We identify RGS6 as the critical negative regulator of 5-HT1AR-dependent antidepressant actions. RGS6 is enriched in hippocampal and cortical neurons, 5-HT1AR-expressing cells implicated in mood disorders. RGS6−/− mice exhibit spontaneous anxiolytic and antidepressant behavior rapidly and completely reversibly by 5-HT1AR blockade. Effects of the SSRI fluvoxamine and 5-HT1AR agonist 8-OH-DPAT were also potentiated in RGS6+/− mice. The phenotype of RGS6−/− mice was associated with decreased CREB phosphorylation in the hippocampus and cortex, implicating enhanced Gαi-dependent adenylyl cyclase inhibition as a possible causative factor in the behavior observed in RGS6−/− animals. Our results demonstrate that by inhibiting serotonergic innervation of the cortical-limbic neuronal circuit, RGS6 exerts powerful anxiogenic and prodepressant actions. These findings indicate that RGS6 inhibition may represent a viable means to treat mood disorders or enhance the efficacy of serotonergic agents.—Stewart, A., Maity, B., Wunsch, A. M., Meng, F., Wu, Q., Wemmie, J. A., Fisher, R. A. Regulator of G-protein signaling 6 (RGS6) promotes anxiety and depression by attenuating serotonin-mediated activation of the 5-HT1A receptor-adenylyl cyclase axis. PMID:24421401

  2. Distinct effect of 5-HT1A and 5-HT2A receptors in the medial nucleus of the amygdala on tonic immobility behavior.

    PubMed

    de Paula, Bruna Balbino; Leite-Panissi, Christie Ramos Andrade

    2016-07-15

    The tonic immobility (TI) response is an innate fear behavior associated with intensely dangerous situations, exhibited by many species of invertebrate and vertebrate animals. In humans, it is possible that TI predicts the severity of posttraumatic stress disorder symptoms. This behavioral response is initiated and sustained by the stimulation of various groups of neurons distributed in the telencephalon, diencephalon and brainstem. Previous research has found the highest Fos-IR in the posteroventral part of the medial nucleus of the amygdala (MEA) during TI behavior; however, the neurotransmission of this amygdaloid region involved in the modulation of this innate fear behavior still needs to be clarified. Considering that a major drug class used for the treatment of psychopathology is based on serotonin (5-HT) neurotransmission, we investigated the effects of serotonergic receptor activation in the MEA on the duration of TI. The results indicate that the activation of the 5HT1A receptors or the blocking of the 5HT2 receptors of the MEA can promote a reduction in fear and/or anxiety, consequently decreasing TI duration in guinea pigs. In contrast, blocking the 5HT1A receptors or activating the 5HT2 receptors in this amygdalar region increased the TI duration, suggesting an increase in fear and/or anxiety. These alterations do not appear to be due to a modification of spontaneous motor activity, which might non-specifically affect TI duration. Thus, these results suggest a distinct role of the 5HT receptors in the MEA in innate fear modulation. PMID:27150816

  3. Palonosetron: a unique 5-HT3-receptor antagonist for the prevention of chemotherapy-induced emesis.

    PubMed

    Grunberg, Steven M; Koeller, James M

    2003-12-01

    Palonosetron (Aloxi) is a 5-HT(3)-receptor antagonist antiemetic indicated for the prevention of acute and delayed nausea and vomiting following moderately emetogenic chemotherapy and for acute nausea and vomiting following highly emetogenic chemotherapy. Although it is the fourth member of this class to enter the US market, palonosetron is distinguished by distinct pharmacological characteristics. It has a higher binding affinity for the 5-HT(3 )receptor and a terminal serum half-life at least four times greater than any other available agent of this class (approximately 40 h). The high affinity and long half-life may explain the persistence of antiemetic effect throughout the delayed emesis risk period. The indications for palonosetron are supported by one dose-ranging study and three large, randomised, Phase III studies that all demonstrated at least equivalent activity (and in some cases, superior activity) compared to other 5-HT(3)-receptor antagonists. In spite of the pharmacological differences, the side effect profile of palonosetron is comparable to that of other 5-HT(3)-receptor antagonists. Palonosetron may prove valuable in combination therapy for delayed emesis and may be an appropriate agent for clinical settings, such as multiple-day chemotherapy, where acute emesis is repeatedly induced. Palonosetron provides a convenience advantage if multiple-day 5-HT(3)-receptor antagonist therapy is anticipated and is a unique addition to the antiemetic armamentarium. PMID:14640928

  4. Serotonin decreases aggression via 5-HT1A receptors in the fighting fish Betta splendens.

    PubMed

    Clotfelter, Ethan D; O'Hare, Erin P; McNitt, Meredith M; Carpenter, Russ E; Summers, Cliff H

    2007-01-01

    The role of the monoamine neurotransmitter serotonin (5-HT) in the modulation of conspecific aggression in the fighting fish (Betta splendens) was investigated using pharmacological manipulations. We used a fish's response to its mirror image as our index of aggressive behavior. We also investigated the effects of some manipulations on monoamine levels in the B. splendens brain. Acute treatment with 5-HT and with the 5-HT1A receptor agonist 8-OH-DPAT both decreased aggressive behavior; however, treatment with the 5-HT1A receptor antagonist WAY-100635 did not increase aggression. Chronic treatment with the selective serotonin reuptake inhibitor fluoxetine caused no significant changes in aggressive behavior and a significant decline in 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) concentrations. Treatment with the serotonin synthesis inhibitor p-chlorophenylalanine resulted in no change in aggression, yet serotonergic activity decreased significantly. Finally, a diet supplemented with L-tryptophan (Trp), the precursor to 5-HT, showed no consistent effects on aggressive behavior or brain monoamine concentrations. These results suggest a complex role for serotonin in the expression of aggression in teleost fishes, and that B. splendens may be a useful model organism in pharmacological and toxicological studies.

  5. Serotonin decreases aggression via 5-HT1A receptors in the fighting fish Betta splendens.

    PubMed

    Clotfelter, Ethan D; O'Hare, Erin P; McNitt, Meredith M; Carpenter, Russ E; Summers, Cliff H

    2007-01-01

    The role of the monoamine neurotransmitter serotonin (5-HT) in the modulation of conspecific aggression in the fighting fish (Betta splendens) was investigated using pharmacological manipulations. We used a fish's response to its mirror image as our index of aggressive behavior. We also investigated the effects of some manipulations on monoamine levels in the B. splendens brain. Acute treatment with 5-HT and with the 5-HT1A receptor agonist 8-OH-DPAT both decreased aggressive behavior; however, treatment with the 5-HT1A receptor antagonist WAY-100635 did not increase aggression. Chronic treatment with the selective serotonin reuptake inhibitor fluoxetine caused no significant changes in aggressive behavior and a significant decline in 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) concentrations. Treatment with the serotonin synthesis inhibitor p-chlorophenylalanine resulted in no change in aggression, yet serotonergic activity decreased significantly. Finally, a diet supplemented with L-tryptophan (Trp), the precursor to 5-HT, showed no consistent effects on aggressive behavior or brain monoamine concentrations. These results suggest a complex role for serotonin in the expression of aggression in teleost fishes, and that B. splendens may be a useful model organism in pharmacological and toxicological studies. PMID:17553555

  6. Excitation of rat colonic afferent fibres by 5-HT3 receptors

    PubMed Central

    Hicks, Gareth A; Coldwell, Jonathan R; Schindler, Marcus; Bland Ward, Philip A; Jenkins, David; Lynn, Penny A; Humphrey, Patrick P A; Blackshaw, L Ashley

    2002-01-01

    The gastrointestinal tract contains most of the body's 5-hydroxytryptamine (5-HT) and releases large amounts after meals or exposure to toxins. Increased 5-HT release occurs in patients with irritable bowel syndrome (IBS) and their peak plasma 5-HT levels correlate with pain episodes. 5-HT3 receptor antagonists reduce symptoms of IBS clinically, but their site of action is unclear and the potential for other therapeutic targets is unexplored. Here we investigated effects of 5-HT on sensory afferents from the colon and the expression of 5-HT3 receptors on their cell bodies in the dorsal root ganglia (DRG). Distal colon, inferior mesenteric ganglion and the lumbar splanchnic nerve bundle (LSN) were placed in a specialized organ bath. Eighty-six single fibres were recorded from the LSN. Three classes of primary afferents were found: 70 high-threshold serosal afferents, four low-threshold muscular afferents and 12 mucosal afferents. Afferent cell bodies were retrogradely labelled from the distal colon to the lumbar DRG, where they were processed for 5-HT3 receptor-like immunoreactivity. Fifty-six percent of colonic afferents responded to 5-HT (between 10−6 and 10−3 M) and 30 % responded to the selective 5-HT3 agonist, 2-methyl-5-HT (between 10−6 and 10−2 M). Responses to 2-methyl-5-HT were blocked by the 5-HT3 receptor antagonist alosetron (2 × 10−7 M), whereas responses to 5-HT were only partly inhibited. Twenty-six percent of L1 DRG cell bodies retrogradely labelled from the colon displayed 5-HT3 receptor-like immunoreactivity. We conclude that colonic sensory neurones expressing 5-HT3 receptors also functionally express the receptors at their peripheral endings. Our data reveal actions of 5-HT on colonic afferent endings via both 5-HT3 and non-5-HT3 receptors. PMID:12411529

  7. Pathways and Barriers for Ion Translocation through the 5-HT3A Receptor Channel

    PubMed Central

    Di Maio, Danilo; Chandramouli, Balasubramanian; Brancato, Giuseppe

    2015-01-01

    Pentameric ligand gated ion channels (pLGICs) are ionotropic receptors that mediate fast intercellular communications at synaptic level and include either cation selective (e.g., nAChR and 5-HT3) or anion selective (e.g., GlyR, GABAA and GluCl) membrane channels. Among others, 5-HT3 is one of the most studied members, since its first cloning back in 1991, and a large number of studies have successfully pinpointed protein residues critical for its activation and channel gating. In addition, 5-HT3 is also the target of a few pharmacological treatments due to the demonstrated benefits of its modulation in clinical trials. Nonetheless, a detailed molecular analysis of important protein features, such as the origin of its ion selectivity and the rather low conductance as compared to other channel homologues, has been unfeasible until the recent crystallization of the mouse 5-HT3A receptor. Here, we present extended molecular dynamics simulations and free energy calculations of the whole 5-HT3A protein with the aim of better understanding its ion transport properties, such as the pathways for ion permeation into the receptor body and the complex nature of the selectivity filter. Our investigation unravels previously unpredicted structural features of the 5-HT3A receptor, such as the existence of alternative intersubunit pathways for ion translocation at the interface between the extracellular and the transmembrane domains, in addition to the one along the channel main axis. Moreover, our study offers a molecular interpretation of the role played by an arginine triplet located in the intracellular domain on determining the characteristic low conductance of the 5-HT3A receptor, as evidenced in previous experiments. In view of these results, possible implications on other members of the superfamily are suggested. PMID:26465896

  8. Pathways and Barriers for Ion Translocation through the 5-HT3A Receptor Channel.

    PubMed

    Di Maio, Danilo; Chandramouli, Balasubramanian; Brancato, Giuseppe

    2015-01-01

    Pentameric ligand gated ion channels (pLGICs) are ionotropic receptors that mediate fast intercellular communications at synaptic level and include either cation selective (e.g., nAChR and 5-HT3) or anion selective (e.g., GlyR, GABAA and GluCl) membrane channels. Among others, 5-HT3 is one of the most studied members, since its first cloning back in 1991, and a large number of studies have successfully pinpointed protein residues critical for its activation and channel gating. In addition, 5-HT3 is also the target of a few pharmacological treatments due to the demonstrated benefits of its modulation in clinical trials. Nonetheless, a detailed molecular analysis of important protein features, such as the origin of its ion selectivity and the rather low conductance as compared to other channel homologues, has been unfeasible until the recent crystallization of the mouse 5-HT3A receptor. Here, we present extended molecular dynamics simulations and free energy calculations of the whole 5-HT3A protein with the aim of better understanding its ion transport properties, such as the pathways for ion permeation into the receptor body and the complex nature of the selectivity filter. Our investigation unravels previously unpredicted structural features of the 5-HT3A receptor, such as the existence of alternative intersubunit pathways for ion translocation at the interface between the extracellular and the transmembrane domains, in addition to the one along the channel main axis. Moreover, our study offers a molecular interpretation of the role played by an arginine triplet located in the intracellular domain on determining the characteristic low conductance of the 5-HT3A receptor, as evidenced in previous experiments. In view of these results, possible implications on other members of the superfamily are suggested. PMID:26465896

  9. Functional expression of 5-HT{sub 2A} receptor in osteoblastic MC3T3-E1 cells

    SciTech Connect

    Hirai, Takao; Kaneshige, Kota; Kurosaki, Teruko; Nishio, Hiroaki

    2010-05-28

    In the previous study, we reported the gene expression for proteins related to the function of 5-hydroxytryptamine (5-HT, serotonin) and elucidated the expression patterns of 5-HT{sub 2} receptor subtypes in mouse osteoblasts. In the present study, we evaluated the possible involvement of 5-HT receptor subtypes and its inactivation system in MC3T3-E1 cells, an osteoblast cell line. DOI, a 5-HT{sub 2A} and 5-HT{sub 2C} receptor selective agonist, as well as 5-HT concentration-dependently increased proliferative activities of MC3T3-E1 cells in their premature period. This effect of 5-HT on cell proliferation were inhibited by ketanserin, a 5-HT{sub 2A} receptor specific antagonist. Moreover, both DOI-induced cell proliferation and phosphorylation of ERK1 and 2 proteins were inhibited by PD98059 and U0126, selective inhibitors of MEK in a concentration-dependent manner. Furthermore, treatment with fluoxetine, a 5-HT specific re-uptake inhibitor which inactivate the function of extracellular 5-HT, significantly increased the proliferative activities of MC3T3-E1 cells in a concentration-dependent manner. Our data indicate that 5-HT fill the role for proliferation of osteoblast cells in their premature period. Notably, 5-HT{sub 2A} receptor may be functionally expressed to regulate mechanisms underlying osteoblast cell proliferation, at least in part, through activation of ERK/MAPK pathways in MC3T3-E1 cells.

  10. Synthesis and structure-affinity relationships of novel small molecule natural product derivatives capable of discriminating between serotonin 5-HT1A, 5-HT2A, 5-HT2C receptor subtypes

    PubMed Central

    Cummings, David F.; Canseco, Diana C.; Sheth, Pratikkumar; Johnson, James E.; Schetz, John A.

    2010-01-01

    Efforts to develop ligands that distinguish between clinically relevant 5-HT2A and 5-HT2C serotonin receptor subtypes have been challenging, because their sequences have high homology. Previous studies reported that a novel aplysinopsin belonging to a chemical class of natural products isolated from a marine sponge was selective for the 5-HT2C over the 5-HT2A receptor subtype. Our goal was to explore the 5-HT2A/2C receptor structure-affinity relationships of derivatives based on the aplysinopsin natural product pharmacophore. Twenty aplysinopsin derivatives were synthesized, purified and tested for their affinities for cloned human serotonin 5-HT1A, 5-HT2A and 5-HT2C receptor subtypes. Four compounds in this series had >30-fold selectivity for 5-HT2A or 5-HT2C receptors. The compound (E)-5-((5,6-dichloro-1H-indol-3-yl)methylene)-2-imino-1,3-dimethylimidazolidin-4-one (UNT-TWU-22, 16) had approximately 2100-fold selectivity for the serotonin 5-HT2C receptor subtype: an affinity for 5-HT2C equal to 46 nM and no detectable affinity for the 5-HT1A or 5-HT2A receptor subtypes. The two most important factors controlling 5-HT2A or 5-HT2C receptor subtype selectivity were the combined R1, R3-alkylation of the imidazolidinone ring and the type and number of halogens on the indole ring of the aplysinopsin pharmacophore. PMID:20570529

  11. The Role of Hippocampal 5HT3 Receptors in Harmaline-Induced Memory Deficit

    PubMed Central

    Nasehi, Mohammad

    2015-01-01

    Introduction: The plethora of studies indicated that there is a cross talk relationship between harmaline and serotonergic (5-HT) system on cognitive and non-cognitive behaviors. Thus, the purpose of this study is to assess the effects of hippocampal 5-HT4 receptor on memory acquisition deficit induced by harmaline. Methods: Harmaline was injected peritoneally, while 5-HT4 receptor agonist (RS67333) and antagonist (RS23597-190) were injected intra-hippocampal. A single-trial step-down passive avoidance, open field and tail flick tasks were used for measurement of memory, locomotor activity and pain responses, respectively. Results: The data revealed that pre-training injection of higher dose of harmaline (1 mg/kg), RS67333 (0.5 ng/mouse) and RS23597-190 (0.5 ng/mouse) decreased memory acquisition process in the adult mice. Moreover, concurrent pre-training administration of subthreshold dose of RS67333 (0.005 ng/mouse) or RS23597-190 (0.005 ng/mouse) with subthreshold dose of harmaline (0.5 mg/kg, i.p.) intensify impairment of memory acquisition. All above interventions did not change locomotion and tail flick behaviors. Discussion: The results demonstrated that the synergistic effect between both hippocampal 5-HT4 receptor agonist and antagonist with impairment of memory acquisition induced by harmaline, indicating a modulatory effect for hippocampal 5HT4 receptor on Harmaline induced amnesia. PMID:26904173

  12. SB 242084, a selective and brain penetrant 5-HT2C receptor antagonist.

    PubMed

    Kennett, G A; Wood, M D; Bright, F; Trail, B; Riley, G; Holland, V; Avenell, K Y; Stean, T; Upton, N; Bromidge, S; Forbes, I T; Brown, A M; Middlemiss, D N; Blackburn, T P

    1997-01-01

    SB 242084 has a high affinity (pKi 9.0) for the cloned human 5-HT2C receptor and 100- and 158-fold selectivity over the closely related cloned human 5-HT2B and 5-HT2A subtypes respectively. SB 242084 had over 100-fold selectivity over a range of other 5-HT, dopamine and adrenergic receptors. In studies of 5-HT-stimulated phosphatidylinositol hydrolysis using SH-SY5Y cells stably expressing the cloned human 5-HT2C receptor, SB 242084 acted as an antagonist with a pKb of 9.3, which closely resembled its corresponding receptor binding affinity. SB 242084 potently inhibited m-chlorophenylpiperazine (mCPP, 7 mgkg i.p. 20 min pre-test)-induced hypolocomotion in rats, a model of in vivo central 5-HT2C receptor function, with an ID50 of 0.11 mg/kg i.p., and 2.0 mg/kg p.o. SB 242084 (0.1-1 mg/kg i.p.) exhibited an anxiolytic-like profile in the rat social interaction test, increasing time spent in social interaction, but having no effect on locomotion. SB 242084 (0.1-1 mg/kg i.p.) also markedly increased punished responding in a rat Geller-Seifter conflict test of anxiety, but had no consistent effect on unpunished responding. A large acute dose of SB 242084 (30 mg/kg p.o.) had no effect on seizure susceptibility in the rat maximal electroshock seizure threshold test. Also, while SB 242084 (2 and 6 mg/kg p.o. 1 hr pre-test) antagonized the hypophagic response to mCPP, neither acute nor subchronic administration of the drug, for 5 days at 2 or 6 mg/kg p.o. twice daily, affected food intake or weight gain. The results suggest that SB 242084 is the first reported selective potent and brain penetrant 5-HT2C receptor antagonist and has anxiolytic-like activity, but does not possess either proconvulsant or hyperphagic properties which are characteristic of mutant mice lacking the 5-HT2C receptor. PMID:9225286

  13. Preclinical characterization of WAY-211612: a dual 5-HT uptake inhibitor and 5-HT1A receptor antagonist and potential novel antidepressant

    PubMed Central

    Beyer, CE; Lin, Q; Platt, B; Malberg, J; Hornby, G; Sullivan, KM; Smith, DL; Lock, T; Mitchell, PJ; Hatzenbuhler, NT; Evrard, DA; Harrison, BL; Magolda, R; Pangalos, MN; Schechter, LE; Rosenzweig-Lipson, S; Andree, TH

    2009-01-01

    Background and purpose As a combination of 5-HT selective reuptake inhibitor (SSRI) with 5-HT1A receptor antagonism may yield a rapidly acting antidepressant, WAY-211612, a compound with both SSRI and 5-HT1A receptor antagonist activities, was evaluated in preclinical models. Experimental approach Occupancy studies confirmed the mechanism of action of WAY-211612, while its in vivo profile was characterized in microdialysis and behavioural models. Key results WAY-211612 inhibited 5-HT reuptake (Ki = 1.5 nmol·L−1; KB = 17.7 nmol·L−1) and exhibited full 5-HT1A receptor antagonist activity (Ki = 1.2 nmol·L−1; KB = 6.3 nmol·L−1; Imax 100% in adenyl cyclase assays; KB = 19.8 nmol·L−1; Imax 100% in GTPγS). WAY-211612 (3 and 30 mg·kg−1, po) occupied 5-HT reuptake sites in rat prefrontal cortex (56.6% and 73.6% respectively) and hippocampus (52.2% and 78.5%), and 5-HT1A receptors in the prefrontal cortex (6.7% and 44.7%), hippocampus (8.3% and 48.6%) and dorsal raphe (15% and 83%). Acute or chronic treatment with WAY-211612 (3–30 mg·kg−1, po) raised levels of cortical 5-HT approximately twofold, as also observed with a combination of an SSRI (fluoxetine; 30 mg·kg−1, s.c.) and a 5-HT1A antagonist (WAY-100635; 0.3 mg·kg−1, s.c). WAY-211612 (3.3–30 mg·kg−1, s.c.) decreased aggressive behaviour in the resident-intruder model, while increasing the number of punished crossings (3–30 mg·kg−1, i.p. and 10–56 mg·kg−1, po) in the mouse four-plate model and decreased adjunctive drinking behaviour (56 mg·kg−1, i.p.) in the rat scheduled-induced polydipsia model. Conclusions and implications These findings suggest that WAY-211612 may represent a novel antidepressant. PMID:19338583

  14. 3D Pharmacophore, hierarchical methods, and 5-HT4 receptor binding data.

    PubMed

    Varin, Thibault; Saettel, Nicolas; Villain, Jonathan; Lesnard, Aurelien; Dauphin, François; Bureau, Ronan; Rault, Sylvain

    2008-10-01

    5-Hydroxytryptamine subtype-4 (5-HT(4)) receptors have stimulated considerable interest amongst scientists and clinicians owing to their importance in neurophysiology and potential as therapeutic targets. A comparative analysis of hierarchical methods applied to data from one thousand 5-HT(4) receptor-ligand binding interactions was carried out. The chemical structures were described as chemical and pharmacophore fingerprints. The definitions of indices, related to the quality of the hierarchies in being able to distinguish between active and inactive compounds, revealed two interesting hierarchies with the Unity (1 active cluster) and pharmacophore fingerprints (4 active clusters). The results of this study also showed the importance of correct choice of metrics as well as the effectiveness of a new alternative of the Ward clustering algorithm named Energy (Minimum E-Distance method). In parallel, the relationship between these classifications and a previously defined 3D 5-HT(4) antagonist pharmacophore was established.

  15. Identification of serotonin 5-HT1A receptor partial agonists in ginger.

    PubMed

    Nievergelt, Andreas; Huonker, Peter; Schoop, Roland; Altmann, Karl-Heinz; Gertsch, Jürg

    2010-05-01

    Animal studies suggest that ginger (Zingiber officinale Roscoe) reduces anxiety. In this study, bioactivity-guided fractionation of a ginger extract identified nine compounds that interact with the human serotonin 5-HT(1A) receptor with significant to moderate binding affinities (K(i)=3-20 microM). [(35)S]-GTP gamma S assays indicated that 10-shogaol, 1-dehydro-6-gingerdione, and particularly the whole lipophilic ginger extract (K(i)=11.6 microg/ml) partially activate the 5-HT(1A) receptor (20-60% of maximal activation). In addition, the intestinal absorption of gingerols and shogaols was simulated and their interactions with P-glycoprotein were measured, suggesting a favourable pharmacokinetic profile for the 5-HT(1A) active compounds. PMID:20363635

  16. Conjunctive effects of the 5HT(2) receptor antagonist, sarpogrelate, on thrombolysis with modified tissue plasminogen activator in different laser-induced thrombosis models.

    PubMed

    Yamashita, T; Kitamori, K; Hashimoto, M; Watanabe, S; Giddings, J C; Yamamoto, J

    2000-01-01

    The effect of the serotonin (5HT(2)) receptor antagonist, sarpogrelate, was compared with that of the selective thrombin inhibitor, argatroban, in modified tissue plasminogen activator (mt-PA)-induced thrombolysis using two laser-induced thrombosis models reflecting different levels of vascular endothelial cell damage. Bolus intravenous infusions of mt-PA (0.1, 0.2, 0.4 mg/kg) induced thrombolysis in a dose-dependent manner. Sarpogrelate (4.7 mg/kg b.i. + 1.0 mg/kg/h i.v.) given together with mt-PA (0.2 mg/kg b.i.) optimally enhanced thrombolysis (p < 0.05) in a helium-neon laser-induced model where endothelial damage was minimal but not in an argon laser model where desquamation of endothelial cells was recognized. In contrast, argatroban (0.5 mg/kg b.i. + 0.1 mg/kg/h i.v.) given with mt-PA (0.2 mg/kg b.i.) significantly enhanced thrombolysis in both laser models. The findings indicate that the effectiveness of sarpogrelate in thrombolytic therapy might depend on the extent of vascular damage. PMID:11357001

  17. Serotonin 5-HT1A receptors as targets for agents to treat psychiatric disorders: rationale and current status of research.

    PubMed

    Celada, Pau; Bortolozzi, Analía; Artigas, Francesc

    2013-09-01

    Psychiatric disorders represent a large economic burden in modern societies. However, pharmacological treatments are still far from optimal. Drugs used in the treatment of major depressive disorder (MDD) and anxiety disorders (selective serotonin [5-HT] reuptake inhibitors [SSRIs] and serotonin-noradrenaline reuptake inhibitors [SNRIs]) are pharmacological refinements of first-generation tricyclic drugs, discovered by serendipity, and show low efficacy and slowness of onset. Moreover, antipsychotic drugs are partly effective in positive symptoms of schizophrenia, yet they poorly treat negative symptoms and cognitive deficits. The present article reviews the neurobiological basis of 5-HT1A receptor (5-HT1A-R) function and the role of pre- and postsynaptic 5-HT1A-Rs in the treatment of MDD, anxiety and psychotic disorders. The activation of postsynaptic 5-HT1A-Rs in corticolimbic areas appears beneficial for the therapeutic action of antidepressant drugs. However, presynaptic 5-HT1A-Rs play a detrimental role in MDD, since individuals with high density or function of presynaptic 5-HT1A-Rs are more susceptible to mood disorders and suicide, and respond poorly to antidepressant drugs. Moreover, the indirect activation of presynaptic 5-HT1A-Rs by SSRIs/SNRIs reduces 5-HT neuron activity and terminal 5-HT release, thus opposing the elevation of extracellular 5-HT produced by blockade of the serotonin transporter (SERT) in the forebrain. Chronic antidepressant treatment desensitizes presynaptic 5-HT1A-Rs, thus reducing the effectiveness of the 5-HT1A autoreceptor-mediated negative feedback. The prevention of this process by the non-selective partial agonist pindolol accelerates clinical antidepressant effects. Two new antidepressant drugs, vilazodone (marketed in the USA) and vortioxetine (in development) incorporate partial 5-HT1A-R agonist properties with SERT blockade. Several studies with transgenic mice have also established the respective role of pre- and

  18. The 5-HT2A serotonin receptor in executive function: Implications for neuropsychiatric and neurodegenerative diseases.

    PubMed

    Aznar, Susana; Hervig, Mona El-Sayed

    2016-05-01

    Executive function entails the interplay of a group of cognitive processes enabling the individual to anticipate consequences, attain self-control, and undertake appropriate goal-directed behaviour. Serotonin signalling at serotonin 2A receptors (5-HT2AR) has important effects on these behavioural and cognitive pathways, with the prefrontal cortex (PFC) as the central actor. Indeed, the 5-HT2ARs are highly expressed in PFC, where they modulate cortical activity and local network oscillations (brain waves). Numerous psychiatric and neurodegenerative diseases result in disrupted executive function. Animal and human studies have linked these disorders with alterations in the 5-HT2AR system, making this an important pharmacological target for the treatment of disorders with impaired cognitive function. This review aims to describe the current state of knowledge on the role of 5-HT2AR signalling in components of executive function, and how 5-HT2AR systems may relate to executive dysfunctions occurring in psychiatric and neurodegenerative diseases. We hope thereby to provide insight into how pharmacotherapy targeting the 5-HT2AR may ameliorate (or exacerbate) aspects of these disorders. PMID:26891819

  19. New insight into the therapeutic role of 5-HT1A receptors in central nervous system disorders.

    PubMed

    Ohno, Yukihiro

    2010-06-01

    The serotonergic system plays a crucial role in regulating psychoemotional, cognitive and motor functions in the central nervous system (CNS). Among 5-HT receptor subtypes, 5-HT(1A) receptors have long been implicated in the pathogenesis and treatment of anxiety and depressive disorders. 5-HT(1A) receptors function as both presynaptic (autoreceptor) and postsynaptic receptors in specific brain regions such as the limbic areas, septum and raphe nuclei. 5-HT(1A) receptors negatively regulate cAMP-dependent signal transduction and inhibit neuronal activity by opening G-protein-gated inwardly rectifying potassium channels. The therapeutic action of 5-HT(1A) agonists and their mechanism in alleviating anxiety and depressive disorders have been well documented. In addition, recent studies have revealed new insights into the therapeutic role of 5-HT(1A) receptors in treating various CNS disorders, including not only depressive disorders (e.g., delayed onset of action and refractory symptoms), but also schizophrenia (e.g., cognitive impairment and antipsychotic-induced extrapyramidal side effects) and Parkinson's disease (e.g., extrapyramidal motor symptoms and L-DOPA-induced dyskinesia). These lines of evidences encourage us to design new generation 5-HT(1A) ligands such as 5-HT(1A) agonists with greater potency, higher selectivity and improved pharmacokinetic properties, and 5-HT(1A) ligands which combine multiple pharmacological actions (e.g., inhibition of serotonin transporter, dopamine D(2) receptors and other 5-HT receptor subtypes). Such new 5-HT(1A) ligands may overcome clinical efficacy limitations and/or improve adverse reactions in current CNS therapies.

  20. Dorsal raphe 5-HT(2C) receptor and GABA networks regulate anxiety produced by cocaine withdrawal.

    PubMed

    Craige, Caryne P; Lewandowski, Stacia; Kirby, Lynn G; Unterwald, Ellen M

    2015-06-01

    The serotonin system is intimately linked to both the mediation of anxiety and long-term effects of cocaine, potentially through interaction of inhibitory 5-HT2C receptor and gamma-aminobutyric acid (GABA) networks. This study characterized the function of the dorsal raphe (DR) 5-HT2C receptor and GABA network in anxiety produced by chronic cocaine withdrawal. C57BL/6 mice were injected with saline or cocaine (15 mg/kg) 3 times daily for 10 days, and tested on the elevated plus maze 30 min, 25 h, or 7 days after the last injection. Cocaine-withdrawn mice showed heightened anxiety-like behavior at 25 h of withdrawal, as compared to saline controls. Anxiety-like behavior was not different when mice were tested 30 min or 7 days after the last cocaine injection. Electrophysiology data revealed that serotonin cells from cocaine-withdrawn mice exhibited increased GABA inhibitory postsynaptic currents (IPSCs) in specific DR subregions dependent on withdrawal time (25 h or 7 d), an effect that was absent in cells from non-withdrawn mice (30 min after the last cocaine injection). Increased IPSC activity was restored to baseline levels following bath application of the 5-HT2C receptor antagonist, SB 242084. In a separate cohort of cocaine-injected mice at 25 h of withdrawal, both global and intra-DR blockade of 5-HT2C receptors prior to elevated plus maze testing attenuated anxiety-like behavior. This study demonstrates that DR 5-HT2C receptor blockade prevents anxiety-like behavior produced by cocaine withdrawal, potentially through attenuation of heightened GABA activity, supporting a role for the 5-HT2C receptor in mediating anxiety produced by cocaine withdrawal.

  1. Antidepressant and anxiolytic effects of selective 5-HT6 receptor agonists in rats

    PubMed Central

    Carr, Gregory V.; Schechter, Lee E.; Lucki, Irwin

    2010-01-01

    Rationale Although selective serotonin reuptake inhibitors (SSRIs) produce clinical therapeutic effects on depression and anxiety through augmentation of serotonergic neurotransmission, there is little known about the potential contributions of the 5-HT6 receptor in the treatment of mood disorders. Objectives The aim of this study was to test the potential antidepressant-like and anxiolytic-like effects of the 5-HT6 receptor agonists WAY-208466 and WAY-181187 using established behavioral tests in rats. Methods In order to determine if the 5-HT6 receptor agonists possess antidepressant-like activity, rats were treated with WAY-208466 or WAY-181187 and tested in the modified rat forced swim test (FST). Also, the potential anxiolytic-like effects of WAY-208466 and WAY-181187 were measured using the defensive burying (DB) test and novelty-induced hypophagia (NIH) test. Results WAY-208466 and WAY-181187 produced both antidepressant-like and anxiolytic-like effects. Both compounds decreased immobility and increased swimming behavior in the FST. The effects of the 5-HT6 receptor agonists were similar to those seen after treatment with the SSRI fluoxetine. Both 5-HT6 receptor agonists also decreased burying duration in the DB test, indicative of anxiolytic activity in the test. The anxiolytic effects of WAY-208466 were reproduced in the NIH test. Assessment of the anxiolytic effects of WAY-181187 in the NIH was confounded by alterations in home cage feeding behavior. Conclusions These findings suggest that 5-HT6 receptor agonists may represent a new class of potential antidepressant and anxiolytic compounds and could possess a number of advantages over currently available treatments, including rapid onset of anxiolytic efficacy. PMID:20217056

  2. Multiple conformations of 5-HT2A and 5-HT 2C receptors in rat brain: an autoradiographic study with [125I](±)DOI.

    PubMed

    López-Giménez, Juan F; Vilaró, M Teresa; Palacios, José M; Mengod, Guadalupe

    2013-10-01

    Earlier autoradiographic studies with the 5-HT2 receptor agonist [(125)I](±)DOI in human brain showed unexpected biphasic competition curves for various 5-HT2A antagonists. We have performed similar studies in rat brain regions with selective 5-HT2A (M100907) and 5-HT2C (SB242084) antagonists together with ketanserin and mesulergine. The effect of GTP analogues on antagonist competition was also studied. Increasing concentrations of Gpp(NH)p or GTPγS resulted in a maximal inhibition of [(125)I](±)DOI-specific binding of approximately 50 %. M100907 competed biphasically in all regions. In the presence of 100 μM Gpp(NH)p, M100907 still displaced biphasically the remaining [(125)I](±)DOI binding. Ketanserin showed biphasic curves in some regions and monophasic curves in others. In the latter, Gpp(NH)p evidenced an additional high-affinity site. SB242084 competed biphasically in brainstem nuclei and monophasically in the other regions. In most areas, SB242084 affinities were not notably altered by Gpp(NH)p. Mesulergine competed monophasically in all regions without alteration by Gpp(NH)p. These results conform with the extended ternary complex model of receptor action: receptor exists as an equilibrium of multiple conformations, i.e. ground (R), partly activated (R*) and activated G-protein-coupled (R*G) conformation/s. Thus, [(125)I](±)DOI would label multiple conformations of both 5-HT2A and 5-HT2C receptors in rat brain, and M100907 and ketanserin would recognise these conformations with different affinities.

  3. Evidence of the activity of lithium on 5-HT1B receptors in the mouse forced swimming test: comparison with carbamazepine and sodium valproate.

    PubMed

    Redrobe, J P; Bourin, M

    1999-02-01

    The use of lithium in combination with various antidepressant drugs (e.g., heterocyclics and monoamine oxidase inhibitors) has been reported rapidly to improve antidepressant response in otherwise treatment-resistant patients. Carbamazepine and sodium valproate have also been shown to be effective in the treatment of several forms of affective disorders, such as treatment-resistant depression and bipolar depression. The present study, using the mouse forced swimming test, was undertaken to test the hypothesis of the action of lithium, carbamazepine or sodium valproate on some 5-HT receptor subtypes. Results showed that lithium significantly potentiated the anti-immobility effects of RU 24969 (P<0.01) and anpirtoline (P<0.01). Pretreatment with lithium did not induce any significant antidepressant-like effects when tested in combination with 8-OH-DPAT, NAN-190 or (+/-) pindolol. Pretreatment with carbamazepine provoked anti-immobility effects when tested in combination with RU 24969 (P<0.01) and 8-OH-DPAT (P<0.01), whereas prior administration of sodium valproate enhanced the antidepressant-like effects of (+/-) pindolol (P<0.01), 8-OH-DPAT (P<0.01) and RU 24969 (P<0.01). In conclusion, the results of the present study suggest that lithium may be acting through 5-HT1B receptors, whereas the action of carbamazepine and sodium valproate seems to involve 5-HT1A receptors in the mouse forced swimming test. However, considering the complexity of the actions of these compounds, it is possible that other neurotransmitter systems/receptors may be involved.

  4. Variation within the serotonin (5-HT) 5-HT2C receptor system aligns with vulnerability to cocaine cue reactivity

    PubMed Central

    Anastasio, N C; Liu, S; Maili, L; Swinford, S E; Lane, S D; Fox, R G; Hamon, S C; Nielsen, D A; Cunningham, K A; Moeller, F G

    2014-01-01

    Cocaine dependence remains a challenging public health problem with relapse cited as a major determinant in its chronicity and severity. Environmental contexts and stimuli become reliably associated with its use leading to durable conditioned responses (‘cue reactivity') that can predict relapse as well as treatment success. Individual variation in the magnitude and influence of cue reactivity over behavior in humans and animals suggest that cue-reactive individuals may be at greater risk for the progression to addiction and/or relapse. In the present translational study, we investigated the contribution of variation in the serotonin (5-HT) 5-HT2C receptor (5-HT2CR) system in individual differences in cocaine cue reactivity in humans and rodents. We found that cocaine-dependent subjects carrying a single nucleotide polymorphism (SNP) in the HTR2C gene that encodes for the conversion of cysteine to serine at codon 23 (Ser23 variant) exhibited significantly higher attentional bias to cocaine cues in the cocaine-word Stroop task than those carrying the Cys23 variant. In a model of individual differences in cocaine cue reactivity in rats, we identified that high cocaine cue reactivity measured as appetitive approach behavior (lever presses reinforced by the discrete cue complex) correlated with lower 5-HT2CR protein expression in the medial prefrontal cortex and blunted sensitivity to the suppressive effects of the selective 5-HT2CR agonist WAY163909. Our translational findings suggest that the functional status of the 5-HT2CR system is a mechanistic factor in the generation of vulnerability to cocaine-associated cues, an observation that opens new avenues for future development of biomarker and therapeutic approaches to suppress relapse in cocaine dependence. PMID:24618688

  5. New halogenated tris-(phenylalkyl)amines as h5-HT2B receptor ligands.

    PubMed

    Kapadia, Nirav; Ahmed, Shahrear; Harding, Wayne W

    2016-07-15

    A series of compounds in which various halogen substituents were incorporated into a phenyl ring of a tris-(phenylalkyl)amine scaffold, was synthesized and evaluated for affinity to h5-HT2 receptors. In general, all compounds were found to have good affinity for the 5-HT2B receptor and were selective over 5-HT2A and 5-HT2C receptors. Compound 9i was the most selective compound in this study and is the highest affinity 5-HT2B receptor ligand bearing a tris-(phenylalkyl)amine scaffold to date. PMID:27261181

  6. Central effects of 5-HT on activity of respiratory and hypoglossally innervated muscles in newborn kittens.

    PubMed Central

    Khater-Boidin, J; Rose, D; Duron, B

    1996-01-01

    1. In decerebrate kittens (n = 29), electrical activity was studied in the 3rd intercartilaginous (inspiratory), the 9th internal intercostal (expiratory) and the hypoglossally innervated muscles (geniohyoid m. and sternohyoid m.) evoked by the application of 5-HT (n = 16) or related agents (5-HT1A agonist, 8-OH-DPAT (n = 6) and 5-HT2 agonist, DOI floor of the IVth ventricle. 2. The application of a control solution (n = 2) produced no significant changes either in minute inspiratory frequency (Fi) or in the electrical activity of the muscles studied. Except for these controls, only one trial with one dose of one drug was performed in a given kitten. 3. A dose-related decrease in Fi was observed in response to 5-HT. Low doses (50-500 nmol, n1 = 8) induced a long-lasting bradypnoea; high doses (5000-10,000 nmol, n2 = 8) induced prolonged periods of apnoea. 4. The apnoeas observed in tracheotomized (n = 3) or non-tracheotomized (n2 = 8) kittens were mainly of central origin and linked to the lengthening of expiratory time. The expiratory muscle activation came on with the reinforcement of the activity of hypoglossally innervated muscles. 5. Application of agonists showed that both the 5-HT-dependent modulation of Fi and the effects of 5-HT on the activity of the muscles studied resulted predominantly from activation of 5-HT2 receptors. PMID:8866368

  7. Central effects of 5-HT on activity of respiratory and hypoglossally innervated muscles in newborn kittens.

    PubMed

    Khater-Boidin, J; Rose, D; Duron, B

    1996-08-15

    1. In decerebrate kittens (n = 29), electrical activity was studied in the 3rd intercartilaginous (inspiratory), the 9th internal intercostal (expiratory) and the hypoglossally innervated muscles (geniohyoid m. and sternohyoid m.) evoked by the application of 5-HT (n = 16) or related agents (5-HT1A agonist, 8-OH-DPAT (n = 6) and 5-HT2 agonist, DOI floor of the IVth ventricle. 2. The application of a control solution (n = 2) produced no significant changes either in minute inspiratory frequency (Fi) or in the electrical activity of the muscles studied. Except for these controls, only one trial with one dose of one drug was performed in a given kitten. 3. A dose-related decrease in Fi was observed in response to 5-HT. Low doses (50-500 nmol, n1 = 8) induced a long-lasting bradypnoea; high doses (5000-10,000 nmol, n2 = 8) induced prolonged periods of apnoea. 4. The apnoeas observed in tracheotomized (n = 3) or non-tracheotomized (n2 = 8) kittens were mainly of central origin and linked to the lengthening of expiratory time. The expiratory muscle activation came on with the reinforcement of the activity of hypoglossally innervated muscles. 5. Application of agonists showed that both the 5-HT-dependent modulation of Fi and the effects of 5-HT on the activity of the muscles studied resulted predominantly from activation of 5-HT2 receptors.

  8. Effects of ginger constituents on the gastrointestinal tract: role of cholinergic M3 and serotonergic 5-HT3 and 5-HT4 receptors.

    PubMed

    Pertz, Heinz H; Lehmann, Jochen; Roth-Ehrang, René; Elz, Sigurd

    2011-07-01

    The herbal drug ginger (Zingiber officinale Roscoe) may be effective for treating nausea, vomiting, and gastric hypomotility. In these conditions, cholinergic M (3) receptors and serotonergic 5-HT (3) and 5-HT (4) receptors are involved. The major chemical constituents of ginger are [6]-gingerol, [8]-gingerol, [10]-gingerol, and [6]-shogaol. We studied the interaction of [6]-gingerol, [8]-gingerol, [10]-gingerol (racemates), and [6]-shogaol with guinea pig M (3) receptors, guinea pig 5-HT (3) receptors, and rat 5-HT (4) receptors. In whole segments of guinea pig ileum (bioassay for contractile M (3) receptors), [6]-gingerol, [8]-gingerol, [10]-gingerol, and [6]-shogaol slightly but significantly depressed the maximal carbachol response at an antagonist concentration of 10 µM. In the guinea pig myenteric plexus preparation (bioassay for contractile 5-HT (3) receptors), 5-HT maximal responses were depressed by [10]-gingerol from 93 ± 3 % to 65 ± 6 % at an antagonist concentration of 3 µM and to 48 ± 3 % at an antagonist concentration of 5 µM following desensitization of 5-HT (4) receptors and blockade of 5-HT (1) and 5-HT (2) receptors. [6]-Shogaol (3 µM) induced depression to 61 ± 3 %. In rat esophageal tunica muscularis mucosae (bioassay for relaxant 5-HT (4) receptors), [6]-gingerol, [8]-gingerol, [10]-gingerol, and [6]-shogaol (2-6.3 µM) showed no agonist effects. The maximal 5-HT response remained unaffected in the presence of the compounds. It is concluded that the efficiency of ginger in reducing nausea and vomiting may be based on a weak inhibitory effect of gingerols and shogaols at M (3) and 5-HT (3) receptors. 5-HT (4) receptors, which play a role in gastroduodenal motility, appear not to be involved in the action of these compounds. PMID:21305447

  9. Increased hypothalamic 5-HT2A receptor gene expression and effects of pharmacologic 5-HT2A receptor inactivation in obese A{sup y} mice

    SciTech Connect

    Nonogaki, Katsunori . E-mail: knonogaki-tky@umin.ac.jp; Nozue, Kana; Oka, Yoshitomo

    2006-12-29

    Serotonin (5-hydroxytryptamine; 5-HT) 2A receptors contribute to the effects of 5-HT on platelet aggregation and vascular smooth muscle cell proliferation, and are reportedly involved in decreases in plasma levels of adiponectin, an adipokine, in diabetic subjects. Here, we report that systemic administration of sarpogrelate, a 5-HT2A receptor antagonist, suppressed appetite and increased hypothalamic pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript, corticotropin releasing hormone, 5-HT2C, and 5-HT1B receptor gene expression. A{sup y} mice, which have ectopic expression of the agouti protein, significantly increased hypothalamic 5-HT2A receptor gene expression in association with obesity compared with wild-type mice matched for age. Systemic administration of sarpogrelate suppressed overfeeding, body weight gain, and hyperglycemia in obese A{sup y} mice, whereas it did not increase plasma adiponectin levels. These results suggest that obesity increases hypothalamic 5-HT2A receptor gene expression, and pharmacologic inactivation of 5-HT2A receptors inhibits overfeeding and obesity in A{sup y} mice, but did not increase plasma adiponectin levels.

  10. Yokukansan Increases 5-HT1A Receptors in the Prefrontal Cortex and Enhances 5-HT1A Receptor Agonist-Induced Behavioral Responses in Socially Isolated Mice

    PubMed Central

    Ueki, Toshiyuki; Mizoguchi, Kazushige; Yamaguchi, Takuji; Nishi, Akinori; Ikarashi, Yasushi; Hattori, Tomohisa; Kase, Yoshio

    2015-01-01

    The traditional Japanese medicine yokukansan has an anxiolytic effect, which occurs after repeated administration. In this study, to investigate the underlying mechanisms, we examined the effects of repeated yokukansan administration on serotonin 1A (5-HT1A) receptor density and affinity and its expression at both mRNA and protein levels in the prefrontal cortex (PFC) of socially isolated mice. Moreover, we examined the effects of yokukansan on a 5-HT1A receptor-mediated behavioral response. Male mice were subjected to social isolation stress for 6 weeks and simultaneously treated with yokukansan. Thereafter, the density and affinity of 5-HT1A receptors were analyzed by a receptor-binding assay. Levels of 5-HT1A receptor protein and mRNA were also measured. Furthermore, (±)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT; a 5-HT1A receptor agonist) was injected intraperitoneally, and rearing behavior was examined. Social isolation stress alone did not affect 5-HT1A receptor density or affinity. However, yokukansan significantly increased receptor density and decreased affinity concomitant with unchanged protein and mRNA levels. Yokukansan also enhanced the 8-OH-DPAT-induced decrease in rearing behavior. These results suggest that yokukansan increases 5-HT1A receptors in the PFC of socially isolated mice and enhances their function, which might underlie its anxiolytic effects. PMID:26681968

  11. Rapid activation of sodium-proton exchange and extracellular signal-regulated protein kinase in fibroblasts by G protein-coupled 5-HT1A receptor involves distinct signalling cascades.

    PubMed Central

    Garnovskaya, M N; Mukhin, Y; Raymond, J R

    1998-01-01

    These experiments tested the hypothesis that signalling elements involved in the activation of the extracellular signal-regulated protein kinase (ERK) mediate rapid activation of sodium-proton exchange (NHE) in fibroblasts when both signals are initiated by a single G protein-coupled receptor, the 5-HT1A receptor. Similarities between the two processes were comparable concentration-response curves and time-courses, and overlapping sensitivity to some pharmacological inhibitors of tyrosine kinases (staurosporine and genistein), and phosphoinositide 3'-kinase (wortmannin and LY204002). Activation of NHE was much more sensitive to the phosphatidylcholine-specific phospholipase inhibitor (D609) than was ERK. Neither pathway was sensitive to manoeuvres designed to block PKC. In contrast, Src or related kinases appear to be required to activate ERK, but not NHE. Transfection of cDNA constructs encoding inactive mutant phosphoinositide 3'-kinase, Grb2, Sos, Ras, and Raf molecules were successful in attenuating ERK, but had essentially no effect upon NHE activation. Finally, PD98059, an inhibitor of mitogen activated/extracellular signal regulated kinase kinase, blocked ERK but not NHE activation. Thus, in CHO fibroblast cells, activation by the 5-HT1A receptor of ERK and NHE share a number of overlapping features. However, our studies do not support a major role for ERK, when activated by the 5-HT1A receptor, as a short-term upstream regulator of NHE activity. PMID:9461547

  12. Differential modulation of feline defensive rage behavior in the medial hypothalamus by 5-HT1A and 5-HT2 receptors.

    PubMed

    Hassanain, M; Bhatt, S; Siegel, A

    2003-08-15

    Previous studies have established that the expression of defensive rage behavior in the cat is mediated over reciprocal pathways that link the medial hypothalamus and the dorsolateral quadrant of the midbrain periaqueductal gray matter (PAG). The present study was designed to determine the roles played by 5-HT(1A) and 5-HT(2C) receptors in the medial hypothalamus on the expression of defensive rage behavior elicited from electrical stimulation of the PAG. Monopolar stimulating electrodes were placed in the midbrain PAG from which defensive rage behavior could be elicited by electrical stimulation. During the course of this study, defensive rage was determined by measuring the latency of the "hissing" component of this behavior. Cannula-electrodes were implanted into sites within the medial hypothalamus from which defensive rage behavior could also be elicited by electrical stimulation in order that serotonergic compounds could be microinjected into behaviorally identifiable regions of the hypothalamus at a later time. Microinjections of the 5-HT(1A) receptor agonist 8-OHDPAT (0.1, 1.0 and 3.0 nmol) into the medial hypothalamus suppressed PAG-elicited hissing in a dose-dependent manner. Administration of the 5-HT(1A) antagonist p-MPPI (3.0 nmol) blocked the suppressive effects of 8-OHDPAT upon hissing. The suppressive effects of 8-OHDPAT were specific to defensive rage behavior because this drug (3 nmol) facilitated quiet biting attack. Microinjections of the 5-HT(2C) receptor agonist (+/-)-DOI hydrochloride into the medial hypothalamus (0.5, 1.0, and 3.0 nmol) facilitated the occurrence of PAG-elicited hissing in a dose-dependent manner. In turn, these facilitating effects were blocked by pretreatment with the selective 5-HT(2) antagonist, LY-53,857, which was microinjected into the same medial hypothalamic site. The findings of this study provide evidence that activation of 5-HT(1A) and 5-HT(2) receptors within the medial hypothalamus exert differential modulatory

  13. Differential modulation of feline defensive rage behavior in the medial hypothalamus by 5-HT1A and 5-HT2 receptors.

    PubMed

    Hassanain, M; Bhatt, S; Siegel, A

    2003-08-15

    Previous studies have established that the expression of defensive rage behavior in the cat is mediated over reciprocal pathways that link the medial hypothalamus and the dorsolateral quadrant of the midbrain periaqueductal gray matter (PAG). The present study was designed to determine the roles played by 5-HT(1A) and 5-HT(2C) receptors in the medial hypothalamus on the expression of defensive rage behavior elicited from electrical stimulation of the PAG. Monopolar stimulating electrodes were placed in the midbrain PAG from which defensive rage behavior could be elicited by electrical stimulation. During the course of this study, defensive rage was determined by measuring the latency of the "hissing" component of this behavior. Cannula-electrodes were implanted into sites within the medial hypothalamus from which defensive rage behavior could also be elicited by electrical stimulation in order that serotonergic compounds could be microinjected into behaviorally identifiable regions of the hypothalamus at a later time. Microinjections of the 5-HT(1A) receptor agonist 8-OHDPAT (0.1, 1.0 and 3.0 nmol) into the medial hypothalamus suppressed PAG-elicited hissing in a dose-dependent manner. Administration of the 5-HT(1A) antagonist p-MPPI (3.0 nmol) blocked the suppressive effects of 8-OHDPAT upon hissing. The suppressive effects of 8-OHDPAT were specific to defensive rage behavior because this drug (3 nmol) facilitated quiet biting attack. Microinjections of the 5-HT(2C) receptor agonist (+/-)-DOI hydrochloride into the medial hypothalamus (0.5, 1.0, and 3.0 nmol) facilitated the occurrence of PAG-elicited hissing in a dose-dependent manner. In turn, these facilitating effects were blocked by pretreatment with the selective 5-HT(2) antagonist, LY-53,857, which was microinjected into the same medial hypothalamic site. The findings of this study provide evidence that activation of 5-HT(1A) and 5-HT(2) receptors within the medial hypothalamus exert differential modulatory

  14. The 5-HT(2C) receptor agonist lorcaserin reduces cocaine self-administration, reinstatement of cocaine-seeking and cocaine induced locomotor activity.

    PubMed

    Harvey-Lewis, Colin; Li, Zhaoxia; Higgins, Guy A; Fletcher, Paul J

    2016-02-01

    Lorcaserin (Lorqess, Belviq(®)) is a selective 5-HT(2C) receptor agonist that has received FDA approval for the treatment of obesity. 5-HT(2C) receptor agonists are also efficacious in decreasing multiple aspects of cocaine motivation and reward in preclinical models. This would suggest that lorcaserin is a clinically available therapeutic with the potential to treat cocaine addiction. Here we report the effects of lorcaserin (0.1 mg/kg-1.0 mg/kg) on multiple aspects of cocaine-related behaviours in rats. We find that lorcaserin dose-dependently decreases cocaine self-administration on progressive and fixed ratio schedules of reinforcement. Lorcaserin also reduces reinstatement of cocaine-seeking behaviour in response to priming injections of cocaine and/or reintroduction of cocaine-associated cues. Finally, lorcaserin dose-dependently decreases cocaine-induced hyperlocomotion. Our results, when considered in concert with similar emergent findings in non-human primates, strongly support continued research into the potential of lorcaserin as a clinical treatment for cocaine addiction.

  15. Role of CRH in the effects of 5-HT-receptor agonists on food intake and metabolic rate.

    PubMed

    Bovetto, S; Rouillard, C; Richard, D

    1996-11-01

    Two series of experiments were conducted to investigate the role of corticotropin-releasing hormone (CRH) in the effects of 5-hydroxytryptamine (5-HT) on energy intake and energy expenditure. The first set of experiments was carried out to confirm the influence of 5-HT1A-, 5-HT1B-, 5-HT2A/2C-receptor agonists on the activation of the hypothalamic-pituitary-adrenal axis. Plasma corticosterone levels were measured, and a double-immunolabeling procedure was used to determine whether the neuronal activity marker, c-Fos protein (Fos), could be found within brain neurons containing CRH after treatments with 5-HT1A-, 5-HT1B-, 5-HT2A/2C-receptor agonists. The second series of experiments was conducted to assess the involvement of CRH in the effects of 5-HT on food intake and metabolic rate (VO2). The effects of the 5-HT1A-, 5-HT1B-, 5-HT2A/2C-receptor agonists on food intake and VO2 were measured in rats treated with the CRH antagonist, alpha-helical CRH-(9-41). In both experiments rats were intraperitoneally injected with either a vehicle (NaCl 0.9%), the 5-HT1A-receptor agonist (+/-)-8-hydroxy-2-(di-n-propylamino) tetralin hydrobromide (8-OH-DPAT), the 5-HT1B-receptor agonist 5-methoxy-3-(1,2,3,6-tetrahydro-4-pyridinyl)-1H-indole succinate (RU-24969), or the 5-HT2A/2C-receptor agonist (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane HCl (DOI). Fos immunoreactivity was detectable within the CRH-containing neurons of the paraventricular nucleus of the hypothalamus (PVH) after injection of each of the 5-HT-receptor agonists used. The CRH antagonist alpha-helical CRH-(9-41) attenuated the increases in metabolic rate induced by DOI and 8-OH-DPAT. alpha-Helical CRH did not, however, prevent the effects of RU-24969 and DOI on either nocturnal metabolic rate or food intake. The present results provide further evidence for a role of CRH in 5-HT-mediated thermogenic effect, which likely involves the 5-HT2A/2C receptor during the day and the 5-HT1A receptor during the night

  16. Serotonin regulates β-casein expression via 5-HT7 receptors in human mammary epithelial MCF-12A cells.

    PubMed

    Chiba, Takeshi; Kimura, Soichiro; Takahashi, Katsuo; Morimoto, Yasunori; Maeda, Tomoji; Sanbe, Atsushi; Ueda, Hideo; Kudo, Kenzo

    2015-01-01

    We previously reported that serotonin (5-hydroxytryptamine; 5-HT) suppresses β-casein expression, a differentiation marker in mammary epithelial cells, via inhibition of the signal transducer and activator of transcription 5 (STAT5) phosphorylation in the human mammary epithelial cell line, MCF-12A. In this study, we investigated the expression pattern of the different 5-HT receptor subtypes in MCF-12A cells, and identified the receptors involved in 5-HT-mediated suppression of β-casein protein expression. β-Casein mRNA expression was inhibited by 30 µM 5-HT in a time-dependent manner. Treatment with 30 µM 5-HT for 72 h decreased β-casein protein levels and STAT5 phosphorylation (pSTAT5). The cells expressed four 5-HT receptors subtypes (5-HTR1D, 2B, 3A, and 7) at the mRNA and protein level, and their expression was elevated by prolactin (PRL) treatment. Additionally, the mRNA levels of 5-HTR1D and 5-HTR7 were significantly higher than the other 5-HT receptors in the cells. Tryptophan hydroxylase 1 mRNA was detectable in the cells in the absence of PRL, and PRL treatment significantly increased its expression. β-Casein and pSTAT5/STAT5 levels in the cells co-treated with 5-HT and a selective 5-HTR1D inhibitor, BRL15572, were equal to those observed in cells treated with 5-HT alone. However, in the cells co-treated with 5-HT and a selective 5-HTR7 inhibitor, SB269970, β-casein and pSTAT5/STAT5 levels increased in a SB269970 concentration-dependent manner. In conclusion, we showed that 5-HT regulates β-casein expression via 5-HTR7 in MCF-12A human mammary epithelial cells.

  17. Effect of the 5-HT4 receptor and serotonin transporter on visceral hypersensitivity in rats.

    PubMed

    Yan, Chi; Xin-Guang, Liu; Hua-Hong, Wang; Jun-Xia, Li; Yi-Xuan, Li

    2012-10-01

    Visceral hypersensitivity plays an important role in motor and sensory abnormalities associated with irritable bowel syndrome, but the underlying mechanisms are not fully understood. The present study was designed to evaluate the expression of the 5-HT(4) receptor and the serotonin transporter (SERT) as well as their roles in chronic visceral hypersensitivity using a rat model. Neonatal male Sprague-Dawley rats received intracolonic injections of 0.5% acetic acid (0.3-0.5 mL at different times) between postnatal days 8 and 21 to establish an animal model of visceral hypersensitivity. On day 43, the threshold intensity for a visually identifiable contraction of the abdominal wall and body arching were recorded during rectal distention. Histological evaluation and the myeloperoxidase activity assay were performed to determine the severity of inflammation. The 5-HT(4) receptor and SERT expression of the ascending colon were monitored using immunohistochemistry and Western blot analyses; the plasma 5-HT levels were measured using an ELISA method. As expected, transient colonic irritation at the neonatal stage led to visceral hypersensitivity, but no mucosal inflammation was later detected during adulthood. Using this model, we found reduced SERT expression (0.298 ± 0.038 vs 0.634 ± 0.200, P < 0.05) and increased 5-HT(4) receptor expression (0.308 ± 0.017 vs 0.298 ± 0.021, P < 0.05). Treatment with fluoxetine (10 mg · kg(-1) · day(-1), days 36-42), tegaserod (1 mg · kg(-1) · day(-1), day 43), or the combination of both, reduced visceral hypersensitivity and plasma 5-HT levels. Fluoxetine treatment increased 5-HT(4) receptor expression (0.322 ± 0.020 vs 0.308 ± 0.017, P < 0.01) but not SERT expression (0.219 ± 0.039 vs 0.298 ± 0.038, P = 0.654). These results indicate that both the 5-HT(4) receptor and SERT play a role in the pathogenesis of visceral hypersensitivity, and its mechanism may be involved in the local 5-HT level.

  18. Pharmacological evidence that 5-HT1D activation induces renal vasodilation by NO pathway in rats.

    PubMed

    García-Pedraza, José-Ángel; García, Mónica; Martín, María-Luisa; Morán, Asunción

    2015-06-01

    5-HT is a powerful vasoconstrictor substance in renal vasculature (mainly by 5-HT₂ activation). Nevertheless, 5-HT is notable for its dual cardiovascular effects, producing both vasodilator and vasoconstrictor actions. This study aimed to investigate whether, behind the predominant serotonergic vasoconstrictor action, THE 5-HT system may exert renal vasodilator actions, and, if so, characterize the 5-HT receptors and possible indirect pathways. Renal perfusion pressure (PP), systemic blood pressure (SBP) and heart rate (HR) measurement in in situ autoperfused rat kidney was determined in phenylephrine infused rats. Intra arterial (i.a.) bolus administration of 5-HT (0.00000125-0.1 μg/kg) decreased renal PP in the presence of a phenylephrine continuous infusion (phenylephrine-infusion group), without modifying SBP or HR. These vasodilator responses were potentiated by 5-HT₂ antagonism (ritanserin, 1 mg/kg i.v.), whereas the responses were abolished by 5-HT₁ /₇ antagonist (methiothepin, 100 μg/kg i.v.) or 5-HT1D antagonist (LY310762, 1 mg/kg i.v.). The i.a. administration (0.00000125 to 0.1 μg/kg) of 5-CT or L-694,247 (5-HT1D agonist) mimicked 5-HT vasodilator effect, while other agonists (1-PBG, α-methyl-5-HT, AS-19 (5-HT₇), 8-OH-DPAT (5-HT1A) or CGS-12066B (5-HT1B)) did not alter baseline haemodynamic variables. L-694,247 vasodilation was abolished by i.v. bolus of antagonists LY310762 (5-HT1D, 1 mg/kg) or L-NAME (nitric oxide, 10 mg/kg), but not by i.v. bolus of indomethacin (cyclooxygenase, 2 mg/kg) or glibenclamide (ATP-dependent K(+) channel, 20 mg/kg). These outcomes suggest that 5-HT1D activation produces a vasodilator effect in the in situ autoperfused kidney of phenylephrine-infusion rats mediated by the NO pathway. PMID:25854421

  19. The role of 5-HT1B receptors in the regulation of serotonin cell firing and release in the rat brain.

    PubMed

    Adell, A; Celada, P; Artigas, F

    2001-10-01

    The release of 5-HT in terminal areas of the rodent brain is regulated by 5-HT1B receptors. Here we examined the role of 5-HT1B receptors in the control of 5-HT output and firing in the dorsal raphe nucleus (DR), median raphe nucleus (MnR) and forebrain of the rat in vivo. The local perfusion (30-300 microM) of the selective 5-HT1B receptor agonist CP-93,129 to freely moving rats decreased 5-HT release in the DR and more markedly in the MnR. Likewise, 300 microM CP-93,129 reduced 5-HT output in substantia nigra pars reticulata, ventral pallidum, lateral habenula and the suprachiasmatic nucleus. The effect of CP-93,129 was prevented by SB-224289, but not by WAY-100635, selective 5-HT1B and 5-HT1A receptor antagonists, respectively. SB-224289 did not alter dialysate 5-HT in any raphe nuclei. The intravenous administration of the brain-penetrant selective 5-HT1B receptor agonist CP-94,253 (0.5-2.0 mg/kg) to anesthetized rats decreased dialysate 5-HT in dorsal hippocampus and globus pallidus, increased it in MnR and left it unaltered in the DR and medial prefrontal cortex. SB-224289, at a dose known to block 5-HT1B autoreceptor-mediated effects (5 mg/kg), did not prevent the effect of CP-94,253 on MnR 5-HT. The intravenous administration of CP-94,253 (0.05-1.6 mg/kg) to anesthetized rats increased the firing rate of MnR, but not DR-5-HT neurons. The local perfusion of CP-94,253 in the MnR showed a biphasic effect, with 5-HT reductions at 0.3-3 microM and increase at 300 microM. These results suggest that 5-HT cell firing and release in midbrain raphe nuclei (particularly in the MnR) are under control of 5-HT1B receptors. The activation of 5-HT1B autoreceptors (possibly located on 5-HT nerve endings and/or varicosities within DR and MnR) reduces 5-HT release. The effects of higher concentrations of 5-HT1B receptor agonists seem more compatible with the activation of 5-HT1B heteroreceptors on inhibitory neurons.

  20. Role of 5-HT2A and 5-HT2C receptors in the stimulus effects of hallucinogenic drugs. II: Reassessment of LSD false positives.

    PubMed

    Fiorella, D; Rabin, R A; Winter, J C

    1995-10-01

    In the context of animal studies of hallucinogens, an LSD-false positive is defined as a drug known to be devoid of hallucinogenic activity in humans but which nonetheless fully mimics LSD in animals. Quipazine, MK-212, lisuride, and yohimbine have all been reported to be LSD false positives. The present study was designed to determine whether these compounds also substitute for the stimulus effects of the more pharmacologically selective hallucinogen (-)DOM (0.56 mg/kg, 75-min pretreatment time). The LSD and (-)DOM stimuli fully generalized to quipazine (3.0 mg/kg) and lisuride (0.2 mg/kg), but only partially generalized to MK-212 (0.1-1.0 mg/kg) and yohimbine (2-20 mg/kg). In combination tests, pirenpirone (0.08 mg/kg), a compound with both D2 and 5-HT2A affinity, blocked the substitution of quipazine and lisuride for the (-)DOM stimulus. Ketanserin (2.5 mg/kg), an antagonist with greater than 1 order of magnitude higher affinity for 5-HT2A receptors than either 5-HT2C or D2 receptors, also fully blocked the substitution of these compounds for the (-)DOM stimulus, while the selective D2 antagonist thiothixene (0.1-1.0 mg/kg) failed to block the substitution of lisuride for the (-)DOM stimulus. These results suggest that quipazine and lisuride substitute for the stimulus properties of the phenylalkglamine hallucinogen (-)DOM via agonist activity at 5-HT2A receptors. In addition, these results suggest that 5-HT2A agonist activity may be required, but is not in itself sufficient, for indolamine and phenylalkglamine compounds to elicit hallucinations in humans. Finally, it is concluded that MK-212 and yohimbine are neither LSD nor (-)DOM false positives.

  1. INSIGHTS INTO THE REGULATION OF 5-HT2A RECEPTORS BY SCAFFOLDING PROTEINS AND KINASES

    PubMed Central

    Allen, John A.; Yadav, Prem N.

    2008-01-01

    SUMMARY 5-HT2A serotonin receptors are essential molecular targets for the actions of LSD-like hallucinogens and atypical antipsychotic drugs. 5-HT2A serotonin receptors also mediate a variety of physiological processes in peripheral and central nervous systems including platelet aggregation, smooth muscle contraction, and the modulation of mood and perception. Scaffolding proteins have emerged as important regulators of 5-HT2A receptors and our recent studies suggest multiple scaffolds exist for 5-HT2A receptors including PSD95, arrestin, and caveolin. In addition, a novel interaction has emerged between p90 ribosomal S6 kinase and 5-HT2A receptors which attenuates receptor signaling. This article reviews our recent studies and emphasizes the role of scaffolding proteins and kinases in the regulation of 5-HT2A trafficking, targeting and signaling. PMID:18640136

  2. 5-HT2C Receptor Desensitization Moderates Anxiety in 5-HTT Deficient Mice: From Behavioral to Cellular Evidence

    PubMed Central

    Martin, Cédric BP; Martin, Vincent S.; Trigo, José M.; Chevarin, Caroline; Maldonado, Rafael; Fink, Latham H.; Cunningham, Kathryn A.; Hamon, Michel; Lanfumey, Laurence

    2015-01-01

    Background: Desensitization and blockade of 5-HT2C receptors (5-HT2CR) have long been thought to be central in the therapeutic action of antidepressant drugs. However, besides behavioral pharmacology studies, there is little in vivo data documenting antidepressant-induced 5-HT2CR desensitization in specific brain areas. Methods: Mice lacking the 5-HT reuptake carrier (5-HTT-/-) were used to model the consequences of chronic 5-HT reuptake inhibition with antidepressant drugs. The effect of this mutation on 5-HT2CR was evaluated at the behavioral (social interaction, novelty-suppressed feeding, and 5-HT2CR–induced hypolocomotion tests), the neurochemical, and the cellular (RT-qPCR, mRNA editing, and c-fos–induced expression) levels. Results: Although 5-HTT-/- mice had an anxiogenic profile in the novelty-suppressed feeding test, they displayed less 5-HT2CR–mediated anxiety in response to the agonist m-chlorophenylpiperazine in the social interaction test. In addition, 5-HT2CR–mediated inhibition of a stress-induced increase in 5-HT turnover, measured in various brain areas, was markedly reduced in 5-HTT-/- mutants. These indices of tolerance to 5-HT2CR stimulation were associated neither with altered levels of 5-HT2CR protein and mRNA nor with changes in pre-mRNA editing in the frontal cortex. However, basal c-fos mRNA production in cells expressing 5-HT2CR was higher in 5-HTT-/- mutants, suggesting an altered basal activity of these cells following sustained 5-HT reuptake carrier inactivation. Furthermore, the increased c-fos mRNA expression in 5-HT2CR–like immune-positive cortical cells observed in wild-type mice treated acutely with the 5-HT2CR agonist RO-60,0175 was absent in 5-HTT-/- mutants. Conclusions: Such blunted responsiveness of the 5-HT2CR system, observed at the cell signaling level, probably contributes to the moderation of the anxiety phenotype in 5-HTT-/- mice. PMID:25522398

  3. 5-HT7 receptors as modulators of neuronal excitability, synaptic transmission and plasticity: physiological role and possible implications in autism spectrum disorders

    PubMed Central

    Ciranna, Lucia; Catania, Maria Vincenza

    2014-01-01

    Serotonin type 7 receptors (5-HT7) are expressed in several brain areas, regulate brain development, synaptic transmission and plasticity, and therefore are involved in various brain functions such as learning and memory. A number of studies suggest that 5-HT7 receptors could be potential pharmacotherapeutic target for cognitive disorders. Several abnormalities of serotonergic system have been described in patients with autism spectrum disorder (ASD), including abnormal activity of 5-HT transporter, altered blood and brain 5-HT levels, reduced 5-HT synthesis and altered expression of 5-HT receptors in the brain. A specific role for 5-HT7 receptors in ASD has not yet been demonstrated but some evidence implicates their possible involvement. We have recently shown that 5-HT7 receptor activation rescues hippocampal synaptic plasticity in a mouse model of Fragile X Syndrome, a monogenic cause of autism. Several other studies have shown that 5-HT7 receptors modulate behavioral flexibility, exploratory behavior, mood disorders and epilepsy, which include core and co-morbid symptoms of ASD. These findings further suggest an involvement of 5-HT7 receptors in ASD. Here, we review the physiological roles of 5-HT7 receptors and their implications in Fragile X Syndrome and other ASD. PMID:25221471

  4. Anti-thrombotic and vascular effects of AR246686, a novel 5-HT2A receptor antagonist.

    PubMed

    Adams, John W; Ramirez, Juan; Ortuno, Danny; Shi, Yunqing; Thomsen, William; Richman, Jeremy G; Morgan, Michael; Dosa, Peter; Teegarden, Bradley R; Al-Shamma, Hussien; Behan, Dominic P; Connolly, Daniel T

    2008-05-31

    We have evaluated the anti-platelet and vascular pharmacology of AR246686, a novel 5-hydroxytryptamine2A (5-HT2A) receptor antagonist. AR246686 displayed high affinity binding to membranes of HEK cells stably expressing recombinant human and rat 5-HT2A receptors (Ki=0.2 nM and 0.4 nM, respectively). Functional antagonism (IC50=1.9 nM) with AR246686 was determined by inhibition of ligand-independent inositol phosphate accumulation in the 5-HT2A stable cell line. We observed 8.7-fold and 1360-fold higher affinity of AR246686 for the 5-HT2A receptor vs. 5-HT2C and 5-HT2B receptors, respectively. AR246686 inhibited 5-HT-induced amplification of ADP-stimulated human platelet aggregation (IC50=21 nM). Similar potency was observed for inhibition of 5-HT stimulated DNA synthesis in rat aortic smooth muscle cells (IC(50)=10 nM) and 5-HT-mediated contraction in rat aortic rings. Effects of AR246686 on arterial thrombosis and bleeding time were studied in a rat model of femoral artery occlusion. Oral dosing of AR246686 to rats resulted in prolongation of time to occlusion at 1 mg/kg, whereas increased bleeding time was observed at a dose of 20 mg/kg. In contrast, both bleeding time and time to occlusion were increased at the same dose (10 mg/kg) of clopidogrel. These results demonstrate that AR246686 is a high affinity 5-HT2A receptor antagonist with potent activity on platelets and vascular smooth muscle. Further, oral administration results in anti-thrombotic effects at doses that are free of significant effects on traumatic bleeding time.

  5. Sulfonyl-containing modulators of serotonin 5-HT6 receptors and their pharmacophore models

    NASA Astrophysics Data System (ADS)

    Ivachtchenko, A. V.

    2014-05-01

    Data published in recent years on the synthesis of serotonin 5-HT6 receptor modulators are summarized. Modulators with high affinity for 5-HT6 receptors exhibiting different degrees of selectivity — from highly selective to semiselective and multimodal — are described. Clinical trial results are reported for the most promising serotonin 5-HT6 receptor modulators attracting special attention of medicinal chemists. The bibliography includes 128 references.

  6. Up-regulation of 5-HT2B receptor density and receptor-mediated glycogenolysis in mouse astrocytes by long-term fluoxetine administration.

    PubMed

    Kong, Ebenezer K C; Peng, Liang; Chen, Ye; Yu, Albert C H; Hertz, Leif

    2002-02-01

    The effects were studied of short-term (1 week) versus long-term (2-3 weeks) fluoxetine treatment of primary cultures of mouse astrocytes, differentiated by treatment with dibutyryl cyclic AMP. From previous experiments it is known that acute treatment with fluoxetine stimulates glycogenolysis and increases free cytosolic Ca2+ concentration ([Ca2+]i]) in these cultures, whereas short-term (one week) treatment with 10 microM down-regulates the effects on glycogen and [Ca2+]i, when fluoxetine administration is renewed (or when serotonin is administered). Moreover, antagonist studies have shown that these responses are evoked by activation of a 5-HT2, receptor that is different from the 5-HT2A receptor and therefore at that time tentatively were interpreted as being exerted on 5-HT2C receptors. In the present study the cultures were found by RT-PCR to express mRNA for 5-HT2A and 5-HT2B receptors, but not for the 5-HT2C receptor, identifying the 5-HT2 receptor activated by fluoxetine as the 5-HT2B receptor, the most recently cloned 5-Ht2 receptor and a 5-HT receptor known to be more abundant in human, than in rodent, brain. Both short-term and long-term treatment with fluoxetine increased the specific binding of [3H]mesulergine, a ligand for alL three 5-HT2 receptors. Long-term treatment with fluoxetine caused an agonist-induced up-regulation of the glycogenolytic response to renewed administration of fluoxetine, whereas short-term treatment abolished the fluoxetine-induced hydrolysis of glycogen. Thus, during a treatment period similar to that required for fluoxetine's clinical response to occur, 5-HT2B-mediated effects are initially down-regulated and subsequently up-regulated. PMID:11930908

  7. [CROSS-TALK BETWEEN 5-HT1A AND 5-HT7 RECEPTORS: ROLE IN THE AUTOREGULATION OF THE BRAIN SEROTONIN SYSTEM AND IN MECHANISM OF ANTIDEPRESSANTS ACTION].

    PubMed

    Popova, N K; Ponimaskin, E G; Naumenko, V S

    2015-11-01

    Recent studies considerably extended our knowledge of the mechanisms and physiological role of the interaction between different receptors in the brain. Current review summarizes data on the formation of receptor complexes and the role of such complexes in the autoregulation of the brain serotonin system, behavioral abnormalities and mechanism of antidepressants action. Particular attention is paid to 5-HT1A and 5-HT7 receptor heterodimers. The results described in the present review indicate that: i) dimerization and formation of mobile receptor complexes is a common feature for the members of G-protein coupled receptor superfamily; ii) 5-HT7 receptor appears to be a modulator for 5-HT1A receptor - the key autoregulator of the brain serotonin system; iii) 5-HT1A/5-HT7 receptor complexes formation is one of the mechanisms for inactivation and desensitization of the 5-HTIA receptors in the brain; iv) differences in the 5-HT7 receptor and 5-HTIA/5-HT7 heterodimers density define different sensitivity of pre- and postsynaptic 5-HTlA receptors to chronic treatment with selective serotonin reuptake inhibitors.

  8. LP-211 is a brain penetrant selective agonist for the serotonin 5-HT(7) receptor.

    PubMed

    Hedlund, Peter B; Leopoldo, Marcello; Caccia, Silvio; Sarkisyan, Gor; Fracasso, Claudia; Martelli, Giuliana; Lacivita, Enza; Berardi, Francesco; Perrone, Roberto

    2010-08-30

    We have determined the pharmacological profile of the new serotonin 5-HT(7) receptor agonist N-(4-cyanophenylmethyl)-4-(2-diphenyl)-1-piperazinehexanamide (LP-211). Radioligand binding assays were performed on a panel of 5-HT receptor subtypes. The compound was also evaluated in vivo by examining its effect on body temperature regulation in mice lacking the 5-HT(7) receptor (5-HT(7)(-/-)) and their 5-HT(7)(+/+) sibling controls. Disposition studies were performed in mice of both genotypes. It was found that LP-211 was brain penetrant and underwent metabolic degradation to 1-(2-diphenyl)piperazine (RA-7). In vitro binding assays revealed that RA-7 possessed higher 5-HT(7) receptor affinity than LP-211 and a better selectivity profile over a panel of 5-HT receptor subtypes. In vivo it was demonstrated that LP-211, and to a lesser degree RA-7, induced hypothermia in 5-HT(7)(+/+) but not in 5-HT(7)(-/-) mice. Our results suggest that LP-211 can be used as a 5-HT(7) receptor agonist in vivo. PMID:20600619

  9. Decreased Incentive Motivation Following Knockout or Acute Blockade of the Serotonin Transporter: Role of the 5-HT2C Receptor.

    PubMed

    Browne, Caleb J; Fletcher, Paul J

    2016-09-01

    Acute pharmacological elevation of serotonin (5-hydroxytryptamine; 5-HT) activity decreases operant responding for primary reinforcers, suggesting that 5-HT reduces incentive motivation. The mechanism by which 5-HT alters incentive motivation is unknown, but parallel evidence that 5-HT2C receptor agonists also reduce responding for primary reinforcers implicates this receptor as a potential candidate. These experiments examined whether chronic and acute disruptions of serotonin transporter (SERT) activity altered incentive motivation, and whether the 5-HT2C receptor mediated the effects of elevated 5-HT on behavior. To assess incentive motivation, we measured responding for three different reinforcers: a primary reinforcer (saccharin), a conditioned reinforcer (CRf), and an unconditioned sensory reinforcer (USRf). In the chronic condition, responding was compared between SERT knockout (SERT-KO) mice and their wild-type littermates. In the acute condition, responding was examined in wild-type mice following treatment with 10 or 20 mg/kg citalopram, or its vehicle. The ability of the selective 5-HT2C antagonist SB 242084 to prevent the effects of SERT-KO and citalopram on responding was subsequently examined. Both SERT-KO and citalopram reduced responding for saccharin, a CRf, and a USRf. Treatment with SB 242084 enhanced responding for a CRf and a USRf in SERT-KO mice and blocked the effects of citalopram on CRf and USRf responding. However, SB 242084 was unable to prevent the effects of SERT-KO or citalopram on responding for saccharin. These results support a powerful inhibitory function for 5-HT in the control of incentive motivation, and indicate that the 5-HT2C receptor mediates these effects of 5-HT in a reinforcer-dependent manner. PMID:27125304

  10. 4-Bromo-2,5-dimethoxyphenethylamine (2C-B) and structurally related phenylethylamines are potent 5-HT2A receptor antagonists in Xenopus laevis oocytes

    PubMed Central

    Villalobos, Claudio A; Bull, Paulina; Sáez, Patricio; Cassels, Bruce K; Huidobro-Toro, J Pablo

    2004-01-01

    We recently described that several 2-(2,5-dimethoxy-4-substituted phenyl)ethylamines (PEAs), including 4-I=2C-I, 4-Br=2C-B, and 4-CH3=2C-D analogs, are partial agonists at 5-HT2C receptors, and show low or even negligible intrinsic efficacy at 5-HT2A receptors. These results raised the proposal that these drugs may act as 5-HT2 antagonists. To test this hypothesis, Xenopus laevis oocytes were microinjected with the rat clones for 5-HT2A or 5-HT2C receptors. The above-mentioned PEAs and its 4-H analog (2C-H) blocked the 5-HT-induced currents at 5-HT2A, but not at the 5-HT2C receptor, revealing 5-HT2 receptor subtype selectivity. The 5-HT2A receptor antagonism required a 2-min preincubation to attain maximum inhibition. All PEAs tested shifted the 5-HT concentration–response curves to the right and downward. Their potencies varied with the nature of the C(4) substituent; the relative rank order of their 5-HT2A receptor antagonist potency was 2C-I>2C-B>2C-D>2C-H. The present results demonstrate that in X. laevis oocytes, a series of 2,5-dimethoxy-4-substituted PEAs blocked the 5-HT2A but not the 5-HT2C receptor-mediated responses. As an alternative hypothesis, we suggest that the psychostimulant activity of the PEAs may not be exclusively associated with partial or full 5-HT2A receptor agonism. PMID:15006903

  11. 1-Sulfonyl-6-Piperazinyl-7-Azaindoles as potent and pseudo-selective 5-HT6 receptor antagonists.

    PubMed

    Fabritius, Charles-Henry; Pesonen, Ullamari; Messinger, Josef; Horvath, Raymond; Salo, Harri; Gałęzowski, Michał; Galek, Mariusz; Stefańska, Klaudia; Szeremeta-Spisak, Joanna; Olszak-Płachta, Marta; Buda, Anna; Adamczyk, Justyna; Król, Marcin; Prusis, Peteris; Sieprawska-Lupa, Magdalena; Mikulski, Maciej; Kuokkanen, Katja; Chapman, Hugh; Obuchowicz, Radosław; Korjamo, Timo; Jalava, Niina; Nowak, Mateusz

    2016-06-01

    A series of 1-Sulfonyl-6-Piperazinyl-7-Azaindoles, showing strong antagonistic activity to 5-HT6 receptor (5-HT6R) was synthesized and characterized. The series was optimized to reduce activity on D2 receptor. Based on the selectivity against this off-target and the analysis of the ADME-tox profile, compound 1c was selected for in vivo efficacy assessment, which demonstrated procognitive effects as shown in reversal of scopolamine induced amnesia in an elevated plus maze test in mice. Compound 3, the demethylated version of compound 1c, was profiled against a panel of 106 receptors, channels and transporters, indicating only D3 receptor as a major off-target. Compound 3 has been selected for this study over compound 1c because of the higher 5-HT6R/D2R binding ratio. These results have defined a new direction for the design of our pseudo-selective 5-HT6R antagonists.

  12. The influence of 5-HT2 and 5-HT4 receptor antagonists to modify drug induced disinhibitory effects in the mouse light/dark test

    PubMed Central

    Costall, Brenda; Naylor, Robert J

    1997-01-01

    The ability of 5-HT2 and 5-HT4 receptor antagonists to modify the disinhibitory profile of diazepam and other agents was investigated in male BKW mice in the light/dark test box. The 5-HT2A/2B/2C receptor antagonists ritanserin, MDL11939 and RP62203 and also methysergide, which failed to modify mouse behaviour when administered alone, caused dose-related enhancements (4 to 8 fold) in the potency of diazepam to disinhibit behavioural responding to the aversive situation of the test box. Ritanserin was shown to enhance the disinhibitory potency of other benzodiazepines, chlordiazepoxide (4 fold), temazepam (10 fold) and lorazepam (10 fold), the 5-HT1A receptor ligands, 8-OH-DPAT (25 fold), buspirone (100 fold) and lesopitron (500 fold), the 5-HT3 receptor antagonists, ondansetron (100 fold) R(+)-zacopride (100 fold) and S(−)-zacopride (greater than a 1000 fold), the substituted benzamides, sulpiride (10 fold) and tiapride (5 to 10 fold) and the cholecystokinin (CCK)A receptor antagonist, devazepide (100 fold). It also reduced the onset of action of disinhibition following treatment with the 5-HT synthesis inhibitor parachlorophenylalanine. Ritanserin failed to enhance the disinhibitory effects of the CCKB receptor antagonist CI-988, the angiotensin AT1 receptor antagonist losarten or the angiotensin converting enzyme inhibitor ceranapril. The 5-HT4 receptor antagonists SDZ205-557, GR113808 and SB204070 caused dose-related reductions in the disinhibitory effect of diazepam, returning values to those shown in vehicle treated controls. The antagonists failed to modify mouse behaviour when administered alone. GR113808 was also shown to cause a dose-related antagonism of the disinhibitory effects of chlordiazepoxide, lorazepam, 8-OH-DPAT, buspirone, lesopitron, ondansetron, R(+)-zacopride, sulpiride, tiapride, devazepide, CI-988, losarten, ceranapril and parachlorophenylalanine. It was concluded that in BKW mice (a) the failure of 5-HT2 and 5-HT4 receptor antagonists

  13. Potential role of cortical 5-HT(2A) receptors in the anxiolytic action of cyamemazine in benzodiazepine withdrawal.

    PubMed

    Benyamina, Amine; Naassila, Mickaël; Bourin, Michel

    2012-07-30

    The antipsychotic cyamemazine is a potent serotonin 5-HT(2A) receptor (5-HT(2AR)) antagonist. A positron emission tomography (PET) study in human patients showed that therapeutic doses of cyamemazine produced near saturation of 5-HT(2AR) occupancy in the frontal cortex, whereas dopamine D(2) occupancy remained below the level for motor side effects observed with typical antipsychotics. Recently, numerous studies have revealed the involvement of 5-HT(2AR) in the pathophysiology of anxiety and a double-blind, randomized clinical trial showed similar efficacy of cyamemazine and bromazepam in reducing the anxiety associated with benzodiazepine withdrawal. Therefore, we reviewed the above articles about 5-HT(2AR) and anxiety in order to understand better the anxiolytic mechanisms of cyamemazine in benzodiazepine withdrawal. The 5-HT(2AR) is the most abundant serotonin receptor subtype in the cortex. Non-pharmacological studies with antisense oligodeoxynucleotides and genetically modified mice clearly showed that cortical 5-HT(2AR) signaling positively modulates anxiety-like behavior. With a few exceptions, most other studies reviewed here further support this view. Therefore, the anxiolytic efficacy of cyamemazine in benzodiazepine withdrawal can be due to a 5-HT(2AR) antagonistic activity at the cortical level.

  14. 5-HT2 receptors mediate functional modulation of GABAa receptors and inhibitory synaptic transmissions in human iPS-derived neurons

    PubMed Central

    Wang, Haitao; Hu, Lingli; Liu, Chunhua; Su, Zhenghui; Wang, Lihui; Pan, Guangjin; Guo, Yiping; He, Jufang

    2016-01-01

    Neural progenitors differentiated from induced pluripotent stem cells (iPS) hold potentials for treating neurological diseases. Serotonin has potent effects on neuronal functions through multiple receptors, underlying a variety of neural disorders. Glutamate and GABA receptors have been proven functional in neurons differentiated from iPS, however, little is known about 5-HT receptor-mediated modulation in such neuronal networks. In the present study, human iPS were differentiated into cells possessing featured physiological properties of cortical neurons. Whole-cell patch-clamp recording was used to examine the involvement of 5-HT2 receptors in functional modulation of GABAergic synaptic transmission. We found that serotonin and DOI (a selective agonist of 5-HT2A/C receptor) reversibly reduced GABA-activated currents, and this 5-HT2A/C receptor mediated inhibition required G protein, PLC, PKC, and Ca2+ signaling. Serotonin increased the frequency of miniature inhibitory postsynaptic currents (mIPSCs), which could be mimicked by α-methylserotonin, a 5-HT2 receptor agonist. In contrast, DOI reduced both frequency and amplitude of mIPSCs. These findings suggested that in iPS-derived human neurons serotonin postsynaptically reduced GABAa receptor function through 5-HT2A/C receptors, but presynaptically other 5-HT2 receptors counteracted the action of 5-HT2A/C receptors. Functional expression of serotonin receptors in human iPS-derived neurons provides a pre-requisite for their normal behaviors after grafting. PMID:26837719

  15. Astrocytic 5-HT(2B) receptor as in vitro and in vivo target of SSRIs.

    PubMed

    Peng, Liang; Huang, Jingyang

    2012-12-01

    Most studies in this journal describe recent patents. The present study only has one such reference. Instead, we hope that its contents will trigger investigation of antidepressant drugs along the suggested lines and lead to ensuing patent applications - first and foremost by more focus on astrocytes. Clinical research has already pointed towards the importance of these cells, which account for one quarter of brain cortical volume and at least as much of its oxidative metabolism. Astrocytes express a multitude of receptors, including 5-HT(2B) receptors. In cultured astrocytes acute treatment with any of the five SSRIs, fluoxetine, fluvoxamine, sertraline, paroxetine, and citalopram, stimulates equipotently and with sufficient affinity to be therapeutically relevant, the 5-HT(2B) receptor. Following EGF receptor transactivation and a resultant autocrine HB-EGF stimulation, these drugs activate two interdependent signal pathways i) the Ras-Raf-Mek-ERK phosphorylation pathway and ii) the PI3K-AKT-GSK-3β pathway, eventually altering gene expression. Chronic treatment with fluoxetine upregulates gene expression of cPLA₂, ADAR2, GluK2 and 5-HT(2B) receptors, and RNA editing of the later two in cultured astrocytes and in astrocytes obtained by fluorescence-activated cell sorting of cells from fluoxetinetreated mice. Chronic treatment also down-regulates the Gq-protein-coupled receptor-induced increase of intracellular Ca²⁺ by inhibiting TRPC function, compromising astrocytic Ca²⁺ re-filling. This affects glycogenolysis and several steps in the signal pathways. Since astrocytes in the mature brain and in our cultures do not express SERT, both acute and chronic effects in cultured astrocytes must be directly mediated by 5-HT(2B) receptor activation. PMID:22963281

  16. Stress-induced alterations in 5-HT1A receptor transcriptional modulators NUDR and Freud-1.

    PubMed

    Szewczyk, Bernadeta; Kotarska, Katarzyna; Daigle, Mireille; Misztak, Paulina; Sowa-Kucma, Magdalena; Rafalo, Anna; Curzytek, Katarzyna; Kubera, Marta; Basta-Kaim, Agnieszka; Nowak, Gabriel; Albert, Paul R

    2014-11-01

    The effect of stress on the mRNA and protein level of the 5-HT1A receptor and two of its key transcriptional modulators, NUDR and Freud-1, was examined in the prefrontal cortex (PFC) and hippocampus (Hp) using rodent models: olfactory bulbectomy (OB) and prenatal stress (PS) in male and female rats; chronic mild stress in male rats (CMS) and pregnancy stress. In PFC, CMS induced the most widespread changes, with significant reduction in both mRNA and protein levels of NUDR, 5-HT1A receptor and in Freud-1 mRNA; while in Hp 5-HT1A receptor and Freud-1 protein levels were also decreased. In male, but not female OB rats PFC Freud-1 and 5-HT1A receptor protein levels were reduced, while in Hp 5-HT1A receptor, Freud-1 and NUDR mRNA's but not protein were reduced. In PS rats PFC 5-HT1A receptor protein was reduced more in females than males; while in Hp Freud-1 protein was increased in females. In pregnancy stress, PFC NUDR, Freud-1 and 5-HT1A protein receptor levels were reduced, and in HP 5-HT1A receptor protein levels were also reduced; in HP only NUDR and Freud-1 mRNA levels were reduced. Overall, CMS and stress during pregnancy produced the most salient changes in 5-HT1A receptor and transcription factor expression, suggesting a primary role for altered transcription factor expression in chronic regulation of 5-HT1A receptor expression. By contrast, OB (in males) and PS (in females) produced gender-specific reductions in PFC 5-HT1A receptor protein levels, suggesting a role for post-transcriptional regulation. These and previous data suggest that chronic stress might be a key regulator of NUDR/Freud-1 gene expression.

  17. The role of 5-HT1A and 5-HT1B receptors in antidepressant drug actions in the mouse forced swimming test.

    PubMed

    Redrobe, J P; MacSweeney, C P; Bourin, M

    1996-12-30

    The forced swimming test is a behavioural model developed to predict the efficacy of antidepressant drugs. Few studies have been aimed at evaluating the mechanism of action of antidepressants in the forced swimming test. The present study was designed in order to further evaluate the mode of action of antidepressants in the forced swimming test, by using selective agonists and antagonists at 5-HT1A and 5-HT1B receptor sites. Agonists/antagonists and antidepressants were administered 45 min and 30 min, respectively, prior to testing. Prior administration of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) (1 mg/kg, i.p.) induced anti-immobility effects with the tricyclic antidepressant imipramine (8 mg/kg, i.p.) and noradrenaline uptake inhibitors maprotiline (8 mg/kg, i.p.) and desipramine (16 mg/kg, i.p.), but not with fluoxetine (16 mg/kg, i.p.), citalopram (16 mg/kg, i.p.) or fluvoxamine (8 mg/kg, i.p.). These effects were antagonised by prior administration of 1-(2-methoxyphenyl)-4-[-(2-phthalimido)butyl]piperazine) (NAN 190) (0.5 mg/kg, i.p.). On the other hand, pretreatment with (+/-)-pindolol (32 mg/kg, i.p.) potentiated the effects of the selective serotonin reuptake inhibitors and was devoid of any activity with imipramine (8 mg/kg, i.p.), maprotiline (8 mg/kg, i.p.) or desipramine (16 mg/kg, i.p.). Prior administration of 5-methoxy-3-(1,2,3,6-tetrahydro-4-pyridyl)-1H-indole (RU 24969) enhanced the antidepressant-like effects of the selective serotonin reuptake inhibitors and imipramine (8 mg/kg, i.p.) in the forced swimming test. The anti-immobility effects of the selective serotonin reuptake inhibitors in the forced swimming test seem to be mediated by presynaptic 5-HT1A receptors as well as postsynaptic 5-HT1B receptors. Antidepressant-like effects of the noradrenaline uptake inhibitors seem, on the other hand, to be mediated by postsynaptic 5-HT1A receptors. Considering the variety of 5-HT receptors, it is possible that other subtypes may participate

  18. Serotonin-induced inhibition of locomotor rhythm of the rat isolated spinal cord is mediated by the 5-HT1 receptor class.

    PubMed Central

    Beato, M; Nistri, A

    1998-01-01

    The neurotransmitter serotonin (5-HT) induces rhythmic motor patterns (fictive locomotion) of the neonatal rat spinal cord in vitro; this is a useful experimental model to study the generation of a motor programme at exclusively spinal level. Nevertheless, 5-HT slows down the fictive locomotion typically elicited by activation of NMDA glutamate receptors, suggesting a complex action of this monoamine. By means of electrophysiological recordings from multiple ventral roots we demonstrated that the decrease caused by 5-HT in NMDA-induced periodicity was dose-dependent, enhanced after pharmacological blocking of 5-HT2 excitatory receptors, and imitated by pharmacological agonists of the 5-HT1 receptor family. Selective blockers of the 5-HT1A or 5-HT1B/D receptor classes, either alone or in combination, largely (but not completely) attenuated this inhibitory action of 5-HT. It is concluded that the principal inhibitory action of 5-HT on the spinal locomotor network was mediated by certain subtypes of the 5-HT1 receptor class, which tends to oppose the 5-HT2 receptor-mediated excitation of the same network. PMID:9842733

  19. Controversies on the role of 5-HT(2C) receptors in the mechanisms of action of antidepressant drugs.

    PubMed

    Martin, Cedric B P; Hamon, Michel; Lanfumey, Laurence; Mongeau, Raymond

    2014-05-01

    Evidence from the various sources indicates alterations in 5-HT2C receptor functions in anxiety, depression and suicide, and other stress-related disorders treated with antidepressant drugs. Although the notion of a 5-HT2C receptor desensitization following antidepressant treatments is rather well anchored in the literature, this concept is mainly based on in vitro assays and/or behavioral assays (hypolocomotion, hyperthermia) that have poor relevance to anxio-depressive disorders. Our objective herein is to provide a comprehensive overview of the studies that have assessed the effects of antidepressant drugs on 5-HT2C receptors. Relevant molecular (second messengers, editing), neurochemical (receptor binding and mRNA levels), physiological (5-HT2C receptor-induced hyperthermia and hormone release), behavioral (5-HT2C receptor-induced changes in feeding, anxiety, defense and motor activity) data are summarized and discussed. Setting the record straight about drug-induced changes in 5-HT2C receptor function in specific brain regions should help to determine which pharmacotherapeutic strategy is best for affective and anxiety disorders. PMID:24631644

  20. Differential involvement of 5-HT(1A) and 5-HT(1B/1D) receptors in human interferon-alpha-induced immobility in the mouse forced swimming test.

    PubMed

    Zhang, Hongmei; Wang, Wei; Jiang, Zhenzhou; Shang, Jing; Zhang, Luyong

    2010-01-01

    Although Interferon-alpha (IFN-alpha, CAS 9008-11-1) is a powerful drug in treating several viral infections and certain tumors, a considerable amount of neuropsychiatric side-effects such as depression and anxiety are an unavoidable consequence. Combination with the selective serotonin (5-HT) reuptake inhibitor (SSRI) fluoxetine (CAS 56296-78-7) significantly improved the situation. However, the potential 5-HT(1A) receptor- and 5-HT(1B) receptor-signals involved in the antidepressant effects are still unclear. The effects of 5-HT(1A) receptor- and 5-HT(1B) receptor signals were analyzed by using the mouse forced swimming test (FST), a predictive test of antidepressant-like action. The present results indicated that (1) fluoxetine (administrated intragastrically, 30 mg/kg; not subactive dose: 15 mg/kg) significantly reduced IFN-alpha-induced increase of the immobility time in the forced swimming test; (2) 5-HT(1A) receptor- and 5-HT(1B) receptor ligands alone or in combination had no effects on IFN-alpha-induced increase of the immobility time in the FST; (3) surprisingly, WAY 100635 (5-HT(1A) receptor antagonist, 634908-75-1) and 8-OH-DPAT(5-HT(1A) receptor agonist, CAS 78950-78-4) markedly enhanced the antidepressant effect of fluoxetine at the subactive dose (15 mg/kg, i. g.) on the IFN-alpha-treated mice in the FST. Further investigations showed that fluoxetine combined with WAY 100635 and 8-OH-DPAT failed to produce antidepressant effects in the FST. (4) Co-application of CGS 12066A (5-HT(1B) receptor agonist, CAS 109028-09-3) or GR 127935 (5-HT(1B/1D) receptor antagonist, CAS 148642-42-6) with fluoxetine had no synergistic effects on the IFN-alpha-induced increase of immobility time in FST. (5) Interestingly, co-administration of GR 127935, WAY 100635 and fluoxetine significantly reduced the IFN-alpha-induced increase in immobility time of FST, being more effective than co-administration of WAY 100635 and fluoxetine. All results suggest that (1) compared to

  1. Effects of age of serotonin 5-HT2 receptors in cocaine abusers and normal subjects

    SciTech Connect

    Wang, G.J.; Volkow, N.D.; Logan, J.

    1995-05-01

    We measured the effect of age on serotonin 5-HT2 receptor availability and compared it with the effects on dopamine D2 receptors on 19 chronic cocaine abusers (35.2{plus_minus}9.8 years, range 18-54 years old) and 19 age matched normal controls using positron emission tomography (PET) and F-18 N-methylspiperone (NMS). 5-HT2 Receptor availability was measure din frontal (FR), occipital (OC), cingulate (CI) and orbitofrontal (OF) cortices using the ratio of the distribution volume in the region of interest to that in the cerebelium (CB) which is a function of Bmax/Kd. D2 receptor availability in the basal ganglia was measured using the {open_quotes}ratio index{close_quotes} (slope of striatum/CB versus time over 180 min of the scan) which is a function of Bmax. 5-HT2 Receptor availability differed among regions and were as follows: CI>OF>OC>FC.5-HT2 Receptor availability decreased significantly with age. This effect was more accentuated for 5-HT2 receptor availability in FR than in OC(df=1, p<0.025). Striatal dopamine D2 receptors were also found to decrease significantly with age (r=0.63, p<0.007). In a given subject, D2 receptor availability was significantly correlated with 5-HT2 receptor availability in FR (r=0.51, p<0.035) but not in OC. The values for 5-HT2 receptor availability were not different in normal subjects and cocaine abusers. These results document a decline in 5-HT2 and D2 receptors with age and document an association between frontal 5-HT2 and striatal D2 receptor availability. These results did not show any changes in 5-HT2 receptor availability in cocaine abusers as compared to control subjects.

  2. The 5-HT3 receptor is essential for exercise-induced hippocampal neurogenesis and antidepressant effects.

    PubMed

    Kondo, M; Nakamura, Y; Ishida, Y; Shimada, S

    2015-11-01

    Exercise has a variety of beneficial effects on brain structure and function, such as hippocampal neurogenesis, mood and memory. Previous studies have shown that exercise enhances hippocampal neurogenesis, induces antidepressant effects and improves learning behavior. Brain serotonin (5-hydroxytryptamine, 5-HT) levels increase following exercise, and the 5-HT system has been suggested to have an important role in these exercise-induced neuronal effects. However, the precise mechanism remains unclear. In this study, analysis of the 5-HT type 3A receptor subunit-deficient (htr3a(-/-)) mice revealed that lack of the 5-HT type 3 (5-HT3) receptor resulted in loss of exercise-induced hippocampal neurogenesis and antidepressant effects, but not of learning enhancement. Furthermore, stimulation of the 5-HT3 receptor promoted neurogenesis. These findings demonstrate that the 5-HT3 receptor is the critical target of 5-HT action in the brain following exercise, and is indispensable for hippocampal neurogenesis and antidepressant effects induced by exercise. This is the first report of a pivotal 5-HT receptor subtype that has a fundamental role in exercise-induced morphological changes and psychological effects.

  3. No evidence that MDMA-induced enhancement of emotional empathy is related to peripheral oxytocin levels or 5-HT1a receptor activation.

    PubMed

    Kuypers, Kim P C; de la Torre, Rafael; Farre, Magi; Yubero-Lahoz, Samanta; Dziobek, Isabel; Van den Bos, Wouter; Ramaekers, Johannes G

    2014-01-01

    The present study aimed at investigating the effect of MDMA on measures of empathy and social interaction, and the roles of oxytocin and the 5-HT1A receptor in these effects. The design was placebo-controlled within-subject with 4 treatment conditions: MDMA (75 mg), with or without pindolol (20 mg), oxytocin nasal spray (40 IU+16 IU) or placebo. Participants were 20 healthy poly-drug MDMA users, aged between 18-26 years. Cognitive and emotional empathy were assessed by means of the Reading the Mind in the Eyes Test and the Multifaceted Empathy Test. Social interaction, defined as trust and reciprocity, was assessed by means of a Trust Game and a Social Ball Tossing Game. Results showed that MDMA selectively affected emotional empathy and left cognitive empathy, trust and reciprocity unaffected. When combined with pindolol, these effects remained unchanged. Oxytocin did not affect measures of empathy and social interaction. Changes in emotional empathy were not related to oxytocin plasma levels. It was concluded that MDMA (75 mg) selectively enhances emotional empathy in humans. While the underlying neurobiological mechanism is still unknown, it is suggested that peripheral oxytocin does not seem to be the main actor in this; potential candidates are the serotonin 2A and the vasopressin 1A receptors. Trial registration: MDMA & PSB NTR 2636.

  4. The interaction of trichloroethanol with murine recombinant 5-HT3 receptors.

    PubMed Central

    Downie, D L; Hope, A G; Belelli, D; Lambert, J J; Peters, J A; Bentley, K R; Steward, L J; Chen, C Y; Barnes, N M

    1995-01-01

    1. The effects of ethanol, chloral hydrate and trichloroethanol upon the 5-HT3 receptor have been investigated by use of electrophysiological techniques applied to recombinant 5-HT3 receptor subunits (5-HT3R-A or 5-HT3R-As) expressed in Xenopus laevis oocytes. Additionally, the influence of trichloroethanol upon the specific binding of [3H]-granisetron to membrane preparations of HEK 293 cells stably transfected with the murine 5-HT3R-As subunit and 5-HT3 receptors endogenous to NG 108-15 cell membranes was assessed. 2. Ethanol (30-300 mM), chloral hydrate (1-30 mM) and trichloroethanol (0.3-10 mM), produced a reversible, concentration-dependent, enhancement of 5-HT-mediated currents recorded from oocytes expressing either the 5-HT3R-A, or the 5-HT3R-As subunit. 3. Trichloroethanol (5 mM) produced a parallel leftward shift of the 5-HT concentration-response curve, reducing the EC50 for 5-HT from 1 +/- 0.04 microM (n = 4) to 0.5 +/- 0.01 microM (n = 4) for oocytes expressing the 5-HT3R-A. A similar shift, from 2.1 +/- 0.05 microM (n = 11) to 1.3 +/- 0.1 microM (n = 4), was observed in oocytes expressing the 5-HT3R-As subunit. Trichloroethanol (5 mM) had little or no effect upon the maximum current produced by 5-HT for either recombinant receptor. 4. Trichloroethanol (5 mM) similarly reduced the EC50 for 2-methyl-5-HT from 13 +/- 0.4 microM (n = 4) to 4.6 +/- 0.2 microM (n = 4) and from 15 +/- 2 microM (n = 4) to 5 +/- 0.4 microM (n = 4) for oocytes expressing the 5-HT3R-A and 5-HT3R-As subunit respectively. Additionally, trichloroethanol (5 mM) produced a clear enhancement of the maximal current to 2-methyl-5-HT (expressed as a percentage of the maximal current to 5-HT) from 63 +/- 0.7% (n = 4) to 101 +/- 1.6% (n = 4) and from 9 +/- 0.2% (n = 4) to 74 +/- 2% (n = 4) for oocytes expressing the 5-HT3R-A and 5-HT3R-As subunit respectively. 5. Trichloroethanol (2.5 mM) had no effect upon the Kd, or Bmax, of specific [3H]-granisetron binding to membrane homogenates of NG

  5. A Pharmacological Analysis of an Associative Learning Task: 5-HT1 to 5-HT7 Receptor Subtypes Function on a Pavlovian/Instrumental Autoshaped Memory

    PubMed Central

    Meneses, Alfredo

    2003-01-01

    Recent studies using both invertebrates and mammals have revealed that endogenous serotonin (5-hydroxytryptamine [5-HT]) modulates plasticity processes, including learning and memory. However, little is currently known about the mechanisms, loci, or time window of the actions of 5-HT. The aim of this review is to discuss some recent results on the effects of systemic administration of selective agonists and antagonists of 5-HT on associative learning in a Pavlovian/instrumental autoshaping (P/I-A) task in rats. The results indicate that pharmacological manipulation of 5-HT1-7 receptors or 5-HT reuptake sites might modulate memory consolidation, which is consistent with the emerging notion that 5-HT plays a key role in memory formation. PMID:14557609

  6. Synthesis and Structure–Activity Relationships of N-Benzyl Phenethylamines as 5-HT2A/2C Agonists

    PubMed Central

    2014-01-01

    N-Benzyl substitution of 5-HT2A receptor agonists of the phenethylamine structural class of psychedelics (such as 4-bromo-2,5-dimethoxyphenethylamine, often referred to as 2C-B) confer a significant increase in binding affinity as well as functional activity of the receptor. We have prepared a series of 48 compounds with structural variations in both the phenethylamine and N-benzyl part of the molecule to determine the effects on receptor binding affinity and functional activity at 5-HT2A and 5-HT2C receptors. The compounds generally had high affinity for the 5-HT2A receptor with 8b having the highest affinity at 0.29 nM but with several other compounds also exhibiting subnanomolar binding affinities. The functional activity of the compounds was distributed over a wider range with 1b being the most potent at 0.074 nM. Most of the compounds exhibited low to moderate selectivity (1- to 40-fold) for the 5-HT2A receptor in the binding assays, although one compound 6b showed an impressive 100-fold selectivity for the 5-HT2A receptor. In the functional assay, selectivity was generally higher with 1b being more than 400-fold selective for the 5-HT2A receptor. PMID:24397362

  7. Platelet 5-HT(1A) receptor correlates with major depressive disorder in drug-free patients.

    PubMed

    Zhang, Zhang-Jin; Wang, Di; Man, Sui Cheung; Ng, Roger; McAlonan, Grainne M; Wong, Hei Kiu; Wong, Wendy; Lee, Jade; Tan, Qing-Rong

    2014-08-01

    The platelet serotonergic system has potential biomarker utility for major depressive disorder (MDD). In the present study, platelet expression of 5-HT1A receptors and serotonin transporter (SERT) proteins, and serotonin (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) were quantified in 53 patients with MDD and 22 unaffected controls. All were drug-free, non-smokers and had no other psychiatric and cardiovascular comorbidity. The severity of depression symptoms was evaluated using the 17-item Hamilton Depression Rating Scale (HAMD-17) and the Self-rating Depression Scale (SDS). Patients with MDD had significantly higher expression of platelet 5-HT1A receptors but significantly lower contents of platelet 5-HT, platelet-poor plasma (PPP) 5-HT and PPP 5-HIAA compared to healthy controls, and this was correlated with the severity of depression. SERT expression did not differ between the two groups. Correlation analysis confirmed a strong, inverse relationship between the 5-HT1A receptor expression and the 5-HT and 5-HIAA levels. Thus overexpression of platelet 5-HT1A receptors and reduced 5-HT tone may function as a peripheral marker of depression.

  8. 5-HT-1A receptor-mediated modulation of medullary expiratory neurones in the cat.

    PubMed Central

    Lalley, P M; Bischoff, A M; Richter, D W

    1994-01-01

    The involvement of the 5-HT-1A receptor in serotoninergic responses of stage 2 expiratory (E-2) neurones was investigated in pentobarbitone-anaesthetized, mechanically ventilated cats. The specific agonist of the 5-HT-1A receptor, 8-hydroxy-diproplaminotetralin (8-OH-DPAT), administered systemically or by ionophoresis directly on to the neurones, had a clear depressant effect. Administration of 8-OH-DPAT at doses of 10-50 micrograms kg-1 (I.V.) increased the membrane hyperpolarizations of E-2 neurones during the inspiratory and postinspiratory phases, and shortened their duration of activity in association with shortening of phrenic nerve activity. Discharges of E-2 neurones were also less intense. At doses of 50-90 micrograms kg-1, 8-OH-DPAT reduced or abolished inspiratory hyperpolarizations, and reduced expiratory depolarizations of membrane potential and discharge in parallel with inhibition of phrenic nerve discharges. The effects of the larger doses were reversed by I.V. injection of NAN-190, an antagonist at the 5-HT-1A receptor. Dose-dependent effects on the membrane potential and discharge of E-2 neurones, but not on phrenic nerve activity, were also seen by ionophoretic administration of 8-OH-DPAT on to E-2 neurones. At low currents, ejection of 8-OH-DPAT hyperpolarized the neurones without affecting the duration of inspiratory hyperpolarization and expiratory depolarization. This hyperpolarization depressed the intensity and the duration of expiratory discharges. Ejection with larger currents hyperpolarized the E-2 neurones further, and depressed expiratory depolarization leading to blockade of expiratory discharges. The effects on membrane potential were accompanied by decreased neuronal input resistance. This depressed the excitability of E-2 neurones as tested by discharge evoked by intracellular current injection. The amplitudes of action potentials decreased in parallel with the changes in input resistance. The effects were attributed to a

  9. Oleanolic acid acrylate elicits antidepressant-like effect mediated by 5-HT1A receptor.

    PubMed

    Fajemiroye, James O; Polepally, Prabhakar R; Chaurasiya, Narayan D; Tekwani, Babu L; Zjawiony, Jordan K; Costa, Elson A

    2015-01-01

    The development of new drugs for the treatment of depression is strategic to achieving clinical needs of patients. This study evaluates antidepressant-like effect and neural mechanisms of four oleanolic acid derivatives i.e. acrylate (D1), methacrylate (D2), methyl fumarate (D3) and ethyl fumarate (D4). All derivatives were obtained by simple one-step esterification of oleanolic acid prior to pharmacological screening in the forced swimming (FS) and open field (OF) tests. Pharmacological tools like α-methyl-p-tyrosine (AMPT, catecholamine depletor), p-chlorophenylalanine (serotonin depletor), prazosin (PRAZ, selective α1-receptor antagonist), WAY-100635 (selective serotonin 5-HT1A receptor antagonist) as well as monoamine oxidase (MAO) and functional binding assays were conducted to investigate possible neural mechanisms. In the FS test, D1 showed the most promising antidepressant-like effect without eliciting locomotor incoordination. Unlike group of mice pretreated with AMPT 100 mg/kg, PCPA 100 mg/kg or PRAZ 1 mg/kg, the effect of D1 was attenuated by WAY-100635 0.3 mg/kg pretreatment. D1 demonstrated moderate inhibition of MAO-A (IC50 = 48.848 ± 1.935 μM), potency (pEC50 = 6.1 ± 0.1) and intrinsic activity (E max = 26 ± 2.0%) on 5-HT1A receptor. In conclusion, our findings showed antidepressant-like effect of D1 and possible involvement of 5-HT1A receptor.

  10. Investigation of the role of 5-HT2 receptor subtypes in the control of the bladder and the urethra in the anaesthetized female rat

    PubMed Central

    Mbaki, Y; Ramage, A G

    2008-01-01

    Background and purpose: Micturition is controlled by central 5-HT-containing pathways. 5-HT2 receptors have been implicated in this system especially in control of the urethra, which is a drug target for treating urinary incontinence. This study investigates the role of each of the three subtypes of this receptor with emphasis on sphincter regulation. Experimental approach: Recordings of urethral and bladder pressure, external urethral sphincter (EUS) EMG, as well as the micturition reflex induced by bladder distension along with blood pressure and heart rate were made in anaesthetized rats. The effects of agonists and antagonists for 5-HT2 receptor subtypes were studied on these variables. Key results: The 5-HT2C agonists Ro 60-0175, WAY 161503 and mCPP, i.v., activated the EUS, increased urethral pressure and inhibited the micturition reflex. The effects of Ro 60-0175 on the EUS were blocked by the 5-HT2C antagonist SB 242084 and the 5-HT2A antagonists, ketanserin and MDL 100907. SB 242084 also blocked the inhibitory action on the reflex, while the 5-HT2B antagonist RS 127445 only blocked the increase in urethral pressure. The 5-HT2A receptor agonist DOI given i.v. or i.t. but not i.c.v. activated the EUS. Conclusions and implications: 5-HT2A/2C receptors located in the sacral spinal cord activate the EUS, while central 5-HT2C receptors inhibit the micturition reflex and 5-HT2B receptors, probably at the level of the urethra, increase urethral smooth muscle tone. Furthermore, 5-HT2B and 5-HT2C receptors do not seem to play an important role in the physiological regulation of micturition. PMID:18604238

  11. Reduced 5-HT2A receptor signaling following selective bilateral amygdala damage

    PubMed Central

    Schlaepfer, Thomas E.; Matusch, Andreas; Reich, Harald; Shah, Nadim J.; Zilles, Karl; Maier, Wolfgang; Bauer, Andreas

    2009-01-01

    Neurobiological evidence implicates the amygdala as well as serotonergic (serotonin, 5-HT) signaling via postsynaptic 5-HT2A receptors as essential substrates of anxiety behaviors. Assuming a functional interdependence of these substrates, we hypothesized that a low-fear behavioral phenotype due to bilateral lesion of the amygdala would be associated with significant 5-HT2A receptor changes. Thus, we used [18F]altanserin positron emission tomography (PET) referenced to radioligand plasma levels and corrected for partial volume effects to quantify the spatial distribution of 5-HT2A receptor binding potential (BPP) in a rare patient with Urbach–Wiethe disease and selective bilateral amygdala calcification damage relative to 10 healthy control subjects. Consistent with our a priori hypothesis, we observed a 70% global decrease in 5-HT2A receptor BPP in the Urbach–Wiethe patient relative to controls. Thus, brain abnormalities in this patient are not restricted to the amygdala, but extend to overall 5-HT neurotransmission via 5-HT2A receptors. Our findings provide important insights into the molecular architecture of human anxiety behaviors and suggest the 5-HT2A receptor as a promising pharmacological target to control pathological anxiety. PMID:19015089

  12. Native Serotonin 5-HT2C Receptors Are Expressed as Homodimers on the Apical Surface of Choroid Plexus Epithelial Cells

    PubMed Central

    Grinde, Ellinor; Lindsley, Tara; Teitler, Milt; Mancia, Filippo; Cowan, Ann; Mazurkiewicz, Joseph E.

    2015-01-01

    G protein–coupled receptors (GPCRs) are a prominent class of plasma membrane proteins that regulate physiologic responses to a wide variety of stimuli and therapeutic agents. Although GPCR oligomerization has been studied extensively in recombinant cells, it remains uncertain whether native receptors expressed in their natural cellular environment are monomers, dimers, or oligomers. The goal of this study was to determine the monomer/oligomer status of a native GPCR endogenously expressed in its natural cellular environment. Native 5-HT2C receptors in choroid plexus epithelial cells were evaluated using fluorescence correlation spectroscopy (FCS) with photon counting histogram (PCH). An anti–5-HT2C fragment antigen binding protein was used to label native 5-HT2C receptors. A known monomeric receptor (CD-86) served as a control for decoding the oligomer status of native 5-HT2C receptors by molecular brightness analysis. FCS with PCH revealed molecular brightness values for native 5-HT2C receptors equivalent to the molecular brightness of a homodimer. 5-HT2C receptors displayed a diffusion coefficient of 5 × 10−9 cm2/s and were expressed at 32 receptors/μm2 on the apical surface of choroid plexus epithelial cells. The functional significance and signaling capabilities of the homodimer were investigated in human embryonic kidney 293 cells using agonists that bind in a wash-resistant manner to one or both protomers of the homodimer. Whereas agonist binding to one protomer resulted in G protein activation, maximal stimulation required occupancy of both protomers. This study is the first to demonstrate the homodimeric structure of 5-HT2C receptors endogenously expressed in their native cellular environment, and identifies the homodimer as a functional signaling unit. PMID:25609374

  13. Serotonin contracts the rat mesenteric artery by inhibiting 4-aminopyridine-sensitive Kv channels via the 5-HT2A receptor and Src tyrosine kinase.

    PubMed

    Sung, Dong Jun; Noh, Hyun Ju; Kim, Jae Gon; Park, Sang Woong; Kim, Bokyung; Cho, Hana; Bae, Young Min

    2013-01-01

    Serotonin (5-hydroxytryptamine (5-HT)) is a neurotransmitter that regulates a variety of functions in the nervous, gastrointestinal and cardiovascular systems. Despite such importance, 5-HT signaling pathways are not entirely clear. We demonstrated previously that 4-aminopyridine (4-AP)-sensitive voltage-gated K(+) (Kv) channels determine the resting membrane potential of arterial smooth muscle cells and that the Kv channels are inhibited by 5-HT, which depolarizes the membranes. Therefore, we hypothesized that 5-HT contracts arteries by inhibiting Kv channels. Here we studied 5-HT signaling and the detailed role of Kv currents in rat mesenteric arteries using patch-clamp and isometric tension measurements. Our data showed that inhibiting 4-AP-sensitive Kv channels contracted arterial rings, whereas inhibiting Ca(2+)-activated K(+), inward rectifier K(+) and ATP-sensitive K(+) channels had little effect on arterial contraction, indicating a central role of Kv channels in the regulation of resting arterial tone. 5-HT-induced arterial contraction decreased significantly in the presence of high KCl or the voltage-gated Ca(2+) channel (VGCC) inhibitor nifedipine, indicating that membrane depolarization and the consequent activation of VGCCs mediate the 5-HT-induced vasoconstriction. The effects of 5-HT on Kv currents and arterial contraction were markedly prevented by the 5-HT2A receptor antagonists ketanserin and spiperone. Consistently, α-methyl 5-HT, a 5-HT2 receptor agonist, mimicked the 5-HT action on Kv channels. Pretreatment with a Src tyrosine kinase inhibitor, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine, prevented both the 5-HT-mediated vasoconstriction and Kv current inhibition. Our data suggest that 4-AP-sensitive Kv channels are the primary regulator of the resting tone in rat mesenteric arteries. 5-HT constricts the arteries by inhibiting Kv channels via the 5-HT2A receptor and Src tyrosine kinase pathway. PMID:24336234

  14. 5-HT(6) receptor recruitment of mTOR as a mechanism for perturbed cognition in schizophrenia.

    PubMed

    Meffre, Julie; Chaumont-Dubel, Séverine; Mannoury la Cour, Clotilde; Loiseau, Florence; Watson, David J G; Dekeyne, Anne; Séveno, Martial; Rivet, Jean-Michel; Gaven, Florence; Déléris, Paul; Hervé, Denis; Fone, Kevin C F; Bockaert, Joël; Millan, Mark J; Marin, Philippe

    2012-10-01

    Cognitive deficits in schizophrenia severely compromise quality of life and are poorly controlled by current antipsychotics. While 5-HT(6) receptor blockade holds special promise, molecular substrates underlying their control of cognition remain unclear. Using a proteomic strategy, we show that 5-HT(6) receptors physically interact with several proteins of the mammalian target of rapamycin (mTOR) pathway, including mTOR. Further, 5-HT(6) receptor activation increased mTOR signalling in rodent prefrontal cortex (PFC). Linking this signalling event to cognitive impairment, the mTOR inhibitor rapamycin prevented deficits in social cognition and novel object discrimination induced by 5-HT(6) agonists. In two developmental models of schizophrenia, specifically neonatal phencyclidine treatment and post-weaning isolation rearing, the activity of mTOR was enhanced in the PFC, and rapamycin, like 5-HT(6) antagonists, reversed these cognitive deficits. These observations suggest that recruitment of mTOR by prefrontal 5-HT(6) receptors contributes to the perturbed cognition in schizophrenia, offering new vistas for its therapeutic control.

  15. Do imipramine and dihydroergosine possess two components - one stimulating 5-HT sub 1 and the other inhibiting 5-HT sub 2 receptors

    SciTech Connect

    Pericic, D.; Mueck-Seler, D. )

    1990-01-01

    The mechanisms by which imipramine and dihydroergosine stimulate the 5-HT syndrome in rats and inhibit the head-twitch response in rats and mice were studied. Imipramine- and dihydroergosine-included stimulation of the 5-HT syndrome was inhibited stereoselectively by propranolol, a high affinity ligand for 5-HT{sub 1} receptor sites, but not by ritanserin, a specific 5-HT{sub 2} receptor antagonist. (-) -Propranolol potentiated the inhibitory effect of imipramine, but not of dihydroergosine on the head-twitch response, while ritanserin was without effect. As expected, 8-OH-DPAT, a selective 5-HT{sub 1A} receptor agonist, stimulated, and 5-HT{sub 1B} agonists CGS 12066B and 1-(trifluoromethylphenyl) piperazine (TFMPP) failed to stimulate the 5-HT syndrome induced in rats by pargyline and 5-HTP administration. A higher dose of ritanserin inhibited the syndrome. While 8-OH-DPAT alone produced all behavioral components of the 5-HT syndrome, dihydroergosine or imipramine alone even at very high doses never produced tremor or a more intensive forepaw padding as seen when these drugs were given in combination with pargyline and 5-HTP. A single administration of (-)-propranolol also inhibited the head-twitch response. This effect lasted in mice longer that after ritanserin administration. In in vitro experiments dihydroergosine expressed approximately twenty-fold higher affinity for {sup 3}H-ketanserin binding sites than imipramine.

  16. Food intake inhibition in rainbow trout induced by activation of serotonin 5-HT2C receptors is associated with increases in POMC, CART and CRF mRNA abundance in hypothalamus.

    PubMed

    Pérez-Maceira, Jorge J; Otero-Rodiño, Cristina; Mancebo, María J; Soengas, José L; Aldegunde, Manuel

    2016-04-01

    In rainbow trout, the food intake inhibition induced by serotonin occurs through 5-HT2C and 5-HT1A receptors, though the mechanisms involved are still unknown. Therefore, we assessed if a direct stimulation of 5-HT2C and 5-HT1A serotonin receptors (resulting in decreased food intake in rainbow trout), affects gene expression of neuropeptides involved in the control of food intake, such as pro-opiomelanocortin (POMC), cocaine- and amphetamine-regulated transcript (CART), corticotrophin releasing factor (CRF), and agouti-related peptide (AgRP). In a first set of experiments, the injection of the 5-HT2C receptor agonists MK212 (60 μg kg(-1) icv) and WAY 161503 (1 mg kg(-1) ip), and of the 5-HT1A receptor agonist 8-OH-DPAT (1 mg kg(-1) ip and 30 μg kg(-1) icv) induced food intake inhibition. In a second set of experiments, we observed that the injection of MK212 or WAY 161503 (1 and 3 mg kg(-1)) significantly increased hypothalamic POMC mRNA abundance. CART mRNA abundance in hypothalamus was enhanced by treatment with MK212 and unaffected by WAY 161503. The administration of the 5-HT1A receptor agonist 8-OH-DPAT did not induce any significant variation in the hypothalamic POMC or CART mRNA levels. CRF mRNA abundance was only affected by MK212 that increased hypothalamic values. Finally, hypothalamic AgRP mRNA abundance was only evaluated with the agonist 5-HT2C MK212 resulting in no significant effects. The results show that the reduction in food intake mediated by 5-HT2C receptors is associated with increases in hypothalamic POMC, CART and CRF mRNA abundance.

  17. Glossopharyngeal long-term facilitation requires serotonin 5-HT2 and NMDA receptors in rats

    PubMed Central

    Cao, Ying; Liu, Chun; Ling, Liming

    2009-01-01

    Although the glossopharyngeal nerve (IX) is mainly a sensory nerve, it innervates stylopharyngeus and some other pharyngeal muscles, whose excitations would likely improve upper airway patency since electrical IX stimulation increases pharyngeal airway size. As acute intermittent hypoxia (AIH) induces hypoglossal and genioglossal long-term facilitation (LTF), we hypothesized that AIH induces glossopharyngeal LTF, which requires serotonin 5-HT2 and NMDA receptors. Integrated IX activity was recorded in anesthetized, vagotomized, paralyzed and ventilated rats before, during and after 5 episodes of 3-min isocapnic 12% O2 with 3-min intervals of 50% O2. Either saline, ketanserin (5-HT2 antagonist, 2 mg/kg) or MK-801 (NMDA antagonist, 0.2 mg/kg) was (i.v.) injected 30–60 min before AIH. Both phasic and tonic IX activities were persistently increased (both P<0.05) after AIH in vehicle, but not ketanserin or MK-801, rats. Hypoxic glossopharyngeal responses were minimally changed after either drug. These data suggest that AIH induces both phasic and tonic glossopharyngeal LTF, which requires activation of 5-HT2 and NMDA receptors. PMID:20026287

  18. 5-HT7 receptor signaling: improved therapeutic strategy in gut disorders

    PubMed Central

    Kim, Janice J.; Khan, Waliul I.

    2014-01-01

    Serotonin (5-hydroxytryptamine; 5-HT) is most commonly known for its role as a neurotransmitter in the central nervous system (CNS). However, the majority of the body’s 5-HT is produced in the gut by enterochromaffin (EC) cells. Alterations in 5-HT signaling have been associated with various gut disorders including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS) and enteric infections. Recently, our studies have identified a key role for 5-HT in the pathogenesis of experimental colitis. 5-HT7 receptors are expressed in the gut and very recently, we have shown evidence of 5-HT7 receptor expression on intestinal immune cells and demonstrated a key role for 5-HT7 receptors in generation of experimental colitis. This review summarizes the key findings of these studies and provides a comprehensive overview of our current knowledge of the 5-HT7 receptor in terms of its pathophysiological relevance and therapeutic potential in intestinal inflammatory conditions, such as IBD. PMID:25565996

  19. 5-HT1a receptor antagonists block perforant path-dentate LTP induced in novel, but not familiar, environments

    PubMed Central

    Sanberg, Cyndy Davis; Jones, Floretta L.; Do, Viet H.; Dieguez, Dario; Derrick, Brian E.

    2006-01-01

    Numerous studies suggest roles for monoamines in modulating long-term potentiation (LTP). Previously, we reported that both induction and maintenance of perforant path-dentate gyrus LTP is enhanced when induced while animals explore novel environments. Here we investigate the contribution of serotonin and 5-HT1a receptors to the novelty-mediated enhancement of LTP. In freely moving animals, systemic administration of the selective 5-HT1a antagonist WAY-100635 (WAY) attenuated LTP in a dose-dependent manner when LTP was induced while animals explored novel cages. In contrast, LTP was completely unaffected by WAY when induced in familiar environments. LTP was also blocked in anesthetized animals by direct application of WAY to the dentate gyrus, but not to the median raphe nucleus (MRN), suggesting the effect of systemic WAY is mediated by a block of dentate 5-HT1a receptors. Paradoxically, systemic administration of the 5-HT1a agonist 8-OH-DPAT also attenuated LTP. This attenuation was mimicked in anesthetized animals following application of 8-OH-DPAT to the MRN, but not the dentate gyrus. In addition, application of a 5-HT1a agonist to the dentate gyrus reduced somatic GABAergic inhibition. Because serotonergic projections from the MRN terminate on dentate inhibitory interneurons, these data suggest 5-HT1a receptors contribute to LTP induction via inhibition of GABAergic interneurons. Moreover, activation of raphe 5-HT1a autoreceptors, which inhibits serotonin release, attenuated LTP induction even in familiar environments. This suggests that serotonin normally contributes to dentate LTP induction in a variety of behavioral states. Together, these data suggest that serotonin and dentate 5-HT1a receptors play a permissive role in dentate LTP induction, particularly in novel conditions, and presumably, during the encoding of novel, hippocampus-relevant information. PMID:16452654

  20. Expression of α(1)-adrenergic receptors in rat prefrontal cortex: cellular co-localization with 5-HT(2A) receptors.

    PubMed

    Santana, Noemí; Mengod, Guadalupe; Artigas, Francesc

    2013-06-01

    The prefrontal cortex (PFC) is involved in behavioural control and cognitive processes that are altered in schizophrenia. The brainstem monoaminergic systems control PFC function, yet the cells/networks involved are not fully known. Serotonin (5-HT) and norepinephrine (NE) increase PFC neuronal activity through the activation of α(1)-adrenergic receptors (α(1)ARs) and 5-HT(2A) receptors (5-HT(2A)Rs), respectively. Neurochemical and behavioural interactions between these receptors have been reported. Further, classical and atypical antipsychotic drugs share nm in vitro affinity for α(1)ARs while having preferential affinity for D(2) and 5-HT(2A)Rs, respectively. Using double in situ hybridization we examined the cellular expression of α(1)ARs in pyramidal (vGluT1-positive) and GABAergic (GAD(65/67)-positive) neurons in rat PFC and their co-localization with 5-HT(2A)Rs. α(1)ARs are expressed by a high proportion of pyramidal (59-85%) and GABAergic (52-79%) neurons. The expression in pyramidal neurons exhibited a dorsoventral gradient, with a lower percentage of α(1)AR-positive neurons in infralimbic cortex compared to anterior cingulate and prelimbic cortex. The expression of α(1A), α(1B) and α(1D) adrenergic receptors was segregated in different layers and subdivisions. In all them there is a high co-expression with 5-HT(2A)Rs (∼80%). These observations indicate that NE controls the activity of most PFC pyramidal neurons via α(1)ARs, either directly or indirectly, via GABAergic interneurons. Antipsychotic drugs can thus modulate the activity of PFC via α(1)AR blockade. The high co-expression with 5-HT(2A)Rs indicates a convergence of excitatory serotonergic and noradrenergic inputs onto the same neuronal populations. Moreover, atypical antipsychotics may exert a more powerful control of PFC function through the simultaneous blockade of α(1)ARs and 5-HT(2A)Rs.

  1. Serotonin 5-HT2 Receptor Interactions with Dopamine Function: Implications for Therapeutics in Cocaine Use Disorder

    PubMed Central

    Cunningham, Kathryn A.

    2015-01-01

    Cocaine exhibits prominent abuse liability, and chronic abuse can result in cocaine use disorder with significant morbidity. Major advances have been made in delineating neurobiological mechanisms of cocaine abuse; however, effective medications to treat cocaine use disorder remain to be discovered. The present review will focus on the role of serotonin (5-HT; 5-hydroxytryptamine) neurotransmission in the neuropharmacology of cocaine and related abused stimulants. Extensive research suggests that the primary contribution of 5-HT to cocaine addiction is a consequence of interactions with dopamine (DA) neurotransmission. The literature on the neurobiological and behavioral effects of cocaine is well developed, so the focus of the review will be on cocaine with inferences made about other monoamine uptake inhibitors and releasers based on mechanistic considerations. 5-HT receptors are widely expressed throughout the brain, and several different 5-HT receptor subtypes have been implicated in mediating the effects of endogenous 5-HT on DA. However, the 5-HT2A and 5-HT2C receptors in particular have been implicated as likely candidates for mediating the influence of 5-HT in cocaine abuse as well as to traits (e.g., impulsivity) that contribute to the development of cocaine use disorder and relapse in humans. Lastly, new approaches are proposed to guide targeted development of serotonergic ligands for the treatment of cocaine use disorder. PMID:25505168

  2. Serotonin 5-HT2 receptor interactions with dopamine function: implications for therapeutics in cocaine use disorder.

    PubMed

    Howell, Leonard L; Cunningham, Kathryn A

    2015-01-01

    Cocaine exhibits prominent abuse liability, and chronic abuse can result in cocaine use disorder with significant morbidity. Major advances have been made in delineating neurobiological mechanisms of cocaine abuse; however, effective medications to treat cocaine use disorder remain to be discovered. The present review will focus on the role of serotonin (5-HT; 5-hydroxytryptamine) neurotransmission in the neuropharmacology of cocaine and related abused stimulants. Extensive research suggests that the primary contribution of 5-HT to cocaine addiction is a consequence of interactions with dopamine (DA) neurotransmission. The literature on the neurobiological and behavioral effects of cocaine is well developed, so the focus of the review will be on cocaine with inferences made about other monoamine uptake inhibitors and releasers based on mechanistic considerations. 5-HT receptors are widely expressed throughout the brain, and several different 5-HT receptor subtypes have been implicated in mediating the effects of endogenous 5-HT on DA. However, the 5-HT2A and 5-HT2C receptors in particular have been implicated as likely candidates for mediating the influence of 5-HT in cocaine abuse as well as to traits (e.g., impulsivity) that contribute to the development of cocaine use disorder and relapse in humans. Lastly, new approaches are proposed to guide targeted development of serotonergic ligands for the treatment of cocaine use disorder. PMID:25505168

  3. Effects of a serotonin 5-HT4 receptor antagonist SB-207266 on gastrointestinal motor and sensory function in humans

    PubMed Central

    Bharucha, A; Camilleri, M; Haydock, S; Ferber, I; Burton, D; Cooper, S; Tompson, D; Fitzpatrick, K; Higgins, R; Zinsmeister, A

    2000-01-01

    BACKGROUND—Serotonin 5-HT4 receptors are located on enteric cholinergic neurones and may regulate peristalsis. 5-HT4 receptors on primary afferent neurones have been postulated to modulate visceral sensation. While 5-HT4 agonists are used as prokinetic agents, the physiological role of 5-HT4 receptors in the human gut is unknown.
AIMS—Our aim was to characterise the role of 5-HT4 receptors in regulating gastrointestinal motor and sensory function in healthy subjects under baseline and stimulated conditions with a 5-HT4 receptor antagonist.
METHODS—Part A compared the effects of placebo to four doses of a 5-HT4 receptor antagonist (SB-207266) on the cisapride mediated increase in plasma aldosterone (a 5-HT4 mediated response) and orocaecal transit in 18 subjects. In part B, 52 healthy subjects received placebo, or 0.05, 0.5, or 5 mg of SB-207266 for 10-12 days; gastric, small bowel, and colonic transit were measured by scintigraphy on days 7-9, and fasting and postprandial colonic motor function, compliance, and sensation during distensions were assessed on day 12.
RESULTS—Part A: 0.5, 5, and 20 mg doses of SB-207266 had significant and quantitatively similar effects, antagonising the cisapride mediated increase in plasma aldosterone and acceleration of orocaecal transit. Part B: SB-207266 tended to delay colonic transit (geometric centre of isotope at 24 (p=0.06) and 48 hours (p=0.08)), but did not have dose related effects on transit, fasting or postprandial colonic motor activity, compliance, or sensation.
CONCLUSION—5-HT4 receptors are involved in the regulation of cisapride stimulated orocaecal transit; SB 207266 tends to modulate colonic transit but not sensory functions or compliance in healthy human subjects.


Keywords: 5-HT4 receptors; colon transit; gastrointestinal motor function; gastrointestinal sensory function PMID:11034583

  4. Further characterization of the putative 5-HT receptor which mediates blockade of neurogenic plasma extravasation in rat dura mater.

    PubMed

    Buzzi, M G; Moskowitz, M A; Peroutka, S J; Byun, B

    1991-06-01

    1. We describe the effects of pretreatment with 5-hydroxytryptamine (5-HT) receptor agonists and antagonists on neurogenically-mediated plasma protein extravasation ([125I]-albumin) in rat dura mater and in extracranial tissues (temporalis muscle fascia, conjunctiva, eyelid and lip) induced by electrical stimulation of the right trigeminal ganglion. 2. Leakage of [125I]-bovine serum albumin from blood vessels in dura mater following high intensity stimulation (1.2 mA, 5 ms, 5 Hz for 5 min) was significantly reduced by the intravenous administration of drugs active at 5-HT receptors with some selectivity for the 5-HT1 receptor subtypes: 5-carboxamidotryptamine (5-CT) (threshold dose, 1 ng kg-1); 5-benzyloxytryptamine (5-BT) (10, 30 or 100 micrograms kg-1); 8-hydroxydipropylaminotetralin (8-OH-DPAT) (300 micrograms kg-1); and as previously reported, sumatriptan (100 micrograms kg-1), dihydroergotamine (DHE) (50 micrograms kg-1); ergotamine tartrate (100 micrograms kg-1) and chronically administered methysergide (1 mg kg-1). 3. The putative 5-HT receptor antagonist, metergoline 100 micrograms kg-1, inhibited partially the effect of sumatriptan in dura mater providing additional evidence for a 5-HT1 receptor subtype-mediated mechanism, although it was not effective against 5-CT (1 ng kg-1). Methiothepin (300 micrograms kg-1) did not affect the response to sumatriptan. When administered at high concentrations (1 mg kg-1) methiothepin and metergoline decreased plasma protein extravasation in rat dura mater. 4. Pretreatment with the 5-HT2 receptor antagonists pizotifen, 300pugkg 1, or ketanserin, 300,ugkg ', or the 5-HT3 receptor antagonists MDL 72222, 300,ugkg-1, or ICS 205-930, 300pgkg-1, did not affect plasma protein leakage following electrical trigeminal stimulation. Blockade by sumatriptan of plasma protein extravasation was not inhibited by pizotifen (300,ug kg-1) or MDL 72222 (300pg kg- '). 5. The 5-HT receptor(s) mediating this response were present only on

  5. Characterization of mechanisms involved in presynaptic inhibition of sympathetic pressor effects induced by some 5-HT1 receptor antagonists.

    PubMed

    Fernández, M M; Calama, E; Morán, A; Martín, M L; San Román, L

    2000-01-01

    1. In a previous study, we showed that the presynaptic inhibitory action of 5-hydroxytryptamine receptor agonists on sympathetic pressor effects obtained in the pithed rats were mainly mediated by activation of 5-HT1A and 5-HT1D receptor subtypes. At the time, we observed that some 5-HT1 receptors antagonists - WAY 100,635 and NAN-190 (both 5-HT1A receptor antagonists), methiothepin (a 5-HT1,2,5,6,7 receptor antagonist) and spiperone (a 5-HT1,2 receptor antagonist) - reduced per se the pressor effects obtained by electrical stimulation. The aim of the present work was to investigate the mechanism participating in this inhibitory effect. 2. The inhibition induced by WAY 100,635 (1000 microg kg-1, i.v.) was blocked after i.v. treatment with idazoxan, an alpha2-adrenoceptor antagonist (300 and 1000 microg kg-1) and was not modified after i.v. treatment with propranolol, a beta-adrenoceptor antagonist (1000 microg kg-1) and sulpiride, a D2 receptor antagonist (1000 microg kg-1). The inhibition induced by spiperone (500 microg kg-1 i.v.) was significantly blocked by sulpiride (1000 microg kg-1) and was not modified by idazoxan or propranolol. 3. Sulpiride (1000 microg kg-1) partially blocked the inhibition induced by methiothepin (50 microg kg-1 i.v.). Only pretreatment with idazoxan (300 microg kg-1) modified the inhibition induced by NAN-190 (100 microg kg-1 i.v.), such inhibition increasing after intravenous administration of idazoxan. 4. All the antagonists used in our experiments failed to inhibit the pressor responses elicited by i.v. noradrenaline administration. 5. The above results suggest that the inhibitory effects of these 5-HT1 receptor antagonists are presynaptic in nature, but not related to the blockade of 5-HT1 receptors subtypes. The simultaneous activation or inhibition of other receptor systems could explain the inhibition produced by each 5-HT1 receptor antagonist studied.

  6. The Pharmacology of TD-8954, a Potent and Selective 5-HT4 Receptor Agonist with Gastrointestinal Prokinetic Properties

    PubMed Central

    Beattie, David T.; Armstrong, Scott R.; Vickery, Ross G.; Tsuruda, Pamela R.; Campbell, Christina B.; Richardson, Carrie; McCullough, Julia L.; Daniels, Oranee; Kersey, Kathryn; Li, Yu-Ping; Kim, Karl H. S.

    2011-01-01

    This study evaluated the in vitro and in vivo pharmacological properties of TD-8954, a potent and selective 5-HT4 receptor agonist. TD-8954 had high affinity (pKi = 9.4) for human recombinant 5-HT4(c) (h5-HT4(c)) receptors, and selectivity (>2,000-fold) over all other 5-hydroxytryptamine (5-HT) receptors and non-5-HT receptors, ion channels, enzymes and transporters tested (n = 78). TD-8954 produced an elevation of cAMP in HEK-293 cells expressing the h5-HT4(c) receptor (pEC50 = 9.3), and contracted the guinea pig colonic longitudinal muscle/myenteric plexus preparation (pEC50 = 8.6). TD-8954 had moderate intrinsic activity in the in vitro assays. In conscious guinea pigs, subcutaneous administration of TD-8954 (0.03–3 mg/kg) increased the colonic transit of carmine red dye, reducing the time taken for its excretion. Following intraduodenal dosing to anesthetized rats, TD-8954 (0.03–10 mg/kg) evoked a dose-dependent relaxation of the esophagus. Following oral administration to conscious dogs, TD-8954 (10 and 30 μg/kg) produced an increase in contractility of the antrum, duodenum, and jejunum. In a single ascending oral dose study in healthy human subjects, TD-8954 (0.1–20 mg) increased bowel movement frequency and reduced the time to first stool. It is concluded that TD-8954 is a potent and selective 5-HT4 receptor agonist in vitro, with robust in vivo stimulatory activity in the gastrointestinal (GI) tract of guinea pigs, rats, dogs, and humans. TD-8954 may have clinical utility in patients with disorders of reduced GI motility. PMID:21687517

  7. Role of 5-HT2C Receptors in Effects of Monoamine Releasers on Intracranial Self-Stimulation in Rats

    PubMed Central

    Bauer, Clayton T.; Banks, Matthew L.; Blough, Bruce E.; Negus, S. Stevens

    2015-01-01

    Rationale Many monoamine releasers are abused by humans and produce abuse-related facilitation of intracranial self-stimulation (ICSS) in rats. Facilitation of ICSS in rats can be limited by monoamine releaser-induced serotonin (5-HT) release, but receptors that mediate 5-HT effects of monoamine releasers are unknown. Objectives Investigate whether 5-HT2C receptor activation is necessary for rate-decreasing effects produced in an ICSS procedure in rats by the 5-HT-selective monoamine releaser fenfluramine and the non-selective releasers napthylisopropylamine (PAL-287) and (+)-3,4-methylenedioxymethamphetamine ((+)-MDMA). Methods Adult male Sprague-Dawley rats with electrodes implanted in the medial forebrain bundle were trained to lever press for brain stimulation under a “frequency-rate” ICSS procedure. Effectiveness of the 5-HT2C antagonist SB 242,084 was evaluated to block rate-decreasing effects produced by (1) the 5-HT2C agonist Ro 60-0175, (2) the 5-HT-selective releaser fenfluramine, and (3) the mixed-action dopamine (DA)/norepinephrine (NE)/5-HT releasers PAL-287 (1.0-5.6 mg/kg), and (+)-MDMA (1.0-3.2 mg/kg). For comparison, effectiveness of SB 242,084 to alter rate-decreasing effects of the kappa opioid receptor agonist U69,593 and rate-increasing effects of the DA>5-HT releaser amphetamine were also examined. Results SB 242,084 pretreatment blocked rate-decreasing effects of Ro 60-0175 and fenfluramine, but not the rate-decreasing effects of U69,593 or the rate-increasing effects of amphetamine. SB 242,084 blunted the rate-decreasing effects and enhanced expression of rate-increasing effects of PAL-287 and (+)-MDMA. Conclusions These data suggest that 5-HT2C receptor activation contributes to rate-decreasing effects that are produced by selective and mixed-action 5-HT releasers in rats and that may oppose and limit the expression of abuse-related ICSS facilitation by these compounds. PMID:26041338

  8. Characterization, solubilization and partial purification of serotonin 5-HT1C receptors

    SciTech Connect

    Yagaloff, K.A.

    1986-01-01

    /sup 125/I-Lysergic acid diethylamide (/sup 125/I-LSD) binds with high affinity to a unique serotonergic site on rat choroid plexus. These sites were localized to choroid plexus epithelial cells using a novel high resolution autoradiographic technique. In membrane preparations, the serotonergic site density was 3100 fmol/mg protein, which is 10 fold higher than the density of any other serotonergic site in brain homogenates. The pharmacology of this site, termed the 5-HT1c site, does not match that of 5-Ht1a, 5-HT1b or 5HT2 serotonergic sites. 5-Ht1c sites were solubilized from pig choroid plexus using the zwitterionic detergent, CHAPS. High affinity labelling of the solubilized site was obtained using the serotonergic radioligand, N1-methyl-2-(/sup 125/I)lysergic acid diethylamide (/sup 125/I-MIL). Choroid plexus tumors obtained from transgenic mice were examined for the presence of serotonin 5-HT1c receptors. /sup 125/I-LSD binding to choroid plexus tumors displays a pharmacological profile that matches the properties of 5-HT1c receptors in normal choroid plexus. The tumor exhibits the highest site density of serotonin receptors (6600 fmol/mg protein) found in any tissue. /sup 125/I-LSD autoradiography of brain sections from transgenic mice shows high levels of specific labelling over the tumor. The affinities of various indolealkyl, phenlakyl and beta-carboline derivatives for the serotonin 5-HT1c receptor were measured in pig choroid plexus using /sup 125/I-MIL. Serotonin precursors and metabolites were all very weak inhibitors of specific /sup 125/I-MIL binding. Structure-affinity relationships were determined for a number of indolealkylamine analogues. Only serotonin is present in cerebrospinal fluid at concentrations near its 5-HT1c inhibition constant, suggesting that serotonin is the natural 5-HT1c agonist.

  9. High-level stable expression of recombinant 5-HT1A 5-hydroxytryptamine receptors in Chinese hamster ovary cells.

    PubMed Central

    Newman-Tancredi, A; Wootton, R; Strange, P G

    1992-01-01

    The human 5-hydroxytryptamine 5-HT1A receptor gene was transfected into Chinese hamster ovary cells. A series of recombinant monoclonal cell lines expressing the receptor were isolated and the properties of one cell line that expressed receptors at a high level (2.8 pmol/mg) were studied in detail. In ligand binding assays with the selective 5-HT1A receptor agonist 2-(NN-di[3H]propylamino)-8-hydroxy-1,2,3,4-tetrahydronaphthalene ([3H]8-OH-DPAT) only a single class of saturable high-affinity binding sites was detected, with a pharmacological profile in competition experiments essentially identical to that of the 5-HT1A receptor of bovine hippocampus. [3H]8-OH-DPAT binding to the recombinant cell membranes was inhibited by GTP, showing that the receptors in the transfected cells couple to G-proteins. A series of 5-hydroxytryptamine agonists inhibited forskolin-stimulated adenylate cyclase activity in the cells and, despite the high level of receptor expression, their apparent efficacies were similar to those observed for inhibition of adenylate cyclase in brain. This recombinant cell line provides a complete model system for studying the 5-HT1A receptor and its transmembrane signalling system. The recombinant cells can also be grown in suspension culture for long periods but, whereas 5-HT1A receptor numbers and receptor regulation by guanine nucleotides are maintained in suspension-grown cells, the inhibition of adenylate cyclase by the 5-HT1A receptor is gradually lost. Images Fig. 1. PMID:1386736

  10. Serotonin and the 5-HT7 receptor: the link between hepatocytes, IGF-1 and small intestinal neuroendocrine tumors.

    PubMed

    Svejda, Bernhard; Kidd, Mark; Timberlake, Andrew; Harry, Kathy; Kazberouk, Alexander; Schimmack, Simon; Lawrence, Ben; Pfragner, Roswitha; Modlin, Irvin M

    2013-07-01

    Platelet-derived serotonin (5-HT) is involved in liver regeneration. The liver is also the metastatic site for malignant enterochromaffin (EC) cell "carcinoid" (neuroendocrine) neoplasms, the principal cellular source of 5-HT. We hypothesized that 5-HT produced by metastatic EC cells played a role in the hepatic tumor-microenvironment principally via 5-HT₇ receptor-mediated activation of hepatocyte IGF-1 synthesis and secretion. Using isolated rat hepatocytes, we evaluated 5-HT₇ receptor expression (using PCR, sequencing and western blot). ELISA, cell transfection and western blots delineated 5-HT-mediated signaling pathways (pCREB, AKT and ERK). IGF-1 synthesis/secretion was evaluated using QPCR and ELISA. IGF-1 was tested on small intestinal neuroendocrine neoplasm proliferation, while IGF-1 production and 5-HT₇ expression were examined in an in vivo SCID metastasis model. Our results demonstrated evidence for a functional 5-HT₇ receptor. 5-HT activated cAMP/PKA activity, pCREB (130-205%, P < 0.05) and pERK/pAKT (1.2-1.75, P < 0.05). Signaling was reversed by the 5-HT₇ receptor antagonist SB269970. IGF-1 significantly stimulated proliferation of two small intestinal neuroendocrine neoplasm cell lines (EC₅₀: 7-70 pg/mL) and could be reversed by the small molecule inhibitor BMS-754807. IGF-1 and 5-HT were elevated (40-300×) in peri-tumoral hepatic tissue in nude mice, while 5-HT₇ was increased fourfold compared to sham-operated animals. We conclude that hepatocytes express a cAMP-coupled 5-HT₇ receptor, which, at elevated 5-HT concentrations that occur in liver metastases, signals via CREB/AKT and is linked to IGF-1 synthesis and secretion. Because IGF-1 regulates NEN proliferation, identification of a role for 5-HT₇ in the hepatic metastatic tumor microenvironment suggests the potential for novel therapeutic strategies for amine-producing mid-gut tumors. PMID:23578138

  11. Rectal antinociceptive properties of alverine citrate are linked to antagonism at the 5-HT1A receptor subtype.

    PubMed

    Coelho, A M; Jacob, L; Fioramonti, J; Bueno, L

    2001-10-01

    Serotonin (5-HT) is considered as a major mediator causing hyperalgesia and is involved in inflammatory reactions and irritable bowel syndrome. Alverine citrate may possess visceral antinociceptive properties in a rat model of rectal distension-induced abdominal contractions. This study was designed to evaluate the pharmacological properties of alverine citrate in a rat model of rectal hyperalgesia induced by 5-HTP (5-HT precursor) and by a selective 5-HT1A agonist (8-OH-DPAT) and to compare this activity with a reference 5-HT1A antagonist (WAY 100635). At 4 h after their administration, 5-HTP and 8-OH-DPAT increased the number of abdominal contractions in response to rectal distension at the lowest volume of distension (0.4 mL). When injected intraperitoneally before 8-OH-DPAT and 5-HTP, WAY 100635 (1 mg kg(-1)) blocked their nociceptive effect, but also reduced the response to the highest volume of distension (1.6 mL). Similarly, when injected intraperitoneally, alverine citrate (20 mg kg(-1)) suppressed the effect of 5-HTP, but not that of 8-OH-DPAT. However, when injected intracerebroventricularly (75 microg/rat) alverine citrate reduced 8-OH-DPAT-induced enhancement of rectal distension-induced abdominal contractions. In-vitro binding studies revealed that alverine citrate had a high affinity for 5-HT1A receptors and a weak affinity for 5-HT3 and 5-HT4 subtypes. These results suggest that 5-HTP-induced rectal hypersensitivity involves 5-TH1A receptors and that alverine citrate acts as a selective antagonist at the 5-HT1A receptor subtype to block both 5-HTP and 8-OH-DPAT-induced rectal hypersensitivity. PMID:11697552

  12. 5-HT1A/1B, 5-HT6, and 5-HT7 serotonergic receptors recruitment in tonic-clonic seizure-induced antinociception: role of dorsal raphe nucleus.

    PubMed

    Freitas, Renato Leonardo; Ferreira, Célio Marcos dos Reis; Urbina, Maria Angélica Castiblanco; Mariño, Andrés Uribe; Carvalho, Andressa Daiane; Butera, Giuseppe; de Oliveira, Ana Maria; Coimbra, Norberto Cysne

    2009-05-01

    Pharmacological studies have been focused on the involvement of different neural pathways in the organization of antinociception that follows tonic-clonic seizures, including 5-hydroxytryptamine (5-HT)-, norepinephrine-, acetylcholine- and endogenous opioid peptide-mediated mechanisms, giving rise to more in-depth comprehension of this interesting post-ictal antinociceptive phenomenon. The present work investigated the involvement of 5-HT(1A/1B), 5-HT(6), and 5-HT(7) serotonergic receptors through peripheral pretreatment with methiothepin at doses of 0.5, 1.0, 2.0 and 3.0 mg/kg in the organization of the post-ictal antinociception elicited by pharmacologically (with pentylenetetrazole at 64 mg/kg)-induced tonic-clonic seizures. Methiothepin at 1.0 mg/kg blocked the post-ictal antinociception recorded after the end of seizures, whereas doses of 2.0 and 3.0 mg/kg potentiated the post-ictal antinociception. The nociceptive thresholds were kept higher than those of the control group. However, when the same 5-hydroxytryptamine receptors antagonist was microinjected (at 1.0, 3.0 and 5.0 microg/0.2 microL) in the dorsal raphe nucleus, a mesencephalic structure rich in serotonergic neurons and 5-HT receptors, the post-ictal hypo-analgesia was consistently antagonized. The present findings suggest a dual effect of methiothepin, characterized by a disinhibitory effect on the post-ictal antinociception when peripherally administered (possibly due to an antagonism of pre-synaptic 5-HT(1A) serotonergic autoreceptors in the pain endogenous inhibitory system) and an inhibitory effect (possibly due to a DRN post-synaptic 5-HT(1B), 5-HT(6), and 5-HT(7) serotonergic receptors blockade) when centrally administered. The present data also suggest that serotonin-mediated mechanisms of the dorsal raphe nucleus exert a key-role in the modulation of the post-ictal antinociception.

  13. Involvement of 5-HT receptor subtypes in the discriminative stimulus properties of mescaline.

    PubMed

    Appel, J B; Callahan, P M

    1989-01-01

    In order to further evaluate the extent to which particular 5-HT receptor subtypes (5-HT1, 5-HT2) might be involved in the behavioral effects of hallucinogenic drugs, rats were trained to discriminate mescaline (10 mg/kg i.p.) from saline and were given substitution (generalization) and combination (antagonism) tests with putatively selective serotonergic and related neuroactive compounds. The mescaline cue generalized to relatively high doses of the 5-HT2 agonists, 2,5-dimethoxy-4-methylamphetamine (DOM), LSD and psilocybin; the extent of generalization to 5-HT1 agonists (8-hydroxy-2-[diethylamino]tetralin (8-OHDPAT), RU-24969 and 8-hydroxy-2-[di-n-propylamino]tetralin (TFMPP] was unclear. Combinations of the training drug and sufficiently high doses of 5-HT2 antagonists (ketanserin, LY-53857, pirenperone) were followed by saline-lever responding; less selective central 5-HT (metergoline), and DA (SCH-23390, haloperidol) antagonists, did not block the mescaline cue. These data suggest that 5-HT2 receptors are involved in the stimulus properties of mescaline.

  14. Mechanisms intrinsic to 5-HT2B receptor-induced potentiation of NMDA receptor responses in frog motoneurones.

    PubMed

    Holohean, Alice M; Hackman, John C

    2004-10-01

    In the presence of NMDA receptor open-channel blockers [Mg(2+); (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801); 1-amino-3,5-dimethyladamantane (memantine)] and TTX, high concentrations (30-100 microm) of either 5-hydroxytryptamine (5-HT) or alpha-methyl-5-hydroxytryptamine (alpha-Me-5-HT) significantly potentiated NMDA-induced depolarizations of frog spinal cord motoneurones. Potentiation was blocked by LY-53,857 (10-30 microm), SB 206553 (10 microm), and SB 204741 (30 microm), but not by spiroxatrine (10 microm), WAY 100,635 (1-30 microm), ketanserin (10 microm), RS 102221 (10 microm), or RS 39604 (10-20 microm). Therefore, alpha-Me-5-HT's facilitatory effects appear to involve 5-HT(2B) receptors. These effects were G-protein dependent as they were prevented by prior treatment with guanylyl-5'-imidodiphosphate (GMP-PNP, 100 microm) and H-Arg-Pro-Lys-Pro-Gln-Gln-D-Trp-Phe-D-Trp-D-Trp-Met-NH(2) (GP antagonist 2A, 3-6 microm), but not by pertussis toxin (PTX, 3-6 ng ml(-1), 48 h preincubation). This potentiation was not reduced by protein kinase C inhibition with staurosporine (2.0 microm), U73122 (10 microm) or N-(2-aminoethyl)-5-isoquinolinesulfonamide HCl (H9) (77 microm) or by intracellular Ca(2+) depletion with thapsigargin (0.1 microm) (which inhibits Ca(2+)/ATPase). Exposure of the spinal cord to the L-type Ca(2+) channel blockers nifedipine (10 microm), KN-62 (5 microm) or gallopamil (100 microm) eliminated alpha-Me-5-HT's effects. The calmodulin antagonist N-(6-aminohexyl)-5-chloro-1-naphtalenesulfonamide (W7) (100 microm) diminished the potentiation. However, the calcium/calmodulin-dependent protein kinase II (CaM Kinase II) blocker KN-93 (10 microm) did not block the 5-HT enhancement of the NMDA responses. In summary, activation of 5-HT(2B) receptors by alpha-Me-5-HT facilitates NMDA-depolarizations of frog motoneurones via a G-protein, a rise in [Ca(2+)](i) from the entry of extracellular Ca(2+) through L-type Ca(2

  15. 5-HT Obesity Medication Efficacy via POMC Activation is Maintained During Aging

    PubMed Central

    Burke, Luke K.; Doslikova, Barbora; D'Agostino, Giuseppe; Garfield, Alastair S.; Farooq, Gala; Burdakov, Denis; Low, Malcolm J.; Rubinstein, Marcelo; Evans, Mark L.; Billups, Brian

    2014-01-01

    The phenomenon commonly described as the middle-age spread is the result of elevated adiposity accumulation throughout adulthood until late middle-age. It is a clinical imperative to gain a greater understanding of the underpinnings of age-dependent obesity and, in turn, how these mechanisms may impact the efficacy of obesity treatments. In particular, both obesity and aging are associated with rewiring of a principal brain pathway modulating energy homeostasis, promoting reduced activity of satiety pro-opiomelanocortin (POMC) neurons within the arcuate nucleus of the hypothalamus (ARC). Using a selective ARC-deficient POMC mouse line, here we report that former obesity medications augmenting endogenous 5-hydroxytryptamine (5-HT) activity d-fenfluramine and sibutramine require ARC POMC neurons to elicit therapeutic appetite-suppressive effects. We next investigated whether age-related diminished ARC POMC activity therefore impacts the potency of 5-HT obesity pharmacotherapies, lorcaserin, d-fenfluramine, and sibutramine and report that all compounds reduced food intake to a comparable extent in both chow-fed young lean (3–5 months old) and middle-aged obese (12–14 months old) male and female mice. We provide a mechanism through which 5-HT anorectic potency is maintained with age, via preserved 5-HT–POMC appetitive anatomical machinery. Specifically, the abundance and signaling of the primary 5-HT receptor influencing appetite via POMC activation, the 5-HT2CR, is not perturbed with age. These data reveal that although 5-HT obesity medications require ARC POMC neurons to achieve appetitive effects, the anorectic efficacy is maintained with aging, findings of clinical significance to the global aging obese population. PMID:25051442

  16. Design of novel quinazolinone derivatives as inhibitors for 5HT7 receptor.

    PubMed

    Chitta, Aparna; Jatavath, Mohan Babu; Fatima, Sabiha; Manga, Vijjulatha

    2012-02-01

    To study the pharmacophore properties of quinazolinone derivatives as 5HT(7) inhibitors, 3D QSAR methodologies, namely Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) were applied, partial least square (PLS) analysis was performed and QSAR models were generated. The derived model showed good statistical reliability in terms of predicting the 5HT(7) inhibitory activity of the quinazolione derivative, based on molecular property fields like steric, electrostatic, hydrophobic, hydrogen bond donor and hydrogen bond acceptor fields. This is evident from statistical parameters like q(2) (cross validated correlation coefficient) of 0.642, 0.602 and r(2) (conventional correlation coefficient) of 0.937, 0.908 for CoMFA and CoMSIA respectively. The predictive ability of the models to determine 5HT(7) antagonistic activity is validated using a test set of 26 molecules that were not included in the training set and the predictive r(2) obtained for the test set was 0.512 & 0.541. Further, the results of the derived model are illustrated by means of contour maps, which give an insight into the interaction of the drug with the receptor. The molecular fields so obtained served as the basis for the design of twenty new ligands. In addition, ADME (Adsorption, Distribution, Metabolism and Elimination) have been calculated in order to predict the relevant pharmaceutical properties, and the results are in conformity with required drug like properties.

  17. 5-HT3 receptors as important mediators of nausea and vomiting due to chemotherapy.

    PubMed

    Navari, Rudolph M

    2015-10-01

    Chemotherapy-induced nausea and vomiting (CINV) is associated with a significant deterioration in quality of life. The emetogenicity of the chemotherapeutic agents, repeated chemotherapy cycles, and patient risk factors significantly influence CINV. The use of a combination of a 5-hydroxytryptamine-3 (5-HT3) receptor antagonist, dexamethasone, and a neurokinin-1 (NK-1) receptor antagonist has significantly improved the control of acute and delayed emesis in single-day chemotherapy. The first generation 5-HT3 receptor antagonists have been very effective in the control of chemotherapy induced emesis in the first 24 h postchemotherapy (acute emesis), but have not been as effective against delayed emesis (24-120 h postchemotherapy). Palonosetron, a second generation 5-HT3 receptor antagonist with a different half-life, a different binding capacity, and a different mechanism of action than the first generation 5-HT3 receptor antagonists appears to be the most effective agent in its class. Despite the control of emesis, nausea has not been well controlled by current agents. Olanzapine, a FDA approved antipsychotic that blocks multiple neurotransmitters: dopamine at D1, D2, D3, D4 brain receptors, serotonin at 5-HT2a, 5-HT2c, 5-HT3, 5-HT6 receptors, catecholamines at alpha1 adrenergic receptors, acetylcholine at muscarinic receptors, and histamine at H1 receptors, has emerged in recent trials as an effective preventative agent for chemotherapy-induced emesis and nausea, as well as a very effective agent for the treatment of breakthrough emesis and nausea. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.

  18. Depressed GABA and glutamate synaptic signaling by 5-HT1A receptors in the nucleus tractus solitarii and their role in cardiorespiratory function

    PubMed Central

    Ostrowski, Tim D.; Ostrowski, Daniela; Hasser, Eileen M.

    2014-01-01

    Serotonin (5-HT), and its 5-HT1A receptor (5-HT1AR) subtype, is a powerful modulator of the cardiorespiratory system and its sensory reflexes. The nucleus tractus solitarii (nTS) serves as the first central station for visceral afferent integration and is critical for cardiorespiratory reflex responses. However, the physiological and synaptic role of 5-HT1ARs in the nTS is relatively unknown. In the present study, we examined the distribution and modulation of 5-HT1ARs on cardiorespiratory and synaptic parameters in the nTS. 5-HT1ARs were widely distributed to cell bodies within the nTS but not synaptic terminals. In anesthetized rats, activation of 5-HT1ARs by microinjection of the 5-HT1AR agonist 8-OH-DPAT into the caudal nTS decreased minute phrenic neural activity via a reduction in phrenic amplitude. In brain stem slices, 8-OH-DPAT decreased the amplitude of glutamatergic tractus solitarii-evoked excitatory postsynaptic currents, and reduced overall spontaneous excitatory nTS network activity. These effects persisted in the presence of GABAA receptor blockade and were antagonized by coapplication of 5-HT1AR blocker WAY-100135. 5-HT1AR blockade alone had no effect on tractus solitarii-evoked excitatory postsynaptic currents, but increased excitatory network activity. On the other hand, GABAergic nTS-evoked inhibitory postsynaptic currents did not change by activation of the 5-HT1ARs, but spontaneous inhibitory nTS network activity decreased. Blocking 5-HT1ARs tended to increase nTS-evoked inhibitory postsynaptic currents and inhibitory network activity. Taken together, 5-HT1ARs in the caudal nTS decrease breathing, likely via attenuation of afferent transmission, as well as overall nTS network activity. PMID:24671532

  19. Therapeutic Potential of 5-HT2C Receptor Agonists for Addictive Disorders.

    PubMed

    Higgins, Guy A; Fletcher, Paul J

    2015-07-15

    The neurotransmitter 5-hydroxytryptamine (5-HT; serotonin) has long been associated with the control of a variety of motivated behaviors, including feeding. Much of the evidence linking 5-HT and feeding behavior was obtained from studies of the effects of the 5-HT releaser (dex)fenfluramine in laboratory animals and humans. Recently, the selective 5-HT2C receptor agonist lorcaserin received FDA approval for the treatment of obesity. This review examines evidence to support the use of selective 5-HT2C receptor agonists as treatments for conditions beyond obesity, including substance abuse (particularly nicotine, psychostimulant, and alcohol dependence), obsessive compulsive, and excessive gambling disorder. Following a brief survey of the early literature supporting a role for 5-HT in modulating food and drug reinforcement, we propose that intrinsic differences between SSRI and serotonin releasers may have underestimated the value of serotonin-based pharmacotherapeutics to treat clinical forms of addictive behavior beyond obesity. We then highlight the critical involvement of the 5-HT2C receptor in mediating the effect of (dex)fenfluramine on feeding and body weight gain and the evidence that 5-HT2C receptor agonists reduce measures of drug reward and impulsivity. A recent report of lorcaserin efficacy in a smoking cessation trial further strengthens the idea that 5-HT2C receptor agonists may have potential as a treatment for addiction. This review was prepared as a contribution to the proceedings of the 11th International Society for Serotonin Research Meeting held in Hermanus, South Africa, July 9-12, 2014.

  20. Human Serotonin 5-HT2C G Protein-Coupled Receptor Homology Model from the β2 Adrenoceptor Structure: Ligand Docking and Mutagenesis Studies

    PubMed Central

    RDOVA-SINTJAGO, TANIA CÓ; VILLA, NANCY; CANAL, CLINTON; BOOTH, RAYMOND

    2013-01-01

    Activation of the serotonin (5-hydroxytryptamine, 5-HT) 5HT2C G protein-coupled receptor (GPCR) is proposed as novel pharmacotherapy for obesity and neuropsychiatric disorders. In contrast, activation of the 5-HT2A and 5-HT2B GPCRs is associated with untoward hallucinogenic and cardiopulmonary effects, respectively. There is no crystal structure available to guide design of 5-HT2C receptor-specific ligands. For this reason, a homology model of the 5-HT2C receptor was built based on the crystal structure of the human β2 adrenoceptor GPCR to delineate molecular determinants of ligand–receptor interactions for drug design purposes. Computational and experimental studies were carried out to validate the model. Binding of N(CH3)2-PAT [(1R, 3S)-(−)-trans-1-phenyl-3-N,N-dimethylamino-1,2,3,4-tetrahydronaphthalene], a novel 5-HT2C agonist/5-HT2A/2B inverse agonist, and its secondary [NH(CH3)-PAT] and primary (NH2-PAT) amine analogs were studied at the 5-HT2C wild type (WT) and D3.32A, S3.36A, and Y7.43A 5-HT2C point-mutated receptors. Reference ligands included the tertiary amines lisuride and mesulergine and the primary amine 5-HT. Modeling results indicated that 5-HT2C residues D3.32, S3.36, and Y7.43 play a role in ligand binding. Experimental ligand binding results with WT and point-mutated receptors confirmed the impact of D3.32, S3.36, and Y7.43 on ligand affinity. PMID:24244046

  1. Serotonin homeostasis and serotonin receptors as actors of cortical construction: special attention to the 5-HT3A and 5-HT6 receptor subtypes

    PubMed Central

    Vitalis, Tania; Ansorge, Mark S.; Dayer, Alexandre G.

    2013-01-01

    Cortical circuits control higher-order cognitive processes and their function is highly dependent on their structure that emerges during development. The construction of cortical circuits involves the coordinated interplay between different types of cellular processes such as proliferation, migration, and differentiation of neural and glial cell subtypes. Among the multiple factors that regulate the assembly of cortical circuits, 5-HT is an important developmental signal that impacts on a broad diversity of cellular processes. 5-HT is detected at the onset of embryonic telencephalic formation and a variety of serotonergic receptors are dynamically expressed in the embryonic developing cortex in a region and cell-type specific manner. Among these receptors, the ionotropic 5-HT3A receptor and the metabotropic 5-HT6 receptor have recently been identified as novel serotonergic targets regulating different aspects of cortical construction including neuronal migration and dendritic differentiation. In this review, we focus on the developmental impact of serotonergic systems on the construction of cortical circuits and discuss their potential role in programming risk for human psychiatric disorders. PMID:23801939

  2. How efficacious are 5-HT1B/D receptor ligands: an answer from GTP gamma S binding studies with stably transfected C6-glial cell lines.

    PubMed

    Pauwels, P J; Tardif, S; Palmier, C; Wurch, T; Colpaert, F C

    1997-01-01

    The intrinsic activity of a series of 5-hydroxytryptamine (serotonin, 5-HT) receptor ligands was analysed at recombinant h5-HT1B and h5-HT1D receptor sites using a [35S]GTP gamma S binding assay and membrane preparations of stably transfected C6-glial cell lines. Compounds either stimulated or inhibited [35S]GTP gamma S binding to a membrane preparation containing either h5-HT1B or h5-HT1D receptors. The potencies observed for most of the compounds at the h5-HT1B receptor subtype correlated with their potencies measured by inhibition of stimulated cAMP formation on intact cells. Apparent agonist potencies in the [35S]GTP gamma S binding assay to C6-glial/h5-HT1D membranes were, with the exception of 2-[5-[3-(4-methylsulphonylamino)benzyl-1 2,4-oxadiazol-5-yl]-1H-indol-3-yl] ethanamine (L694247), 5- to 13-times lower than in the cAMP assay on intact cells. This suggests that receptor coupling in the h5-HT1D membrane preparation is less efficient than that in the intact cell. It further appeared that 6-times more h5-HT1D than h5-HT1B binding sites were required to attain a similar, maximal (73%), 5-HT-stimulated [35S]GTP gamma S binding response: Hence, the h5-HT1B receptor in C6-glial cell membranes could be more efficiently coupled, even though some compounds more readily displayed intrinsic activity at h5-HT1D receptor sites [e.g. dihydroergotamine and (2'-methyl-4'-(5-methyl[1,2,4]oxadiazol-3-yl)biphenyl-4-carboxylic acid [4-methoxy-3-(4-methylpiperazin-1-yl)phenyl]amide (GR127935)]. Efficacy differences were apparent for most of the compounds (sumatriptan, zolmitriptan, rizatriptan, N-methyl-3-[pyrrolidin-2(R)-ylmethyl]-1H-indol-5-ylmethyl sulfonamide (CP122638), dihydroergotamine, naratriptan and GR127935) that stimulated [35S]GTP gamma S binding compared to the native agonist 5-HT. The observed maximal responses were different for the h5-HT1B and h5-HT1D receptor subtypes. Few compounds behaved as full agonists: L694247, zolmitriptan and sumatriptan did so at

  3. Dual role of serotonin in the acquisition and extinction of reward-driven learning: involvement of 5-HT1A, 5-HT2A and 5-HT3 receptors.

    PubMed

    Frick, Luciana Romina; Bernardez-Vidal, Micaela; Hocht, Christian; Zanutto, Bonifacio Silvano; Rapanelli, Maximiliano

    2015-01-15

    Serotonin (5-HT) has been proposed as a possible encoder of reward. Nevertheless, the role of this neurotransmitter in reward-based tasks is not well understood. Given that the major serotonergic circuit in the rat brain comprises the dorsal raphe nuclei and the medial prefrontal cortex (mPFC), and because the latter structure is involved in the control of complex behaviors and expresses 1A (5-HT1A), 2A (5-HT2A), and 3 (5-HT3) receptors, the aim was to study the role of 5-HT and of these receptors in the acquisition and extinction of a reward-dependent operant conditioning task. Long Evans rats were trained in an operant conditioning task while receiving fluoxetine (serotonin reuptake inhibitor, 10mg/kg), tianeptine (serotonin reuptake enhancer, 10mg/kg), buspirone (5-HT1A partial agonist, 10mg/kg), risperidone (5-HT2A antagonist, 1mg/kg), ondansetron (5-HT3 antagonist, 2mg/kg) or vehicle. Then, animals that acquired the operant conditioning without any treatment were trained to extinct the task in the presence of the pharmacological agents. Fluoxetine impaired acquisition but improved extinction. Tianeptine administration induced the opposite effects. Buspirone induced a mild deficit in acquisition and had no effects during the extinction phase. Risperidone administration resulted in learning deficits during the acquisition phase, although it promoted improved extinction. Ondansetron treatment showed a deleterious effect in the acquisition phase and an overall improvement in the extinction phase. These data showed a differential role of 5-HT in the acquisition and extinction of an operant conditioning task, suggesting that it may have a dual function in reward encoding. PMID:24949809

  4. 5-HT7 receptors are involved in neurogenic dural vasodilatation in an experimental model of migraine.

    PubMed

    Wang, Xiaojuan; Fang, Yannan; Liang, Jianbo; Yan, Miansheng; Hu, Rong; Pan, Xiaoping

    2014-01-01

    Neurogenic dural vasodilation has been demonstrated to play an important role in migraine. 5-HT(7) receptors have been found on trigeminal nerve endings and middle meningeal arteries and demonstrated involved in the dilatation of meningeal arteries. The aim of the present study was to demonstrate whether 5-HT(7) receptors are involved in neurogenic dural vasodilation in migraine. The neurogenic dural vasodilation model of migraine was used in this study. Unilateral electrical stimulation of dura mater was performed in anesthetized male Sprague-Dawley rats. Animals were pretreated with selective 5-HT(7) receptor agonist AS19, 5-HT(7) receptor antagonist SB269970, 5-HT1B/1D receptor agonist sumatriptan, or vehicles. Blood flow of the middle meningeal artery (MMA) was measured by a laser Doppler flowmetry. AS19 significantly increased the basal and stimulated blood flows of the middle meningeal artery following electrical stimulation of dura mater, and its effect was dose dependent at the early stage. SB269970 and sumatriptan significantly reduced the basal and stimulated blood flows of middle meningeal artery. The present study demonstrates for the first time that 5-HT(7) receptors are involved in neurogenic dural vasodilation evoked by electrical stimulation of dura mater and maybe of relevance in the pathophysiology and treatment of migraine.

  5. μ-Opioid and 5-HT1A receptors heterodimerize and show signalling crosstalk via G protein and MAP-kinase pathways.

    PubMed

    Cussac, Didier; Rauly-Lestienne, Isabelle; Heusler, Peter; Finana, Frédéric; Cathala, Claudie; Bernois, Sophie; De Vries, Luc

    2012-08-01

    μ-opioid receptors have been shown to form heterodimers with several G protein coupled receptors involved in pain regulation such as α(2A)-adrenergic and neurokinin 1 receptors. Because the 5-HT(1A) receptor is also involved in pain control, we investigated whether it can interact with the μ-opioid receptor in cell lines. Using epitope-tagged μ-opioid and 5-HT(1A) receptors, we show that both receptors can co-immunoprecipate when expressed in the same cells. This physical interaction was corroborated by a Bioluminescence Resonance Energy Transfer signal between the μ-opioid receptor fused to Renilla luciferase and the 5-HT(1A) receptor fused to the Green Fluorescent Protein. Consistent with the presence of functional heterodimers, the μ-opioid receptor activated a Gα(o) protein covalently fused to the 5-HT(1A) receptor in membrane preparations as well as a Gα(15) protein fused to the 5-HT(1A) receptor in living cells. We demonstrate that both receptors can coexerce control of the ERK1/2 pathway: for example, μ-opioid receptor-induced ERK1/2 phosphorylation was selectively desensitized by 5-HT(1A) receptor activation. Although 5-HT(1A) and μ-opioid receptors were capable to internalize in response to their own activation, they were ineffective to induce the co-internalization of their partners. Thus, we show a functional heterodimerization of μ-opioid and 5-HT(1A) receptors in cell lines, a complex that might play a role in the control of pain in vivo. These results also support the potential therapeutic action of 5-HT(1A) agonists against nociceptive processes.

  6. Selective reduction by isolation rearing of 5-HT1A receptor-mediated dopamine release in vivo in the frontal cortex of mice.

    PubMed

    Ago, Y; Sakaue, M; Baba, A; Matsuda, T

    2002-10-01

    Serotonin (5-HT)1A receptors modulate in vivo release of brain monoaminergic neurotransmitters which may be involved in isolation-induced aggressive behavior. The present study examined the effect of isolation rearing on the 5-HT1A receptor-mediated modulation of dopamine (DA), 5-HT and noradrenaline (NA) release in the frontal cortex of mice. The selective 5-HT1A receptor agonist (S)-5-[-[(1,4-benzodioxan-2-ylmethyl)amino]propoxy]-1,3-benzodioxole HCl (MKC-242) increased the release of DA and NA and decreased the release of 5-HT in the frontal cortex of mice. The effect of MKC-242 on DA release was significantly less in isolation-reared mice than in group-reared mice, while effects of the drug on NA and 5-HT release did not differ between both groups. The effect of the other 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin on cortical DA release was also less in isolation-reared mice than in group-reared mice, and that of the drug on cortical 5-HT release did not differ between both groups. In contrast to MKC-242-induced DA release, amphetamine-induced increase in cortical DA release in vivo was greater in isolation-reared mice. The present findings suggest that isolation rearing enhances the activity of cortical dopaminergic neurons and reduces selectively the 5-HT1A receptor-mediated release of DA in the cortex.

  7. Functional expression of the serotonin 5-HT7 receptor in human glioblastoma cell lines

    PubMed Central

    Mahé, Cécile; Bernhard, Michel; Bobirnac, Ionel; Keser, Corinna; Loetscher, Erika; Feuerbach, Dominik; Dev, Kumlesh K; Schoeffter, Philippe

    2004-01-01

    Serotonin 5-HT7 receptors are present in astrocytes. Understanding their role in this type of cell would greatly benefit from the identification of astroglial cell lines expressing this receptor type. The aim of the present study was to assess the expression of native 5-HT7 receptors and 5-HT7 receptor mRNA in a number of human glioblastoma cell lines, by means of cAMP measurements, Western blot analysis and reverse transcriptase–polymerase chain reaction (RT–PCR) analysis. 5-Hydroxytryptamine (5-HT), 5-carboxamidotryptamine (5-CT), 5-methoxytryptamine (5-MeOT) and 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) induced concentration-dependent stimulations of cAMP accumulation in the human glioblastoma cell lines, U-373 MG, U-138 MG, U-87 MG, DBTRG-05MG, T98G, H4, CCF-STTG1 and Hs 683. The rank order of potency was 5-CT>5-HT=5-MeOT≫8-OH-DPAT. The effect of 5-CT was inhibited in a concentration-dependent manner by the selective 5-HT7 receptor antagonist SB-269970 in all human glioblastoma cells. Schild analyses yielded slope factors close to unity (0.89–1.13) and pA2 values of 8.69–9.05. Western blot analysis revealed the presence of immunoreactive bands corresponding to the human 5-HT7 receptor in extracts of all human glioblastoma cell lines. The presence of the three splice variants of the 5-HT7 receptor (5-HT7(a/b/d)) was visualized by RT–PCR analysis with specific primers in all human glioblastoma cell lines. In conclusion, human glioblastoma cell lines express functional 5-HT7 receptors and the three splice variants of the corresponding mRNA. These cell lines could serve as model systems of native 5-HT7 receptors in glial cells to investigate their putative role in processes like release of neurotrophic factors or inflammatory cytokines. PMID:15339860

  8. Functional expression of the serotonin 5-HT7 receptor in human glioblastoma cell lines.

    PubMed

    Mahé, Cécile; Bernhard, Michel; Bobirnac, Ionel; Keser, Corinna; Loetscher, Erika; Feuerbach, Dominik; Dev, Kumlesh K; Schoeffter, Philippe

    2004-10-01

    Serotonin 5-HT(7) receptors are present in astrocytes. Understanding their role in this type of cell would greatly benefit from the identification of astroglial cell lines expressing this receptor type. The aim of the present study was to assess the expression of native 5-HT(7) receptors and 5-HT(7) receptor mRNA in a number of human glioblastoma cell lines, by means of cAMP measurements, Western blot analysis and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. 5-Hydroxytryptamine (5-HT), 5-carboxamidotryptamine (5-CT), 5-methoxytryptamine (5-MeOT) and 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) induced concentration-dependent stimulations of cAMP accumulation in the human glioblastoma cell lines, U-373 MG, U-138 MG, U-87 MG, DBTRG-05MG, T98G, H4, CCF-STTG1 and Hs 683. The rank order of potency was 5-CT>5-HT=5-MeOT>8-OH-DPAT. The effect of 5-CT was inhibited in a concentration-dependent manner by the selective 5-HT(7) receptor antagonist SB-269970 in all human glioblastoma cells. Schild analyses yielded slope factors close to unity (0.89-1.13) and pA(2) values of 8.69-9.05. Western blot analysis revealed the presence of immunoreactive bands corresponding to the human 5-HT(7) receptor in extracts of all human glioblastoma cell lines. The presence of the three splice variants of the 5-HT(7) receptor (5-HT(7(a/b/d))) was visualized by RT-PCR analysis with specific primers in all human glioblastoma cell lines. In conclusion, human glioblastoma cell lines express functional 5-HT(7) receptors and the three splice variants of the corresponding mRNA. These cell lines could serve as model systems of native 5-HT(7) receptors in glial cells to investigate their putative role in processes like release of neurotrophic factors or inflammatory cytokines. PMID:15339860

  9. Oleanolic acid acrylate elicits antidepressant-like effect mediated by 5-HT1A receptor

    PubMed Central

    Fajemiroye, James O.; Polepally, Prabhakar R.; Chaurasiya, Narayan D.; Tekwani, Babu L.; Zjawiony, Jordan K.; Costa, Elson A.

    2015-01-01

    The development of new drugs for the treatment of depression is strategic to achieving clinical needs of patients. This study evaluates antidepressant-like effect and neural mechanisms of four oleanolic acid derivatives i.e. acrylate (D1), methacrylate (D2), methyl fumarate (D3) and ethyl fumarate (D4). All derivatives were obtained by simple one-step esterification of oleanolic acid prior to pharmacological screening in the forced swimming (FS) and open field (OF) tests. Pharmacological tools like α-methyl-p-tyrosine (AMPT, catecholamine depletor), p-chlorophenylalanine (serotonin depletor), prazosin (PRAZ, selective α1-receptor antagonist), WAY-100635 (selective serotonin 5-HT1A receptor antagonist) as well as monoamine oxidase (MAO) and functional binding assays were conducted to investigate possible neural mechanisms. In the FS test, D1 showed the most promising antidepressant-like effect without eliciting locomotor incoordination. Unlike group of mice pretreated with AMPT 100 mg/kg, PCPA 100 mg/kg or PRAZ 1 mg/kg, the effect of D1 was attenuated by WAY-100635 0.3 mg/kg pretreatment. D1 demonstrated moderate inhibition of MAO-A (IC50 = 48.848 ± 1.935 μM), potency (pEC50 = 6.1 ± 0.1) and intrinsic activity (Emax = 26 ± 2.0%) on 5-HT1A receptor. In conclusion, our findings showed antidepressant-like effect of D1 and possible involvement of 5-HT1A receptor. PMID:26199018

  10. Expression of serotonin 5-HT(2A) receptors in the human cerebellum and alterations in schizophrenia.

    PubMed

    Eastwood, S L; Burnet, P W; Gittins, R; Baker, K; Harrison, P J

    2001-11-01

    The occurrence of human cerebellar serotonin 5-HT(2A) receptors (5-HT(2A)R) is equivocal and their status in schizophrenia unknown. Using a range of techniques, we investigated cerebellar 5-HT(2A)R expression in 16 healthy subjects and 16 subjects with schizophrenia. Immunocytochemistry with a monoclonal antibody showed labelling of Purkinje cell bodies and dendrites, as well as putative astrocytes. Western blots showed a major band at approximately 45 kDa. Receptor autoradiography and homogenate binding with [(3)H]ketanserin revealed cerebellar 5-HT(2A)R binding sites present at levels approximately a third of that in prefrontal cortex. 5-HT(2A)R mRNA was detected by reverse transcriptase-polymerase chain reaction, with higher relative levels in men than women. Several aspects of 5-HT(2A)R expression were altered in schizophrenia. 5-HT(2A)R immunoreactivity in Purkinje cells was partially redistributed from soma to dendrites and was increased in white matter. 5-HT(2A)R mRNA was decreased in the male patients. 5-HT(2A)R measured by dot blots and [(3)H]ketanserin binding (B(max) and K(d)) were not significantly altered in schizophrenia. These data show that 5-HT(2A)R gene products (mRNA, protein, binding sites) are expressed in the human cerebellum at nonnegligible levels; this bears upon 5-HT(2A)R imaging studies which use the cerebellum as a reference region. 5-HT(2A)R expression is altered in schizophrenia; the shift of 5-HT(2A)R from soma to dendrites is noteworthy since atypical antipsychotics have the opposite effect. Finally, the results emphasise that expression of a receptor gene is a mutifaceted process. Measurement of multiple parameters is necessary to give a clear picture of the normal situation and to show the profile of alterations in a disease. PMID:11574947

  11. Discovery and development of 5-HT(₂C) receptor agonists for obesity: is there light at the end of the tunnel?

    PubMed

    Miller, Keith J; Wacker, Dean A

    2010-12-01

    Ever since the observation of late-onset obesity during the phenotypic characterization of the 5-HT(₂C) knock-out mouse, the serotonin 5-HT(₂C) receptor has been a drug target for obesity. Small-molecule agonists have repeatedly been shown to reduce food intake and body weight in rodent models of obesity. To date, however, only one compound, lorcaserin, has completed Phase III trials and currently awaits an US FDA decision following a negative advisory committee meeting. Agonist selectivity versus the highly homologous 5-HT(₂A) and 5-HT(₂B) receptors remains a significant hurdle. Ideally, a specific 5-HT(₂C) agonist (completely devoid of 5-HT(₂A) and 5-HT(₂B) activity) would be preferred. The requirement of a basic amine coupled with larger, often aromatic, hydrophobic domains, to gain selectivity, often leads to additional challenges associated with cationic amphiphilic molecules such as hERG-channel inhibition and phospholipidosis. The success of future 5-HT(₂C) agonists will depend on further improvements in selectivity (or attainment of complete specificity) and pharmaceutical properties to permit greater and sustained receptor stimulation, while avoiding side effects associated with the activation of other 5-HT receptors.

  12. Asymmetric Clustering Index in a Case Study of 5-HT1A Receptor Ligands

    PubMed Central

    Śmieja, Marek; Warszycki, Dawid; Tabor, Jacek; Bojarski, Andrzej J.

    2014-01-01

    The automatic clustering of chemical compounds is an important branch of chemoinformatics. In this paper the Asymmetric Clustering Index (Aci) is proposed to assess how well an automatically created partition reflects the reference. The asymmetry allows for a distinction between the fixed reference and the numerically constructed partition. The introduced index is applied to evaluate the quality of hierarchical clustering procedures for 5-HT1A receptor ligands. We find that the most appropriate combination of parameters for the hierarchical clustering of compounds with a determined activity for this biological target is the Klekota Roth fingerprint combined with the complete linkage function and the Buser similarity metric. PMID:25019251

  13. Downregulation of 5-HT7 Serotonin Receptors by the Atypical Antipsychotics Clozapine and Olanzapine. Role of Motifs in the C-Terminal Domain and Interaction with GASP-1.

    PubMed

    Manfra, Ornella; Van Craenenbroeck, Kathleen; Skieterska, Kamila; Frimurer, Thomas; Schwartz, Thue W; Levy, Finn Olav; Andressen, Kjetil Wessel

    2015-07-15

    The human 5-HT7 serotonin receptor, a G-protein-coupled receptor (GPCR), activates adenylyl cyclase constitutively and upon agonist activation. Biased ligands differentially activate 5-HT7 serotonin receptor desensitization, internalization and degradation in addition to G protein activation. We have previously found that the atypical antipsychotics clozapine and olanzapine inhibited G protein activation and, surprisingly, induced both internalization and lysosomal degradation of 5-HT7 receptors. Here, we aimed to determine the mechanism of clozapine- and olanzapine-mediated degradation of 5-HT7 receptors. In the C-terminus of the 5-HT7 receptor, we identified two YXXΦ motifs, LR residues, and a palmitoylated cysteine anchor as potential sites involved in receptor trafficking to lysosomes followed by receptor degradation. Mutating either of these sites inhibited clozapine- and olanzapine-mediated degradation of 5-HT7 receptors and also interfered with G protein activation. In addition, we tested whether receptor degradation was mediated by the GPCR-associated sorting protein-1 (GASP-1). We show that GASP-1 binds the 5-HT7 receptor and regulates the clozapine-mediated degradation. Mutations of the identified motifs and residues, located in or close to Helix-VIII of the 5-HT7 receptor, modified antipsychotic-stimulated binding of proteins (such as GASP-1), possibly by altering the flexibility of Helix-VIII, and also interfered with G protein activation. Taken together, our data demonstrate that binding of clozapine or olanzapine to the 5-HT7 receptor leads to antagonist-mediated lysosomal degradation by exposing key residues in the C-terminal tail that interact with GASP-1. PMID:25706089

  14. 5-HT2A receptors control body temperature in mice during LPS-induced inflammation via regulation of NO production.

    PubMed

    Voronova, Irina P; Khramova, Galina M; Kulikova, Elizabeth A; Petrovskii, Dmitrii V; Bazovkina, Daria V; Kulikov, Alexander V

    2016-01-01

    G protein-coupled 5-HT2A receptors are involved in the regulation of numerous normal and pathological physiological functions. At the same time, its involvement in the regulation of body temperature (Tb) in normal conditions is obscure. Here we study the effect of the 5-HT2A receptor activation or blockade on Tb in sick animals. The experiments were carried out on adult C57BL/6 mouse males. Systemic inflammation and sickness were produced by lipopolysaccharide (LPS, 0.1mg/kg, ip), while the 5-HT2A receptor was stimulated or blocked through the administration of the receptor agonist DOI or antagonist ketanserin (1mg/kg), respectively. LPS, DOI or ketanserin alone produced no effect on Tb. However, administration of LPS together with a peripheral or central ketanserin injection reduced Tb (32.2°C). Ketanserin reversed the LPS-induced expression of inducible NO synthase in the brain. Consequently, an involvement of NO in the mechanism of the hypothermic effect of ketanserin in sick mice was hypothesized. Administration of LPS together with NO synthase inhibitor, l-nitro-arginine methyl ester (60mg/kg, ip) resulted in deep (28.5°C) and prolonged (8h) hypothermia, while administration of l-nitro-arginine methyl ester alone produced no effect on Tb. Thus, 5-HT2A receptors play a key role in Tb control in sick mice. Blockade of this GPCR produces hypothermia in mice with systemic inflammation via attenuation of LPS-induced NO production. These results indicate an unexpected role of 5-HT2A receptors in inflammation and NO production and have a considerable biological impact on understanding the mechanism of animal adaptation to pathogens and parasites. Moreover, adverse side effects of 5-HT2A receptor antagonists in patients with inflammation may be expected. PMID:26621247

  15. 5-HT2A receptors control body temperature in mice during LPS-induced inflammation via regulation of NO production.

    PubMed

    Voronova, Irina P; Khramova, Galina M; Kulikova, Elizabeth A; Petrovskii, Dmitrii V; Bazovkina, Daria V; Kulikov, Alexander V

    2016-01-01

    G protein-coupled 5-HT2A receptors are involved in the regulation of numerous normal and pathological physiological functions. At the same time, its involvement in the regulation of body temperature (Tb) in normal conditions is obscure. Here we study the effect of the 5-HT2A receptor activation or blockade on Tb in sick animals. The experiments were carried out on adult C57BL/6 mouse males. Systemic inflammation and sickness were produced by lipopolysaccharide (LPS, 0.1mg/kg, ip), while the 5-HT2A receptor was stimulated or blocked through the administration of the receptor agonist DOI or antagonist ketanserin (1mg/kg), respectively. LPS, DOI or ketanserin alone produced no effect on Tb. However, administration of LPS together with a peripheral or central ketanserin injection reduced Tb (32.2°C). Ketanserin reversed the LPS-induced expression of inducible NO synthase in the brain. Consequently, an involvement of NO in the mechanism of the hypothermic effect of ketanserin in sick mice was hypothesized. Administration of LPS together with NO synthase inhibitor, l-nitro-arginine methyl ester (60mg/kg, ip) resulted in deep (28.5°C) and prolonged (8h) hypothermia, while administration of l-nitro-arginine methyl ester alone produced no effect on Tb. Thus, 5-HT2A receptors play a key role in Tb control in sick mice. Blockade of this GPCR produces hypothermia in mice with systemic inflammation via attenuation of LPS-induced NO production. These results indicate an unexpected role of 5-HT2A receptors in inflammation and NO production and have a considerable biological impact on understanding the mechanism of animal adaptation to pathogens and parasites. Moreover, adverse side effects of 5-HT2A receptor antagonists in patients with inflammation may be expected.

  16. 5-HT1B receptors inhibit glutamate release from primary afferent terminals in rat medullary dorsal horn neurons

    PubMed Central

    Choi, I-S; Cho, J-H; An, C-H; Jung, J-K; Hur, Y-K; Choi, J-K; Jang, I-S

    2012-01-01

    BACKGROUND AND PURPOSE Although 5-HT1B receptors are expressed in trigeminal sensory neurons, it is still not known whether these receptors can modulate nociceptive transmission from primary afferents onto medullary dorsal horn neurons. EXPERIMENTAL APPROACH Primary afferent-evoked EPSCs were recorded from medullary dorsal horn neurons of rat horizontal brain stem slices using a conventional whole-cell patch clamp technique under a voltage-clamp condition. KEY RESULTS CP93129, a selective 5-HT1B receptor agonist, reversibly and concentration-dependently decreased the amplitude of glutamatergic EPSCs and increased the paired-pulse ratio. In addition, CP93129 reduced the frequency of spontaneous miniature EPSCs without affecting the current amplitude. The CP93129-induced inhibition of EPSCs was significantly occluded by GR55562, a 5-HT1B/1D receptor antagonist, but not LY310762, a 5-HT1D receptor antagonist. Sumatriptan, an anti-migraine drug, also decreased EPSC amplitude, and this effect was partially blocked by either GR55562 or LY310762. On the other hand, primary afferent-evoked EPSCs were mediated by the Ca2+ influx passing through both presynaptic N-type and P/Q-type Ca2+ channels. The CP93129-induced inhibition of EPSCs was significantly occluded by ω-conotoxin GVIA, an N-type Ca2+ channel blocker. CONCLUSIONS AND IMPLICATIONS The present results suggest that the activation of presynaptic 5-HT1B receptors reduces glutamate release from primary afferent terminals onto medullary dorsal horn neurons, and that 5-HT1B receptors could be, at the very least, a potential target for the treatment of pain from orofacial tissues. LINKED ARTICLE This article is commented on by Connor, pp. 353–355 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2012.01963.x PMID:22462474

  17. Differential effects of three 5-HT receptor antagonists on the performance of rats in attentional and working memory tasks.

    PubMed

    Ruotsalainen, S; Sirviö, J; Jäkälä, P; Puumala, T; MacDonald, E; Riekkinen, P

    1997-05-01

    The effects of three different serotonin (5-HT) receptor antagonists (ketanserin, methysegide, methiothepin) in the modulation of attention, working memory and behavioural activity were investigated in this study by assessing the performance of rats in two separate cognitive models; the 5-choice serial reaction time (5-CSRT) task, which measures attention, and the delayed non-matching to position (DNMTP) task, which measures working memory. Methysergide and methiothepin bind at the 5-HT1 and 5-HT2 as well as the 5-HT5-7 receptors, with varying degrees of selectivity, and ketanserin binds at the 5-HT2A receptors rather selectively. None of these agents bind to any significant extent to 5-HT3 or 5-HT4 receptors. In the 5-CSRT task, neither methiothepin (0.15 mg/kg) nor ketanserin (1.0 and 3.0 mg/kg) impaired the choice accuracy of rats, although they induced sedation. The low doses of methysergide (1.5 and 3.0 mg/kg) slightly increased the behavioural activity of rats, whereas the high dose of methysergide (15.0 mg/kg) reduced behavioural activity and slightly reduced choice accuracy of the rats in the attentional task (monitoring of visual stimuli) under the baseline conditions or curtailed stimulus duration. This effect was not augmented at the reduced stimulus intensity. These findings suggest that the high dose of methysergide did not interfere with the visual discrimination of rats. Furthermore, methysergide did not reduce motivation for this task, since it did not increase food collection latencies. In the DNMTP task, methiothepin (0.15 mg/kg) induced a delay non-dependent deficit in choice accuracy. This could be due to an impaired alternation ability or akinesia, which increases an actual delay between sample and choice. Methiothepin (0.15 mg/kg) also interfered with behavioural activity of rats. Interestingly, ketanserin (1.0 mg/kg and 3.0 mg/kg) and methysergide (3.0-15.0 mg/kg) neither impaired the choice accuracy nor reduced the behavioural activity of

  18. Design, Synthesis, and Evaluation of Tetrasubstituted Pyridines as Potent 5-HT2C Receptor Agonists

    PubMed Central

    2015-01-01

    A series of pyrido[3,4-d]azepines that are potent and selective 5-HT2C receptor agonists is disclosed. Compound 7 (PF-04781340) is identified as a suitable lead owing to good 5-HT2C potency, selectivity over 5-HT2B agonism, and in vitro ADME properties commensurate with an orally available and CNS penetrant profile. The synthesis of a novel bicyclic tetrasubstituted pyridine core template is outlined, including rationale to account for the unexpected formation of aminopyridine 13 resulting from an ammonia cascade cyclization. PMID:25815155

  19. 5-HT receptors involved in initiation or modulation of motor patterns: opportunities for drug development.

    PubMed

    Wallis, D I

    1994-08-01

    A clearer understanding of the role of descending systems in motor control can be achieved by using in vitro preparations of mammalian spinal cord that display patterned motor output, together with the use of selective pharmacological agents. It has been suggested that 5-HT is involved in either the initiation or the modulation of certain motor behaviours, and that it acts to enhance or regulate the motor pattern. Most attention has been paid to the locomotor rhythms underlying walking or swimming, and in respiratory pattern generation. In this article, David Wallis discusses the involvement of 5-HT1 and 5-HT2 receptors in these processes and the possible therapeutic relevance.

  20. The role of 5-HT7 receptor antagonism in the amelioration of MK-801-induced learning and memory deficits by the novel atypical antipsychotic drug lurasidone.

    PubMed

    Horisawa, Tomoko; Nishikawa, Hiroyuki; Toma, Satoko; Ikeda, Atsushi; Horiguchi, Masakuni; Ono, Michiko; Ishiyama, Takeo; Taiji, Mutsuo

    2013-05-01

    Lurasidone is a novel atypical antipsychotic with high affinity for dopamine D2, serotonin 5-HT7 and 5-HT2A receptors. We previously reported that lurasidone and the selective 5-HT7 receptor antagonist, SB-656104-A improved learning and memory deficits induced by MK-801, an N-methyl-d-aspartate (NMDA) receptor antagonist, in the rat passive avoidance test. In this study, we first examined the role of the 5-HT7 receptor antagonistic activity of lurasidone in its pro-cognitive effect to ameliorate MK-801-induced deficits in the rat passive avoidance test. The 5-HT7 receptor agonist, AS19, (2S)-(+)-5-(1,3,5-trimethylpyrazol-4-yl)-2-(dimethylamino) tetralin, (3 mg/kg, s.c.) completely blocked the attenuating effects of lurasidone (3 mg/kg, p.o.), highlighting the importance of 5-HT7 receptor antagonism in the pro-cognitive effect of lurasidone. AS19 (3 mg/kg, s.c.) also blocked the ameliorating effect of SB-656104-A (10 mg/kg, i.p.) in the same experimental paradigm. To further extend our observation, we next tested whether 5-HT7 receptor antagonism still led to the amelioration of MK-801-induced deficits when combined with D2 and 5-HT2A receptor antagonists, and found that SB-656104-A (10 mg/kg, i.p.) significantly ameliorated MK-801-induced deficits even in the presence of the D2 receptor antagonist raclopride (0.1 mg/kg, s.c.) and 5-HT2A receptor antagonist ketanserin (1 mg/kg, s.c.). Taken together, these results suggest that the 5-HT7 receptor antagonistic activity of lurasidone plays an important role in its effectiveness against MK-801-induced deficits, and may contribute to its pharmacological actions in patients with schizophrenia.

  1. Striatal 5-HT6 Receptors Regulate Cocaine Reinforcement in a Pathway-Selective Manner.

    PubMed

    Brodsky, Matthew; Gibson, Alec W; Smirnov, Denis; Nair, Sunila G; Neumaier, John F

    2016-08-01

    The nucleus accumbens (NAc) in the ventral striatum integrates many neurochemical inputs including dopamine and serotonin projections from midbrain nuclei to modulate drug reward. Although D1 and D2 dopamine receptors are differentially expressed in the direct and indirect pathway medium spiny neurons (dMSNs and iMSNs, respectively), 5-HT6 receptors are expressed in both pathways, more strongly than anywhere else in the brain, and are an intriguing target for neuropsychiatric disorders. In the present study, we used viral vectors utilizing dynorphin or enkephalin promoters to drive expression of 5-HT6 receptors or green fluorescent protein (GFP) selectively in the dMSNs or iMSNs of the NAc shell. Rats were then trained to self-administer cocaine. Increased 5-HT6 receptor expression in dMSNs did not change any parameter of cocaine self-administration measured. However, increasing 5-HT6 receptors in iMSNs reduced the amount of cocaine self-administered under fixed-ratio schedules, especially at low doses, increased the time to the first response and the length of the inter-infusion interval, but did not alter motivation as measured by progressive ratio 'break point' analysis. Modeling of cocaine pharmacokinetics in NAc showed that increased 5-HT6 receptors in iMSNs reduced the rat's preferred tissue cocaine concentration at each dose. Finally, increased 5-HT6 receptors in iMSNs facilitated conditioned place preference for a low dose of cocaine. We conclude that 5-HT6 receptors in iMSNs of NAcSh increase the sensitivity to the reinforcing properties of cocaine, particularly at low doses, suggesting that these receptors may be a therapeutic target for the treatment of cocaine addiction. PMID:27032690

  2. Effect of dopaminergic D1 receptors on plasticity is dependent of serotoninergic 5-HT1A receptors in L5-pyramidal neurons of the prefrontal cortex.

    PubMed

    Meunier, Claire Nicole Jeanne; Callebert, Jacques; Cancela, José-Manuel; Fossier, Philippe

    2015-01-01

    Major depression and schizophrenia are associated with dysfunctions of serotoninergic and dopaminergic systems mainly in the prefrontal cortex (PFC). Both serotonin and dopamine are known to modulate synaptic plasticity. 5-HT1A receptors (5-HT1ARs) and dopaminergic type D1 receptors are highly represented on dendritic spines of layer 5 pyramidal neurons (L5PyNs) in PFC. How these receptors interact to tune plasticity is poorly understood. Here we show that D1-like receptors (D1Rs) activation requires functional 5HT1ARs to facilitate LTP induction at the expense of LTD. Using 129/Sv and 5-HT1AR-KO mice, we recorded post-synaptic currents evoked by electrical stimulation in layer 2/3 after activation or inhibition of D1Rs. High frequency stimulation resulted in the induction of LTP, LTD or no plasticity. The D1 agonist markedly enhanced the NMDA current in 129/Sv mice and the percentage of L5PyNs displaying LTP was enhanced whereas LTD was reduced. In 5-HT1AR-KO mice, the D1 agonist failed to increase the NMDA current and orientated the plasticity towards L5PyNs displaying LTD, thus revealing a prominent role of 5-HT1ARs in dopamine-induced modulation of plasticity. Our data suggest that in pathological situation where 5-HT1ARs expression varies, dopaminergic treatment used for its ability to increase LTP could turn to be less and less effective. PMID:25775449

  3. Effect of Dopaminergic D1 Receptors on Plasticity Is Dependent of Serotoninergic 5-HT1A Receptors in L5-Pyramidal Neurons of the Prefrontal Cortex

    PubMed Central

    Meunier, Claire Nicole Jeanne; Callebert, Jacques; Cancela, José-Manuel; Fossier, Philippe

    2015-01-01

    Major depression and schizophrenia are associated with dysfunctions of serotoninergic and dopaminergic systems mainly in the prefrontal cortex (PFC). Both serotonin and dopamine are known to modulate synaptic plasticity. 5-HT1A receptors (5-HT1ARs) and dopaminergic type D1 receptors are highly represented on dendritic spines of layer 5 pyramidal neurons (L5PyNs) in PFC. How these receptors interact to tune plasticity is poorly understood. Here we show that D1-like receptors (D1Rs) activation requires functional 5HT1ARs to facilitate LTP induction at the expense of LTD. Using 129/Sv and 5-HT1AR-KO mice, we recorded post-synaptic currents evoked by electrical stimulation in layer 2/3 after activation or inhibition of D1Rs. High frequency stimulation resulted in the induction of LTP, LTD or no plasticity. The D1 agonist markedly enhanced the NMDA current in 129/Sv mice and the percentage of L5PyNs displaying LTP was enhanced whereas LTD was reduced. In 5-HT1AR-KO mice, the D1 agonist failed to increase the NMDA current and orientated the plasticity towards L5PyNs displaying LTD, thus revealing a prominent role of 5-HT1ARs in dopamine-induced modulation of plasticity. Our data suggest that in pathological situation where 5-HT1ARs expression varies, dopaminergic treatment used for its ability to increase LTP could turn to be less and less effective. PMID:25775449

  4. The function of 5-HT3 receptors on colonic transit in rats.

    PubMed

    Haga, K; Asano, K; Fukuda, T; Kobayakawa, T

    1995-12-01

    The function of serotonin (5-HT)3 receptors on colonic transit was investigated in unanesthetized rats. The colonic transit was accelerated by 5-HT (10 mg/kg, s.c.), 2-methyl-5-HT (30 mg/kg, s.c.), neostigmine (0.03-0.1 mg/kg, s.c.), corticotropin releasing factor (CRF; 1 microgram intracerebroventricular administration) and restraint stress (for 45 minutes). A potent and selective 5-HT3 receptor antagonist, azasetron (+/-)-N-(1-azabicyclo[2.2.2]oct-3-yl)-6-chloro- 4-methyl-3-oxo-3,4-dihydro-2H-1,4-benzoxazine-8-carboxamide monohydrochloride ; 0.01-10 mg/kg, p.o. inhibited the 5-HT-, CRF- and stress-accelerated colonic transit in a dose-dependent manner. Ondansetron (10 mg/kg, p.o.) and granisetron (1 mg/kg, p.o) also inhibited the stress-accelerated colonic transit, but azasetron was more effective than these two drugs. Atropine methylbromide (0.1 mg/kg, s.c.) and tetrodotoxin (0.01 mg/kg, s.c.) inhibited the accelerated colonic transit under stress conditions, but methysergide (10 mg/kg, s.c.), SDZ205-557 (10 mg/kg, s.c.), domperidone (30 mg/kg, p.o.), trimebutine (300 mg/kg, p.o.), did not. Azasetron (10 micrograms) administered intracerebroventricularly did not inhibit the stress-induced acceleration. These results suggest that endogenous 5-HT which is released through stress accelerates the colonic transit via the 5-HT3 receptors and finally a cholinergic mechanism. It is considered that azasetron inhibits colonic transit particularly under stress conditions through the blockade of the peripheral 5-HT3 receptors. Azasetron may improve bowel function in stress-related colonic dysfunction like irritable bowel syndrome. PMID:8653566

  5. Signal Transduction Mechanism for Serotonin 5-HT2B Receptor-Mediated DNA Synthesis and Proliferation in Primary Cultures of Adult Rat Hepatocytes.

    PubMed

    Naito, Kota; Tanaka, Chizuru; Mitsuhashi, Manami; Moteki, Hajime; Kimura, Mitsutoshi; Natsume, Hideshi; Ogihara, Masahiko

    2016-01-01

    The involvement of serotonin (5-hydroxytryptamine; 5-HT) and the 5-HT2 receptor subtypes in the induction of DNA synthesis and proliferation was investigated in primary cultures of adult rat hepatocytes to elucidate the intracellular signal transduction mechanisms. Hepatocyte parenchymal cells maintained in a serum-free, defined medium, synthesized DNA and proliferated in the presence of 5-HT or a selective 5-HT2B receptor agonist, BW723C86, but not in the presence of 5-HT2A, or 5-HT2C receptor agonists (TCB-2 and CP809101, respectively), in a time- and dose-dependent manner. A selective 5-HT2B receptor antagonist, LY272015 (10(-7) M), and a specific phospholipase C (PLC) inhibitor, U-73122 (10(-6) M), as well as specific inhibitors of growth-related signal transducers-including AG1478, LY294002, PD98059, and rapamycin-completely inhibited 5-HT (10(-6) M)- or BW723C86 (10(-6) M)-induced hepatocyte DNA synthesis and proliferation. Both 5-HT and BW723C86 were shown to significantly stimulate the phosphorylation of epidermal growth factor (EGF)/transforming growth factor (TGF)-α receptor tyrosine kinase (p175 kDa) and extracellular signal-regulated kinase (ERK) 2 on Western blot analysis. These results suggest that the proliferative mechanism of activating 5-HT is mediated mainly through 5-HT2B receptor-stimulated Gq/PLC and EGF/TGF-α-receptor/phosphatidylinositol 3-kinase (PI3K)/ERK2/mammalian target of rapamycin (mTOR) signaling pathways in primary cultured hepatocytes.

  6. Serotonin Enhances Urinary Bladder Nociceptive Processing Via a 5-HT3 Receptor Mechanism

    PubMed Central

    Hall, Jason D.; DeWitte, Cary; Ness, Timothy J.; Robbins, Meredith T.

    2015-01-01

    Serotonin from the descending pain modulatory pathway is critical to nociceptive processing. Its effects on pain modulation may either be inhibitory or facilitatory, depending on the type of pain and which receptors are involved. Little is known about the role of serotonergic systems in bladder nociceptive processing. These studies examined the effect of systemic administration of the serotonin precursor, 5-hydroxytryptophan (5-HTP), on normal bladder and somatic sensation in rats. ELISA was used to quantify peripheral and central changes in serotonin and its major metabolite following 5-HTP administration, and the potential role of the 5-HT3 receptor on changes in bladder sensation elicited by 5-HTP was investigated. 5-HTP produced bladder hypersensitivity and somatic analgesia. The pro-nociceptive effect of 5-HTP was attenuated by intrathecal, but not systemic, ondansetron. Peripheral increases in serotonin, its metabolism and rate of turnover were detectable within 30 min of 5-HTP administration. Significant enhancement of serotonin metabolism was observed centrally. These findings suggest that 5-HTP increases serotonin, which may then affect descending facilitatory systems to produce bladder hypersensitivity via activation of spinal 5-HT3 receptors. PMID:26247537

  7. Serotonin enhances urinary bladder nociceptive processing via a 5-HT3 receptor mechanism.

    PubMed

    Hall, Jason D; DeWitte, Cary; Ness, Timothy J; Robbins, Meredith T

    2015-09-14

    Serotonin from the descending pain modulatory pathway is critical to nociceptive processing. Its effects on pain modulation may either be inhibitory or facilitatory, depending on the type of pain and which receptors are involved. Little is known about the role of serotonergic systems in bladder nociceptive processing. These studies examined the effect of systemic administration of the serotonin precursor, 5-hydroxytryptophan (5-HTP), on normal bladder and somatic sensation in rats. ELISA was used to quantify peripheral and central changes in serotonin and its major metabolite following 5-HTP administration, and the potential role of the 5-HT3 receptor on changes in bladder sensation elicited by 5-HTP was investigated. 5-HTP produced bladder hypersensitivity and somatic analgesia. The pro-nociceptive effect of 5-HTP was attenuated by intrathecal, but not systemic, ondansetron. Peripheral increases in serotonin, its metabolism and rate of turnover were detectable within 30min of 5-HTP administration. Significant enhancement of serotonin metabolism was observed centrally. These findings suggest that 5-HTP increases serotonin, which may then affect descending facilitatory systems to produce bladder hypersensitivity via activation of spinal 5-HT3 receptors.

  8. Involvement of 5-HT2 receptors in the antinociceptive effect of Uncaria tomentosa.

    PubMed

    Jürgensen, Sofia; Dalbó, Sílvia; Angers, Paul; Santos, Adair Roberto Soares; Ribeiro-do-Valle, Rosa Maria

    2005-07-01

    Uncaria tomentosa (Willd.) DC (Rubiaceae) is a vine that grows in the Amazon rainforest. Its bark decoctions are used by Peruvian Indians to treat several diseases. Chemically, it consists mainly of oxindole alkaloids. An industrial fraction of U. tomentosa (UT fraction), containing 95% oxindole alkaloids, was used in this study in order to characterize its antinociceptive activity in chemical (acetic acid-induced abdominal writhing, formalin and capsaicin tests) and thermal (tail-flick and hot-plate tests) models of nociception in mice. UT fraction given by the i.p. route dose-dependently suppressed the behavioural response to the chemical stimuli in the models indicated and increased latencies in the thermal stimuli models. The antinociception caused by UT fraction in the formalin test was significantly attenuated by i.p. treatment of mice with ketanserin (5-HT2 receptor antagonist), but was not affected by naltrexone (opioid receptor antagonist), atropine (a nonselective muscarinic antagonist), l-arginine (precursor of nitric oxide), prazosin (alpha1-adrenoceptor antagonist), yohimbine (alpha2-adrenoceptor antagonist), and reserpine (a monoamine depleter). Together, these results indicate that UT fraction produces dose-related antinociception in several models of chemical and thermal pain through mechanisms that involve an interaction with 5-HT2 receptors.

  9. 5-HT1A receptors of the nucleus tractus solitarii facilitate sympathetic recovery following hypotensive hemorrhage in rats

    PubMed Central

    Vantrease, Jaime E.; Dudek, Nichole; DonCarlos, Lydia L.

    2015-01-01

    The role of serotonin in the hemodynamic response to blood loss remains controversial. Caudal raphe serotonin neurons are activated during hypotensive hemorrhage, and their destruction attenuates sympathetic increases following blood loss in unanesthetized rats. Caudal raphe neurons provide serotonin-positive projections to the nucleus tractus solitarii (NTS), and disruption of serotonin-positive nerve terminals in the NTS attenuates sympathetic recovery following hemorrhage. Administration of 5-HT1A-receptor agonists following hemorrhage augments sympathetic-mediated increases in venous tone and tissue hypoxia. These findings led us to hypothesize that severe blood loss promotes activation of 5-HT1A receptors in the NTS, which facilitates sympathetic recovery and peripheral tissue perfusion. Here, we developed an adeno-associated viral vector encoding an efficacious small hairpin RNA sequence targeting the rat 5-HT1A receptor. Unanesthetized rats subjected to NTS injection of the anti-rat 5-HT1A small hairpin RNA-encoding vector 4 wk prior showed normal blood pressure recovery, but an attenuated recovery of renal sympathetic nerve activity (−6.4 ± 12.9 vs. 42.6 ± 15.6% baseline, P < 0.05) 50 min after 21% estimated blood volume withdrawal. The same rats developed increased tissue hypoxia after hemorrhage, as indicated by prolonged elevations in lactate (2.77 ± 0.5 vs. 1.34 ± 0.2 mmol/l, 60 min after start of hemorrhage, P < 0.05). 5-HT1A mRNA levels in the commissural NTS were directly correlated with renal sympathetic nerve activity (P < 0.01) and inversely correlated with lactate (P < 0.05) 60 min after start of hemorrhage. The data suggest that 5-HT1A receptors in the commissural NTS facilitate tissue perfusion after blood loss likely by increasing sympathetic-mediated venous return. PMID:25980022

  10. Improvement of ketamine-induced social withdrawal in rats: the role of 5-HT7 receptors.

    PubMed

    Hołuj, Małgorzata; Popik, Piotr; Nikiforuk, Agnieszka

    2015-12-01

    Social withdrawal, one of the core negative symptoms of schizophrenia, can be modelled in the social interaction (SI) test in rats using N-methyl-D-aspartate receptor glutamate receptor antagonists. We have recently shown that amisulpride, an antipsychotic with a high affinity for serotonin 5-HT7 receptors, reversed ketamine-induced SI deficits in rats. The aim of the present study was to further elucidate the potential involvement of 5-HT7 receptors in the prosocial action of amisulpride. Acute administration of amisulpride (3 mg/kg) and SB-269970 (1 mg/kg), a 5-HT7 receptor antagonist, reversed ketamine-induced social withdrawal, whereas sulpiride (20 or 30 mg/kg) and haloperidol (0.2 mg/kg) were ineffective. The 5-HT7 receptor agonist AS19 (10 mg/kg) abolished the prosocial efficacy of amisulpride (3 mg/kg). The coadministration of an inactive dose of SB-269970 (0.2 mg/kg) showed the prosocial effects of inactive doses of amisulpride (1 mg/kg) and sulpiride (20 mg/kg). The anxiolytic chlordiazepoxide (2.5 mg/kg) and the antidepressant fluoxetine (2.5 mg/kg) were ineffective in reversing ketamine-induced SI deficits. The present study suggests that the antagonism of 5-HT7 receptors may contribute towards the mechanisms underlying the prosocial action of amisulpride. These results may have therapeutic implications for the treatment of negative symptoms in schizophrenia and other disorders characterized by social withdrawal.

  11. The effects of CA1 5HT4 receptors in MK801-induced amnesia and hyperlocomotion.

    PubMed

    Nasehi, Mohammad; Tabatabaie, Maryam; Khakpai, Fatemeh; Zarrindast, Mohammad-Reza

    2015-02-01

    In this study, the effects of 5-HT4 receptors of the CA1 on MK801-induced amnesia and hyperlocomotion were examined. One-trial step-down method was used to assess memory retention and then, the hole-board method to assess exploratory behaviors. The results showed that post-training intra-CA1 administration of RS67333 (62.5 and 625 ng/mouse) and RS23597 (1 and 10 ng/mouse) decreased memory consolidation, but it did not alter head-dip counts, head-dip latency and locomotor activity. Similarly, MK801 (0.5 and 1 μg/mouse) decreased memory consolidation, but had no effect on head-dip counts and head-dip latency. Interestingly, it increased locomotor activity. The results also showed that post-training intra-CA1 injection of a sub-threshold dose of RS67333 (6.25 ng/mouse) or RS23597 (0.1 ng/mouse) could heighten MK801 induced amnesia and decrease locomotor activity, but it did not alter head-dip counts and head-dip latency. In conclusion, our findings suggest that the CA1 5-HT4 receptors are involved in MK801-induced amnesia and hyperlocomotion.

  12. HBK-7 - A new xanthone derivative and a 5-HT1A receptor antagonist with antidepressant-like properties.

    PubMed

    Pytka, Karolina; Kazek, Grzegorz; Siwek, Agata; Mordyl, Barbara; Głuch-Lutwin, Monika; Rapacz, Anna; Olczyk, Adrian; Gałuszka, Adam; Waszkielewicz, Anna; Marona, Henryk; Sapa, Jacek; Filipek, Barbara; Zygmunt, Małgorzata

    2016-01-01

    Xanthone derivatives possess many biological properties, including neuroprotective, antioxidant or antidepressant-like. In this study we aimed to investigate antidepressant- and anxiolytic-like properties of a new xanthone derivative - 6-methoxy-4-[4-(2-methoxyphenyl)piperazin-1-yl]-9H-xanthen-9-one (HBK-7), as well as its possible mechanism of action, and the influence on cognitive and motor function. HBK-7 in our earlier studies showed high affinity for serotonergic 5-HT1A receptor. We determined the affinity of HBK-7 for CNS receptors and transporters using radioligand assays and examined its intrinsic activity towards 5-HT1A receptor. We evaluated antidepressant- and anxiolytic-like activity of HBK-7 in the mouse forced swim test, and four-plate test, respectively. We examined the influence on locomotor activity in mice to determine if the effect observed in the forced swim test was specific. We used step-through passive avoidance and rotarod tests to evaluate the influence of HBK-7 on cognitive and motor function, respectively. HBK-7 showed moderate affinity for dopaminergic D2 receptor and very low for serotonergic 5-HT2A, adrenergic α2 receptors, as well as serotonin transporter. Functional studies revealed that HBK-7 was a 5-HT1A receptor antagonist. HBK-7 (10mg/kg) decreased immobility time in the forced swim test. Combined treatment with sub-effective doses of HBK-7 and fluoxetine reduced immobility of mice in the forced swim test. Pretreatment with p-chlorophenylalanine and WAY-100,635 antagonized the antidepressant-like effect of HBK-7. Neither of the treatments influenced locomotor activity of mice. HBK-7 at antidepressant-like dose did not impair memory or motor coordination in mice. We demonstrated that HBK-7 was a 5-HT1A receptor antagonist with potent, comparable to mianserin, antidepressant-like activity. HBK-7 mediated its effect through serotonergic system and its antidepressant-like action required the activation of 5-HT1A receptors. At active

  13. HBK-7 - A new xanthone derivative and a 5-HT1A receptor antagonist with antidepressant-like properties.

    PubMed

    Pytka, Karolina; Kazek, Grzegorz; Siwek, Agata; Mordyl, Barbara; Głuch-Lutwin, Monika; Rapacz, Anna; Olczyk, Adrian; Gałuszka, Adam; Waszkielewicz, Anna; Marona, Henryk; Sapa, Jacek; Filipek, Barbara; Zygmunt, Małgorzata

    2016-01-01

    Xanthone derivatives possess many biological properties, including neuroprotective, antioxidant or antidepressant-like. In this study we aimed to investigate antidepressant- and anxiolytic-like properties of a new xanthone derivative - 6-methoxy-4-[4-(2-methoxyphenyl)piperazin-1-yl]-9H-xanthen-9-one (HBK-7), as well as its possible mechanism of action, and the influence on cognitive and motor function. HBK-7 in our earlier studies showed high affinity for serotonergic 5-HT1A receptor. We determined the affinity of HBK-7 for CNS receptors and transporters using radioligand assays and examined its intrinsic activity towards 5-HT1A receptor. We evaluated antidepressant- and anxiolytic-like activity of HBK-7 in the mouse forced swim test, and four-plate test, respectively. We examined the influence on locomotor activity in mice to determine if the effect observed in the forced swim test was specific. We used step-through passive avoidance and rotarod tests to evaluate the influence of HBK-7 on cognitive and motor function, respectively. HBK-7 showed moderate affinity for dopaminergic D2 receptor and very low for serotonergic 5-HT2A, adrenergic α2 receptors, as well as serotonin transporter. Functional studies revealed that HBK-7 was a 5-HT1A receptor antagonist. HBK-7 (10mg/kg) decreased immobility time in the forced swim test. Combined treatment with sub-effective doses of HBK-7 and fluoxetine reduced immobility of mice in the forced swim test. Pretreatment with p-chlorophenylalanine and WAY-100,635 antagonized the antidepressant-like effect of HBK-7. Neither of the treatments influenced locomotor activity of mice. HBK-7 at antidepressant-like dose did not impair memory or motor coordination in mice. We demonstrated that HBK-7 was a 5-HT1A receptor antagonist with potent, comparable to mianserin, antidepressant-like activity. HBK-7 mediated its effect through serotonergic system and its antidepressant-like action required the activation of 5-HT1A receptors. At active

  14. [(3)H]-F13640, a novel, selective and high-efficacy serotonin 5-HT(1A) receptor agonist radioligand.

    PubMed

    Heusler, Peter; Palmier, Christiane; Tardif, Stéphanie; Bernois, Sophie; Colpaert, Francis C; Cussac, Didier

    2010-10-01

    F13640 is a selective and high-efficacy serotonin 5-HT(1A) receptor agonist that demonstrates outstanding analgesic potential in different animal models. Here, we use the radiolabelled compound to further characterise its binding properties at 5-HT(1A) receptors. F13640 was tritium-labelled to 47 and 64 Ci/mmol specific activity and used as radioligand at membrane preparations of CHO cells expressing human (h) 5-HT(1A) receptors. The K (d) of [(3)H]-F13640 was 1.8 nM at h5-HT(1A) receptors as determined from saturation binding experiments. In association time-course experiments, k (obs) of [(3)H]-F13640 was 0.06 min(-1). Dissociation experiments performed in the presence of unlabelled F13640 as competing ligand yielded a k (off) value of 0.05 min(-1), resulting in a calculated K (d) of 1.4 nM. In comparison, [(3)H]-8-OH-DPAT had a k (obs) of 0.50 min(-1), a k (off) of 0.25 min(-1) and a calculated K (d) of 0.37 nM. Surprisingly, [(3)H]-F13640 dissociation kinetics were distinctly slower in the presence of WAY-100635 and spiperone as competing ligands when compared with the agonist competitors, F13640 and (+)8-OH-DPAT. The competitive binding profile of [(3)H]-F13640 with eight chemically diverse 5-HT(1A) receptor agonists and antagonists correlated highly (r = 0.996) with that of [(3)H]-8-OH-DPAT. In conclusion, [(3)H]-F13640 is a potent agonist radioligand at 5-HT(1A) receptors and may be a useful tool in pharmacological studies at native and recombinant 5-HT(1A) receptors. In addition, [(3)H]-F13640 dissociates more slowly from h5-HT(1A) receptors than [(3)H]-8-OH-DPAT, a kinetic property that might be related to its powerful analgesic effects as observed in vivo.

  15. An Algorithm to Identify Target-Selective Ligands – A Case Study of 5-HT7/5-HT1A Receptor Selectivity

    PubMed Central

    Kurczab, Rafał; Canale, Vittorio; Zajdel, Paweł; Bojarski, Andrzej J.

    2016-01-01

    A computational procedure to search for selective ligands for structurally related protein targets was developed and verified for serotonergic 5-HT7/5-HT1A receptor ligands. Starting from a set of compounds with annotated activity at both targets (grouped into four classes according to their activity: selective toward each target, not-selective and not-selective but active) and with an additional set of decoys (prepared using DUD methodology), the SVM (Support Vector Machines) models were constructed using a selective subset as positive examples and four remaining classes as negative training examples. Based on these four component models, the consensus classifier was then constructed using a data fusion approach. The combination of two approaches of data representation (molecular fingerprints vs. structural interaction fingerprints), different training set sizes and selection of the best SVM component models for consensus model generation, were evaluated to determine the optimal settings for the developed algorithm. The results showed that consensus models with molecular fingerprints, a larger training set and the selection of component models based on MCC maximization provided the best predictive performance. PMID:27271158

  16. Serotonergic modulation in neuropathy induced by oxaliplatin: effect on the 5HT2C receptor.

    PubMed

    Baptista-de-Souza, Daniela; Di Cesare Mannelli, Lorenzo; Zanardelli, Matteo; Micheli, Laura; Nunes-de-Souza, Ricardo Luiz; Canto-de-Souza, Azair; Ghelardini, Carla

    2014-07-15

    Fluoxetine has been shown to be effective in clinical and experimental studies of neuropathic pain. Besides to increase serotonin levels in the synaptic cleft, fluoxetine is able to block the serotonergic 5-HT2C receptor subtype, which in turn has been involved in the modulation of neuropathic pain. This study investigated the effect of repeated treatments with fluoxetine on the neuropathic nociceptive response induced by oxaliplatin and the effects of both treatments on 5-HT2C receptor mRNA expression and protein levels in the rat spinal cord (SC), rostral ventral medulla (RVM), midbrain periaqueductal gray (PAG) and amygdala (Amy). Nociception was assessed by paw-pressure, cold plate and Von Frey tests. Fluoxetine prevented mechanical hypersensitivity and pain threshold alterations induced by oxaliplatin but did not prevent the impairment in weight gain induced by this anticancer drug. Ex vivo analysis revealed that oxaliplatin increased the 5-HT2C receptor mRNA expression and protein levels in the SC and PAG. Similar effects were observed in fluoxetine-treated animals but only within the PAG. While oxaliplatin decreased the 5-HT2C mRNA expression levels in the Amy, fluoxetine increased their protein levels in this area. Fluoxetine impaired the oxaliplatin effects on the 5-HT2C receptor mRNA expression in the SC and Amy and protein levels in the SC. All treatments increased of 5-HT2C receptor mRNA expression and protein levels in the PAG. These results suggest that the effects of fluoxetine on neuropathic pain induced by oxaliplatin are associated with quantitative changes in the 5-HT2C receptors located within important areas of the nociceptive system.

  17. Expression of hippocampal serotonin receptors 5-HT2C and 5-HT5A in a rat model of diet-induced obesity supplemented with tryptophan.

    PubMed

    Lopez-Esparza, Sarahi; Berumen, Laura C; Padilla, Karla; Miledi, Ricardo; García-Alcocer, Guadalupe

    2015-05-01

    Food intake regulation is a complex mechanism that involves endogenous substances and central nervous system structures like hypothalamus or even hippocampus. The neurotransmitter serotonin is distinguished as food intake mediator; within its multiples receptors, the 5-HT2C type is characterized by its inhibitory appetite action but there is no information about 5-HT5A receptors involvement in obesity disease. It is also unknown if there are any changes in the receptors expression in rats hippocampus with induced obesity during development through a high energy diet (HED) supplemented with tryptophan (W). To appreciate the receptors expression pattern in the hippocampus, obesity was induced to young Sprague Dawley rats through a HED and supplemented with W. Immunocytochemical and western blot techniques were used to study the receptor distribution and quantify the protein expression. The rats with HED diet developed obesity until week 13 of treatment. The 5-HT2C receptor expression decreased in CA1, CA2, CA3 and DG of HED group; and also in CA2, CA3 and DG for HEDW group. The 5-HT5A receptor expression only decreased in DG for HED group. Variations of the two serotonin receptors subtypes support their potential role in obesity.

  18. Nucleus accumbens shell excitability is decreased by methamphetamine self-administration and increased by 5-HT2C receptor inverse agonism and agonism

    PubMed Central

    Graves, Steven M.; Clark, Mary J.; Traynor, John R.; Hu, Xiu-Ti; Napier, T. Celeste

    2014-01-01

    Methamphetamine profoundly increases brain monoamines and is a widely abused psychostimulant. The effects of methamphetamine self-administration on neuron function are not known for the nucleus accumbens, a brain region involved in addictive behaviors, including drug-seeking. One therapeutic target showing preclinical promise at attenuating psychostimulant-seeking is 5-HT2C receptors; however, the effects of 5-HT2C receptor ligands on neuronal physiology are unclear. 5-HT2C receptor agonism decreases psychostimulant-mediated behaviors, and the putative 5-HT2C receptor inverse agonist, SB 206553, attenuates methamphetamine-seeking in rats. To ascertain the effects of methamphetamine, and 5-HT2C receptor inverse agonism and agonism, on neuronal function in the nucleus accumbens, we evaluated methamphetamine, SB 206553, and the 5-HT2C receptor agonist and Ro 60-0175, on neuronal excitability within the accumbens shell subregion using whole-cell current-clamp recordings in forebrain slices ex vivo. We reveal that methamphetamine self-administration decreased generation of evoked action potentials. In contrast, SB 206553 and Ro 60-0175 increased evoked spiking, effects that were prevented by the 5-HT2C receptor antagonist, SB 242084. We also assessed signaling mechanisms engaged by 5-HT2C receptors, and determined that accumbal 5-HT2C receptors stimulated Gq, but not Gi/o. These findings demonstrate that methamphetamine-induced decreases in excitability of neurons within the nucleus accumbens shell were abrogated by both 5-HT2C inverse agonism and agonism, and this effect likely involved activation of Gq–mediated signaling pathways. PMID:25229719

  19. Nucleus accumbens shell excitability is decreased by methamphetamine self-administration and increased by 5-HT2C receptor inverse agonism and agonism.

    PubMed

    Graves, Steven M; Clark, Mary J; Traynor, John R; Hu, Xiu-Ti; Napier, T Celeste

    2015-02-01

    Methamphetamine profoundly increases brain monoamines and is a widely abused psychostimulant. The effects of methamphetamine self-administration on neuron function are not known for the nucleus accumbens, a brain region involved in addictive behaviors, including drug-seeking. One therapeutic target showing preclinical promise at attenuating psychostimulant-seeking is 5-HT2C receptors; however, the effects of 5-HT2C receptor ligands on neuronal physiology are unclear. 5-HT2C receptor agonism decreases psychostimulant-mediated behaviors, and the putative 5-HT2C receptor inverse agonist, SB 206553, attenuates methamphetamine-seeking in rats. To ascertain the effects of methamphetamine, and 5-HT2C receptor inverse agonism and agonism, on neuronal function in the nucleus accumbens, we evaluated methamphetamine, SB 206553, and the 5-HT2C receptor agonist and Ro 60-0175, on neuronal excitability within the accumbens shell subregion using whole-cell current-clamp recordings in forebrain slices ex vivo. We reveal that methamphetamine self-administration decreased generation of evoked action potentials. In contrast, SB 206553 and Ro 60-0175 increased evoked spiking, effects that were prevented by the 5-HT2C receptor antagonist, SB 242084. We also assessed signaling mechanisms engaged by 5-HT2C receptors, and determined that accumbal 5-HT2C receptors stimulated Gq, but not Gi/o. These findings demonstrate that methamphetamine-induced decreases in excitability of neurons within the nucleus accumbens shell were abrogated by both 5-HT2C inverse agonism and agonism, and this effect likely involved activation of Gq-mediated signaling pathways.

  20. Vagal anandamide signaling via cannabinoid receptor 1 contributes to luminal 5-HT modulation of visceral nociception in rats.

    PubMed

    Feng, Chen-Chen; Yan, Xiu-Juan; Chen, Xin; Wang, Er-Man; Liu, Qing; Zhang, Li-Yan; Chen, Jun; Fang, Jing-Yuan; Chen, Sheng-Liang

    2014-08-01

    Serotonin (5-HT) plays pivotal roles in the pathogenesis of postinfectious irritable bowel syndrome (PI-IBS), and luminal 5-HT time-dependently modulates visceral nociception. We found that duodenal biopsies from PI-IBS patients exhibited increased 5-HT and decreased anandamide levels and that decreased anandamide was associated with abdominal pain severity, indicating a link between 5-HT and endocannabinoid signaling pathways in PI-IBS. To understand this, we investigated the role of endocannabinoids in 5-HT modulation of visceral nociception in a rat model. Acute intraduodenally applied 5-HT attenuated the visceromotor response (VMR) to colorectal distention, and this was reversed by the cannabinoid receptor 1 (CB1) antagonist AM251. Duodenal anandamide (but not 2-arachidonoylglycerol) content was greatly increased after luminal 5-HT treatment. This effect was abrogated by the 5-HT 3 receptor (5-HT3R) antagonist granisetron, which was luminally delivered to preferentially target vagal terminals. Chemical denervation of vagal afferents blocked 5-HT-evoked antinociception and anandamide release. Chronic luminal 5-HT exposure for 5 days increased baseline VMR and VMR post-5-HT (days 4 and 5). Duodenal levels of anandamide and N-acyl-phosphatidylethanolamine-specific phospholipase D (NAPE-PLD, the anandamide-synthesizing enzyme) protein gradually declined from day 1 to 5. The time-dependent effects of 5-HT were abolished by daily granisetron pretreatment. Daily pretreatment with CB1 agonists or anandamide from day 3 attenuated 5-HT-induced hyperalgesia. These data suggest that vagal 5-HT3R-mediated duodenal anandamide release contributes to acute luminal 5-HT-induced antinociception via CB1 signaling, whereas decreased anandamide is associated with hyperalgesia upon chronic 5-HT treatment. Further understanding of peripheral vagal anandamide signaling may provide insights into the mechanisms underlying 5-HT-related IBS.

  1. Exploration of synthetic approaches and pharmacological evaluation of PNU-69176E and its stereoisomer as 5-HT2C receptor allosteric modulators.

    PubMed

    Ding, Chunyong; Bremer, Nicole M; Smith, Thressa D; Seitz, Patricia K; Anastasio, Noelle C; Cunningham, Kathryn A; Zhou, Jia

    2012-07-18

    Allosteric modulators of the serotonin (5-HT) 5-HT(2C) receptor (5-HT(2C)R) present a unique drug design strategy to augment the response to endogenous 5-HT in a site- and event-specific manner with great potential as novel central nervous system probes and therapeutics. To date, PNU-69176E is the only reported selective positive allosteric modulator for the 5-HT(2C)R. For the first time, an optimized synthetic route to readily access PNU-69176E (1) and its diastereomer 2 has been established in moderate to good overall yields over 10 steps starting from commercially available picolinic acid. This synthetic approach not only enables a feasible preparation of a sufficient amount of 1 for use as a reference compound for secondary pharmacological studies, but also provides an efficient synthesis of key intermediates to develop novel and simplified 5-HT(2C)R allosteric modulators. Compound 1 and its diastereomer 2 were functionally characterized in Chinese hamster ovary (CHO) cells stably transfected with the 5-HT(2C)R using an intracellular calcium (Ca(i) (2+)) release assay. Compound 1 demonstrated efficacy and potency as an allosteric modulator for the 5-HT(2C)R with no intrinsic agonist activity. Compound 1 did not alter 5-HT-evoked Ca(i) (2+) in CHO cells stably transfected with the highly homologous 5-HT(2A)R. In contrast, the diastereomer 2 did not alter 5-HT-evoked Ca(i) (2+) release in 5-HT(2A)R-CHO or 5-HT(2C)R-CHO cells or exhibit intrinsic agonist activity.

  2. [Effect of the 5-HT3 receptor antagonist granisetron on estramustine phosphate sodium (Estracyt)-induced emesis in ferrets].

    PubMed

    Higashioka, Masaya; Yamaguchi, Emi; Takatori, Shingo; Tanaka, Mitsushi; Kyoi, Takashi

    2010-07-01

    Estracyt(R) is an antimitotic drug used for the treatment of prostate cancer, and its most common adverse effects are nausea and vomiting. In this study, we investigated the effect of a 5-HT3 receptor antagonist, granisetron, on emesis induced in ferrets by estramustine phosphate sodium (EMP), the active ingredient of Estracyt. To clarify the mechanism of action of EMP-induced emesis, we also investigated the effect of EMP on the release of serotonin (5-HT) in the isolated rat ileum. EMP (3 mg/kg, per os) induced 75.3+/-10.2 retching episodes and 7.5+/-1.3 vomiting episodes during a 2-h observation period. The latency to the first emetic response was 58.0+/-13.5 min. Granisetron (0.1 mg/kg, per os) administered 1 h before the administration of EMP reduced the number of EMP-induced retching and vomiting episodes to 1.3+/-1.3 and 1.0+/-1.0, respectively, and prolonged the latency by a factor of almost two. EMP (10-5 and 10-4 M) increased 5-HT release from isolated rat ileum, and 10 -7 M granisetron almost completely inhibited the increase induced by 10-4 M EMP. These results suggest that EMP induces nausea and vomiting via 5-HT release from the ileum, and that 5-HT3 receptor antagonists may be useful to prevent gastrointestinal adverse effects that occur during treatment with Estracyt.

  3. 5-HT Receptor Antagonism Attenuates the Ischemia-Reperfusion Injury After Rabbit Lung Preservation.

    PubMed

    Arreola-Ramírez, J L; Alquicira-Mireles, J; Morales-Hernández, P E; Vargas, M H; Villalba-Caloca, J; Segura-Medina, P

    2015-01-01

    The success of lung transplantation is threatened by the appearance of ischemia-reperfusion injury, which is characterized by increased vascular permeability. 5-Hydroxytryptamine (5-HT; serotonin) is known to produce microvascular leakage in the systemic circulation, but its possible role in ischemia-reperfusion injury after lung preservation has not been reported. In this work we measured the release of 5-HT during a 24-hour rabbit lung preservation, and the effect of methiothepin (antagonist of the majority of 5-HT receptors) and SB204741 (antagonist of 5-HT2B/2C receptors) on the modified capillary filtration coefficient (mKf,c) was evaluated at the end of this period. Our results showed that the highest release rate of 5-HT occurred during the first 15 minutes after the lung harvesting and progressively decreased in the following time intervals. The baseline mKf,c greatly increased after 24 hours of lung preservation, and this increment was partially reduced by methiothepin and even more by SB204741. We concluded that 5-HT may play an important role in the ischemia-reperfusion process after lung preservation.

  4. Amisulpride promotes cognitive flexibility in rats: the role of 5-HT7 receptors.

    PubMed

    Nikiforuk, Agnieszka; Popik, Piotr

    2013-07-01

    The antagonism of 5-HT7 receptors may contribute to the antidepressant and procognitive actions of the atypical antipsychotic drug, amisulpride. It has been previously demonstrated that the selective 5-HT7 receptor antagonist reversed restraint stress-induced cognitive impairments in a rat model of frontal-dependent attentional set-shifting task (ASST). Therefore, the first aim of the present study was to assess the effectiveness of amisulpride against stress-evoked cognitive inflexibility. The second goal was to elucidate whether the pro-cognitive effect of amisulpride could be due to the compound's action at 5-HT7 receptors. Rats repeatedly exposed (1 h daily for 7 days) to restraint stress demonstrated impaired performance on the extra-dimensional (ED) set-shifting stage of the ASST. Amisulpride (3 mg/kg) given to stressed rats 30 min before testing reversed this restraint-induced cognitive inflexibility and improved ED performance of the unstressed control group. The 5-HT7 receptor agonist, AS19 (10 mg/kg), abolished the pro-cognitive efficacy of amisulpride (3 mg/kg). The present study suggests that the antagonism of 5-HT7 receptors may contribute to the mechanisms underlining the pro-cognitive action of amisulpride. These results may have therapeutic implications in frontal-like deficits associated with stress-related disorders.

  5. Aggression and anxiety in adolescent AAS-treated hamsters: A role for 5HT3 receptors.

    PubMed

    Morrison, Thomas R; Ricci, Lesley A; Melloni, Richard H

    2015-07-01

    Previously, we have shown that anabolic androgenic steroid (AAS) exposure throughout adolescence stimulates offensive aggression while also reducing anxious behaviors during the exposure period. Interestingly, AAS exposure through development correlates with alterations to the serotonin system in regions known to contain 5HT3 receptors that influence the control of both aggression and anxiety. Despite these effects, little is known about whether these separate developmental AAS-induced behavioral alterations occur as a function of a common neuroanatomical locus. To begin to address this question, we localized 5HT3 receptors in regions that have been implicated in aggression and anxiety. To examine the impact these receptors may have on AAS alterations to behavior, we microinjected the 5HT3 agonist mCPBG directly into a region know for its influence over aggressive behavior, the lateral division of the anterior hypothalamus, and recorded alterations to anxious behaviors using the elevated plus maze. AAS exposure primarily reduced the presence of 5HT3 receptors in aggression/anxiety regions. Accordingly, mCPBG blocked the anxiolytic effects of adolescent AAS exposure. These data suggest that the 5HT3 receptor plays a critical role in the circuit modulating developmental AAS-induced changes to both aggressive and anxious behaviors, and further implicates the lateral division of the anterior hypothalamus as an important center for the negative behavioral effects of developmental AAS-exposure.

  6. Bidirectional regulation of emotional memory by 5-HT1B receptors involves hippocampal p11.

    PubMed

    Eriksson, T M; Alvarsson, A; Stan, T L; Zhang, X; Hascup, K N; Hascup, E R; Kehr, J; Gerhardt, G A; Warner-Schmidt, J; Arango-Lievano, M; Kaplitt, M G; Ogren, S O; Greengard, P; Svenningsson, P

    2013-10-01

    Cognitive impairments are common in depression and involve dysfunctional serotonin neurotransmission. The 5-HT1B receptor (5-HT(1B)R) regulates serotonin transmission, via presynaptic receptors, but can also affect transmitter release at heterosynaptic sites. This study aimed at investigating the roles of the 5-HT(1B)R, and its adapter protein p11, in emotional memory and object recognition memory processes by the use of p11 knockout (p11KO) mice, a genetic model for aspects of depression-related states. 5-HT(1B)R agonist treatment induced an impairing effect on emotional memory in wild type (WT) mice. In comparison, p11KO mice displayed reduced long-term emotional memory performance. Unexpectedly, 5-HT(1B)R agonist stimulation enhanced memory in p11KO mice, and this atypical switch was reversed after hippocampal adeno-associated virus mediated gene transfer of p11. Notably, 5-HT(1B)R stimulation increased glutamatergic neurotransmission in the hippocampus in p11KO mice, but not in WT mice, as measured by both pre- and postsynaptic criteria. Magnetic resonance spectroscopy demonstrated global hippocampal reductions of inhibitory GABA, which may contribute to the memory enhancement and potentiation of pre- and post-synaptic measures of glutamate transmission by a 5-HT(1B)R agonist in p11KO mice. It is concluded that the level of hippocampal p11 determines the directionality of 5-HT(1B)R action on emotional memory processing and modulates hippocampal functionality. These results emphasize the importance of using relevant disease models when evaluating the role of serotonin neurotransmission in cognitive deficits related to psychiatric disorders.

  7. Bidirectional regulation of emotional memory by 5-HT1B receptors involves hippocampal p11

    PubMed Central

    Eriksson, T M; Alvarsson, A; Stan, T L; Zhang, X; Hascup, K N; Hascup, E R; Kehr, J; Gerhardt, G A; Warner-Schmidt, J; Arango-Lievano, M; Kaplitt, M G; Ögren, S O; Greengard, P; Svenningsson, P

    2013-01-01

    Cognitive impairments are common in depression and involve dysfunctional serotonin neurotransmission. The 5-HT1B receptor (5-HT1BR) regulates serotonin transmission, via presynaptic receptors, but can also affect transmitter release at heterosynaptic sites. This study aimed at investigating the roles of the 5-HT1BR, and its adapter protein p11, in emotional memory and object recognition memory processes by the use of p11 knockout (p11KO) mice, a genetic model for aspects of depression-related states. 5-HT1BR agonist treatment induced an impairing effect on emotional memory in wild type (WT) mice. In comparison, p11KO mice displayed reduced long-term emotional memory performance. Unexpectedly, 5-HT1BR agonist stimulation enhanced memory in p11KO mice, and this atypical switch was reversed after hippocampal adeno-associated virus mediated gene transfer of p11. Notably, 5-HT1BR stimulation increased glutamatergic neurotransmission in the hippocampus in p11KO mice, but not in WT mice, as measured by both pre- and postsynaptic criteria. Magnetic resonance spectroscopy demonstrated global hippocampal reductions of inhibitory GABA, which may contribute to the memory enhancement and potentiation of pre- and post-synaptic measures of glutamate transmission by a 5-HT1BR agonist in p11KO mice. It is concluded that the level of hippocampal p11 determines the directionality of 5-HT1BR action on emotional memory processing and modulates hippocampal functionality. These results emphasize the importance of using relevant disease models when evaluating the role of serotonin neurotransmission in cognitive deficits related to psychiatric disorders. PMID:23032875

  8. The Structure of the Mouse Serotonin 5-HT3 Receptor in Lipid Vesicles.

    PubMed

    Kudryashev, Mikhail; Castaño-Díez, Daniel; Deluz, Cédric; Hassaine, Gherici; Grasso, Luigino; Graf-Meyer, Alexandra; Vogel, Horst; Stahlberg, Henning

    2016-01-01

    The function of membrane proteins is best understood if their structure in the lipid membrane is known. Here, we determined the structure of the mouse serotonin 5-HT3 receptor inserted in lipid bilayers to a resolution of 12 Å without stabilizing antibodies by cryo electron tomography and subtomogram averaging. The reconstruction reveals protein secondary structure elements in the transmembrane region, the extracellular pore, and the transmembrane channel pathway, showing an overall similarity to the available X-ray model of the truncated 5-HT3 receptor determined in the presence of a stabilizing nanobody. Structural analysis of the 5-HT3 receptor embedded in a lipid bilayer allowed the position of the membrane to be determined. Interactions between the densely packed receptors in lipids were visualized, revealing that the interactions were maintained by the short horizontal helices. In combination with methodological improvements, our approach enables the structural analysis of membrane proteins in response to voltage and ligand gating.

  9. Compositions and methods related to serotonin 5-HT1A receptors

    DOEpatents

    Mukherjee, Jogeshwar; Saigal, Neil; Saigal, legal representative, Harsh

    2012-09-25

    Contemplated substituted arylpiperazinyl compounds, and most preferably 18F-Mefway, exhibit desirable in vitro and in vivo binding characteristics to the 5-HT1A receptor. Among other advantageous parameters, contemplated compounds retain high binding affinity, display optimal lipophilicity, and are radiolabeled efficiently with 18F-fluorine in a single step. Still further, contemplated compounds exhibit high target to non-target ratios in receptor-rich regions both in vitro and in vivo, and selected compounds can be effectively and sensitively displaced by serotonin, thus providing a quantitative tool for measuring 5-HT1A receptors and serotonin concentration changes in the living brain.

  10. Compositions and methods related to serotonin 5-HT1A receptors

    DOEpatents

    Mukherjee, Jogeshwar; Saigal, Neil

    2010-06-08

    Contemplated substituted arylpiperazinyl compounds, and most preferably 18F-Mefway, exhibit desirable in vitro and in vivo binding characteristics to the 5-HT1A receptor. Among other advantageous parameters, contemplated compounds retain high binding affinity, display optimal lipophilicity, and are radiolabeled efficiently with 18F-fluorine in a single step. Still further, contemplated compounds exhibit high target to non-target ratios in receptor-rich regions both in vitro and in vivo, and selected compounds can be effectively and sensitively displaced by serotonin, thus providing a quantitative tool for measuring 5-HT1A receptors and serotonin concentration changes in the living brain.

  11. The 5-HT7 receptor as a potential target for treating drug and alcohol abuse.

    PubMed

    Hauser, Sheketha R; Hedlund, Peter B; Roberts, Amanda J; Sari, Youssef; Bell, Richard L; Engleman, Eric A

    2014-01-01

    Alcohol and drug abuse take a large toll on society and affected individuals. However, very few effective treatments are currently available to treat alcohol and drug addiction. Basic and clinical research has begun to provide some insights into the underlying neurobiological systems involved in the addiction process. Several neurotransmitter pathways have been implicated and distinct reward neurocircuitry have been proposed-including the mesocorticolimbic dopamine (MCL-DA) system and the extended amygdala. The serotonin (5-HT) neurotransmitter system is of particular interest and multiple 5-HT receptors are thought to play significant roles in alcohol and drug self-administration and the development of drug dependence. Among the 5-HT receptors, the 5-HT7 receptor is currently undergoing characterization as a potential target for the treatment of several psychiatric disorders. Although this receptor has received only limited research regarding addictive behaviors, aspects of its neuroanatomical, biochemical, physiological, pharmacological, and behavioral profiles suggest that it could play a key role in the addiction process. For instance, genomic studies in humans have suggested a link between variants in the gene encoding the 5-HT7 receptor and alcoholism. Recent behavioral testing using high-affinity antagonists in mice and preliminary tests with alcohol-preferring rats suggest that this receptor could mediate alcohol consumption and/or reinforcement and play a role in seeking/craving behavior. Interest in the development of new and more selective pharmacological agents for this receptor will aid in examining the 5-HT7 receptor as a novel target for treating addiction. PMID:25628528

  12. The 5-HT7 receptor as a potential target for treating drug and alcohol abuse

    PubMed Central

    Hauser, Sheketha R.; Hedlund, Peter B.; Roberts, Amanda J.; Sari, Youssef; Bell, Richard L.; Engleman, Eric A.

    2015-01-01

    Alcohol and drug abuse take a large toll on society and affected individuals. However, very few effective treatments are currently available to treat alcohol and drug addiction. Basic and clinical research has begun to provide some insights into the underlying neurobiological systems involved in the addiction process. Several neurotransmitter pathways have been implicated and distinct reward neurocircuitry have been proposed—including the mesocorticolimbic dopamine (MCL-DA) system and the extended amygdala. The serotonin (5-HT) neurotransmitter system is of particular interest and multiple 5-HT receptors are thought to play significant roles in alcohol and drug self-administration and the development of drug dependence. Among the 5-HT receptors, the 5-HT7 receptor is currently undergoing characterization as a potential target for the treatment of several psychiatric disorders. Although this receptor has received only limited research regarding addictive behaviors, aspects of its neuroanatomical, biochemical, physiological, pharmacological, and behavioral profiles suggest that it could play a key role in the addiction process. For instance, genomic studies in humans have suggested a link between variants in the gene encoding the 5-HT7 receptor and alcoholism. Recent behavioral testing using high-affinity antagonists in mice and preliminary tests with alcohol-preferring rats suggest that this receptor could mediate alcohol consumption and/or reinforcement and play a role in seeking/craving behavior. Interest in the development of new and more selective pharmacological agents for this receptor will aid in examining the 5-HT7 receptor as a novel target for treating addiction. PMID:25628528

  13. Effects of central activation of serotonin 5-HT2A/2C or dopamine D2/3 receptors on the acute and repeated effects of clozapine in the conditioned avoidance response test

    PubMed Central

    Feng, Min; Gao, Jun; Sui, Nan; Li, Ming

    2014-01-01

    Rationale: Acute administration of clozapine (a gold standard of atypical antipsychotics) disrupts avoidance response in rodents, while repeated administration often causes a tolerance effect. Objective: The present study investigated the neuroanatomical basis and receptor mechanisms of acute and repeated effects of clozapine treatment in the conditioned avoidance response test in male Sprague-Dawley rats. Methods: DOI (2,5-dimethoxy-4-iodo-amphetamine, a preferential 5-HT2A/2C agonist) or quinpirole (a preferential dopamine D2/3 agonist) was microinjected into the medial prefrontal cortex (mPFC) or nucleus accumbens shell (NAs), and their effects on the acute and long-term avoidance-disruptive effect of clozapine were tested. Results: Intra-mPFC microinjection of quinpirole enhanced the acute avoidance disruptive effect of clozapine (10 mg/kg, sc), while DOI microinjections reduced it marginally. Repeated administration of clozapine (10 mg/kg, sc) daily for 5 days caused a progressive decrease in its inhibition of avoidance responding, indicating tolerance development. Intra-mPFC microinjection of DOI at 25.0 (but not 5.0) μg/side during this period completely abolished the expression of clozapine tolerance. This was indicated by the finding that clozapine-treated rats centrally infused with 25.0 μg/side DOI did not show higher levels of avoidance responses than the vehicle-treated rats in the clozapine challenge test. Microinjection of DOI into the mPFC immediately before the challenge test also decreased the expression of clozapine tolerance. Conclusions: Acute behavioral effect of clozapine can be enhanced by activation of the D2/3 receptors in the mPFC. Clozapine tolerance expression relies on the neuroplasticity initiated by its antagonist action against 5-HT2A/2C receptors in the mPFC. PMID:25288514

  14. Molecular dynamics simulation of the structure and dynamics of 5-HT3 serotonin receptor

    NASA Astrophysics Data System (ADS)

    Antonov, M. Yu.; Popinako, A. V.; Prokopiev, G. A.

    2016-10-01

    In this work, we investigated structure, dynamics and ion transportation in transmembrane domain of the 5-HT3 serotonin receptor. High-resolution (0.35 nm) structure of the 5-HT3 receptor in complex with stabilizing nanobodies was determined by protein crystallography in 2014 (Protein data bank (PDB) code 4PIR). Transmembrane domain of the structure was prepared in complex with explicit membrane environment (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC)) and solvent (TIP3P water model). Molecular dynamics protocols for simulation and stabilization of the transmembrane domain of the 5-HT3 receptor model were developed and 60 ns simulation of the structure was conducted in order to explore structural parameters of the system. We estimated the mean force profile for Na+ ions using umbrella sampling method.

  15. Valerian extract and valerenic acid are partial agonists of the 5-HT5a receptor in vitro.

    PubMed

    Dietz, Birgit M; Mahady, Gail B; Pauli, Guido F; Farnsworth, Norman R

    2005-08-18

    Insomnia is the most frequently encountered sleep complaint worldwide. While many prescription drugs are used to treat insomnia, extracts of valerian (Valeriana officinalis L., Valerianaceae) are also used for the treatment of insomnia and restlessness. To determine novel mechanisms of action, radioligand binding studies were performed with valerian extracts (100% methanol, 50% methanol, dichloromethane [DCM], and petroleum ether [PE]) at the melatonin, glutamate, and GABA(A) receptors, and 8 serotonin receptor subtypes. Both DCM and PE extracts had strong binding affinity to the 5-HT(5a) receptor, but only weak binding affinity to the 5-HT(2b) and the serotonin transporter. Subsequent binding studies focused on the 5-HT(5a) receptor due to the distribution of this receptor in the suprachiasmatic nucleus of the brain, which is implicated in the sleep-wake cycle. The PE extract inhibited [(3)H]lysergic acid diethylamide (LSD) binding to the human 5-HT(5a) receptor (86% at 50 microg/ml) and the DCM extract inhibited LSD binding by 51%. Generation of an IC(50) curve for the PE extract produced a biphasic curve, thus GTP shift experiments were also performed. In the absence of GTP, the competition curve was biphasic (two affinity sites) with an IC(50) of 15.7 ng/ml for the high-affinity state and 27.7 microg/ml for the low-affinity state. The addition of GTP (100 microM) resulted in a right-hand shift of the binding curve with an IC(50) of 11.4 microg/ml. Valerenic acid, the active constituent of both extracts, had an IC(50) of 17.2 microM. These results indicate that valerian and valerenic acid are new partial agonists of the 5-HT(5a) receptor. PMID:15921820

  16. Dissecting G protein-coupled receptor signaling pathways with membrane-permeable blocking peptides. Endogenous 5-HT(2C) receptors in choroid plexus epithelial cells.

    PubMed

    Chang, M; Zhang, L; Tam, J P; Sanders-Bush, E

    2000-03-10

    To determine the intracellular signaling mechanism of the 5-HT(2C) receptor endogenously expressed in choroid plexus epithelial cells, we implemented a strategy of targeted disruption of protein-protein interactions. This strategy entails the delivery of conjugated membrane-permeable peptides that disrupt domain interaction at specific steps in the signaling cascade. As proof of concept, two peptides targeted against receptor-G protein interaction domains were examined. Only G(q)CT, which targets the receptor-G(q) protein interacting domain, disrupted 5-HT(2C) receptor-mediated phosphatidylinositide hydrolysis. G(s)CT, targeting the receptor-G(s) protein, disrupted beta2 adrenergic receptor-mediated activation of cAMP but not 5-HT(2C) receptor-mediated phosphatidylinositide hydrolysis. The peptide MPS-PLCbeta1M, mimicking the domain of phospholipase Cbeta1 (PLCbeta1) interacting with active Galpha(q), also blocked 5-HT(2C) receptor activation. In contrast, peptides PLCbeta2M and Phos that bind to and sequester free Gbetagamma subunits were ineffective at blocking 5-HT(2C) receptor-mediated phosphoinositol turnover. However, both peptides disrupted Gbetagamma-mediated alpha(2A) adrenergic receptor activation of mitogen-activated protein kinase. These results provide the first direct demonstration that active Galpha(q) subunits mediate endogenous 5-HT(2C) receptor activation of PLCbeta and that Gbetagamma subunits released from Galpha(q) heterotrimeric proteins are not involved. Comparable results were obtained with metabotropic glutamate receptor 5 expressed in astrocytes. Thus, conjugated, membrane-permeable peptides are effective tools for the dissection of intracellular signals. PMID:10702266

  17. The antidepressant 5-HT2A receptor antagonists pizotifen and cyproheptadine inhibit serotonin-enhanced platelet function.

    PubMed

    Lin, Olivia A; Karim, Zubair A; Vemana, Hari Priya; Espinosa, Enma V P; Khasawneh, Fadi T

    2014-01-01

    There is considerable interest in defining new agents or targets for antithrombotic purposes. The 5-HT2A receptor is a G-protein coupled receptor (GPCR) expressed on many cell types, and a known therapeutic target for many disease states. This serotonin receptor is also known to regulate platelet function. Thus, in our FDA-approved drug repurposing efforts, we investigated the antiplatelet activity of cyproheptadine and pizotifen, two antidepressant 5-HT2A Receptor antagonists. Our results revealed that cyproheptadine and pizotifen reversed serotonin-enhanced ADP-induced platelet aggregation in vitro and ex vivo. And the inhibitory effects of these two agents were found to be similar to that of EMD 281014, a 5-HT2A Receptor antagonist under development. In separate experiments, our studies revealed that these 5-HT2A receptor antagonists have the capacity to reduce serotonin-enhanced ADP-induced elevation in intracellular calcium levels and tyrosine phosphorylation. Using flow cytometry, we also observed that cyproheptadine, pizotifen, and EMD 281014 inhibited serotonin-enhanced ADP-induced phosphatidylserine (PS) exposure, P-selectin expression, and glycoprotein IIb-IIIa activation. Furthermore, using a carotid artery thrombosis model, these agents prolonged the time for thrombotic occlusion in mice in vivo. Finally, the tail-bleeding time was investigated to assess the effect of cyproheptadine and pizotifen on hemostasis. Our findings indicated prolonged bleeding time in both cyproheptadine- and pizotifen-treated mice. Notably, the increases in occlusion and bleeding times associated with these two agents were comparable to that of EMD 281014, and to clopidogrel, a commonly used antiplatelet drug, again, in a fashion comparable to clopidogrel and EMD 281014. Collectively, our data indicate that the antidepressant 5-HT2A antagonists, cyproheptadine and pizotifen do exert antiplatelet and thromboprotective effects, but similar to clopidogrel and EMD 281014, their

  18. Target size analysis of serotonin 5-HT/sub 1/ and 5-HT/sub 2/ receptors in bovine brain membranes

    SciTech Connect

    Nishino, N.; Tanaka, C.

    1985-09-23

    Freeze-dried crude synaptic membranes prepared from bovine cerebral cortex and striatum were exposed to high energy gamma ray from the source of /sup 60/Co. The size of serotonin 5-HT/sub 1/ receptors labeled by (/sup 3/H)serotonin and that of 5-HT/sub 2/ receptors labeled by (/sup 3/H)spiperone or (/sup 3/H)ketanserin was determined by target size analyses. The values were 57,000 daltons, 145,000 daltons and 152,000 daltons for the cerebral cortex and 56,000 daltons, 141,000 daltons and 150,000 daltons for the striatum, respectively. The estimated sizes were deduced by reference to enzyme standards with known molecular masses and which were irradiated in parallel. These results demonstrate that the molecular entities in situ for 5-HT/sub 1/ receptors are distinct from those for 5-HT/sub 2/ receptors, thus supporting data on the existence of two distinct populations of serotonin receptors, hitherto evidenced physiopharmacologically.

  19. Selective 5-HT7 receptor agonists LP 44 and LP 211 elicit an analgesic effect on formalin-induced orofacial pain in mice

    PubMed Central

    DEMİRKAYA, Kadriye; AKGÜN, Özlem Martı; ŞENEL, Buğra; ÖNCEL TORUN, Zeynep; SEYREK, Melik; LACİVİTA, Enza; LEOPOLDO, Marcello; DOĞRUL, Ahmet

    2016-01-01

    ABSTRACT The most recently identified serotonin (5-HT) receptor is the 5-HT7 receptor. The antinociceptive effects of a 5-HT7 receptor agonist have been shown in neuropathic and inflammatory animal models of pain. A recent study demonstrated the functional expression of 5-HT7 receptors in the substantia gelatinosa (SG) of the trigeminal subnucleus caudalis, which receives and processes orofacial nociceptive inputs. Objective To investigate the antinociceptive effects of pharmacological activation of 5-HT7 receptors on orofacial pain in mice. Material and Methods Nociception was evaluated by using an orofacial formalin test in male Balb-C mice. Selective 5-HT7 receptor agonists, LP 44 and LP 211 (1, 5, and 10 mg/kg), were given intraperitoneally 30 min prior to a formalin injection. A bolus of 10 µl of 4% subcutaneous formalin was injected into the upper lip of mice and facial grooming behaviors were monitored. The behavioral responses consisted of two distinct periods, the early phase corresponding to acute pain (Phase I: 0–12 min) and the late phase (Phase II: 12–30 min). Results LP 44 and LP 211 (1, 5, and 10 mg/kg) produced an analgesic effect with reductions in face rubbing time in both Phase I and Phase II of the formalin test. Conclusion Our results suggest that 5-HT7 receptor agonists may be promising analgesic drugs in the treatment of orofacial pain. PMID:27383702

  20. Reactions between beta-casomorphins-7 and 5-HT2-serotonin receptors.

    PubMed

    Sokolov, O Yu; Pryanikova, N A; Kost, N V; Zolotarev, Yu A; Ryukert, E N; Zozulya, A A

    2005-11-01

    Radioreceptor analysis showed that human beta-casomorphin-7 displaced 3H-spiperone from 5-HT2-serotonin receptors of the rat cerebral frontal cortex: EC50 8 +/- 1 microM. Human and bovine beta-casomorphin-7 dose-dependently blocked serotonin-induced human platelet aggregation: IC50 5 +/- 1 and 20 +/- 4 microM, respectively. It was proved that beta-casomorphins-7 act as 5-HT2-serotonin receptor antagonists; one of the mechanisms of their biological effects is presumably associated with modulation of the serotoninergic system.

  1. D-serine deficiency attenuates the behavioral and cellular effects induced by the hallucinogenic 5-HT(2A) receptor agonist DOI.

    PubMed

    Santini, Martin A; Balu, Darrick T; Puhl, Matthew D; Hill-Smith, Tiffany E; Berg, Alexandra R; Lucki, Irwin; Mikkelsen, Jens D; Coyle, Joseph T

    2014-02-01

    Both the serotonin and glutamate systems have been implicated in the pathophysiology of schizophrenia, as well as in the mechanism of action of antipsychotic drugs. Psychedelic drugs act through the serotonin 2A receptor (5-HT2AR), and elicit a head-twitch response (HTR) in mice, which directly correlates to 5-HT2AR activation and is absent in 5-HT2AR knockout mice. The precise mechanism of this response remains unclear, but both an intrinsic cortico-cortical pathway and a thalamo-cortical pathway involving glutamate release have been proposed. Here, we used a genetic model of NMDAR hypofunction, the serine racemase knockout (SRKO) mouse, to explore the role of glutamatergic transmission in regulating 5-HT2AR-mediated cellular and behavioral responses. SRKO mice treated with the 5-HT2AR agonist (±)-2,5-dimethoxy-4-iodoamphetamine (DOI) showed a clearly diminished HTR and lower induction of c-fos mRNA. These altered functional responses in SRKO mice were not associated with changes in cortical or hippocampal 5-HT levels or in 5-HT2AR and metabotropic glutamate-2 receptor (mGluR2) mRNA and protein expression. Together, these findings suggest that D-serine-dependent NMDAR activity is involved in mediating the cellular and behavioral effects of 5-HT2AR activation.

  2. Drug-induced defaecation in rats: role of central 5-HT1A receptors.

    PubMed Central

    Croci, T.; Landi, M.; Bianchetti, A.; Manara, L.

    1995-01-01

    1. We investigated the acute effects of 5-hydroxytryptamine (5-HT), and of the 5-HT1A receptor agonists, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), buspirone and SR 57746A, on rat faecal pellet output and water content. 2. 5-HT, 8-OH-DPAT, buspirone and SR 57746A, a new selective 5-HT1A receptor agonist, displaced [3H]-8-OH-DPAT from specific binding sites in rat hippocampus membranes (Ki, nM; 1.8, 1.2, 15, 3.1 respectively) and stimulated rat defaecation dose-dependently. SR 57746A and buspirone induced 1 g dry weight of faeces at 1.3 and 6.1 mg kg-1, p.o. (AD1) respectively. 8-OH-DPAT and 5-HT stimulated defaecation after s.c. injection (AD1, 0.07 and 7.5 mg kg-1, respectively). All these agents increased faecal water content. 3. The putative 5-HT1A receptor antagonist, pindolol, injected s.c. or i.c.v., significantly reduced the defaecation induced by systemically administered 8-OH-DPAT, buspirone or SR 57746A, but not 5-HT. 4. Pretreatment with p-chlorophenylalanine (i.p.) or 5,7-dihydroxytryptamine (i.c.v.), according to protocols designed to cause either generalized or CNS-limited 5-HT depletion respectively, also reduced the defaecation induced by buspirone or SR 57746A. 5. No specific 5-HT1A binding sites could be labelled by incubating rat colon membranes with [3H]-8-OH-DPAT, and in vitro preparations of rat colon segments showed no response to 8-OH-DPAT or SR 57746A up to 5 microM. 6. After eight days' repeated daily treatment, complete tolerance developed to the stimulant effects of SR 57746A and buspirone on faecal water content, but not on faecal pellet output.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7647978

  3. N-Benzyl-5-methoxytryptamines as Potent Serotonin 5-HT2 Receptor Family Agonists and Comparison with a Series of Phenethylamine Analogues

    PubMed Central

    2015-01-01

    A series of N-benzylated-5-methoxytryptamine analogues was prepared and investigated, with special emphasis on substituents in the meta position of the benzyl group. A parallel series of several N-benzylated analogues of 2,5-dimethoxy-4-iodophenethylamine (2C-I) also was included for comparison of the two major templates (i.e., tryptamine and phenethylamine). A broad affinity screen at serotonin receptors showed that most of the compounds had the highest affinity at the 5-HT2 family receptors. Substitution at the para position of the benzyl group resulted in reduced affinity, whereas substitution in either the ortho or the meta position enhanced affinity. In general, introduction of a large lipophilic group improved affinity, whereas functional activity often followed the opposite trend. Tests of the compounds for functional activity utilized intracellular Ca2+ mobilization. Function was measured at the human 5-HT2A, 5-HT2B, and 5-HT2C receptors, as well as at the rat 5-HT2A and 5-HT2C receptors. There was no general correlation between affinity and function. Several of the tryptamine congeners were very potent functionally (EC50 values from 7.6 to 63 nM), but most were partial agonists. Tests in the mouse head twitch assay revealed that many of the compounds induced the head twitch and that there was a significant correlation between this behavior and functional potency at the rat 5-HT2A receptor. PMID:25547199

  4. Acquisition, Retention, and Recall of Memory After Injection of RS67333, a 5-HT4 Receptor Agonist, Into the Nucleus Basalis Magnocellularis of the Rat

    PubMed Central

    Orsetti, Marco; Dellarole, Anna; Ferri, Simona; Ghi, Piera

    2003-01-01

    The serotonin 5-HT4 subtype receptor is predominantly localized into anatomical structures linked to memory and cognition. A few experimental studies report that the acute systemic administration of selective 5-HT4 agonists has ameliorative effects on memory performance, and that these effects are reversed by contemporary administration of 5-HT4 receptor antagonists. To verify whether this procognitive action occurs via the activation of the cholinergic nucleus basalis magnocellularis (NBM)-cortical pathways, we examined the effects of RS67333, a selective partial agonist of the 5-HT4 receptor, on rat performance in a place recognition task upon local administration of the drug into the NBM area. The intra-NBM administration of RS67333 enhances the acquisition (200–500 ng/0.5 μL) and the consolidation (40–200 ng/0.5 μL) of the place recognition memory. These effects are reversed by pretreatment with the selective 5-HT4 receptor antagonist RS39604 (300 ng/0.5μL). Conversely, the recall of memory is not affected by the 5-HT4 agonist. Our results indicate that 5-HT4 receptors located within the NBM may play a role in spatial memory and that the procognitive effect of RS67333 is due, at least in part, to the potentiation of the activity of cholinergic NBM-cortical pathways. PMID:14557615

  5. Anti-inflammatory effect of ondansetron through 5-HT3 receptors on TNBS-induced colitis in rat

    PubMed Central

    Motavallian-Naeini, Azadeh; Minaiyan, Mohsen; Rabbani, Mohammad; Mahzuni, Parvin

    2012-01-01

    Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the intestinal tract whose etiology has not yet been fully elucidated. Available medicines for treatment of IBD are not universally effective and result in marked deleterious effects. This challenge has thus heightened the need for research in order to adopt new therapeutic approaches for the treatment of IBD. 5-HT3 receptor antagonists have shown analgesic and anti-inflammatory properties in vitro and in vivo. Our aim was to investigate the effect of ondansetron, 5-HT3 receptor antagonist, in an immune-based animal model of IBD, trinitrobenzene sulfonic acid (TNBS)-induced rat colitis and probable involvement of 5-HT3 receptors. Two hours after induction of colitis (instillation of 50 mg/kg of TNBS dissolved in 0.25 ml of ethanol 50 % v/v) to male Wistar rats, ondansetron (2 mg/kg), dexamethasone (1 mg/kg), meta-chlorophenylbiguanide (mCPBG, 5 mg/kg), a 5-HT3 receptor agonist, or ondansetron + mCPBG were administrated intraperitoneally (ip) and continued daily for six days. The animals were sacrificed and distal colons were assessed macroscopically, histologically and biochemically [myeloperoxidase (MPO), tumor necrosis factor-alpha, interleukin-6 and interleukin-1 beta]. Ondansetron and dexamethasone resulted in a decrease in macroscopic and microscopic colonic damage significantly. In addition a dramatic reduction in MPO activity and colonic levels of inflammatory cytokines were seen. The protective effects of ondansetron were antagonized by concurrent administration of mCPBG. Our data suggests that the beneficial effects of ondansetron in TNBS-induced colitis could be mediated by 5-HT3 receptors. PMID:27350767

  6. Aromatic interactions impact ligand binding and function at serotonin 5-HT2C G protein-coupled receptors: receptor homology modelling, ligand docking, and molecular dynamics results validated by experimental studies

    NASA Astrophysics Data System (ADS)

    Córdova-Sintjago, Tania; Villa, Nancy; Fang, Lijuan; Booth, Raymond G.

    2014-02-01

    The serotonin (5-hydroxytryptamine, 5-HT) 5-HT2 G protein-coupled receptor (GPCR) family consists of types 2A, 2B, and 2C that share ∼75% transmembrane (TM) sequence identity. Agonists for 5-HT2C receptors are under development for psychoses; whereas, at 5-HT2A receptors, antipsychotic effects are associated with antagonists - in fact, 5-HT2A agonists can cause hallucinations and 5-HT2B agonists cause cardiotoxicity. It is known that 5-HT2A TM6 residues W6.48, F6.51, and F6.52 impact ligand binding and function; however, ligand interactions with these residues at the 5-HT2C receptor have not been reported. To predict and validate molecular determinants for 5-HT2C-specific activation, results from receptor homology modelling, ligand docking, and molecular dynamics simulation studies were compared with experimental results for ligand binding and function at wild type and W6.48A, F6.51A, and F6.52A point-mutated 5-HT2C receptors.

  7. APORPHINOID ANTAGONISTS OF 5-HT2A RECEPTORS: FURTHER EVALUATION OF RING A SUBSTITUENTS AND THE SIZE OF RING C

    PubMed Central

    Ponnala, Shashikanth; Kapadia, Nirav; Navarro, Hernán A.; Harding, Wayne W.

    2014-01-01

    A series of ring A modified analogs of nantenine as well as structural variants in ring C were synthesized and evaluated for antagonist activity at 5-HT2A and α1A receptors. Halogenation improves 5-HT2A antagonist potency in molecules containing a C1 methoxyl/C2 methoxyl or C1 methoxyl/C2 hydroxyl moiety. Bromination or iodination (but not chlorination) with the latter moiety also significantly increased α1A antagonist potency. Homologation or contraction of ring C adversely affected antagonist activity at both receptors, implying that a six-membered ring C motif is beneficial for high antagonist potency at both receptors. Molecular docking studies suggest that the improved antagonist activity (by virtue of improved affinity) of C3 halogenated aporphines in this study, is attributable to favorable interactions with the C3 halogen and F339 and/or F340. PMID:24766771

  8. Inhibitory modulation of chemoreflex bradycardia by stimulation of the nucleus raphe obscurus is mediated by 5-HT3 receptors in the NTS of awake rats.

    PubMed

    Weissheimer, Karin Viana; Machado, Benedito H

    2007-03-30

    Several studies demonstrated the involvement of 5-hydroxytryptamine (5-HT) and its different receptor subtypes in the modulation of neurotransmission of cardiovascular reflexes in the nucleus tractus solitarii (NTS). Moreover, anatomic evidence suggests that nucleus raphe obscurus (ROb) is a source of 5-HT-containing terminals within the NTS. In the present study we investigated the possible changes in the cardiovascular responses to peripheral chemoreceptor activation by potassium cyanide (KCN, i.v.) following ROb stimulation with L-glutamate (10 nmol/50 nL) and also whether 5-HT3 receptors in the caudal commissural NTS are involved in this neuromodulation. The results showed that stimulation of the ROb with L-glutamate in awake rats (n=15) produced a significant reduction in the bradycardic response 30 s after the microinjection (-182+/-19 vs -236+/-10 bpm; Wilcoxon test) but no changes in the pressor response to peripheral chemoreceptor activation (43+/-4 vs 51+/-3 mmHg; two-way ANOVA) in relation to the control. Microinjection of 5--HT3 receptors antagonist granisetron (500 pmol/50 nL), but not the vehicle, into the caudal commissural NTS bilaterally prevented the reduction of chemoreflex bradycardia in response to microinjection of L-glutamate into ROb. These data indicate that 5-HT-containing projections from ROb to the NTS play an inhibitory neuromodulatory role in the chemoreflex evoked bradycardia by releasing 5-HT and activating 5-HT3 receptors in the caudal NTS.

  9. Cannabidiol induces rapid-acting antidepressant-like effects and enhances cortical 5-HT/glutamate neurotransmission: role of 5-HT1A receptors.

    PubMed

    Linge, Raquel; Jiménez-Sánchez, Laura; Campa, Leticia; Pilar-Cuéllar, Fuencisla; Vidal, Rebeca; Pazos, Angel; Adell, Albert; Díaz, Álvaro

    2016-04-01

    Cannabidiol (CBD), the main non-psychotomimetic component of marihuana, exhibits anxiolytic-like properties in many behavioural tests, although its potential for treating major depression has been poorly explored. Moreover, the mechanism of action of CBD remains unclear. Herein, we have evaluated the effects of CBD following acute and chronic administration in the olfactory bulbectomy mouse model of depression (OBX), and investigated the underlying mechanism. For this purpose, we conducted behavioural (open field and sucrose preference tests) and neurochemical (microdialysis and autoradiography of 5-HT1A receptor functionality) studies following treatment with CBD. We also assayed the pharmacological antagonism of the effects of CBD to dissect out the mechanism of action. Our results demonstrate that CBD exerts fast and maintained antidepressant-like effects as evidenced by the reversal of the OBX-induced hyperactivity and anhedonia. In vivo microdialysis revealed that the administration of CBD significantly enhanced serotonin and glutamate levels in vmPFCx in a different manner depending on the emotional state and the duration of the treatment. The potentiating effect upon neurotransmitters levels occurring immediately after the first injection of CBD might underlie the fast antidepressant-like actions in OBX mice. Both antidepressant-like effect and enhanced cortical 5-HT/glutamate neurotransmission induced by CBD were prevented by 5-HT1A receptor blockade. Moreover, adaptive changes in pre- and post-synaptic 5-HT1A receptor functionality were also found after chronic CBD. In conclusion, our findings indicate that CBD could represent a novel fast antidepressant drug, via enhancing both serotonergic and glutamate cortical signalling through a 5-HT1A receptor-dependent mechanism.

  10. Involvement of 5-HT2A receptors in MDMA reinforcement and cue-induced reinstatement of MDMA-seeking behaviour.

    PubMed

    Orejarena, María Juliana; Lanfumey, Laurence; Maldonado, Rafael; Robledo, Patricia

    2011-08-01

    The serotonergic system appears crucial for (±)-3,4-methylenedioxymethamphetamine (MDMA) reinforcing properties. Current evidence indicates that serotonin 5-HT2A receptors (5-HT2ARs) modulate mesolimbic dopamine (DA) activity and several behavioural responses related to the addictive properties of psychostimulants. This study evaluated the role of 5-HT2ARs in MDMA-induced reinforcement and hyperlocomotion, and the reinstatement of MDMA-seeking behaviour. Basal and MDMA-stimulated extracellular levels of DA in the nucleus accumbens (NAc) and serotonin and noradrenaline in the prefrontal cortex were also assessed. Self-administration of MDMA was blunted in 5-HT2AR knockout (KO) mice compared to wild-type (WT) littermates at both doses tested (0.125 and 0.25 mg/kg per infusion). Horizontal locomotion was increased by MDMA (10 and 20 mg/kg i.p.) to a higher extent in KO than in WT mice. DA outflow in the NAc was lower in KO compared to WT mice under basal conditions and after MDMA (20 mg/kg) challenge. In WT mice, MDMA (5 and 10 mg/kg i.p.) priming did not reinstate MDMA-seeking behaviour, while cue-induced reinstatement was prominent. This cue-induced reinstatement was blocked by administration of the selective 5-HT2AR antagonist, SR46349B (eplivanserin) at a dose of 0.5 mg/kg, but not at 0.25 mg/kg. Our results indicate that 5-HT2ARs are crucial for MDMA-induced reinforcement and cue-induced reinstatement of MDMA-seeking behaviour. These effects are probably due to the modulation of mesolimbic dopaminergic activity.

  11. Serotonin 5-HT1A and 5-HT2/1C receptors in the midbrain periaqueductal gray differentially modulate defensive rage behavior elicited from the medial hypothalamus of the cat.

    PubMed

    Shaikh, M B; De Lanerolle, N C; Siegel, A

    1997-08-15

    evidence that activation of 5-HT1A and 5-HT2/1C receptors within the midbrain PAG differentially modulate the expression of defensive rage behavior elicited from the medial hypothalamus of the cat. PMID:9313892

  12. Examination of the hippocampal contribution to serotonin 5-HT2A receptor-mediated facilitation of object memory in C57BL/6J mice.

    PubMed

    Zhang, Gongliang; Cinalli, David; Cohen, Sarah J; Knapp, Kristina D; Rios, Lisa M; Martínez-Hernández, José; Luján, Rafael; Stackman, Robert W

    2016-10-01

    The rodent hippocampus supports non-spatial object memory. Serotonin 5-HT2A receptors (5-HT2AR) are widely expressed throughout the hippocampus. We previously demonstrated that the activation of 5-HT2ARs enhanced the strength of object memory assessed 24 h after a limited (i.e., weak memory) training procedure. Here, we examined the subcellular distribution of 5-HT2ARs in the hippocampal CA1 region and underlying mechanisms of 5-HT2AR-mediated object memory consolidation. Analyses with immuno-electron microscopy revealed the presence of 5-HT2ARs on the dendritic spines and shafts of hippocampal CA1 neurons, and presynaptic terminals in the CA1 region. In an object recognition memory procedure that places higher demand on the hippocampus, only post-training systemic or intrahippocampal administration of the 5-HT2AR agonist TCB-2 enhanced object memory. Object memory enhancement by TCB-2 was blocked by the 5-HT2AR antagonist, MDL 11,937. The memory-enhancing dose of systemic TCB-2 increased extracellular glutamate levels in hippocampal dialysate samples, and increased the mean in vivo firing rate of hippocampal CA1 neurons. In summary, these data indicate a pre- and post-synaptic distribution of 5-HT2ARs, and activation of 5-HT2ARs selectively enhanced the consolidation of object memory, without affecting encoding or retrieval. The 5-HT2AR-mediated facilitation of hippocampal memory may be associated with an increase in hippocampal neuronal firing and glutamate efflux during a post-training time window in which recently encoded memories undergo consolidation.

  13. Pyramidal Neurons in Rat Prefrontal Cortex Projecting to Ventral Tegmental Area and Dorsal Raphe Nucleus Express 5-HT2A Receptors

    PubMed Central

    Vázquez-Borsetti, Pablo; Cortés, Roser

    2009-01-01

    The prefrontal cortex (PFC) is involved in higher brain functions altered in schizophrenia. Classical antipsychotics modulate cortico-limbic circuits mainly through subcortical D2 receptor blockade, whereas second generation (atypical) antipsychotics preferentially target cortical 5-HT receptors. Anatomical and functional evidence supports a PFC-based control of the brainstem monoaminergic nuclei. Using a combination of retrograde tracing experiments and in situ hybridization we report that a substantial proportion of PFC pyramidal neurons projecting to the dorsal raphe (DR) and/or ventral tegmental area (VTA) express 5-HT2A receptors. Cholera-toxin B application into the DR and the VTA retrogradely labeled projection neurons in the medial PFC (mPFC) and in orbitofrontal cortex (OFC). In situ hybridization of 5-HT2A receptor mRNA in the same tissue sections labeled a large neuronal population in mPFC and OFC. The percentage of DR-projecting neurons expressing 5-HT2A receptor mRNA was ∼60% in mPFC and ∼75% in OFC (n = 3). Equivalent values for VTA-projecting neurons were ∼55% in both mPFC and ventral OFC. Thus, 5-HT2A receptor activation/blockade in PFC may have downstream effects on dopaminergic and serotonergic systems via direct descending pathways. Atypical antipsychotics may distally modulate monoaminergic cells through PFC 5-HT2A receptor blockade, presumably decreasing the activity of neurons receiving direct cortical inputs. PMID:19029064

  14. Serotonin directly stimulates luteinizing hormone-releasing hormone release from GT1 cells via 5-HT7 receptors.

    PubMed

    Héry, M; François-Bellan, A M; Héry, F; Deprez, P; Becquet, D

    1997-10-01

    Luteinizing hormone-releasing hormone (LHRH release, which serves as the primary drive to the hypothalamic-pituitary gonadal axis, is controlled by many neuromediators. Serotonin has been implicated in this regulation. However, it is unclear whether the central effect of serotonin on LHRH secretion is exerted directly on LHRH neurosecretory neurons or indirectly via multisynaptic pathways. The present studies were undertaken in order to examine whether LHRH secretion from immortalized LHRH cell lines is directly regulated by serotonin and, if so, to identify the receptor subtype involved. 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), a 5-HT1A/7 receptor agonist, stimulated LHRH release from GT1-1 cells. This effect was blocked by ritanserin, a 5-HT2/7 receptor antagonist, but not by SDZ-216-525, a 5-HT1A antagonist. Basal LHRH release was not affected by the 5-HT2 agonist DOI. Reverse transcription and polymerase chain reaction technique (RT-PCR) was used in order to identify 5-HT1A and 5-HT7 receptor mRNA in immortalized LHRH cell lines. GT1-1 cells express mRNA for the 5-HT7, but not the 5-HT1A receptor subtypes. These results demonstrate a direct stimulatory effect of serotonin on LHRH release via 5-HT7 receptor.

  15. Role of maternal 5-HT(1A) receptor in programming offspring emotional and physical development.

    PubMed

    van Velzen, A; Toth, M

    2010-11-01

    Serotonin(1A) receptor (5-HT(1A)R) deficiency has been associated with anxiety and depression and mice with genetic receptor inactivation exhibit heightened anxiety. We have reported that 5-HT(1A)R is not only a genetic but also a maternal 'environmental' factor in the development of anxiety in Swiss-Webster mice. Here, we tested whether the emergence of maternal genotype-dependent adult anxiety is preceded by early behavioral abnormalities or whether it is manifested following a normal emotional development. Pups born to null or heterozygote mothers had significantly reduced ultrasonic vocalization (USV) between postnatal day (P) 4 and 12, indicating an influence of the maternal genotype. The offspring's own genotype had an effect limited to P4. Furthermore, we observed reduced weight gain in the null offspring of null but not heterozygote mothers, indicating that a complete maternal receptor deficiency compromises physical development of the offspring. Except a short perinatal deficit during the dark period, heterozygote females displayed normal maternal behavior, which, with the early appearance of USV deficit, suggests a role for 5-HT(1A)R during pre-/perinatal development. Consistent with this notion, adult anxiety in the offspring is determined during the pre-/perinatal period. In contrast to heterozygote females, null mothers exhibited impaired pup retrieval and nest building that may explain the reduced weight gain of their offspring. Taken together, our data indicate an important role for the maternal 5-HT(1A)R in regulating emotional and physical development of their offspring. Because reduced receptor binding has been reported in depression, including postpartum depression, reduced 5-HT(1A)R function in mothers may influence the emotional development of their offspring.

  16. Age and sex effects on 5-HT4 receptors in the human brain: a [11C]SB207145 PET study

    PubMed Central

    Madsen, Karine; Haahr, Mette T; Marner, Lisbeth; Keller, Sune H; Baaré, William F; Svarer, Claus; Hasselbalch, Steen G; Knudsen, Gitte M

    2011-01-01

    Experimental studies indicate that the 5-HT4 receptor activation influence cognitive function, affective symptoms, and the development of Alzheimer's disease (AD). The prevalence of AD increases with aging, and women have a higher predisposition to both AD and affective disorders than men. This study aimed to investigate sex and age effects on 5-HT4 receptor-binding potentials in striatum, the limbic system, and neocortex. Positron-emission tomographic scans were conducted using the radioligand [11C]SB207145 in a cohort of 30 healthy subjects (mean age 44 years; range 20 to 86 years; 14 men and 16 women). The output parameter, BPND, was modeled using the simplified reference tissue model, and partial volume correction was performed with the Muller–Gartner method. A decline with age of 1% per decade was found only in striatum. Women had a 13% lower 5-HT4 receptor binding in the limbic system. The lower limbic 5-HT4 receptor binding in women supports a role for 5-HT4 receptors in the sex-specific differences in emotional control and might contribute to the higher prevalence of affective diseases and AD in women. The relatively stable 5-HT4 receptor binding with aging contrasts others in subtypes of receptors, which generally decrease with aging. PMID:21364600

  17. The antipsychotic aripiprazole induces antinociceptive effects: Possible role of peripheral dopamine D2 and serotonin 5-HT1A receptors.

    PubMed

    Almeida-Santos, Ana F; Ferreira, Renata C M; Duarte, Igor D; Aguiar, Daniele C; Romero, Thiago R L; Moreira, Fabricio A

    2015-10-15

    Aripiprazole is an antipsychotic that acts by multiple mechanisms, including partial agonism at dopamine D2 and serotonin 5-HT1A receptors. Since these neurotransmitters also modulate pain and analgesia, we tested the hypothesis that systemic or local administration of aripiprazole induces antinociceptive responses. Systemic aripiprazole (0.1-10 mg/kg; i.p.) injection in mice inhibited formalin-induced paw licking and PGE2-induced hyperalgesia in the paw pressure test. This effect was mimicked by intra-plantar administration (12.5-100 µg/paw) in the ipsi, but not contralateral, paw. The peripheral action of aripiprazole (100 µg/paw) was reversed by haloperidol (0.1-10 µg/paw), suggesting the activation of dopamine receptors as a possible mechanism. Accordingly, quinpirole (25-100 µg/paw), a full agonist at D2/D3 receptors, also reduced nociceptive responses.. In line with the partial agoniztic activity of aripiprazole, low dose of this compound inhibited the effect of quinpirole (both at 25 µg/paw). Finally, peripheral administration of NAN-190 (0.1-10 μg/paw), a 5-HT1A antagonist, also prevented aripiprazole-induced antinociception. In conclusion, systemic or local administration of aripiprazole induces antinociceptive effects. Similar to its antipsychotic activity, the possible peripheral mechanism involves dopamine D2 and serotoninergic 5-HT1A receptors. Aripiprazole and other dopaminergic modulators should be further investigated as new treatments for certain types of pain.

  18. Cloning and immunoreactivity of the 5-HT1Mac and 5-HT2Mac receptors in the central nervous system of the freshwater prawn Macrobrachium rosenbergii

    PubMed Central

    Vázquez-Acevedo, Nietzell; Reyes-Colón, Dalynés; Ruíz-Rodríguez, Eduardo A.; Rivera, Nilsa M.; Rosenthal, Joshua; Kohn, Andrea B.; Moroz, Leonid L.; Sosa, María A.

    2009-01-01

    Biogenic amines are implicated in several mental disorders, many of which involve social interactions. Simple model systems, such as crustaceans, are often more amenable than vertebrates for studying mechanisms underlying behaviors. Although various cellular responses of biogenic amines have been characterized in crustaceans, the mechanisms linking these molecules to behavior remain largely unknown. Observed effects of serotonin receptor agonists and antagonists in abdomen posture, escape responses, and fighting have led to the suggestion that biogenic amine receptors may play a role in modulating interactive behaviors. As a first step in understanding this potential role of such receptors, we have cloned and fully sequenced two serotonin receptors, 5-HT1Mac and 5-HT2Mac, from the CNS of the freshwater prawn Macrobrachium rosenbergii, and have mapped their CNS immunohistochemical distribution. 5-HT1Mac was found primarily on the membranes of subsets of cells in all CNS ganglia, in fibers that traverse all CNS regions, and in the cytoplasm of a small number of cells in the brain, circum- and subesophageal ganglia (SEG), most of which also appear to contain dopamine. The pattern of 5-HT2Mac immunoreactivity was found to differ significantly, being found mostly in the central neuropil area of all ganglia, in glomeruli of the brain’s olfactory lobes, and in the cytoplasm of a small number of neurons in the SEG, thoracic and some abdominal ganglia. The observed differences in terms of localization, distribution within cells, and intensity of immunoreactive staining throughout the prawn’s CNS suggest that these receptors are likely to play different roles. PMID:19184976

  19. Identification of spinal 5-HT sub 3 receptors and their role in the modulation of nociceptive responses in the rat

    SciTech Connect

    Glaum, S.R.

    1988-01-01

    The project consisted of two related studies: (1) the characterization of serotonin binding sites in crude and purified synaptic membranes prepared from the rat spinal cord, and (2) the association of serotonin binding sites with functional 5-HT receptor responses in the modulation of nociceptive information at the level of the spinal cord. The first series of experiments involved the preparation of membranes from the dorsal and ventral halves of the rat spinal cord and the demonstration of specific ({sup 3}H)serotonin binding to these membranes. High affinity binding sites which conformed to the 5-HT{sub 3} subtype were identified in dorsal, but not ventral spinal cord synaptic membranes. These experiments also confirmed the presence of high affinity ({sup 3}H)5-HT binding sites in dorsal spinal cord synaptic membranes of the 5-HT{sub 1} subtype. The second group of studies demonstrated the ability of selective 5-HT{sub 3} antagonists to inhibit the antinociceptive response to intrathecally administered 5-HT, as measured by a change in tail flick and hot plate latencies. Intrathecal pretreatment with the selective 5-HT{sub 3} antagonists ICS 205-930 or MDL 72222 abolished the antinociceptive effects of 5-HT. Furthermore, the selective 5-HT{sub 3} agonist 2-methyl-5-HT mimicked the antinociceptive effects of 5-HT.

  20. Comparison of the effects of trimebutine and YM114 (KAE-393), a novel 5-HT3 receptor antagonist, on stress-induced defecation.

    PubMed

    Miyata, K; Ito, H; Yamano, M; Hidaka, K; Kamato, T; Nishida, A; Yuki, H

    1993-12-01

    YM114 (KAE-393), (R)-5-[(2,3-dihydro-1-indolyl)carbonyl]-4,5,6,7- tetrahydro-1H-benzimidazole hydrochloride, is a derivative of YM060, a potent 5-HT3 receptor antagonist. We investigated the effects of YM114 on 5-HT3 receptors, both in vitro and in vivo, and on bowel dysfunction induced by restraint stress, 5-HT and thyrotropin-releasing hormone (TRH), and compared them with the effect of trimebutine. YM114 dose dependently inhibited the reduction in heart rate induced by 5-HT (30 micrograms/kg i.v.) in rats (ED50 = 0.31 micrograms/kg i.v.), and the potency of YM114 was almost the same as that of the racemate. The S-form of YM114 also inhibited 5-HT-induced bradycardia, but 1350 times less potent than the R-form. YM114 and its S-form inhibited [3H]GR65630 binding to N1E-115 cell membranes in a concentration-dependent manner with Ki values of 0.341 and 616 nM, respectively, showing the isomeric activity ratio (R-/S-form) of YM114 to be much greater (1800). YM114 antagonized 5-HT-induced depolarization of the nodose ganglion (EC50 = 1.39 nM). Trimebutine (1 mg/kg i.v.) failed to inhibit 5-HT-induced bradycardia, implying that it does not possess 5-HT3 receptor antagonistic activity. YM114 significantly and dose dependently prevented restraint stress-, 5-HT- and TRH-induced increases in fecal pellet output, and restraint stress- and 5-HT-induced diarrhea in rats and mice (ED50 = 6.9, 72.5, 154.6, 9.7 and 52.4 micrograms/kg p.o., respectively). Trimebutine significantly prevented stress- and 5-HT-induced diarrhea (ED50 = 29.4 and 87.3 mg/kg p.o., respectively), but only partially affected stress-, 5-HT- and TRH-induced increases in fecal pellet output. Thus, YM114 is a potent and stereoselective 5-HT3 receptor antagonist with much greater protective effects against stress-induced defecation than trimebutine. PMID:8112388

  1. The type 7 serotonin receptor, 5-HT 7 , is essential in the mammary gland for regulation of mammary epithelial structure and function.

    PubMed

    Pai, Vaibhav P; Hernandez, Laura L; Stull, Malinda A; Horseman, Nelson D

    2015-01-01

    Autocrine-paracrine activity of serotonin (5-hydroxytryptamine, 5-HT) is a crucial homeostatic parameter in mammary gland development during lactation and involution. Published studies suggested that the 5-HT7 receptor type was important for mediating several effects of 5-HT in the mammary epithelium. Here, using 5-HT7 receptor-null (HT7KO) mice we attempt to understand the role of this receptor in mediating 5-HT actions within the mammary gland. We demonstrate for the first time that HT7KO dams are inefficient at sustaining their pups. Histologically, the HT7KO mammary epithelium shows a significant deviation from the normal secretory epithelium in morphological architecture, reduced secretory vesicles, and numerous multinucleated epithelial cells with atypically displaced nuclei, during lactation. Mammary epithelial cells in HT7KO dams also display an inability to transition from lactation to involution as normally seen by transition from a columnar to a squamous cell configuration, along with alveolar cell apoptosis and cell shedding. Our results show that 5-HT7 is required for multiple actions of 5-HT in the mammary glands including core functions that contribute to changes in cell shape and cell turnover, as well as specialized secretory functions. Understanding these actions may provide new interventions to improve lactation performance and treat diseases such as mastitis and breast cancer.

  2. The Type 7 Serotonin Receptor, 5-HT7, Is Essential in the Mammary Gland for Regulation of Mammary Epithelial Structure and Function

    PubMed Central

    Pai, Vaibhav P.; Hernandez, Laura L.; Stull, Malinda A.; Horseman, Nelson D.

    2015-01-01

    Autocrine-paracrine activity of serotonin (5-hydroxytryptamine, 5-HT) is a crucial homeostatic parameter in mammary gland development during lactation and involution. Published studies suggested that the 5-HT7 receptor type was important for mediating several effects of 5-HT in the mammary epithelium. Here, using 5-HT7 receptor-null (HT7KO) mice we attempt to understand the role of this receptor in mediating 5-HT actions within the mammary gland. We demonstrate for the first time that HT7KO dams are inefficient at sustaining their pups. Histologically, the HT7KO mammary epithelium shows a significant deviation from the normal secretory epithelium in morphological architecture, reduced secretory vesicles, and numerous multinucleated epithelial cells with atypically displaced nuclei, during lactation. Mammary epithelial cells in HT7KO dams also display an inability to transition from lactation to involution as normally seen by transition from a columnar to a squamous cell configuration, along with alveolar cell apoptosis and cell shedding. Our results show that 5-HT7 is required for multiple actions of 5-HT in the mammary glands including core functions that contribute to changes in cell shape and cell turnover, as well as specialized secretory functions. Understanding these actions may provide new interventions to improve lactation performance and treat diseases such as mastitis and breast cancer. PMID:25664318

  3. Mechanisms of cannabidiol neuroprotection in hypoxic-ischemic newborn pigs: role of 5HT(1A) and CB2 receptors.

    PubMed

    Pazos, M Ruth; Mohammed, Nagat; Lafuente, Hector; Santos, Martin; Martínez-Pinilla, Eva; Moreno, Estefania; Valdizan, Elsa; Romero, Julián; Pazos, Angel; Franco, Rafael; Hillard, Cecilia J; Alvarez, Francisco J; Martínez-Orgado, Jose

    2013-08-01

    The mechanisms underlying the neuroprotective effects of cannabidiol (CBD) were studied in vivo using a hypoxic-ischemic (HI) brain injury model in newborn pigs. One- to two-day-old piglets were exposed to HI for 30 min by interrupting carotid blood flow and reducing the fraction of inspired oxygen to 10%. Thirty minutes after HI, the piglets were treated with vehicle (HV) or 1 mg/kg CBD, alone (HC) or in combination with 1 mg/kg of a CB₂ receptor antagonist (AM630) or a serotonin 5HT(1A) receptor antagonist (WAY100635). HI decreased the number of viable neurons and affected the amplitude-integrated EEG background activity as well as different prognostic proton-magnetic-resonance-spectroscopy (H(±)-MRS)-detectable biomarkers (lactate/N-acetylaspartate and N-acetylaspartate/choline ratios). HI brain damage was also associated with increases in excitotoxicity (increased glutamate/N-acetylaspartate ratio), oxidative stress (decreased glutathione/creatine ratio and increased protein carbonylation) and inflammation (increased brain IL-1 levels). CBD administration after HI prevented all these alterations, although this CBD-mediated neuroprotection was reversed by co-administration of either WAY100635 or AM630, suggesting the involvement of CB₂ and 5HT(1A) receptors. The involvement of CB₂ receptors was not dependent on a CBD-mediated increase in endocannabinoids. Finally, bioluminescence resonance energy transfer studies indicated that CB₂ and 5HT(1A) receptors may form heteromers in living HEK-293T cells. In conclusion, our findings demonstrate that CBD exerts robust neuroprotective effects in vivo in HI piglets, modulating excitotoxicity, oxidative stress and inflammation, and that both CB₂ and 5HT(1A) receptors are implicated in these effects.

  4. Role of 5-hydroxytryptamine 1B (5-HT1B) receptors in the regulation of ethanol intake in rodents

    PubMed Central

    Sari, Youssef

    2012-01-01

    Evidence indicates that the serotonergic system is important in mediating dependence on and craving for alcohol. Among serotonin receptors, 5-hydroxytryptamine 1B (5-HT1B) receptors have been associated with drug abuse including alcohol. In this review, the neurocircuitry involving 5-HT1B receptors in central reward brain regions related to alcohol intake are discussed in detail. Emphasis has been placed on the pharmacological manipulations of 5-HT1B receptor-mediated alcohol intake. Furthermore, 5-HT1B auto- and hetero-receptors regulate alcohol intake through the regulatory mechanism involving release of 5-HT, gamma-aminobutyric acid (GABA), dopamine, and glutamate is evaluated. Thus, interactions between 5-HT1B receptors and these neurotransmitter systems are suggested to modulate alcohol-drinking behavior. This review on the role of 5-HT1B receptors in neurotransmitter release and consequent alcohol intake provides important information about the potential therapeutic role of 5-HT1B receptors for the treatment of alcohol dependence. PMID:23118018

  5. Serotonin 1A receptor (5-HT1A) of the sea lamprey: cDNA cloning and expression in the central nervous system.

    PubMed

    Cornide-Petronio, María Eugenia; Anadón, Ramón; Barreiro-Iglesias, Antón; Rodicio, María Celina

    2013-09-01

    Serotonergic cells are among the earliest neurons to be born in the developing central nervous system and serotonin is known to regulate the development of the nervous system. One of the major targets of the activity of serotonergic cells is the serotonin 1A receptor (5-HT1A), an ancestral archetypical serotonin receptor. In this study, we cloned and characterized the 3D structure of the sea lamprey 5-HT1A, and studied the expression of its transcript in the central nervous system by means of in situ hybridization. In phylogenetic analyses, the sea lamprey 5-HT1A sequence clustered together with 5-HT1A sequences of vertebrates and emerged as an outgroup to all gnathostome sequences. In situ hybridization analysis during prolarval, larval and adult stages showed a widespread expression of the lamprey 5-ht1a transcript. In P1 prolarvae 5-ht1a mRNA expression was observed in diencephalic nuclei, the rhombencephalon and rostral spinal cord. At P2 prolarval stage the 5-ht1a expression extended to other brain areas including telencephalic regions. 5-ht1a expression in larvae was observed throughout almost all the main brain regions with the strongest expression in the olfactory bulbs, lateral pallium, striatum, preoptic region, habenula, prethalamus, thalamus, pretectum, hypothalamus, rhombencephalic reticular area, dorsal column nucleus and rostral spinal cord. In adults, the 5-ht1a transcript was also observed in cells of the subcommissural organ. Comparison of the expression of 5-ht1a between the sea lamprey and other vertebrates reveals a conserved pattern in most of the brain regions, likely reflecting the ancestral vertebrate condition.

  6. Serotonin 1A receptor (5-HT1A) of the sea lamprey: cDNA cloning and expression in the central nervous system.

    PubMed

    Cornide-Petronio, María Eugenia; Anadón, Ramón; Barreiro-Iglesias, Antón; Rodicio, María Celina

    2013-09-01

    Serotonergic cells are among the earliest neurons to be born in the developing central nervous system and serotonin is known to regulate the development of the nervous system. One of the major targets of the activity of serotonergic cells is the serotonin 1A receptor (5-HT1A), an ancestral archetypical serotonin receptor. In this study, we cloned and characterized the 3D structure of the sea lamprey 5-HT1A, and studied the expression of its transcript in the central nervous system by means of in situ hybridization. In phylogenetic analyses, the sea lamprey 5-HT1A sequence clustered together with 5-HT1A sequences of vertebrates and emerged as an outgroup to all gnathostome sequences. In situ hybridization analysis during prolarval, larval and adult stages showed a widespread expression of the lamprey 5-ht1a transcript. In P1 prolarvae 5-ht1a mRNA expression was observed in diencephalic nuclei, the rhombencephalon and rostral spinal cord. At P2 prolarval stage the 5-ht1a expression extended to other brain areas including telencephalic regions. 5-ht1a expression in larvae was observed throughout almost all the main brain regions with the strongest expression in the olfactory bulbs, lateral pallium, striatum, preoptic region, habenula, prethalamus, thalamus, pretectum, hypothalamus, rhombencephalic reticular area, dorsal column nucleus and rostral spinal cord. In adults, the 5-ht1a transcript was also observed in cells of the subcommissural organ. Comparison of the expression of 5-ht1a between the sea lamprey and other vertebrates reveals a conserved pattern in most of the brain regions, likely reflecting the ancestral vertebrate condition. PMID:23052550

  7. Heterogeneity of neuronal nicotinic acetylcholine receptors in 5-HT-containing chemoreceptor cells of the chicken aorta

    PubMed Central

    Ito, Shigeo; Ohta, Toshio; Kasai, Yohei; Yonekubo, Kazuki; Nakazato, Yoshikazu

    2001-01-01

    The effects of nicotinic agonists and antagonists on whole-cell currents and 5-hydroxytryptamine (5-HT) release were studied in order to characterize nicotinic ACh receptors on the 5-HT-containing chemoreceptor cells of the chicken aorta.ACh, nicotine and dimethylphenylpiperazinium (DMPP) evoked concentration-dependent inward currents accompanied by increases in current noise at a holding potential of −70 mV. The peak amplitude of the current response to DMPP was 50% larger than that to either nicotine or ACh.Hexamethonium, α – bungarotoxin (α – BTX) and methyllycaconitine decreased nicotine-induced inward currents in a concentration-dependent manner. Although hexamethonium (0.1 mM) abolished the current response to nicotine (30 μM), a high concentration (1 μM) of α – BTX decreased it only by about 30% of the control response. Methyllycaconitine (0.1 μM) decreased the current response to nicotine to the same extent as did α – BTX whilst a high concentration (10 μM) abolished the response.ACh, nicotine and DMPP caused concentration-dependent increases in 5-HT output from the thoracic aorta which effect was blocked by hexamethonium (0.1 mM). Pre-treatment with α – BTX (1 μM) for 30 min reduced the output of 5-HT induced by ACh to 70% of the control response.It is suggested that neuronal nicotinic ACh receptors, sensitive and insensitive to α – BTX, are present on the chemoreceptor cells of the chicken aorta, the activation of which causes the release of 5-HT. PMID:11309266

  8. Pharmacological profiles in rats of novel antipsychotics with combined dopamine D2/serotonin 5-HT1A activity: comparison with typical and atypical conventional antipsychotics.

    PubMed

    Bardin, Laurent; Auclair, Agnès; Kleven, Mark S; Prinssen, Eric P M; Koek, Wouter; Newman-Tancredi, Adrian; Depoortère, Ronan

    2007-03-01

    Combining antagonist/partial agonist activity at dopamine D2 and agonist activity at serotonin 5-HT1A receptors is one of the approaches that has recently been chosen to develop new generation antipsychotics, including bifeprunox, SSR181507 and SLV313. There have been, however, few comparative data on their pharmacological profiles. Here, we have directly compared a wide array of these novel dopamine D2/5-HT1A and conventional antipsychotics in rat models predictive of antipsychotic activity. Potency of antipsychotics to antagonize conditioned avoidance, methylphenidate-induced behaviour and D-amphetamine-induced hyperlocomotion correlated with their affinity at dopamine D2 receptors. Potency against ketamine-induced hyperlocomotion was independent of affinity at dopamine D2 or 5-HT1A receptors. Propensity to induce catalepsy, predictive of occurrence of extrapyramidal side effects, was inversely related to affinity at 5-HT1A receptors. As a result, preferential D2/5-HT1A antipsychotics displayed a large separation between doses producing 'antipsychotic-like' vs. cataleptogenic actions. These data support the contention that 5-HT1A receptor activation greatly reduces or prevents the cataleptogenic potential of novel antipsychotics. They also emphasize that interactions at 5-HT1A and D2 receptors, and the nature of effects (antagonism or partial agonism) at the latter has a profound influence on pharmacological activities, and is likely to affect therapeutic profiles.

  9. Improved efficacy of fluoxetine in increasing hippocampal 5-hydroxytryptamine outflow in 5-HT(1B) receptor knock-out mice.

    PubMed

    Malagié, Isabelle; David, Denis J; Jolliet, Pascale; Hen, René; Bourin, Michel; Gardier, Alain M

    2002-05-17

    To test for the contribution of the 5-HT(1B) receptor subtype in mediating the effects of fluoxetine, a selective serotonin reuptake inhibitor (SSRI), we used intracerebral in vivo microdialysis in awake, freely moving 5-HT(1B) receptor knock-out mice. We show that a single systemic administration of fluoxetine (1, 5 or 10 mg/kg, i.p.) increased extracellular serotonin levels [5-HT](ext) in the ventral hippocampus and frontal cortex of wild-type and mutant mice. However, in the ventral hippocampus, fluoxetine, at the three doses studied, induced a larger increase in [5-HT](ext) in knock-out than in wild-type mice. In the frontal cortex, the effect of fluoxetine did not differ between the two genotypes. The region-dependent response to fluoxetine described here in mutants confirms data we recently reported for another SSRI, paroxetine. These data suggest that 5-HT(1B) autoreceptors limit the effects of selective serotonin reuptake inhibitors on dialysate 5-HT levels at serotonergic nerve terminals located mainly in the ventral hippocampus. Alternative mechanisms, e.g., changes in 5-HT transporter and/or 5-HT(1A) receptor density in 5-HT(1B) receptor knock-out mice could also explain these findings.

  10. N-acetylcysteine modulates hallucinogenic 5-HT(2A) receptor agonist-mediated responses: behavioral, molecular, and electrophysiological studies.

    PubMed

    Lee, Mei-Yi; Chiang, Chun-Cheng; Chiu, Hong-Yi; Chan, Ming-Huan; Chen, Hwei-Hsien

    2014-06-01

    N-acetylcysteine (NAC) has been reported to reverse the psychotomimetic effects in the rodent phencyclidine model of psychosis and shown beneficial effects in treating patients with schizophrenia. The effect of NAC has been associated with facilitating the activity of cystine-glutamate antiporters on glial cells concomitant with the release of non-vesicular glutamate, which mainly stimulates the presynaptic metabotropic glutamate receptor subtype 2 receptors (mGluR2). Recent evidence demonstrated that functional interactions between serotonin 5-HT2A receptor (5-HT(2A)R) and mGluR2 are responsible to unique cellular responses when targeted by hallucinogenic drugs. The present study determined the effects of NAC on hallucinogenic 5-HT(2A)R agonist (±)1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI)-elicited behavioral and molecular responses in mice and DOI-evoked field potentials in the mouse cortical slices. NAC significantly attenuated DOI-induced head twitch response and expression of c-Fos and Egr-2 in the infralimbic and motor cortex and suppressed the increase in the frequency of excitatory field potentials elicited by DOI in the medial prefrontal cortex. In addition, the cystine-glutamate antiporter inhibitor (S)-4-carboxyphenylglycine (CPG) and the mGluR2 antagonist LY341495 reversed the suppressing effects of NAC on DOI-induced head twitch and molecular responses and increased frequency of excitatory field potentials, supporting that NAC attenuates the 5-HT(2A)R-mediated hallucinogenic effects via increased activity of cystine-glutamate antiporter followed by activation of mGluR2 receptors. These findings implicate NAC as a potential therapeutic agent for hallucinations and psychosis associated with hallucinogen use and schizophrenia.

  11. The Role of 5-HT1A Receptors in Long-Term Adaptation of Newborn Rats to Hypoxia.

    PubMed

    Mikhailenko, V A; Butkevich, I P

    2016-08-01

    We studied the effects of neonatal hypoxia on adaptive behavior of rats during prepubertal and pubertal periods in the control and after repeated injections of 5-HT1A receptor agonist buspirone. Hypoxia enhanced the inflammatory nociceptive response and exacerbated the depressive-like behavior. Repeated injections of buspirone starting from the neonatal period produced a long-term normalizing effect on the inflammatory nociceptive response and psychoemotional behavior disturbed by hypoxia. The protective effect of buspirone can result from strengthening of the adaptive potencies of the serotoninergic system via activation of 5-HT1A receptors that up-regulate secretion of trophic factor S100β under conditions of serotonin deficiency typical of rats exposed to neonatal hypoxia. Buspirone promotes recovery of the afferent and efferent connections of the raphe nuclei with the prefrontal cortex and spinal cord involved in integration of the anti-nociceptive and psychoemotional systems. PMID:27591870

  12. Serotonin (5-HT3) receptor antagonists for the reduction of symptoms of low anterior resection syndrome

    PubMed Central

    Itagaki, Ryohei; Koda, Keiji; Yamazaki, Masato; Shuto, Kiyohiko; Kosugi, Chihiro; Hirano, Atsushi; Arimitsu, Hidehito; Shiragami, Risa; Yoshimura, Yukino; Suzuki, Masato

    2014-01-01

    Purpose Serotonin (5-hydroxytryptamine [5-HT])3 receptor antagonists are effective for the treatment of diarrhea-predominant irritable bowel syndrome (IBS-D), in which exaggerated intestinal/colonic hypermotility is often observed. Recent studies have suggested that the motility disorder, especially spastic hypermotility, seen in the neorectum following sphincter-preserving operations for rectal cancer may be the basis of the postoperative defecatory malfunction seen in these patients. We investigated the efficacy of 5-HT3 receptor antagonists in patients suffering from severe low anterior resection syndrome. Patients and methods A total of 25 male patients with complaints of uncontrollable urgency or fecal incontinence following sphincter-preserving operations were enrolled in this study. Defecatory status, assessed on the basis of incontinence score (0–20), urgency grade (0–3), and number of toilet visits per day, was evaluated using a questionnaire before and 1 month after the administration of the 5-HT3 antagonist ramosetron. Results All the parameters assessed improved significantly after taking ramosetron for 1 month. The effect was more prominent in cases whose anastomotic line was lower, ie, inside the anal canal. Defecatory function was better in patients who commenced ramosetron therapy within 6 months postoperatively, as compared to those who were not prescribed ramosetron for more than 7 months postoperatively. Conclusion These results suggest that 5-HT3 antagonists are effective for the treatment of low anterior resection syndrome, as in diarrhea-predominant irritable bowel syndrome. The improvement in symptoms is not merely time dependent, but it is related to treatment with 5-HT3 antagonists. PMID:24648748