Science.gov

Sample records for 5-ht1a receptor stimulation

  1. Stimulation of 5-HT1A receptors in the dorsal hippocampus and inhibition of limbic seizures induced by kainic acid in rats.

    PubMed Central

    Gariboldi, M.; Tutka, P.; Samanin, R.; Vezzani, A.

    1996-01-01

    1. We studied whether the stimulation of 5-HT1A receptors by 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT), a specific 5-HT1A receptor agonist, reduced electroencephalographic (EEG) seizures induced by intrahippocampal injection of 0.04 microgram in 0.5 microliter of the glutamate analogue kainic acid in freely-moving rats. 2. Pretreatment with 8-OH-DPAT 15 min earlier at the same site as kainic acid injection, caused a dose-dependent decrease of kainic acid-induced seizure activity. One and 10 micrograms significantly reduced the total time spent in seizures by 72% on average and the total number of seizures by 58% (P < 0.01) and 43% (P < 0.05) respectively. The latency to onset of the first seizure was increased 2.8 times (P < 0.01) only after 1 microgram 8-OH-DPAT; 0.1 microgram was ineffective on all seizure parameters. 3. Systemic administration of 25, 100 and 1000 micrograms kg-1 8-OH-DPAT significantly reduced the total number of seizures and the total time in seizures induced by intrahippocampal kainic acid by 52% and 74% on average. The latency to onset of the first seizure was delayed 1.8 times by 100 and 1000 micrograms kg-1 (P < 0.05). 4. The anticonvulsant action of 8-OH-DPAT given intrahippocampally or systemically was significantly blocked by 5 micrograms, but not 1 microgram WAY 100635, a selective 5-HT1A receptor antagonist, administered in the hippocampus before the agonist. 5. These results indicate that postsynaptic 5-HT1A receptors in the hippocampus mediate the anticonvulsant action of 8-OH-DPAT and that their stimulation has an inhibitory role in the generation of limbic seizures. PMID:8922726

  2. Autoradiography of serotonin 5-HT1A receptor-activated G proteins in guinea pig brain sections by agonist-stimulated [35S]GTPgammaS binding.

    PubMed

    Dupuis, D S; Palmier, C; Colpaert, F C; Pauwels, P J

    1998-03-01

    G protein activation mediated by serotonin 5-HT1A and 5-HT(1B/D) receptors in guinea pig brain was investigated by using quantitative autoradiography of agonist-stimulated [35S]GTPgammaS binding to brain sections. [35S]GTPgammaS binding was stimulated by the mixed 5-HT1A/5-HT(1B/D) agonist L694247 in brain structures enriched in 5-HT1A binding sites, i.e., hippocampus (+140 +/- 14%), dorsal raphe (+70 +/- 8%), lateral septum (+52 +/- 12%), cingulate (+36 +/- 8%), and entorhinal cortex (+34 +/- 5%). L694247 caused little or no stimulation of [35S]GTPgammaS binding in brain regions with high densities of 5-HT(1B/D) binding sites (e.g., substantia nigra, striatum, central gray, and dorsal subiculum). The [35S]GTPgammaS binding response was antagonized by WAY100635 (10 microM) and methiothepin (10 microM). In contrast, the 5-HT1B inverse agonist SB224289 (10 microM) did not affect the L694247-mediated [35S]GTPgammaS binding response, and the mixed 5-HT(1B/D) antagonist GR127935 (10 microM) yielded a partial blockade. The distribution pattern of the [35S]GTPgammaS binding response and the antagonist profile suggest the L694247-mediated response in guinea pig brain to be mediated by 5-HT1A receptors. In addition to L694247, 8-hydroxy-2-(di-n-propylamino)tetralin, and flesinoxan also stimulated [35S]GTPgammaS binding; their maximal responses varied between 46 and 52% compared with L694247, irrespective of the brain structure being considered. Sumatriptan, rizatriptan, and zolmitriptan (10 microM) stimulated [35S]GTPgammaS binding in the hippocampus by 20-50%. Naratriptan, CP122638, and dihydroergotamine stimulated [35S]GTPgammaS binding to a similar level as L694247 in hippocampus, lateral septum, and dorsal raphe. It appears that under the present experimental conditions, G protein activation through 5-HT1A but not 5-HT(1B/D) receptors can be measured in guinea pig brain sections. PMID:9489749

  3. The 5-HT1A receptor in Major Depressive Disorder.

    PubMed

    Kaufman, Joshua; DeLorenzo, Christine; Choudhury, Sunia; Parsey, Ramin V

    2016-03-01

    Major Depressive Disorder (MDD) is a highly prevalent psychiatric diagnosis that is associated with a high degree of morbidity and mortality. This debilitating disorder is currently one of the leading causes of disability nationwide and is predicted to be the leading cause of disease burden by the year 2030. A large body of previous research has theorized that serotonergic dysfunction, specifically of the serotonin (5-HT) 1A receptor, plays a key role in the development of MDD. The purpose of this review is to describe the evolution of our current understanding of the serotonin 1A (5-HT1A) receptor and its role in the pathophysiology MDD through the discussion of animal, post-mortem, positron emission tomography (PET), pharmacologic and genetic studies. PMID:26851834

  4. Differential interactions of dimethyltryptamine (DMT) with 5-HT1A and 5-HT2 receptors.

    PubMed

    Deliganis, A V; Pierce, P A; Peroutka, S J

    1991-06-01

    The interactions of the indolealkylamine N,N-dimethyltryptamine (DMT) with 5-hydroxytryptamine1A (5-HT1A) and 5-HT2 receptors in rat brain were analyzed using radioligand binding techniques and biochemical functional assays. The affinity of DMT for 5-HT1A sites labeled by [3H]-8-hydroxy-2-(di-n-propylamino)tetralin ([3H]-8-OH-DPAT) was decreased in the presence of 10(-4) M GTP, suggesting agonist activity of DMT at this receptor. Adenylate cyclase studies in rat hippocampi showed that DMT inhibited forskolin-stimulated cyclase activity, a 5-HT1A agonist effect. DMT displayed full agonist activity with an EC50 of 4 x 10(-6) M in the cyclase assay. In contrast to the agonist actions of DMT at 5-HT1A receptors, DMT appeared to have antagonistic properties at 5-HT2 receptors. The ability of DMT to compete for [3H]-ketanserin-labeled 5-HT2 receptors was not affected by the presence of 10(-4) M GTP, suggesting antagonist activity of DMT at 5-HT2 receptors. In addition, DMT antagonized 5-HT2-receptor-mediated phosphatidylinositol (PI) turnover in rat cortex at concentrations above 10(-7) M, with 70% of the 5-HT-induced PI response inhibited at 10(-4) M DMT. Micromolar concentrations of DMT produced a slight PI stimulation that was not blocked by the 5-HT2 antagonist ketanserin. These studies suggest that DMT has opposing actions on 5-HT receptor subtypes, displaying agonist activity at 5-HT1A receptors and antagonist activity at 5-HT2 receptors. PMID:1828347

  5. Yokukansan Increases 5-HT1A Receptors in the Prefrontal Cortex and Enhances 5-HT1A Receptor Agonist-Induced Behavioral Responses in Socially Isolated Mice

    PubMed Central

    Ueki, Toshiyuki; Mizoguchi, Kazushige; Yamaguchi, Takuji; Nishi, Akinori; Ikarashi, Yasushi; Hattori, Tomohisa; Kase, Yoshio

    2015-01-01

    The traditional Japanese medicine yokukansan has an anxiolytic effect, which occurs after repeated administration. In this study, to investigate the underlying mechanisms, we examined the effects of repeated yokukansan administration on serotonin 1A (5-HT1A) receptor density and affinity and its expression at both mRNA and protein levels in the prefrontal cortex (PFC) of socially isolated mice. Moreover, we examined the effects of yokukansan on a 5-HT1A receptor-mediated behavioral response. Male mice were subjected to social isolation stress for 6 weeks and simultaneously treated with yokukansan. Thereafter, the density and affinity of 5-HT1A receptors were analyzed by a receptor-binding assay. Levels of 5-HT1A receptor protein and mRNA were also measured. Furthermore, (±)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT; a 5-HT1A receptor agonist) was injected intraperitoneally, and rearing behavior was examined. Social isolation stress alone did not affect 5-HT1A receptor density or affinity. However, yokukansan significantly increased receptor density and decreased affinity concomitant with unchanged protein and mRNA levels. Yokukansan also enhanced the 8-OH-DPAT-induced decrease in rearing behavior. These results suggest that yokukansan increases 5-HT1A receptors in the PFC of socially isolated mice and enhances their function, which might underlie its anxiolytic effects. PMID:26681968

  6. Linoleic acid derivative DCP-LA ameliorates stress-induced depression-related behavior by promoting cell surface 5-HT1A receptor translocation, stimulating serotonin release, and inactivating GSK-3β.

    PubMed

    Kanno, Takeshi; Tanaka, Akito; Nishizaki, Tomoyuki

    2015-04-01

    Impairment of serotonergic neurotransmission is the major factor responsible for depression and glycogen synthase kinase 3β (GSK-3β) participates in serotonergic transmission-mediated signaling networks relevant to mental illnesses. In the forced-swim test to assess depression-like behavior, the immobility time for mice with restraint stress was significantly longer than that for nonstressed control mice. Postsynaptic cell surface localization of 5-HT1A receptor, but not 5-HT2A receptor, in the hypothalamus for mice with restraint stress was significantly reduced as compared with that for control mice, which highly correlated to prolonged immobility time, i.e., depression-like behavior. The linoleic acid derivative 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA) restored restraint stress-induced reduction of cell surface 5-HT1A receptor and improved depression-like behavior in mice with restraint stress. Moreover, DCP-LA stimulated serotonin release from hypothalamic slices and cancelled restraint stress-induced reduction of GSK-3β phosphorylation at Ser9. Taken together, the results of the present study indicate that DCP-LA could ameliorate depression-like behavior by promoting translocation of 5-HT1A receptor to the plasma membrane on postsynaptic cells, stimulating serotonin release, and inactivating GSK-3β. PMID:24788685

  7. Serotonin 5-HT1A receptors as targets for agents to treat psychiatric disorders: rationale and current status of research.

    PubMed

    Celada, Pau; Bortolozzi, Analía; Artigas, Francesc

    2013-09-01

    postsynaptic 5-HT1A-Rs in MDD and anxiety. In agreement with pharmacological studies, presynaptic and postsynaptic 5-HT1A-R activation appears necessary for anxiolytic and antidepressant effects, respectively, yet, neurodevelopmental roles for 5-HT1A-Rs are also involved. Likewise, the use of small interference RNA has enabled the showing of robust antidepressant-like effects in mice after selective knock-down of 5-HT1A autoreceptors. Postsynaptic 5-HT1A-Rs in the prefrontal cortex (PFC) also appear important for the superior clinical effects of clozapine and other second-generation (atypical) antipsychotic drugs in the treatment of schizophrenia and related psychotic disorders. Despite showing a moderate in vitro affinity for 5-HT1A-Rs in binding assays, clozapine displays functional agonist properties at this receptor type in vivo. The stimulation of 5-HT1A-Rs in the PFC leads to the distal activation of the mesocortical pathway and to an increased dopamine release in PFC, an effect likely involved in the clinical actions of clozapine in negative symptoms and cognitive deficits in schizophrenia. The anxiolytic/antidepressant properties of 5-HT1A-R agonists in preclinical tests raised expectations enormously. However, these agents have achieved little clinical success, possibly due to their partial agonist character at postsynaptic 5-HT1A-Rs, together with full agonist properties at presynaptic 5-HT1A autoreceptors, as well as their gastrointestinal side effects. The partial 5-HT1A-R agonists buspirone, gepirone, and tandospirone are marketed as anxiolytic drugs, and buspirone is also used as an augmentation strategy in MDD. The development of new 5-HT1A-R agonists with selectivity for postsynaptic 5-HT1A-Rs may open new perspectives in the field. PMID:23757185

  8. Medial hypothalamic 5-hydroxytryptamine (5-HT)1A receptors regulate neuroendocrine responses to stress and exploratory locomotor activity: application of recombinant adenovirus containing 5-HT1A sequences.

    PubMed

    Li, Qian; Holmes, Andrew; Ma, Li; Van de Kar, Louis D; Garcia, Francisca; Murphy, Dennis L

    2004-12-01

    Our previous studies found that serotonin transporter (SERT) knock-out mice showed increased sensitivity to minor stress and increased anxiety-like behavior but reduced locomotor activity. These mice also showed decreased density of 5-hydroxytryptamine (5-HT1A) receptors in the hypothalamus, amygdala, and dorsal raphe. To evaluate the contribution of hypothalamic 5-HT1A receptors to these phenotypes of SERT knock-out mice, two studies were conducted. Recombinant adenoviruses containing 5-HT1A sense and antisense sequences (Ad-1AP-sense and Ad-1AP-antisense) were used to manipulate 5-HT1A receptors in the hypothalamus. The expression of the 5-HT1A genes is controlled by the 5-HT1A promoter, so that they are only expressed in 5-HT1A receptor-containing cells. (1) Injection of Ad-1AP-sense into the hypothalamus of SERT knock-out mice restored 5-HT1A receptors in the medial hypothalamus; this effect was accompanied by elimination of the exaggerated adrenocorticotropin responses to a saline injection (minor stress) and reduced locomotor activity but not by a change in increased exploratory anxiety-like behavior. (2) To further confirm the observation in SERT-/- mice, Ad-1AP-antisense was injected into the hypothalamus of normal mice. The density and the function of 5-HT1A receptors in the medial hypothalamus were significantly reduced in Ad-1AP-antisense-treated mice. Compared with the control group (injected with Ad-track), Ad-1A-antisense-treated mice showed a significant reduction in locomotor activity, but again no changes in exploratory anxiety-like behaviors, tested by elevated plus-maze and open-field tests. Thus, the present results demonstrate that medial hypothalamic 5-HT1A receptors regulate stress responses and locomotor activity but may not regulate exploratory anxiety-like behaviors. PMID:15574737

  9. Hippocampal 5-HT1A Receptor and Spatial Learning and Memory

    PubMed Central

    Glikmann-Johnston, Yifat; Saling, Michael M.; Reutens, David C.; Stout, Julie C.

    2015-01-01

    Spatial cognition is fundamental for survival in the topographically complex environments inhabited by humans and other animals. The hippocampus, which has a central role in spatial cognition, is characterized by high concentration of serotonin (5-hydroxytryptamine; 5-HT) receptor binding sites, particularly of the 1A receptor (5-HT1A) subtype. This review highlights converging evidence for the role of hippocampal 5-HT1A receptors in spatial learning and memory. We consider studies showing that activation or blockade of the 5-HT1A receptors using agonists or antagonists, respectively, lead to changes in spatial learning and memory. For example, pharmacological manipulation to induce 5-HT release, or to block 5-HT uptake, have indicated that increased extracellular 5-HT concentrations maintain or improve memory performance. In contrast, reduced levels of 5-HT have been shown to impair spatial memory. Furthermore, the lack of 5-HT1A receptor subtype in single gene knockout mice is specifically associated with spatial memory impairments. These findings, along with evidence from recent cognitive imaging studies using positron emission tomography (PET) with 5-HT1A receptor ligands, and studies of individual genetic variance in 5-HT1A receptor availability, strongly suggests that 5-HT, mediated by the 5-HT1A receptor subtype, plays a key role in spatial learning and memory. PMID:26696889

  10. GPER1 stimulation alters posttranslational modification of RGSz1 and induces desensitization of 5-HT1A receptor signaling in the rat hypothalamus

    PubMed Central

    McAllister, Carrie E; Mi, Zhen; Mure, Minae; Li, Qian; Muma, Nancy A

    2014-01-01

    Hyperactivity of the hypothalamic-pituitary-adrenal axis is a consistent biological characteristic of depression and response normalization coincides with clinical responsiveness to antidepressant medications. Desensitization of serotonin 1A receptor (5-HT1AR) signaling in the hypothalamic paraventricular nucleus (PVN) follows selective serotonin reuptake inhibitor (SSRI) antidepressant treatment and contributes to the antidepressant response. Estradiol alone produces a partial desensitization of 5-HT1AR signaling, and synergizes with SSRIs to result in a complete and more rapid desensitization than with SSRIs alone as measured by a decrease in the oxytocin and adrenocorticotrophic hormone(ACTH) responses to 5-HT1AR stimulation. G protein-coupled estrogen receptor1 (GPER1) is necessary for estradiol-induced desensitization of 5-HT1AR signaling, although the underlying mechanisms are still unclear. We now find that stimulation of GPER1 with the selective agonist G-1 and non-selective stimulation of estrogen receptors dramatically alter isoform expression of a key component of the 5-HT1AR signaling pathway, RGSz1, a GTPase activating protein selective for Gαz, the Gα subunit necessary for 5-HT1AR-mediated hormone release. RGSz1 isoforms are differentially glycosylated, SUMOylated, and phosphorylated, and differentially distributed in subcellular organelles. High molecular weight RGSz1 is SUMOylated and glycosylated, localized to the detergent-resistant microdomain (DRM) of the cell membrane, and increased by estradiol and G-1 treatment. Because activated Gαz also localizes to the DRM, increased DRM-localized RGSz1 by estradiol and G-1could reduce Gαz activity, functionally uncoupling 5-HT1AR signaling. Peripheral G-1 treatment produced partial reduction in oxytocin and ACTH responses to 5-HT1AR-stimulation similar to direct injections into the PVN. Together, these results identify GPER1 and RGSz1 as novel targets for the treatment of depression. PMID:25402859

  11. Drug-induced defaecation in rats: role of central 5-HT1A receptors.

    PubMed Central

    Croci, T.; Landi, M.; Bianchetti, A.; Manara, L.

    1995-01-01

    1. We investigated the acute effects of 5-hydroxytryptamine (5-HT), and of the 5-HT1A receptor agonists, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), buspirone and SR 57746A, on rat faecal pellet output and water content. 2. 5-HT, 8-OH-DPAT, buspirone and SR 57746A, a new selective 5-HT1A receptor agonist, displaced [3H]-8-OH-DPAT from specific binding sites in rat hippocampus membranes (Ki, nM; 1.8, 1.2, 15, 3.1 respectively) and stimulated rat defaecation dose-dependently. SR 57746A and buspirone induced 1 g dry weight of faeces at 1.3 and 6.1 mg kg-1, p.o. (AD1) respectively. 8-OH-DPAT and 5-HT stimulated defaecation after s.c. injection (AD1, 0.07 and 7.5 mg kg-1, respectively). All these agents increased faecal water content. 3. The putative 5-HT1A receptor antagonist, pindolol, injected s.c. or i.c.v., significantly reduced the defaecation induced by systemically administered 8-OH-DPAT, buspirone or SR 57746A, but not 5-HT. 4. Pretreatment with p-chlorophenylalanine (i.p.) or 5,7-dihydroxytryptamine (i.c.v.), according to protocols designed to cause either generalized or CNS-limited 5-HT depletion respectively, also reduced the defaecation induced by buspirone or SR 57746A. 5. No specific 5-HT1A binding sites could be labelled by incubating rat colon membranes with [3H]-8-OH-DPAT, and in vitro preparations of rat colon segments showed no response to 8-OH-DPAT or SR 57746A up to 5 microM. 6. After eight days' repeated daily treatment, complete tolerance developed to the stimulant effects of SR 57746A and buspirone on faecal water content, but not on faecal pellet output.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7647978

  12. 5-HT1A receptors in mood and anxiety: recent insights into autoreceptor versus heteroreceptor function

    PubMed Central

    Garcia-Garcia, Alvaro; Tancredi, Adrian Newman-; Leonardo, E. David

    2014-01-01

    Rationale Serotonin (5-HT) neurotransmission is intimately linked to anxiety and depression and a diverse body of evidence supports the involvement of the main inhibitory serotonergic receptor, the serotonin-1A (5-HT1A) subtype, in both disorders. Objectives In this review, we examine the function of 5-HT1A receptor sub-populations and re-interpret our understanding of their role in mental illness in light of new data, separating both spatial (autoreceptor vs heteroreceptor) and the temporal (developmental vs adult) roles of the endogenous 5-HT1A receptors, emphasizing their distinct actions in mediating anxiety and depression-like behaviors. Results It is difficult to unambiguously distinguish the effects of different populations of the 5-HT1A receptors with traditional genetic animal models and pharmacological approaches. However, with the advent of novel genetic systems and subpopulation-selective pharmacological agents, direct evidence for distinct roles of these populations in governing emotion related behavior are emerging. Conclusions There is strong and growing evidence for a functional dissociation between auto and heteroreceptor populations in mediating anxiety and depressive-like behaviors respectively. Furthermore, while it is well established that 5-HT1A receptors act developmentally to establish normal anxiety-like behaviors, the developmental role of 5-HT1A heteroreceptors is less clear, and the specific mechanisms underlying the developmental role of each subpopulation are likely to be key elements determining mood control in adult subjects. PMID:24337875

  13. Compositions and methods related to serotonin 5-HT1A receptors

    DOEpatents

    Mukherjee, Jogeshwar; Saigal, Neil

    2010-06-08

    Contemplated substituted arylpiperazinyl compounds, and most preferably 18F-Mefway, exhibit desirable in vitro and in vivo binding characteristics to the 5-HT1A receptor. Among other advantageous parameters, contemplated compounds retain high binding affinity, display optimal lipophilicity, and are radiolabeled efficiently with 18F-fluorine in a single step. Still further, contemplated compounds exhibit high target to non-target ratios in receptor-rich regions both in vitro and in vivo, and selected compounds can be effectively and sensitively displaced by serotonin, thus providing a quantitative tool for measuring 5-HT1A receptors and serotonin concentration changes in the living brain.

  14. Compositions and methods related to serotonin 5-HT1A receptors

    DOEpatents

    Mukherjee, Jogeshwar; Saigal, Neil; Saigal, legal representative, Harsh

    2012-09-25

    Contemplated substituted arylpiperazinyl compounds, and most preferably 18F-Mefway, exhibit desirable in vitro and in vivo binding characteristics to the 5-HT1A receptor. Among other advantageous parameters, contemplated compounds retain high binding affinity, display optimal lipophilicity, and are radiolabeled efficiently with 18F-fluorine in a single step. Still further, contemplated compounds exhibit high target to non-target ratios in receptor-rich regions both in vitro and in vivo, and selected compounds can be effectively and sensitively displaced by serotonin, thus providing a quantitative tool for measuring 5-HT1A receptors and serotonin concentration changes in the living brain.

  15. Anxiolytic effects of prelimbic 5-HT(1A) receptor activation in the hemiparkinsonian rat.

    PubMed

    Hui, Yan Ping; Wang, Tao; Han, Ling Na; Li, Li Bo; Sun, Yi Na; Liu, Jian; Qiao, Hong Fei; Zhang, Qiao Jun

    2015-01-15

    This study sought to assess whether unilateral lesions of the medial forebrain bundle (MFB) using 6-hydroxydopamine in rats are able to induce anxiety-like behaviors, the role of serotonin-1A (5-HT1A) receptors of the prelimbic (PrL) sub-region of ventral medial prefrontal cortex in the regulation of these behaviors, the density of 5-HT neurons in the dorsal raphe nucleus (DRN) and co-localization of 5-HT1A receptor and neuronal glutamate transporter EAAC1-immunoreactive (EAAC1-ir) cells in the PrL. Unilaterally lesioning the MFB induced anxiety-like behaviors as measured by the open-field and elevated plus maze tests when compared to sham-operated rats. Intra-PrL injection of 5-HT1A receptor agonist 8-OH-DPAT (50, 100, and 500 ng/rat) decreased the percentage of time spent in the center of the open-field and percentages of open arm entries and open arm time in sham-operated rats, indicating the induction of anxiogenic responses, and administration of 5-HT1A receptor antagonist WAY-100635 (60, 120, and 240 ng/rat) showed anxiolytic effects. However, 8-OH-DPAT, at the same doses, increased the percentage of time spent in the center of the open-field and percentages of open arm entries and open arm time in the lesioned rats, indicating the induction of anxiolytic effects, and WAY-100635 produced anxiogenic responses. Unilateral MFB lesion decreased the density of 5-HT neurons in the DRN, and percentage of EAAC1-ir cells expressing 5-HT1A receptors in the PrL. These results suggest that unilateral lesions of the MFB in rats may induce anxiety-like behaviors, and activation of 5-HT1A receptors in the PrL has anxiolytic effects in the rat model of Parkinson's disease. PMID:24906197

  16. Role of 5-HT(1A) receptors in fluoxetine-induced lordosis inhibition.

    PubMed

    Guptarak, Jutatip; Sarkar, Jhimly; Hiegel, Cindy; Uphouse, Lynda

    2010-07-01

    The selective serotonin reuptake inhibitor (SSRI), fluoxetine (Prozac(R)), is an effective antidepressant that is also prescribed for other disorders (e.g. anorexia, bulimia, and premenstrual dysphoria) that are prevalent in females. However, fluoxetine also produces sexual side effects that may lead patients to discontinue treatment. The current studies were designed to evaluate several predictions arising from the hypothesis that serotonin 1A (5-HT(1A)) receptors contribute to fluoxetine-induced sexual dysfunction. In rodent models, 5-HT(1A) receptors are potent negative modulators of female rat sexual behavior. Three distinct experiments were designed to evaluate the contribution of 5-HT(1A) receptors to the effects of fluoxetine. In the first experiment, the ability of the 5-HT(1A) receptor antagonist, N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide (WAY100635), to prevent fluoxetine-induced lordosis inhibition was examined. In the second experiment, the effects of prior treatment with fluoxetine on the lordosis inhibitory effect of the 5-HT(1A) receptor agonist, (+/-)-8-hydroxy-2-(dipropylamino)tetralin (8-OH-DPAT), were studied. In the third experiment, the ability of progesterone to reduce the acute response to fluoxetine was evaluated. WAY100635 attenuated the effect of fluoxetine; prior treatment with fluoxetine decreased 8-OH-DPAT's potency in reducing lordosis behavior; and progesterone shifted fluoxetine's dose-response curve to the right. These findings are consistent with the hypothesis that 5-HT(1A) receptors contribute to fluoxetine-induced sexual side effects. PMID:20223238

  17. Design and synthesis of dual 5-HT1A and 5-HT7 receptor ligands.

    PubMed

    Ofori, Edward; Zhu, Xue Y; Etukala, Jagan R; Peprah, Kwakye; Jordan, Kamanski R; Adkins, Adia A; Bricker, Barbara A; Kang, Hye J; Huang, Xi-Ping; Roth, Bryan L; Ablordeppey, Seth Y

    2016-08-15

    5-HT1A and 5-HT7 receptors have been at the center of discussions recently due in part to their major role in the etiology of major central nervous system diseases such as depression, sleep disorders, and schizophrenia. As part of our search to identify dual targeting ligands for these receptors, we have carried out a systematic modification of a selective 5HT7 receptor ligand culminating in the identification of several dual 5-HT1A and 5-HT7 receptor ligands. Compound 16, a butyrophenone derivative of tetrahydroisoquinoline (THIQ), was identified as the most potent agent with low nanomolar binding affinities to both receptors. Interestingly, compound 16 also displayed moderate affinity to other clinically relevant dopamine receptors. Thus, it is anticipated that compound 16 may serve as a lead for further exploitation in our quest to identify new ligands with the potential to treat diseases of CNS origin. PMID:27312422

  18. 5-HT-1A receptor-mediated modulation of medullary expiratory neurones in the cat.

    PubMed Central

    Lalley, P M; Bischoff, A M; Richter, D W

    1994-01-01

    The involvement of the 5-HT-1A receptor in serotoninergic responses of stage 2 expiratory (E-2) neurones was investigated in pentobarbitone-anaesthetized, mechanically ventilated cats. The specific agonist of the 5-HT-1A receptor, 8-hydroxy-diproplaminotetralin (8-OH-DPAT), administered systemically or by ionophoresis directly on to the neurones, had a clear depressant effect. Administration of 8-OH-DPAT at doses of 10-50 micrograms kg-1 (I.V.) increased the membrane hyperpolarizations of E-2 neurones during the inspiratory and postinspiratory phases, and shortened their duration of activity in association with shortening of phrenic nerve activity. Discharges of E-2 neurones were also less intense. At doses of 50-90 micrograms kg-1, 8-OH-DPAT reduced or abolished inspiratory hyperpolarizations, and reduced expiratory depolarizations of membrane potential and discharge in parallel with inhibition of phrenic nerve discharges. The effects of the larger doses were reversed by I.V. injection of NAN-190, an antagonist at the 5-HT-1A receptor. Dose-dependent effects on the membrane potential and discharge of E-2 neurones, but not on phrenic nerve activity, were also seen by ionophoretic administration of 8-OH-DPAT on to E-2 neurones. At low currents, ejection of 8-OH-DPAT hyperpolarized the neurones without affecting the duration of inspiratory hyperpolarization and expiratory depolarization. This hyperpolarization depressed the intensity and the duration of expiratory discharges. Ejection with larger currents hyperpolarized the E-2 neurones further, and depressed expiratory depolarization leading to blockade of expiratory discharges. The effects on membrane potential were accompanied by decreased neuronal input resistance. This depressed the excitability of E-2 neurones as tested by discharge evoked by intracellular current injection. The amplitudes of action potentials decreased in parallel with the changes in input resistance. The effects were attributed to a

  19. Evidence for 5-HT1A receptor control of pineal melatonin concentrations in the rat.

    PubMed

    Nathan, P J; Burrows, G D; Norman, T R

    1998-08-01

    The effect of some serotonin agonists on day and night-time melatonin in the pineal gland was investigated in male rats. Dose dependent increases in nocturnal melatonin concentrations were observed for all serotonin agonists investigated. Statistically significant increases were observed only for D-fenfluramine (20 mg/kg) and the full 5-HT1A agonists S(+)-20499 (10 mg/kg, 20 mg/kg) and flesinoxan (20 mg/kg). Both paroxetine and D-fenfluramine dose dependently increased day-time pineal melatonin, but only for D-fenfluramine (20 mg/kg) was there a statistically significant increase. The data suggest that acute increases in synaptic serotonin concentrations can be used to manipulate day- or night-time melatonin. Data suggests an influence of the 5-HT1A receptor subtype in mediating nocturnal melatonin concentrations, perhaps through a functional coupling to beta1-adrenoceptors on the pineal gland. PMID:9716310

  20. PET imaging of the serotonin transporter and 5HT1A receptor in alcohol dependence

    PubMed Central

    Martinez, Diana; Slifstein, Mark; Gil, Roberto; Hwang, Dah-Ren; Huang, Yiyun; Perez, Audrey; Frankle, W. Gordon; Laruelle, Marc; Krystal, John; Abi-Dargham, Anissa

    2009-01-01

    Background Rodent models as well as studies in humans have suggested alterations in serotonin (5HT) innervation and transmission in early onset genetically determined or type II alcoholism. This study examines two indices of serotonergic transmission, 5HT transporter levels and 5-HT1A availability, in vivo, in type II alcoholism. This is the first report of combined tracers for pre and post-synaptic serotonergic transmission in the same alcoholic subjects and the first study of 5HT1A receptors in alcoholism. Method Fourteen alcohol dependent subjects were scanned (11 with both tracers, 1 with [11C]DASB only and two with [11C]WAY100635 only). Twelve healthy controls (HC) subjects were scanned with [11C]DASB and another 13 were scanned with [11C]WAY100635. Binding Potential (BPp, mL/cm3) and the specific to nonspecific partition coefficient (BPND, unitless) were derived for both tracers using 2 tissue compartment model and compared to HC across different brain regions. Relationships to severity of alcoholism were assessed. Results No significant differences were observed in regional BPp or BPND between patients and controls in any of the regions examined. No significant relationships were observed between regional 5HT transporter availability, 5-HT1A availability, and disease severity with the exception of a significant negative correlation between SERT and years of dependence in amygdala and insula. Conclusion This study did not find alterations in measures of 5-HT1A or 5HT transporter levels in patients with type II alcoholism. PMID:18962444

  1. Preclinical profile of the mixed 5-HT1A/5-HT2A receptor antagonist S 21,357.

    PubMed

    Griebel, G; Blanchard, D C; Rettori, M C; Guardiola-Lemaître, B; Blanchard, R J

    1996-06-01

    This study evaluated the pharmacological and behavioral effects of S 21,357, a drug with high affinity for both 5-HT1A and 5-HT2A receptors. The drug behaved as antagonist at both 5-HT1A autoreceptors and postsynaptic 5-HT1A receptors, as it prevented the inhibitory effect of lesopitron on the electrical discharge of the dorsal raphé nucleus (DRN) 5-HT neurons and the activity of forskolin-stimulated adenylate cyclase in hippocampal homogenates. In addition, S 21,357 (4 and 128 mg/kg, PO) inhibited 5-HTP-induced head-twitch responses in mice, indicating that it possesses 5-HT2A antagonistic properties. In a test battery designed to assess defensive behaviors of Swiss-Webster mice to the presence of, or situations associated with, a natural threat stimulus (i.e., rat), S 21,357 (0.12-2 mg/kg, IP) reduced contextual defense reactions after the rat was removed, risk assessment activities when the subject was chased, and finally, defensive attack behavior. These behavioral changes are consistent with fear/anxiety reduction. Furthermore, the drug strongly reduced flight reactions in response to the approaching rat. This last finding, taken together with recent results with panic-modulating drugs, suggest that S 21,357 may have potential efficacy against panic attack. Finally, our results suggest that compounds sharing high affinities for both 5-HT1A and 5-HT2A receptors may directly or synergistically increase the range of defensive behaviors affected. PMID:8743616

  2. Oleanolic acid acrylate elicits antidepressant-like effect mediated by 5-HT1A receptor

    PubMed Central

    Fajemiroye, James O.; Polepally, Prabhakar R.; Chaurasiya, Narayan D.; Tekwani, Babu L.; Zjawiony, Jordan K.; Costa, Elson A.

    2015-01-01

    The development of new drugs for the treatment of depression is strategic to achieving clinical needs of patients. This study evaluates antidepressant-like effect and neural mechanisms of four oleanolic acid derivatives i.e. acrylate (D1), methacrylate (D2), methyl fumarate (D3) and ethyl fumarate (D4). All derivatives were obtained by simple one-step esterification of oleanolic acid prior to pharmacological screening in the forced swimming (FS) and open field (OF) tests. Pharmacological tools like α-methyl-p-tyrosine (AMPT, catecholamine depletor), p-chlorophenylalanine (serotonin depletor), prazosin (PRAZ, selective α1-receptor antagonist), WAY-100635 (selective serotonin 5-HT1A receptor antagonist) as well as monoamine oxidase (MAO) and functional binding assays were conducted to investigate possible neural mechanisms. In the FS test, D1 showed the most promising antidepressant-like effect without eliciting locomotor incoordination. Unlike group of mice pretreated with AMPT 100 mg/kg, PCPA 100 mg/kg or PRAZ 1 mg/kg, the effect of D1 was attenuated by WAY-100635 0.3 mg/kg pretreatment. D1 demonstrated moderate inhibition of MAO-A (IC50 = 48.848 ± 1.935 μM), potency (pEC50 = 6.1 ± 0.1) and intrinsic activity (Emax = 26 ± 2.0%) on 5-HT1A receptor. In conclusion, our findings showed antidepressant-like effect of D1 and possible involvement of 5-HT1A receptor. PMID:26199018

  3. Asymmetric Clustering Index in a Case Study of 5-HT1A Receptor Ligands

    PubMed Central

    Śmieja, Marek; Warszycki, Dawid; Tabor, Jacek; Bojarski, Andrzej J.

    2014-01-01

    The automatic clustering of chemical compounds is an important branch of chemoinformatics. In this paper the Asymmetric Clustering Index (Aci) is proposed to assess how well an automatically created partition reflects the reference. The asymmetry allows for a distinction between the fixed reference and the numerically constructed partition. The introduced index is applied to evaluate the quality of hierarchical clustering procedures for 5-HT1A receptor ligands. We find that the most appropriate combination of parameters for the hierarchical clustering of compounds with a determined activity for this biological target is the Klekota Roth fingerprint combined with the complete linkage function and the Buser similarity metric. PMID:25019251

  4. Nicotine alters limbic function in adolescent rat by a 5-HT1A receptor mechanism.

    PubMed

    Dao, Jasmin M; McQuown, Susan C; Loughlin, Sandra E; Belluzzi, James D; Leslie, Frances M

    2011-06-01

    Epidemiological studies have shown that adolescent smoking is associated with health risk behaviors, including high-risk sexual activity and illicit drug use. Using rat as an animal model, we evaluated the behavioral and biochemical effects of a 4-day, low-dose nicotine pretreatment (60 μg/kg; intravenous) during adolescence and adulthood. Nicotine pretreatment significantly increased initial acquisition of cocaine self-administration, quinpirole-induced locomotor activity, and penile erection in adolescent rats, aged postnatal day (P)32. These effects were long lasting, remaining evident 10 days after the last nicotine treatment, and were observed when nicotine pretreatment was administered during early adolescence (P28-31), but not late adolescence (P38-41) or adulthood (P86-89). Neurochemical analyses of c-fos mRNA expression, and of monoamine transmitter and transporter levels, showed that forebrain limbic systems are continuing to develop during early adolescence, and that this maturation is critically altered by brief nicotine exposure. Nicotine selectively increased c-fos mRNA expression in the nucleus accumbens shell and basolateral amygdala in adolescent, but not adult animals, and altered serotonin markers in these regions as well as the prefrontal cortex. Nicotine enhancement of cocaine self-administration and quinpirole-induced locomotor activity was blocked by co-administration of WAY 100 635 (N-{2-[4-(2-methoxyphenyl)-1-piperazinyl] ethyl}-N-(2-pyridinyl)cyclohexanecarboxamide), a selective serotonin 1A (5-HT1A) receptor antagonist. Early adolescent pretreatment with the mixed autoreceptor/heteroceptor 5-HT1A receptor agonist, 8-OH-DPAT, but not the autoreceptor-selective agonist, S-15535, also enhanced quinpirole-induced locomotor activation. Nicotine enhancement of quinpirole-induced penile erection was not blocked by WAY 100 635 nor mimicked by 8-OH-DPAT. These findings indicate that early adolescent nicotine exposure uniquely alters limbic

  5. The phytocannabinoid, Δ9-tetrahydrocannabivarin, can act through 5-HT1A receptors to produce antipsychotic effects

    PubMed Central

    Cascio, Maria Grazia; Zamberletti, Erica; Marini, Pietro; Parolaro, Daniela; Pertwee, Roger G

    2015-01-01

    Background and Purpose This study aimed to address the questions of whether Δ9-tetrahydrocannabivarin (THCV) can (i) enhance activation of 5-HT1A receptors in vitro and (ii) induce any apparent 5-HT1A receptor-mediated antipsychotic effects in vivo. Experimental Approach In vitro studies investigated the effect of THCV on targeting by 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) of 5-HT1A receptors in membranes obtained from rat brainstem or human 5-HT1A CHO cells, using [35S]-GTPγS and 8-[3H]-OH-DPAT binding assays. In vivo studies investigated whether THCV induces signs of 5-HT1A receptor-mediated antipsychotic effects in rats. Key Results THCV (i) potently, albeit partially, displaced 8-[3H]-OH-DPAT from specific binding sites in rat brainstem membranes; (ii) at 100 nM, significantly enhanced 8-OH-DPAT-induced activation of receptors in these membranes; (iii) produced concentration-related increases in 8-[3H]-OH-DPAT binding to specific sites in membranes of human 5-HT1A receptor-transfected CHO cells; and (iv) at 100 nM, significantly enhanced 8-OH-DPAT-induced activation of these human 5-HT1A receptors. In phencyclidine-treated rats, THCV, like clozapine (i) reduced stereotyped behaviour; (ii) decreased time spent immobile in the forced swim test; and (iii) normalized hyperlocomotor activity, social behaviour and cognitive performance. Some of these effects were counteracted by the 5-HT1A receptor antagonist, WAY100635, or could be reproduced by the CB1 antagonist, AM251. Conclusions and Implications Our findings suggest that THCV can enhance 5-HT1A receptor activation, and that some of its apparent antipsychotic effects may depend on this enhancement. We conclude that THCV has therapeutic potential for ameliorating some of the negative, cognitive and positive symptoms of schizophrenia. PMID:25363799

  6. Serotonin decreases aggression via 5-HT1A receptors in the fighting fish Betta splendens.

    PubMed

    Clotfelter, Ethan D; O'Hare, Erin P; McNitt, Meredith M; Carpenter, Russ E; Summers, Cliff H

    2007-01-01

    The role of the monoamine neurotransmitter serotonin (5-HT) in the modulation of conspecific aggression in the fighting fish (Betta splendens) was investigated using pharmacological manipulations. We used a fish's response to its mirror image as our index of aggressive behavior. We also investigated the effects of some manipulations on monoamine levels in the B. splendens brain. Acute treatment with 5-HT and with the 5-HT1A receptor agonist 8-OH-DPAT both decreased aggressive behavior; however, treatment with the 5-HT1A receptor antagonist WAY-100635 did not increase aggression. Chronic treatment with the selective serotonin reuptake inhibitor fluoxetine caused no significant changes in aggressive behavior and a significant decline in 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) concentrations. Treatment with the serotonin synthesis inhibitor p-chlorophenylalanine resulted in no change in aggression, yet serotonergic activity decreased significantly. Finally, a diet supplemented with L-tryptophan (Trp), the precursor to 5-HT, showed no consistent effects on aggressive behavior or brain monoamine concentrations. These results suggest a complex role for serotonin in the expression of aggression in teleost fishes, and that B. splendens may be a useful model organism in pharmacological and toxicological studies. PMID:17553555

  7. Cannabidiol blocks long-lasting behavioral consequences of predator threat stress: possible involvement of 5HT1A receptors.

    PubMed

    Campos, Alline Cristina; Ferreira, Frederico Rogério; Guimarães, Francisco Silveira

    2012-11-01

    Posttraumatic stress disorder (PTSD) is an incapacitating syndrome that follows a traumatic experience. Predator exposure promotes long-lasting anxiogenic effect in rodents, an effect related to symptoms found in PTSD patients. Cannabidiol (CBD) is a non-psychotomimetic component of Cannabis sativa with anxiolytic effects. The present study investigated the anti-anxiety actions of CBD administration in a model of PTSD. Male Wistar rats exposed to a predator (cat) received, 1 h later, singled or repeated i.p. administration of vehicle or CBD. Seven days after the stress animals were submitted to the elevated plus maze. To investigate the involvement of 5HT1A receptors in CBD effects animals were pre-treated with WAY100635, a 5HT1A receptor antagonist. To explore possible neurobiological mechanisms involved in these effects, 5HT1A receptor mRNA and BDNF protein expression were measured in the hippocampus, frontal cortex, amygdaloid complex and dorsal periaqueductal gray. Repeated administration of CBD prevented long-lasting anxiogenic effects promoted by a single predator exposure. Pretreatment with WAY100635 attenuated CBD effects. Seven days after predator exposure 5HT1A mRNA expression was up regulated in the frontal cortex and hippocampus. CBD and paroxetine failed to prevent this effect. No change in BDNF expression was found. In conclusion, predator exposure promotes long-lasting up-regulation of 5HT1A receptor gene expression in the hippocampus and frontal cortex. Repeated CBD administration prevents the long-lasting anxiogenic effects observed after predator exposure probably by facilitating 5HT1A receptors neurotransmission. Our results suggest that CBD has beneficial potential for PTSD treatment and that 5HT1A receptors could be a therapeutic target in this disorder. PMID:22979992

  8. Characterization of the 5-HT1A receptor of the honeybee (Apis mellifera) and involvement of serotonin in phototactic behavior.

    PubMed

    Thamm, Markus; Balfanz, Sabine; Scheiner, Ricarda; Baumann, Arnd; Blenau, Wolfgang

    2010-07-01

    Serotonin plays a key role in modulating various physiological and behavioral processes in both protostomes and deuterostomes. The vast majority of serotonin receptors belong to the superfamily of G-protein-coupled receptors. We report the cloning of a cDNA from the honeybee (Am5-ht1A) sharing high similarity with members of the 5-HT(1) receptor class. Activation of Am5-HT(1A) by serotonin inhibited the production of cAMP in a dose-dependent manner (EC(50) = 16.9 nM). Am5-HT(1A) was highly expressed in brain regions known to be involved in visual information processing. Using in vivo pharmacology, we could demonstrate that Am5-HT(1A) receptor ligands had a strong impact on the phototactic behavior of individual bees. The data presented here mark the first comprehensive study-from gene to behavior-of a 5-HT(1A) receptor in the honeybee, paving the way for the eventual elucidation of additional roles of this receptor subtype in the physiology and behavior of this social insect. PMID:20349263

  9. Involvement of the 5-HT(1A) receptor in the anti-immobility effects of fluvoxamine in the forced swimming test and mouse strain differences in 5-HT(1A) receptor binding.

    PubMed

    Sugimoto, Yumi; Furutani, Sachiko; Kajiwara, Yoshinobu; Hirano, Kazufumi; Yamada, Shizuo; Tagawa, Noriko; Kobayashi, Yoshiharu; Hotta, Yoshihiro; Yamada, Jun

    2010-03-10

    We previously demonstrated the presence of strain differences in baseline immobility time and sensitivity to the selective serotonin reuptake inhibitor (SSRI) fluvoxamine in five strains of mice (ICR, ddY, C57BL, DBA/2 and BALB/c mice). Furthermore, variations in serotonin (5-HT) transporter binding in the brain were strongly related to strain differences in baseline immobility and sensitivity to fluvoxamine. In the present study, we examined the involvement of the 5-HT(1A) receptor in anti-immobility effects in DBA/2 mice, which show high sensitivity to fluvoxamine. The anti-immobility effects of fluvoxamine in DBA/2 mice were inhibited by the 5-HT(1A) receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexanecarboxamide (WAY 100635). However, the 5-HT(1B) receptor antagonist 3-[3-(dimethylamino)propyl]-4-hydroxy-N-[4-(4-pyridinyl)phenyl]benzamide (GR55562), the 5-HT(2) receptor antagonist 6-methyl-1-(methylethyl)-ergoline-8beta-carboxylic acid 2-hydroxy-1-methylpropyl ester (LY 53857), the 5-HT(3) receptor antagonist ondansetron and the 5-HT(4) receptor antagonist 4-amino-5-chloro-2-methoxy-benzoic acid 2-(diethylamino)ethyl ester (SDZ 205,557) did not influence the anti-immobility effects of fluvoxamine in DBA/2 mice. These results suggest that fluvoxamine-induced antidepressant-like effects in DBA/2 mice are mediated by the 5-HT(1A) receptor. We analyzed 5-HT(1A) receptor binding in the brains of five strains of mice. Strain differences in 5-HT(1A) receptor binding were observed. 5-HT(1A) receptor binding in brain was not correlated with baseline immobility time in the five strains of mice examined. These results suggest that, although the anti-immobility effects of fluvoxamine in DBA/2 mice are mediated by the 5-HT(1A) receptor, strain differences in 5-HT(1A) receptor binding are not related to variation in immobility time and responses to fluvoxamine. PMID:19958758

  10. Interaction of 5-HT1B/D ligands with recombinant h 5-HT1A receptors: intrinsic activity and modulation by G-protein activation state.

    PubMed

    Pauwels, P J; Palmier, C; Dupuis, D S; Colpaert, F C

    1998-05-01

    Many 5-HT1B/D receptor ligands have affinity for 5-HT1A receptors. In the present study, the intrinsic activity of a series of 5-HT1B/D ligands was investigated at human 5-HT1A (h 5-HT1A) receptors by measuring G-protein activation in recombinant C6-glial and HeLa membranes, using agonist-stimulated [35S]GTPgammaS binding. In these two membrane preparations, the density of h 5-HT1A receptors (i.e., 246 to 320 fmol mg(-1) protein) and of their G-proteins, and the receptor: G-protein density ratio (0.08 to 0.18) appeared to be similar. It was found that: (i) the maximal [35S]GTPgammaS binding responses induced by the 5-HT1B/D receptor ligands in the HeLa preparation at 30 microM GDP were comparable to that of the native agonist 5-HT; (ii) as compared to 5-HT (1.00), similar potencies but lower maximal responses were observed in the C6-glial preparation at 0.3 microM GDP for zolmitriptan (0.89), dihydroergotamine (0.81), rizatriptan (0.71), CP122638 (0.69), naratriptan (0.60) and sumatriptan (0.53); and that (iii) maximal [35S]GTPgammaS binding responses induced by 5-HT1B/D ligands in the C6-glial preparation were either unaffected or significantly enhanced by increasing the GDP concentration from 0.3 to 30 microM and higher concentrations. These features differ from those observed with 5-HT1A receptor agonists; the latter display the same rank order of potency and efficacy in both membrane preparations, and increasing the amount of GDP with C6-glial membranes results in an attenuation of both the agonist's maximal effect and the apparent potency of partial agonists. The differential regulation of 5-HT1A and 5-HT1B/D agonist responses by GDP suggests that different G-protein subtypes are involved upon 5-HT1A receptor activation by 5-HT1A and 5-HT1B/D agonists. PMID:9650800

  11. Auraptenol attenuates vincristine-induced mechanical hyperalgesia through serotonin 5-HT1A receptors.

    PubMed

    Wang, Yunfei; Cao, Shu-e; Tian, Jianmin; Liu, Guozhe; Zhang, Xiaoran; Li, Pingfa

    2013-01-01

    Common chemotherapeutic agents such as vincristine often cause neuropathic pain during cancer treatment in patients. Such neuropathic pain is refractory to common analgesics and represents a challenging clinical issue. Angelicae dahuricae radix is an old traditional Chinese medicine with demonstrated analgesic efficacy in humans. However, the active component(s) that attribute to the analgesic action have not been identified. This work described the anti-hyperalgesic effect of one coumarin component, auraptenol, in a mouse model of chemotherapeutic agent vincristine-induced neuropathic pain. We reported that auraptenol dose-dependently reverted the mechanical hyperalgesia in mice within the dose range of 0.05-0.8 mg/kg. In addition, the anti-hyperalgesic effect of auraptenol was significantly blocked by a selective serotonin 5-HT1A receptor antagonist WAY100635 (1 mg/kg). Within the dose range studied, auraptenol did not significantly alter the general locomotor activity in mice. Taken together, this study for the first time identified an active component from the herbal medicine angelicae dahuricae radix that possesses robust analgesic efficacy in mice. These data support further studies to assess the potential of auraptenol as a novel analgesic for the management of neuropathic pain. PMID:24287473

  12. Interaction between μ-opioid and 5-HT1A receptors in the regulation of panic-related defensive responses in the rat dorsal periaqueductal grey.

    PubMed

    Rangel, Marcel P; Zangrossi, Hélio; Roncon, Camila M; Graeff, Frederico G; Audi, Elisabeth A

    2014-12-01

    A wealth of evidence indicates that the activation of 5-HT1A and 5-HT2A receptors in the dorsal periaqueductal grey matter (dPAG) inhibits escape, a panic-related defensive behaviour. Results that were previously obtained with the elevated T-maze test of anxiety/panic suggest that 5-HT1A and μ-opioid receptors in this midbrain area work together to regulate this response. To investigate the generality of this finding, we assessed whether the same cooperative mechanism is engaged when escape is evoked by a different aversive stimulus electrical stimulation of the dPAG. Administration of the μ-receptor blocker CTOP into the dPAG did not change the escape threshold, but microinjection of the μ-receptor agonist DAMGO (0.3 and 0.5 nmol) or the 5-HT1A receptor agonist 8-OHDPAT (1.6 nmol) increased this index, indicating a panicolytic-like effect. Pretreatment with CTOP antagonised the anti-escape effect of 8-OHDPAT. Additionally, combined administration of subeffective doses of DAMGO and 8-OHDPAT increased the escape threshold, indicating drug synergism. Therefore, regardless of the aversive nature of the stimulus, μ-opioid and 5-HT1A receptors cooperatively act to regulate escape behaviour. A better comprehension of this mechanism might allow for new therapeutic strategies for panic disorder. PMID:25315826

  13. Effects of dominance status on conditioned defeat and expression of 5-HT1A and 5-HT2A receptors

    PubMed Central

    Morrison, Kathleen E.; Swallows, Cody L.; Cooper, Matthew A.

    2011-01-01

    Past experience can alter how individuals respond to stressful events. The brain serotonin system is a key factor modulating stress-related behavior and may contribute to individual variation in coping styles. In this study we investigated whether dominant and subordinate hamsters respond differently to social defeat and whether their behavioral responses are associated with changes in 5-HT1A and 5-HT2A receptor immunoreactivity in several limbic brain regions. We paired weight-matched hamsters in daily aggressive encounters for two weeks so that they formed a stable dominance relationship. We also included controls that were exposed to an empty cage each day for two weeks. Twenty-four hours after the final pairing or empty cage exposure, subjects were socially defeated in 3, 5-min encounters with a more aggressive hamster. Twenty-four hours after social defeat, animals were tested for conditioned defeat in a 5-min social interaction test with a non-aggressive intruder. We collected brains following conditioned defeat testing and performed immunohistochemistry for 5-HT1A and 5-HT2A receptors. We found that dominants showed less submissive and defensive behavior at conditioned defeat testing compared to both subordinates and controls. Additionally, both dominants and subordinates had an increased number of 5-HT1A immunopositive cells in the basolateral amygdala compared to controls. Subordinates also had more 5-HT1A immunopositive cells in the dorsal medial amygdala than did controls. Finally, dominants had fewer 5-HT1A immunopositive cells in the paraventricular nucleus of the hypothalamus compared to controls. Our results indicate that dominant social status results in a blunted conditioned defeat response and a distinct pattern of 5-HT1A receptor expression, which may contribute to resistance to conditioned defeat. PMID:21362435

  14. Selective serotonin 5-HT1A receptor biased agonists elicitdistinct brain activation patterns: a pharmacoMRI study.

    PubMed

    Becker, G; Bolbos, R; Costes, N; Redouté, J; Newman-Tancredi, A; Zimmer, L

    2016-01-01

    Serotonin 1A (5-HT1A) receptors are involved in several physiological and pathological processes and constitute therefore an important therapeutic target. The recent pharmacological concept of biased agonism asserts that highly selective agonists can preferentially direct receptor signaling to specific intracellular responses, opening the possibility of drugs targeting a receptor subtype in specific brain regions. The present study brings additional support to this concept thanks to functional magnetic resonance imaging (7 Tesla-fMRI) in anaesthetized rats. Three 5-HT1A receptor agonists (8-OH-DPAT, F13714 and F15599) and one 5-HT1A receptor antagonist (MPPF) were compared in terms of influence on the brain blood oxygen level-dependent (BOLD) signal. Our study revealed for the first time contrasting BOLD signal patterns of biased agonists in comparison to a classical agonist and a silent antagonist. By providing functional information on the influence of pharmacological activation of 5-HT1A receptors in specific brain regions, this neuroimaging approach, translatable to the clinic, promises to be useful in exploring the new concept of biased agonism in neuropsychopharmacology. PMID:27211078

  15. Selective serotonin 5-HT1A receptor biased agonists elicitdistinct brain activation patterns: a pharmacoMRI study

    PubMed Central

    Becker, G.; Bolbos, R.; Costes, N.; Redouté, J.; Newman-Tancredi, A.; Zimmer, L.

    2016-01-01

    Serotonin 1A (5-HT1A) receptors are involved in several physiological and pathological processes and constitute therefore an important therapeutic target. The recent pharmacological concept of biased agonism asserts that highly selective agonists can preferentially direct receptor signaling to specific intracellular responses, opening the possibility of drugs targeting a receptor subtype in specific brain regions. The present study brings additional support to this concept thanks to functional magnetic resonance imaging (7 Tesla-fMRI) in anaesthetized rats. Three 5-HT1A receptor agonists (8-OH-DPAT, F13714 and F15599) and one 5-HT1A receptor antagonist (MPPF) were compared in terms of influence on the brain blood oxygen level-dependent (BOLD) signal. Our study revealed for the first time contrasting BOLD signal patterns of biased agonists in comparison to a classical agonist and a silent antagonist. By providing functional information on the influence of pharmacological activation of 5-HT1A receptors in specific brain regions, this neuroimaging approach, translatable to the clinic, promises to be useful in exploring the new concept of biased agonism in neuropsychopharmacology. PMID:27211078

  16. Neuronal Ablation of p-Akt at Ser473 Leads to Altered 5-HT1A/2A Receptor Function

    PubMed Central

    Saunders, Christine; Siuta, Michael; Robertson, Sabrina D.; Davis, Adeola R.; Sauer, Jennifer; Matthies, Heinrich J.G.; Gresch, Paul J.; Airey, David; Lindsley, Craig W.; Schetz, John A.; Niswender, Kevin D.

    2014-01-01

    The serotonergic system regulates a wide range of behavior, including mood and impulsivity, and its dysregulation has been associated with mood disorders, autism spectrum disorder, and addiction. Diabetes is a risk factor for these conditions. Insulin resistance in the brain is specifically associated with susceptibility to psychostimulant abuse. Here, we examined whether phosphorylation of Akt, a key regulator of the insulin signaling pathway, controls serotonin (5-HT) signaling. To explore how impairment in Akt function regulates 5-HT homeostasis, we used a brain-specific rictor knockout (KO) mouse model of impaired neuronal phosphorylation of Akt at Ser473. Cortical 5-HT1A and 5-HT2A receptor binding was significantly elevated in rictor KO mice. Concomitant with this elevated receptor expression, the 5-HT1A receptor agonist 8-Hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) led to an increased hypothermic response in rictor KO mice. The increased cortical 5-HT1A receptor density was associated with higher 5-HT1A receptor levels on the cortical cell surface. In contrast, rictor KO mice displayed significantly reduced head-twitch response (HTR) to the 5-HT2A/C agonist 2,5-dimethoxy-4-iodoamphetamine (DOI), with evidence of impaired 5-HT2A/C receptor signaling. In vitro, pharmacological inhibition of Akt significantly increased 5-HT1A receptor expression and attenuated DOI-induced 5-HT2A receptor signaling, thereby lending credence to the observed in vivo cross-talk between neuronal Akt signaling and 5-HT receptor regulation. These data reveal that defective central Akt function alters 5-HT signaling as well as 5-HT-associated behaviors, demonstrating a novel role for Akt in maintaining neuronal 5-HT receptor function. PMID:24090638

  17. 5-HT1a Receptor Antagonists Block Perforant Path-Dentate LTP Induced in Novel, but Not Familiar, Environments

    ERIC Educational Resources Information Center

    Sanberg, Cyndy Davis; Jones, Floretta L.; Do, Viet H.; Dieguez, Dario, Jr.; Derrick, Brian E.

    2006-01-01

    Numerous studies suggest roles for monoamines in modulating long-term potentiation (LTP). Previously, we reported that both induction and maintenance of perforant path-dentate gyrus LTP is enhanced when induced while animals explore novel environments. Here we investigate the contribution of serotonin and 5-HT1a receptors to the novelty-mediated…

  18. Prenatal stress alters diazepam withdrawal syndrome and 5HT1A receptor expression in the raphe nuclei of adult rats.

    PubMed

    Lakehayli, S; Said, N; El Khachibi, M; El Ouahli, M; Nadifi, S; Hakkou, F; Tazi, A

    2016-08-25

    Early-life events have long-term effects on brain structures and cause behavioral alterations that persist into adulthood. The present experiments were designed to investigate the effects of prenatal stress on diazepam-induced withdrawal syndrome and serotonin-1A (5HT1A) receptor expression in the raphe nuclei of adult offspring. The results of the present study reveal that maternal exposure to chronic footshock stress increased the anxiety-like behavior in the prenatally stressed (PS) animals withdrawn from chronic diazepam (2.5mg/kg/day i.p for 1week). Moreover, prenatal stress induced a down-regulation of 5HT1A mRNA in the raphe nuclei of adult offspring. To our knowledge, this study is the first to demonstrate that maternal exposure to chronic footshock stress enhances diazepam withdrawal symptoms and alters 5HT1A receptor gene expression in the raphe nuclei of adult offspring. Thus, more studies are needed to clarify the mechanisms underlying the decrease of 5HT1A receptors expression in the raphe nuclei of PS rats. PMID:27235743

  19. Blockade of dorsolateral pontine 5HT1A receptors destabilizes the respiratory rhythm in C57BL6/J wild-type mice.

    PubMed

    Dhingra, R R; Dutschmann, M; Dick, T E

    2016-06-01

    The neurotransmitter serotonin (5HT) acting via 5HT1a receptors (5HT1aR) is a potent determinant of respiratory rhythm variability. Here, we address the 5HT1aR-dependent control of respiratory rhythm variability in C57BL6/J mice. Using the in situ perfused preparation, we compared the effects of systemic versus focal blockade of 5HT1aRs. Blocking 5HT1aRs in the Kölliker-Fuse nucleus (KFn) increased the occurrence of spontaneous apneas and accounted for the systemic effects of 5HT1aR antagonists. Further, 5HT1aRs of the KFn stabilized the respiratory rhythm's response to arterial chemoreflex perturbations; reducing the recovering time, e.g., the latency to return to the baseline pattern. Together, these results suggest that the KFn regulates both intrinsic and sensory determinants of respiratory rhythm variability. PMID:26840837

  20. HBK-7 - A new xanthone derivative and a 5-HT1A receptor antagonist with antidepressant-like properties.

    PubMed

    Pytka, Karolina; Kazek, Grzegorz; Siwek, Agata; Mordyl, Barbara; Głuch-Lutwin, Monika; Rapacz, Anna; Olczyk, Adrian; Gałuszka, Adam; Waszkielewicz, Anna; Marona, Henryk; Sapa, Jacek; Filipek, Barbara; Zygmunt, Małgorzata

    2016-01-01

    Xanthone derivatives possess many biological properties, including neuroprotective, antioxidant or antidepressant-like. In this study we aimed to investigate antidepressant- and anxiolytic-like properties of a new xanthone derivative - 6-methoxy-4-[4-(2-methoxyphenyl)piperazin-1-yl]-9H-xanthen-9-one (HBK-7), as well as its possible mechanism of action, and the influence on cognitive and motor function. HBK-7 in our earlier studies showed high affinity for serotonergic 5-HT1A receptor. We determined the affinity of HBK-7 for CNS receptors and transporters using radioligand assays and examined its intrinsic activity towards 5-HT1A receptor. We evaluated antidepressant- and anxiolytic-like activity of HBK-7 in the mouse forced swim test, and four-plate test, respectively. We examined the influence on locomotor activity in mice to determine if the effect observed in the forced swim test was specific. We used step-through passive avoidance and rotarod tests to evaluate the influence of HBK-7 on cognitive and motor function, respectively. HBK-7 showed moderate affinity for dopaminergic D2 receptor and very low for serotonergic 5-HT2A, adrenergic α2 receptors, as well as serotonin transporter. Functional studies revealed that HBK-7 was a 5-HT1A receptor antagonist. HBK-7 (10mg/kg) decreased immobility time in the forced swim test. Combined treatment with sub-effective doses of HBK-7 and fluoxetine reduced immobility of mice in the forced swim test. Pretreatment with p-chlorophenylalanine and WAY-100,635 antagonized the antidepressant-like effect of HBK-7. Neither of the treatments influenced locomotor activity of mice. HBK-7 at antidepressant-like dose did not impair memory or motor coordination in mice. We demonstrated that HBK-7 was a 5-HT1A receptor antagonist with potent, comparable to mianserin, antidepressant-like activity. HBK-7 mediated its effect through serotonergic system and its antidepressant-like action required the activation of 5-HT1A receptors. At active

  1. Synergistic effect of 5-HT1A and σ1 receptor activation on prefrontal dopaminergic transmission under circulating steroid deficiency.

    PubMed

    Hiramatsu, Naoki; Ago, Yukio; Hasebe, Shigeru; Nishimura, Akira; Mori, Kazuya; Takuma, Kazuhiro; Matsuda, Toshio

    2013-12-01

    Serotonin (5-HT)1A and σ1 receptors have been implicated in psychiatric disorders. We previously found that combined 5-HT reuptake inhibition and σ1 receptor activation has a synergistic effect on prefrontal dopaminergic transmission in adrenalectomized/castrated mice lacking circulating steroid hormones. In the present study, we examined the mechanisms underlying this neurochemical synergism. Systemic administration of fluvoxamine, a selective 5-HT reuptake inhibitor with agonistic activity towards the σ1 receptor, increased prefrontal dopamine (DA) levels, and adrenalectomy/castration potentiated this fluvoxamine-induced increase in DA. This enhancement of DA release was blocked by WAY100635 (a 5-HT1A receptor antagonist), but not by ritanserin (a 5-HT2 receptor antagonist), azasetron (a 5-HT3 receptor antagonist) or SB269970 (a 5-HT7 receptor antagonist). Individually, osemozotan (a 5-HT1A receptor agonist) and (+)-SKF-10,047 (a σ1 receptor agonist) did not alter prefrontal monoamine levels in adrenalectomized/castrated and sham-operated mice differentially. In contrast, co-administration of these drugs increased prefrontal DA levels to a greater extent in adrenalectomized/castrated mice than in sham-operated animals. Furthermore, co-administration of osemozotan and (+)-SKF-10,047 increased expression of the neuronal activity marker c-Fos in the ventral tegmental area of adrenalectomized/castrated mice, but not in sham-operated animals. These findings suggest that combined activation of 5-HT1A and σ1 receptors has a synergistic effect on prefrontal dopaminergic transmission under circulating steroid deficiency, and that this interaction may play an important role in the regulation of the prefrontal DA system. PMID:23851260

  2. Uncoupling of 5-HT1A receptors in the brain by estrogens: regional variations in antagonism by ICI 182,780.

    PubMed

    Mize, A L; Young, L J; Alper, R H

    2003-04-01

    Previously we have shown that 17beta-estradiol (in vivo and in vitro) rapidly decreases the function of serotonin(1A) (5-HT(1A)) receptors, allowing us to hypothesize that 17beta-estradiol accomplished this via activation of a membrane estrogen receptor. Hippocampus and frontal cortex obtained from ovariectomized rats were incubated with 17beta-estradiol or bovine serum albumin (BSA)-estradiol in the presence or absence of the estrogen receptor (ER) antagonist ICI 182,780. Membranes were prepared to measure R(+)8-OH-DPAT-stimulated [(35)S]GTPgammaS binding (a measure of 5-HT(1A) receptor coupling and function). In both hippocampus and frontal cortex, 17beta-estradiol and BSA-estradiol (50 nM) decreased R(+)8-OH-DPAT-stimulated [(35)S]GTPgammaS binding. ICI 182,780 blocked the effect of both the estrogens in hippocampus, but only the effect of 17beta-estradiol in frontal cortex. Due to the inability of ICI 182,780 to block the effects of BSA-estradiol in frontal cortex, similar experiments were performed using the selective estrogen receptor modulator tamoxifen as the agonist. Tamoxifen (100 nM and 1 microM) decreased R(+)8-OH-DPAT-stimulated [(35)S]GTPgammaS binding. ICI 182,780 (1 microM) blocked the ability of tamoxifen to decrease 5-HT(1A) receptor coupling in the hippocampus, but not in the frontal cortex. Taken together, these data support the existence of a pharmacologically distinct ER in hippocampus vs. frontal cortex that might be responsible for rapid uncoupling of 5-HT(1A) receptors. PMID:12668044

  3. The Role of 5-HT1A Receptors in Long-Term Adaptation of Newborn Rats to Hypoxia.

    PubMed

    Mikhailenko, V A; Butkevich, I P

    2016-08-01

    We studied the effects of neonatal hypoxia on adaptive behavior of rats during prepubertal and pubertal periods in the control and after repeated injections of 5-HT1A receptor agonist buspirone. Hypoxia enhanced the inflammatory nociceptive response and exacerbated the depressive-like behavior. Repeated injections of buspirone starting from the neonatal period produced a long-term normalizing effect on the inflammatory nociceptive response and psychoemotional behavior disturbed by hypoxia. The protective effect of buspirone can result from strengthening of the adaptive potencies of the serotoninergic system via activation of 5-HT1A receptors that up-regulate secretion of trophic factor S100β under conditions of serotonin deficiency typical of rats exposed to neonatal hypoxia. Buspirone promotes recovery of the afferent and efferent connections of the raphe nuclei with the prefrontal cortex and spinal cord involved in integration of the anti-nociceptive and psychoemotional systems. PMID:27591870

  4. The antipsychotic aripiprazole induces antinociceptive effects: Possible role of peripheral dopamine D2 and serotonin 5-HT1A receptors.

    PubMed

    Almeida-Santos, Ana F; Ferreira, Renata C M; Duarte, Igor D; Aguiar, Daniele C; Romero, Thiago R L; Moreira, Fabricio A

    2015-10-15

    Aripiprazole is an antipsychotic that acts by multiple mechanisms, including partial agonism at dopamine D2 and serotonin 5-HT1A receptors. Since these neurotransmitters also modulate pain and analgesia, we tested the hypothesis that systemic or local administration of aripiprazole induces antinociceptive responses. Systemic aripiprazole (0.1-10 mg/kg; i.p.) injection in mice inhibited formalin-induced paw licking and PGE2-induced hyperalgesia in the paw pressure test. This effect was mimicked by intra-plantar administration (12.5-100 µg/paw) in the ipsi, but not contralateral, paw. The peripheral action of aripiprazole (100 µg/paw) was reversed by haloperidol (0.1-10 µg/paw), suggesting the activation of dopamine receptors as a possible mechanism. Accordingly, quinpirole (25-100 µg/paw), a full agonist at D2/D3 receptors, also reduced nociceptive responses.. In line with the partial agoniztic activity of aripiprazole, low dose of this compound inhibited the effect of quinpirole (both at 25 µg/paw). Finally, peripheral administration of NAN-190 (0.1-10 μg/paw), a 5-HT1A antagonist, also prevented aripiprazole-induced antinociception. In conclusion, systemic or local administration of aripiprazole induces antinociceptive effects. Similar to its antipsychotic activity, the possible peripheral mechanism involves dopamine D2 and serotoninergic 5-HT1A receptors. Aripiprazole and other dopaminergic modulators should be further investigated as new treatments for certain types of pain. PMID:26325094

  5. Neurochemical evaluation of the novel 5-HT1A receptor partial agonist/serotonin reuptake inhibitor, vilazodone.

    PubMed

    Hughes, Zoë A; Starr, Kathryn R; Langmead, Christopher J; Hill, Matthew; Bartoszyk, Gerd D; Hagan, James J; Middlemiss, Derek N; Dawson, Lee A

    2005-03-01

    Vilazodone has been reported to be an inhibitor of 5-hydoxytryptamine (5-HT) reuptake and a partial agonist at 5-HT1A receptors. Using [35S]GTPgammaS binding in rat hippocampal tissue, vilazodone was demonstrated to have an intrinsic activity comparable to the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). Vilazodone (1-10 mg/kg p.o.) dose-dependently displaced in vivo [3H]DASB (N,N-dimethyl-2-(2-amino-4-cyanophenylthio)benzylamine) binding from rat cortex and hippocampus, indicating that vilazodone occupies 5-HT transporters in vivo. Using in vivo microdialysis, vilazodone (10 mg/kg p.o.) was demonstrated to cause a 2-fold increase in extracellular 5-HT but no change in noradrenaline or dopamine levels in frontal cortex of freely moving rats. In contrast, administration of 8-OH-DPAT (0.3 mg/kg s.c.), either alone or in combination with a serotonin specific reuptake inhibitor (SSRI; paroxetine, 3 mg/kg p.o.), produced no increase in cortical 5-HT whilst increasing noradrenaline and dopamine 2 and 4 fold, respectively. A 2-fold increase in extracellular 5-HT levels (but no change in noradrenaline or dopamine levels) was observed after combination of the 5-HT(1A) receptor antagonist, N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(pyridinyl)cyclohexanecarboxamide) (WAY-100635; 0.3 mg/kg s.c.) and paroxetine (3 mg/kg p.o.). In summary, vilazodone behaved as a high efficacy partial agonist at the rat hippocampal 5-HT1A receptors in vitro and occupied 5-HT transporters in vivo. In vivo vilazodone induced a selective increase in extracellular levels of 5-HT in the rat frontal cortex. This profile was similar to that seen with a 5-HT1A receptor antagonist plus an SSRI but in contrast to 8-OH-DPAT either alone or in combination with paroxetine. PMID:15740724

  6. A selective 5-HT1a receptor agonist improves respiration in a mouse model of Rett syndrome

    PubMed Central

    Levitt, Erica S.; Hunnicutt, Barbara J.; Knopp, Sharon J.; Williams, John T.

    2013-01-01

    Rett syndrome is a neurological disorder caused by loss of function mutations in the gene that encodes the DNA binding protein methyl-CpG-binding protein 2 (Mecp2). A prominent feature of the syndrome is disturbances in respiration characterized by frequent apnea and an irregular interbreath cycle. 8-Hydroxy-2-dipropylaminotetralin has been shown to positively modulate these disturbances (Abdala AP, Dutschmann M, Bissonnette JM, Paton JF, Proc Natl Acad Sci U S A 107: 18208–18213, 2010), but the mode of action is not understood. Here we show that the selective 5-HT1a biased agonist 3-chloro-4-fluorophenyl-(4-fluoro-4-{[(5-methylpyrimidin-2-ylmethyl)-amino]-methyl}-piperidin-1-yl)-methanone (F15599) decreases apnea and corrects irregularity in both heterozygous Mecp2-deficient female and in Mecp2 null male mice. In whole cell voltage-clamp recordings from dorsal raphe neurons, F15599 potently induced an outward current, which was blocked by barium, reversed at the potassium equilibrium potential, and was antagonized by the 5-HT1a antagonist WAY100135. This is consistent with somatodendritic 5-HT1a receptor-mediated activation of G protein-coupled inwardly rectifying potassium channels (GIRK). In contrast, F15599 did not activate 5-HT1b/d receptors that mediate inhibition of glutamate release from terminals in the nucleus accumbens by a presynaptic mechanism. Thus F15599 activated somatodendritic 5-HT1a autoreceptors, but not axonal 5-HT1b/d receptors. In unanesthetized Mecp2-deficient heterozygous female mice, F15599 reduced apnea in a dose-dependent manner with maximal effect of 74.5 ± 6.9% at 0.1 mg/kg and improved breath irrregularity. Similarly, in Mecp2 null male mice, apnea was reduced by 62 ± 6.6% at 0.25 mg/kg, and breathing became regular. The results indicate respiration is improved with a 5-HT1a agonist that activates GIRK channels without affecting neurotransmitter release. PMID:24092697

  7. Centrally acting hypotensive agents with affinity for 5-HT1A binding sites inhibit forskolin-stimulated adenylate cyclase activity in calf hippocampus.

    PubMed Central

    Schoeffter, P.; Hoyer, D.

    1988-01-01

    1. A number of centrally acting hypotensive agents and other ligands with high affinity for 5-hydroxytryptamine1A (5-HT1A) recognition sites have been tested on forskolin-stimulated adenylate cyclase activity in calf hippocampus, a functional model for 5-HT1A-receptors. 2. Concentration-dependent inhibition of forskolin-stimulated adenylate cyclase activity was elicited by the reference 5-HT1-receptor agonists (mean EC50 value, nM): 5-HT (22), 5-carboxamidotryptamine (5-CT, 3.2), 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT, 8.6), N,N-dipropyl-5-carboxamidotryptamine (DP-5-CT, 2.3), 1-[2-(4-aminophenyl)ethyl]-4-(3-trifluoromethylphenyl)-piperazine (PAPP or LY 165163, 20), 5-methoxy-3-(1,2,3,6-tetrahydro-4-pyridinyl)-1H indole (RU 24969, 20), buspirone (65) and ipsapirone (56). Emax amounted to 18-20% inhibition for all but the latter two agonists (14%). 3. The following hypotensive agents with high affinity for 5-HT1A sites were potent agonists in this system (mean EC50 value, nM): flesinoxan (24), indorenate (99), erythro-1-(1-[2-(1,4-benzodioxan-2-yl)-2-hydroxyethyl]-4-piperidyl )- 2-benzimidazolinone (R 28935, 2.5), urapidil (390) and 5-methyl-urapidil (3.5). The first two agents were full agonists, whereas the latter three acted as partial agonists with 60-80% efficacy. 4. Metergoline and methysergide behaved as full agonists and cyanopindolol as a partial agonist with low efficacy. Spiroxatrine and 2-(2,6-dimethoxyphenoxyethyl)aminomethyl- 1,4-benzodioxane (WB 4101) which bind to 5-HT1A sites with nanomolar affinity, were agonists and inhibited potently forskolin-stimulated adenylate cyclase in calf hippocampus, showing mean EC50 values of 23 and 15 nM, respectively. Spiroxatrine and WB 4101 yielded 90% and 50% efficacy, respectively. 5. Spiperone and methiothepin (each 1 microM) caused rightward shifts of the concentration-effect curve to 8-OH-DPAT, without loss of the maximal effect, as did the partial agonist cyanopindolol (0.1 microM) and the

  8. Distribution and cellular localization of mRNA coding for 5-HT1A receptor in the rat brain: correlation with receptor binding.

    PubMed

    Pompeiano, M; Palacios, J M; Mengod, G

    1992-02-01

    In order to localize the cells expressing 5-HT1A receptors in the rat brain, we used in situ hybridization histochemistry to visualize the distribution of the mRNA coding for 5-HT1A receptors. Oligonucleotides derived from different parts of the coding region of the rat 5-HT1A receptor gene were used as hybridization probes. 5-HT1A binding sites were visualized on consecutive sections by receptor autoradiography using 3H-8-hydroxy-2-(di-n-propylamino)tetralin as ligand. The highest levels of hybridization were observed in the dorsal raphe nucleus, septum, hippocampus, entorhinal cortex, and interpeduncular nucleus. Positive hybridization signals were also present in other areas, such as the olfactory bulb; cerebral cortex; some thalamic and hypothalamic nuclei; several nuclei of the brainstem, including all the remaining raphe nuclei, nucleus of the solitary tract, and nucleus of the spinal tract of the trigeminus; and the dorsal horn of the spinal cord. The distribution and abundance of 5-HT1A receptor mRNA in different rat brain areas generally correlate with those of the binding sites, suggesting that 5-HT1A receptors are predominantly somatodendritic receptors. PMID:1531498

  9. 5-HT(1A) receptors transactivate the platelet-derived growth factor receptor type beta in neuronal cells.

    PubMed

    Kruk, Jeff S; Vasefi, Maryam S; Liu, Hui; Heikkila, John J; Beazely, Michael A

    2013-01-01

    In the absence of ligand, certain growth factor receptors can be activated via G-protein coupled receptor (GPCR) activation in a process termed transactivation. Serotonin (5-HT) receptors can transactivate platelet-derived growth factor (PDGF) β receptors in smooth muscle cells, but it is not known if similar pathways occur in neuronal cells. Here we show that 5-HT can transiently increase the phosphorylation of PDGFβ receptors through 5-HT(1A) receptors in a time- and dose-dependent manner in SH-SY5Y neuroblastoma cells. 5-HT also transactivates PDGFβ receptors in primary cortical neurons. This transactivation pathway is pertussis-toxin sensitive and Src tyrosine kinase-dependent. This pathway is also dependent on phospholipase C activity and intracellular calcium signaling. Several studies involving PDGFβ receptor transactivation by GPCRs have also demonstrated a PDGFβ receptor-dependent increase in the phosphorylation of ERK1/2. Yet in SH-SY5Y cells, 5-HT treatment causes a PDGFβ receptor-independent increase in ERK1/2 phosphorylation. This crosstalk between 5-HT and PDGFβ receptors identifies a potentially important signaling link between the serotonergic system and growth factor signaling in neurons. PMID:23006663

  10. Lithium differs from anticonvulsant mood stabilizers in prefrontal cortical and accumbal dopamine release: role of 5-HT(1A) receptor agonism.

    PubMed

    Ichikawa, Junji; Dai, Jin; Meltzer, Herbert Y

    2005-07-12

    Anticonvulsant mood stabilizers, e.g., valproic acid and carbamazepine, and atypical antipsychotic drugs (APDs), e.g., clozapine, quetiapine, olanzapine, risperidone, and ziprasidone, have been reported to preferentially increase dopamine (DA) release in rat medial prefrontal cortex (mPFC), an effect partially or fully inhibited by WAY100635, a selective 5-HT(1A) antagonist. These atypical APDs have themselves been reported to be effective mood stabilizers, although the importance of increased cortical DA release to mood stabilization has not been established. The purpose of the present study was to determine whether zonisamide, another anticonvulsant mood stabilizer, as well as lithium, a mood stabilizer without anticonvulsant properties, also increases prefrontal cortical DA release and, if so, whether this release is also inhibited by 5-HT(1A) antagonism. As with valproic acid and carbamazepine, zonisamide (12.5 and 25 mg/kg) increased DA release in the mPFC, but not the NAC, an increase abolished by WAY100635 (0.2 mg/kg). However, lithium (100 and 250 mg/kg) decreased DA release in the NAC, an effect also attenuated by WAY100635 (0.2 mg/kg). Lithium itself had no effect in the mPFC but the combination of WAY100635 (0.2 mg/kg) and lithium (100 and 250 mg/kg) markedly increased DA release in the mPFC. Furthermore, M100907 (0.1 mg/kg), a selective 5-HT(2A) antagonist, abolished this increase in DA release in the mPFC. These results indicate that not all mood-stabilizing agents but only those, which have anticonvulsant mood-stabilizing properties, increase DA release in the cortex, and that the effect is dependent upon 5-HT(1A) receptor stimulation. However, the combination of lithium and 5-HT(1A) blockade may result in excessive 5-HT(2A) receptor stimulation, relative to 5-HT(1A) receptor stimulation, both of which can increase prefrontal cortical DA release. PMID:15936730

  11. Verbal memory and 5-HT1A receptors in healthy volunteers - A PET study with [carbonyl-(11)C]WAY-100635.

    PubMed

    Penttilä, Jani; Hirvonen, Jussi; Tuominen, Lauri; Lumme, Ville; Ilonen, Tuula; Någren, Kjell; Hietala, Jarmo

    2016-03-01

    The serotonin 5-HT1A receptor is a putative drug development target in disorders with cognitive and in particular memory deficits. However, previous human positron emission tomography (PET) studies on 5-HT1A receptor binding and memory functions have yielded discrepant results. We explored the association between verbal memory and 5-HT1A receptor binding in 24 healthy subjects (14 male, 10 female, aged 18-41 years). The cognitive tests included the Wechsler Memory Scale-Revised (WMS-R), Wechsler Adult Intelligence Scale-Revised (WAIS-R) and Wisconsin Card Sorting Test (WCST). 5-HT1A receptor binding was measured with PET and the radioligand [carbonyl-(11)C]WAY-100635, which was quantified with the gold standard method based on kinetic modeling using arterial blood samples. We found that global 5-HT1A receptor binding was positively correlated with measures of verbal memory, such that subjects who had higher receptor binding tended to have better verbal memory than subjects who had lower receptor binding. Regional analyses suggested significant correlations in multiple neocortical brain regions and the raphe nuclei. We did not find significant correlations between 5-HT1A receptor binding and executive functions as measured with WCST. We conclude that neocortical as well as raphe 5-HT1A receptors are involved in verbal memory function in man. PMID:26775837

  12. Buspirone requires the intact nigrostriatal pathway to reduce the activity of the subthalamic nucleus via 5-HT1A receptors.

    PubMed

    Sagarduy, A; Llorente, J; Miguelez, C; Morera-Herreras, T; Ruiz-Ortega, J A; Ugedo, L

    2016-03-01

    The most effective treatment for Parkinson's disease (PD), l-DOPA, induces dyskinesia after prolonged use. We have previously shown that in 6-hydroxydopamine (6-OHDA) lesioned rats rendered dyskinetic by prolonged l-DOPA administration, lesion of the subthalamic nucleus (STN) reduces not only dyskinesias but also buspirone antidyskinetic effect. This study examined the effect of buspirone on STN neuron activity. Cell-attached recordings in parasagittal slices from naïve rats showed that whilst serotonin excited the majority of STN neurons, buspirone showed an inhibitory main effect but only in 27% of the studied cells which was prevented by the 5-HT1A receptor selective antagonist WAY-100635. Conversely, single-unit extracellular recordings were performed in vivo on STN neurons from four different groups, i.e., control, chronically treated with l-DOPA, 6-OHDA lesioned and lesioned treated with l-DOPA (dyskinetic) rats. In control animals, systemic-buspirone administration decreased the firing rate in a dose-dependent manner in every cell studied. This effect, prevented by WAY-100635, was absent in 6-OHDA lesioned rats and was not modified by prolonged l-DOPA administration. Altogether, buspirone in vivo reduces consistently the firing rate of the STN neurons through 5-HT1A receptors whereas ex vivo buspirone seems to affect only a small population of STN neurons. Furthermore, the lack of effect of buspirone in 6-OHDA lesioned rats, suggests the requirement of not only the activation of 5-HT1A receptors but also an intact nigrostriatal pathway for buspirone to inhibit the STN activity. PMID:26687972

  13. The Functional Activity of the Human Serotonin 5-HT1A Receptor Is Controlled by Lipid Bilayer Composition.

    PubMed

    Gutierrez, M Gertrude; Mansfield, Kylee S; Malmstadt, Noah

    2016-06-01

    Although the properties of the cell plasma membrane lipid bilayer are broadly understood to affect integral membrane proteins, details of these interactions are poorly understood. This is particularly the case for the large family of G protein-coupled receptors (GPCRs). Here, we examine the lipid dependence of the human serotonin 5-HT1A receptor, a GPCR that is central to neuronal function. We incorporate the protein in synthetic bilayers of controlled composition together with a fluorescent reporting system that detects GPCR-catalyzed activation of G protein to measure receptor-catalyzed oligonucleotide exchange. Our results show that increased membrane order induced by sterols and sphingomyelin increases receptor-catalyzed oligonucleotide exchange. Increasing membrane elastic curvature stress also increases this exchange. These results reveal the broad dependence that the 5-HT1A receptor has on plasma membrane properties, demonstrating that membrane lipid composition is a biochemical control parameter and highlighting the possibility that compositional changes related to aging, diet, or disease could impact cell signaling functions. PMID:27276266

  14. Motor effects of the non-psychotropic phytocannabinoid cannabidiol that are mediated by 5-HT1A receptors.

    PubMed

    Espejo-Porras, Francisco; Fernández-Ruiz, Javier; Pertwee, Roger G; Mechoulam, Raphael; García, Concepción

    2013-12-01

    The broad presence of CB1 receptors in the basal ganglia, mainly in GABA- or glutamate-containing neurons, as well as the presence of TRPV1 receptors in dopaminergic neurons and the identification of CB2 receptors in some neuronal subpopulations within the basal ganglia, explain the powerful motor effects exerted by those cannabinoids that can activate/block these receptors. By contrast, cannabidiol (CBD), a phytocannabinoid with a broad therapeutic profile, is generally presented as an example of a cannabinoid compound with no motor effects due to its poor affinity for the CB1 and the CB2 receptor, despite its activity at the TRPV1 receptor. However, recent evidence suggests that CBD may interact with the serotonin 5-HT1A receptor to produce some of its beneficial effects. This may enable CBD to directly influence motor activity through the well-demonstrated role of serotonergic transmission in the basal ganglia. We have investigated this issue in rats using three different pharmacological and neurochemical approaches. First, we compared the motor effects of various i.p. doses of CBD with the selective 5-HT1A receptor agonist, 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT; i.p.). Second, we investigated whether the motor effects of CBD are sensitive to 5-HT1A receptor blockade in comparison with CB1 receptor antagonism. Finally, we investigated whether CBD was able to potentiate the effect of a sub-effective dose of 8-OH-DPAT. Our results demonstrated that: (i) only high doses of CBD (>10 mg/kg) altered motor behavior measured in a computer-aided actimeter; (ii) these alterations were restricted to vertical activity (rearing) with only modest changes in other parameters; (iii) similar effects were produced by 8-OH-DPAT (1 mg/kg), although this agonist affected exclusively vertical activity, with no effects on other motor parameters, and it showed always more potency than CBD; (iv) the effects of 8-OH-DPAT (1 mg/kg) and CBD (20 mg/kg) on vertical activity

  15. Neuropsychopharmacological profile in rodents of SR 57746A, a new, potent 5-HT1A receptor agonist.

    PubMed

    Simiand, J; Keane, P E; Barnouin, M C; Keane, M; Soubrié, P; Le Fur, G

    1993-01-01

    tone and locomotor activity, impairment of motor co-ordination, and potentiation of the effects of centrally-acting sedative-hypnotics. SR 57746A was also inactive as an analgesic in the PBQ writhing test. Thus, SR 57746A is active in a number of tests indicative of 5-HT1A receptor stimulation in vivo, and, more particularly, in a number of tests predictive of anxiolytic, anti-aggressive and antidepressant activities. SR 57746A is as potent as diazepam in anxiolytic tests, and more potent than imipramine in antidepressant tests, whereas it is devoid of neuroleptic potential. In view of this profile of activity, SR 57746A merits evaluation as a potential anxiolytic and antidepressant in humans. PMID:7904976

  16. NLX-112, a novel 5-HT1A receptor agonist for the treatment of L-DOPA-induced dyskinesia: Behavioral and neurochemical profile in rat.

    PubMed

    Iderberg, H; McCreary, A C; Varney, M A; Kleven, M S; Koek, W; Bardin, L; Depoortère, R; Cenci, M A; Newman-Tancredi, A

    2015-09-01

    L-DOPA is the gold-standard treatment for Parkinson's disease (PD), but induces troublesome dyskinesia after prolonged treatment. This is associated with the 'false neurotransmitter' conversion of L-DOPA to dopamine by serotonin neurons projecting from the raphe to the dorsal striatum. Reducing their activity by targeting pre-synaptic 5-HT1A receptors should thus be an attractive therapeutic strategy, but previous 5-HT1A agonists have yielded disappointing results. Here, we describe the activity of a novel, highly selective and potent 5-HT1A agonist, NLX-112 (also known as befiradol or F13640) in rat models relevant to PD and its associated affective disorders. NLX-112 (0.16 mg/kg, i.p.) potently and completely reversed haloperidol-induced catalepsy in intact rats and abolished L-DOPA-induced Abnormal Involuntary Movements (AIMs) in hemiparkinsonian rats, an effect that was reversed by the selective 5-HT1A antagonist, WAY100635. In microdialysis experiments, NLX-112 profoundly decreased striatal 5-HT extracellular levels, indicative of inhibition of serotonergic function. NLX-112 also blunted the L-DOPA-induced surge in dopamine levels on the lesioned side of the brain, an action that likely underlies its anti-dyskinetic effects. NLX-112 (0.16 mg/kg, i.p.) robustly induced rotations in hemiparkinsonian rats, suggesting that it has a motor facilitatory effect. Rotations were abolished by WAY100635 and were ipsilateral to the lesioned side, suggesting a predominant stimulation of the dopamine system on the non-lesioned side of the brain. NLX-112 also efficaciously reduced immobility time in the forced swim test (75% reduction at 0.16 mg/kg, i.p.) and eliminated stress-induced ultrasonic vocalization at 0.08 mg/kg, i.p., effects consistent with potential antidepressant- and anxiolytic-like properties. In other tests, NLX-112 (0.01-0.16 mg/kg, i.p.) did not impair the ability of L-DOPA to rescue forepaw akinesia in the cylinder test but decreased rotarod performance

  17. Age-Dependent Switch of the Role of Serotonergic 5-HT1A Receptors in Gating Long-Term Potentiation in Rat Visual Cortex In Vivo

    PubMed Central

    Gagolewicz, Peter J.; Dringenberg, Hans C.

    2016-01-01

    The rodent primary visual cortex (V1) is densely innervated by serotonergic axons and previous in vitro work has shown that serotonin (5-HT) can modulate plasticity (e.g., long-term potentiation (LTP)) at V1 synapses. However, little work has examined the effects of 5-HT on LTP under in vivo conditions. We examined the role of 5-HT on LTP in V1 elicited by theta burst stimulation (TBS) of the lateral geniculate nucleus in urethane-anesthetized (adult and juvenile) rats. Thalamic TBS consistently induced potentiation of field postsynaptic potentials (fPSPs) recorded in V1. While 5-HT application (0.1–10 mM) itself did not alter LTP levels, the broad-acting 5-HT receptor antagonists methiothepin (1 mM) resulted in a clear facilitation of LTP in adult animals, an effect that was mimicked by the selective 5-HT1A receptor antagonist WAY 100635 (1 mM). Interestingly, in juvenile rats, WAY 100635 application inhibited LTP, indicative of an age-dependent switch in the role of 5-HT1A receptors in gating V1 plasticity. Analyses of spontaneous electrocorticographic (ECoG) activity in V1 indicated that the antagonist-induced LTP enhancement was not related to systematic changes in oscillatory activity in V1. Together, these data suggest a facilitating role of 5-HT1A receptor activation on LTP in the juvenile V1, which switches to a tonic, inhibitory influence in adulthood. PMID:27247804

  18. 5-HT1A receptors of the rat dorsal raphe lateral wings and dorsomedial subnuclei differentially control anxiety- and panic-related defensive responses.

    PubMed

    Spiacci, Ailton; Pobbe, Roger Luis Henschel; Matthiesen, Melina; Zangrossi, Helio

    2016-08-01

    The dorsal raphe nucleus (DR), the main source of 5-HT projections to brain areas involved in anxiety regulation, is composed by 5 subnuclei that differ morphologically, functionally and neurochemically. Based on immunohistochemical evidence, it has been proposed that whereas 5-HT cells of the dorsomedial (dmDR) and caudal subnuclei are implicated in the pathophysiology of generalized anxiety disorder (GAD), neurons of the lateral wings (lwDR) are associated with panic disorder (PD). We here tested this hypothesis from a behavioral perspective by investigating the consequences of the non-selective stimulation of neurons within the dmDR and lwDR, or the pharmacological manipulation of 5-HT1A receptors located in these nuclei, of male Wistar rats exposed to the elevated T-maze. This test allows the measurement of both a GAD- (i.e. inhibitory avoidance) and a PD- (i.e. escape) related response in the same animal. Intra-dmDR injection of either the excitatory amino acid kainic acid or the 5-HT1A receptor antagonist WAY-100635 facilitated inhibitory avoidance acquisition, suggesting an anxiogenic effect, and inhibited escape expression, a panicolytic-like effect. Microinjection of the 5-HT1A receptor agonist 8-OH-DPAT caused the opposite effect. Administration of the same drugs into the lwDR only altered escape performance. Whereas kainic acid and 8-OH-DPAT facilitated its expression, WAY-100635 inhibited it. At higher doses, kainic acid administration evoked vigorous escape reactions as measured in an open-field. These findings implicate 5-HT neurons of the dmDR in the regulation of both GAD- and PD-related defensive behaviors. They also support a primary role of the lwDR in the mediation of PD-associated responses. PMID:26145183

  19. Role of maternal 5-HT1A receptor in programming offspring emotional and physical development

    PubMed Central

    van Velzen, Annelies; Toth, Miklos

    2010-01-01

    Serotonin1A receptor (5-HT1AR) deficiency has been associated with anxiety and depression and mice with genetic receptor inactivation exhibit heightened anxiety. We have reported that 5-HT1AR is not only a genetic but also a maternal “environmental” factor in the development of anxiety in Swiss-Webster mice. Here we tested if the emergence of maternal genotype dependent adult anxiety is preceded by early behavioral abnormalities or if it is manifested following a normal emotional development. Pups born to null or heterozygote mothers had significantly reduced ultrasonic vocalization between postnatal day (P) 4 and 12 indicating an influence of the maternal genotype. The offspring’s own genotype had an effect limited to P4. Furthermore, we observed reduced weight gain in the null offspring of null but not heterozygote mothers indicating that a complete maternal receptor deficiency compromises offspring physical development. Except a short perinatal deficit during the dark period, heterozygote females displayed normal maternal behavior which, with the early appearance of ultrasonic vocalization deficit, suggests a role for 5-HT1AR during pre/perinatal development. Consistent with this notion, adult anxiety in the offspring is determined during the pre/perinatal period. In contrast to heterozygote females, null mothers exhibited impaired pup retrieval and nest building that may explain the reduced weight gain of their offspring. Taken together, our data indicate an important role for the maternal 5-HT1AR in regulating offspring emotional and physical development. Since reduced receptor binding has been reported in depression, including postpartum depression, reduced 5-HT1AR function in mothers may influence the emotional development of their offspring. PMID:20633050

  20. CREB-mediated synaptogenesis and neurogenesis is crucial for the role of 5-HT1a receptors in modulating anxiety behaviors

    PubMed Central

    Zhang, Jing; Cai, Cheng-Yun; Wu, Hai-Yin; Zhu, Li-Juan; Luo, Chun-Xia; Zhu, Dong-Ya

    2016-01-01

    Serotonin 1a-receptor (5-HT1aR) has been specifically implicated in the pathogenesis of anxiety. However, the mechanism underlying the role of 5-HT1aR in anxiety remains poorly understood. Here we show in mice that the transcription factor cAMP response element binding protein (CREB) in the hippocampus functions as an effector of 5-HT1aR in modulating anxiety-related behaviors. We generated recombinant lentivirus LV-CREB133-GFP expressing a dominant negative CREB which could not be phosphorylated at Ser133 to specifically reduce CREB activity, and LV-VP16-CREB-GFP expressing a constitutively active fusion protein VP16-CREB which could be phosphorylated by itself to specifically enhance CREB activity. LV-CREB133-GFP neutralized 5-HT1aR agonist-induced up-regulation of synapse density, spine density, dendrite complexity, neurogenesis, and the expression of synapsin and spinophilin, two well-characterized synaptic proteins, and abolished the anxiolytic effect of 5-HT1aR agonist; whereas LV-VP16-CREB-GFP rescued the 5-HT1aR antagonist-induced down-regulation of synapse density, spine density, dendrite complexity, neurogenesis and synapsin and spinophilin expression, and reversed the anxiogenic effect of 5-HT1aR antagonist. The deletion of neurogenesis by irradiation or the diminution of synaptogenesis by knockdown of synapsin expression abolished the anxiolytic effects of both CREB and 5-HT1aR activation. These findings suggest that CREB-mediated hippoacampus structural plasticity is crucial for the role of 5-HT1aR in modulating anxiety-related behaviors. PMID:27404655

  1. Layer II/III of the prefrontal cortex: inhibition by the serotonin 5-HT1A receptor in development and stress

    PubMed Central

    Goodfellow, Nathalie M.; Benekareddy, Madhurima; Vaidya, Vidita A.; Lambe, Evelyn K.

    2009-01-01

    The modulation of the prefrontal cortex by the neurotransmitter serotonin (5-HT) is thought to play a key role in determining adult anxiety levels. Layer II/III of the prefrontal cortex, which mediates communication across cortical regions, displays a of high level 5-HT1A receptor binding in normal individuals and a significantly lower level in patients with mood and anxiety disorders. Here, we examine how serotonin modulates pyramidal neurons in layer II/III of the rat prefrontal cortex throughout postnatal development and in adulthood. Using whole cell recordings in brain slices of the rat medial prefrontal cortex, we observed that serotonin directly inhibits layer II/III pyramidal neurons through 5-HT1A receptors across postnatal development (P6 to P96). In adulthood, a sex difference in these currents emerges, consistent with human imaging studies of 5-HT1A receptor binding. We examined the effects of early life stress on the 5-HT1A receptor currents in layer II/III. Surprisingly, animals subjected to early life stress displayed significantly larger 5-HT1A-mediated outward currents throughout the third and fourth postnatal weeks following elevated 5-HT1A expression during the second postnatal week. Subsequent exposure to social isolation in adulthood resulted in the almost-complete elimination of 5-HT1A currents in layer II/III neurons suggesting an interaction between early life events and adult experiences. These data represent the first examination of functional 5-HT1A receptors in layer II/III of the prefrontal cortex during normal development as well as after stress. PMID:19675243

  2. Agonist activity of a novel compound, 1-[3-(3,4-methylenedioxyphenoxy)propyl]-4-phenyl piperazine (BP-554), at central 5-HT1A receptors.

    PubMed

    Matsuda, T; Seong, Y H; Aono, H; Kanda, T; Baba, A; Saito, K; Tobe, A; Iwata, H

    1989-10-24

    We used an in vitro radioligand receptor binding assay with rat cerebral cortex, hippocampus and striatum membrane preparations to show that 1-[3-(3,4-methylenedioxyphenoxy)propyl]-4-phenyl piperazine (BP-554) had much higher affinity for 5-HT1A recognition sites than for 5-HT1-non-A, 5-HT2, benzodiazepine, dopamine D-2 and alpha 2-adrenergic recognition sites. The compound inhibited the activity of forskolin-stimulated adenylate cyclase in rat hippocampal membranes. Intraperitoneal injection of BP-554 to mice decreased the concentration of only 5-hydroxy-indoleacetic acid of the amines and their metabolites in the brain and decreased the accumulation of 5-hydroxytryptophan in the brain after decarboxylase inhibition by 3-hydroxybenzylhydrazine. Furthermore, the administration of BP-554 caused hypothermia and increased serum corticosterone levels in mice. The observed effects of BP-554 were similar to those of 8-hydroxy-2-(di-n-propylamino)tetralin. These results suggest that BP-554 acts as a selective 5-HT1A receptor agonist in vivo. PMID:2533078

  3. Differential effects of amyloid-beta 1-40 and 1-42 fibrils on 5-HT1A serotonin receptors in rat brain.

    PubMed

    Verdurand, Mathieu; Chauveau, Fabien; Daoust, Alexia; Morel, Anne-Laure; Bonnefoi, Frédéric; Liger, François; Bérod, Anne; Zimmer, Luc

    2016-04-01

    Evidence accumulates suggesting a complex interplay between neurodegenerative processes and serotonergic neurotransmission. We have previously reported an overexpression of serotonin 5-HT1A receptors (5-HT(1A)R) after intrahippocampal injections of amyloid-beta 1-40 (Aβ40) fibrils in rats. This serotonergic reactivity paralleled results from clinical positron emission tomography studies with [(18)F]MPPF revealing an overexpression of 5-HT(1A)R in the hippocampus of patients with mild cognitive impairment. Because Aβ40 and Aβ42 isoforms are found in amyloid plaques, we tested in this study the hypothesis of a peptide- and region-specific 5-HT(1A)R reactivity by injecting them, separately, into the hippocampus or striatum of rats. [(18)F]MPPF in vitro autoradiography revealed that Aβ40 fibrils, but not Aβ42, were triggering an overexpression of 5-HT(1A)R in the hippocampus and striatum of rat brains after 7 days. Immunohistochemical approaches targeting neuronal precursor cells, mature neurons, and astrocytes showed that Aβ42 fibrils caused more pathophysiological damages than Aβ40 fibrils. The mechanisms of Aβ40 fibrils-induced 5-HT(1A)R expression remains unknown, but hypotheses including neurogenesis, glial expression, and axonal sprouting are discussed. PMID:26973100

  4. Potentiating effect of spinosin, a C-glycoside flavonoid of Semen Ziziphi spinosae, on pentobarbital-induced sleep may be related to postsynaptic 5-HT(1A) receptors.

    PubMed

    Wang, L-E; Cui, X-Y; Cui, S-Y; Cao, J-X; Zhang, J; Zhang, Y-H; Zhang, Q-Y; Bai, Y-J; Zhao, Y-Y

    2010-05-01

    Previous results have suggested that spinosin, a C-glycoside flavonoid of Semen Ziziphi spinosae, potentiates pentobarbital-induced sleep via the serotonergic system. The present study investigated whether spinosin potentiates pentobarbital-induced sleep via serotonin-1A (5-hydroxytryptamine, 5-HT(1A)) receptors. The results demonstrated that spinosin significantly augmented pentobarbital (35 mg/kg, i.p.)-induced sleep in rats, reflected by reduced sleep latency and increased total sleep time, non-rapid eye movement (NREM) sleep time, and REM sleep time. With regard to NREM sleep duration, spinosin mainly increased slow-wave sleep (SWS). Additionally, spinosin (15mg/kg, i.g.) significantly antagonized 5-HT(1A) agonist 8-OH-DPAT (0.1mg/kg, i.p.)-induced reductions in total sleep time, NREM sleep, REM sleep, and SWS in pentobarbital-treated rats. These results suggest that spinosin may be an antagonist at postsynaptic 5-HT(1A) receptors because these effects of 8-OH-DPAT were considered to be mediated via postsynaptic 5-HT(1A) receptors. Moreover, co-administration of spinosin and the 5-HT(1A) antagonist 4-iodo-N-{2-[4-(methoxyphenyl)-1-piperazinyl]ethyl}-N-2-pyridinylbenzamide (p-MPPI), at doses that are ineffective when administered alone (spinosin 5mg/kg, p-MPPI 1mg/kg), had significant augmentative effects on pentobarbital-induced sleep, reflected by reduced sleep latency and increased total sleep time, NREM sleep, and REM sleep. In contrast to the attenuating effects of p-MPPI on REM sleep via presynaptic 5-HT(1A) autoreceptors, 15mg/kg spinosin significantly increased REM sleep. These results suggest that the effect of spinosin on REM sleep in pentobarbital-treated rats may be related to postsynaptic 5-HT(1A) receptors. PMID:20171860

  5. Evaluation of Serotonin 5-HT1A Receptors in Rodent Models using [18F]Mefway PET¶

    PubMed Central

    Saigal, Neil; Bajwa, Alisha K.; Faheem, Sara S.; Coleman, Robert A.; Pandey, Suresh K.; Constantinescu, Cristian C.; Fong, Vanessa; Mukherjee, Jogeshwar

    2013-01-01

    Introduction Serotonin 5-HT1A receptors have been investigated in various CNS disorders, including epilepsy, mood disorders and neurodegeneration. [18F]Mefway (N-{2-[4-(2'-methoxyphenyl)piperazinyl]ethyl}-N-(2-pyridyl)-N-(cis/trans-4'-[18F]fluoromethylcyclohexane)-carboxamide) has been developed as a suitable positron emission tomography (PET) imaging agent for these receptors. We have now evaluated the suitability of [18F]trans-mefway in rat and mouse models using PET and computerized tomography (CT) imaging and corroborated with ex vivo and in vitro autoradiographic studies. Methods Normal Sprague-Dawley rats and Balb/C mice were used for PET/CT imaging using intravenously injected [18F]trans-mefway. Brain PET data were coregistered with rat and mouse magnetic resonance (MR) imaging template and regional distribution of radioactivity was quantitated. Select animals were used for ex vivo autoradiographic studies in order to confirm regional brain distribution and quantitative measures of binding, using brain region to cerebellum ratios. Binding affinity of trans-mefway and WAY-100635 was measured in rat brain homogenates. Distribution of [18F]trans-4-fluoromethylcyclohexane carboxylate ([18F]FMCHA), a major metabolite of [18F] trans-mefway, was assessed in the rat by PET/CT. Results The inhibition constant, Ki for trans-mefway was 0.84 nM and that for WAY-100635 was 1.07 nM. Rapid brain uptake of [18F]trans-mefway was observed in all rat brain regions and clearance from cerebellum was fast and was used as a reference region in all studies. Distribution of [18F]trans-mefway in various brain regions was consistent in PET and in vitro studies. The dorsal raphe was visualized and quantified in the rat PET but identification in the mouse was difficult. The rank order of binding to the various brain regions was hippocampus>frontal cortex>anterior cingulate cortex>lateral septal nuclei>dorsal raphe nuclei. Conclusion [18F]trans-Mefway appears to be an effective 5-HT1A

  6. Selective reduction by isolation rearing of 5-HT1A receptor-mediated dopamine release in vivo in the frontal cortex of mice.

    PubMed

    Ago, Y; Sakaue, M; Baba, A; Matsuda, T

    2002-10-01

    Serotonin (5-HT)1A receptors modulate in vivo release of brain monoaminergic neurotransmitters which may be involved in isolation-induced aggressive behavior. The present study examined the effect of isolation rearing on the 5-HT1A receptor-mediated modulation of dopamine (DA), 5-HT and noradrenaline (NA) release in the frontal cortex of mice. The selective 5-HT1A receptor agonist (S)-5-[-[(1,4-benzodioxan-2-ylmethyl)amino]propoxy]-1,3-benzodioxole HCl (MKC-242) increased the release of DA and NA and decreased the release of 5-HT in the frontal cortex of mice. The effect of MKC-242 on DA release was significantly less in isolation-reared mice than in group-reared mice, while effects of the drug on NA and 5-HT release did not differ between both groups. The effect of the other 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin on cortical DA release was also less in isolation-reared mice than in group-reared mice, and that of the drug on cortical 5-HT release did not differ between both groups. In contrast to MKC-242-induced DA release, amphetamine-induced increase in cortical DA release in vivo was greater in isolation-reared mice. The present findings suggest that isolation rearing enhances the activity of cortical dopaminergic neurons and reduces selectively the 5-HT1A receptor-mediated release of DA in the cortex. PMID:12423245

  7. Effects of intra-prelimbic prefrontal cortex injection of cannabidiol on anxiety-like behavior: involvement of 5HT1A receptors and previous stressful experience.

    PubMed

    Fogaça, M V; Reis, F M C V; Campos, A C; Guimarães, F S

    2014-03-01

    The prelimbic medial prefrontal cortex (PL) is an important encephalic structure involved in the expression of emotional states. In a previous study, intra-PL injection of cannabidiol (CBD), a major non-psychotomimetic cannabinoid present in the Cannabis sativa plant, reduced the expression of fear conditioning response. Although its mechanism remains unclear, CBD can facilitate 5HT1A receptor-mediated neurotransmission when injected into several brain structures. This study was aimed at verifying if intra-PL CBD could also induce anxiolytic-like effect in a conceptually distinct animal model, the elevated plus maze (EPM). We also verified if CBD effects in the EPM and contextual fear conditioning test (CFC) depend on 5HT1A receptors and previous stressful experience. CBD induced opposite effects in the CFC and EPM, being anxiolytic and anxiogenic, respectively. Both responses were prevented by WAY100,635, a 5HT1A receptor antagonist. In animals that had been previously (24h) submitted to a stressful event (2h-restraint) CBD caused an anxiolytic, rather than anxiogenic, effect in the EPM. This anxiolytic response was abolished by previous injection of metyrapone, a glucocorticoid synthesis blocker. Moreover, restraint stress increased 5HT1A receptors expression in the dorsal raphe nucleus, an effect that was attenuated by injection of metyrapone before the restraint procedure. Taken together, these results suggest that CBD modulation of anxiety in the PL depend on 5HT1A-mediated neurotransmission and previous stressful experience. PMID:24321837

  8. Effects of chronic citalopram treatment on 5-HT1A and 5-HT2A receptors in group- and isolation-housed mice.

    PubMed

    Günther, Lydia; Liebscher, Sabine; Jähkel, Monika; Oehler, Jochen

    2008-09-28

    Selective serotonin reuptake inhibitors (SSRI) are characterized by high clinical effectiveness and good tolerability. A 2-3 week delay in the onset of effects is caused by adaptive mechanisms, probably at the serotonergic (5-HT) receptor level. To analyze this in detail, we measured 5-HT(1A) and 5-HT(2A) receptor bindings in vitro after 3 weeks of citalopram treatment (20 mg/kg i.p. daily) in group-housed as well as isolation-housed mice, reflecting neurobiological aspects seen in psychiatric patients. Isolation housing increased somatodendritic (+52%) and postsynaptic (+30-95%) 5-HT(1A) as well as postsynaptic 5-HT(2A) receptor binding (+25-34%), which confirms previous findings. Chronic citalopram treatment did not induce alterations in raphe 5-HT(1A) autoreceptor binding, independent of housing conditions. Housing-dependent citalopram effects on postsynaptic 5-HT(1A) receptor binding were found with increases in group- (+11-42%) but decreases in isolation-housed (-11 to 35%) mice. Forebrain 5-HT(2A) receptor binding decreased between 11 and 38% after chronic citalopram administration, independent of housing conditions. Citalopram's long-term action comprises alterations at the postsynaptic 5-HT(1A) and 5-HT(2A) receptor binding levels. Housing conditions interact with citalopram effects, especially on 5-HT(1A) receptor binding, and should be more strongly considered in pharmacological studies. In general, SSRI-induced alterations were more pronounced and affected more brain regions in isolates, supporting the concept of a higher responsiveness in "stressed" animals. Isolation-induced receptor binding changes were partly normalized by chronic citalopram treatment, suggesting the isolation housing model for further analyses of SSRI effects, especially at the behavioral level. PMID:18657534

  9. Oestradiol alters central 5HT1A receptor binding potential differences related to psychosocial stress but not differences related to 5HTTLPR genotype in female rhesus monkeys

    PubMed Central

    Michopoulos, Vasiliki; Diaz, Maylen Perez; Embree, Molly; Reding, Kathy; Votaw, John R.; Mun, Jiyoung; Voll, Ronald J.; Goodman, Mark M.; Wilson, Mark; Sanchez, Mar; Toufexis, Donna

    2014-01-01

    Social subordination in female macaques represents a well-described model of chronic psychosocial stress. Additionally, a length polymorphism (5HTTLPR) in the regulatory region of the serotonin (5HT) transporter (5HTT) gene (SLC6A4) is present in rhesus macaques, which has been linked to adverse outcomes similar to what has been described in humans with an analogous 5HTTLPR polymorphism. The present study determined the effects of social status and the 5HTTLPR genotype on 5HT1A receptor binding potential (5HT1A BPND) in brain regions implicated in emotional regulation and stress reactivity in ovariectomised female monkeys, and then assessed how these effects were altered by 17β-oestradiol (E2) treatment. Areas analyzed included the prefrontal cortex [anterior cingulate (ACC); medial prefrontal cortex (mPFC); dorsolateral prefrontal cortex; orbitofrontal prefrontal cortex], amygdala, hippocampus, hypothalamus and raphe nucleui. Positron emission tomography (PET) using p-[18F]MPPF was performed to determine the levels of 5HT1A BPND under a non-E2 and a 3-wk E2 treatment condition. The short variant (s-variant) 5HTTLPR genotype produced a significant reduction in 5HT1A BPND in the mPFC regardless of social status, and subordinate s-variant females showed a reduction in 5HT1A BPND within the ACC. Both these effects of 5HTTLPR were unaffected by E2. Additionally, E2 reduced 5HT1A BPND in the dorsal raphe of all females irrespective of psychosocial stress or 5HTTLPR genotype. Hippocampal 5HT1A BPND was attenuated in subordinate females regardless of 5HTTLPR genotype during the non-E2 condition, an effect that was normalised with E2. Similarly, 5HT1A BPND in the hypothalamus was significantly lower in subordinate females regardless of 5HTTLPR genotype, an effect reversed with E2. Together, the data indicate that the effect of E2 on modulation of central 5HT1A BPND may only occur in brain regions that show no 5HTTLPR genotype-linked control of 5HT1A binding. PMID:24382202

  10. Distinct effect of 5-HT1A and 5-HT2A receptors in the medial nucleus of the amygdala on tonic immobility behavior.

    PubMed

    de Paula, Bruna Balbino; Leite-Panissi, Christie Ramos Andrade

    2016-07-15

    The tonic immobility (TI) response is an innate fear behavior associated with intensely dangerous situations, exhibited by many species of invertebrate and vertebrate animals. In humans, it is possible that TI predicts the severity of posttraumatic stress disorder symptoms. This behavioral response is initiated and sustained by the stimulation of various groups of neurons distributed in the telencephalon, diencephalon and brainstem. Previous research has found the highest Fos-IR in the posteroventral part of the medial nucleus of the amygdala (MEA) during TI behavior; however, the neurotransmission of this amygdaloid region involved in the modulation of this innate fear behavior still needs to be clarified. Considering that a major drug class used for the treatment of psychopathology is based on serotonin (5-HT) neurotransmission, we investigated the effects of serotonergic receptor activation in the MEA on the duration of TI. The results indicate that the activation of the 5HT1A receptors or the blocking of the 5HT2 receptors of the MEA can promote a reduction in fear and/or anxiety, consequently decreasing TI duration in guinea pigs. In contrast, blocking the 5HT1A receptors or activating the 5HT2 receptors in this amygdalar region increased the TI duration, suggesting an increase in fear and/or anxiety. These alterations do not appear to be due to a modification of spontaneous motor activity, which might non-specifically affect TI duration. Thus, these results suggest a distinct role of the 5HT receptors in the MEA in innate fear modulation. PMID:27150816

  11. 5-HT1A receptor agonist-antagonist binding affinity difference as a measure of intrinsic activity in recombinant and native tissue systems

    PubMed Central

    Watson, J; Collin, L; Ho, M; Riley, G; Scott, C; Selkirk, J V; Price, G W

    2000-01-01

    It has been reported that radiolabelled agonist : antagonist binding affinity ratios can predict functional efficacy at several different receptors. This study investigates whether this prediction is true for recombinant and native tissue 5-HT1A receptors. Saturation studies using [3H]-8-OH-DPAT and [3H]-MPPF revealed a single, high affinity site (KD∼1 nM) in HEK293 cells expressing human 5-HT1A receptors and rat cortex. In recombinant cells, [3H]-MPPF labelled 3–4 fold more sites than [3H]-8-OH-DPAT suggesting the presence of more than one affinity state of the receptor. [3H]-Spiperone labelled a single, lower affinity site in HEK293 cells expressing h5-HT1A receptors but did not bind to native tissue 5-HT1A receptors. These data suggest that, in transfected HEK293 cells, human 5-HT1A receptors exist in different affinity states but in native rat cortical tissue the majority of receptors appear to exist in the high agonist affinity state. Receptor agonists inhibited [3H]-MPPF binding from recombinant 5-HT1A receptors in a biphasic manner, whereas antagonists and partial agonists gave monophasic inhibition curves. All compounds displaced [3H]-8-OH-DPAT and [3H]-spiperone binding in a monophasic manner. In rat cortex, all compounds displaced [3H]-MPPF and [3H]-8-OH-DPAT in a monophasic manner. Functional evaluation of compounds, using [35S]-GTPγS binding, produced a range of intrinsic activities from full agonism, displayed by 5-HT and 5-CT to inverse agonism displayed by spiperone. [3H]-8-OH-DPAT : [3H]-MPPF pKi difference correlated well with functional intrinsic activity (r=0.86) as did [3H]-8-OH-DPAT : [3H]-spiperone pKi difference with functional intrinsic activity (r=0.96). Thus agonist : antagonist binding affinity differences may be used to predict functional efficacy at human 5-HT1A receptors expressed in HEK293 cells where both high and low agonist affinity states are present but not at native rat cortical 5-HT1A receptors in which

  12. TREK1 channel blockade induces an antidepressant-like response synergizing with 5-HT1A receptor signaling.

    PubMed

    Ye, Dongqing; Li, Yang; Zhang, Xiangrong; Guo, Fei; Geng, Leiyu; Zhang, Qi; Zhang, Zhijun

    2015-12-01

    Current antidepressants often remain the inadequate efficacy for many depressive patients, which warrant the necessary endeavor to develop the new molecules and targets for treating depression. Recently, the two-pore domain potassium channel TREK1 has been implicated in mood regulation and TREK-1 antagonists could be the promising antidepressant. This study has screened a TREK1 blocker (SID1900) with a satisfactory blood-brain barrier permeation and bioavailability. Electrophysiological research has shown that SID1900 and the previously reported TREK1 blocker (spadin) efficiently blocked TREK-1 current in HEK293 cells and specifically blocked two-pore domain potassium channels in primary-cultured rat hippocampal neurons. SID1900 and spadin induced a significant antidepressant-like response in the rat model of chronic unpredictable mild stress (CUMS). Both two TREK1 blockers substantially increased the firing rate of 5-HT-ergic neurons in the dorsal raphe nuclei (DRN) and PFC of CUMS rats. SID1900 and spadin significantly up-regulated the expression of PKA-pCREB-BDNF signaling in DRN, hippocampus and PFC of CUMS rats, which were enhanced and reversed by a 5-HTR1A agonist (8-OH-DPAT) and antagonist (WAY100635) respectively. The present findings suggested that TREK1 channel blockers posses the substantial antidepressant-like effect and have the potential synergistic effect with 5-HT1A receptor activation through the common CREB-BDNF signal transduction. PMID:26441141

  13. Effect of Dopaminergic D1 Receptors on Plasticity Is Dependent of Serotoninergic 5-HT1A Receptors in L5-Pyramidal Neurons of the Prefrontal Cortex

    PubMed Central

    Meunier, Claire Nicole Jeanne; Callebert, Jacques; Cancela, José-Manuel; Fossier, Philippe

    2015-01-01

    Major depression and schizophrenia are associated with dysfunctions of serotoninergic and dopaminergic systems mainly in the prefrontal cortex (PFC). Both serotonin and dopamine are known to modulate synaptic plasticity. 5-HT1A receptors (5-HT1ARs) and dopaminergic type D1 receptors are highly represented on dendritic spines of layer 5 pyramidal neurons (L5PyNs) in PFC. How these receptors interact to tune plasticity is poorly understood. Here we show that D1-like receptors (D1Rs) activation requires functional 5HT1ARs to facilitate LTP induction at the expense of LTD. Using 129/Sv and 5-HT1AR-KO mice, we recorded post-synaptic currents evoked by electrical stimulation in layer 2/3 after activation or inhibition of D1Rs. High frequency stimulation resulted in the induction of LTP, LTD or no plasticity. The D1 agonist markedly enhanced the NMDA current in 129/Sv mice and the percentage of L5PyNs displaying LTP was enhanced whereas LTD was reduced. In 5-HT1AR-KO mice, the D1 agonist failed to increase the NMDA current and orientated the plasticity towards L5PyNs displaying LTD, thus revealing a prominent role of 5-HT1ARs in dopamine-induced modulation of plasticity. Our data suggest that in pathological situation where 5-HT1ARs expression varies, dopaminergic treatment used for its ability to increase LTP could turn to be less and less effective. PMID:25775449

  14. Chronic mild stress and antidepressant treatment alter 5-HT1A receptor expression by modifying DNA methylation of a conserved Sp4 site

    PubMed Central

    Le François, Brice; Soo, Jeremy; Millar, Anne M.; Daigle, Mireille; Le Guisquet, Anne-Marie; Leman, Samuel; Minier, Frédéric; Belzung, Catherine; Albert, Paul R.

    2015-01-01

    The serotonin 1A receptor (5-HT1A), a critical regulator of the brain serotonergic tone, is implicated in major depressive disorder (MDD) where it is often found to be dys-regulated. However, the extent to which stress and antidepressant treatment impact 5-HT1A expression in adults remains unclear. To address this issue, we subjected adult male BALB/c mice to unpredictable chronic mild stress (UCMS) to induce a depression-like phenotype that was reversed by chronic treatment with the antidepressant imipramine. In prefrontal cortex (PFC) and midbrain tissue, UCMS increased 5-HT1A RNA and protein levels, changes that are expected to decrease the brain serotonergic activity. The stress-induced increase in 5-HT1A expression was paralleled by a specific increase in DNA methylation of the conserved -681 CpG promoter site, located within a Sp1-like element. We show that the -681 CpG site is recognized and repressed by Sp4, the predominant neuronal Sp1-like factor and that Sp4-induced repression is attenuated by DNA methylation, despite a stress-induced increase in PFC Sp4 levels. These results indicate that adult life stress induces DNA methylation of the conserved promoter site, antagonizing Sp4 repression to increase 5-HT1A expression. Chronic imipramine treatment fully reversed the UCMS-induced increase in methylation of the -681 CpG site in the PFC but not midbrain of stressed animals and also increased 5-HT1A expression in the PFC of control animals. Incomplete reversal by imipramine of stress-induced changes in 5-HT1A methylation and expression indicates a persistence of stress vulnerability, and that sustained reversal of behavioral impairments may require additional pathways. PMID:26188176

  15. Chronic mild stress and antidepressant treatment alter 5-HT1A receptor expression by modifying DNA methylation of a conserved Sp4 site.

    PubMed

    Le François, Brice; Soo, Jeremy; Millar, Anne M; Daigle, Mireille; Le Guisquet, Anne-Marie; Leman, Samuel; Minier, Frédéric; Belzung, Catherine; Albert, Paul R

    2015-10-01

    The serotonin 1A receptor (5-HT1A), a critical regulator of the brain serotonergic tone, is implicated in major depressive disorder (MDD) where it is often found to be dys-regulated. However, the extent to which stress and antidepressant treatment impact 5-HT1A expression in adults remains unclear. To address this issue, we subjected adult male BALB/c mice to unpredictable chronic mild stress (UCMS) to induce a depression-like phenotype that was reversed by chronic treatment with the antidepressant imipramine. In prefrontal cortex (PFC) and midbrain tissue, UCMS increased 5-HT1A RNA and protein levels, changes that are expected to decrease the brain serotonergic activity. The stress-induced increase in 5-HT1A expression was paralleled by a specific increase in DNA methylation of the conserved -681 CpG promoter site, located within a Sp1-like element. We show that the -681 CpG site is recognized and repressed by Sp4, the predominant neuronal Sp1-like factor and that Sp4-induced repression is attenuated by DNA methylation, despite a stress-induced increase in PFC Sp4 levels. These results indicate that adult life stress induces DNA methylation of a conserved promoter site, antagonizing Sp4 repression to increase 5-HT1A expression. Chronic imipramine treatment fully reversed the UCMS-induced increase in methylation of the -681 CpG site in the PFC but not midbrain of stressed animals and also increased 5-HT1A expression in the PFC of control animals. Incomplete reversal by imipramine of stress-induced changes in 5-HT1A methylation and expression indicates a persistence of stress vulnerability, and that sustained reversal of behavioral impairments may require additional pathways. PMID:26188176

  16. Dopamine D2 and serotonin 5-HT1A receptor interaction in the context of the effects of antipsychotics - in vitro studies.

    PubMed

    Łukasiewicz, Sylwia; Błasiak, Ewa; Szafran-Pilch, Kinga; Dziedzicka-Wasylewska, Marta

    2016-05-01

    The serotonin 5-HT1A receptor (5-HT1 A R) and dopamine D2 receptor (D2 R) have been implicated as important sites of action in antipsychotics. Several lines of evidence indicate the key role of G protein-coupled receptors (GPCRs) heteromers in pathophysiology of schizophrenia and highlight these complexes as novel drug targets. Because heterodimers can form only on those cells co-expressing constituent receptors, they present a target of high pharmacological specificity in the context of biochemical effects induced by antipsychotic drugs. In studies conducted in the HEK 293 cell line, we demonstrated that 5-HT1 A R and D2 R are able to form constitutive heterodimers, and antipsychotic drugs (clozapine, olanzapine, aripiprazole, and lurasidone) enhanced this process, with clozapine being most effective. Various functional tests (cAMP and IP1 as well as ERK activation) indicated that the drugs had different effects on signal transduction by the heteromer. Interestingly, co-incubation of heterodimer-expressing HEK 293 cells with clozapine and the 5-HT1 A R agonist 8-OH DPAT potentiated post-synaptic effects, especially with respect to ERK activation. Our results indicate that the D2 -5-HT1A complex possesses biochemical, pharmacological, and functional properties distinct from those of mono- and homomers. This result has implications for the development of improved pharmacotherapy for schizophrenia or other disorders (activating the heteromer might be cognitive enhancing, since it is expressed in frontal cortex) through the specific targeting of heterodimers. We reported the constitutive formation of D2 -5-HT1A heteromers, which possess biochemical, pharmacological, and functional properties distinct from those of mono- and homomers, as revealed by antipsychotics action. We also showed that these two receptors are co-expressed in mouse cortical neurons; therefore their potential to heterodimerize may comprise an essential target for the development of novel strategies

  17. The Antidepressant-Like Effect of Fish Oil: Possible Role of Ventral Hippocampal 5-HT1A Post-synaptic Receptor.

    PubMed

    Carabelli, Bruno; Delattre, Ana Marcia; Pudell, Claudia; Mori, Marco Aurélio; Suchecki, Deborah; Machado, Ricardo B; Venancio, Daniel Paulino; Piazzetta, Sílvia Regina; Hammerschmidt, Ivilim; Zanata, Sílvio M; Lima, Marcelo M S; Zanoveli, Janaína Menezes; Ferraz, Anete Curte

    2015-08-01

    The pathophysiology of depression is not completely understood; nonetheless, numerous studies point to serotonergic dysfunction as a possible cause. Supplementation with fish oil rich docosahexaenoic (DHA) and eicosapentaenoic acids (EPA) during critical periods of development produces antidepressant effects by increasing serotonergic neurotransmission, particularly in the hippocampus. In a previous study, the involvement of 5-HT1A receptors was demonstrated and we hypothesized that fish oil supplementation (from conception to weaning) alters the function of post-synaptic hippocampal 5-HT1A receptors. To test this hypothesis, female rats were supplemented with fish oil during habituation, mating, gestation, and lactation. The adult male offspring was maintained without supplementation until 3 months of age, when they were subjected to the modified forced swimming test (MFST) after infusion of vehicle or the selective 5-HT1A antagonist, WAY100635, and frequency of swimming, immobility, and climbing was recorded for 5 min. After the behavioral test, the hippocampi were obtained for quantification of serotonin (5-HT) and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA) and for 5-HT1A receptor expression by Western blotting analysis. Fish oil-supplemented offspring displayed less depressive-like behaviors in the MFST reflected by decreased immobility and increased swimming and higher 5-HT hippocampal levels. Although there was no difference in the expression of hippocampal 5-HT1A receptors, intra-hippocampal infusion of a sub-effective dose of 8-OH-DPAT enhanced the antidepressant effect of fish oil in supplemented animals. In summary, the present findings suggest that the antidepressant-like effects of fish oil supplementation are likely related to increased hippocampal serotonergic neurotransmission and sensitization of hippocampal 5-HT1A receptors. PMID:25139282

  18. The role of 5-HT1A receptors in mediating acute negative effects of antidepressants: implications in pediatric depression.

    PubMed

    Rahn, K A; Cao, Y-J; Hendrix, C W; Kaplin, A I

    2015-01-01

    Acute antidepressant exposure elevates the frequency of impulsive behavior and suicidal thoughts in children and adolescents with major depressive disorder (MDD). Long-term antidepressant treatment, however, is beneficial for pediatric MDD, so it is necessary to explore novel treatments that prevent the potentially dangerous consequences of acute antidepressant initiation. In the present study, a treatment strategy designed to reverse the acute negative behavioral effects of antidepressants was tested in rodents. Co-administration of the 5-HT1A receptor (5-HT1AR) antagonist WAY-100635 reversed the negative effects of acute fluoxetine, a serotonin reuptake inhibitor, but not reboxetine, a norepinephrine reuptake inhibitor, supporting the involvement of 5-HT1AR in mediating the negative consequences of acute selective serotonin reuptake inhibitor (SSRI) treatment. No 5-HT1AR antagonists are currently approved for use in pediatric populations, so alternative strategies should be explored. One such strategy was suggested based on the hypothesis that the rate of 5-HT1AR activation and the subsequent inhibition of serotonergic neuron activity caused by acute SSRI administration is proportional to the loading rate of an antidepressant. Existing pharmacological data were examined, and significant correlations were observed between the half-life of antidepressants and the rate of suicide-related events (SREs). Specifically, antidepressants with longer half-lives have lower rates of SREs. On the basis of these data, novel dosing strategies were developed for five antidepressants to mimic the pharmacological profile of the antidepressant with the longest half-life, fluoxetine. These dosing strategies could be used to decrease the rate of SREs associated with acute antidepressant treatment in pediatric MDD until an improved pharmacological treatment is developed. PMID:25942044

  19. The role of 5-HT1A receptors in mediating acute negative effects of antidepressants: implications in pediatric depression

    PubMed Central

    Rahn, K A; Cao, Y-J; Hendrix, C W; Kaplin, A I

    2015-01-01

    Acute antidepressant exposure elevates the frequency of impulsive behavior and suicidal thoughts in children and adolescents with major depressive disorder (MDD). Long-term antidepressant treatment, however, is beneficial for pediatric MDD, so it is necessary to explore novel treatments that prevent the potentially dangerous consequences of acute antidepressant initiation. In the present study, a treatment strategy designed to reverse the acute negative behavioral effects of antidepressants was tested in rodents. Co-administration of the 5-HT1A receptor (5-HT1AR) antagonist WAY-100635 reversed the negative effects of acute fluoxetine, a serotonin reuptake inhibitor, but not reboxetine, a norepinephrine reuptake inhibitor, supporting the involvement of 5-HT1AR in mediating the negative consequences of acute selective serotonin reuptake inhibitor (SSRI) treatment. No 5-HT1AR antagonists are currently approved for use in pediatric populations, so alternative strategies should be explored. One such strategy was suggested based on the hypothesis that the rate of 5-HT1AR activation and the subsequent inhibition of serotonergic neuron activity caused by acute SSRI administration is proportional to the loading rate of an antidepressant. Existing pharmacological data were examined, and significant correlations were observed between the half-life of antidepressants and the rate of suicide-related events (SREs). Specifically, antidepressants with longer half-lives have lower rates of SREs. On the basis of these data, novel dosing strategies were developed for five antidepressants to mimic the pharmacological profile of the antidepressant with the longest half-life, fluoxetine. These dosing strategies could be used to decrease the rate of SREs associated with acute antidepressant treatment in pediatric MDD until an improved pharmacological treatment is developed. PMID:25942044

  20. Agonist and antagonist bind differently to 5-HT1A receptors during Alzheimer's disease: A post-mortem study with PET radiopharmaceuticals.

    PubMed

    Vidal, Benjamin; Sebti, Johan; Verdurand, Mathieu; Fieux, Sylvain; Billard, Thierry; Streichenberger, Nathalie; Troakes, Claire; Newman-Tancredi, Adrian; Zimmer, Luc

    2016-10-01

    PET imaging studies using 5-HT1A receptor radiotracers show a decreased density of this receptor in hippocampi of patients with Alzheimer's disease (AD) at advanced stages. However, current 5-HT1A receptor radiopharmaceuticals used in neuroimaging are antagonists, thought to bind to 5-HT1A receptors in different functional states (i.e., both the one which displays high affinity for agonists and is thought to mediate receptor activation, as well as the state which has low affinity for agonists). Comparing the PET imaging obtained using an agonist radiotracer, which binds selectively to functional receptors, with the PET imaging obtained using an antagonist radiotracer would therefore provide original information on 5-HT1A receptor impairment during AD. Quantitative autoradiography using [(18)F]F13640 and [(18)F]MPPF, a 5-HT1A agonist and antagonist, respectively, was measured in hippocampi of patients with AD (n = 25, at different Braak stages) and control subjects (n = 9). The neuronal density was measured in the same tissues by NeuN immunohistochemistry. The specific binding of both radiotracers was determined by addition of WAY-100635, a selective 5-HT1A receptor antagonist. The autoradiography distribution of both 5-HT1A PET radiotracers varied across hippocampus regions. The highest binding density was in the pyramidal layer of CA1. Incubation with Gpp(NH)p, a non-hydrolysable analogue of GTP, reduced significantly [(18)F]F13640 binding in hippocampal regions, confirming its preferential interaction with G-coupled receptors, and slightly increased [(18)F]MPPF binding. In the CA1 subfield, [(18)F]F13640 binding was significantly decreased at Braak stages I/II (-19%), Braak stages III/IV (-23%), and Braak stages V/VI (-36%) versus control. In contrast, [(18)F]MPPF binding was statistically reduced only at the most advanced Braak stages V/VI compared to control (-33%). Since [(18)F]F13640 and [(18)F]MPPF can be used in vivo in humans, this

  1. Similar anxiolytic effects of agonists targeting serotonin 5-HT1A or cannabinoid CB receptors on zebrafish behavior in novel environments.

    PubMed

    Connors, Kristin A; Valenti, Theodore W; Lawless, Kelly; Sackerman, James; Onaivi, Emmanuel S; Brooks, Bryan W; Gould, Georgianna G

    2014-06-01

    The discovery that selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine are present and bioaccumulate in aquatic ecosystems have spurred studies of fish serotonin transporters (SERTs) and changes in SSRI-sensitive behaviors as adverse outcomes relevant for risk assessment. Many SSRIs also act at serotonin 5-HT1A receptors. Since capitalizing on this action may improve treatments of clinical depression and other psychiatric disorders, novel multimodal drugs that agonize 5-HT1A and block SERT were introduced. In mammals both 5-HT1A and CB agonists, such as buspirone and WIN55,212-2, reduce anxious behaviors. Immunological and behavioral evidence suggests that 5-HT1A-like receptors may function similarly in zebrafish (Danio rerio), yet their pharmacological properties are not well characterized. Herein we compared the density of [(3)H] 8-hydroxy-2-di-n-propylamino tetralin (8-OH-DPAT) binding to 5-HT1A-like sites in the zebrafish brain, to that of similarly Gαi/o-coupled cannabinoid receptors. [(3)H] 8-OH-DPAT specific binding was 176±8, 275±32, and 230±36fmol/mg protein in the hypothalamus, optic tectum, and telencephalon. [(3)H] WIN55,212-2 binding density was higher in those same brain regions at 6±0.3, 5.5±0.4 and 7.3±0.3pm/mg protein. The aquatic light-dark plus maze was used to examine behavioral effects of 5-HT1A and CB receptor agonists on zebrafish novelty-based anxiety. With acute exposure to the 5-HT1A partial-agonist buspirone (50mg/L), or dietary exposure to WIN55,212-2 (7μg/week) zebrafish spent more time in and/or entered white arms more often than controls (p<0.05). Acute exposure to WIN55,212-2 at 0.5-50mg/L reduced mobility. These behavioral findings suggest that azipirones, like cannabinoid agonists, have anxiolytic and/or sedative properties on fish in novel environments. These observations highlight the need to consider potential ecological risks of azapirones and multimodal antidepressants in the future. PMID:24411165

  2. Similar anxiolytic effects of agonists targeting serotonin 5-HT1A or cannabinoid CB receptors on zebrafish behavior in novel environments

    PubMed Central

    Connors, Kristin A.; Valenti, Theodore W.; Lawless, Kelly; Sackerman, James; Onaivi, Emmanuel S.; Brooks, Bryan W.; Gould, Georgianna G.

    2014-01-01

    The discovery that selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine are present and bioaccumulate in aquatic ecosystems have spurred studies of fish serotonin transporters (SERTs) and changes in SSRI-sensitive behaviors as adverse outcomes relevant for risk assessment. Many SSRIs also act at serotonin 5-HT1A receptors. Since capitolizing on this action may improve treatments of clinical depression and other psychiatric disorders, novel multimodal drugs that agonize 5-HT1A and block SERT were introduced. In mammals both 5-HT1A and CB agonists, such as buspirone and WIN55,212-2, reduce anxious behaviors. Immunological and behavioral evidence suggests that 5-HT1A-like receptors may function similarly in zebrafish (Danio rerio), yet their pharmacological properties are not well characterized. Herein we compared the density of [3H] 8-hydroxy-2-di-n-propylamino tetralin (8-OH-DPAT) binding to 5-HT1A-like sites in the zebrafish brain, to that of simalarly Gαi/o-coupled cannabinoid receptors. [3H] 8-OH-DPAT specific binding was 176 ± 8, 275 ± 32, and 230 ± 36 fmol/mg protein in the hypothalamus, optic tectum, and telencephalon. [3H] WIN55,212-2 binding density was higher in those same brain regions at 6 ± 0.3, 5.5 ± 0.4 and 7.3 ± 0.3 pm/mg protein. The aquatic light-dark plus maze was used to examine behavioral effects of 5-HT1A and CB receptor agonists on zebrafish novelty-based anxiety. With acute exposure to the 5-HT1A partial-agonist buspirone (50 mg/L), or dietary exposure to WIN55,212-2 (7 μg/week) zebrafish spent more time in and/or entered white arms more often than controls (p < 0.05). Acute exposure to WIN55,212-2 at 0.5-50 mg/L, reduced mobility. These behavioral findings suggest that azipirones, like cannabinoid agonists, have anxiolytic and/or sedative properties on fish in novel environments. These observations highlight the need to consider potential ecological risks of azapirones and multimodal antidepressants in the future. PMID

  3. Density and Function of Central Serotonin (5-HT) Transporters, 5-HT1A and 5-HT2A Receptors, and Effects of their Targeting on BTBR T+tf/J Mouse Social Behavior

    PubMed Central

    Gould, Georgianna G.; Hensler, Julie G.; Burke, Teresa F.; Benno, Robert H.; Onaivi, Emmanuel S.; Daws, Lynette C.

    2010-01-01

    BTBR mice are potentially useful tools for autism research because their behavior parallels core social interaction impairments and restricted-repetitive behaviors. Altered regulation of central serotonin (5-HT) neurotransmission may underlie such behavioral deficits. To test this, we compared 5-HT transporter (SERT), 5-HT1A and 5-HT2A receptor densities among BTBR and C57 strains. Autoradiographic [3H] cyanoimipramine (1nM) binding to SERT was 20–30% lower throughout the adult BTBR brain as compared to C57BL/10J mice. In hippocampal membrane homogenates [3H] citalopram maximal binding (Bmax) to SERT was 95 ± 13 fmol/mg protein in BTBR and 171 ± 20 fmol/mg protein in C57BL/6J mice, and the BTBR dissociation constant (KD) was 2 ± 0.3 nM vs. 1.1 ± 0.2 in C57BL/6J mice. Hippocampal 5-HT1A and 5-HT2A receptor binding was similar among strains. However, 8-OH-DPAT-stimulated [35S] GTPγS binding in the BTBR hippocampal CA1 region was 28% higher, indicating elevated 5-HT1A capacity to activate G-proteins. In BTBR mice, the SERT blocker, fluoxetine (10 mg/kg) and the 5-HT1A receptor partial-agonist, buspirone (2 mg/kg) enhanced social interactions. The D2/5-HT2 receptor antagonist, risperidone (0.1 mg/kg) reduced marble burying but failed to improve sociability. Overall, altered SERT and/or 5-HT1A functionality in hippocampus could contribute to the relatively low sociability of BTBR mice. PMID:21070242

  4. Potentiating action of MKC-242, a selective 5-HT1A receptor agonist, on the photic entrainment of the circadian activity rhythm in hamsters

    PubMed Central

    Moriya, T; Yoshinobu, Y; Ikeda, M; Yokota, S; Akiyama, M; Shibata, S

    1998-01-01

    Serotonergic projections from the midbrain raphe nuclei to the suprachiasmatic nuclei (SCN) are known to regulate the photic entrainment of circadian clocks. However, it is not known which 5-hydroxytryptamine (5-HT) receptor subtypes are involved in the circadian regulation. In order to verify the role of 5-HT1A receptors, we examined the effects of 5-{3-[((2S)-1,4-benzodioxan-2-ylmethyl)amino]propoxy}-1,3-benzodioxole HCl (MKC-242), a selective 5-HT1A receptor agonist, on photic entrainment of wheel-running circadian rhythms of hamsters.MKC-242 (3 mg kg−1, i.p.) significantly accelerated the re-entrainment of wheel-running rhythms to a new 8 h delayed or advanced light-dark cycle.MKC-242 (3 mg kg−1, i.p.) also potentiated the phase advance of the wheel-running rhythm produced by low (5 lux) or high (60 lux) intensity light pulses. In contrast, 8-hydroxy-dipropylaminotetralin (8-OH-DPAT)(5 mg kg−1, i.p.), a well known 5-HT1A/5-HT7 receptor agonist, only suppressed low intensity (5 lux) light-induced phase advances.The potentiating actions of MKC-242 on light pulse-induced phase advances were observed even when injected 20 or 60 min after the light exposure.The potentiating action of MKC-242 was antagonized by WAY100635, a selective 5-HT1A receptor blocker, but not by ritanserin, a 5-HT2/5-HT7 receptor blocker, indicating that MKC-242 is activating 5-HT1A receptors.Light pulse-induced c-fos expression in the SCN and the intergeniculate leaflet (IGL) were unaffected by MKC-242 (3 mg kg−1, i.p.).HPLC analysis demonstrated that MKC-242 (3 mg kg−1, i.p.) decreased the 5-HIAA content in the SCN.The present results suggest that presynaptic 5-HT1A receptor activation may be involved in the potentiation of photic entrainment by MKC-242 in hamsters. PMID:9863658

  5. Potentiating action of MKC-242, a selective 5-HT1A receptor agonist, on the photic entrainment of the circadian activity rhythm in hamsters.

    PubMed

    Moriya, T; Yoshinobu, Y; Ikeda, M; Yokota, S; Akiyama, M; Shibata, S

    1998-11-01

    Serotonergic projections from the midbrain raphe nuclei to the suprachiasmatic nuclei (SCN) are known to regulate the photic entrainment of circadian clocks. However, it is not known which 5-hydroxytryptamine (5-HT) receptor subtypes are involved in the circadian regulation. In order to verify the role of 5-HT1A receptors, we examined the effects of 5-¿3-[((2S)-1,4-benzodioxan-2-ylmethyl)amino]-propoxy¿-1,3-b enzodioxole HCl (MKC-242), a selective 5-HT1A receptor agonist, on photic entrainment of wheel-running circadian rhythms of hamsters. MKC-242 (3 mg kg(-1), i.p.) significantly accelerated the re-entrainment of wheel-running rhythms to a new 8 h delayed or advanced light-dark cycle. MKC-242 (3 mg kg(-1), i.p.) also potentiated the phase advance of the wheel-running rhythm produced by low (5 lux) or high (60 lux) intensity light pulses. In contrast, 8-hydroxydipropylaminotetralin (8-OH-DPAT)(5 mg kg(-1), i.p.), a well known 5-HT1A/5-HT7 receptor agonist, only suppressed low intensity (5 lux) light-induced phase advances. The potentiating actions of MKC-242 on light pulse-induced phase advances were observed even when injected 20 or 60 min after the light exposure. The potentiating action of MKC-242 was antagonized by WAY100635, a selective 5-HT1A receptor blocker, but not by ritanserin, a 5-HT2/5-HT7 receptor blocker, indicating that MKC-242 is activating 5-HT1A receptors. Light pulse-induced c-fos expression in the SCN and the intergeniculate leaflet (IGL) were unaffected by MKC-242 (3 mg kg(-1), i.p.). HPLC analysis demonstrated that MKC-242 (3 mg kg(-1), i.p.) decreased the 5-HIAA content in the SCN. The present results suggest that presynaptic 5-HT1A receptor activation may be involved in the potentiation of photic entrainment by MKC-242 in hamsters. PMID:9863658

  6. Evaluation of the ocular hypotensive response of serotonin 5-HT1A and 5-HT2 receptor ligands in conscious ocular hypertensive cynomolgus monkeys.

    PubMed

    May, Jesse A; McLaughlin, Marsha A; Sharif, Najam A; Hellberg, Mark R; Dean, Thomas R

    2003-07-01

    Published investigations of serotonin-1A (5-hydroxytryptamine1A; 5-HT1A) receptor agonists and serotonin-2A (5-hydroxytryptamine2A; 5-HT2A) receptor antagonists in nonprimate species provide conflicting results with regard to their intraocular pressure-lowering efficacy. Thus, their therapeutic utility in the treatment of human glaucoma has been confusing. We evaluated the effect of selected 5-HT1A agonists and 5-HT2A receptor antagonists on intraocular pressure in a nonhuman primate model, the conscious cynomolgus monkey with laser-induced ocular hypertension. Neither selective 5-HT1A agonists [e.g., R-8-hydroxy-2-(di-n-propylamino)tetralin and flesinoxan] nor selective 5-HT2 receptor antagonists [e.g., R-(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl]-4-piperidinemethanol (M-100907) and 6-chloro-2,3-dihydro-5-methyl-N-[6-[(2-methyl-3-pyridinyl)oxy]-3-pyridinyl]-1H-indole-1-carboxamide (SB-242084)] lowered intraocular pressure in the primate model following topical ocular administration. However, compounds that function as agonists at both the 5-HT1A and 5-HT2 receptors were found to effectively lower intraocular pressure in the model: 5-hydroxy-alpha-methyltryptamine, 5-methoxy-alpha-methyltryptamine, 5-hydroxy-N,N-dimethyltryptamine (bufotenine), and 5-methoxy-N,N-dimethyltryptamine. Furthermore, the selective 5-HT2 receptor agonist R-(-)-1-(4-iodo-2,5-dimethoxyphenyl)-2-aminopropane lowered intraocular pressure in the primate model, demonstrating a pharmacological response associated with activation of the 5-HT2 receptor. These observations suggest that compounds that function as efficient agonists at 5-HT2 receptors should be considered as potential agents for the control of intraocular pressure in the treatment of ocular hypertension and glaucoma in humans. PMID:12676887

  7. Effects of the antidepressant fluoxetine on the subcellular localization of 5-HT1A receptors and SERT

    PubMed Central

    Descarries, Laurent; Riad, Mustaph

    2012-01-01

    Serotonin (5-HT) 5-HT1A autoreceptors (5-HT1AautoR) and the plasmalemmal 5-HT transporter (SERT) are key elements in the regulation of central 5-HT function and its responsiveness to antidepressant drugs. Previous immuno-electron microscopic studies in rats have demonstrated an internalization of 5-HT1AautoR upon acute administration of the selective agonist 8-OH-DPAT or the selective serotonin reuptake inhibitor antidepressant fluoxetine. Interestingly, it was subsequently shown in cats as well as in humans that this internalization is detectable by positron emission tomography (PET) imaging with the 5-HT1A radioligand [18F]MPPF. Further immunocytochemical studies also revealed that, after chronic fluoxetine treatment, the 5-HT1AautoR, although present in normal density on the plasma membrane of 5-HT cell bodies and dendrites, do not internalize when challenged with 8-OH-DPAT. Resensitization requires several weeks after discontinuation of the chronic fluoxetine treatment. In contrast, the SERT internalizes in both the cell bodies and axon terminals of 5-HT neurons after chronic but not acute fluoxetine treatment. Moreover, the total amount of SERT immunoreactivity is then reduced, suggesting that SERT is not only internalized, but also degraded in the course of the treatment. Ongoing and future investigations prompted by these finding are briefly outlined by way of conclusion. PMID:22826342

  8. Towards novel 5-HT7versus 5-HT1A receptor ligands among LCAPs with cyclic amino acid amide fragments: design, synthesis, and antidepressant properties. Part II.

    PubMed

    Canale, Vittorio; Kurczab, Rafał; Partyka, Anna; Satała, Grzegorz; Witek, Jagna; Jastrzębska-Więsek, Magdalena; Pawłowski, Maciej; Bojarski, Andrzej J; Wesołowska, Anna; Zajdel, Paweł

    2015-03-01

    A 26-membered library of novel long-chain arylpiperazines, which contained primary and tertiary amides of cyclic amino acids (proline and 1,2,3,4-tetrahydroisoquinoline-3-carboxamide) in the terminal fragment was synthesized and biologically evaluated for binding affinity for 5-HT7 and 5-HT1A receptors. Docking studies confirmed advantages of Tic-amide over Pro-amide fragment for interaction with 5-HT7 receptors. Selected compounds 32 and 28, which behaved as 5-HT7Rs antagonist and 5-HT1A partial agonist, respectively, produced antidepressant-like effects in the forced swim test in mice after acute treatment in doses of 10 mg/kg (32) and 1.25 mg/kg (28). Compound 32 reduced immobility in a manner similar to the selective 5-HT7 antagonist SB-269970. PMID:25555143

  9. Long-Term Citalopram Treatment Alters the Stress Responses of the Cortical Dopamine and Noradrenaline Systems: the Role of Cortical 5-HT1A Receptors

    PubMed Central

    Kaneko, Fumi; Kishikawa, Yuki; Hanada, Yuuki; Yamada, Makiko; Kakuma, Tatsuyuki; Kawahara, Hiroshi; Nishi, Akinori

    2016-01-01

    Background: Cortical dopamine and noradrenaline are involved in the stress response. Citalopram, a selective serotonin reuptake inhibitor, has direct and indirect effects on the serotonergic system. Furthermore, long-term treatment with citalopram affects the dopamine and noradrenaline systems, which could contribute to the therapeutic action of antidepressants. Methods: The effects of long-term treatment with citalopram on the responses of the dopamine and noradrenaline systems in the rat prefrontal cortex to acute handling stress were evaluated using in vivo microdialysis. Results: Acute handling stress increased dopamine and noradrenaline levels in the prefrontal cortex. The dopamine and noradrenaline responses were suppressed by local infusion of a 5-HT1A receptor agonist, 7-(Dipropylamino)-5,6,7,8-tetrahydronaphthalen-1-ol;hydrobromide, into the prefrontal cortex. The dopamine response was abolished by long-term treatment with citalopram, and the abolished dopamine response was reversed by local infusion of a 5-HT1A receptor antagonist, (Z)-but-2-enedioic acid;N-[2-[4-(2-methoxyphenyl)piperazin-1-yl]ethyl]-N-pyridin-2-ylcyclohexanecarboxamide into the prefrontal cortex. On the other hand, long-term treatment with citalopram reduced the basal noradrenaline levels (approximately 40% of the controls), but not the basal dopamine levels. The noradrenaline response was maintained despite the low basal noradrenaline levels. Signaling from the 5-HT1A receptors and α2-adrenoceptors was not involved in the decrease in the basal noradrenaline levels but partially affected the noradrenaline response. Conclusions: Chronic citalopram treatment differentially suppresses the dopamine and noradrenaline systems in the prefrontal cortex, and the dopamine stress response was preferentially controlled by upregulating 5-HT1A receptor signaling. Our findings provide insight into how antidepressants modulate the dopamine and noradrenaline systems to overcome acute stress. PMID

  10. Deletion of GIRK2 Subunit of GIRK Channels Alters the 5-HT1A Receptor-Mediated Signaling and Results in a Depression-Resistant Behavior

    PubMed Central

    Llamosas, Nerea; Bruzos-Cidón, Cristina; Rodríguez, José Julio; Ugedo, Luisa

    2015-01-01

    Background: Targeting dorsal raphe 5-HT1A receptors, which are coupled to G-protein inwardly rectifying potassium (GIRK) channels, has revealed their contribution not only to behavioral and functional aspects of depression but also to the clinical response to its treatment. Although GIRK channels containing GIRK2 subunits play an important role controlling excitability of several brain areas, their impact on the dorsal raphe activity is still unknown. Thus, the goal of the present study was to investigate the involvement of GIRK2 subunit-containing GIRK channels in depression-related behaviors and physiology of serotonergic neurotransmission. Methods: Behavioral, functional, including in vivo extracellular recordings of dorsal raphe neurons, and neurogenesis studies were carried out in wild-type and GIRK2 mutant mice. Results: Deletion of the GIRK2 subunit promoted a depression-resistant phenotype and determined the behavioral response to the antidepressant citalopram without altering hippocampal neurogenesis. In dorsal raphe neurons of GIRK2 knockout mice, and also using GIRK channel blocker tertiapin-Q, the basal firing rate was higher than that obtained in wild-type animals, although no differences were observed in other firing parameters. 5-HT1A receptors were desensitized in GIRK2 knockout mice, as demonstrated by a lower sensitivity of dorsal raphe neurons to the inhibitory effect of the 5-HT1A receptor agonist, 8-OH-DPAT, and the antidepressant citalopram. Conclusions: Our results indicate that GIRK channels formed by GIRK2 subunits determine depression-related behaviors as well as basal and 5-HT1A receptor-mediated dorsal raphe neuronal activity, becoming alternative therapeutic targets for psychiatric diseases underlying dysfunctional serotonin transmission. PMID:25956878

  11. Cannabidiol attenuates haloperidol-induced catalepsy and c-Fos protein expression in the dorsolateral striatum via 5-HT1A receptors in mice.

    PubMed

    Sonego, Andreza B; Gomes, Felipe V; Del Bel, Elaine A; Guimaraes, Francisco S

    2016-08-01

    Cannabidiol (CBD) is a major non-psychoactive compound from Cannabis sativa plant. Given that CBD reduces psychotic symptoms without inducing extrapyramidal motor side-effects in animal models and schizophrenia patients, it has been proposed to act as an atypical antipsychotic. In addition, CBD reduced catalepsy induced by drugs with distinct pharmacological mechanisms, including the typical antipsychotic haloperidol. To further investigate this latter effect, we tested whether CBD (15-60mg/kg) would attenuate the catalepsy and c-Fos protein expression in the dorsal striatum induced by haloperidol (0.6mg/kg). We also evaluated if these effects occur through the facilitation of 5-HT1A receptor-mediated neurotransmission. For this, male Swiss mice were treated with CBD and haloperidol systemically and then subjected to the catalepsy test. Independent groups of animals were also treated with the 5-HT1A receptor antagonist WAY100635 (0.1mg/kg). As expected, haloperidol induced catalepsy throughout the experiments, an effect that was prevented by systemic CBD treatment 30min before haloperidol administration. Also, CBD, administered 2.5h after haloperidol, reversed haloperidol-induced catalepsy. Haloperidol also increased c-Fos protein expression in the dorsolateral striatum, an effect attenuated by previous CBD administration. CBD effects on catalepsy and c-Fos protein expression induced by haloperidol were blocked by the 5-HT1A receptor antagonist. We also evaluated the effects of CBD (60nmol) injection into the dorsal striatum on haloperidol-induced catalepsy. Similar to systemic administration, this treatment reduced catalepsy induced by haloperidol. Altogether, these results suggest that CBD acts in the dorsal striatum to improve haloperidol-induced catalepsy via postsynaptic 5-HT1A receptors. PMID:27131780

  12. Cannabidiol induces rapid-acting antidepressant-like effects and enhances cortical 5-HT/glutamate neurotransmission: role of 5-HT1A receptors.

    PubMed

    Linge, Raquel; Jiménez-Sánchez, Laura; Campa, Leticia; Pilar-Cuéllar, Fuencisla; Vidal, Rebeca; Pazos, Angel; Adell, Albert; Díaz, Álvaro

    2016-04-01

    Cannabidiol (CBD), the main non-psychotomimetic component of marihuana, exhibits anxiolytic-like properties in many behavioural tests, although its potential for treating major depression has been poorly explored. Moreover, the mechanism of action of CBD remains unclear. Herein, we have evaluated the effects of CBD following acute and chronic administration in the olfactory bulbectomy mouse model of depression (OBX), and investigated the underlying mechanism. For this purpose, we conducted behavioural (open field and sucrose preference tests) and neurochemical (microdialysis and autoradiography of 5-HT1A receptor functionality) studies following treatment with CBD. We also assayed the pharmacological antagonism of the effects of CBD to dissect out the mechanism of action. Our results demonstrate that CBD exerts fast and maintained antidepressant-like effects as evidenced by the reversal of the OBX-induced hyperactivity and anhedonia. In vivo microdialysis revealed that the administration of CBD significantly enhanced serotonin and glutamate levels in vmPFCx in a different manner depending on the emotional state and the duration of the treatment. The potentiating effect upon neurotransmitters levels occurring immediately after the first injection of CBD might underlie the fast antidepressant-like actions in OBX mice. Both antidepressant-like effect and enhanced cortical 5-HT/glutamate neurotransmission induced by CBD were prevented by 5-HT1A receptor blockade. Moreover, adaptive changes in pre- and post-synaptic 5-HT1A receptor functionality were also found after chronic CBD. In conclusion, our findings indicate that CBD could represent a novel fast antidepressant drug, via enhancing both serotonergic and glutamate cortical signalling through a 5-HT1A receptor-dependent mechanism. PMID:26711860

  13. Escitalopram attenuates β-amyloid-induced tau hyperphosphorylation in primary hippocampal neurons through the 5-HT1A receptor mediated Akt/GSK-3β pathway

    PubMed Central

    Gong, Wei-Gang; Wu, Di; Tang, Xiang; Li, Xiao-Li; Wu, Fang-Fang; Bai, Feng; Xu, Lin; Zhang, Zhi-Jun

    2016-01-01

    Tau hyperphosphorylation is an important pathological feature of Alzheimer's disease (AD). To investigate whether escitalopram could inhibit amyloid-β (Aβ)-induced tau hyperphosphorylation and the underlying mechanisms, we treated the rat primary hippocampal neurons with Aβ1-42 and examined the effect of escitalopram on tau hyperphosphorylation. Results showed that escitalopram decreased Aβ1–42-induced tau hyperphosphorylation. In addition, escitalopram activated the Akt/GSK-3β pathway, and the PI3K inhibitor LY294002 blocked the attenuation of tau hyperphosphorylation induced by escitalopram. Moreover, the 5-HT1A receptor agonist 8-OH-DPAT also activated the Akt/GSK-3β pathway and decreased Aβ1-42-induced tau hyperphosphorylation. Furthermore, the 5-HT1A receptor antagonist WAY-100635 blocked the activation of Akt/GSK-3β pathway and the attenuation of tau hyperphosphorylation induced by escitalopram. Finally, escitalopram improved Aβ1–42 induced impairment of neurite outgrowth and spine density, and reversed Aβ1–42 induced reduction of synaptic proteins. Our results demonstrated that escitalopram attenuated Aβ1–42-induced tau hyperphosphorylation in primary hippocampal neurons through the 5-HT1A receptor mediated Akt/GSK-3β pathway. PMID:26950279

  14. Escitalopram attenuates β-amyloid-induced tau hyperphosphorylation in primary hippocampal neurons through the 5-HT1A receptor mediated Akt/GSK-3β pathway.

    PubMed

    Wang, Yan-Juan; Ren, Qing-Guo; Gong, Wei-Gang; Wu, Di; Tang, Xiang; Li, Xiao-Li; Wu, Fang-Fang; Bai, Feng; Xu, Lin; Zhang, Zhi-Jun

    2016-03-22

    Tau hyperphosphorylation is an important pathological feature of Alzheimer's disease (AD). To investigate whether escitalopram could inhibit amyloid-β (Aβ)-induced tau hyperphosphorylation and the underlying mechanisms, we treated the rat primary hippocampal neurons with Aβ1-42 and examined the effect of escitalopram on tau hyperphosphorylation. Results showed that escitalopram decreased Aβ1-42-induced tau hyperphosphorylation. In addition, escitalopram activated the Akt/GSK-3β pathway, and the PI3K inhibitor LY294002 blocked the attenuation of tau hyperphosphorylation induced by escitalopram. Moreover, the 5-HT1A receptor agonist 8-OH-DPAT also activated the Akt/GSK-3β pathway and decreased Aβ1-42-induced tau hyperphosphorylation. Furthermore, the 5-HT1A receptor antagonist WAY-100635 blocked the activation of Akt/GSK-3β pathway and the attenuation of tau hyperphosphorylation induced by escitalopram. Finally, escitalopram improved Aβ1-42 induced impairment of neurite outgrowth and spine density, and reversed Aβ1-42 induced reduction of synaptic proteins. Our results demonstrated that escitalopram attenuated Aβ1-42-induced tau hyperphosphorylation in primary hippocampal neurons through the 5-HT1A receptor mediated Akt/GSK-3β pathway. PMID:26950279

  15. Vilazodone does not inhibit sexual behavior in male rats in contrast to paroxetine: A role for 5-HT1A receptors?

    PubMed

    Oosting, Ronald S; Chan, Johnny S W; Olivier, Berend; Banerjee, Pradeep

    2016-08-01

    Vilazodone (VLZ) is a selective serotonin reuptake inhibitor (SSRI) and 5-HT1A receptor partial agonist approved for the treatment of major depressive disorder in adults. In preclinical studies, VLZ had significantly lower sexual side effects than SSRIs and reduced serotonin transporter (SERT) levels in forebrain regions. In the current study, once-daily paroxetine (PAR, 10 mg/kg), VLZ (10 mg/kg), PAR + buspirone (BUS, 3 mg/kg; a 5-HT1A partial agonist), or vehicle (VEH) was administered to male rats for 2 weeks then switched for 7 days (eg, PAR switched to VLZ, PAR + BUS, or VEH). Sexual behavior (eg, ejaculation frequency and latency) was evaluated 1-hr postdose on days 1, 7, 14, and 21. After 2 weeks, treatment with PAR but not VLZ resulted in a significant decrease in sexual behavior. In a 30-min test, the range of ejaculation frequency was 3.08-3.5 with VLZ and 1.00-1.92 with PAR (P < 0.05 vs VEH). After switching from PAR to VEH, PAR + BUS, or VEH, sexual behaviors were normalized to control levels. In contrast, the switch from VLZ to PAR resulted in reduced sexual behaviors. This preclinical study showed that unlike PAR, an SSRI with no 5-HT1A receptor activity, initial treatment with VLZ did not result in sexual side effects at therapeutically relevant doses. Results in male rats switched from PAR to VLZ or PAR + BUS strongly suggest that activation of 5-HT1A receptors may mitigate the sexual side effects associated with conventional SSRIs. PMID:27040795

  16. Anxiolytic-Like Effects of Chrysanthemum indicum Aqueous Extract in Mice: Possible Involvement of GABAA Receptors and 5-HT1A Receptors.

    PubMed

    Hong, Sa-Ik; Kwon, Seung-Hwan; Kim, Min-Jung; Ma, Shi-Xun; Kwon, Je-Won; Choi, Seung-Min; Choi, Soo-Im; Kim, Sun-Yeou; Lee, Seok-Yong; Jang, Choon-Gon

    2012-07-01

    Chrysanthemum indicum Linne is an ancient herbal medicine used to treat bone and muscle deterioration, ocular infl ammation, headache, and anxiety in Korea, China, and Japan. Furthermore, tea derived from Chrysanthemum indicum Linne has been used to treat anxiety by facilitating relaxation and curing insomnia. However, no reports exist on the anxiolytic-like effects of Chrysanthemum indicum Linne water extract (CWE) in mice. In the present study, we investigated the anxiolytic-like effects of CWE using the elevated plus-maze (EPM) test in mice. CWE, at a dose of 500 mg/kg (p.o.), signifi cantly increased the time spent in the open arms of the EPM compared to a vehicle-injected control group. Moreover, the effect of CWE (500 mg/kg) was blocked by bicuculline (a selective GABAA receptor antagonist) and WAY 100635 (a selective 5-HT1A receptor antagonist). Taken together, these fi ndings suggest that the anxiolytic-like effects of CWE might be mediated by the GABAA receptor and the 5-HT1A receptor. PMID:24009829

  17. Combined serotonin (5-HT)1A agonism, 5-HT(2A) and dopamine D₂ receptor antagonism reproduces atypical antipsychotic drug effects on phencyclidine-impaired novel object recognition in rats.

    PubMed

    Oyamada, Yoshihiro; Horiguchi, Masakuni; Rajagopal, Lakshmi; Miyauchi, Masanori; Meltzer, Herbert Y

    2015-05-15

    Subchronic administration of an N-methyl-D-aspartate receptor (NMDAR) antagonist, e.g. phencyclidine (PCP), produces prolonged impairment of novel object recognition (NOR), suggesting they constitute a hypoglutamate-based model of cognitive impairment in schizophrenia (CIS). Acute administration of atypical, e.g. lurasidone, but not typical antipsychotic drugs (APDs), e.g. haloperidol, are able to restore NOR following PCP (acute reversal model). Furthermore, atypical APDs, when co-administered with PCP, have been shown to prevent development of NOR deficits (prevention model). Most atypical, but not typical APDs, are more potent 5-HT(2A) receptor inverse agonists than dopamine (DA) D2 antagonists, and have been shown to enhance cortical and hippocampal efflux and to be direct or indirect 5-HT(1A) agonists in vivo. To further clarify the importance of these actions to the restoration of NOR by atypical APDs, sub-effective or non-effective doses of combinations of the 5-HT(1A) partial agonist (tandospirone), the 5-HT(2A) inverse agonist (pimavanserin), or the D2 antagonist (haloperidol), as well as the combination of all three agents, were studied in the acute reversal and prevention PCP models of CIS. Only the combination of all three agents restored NOR and prevented the development of PCP-induced deficit. Thus, this triple combination of 5-HT(1A) agonism, 5-HT(2A) antagonism/inverse agonism, and D2 antagonism is able to mimic the ability of atypical APDs to prevent or ameliorate the PCP-induced NOR deficit, possibly by stimulating signaling cascades from D1 and 5-HT(1A) receptor stimulation, modulated by D2 and 5-HT(2A) receptor antagonism. PMID:25448429

  18. Tandospirone, a 5-HT1A partial agonist, ameliorates aberrant lactate production in the prefrontal cortex of rats exposed to blockade of N-methy-D-aspartate receptors; Toward the therapeutics of cognitive impairment of schizophrenia

    PubMed Central

    Uehara, Takashi; Matsuoka, Tadasu; Sumiyoshi, Tomiki

    2014-01-01

    Rationale: Augmentation therapy with serotonin-1A (5-HT1A) receptor partial agonists has been suggested to improve cognitive impairment in patients with schizophrenia. Decreased activity of prefrontal cortex may provide a basis for cognitive deficits of the disease. Lactate plays a significant role in the supply of energy to the brain, and glutamatergic neurotransmission contributes to lactate production. Objectives and methods: The purposes of this study were to examine the effect of repeated administration (once a daily for 4 days) of tandospirone (0.05 or 5 mg/kg) on brain energy metabolism, as represented by extracellular lactate concentration (eLAC) in the medial prefrontal cortex (mPFC) of a rat model of schizophrenia. Results: Four-day treatment with MK-801, an NMDA-R antagonist, prolonged eLAC elevation induced by foot-shock stress (FS). Co-administration with the high-dose tandospirone suppressed prolonged FS-induced eLAC elevation in rats receiving MK-801, whereas tandospirone by itself did not affected eLAC increment. Conclusions: These results suggest that stimulation of 5-HT1A receptors ameliorates abnormalities of energy metabolism in the mPFC due to blockade of NMDA receptors. These findings provide a possible mechanism, based on brain energy metabolism, by which 5-HT1A agonism improve cognitive impairment of schizophrenia and related disorders. PMID:25232308

  19. (3H)WB4101 labels the 5-HT1A serotonin receptor subtype in rat brain. Guanine nucleotide and divalent cation sensitivity

    SciTech Connect

    Norman, A.B.; Battaglia, G.; Creese, I.

    1985-12-01

    In the presence of a 30 nM prazosin mask, (/sup 3/H)-2-(2,6-dimethoxyphenoxyethyl) aminomethyl-1,4-benzodioxane ((/sup 3/H)WB4101) can selectively label 5-HT1 serotonin receptors. Serotonin exhibits high affinity (Ki = 2.5 nM) and monophasic competition for (/sup 3/H) WB4101 binding in cerebral cortex. We have found a significant correlation (r = 0.96) between the affinities of a number of serotonergic and nonserotonergic compounds at (/sup 3/H)WB4101-binding sites in the presence of 30 nM prazosin and (/sup 3/H) lysergic acid diethylamide ((/sup 3/H)LSD)-labeled 5-HT1 serotonin receptors in homogenates of rat cerebral cortex. Despite similar pharmacological profiles, distribution studies indicate that, in the presence of 5 mM MgSO4, the Bmax of (/sup 3/H)WB4101 is significantly lower than the Bmax of (/sup 3/H)LSD in various brain regions. WB4101 competition for (/sup 3/H) LSD-labeled 5-HT1 receptors fits best to a computer-derived model assuming two binding sites, with the KH for WB4101 being similar to the KD of (/sup 3/H)WB4101 binding derived from saturation experiments. This suggests that (/sup 3/H)WB4101 labels only one of the subtypes of the 5-HT1 serotonin receptors labeled by (/sup 3/H)LSD. The selective 5-HT1A serotonin receptor antagonist, spiperone, and the selective 5-HT1A agonist, 8-hydroxy-2-(di-n-propylamino) tetraline, exhibit high affinity and monophasic competition for (/sup 3/H)WB4101 but compete for multiple (/sup 3/H)LSD 5-HT1 binding sites. These data indicate that (/sup 3/H)WB4101 selectively labels the 5-HT1A serotonin receptor, whereas (/sup 3/H) LSD appears to label both the 5-HT1A and the 5-HT1B serotonin receptor subtypes. The divalent cations, Mn2+, Mg2+, and Ca2+ were found to markedly increase the affinity and Bmax of (/sup 3/H)WB4101 binding in cerebral cortex. Conversely, the guanine nucleotides guanylylimidodiphosphate and GTP, but not the adenosine nucleotide ATP, markedly reduce the Bmax of (/sup 3/H)WB4101 binding.

  20. The 5-HT1-like receptors mediating inhibition of sympathetic vasopressor outflow in the pithed rat: operational correlation with the 5-HT1A, 5-HT1B and 5-HT1D subtypes

    PubMed Central

    Villalón, Carlos M; Centurión, David; Rabelo, Gonzalo; de Vries, Peter; Saxena, Pramod R; Sánchez-López, Araceli

    1998-01-01

    It has been suggested that the inhibition of sympathetically-induced vasopressor responses produced by 5-hydroxytryptamine (5-HT) in pithed rats is mediated by 5-HT1-like receptors. The present study has re-analysed this suggestion with regard to the classification schemes recently proposed by the NC-IUPHAR subcommittee on 5-HT receptors.Intravenous (i.v.) continuous infusions of 5-HT and the 5-HT1 receptor agonists, 8-OH-DPAT (5-HT1A), indorenate (5-HT1A), CP 93,129 (5-HT1B) and sumatriptan (5-HT1B/1D), resulted in a dose-dependent inhibition of sympathetically-induced vasopressor responses.The sympatho-inhibitory responses induced by 5-HT, 8-OH-DPAT, indorenate, CP 93,129 or sumatriptan were analysed before and after i.v. treatment with blocking doses of the putative 5-HT receptor antagonists, WAY 100635 (5-HT1A), cyanopindolol (5-HT1A/1B) or GR 127935 (5-HT1B/1D). Thus, after WAY 100635, the responses to 5-HT and indorenate, but not to 8-OH-DPAT, CP 93,129 and sumatriptan, were blocked. After cyanopindolol, the responses to 5-HT, indorenate and CP 93,129 were abolished, whilst those to 8-OH-DPAT and sumatriptan (except at the lowest frequency of stimulation) remained unaltered. In contrast, after GR 127935, the responses to 5-HT, CP 93,129 and sumatriptan, but not to 8-OH-DPAT and indorenate, were abolished.In additional experiments, the inhibition induced by 5-HT was not modified after 5-HT7 receptor blocking doses of mesulergine.The above results suggest that the 5-HT1-like receptors, which inhibit the sympathetic vasopressor outflow in pithed rats, display the pharmacological profile of the 5-HT1A, 5-HT1B and 5-HT1D, but not that of 5-HT7, receptors. PMID:9692787

  1. Cannabidiolic acid prevents vomiting in Suncus murinus and nausea-induced behaviour in rats by enhancing 5-HT1A receptor activation

    PubMed Central

    Bolognini, D; Rock, EM; Cluny, NL; Cascio, MG; Limebeer, CL; Duncan, M; Stott, CG; Javid, FA; Parker, LA; Pertwee, RG

    2013-01-01

    Background and Purpose To evaluate the ability of cannabidiolic acid (CBDA) to reduce nausea and vomiting and enhance 5-HT1A receptor activation in animal models. Experimental Approach We investigated the effect of CBDA on (i) lithium chloride (LiCl)-induced conditioned gaping to a flavour (nausea-induced behaviour) or a context (model of anticipatory nausea) in rats; (ii) saccharin palatability in rats; (iii) motion-, LiCl- or cisplatin-induced vomiting in house musk shrews (Suncus murinus); and (iv) rat brainstem 5-HT1A receptor activation by 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) and mouse whole brain CB1 receptor activation by CP55940, using [35S]GTPγS-binding assays. Key Results In shrews, CBDA (0.1 and/or 0.5 mg·kg−1 i.p.) reduced toxin- and motion-induced vomiting, and increased the onset latency of the first motion-induced emetic episode. In rats, CBDA (0.01 and 0.1 mg·kg−1 i.p.) suppressed LiCl- and context-induced conditioned gaping, effects that were blocked by the 5-HT1A receptor antagonist, WAY100635 (0.1 mg·kg−1 i.p.), and, at 0.01 mg·kg−1 i.p., enhanced saccharin palatability. CBDA-induced suppression of LiCl-induced conditioned gaping was unaffected by the CB1 receptor antagonist, SR141716A (1 mg·kg−1 i.p.). In vitro, CBDA (0.1–100 nM) increased the Emax of 8-OH-DPAT. Conclusions and Implications Compared with cannabidiol, CBDA displays significantly greater potency at inhibiting vomiting in shrews and nausea in rats, and at enhancing 5-HT1A receptor activation, an action that accounts for its ability to attenuate conditioned gaping in rats. Consequently, CBDA shows promise as a treatment for nausea and vomiting, including anticipatory nausea for which no specific therapy is currently available. PMID:23121618

  2. Activation of GABAA or 5HT1A receptors in the raphé pallidus abolish the cardiovascular responses to exogenous stress in conscious rats.

    PubMed

    Pham-Le, Nhut Minh; Cockburn, Chelsea; Nowell, Katherine; Brown, Justin

    2011-11-25

    Dysfunction in serotonin (5HT) neurotransmission in the brainstem of infants may disrupt protective responses to stress and increase the risk for Sudden Infant Death Syndrome (SIDS). The raphé pallidus (NRP) and other brainstem nuclei are rich in 5HT and are thought to mediate stress responses, including increases in blood pressure (BP) and heart rate (HR). Determining how 5HT neurotransmission in the brainstem mediates responses to stress will help to explain how dysfunction in neurotransmission could increase the risk of SIDS. It was hypothesized that alterations in neurotransmission in the NRP, specifically activation of the 5HT(1A) receptor subtype, would block cardiovascular responses to various types of exogenous stress. Using aseptic techniques, male Sprague-Dawley rats were instrumented with radiotelemetry probes which enabled non-invasive measurement of BP and HR. An indwelling microinjection cannula was also stereotaxically implanted into the NRP for injection of drugs that altered local 5HT neurotransmission. Following a one week recovery period, rats were microinjected with either muscimol (GABA(A) receptor agonist), 8-OH-DPAT (agonist to the inhibitory 5HT(1A) receptor), or a vehicle control (artificial cerebral spinal fluid; ACSF) immediately prior to exposure to one of three stressors: handling, air jet, or restraint. Physical handling and restraint of the animal were designed to elicit a mild and a maximal stress response respectively; while an air jet directed at the rat's face was used to provoke a psychological stress that did not require physical contact. All three stressors elicited similar and significant elevations in HR and BP following ACSF that persisted for at least 15 min with BP and HR elevated by ∼14.0 mmHg and ∼56.3 bpm respectively. The similarity in the stress responses suggest even mild handling of a rat elicits a maximal sympathoexcitatory response. The stress response was abolished following 8-OH-DPAT or muscimol

  3. Higher pretreatment 5-HT1A receptor binding potential in bipolar disorder depression is associated with treatment remission: a naturalistic treatment pilot PET study.

    PubMed

    Lan, Martin J; Hesselgrave, Natalie; Ciarleglio, Adam; Ogden, R Todd; Sullivan, Gregory M; Mann, J John; Parsey, Ramin V

    2013-11-01

    Bipolar disorder is a major cause of disability and a high risk for suicide. The pathophysiology of the disorder remains largely unknown. Medication choice for bipolar depression patients involves trial and error. Our group reported previously that brain serotonin 1A (5-HT(1A)) receptor binding measured by positron emission tomography (PET) is higher in bipolar depression. We now investigated whether pretreatment 5-HT(1A) levels correlates with antidepressant medication outcome. Forty-one medication-free DSM-IV diagnosed, bipolar patients in a major depressive episode had brain PET scans performed using [(11)C]WAY-100635 and a metabolite corrected arterial input function. The patients then received naturalistic psychopharmacologic treatment as outpatients and a follow up Hamilton Depression Rating Scale (HDRS) after 3 months of treatment. Patients with 24 item HDRS scores less than 10 were considered to have remitted. A linear mixed effects model was used to compare BP(F) (binding potential, proportional to the total number of available receptors) in 13 brain regions of interest between remitters and nonremitters. Thirty-four patients completed 3 months of treatment and ratings; 9 had remitted. Remitters and nonremitters did not differ in age, sex, or recent medication history with serotonergic medications. Remitters had higher [(11)C]WAY-100635 BP(F) across all brain regions compared with nonremitters (P = 0.02). Higher pretreatment brain 5-HT(1A) receptor binding was associated with remission after 3 months of pharmacological treatment in bipolar depression. Prospective treatment studies are warranted to determine whether this test predicts outcome of specific types of treatment. PMID:23720414

  4. 5-HT(1A) receptor antagonist improves behavior performance of delirium rats through inhibiting PI3K/Akt/mTOR activation-induced NLRP3 activity.

    PubMed

    Qiu, Yimin; Huang, Xiaojing; Huang, Lina; Tang, Liang; Jiang, Jihong; Chen, Lianhua; Li, Shitong

    2016-04-01

    Postoperative delirium is a common complication that often results in poor outcomes in surgical and elderly patients. Accumulating evidences suggest that the pathophysiology of delirium results from multiple neurotransmitter system dysfunctions. To further clarify the effects of the selective serotonin (5-HT) (1A) antagonist WAY-100635 on the behaviors in scopolamine induced-delirium rats and to explore the molecular mechanism, in this study, we investigated the change of monoamine levels in the cerebrospinal fluid (CSF) and different brain regions using high-performance liquid chromatography and assessed the behavioral retrieval of delirium rats treated with WAY-100635. It was found that 5-hydroxy-3-indoleacetic acid (5-HIAA), 3,4-dihydroxyphenylacetic acid, and homovanillic acid concentrations in the CSF of scopolamine-induced delirium rats were significantly increased, among which 5-HIAA was also increased in hippocampus and basolateral amygdala (BLA), and 5-HT(1A) receptor was significantly higher in the hippocampuses and BLA than other brain regions. Furthermore, intrahippocampus and intra-BLA stereotactic injection of WAY-100635 improved the delirium-like behavior of rats. Mechanistically, after WAY-100635 treatment, significant reduction of IL-1β release into CSF and NOD-like receptor family, pyrin domain containing 3 (NLRP3) expression, phosphorylated phosphatidylinositol-3-kinase (PI3K), protein kinase B (AKT), and S6K was observed. Altogether, these results suggest that delirium rats induced by scopolamine may be correlated with an increased cerebral concentration of 5-HT and dopamine neurotransmitters system; the selective 5-HT(1A) antagoniszts can reverse the delirium symptoms at some extent through tendering PI3K/Akt/mammalian target of rapamycin complex 1 (mTOR) activation-induced NLRP3 activity and then reducing IL-1β release. © 2016 IUBMB Life, 68(4):311-319, 2016. PMID:26946964

  5. Cooperative regulation of anxiety and panic-related defensive behaviors in the rat periaqueductal grey matter by 5-HT1A and μ-receptors.

    PubMed

    Roncon, Camila M; Biesdorf, Carla; Coimbra, Norberto C; Audi, Elisabeth A; Zangrossi, Hélio; Graeff, Frederico G

    2013-12-01

    Previous results with the elevated T-maze (ETM) test indicate that the antipanic action of serotonin (5-HT) in the dorsal periaqueductal grey (dPAG) depends on the activation endogenous opioid peptides. The aim of the present work was to investigate the interaction between opioid- and serotonin-mediated neurotransmission in the modulation of defensive responses in rats submitted to the ETM. The obtained results showed that intra-dPAG administration of morphine significantly increased escape latency, a panicolytic-like effect that was blocked by pre-treatment with intra-dPAG injection of either naloxone or the 5-HT1A antagonist N-[2-[4-(2-methoxyphenyl)-1 piperazinyl] ethyl] -N- 2- pyridinyl-ciclohexanecarboxamide maleate (WAY-100635). In addition, previous administration of naloxone antagonized both the anti-escape and the anti-avoidance (anxiolytic-like) effect of the 5-HT1A agonist (±)-8-hydroxy-2-(di-n-propylamino)tetralin hydrobromide (8-OH-DPAT), but did not affect the anti-escape effect of the 5-HT2A agonist (±)-2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI). Moreover, the combination of sub-effective doses of locally administered 5-HT and morphine significantly impaired ETM escape performance. Finally, the µ-antagonist D-PHE-CYS-TYR-D-TRP-ORN-THR-PEN (CTOP) blocked the anti-avoidance as well as the anti-escape effect of 8-OHDPAT, and the association of sub-effective doses of the µ-opioid receptor agonist [D-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin acetate salt (DAMGO) and of 8-OHDPAT had anti-escape and anti-avoidance effects in the ETM. These results suggest a synergic interaction between the 5-HT1A and the µ-opioid receptor at post-synaptic level on neurons of the dPAG that regulate proximal defense, theoretically related to panic attacks. PMID:23598399

  6. Prophylactic effects of asiaticoside-based standardized extract of Centella asiatica (L.) Urban leaves on experimental migraine: Involvement of 5HT1A/1B receptors.

    PubMed

    Bobade, Vijeta; Bodhankar, Subhash L; Aswar, Urmila; Vishwaraman, Mohan; Thakurdesai, Prasad

    2015-04-01

    The present study aimed at evaluation of prophylactic efficacy and possible mechanisms of asiaticoside (AS) based standardized extract of Centella asiatica (L.) Urban leaves (INDCA) in animal models of migraine. The effects of oral and intranasal (i.n.) pretreatment of INDCA (acute and 7-days subacute) were evaluated against nitroglycerine (NTG, 10 mg·kg(-1), i.p.) and bradykinin (BK, 10 μg, intra-arterial) induced hyperalgesia in rats. Tail flick latencies (from 0 to 240 min) post-NTG treatment and the number of vocalizations post-BK treatment were recorded as a measure of hyperalgesia. Separate groups of rats for negative (Normal) and positive (sumatriptan, 42 mg·kg(-1), s.c.) controls were included. The interaction of INDCA with selective 5-HT1A, 5-HT1B, and 5-HT1D receptor antagonists (NAN-190, Isamoltane hemifumarate, and BRL-15572 respectively) against NTG-induced hyperalgesia was also evaluated. Acute and sub-acute pre-treatment of INDCA [10 and 30 mg·kg(-1) (oral) and 100 μg/rat (i.n.) showed significant anti-nociception activity, and reversal of the NTG-induced hyperalgesia and brain 5-HT concentration decline. Oral pre-treatment with INDCA (30 mg·kg(-1), 7 d) showed significant reduction in the number of vocalization. The anti-nociceptive effects of INDCA were blocked by 5-HT1A and 5-HT1B but not 5-HT1D receptor antagonists. In conclusion, INDCA demonstrated promising anti-nociceptive effects in animal models of migraine, probably through 5-HT1A/1B medicated action. PMID:25908624

  7. 5-HT1A receptor gene silencers Freud-1 and Freud-2 are differently expressed in the brain of rats with genetically determined high level of fear-induced aggression or its absence.

    PubMed

    Kondaurova, Elena M; Ilchibaeva, Tatiana V; Tsybko, Anton S; Kozhemyakina, Rimma V; Popova, Nina K; Naumenko, Vladimir S

    2016-09-01

    Serotonin 5-HT1A receptor is known to play a crucial role in the mechanisms of genetically defined aggression. In its turn, 5-HT1A receptor functional state is under control of multiple factors. Among others, transcriptional factors Freud-1 and Freud-2 are known to be involved in the repression of 5-HT1A receptor gene expression. However, implication of these factors in the regulation of behavior is unclear. Here, we investigated the expression of 5-HT1A receptor and silencers Freud-1 and Freud-2 in the brain of rats selectively bred for 85 generations for either high level of fear-induced aggression or its absence. It was shown that Freud-1 and Freud-2 levels were different in aggressive and nonaggressive animals. Freud-1 protein level was decreased in the hippocampus, whereas Freud-2 protein level was increased in the frontal cortex of highly aggressive rats. There no differences in 5-HT1A receptor gene expression were found in the brains of highly aggressive and nonaggressive rats. However, 5-HT1A receptor protein level was decreased in the midbrain and increased in the hippocampus of highly aggressive rats. These data showed the involvement of Freud-1 and Freud-2 in the regulation of genetically defined fear-induced aggression. However, these silencers do not affect transcription of the 5-HT1A receptor gene in the investigated rats. Our data indicate the implication of posttranscriptional rather than transcriptional regulation of 5-HT1A receptor functional state in the mechanisms of genetically determined aggressive behavior. On the other hand, the implication of other transcriptional regulators for 5-HT1A receptor gene in the mechanisms of genetically defined aggression could be suggested. PMID:27150226

  8. 5-hydroxytryptamine1A (5-HT1A) receptor agonists: A decade of empirical evidence supports their use as an efficacious therapeutic strategy for brain trauma.

    PubMed

    Cheng, Jeffrey P; Leary, Jacob B; Sembhi, Aerin; Edwards, Clarice M; Bondi, Corina O; Kline, Anthony E

    2016-06-01

    Traumatic brain injury (TBI) is a significant and enduring health care issue with limited treatment options. While several pre-clinical therapeutic approaches have led to enhanced motor and/or cognitive performance, the benefits of these treatments have not translated to the clinic. One plausible explanation is that the therapies may not have been rigorously evaluated, thus rendering the bench-to-bedside leap premature and subsequently unsuccessful. An approach that has undergone considerable empirical research after TBI is pharmacological targeting of 5-HT1A receptors with agonists such as repinotan HCl, 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT), and buspirone. The goal of this review is to integrate and interpret the findings from a series of studies that evaluated the efficacy of 5-HT1A receptor agonists on functional, histological, and molecular outcome after acquired brain injury. The overwhelming consensus of this exhaustive review is that a decade of empirical evidence supports their use as an efficacious therapeutic strategy for brain trauma. This article is part of a Special Issue entitled SI:Brain injury and recovery. PMID:26612522

  9. 5-HT1A Receptor Binding is Increased After Recovery from Bulimia Nervosa Compared to Control Women and is Associated with Behavioral Inhibition in Both Groups

    PubMed Central

    Bailer, Ursula F.; Bloss, Cinnamon S.; Frank, Guido K.; Price, Julie C.; Meltzer, Carolyn C.; Mathis, Chester A.; Geyer, Mark A.; Wagner, Angela; Becker, Carl R.; Schork, Nicholas J.; Kaye, Walter H.

    2014-01-01

    Objective Because altered serotonin (5-HT) function appears to persist after recovery from bulimia nervosa (RBN), we investigated the 5-HT1A receptor, which could contribute to regulation of appetite, mood, impulse control, or the response to antidepressants. Method Thirteen RBN individuals were compared to 21 healthy control women (CW) using positron emission tomography and [carbonyl-11C]WAY100635 ([11C]WAY). Results RBN had a 23–34% elevation of [11C]WAY binding potential (BP)P in subgenual cingulate, mesial temporal, and parietal regions after adjustments for multiple comparisons. For CW, [11C]WAY BPP was related negatively to novelty seeking, whereas for RBN, [11C]WAY BPP was related positively to harm avoidance and negatively related to sensation seeking. Discussion Alterations of 5-HT1A receptor function may provide new insight into efficacy of 5-HT medication in BN, as well as symptoms such as the ability to inhibit or self-control the expression of behaviors related to stimulus seeking, aggression, and impulsivity. PMID:20872754

  10. The paradox of 5-methoxy-N,N-dimethyltryptamine: an indoleamine hallucinogen that induces stimulus control via 5-HT1A receptors.

    PubMed

    Winter, J C; Filipink, R A; Timineri, D; Helsley, S E; Rabin, R A

    2000-01-01

    Stimulus control was established in rats trained to discriminate either 5-methoxy-N,N-dimethyltryptamine (3 mg/kg) or (-)-2,5-dimethoxy-4-methylamphetamine (0.56 mg/kg) from saline. Tests of antagonism of stimulus control were conducted using the 5-HT1A antagonists (+/-)-pindolol and WAY-100635, and the 5-HT2 receptor antagonist pirenperone. In rats trained with 5-MeO-DMT, pindolol and WAY-100635 both produced a significant degree of antagonism of stimulus control, but pirenperone was much less effective. Likewise, the full generalization of 5-MeO-DMT to the selective 5-HT1A agonist [+/-]-8-hydroxy-dipropylaminotetralin was blocked by WAY-100635, but unaffected by pirenperone. In contrast, the partial generalization of 5-MeO-DMT to the 5-HT2 agonist DOM was completely antagonized by pirenperone, but was unaffected by WAY-100635. Similarly, in rats trained with (-)-DOM, pirenperone completely blocked stimulus control, but WAY-100635 was inactive. The results obtained in rats trained with (-)-DOM and tested with 5-MeO-DMT were more complex. Although the intraperitoneal route had been used for both training drugs, a significant degree of generalization of (-)-DOM to 5-MeO-DMT was seen only when the latter drug was administered subcutaneously. Furthermore, when the previously effective dose of pirenperone was given in combination with 5-MeO-DMT (s.c.), complete suppression of responding resulted. However, the combination of pirenperone and WAY-100635 given prior to 5-MeO-DMT restored responding in (-)-DOM-trained rats, and provided evidence of antagonism of the partial substitution of 5-MeO-DMT for (-)-DOM. The present data indicate that 5-MeO-DMT-induced stimulus control is mediated primarily by interactions with 5-HT1A receptors. In addition, however, the present findings suggest that 5-MeO-DMT induces a compound stimulus that includes an element mediated by interactions with a 5-HT2 receptors. The latter component is not essential for 5-MeO-DMT-induced stimulus

  11. Third Trimester Equivalent Alcohol Exposure Reduces Modulation of Glutamatergic Synaptic Transmission by 5-HT1A Receptors in the Rat Hippocampal CA3 Region

    PubMed Central

    Morton, Russell A.; Valenzuela, C. Fernando

    2016-01-01

    Fetal alcohol exposure has been associated with many neuropsychiatric disorders that have been linked to altered serotonin (5-hydroxytryptamine; 5-HT) signaling, including depression and anxiety. During the first 2 weeks of postnatal life in rodents (equivalent to the third trimester of human pregnancy) 5-HT neurons undergo significant functional maturation and their axons reach target regions in the forebrain (e.g., cortex and hippocampus). The objective of this study was to identify the effects of third trimester ethanol (EtOH) exposure on hippocampal 5-HT signaling. Using EtOH vapor inhalation chambers, we exposed rat pups to EtOH for 4 h/day from postnatal day (P) 2 to P12. The average serum EtOH concentration in the pups was 0.13 ± 0.04 g/dl (legal intoxication limit in humans = 0.08 g/dl). We used brain slices to assess the modulatory actions of 5-HT on field excitatory postsynaptic potentials in the hippocampal CA3 region at P13-P15. Application of the GABAA/glycine receptor antagonist, picrotoxin, caused broadening of field excitatory postsynaptic potentials (fEPSPs), an effect that was reversed by application of 5-HT in slices from air exposed rats. However, this effect of 5-HT was absent in EtOH exposed animals. In slices from naïve animals, application of a 5-HT1A receptor antagonist blocked the effect of 5-HT on the fEPSPs recorded in presence of picrotoxin, suggesting that third trimester ethanol exposure acts by inhibiting the function of these receptors. Studies indicate that 5-HT1A receptors play a critical role in the development of hippocampal circuits. Therefore, inhibition of these receptors by third trimester ethanol exposure could contribute to the pathophysiology of fetal alcohol spectrum disorders. PMID:27375424

  12. Third Trimester Equivalent Alcohol Exposure Reduces Modulation of Glutamatergic Synaptic Transmission by 5-HT1A Receptors in the Rat Hippocampal CA3 Region.

    PubMed

    Morton, Russell A; Valenzuela, C Fernando

    2016-01-01

    Fetal alcohol exposure has been associated with many neuropsychiatric disorders that have been linked to altered serotonin (5-hydroxytryptamine; 5-HT) signaling, including depression and anxiety. During the first 2 weeks of postnatal life in rodents (equivalent to the third trimester of human pregnancy) 5-HT neurons undergo significant functional maturation and their axons reach target regions in the forebrain (e.g., cortex and hippocampus). The objective of this study was to identify the effects of third trimester ethanol (EtOH) exposure on hippocampal 5-HT signaling. Using EtOH vapor inhalation chambers, we exposed rat pups to EtOH for 4 h/day from postnatal day (P) 2 to P12. The average serum EtOH concentration in the pups was 0.13 ± 0.04 g/dl (legal intoxication limit in humans = 0.08 g/dl). We used brain slices to assess the modulatory actions of 5-HT on field excitatory postsynaptic potentials in the hippocampal CA3 region at P13-P15. Application of the GABAA/glycine receptor antagonist, picrotoxin, caused broadening of field excitatory postsynaptic potentials (fEPSPs), an effect that was reversed by application of 5-HT in slices from air exposed rats. However, this effect of 5-HT was absent in EtOH exposed animals. In slices from naïve animals, application of a 5-HT1A receptor antagonist blocked the effect of 5-HT on the fEPSPs recorded in presence of picrotoxin, suggesting that third trimester ethanol exposure acts by inhibiting the function of these receptors. Studies indicate that 5-HT1A receptors play a critical role in the development of hippocampal circuits. Therefore, inhibition of these receptors by third trimester ethanol exposure could contribute to the pathophysiology of fetal alcohol spectrum disorders. PMID:27375424

  13. 50-kHz calls in rats: effects of MDMA and the 5-HT(1A) receptor agonist 8-OH-DPAT.

    PubMed

    Sadananda, Monika; Natusch, Claudia; Karrenbauer, Britta; Schwarting, Rainer K W

    2012-04-01

    In recent years, 50-kHz ultrasonic vocalizations of laboratory rats have become increasingly important behavioral measures in research on emotion and motivation, since these calls may help to study appetitive subjective states, for example in relation to addiction. Among others, 50-kHz calls occur when rats experience or expect rewards, including drugs of abuse, and it is assumed that these calls depend on dopamine function, especially in the meso-limbic system. One established means to induce 50-kHz calls is to challenge rats with D-amphetamine, a psychomotor stimulant, which acts largely by boosting dopamine and noradrenaline function in the brain. In a 1st experiment, we studied whether another psycho-stimulatory amphetamine, namely the derivative 3,4-methylene-dioxymethamphetamine (MDMA, Ecstasy), could also enhance 50-kHz calls by using an activity box and testing conditions, which had previously been found to be appropriate in case of D-amphetamine. In support of previous work, we found that MDMA (2.5, 5, 10 mg/kg, ip) dose-dependently increased locomotion and center time, together with decreases in rearing activity, but the drug did not elicit 50-kHz calls. Assuming that this lack of effect is due to the drug's substantial pro-serotonergic effects in the brain, which may inhibit 50-kHz calls, we performed a 2nd experiment where we tested the serotonin 5-HT(1A) receptor agonist 8-hydroxy-2-tetralin (8-OH-DPAT; 0.05, 0.5, 2.5 mg/kg, ip). This drug dose-dependently stimulates serotonin autoreceptors and heteroreceptors, can act in a psycho-stimulatory way and can enhance dopamine function. In the activity box, 8-OH-DPAT increased locomotor activity (0.5, 2.5 mg/kg) and decreased rearing (2.5 mg/kg); that is, the drug seemed to share some psycho-stimulatory effects with MDMA. Unlike MDMA, 8-OH-DPAT enhanced 50-kHz calls in a dose-dependent way, namely only with the 0.5 mg/kg dose. These results are discussed with respect to their possible neurochemical

  14. Chemoproteomic Approach to Explore the Target Profile of GPCR ligands: Application to 5-HT1A and 5-HT6 Receptors.

    PubMed

    Gamo, Ana M; González-Vera, Juan A; Rueda-Zubiaurre, Ainoa; Alonso, Dulce; Vázquez-Villa, Henar; Martín-Couce, Lidia; Palomares, Óscar; López, Juan A; Martín-Fontecha, Mar; Benhamú, Bellinda; López-Rodríguez, María L; Ortega-Gutiérrez, Silvia

    2016-01-22

    Determination of the targets of a compound remains an essential aspect in drug discovery. A complete understanding of all binding interactions is critical to recognize in advance both therapeutic effects and undesired consequences. However, the complete polypharmacology of many drugs currently in clinical development is still unknown, especially in the case of G protein-coupled receptor (GPCR) ligands. In this work we have developed a chemoproteomic platform based on the use of chemical probes to explore the target profile of a compound in biological systems. As proof of concept, this methodology has been applied to selected ligands of the therapeutically relevant serotonin 5-HT1A and 5-HT6 receptors, and we have identified and validated some of their off-targets. This approach could be extended to other drugs of interest to study the targeted proteome in disease-relevant systems. PMID:26560738

  15. Antidepressant-like activity of Tagetes lucida Cav. is mediated by 5-HT(1A) and 5-HT(2A) receptors.

    PubMed

    Bonilla-Jaime, H; Guadarrama-Cruz, G; Alarcon-Aguilar, F J; Limón-Morales, O; Vazquez-Palacios, G

    2015-10-01

    It has been demonstrated that the aqueous extract of Tagetes lucida Cav. shows an antidepressant-like effect on the forced swimming test (FST) in rats. The aim of this study was to analyze the participation of the serotoninergic system in the antidepressant-like effect of the aqueous extract of T. lucida. Different doses of the extract of T. lucida were administered at 72, 48, 24, 18 and 1 h before FST. The animals were pretreated with a 5-HT1A receptor antagonist (WAY-100635, 0.5 mg/kg), a 5-HT2A receptor antagonist (ketanserin, 5 mg/kg), a β-noradrenergic receptor antagonist (propranolol, 200 mg/kg), and with a α2-noradrenergic receptor antagonist (yohimbine, 1 mg/kg) alone or combined with the extract and pretreated with a serotonin synthesis inhibitor (PCPA) before treatment with 8-OH-DPAT + the extract of T. lucida. In addition, suboptimal doses of the 5-HT1A agonist (8-OH-DPAT) + non-effective dose of extract was analyzed in the FST. To determine the presence of flavonoids, the aqueous extract of T. lucida (20 µl, 4 mg/ml) was injected in HPLC; however, a quercetin concentration of 7.72 mg/g of extract weight was detected. A suboptimal dose of 8-OH-DPAT + extract of T. lucida decreased immobility and increased swimming and climbing. An antidepressant-like effect with the aqueous extract of T. lucida at doses of 100 and 200 mg/kg was observed on the FST with decreased immobility behavior and increased swimming; however, this effect was blocked by WAY-100635, ketanserin and PCPA but not by yohimbine and propranolol, suggesting that the extract of T. lucida could be modulating the release/reuptake of serotonin. PMID:26062718

  16. An Orally Active Phenylaminotetralin-Chemotype Serotonin 5-HT7 and 5-HT1A Receptor Partial Agonist that Corrects Motor Stereotypy in Mouse Models.

    PubMed

    Canal, Clinton E; Felsing, Daniel E; Liu, Yue; Zhu, Wanying; Wood, JodiAnne T; Perry, Charles K; Vemula, Rajender; Booth, Raymond G

    2015-07-15

    Stereotypy (e.g., repetitive hand waving) is a key phenotype of autism spectrum disorder, Fragile X and Rett syndromes, and other neuropsychiatric disorders, and its severity correlates with cognitive and attention deficits. There are no effective treatments, however, for stereotypy. Perturbation of serotonin (5-HT) neurotransmission contributes to stereotypy, suggesting that distinct 5-HT receptors may be pharmacotherapeutic targets to treat stereotypy and related neuropsychiatric symptoms. For example, preclinical studies indicate that 5-HT7 receptor activation corrects deficits in mouse models of Fragile X and Rett syndromes, and clinical trials for autism are underway with buspirone, a 5-HT1A partial agonist with relevant affinity at 5-HT7 receptors. Herein, we report the synthesis, in vitro molecular pharmacology, behavioral pharmacology, and pharmacokinetic parameters in mice after subcutaneous and oral administration of (+)-5-(2'-fluorophenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine ((+)-5-FPT), a new, dual partial agonist targeting both 5-HT7 (Ki = 5.8 nM, EC50 = 34 nM) and 5-HT1A (Ki = 22 nM, EC50 = 40 nM) receptors. Three unique, heterogeneous mouse models were used to assess the efficacy of (+)-5-FPT to reduce stereotypy: idiopathic jumping in C58/J mice, repetitive body rotations in C57BL/6J mice treated with the NMDA antagonist, MK-801, and repetitive head twitching in C57BL/6J mice treated with the 5-HT2 agonist, DOI. Systemic (+)-5-FPT potently and efficaciously reduced or eliminated stereotypy in each of the mouse models without altering locomotor behavior on its own, and additional tests showed that (+)-5-FPT, at the highest behaviorally active dose tested, enhanced social interaction and did not cause behaviors indicative of serotonin syndrome. These data suggest that (+)-5-FPT is a promising medication for treating stereotypy in psychiatric disorders. PMID:26011730

  17. Involvement of 5-HT1A Receptors in the Anxiolytic-Like Effects of Quercitrin and Evidence of the Involvement of the Monoaminergic System

    PubMed Central

    Li, Jian; Liu, Qian-tong; Chen, Yi; Liu, Jie; Shi, Jin-li; Liu, Yong; Guo, Jian-you

    2016-01-01

    Quercitrin is a well-known flavonoid that is contained in Flos Albiziae, which has been used for the treatment of anxiety. The present study investigated the anxiolytic-like effects of quercitrin in experimental models of anxiety. Compared with the control group, repeated treatment with quercitrin (5.0 and 10.0 mg/kg/day, p.o.) for seven days significantly increased the percentage of entries into and time spent on the open arms of the elevated plus maze. In the light/dark box test, quercitrin exerted an anxiolytic-like effect at 5 and 10 mg/kg. In the marble-burying test, quercitrin (5.0 and 10.0 mg/kg) also exerted an anxiolytic-like effect. Furthermore, quercitrin did not affect spontaneous locomotor activity. The anxiolytic-like effects of quercitrin in the elevated plus maze and light/dark box test were blocked by the serotonin-1A (5-hydroxytryptamine-1A (5-HT1A)) receptor antagonist WAY-100635 (3.0 mg/kg, i.p.) but not by the γ-aminobutyric acid-A (GABAA) receptor antagonist flumazenil (0.5 mg/kg, i.p.). The levels of brain monoamines (5-HT and dopamine) and their metabolites (5-hydroxy-3-indoleacetic acid, 3,4-dihydroxyphenylacetic acid, and homovanillic acid) were decreased after quercitrin treatment. These data suggest that the anxiolytic-like effects of quercitrin might be mediated by 5-HT1A receptors but not by benzodiazepine site of GABAA receptors. The results of the neurochemical studies suggest that these effects are mediated by modulation of the levels of monoamine neurotransmitters. PMID:27298626

  18. Expression of the 5-HT1A Serotonin Receptor in the Hippocampus Is Required for Social Stress Resilience and the Antidepressant-Like Effects Induced by the Nicotinic Partial Agonist Cytisine

    PubMed Central

    Mineur, Yann S; Einstein, Emily B; Bentham, Matthew P; Wigestrand, Mattis B; Blakeman, Sam; Newbold, Sylvia A; Picciotto, Marina R

    2015-01-01

    Nicotinic acetylcholine receptor (nAChR) blockers potentiate the effects of selective serotonin reuptake inhibitors (SSRIs) in some treatment-resistant patients; however, it is not known whether these effects are independent, or whether the two neurotransmitter systems act synergistically. We first determined that the SSRI fluoxetine and the nicotinic partial agonist cytisine have synergistic effects in a mouse model of antidepressant efficacy, whereas serotonin depletion blocked the effects of cytisine. Using a pharmacological approach, we found that the 5-HT1A agonist 8-OH-DPAT also potentiated the antidepressant-like effects of cytisine, suggesting that this subtype might mediate the interaction between the serotonergic and cholinergic systems. The 5-HT1A receptors are located both presynaptically and postsynaptically. We therefore knocked down 5-HT1A receptors in either the dorsal raphe (presynaptic autoreceptors) or the hippocampus (a brain area with high expression of 5-HT1A heteroreceptors sensitive to cholinergic effects on affective behaviors). Knockdown of 5-HT1A receptors in hippocampus, but not dorsal raphe, significantly decreased the antidepressant-like effect of cytisine. This study suggests that serotonin signaling through postsynaptic 5-HT1A receptors in the hippocampus is critical for the antidepressant-like effects of a cholinergic drug and begins to elucidate the molecular mechanisms underlying interactions between the serotonergic and cholinergic systems related to mood disorders. PMID:25288485

  19. Sex-specific and region-specific changes in BDNF-TrkB signalling in the hippocampus of 5-HT1A receptor and BDNF single and double mutant mice.

    PubMed

    Wu, YeeWen Candace; Hill, Rachel A; Klug, Maren; van den Buuse, Maarten

    2012-05-01

    Brain-derived neurotrophic factor (BDNF) and serotonin 5-HT1A receptors are implicated in the pathophysiology of depression and the mechanism of action of antidepressant drugs. Here, we explore possible reciprocal interactions of 5-HT1A receptor knockout and the expression of BDNF, its receptor TrkB and downstream mitogen-activated protein kinase (MAPK) in the ventral (VHP) and dorsal hippocampus (DHP). We compared female and male double mutant mice (5-HT1A(-/-)/BDNF(+/-)) with single mutant mice (5-HT1A(-/-), BDNF(+/-)) and wildtype (WT) controls. Protein expression of BDNF, TrkB, phosphorylation of TrkB (pTrkB) and MAPKs (ERK1, ERK2) was examined using Western blot analysis (n=5-7). As expected, the BDNF(+/-) mice showed ~50% BDNF reduction. Loss of 5-HT1A receptors induced a significant decrease in BDNF levels in the VHP in female mice. The pTrkB/TrkB ratio was also significantly decreased in female 5-HT1A(-/-) mice and 5-HT1A(-/-)/BDNF(+/-) mice but not in males. Despite markedly reduced BDNF levels in BDNF(+/-) mice and double mutants, ERK1 activation was unchanged in the female mice. In contrast, ERK2 activation was significantly elevated in the VHP of female BDNF(+/-) mice and double mutants. Given the greater vulnerability of women to develop depression and the role of the VHP in stress responses and anxiety-related behaviours, our results may shed more light on sex differences in depression and other psychiatric disorders with BDNF and 5-HT1A receptor dysfunction. PMID:22464183

  20. The silent and selective 5-HT1A antagonist, WAY 100635, produces via an indirect mechanism, a 5-HT2A receptor-mediated behaviour in mice during the day but not at night. Short communication.

    PubMed

    Darmani, N A

    1998-01-01

    The head-twitch response (HTR) in rodents is considered to be a functional index for the activation of 5-HT2A receptors. Intraperitoneal administration of the silent and selective 5-HT1A receptor antagonist, WAY 100635, produced the HTR in mice in a dose-dependent bell-shaped manner. The induced behaviour followed a diurnal pattern in that WAY 100635 only produced a robust HTR frequency during the light period of the 24h daily cycle. Pretreatment with the selective 5-HT2A/C receptor antagonist, SR 46349B, potently, and in a dose-dependent manner attenuated the induced behaviour. It appears that WAY 100635 produces the HTR indirectly via disinhibition of endogenous serotonergic inhibitory tone operating on the somatodenritic pulse-modulating 5-HT1A autoreceptors. The latter antagonism seems to potentiate endogenous 5-HT release in serotonergic terminal field synapses which subsequently stimulates postsynaptic 5-HT2A receptors to produce the head-twitch behaviour. PMID:9826108

  1. Stress sensitization of ethanol withdrawal-induced reduction in social interaction: inhibition by CRF-1 and benzodiazepine receptor antagonists and a 5-HT1A-receptor agonist.

    PubMed

    Breese, George R; Knapp, Darin J; Overstreet, David H

    2004-03-01

    Repeated withdrawals from chronic ethanol sensitize the withdrawal-induced reduction in social interaction behaviors. This study determined whether stress might substitute for repeated withdrawals to facilitate withdrawal-induced anxiety-like behavior. When two 1-h periods of restraint stress were applied at 1-week intervals to rats fed control diet, social interaction was reduced upon withdrawal from a subsequent 5-day exposure to ethanol diet. Neither this ethanol exposure alone nor exposure to three restraint stresses alone altered this measure of anxiety. Further, the repeatedly stressed singly withdrawn rats continued to exhibit a reduction in social interaction 16 days later, upon withdrawal from re-exposure to 5 days of chronic ethanol, consistent with a persistent adaptation by the multiple-stress/withdrawal protocol. Weekly administration of corticosterone in place of stress induced no significant change in social interaction upon withdrawal from the single chronic ethanol exposure, indicative that corticoid release is not responsible for the stress-induced reduction in anxiety-like behavior during withdrawal. In the multiple-withdrawal protocol, stress applied during withdrawal from voluntary ethanol drinking by P-rats facilitated ethanol drinking sufficiently, to induce a withdrawal-induced reduction in social interaction. Administration of a CRF-1 receptor antagonist, a benzodiazepine receptor antagonist, or a 5-HT(1A) receptor agonist prior to each stress minimized sensitization of the withdrawal-induced reduction in anxiety-like behavior. Since these pharmacological consequences on the induction of anxiety-like behavior following the stress/withdrawal protocol are like those previously seen when these drug treatments were given prior to multiple withdrawals, evidence is provided that repeated stresses and multiple withdrawals sensitize the withdrawal reduction in social interaction by similar central adaptive mechanisms. PMID:12955093

  2. Opposing actions of 5HT1A and 5HT2-like serotonin receptors on modulations of the electric signal waveform in the electric fish Brachyhypopomus pinnicaudatus

    PubMed Central

    Allee, Susan J.; Markham, Michael R.; Salazar, Vielka L.; Stoddard, Philip K.

    2008-01-01

    Serotonin (5-HT) is an indirect modulator of the electric organ discharge (EOD) in the weakly electric gymnotiform fish, Brachyhypopomus pinnicaudatus. Injections of 5-HT enhance EOD waveform “masculinity”, increasing both waveform amplitude and the duration of the second phase. This study investigated the pharmacological identity of 5-HT receptors that regulate the electric waveform and their effects on EOD amplitude and duration. We present evidence that two sets of serotonin receptors modulate the EOD in opposite directions. We found that the 5HT1AR agonist 8-OH-DPAT diminishes EOD duration and amplitude while the 5HT1AR antagonist WAY100635 increases these parameters. In contrast, the 5HT2R agonist α-Me-5-HT increases EOD amplitude but not duration, yet 5-HT-induced increases in EOD duration can be inhibited by blocking 5HT2A/2C-like receptors with ketanserin. These results show that 5-HT exerts bi-directional control of EOD modulations in B. pinnicaudatus via action at receptors similar to mammalian 5HT1A and 5HT2 receptors. The discordant amplitude and duration response suggests separate mechanisms for modulating these waveform parameters. PMID:18206154

  3. Potentiation of 5-methoxy-N,N-dimethyltryptamine-induced hyperthermia by harmaline and the involvement of activation of 5-HT1A and 5-HT2A receptors.

    PubMed

    Jiang, Xi-Ling; Shen, Hong-Wu; Yu, Ai-Ming

    2015-02-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and harmaline are serotonin (5-HT) analogs often abused together, which alters thermoregulation that may indicate the severity of serotonin toxicity. Our recent studies have revealed that co-administration of monoamine oxidase inhibitor harmaline leads to greater and prolonged exposure to 5-HT agonist 5-MeO-DMT that might be influenced by cytochrome P450 2D6 (CYP2D6) status. This study was to define the effects of harmaline and 5-MeO-DMT on thermoregulation in wild-type and CYP2D6-humanized (Tg-CYP2D6) mice, as well as the involvement of 5-HT receptors. Animal core body temperatures were monitored noninvasively in the home cages after implantation of telemetry transmitters and administration of drugs. Harmaline (5 and 15 mg/kg, i.p.) alone was shown to induce hypothermia that was significantly affected by CYP2D6 status. In contrast, higher doses of 5-MeO-DMT (10 and 20 mg/kg) alone caused hyperthermia. Co-administration of harmaline (2, 5 or 15 mg/kg) remarkably potentiated the hyperthermia elicited by 5-MeO-DMT (2 or 10 mg/kg), which might be influenced by CYP2D6 status at certain dose combination. Interestingly, harmaline-induced hypothermia was only attenuated by 5-HT1A receptor antagonist WAY-100635, whereas 5-MeO-DMT- and harmaline-5-MeO-DMT-induced hyperthermia could be suppressed by either WAY-100635 or 5-HT2A receptor antagonists (MDL-100907 and ketanserin). Moreover, stress-induced hyperthermia under home cage conditions was not affected by WAY-100635 but surprisingly attenuated by MDL-100907 and ketanserin. Our results indicate that co-administration of monoamine oxidase inhibitor largely potentiates 5-MeO-DMT-induced hyperthermia that involves the activation of both 5-HT1A and 5-HT2A receptors. These findings shall provide insights into development of anxiolytic drugs and new strategies to relieve the lethal hyperthermia in serotonin toxicity. PMID:25446678

  4. Potentiation of 5-methoxy-N,N-dimethyltryptamine-induced hyperthermia by harmaline and the involvement of activation of 5-HT1A and 5-HT2A receptors

    PubMed Central

    Jiang, Xi-Ling; Shen, Hong-Wu; Yu, Ai-Ming

    2014-01-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and harmaline are serotonin (5-HT) analogs often abused together, which alters thermoregulation that may indicate the severity of serotonin toxicity. Our recent studies have revealed that co-administration of monoamine oxidase inhibitor harmaline leads to greater and prolonged exposure to 5-HT agonist 5-MeO-DMT that might be influenced by cytochrome P450 2D6 (CYP2D6) status. This study was to define the effects of harmaline and 5-MeO-DMT on thermoregulation in wild-type and CYP2D6-humanized (Tg-CYP2D6) mice, as well as the involvement of 5-HT receptors. Animal core body temperatures were monitored noninvasively in the home cages after implantation of telemetry transmitters and administration of drugs. Harmaline (5 and 15 mg/kg, i.p.) alone was shown to induce hypothermia that was significantly affected by CYP2D6 status. In contrast, higher doses of 5-MeO-DMT (10 and 20 mg/kg) alone caused hyperthermia. Co-administration of harmaline (2, 5 or 15 mg/kg) remarkably potentiated the hyperthermia elicited by 5-MeO-DMT (2 or 10 mg/kg), which might be influenced by CYP2D6 status at certain dose combination. Interestingly, harmaline-induced hypothermia was only attenuated by 5-HT1A receptor antagonist WAY-100635, whereas 5-MeO-DMT- and harmaline-5-MeO-DMT-induced hyperthermia could be suppressed by either WAY-100635 or 5-HT2A receptor antagonists (MDL-100907 and ketanserin). Moreover, stress-induced hyperthermia under home cage conditions was not affected by WAY-100635 but surprisingly attenuated by MDL-100907 and ketanserin. Our results indicate that co-administration of monoamine oxidase inhibitor largely potentiates 5-MeO-DMT-induced hyperthermia that involves the activation of both 5-HT1A and 5-HT2A receptors. These findings shall provide insights into development of anxiolytic drugs and new strategies to relieve the lethal hyperthermia in serotonin toxicity. PMID:25446678

  5. Vortioxetine dose-dependently reverses 5-HT depletion-induced deficits in spatial working and object recognition memory: a potential role for 5-HT1A receptor agonism and 5-HT3 receptor antagonism.

    PubMed

    du Jardin, Kristian Gaarn; Jensen, Jesper Bornø; Sanchez, Connie; Pehrson, Alan L

    2014-01-01

    We previously reported that the investigational multimodal antidepressant, vortioxetine, reversed 5-HT depletion-induced memory deficits while escitalopram and duloxetine did not. The present report studied the effects of vortioxetine and the potential impact of its 5-HT1A receptor agonist and 5-HT3 receptor antagonist properties on 5-HT depletion-induced memory deficits. Recognition and spatial working memory were assessed in the object recognition (OR) and Y-maze spontaneous alternation (SA) tests, respectively. 5-HT depletion was induced in female Long-Evans rats using 4-cholro-DL-phenylalanine methyl ester HCl (PCPA) and receptor occupancies were determined by ex vivo autoradiography. Rats were acutely dosed with vortioxetine, ondansetron (5-HT3 receptor antagonist) or flesinoxan (5-HT1A receptor agonist). The effects of chronic vortioxetine administration on 5-HT depletion-induced memory deficits were also assessed. 5-HT depletion reliably impaired memory performance in both the tests. Vortioxetine reversed PCPA-induced memory deficits dose-dependently with a minimal effective dose (MED) ≤0.1mg/kg (∼80% 5-HT3 receptor occupancy; OR) and ≤3.0mg/kg (5-HT1A, 5-HT1B, 5-HT3 receptor occupancy: ∼15%, 60%, 95%) in SA. Ondansetron exhibited a MED ≤3.0μg/kg (∼25% 5-HT3 receptor occupancy; OR), but was inactive in the SA test. Flesinoxan had a MED ≤1.0mg/kg (∼25% 5-HT1A receptor occupancy; SA); only 1.0mg/kg ameliorated deficits in the NOR. Chronic p.o. vortioxetine administration significantly improved memory performance in OR and occupied 95%, 66%, and 9.5% of 5-HT3, 5-HT1B, and 5-HT1A receptors, respectively. Vortioxetine's effects on SA performance may involve 5-HT1A receptor agonism, but not 5-HT3 receptor antagonism, whereas the effects on OR performance may involve 5-HT3 receptor antagonism and 5-HT1A receptor agonism. PMID:23916504

  6. Beneficial effect of the 5-HT1A receptor agonist buspirone on esophageal dysfunction associated with systemic sclerosis: A pilot study

    PubMed Central

    Panopoulos, Stylianos; Karlaftis, Anastasios; Denaxas, Konstantinos; Kamberoglou, Dimitrios; Sfikakis, Petros P; Ladas, Spiros D

    2015-01-01

    Background Esophageal involvement in systemic sclerosis (SSc) carries significant morbidity and is empirically managed with domperidone, albeit with questionable efficacy. The oral 5-HT1A receptor agonist buspirone may enhance esophageal peristalsis and lower esophageal sphincter (LES) function in healthy volunteers. Aim We aimed to test the hypothesis that buspirone may exert a beneficial acute effect on esophageal motor dysfunction in symptomatic patients with SSc. Methods Twenty consecutive patients with SSc reporting esophageal symptoms underwent high-resolution manometry before and 30 minutes after administration of buspirone (10 mg). Ten other patients received domperidone (10 mg) and served as control group. Changes in LES resting and residual pressure, amplitude, duration, and velocity of distal esophageal body contractions were examined. Results Esophageal hypomotility and hypotensive LES was found in 63% and 67% of patients, respectively. Demographic and clinical characteristics, including baseline manometric parameters, were comparable between groups. Resting pressure of LES increased after buspirone from 9.42 ± 2.6 to 11.53 ± 3.4 mmHg (p = 0.0002 by paired t-test), but not after domperidone; a trend for increase of amplitude of contractions was also observed after buspirone (p = 0.09). Comparison of the individual changes revealed that buspirone was superior to domperidone in enhancing LES pressure ( + 2.11 ± 2.0 versus –0.45 ± 2.3 mmHg, p = 0.006). No significant effects of either drug were noted on other examined parameters of esophageal function. Conclusion The beneficial acute effect of buspirone on impaired LES function associated with SSc suggests a role of 5-HT1A receptor-mediated interactions in these patients. Prospective studies to examine whether buspirone is of long-term therapeutic value for SSc-associated esophageal disease are warranted. PMID:26137301

  7. Pharmacological evidence that 5-HT1A/1B/1D, α2-adrenoceptors and D2-like receptors mediate ergotamine-induced inhibition of the vasopressor sympathetic outflow in pithed rats.

    PubMed

    Villamil-Hernández, Ma Trinidad; Alcántara-Vázquez, Oscar; Sánchez-López, Araceli; Gutiérrez-Lara, Erika J; Centurión, David

    2014-10-01

    The sympathetic nervous system that innervates the peripheral circulation is regulated by several mechanisms/receptors. It has been reported that prejunctional 5-HT1A, 5-HT1B, 5-HT1D, D2-like receptors and α2-adrenoceptors mediate the inhibition of the vasopressor sympathetic outflow in pithed rats. In addition, ergotamine, an antimigraine drug, displays affinity at the above receptors and may explain some of its adverse/therapeutic effects. Thus, the aims of this study were to investigate in pithed rats: (i) whether ergotamine produces inhibition of the vasopressor sympathetic outflow; and (ii) the major receptors involved in this effect. For this purpose, male Wistar pithed rats were pre-treated with gallamine (25 mg/kg; i.v.) and desipramine (50 µg/kg) and prepared to stimulate the vasopressor sympathetic outflow (T7-T9; 0.03-3 Hz) or to receive i.v. bolus of exogenous noradrenaline (0.03-3 µg/kg). I.v. continuous infusions of ergotamine (1 and 1.8 μg/kgmin) dose-dependently inhibited the vasopressor responses to sympathetic stimulation but not those to exogenous noradrenaline. The sympatho-inhibition elicited by 1.8 μg/kg min ergotamine was (i) unaffected by saline (1 ml/kg); (ii) partially antagonised by WAY 100635 (5-HT1A; 30 μg/kg) and rauwolscine (α2-adrenoceptor; 300 μg/kg), and (iii) dose-dependently blocked by GR 127935 (5-HT1B/1D; 100 and 300 μg/kg) or raclopride (D2-like; 300 and 1000 μg/kg), The above doses of antagonists did not modify per se the sympathetically-induced vasopressor responses. The above results suggest that ergotamine induces inhibition of the vasopressor sympathetic outflow by activation of prejunctional 5-HT1A, 5-HT1B/1D, α2-adrenoceptors and D2-like receptors in pithed rats. PMID:24975101

  8. Activation of 5-HT1A receptors in the preBötzinger region has little impact on the respiratory pattern.

    PubMed

    Radocaj, Tomislav; Mustapic, Sanda; Prkic, Ivana; Stucke, Astrid G; Hopp, Francis A; Stuth, Eckehard A E; Zuperku, Edward J

    2015-07-01

    The preBötzinger (preBötC) complex has been suggested as the primary site where systemically administered selective serotonin agonists have been shown to reduce or prevent opioid-induced depression of breathing. However, this hypothesis has not been tested pharmacologically in vivo. This study sought to determine whether 5-HT1A receptors within the preBötC and ventral respiratory column (VRC) mediate the tachypneic response induced by intravenous (IV) (±)-8-Hydroxy-2-diproplyaminotetralin hydrobromide (8-OH-DPAT) in a decerebrated dog model. IV 8-OH-DPAT (19 ± 2 μg/kg) reduced both inspiratory (I) and expiratory (E) durations by ∼ 40%, but had no effect on peak phrenic activity (PPA). Picoejection of 1, 10, and 100 μM 8-OH-DPAT on I and E preBötC neurons produced dose-dependent decreases up to ∼ 40% in peak discharge. Surprisingly, microinjections of 8-OH-DPAT and 5-HT within the VRC from the obex to 9 mm rostral had no effect on timing and PPA. These results suggest that the tachypneic effects of IV 8-OH-DPAT are due to receptors located outside of the areas we studied. PMID:25850079

  9. No evidence that MDMA-induced enhancement of emotional empathy is related to peripheral oxytocin levels or 5-HT1a receptor activation.

    PubMed

    Kuypers, Kim P C; de la Torre, Rafael; Farre, Magi; Yubero-Lahoz, Samanta; Dziobek, Isabel; Van den Bos, Wouter; Ramaekers, Johannes G

    2014-01-01

    The present study aimed at investigating the effect of MDMA on measures of empathy and social interaction, and the roles of oxytocin and the 5-HT1A receptor in these effects. The design was placebo-controlled within-subject with 4 treatment conditions: MDMA (75 mg), with or without pindolol (20 mg), oxytocin nasal spray (40 IU+16 IU) or placebo. Participants were 20 healthy poly-drug MDMA users, aged between 18-26 years. Cognitive and emotional empathy were assessed by means of the Reading the Mind in the Eyes Test and the Multifaceted Empathy Test. Social interaction, defined as trust and reciprocity, was assessed by means of a Trust Game and a Social Ball Tossing Game. Results showed that MDMA selectively affected emotional empathy and left cognitive empathy, trust and reciprocity unaffected. When combined with pindolol, these effects remained unchanged. Oxytocin did not affect measures of empathy and social interaction. Changes in emotional empathy were not related to oxytocin plasma levels. It was concluded that MDMA (75 mg) selectively enhances emotional empathy in humans. While the underlying neurobiological mechanism is still unknown, it is suggested that peripheral oxytocin does not seem to be the main actor in this; potential candidates are the serotonin 2A and the vasopressin 1A receptors. Trial registration: MDMA & PSB NTR 2636. PMID:24972084

  10. An Algorithm to Identify Target-Selective Ligands – A Case Study of 5-HT7/5-HT1A Receptor Selectivity

    PubMed Central

    Kurczab, Rafał; Canale, Vittorio; Zajdel, Paweł; Bojarski, Andrzej J.

    2016-01-01

    A computational procedure to search for selective ligands for structurally related protein targets was developed and verified for serotonergic 5-HT7/5-HT1A receptor ligands. Starting from a set of compounds with annotated activity at both targets (grouped into four classes according to their activity: selective toward each target, not-selective and not-selective but active) and with an additional set of decoys (prepared using DUD methodology), the SVM (Support Vector Machines) models were constructed using a selective subset as positive examples and four remaining classes as negative training examples. Based on these four component models, the consensus classifier was then constructed using a data fusion approach. The combination of two approaches of data representation (molecular fingerprints vs. structural interaction fingerprints), different training set sizes and selection of the best SVM component models for consensus model generation, were evaluated to determine the optimal settings for the developed algorithm. The results showed that consensus models with molecular fingerprints, a larger training set and the selection of component models based on MCC maximization provided the best predictive performance. PMID:27271158

  11. New Multi-target Antagonists of α1A-, α1D-Adrenoceptors and 5-HT1A Receptors Reduce Human Hyperplastic Prostate Cell Growth and the Increase of Intraurethral Pressure.

    PubMed

    Nascimento-Viana, Jéssica B; Carvalho, Aline R; Nasciutti, Luiz Eurico; Alcántara-Hernández, Rocío; Chagas-Silva, Fernanda; Souza, Pedro A R; Romeiro, Luiz Antonio S; García-Sáinz, J Adolfo; Noël, François; Silva, Claudia Lucia Martins

    2016-01-01

    Benign prostatic hyperplasia (BPH) is characterized by stromal cell proliferation and contraction of the periurethral smooth muscle, causing lower urinary tract symptoms. Current BPH treatment, based on monotherapy with α1A-adrenoceptor antagonists, is helpful for many patients, but insufficient for others, and recent reports suggest that stimulation of α1D-adrenoceptors and 5-hydroxytryptamine (serotonin) (5-HT)1A receptors contributes to cell proliferation. In this study, we investigated the potential of three N-phenylpiperazine derivatives (LDT3, LDT5, and LDT8) as multi-target antagonists of BPH-associated receptors. The affinity and efficacy of LDTs were estimated in isometric contraction and competition-binding assays using tissues (prostate and aorta) and brain membrane samples enriched in specific on- or off-target receptors. LDTs' potency was estimated in intracellular Ca(2+) elevation assays using cells overexpressing human α1-adrenoceptor subtypes. The antiproliferative effect of LDTs on prostate cells from BPH patients was evaluated by viable cell counting and 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide assays. We also determined LDTs' effects on rat intraurethral and arterial pressure. LDT3 and LDT5 are potent antagonists of α1A-, α1D-adrenoceptors, and 5-HT1A receptors (Ki values in the nanomolar range), and fully inhibited phenylephrine- and 5-HT-induced proliferation of BPH cells. In vivo, LDT3 and LDT5 fully blocked the increase of intraurethral pressure (IUP) induced by phenylephrine at doses (ED50 of 0.15 and 0.09 μg.kg(-1), respectively) without effect on basal mean blood pressure. LDT3 and LDT5 are multi-target antagonists of key receptors in BPH, and are capable of triggering both prostate muscle relaxation and human hyperplastic prostate cell growth inhibition in vitro. Thus, LDT3 and LDT5 represent potential new lead compounds for BPH treatment. PMID:26493747

  12. Critical role of 5-HT1A, 5-HT3, and 5-HT7 receptor subtypes in the initiation, generation, and propagation of the murine colonic migrating motor complex.

    PubMed

    Dickson, Eamonn J; Heredia, Dante J; Smith, Terence K

    2010-07-01

    The colonic migrating motor complex (CMMC) is necessary for fecal pellet propulsion in the murine colon. We have previously shown that 5-hydroxytryptamine (5-HT) released from enterochromaffin cells activates 5-HT(3) receptors on the mucosal processes of myenteric Dogiel type II neurons to initiate the events underlying the CMMC. Our aims were to further investigate the roles of 5-HT(1A), 5-HT(3), and 5-HT(7) receptor subtypes in generating and propagating the CMMC using intracellular microelectrodes or tension recordings from the circular muscle (CM) in preparations with and without the mucosa. Spontaneous CMMCs were recorded from the CM in isolated murine colons but not in preparations without the mucosa. In mucosaless preparations, ondansetron (3 microM; 5-HT(3) antagonist) plus hexamethonium (100 microM) completely blocked spontaneous inhibitory junction potentials, depolarized the CM. Ondansetron blocked the preceding hyperpolarization associated with a CMMC. Spontaneous CMMCs and CMMCs evoked by spritzing 5-HT (10 and 100 microM) or nerve stimulation in preparations without the mucosa were blocked by SB 258719 or SB 269970 (1-5 microM; 5-HT(7) antagonists). Both NAN-190 and (S)-WAY100135 (1-5 microM; 5-HT(1A) antagonists) blocked spontaneous CMMCs and neurally evoked CMMCs in preparations without the mucosa. Both NAN-190 and (S)-WAY100135 caused an atropine-sensitive depolarization of the CM. The precursor of 5-HT, 5-hydroxytryptophan (5-HTP) (10 microM), and 5-carboxamidotryptamine (5-CT) (5 microM; 5-HT(1/5/7) agonist) increased the frequency of spontaneous CMMCs. 5-HTP and 5-CT also induced CMMCs in preparations with and without the mucosa, which were blocked by SB 258719. 5-HT(1A), 5-HT(3), and 5-HT(7) receptors, most likely on Dogiel Type II/AH neurons, are important in initiating, generating, and propagating the CMMC. Tonic inhibition of the CM appears to be driven by ongoing activity in descending serotonergic interneurons; by activating 5-HT(7

  13. Occupancy of dopamine D2 and D3 and serotonin 5-HT1A receptors by the novel antipsychotic drug candidate, cariprazine (RGH-188), in monkey brain measured using positron emission tomography

    PubMed Central

    Seneca, Nicholas; Finnema, Sjoerd J.; Laszlovszky, István; Kiss, Béla; Horváth, Attila; Pásztor, Gabriella; Kapás, Margó; Gyertyán, István; Farkas, Sándor; Innis, Robert B.; Halldin, Christer

    2011-01-01

    Rationale Cariprazine is a novel antipsychotic drug candidate that exhibits high selectivity and affinity to dopamine D3 and D2 receptors and moderate affinity to serotonin 5-HT1A receptors. Targeting receptors other than D2 may provide a therapeutic benefit for both positive and negative symptoms associated with schizophrenia. Positron emission tomography (PET) can be used as a tool in drug development to assess the in vivo distribution and pharmacological properties of a drug. Objectives The objective of this study was to determine dopamine D2/D3 and serotonin 5-HT1A receptor occupancy in monkey brain after the administration of cariprazine. Methods We examined three monkeys using the following PET radioligands: [11C]MNPA (an agonist at D2 and D3 receptors), [11C]raclopride (an antagonist at D2 and D3 receptors), and [11C]WAY-100635 (an antagonist at 5-HT1A receptors). During each experimental day, the first PET measurement was a baseline study, the second after a low dose of cariprazine, and the third after the administration of a high dose. Results We found that cariprazine occupied D2/D3 receptors in a dose-dependent and saturable manner, with the lowest dose occupying ~5% of receptors and the highest dose showing more than 90% occupancy. 5-HT1A receptor occupancy was considerably lower compared with D2/D3 occupancy at the same doses, with a maximal value of ~30% for the raphe nuclei. Conclusions We conclude that cariprazine binds preferentially to dopamine D2/D3 rather than to serotonin 5-HT1A receptors in monkey brain. These findings can be used to guide the selection of cariprazine dosing in humans. PMID:21625907

  14. 5-HT1A-receptor agonist modified amygdala activity and amygdala-associated social behavior in a valproate-induced rat autism model.

    PubMed

    Wang, Chao-Chuan; Lin, Hui-Ching; Chan, Yun-Han; Gean, Po-Wu; Yang, Yen Kung; Chen, Po See

    2013-10-01

    Accumulating evidence suggests that dysfunction of the amygdala is related to abnormal fear processing, anxiety, and social behaviors noted in autistic spectrum disorders (ASDs). In addition, studies have shown that disrupted brain serotonin homeostasis is linked to ASD. With a valproate (VPA)-induced rat ASD model, we investigated the possible role of amygdala serotonin homeostasis in autistic phenotypes and further explored the underlying mechanism. We first discovered that the distribution of tryptophan hydroxylase immunoreactivity in the caudal raphe system was modulated on postnatal day (PD) 28 of the VPA-exposed offspring. Then, we found a significantly higher serotonin transporter availability in the amygdala of the VPA-exposed offspring on PD 56 by using single photon emission computed tomography and computed tomography co-registration following injection of (123)I-labeled 2-((2-(dimethylamino)methyl)phenyl)thio)-5-iodophenylamine((123)I[ADAM]). Furthermore, treatment with 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), a 5-HT1A receptor agonist, increased social interaction and improved fear memory extinction in the VPA-exposed offspring. 8-OH-DPAT treatment also reversed the characteristics of miniature excitatory post-synaptic currents as well as paired pulse facilitation observed in lateral amygdala slices. These results provided further evidence to support the role of the amygdala in characteristic behavioral changes in the rat ASD model. The serotonergic projections that modulate the amygdala function might play a certain role in the development and treatment of behavioral symptoms exhibited in individuals with ASD. PMID:23823694

  15. The novel 5-HT1A receptor agonist, NLX-112 reduces l-DOPA-induced abnormal involuntary movements in rat: A chronic administration study with microdialysis measurements.

    PubMed

    McCreary, Andrew C; Varney, Mark A; Newman-Tancredi, Adrian

    2016-06-01

    Although l-DOPA alleviates the motor symptoms of Parkinson's disease (PD), it elicits troublesome l-DOPA-induced dyskinesia (LID) in a majority of PD patients after prolonged treatment. This is likely due to conversion of l-DOPA to dopamine as a 'false neurotransmitter' from serotoninergic neurons. The highly selective and efficacious 5-HT1A receptor agonist, NLX-112 (befiradol or F13640) shows potent activity in a rat model of LID (suppression of Abnormal Involuntary Movements, AIMs) but its anti-AIMs effects have not previously been investigated following repeated administration. Acute administration of NLX-112 (0.04 and 0.16 mg/kg i.p.) reversed l-DOPA (6 mg/kg)-induced AIMs in hemiparkinsonian rats with established dyskinesia. The activity of NLX-112 was maintained following repeated daily i.p. administration over 14 days and was accompanied by pronounced decrease of striatal 5-HT extracellular levels, as measured by in vivo microdialysis, indicative of the inhibition of serotonergic activity. A concurrent blunting of l-DOPA-induced surge in dopamine levels on the lesioned side of the brain was observed upon NLX-112 administration and these neurochemical responses were also seen after 14 days of treatment. NLX-112 also suppressed the expression of AIMs in rats that were being primed for dyskinesia by repeated l-DOPA administration. However, when treatment of these rats with NLX-112 was stopped, l-DOPA then induced AIMs with scores that resembled those of control rats. The present study shows that the potent anti-AIMs activity of NLX-112 is maintained upon repeated administration and supports the ongoing clinical development of NLX-112 as a novel antidyskinetic agent for PD patients receiving l-DOPA treatment. PMID:26777281

  16. Altered serotonin and dopamine metabolism in the CNS of serotonin 5-HT(1A) or 5-HT(1B) receptor knockout mice.

    PubMed

    Ase, A R; Reader, T A; Hen, R; Riad, M; Descarries, L

    2000-12-01

    Measurements of serotonin (5-HT), dopamine (DA), and noradrenaline, and of 5-HT and DA metabolites, were obtained by HPLC from 16 brain regions and the spinal cord of 5-HT(1A) or 5-HT(1B) knockout and wild-type mice of the 129/Sv strain. In 5-HT(1A) knockouts, 5-HT concentrations were unchanged throughout, but levels of 5-HT metabolites were higher than those of the wild type in dorsal/medial raphe nuclei, olfactory bulb, substantia nigra, and locus coeruleus. This was taken as an indication of increased 5-HT turnover, reflecting an augmented basal activity of midbrain raphe neurons and consequent increase in their somatodendritic and axon terminal release of 5-HT. It provided a likely explanation for the increased anxious-like behavior observed in 5-HT(1A) knockout mice. Concomitant increases in DA content and/or DA turnover were interpreted as the result of a disinhibition of DA, whereas increases in noradrenaline concentration in some territories of projection of the locus coeruleus could reflect a diminished activity of its neurons. In 5-HT(1B) knockouts, 5-HT concentrations were lower than those of the wild type in nucleus accumbens, locus coeruleus, spinal cord, and probably also several other territories of 5-HT innervation. A decrease in DA, associated with increased DA turnover, was measured in nucleus accumbens. These changes in 5-HT and DA metabolism were consistent with the increased aggressiveness and the supersensitivity to cocaine reported in 5-HT(1B) knockout mice. Thus, markedly different alterations in CNS monoamine metabolism may contribute to the opposite behavioral phenotypes of these two knockouts. PMID:11080193

  17. The serotonergic hallucinogen 5-methoxy-N,N-dimethyltryptamine disrupts cortical activity in a regionally-selective manner via 5-HT(1A) and 5-HT(2A) receptors.

    PubMed

    Riga, Maurizio S; Bortolozzi, Analia; Campa, Letizia; Artigas, Francesc; Celada, Pau

    2016-02-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a natural hallucinogen, acting as a non-selective serotonin 5-HT(1A)/5-HT(2A)-R agonist. Psychotomimetic agents such as the non-competitive NMDA-R antagonist phencyclidine and serotonergic hallucinogens (DOI and 5-MeO-DMT) disrupt cortical synchrony in the low frequency range (<4 Hz) in rat prefrontal cortex (PFC), an effect reversed by antipsychotic drugs. Here we extend these observations by examining the effect of 5-MeO-DMT on low frequency cortical oscillations (LFCO, <4 Hz) in PFC, visual (V1), somatosensory (S1) and auditory (Au1) cortices, as well as the dependence of these effects on 5-HT(1A)-R and 5-HT(2A)-R, using wild type (WT) and 5-HT(2A)-R knockout (KO2A) anesthetized mice. 5-MeO-DMT reduced LFCO in the PFC of WT and KO2A mice. The effect in KO2A mice was fully prevented by the 5-HT(1A)-R antagonist WAY-100635. Systemic and local 5-MeO-DMT reduced 5-HT release in PFC mainly via 5-HT(1A)-R. Moreover, 5-MeO-DMT reduced LFCO in S1, Au1 and V1 of WT mice and only in V1 of KO2A mice, suggesting the involvement of 5-HT(1A)-R activation in the 5-MeO-DMT-induced disruption of V1 activity. In addition, antipsychotic drugs reversed 5-MeO-DMT effects in WT mice. The present results suggest that the hallucinogen action of 5-MeO-DMT is mediated by simultaneous alterations of the activity of sensory (S1, Au1, V1) and associative (PFC) cortical areas, also supporting a role of 5-HT(1A)-R stimulation in V1 and PFC, in addition to the well-known action on 5-HT(2A)-R. Moreover, the reversal by antipsychotic drugs of 5-MeO-DMT effects adds to previous literature supporting the usefulness of the present model in antipsychotic drug development. PMID:26477571

  18. 5-HT1A Autoreceptors in the Dorsal Raphe Nucleus Convey Vulnerability to Compulsive Cocaine Seeking.

    PubMed

    You, In-Jee; Wright, Sherie R; Garcia-Garcia, Alvaro L; Tapper, Andrew R; Gardner, Paul D; Koob, George F; David Leonardo, E; Bohn, Laura M; Wee, Sunmee

    2016-04-01

    Cocaine addiction and depression are comorbid disorders. Although it is well recognized that 5-hydroxytryptamine (5-HT; serotonin) plays a central role in depression, our understanding of its role in addiction is notably lacking. The 5-HT system in the brain is carefully controlled by a combined process of regulating 5-HT neuron firing through 5-HT autoreceptors, neurotransmitter release, enzymatic degradation, and reuptake by transporters. This study tests the hypothesis that activation of 5-HT1A autoreceptors, which would lessen 5-HT neuron firing, contributes to cocaine-seeking behaviors. Using 5-HT neuron-specific reduction of 5-HT1A autoreceptor gene expression in mice, we demonstrate that 5-HT1A autoreceptors are necessary for cocaine conditioned place preference. In addition, using designer receptors exclusively activated by designer drugs (DREADDs) technology, we found that stimulation of the serotonergic dorsal raphe nucleus (DRN) afferents to the nucleus accumbens (NAc) abolishes cocaine reward and promotes antidepressive-like behaviors. Finally, using a rat model of compulsive-like cocaine self-administration, we found that inhibition of dorsal raphe 5-HT1A autoreceptors attenuates cocaine self-administration in rats with 6 h extended access, but not 1 h access to the drug. Therefore, our findings suggest an important role for 5-HT1A autoreceptors, and thus DRNNAc 5-HT neuronal activity, in the etiology and vulnerability to cocaine reward and addiction. Moreover, our findings support a strategy for antagonizing 5-HT1A autoreceptors for treating cocaine addiction. PMID:26324408

  19. The role of 5-HT1A receptors in the anti-aversive effects of cannabidiol on panic attack-like behaviors evoked in the presence of the wild snake Epicrates cenchria crassus (Reptilia, Boidae).

    PubMed

    Twardowschy, André; Castiblanco-Urbina, Maria Angélica; Uribe-Mariño, Andres; Biagioni, Audrey Francisco; Salgado-Rohner, Carlos José; Crippa, José Alexandre de Souza; Coimbra, Norberto Cysne

    2013-12-01

    The potential anxiolytic and antipanic properties of cannabidiol have been shown; however, its mechanism of action seems to recruit other receptors than those involved in the endocannabinoid-mediated system. It was recently shown that the model of panic-like behaviors elicited by the encounters between mice and snakes is a good tool to investigate innate fear-related responses, and cannabidiol causes a panicolytic-like effect in this model. The aim of the present study was to investigate the 5-hydroxytryptamine (5-HT) co-participation in the panicolytic-like effects of cannabidiol on the innate fear-related behaviors evoked by a prey versus predator interaction-based paradigm. Male Swiss mice were treated with intraperitoneal (i.p.) administrations of cannabidiol (3 mg/kg, i.p.) and its vehicle and the effects of the peripheral pre-treatment with increasing doses of the 5-HT1A receptor antagonist WAY-100635 (0.1, 0.3 and 0.9 mg/kg, i.p.) on instinctive fear-induced responses evoked by the presence of a wild snake were evaluated. The present results showed that the panicolytic-like effects of cannabidiol were blocked by the pre-treatment with WAY-100635 at different doses. These findings demonstrate that cannabidiol modulates the defensive behaviors evoked by the presence of threatening stimuli, and the effects of cannabidiol are at least partially dependent on the recruitment of 5-HT1A receptors. PMID:23926240

  20. 5-HT(1A), 5-HT(2A), and 5-HT(2C) receptor mRNA modulation by antidepressant treatment in the chronic mild stress model of depression: sex differences exposed.

    PubMed

    Pitychoutis, P M; Dalla, C; Sideris, A C; Tsonis, P A; Papadopoulou-Daifoti, Z

    2012-05-17

    It is well established that women experience major depression at roughly twice the rate of men. Interestingly, accumulating clinical and experimental evidence shows that the responsiveness of males and females to antidepressant pharmacotherapy, and particularly to tricyclic antidepressants (TCAs), is sex-differentiated. Herein, we investigated whether exposure of male and female rats to the chronic mild stress (CMS) model of depression, as well as treatment with the TCA clomipramine may affect serotonergic receptors' (5-HTRs) mRNA expression in a sex-dependent manner. Male and female rats were subjected to CMS for 4 weeks and during the next 4 weeks they concurrently received clomipramine treatment (10 mg/ml/kg). CMS and clomipramine's effects on 5-HT(1A)R, 5-HT(2A)R, and 5-HT(2C)R mRNA expression were assessed by in situ hybridization histochemistry in selected subfields of the hippocampus and in the lateral orbitofrontal cortex (OFC), two regions implicated in the pathophysiology of major depression. CMS and clomipramine treatment induced sex-differentiated effects on rats' hedonic status and enhanced 5-HT(1A)R mRNA expression in the cornu ammonis 1 (CA1) hippocampal region of male rats. Additionally, CMS attenuated 5-HT(1A)R mRNA expression in the OFC of male rats and clomipramine reversed this effect. Moreover, 5-HT(2A)R mRNA levels in the OFC were enhanced in females but decreased in males, while clomipramine reversed this effect only in females. CMS increased 5-HT2CR mRNA expression in the CA4 region of both sexes and this effect was attenuated by clomipramine. Present data exposed that both CMS and clomipramine treatment may induce sex-differentiated and region-distinctive effects on 5-HTRs mRNA expression and further implicate the serotonergic system in the manifestation of sexually dimorphic neurobehavioral responses to stress. PMID:22441040

  1. The antidepressant-like activity of 6-methoxy-2-[4-(2-methoxyphenyl)piperazin-1-yl]-9H-xanthen-9-one involves serotonergic 5-HT(1A) and 5-HT(2A/C) receptors activation.

    PubMed

    Pytka, Karolina; Walczak, Maria; Kij, Agnieszka; Rapacz, Anna; Siwek, Agata; Kazek, Grzegorz; Olczyk, Adrian; Gałuszka, Adam; Waszkielewicz, Anna; Marona, Henryk; Sapa, Jacek; Filipek, Barbara

    2015-10-01

    Xanthone derivatives have been shown to posses many biological properties. Some of them act within the central nervous system and show neuroprotective or antidepressant-like properties. Taking this into account we investigated antidepressant-like activity in mice and the possible mechanism of action of 6-methoxy-2-[4-(2-methoxyphenyl)piperazin-1-yl]-9H-xanthen-9-one (HBK-11) - a new xanthone derivative. We demonstrated that HBK-11 produced antidepressant-like effects in the forced swim test and tail suspension test, comparable to that of venlafaxine. The combined treatment with sub-effective doses of HBK-11 and fluoxetine (but not reboxetine or bupropion) significantly reduced the immobility in the forced swim test. Moreover, the antidepressant-like activity of HBK-11 in the aforementioned test was blocked by p-chlorophenylalanine, and significantly reduced by serotonergic 5HT1A receptor antagonist - WAY-1006335 and 5HT2A/C receptor antagonist - ritanserin. As none of the above treatments influenced the spontaneous locomotor activity, it can be concluded that HBK-11 mediates its activity through a serotonergic system, and its antidepressant-like effect involves 5HT1A and 5HT2A/C receptor activation. Furthermore, at antidepressant-like doses HBK-11 did not cause the mice to display locomotor deficits in rotarod or chimney tests. Considering the pharmacokinetic profile, HBK-11 demonstrated rapid absorption after i.p. administration, high clearance value, short terminal half-life, very high volume of distribution and incomplete bioavailability. The compound studied had good penetration into the brain tissue of mice. Since studied xanthone derivative seems to present interesting, untypical mechanism of antidepressant-like action i.e. 5HT2A/C receptor activation, it may have a potential in the treatment of depressive disorders, and surely requires further studies. PMID:26210317

  2. Serotonergic 5-HT(1A) receptor agonist (8-OH-DPAT) ameliorates impaired micturition reflexes in a chronic ventral root avulsion model of incomplete cauda equina/conus medullaris injury.

    PubMed

    Chang, Huiyi H; Havton, Leif A

    2013-01-01

    Trauma to the thoracolumbar spine commonly results in injuries to the cauda equina and the lumbosacral portion of the spinal cord. Both complete and partial injury syndromes may follow. Here, we tested the hypothesis that serotonergic modulation may improve voiding function after an incomplete cauda equina/conus medullaris injury. For this purpose, we used a unilateral L5-S2 ventral root avulsion (VRA) injury model in the rat to mimic a partial lesion to the cauda equina and conus medullaris. Compared to a sham-operated series, comprehensive urodynamic studies demonstrated a markedly reduced voiding efficiency at 12 weeks after the VRA injury. Detailed cystometrogram studies showed injury-induced decreased peak bladder pressures indicative of reduced contractile properties. Concurrent external urethral sphincter (EUS) electromyography demonstrated shortened burst and prolonged silent periods associated with the elimination phase. Next, a 5-HT(1A) receptor agonist, 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT), was administered intravenously at 12 weeks after the unilateral L5-S2 VRA injury. Both voiding efficiency and maximum intravesical pressure were significantly improved by 8-OH-DPAT (0.3-1.0 mg/kg). 8-OH-DPAT also enhanced the amplitude of EUS tonic and bursting activity as well as duration of EUS bursting and silent period during EUS bursting. The results indicate that 8-OH-DPAT improves voiding efficiency and enhances EUS bursting in rats with unilateral VRA injury. We conclude that serotonergic modulation of the 5-HT(1A) receptor may represent a new strategy to improve lower urinary tract function after incomplete cauda equina/conus medullaris injuries in experimental studies. PMID:23099413

  3. Nonphotic entrainment by 5-HT1A/7 receptor agonists accompanied by reduced Per1 and Per2 mRNA levels in the suprachiasmatic nuclei.

    PubMed

    Horikawa, K; Yokota, S; Fuji, K; Akiyama, M; Moriya, T; Okamura, H; Shibata, S

    2000-08-01

    In mammals, the environmental light/dark cycle strongly synchronizes the circadian clock within the suprachiasmatic nuclei (SCN) to 24 hr. It is well known that not only photic but also nonphotic stimuli can entrain the SCN clock. Actually, many studies have shown that a daytime injection of 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH DPAT), a serotonin 1A/7 receptor agonist, as a nonphotic stimulus induces phase advances in hamster behavioral circadian rhythms in vivo, as well as the neuron activity rhythm of the SCN in vitro. Recent reports suggest that mammalian homologs of the Drosophila clock gene, Period (Per), are involved in photic entrainment. Therefore, we examined whether phase advances elicited by 8-OH DPAT were associated with a change of Period mRNA levels in the SCN. In this experiment, we cloned partial cDNAs encoding hamster Per1, Per2, and Per3 and observed both circadian oscillation and the light responsiveness of Period. Furthermore, we found that the inhibitory effect of 8-OH DPAT on hamster Per1 and Per2 mRNA levels in the SCN occurred only during the hamster's mid-subjective day, but not during the early subjective day or subjective night. The present findings demonstrate that the acute and circadian time-dependent reduction of Per1 and/or Per2 mRNA in the hamster SCN by 8-OH DPAT is strongly correlated with the phase resetting in response to 8-OH DPAT. PMID:10908630

  4. 5-HT1A and 5-HT1B receptors control the firing of serotoninergic neurons in the dorsal raphe nucleus of the mouse: studies in 5-HT1B knock-out mice.

    PubMed

    Evrard, A; Laporte, A M; Chastanet, M; Hen, R; Hamon, M; Adrien, J

    1999-11-01

    The characteristics of the spontaneous firing of serotoninergic neurons in the dorsal raphe nucleus and its control by serotonin (5-hydroxytryptamine, 5-HT) receptors were investigated in wild-type and 5-HT1B knock-out (5-HT1B-/-) mice of the 129/Sv strain, anaesthetized with chloral hydrate. In both groups of mice, 5-HT neurons exhibited a regular activity with an identical firing rate of 0.5-4.5 spikes/s. Intravenous administration of the 5-HT reuptake inhibitor citalopram or the 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) induced a dose-dependent inhibition of 5-HT neuronal firing which could be reversed by the selective 5-HT1A antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohe xane carboxamide (WAY 100635). Both strains were equally sensitive to 8-OH-DPAT (ED50 approximately 6.3 microgram/kg i.v.), but the mutants were less sensitive than wild-type animals to citalopram (ED50 = 0.49 +/- 0.02 and 0.28 +/- 0.01 mg/kg i.v., respectively, P < 0.05). This difference could be reduced by pre-treatment of wild-type mice with the 5-HT1B/1D antagonist 2'-methyl-4'-(5-methyl-[1,2,4]oxadiazol-3-yl)-biphenyl-4-carbox yli c acid [4-methoxy-3-(4-methyl-piperazine-1-yl)-phenyl]amide (GR 127935), and might be accounted for by the lack of 5-HT1B receptors and a higher density of 5-HT reuptake sites (specifically labelled by [3H]citalopram) in 5-HT1B-/- mice. In wild-type but not 5-HT1B-/- mice, the 5-HT1B agonists 3-(1,2,5, 6-tetrahydro-4-pyridyl)-5-propoxypyrrolo[3,2-b]pyridine (CP 94253, 3 mg/kg i.v.) and 5-methoxy-3-(1,2,3, 6-tetrahydropyridin-4-yl)-1H-indole (RU 24969, 0.6 mg/kg i.v.) increased the firing rate of 5-HT neurons (+22.4 +/- 2.8% and +13.7 +/- 6.0%, respectively, P < 0.05), and this effect could be prevented by the 5-HT1B antagonist GR 127935 (1 mg/kg i.v.). Altogether, these data indicate that in the mouse, the firing of 5-HT neurons in the dorsal raphe nucleus is under both an inhibitory control through 5-HT1A

  5. Spinal 5-HT1A, not the 5-HT1B or 5-HT3 receptors, mediates descending serotonergic inhibition for late-phase mechanical allodynia of carrageenan-induced peripheral inflammation.

    PubMed

    Kim, Joung Min; Jeong, Seong Wook; Yang, Jihoon; Lee, Seong Heon; Kim, Woon Mo; Jeong, Seongtae; Bae, Hong Beom; Yoon, Myung Ha; Choi, Jeong Il

    2015-07-23

    Previous electrophysiological studies demonstrated a limited role of 5-hydroxytryptamine 3 receptor (5-HT3R), but facilitatory role of 5-HT1AR and 5-HT1BR in spinal nociceptive processing of carrageenan-induced inflammatory pain. The release of spinal 5-HT was shown to peak in early-phase and return to baseline in late-phase of carrageenan inflammation. We examined the role of the descending serotonergic projections involving 5-HT1AR, 5-HT1BR, and 5-HT3R in mechanical allodynia of early- (first 4h) and late-phase (24h after) carrageenan-induced inflammation. Intrathecal administration of 5-HT produced a significant anti-allodynic effect in late-phase, but not in early-phase. Similarly, intrathecal 5-HT1AR agonist (8-OH-DPAT) attenuated the intensity of late-phase allodynia in a dose dependent fashion which was antagonized by 5-HT1AR antagonist (WAY-100635), but produced no effect on the early-phase allodynia. However, other agonists or antagonists of 5-HT1BR (CP-93129, SB-224289) and 5-HT3R (m-CPBG, ondansetron) did not produce any anti- or pro-allodynic effect in both early- and late- phase allodynia. These results suggest that spinal 5-HT1A, but not 5-HT1B or 5-HT3 receptors mediate descending serotonergic inhibition on nociceptive processing of late-phase mechanical allodynia in carrageenan-induced inflammation. PMID:26037417

  6. Regulator of G-protein signaling 6 (RGS6) promotes anxiety and depression by attenuating serotonin-mediated activation of the 5-HT(1A) receptor-adenylyl cyclase axis.

    PubMed

    Stewart, Adele; Maity, Biswanath; Wunsch, Amanda M; Meng, Fantao; Wu, Qi; Wemmie, John A; Fisher, Rory A

    2014-04-01

    Targeting serotonin (5-HT) bioavailability with selective 5-HT reuptake inhibitors (SSRIs) remains the most widely used treatment for mood disorders. However, their limited efficacy, delayed onset of action, and side effects restrict their clinical utility. Endogenous regulator of G-protein signaling (RGS) proteins have been implicated as key inhibitors of 5-HT(1A)Rs, whose activation is believed to underlie the beneficial effects of SSRIs, but the identity of the specific RGS proteins involved remains unknown. We identify RGS6 as the critical negative regulator of 5-HT(1A)R-dependent antidepressant actions. RGS6 is enriched in hippocampal and cortical neurons, 5-HT(1A)R-expressing cells implicated in mood disorders. RGS6(-/-) mice exhibit spontaneous anxiolytic and antidepressant behavior rapidly and completely reversibly by 5-HT(1A)R blockade. Effects of the SSRI fluvoxamine and 5-HT(1A)R agonist 8-OH-DPAT were also potentiated in RGS6(+/-) mice. The phenotype of RGS6(-/-) mice was associated with decreased CREB phosphorylation in the hippocampus and cortex, implicating enhanced Gα(i)-dependent adenylyl cyclase inhibition as a possible causative factor in the behavior observed in RGS6(-/-) animals. Our results demonstrate that by inhibiting serotonergic innervation of the cortical-limbic neuronal circuit, RGS6 exerts powerful anxiogenic and prodepressant actions. These findings indicate that RGS6 inhibition may represent a viable means to treat mood disorders or enhance the efficacy of serotonergic agents. PMID:24421401

  7. 5-HT1A autoreceptor levels determine vulnerability to stress and response to antidepressants

    PubMed Central

    Richardson-Jones, Jesse W; Craige, Caryne P; Guiard, Bruno P; Stephen, Alisson; Metzger, Kayla L; Kung, Hank F; Gardier, Alain M; Dranovsky, Alex; David, Denis J; Beck, Sheryl G; Hen, René; Leonardo, E David

    2010-01-01

    Summary Most depressed patients don't respond to their first drug treatment, and the reasons for this treatment resistance remain enigmatic. Human studies implicate a polymorphism in the promoter of the serotonin-1A (5-HT1A) receptor gene in increased susceptibility to depression and decreased treatment response. Here we develop a new strategy to manipulate 5-HT1A autoreceptors in raphe nuclei without affecting 5-HT1A heteroreceptors, generating mice with higher (1A-High) or lower (1A-Low) autoreceptor levels. We show that this robustly affects raphe firing rates, but has no effect on either basal forebrain serotonin levels or conflict-anxiety measures. However, compared to 1A-Low mice, 1A-High mice show a blunted physiological response to acute stress, increased behavioral despair, and no behavioral response to antidepressant, modeling patients with the 5-HT1A risk allele. Furthermore, reducing 5-HT1A autoreceptor levels prior to antidepressant treatment is sufficient to convert non-responders into responders. These results establish a causal relationship between 5-HT1A autoreceptor levels, resilience under stress, and response to antidepressants. PMID:20152112

  8. Modulatory effect of the 5-HT1A agonist buspirone and the mixed non-hallucinogenic 5-HT1A/2A agonist ergotamine on psilocybin-induced psychedelic experience.

    PubMed

    Pokorny, Thomas; Preller, Katrin H; Kraehenmann, Rainer; Vollenweider, Franz X

    2016-04-01

    The mixed serotonin (5-HT) 1A/2A/2B/2C/6/7 receptor agonist psilocybin dose-dependently induces an altered state of consciousness (ASC) that is characterized by changes in sensory perception, mood, thought, and the sense of self. The psychological effects of psilocybin are primarily mediated by 5-HT2A receptor activation. However, accumulating evidence suggests that 5-HT1A or an interaction between 5-HT1A and 5-HT2A receptors may contribute to the overall effects of psilocybin. Therefore, we used a double-blind, counterbalanced, within-subject design to investigate the modulatory effects of the partial 5-HT1A agonist buspirone (20mg p.o.) and the non-hallucinogenic 5-HT2A/1A agonist ergotamine (3mg p.o.) on psilocybin-induced (170 µg/kg p.o.) psychological effects in two groups (n=19, n=17) of healthy human subjects. Psychological effects were assessed using the Altered State of Consciousness (5D-ASC) rating scale. Buspirone significantly reduced the 5D-ASC main scale score for Visionary Restructuralization (VR) (p<0.001), which was mostly driven by a reduction of the VR item cluster scores for elementary and complex visual hallucinations. Further, buspirone also reduced the main scale score for Oceanic Boundlessness (OB) including derealisation and depersonalisation phenomena at a trend level (p=0.062), whereas ergotamine did not show any effects on the psilocybin-induced 5D-ASC main scale scores. The present finding demonstrates that buspirone exerts inhibitory effects on psilocybin-induced effects, presumably via 5-HT1A receptor activation, an interaction between 5-HT1A and 5-HT2A receptors, or both. The data suggest that the modulation of 5-HT1A receptor activity may be a useful target in the treatment of visual hallucinations in different psychiatric and neurological diseases. PMID:26875114

  9. Mutational analysis of the promoter and the coding region of the 5-HT1A gene

    SciTech Connect

    Erdmann, J.; Noethen, M.M.; Shimron-Abarbanell, D.

    1994-09-01

    Disturbances of serotonergic pathways have been implicated in many neuropsychiatric disorders. Serotonin (5HT) receptors can be subdivided into at least three major families (5HT1, 5HT2, and 5HT3). Five human 5HT1 receptor subtypes have been cloned, namely 1A, 1D{alpha}, 1D{beta}, 1E, and 1F. Of these, the 5HT1A receptor is the best characterized subtype. In the present study we sought to identify genetic variation in the 5HT1A receptor gene which through alteration of protein function or level of expression might contribute to the genetics of neuropsychiatric diseases. The coding region and the 5{prime} promoter region of the 5HT1A gene from 159 unrelated subjects (45 schizophrenic, 46 bipolar affective, and 43 patients with Tourette`s syndrome, as well as 25 controls) were analyzed using SSCA. SSCA revealed the presence of two mutations both located in the coding region of the 5HT1A receptor gene. The first mutation is a rare silent C{r_arrow}T substitution at nucleotide position 549. The second mutation is characterized by a base pair substitution (A{r_arrow}G) at the first position of codon 28 and results in an amino acid exchange (Ile{r_arrow}Val). Since Val28 was found only in a single schizophrenic patient and in none of the other patients or controls, we decided to extend our samples and to use a restriction assay for screening a further 74 schizophrenic, 95 bipolar affective, and 49 patients with Tourette`s syndrome, as well as 185 controls, for the presence of the mutation. In total, the mutation was found in 2 schizophrenic patients, in 3 bipolars, in 1 Tourette patient, and in 5 controls. To our knowledge the Ile-28-Val substitution reported here is the first natural occuring molecular variant which has been identified for a serotonin receptor so far.

  10. Structure-affinity/activity relationships of 1,4-dioxa-spiro[4.5]decane based ligands at α1 and 5-HT1A receptors.

    PubMed

    Franchini, Silvia; Battisti, Umberto M; Baraldi, Annamaria; Prandi, Adolfo; Fossa, Paola; Cichero, Elena; Tait, Annalisa; Sorbi, Claudia; Marucci, Gabriella; Cilia, Antonio; Pirona, Lorenza; Brasili, Livio

    2014-11-24

    Recently, 1-(1,4-dioxaspiro[4,5]dec-2-ylmethyl)-4-(2-methoxyphenyl)piperazine (1) was reported as a highly selective and potent 5-HT1AR ligand. In the present work we adopted an in-parallel synthetic strategy to rapidly explore a new set of arylpiperazine (7-32) that is structurally related to 1. The compounds were tested for binding affinity and functional activity at 5-HT1AR and α1-adrenoceptor subtypes and SAR studies were drawn. In particular, compounds 9, 27 and 30 emerged as promising α1 receptor antagonists, while compound 10 behaves as the most potent and efficacious 5-HT1AR agonist. All the compounds were docked into the 5HT1AR theoretical model and the results were in agreement with the biological experimental data. These findings may represent a new starting point for developing more selective α1 or 5-HT1AR ligands. PMID:25261823

  11. Proopiomelanocortin but not vasopressin or renin-angiotensin system induces resuscitative effects of central 5-HT1A activation in haemorrhagic shock in rats.

    PubMed

    Sowa, P; Adamczyk-Sowa, M; Zwirska-Korczala, K; Pierzchala, K; Adamczyk, D; Paluch, Z; Misiolek, M

    2014-10-01

    The aim of this study was to determine the effectory mechanisms: vasopressin, renin-angiotensin system and proopiomelanocortin-derived peptides (POMC), partaking in the effects of serotonin through central serotonin 1A receptor (5-HT1A) receptors in haemorrhagic shock in rats. The study was conducted on male Wistar rats. All experimental procedures were carried out under full anaesthesia. The principal experiment included a 2 hour observation period in haemorrhagic shock. Drugs used - a selective 5-HT1A agonist 8-OH-DPAT (5 μg/5 μl); V1a receptor antagonist [β-mercapto-β, β-cyclo-pentamethylenepropionyl(1),O-me-Tyr(2),Arg(8)]AVP (10 μg/kg); angiotensin type I receptor antagonist (AT1) ZD7155 (0.5 mg/kg, i.v.); angiotensin-converting-enzyme inhibitor captopril (30 mg/kg, i.v.); melanocortin type 4 (MC4) receptor antagonist HS014 (5 μg, i.c.v.). There was no influence of ZD715, captopril or blocking of the V1a receptors on changes in the heart rate (HR), mean arterial pressure (MAP), peripheral blood flow or resistance caused by the central stimulation of 5-HT1A receptors (P≥0.05). However, selective blocking of central MC4 receptors caused a slight, but significant decrease in HR and MAP (P<0.05). POMC derivatives acting via the central MC4 receptor participate in the resuscitative effects of 8-OH-DPAT. The angiotensin and vasopressin systems do not participate in these actions. PMID:25371525

  12. Disruption of 5-HT1A function in adolescence but not early adulthood leads to sustained increases of anxiety.

    PubMed

    Garcia-Garcia, A L; Meng, Q; Richardson-Jones, J; Dranovsky, A; Leonardo, E D

    2016-05-01

    Current evidence suggests that anxiety disorders have developmental origins. Early insults to the circuits that sub-serve emotional regulation are thought to cause disease later in life. Evidence from studies in mice demonstrate that the serotonergic system in general, and serotonin 1A (5-HT1A) receptors in particular, are critical during the early postnatal period for the normal development of circuits that subserve anxious behavior. However, little is known about the role of serotonin signaling through 5-HT1A receptors between the emergence of normal anxiety behavior after weaning, and the mature adult phenotype. Here, we use both transgenic and pharmacological approaches in male mice, to identify a sensitive period for 5-HT1A function in the stabilization of circuits mediating anxious behavior during adolescence. Using a transgenic approach we show that suppression of 5-HT1A receptor expression beginning in early adolescence results in an anxiety-like phenotype in the open field test. We further demonstrate that treatment with the 5-HT1A antagonist WAY 100,635 between postnatal day (P)35 and P50, but not at later timepoints, results in altered anxiety in ethologically based conflict tests like the open field test and elevated plus maze. This change in anxiety behavior occurs without impacting behavior in the more depression-related sucrose preference test or forced swim test. The treatment with WAY 100,635 does not affect adult 5-HT1A expression levels, but leads to increased expression of the serotonin transporter in the raphe, along with enhanced serotonin levels in both the prefrontal cortex and raphe that correlate with the behavioral changes observed in adult mice. This work demonstrates that signaling through 5-HT1A receptors during adolescence (a time when pathological anxiety emerges), but not early adulthood, is critical in regulating anxiety setpoints. These data suggest the possibility that brief interventions in the serotonergic system during

  13. Role of the 5-HT1A autoreceptor in the enhancement of fluvoxamine-induced increases in prefrontal dopamine release by adrenalectomy/castration in mice.

    PubMed

    Hasebe, Shigeru; Hiramatsu, Naoki; Ago, Yukio; Mori, Kazuya; Watabe, Yuji; Hashimoto, Hitoshi; Takuma, Kazuhiro; Matsuda, Toshio

    2015-02-01

    We have found that fluvoxamine-induced increases in prefrontal dopamine release are enhanced by adrenalectomy/castration and 5-HT1A receptors are involved in the enhancement. This study examined which 5-HT1A autoreceptors or postsynaptic receptor play a key role in the enhancement in mice. Adrenalectomy/castration-induced enhancement of fluvoxamine-induced increase in the dopamine release was not blocked by local perfusion with the 5-HT1A receptor antagonist WAY100635 (10 μM), while it was blocked by systemic administration of WAY100635 at low dose (0.1 mg/kg) which blocked preferentially autoreceptor-mediated responses. These finding suggests that 5-HT1A autoreceptors play a key role in the enhancement of prefrontal dopamine release. PMID:25727963

  14. The 5-HT1A agonists 8-OH-DPAT, buspirone and ipsapirone attenuate stress-induced anorexia in rats.

    PubMed

    Dourish, C T; Kennett, G A; Curzon, G

    1987-01-01

    The effects of 5-HT agonists and antagonists, benzodiazepine anxiolytics and tricyclic antidepressants on restraint stress-induced anorexia in rats were examined. The selective 5-HT(1A) agonists 8-hydroxy-2-(di- n-propylamino)tetralin (8-OH-DPAT), buspirone and ipsapirone, when injected 2 h after the termination of stress, attenuated stress-induced anor exia and body weight loss. The effects of 8-OH-DPAT on stress-induced anorexia were blocked by the 5-HT(1A) antagonist spiperone but not by the 5-HT(2) antagonist ketanserin. The preferential 5-HT(1B) agonists RU-24969 and quipazine induced anorexia in unstressed rats and tended to supplement the anorectic effects of stress. The benzodiazepines chlordiazepoxide and diazepam and the 5-HT antagonist cyproheptadine had no effect on stress-induced anorexia, when given (like the 5-HT(1A) agonists) 2 h after the stress. Similarly, daily injection for 2 weeks of the tricyclic antidepressants desipramine and sertraline had no beneficial effect. The data suggest that 8-OH-DPAT, buspirone and ipsapirone attenuate stress-induced anorexia in rodents by a hyperphagic action on 5-HT(1A) receptors. PMID:22158750

  15. Yohimbine is a 5-HT1A agonist in rats in doses exceeding 1 mg/kg.

    PubMed

    Zaretsky, Dmitry V; Zaretskaia, Maria V; DiMicco, Joseph A; Rusyniak, Daniel E

    2015-10-01

    Yohimbine is a prototypical alpha2-adrenergic receptor antagonist. Due to its relatively high selectivity, yohimbine is often used in experiments whose purpose is to examine the role of these receptors. For example, yohimbine has been employed at doses of 1-5 mg/kg to reinstate drug-seeking behavior after extinction or to antagonize general anesthesia, an effects presumably being a consequence of blocking alpha2-adrenergic receptors. In this report we characterized dose-dependent autonomic and behavioral effects of yohimbine and its interaction with an antagonist of 5-HT1A receptors, WAY 100,635. In low doses (0.5-2 mg/kg i.p.) yohimbine induced locomotor activation which was accompanied by a tachycardia and mild hypertension. Increasing the dose to 3-4.5 mg/kg reversed the hypertension and locomotor activation and induced profound hypothermia. The hypothermia as well as the suppression of the locomotion and the hypertension could be reversed by the blockade of 5-HT1A receptors with WAY 100635. Our data confirm that yohimbine possesses 5-HT1A properties, and demonstrated that in doses above 1mg/kg significantly activate these receptors. PMID:26366943

  16. Testosterone and its metabolites modulate 5HT1A and 5HT1B agonist effects on intermale aggression.

    PubMed

    Simon, N G; Cologer-Clifford, A; Lu, S F; McKenna, S E; Hu, S

    1998-01-01

    Our understanding of the neurochemical and neuroendocrine systems' regulating the display of offensive intermale aggression has progressed substantially over the past twenty years. Pharmacological studies have shown that serotonin, via its action at 5HT1A and/or 5HT1B receptor sites, modulates the display of intermale aggressive behavior and that its effects serve to decrease behavioral expression. Neuroendocrine investigations, in turn, have demonstrated that male-typical aggression is testosterone-dependent and studies of genetic effects, metabolic function and steroid receptor binding have shown that facilitation of behavioral displays can occur via independent androgen-sensitive or estrogen-sensitive pathways. Remarkably, there have been virtually no studies that examined the interrelationship between these facilitative and inhibitory systems. As an initial step toward characterizing the interaction between the systems, studies were conducted that assessed hormonal modulation of serotonin function at 5HT1A and 5HT1B receptor sites. They demonstrated: (1) that the androgenic and estrogenic metabolites of testosterone differentially modulate the ability of systemically administered 8-OH-DPAT (a 5HT1A agonist) and CGS12066B (a 5HT1B agonist) to decrease offensive aggression; and (2) when microinjected into the lateral septum (LS) or medial preoptic area (MPO), the aggression-attenuating effects of 1A and 1B agonists differ regionally and vary with the steroidal milieu. In general, the results suggest that estrogens establish a restrictive environment for attenuation of T-dependent aggression by 8-OH-DPAT and CGS 12066B, while androgens either do not inhibit, or perhaps even facilitate, the ability of 5HT1A and 5HT1B agonists to reduce aggression. Potential mechanisms involved in the production of these steroidal effects are discussed and emerging issues that may impact on efforts to develop an integrative neurobiological model of offensive, intermale aggression

  17. 5-HT1A autoreceptor modulation of locomotor activity induced by nitric oxide in the rat dorsal raphe nucleus.

    PubMed

    Gualda, L B; Martins, G G; Müller, B; Guimarães, F S; Oliveira, R M W

    2011-04-01

    The dorsal raphe nucleus (DRN) is the origin of ascending serotonergic projections and is considered to be an important component of the brain circuit that mediates anxiety- and depression-related behaviors. A large fraction of DRN serotonin-positive neurons contain nitric oxide (NO). Disruption of NO-mediated neurotransmission in the DRN by NO synthase inhibitors produces anxiolytic- and antidepressant-like effects in rats and also induces nonspecific interference with locomotor activity. We investigated the involvement of the 5-HT(1A) autoreceptor in the locomotor effects induced by NO in the DRN of male Wistar rats (280-310 g, N = 9-10 per group). The NO donor 3-morpholinosylnomine hydrochloride (SIN-1, 150, and 300 nmol) and the NO scavenger S-3-carboxy-4-hydroxyphenylglycine (carboxy-PTIO, 0.1-3.0 nmol) were injected into the DRN of rats immediately before they were exposed to the open field for 10 min. To evaluate the involvement of the 5-HT(1A) receptor and the N-methyl-D-aspartate (NMDA) glutamate receptor in the locomotor effects of NO, animals were pretreated with the 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 8 nmol), the 5-HT(1A) receptor antagonist N-(2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl)-N-2-pyridinyl-cyclohexanecarboxamide maleate (WAY-100635, 0.37 nmol), and the NMDA receptor antagonist DL-2-amino-7-phosphonoheptanoic acid (AP7, 1 nmol), followed by microinjection of SIN-1 into the DRN. SIN-1 increased the distance traveled (mean ± SEM) in the open-field test (4431 ± 306.1 cm; F(7,63) = 2.44, P = 0.028) and this effect was blocked by previous 8-OH-DPAT (2885 ± 490.4 cm) or AP7 (3335 ± 283.5 cm) administration (P < 0.05, Duncan test). These results indicate that 5-HT(1A) receptor activation and/or facilitation of glutamate neurotransmission can modulate the locomotor effects induced by NO in the DRN. PMID:21445531

  18. A Subpopulation of Serotonergic Neurons That Do Not Express the 5-HT1A Autoreceptor

    PubMed Central

    2012-01-01

    5-HT neurons are topographically organized in the hindbrain, and have been implicated in the etiology and treatment of psychiatric diseases such as depression and anxiety. Early studies suggested that the raphe 5-HT neurons were a homogeneous population showing similar electrical properties, and feedback inhibition mediated by 5-HT1A autoreceptors. We utilized histochemistry techniques in ePet1-eGFP and 5-HT1A-iCre/R26R mice to show that a subpopulation of 5-HT neurons do not express the somatodendritic 5-HT1A autoreceptor mRNA. In addition, we performed patch-clamp recordings followed by single-cell PCR in ePet1-eGFP mice. From 134 recorded 5-HT neurons located in the dorsal, lateral, and median raphe, we found lack of 5-HT1A mRNA expression in 22 cells, evenly distributed across raphe subfields. We compared the cellular characteristics of these neuronal types and found no difference in passive membrane properties and general excitability. However, when injected with large depolarizing current, 5-HT1A-negative neurons fired more action potentials, suggesting a lack of autoinhibitory action of local 5-HT release. Our results support the hypothesis that the 5-HT system is composed of subpopulations of serotonergic neurons with different capacity for adaptation. PMID:23336048

  19. Structural Insights into 5-HT1A/D4 Selectivity of WAY-100635 Analogues: Molecular Modeling, Synthesis, and in Vitro Binding.

    PubMed

    Dilly, Sébastien; Liégeois, Jean-François

    2016-07-25

    The resurgence of interest in 5-HT1A receptors as a therapeutic target requires the existence of highly selective 5-HT1A ligands. To date, WAY-100635 has been the prototypical antagonist of these receptors. However, this compound also has significant affinity for and activity at D4 dopamine receptors. In this context, this work was aimed at better understanding the 5-HT1A/D4 selectivity of WAY-100635 and analogues from a structural point of view. In silico investigations revealed two key interactions for the 5-HT1A/D4 selectivity of WAY-100635 and analogues. First, a hydrogen bond only found with the Ser 7.36 of D4 receptor appeared to be the key for a higher D4 affinity for newly synthesized aza analogues. The role of Ser 7.36 was confirmed as the affinity of aza analogues for the mutant D4 receptor S7.36A was reduced. Then, the formation of another hydrogen bond with the conserved Ser 5.42 residue appeared to be also critical for D4 binding. PMID:27331407

  20. The C(-1019)G 5-HT1A promoter polymorphism and personality traits: no evidence for significant association in alcoholic patients

    PubMed Central

    Koller, G; Bondy, B; Preuss, UW; Zill, P; Soyka, M

    2006-01-01

    The 5HT1A receptor is one of at least 14 different receptors for serotonin which has a role in moderating several brain functions and may be involved in the aetiology of several psychiatric disorders. The C(-1019)G 5-HT1A promoter polymorphism was reported to be associated with major depression, depression-related personality traits and suicidal behavior in various samples. The G(-1019) allele carriers are prone to depressive personality traits and suicidal behavior, because serotonergic neurotransmission is reduced. The aim of this study is to replicate previous findings in a sample of 185 Alcohol-dependent individuals. Personality traits were evaluated using the NEO FFI and TCI. History of suicidal behavior was assessed by a standardized semistructured interview (SSAGA). No significant differences across C(-1019)G 5-HT1A genotype groups were found for TCI temperament and character traits and for NEO FFI personality scales. No association was detected between this genetic variant and history of suicide attempts. These results neither support a role of C(-1019)G 5-HT1A promoter polymorphism in the disposition of personality traits like harm avoidance or neuroticism, nor confirm previous research reporting an involvement of the G allele in suicidal behavior in alcoholics. Significant associations, however, were detected between Babor's Type B with number of suicide attempts in history, high neuroticism and harm avoidance scores in alcoholics. PMID:16504134

  1. Effect of prenatal stress on memory, nicotine withdrawal and 5HT1A expression in raphe nuclei of adult rats.

    PubMed

    Said, N; Lakehayli, S; El Khachibi, M; El Ouahli, M; Nadifi, S; Hakkou, F; Tazi, A

    2015-06-01

    Maternal distress has often been associated with cognitive deficiencies and drug abuse in rats. This study examined these behavioral effects in offspring of mothers stressed during gestation. To this end, pregnant dams were subjected to daily electric foot shocks during the last 10 days of pregnancy. We measured litter parameters and body weights of the descendants after weaning (21 days) and at adulthood (80 days). Afterwards, prenatally stressed and control rats' performances in the novel object recognition test were compared in order to evaluate their memory while others underwent the Water consumption test to assess the nicotine withdrawal intensity after perinatal manipulations. Meanwhile, another set of rats were sacrificed and 5HT1A receptors' mRNA expression was measured in the raphe nuclei by quantitative Real Time PCR. We noticed no significant influence of maternal stress on litter size and body weight right after weaning. However, control rats were heavier than the stressed rats in adulthood. The results also showed a significant decrease in the recognition score in rats stressed in utero compared to the controls. Moreover, a heightened anxiety symptom was observed in the prenatally stressed offspring following nicotine withdrawal. Additionally, the Real Time PCR method revealed that prenatal stress induced a significant decrease in 5HT1A receptors' levels in the raphe nuclei. Nicotine had a similar effect on these receptors' expression in both nicotine-treated control and prenatally stressed groups. Taken together, these findings suggest that the cognitive functions and drug dependence can be triggered by early adverse events in rats. PMID:25896010

  2. DSP-1053, a novel serotonin reuptake inhibitor with 5-HT1A partial agonistic activity, displays fast antidepressant effect with minimal undesirable effects in juvenile rats

    PubMed Central

    Kato, Taro; Matsumoto, Yuji; Yamamoto, Masanori; Matsumoto, Kenji; Baba, Satoko; Nakamichi, Keiko; Matsuda, Harumi; Nishimuta, Haruka; Yabuuchi, Kazuki

    2015-01-01

    Enhancement of serotonergic neurotransmission has been the main stream of treatment for patients with depression. However, delayed therapeutic onset and undesirable side effects are major drawbacks for conventional serotonin reuptake inhibitors. Here, we show that DSP-1053, a novel serotonin reuptake inhibitor with 5-HT1A partial agonistic activity, displays fast antidepressant efficacy with minimal undesirable effects, especially nausea and emesis in animal models. DSP-1053 bound human serotonin transporter and 5-HT1A receptor with the Ki values of 1.02 ± 0.06 and 5.05 ± 1.07 nmol/L, respectively. This compound inhibited the serotonin transporter with an IC50 value of 2.74 ± 0.41 nmol/L and had an intrinsic activity for 5-HT1A receptors of 70.0 ± 6.3%. In rat microdialysis, DSP-1053, given once at 3 and 10 mg kg−1, dose-dependently increased extracellular 5-HT levels. In the rat forced swimming test, 2-week administration of DSR-1053 (1 mg kg−1) significantly reduced rats immobility time after treatment, whereas paroxetine (3 and 10 mg kg−1) required 3-week administration to reduce rats immobility time. In olfactory bulbectomy model, 1- and 2-week administration of DSP-1053 reduced both of emotional scores and activity in the open field, whereas paroxetine required 2 weeks to show similar beneficial effects. Although single administration of DSP-1053-induced emesis and vomiting in the rat and Suncus murinus, multiple treatment with this compound, but not with paroxetine, decreased the number of vomiting episodes. These results highlight the important role of 5-HT1A receptors in both the efficacy and tolerability of DSP-1053 as a new therapeutic option for the treatment of depression. PMID:26171224

  3. The association between romantic relationship status and 5-HT1A gene in young adults.

    PubMed

    Liu, Jinting; Gong, Pingyuan; Zhou, Xiaolin

    2014-01-01

    What factors determine whether or not a young adult will fall in love? Sociological surveys and psychological studies have shown that non-genetic factors, such as socioeconomic status, external appearance, and personality attributes, are crucial components in romantic relationship formation. Here we demonstrate that genetic variants also contribute to romantic relationship formation. As love-related behaviors are associated with serotonin levels in the brain, this study investigated to what extent a polymorphism (C-1019G, rs6295) of 5-HT1A gene is related to relationship status in 579 Chinese Han people. We found that 50.4% of individuals with the CC genotype and 39.0% with CG/GG genotype were in romantic relationship. Logistic regression analysis indicated that the C-1019G polymorphism was significantly associated with the odds of being single both before and after controlling for socioeconomic status, external appearance, religious beliefs, parenting style, and depressive symptoms. These findings provide, for the first time, direct evidence for the genetic contribution to romantic relationship formation. PMID:25412229

  4. Screening of medicinal plants from Suriname for 5-HT(1A) ligands: Bioactive isoquinoline alkaloids from the fruit of Annona muricata.

    PubMed

    Hasrat, J A; Pieters, L; De Backer, J P; Vauquelin, G; Vlietinck, A J

    1997-06-01

    Plants from Suriname (South-America) and several Annona species, including A. muricata, A. ckerimolia, A. montana and A. glabra were screened for 5-HT(1A) receptor binding activity by ligand-binding-studies (LBS). Crude extracts of all Annona species and from Hibiscus bifurcatus, Irlbarchia purpurascens and Scoparia dulcis showed high activity. The isoquinoline alkaloids asimilobine (1), nornuciferine (2), and annonaine (3) were isolated as the active principles from the fruit of Annona muricata. These results may partially explain the use of Hibiscus bifurcatus and Annona muricata in traditional medicine in Suriname. PMID:23195401

  5. The synthesis and biological evaluation of quinolyl-piperazinyl piperidines as potent serotonin 5-HT1A antagonists.

    PubMed

    Childers, Wayne E; Havran, Lisa M; Asselin, Magda; Bicksler, James J; Chong, Dan C; Grosu, George T; Shen, Zhongqi; Abou-Gharbia, Magid A; Bach, Alvin C; Harrison, Boyd L; Kagan, Natasha; Kleintop, Teresa; Magolda, Ronald; Marathias, Vasilios; Robichaud, Albert J; Sabb, Annmarie L; Zhang, Mei-Yi; Andree, Terrance H; Aschmies, Susan H; Beyer, Chad; Comery, Thomas A; Day, Mark; Grauer, Steven M; Hughes, Zoe A; Rosenzweig-Lipson, Sharon; Platt, Brian; Pulicicchio, Claudine; Smith, Deborah E; Sukoff-Rizzo, Stacy J; Sullivan, Kelly M; Adedoyin, Adedayo; Huselton, Christine; Hirst, Warren D

    2010-05-27

    As part of an effort to identify 5-HT(1A) antagonists that did not possess typical arylalkylamine or keto/amido-alkyl aryl piperazine scaffolds, prototype compound 10a was identified from earlier work in a combined 5-HT(1A) antagonist/SSRI program. This quinolyl-piperazinyl piperidine analogue displayed potent, selective 5-HT(1A) antagonism but suffered from poor oxidative metabolic stability, resulting in low exposure following oral administration. SAR studies, driven primarily by in vitro liver microsomal stability assessment, identified compound 10b, which displayed improved oral bioavailability and lower intrinsic clearance. Further changes to the scaffold (e.g., 10r) resulted in a loss in potency. Compound 10b displayed cognitive enhancing effects in a number of animal models of learning and memory, enhanced the antidepressant-like effects of the SSRI fluoxetine, and reversed the sexual dysfunction induced by chronic fluoxetine treatment. PMID:20443629

  6. Differences among conventional, atypical and novel putative D(2)/5-HT(1A) antipsychotics on catalepsy-associated behaviour in cynomolgus monkeys.

    PubMed

    Auclair, Agnès L; Kleven, Mark S; Barret-Grévoz, Catherine; Barreto, Martine; Newman-Tancredi, Adrian; Depoortère, Ronan

    2009-11-01

    Typical antipsychotics such as haloperidol exert their therapeutic effects via blockade of dopamine (DA) D(2) receptors, leading to extrapyramidal symptoms (EPS) in humans and catalepsy in rodents. In contrast, atypical antipsychotics and new generation D(2)/5-HT(1A) antipsychotics have low cataleptogenic potential. However, there has been no systematic comparative study on the effects of these different classes of antipsychotics in non-human primates, a species displaying a more sophisticated repertoire of behavioural/motor activity than rats. Once weekly, six young adult female non-haloperidol-sensitised cynomolgus monkeys were treated i.m. with a test compound and videotaped to score catalepsy-associated behaviour (CAB: static postures, unusual positions and crouching). Haloperidol, risperidone, olanzapine, nemonapride and remoxipride induced, to different extents, an increase in unusual positions (a response akin to dystonia), some crouching and static postures. In contrast, clozapine, quetiapine, ziprasidone and aripiprazole produced much lower or no unusual positions; clozapine also produced marked increases in static postures and crouching. Among novel D(2)/5-HT(1A) antipsychotics, SLV313 and F15063 augmented the number of unusual positions, albeit at doses 16-63 times higher than those of haloperidol for approximately the same score. SSR181507 and bifeprunox produced moderate static postures, little crouching and negligible unusual positions. These data provide the first comparative analysis in cynomolgus monkeys of EPS liability of conventional, atypical and novel D(2)/5-HT(1A) antipsychotics. They indicate that the latter are less prone than haloperidol to produce CAB, and provide a basis for comparison with rodent catalepsy studies. PMID:19464324

  7. Pharmacological Characterization of 5-HT1A Autoreceptor-Coupled GIRK Channels in Rat Dorsal Raphe 5-HT Neurons

    PubMed Central

    Montalbano, Alberto; Corradetti, Renato; Mlinar, Boris

    2015-01-01

    G protein-activated inwardly rectifying potassium (GIRK) channels in 5-HT neurons are assumed to be principal effectors of 5-hydroxytryptamine 1A (5-HT1A) autoreceptors, but their pharmacology, subunit composition and the role in regulation of 5-HT neuron activity have not been fully elucidated. We sought for a pharmacological tool for assessing the functional role of GIRK channels in 5-HT neurons by characterizing the effects of drugs known to block GIRK channels in the submicromolar range of concentrations. Whole-cell voltage-clamp recording in brainstem slices were used to determine concentration-response relationships for the selected GIRK channel blockers on 5-HT1A autoreceptor-activated inwardly rectifying K+ conductance in rat dorsal raphe 5-HT neurons. 5-HT1A autoreceptor-activated GIRK conductance was completely blocked by the nonselective inwardly rectifying potassium channels blocker Ba2+ (EC50 = 9.4 μM, full block with 100 μM) and by SCH23390 (EC50 = 1.95 μM, full block with 30 μM). GIRK-specific blocker tertiapin-Q blocked 5-HT1A autoreceptor-activated GIRK conductance with high potency (EC50 = 33.6 nM), but incompletely, i.e. ~16% of total conductance resulted to be tertiapin-Q-resistant. U73343 and SCH28080, reported to block GIRK channels with submicromolar EC50s, were essentially ineffective in 5-HT neurons. Our data show that inwardly rectifying K+ channels coupled to 5-HT1A autoreceptors display pharmacological properties generally expected for neuronal GIRK channels, but different from GIRK1-GIRK2 heteromers, the predominant form of brain GIRK channels. Distinct pharmacological properties of GIRK channels in 5-HT neurons should be explored for the development of new therapeutic agents for mood disorders. PMID:26460748

  8. Effects of the serotonin 5-HT(2) antagonist, ritanserin, and the serotonin 5-HT(1A) antagonist, WAY 100635, on cocaine-seeking in rats.

    PubMed

    Schenk, S

    2000-10-01

    Manipulations of serotonergic systems have been shown to modify many of the behavioral effects of cocaine. It was recently demonstrated that serotonin (5-HT) depletions produced by inhibition of tryptophan hydroxylase reduced cocaine-seeking in an animal model. The present study was designed to determine whether pretreatment with specific 5-HT antagonists might also decrease cocaine-seeking. The effect of pretreatment with the 5-HT(2) antagonist, ritanserin (0.0, 1.0, or 10.0 mg/kg), or the 5-HT(1A) antagonist, WAY 100635 (0. 0, 0.1, 0.3, or 1.0 mg/kg), on cocaine (5.0, 10.0, or 20.0 mg/kg)-produced reinstatement of extinguished drug-taking behavior was measured. Although ritanserin was ineffective, WAY 100635 attenuated cocaine-produced reinstatement in a dose-dependent manner. These effects of WAY 100635 appeared to be specific since responding maintained by saccharin self-administration remained high following pretreatment with 0.3 or 1.0 mg/kg WAY 100635. These data suggest a role of 5-HT(1A), but not 5-HT(2), receptors in cocaine-seeking. PMID:11124402

  9. Antidepressant- and Anxiolytic-Like Effects of New Dual 5-HT1A and 5-HT7 Antagonists in Animal Models

    PubMed Central

    Pytka, Karolina; Partyka, Anna; Jastrzębska-Więsek, Magdalena; Siwek, Agata; Głuch-Lutwin, Monika; Mordyl, Barbara; Kazek, Grzegorz; Rapacz, Anna; Olczyk, Adrian; Gałuszka, Adam; Błachuta, Marian; Waszkielewicz, Anna; Marona, Henryk; Sapa, Jacek; Filipek, Barbara; Wesołowska, Anna

    2015-01-01

    The aim of this study was to further characterize pharmacological properties of two phenylpiperazine derivatives: 1-{2-[2-(2,6-dimethlphenoxy)ethoxy]ethyl}-4-(2-methoxyphenyl)piperazynine hydrochloride (HBK-14) and 2-[2-(2-chloro-6-methylphenoxy)ethoxy]ethyl-4-(2- methoxyphenyl)piperazynine dihydrochloride (HBK-15) in radioligand binding and functional in vitro assays as well as in vivo models. Antidepressant-like properties were investigated in the forced swim test (FST) in mice and rats. Anxiolytic-like activity was evaluated in the four-plate test in mice and elevated plus maze test (EPM) in rats. Imipramine and escitalopram were used as reference drugs in the FST, and diazepam was used as a standard anxiolytic drug in animal models of anxiety. Our results indicate that HBK-14 and HBK-15 possess high or moderate affinity for serotonergic 5-HT2, adrenergic α1, and dopaminergic D2 receptors as well as being full 5-HT1A and 5-HT7 receptor antagonists. We also present their potent antidepressant-like activity (HBK-14—FST mice: 2.5 and 5 mg/kg; FST rats: 5 mg/kg) and (HBK-15—FST mice: 1.25, 2.5 and 5 mg/kg; FST rats: 1.25 and 2.5 mg/kg). We show that HBK-14 (four-plate test: 2.5 and 5 mg/kg; EPM: 2.5 mg/kg) and HBK-15 (four-plate test: 2.5 and 5 mg/kg; EPM: 5 mg/kg) possess anxiolytic-like properties. Among the two, HBK-15 has stronger antidepressant-like properties, and HBK-14 displays greater anxiolytic-like activity. Lastly, we demonstrate the involvement of serotonergic system, particularly 5-HT1A receptor, in the antidepressant- and anxiolytic-like actions of investigated compounds. PMID:26554929

  10. Postnatal maintenance of the 5-Ht1a-Pet1 autoregulatory loop by serotonin in the raphe nuclei of the brainstem

    PubMed Central

    2014-01-01

    Background Despite the importance of 5-HT1A as a major target for the action of several anxiolytics/antidepressant drugs, little is known about its regulation in central serotonin (5-hydroxytryptamine, 5-HT) neurons. Results We report that expression of 5-HT1A and the transcription factor Pet1 was impaired in the rostral raphe nuclei of mice lacking tryptophan hydroxylase 2 (Tph2) after birth. The downregulation of Pet1 was recapitulated in 5-Ht1a -/- mice. Using an explant culture system, we show that reduction of Pet1 and 5-HT1A was rescued in Tph2 -/- brainstem by exogenous 5-HT. In contrast, 5-HT failed to rescue reduced expression of Pet1 in 5-Ht1a -/- brainstem explant culture. Conclusions These results suggest a causal relationship between 5-HT1A and Pet1, and reveal a potential mechanism by which 5-HT1A-Pet1 autoregulatory loop is maintained by 5-HT in a spatiotemporal-specific manner during postnatal development. Our results are relevant to understanding the pathophysiology of certain psychiatric and developmental disorders. PMID:24972638

  11. Pinpointing brainstem mechanisms responsible for autonomic dysfunction in Rett syndrome: therapeutic perspectives for 5-HT1A agonists

    PubMed Central

    Abdala, Ana P.; Bissonnette, John M.; Newman-Tancredi, Adrian

    2014-01-01

    Rett syndrome is a neurological disorder caused by loss of function of methyl-CpG-binding protein 2 (MeCP2). Reduced function of this ubiquitous transcriptional regulator has a devastating effect on the central nervous system. One of the most severe and life-threatening presentations of this syndrome is brainstem dysfunction, which results in autonomic disturbances such as breathing deficits, typified by episodes of breathing cessation intercalated with episodes of hyperventilation or irregular breathing. Defects in numerous neurotransmitter systems have been observed in Rett syndrome both in animal models and patients. Here we dedicate special attention to serotonin due to its role in promoting regular breathing, increasing vagal tone, regulating mood, alleviating Parkinsonian-like symptoms and potential for therapeutic translation. A promising new symptomatic strategy currently focuses on regulation of serotonergic function using highly selective serotonin type 1A (5-HT1A) “biased agonists.” We address this newly emerging therapy for respiratory brainstem dysfunction and challenges for translation with a holistic perspective of Rett syndrome, considering potential mood and motor effects. PMID:24910619

  12. The effect of urapidil, an alpha-1 adrenoceptor antagonist and a 5-HT1A agonist, on the vascular tone of the porcine coronary and pulmonary arteries, the rat aorta and the human pulmonary artery.

    PubMed

    Bopp, Claire; Auger, Cyril; Diemunsch, Pierre; Schini-Kerth, Valérie

    2016-05-15

    Urapidil (Eupressyl(®)) an antihypertensive drug acting as an α1 antagonist and a 5-HT1A agonist, may be of special interest in the treatment of hypertension associated with preeclamptic toxaemia and hypoxia-induced pulmonary arterial vasoconstriction. However, the effect of urapidil on vascular tone has been poorly investigated. Vascular reactivity was evaluated using pulmonary and coronary arteries from 36 pigs, aortae from 22 rats and 9 human pulmonary artery samples suspended in organ chambers. Concentration-relaxation curves either to urapidil, 5-HT, or the 5-HT1A receptor agonist 8-OH-DPAT were constructed after pre-contraction of rings. Pig pulmonary and coronary artery rings were contracted with U46619, a thromboxane mimetic, rat aortic rings with either endothelin-1 or phenylephrine, and human pulmonary artery rings with U46619 or phenylephrine. Urapidil markedly inhibited phenylephrine-induced contractions in rat aortic rings with and without endothelium with a more pronounced effect observed in rings without endothelium. Both 5-HT and 8-OH-DPAT failed to induce relaxation in rat aortic rings with an intact endothelium. 5-HT, but not urapidil and 8-OH-DPAT, induced a concentration-dependent relaxation in the porcine coronary and pulmonary artery rings with an intact endothelium (P<0.05). 5-HT and phenylephrine but not urapidil caused concentration-dependent contractions in human pulmonary artery rings. The present findings, while confirming that urapidil is a potent inhibitor of α1-adrenoceptor-induced contraction, do not support the role of 5-HT1A receptor activation in the control of the vascular tone of the different types of arteries tested in response to urapidil. In addition, they indicate that urapidil seems to preferentially target arteries with endothelial dysfunction. PMID:26957055

  13. Two cases of mild serotonin toxicity via 5-hydroxytryptamine 1A receptor stimulation

    PubMed Central

    Nakayama, Hiroto; Umeda, Sumiyo; Nibuya, Masashi; Terao, Takeshi; Nisijima, Koichi; Nomura, Soichiro

    2014-01-01

    We propose the possibility of 5-hydroxytryptamine (5-HT)1A receptor involvement in mild serotonin toxicity. A 64-year-old woman who experienced hallucinations was treated with perospirone (8 mg/day). She also complained of depressed mood and was prescribed paroxetine (10 mg/day). She exhibited finger tremors, sweating, coarse shivering, hyperactive knee jerks, vomiting, diarrhea, tachycardia, and psychomotor agitation. After the discontinuation of paroxetine and perospirone, the symptoms disappeared. Another 81-year-old woman, who experienced delusions, was treated with perospirone (8 mg/day). Depressive symptoms appeared and paroxetine (10 mg/day) was added. She exhibited tachycardia, finger tremors, anxiety, agitation, and hyperactive knee jerks. The symptoms disappeared after the cessation of paroxetine and perospirone. Recently, the effectiveness of coadministrating 5-HT1A agonistic psychotropics with selective serotonin reuptake inhibitors (SSRIs) has been reported, and SSRIs with 5-HT1A agonistic activity have been newly approved in the treatment of depression. Perospirone is a serotonin–dopamine antagonist and agonistic on the 5-HT1A receptors. Animal studies have indicated that mild serotonin excess induces low body temperature through 5-HT1A, whereas severe serotonin excess induces high body temperature through 5-HT2A activation. Therefore, it could be hypothesized that mild serotonin excess induces side effects through 5-HT1A, and severe serotonin excess induces lethal side effects with hyperthermia through 5-HT2A. Serotonin toxicity via a low dose of paroxetine that is coadministered with perospirone, which acts agonistically on the 5-HT1A receptor and antagonistically on the 5-HT2A receptor, clearly indicated 5-HT1A receptor involvement in mild serotonin toxicity. Careful measures should be adopted to avoid serotonin toxicity following the combined use of SSRIs and 5-HT1A agonists. PMID:24627634

  14. Evidence that the deficit in sexual behavior in adult rats neonatally exposed to citalopram is a consequence of 5-HT1 receptor stimulation during development

    PubMed Central

    Maciag, Dorota; Coppinger, David; Paul, Ian A.

    2006-01-01

    Neonatal (postnatal days 8-21) exposure of rats to the selective serotonin reuptake inhibitor (SSRI), citalopram, results in persistent changes in behavior including decreased sexual activity in adult animals. We hypothesized that this effect was a consequence of abnormal stimulation of serotonergic receptors 5- HT1A or/and 5-HT1B as a result of increased synaptic availability of serotonin during a critical period of development. We examined whether neonatal exposure to a 5-HT1A (8OH-DPAT) and/or a 5-HT1B (CGS 12066B) receptor agonist can mimic the effect of neonatal exposure to citalopram on adult sexual behavior. Results showed that neonatal treatment with 5-HT1B receptor agonist robustly impaired sexual behavior similar to the effect of citalopram whereas exposure to 5-HT1A receptor agonist only moderately influenced male sexual activity in adult animals. These data support the hypothesis that stimulation of serotonin autoreceptors during development contributes to the adult sexual deficit in rats neonatally exposed to citalopram. PMID:17101120

  15. Systemic treatment with a 5HT1a agonist induces anti-oxidant protection and preserves the retina from mitochondrial oxidative stress.

    PubMed

    Biswal, Manas R; Ahmed, Chulbul M; Ildefonso, Cristhian J; Han, Pingyang; Li, Hong; Jivanji, Hiral; Mao, Haoyu; Lewin, Alfred S

    2015-11-01

    Chronic oxidative stress contributes to age related diseases including age related macular degeneration (AMD). Earlier work showed that the 5-hydroxy-tryptamine 1a (5HT1a) receptor agonist 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) protects retinal pigment epithelium (RPE) cells from hydrogen peroxide treatment and mouse retinas from oxidative insults including light injury. In our current experiments, RPE derived cells subjected to mitochondrial oxidative stress were protected from cell death by the up-regulation of anti-oxidant enzymes and of the metal ion chaperone metallothionein. Differentiated RPE cells were resistant to oxidative stress, and the expression of genes for protective proteins was highly increased by oxidative stress plus drug treatment. In mice treated with 8-OH-DPAT, the same genes (MT1, HO1, NqO1, Cat, Sod1) were induced in the neural retina, but the drug did not affect the expression of Sod2, the gene for manganese superoxide dismutase. We used a mouse strain deleted for Sod2 in the RPE to accelerate age-related oxidative stress in the retina and to test the impact of 8-OH-DPAT on the photoreceptor and RPE degeneration developed in these mice. Treatment of mice with daily injections of the drug led to increased electroretinogram (ERG) amplitudes in dark-adapted mice and to a slight improvement in visual acuity. Most strikingly, in mice treated with a high dose of the drug (5 mg/kg) the structure of the RPE and Bruch's membrane and the normal architecture of photoreceptor outer segments were preserved. These results suggest that systemic treatment with this class of drugs may be useful in preventing geographic atrophy, the advanced form of dry AMD, which is characterized by RPE degeneration. PMID:26315784

  16. Synthesis and structure-activity relationships of a new model of arylpiperazines. Part 7: Study of the influence of lipophilic factors at the terminal amide fragment on 5-HT(1A) affinity/selectivity.

    PubMed

    López-Rodríguez, María L; Ayala, David; Viso, Alma; Benhamú, Bellinda; de La Pradilla, Roberto Fernández; Zarza, Fernando; Ramos, José A

    2004-03-15

    The influence of lipophilic factors at the amide fragment of a new series of (+/-)-7a-alkyl-2-[4-(4-arylpiperazin-1-yl)butyl]-1,3-dioxoperhydropyrrolo[1,2-c]imidazoles 2 and of (+/-)-7a-alkyl-2-[(4-arylpiperazin-1-yl)methyl]-1,3-dioxoperhydropyrrolo[1,2-c]imidazoles 3 has been studied. Variations of logP have been carried out by introducing different hydrocarbonated substituents (R(1)) at the position 7a of the bicyclohydantoin, namely the non-pharmacophoric part. All the new compounds exhibit high potency for the 5-HT(1A) receptor; however, affinities for the alpha(1) receptor are high for compounds 2a-l while compounds 3a-f are selective over this adrenergic receptor. On the other hand, differences in logP do not notably affect the K(i) values for the above receptors. PMID:15018929

  17. Aggressive Encounters Alter the Activation of Serotonergic Neurons and the Expression of 5-HT1A mRNA in the Hamster Dorsal Raphe Nucleus

    PubMed Central

    Cooper, Matthew A.; Grober, Matthew S.; Nicholas, Christopher; Huhman, Kim L.

    2009-01-01

    Serotonergic (5-HT) neurons in the dorsal raphe nucleus (DRN) have been implicated in stress-induced changes in behavior. Previous research indicates that stressful stimuli activate 5-HT neurons in select subregions of the DRN. Uncontrollable stress is thought to sensitize 5-HT neurons in the DRN and allow for an exaggerated 5-HT response to future stimuli. In the current study, we tested the hypothesis that following aggressive encounters, losing male Syrian hamsters would exhibit increased c-Fos immunoreactivity in 5-HT DRN neurons compared to winners or controls. In addition, we tested the hypothesis that losers would have decreased 5-HT1A mRNA levels in the DRN compared to winners or controls. We found that a single 15-min aggressive encounter increased c-Fos expression in 5-HT and non-5-HT neurons in losers compared to winners and controls. The increased c-Fos expression in losers was restricted to ventral regions of the rostral DRN. We also found that four 5-min aggressive encounters reduced total 5-HT1A mRNA levels in the DRN in losers compared to winners and controls, and that differences in mRNA levels were not restricted to specific DRN subregions. These results suggest that social defeat activates neurons in select subregions of the DRN and reduces message for DRN 5-HT1A autoreceptors. Our results support the hypothesis that social stress can activate 5-HT neurons in the DRN, reduce 5-HT1A autoreceptor-mediated inhibition, and lead to hyperactivity of 5-HT neurons. PMID:19362123

  18. Characterization of MDL 73005EF as a 5-HT1A selective ligand and its effects in animal models of anxiety: comparison with buspirone, 8-OH-DPAT and diazepam.

    PubMed Central

    Moser, P. C.; Tricklebank, M. D.; Middlemiss, D. N.; Mir, A. K.; Hibert, M. F.; Fozard, J. R.

    1990-01-01

    1. With radioligand binding techniques, MDL 73005 EF (8-[2-(2,3-dihydro-1,4-benzodioxin-2-yl-methylamino)ethyl]-8-az aspiro[4, 5]decane-7,9-dione methyl sulphonate) shows high affinity (pIC50 8.6) and selectivity (greater than 100 fold compared to other monoamine and benzodiazepine receptor sites) for the 5-hydroxytryptamine (5-HT)1A recognition site; it was both more potent and more selective than buspirone in this respect. 2. In rats pretreated with reserpine, 8-hydroxy-2-(di-n-propyl-amino) tetralin (8-OH-DPAT) induced forepaw treading and flat body posture; in the same model, MDL 73005EF and buspirone showed minimal agonist activity and at high doses MDL 73005EF inhibited responses to 8-OH-DPAT. 3. In rats trained to discriminate 8-OH-DPAT from saline in a drug discrimination paradigm, both MDL 73005EF and buspirone generalized dose-dependently and completely to the 8-OH-DPAT cue. 4. To define the anxiolytic potential of MDL 73005EF, it was examined in the elevated plus-maze test and in the water-lick conflict test in comparison with diazepam and buspirone. In both tests MDL 73005EF induced effects similar to those seen following diazepam. Buspirone had similar effects to both MDL 73005EF and diazepam in the water-lick conflict test but opposite effects in the elevated plus-maze. 8-OH-DPAT also had opposite effects in the elevated plus-maze test to MDL 73005EF and diazepam. 5. The anti-conflict effects of MDL 73005EF were reversed by low doses of the 5-HT1A receptor agonist, 8-OH-DPAT; those of buspirone were neither antagonised nor mimicked by 8-OH-DPAT.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1970269

  19. Modulation of the vagal bradycardia evoked by stimulation of upper airway receptors by central 5-HT1 receptors in anaesthetized rabbits

    PubMed Central

    Dando, Simon B; Skinner, Matthew R; Jordan, David; Ramage, Andrew G

    1998-01-01

    The effects of central application of 5-HT1A and 5-HT1B/1D receptor ligands on the reflex bradycardia, apnoea, renal sympathoexcitation and pressor response evoked by stimulating upper airway receptors with smoke in atenolol-pretreated anaesthetized rabbits were studied.Intracisternal administration of the 5-HT1A receptor antagonists WAY-100635 (100 μg kg−1) and (−)pindolol (100 μg kg−1) significantly reduced the smoke-induced bradycardia, attenuated the pressor response and in the case of (−)pindolol, sympathetic nerve activity. The same dose of WAY-100635 i.v. was without effect.Buspirone (200 μg kg−1, i.c.) potentiated the reflex bradycardia. This action was prevented if the animals were pretreated with WAY-100635 (100 μg kg−1, i.v.)(+)8-OH-DPAT (25 μg kg−1, i.c.) attenuated the evoked bradycardia, pressor response, apnoea and renal sympathoexcitation. The attenuation of the apnoea and renal sympathoexcitation, but not the bradycardia or pressor response was prevented in animals pretreated with WAY-100635 (100 μg kg−1, i.v.). The attenuation of the reflex bradycardia and the reduction in the renal sympathoexcitation were reduced by pretreatment with the 5-HT1B/1D receptor antagonist GR127935 (100 μg kg−1, i.v.).In WAY-100635 (100 μg kg−1, i.v.) pretreated animals, sumatriptan (a 5-HT1B/1D receptor agonist) reduced the reflex bradycardia and the pressor response. The 5-HT1B/1D receptor antagonist GR127935 (20 μg kg−1, i.c. or 100 μg kg−1, i.v.) had no effect on the reflex responses.In conclusion, the present data are consistent with the hypothesis that activation of central 5-HT1A receptors potentiate whilst activation of 5-HT1B/1D receptors attenuate the reflex activation of cardiac preganglionic vagal motoneurones evoked by stimulation of upper airway receptors with smoke in rabbits. PMID:9786516

  20. Characterization of prejunctional 5-HT1 receptors that mediate the inhibition of pressor effects elicited by sympathetic stimulation in the pithed rat

    PubMed Central

    Morán, A; Fernández, M M; Velasco, C; Martín, M L; San Román, L

    1998-01-01

    A study was made of the effects of 5-carboxamidotryptamine (5-CT) on pressor responses induced in vivo by electrical stimulation of the sympathetic outflow from the spinal cord of pithed rats. All animals had been pretreated with atropine. Sympathetic stimulation (0.1, 0.5, 1 and 5 Hz) resulted in frequency-dependent increases in blood pressure. Intravenous infusion of 5-CT at doses of 0.01, 0.1 and 1 μg kg−1 min−1 reduced the pressor effects obtained by electrical stimulation. The inhibitory effect of 5-CT was significantly more pronounced at lower frequencies of stimulation. In the present study we characterized the pharmacological profile of the receptors mediating the above inhibitory effect of 5-CT.The inhibition induced by 0.01 μg kg−1 min−1 of 5-CT on sympathetically-induced pressor responses was partially blocked after i.v. treatment with methiothepin (10  μg kg−1), WAY-100,635 (100 μg kg−1) or GR127935T (250 μg kg−1), but was not affected by cyanopindolol (100 μg kg−1).The selective 5-HT1A receptor agonist 8-OH-DPAT and the selective 5-HT1B/1D receptor agonists sumatriptan and L-694,247 inhibited the pressor response, whereas the 5-HT1B receptor agonists CGS-12066B and CP-93,129 and the 5-HT2C receptor agonist m-CPP did not modify the pressor symapthetic responses.The selective 5-HT1A receptor antagonist WAY-100,635 (100 μg kg−1) blocked the inhibition induced by 8-OH-DPAT and the selective 5-HT1B/1D receptor antagonist GR127935T (250 μg kg−1) abolished the inhibition induced either by L-694,247 or sumatriptan.None of the 5-HT receptor agonists used in our experiments modified the pressor responses induced by exogenous noradrenaline (NA).These results suggest that the presynaptic inhibitory action of 5-CT on the electrically-induced pressor response is mediated by both r-5-HT1D and 5-HT1A receptors. PMID:9559906

  1. Mast cell expression of the serotonin1A receptor in guinea pig and human intestine.

    PubMed

    Wang, Guo-Du; Wang, Xi-Yu; Zou, Fei; Qu, Meihua; Liu, Sumei; Fei, Guijun; Xia, Yun; Needleman, Bradley J; Mikami, Dean J; Wood, Jackie D

    2013-05-15

    Serotonin [5-hydroxytryptamine (5-HT)] is released from enterochromaffin cells in the mucosa of the small intestine. We tested a hypothesis that elevation of 5-HT in the environment of enteric mast cells might degranulate the mast cells and release mediators that become paracrine signals to the enteric nervous system, spinal afferents, and secretory glands. Western blotting, immunofluorescence, ELISA, and pharmacological analysis were used to study expression of 5-HT receptors by mast cells in the small intestine and action of 5-HT to degranulate the mast cells and release histamine in guinea pig small intestine and segments of human jejunum discarded during Roux-en-Y gastric bypass surgeries. Mast cells in human and guinea pig preparations expressed the 5-HT1A receptor. ELISA detected spontaneous release of histamine in guinea pig and human preparations. The selective 5-HT1A receptor agonist 8-hydroxy-PIPAT evoked release of histamine. A selective 5-HT1A receptor antagonist, WAY-100135, suppressed stimulation of histamine release by 5-HT or 8-hydroxy-PIPAT. Mast cell-stabilizing drugs, doxantrazole and cromolyn sodium, suppressed the release of histamine evoked by 5-HT or 8-hydroxy-PIPAT in guinea pig and human preparations. Our results support the hypothesis that serotonergic degranulation of enteric mast cells and release of preformed mediators, including histamine, are mediated by the 5-HT1A serotonergic receptor. Association of 5-HT with the pathophysiology of functional gastrointestinal disorders (e.g., irritable bowel syndrome) underlies a question of whether selective 5-HT1A receptor antagonists might have therapeutic application in disorders of this nature. PMID:23518679

  2. Mast cell expression of the serotonin1A receptor in guinea pig and human intestine

    PubMed Central

    Wang, Guo-Du; Wang, Xi-Yu; Zou, Fei; Qu, Meihua; Liu, Sumei; Fei, Guijun; Xia, Yun; Needleman, Bradley J.; Mikami, Dean J.

    2013-01-01

    Serotonin [5-hydroxytryptamine (5-HT)] is released from enterochromaffin cells in the mucosa of the small intestine. We tested a hypothesis that elevation of 5-HT in the environment of enteric mast cells might degranulate the mast cells and release mediators that become paracrine signals to the enteric nervous system, spinal afferents, and secretory glands. Western blotting, immunofluorescence, ELISA, and pharmacological analysis were used to study expression of 5-HT receptors by mast cells in the small intestine and action of 5-HT to degranulate the mast cells and release histamine in guinea pig small intestine and segments of human jejunum discarded during Roux-en-Y gastric bypass surgeries. Mast cells in human and guinea pig preparations expressed the 5-HT1A receptor. ELISA detected spontaneous release of histamine in guinea pig and human preparations. The selective 5-HT1A receptor agonist 8-hydroxy-PIPAT evoked release of histamine. A selective 5-HT1A receptor antagonist, WAY-100135, suppressed stimulation of histamine release by 5-HT or 8-hydroxy-PIPAT. Mast cell-stabilizing drugs, doxantrazole and cromolyn sodium, suppressed the release of histamine evoked by 5-HT or 8-hydroxy-PIPAT in guinea pig and human preparations. Our results support the hypothesis that serotonergic degranulation of enteric mast cells and release of preformed mediators, including histamine, are mediated by the 5-HT1A serotonergic receptor. Association of 5-HT with the pathophysiology of functional gastrointestinal disorders (e.g., irritable bowel syndrome) underlies a question of whether selective 5-HT1A receptor antagonists might have therapeutic application in disorders of this nature. PMID:23518679

  3. The cardiovascular and renal functional responses to the 5-HT1A receptor agonist flesinoxan in two rat models of hypertension.

    PubMed Central

    Chamienia, A. L.; Johns, E. J.

    1996-01-01

    1. This study investigated the importance of renal sympathetic nerves in regulating sodium and water excretion from the kidneys of stroke prone spontaneously hypertensive and 2K1C Goldblatt hypertensive rats anaesthetized with chloralose/urethane (17.5/300 mg initially and supplemented at regular intervals), and prepared for measurement of renal function. 2. In stroke prone spontaneously hypertensive rats, flesinoxan, 30-1000 micrograms kg-1, i.v., caused graded reductions in blood pressure and heart rate of 74 +/- 5 mmHg and 63 +/- 9 beats min-1, respectively at the highest dose (P < 0.001). Renal blood flow did not change at any dose of drug while glomerular filtration rate fell by some 20% (P < 0.001) at the highest dose of drug, absolute and fractional sodium excretions, approximately doubled at 100 micrograms kg-1, and thereafter fell to below the baseline level at 1000 micrograms kg-1. 3. This pattern of excretory response was abolished following acute renal denervation when flesinoxan caused dose-related reductions in urine flow and sodium excretion, similar to that obtained by a mechanical reduction of renal perfusion pressure. 4. Flesinoxan administration (30-1000 micrograms kg-1, i.v.) into 2K1C Goldblatt hypertensive rats caused a maximum decrease in blood pressure and heart rate (both P < 0.001) of 34 +/- 3 mmHg and 20 +/- 6 beats min-1 and while renal blood flow and glomerular filtration rate were autoregulated, from 160 to 125 mmHg, there were dose-related decreases in urine volume and sodium excretion from the clipped and non-clipped kidneys of approximately 50-60% at the highest dose. 5. These findings suggest that in the stroke prone spontaneously hypertensive rat the renal nerves importantly control sodium and water reabsorption at the level of the tubules, whereas in 2K1C Goldblatt hypertensive rats, they play a minor role. PMID:8864520

  4. The Relevance of the Functional 5-HT1A Receptor Polymorphism for Attention and Working Memory Processes during Mental Rotation of Characters

    ERIC Educational Resources Information Center

    Beste, Christian; Heil, Martin; Domschke, Katharina; Konrad, Carsten

    2010-01-01

    Numerous lines of research indicate that attentional processes, working memory and saccadic processes are highly interrelated. In the current study, we examine the relation between these processes with respect to their cognitive-neurophysiological and neurobiological background by means of event-related potentials (ERPs) in a sample of N = 72…

  5. Distribution of serotonin 5-HT1A-binding sites in the brainstem and the hypothalamus, and their roles in 5-HT-induced sleep and ingestive behaviors in rock pigeons (Columba livia).

    PubMed

    dos Santos, Tiago Souza; Krüger, Jéssica; Melleu, Fernando Falkenburger; Herold, Christina; Zilles, Karl; Poli, Anicleto; Güntürkün, Onur; Marino-Neto, José

    2015-12-15

    Serotonin 1A receptors (5-HT1ARs), which are widely distributed in the mammalian brain, participate in cognitive and emotional functions. In birds, 5-HT1ARs are expressed in prosencephalic areas involved in visual and cognitive functions. Diverse evidence supports 5-HT1AR-mediated 5-HT-induced ingestive and sleep behaviors in birds. Here, we describe the distribution of 5-HT1ARs in the hypothalamus and brainstem of birds, analyze their potential roles in sleep and ingestive behaviors, and attempt to determine the involvement of auto-/hetero-5-HT1ARs in these behaviors. In 6 pigeons, the anatomical distribution of [(3)H]8-OH-DPAT binding in the rostral brainstem and hypothalamus was examined. Ingestive/sleep behaviors were recorded (1h) in 16 pigeons pretreated with MM77 (a heterosynaptic 5-HT1AR antagonist; 23 or 69 nmol) for 20 min, followed by intracerebroventricular ICV injection of 5-HT (N:8; 150 nmol), 8-OH-DPAT (DPAT, a 5-HT1A,7R agonist, 30 nmol N:8) or vehicle. 5-HT- and DPAT-induced sleep and ingestive behaviors, brainstem 5-HT neuronal density and brain 5-HT content were examined in 12 pigeons, pretreated by ICV with the 5-HT neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) or vehicle (N:6/group). The distribution of brainstem and diencephalic c-Fos immunoreactivity after ICV injection of 5-HT, DPAT or vehicle (N:5/group) into birds provided with or denied access to water is also described. 5-HT1ARs are concentrated in the brainstem 5-HTergic areas and throughout the periventricular hypothalamus, preoptic nuclei and circumventricular organs. 5-HT and DPAT produced a complex c-Fos expression pattern in the 5-HT1AR-enriched preoptic hypothalamus and the circumventricular organs, which are related to drinking and sleep regulation, but modestly affected c-Fos expression in 5-HTergic neurons. The 5-HT-induced ingestivebehaviors and the 5-HT- and DPAT-induced sleep behaviors were reduced by MM77 pretreatment. 5,7-DHT increased sleep per se, decreased tryptophan

  6. 5-Hydroxytryptamine 1A and 2B serotonin receptors in neurite outgrowth: involvement of early growth response protein 1.

    PubMed

    Anelli, Tonino; Cardarelli, Silvia; Ori, Michela; Nardi, Irma; Biagioni, Stefano; Poiana, Giancarlo

    2013-01-01

    Neurotransmitters play important roles in neurogenesis; in particular, acetylcholine and serotonin may regulate neurite elongation. Acetylcholine may also activate transcription factors such as early growth response protein 1 (EGR-1), which plays a role in neurite extension. N18TG2 neuroblastoma cells (which do not produce neurotransmitters and constitutively express muscarinic acetylcholine receptors) were transfected with constructs containing the cDNA for choline acetyltransferase, 5-hydroxytryptamine 1A (5-HT1A) and 5-HT2B serotonin receptors to study acetylcholine and serotonin interplay in neurite outgrowth. 5-HT1A receptor stimulation causes a decrease in EGR-1 levels and inhibition of neurite outgrowth; 5-HT2B stimulation, however, has no effect. Muscarinic cholinergic stimulation, on the other end, increases EGR-1 levels and fiber outgrowth. Inhibition of EGR-1 binding reduces fiber outgrowth activity. When both cholinergic and 5-HT1A receptors are stimulated, fiber outgrowth is restored; therefore, acetylcholine counterbalances the inhibitory effect of serotonin on neurite outgrowth. These results suggest that EGR-1 plays a role in the interplay of acetylcholine and serotonin in the regulation of neurite extension during development. PMID:24158140

  7. Investigation of serotonin-1A receptor function in the human psychopharmacology of MDMA.

    PubMed

    Hasler, F; Studerus, E; Lindner, K; Ludewig, S; Vollenweider, F X

    2009-11-01

    Serotonin (5-HT) release is the primary pharmacological mechanism of 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') action in the primate brain. Dopamine release and direct stimulation of dopamine D2 and serotonin 5-HT2A receptors also contributes to the overall action of MDMA. The role of 5-HT1A receptors in the human psychopharmacology of MDMA, however, has not yet been elucidated. In order to reveal the consequences of manipulation at the 5-HT1A receptor system on cognitive and subjective effects of MDMA, a receptor blocking study using the mixed beta-adrenoreceptor blocker/5-HT1A antagonist pindolol was performed. Using a double-blind, placebo-controlled within-subject design, 15 healthy male subjects were examined under placebo (PL), 20 mg pindolol (PIN), MDMA (1.6 mg/kg b.wt.), MDMA following pre-treatment with pindolol (PIN-MDMA). Tasks from the Cambridge Neuropsychological Test Automated Battery were used for the assessment of cognitive performance. Psychometric questionnaires were applied to measure effects of treatment on core dimensions of Altered States of Consciousness, mood and state anxiety. Compared with PL, MDMA significantly impaired sustained attention and visual-spatial memory, but did not affect executive functions. Pre-treatment with PIN did not significantly alter MDMA-induced impairment of cognitive performance and only exerted a minor modulating effect on two psychometric scales affected by MDMA treatment ('positive derealization' and 'dreaminess'). Our findings suggest that MDMA differentially affects higher cognitive functions, but does not support the hypothesis from animal studies, that some of the MDMA effects are causally mediated through action at the 5-HT1A receptor system. PMID:18635693

  8. Induction of hyperphagia and carbohydrate intake by mu-opioid receptor stimulation in circumscribed regions of frontal cortex

    PubMed Central

    Mena, Jesus D.; Sadeghian, Ken; Baldo, Brian A.

    2011-01-01

    Frontal cortical regions are activated by food-associated stimuli, and this activation appears to be dysregulated in individuals with eating disorders. Nevertheless, frontal control of basic unconditioned feeding responses remains poorly understood. Here we show that hyperphagia can be driven by μ-opioid receptor stimulation in restricted regions of ventral medial prefrontal cortex (vmPFC) and orbitofrontal cortex. In both ad libitum-fed and food-restricted male Sprague-Dawley rats, bilateral infusions of the μ-opioid agonist, DAMGO, markedly increased intake of standard rat chow. When given a choice between palatable fat- versus carbohydrate enriched test diets, intra-vmPFC DAMGO infusions selectively increased carbohydrate intake, even in rats with a baseline fat preference. Rats also exhibited motor hyperactivity characterized by rapid switching between brief bouts of investigatory and ingestive behaviors. Intra-vmPFC DAMGO affected neither water intake nor non-specific oral behavior. Similar DAMGO infusions into neighboring areas of lateral orbital or anterior motor cortex had minimal effects on feeding. Neither stimulation of vmPFC-localized delta-opioid, kappa-opioid, dopaminergic, serotonergic, or noradrenergic receptors, nor antagonism of D1, 5HT1A, or alpha- or beta-adrenoceptors, reproduced the profile of DAMGO effects. Muscimol-mediated inactivation of the vmPFC, and intra-vmPFC stimulation of κ-opioid receptors or blockade of 5HT2A receptors, suppressed motor activity and increased feeding bout duration-a profile opposite to that seen with DAMGO. Hence, μ-opioid-induced hyperphagia and carbohydrate intake can be elicited with remarkable pharmacological and behavioral specificity from discrete subterritories of the frontal cortex. These findings may have implications for understanding affect-driven feeding and loss of restraint in eating disorders. PMID:21368037

  9. Functional effects of the muscarinic receptor agonist, xanomeline, at 5-HT1 and 5-HT2 receptors

    PubMed Central

    Watson, J; Brough, S; Coldwell, M C; Gager, T; Ho, M; Hunter, A J; Jerman, J; Middlemiss, D N; Riley, G J; Brown, A M

    1998-01-01

    Xanomeline [3(3-hexyloxy-1,2,5-thiadiazol-4-yl)-1,2,5,6-tetrahydro-1-methylpyridine] has been reported to act as a functionally selective muscarinic partial agonist with potential use in the treatment of Alzheimer's disease. This study examined the functional activity of xanomeline at 5-HT1 and 5-HT2 receptors in native tissue and/or human cloned receptors.Xanomeline had affinity for muscarinic receptors in rat cortical membranes where the ratio of the displacement affinity of [3H]-Quinuclidinyl benzilate vs that of [3H]-Oxotremorine-M was 16, indicative of partial agonist activity. Radioligand binding studies on human cloned receptors confirmed that xanomeline had substantial affinity for M1, M2, M3, M4, M5 receptors and also for 5-HT1 and 5-HT2 receptor subtypes.Carbachol and xanomeline stimulated basal [35S]-GTPγS binding in rat cortical membranes with micromolar affinity. The response to carbachol was attenuated by himbacine and pirenzepine with pA2 of 8.2, 6.9 respectively consistent with the response being mediated, predominantly, via M2 and M4 receptors. Xanomeline-induced stimulation of [35S]-GTPγS binding was inhibited by himbacine with an apparent pKb of 6.3, was not attenuated by pirenzepine up to 3 μM and was inhibited by the selective 5-HT1A antagonist WAY100635 with an apparent pKb of 9.4. These data suggest the agonist effect of xanomeline in this tissue is, in part, via 5-HT1A receptors. Similar studies on human cloned receptors confirmed that xanomeline is an agonist at human cloned 5-HT1A and 5-HT1B receptors.In studies using the fluorescent cytoplasmic Ca2+ indicator FLUO-3AM, xanomeline induced an increase in cytoplasmic Ca2+ concentration in SH-SY5Y cells expressing recombinant human 5-HT2C receptors. Atropine antagonized this response, consistent with mediation via endogenously-expressed muscarinic receptors. In the presence of atropine, xanomeline antagonized 5-HT-induced cytoplasmic changes in Ca2+ concentration in cells expressing h5

  10. Food intake inhibition in rainbow trout induced by activation of serotonin 5-HT2C receptors is associated with increases in POMC, CART and CRF mRNA abundance in hypothalamus.

    PubMed

    Pérez-Maceira, Jorge J; Otero-Rodiño, Cristina; Mancebo, María J; Soengas, José L; Aldegunde, Manuel

    2016-04-01

    In rainbow trout, the food intake inhibition induced by serotonin occurs through 5-HT2C and 5-HT1A receptors, though the mechanisms involved are still unknown. Therefore, we assessed if a direct stimulation of 5-HT2C and 5-HT1A serotonin receptors (resulting in decreased food intake in rainbow trout), affects gene expression of neuropeptides involved in the control of food intake, such as pro-opiomelanocortin (POMC), cocaine- and amphetamine-regulated transcript (CART), corticotrophin releasing factor (CRF), and agouti-related peptide (AgRP). In a first set of experiments, the injection of the 5-HT2C receptor agonists MK212 (60 μg kg(-1) icv) and WAY 161503 (1 mg kg(-1) ip), and of the 5-HT1A receptor agonist 8-OH-DPAT (1 mg kg(-1) ip and 30 μg kg(-1) icv) induced food intake inhibition. In a second set of experiments, we observed that the injection of MK212 or WAY 161503 (1 and 3 mg kg(-1)) significantly increased hypothalamic POMC mRNA abundance. CART mRNA abundance in hypothalamus was enhanced by treatment with MK212 and unaffected by WAY 161503. The administration of the 5-HT1A receptor agonist 8-OH-DPAT did not induce any significant variation in the hypothalamic POMC or CART mRNA levels. CRF mRNA abundance was only affected by MK212 that increased hypothalamic values. Finally, hypothalamic AgRP mRNA abundance was only evaluated with the agonist 5-HT2C MK212 resulting in no significant effects. The results show that the reduction in food intake mediated by 5-HT2C receptors is associated with increases in hypothalamic POMC, CART and CRF mRNA abundance. PMID:26832922

  11. Effects of housing and muricidal behavior on serotonergic receptors and interactions with novel anxiolytic drugs.

    PubMed

    McMillen, B A; Chamberlain, J K; DaVanzo, J P

    1988-01-01

    Mouse killing by rats represents a predatory behavior that can be modified by drugs from several different therapeutic classes and by environmental conditions. Buspirone and gepirone, non-benzodiazepine anxiolytics that stimulate serotonergic receptors (5HT1a) and inhibit isolation-induced intraspecies aggression, were tested for inhibition of muricidal behavior by isolated rats. Neither buspirone (3.0 mg/kg s.c.) nor gepirone (from 5.0 to 40 mg/kg) inhibited muricide. Additional rats were housed, either aggregated or isolated, and tested for muricidal behavior 9 times over 5 weeks to establish which animals were muricidal: thus, there were 4 groups of rats: muricidal or non-muricidal under either isolated or aggregated housing condition. [3H]-Spiperone was used to determine striatal D2 receptor Bmax and Kd and prefrontal cortex D2 and 5HT2 receptor binding. There were no changes across the four groups. Binding of [3H]-5-hydroxytryptamine (5HT) to 5HT1a receptors decreased in septum of both groups of isolated rats and binding to 5HT1b receptors decreased 50% in hippocampus of isolated and aggregated muricidal rats. Binding of [3H]-5HT to either receptor was unchanged in amygdaloid area and hypothalamus across all groups. Thus, stimulating pre- and postsynaptic 5HT1a receptors does not alter muricidal behavior and changes in 5HT1 receptor binding occurs in limited areas. Whether this limited change in hippocampal 5HT1b binding is important for establishing muricidal behavior is unclear; however the direction of the change is consistent with reports that decreased serotonergic activity increases predatory behavior. PMID:2894404

  12. Functional Selectivity and Antidepressant Activity of Serotonin 1A Receptor Ligands

    PubMed Central

    Chilmonczyk, Zdzisław; Bojarski, Andrzej Jacek; Pilc, Andrzej; Sylte, Ingebrigt

    2015-01-01

    Serotonin (5-HT) is a monoamine neurotransmitter that plays an important role in physiological functions. 5-HT has been implicated in sleep, feeding, sexual behavior, temperature regulation, pain, and cognition as well as in pathological states including disorders connected to mood, anxiety, psychosis and pain. 5-HT1A receptors have for a long time been considered as an interesting target for the action of antidepressant drugs. It was postulated that postsynaptic 5-HT1A agonists could form a new class of antidepressant drugs, and mixed 5-HT1A receptor ligands/serotonin transporter (SERT) inhibitors seem to possess an interesting pharmacological profile. It should, however, be noted that 5-HT1A receptors can activate several different biochemical pathways and signal through both G protein-dependent and G protein-independent pathways. The variables that affect the multiplicity of 5-HT1A receptor signaling pathways would thus result from the summation of effects specific to the host cell milieu. Moreover, receptor trafficking appears different at pre- and postsynaptic sites. It should also be noted that the 5-HT1A receptor cooperates with other signal transduction systems (like the 5-HT1B or 5-HT2A/2B/2C receptors, the GABAergic and the glutaminergic systems), which also contribute to its antidepressant and/or anxiolytic activity. Thus identifying brain specific molecular targets for 5-HT1A receptor ligands may result in a better targeting, raising a hope for more effective medicines for various pathologies. PMID:26262615

  13. Serotonin receptor 1A knockout: An animal model of anxiety-related disorder

    PubMed Central

    Ramboz, Sylvie; Oosting, Ronald; Amara, Djamel Aït; Kung, Hank F.; Blier, Pierre; Mendelsohn, Monica; Mann, J. John; Brunner, Dani; Hen, René

    1998-01-01

    To investigate the contribution of individual serotonin (5-hydroxytryptamine; 5-HT) receptors to mood control, we have used homologous recombination to generate mice lacking specific serotonergic receptor subtypes. In the present report, we demonstrate that mice without 5-HT1A receptors display decreased exploratory activity and increased fear of aversive environments (open or elevated spaces). 5-HT1A knockout mice also exhibited a decreased immobility in the forced swim test, an effect commonly associated with antidepressant treatment. Although 5-HT1A receptors are involved in controlling the activity of serotonergic neurons, 5-HT1A knockout mice had normal levels of 5-HT and 5-hydroxyindoleacetic acid, possibly because of an up-regulation of 5-HT1B autoreceptors. Heterozygote 5-HT1A mutants expressed approximately one-half of wild-type receptor density and displayed intermediate phenotypes in most behavioral tests. These results demonstrate that 5-HT1A receptors are involved in the modulation of exploratory and fear-related behaviors and suggest that reductions in 5-HT1A receptor density due to genetic defects or environmental stressors might result in heightened anxiety. PMID:9826725

  14. [Antidepressants, stressors and the serotonin 1A receptor].

    PubMed

    Kirilly, Eszter; Gonda, Xénia; Bagdy, György

    2015-06-01

    5-HT(1A) receptor is a receptor of surprises. Buspirone, an anxiolytic drug with a then yet unidentified mechanism of action had been marketed for years when it was discovered that it is a 5-HT(1A) partial agonist. Several more years had to pass before it was accepted that this receptor plays the key role in the action mechanism of buspirone. This was followed by further surprises. It was discovered that in spite of its anxiolytic effect buspirone activates the hypothalamic-pituitary-adrenal (HPA) stress axis, furthermore, it increases peripheral noradrenaline and adrenaline concentration via a central mechanism. Thus activation of this receptor leads to ACTH/corticosterone and catecholamine release and also increases beta-endorphine, oxytocin and prolactin secretion while decreasing body temperature, increasing food uptake, eliciting characteristic behavioural responses in rodents and also playing a role in the development of certain types of epilepsy. Human genetic studies revealed the role of 5-HT(1A) receptors in cognitive processes playing a role in the development of depression such as impulsiveness or response to environmental stress. This exceptionally wide spectrum of effects is attributable to the presence of 5-HT1A receptors in serotonergic as well as other, for example glutamatergic, cholinergic, dopaminergic and noradrenergic neurons. The majority of the effects of 5-HT(1A) receptors is manifested via the mediation of Gi proteins through the hyperpolarisation or inhibition of the neuron carrying the receptor. 5-HT(1A) receptors on serotonergic neurons can be found in the somatodendritic area and play a significant role in delaying the effects of antidepressants which is an obvious disadvantage. Therefore the newest serotonergic antidepressants including vilazodone and vortioxetine have been designed to possess 5-HT(1A) receptor partial agonist properties. In the present paper we focus primarily on the role of 5-HT(1A) receptors in stress and

  15. 5-Hydroxytryptamine 1A receptors in the dorsomedial hypothalamus connected to dorsal raphe nucleus inputs modulate defensive behaviours and mediate innate fear-induced antinociception.

    PubMed

    Biagioni, Audrey Franceschi; de Oliveira, Rithiele Cristina; de Oliveira, Ricardo; da Silva, Juliana Almeida; dos Anjos-Garcia, Tayllon; Roncon, Camila Marroni; Corrado, Alexandre Pinto; Zangrossi, Hélio; Coimbra, Norberto Cysne

    2016-03-01

    The dorsal raphe nucleus (DRN) is an important brainstem source of 5-hydroxytryptamine (5-HT), and 5-HT plays a key role in the regulation of panic attacks. The aim of the present study was to determine whether 5-HT1A receptor-containing neurons in the medial hypothalamus (MH) receive neural projections from DRN and to then determine the role of this neural substrate in defensive responses. The neurotracer biotinylated dextran amine (BDA) was iontophoretically microinjected into the DRN, and immunohistochemical approaches were then used to identify 5HT1A receptor-labelled neurons in the MH. Moreover, the effects of pre-treatment of the dorsomedial hypothalamus (DMH) with 8-OH-DPAT and WAY-100635, a 5-HT1A receptor agonist and antagonist, respectively, followed by local microinjections of bicuculline, a GABAA receptor antagonist, were investigated. We found that there are many projections from the DRN to the perifornical lateral hypothalamus (PeFLH) but also to DMH and ventromedial (VMH) nuclei, reaching 5HT1A receptor-labelled perikarya. DMH GABAA receptor blockade elicited defensive responses that were followed by antinociception. DMH treatment with 8-OH-DPAT decreased escape responses, which strongly suggests that the 5-HT1A receptor modulates the defensive responses. However, DMH treatment with WAY-100635 failed to alter bicuculline-induced defensive responses, suggesting that 5-HT exerts a phasic influence on 5-HT1A DMH neurons. The activation of the inhibitory 5-HT1A receptor had no effect on antinociception. However, blockade of the 5-HT1A receptor decreased fear-induced antinociception. The present data suggest that the ascending pathways from the DRN to the DMH modulate panic-like defensive behaviours and mediate antinociceptive phenomenon by recruiting 5-HT1A receptor in the MH. PMID:26749090

  16. Spacer conformation in biologically active molecules. Part 2. Structure and conformation of 4-[2-(diphenylmethylamino)ethyl]-1-(2-methoxyphenyl) piperazine and its diphenylmethoxy analog—potential 5-HT 1A receptor ligands

    NASA Astrophysics Data System (ADS)

    Karolak-Wojciechowska, J.; Fruziński, A.; Czylkowski, R.; Paluchowska, M. H.; Mokrosz, M. J.

    2003-09-01

    As a part of studies on biologically active molecule structures with aliphatic linking chain, the structures of 4-[2-diphenylmethylamino)ethyl]-1-(2-methoxyphenyl)piperazine dihydrochloride ( 1) and 4-[2-diphenylmethoxy)ethyl]-1-(2-methoxyphenyl)piperazine fumarate ( 2) have been reported. In both compounds, four atomic non-all-carbons linking chains (N)C-C-X-C are present. The conformation of that linking spacer depends on the nature of the X-atom. The preferred conformation for chain with XNH has been found to be fully extended while for that with XO—the bend one. It was confirmed by conformational calculations (strain energy distribution and random search) and crystallographic data, including statistics from CCDC.

  17. Progesterone receptors and ventilatory stimulation by progestin.

    PubMed

    Brodeur, P; Mockus, M; McCullough, R; Moore, L G

    1986-02-01

    Progestin is thought to be a ventilatory stimulant but its effectiveness in raising ventilation is variable in humans and other species. We hypothesized that the level of progesterone receptors was an important determinant of the ventilatory response to progestin. Since estradiol induces progesterone receptor formation, we compared the ventilatory effect of the synthetic progestin medroxyprogesterone acetate (MPA) given in combination with estradiol with the effects of estradiol alone, MPA alone, or vehicle (saline) in ovariectomized rats. Animals receiving MPA alone had low numbers of progesterone receptors (2.43 pmol/g uterine wt) and had no change in ventilation, arterial Pco2, or Po2. MPA administration raised ventilation 23 +/- 5%, lowered arterial Pco2 3.2 +/- 0.9 Torr (both P less than 0.01) and tended to raise arterial Po2 when given in combination with estradiol to animals with increased numbers of progesterone receptors (4.85 pmol/g uterine wt). Estradiol alone produced the highest number of progesterone receptors (12.3 pmol/g uterine wt) but had no effect on ventilation or arterial Pco2 and decreased arterial Po2. Combined estradiol plus MPA treatment produced a greater fall in arterial Pco2 than did treatment with MPA alone, estradiol, or saline (all P less than 0.05). These results suggest that both an elevation in progestin levels and progesterone receptor numbers are required to stimulate ventilation. PMID:2936712

  18. Targeting of serotonin 1A receptors to dopaminergic neurons within the parabrachial subdivision of the ventral tegmental area in rat brain.

    PubMed

    Doherty, M D; Pickel, V M

    2001-05-01

    Serotonin (5-hydroxytryptamine [5-HT]) modulates dopamine-related cognitive functions and motor activity through activation of selective receptor subtypes including 5-HT1A. Potential targets for these 5-HT1A-mediated actions of 5-HT include mesocortical and mesolimbic dopaminergic neurons having partially segregated distribution in the parabrachial and paranigral subdivisions of the ventral tegmental area (VTA), respectively. We therefore examined the ultrastructural immunocytochemical localization of the 5-HT1A receptor in the parabrachial (VTApb) and paranigral (VTApn) subdivisions of rat VTA, to determine 1) the functional sites for receptor activation, and 2) the cellular associations between this receptor and dopaminergic neurons identified by their tyrosine hydroxylase (TH) content. In each region, 5-HT1A immunoreactivity was mainly observed in somatodendritic profiles, but it was also present in small unmyelinated axons and in a few axon terminals and glia, suggesting a role for 5-HT1A receptors in presynaptic and glial functions, as well as postsynaptic neuronal activation, in VTA. In somatodendritic profiles, 5-HT1A gold particles were mainly localized to tubulovesicles presumed to be smooth endoplasmic reticulum. In addition, however, in distal dendrites receiving multiple inputs the receptor was targeted to selective postsynaptic junctions, or more randomly distributed on nonsynaptic portions of the plasma membrane. Of the 5-HT1A-labeled dendrites, 64% in VTApb and 44% in VTApn contained TH. These findings suggest a reserve of cytoplasmic 5-HT1A receptors that are mobilized to functional postsynaptic sites on the plasma membrane by afferent input to distal dendrites in the VTA. They also indicate that 5-HT1A activation may affect a larger population of dopaminergic neurons in VTApb compared with VTApn, thus having a potentially greater impact on cognitive functions modulated by mesocortical dopaminergic neurons. PMID:11298363

  19. Serotonin directly stimulates cortisol secretion from the interrenals in goldfish.

    PubMed

    Lim, Jan E; Porteus, Cosima S; Bernier, Nicholas J

    2013-10-01

    While serotonin (5-HT) can stimulate the hypothalamic-pituitary-interrenal stress axis in fish, the specific site(s) of 5-HT action are poorly understood. In this study, goldfish (Carassius auratus) were injected intraperitoneally with either saline or the 5-HT1A/7 receptor agonist 8-OH-DPAT at a dose of 100 or 400 μg/kg body weight and sampled 1.5 and 8 h post-injection. Relative to unhandled controls, the saline and 100 μg/kg 8-OH-DPAT treatments elicited similar transient 5- to 7-fold increases in plasma cortisol and the 400 μg/kg 8-OH-DPAT dosage resulted in a sustained 16-fold increase in cortisol levels. Although the 5-HT1A receptor is expressed in the brain preoptic area (POA), the pituitary and the head kidney, neither the saline nor the 8-OH-DPAT treatments affected the mRNA abundance of POA corticotropin-releasing factor and pituitary pro-opiomelanocortin or plasma adrenocorticotropic hormone (ACTH) levels. To assess the direct actions of 5-HT on cortisol secretion relative to those of ACTH, head kidney tissue were superfused with 10(-7)M 5-HT, ACTH or a combined 5-HT/ACTH treatment. Overall, the ACTH and 5-HT/ACTH treatments resulted in higher peak cortisol and total cortisol release than in the 5-HT treatment but the response time to peak cortisol release was shorter in the combined treatment than in either the 5-HT or ACTH alone treatments. Both 8-OH-DPAT and cisapride, a 5-HT4 receptor agonist, also stimulated cortisol release in vitro and their actions were reversed by selective 5-HT1A and 5-HT4 receptor antagonists, respectively. Finally, double-labeling with anti-tyrosine hydroxylase and anti-5-HT revealed that the chromaffin cells of the head kidney contain 5-HT. Thus, in goldfish, 5-HT can directly stimulate cortisol secretion from the interrenals via multiple 5-HT receptor subtypes and the chromaffin cells may be involved in the paracrine regulation of cortisol secretion via 5-HT. PMID:24013027

  20. Receptor- and age-selective effects of dopamine oxidation on receptor-G protein interactions in the striatum.

    PubMed

    Joseph, J A; Erat, S; Denisova, N; Villalobos-Molina, R

    1998-03-15

    The striatum contains a high concentration of oxidizable dopamine (DA), and the aged organism shows a decreased ability to respond to oxidative stress (OS), making this area extremely vulnerable to free radical insult. To determine the receptor specificity of this putative increase in OS sensitivity, striatal slices from 6- and 24-month-old animals were incubated (30 min, 37 degrees C) in a modified Krebs medium containing 0 to 500 microM DA with or without a preincubation (15 min) in a nitrone trapping agent, 1 or 5 mM alpha-phenyl-n-tert-butyl nitrone (PBN), and changes in low Km GTPase activity (an index of receptor-G protein coupling/uncoupling) assessed in muscarinic, 5-HT1A D1, and D2 receptors stimulated with carbachol, 8 OH-DPAT-HBr, SKF 38393, or quinelorane, respectively. DA exposure induced selective decreases in the stimulated activity in all of these receptor systems, and an overall increase in conjugated dienes (56%) of the young. In the case of carbachol and 8 OH-DPAT-HBr, the DA-induced deficits in GTPase stimulation were seen primarily in the young (61 and 32%, respectively), while DA-induced deficits in quinelorane (D2) stimulation were seen in both age groups. In the case of SKF 38393-stimulation (D1) the DA-induced deficits were higher in the striatal tissue from the old. The DA-induced decreases in carbachol stimulated GTPase activity in the tissue from the young could be prevented by pretreatment with PBN or the DA uptake inhibitor, nomifensin. No effect of nomifensin was seen in the old, because their DA uptake mechanisms were already compromised. These results suggest that although age-related declines in DA uptake may provide some protection against the OS effects in muscarinic or 5-HT1A receptors, other factors may increase the vulnerability of DA neurons to OS, even with reductions in DA uptake. PMID:9586813

  1. Age, Sex, and Reproductive Hormone Effects on Brain Serotonin-1A and Serotonin-2A Receptor Binding in a Healthy Population

    PubMed Central

    Moses-Kolko, Eydie L; Price, Julie C; Shah, Nilesh; Berga, Sarah; Sereika, Susan M; Fisher, Patrick M; Coleman, Rhaven; Becker, Carl; Mason, N Scott; Loucks, Tammy; Meltzer, Carolyn C

    2011-01-01

    There is a need for rigorous positron emission tomography (PET) and endocrine methods to address inconsistencies in the literature regarding age, sex, and reproductive hormone effects on central serotonin (5HT) 1A and 2A receptor binding potential (BP). Healthy subjects (n=71), aged 20–80 years, underwent 5HT1A and 2A receptor imaging using consecutive 90-min PET acquisitions with [11C]WAY100635 and [18F]altanserin. Logan graphical analysis was used to derive BP using atrophy-corrected distribution volume (VT) in prefrontal, mesiotemporal, occipital cortices, and raphe nucleus (5HT1A only). We used multivariate linear regression modeling to examine BP relationships with age, age2, sex, and hormone concentrations, with post hoc regional significance set at p<0.008. There were small postsynaptic 5HT1A receptor BP increases with age and estradiol concentration in women (p=0.004–0.005) and a tendency for small 5HT1A receptor BP declines with age and free androgen index in men (p=0.05–0.06). Raphe 5HT1A receptor BP decreased 4.5% per decade of age (p=0.05), primarily in men. There was a trend for 15% receptor reductions in prefrontal cortical regions in women relative to men (post hoc p=0.03–0.10). The significant decline in 5HT2A receptor BP relative to age (8% per decade; p<0.001) was not related to sex or hormone concentrations. In conclusion, endocrine standardization minimized confounding introduced by endogenous hormonal fluctuations and reproductive stage and permitted us to detect small effects of sex, age, and endogenous sex steroid exposures upon 5HT1A binding. Reduced prefrontal cortical 5HT1A receptor BP in women vs men, but increased 5HT1A receptor BP with aging in women, may partially explain the increased susceptibility to affective disorders in women during their reproductive years that is mitigated in later life. 5HT1A receptor decreases with age in men might contribute to the known increased risk for suicide in men over age 75 years. Low

  2. Age, sex, and reproductive hormone effects on brain serotonin-1A and serotonin-2A receptor binding in a healthy population.

    PubMed

    Moses-Kolko, Eydie L; Price, Julie C; Shah, Nilesh; Berga, Sarah; Sereika, Susan M; Fisher, Patrick M; Coleman, Rhaven; Becker, Carl; Mason, N Scott; Loucks, Tammy; Meltzer, Carolyn C

    2011-12-01

    There is a need for rigorous positron emission tomography (PET) and endocrine methods to address inconsistencies in the literature regarding age, sex, and reproductive hormone effects on central serotonin (5HT) 1A and 2A receptor binding potential (BP). Healthy subjects (n=71), aged 20-80 years, underwent 5HT1A and 2A receptor imaging using consecutive 90-min PET acquisitions with [(11)C]WAY100635 and [(18)F]altanserin. Logan graphical analysis was used to derive BP using atrophy-corrected distribution volume (V(T)) in prefrontal, mesiotemporal, occipital cortices, and raphe nucleus (5HT1A only). We used multivariate linear regression modeling to examine BP relationships with age, age(2), sex, and hormone concentrations, with post hoc regional significance set at p<0.008. There were small postsynaptic 5HT1A receptor BP increases with age and estradiol concentration in women (p=0.004-0.005) and a tendency for small 5HT1A receptor BP declines with age and free androgen index in men (p=0.05-0.06). Raphe 5HT1A receptor BP decreased 4.5% per decade of age (p=0.05), primarily in men. There was a trend for 15% receptor reductions in prefrontal cortical regions in women relative to men (post hoc p=0.03-0.10). The significant decline in 5HT2A receptor BP relative to age (8% per decade; p<0.001) was not related to sex or hormone concentrations. In conclusion, endocrine standardization minimized confounding introduced by endogenous hormonal fluctuations and reproductive stage and permitted us to detect small effects of sex, age, and endogenous sex steroid exposures upon 5HT1A binding. Reduced prefrontal cortical 5HT1A receptor BP in women vs men, but increased 5HT1A receptor BP with aging in women, may partially explain the increased susceptibility to affective disorders in women during their reproductive years that is mitigated in later life. 5HT1A receptor decreases with age in men might contribute to the known increased risk for suicide in men over age 75 years. Low

  3. Mood stabilizer treatment increases serotonin type 1A receptor binding in bipolar depression

    PubMed Central

    Nugent, Allison C; Carlson, Paul J; Bain, Earle E; Eckelman, William; Herscovitch, Peter; Manji, Husseini; Zarate, Carlos A; Drevets, Wayne C

    2013-01-01

    Abnormal serotonin type 1A (5-HT1A) receptor function and binding have been implicated in the pathophysiology of mood disorders. Preclinical studies have consistently shown that stress decreases the gene expression of 5-HT1A receptors in experimental animals, and that the associated increase in hormone secretion plays a crucial role in mediating this effect. Chronic administration of the mood stabilizers lithium and divalproex (valproate semisodium) reduces glucocorticoid signaling and function in the hippocampus. Lithium has further been shown to enhance 5-HT1A receptor function. To assess whether these effects translate to human subject with bipolar disorder (BD), positron emission tomography (PET) and [18F]trans-4-fluoro-N-(2-[4-(2-methoxyphenyl) piperazino]-ethyl)-N-(2-pyridyl) cyclohexanecarboxamide ([18F]FCWAY) were used to acquire PET images of 5-HT1A receptor binding in 10 subjects with BD, before and after treatment with lithium or divalproex. Mean 5-HT1A binding potential (BPP) significantly increased following mood stabilizer treatment, most prominently in the mesiotemporal cortex (hippocampus plus amygdala). When mood state was also controlled for, treatment was associated with increases in BPP in widespread cortical areas. These preliminary findings are consistent with the hypothesis that these mood stabilizers enhance 5-HT1A receptor expression in BD, which may underscore an important component of these agents' mechanism of action. PMID:23926239

  4. Serotonin 1A Receptors on Astrocytes as a Potential Target for the Treatment of Parkinson’s Disease

    PubMed Central

    Miyazaki, Ikuko; Asanuma, Masato

    2016-01-01

    Astrocytes are the most abundant neuron-supporting glial cells in the central nervous system. The neuroprotective role of astrocytes has been demonstrated in various neurological disorders such as amyotrophic lateral sclerosis, spinal cord injury, stroke and Parkinson’s disease (PD). Astrocyte dysfunction or loss-of-astrocytes increases the susceptibility of neurons to cell death, while astrocyte transplantation in animal studies has therapeutic advantage. We reported recently that stimulation of serotonin 1A (5-HT1A) receptors on astrocytes promoted astrocyte proliferation and upregulated antioxidative molecules to act as a neuroprotectant in parkinsonian mice. PD is a progressive neurodegenerative disease with motor symptoms such as tremor, bradykinesia, rigidity and postural instability, that are based on selective loss of nigrostriatal dopaminergic neurons, and with non-motor symptoms such as orthostatic hypotension and constipation based on peripheral neurodegeneration. Although dopaminergic therapy for managing the motor disability associated with PD is being assessed at present, the main challenge remains the development of neuroprotective or disease-modifying treatments. Therefore, it is desirable to find treatments that can reduce the progression of dopaminergic cell death. In this article, we summarize first the neuroprotective properties of astrocytes targeting certain molecules related to PD. Next, we review neuroprotective effects induced by stimulation of 5-HT1A receptors on astrocytes. The review discusses new promising therapeutic strategies based on neuroprotection against oxidative stress and prevention of dopaminergic neurodegeneration. PMID:26795196

  5. Can Eph receptors stimulate the mind?

    PubMed

    Murai, Keith K; Pasquale, Elena B

    2002-01-17

    The Eph receptors are multitalented tyrosine kinases capable of performing many tasks. The receptors together with their ligands--the ephrins--are well known to play a critical role in the initial assembly of neuronal circuits in the embryo. However, the recently discovered function of these receptors in the adult brain is now receiving significant acclaim. Three new articles show that the Eph receptors continue to be important in modifying the strength of existing neuronal connections (synapses). They do so in close association with at least one family of ion channels, the NMDA receptors. PMID:11804564

  6. Serotonin1A-receptor-dependent signaling proteins in mouse hippocampus

    PubMed Central

    Li, Lin; Whittle, Nigel; Klug, Stefanie; Chen, Wei-Qiang; Singewald, Nicolas; Toth, Miklos; Lubec, Gert

    2009-01-01

    The serotonin1A receptor (5-HT1A R) knock-out mouse (KO) is a widely used animal model for anxiety and cognitive function and regulation of signaling cascades by this receptor has been reported. We aimed to determine individual representatives of signaling cascades in order to screen 5-HT1A R-dependent signaling proteins (SPs). Hippocampal proteins from wild type and 5-HT1A R KO mice were extracted, run on two-dimensional gel electrophoresis, proteins were identified by MALDI and nano-ESI-LC-MS/MS and SPs were quantified by specific software. Nucleoside diphosphate kinase A (NDK A, synonym: nm23), Dual specificity mitogen-activated protein kinase kinase 1 (MAPKK1, synonym: MEK), Serine/threonine-protein phosphatase PP1-gamma catalytic subunit (PP-1G), Septin-5, were reduced in the KO mice. Novel phosphorylation sites at T386 on MAPKK1 and at S225 and Y265 on Septin-5 were observed. MAPKK1 and PP-1G are known 5-HT1A R-dependent signaling compounds and are in agreement with receptor knock-out and septin-5 is involved in serotonin transport, although regulation by 5-HT1A R has not been reported. 5-HT1A R – dependent levels for NDK A have not been demonstrated so far and we herewith propose a role for NDK A in 5-HT1A R signaling. Reduced SP levels along with findings of two novel phosphorylation sites may be relevant for interpretation of previous and the design of future studies on this receptor system. PMID:19607848

  7. Inhibition of bladder overactivity by duloxetine in combination with foot stimulation or WAY-100635 treatment in cats.

    PubMed

    Schwen, Zeyad; Matsuta, Yosuke; Shen, Bing; Wang, Jicheng; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2013-12-15

    The purpose of this study was to determine whether duloxetine [a serotonin (5-HT)-norepinephrine reuptake inhibitor] combined with transcutaneous foot stimulation or WAY-100635 (a 5-HT1A antagonist) can enhance inhibition of bladder overactivity in cats. Cystometrograms were performed on eight cats under α-chloralose anesthesia by infusing saline and then 0.25% acetic acid (AA) to induce bladder overactivity. To inhibit bladder overactivity, foot stimulation (5 Hz) was applied via transcutaneous pad electrodes to the right hindfoot at two and four times the threshold intensity for inducing a toe twitch. Duloxetine (0.003-3 mg/kg) was administered intravenously to determine the effect of combination treatment. After the 3 mg/kg dose of duloxetine, WAY-100635 (0.5 mg/kg) was given intravenously. AA irritation significantly (P < 0.0001) reduced bladder capacity to 42.7 ± 7.4% of the saline control capacity. Foot stimulation alone at both two and four times the threshold intensity significantly (P < 0.0001) inhibited bladder overactivity and increased bladder capacity to 66.7 ± 6.3% and 85.7 ± 6.5% of the saline control, respectively. Duloxetine alone dose dependently inhibited bladder overactivity and completely restored bladder capacity to the saline control (109 ± 15.5%) at 3 mg/kg. Although duloxetine combined with foot stimulation did not further enhance inhibition, WAY-100635 (0.5 mg/kg) given after 3 mg/kg duloxetine further increased (P = 0.008) bladder capacity to 162.2 ± 22.5% of the saline control. Although duloxetine and foot stimulation independently inhibited bladder overactivity, combined treatment did not enhance inhibition. Duloxetine combined with WAY-100635, however, synergistically enhanced bladder inhibition, indicating a potential novel treatment for overactive bladder if duloxetine is combined with a 5-HT1A receptor antagonist drug. PMID:24154699

  8. Role of serotonin 1A receptors in the median raphe nucleus on the behavioral consequences of forced swim stress.

    PubMed

    Almeida, P V G; Trovo, M C; Tokumoto, A M; Pereira, A C; Padovan, C M

    2013-12-01

    Despite the intense research on the neurobiology of stress, the role of serotonin (5-HT)1A receptors still remains to be elucidated. In the hippocampus, post-synaptic 5-HT1A receptors activation induces anxiolytic effects in animals previously exposed to stressful situations. However, little is known about somatodendritic 5-HT1A receptors in the median raphe nucleus (MRN). Therefore, the aim of this study was to investigate the role of 5-HT1A receptors located in the MRN in rats exposed to forced swim stress. After recovering from surgery, rats were forced to swim for 15 min in a cylinder. Intra-MRN injections of saline, 8-OH-DPAT (3 nmol/0.2 µL) and/or WAY-100635 (0.3 nmol/0.2 µL) were performed immediately before or after pre-exposure or 24 h later (immediately before test). Non-stressed rats received the same treatment 24 h or 10 min before test. Our data showed that 8-OH-DPAT increased latency to display immobility while decreasing time spent immobile in almost all experimental conditions. These effects were not prevented by previous treatment with WAY-100635. No effects of different treatments were described in non-stressed animals. Taken together, our data suggest that in addition to activation of 5-HT1A, 5-HT7 receptors may also be involved in the behavioural consequences of exposure to swim stress. PMID:24162801

  9. Higher density of serotonin-1A receptors in the hippocampus and cerebral cortex of alcohol-preferring P rats

    SciTech Connect

    Wong, D.T.; Threlkeld, P.G. ); Lumeng, L.; Li, Ting-Kai )

    1990-01-01

    Saturable ({sup 3}H)-80HDPAT binding to 5HT-1A receptors in membranes prepared from hippocampus and frontal cerebral cortex of alcohol-preferring (P) rats and of alcohol-nonpreferring (NP) rats has been compared. The B{sub max} values or densities of recognition sites for 5HT-1A receptors in both brain areas of the P rats are 38 and 44 percent lower in the P rats than in the NP rats. The corresponding K{sub D} values are 38 and 44 percent lower in the P rats than in the NP rats, indicating higher affinities of the recognition sites for the 5HT-1A receptors in hippocampus and cerebral cortex of the P rats. These findings indicate either an enrichment of 5HT-1A receptor density during selective breeding for alcohol preference or an upregulation of 5HT-1A receptors of 5HT found in these brain areas of P rats as compared with the NP rats.

  10. The role of spinal serotonin receptor and alpha adrenoceptor on the antiallodynic effects induced by intrathecal milnacipran in chronic constriction injury rats.

    PubMed

    Nakamura, Takehiro; Ikeda, Tetsuya; Takeda, Ryuichiro; Igawa, Kaori; Naono-Nakayama, Rumi; Sakoda, Sumio; Nishimori, Toshikazu; Ishida, Yasushi

    2014-09-01

    Milnacipran, a reuptake inhibitor of noradrenaline (NA) and serotonin (5-HT), elicits an antiallodynic effect in rats with neuropathic pain; however, the role of NA and 5-HT receptors in the induction of the antiallodynic effect of milnacipran remains unclear. Thus, we examined the effects of prazosin as an α1 adrenoceptor antagonist, yohimbine as an α2 adrenoceptor antagonist, metergoline as a 5-HT1, 5-HT2 and 5-HT7 receptor antagonist, cyanopindolol as a 5-HT1A/1B receptor antagonist, ketanserin as a 5-HT2 receptor antagonist, and ondansetoron as a 5-HT3 receptor antagonist on the antiallodynic effect of milnacipran in neuropathic rats with chronic constriction injury (CCI). The CCI rats expressed mechanical and thermal allodynia, which was attenuated by intrathecal injection of milnacipran. Yohimbine, but not prazosin, reversed the milnacipran-induced antiallodynic effect. The antiallodynic effect of milnacipran was also reversed by metergoline, ketanserin and ondansetron, while cyanopindolol reversed the antiallodynic effect on mechanical, but not thermal stimulation. Furthermore, c-Fos expression in lamina I/II of the spinal dorsal horn was enhanced by thermal stimulation and the enhanced expression of c-Fos was suppressed by milnacipran. This effect of milnacipran was reversed by yohimbine, metergoline, katanserin and ondansetron, but not prazosin. These results indicate that the effect of milnacipran on mechanical and thermal allodynia and c-Fos expression is elicited through the α2 adrenoceptor, but not α1 adrenoceptor, and 5-HT2 and 5-HT3 receptors; furthermore, the 5-HT1A/1B receptor is involved in mechanical allodynia, but not thermal allodynia. PMID:24876059

  11. Stimulation of the dopamine 1 receptor increases lung edema clearance.

    PubMed

    Barnard, M L; Ridge, K M; Saldias, F; Friedman, E; Gare, M; Guerrero, C; Lecuona, E; Bertorello, A M; Katz, A I; Sznajder, J I

    1999-09-01

    We previously reported that lung edema clearance was stimulated by dopamine (DA). The purpose of this study was to determine whether the DA-mediated stimulation of edema clearance occurs via an adrenergic or dopaminergic regulation of alveolar epithelial Na, K-ATPase. When isolated perfused rat lungs were coinstilled with DA and SCH 23390 (a specific D(1) receptor antagonist), there was a dose-dependent attenuation of the stimulatory effects of DA. Coinstillation with S-sulpiride (a specific D(2) receptor antagonist) or propranolol (a beta-adrenergic antagonist) did not alter DA-stimulated clearance. Similarly, the specific dopaminergic D(1) agonist fenoldopam increased lung edema clearance, but quinpirole (a specific dopaminergic D(2) agonist) did not. (125)I-SCH 23982 binding studies suggested that D(1) receptors are expressed on alveolar type II (ATII) cells with an apparent dissociation constant (K(d)) of 4.4 nM and binding maximum (Bmax) 9.8 pmol/mg. Consistent with these results, the D(1) receptor messenger RNA (mRNA) and protein were detected in ATII cells by reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot analysis, respectively. These data demonstrate a novel mechanism involving the activation of dopaminergic D(1) receptors which mediates DA-stimulated edema removal from rat lungs. PMID:10471628

  12. Dogmas and controversies in the handling of nitrogenous wastes: 5-HT2-like receptors are involved in triggering pulsatile urea excretion in the gulf toadfish, Opsanus beta.

    PubMed

    McDonald, M Danielle; Walsh, Patrick J

    2004-05-01

    When injected arterially, serotonin (5-hydroxytryptamine; 5-HT) has been shown to elicit naturally sized urea pulse events in the gulf toadfish, Opsanus beta. The goal of the present study was to determine which 5-HT receptor(s) was involved in mediating this serotonergic stimulation of the pulsatile excretion mechanism. Toadfish were surgically implanted with caudal arterial catheters and intraperitoneal catheters and injected with either 8-OH-DPAT (1 micro mol kg(-1)), a selective 5-HT(1A) receptor agonist, alpha-methyl-5-HT (1 micro mol kg(-1)), a 5-HT(2) receptor agonist, or ketanserin, a 5-HT(2) receptor antagonist (0.01, 0.1, 1 and 10 micro mol kg(-1)) plus alpha-methyl-5-HT. 8-OH-DPAT injection did not mediate an increase in urea excretion, ruling out the involvement of 5-HT(1A) receptors in pulsatile excretion. However, within 5 min, alpha-methyl-5-HT injection caused an increase in the excretion of urea in >95% (N=27) of the fish injected, with an average pulse size of 652+/-102 micro mol N kg(-1) (N=26). With alpha-methyl-5-HT injection there was no corresponding increase in ammonia or [(3)H]PEG 4000 permeability. Urea pulses elicited by alpha-methyl-5-HT were inhibited in a dose-dependent fashion by the 5-HT(2) receptor antagonist ketanserin, which at low doses caused a significant inhibition of pulse size and at higher doses significantly inhibited the occurrence of pulsatile excretion altogether. However, neither 8-OH-DPAT nor alpha-methyl 5-HT injection had an effect on plasma cortisol or plasma urea concentrations. These findings suggest the involvement of a 5-HT(2)-like receptor in the regulation of pulsatile urea excretion. PMID:15143134

  13. Increased expression of the nicotinic acetylcholine receptor in stimulated muscle.

    PubMed

    O'Reilly, Clare; Pette, Dirk; Ohlendieck, Kay

    2003-01-10

    Chronic low-frequency stimulation has been used as a model for investigating responses of skeletal muscle fibres to enhanced neuromuscular activity under conditions of maximum activation. Fast-to-slow isoform shifting of markers of the sarcoplasmic reticulum and the contractile apparatus demonstrated successful fibre transitions prior to studying the effect of chronic electro-stimulation on the expression of the nicotinic acetylcholine receptor. Comparative immunoblotting revealed that the alpha- and delta-subunits of the receptor were increased in 10-78 day stimulated specimens, while an associated component of the surface utrophin-glycoprotein complex, beta-dystroglycan, was not drastically changed in stimulated fast skeletal muscle. Previous studies have shown that electro-stimulation induces degeneration of fast glycolytic fibres, trans-differentiation leading to fast-to-slow fibre transitions and activation of muscle precursor cells. In analogy, our results indicate a molecular modification of the central functional unit of the post-synaptic muscle surface within existing neuromuscular junctions and/or during remodelling of nerve-muscle contacts. PMID:12504123

  14. Global decrease of serotonin-1A receptor binding after electroconvulsive therapy in major depression measured by PET

    PubMed Central

    Lanzenberger, R; Baldinger, P; Hahn, A; Ungersboeck, J; Mitterhauser, M; Winkler, D; Micskei, Z; Stein, P; Karanikas, G; Wadsak, W; Kasper, S; Frey, R

    2013-01-01

    Electroconvulsive therapy (ECT) is a potent therapy in severe treatment-refractory depression. Although commonly applied in psychiatric clinical routine since decades, the exact neurobiological mechanism regarding its efficacy remains unclear. Results from preclinical and clinical studies emphasize a crucial involvement of the serotonin-1A receptor (5-HT1A) in the mode of action of antidepressant treatment. This includes associations between treatment response and changes in 5-HT1A function and density by antidepressants. Further, alterations of the 5-HT1A receptor are consistently reported in depression. To elucidate the effect of ECT on 5-HT1A receptor binding, 12 subjects with severe treatment-resistant major depression underwent three positron emission tomography (PET) measurements using the highly selective radioligand [carbonyl-11C]WAY100635, twice before (test–retest variability) and once after 10.08±2.35 ECT sessions. Ten patients (∼83%) were responders to ECT. The voxel-wise comparison of the 5-HT1A receptor binding (BPND) before and after ECT revealed a widespread reduction in cortical and subcortical regions (P<0.05 corrected), except for the occipital cortex and the cerebellum. Strongest reductions were found in regions consistently reported to be altered in major depression and involved in emotion regulation, such as the subgenual part of the anterior cingulate cortex (−27.5%), the orbitofrontal cortex (−30.1%), the amygdala (−31.8%), the hippocampus (−30.6%) and the insula (−28.9%). No significant change was found in the raphe nuclei. There was no significant difference in receptor binding in any region comparing the first two PET scans conducted before ECT. This PET study proposes a global involvement of the postsynaptic 5-HT1A receptor binding in the effect of ECT. PMID:22751491

  15. Serotonin 5-HT1B receptor-mediated calcium influx-independent presynaptic inhibition of GABA release onto rat basal forebrain cholinergic neurons.

    PubMed

    Nishijo, Takuma; Momiyama, Toshihiko

    2016-07-01

    Modulatory roles of serotonin (5-HT) in GABAergic transmission onto basal forebrain cholinergic neurons were investigated, using whole-cell patch-clamp technique in the rat brain slices. GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs) were evoked by focal stimulation. Bath application of 5-HT (0.1-300 μm) reversibly suppressed the amplitude of evoked IPSCs in a concentration-dependent manner. Application of a 5-HT1B receptor agonist, CP93129, also suppressed the evoked IPSCs, whereas a 5-HT1A receptor agonist, 8-OH-DPAT had little effect on the evoked IPSCs amplitude. In the presence of NAS-181, a 5-HT1B receptor antagonist, 5-HT-induced suppression of evoked IPSCs was antagonised, whereas NAN-190, a 5-HT1A receptor antagonist did not antagonise the 5-HT-induced suppression of evoked IPSCs. Bath application of 5-HT reduced the frequency of spontaneous miniature IPSCs without changing their amplitude distribution. The effect of 5-HT on miniature IPSCs remained unchanged when extracellular Ca(2+) was replaced by Mg(2+) . The paired-pulse ratio was increased by CP93129. In the presence of ω-CgTX, the N-type Ca(2+) channel blocker, ω-Aga-TK, the P/Q-type Ca(2+) channel blocker, or SNX-482, the R-type Ca(2+) channel blocker, 5-HT could still inhibit the evoked IPSCs. 4-AP, a K(+) channel blocker, enhanced the evoked IPSCs, and CP93129 had no longer inhibitory effect in the presence of 4-AP. CP93129 increased the number of action potentials elicited by depolarising current pulses. These results suggest that activation of presynaptic 5-HT1B receptors on the terminals of GABAergic afferents to basal forebrain cholinergic neurons inhibits GABA release in Ca(2+) influx-independent manner by modulation of K(+) channels, leading to enhancement of neuronal activities. PMID:27177433

  16. Manipulation of P2X Receptor Activities by Light Stimulation

    PubMed Central

    Kim, Sang Seong

    2016-01-01

    P2X receptors are involved in amplification of inflammatory responses in peripheral nociceptive fibers and in mediating pain-related signals to the CNS. Control of P2X activation has significant importance in managing unwanted hypersensitive neuron responses. To overcome the limitations of chemical ligand treatment, optical stimulation methods of optogenetics and photoswitching achieve efficient control of P2X activation while allowing specificity at the target site and convenient stimulation by light illumination. There are many potential applications for photosensitive elements, such as improved uncaging methods, photoisomerizable ligands, photoswitches, and gold nanoparticles. Each technique has both advantages and downsides, and techniques are selected according to the purpose of the application. Technical advances not only provide novel approaches to manage inflammation or pain mediated by P2X receptors but also suggest a similar approach for controlling other ion channels. PMID:26884649

  17. Genetic variation in brain-derived neurotrophic factor val66met allele is associated with altered serotonin-1A receptor binding in human brain.

    PubMed

    Lan, Martin J; Ogden, R Todd; Huang, Yung-yu; Oquendo, Maria A; Sullivan, Gregory M; Miller, Jeffrey; Milak, Matthew; Mann, J John; Parsey, Ramin V

    2014-07-01

    Brain Derived Neurotrophic Factor (BDNF) regulates brain synaptic plasticity. BDNF affects serotonin signaling, increases serotonin levels in brain tissue and prevents degeneration of serotonin neurons. These effects have hardly been studied in human brain. We examined the relationship of the functional val66met polymorphism of the BDNF gene to serotonin 1A (5-HT(1A)) receptor binding in vivo. 50 healthy volunteers (HV) and 50 acutely depressed, unmedicated patients with major depressive disorder (MDD) underwent PET scanning with the 5-HT(1A) receptor ligand, [(11)C]WAY-100635 and a metabolite corrected arterial input function. A linear mixed effects model compared 5-HT(1A) receptor binding potential (BP(F), proportional to the number of available receptors) in 13 brain regions of interest between met allele carriers (met/met and val/met) and noncarriers (val/val) using sex and C-1019G genotype of the 5-HT(1A) receptor promoter functional polymorphism as covariates. There was an interaction between diagnosis and allele (F=4.23, df=1, 94, p=0.042), such that met allele carriers had 17.4% lower BP(F) than non-met carriers in the HV group (t=2.6, df=96, p=0.010), but not in the MDD group (t=-0.4, df=96, p=0.58). These data are consistent with a model where the met allele of the val66met polymorphism causes less proliferation of serotonin synapses, and consequently fewer 5-HT(1A) receptors. In MDD, however, the effect of the val66met polymorphism is not detectable, possibly due to a ceiling effect of over-expression of 5-HT(1A) receptors in mood disorders. PMID:24607934

  18. Endocannabinoids Stimulate Human Melanogenesis via Type-1 Cannabinoid Receptor*

    PubMed Central

    Pucci, Mariangela; Pasquariello, Nicoletta; Battista, Natalia; Di Tommaso, Monia; Rapino, Cinzia; Fezza, Filomena; Zuccolo, Michela; Jourdain, Roland; Finazzi Agrò, Alessandro; Breton, Lionel; Maccarrone, Mauro

    2012-01-01

    We show that a fully functional endocannabinoid system is present in primary human melanocytes (normal human epidermal melanocyte cells), including anandamide (AEA), 2-arachidonoylglycerol, the respective target receptors (CB1, CB2, and TRPV1), and their metabolic enzymes. We also show that at higher concentrations AEA induces normal human epidermal melanocyte apoptosis (∼3-fold over controls at 5 μm) through a TRPV1-mediated pathway that increases DNA fragmentation and p53 expression. However, at lower concentrations, AEA and other CB1-binding endocannabinoids dose-dependently stimulate melanin synthesis and enhance tyrosinase gene expression and activity (∼3- and ∼2-fold over controls at 1 μm). This CB1-dependent activity was fully abolished by the selective CB1 antagonist SR141716 or by RNA interference of the receptor. CB1 signaling engaged p38 and p42/44 mitogen-activated protein kinases, which in turn activated the cyclic AMP response element-binding protein and the microphthalmia-associated transcription factor. Silencing of tyrosinase or microphthalmia-associated transcription factor further demonstrated the involvement of these proteins in AEA-induced melanogenesis. In addition, CB1 activation did not engage the key regulator of skin pigmentation, cyclic AMP, showing a major difference compared with the regulation of melanogenesis by α-melanocyte-stimulating hormone through melanocortin 1 receptor. PMID:22431736

  19. Modes and nodes explain the mechanism of action of vortioxetine, a multimodal agent (MMA): enhancing serotonin release by combining serotonin (5HT) transporter inhibition with actions at 5HT receptors (5HT1A, 5HT1B, 5HT1D, 5HT7 receptors).

    PubMed

    Stahl, Stephen M

    2015-04-01

    Vortioxetine is an antidepressant that targets multiple pharmacologic modes of action at sites--or nodes--where serotonergic neurons connect to various brain circuits. These multimodal pharmacologic actions of vortioxetine lead to enhanced release of various neurotransmitters, including serotonin, at various nodes within neuronal networks. PMID:25831967

  20. 5-Hydroxytryptamine Receptor Subtypes and their Modulators with Therapeutic Potentials

    PubMed Central

    Pithadia, Anand B.; Jain, Sunita M.

    2009-01-01

    5-hydroxytryptamine (5-HT) has become one of the most investigated and complex biogenic amines. The main receptors and their subtypes, e.g., 5-HTI (5-HT1A, 5-HT1B, 5-HTID, 5-HTIE and 5-HT1F), 5-HT2 (5-HT2A, 5-HT2B and 5-HT2C), 5-HT3, 5-HT4, 5-HT5 (5-HT5A, 5-HT5B), 5-HT6 and 5-HT7 have been identified. Specific drugs which are capable of either selectively stimulating or inhibiting these receptor subtypes are being designed. This has generated therapeutic potentials of 5-HT receptor modulators in a variety of disease conditions. Conditions where 5-HT receptor modulators have established their use with distinct efficacy and advantages include migraine, anxiety, psychosis, obesity and cancer therapy-induced vomiting by cytotoxic drugs and radiation. Discovery of 5-HT, its biosynthesis, metabolism, physiological role and the potential of 5-HT receptor modulators in various nervous, cardiovascular and gastrointestinal tract disorders, bone growth and micturition have been discussed in this article. Keywords 5-hydroxytryptamine (5-HT) receptors; Modulators; Biogenic amines PMID:22505971

  1. Activation of the serotonin 1A receptor alters the temporal characteristics of auditory responses in the inferior colliculus.

    PubMed

    Hurley, Laura M

    2007-11-21

    Serotonin, like other neuromodulators, acts on a range of receptor types, but its effects also depend on the functional characteristics of the neurons responding to receptor activation. In the inferior colliculus (IC), an auditory midbrain nucleus, activation of a common serotonin (5-HT) receptor type, the 5-HT 1A receptor, depresses auditory-evoked responses in many neurons. Whether these effects occur differentially in different types of neurons is unknown. In the current study, the effects of iontophoretic application of the 5-HT 1A agonist 8-OH-DPAT on auditory responses were compared with the characteristic frequencies (CFs), recording depths, and control first-spike latencies of the same group of IC neurons. The 8-OH-DPAT-evoked change in response significantly correlated with first-spike latency across the population, so that response depressions were more prevalent in longer-latency neurons. The 8-OH-DPAT-evoked change in response did not correlate with CF or with recording depth. 8-OH-DPAT also altered the temporal characteristics of spike trains in a subset of neurons that fired multiple spikes in response to brief stimuli. For these neurons, activation of the 5-HT 1A receptor suppressed lagging spikes proportionally more than initial spikes. These results suggest that the 5-HT 1A receptor, by affecting the timing of the responses of both individual neurons and the neuron population, shifts the temporal profile of evoked activity within the IC. PMID:17916336

  2. The effects of serotonin1A receptor on female mice body weight and food intake are associated with the differential expression of hypothalamic neuropeptides and the GABAA receptor.

    PubMed

    Butt, Isma; Hong, Andrew; Di, Jing; Aracena, Sonia; Banerjee, Probal; Shen, Chang-Hui

    2014-10-01

    Both common eating disorders anorexia nervosa and bulimia nervosa are characteristically diseases of women. To characterize the role of the 5-HT1A receptor (5-HT1A-R) in these eating disorders in females, we investigated the effect of saline or 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) treatment on feeding behavior and body weight in adult WT female mice and in adult 5-HT1A-R knockout (KO) female mice. Our results showed that KO female mice have lower food intake and body weight than WT female mice. Administration of 8-OH-DPAT decreased food intake but not body weight in WT female mice. Furthermore, qRT-PCR was employed to analyze the expression levels of neuropeptides, γ-aminobutyric acid A receptor subunit β (GABAA β subunits) and glutamic acid decarboxylase in the hypothalamic area. The results showed the difference in food intake between WT and KO mice was accompanied by differential expression of POMC, CART and GABAA β2, and the difference in body weight between WT and KO mice was associated with significantly different expression levels of CART and GABAA β2. As such, our data provide new insight into the role of 5-HT1A-R in both feeding behavior and the associated expression of neuropeptides and the GABAA receptor. PMID:25130282

  3. Stimulation by toll-like receptors inhibits osteoclast differentiation.

    PubMed

    Takami, Masamichi; Kim, Nacksung; Rho, Jaerang; Choi, Yongwon

    2002-08-01

    Osteoclasts, the cells capable of resorbing bone, are derived from hemopoietic precursor cells of monocyte-macrophage lineage. The same precursor cells can also give rise to macrophages and dendritic cells, which are essential for proper immune responses to various pathogens. Immune responses to microbial pathogens are often triggered because various microbial components induce the maturation and activation of immunoregulatory cells such as macrophages or dendritic cells by stimulating Toll-like receptors (TLRs). Since osteoclasts arise from the same precursors as macrophages, we tested whether TLRs play any role during osteoclast differentiation. We showed here that osteoclast precursors prepared from mouse bone marrow cells expressed all known murine TLRs (TLR1-TLR9). Moreover, various TLR ligands (e.g., peptidoglycan, poly(I:C) dsRNA, LPS, and CpG motif of unmethylated DNA, which act as ligands for TLR2, 3, 4, and 9, respectively) induced NF-kappa B activation and up-regulated TNF-alpha production in osteoclast precursor cells. Unexpectedly, however, TLR stimulation of osteoclast precursors by these microbial products strongly inhibited their differentiation into multinucleated, mature osteoclasts induced by TNF-related activation-induced cytokine. Rather, TLR stimulation maintained the phagocytic activity of osteoclast precursors in the presence of osteoclastogenic stimuli M-CSF and TNF-related activation-induced cytokine. Taken together, these results suggest that TLR stimulation of osteoclast precursors inhibits their differentiation into noninflammatory mature osteoclasts during microbial infection. This process favors immune responses and may be critical to prevent pathogenic effects of microbial invasion on bone. PMID:12133979

  4. Endurance training in Wistar rats decreases receptor sensitivity to a serotonin agonist.

    PubMed

    Dwyer, D; Browning, J

    2000-11-01

    There is mounting evidence that increased brain serotonin during exercise is associated with the onset of CNS-mediated fatigue. Serotonin receptor sensitivity is likely to be an important determinant of this fatigue. Alterations in brain serotonin receptor sensitivity were examined in Wistar rats throughout 6 weeks of endurance training, running on a treadmill four times a week with two exercise tests per week to exhaustion. Receptor sensitivity was determined indirectly as the reduction in exercise time in response to a dose of a serotonin (1A) agonist, m-chlorophenylpiperazine (m-CPP). The two groups of controls were used to examine (i) the effect of the injection per se on exercise performance and (ii) changes in serotonin receptor sensitivity associated with maturation. In the test group, undrugged exercise performance significantly improved by 47% after 6 weeks of training (4518 +/- 729 to 6640 +/- 903 s, P=0.01). Drugged exercise performance also increased significantly from week 1 to week 6 (306 +/- 69-712 +/- 192 s, P = 0.04). Control group results indicated that the dose of m-CPP alone caused fatigue during exercise tests and that maturation was not responsible for any decrease in receptor sensitivity. Improved resistance to the fatiguing effects of the serotonin agonist suggests desensitization of central serotonin receptors, probably the 5-HT1A receptors. Endurance training appears to stimulate an adaptive response to the fatiguing effects of increased brain serotonin, which may enhance endurance exercise performance. PMID:11167306

  5. Transferrin receptor expression by stimulated cells in mixed lymphocyte culture.

    PubMed Central

    Salmon, M; Bacon, P A; Symmons, D P; Walton, K W

    1985-01-01

    Transferrin receptor (TRFr) expression by cells in mixed lymphocyte culture increases steadily for the first 5 days, but then reaches a plateau. By the sixth day in culture, about 20% of viable cells express TRFr in two-way mixed lymphocyte reactions. This subpopulation of TRFr-positive cells represents the proliferating population; it is heterogeneous, containing T-cell blasts and smaller cells which are a mixture of T and non-T cells. A small group of non-T cells have phenotypic similarity to natural killer (NK) cells. T cells appear to divide earlier in the course of the response than non-T cells. The biphasic nature of this response and the slower non-T reactivity may be due to a secondary stimulation of non-T cells by factors released from activated T cells (such as interleukin-2). PMID:2982734

  6. Thrombin stimulates insulin secretion via protease-activated receptor-3

    PubMed Central

    Hänzelmann, Sonja; Wang, Jinling; Güney, Emre; Tang, Yunzhao; Zhang, Enming; Axelsson, Annika S; Nenonen, Hannah; Salehi, Albert S; Wollheim, Claes B; Zetterberg, Eva; Berntorp, Erik; Costa, Ivan G; Castelo, Robert; Rosengren, Anders H

    2015-01-01

    The disease mechanisms underlying type 2 diabetes (T2D) remain poorly defined. Here we aimed to explore the pathophysiology of T2D by analyzing gene co-expression networks in human islets. Using partial correlation networks we identified a group of co-expressed genes (‘module’) including F2RL2 that was associated with glycated hemoglobin. F2Rl2 is a G-protein-coupled receptor (GPCR) that encodes protease-activated receptor-3 (PAR3). PAR3 is cleaved by thrombin, which exposes a 6-amino acid sequence that acts as a ‘tethered ligand’ to regulate cellular signaling. We have characterized the effect of PAR3 activation on insulin secretion by static insulin secretion measurements, capacitance measurements, studies of diabetic animal models and patient samples. We demonstrate that thrombin stimulates insulin secretion, an effect that was prevented by an antibody that blocks the thrombin cleavage site of PAR3. Treatment with a peptide corresponding to the PAR3 tethered ligand stimulated islet insulin secretion and single β-cell exocytosis by a mechanism that involves activation of phospholipase C and Ca2+ release from intracellular stores. Moreover, we observed that the expression of tissue factor, which regulates thrombin generation, was increased in human islets from T2D donors and associated with enhanced β-cell exocytosis. Finally, we demonstrate that thrombin generation potential in patients with T2D was associated with increased fasting insulin and insulinogenic index. The findings provide a previously unrecognized link between hypercoagulability and hyperinsulinemia and suggest that reducing thrombin activity or blocking PAR3 cleavage could potentially counteract the exaggerated insulin secretion that drives insulin resistance and β-cell exhaustion in T2D. PMID:26742564

  7. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    PubMed Central

    Teodorov, E.; Ferrari, M.F.R.; Fior-Chadi, D.R.; Camarini, R.; Felício, L.F.

    2012-01-01

    The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of U69593 group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female

  8. In vivo stimulation of oestrogen receptor α increases insulin-stimulated skeletal muscle glucose uptake

    PubMed Central

    Gorres, Brittany K; Bomhoff, Gregory L; Morris, Jill K; Geiger, Paige C

    2011-01-01

    Abstract Previous studies suggest oestrogen receptor α (ERα) is involved in oestrogen-mediated regulation of glucose metabolism and is critical for maintenance of whole body insulin action. Despite this, the effect of direct ERα modulation in insulin-responsive tissues is unknown. The purpose of the current study was to determine the impact of ERα activation, using the ER subtype-selective ligand propylpyrazoletriyl (PPT), on skeletal muscle glucose uptake. Two-month-old female Sprague–Dawley rats, ovariectomized for 1 week, were given subcutaneous injections of PPT (10 mg kg−1), oestradiol benzoate (EB; 20 μg kg−1), the ERβ agonist diarylpropionitrile (DPN, 10 mg kg−1) or vehicle every 24 h for 3 days. On the fourth day, insulin-stimulated skeletal muscle glucose uptake was measured in vitro and insulin signalling intermediates were assessed via Western blotting. Activation of ERα with PPT resulted in increased insulin-stimulated glucose uptake into the slow-twitch soleus and fast-twitch extensor digitorum longus (EDL) muscles, activation of insulin signalling intermediates (as measured by phospho-Akt (pAkt) and pAkt substrate (PAS)) and phosphorylation of AMP-activated protein kinase (AMPK). GLUT4 protein was increased only in the EDL muscle. Rats treated with EB or DPN for 3 days did not show an increase in insulin-stimulated skeletal muscle glucose uptake compared to vehicle-treated animals. These new findings reveal that direct activation of ERα positively mediates glucose uptake and insulin action in skeletal muscle. Evidence that oestrogens and ERα stimulate glucose uptake has important implications for understanding mechanisms of glucose homeostasis, particularly in postmenopausal women. PMID:21486807

  9. A Small-Animal Pharmacokinetic/Pharmacodynamic PET Study of Central Serotonin 1A Receptor Occupancy by a Potential Therapeutic Agent for Overactive Bladder

    PubMed Central

    Nakatani, Yosuke; Suzuki, Michiyuki; Tokunaga, Masaki; Maeda, Jun; Sakai, Miyuki; Ishihara, Hiroki; Yoshinaga, Takashi; Takenaka, Osamu; Zhang, Ming-Rong; Suhara, Tetsuya; Higuchi, Makoto

    2013-01-01

    Serotonin 1A (5-HT1A) receptors have been mechanistically implicated in micturition control, and there has been a need for an appropriate biomarker surrogating the potency of a provisional drug acting on this receptor system for developing a new therapeutic approach to overactive bladder (OAB). Here, we analyzed the occupancy of 5-HT1A receptors in living Sprague-Dawley rat brains by a novel candidate drug for OAB, E2110, using positron emission tomography (PET) imaging, and assessed the utility of a receptor occupancy (RO) assay to establish a pharmacodynamic index translatable between animals and humans. The plasma concentrations inducing 50% RO (EC50) estimated by both direct and effect compartment models were in good agreement. Dose-dependent therapeutic effects of E2110 on dysregulated micturition in different rat models of pollakiuria were also consistently explained by achievement of 5-HT1A RO by E2110 in a certain range (≥ 60%). Plasma drug concentrations inducing this RO range and EC50 would accordingly be objective indices in comparing pharmacokinetics-RO relationships between rats and humans. These findings support the utility of PET RO and plasma pharmacokinetic assays with the aid of adequate mathematical models in determining the in vivo characteristics of a drug acting on 5-HT1A receptors and thereby counteracting OAB. PMID:24086433

  10. Serotonin (5-HT) and 5-HT2A receptor agonists suppress lipolysis in primary rat adipose cells.

    PubMed

    Hansson, Björn; Medina, Anya; Fryklund, Claes; Fex, Malin; Stenkula, Karin G

    2016-05-27

    Serotonin (5-HT) is a biogenic monoamine that functions both as a neurotransmitter and a circulating hormone. Recently, the metabolic effects of 5-HT have gained interest and peripheral 5-HT has been proposed to influence lipid metabolism in various ways. Here, we investigated the metabolic effects of 5-HT in isolated, primary rat adipose cells. Incubation with 5-HT suppressed β-adrenergically stimulated glycerol release and decreased phosphorylation of protein kinase A (PKA)-dependent substrates, hormone sensitive lipase (Ser563) and perilipin (Ser522). The inhibitory effect of 5-HT on lipolysis enhanced the anti-lipolytic effect of insulin, but sustained in the presence of phosphodiesterase inhibitors, OPC3911 and isobuthylmethylxanthine (IBMX). The relative expression of 5-HT1A, -2B and -4 receptor class family were significantly higher in adipose tissue compared to adipose cells, whereas 5-HT1D, -2A and -7 were highly expressed in isolated adipose cells. Similar to 5-HT, 5-HT2 receptor agonists reduced lipolysis while 5-HT1 receptor agonists rather decreased non-stimulated and insulin-stimulated glucose uptake. Together, these data provide evidence of a direct effect of 5-HT on adipose cells, where 5-HT suppresses lipolysis and glucose uptake, which could contribute to altered systemic lipid- and glucose metabolism. PMID:27109474

  11. Involvement of spinal muscarinic and serotonergic receptors in the anti-allodynic effect of electroacupuncture in rats with oxaliplatin-induced neuropathic pain

    PubMed Central

    Lee, Ji Hwan; Go, Donghyun; Kim, Woojin; Lee, Giseog; Bae, Hyojeong; Quan, Fu Shi

    2016-01-01

    This study was performed to investigate whether the spinal cholinergic and serotonergic analgesic systems mediate the relieving effect of electroacupuncture (EA) on oxaliplatin-induced neuropathic cold allodynia in rats. The cold allodynia induced by an oxaliplatin injection (6 mg/kg, i.p.) was evaluated by immersing the rat's tail into cold water (4℃) and measuring the withdrawal latency. EA stimulation (2 Hz, 0.3-ms pulse duration, 0.2~0.3 mA) at the acupoint ST36, GV3, or LI11 all showed a significant anti-allodynic effect, which was stronger at ST36. The analgesic effect of EA at ST36 was blocked by intraperitoneal injection of muscarinic acetylcholine receptor antagonist (atropine, 1 mg/kg), but not by nicotinic (mecamylamine, 2 mg/kg) receptor antagonist. Furthermore, intrathecal administration of M2 (methoctramine, 10 µg) and M3 (4-DAMP, 10 µg) receptor antagonist, but not M1 (pirenzepine, 10 µg) receptor antagonist, blocked the effect. Also, spinal administration of 5-HT3 (MDL-72222, 12 µg) receptor antagonist, but not 5-HT1A (NAN-190, 15 µg) or 5-HT2A (ketanserin, 30 µg) receptor antagonist, prevented the anti-allodynic effect of EA. These results suggest that EA may have a signifi cant analgesic action against oxaliplatin-induced neuropathic pain, which is mediated by spinal cholinergic (M2, M3) and serotonergic (5-HT3) receptors. PMID:27382357

  12. Activation of 5-HT₁A receptors in the medial subdivision of the central nucleus of the amygdala produces anxiolytic effects in a rat model of Parkinson's disease.

    PubMed

    Sun, Yi-Na; Wang, Tao; Wang, Yong; Han, Ling-Na; Li, Li-Bo; Zhang, Yu-Ming; Liu, Jian

    2015-08-01

    Although the medial subdivision of the central nucleus of the amygdala (CeM) and serotonin-1A (5-HT1A) receptors are involved in the regulation of anxiety, their roles in Parkinson's disease (PD)-associated anxiety are still unknown. Here we assessed the importance of CeM 5-HT1A receptors for anxiety in rats with unilateral 6-hydroxydopamine (6-OHDA) lesion of the medial forebrain bundle (MFB). The lesion induced anxiety-like behaviors, increased the firing rate and burst-firing pattern of CeM γ-aminobutyric acid (GABA) neurons, as well as decreased dopamine (DA) levels in the striatum, medial prefrontal cortex (mPFC), amygdala and ventral part of hippocampus (vHip). Intra-CeM injection of the selective 5-HT1A receptor agonist 8-OH-DPAT produced anxiolytic effects in the lesioned rats, and decreased the firing rate of CeM GABAergic neurons in two groups of rats. Compared to sham-operated rats, the duration of the inhibitory effect on the firing rate of GABAergic neurons was shortened in the lesioned rats. The injection increased DA levels in the mPFC and amygdala in two groups of rats and the vHip in the lesioned rats, and increased 5-HT level in the lesioned rats, whereas it decreased NA levels in the mPFC in two groups of rats and the vHip in the lesioned rats. Moreover, the mean density of 5-HT1A receptor and GABA double-labeled neurons in the CeM was reduced after the lesioning. These results suggest that activation of CeM 5-HT1A receptor produces anxiolytic effects in the 6-OHDA-lesioned rats, which involves decreased firing rate of the GABAergic neurons, and changed monoamine levels in the limbic and limbic-related brain regions. PMID:25797491

  13. Epidermal growth factor receptor-dependent stimulation of amphiregulin expression in androgen-stimulated human prostate cancer cells.

    PubMed Central

    Sehgal, I; Bailey, J; Hitzemann, K; Pittelkow, M R; Maihle, N J

    1994-01-01

    Amphiregulin is a heparin-binding epidermal growth factor (EGF)-related peptide that binds to the EGF receptor (EGF-R) with high affinity. In this study, we report a role for amphiregulin in androgen-stimulated regulation of prostate cancer cell growth. Androgen is known to enhance EGF-R expression in the androgen-sensitive LNCaP human prostate carcinoma cell line, and it has been suggested that androgenic stimuli may regulate proliferation, in part, through autocrine mechanisms involving the EGF-R. In this study, we demonstrate that LNCaP cells express amphiregulin mRNA and peptide and that this expression is elevated by androgenic stimulation. We also show that ligand-dependent EGF-R stimulation induces amphiregulin expression and that androgenic effects on amphiregulin synthesis are mediated through this EGF-R pathway. Parallel studies using the estrogen-responsive breast carcinoma cell line, MCF-7, suggest that regulation of amphiregulin by estrogen may also be mediated via an EGF-R pathway. In addition, heparin treatment of LNCaP cells inhibits androgen-stimulated cell growth further suggesting that amphiregulin can mediate androgen-stimulated LNCaP proliferation. Together, these results implicate an androgen-regulated autocrine loop composed of amphiregulin and its receptor in prostate cancer cell growth and suggest that the mechanism of steroid hormone regulation of amphiregulin synthesis may occur through androgen upregulation of the EGF-R and subsequent receptor-dependent pathways. Images PMID:8049525

  14. Spinal 5-HT-receptors and tonic modulation of transmission through a withdrawal reflex pathway in the decerebrated rabbit.

    PubMed Central

    Clarke, R. W.; Harris, J.; Houghton, A. K.

    1996-01-01

    1. In decerebrated, non-spinalized rabbits, intrathecal administration of either of the selective 5-HT1A-receptor antagonists (S)WAY-100135 or WAY-100635 resulted in dose-dependent enhancement of the reflex responses of gastrocnemius motoneurones evoked by electrical stimulation of all myelinated afferents of the sural nerve. The approximate ED50 for WAY-100635 was 0.9 nmol and that for (S)WAY-100135 13 nmol. Intrathecal doses of the antagonists which caused maximal facilitation of reflexes in non-spinalized rabbits had no effect in spinalized preparations. 2. In non-spinalized animals, intravenous administration of (S)WAY-100135 was significantly less effective in enhancing reflexes than when it was given by the intrathecal route. 3. When given intrathecally, the selective 5-HT 2A/2C-receptor antagonist, ICI 170,809, produced a bellshaped dose-effect curve, augmenting reflexes at low doses (< or = 44 nmol), but reducing them at higher doses (982 nmol). Idazoxan, the selective alpha 2-adrenoceptor antagonist, was less effective in enhancing reflex responses when given intrathecally after ICI 170,809 compared to when it was given alone. Intravenous ICI 170,809 resulted only in enhancement of reflexes and the facilitatory effects of subsequent intrathecal administration of idazoxan were not compromised. 4. The selective 5-HT3-receptor blocker ondansetron faciliated gastrocnemius medialis reflex responses in a dose-related manner when given by either intrathecal or intravenous routes. This drug was slightly more potent when given i.v. and it did not alter the efficacy of subsequent intrathecal administration of idazoxan. 5. None of the antagonists had any consistent effects on arterial blood pressure or heart rate. 6. These data are consistent with the idea that, in the decrebrated rabbit, 5-HT released from descending axons has multiple roles in controlling transmission through the sural-gastrocnemius medialis reflex pathway. Thus, it appears 5-HT tonically inhibits

  15. Effects of intra-infralimbic prefrontal cortex injections of cannabidiol in the modulation of emotional behaviors in rats: contribution of 5HT₁A receptors and stressful experiences.

    PubMed

    Marinho, A L Z; Vila-Verde, C; Fogaça, M V; Guimarães, F S

    2015-06-01

    The infralimbic (IL) and prelimbic (PL) regions of the prefrontal cortex are involved in behavioral responses observed during defensive reactions. Intra-PL or IL injections of cannabidiol (CBD), a major non-psychotomimetic cannabinoid present in the Cannabis sativa plant, result in opposite behavioral effects in the contextual fear conditioning (CFC) paradigm. The intra-PL effects of CBD are mediated by 5HT1A receptors and depend on previous stressful experiences but the mechanisms and effects of intra-IL CBD injected are unknown. To this aim the present work verified the effects of intra-IL administration of CBD on two animal models of anxiety, the elevated plus maze (EPM) and CFC. We also investigated if these effects were mediated by 5HT1A receptors and depended on previous stressful experience. Male Wistar rats received bilateral microinjections of vehicle, WAY100635 (5HT1A receptor antagonist, 0.37 nmol) and/or CBD (15, 30 or 60 nmol) before being submitted to the behavioral tests. Intra-IL CBD induced anxiolytic and anxiogenic in the EPM and CFC, respectively. To verify if these effects are influenced by the previous stressful experience (footshocks) in the CFC model, we tested the animals in the EPM 24h after a 2-h restraint period. The anxiolytic-like effect of CBD in the EPM disappeared when the animals were previously stressed. Both responses, i.e., anxiolytic and anxiogenic, were prevented by WAY100635, indicating that they involve local 5HT1A-mediated neurotransmission. Together these results indicate that CBD effects in the IL depend on the nature of the animal model, being influenced by previous stressful experiences and mediated by facilitation of 5HT1A receptors-mediated neurotransmission. PMID:25701682

  16. Serotonin 5-HT2 Receptors Induce a Long-Lasting Facilitation of Spinal Reflexes Independent of Ionotropic Receptor Activity

    PubMed Central

    Shay, Barbara L.; Sawchuk, Michael; Machacek, David W.; Hochman, Shawn

    2009-01-01

    Dorsal root-evoked stimulation of sensory afferents in the hemisected in vitro rat spinal cord produces reflex output, recorded on the ventral roots. Transient spinal 5-HT2C receptor activation induces a long-lasting facilitation of these reflexes (LLFR) by largely unknown mechanisms. Two Sprague-Dawley substrains were used to characterize network properties involved in this serotonin (5-HT) receptor-mediated reflex plasticity. Serotonin more easily produced LLFR in one substrain and a long-lasting depression of reflexes (LLDR) in the other. Interestingly, LLFR and LLDR were bidirectionally interconvertible using 5-HT2A/2C and 5-HT1A receptor agonists, respectively, regardless of substrain. LLFR was predominantly Aβ afferent fiber mediated, consistent with prominent 5-HT2C receptor expression in the Aβ fiber projection territories (deeper spinal laminae). Reflex facilitation involved an unmasking of polysynaptic pathways and an increased receptive field size. LLFR emerged even when reflexes were evoked three to five times/h, indicating an activity independent induction. Both the NMDA and AMPA/kainate receptor-mediated components of the reflex could be facilitated, and facilitation was dependent on 5-HT receptor activation alone, not on coincident reflex activation in the presence of 5-HT. Selective blockade of GABAA and/or glycine receptors also did not prevent reflex amplification and so are not required for LLFR. Indeed, a more robust response was seen after blockade of spinal inhibition, indicating that inhibitory processes serve to limit reflex amplification. Overall we demonstrate that the serotonergic system has the capacity to induce long-lasting bidirectional changes in reflex strength in a manner that is nonassociative and independent of evoked activity or activation of ionotropic excitatory and inhibitory receptors. PMID:16033939

  17. Retinal Neuroprotective Effects of Flibanserin, an FDA-Approved Dual Serotonin Receptor Agonist-Antagonist

    PubMed Central

    Ryals, Renee C.; Ku, Cristy A.; Fischer, Cody M.; Patel, Rachel C.; Datta, Shreya; Yang, Paul; Wen, Yuquan; Hen, René; Pennesi, Mark E.

    2016-01-01

    Purpose To assess the neuroprotective effects of flibanserin (formerly BIMT-17), a dual 5-HT1A agonist and 5-HT2A antagonist, in a light-induced retinopathy model. Methods Albino BALB/c mice were injected intraperitoneally with either vehicle or increasing doses of flibanserin ranging from 0.75 to 15 mg/kg flibanserin. To assess 5-HT1A-mediated effects, BALB/c mice were injected with 10 mg/kg WAY 100635, a 5-HT1A antagonist, prior to 6 mg/kg flibanserin and 5-HT1A knockout mice were injected with 6 mg/kg flibanserin. Injections were administered once immediately prior to light exposure or over the course of five days. Light exposure lasted for one hour at an intensity of 10,000 lux. Retinal structure was assessed using spectral domain optical coherence tomography and retinal function was assessed using electroretinography. To investigate the mechanisms of flibanserin-mediated neuroprotection, gene expression, measured by RT-qPCR, was assessed following five days of daily 15 mg/kg flibanserin injections. Results A five-day treatment regimen of 3 to 15 mg/kg of flibanserin significantly preserved outer retinal structure and function in a dose-dependent manner. Additionally, a single-day treatment regimen of 6 to 15 mg/kg of flibanserin still provided significant protection. The action of flibanserin was hindered by the 5-HT1A antagonist, WAY 100635, and was not effective in 5-HT1A knockout mice. Creb, c-Jun, c-Fos, Bcl-2, Cast1, Nqo1, Sod1, and Cat were significantly increased in flibanserin-injected mice versus vehicle-injected mice. Conclusions Intraperitoneal delivery of flibanserin in a light-induced retinopathy mouse model provides retinal neuroprotection. Mechanistic data suggests that this effect is mediated through 5-HT1A receptors and that flibanserin augments the expression of genes capable of reducing mitochondrial dysfunction and oxidative stress. Since flibanserin is already FDA-approved for other indications, the potential to repurpose this drug for

  18. Quantification of the Serotonin 1A Receptor Using PET: Identification of a Potential Biomarker of Major Depression in Males.

    PubMed

    Kaufman, Joshua; Sullivan, Gregory M; Yang, Jie; Ogden, R Todd; Miller, Jeffrey M; Oquendo, Maria A; Mann, J John; Parsey, Ramin V; DeLorenzo, Christine

    2015-06-01

    Multiple lines of research have implicated the serotonin 1A (5-HT1A) receptor in major depressive disorder (MDD). Despite this, quantification of 5-HT1A is yet to yield a clinically relevant MDD biomarker. One reason may be that reported sex differences in the serotonergic system confound the comparison between diagnostic groups. Therefore, this study sought to determine whether differences in 5-HT1A binding between depressed and control subjects are affected by sex. Using positron emission tomography (PET), serotonin 1A binding was quantified in 50 patients with MDD (34 female, 16 male) and 57 healthy controls (32 female, 25 male). The subjects' 5-HT1A density (BPF, equal to the product of the density of available receptors and tracer affinity), was determined by using the PET tracer [carbonyl-C-11]-WAY-100635, a selective 5-HT1A antagonist. Results indicated that male MDD subjects had a 67.0% higher BPF across 13 brain regions compared with male controls (df=103, p<0.0001). The greatest difference between MDD subjects and controls was in the raphe (132%, p=0.000). Furthermore, by using a threshold, male controls can be distinguished from depressed males with high sensitivity and specificity (both >80%). In females, the separation between diagnostic groups yields much lower sensitivity and specificity. This data therefore suggests a specific biosignature for MDD in males. Identification of such a biosignature could provide a deeper understanding of depression pathology, help identify those at highest risk, and aid in the development of new therapies. Further, these findings suggest that combining male and female cohorts may not be optimal for some MDD studies. PMID:25578798

  19. Quantification of the Serotonin 1A Receptor Using PET: Identification of a Potential Biomarker of Major Depression in Males

    PubMed Central

    Kaufman, Joshua; Sullivan, Gregory M; Yang, Jie; Ogden, R Todd; Miller, Jeffrey M; Oquendo, Maria A; Mann, J John; Parsey, Ramin V; DeLorenzo, Christine

    2015-01-01

    Multiple lines of research have implicated the serotonin 1A (5-HT1A) receptor in major depressive disorder (MDD). Despite this, quantification of 5-HT1A is yet to yield a clinically relevant MDD biomarker. One reason may be that reported sex differences in the serotonergic system confound the comparison between diagnostic groups. Therefore, this study sought to determine whether differences in 5-HT1A binding between depressed and control subjects are affected by sex. Using positron emission tomography (PET), serotonin 1A binding was quantified in 50 patients with MDD (34 female, 16 male) and 57 healthy controls (32 female, 25 male). The subjects' 5-HT1A density (BPF, equal to the product of the density of available receptors and tracer affinity), was determined by using the PET tracer [carbonyl-C-11]-WAY-100635, a selective 5-HT1A antagonist. Results indicated that male MDD subjects had a 67.0% higher BPF across 13 brain regions compared with male controls (df=103, p<0.0001). The greatest difference between MDD subjects and controls was in the raphe (132%, p=0.000). Furthermore, by using a threshold, male controls can be distinguished from depressed males with high sensitivity and specificity (both >80%). In females, the separation between diagnostic groups yields much lower sensitivity and specificity. This data therefore suggests a specific biosignature for MDD in males. Identification of such a biosignature could provide a deeper understanding of depression pathology, help identify those at highest risk, and aid in the development of new therapies. Further, these findings suggest that combining male and female cohorts may not be optimal for some MDD studies. PMID:25578798

  20. Calmodulin-stimulated phosphorylation of 17 beta-estradiol receptor on tyrosine.

    PubMed Central

    Migliaccio, A; Rotondi, A; Auricchio, F

    1984-01-01

    The calf uterine 17 beta-estradiol receptor is a phosphoprotein. Phosphorylation-dephosphorylation of the receptor is controlled by a cytosol receptor kinase that activates the hormone binding and by a nuclear phosphatase that inactivates this binding. This report concerns the nature of the 17 beta-estradiol receptor kinase. Highly purified calf uterus 17 beta-estradiol receptor preinactivated by the nuclear phosphatase was used as substrate of the purified receptor kinase. Ca2+ and calmodulin stimulate both the kinase-dependent activation of the hormone binding and 32P incorporation from [gamma-32P]-ATP into the receptor. Maximal stimulation of hormone binding activation requires 1 microM Ca2+ and 0.6 microM calmodulin. Fifteen micromolar trifluoperazine is the lowest concentration that will prevent completely Ca2+-calmodulin stimulation of the kinase. The receptor is phosphorylated by the receptor kinase exclusively on tyrosine. Phosphorylation of proteins on tyrosine is a rare event implicated in hormone-induced cell growth and cell transformation. Images PMID:6207535

  1. Decrease in the Sensitivity of Myocardium to M3 Muscarinic Receptor Stimulation during Postnatal Ontogenisis.

    PubMed

    Tapilina, S V; Abramochkin, D V

    2016-01-01

    Type 3 muscarinic receptors (M3 receptors) participate in the mediation of cholinergic effects in mammalian myocardium, along with M2 receptors. However, myocardium of adult mammals demonstrates only modest electrophysiological effects in response to selective stimulation of M3 receptors which are hardly comparable to the effects produced by M2 stimulation. In the present study, the effects of selective M3 stimulation induced by application of the muscarinic agonist pilocarpine (10 μM) in the presence of the selective M2 blocker methoctramine (100 nM) on the action potential (AP) waveform were investigated in isolated atrial and ventricular preparations from newborn and 3-week-old rats and compared to those in preparations from adult rats. In the atrial myocardium, stimulation of M3 receptors produced a comparable reduction of AP duration in newborn and adult rats, while in 3-week-old rats the effect was negligible. In ventricular myocardial preparations from newborn rats, the effect of M3 stimulation was more than 3 times stronger compared to that from adult rats, while preparations from 3-week old rats demonstrated no definite effect, similarly to atrial preparations. In all studied types of cardiac preparations, the effects of M3 stimulation were eliminated by the selective M3 antagonist 4-DAMP (10 nM). The results of RT-PCR show that the amount of product of the M3 receptor gene decreases with the maturation of animals both in atrial and ventricular myocardium. We concluded that the contribution of M3 receptors to the mediation of cardiac cholinergic responses decreases during postnatal ontogenesis. These age-related changes may be associated with downregulation of M3 receptor gene expression. PMID:27437147

  2. Decrease in the Sensitivity of Myocardium to M3 Muscarinic Receptor Stimulation during Postnatal Ontogenisis

    PubMed Central

    Tapilina, S.V.; Abramochkin, D.V.

    2016-01-01

    Type 3 muscarinic receptors (M3 receptors) participate in the mediation of cholinergic effects in mammalian myocardium, along with M2 receptors. However, myocardium of adult mammals demonstrates only modest electrophysiological effects in response to selective stimulation of M3 receptors which are hardly comparable to the effects produced by M2 stimulation. In the present study, the effects of selective M3 stimulation induced by application of the muscarinic agonist pilocarpine (10 μM) in the presence of the selective M2 blocker methoctramine (100 nM) on the action potential (AP) waveform were investigated in isolated atrial and ventricular preparations from newborn and 3-week-old rats and compared to those in preparations from adult rats. In the atrial myocardium, stimulation of M3 receptors produced a comparable reduction of AP duration in newborn and adult rats, while in 3-week-old rats the effect was negligible. In ventricular myocardial preparations from newborn rats, the effect of M3 stimulation was more than 3 times stronger compared to that from adult rats, while preparations from 3-week old rats demonstrated no definite effect, similarly to atrial preparations. In all studied types of cardiac preparations, the effects of M3 stimulation were eliminated by the selective M3 antagonist 4-DAMP (10 nM). The results of RT-PCR show that the amount of product of the M3 receptor gene decreases with the maturation of animals both in atrial and ventricular myocardium. We concluded that the contribution of M3 receptors to the mediation of cardiac cholinergic responses decreases during postnatal ontogenesis. These age-related changes may be associated with downregulation of M3 receptor gene expression. PMID:27437147

  3. The role of serotonin receptor subtypes in treating depression: a review of animal studies

    PubMed Central

    Carr, Gregory V.

    2012-01-01

    Rationale Serotonin reuptake inhibitors (SSRIs) are effective in treating depression. Given the existence of different families and subtypes of 5-HT receptors, multiple 5-HT receptors may be involved in the antidepressant-like behavioral effects of SSRIs. Objective Behavioral pharmacology studies investigating the role of 5-HT receptor subtypes in producing or blocking the effects of SSRIs were reviewed. Results Few animal behavior tests were available to support the original development of SSRIs. Since their development, a number of behavioral tests and models of depression have been developed that are sensitive to the effects of SSRIs, as well as to other types of antidepressant treatments. The rationale for the development and use of these tests is reviewed. Behavioral effects similar to those of SSRIs (antidepressant-like) have been produced by agonists at 5-HT1A, 5-HT1B, 5-HT2C, 5-HT4, and 5-HT6 receptors. Also, antagonists at 5-HT2A, 5-HT2C, 5-HT3, 5- HT6, and 5-HT7 receptors have been reported to produce antidepressant-like responses. Although it seems paradoxical that both agonists and antagonists at particular 5-HT receptors can produce antidepressant-like effects, they probably involve diverse neurochemical mechanisms. The behavioral effects of SSRIs and other antidepressants may also be augmented when 5-HT receptor agonists or antagonists are given in combination. Conclusions The involvement of 5-HT receptors in the antidepressant-like effects of SSRIs is complex and involves the orchestration of stimulation and blockade at different 5-HT receptor subtypes. Individual 5-HT receptors provide opportunities for the development of a newer generation of antidepressants that may be more beneficial and effective than SSRIs. PMID:21107537

  4. Cyclin D1 stimulation of estrogen receptor transcriptional activity independent of cdk4.

    PubMed Central

    Neuman, E; Ladha, M H; Lin, N; Upton, T M; Miller, S J; DiRenzo, J; Pestell, R G; Hinds, P W; Dowdy, S F; Brown, M; Ewen, M E

    1997-01-01

    Cyclin D1 plays an important role in the development of breast cancer and is required for normal breast cell proliferation and differentiation associated with pregnancy. We show that ectopic expression of cyclin D1 can stimulate the transcriptional activity of the estrogen receptor in the absence of estradiol and that this activity can be inhibited by 4-hydroxytamoxifen and ICI 182,780. Cyclin D1 can form a specific complex with the estrogen receptor. Stimulation of the estrogen receptor by cyclin D1 is independent of cyclin-dependent kinase 4 activation. Cyclin D1 may manifest its oncogenic potential in breast cancer in part through binding to the estrogen receptor and activation of the transcriptional activity of the receptor. PMID:9271411

  5. Role of the Extracellular and Intracellular Loops of Follicle-Stimulating Hormone Receptor in Its Function

    PubMed Central

    Banerjee, Antara A.; Mahale, Smita D.

    2015-01-01

    Follicle-stimulating hormone receptor (FSHR) is a leucine-rich repeat containing class A G-protein coupled receptor belonging to the subfamily of glycoprotein hormone receptors (GPHRs), which includes luteinizing hormone/choriogonadotropin receptor (LH/CGR) and thyroid-stimulating hormone receptor. Its cognate ligand, follicle-stimulating hormone binds to, and activates FSHR expressed on the surface of granulosa cells of the ovary, in females, and Sertoli cells of the testis, in males, to bring about folliculogenesis and spermatogenesis, respectively. FSHR contains a large extracellular domain (ECD) consisting of leucine-rich repeats at the N-terminal end and a hinge region at the C-terminus that connects the ECD to the membrane spanning transmembrane domain (TMD). The TMD consists of seven α-helices that are connected to each other by means of three extracellular loops (ELs) and three intracellular loops (ILs) and ends in a short-cytoplasmic tail. It is well established that the ECD is the primary hormone binding domain, whereas the TMD is the signal transducing domain. However, several studies on the ELs and ILs employing site directed mutagenesis, generation of chimeric receptors and in vitro characterization of naturally occurring mutations have proven their indispensable role in FSHR function. Their role in every phase of the life cycle of the receptor like post translational modifications, cell surface trafficking, hormone binding, activation of downstream signaling, receptor phosphorylation, hormone–receptor internalization, and recycling of hormone–receptor complex have been documented. Mutations in the loops causing dysregulation of these processes lead to pathophysiological conditions. In other GPHRs as well, the loops have been convincingly shown to contribute to various aspects of receptor function. This review article attempts to summarize the extensive contributions of FSHR loops and C-terminal tail to its function. PMID:26236283

  6. Anandamide, an endogenous cannabimimetic eicosanoid, binds to the cloned human cannabinoid receptor and stimulates receptor-mediated signal transduction.

    PubMed Central

    Felder, C C; Briley, E M; Axelrod, J; Simpson, J T; Mackie, K; Devane, W A

    1993-01-01

    Arachidonylethanolamide (anandamide), a candidate endogenous cannabinoid ligand, has recently been isolated from porcine brain and displayed cannabinoid-like binding activity to synaptosomal membrane preparations and mimicked cannabinoid-induced inhibition of the twitch response in isolated murine vas deferens. In this study, anandamide and several congeners were evaluated as cannabinoid agonists by examining their ability to bind to the cloned cannabinoid receptor, inhibit forskolin-stimulated cAMP accumulation, inhibit N-type calcium channels, and stimulate one or more functional second messenger responses. Synthetic anandamide, and all but one congener, competed for [3H]CP55,940 binding to plasma membranes prepared from L cells expressing the rat cannabinoid receptor. The ability of anandamide to activate receptor-mediated signal transduction was evaluated in Chinese hamster ovary (CHO) cells expressing the human cannabinoid receptor (HCR, termed CHO-HCR cells) and compared to control CHO cells expressing the muscarinic m5 receptor (CHOm5 cells). Anandamide inhibited forskolin-stimulated cAMP accumulation in CHO-HCR cells, but not in CHOm5 cells, and this response was blocked with pertussis toxin. N-type calcium channels were inhibited by anandamide and several active congeners in N18 neuroblastoma cells. Anandamide stimulated arachidonic acid and intracellular calcium release in both CHOm5 and CHO-HCR cells and had no effect on the release of inositol phosphates or phosphatidylethanol, generated after activation of phospholipase C and D, respectively. Anandamide appears to exhibit the essential criteria required to be classified as a cannabinoid/anandamide receptor agonist and shares similar nonreceptor effects on arachidonic acid and intracellular calcium release as other cannabinoid agonists. PMID:8395053

  7. Behavioral and neurochemical pharmacology of six psychoactive substituted phenethylamines: Mouse locomotion, rat drug discrimination and in vitro receptor and transporter binding and function

    PubMed Central

    Eshleman, Amy J.; Forster, Michael J.; Wolfrum, Katherine M.; Johnson, Robert A.; Janowsky, Aaron; Gatch, Michael B.

    2014-01-01

    Rationale Psychoactive substituted phenethylamines 2,5-dimethoxy-4-chlorophenethylamine (2C-C); 2,5-dimethoxy-4-methylphenethylamine (2C-D); 2,5-dimethoxy-4-ethylphenethylamine (2C-E); 2,5-dimethoxy-4-iodophenethylamine (2C-I); 2,5-dimethoxy-4-ethylthiophenethylamine (2C-T-2) and 2,5-dimethoxy-4-chloroamphetamine (DOC) are used recreationally and may have deleterious side effects. Objectives This study compares behavioral effects and mechanisms of action of these substituted phenethylamines with those of hallucinogens and a stimulant. Methods The effects of these compounds on mouse locomotor activity and in rats trained to discriminate dimethyltryptamine, (−)DOM, (+)LSD, (±)MDMA and (S+)methamphetamine were assessed. Binding and functional activity of the phenethylamines at 5-HT1A, 5-HT2A, 5-HT2C receptors and monoamine transporters were assessed using cells heterologously expressing these proteins. Results The phenethylamines depressed mouse locomotor activity, although 2C-D and 2C-E stimulated activity at low doses. The phenethylamines except 2C-T-2 fully substituted for at least one hallucinogenic training compound but none fully substituted for (+)-methamphetamine. At 5-HT1A receptors, only 2C-T-2 and 2C-I were partial-to-full very low potency agonists. In 5-HT2A arachidonic acid release assays, the phenethylamines were partial to full agonists except 2C-I which was an antagonist. All compounds were full agonists at 5-HT2A and 5-HT2C receptor inositol phosphate assays. Only 2C-I had moderate affinity for, and very low potency at, the serotonin transporter. Conclusions The discriminative stimulus effects of 2C-C, 2C-D, 2C-E, 2C-I and DOC were similar to those of several hallucinogens but not methamphetamine. Additionally, the substituted phenethylamines were full agonists at 5-HT2A and 5-HT2C receptors, but for 2C-T-2, this was not sufficient to produce hallucinogenlike discriminative stimulus effects. Additionally, the 5-HT2A inositol phosphate pathway may

  8. Serotonin-2C Receptor Agonists Decrease Potassium-Stimulated GABA Release In the Nucleus Accumbens

    PubMed Central

    Kasper, James M; Booth, Raymond G; Peris, Joanna

    2014-01-01

    The serotonin 5-HT2C receptor has shown promise in vivo as a pharmacotherapeutic target for alcoholism. For example, recently, a novel 4-phenyl-2-N,N-dimethylaminotetralin (PAT) drug candidate, that demonstrates 5-HT2C receptor agonist activity together with 5-HT2A/2B receptor inverse agonist activity, was shown to reduce operant responding for ethanol after peripheral administration to rats. Previous studies have shown that the 5-HT2C receptor is found throughout the mesoaccumbens pathway and that 5-HT2C receptor agonism causes activation of ventral tegmental area (VTA) GABA neurons. It is unknown what effect 5-HT2C receptor modulation has on GABA release in the nucleus accumbens core (NAcc). To this end, microdialysis coupled to capillary electrophoresis with laser-induced fluorescence was used to quantify extracellular neurotransmitter concentrations in the NAcc under basal and after potassium stimulation conditions, in response to PAT analogs and other 5-HT2C receptor modulators administered by reverse dialysis to rats. 5-HT2C receptor agonists specifically attenuated stimulated GABA release in the NAcc while 5-HT2C antagonists or inverse agonists had no effect. Agents with activity at 5-HT2A receptors had no effect on GABA release. Thus, in contrast to results reported for the VTA, current results suggest 5-HT2C receptor agonists decrease stimulated GABA release in the NAcc, and provide a possible mechanism of action for 5HT2C-mediated negative modulation of ethanol self-administration. PMID:25382408

  9. Evidence that 5-HT1D receptors mediate inhibition of sympathetic ganglionic transmission in anaesthetized cats.

    PubMed Central

    Jones, J. F.; Martin, G. R.; Ramage, A. G.

    1995-01-01

    In anaesthetized cats, 5-carboxamidotryptamine (5-CT) or 5-hydroxytryptamine (5-HT) (0.3-300 micrograms kg-1,i.v.) inhibited the postganglionic compound action potential evoked by preganglionic electrical stimulation (0.5 Hz) with a similar potency in the stellate and splanchnic ganglia. In the 5-HT experiments transmission thorough the inferior mesenteric ganglia was also recorded. The maximal inhibitory effect of 5-HT was greater on the stellate and splanchnic ganglia (60 +/- 4 and 52 +/- 5%) than on the inferior mesenteric (15 +/- 2%). The effects of 5-HT were unaffected by pretreatment with antagonists (1 mg kg-1;i.v.) for 5-HT2 (BW501C67), 5-HT1A (WAY-100635) and 5-HT3 receptors (ondansetron). However, responses to both 5-HT and 5-CT were attenuated significantly by GR127935 (1 mg kg-1) except the responses to 5-HT at the inferior mesenteric ganglia. These results are consistent with the involvement of 5-HT1D receptors mediating inhibition of sympathetic ganglionic transmission in vivo. PMID:8528548

  10. Dissociation of insulin receptor phosphorylation and stimulation of glucose transport in BC3H-1 myocytes

    SciTech Connect

    Mojsilovic, L.P.; Standaert, M.L.; Rosic, N.K.; Pollet, R.J.

    1986-05-01

    The authors have investigated insulin receptor phosphorylation in differentiated cultured BC3H-1 myocytes. As for other insulin-responsive cell systems in partially purified wheat germ agglutinin receptor preparations, insulin stimulates the phosphorylation of its own receptor (95K ..beta..-subunits) in a dose dependent manner (0-400 nM), as identified by immunoprecipitation with antiinsulin receptor antibodies and SDS-PAGE. In the same preparations they show that 12-0-tetradecanyl phorbol acetate (TPA), which in many respect ..beta..-subunits in the same dose dependent manner (0-5 ..mu..M). In addition, antiinsulin receptor antibodies (B-10) also induced phosphorylation of mimics insulin action, also induced phosphorylation of the insulin receptor and HPLC tryptic maps of the /sup 32/P-labeled ..beta..-subunit were identical to those for insulin-induced receptor phosphorylation. However, while insulin and TPA are potent stimulators of glucose transport in these muscle cells, the antireceptor antibodies alone failed to provoke glucose transport at any concentration. The specificity and activity of these antibodies were confirmed in their system by their ability to inhibit insulin binding and insulin-stimulated glucose transport in a concentration-dependent manner. Their results indicate that phosphorylation of insulin receptor is not a crucial event in mediating insulin action, at least with respect to glucose transport. While the effects of the B-10 antibody in the BC3H-1 myocyte differ from those in the adipocyte, their results provide independent confirmation of their essential conclusion that phosphorylation of the insulin receptor may not be necessary nor sufficient for its acute action in promoting glucose transport.

  11. Cross-adaptation to odor stimulation of olfactory receptor cells in the box turtle, Terrapene carolina.

    PubMed

    Tonosaki, K

    1993-01-01

    Electrical recording from small twigs of olfactory nerve and electro-olfactogram (EOG) from olfactory epithelium in a turtle shows that olfactory receptors in the nose are responsive to various odors. I have used the effects of cross-adaptation to odor stimulation on the olfactory receptors to investigate the stimulus-specific components of these responses and to provide information about the responsiveness of cells. The results of the cross-adaptation experiments strongly support the hypothesis that different categories of receptor cells exist in the olfactory epithelium. PMID:8386588

  12. Apical and basolateral ATP stimulates tracheal epithelial chloride secretion via multiple purinergic receptors.

    PubMed

    Hwang, T H; Schwiebert, E M; Guggino, W B

    1996-06-01

    Stimulation of Cl- secretion across the airway epithelium by ATP or UTP as agonists has therapeutic implications for cystic fibrosis. Our results demonstrate that ATP stimulates Cl- secretion in rat tracheal epithelial cell monolayers in primary culture from the apical or basolateral side of the monolayer. Multiple types of ATP-sensitive Cl- conductances in intact monolayers were elucidated through inhibition by Cl- channel-blocking drugs. Multiple Cl- conductances stimulated by ATP and adenosine 3',5'-cyclic monophosphate (cAMP) (tested for comparison) were also deciphered more specifically by nystatin permeabilization of the basolateral membrane, subsequent imposition of symmetrical Cl-, I-, or Br- solutions to test halide permselectivity, inhibition by Cl- channel-blocking drugs, and construction of current-voltage plots to study time and voltage dependence of the currents. Apical ATP stimulates Cl- secretion through P2U (or P2Y2) purinergic receptors via both intracellular Ca2+ (Ca(2+)i)-dependent and Cai(2+)-independent signaling pathways by opening outwardly rectifying Cl- channels (ORCCs), cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channels, and Cai(2+)-dependent Cl- channels. Basolateral ATP stimulates Cl- secretion via a combination of receptor subtypes (P2T and P2U) or a novel type of receptor (P2Y3), independent of Cai2+ or cAMP signaling by opening only CFTR channels. cAMP also stimulated multiple types of Cl- conductances, consistent with simultaneous activation of CFTR and ORCCs. Together, these results suggest that ATP as an agonist stimulates Cl- secretion via multiple purinergic receptors and multiple signal transduction pathways activated in different membrane domains of tracheal epithelia. PMID:8764143

  13. Differential contributions of serotonin receptors to the behavioral effects of indoleamine hallucinogens in mice.

    PubMed

    Halberstadt, Adam L; Koedood, Liselore; Powell, Susan B; Geyer, Mark A

    2011-11-01

    Psilocin (4-hydroxy-N,N-dimethyltryptamine) is a hallucinogen that acts as an agonist at 5-HT(1A), 5-HT(2A), and 5-HT(2C) receptors. Psilocin is the active metabolite of psilocybin, a hallucinogen that is currently being investigated clinically as a potential therapeutic agent. In the present investigation, we used a combination of genetic and pharmacological approaches to identify the serotonin (5-HT) receptor subtypes responsible for mediating the effects of psilocin on head twitch response (HTR) and the behavioral pattern monitor (BPM) in C57BL/6J mice. We also compared the effects of psilocin with those of the putative 5-HT(2C) receptor-selective agonist 1-methylpsilocin and the hallucinogen and non-selective serotonin receptor agonist 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT). Psilocin, 1-methylpsilocin, and 5-MeO-DMT induced the HTR, effects that were absent in mice lacking the 5-HT(2A) receptor gene. When tested in the BPM, psilocin decreased locomotor activity, holepoking, and time spent in the center of the chamber, effects that were blocked by the selective 5-HT(1A) antagonist WAY-100635 but were not altered by the selective 5-HT(2C) antagonist SB 242,084 or by 5-HT(2A) receptor gene deletion. 5-MeO-DMT produced similar effects when tested in the BPM, and the action of 5-MeO-DMT was significantly attenuated by WAY-100635. Psilocin and 5-MeO-DMT also decreased the linearity of locomotor paths, effects that were mediated by 5-HT(2C) and 5-HT(1A) receptors, respectively. In contrast to psilocin and 5-MeO-DMT, 1-methylpsilocin (0.6-9.6 mg/kg) was completely inactive in the BPM. These findings confirm that psilocin acts as an agonist at 5-HT(1A), 5-HT(2A), and 5-HT(2C) receptors in mice, whereas the behavioral effects of 1-methylpsilocin indicate that this compound is acting at 5-HT(2A) sites but is inactive at the 5-HT(1A) receptor. The fact that 1-methylpsilocin displays greater pharmacological selectivity than psilocin indicates that 1-methylpsilocin

  14. Renal opiate receptor mediation of renin secretion to renal nerve stimulation in the dog.

    PubMed

    Koyama, S; Hosomi, H

    1986-06-01

    The present study was designed to evaluate renal opiate receptor mediation of the renin secretion response to electrical stimulation of the renal nerves in the pentobarbital sodium-anesthetized dog by use of the opiate agonist leucine-enkephalin (Leu-enk) and the opiate antagonist naloxone. In all animals studied, left kidneys were pump perfused at a constant renal blood flow. Renal perfusion pressure (RPP) and glomerular filtration rate (GFR) were unaltered at a stimulation frequency of 1.0 Hz; however, renin secretion rate (RSR) increased significantly in the nontreated group. High-frequency renal nerve stimulation (10 Hz) increased RPP and decreased GFR. RSR at the high-frequency stimulation was significantly augmented in the nontreated group. Renal arterial infusion of either Leu-enk (25 micrograms X kg-1 X min-1) or naloxone (7 micrograms X kg-1 X min-1) did not alter base-line levels of renal hemodynamics and RSR and did not produce significant changes in these variables even when renal nerves were stimulated at the low frequency; however, Leu-enk inhibited RPP and RSR responses to the high-frequency stimulation, and naloxone augmented these responses. Phentolamine (13 micrograms X kg-1 X min-1) prevented renal hemodynamic responses to the renal nerve stimulation, whereas RSR responses to the stimulation were unaffected. Propranolol (8 micrograms X kg-1 X min-1) resulted in decreases in RSR at the renal nerve stimulation despite the presence of changes in renal hemodynamics similar to the other groups. The results indicate that intrarenal opiate receptors may participate in inhibiting renal secretion of renin mediated by the renal nerves when renal vasoconstriction and reduction of GFR occurred at the high-frequency stimulation. PMID:3013030

  15. κ-Opioid Receptor Stimulation Improves Endothelial Function via Akt-stimulated NO Production in Hyperlipidemic Rats

    PubMed Central

    Tian, Fei; Zheng, Xu-Yang; Li, Juan; Zhang, Shu-Miao; Feng, Na; Guo, Hai-Tao; Jia, Min; Wang, Yue-Min; Fan, Rong; Pei, Jian-Ming

    2016-01-01

    This study was designed to investigate the effect of U50,488H (a selective κ-opioid receptor agonist) on endothelial function impaired by hyperlipidemia and to determine the role of Akt-stimulated NO production in it. Hyperlipidemic model was established by feeding rats with a high-fat diet for 14 weeks. U50,488H and nor-BNI (a selective κ-opioid receptor antagonist) were administered intraperitoneally. In vitro, the involvement of the PI3K/Akt/eNOS pathway in the effect of U50,488H was studied using cultured endothelial cells subjected to artificial hyperlipidemia. Serum total cholesterol and low-density lipoprotein cholesterol concentrations dramatically increased after high-fat diet feeding. Administration of U50,488H significantly alleviated endothelial ultrastructural destruction and endothelium-dependent vasorelaxation impairment caused by hyperlipidemia. U50,488H also increased Akt/eNOS phosphorylation and serum/medium NO level both in vivo and in vitro. U50,488H increased eNOS activity and suppressed iNOS activity in vivo. The effects of U50,488H were abolished in vitro by siRNAs targeting κ-opioid receptor and Akt or PI3K/Akt/eNOS inhibitors. All effects of U50,488H were blocked by nor-BNI. These results demonstrate that κ-opioid receptor stimulation normalizes endothelial ultrastructure and function under hyperlipidemic condition. Its mechanism is related to the preservation of eNOS phosphorylation through activation of the PI3K/Akt signaling pathway and downregulation of iNOS expression/activity. PMID:27226238

  16. κ-Opioid Receptor Stimulation Improves Endothelial Function via Akt-stimulated NO Production in Hyperlipidemic Rats.

    PubMed

    Tian, Fei; Zheng, Xu-Yang; Li, Juan; Zhang, Shu-Miao; Feng, Na; Guo, Hai-Tao; Jia, Min; Wang, Yue-Min; Fan, Rong; Pei, Jian-Ming

    2016-01-01

    This study was designed to investigate the effect of U50,488H (a selective κ-opioid receptor agonist) on endothelial function impaired by hyperlipidemia and to determine the role of Akt-stimulated NO production in it. Hyperlipidemic model was established by feeding rats with a high-fat diet for 14 weeks. U50,488H and nor-BNI (a selective κ-opioid receptor antagonist) were administered intraperitoneally. In vitro, the involvement of the PI3K/Akt/eNOS pathway in the effect of U50,488H was studied using cultured endothelial cells subjected to artificial hyperlipidemia. Serum total cholesterol and low-density lipoprotein cholesterol concentrations dramatically increased after high-fat diet feeding. Administration of U50,488H significantly alleviated endothelial ultrastructural destruction and endothelium-dependent vasorelaxation impairment caused by hyperlipidemia. U50,488H also increased Akt/eNOS phosphorylation and serum/medium NO level both in vivo and in vitro. U50,488H increased eNOS activity and suppressed iNOS activity in vivo. The effects of U50,488H were abolished in vitro by siRNAs targeting κ-opioid receptor and Akt or PI3K/Akt/eNOS inhibitors. All effects of U50,488H were blocked by nor-BNI. These results demonstrate that κ-opioid receptor stimulation normalizes endothelial ultrastructure and function under hyperlipidemic condition. Its mechanism is related to the preservation of eNOS phosphorylation through activation of the PI3K/Akt signaling pathway and downregulation of iNOS expression/activity. PMID:27226238

  17. Antinociceptive effects induced through the stimulation of spinal cannabinoid type 2 receptors in chronically inflamed mice.

    PubMed

    Curto-Reyes, Verdad; Boto, Tamara; Hidalgo, Agustín; Menéndez, Luis; Baamonde, Ana

    2011-10-01

    The stimulation of spinal cannabinoid type 2 (CB(2)) receptors is a suitable strategy for the alleviation of experimental pain symptoms. Several reports have described the up-regulation of spinal cannabinoid CB(2) receptors in neuropathic settings together with the analgesic effects derived from their activation. Besides, we have recently reported in two murine bone cancer models that the intrathecal administration of cannabinoid CB(2) receptor agonists completely abolishes hyperalgesia and allodynia, whereas spinal cannabinoid CB(2) receptor expression remains unaltered. The present experiments were designed to measure the expression of spinal cannabinoid CB(2) receptors as well as the analgesic efficacy derived from their stimulation in mice chronically inflamed by the intraplantar injection of complete Freund's adjuvant 1 week before. Both spinal cannabinoid CB(2) receptors mRNA measured by real-time PCR and cannabinoid CB(2) receptor protein levels measured by western blot remained unaltered in inflamed mice. Besides, the intrathecal (i.t.) administration of the cannabinoid CB(2) receptor agonists AM1241, (R,S)-3-(2-Iodo-5-nitrobenzoyl)-1-(1-methyl-2-piperidinylmethyl)-1H-indole, (0.03-1 μg) and JWH 133, (6aR,10aR)-3-(1,1-Dimethylbutyl)-6a,7,10,10a-tetrahydro-6,6,9-trimethyl-6H-dibenzo[b,d]pyran, (3-30 μg) dose-dependently blocked inflammatory thermal hyperalgesia and mechanical allodynia. The analgesic effects induced by both agonists were counteracted by the coadministration of the selective cannabinoid CB(2) receptor antagonist SR144528, 5-(4-chloro-3-methylphenyl)-1-[(4-methylphenyl)methyl]-N-[(1S,2S,4R)-1,3,3-trimethylbicyclo[2.2.1]hept-2-yl]-1H-pyrazole-3-carboxamide, (5 μg) but not by the cannabinoid CB(1) receptor antagonist AM251, N-(Piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide, (10 μg). The effects induced by AM1241 were also inhibited by the coadministration of the opioid receptor antagonist, naloxone

  18. Multitarget-directed tricyclic pyridazinones as G protein-coupled receptor ligands and cholinesterase inhibitors.

    PubMed

    Pau, Amedeo; Catto, Marco; Pinna, Giovanni; Frau, Simona; Murineddu, Gabriele; Asproni, Battistina; Curzu, Maria M; Pisani, Leonardo; Leonetti, Francesco; Loza, Maria Isabel; Brea, José; Pinna, Gérard A; Carotti, Angelo

    2015-06-01

    By following a multitarget ligand design approach, a library of 47 compounds was prepared, and they were tested as binders of selected G protein-coupled receptors (GPCRs) and inhibitors of acetyl and/or butyryl cholinesterase. The newly designed ligands feature pyridazinone-based tricyclic scaffolds connected through alkyl chains of variable length to proper amine moieties (e.g., substituted piperazines or piperidines) for GPCR and cholinesterase (ChE) molecular recognition. The compounds were tested at three different GPCRs, namely serotoninergic 5-HT1A, adrenergic α1A, and dopaminergic D2 receptors. Our main goal was the discovery of compounds that exhibit, in addition to ChE inhibition, antagonist activity at 5-HT1A because of its involvement in neuronal deficits typical of Alzheimer's and other neurodegenerative diseases. Ligands with nanomolar affinity for the tested GPCRs were discovered, but most of them behaved as dual antagonists of α1A and 5-HT1A receptors. Nevertheless, several compounds displaying this GPCR affinity profile also showed moderate to good inhibition of AChE and BChE, thus deserving further investigations to exploit the therapeutic potential of such unusual biological profiles. PMID:25924828

  19. Excitation of type II anterior caudate neurons by stimulation of dopamine D3 receptors.

    PubMed

    Piercey, M F; Hyslop, D K; Hoffmann, W E

    1997-07-11

    Previous studies have demonstrated that both direct- and indirect-acting dopamine (DA) receptor agonists excite type II neurons in the anterior caudate (CN) by stimulation of DA receptors belonging to the D2 receptor subfamily (D2, D3, D4 receptor subtypes). In the present study, pramipexole, a D3-preferring DA agonist effective in treating Parkinson's disease, excited type II anterior CN neurons. As with other direct-acting agonists, excitation of the CN neurons occurred only at doses above those that silenced DA neurons in the substantia nigra pars compacta (SNPC). Although more potent than pramipexole in inhibiting SNPC cells, PNU-91356A, a D2-preferring agonist, did not excite type II CN cells. The D3-preferring antagonist (+)-AJ76 was weaker than haloperidol, a D2-preferring antagonist, in reversing the effects of amphetamine on firing rates in dopaminergic neurons in both the SNPC and the CN. However, in relationship to its potency in the SNPC, (+)-AJ76 was more potent than haloperidol in the CN. PNU-101387, a selective D4 antagonist, did not alter amphetamine-induced stimulation of type II CN neurons. We conclude that DA agonists may excite type II anterior CN neurons via D3 receptor activation. The stimulation of these neurons may contribute to the anti-parkinsonian effects of pramipexole. PMID:9262154

  20. Evidence for two different types of P2 receptors stimulating insulin secretion from pancreatic B cell.

    PubMed

    Petit, P; Hillaire-Buys, D; Manteghetti, M; Debrus, S; Chapal, J; Loubatières-Mariani, M M

    1998-11-01

    Adenine nucleotides have been shown to stimulate insulin secretion by acting on P2 receptors of the P2Y type. Since there have been some discrepancies in the insulin response of different analogues of ATP and ADP, we investigated whether two different types of P2 receptors exist on pancreatic B cells. The effects of alpha,beta-methylene ATP, which is more specific for the P2X subtype, were studied in vitro in pancreatic islets and isolated perfused pancreas from rats, in comparison with the potent P2Y receptor agonist ADPbetaS. In isolated islets, incubated with a slightly stimulating glucose concentration (8.3 mM), alpha,beta-me ATP (200 microM) and ADPbetaS (50 microM) similarly stimulated insulin secretion; by contrast, under a non stimulating glucose concentration (3 mM), alpha,beta-me ATP was still effective whereas ADPbetaS was not. In the same way, in islets perifused with 3 mM glucose, alpha,beta-me ATP but not ADPbetaS induced a partial but significant reduction in the peak 86Rb efflux induced by the ATP-dependent potassium channel opener diazoxide. In the isolated pancreas, perfused with a non stimulating glucose concentration (4.2 mM), ADPbetaS and alpha,beta-me ATP (5-50 microM), administered for 10 min, induced an immediate, transient and concentration-dependent increase in the insulin secretion; their relative potency was not significantly different. In contrast, with a slightly stimulating glucose concentration (8.3 mM), ADPbetaS was previously shown to be 100 fold more potent than alpha,beta-me ATP. Furthermore, at 4.2 mM glucose a second administration of alpha,beta-me ATP was ineffective. In the same way, ADPbetaS was also able to desensitize its own insulin response. At 3 mM glucose, alpha,beta-me ATP as well as ADPbetaS (50 microM) induced a transient stimulation of insulin secretion and down regulated the action of each other. These results give evidence that pancreatic B cells, in addition to P2Y receptors, which potentiate glucose

  1. Oestradiol stimulates tyrosine phosphorylation and hormone binding activity of its own receptor in a cell-free system.

    PubMed Central

    Auricchio, F; Migliaccio, A; Di Domenico, M; Nola, E

    1987-01-01

    Recent experiments have shown that calf uterus oestrogen receptor exists in a tyrosine-phosphorylated hormone binding form and in non-phosphorylated, non-hormone binding form. We report here that physiological concentrations of oestradiol in complex with the receptor stimulate the calf uterus receptor kinase that converts the non-hormone binding receptor into hormone binding receptor through phosphorylation of the receptor on tyrosine. The activity of this enzyme has been followed by reactivation of hormone binding sites and phosphorylation on tyrosine of calf uterus phosphatase-inactivated receptor. Phosphorylation of the receptor has been demonstrated by interaction of kinase 32P-phosphorylated proteins with anti-receptor antibody followed either by sucrose gradient centrifugation or SDS-PAGE of the immunoprecipitated proteins. Hormone stimulation of the kinase is inhibited by receptor occupancy of the anti-oestrogen tamoxifen. Oestradiol-receptor complex increases the affinity of the kinase for the dephosphorylated receptor. Findings of this report are consistent with the observation that several protein tyrosine kinases that are associated with peptide hormone receptors are stimulated by the binding of the hormone to the receptor. This is the first report on the activation of a tyrosine kinase by a steroid hormone. The finding that hormones can regulate their own receptor binding activity through a tyrosine kinase is also new. Images Fig. 2. Fig. 4. Fig. 5. PMID:3691476

  2. Epidermal growth factor receptor is required for estradiol-stimulated bovine satellite cell proliferation.

    PubMed

    Reiter, B C; Kamanga-Sollo, E; Pampusch, M S; White, M E; Dayton, W R

    2014-07-01

    The objective of this study was to assess the role of the epidermal growth factor receptor (EGFR) in estradiol-17β (E2)-stimulated proliferation of cultured bovine satellite cells (BSCs). Treatment of BSC cultures with AG1478 (a specific inhibitor of EGFR tyrosine kinase activity) suppresses E2-stimulated BSC proliferation (P < 0.05). In addition, E2-stimulated proliferation is completely suppressed (P < 0.05) in BSCs in which EGFR expression is silenced by treatment with EGFR small interfering RNA (siRNA). These results indicate that EGFR is required for E2 to stimulate proliferation in BSC cultures. Both AG1478 treatment and EGFR silencing also suppress proliferation stimulated by LR3-IGF-1 (an IGF1 analogue that binds normally to the insulin-like growth factor receptor (IGFR)-1 but has little or no affinity for IGF binding proteins) in cultured BSCs (P < 0.05). Even though EGFR siRNA treatment has no effect on IGFR-1β mRNA expression in cultured BSCs, IGFR-1β protein level is substantially reduced in BSCs treated with EGFR siRNA. These data suggest that EGFR silencing results in post-transcriptional modifications that result in decreased IGFR-1β protein levels. Although it is clear that functional EGFR is necessary for E2-stimulated proliferation of BSCs, the role of EGFR is not clear. Transactivation of EGFR may directly stimulate proliferation, or EGFR may function to maintain the level of IGFR-1β which is necessary for E2-stimulated proliferation. It also is possible that the role of EGFR in E2-stimulated BSC proliferation may involve both of these mechanisms. PMID:24906928

  3. Phorbol ester stimulates secretory activity while inhibiting receptor-activated aminopyrine uptake by gastric glands

    SciTech Connect

    Brown, M.R.; Chew, C.S.

    1986-03-05

    Both cyclic AMP-dependent and -independent secretagogues stimulate pepsinogen release, respiration and H/sup +/ secretory activity (AP uptake) in rabbit gastric glands. 12-O-tetradecanoylphorbol-13-acetate (T), a diacyglycerol analog, activates protein kinase C (PKC) and stimulates secretion in many systems. T stimulated respiration and pepsinogen release by glands and increased AP uptake by both glands and purified parietal cells. However, T reduced AP uptake by glands stimulated with carbachol (C) or histamine (H) with an apparent IC/sub 50/ of 1 nM. Preincubation with T for 30 min produced maximum inhibition which was not reversed by removal of T. T accelerated the decline of the transient C peak while the late steady state response to H was most inhibited. H-stimulated AP uptake was also inhibited by 50 ..mu..g/ml 1-oleoyl-2-acetyl-glycerol, a reported PKC activator, but not by the inactive phorbol, 4..cap alpha..-phorbol-12,13-didecanoate. In contrast, T potentiated AP uptake by glands stimulated with submaximal doses of dibutyryl cyclic AMP. These results suggest inhibition by T is a specific effect of PKC activators. The differing effects of T on secretion indicators may result from a dual action of T on receptor and post-receptor intracellular events.

  4. Kappa opioid receptors stimulate phosphoinositide turnover in rat brain

    SciTech Connect

    Periyasamy, S.; Hoss, W. )

    1990-01-01

    The effects of various subtype-selective opioid agonists and antagonists on the phosphoinositide (PI) turnover response were investigated in the rat brain. The {kappa}-agonists U-50,488H and ketocyclazocine produced a concentration-dependent increase in the accumulation of IP's in hippocampal slices. The other {kappa}-agonists Dynorphin-A (1-13) amide, and its protected analog D(Ala){sup 2}-dynorphin-A (1-13) amide also produced a significant increase in the formation of ({sup 3}H)-IP's, whereas the {mu}-selective agonists (D-Ala{sup 2}-N-Me-Phe{sup 4}-Gly{sup 5}-ol)-enkephalin and morphine and the {delta}-selective agonist (D-Pen{sup 2,5})-enkephalin were ineffective. The increase in IP's formation elicited by U-50,488H was partially antagonized by naloxone and more completely antagonized by the {kappa}-selective antagonists nor-binaltorphimine and MR 2266. The formation of IP's induced by U-50,488H varies with the regions of the brain used, being highest in hippocampus and amygdala, and lowest in striatum and pons-medullar. The results indicate that brain {kappa}- but neither {mu}- nor {delta}- receptors are coupled to the PI turnover response.

  5. Adrenaline Rush: The Role of Adrenergic Receptors in Stimulant-Induced Behaviors

    PubMed Central

    Schmidt, Karl T.

    2014-01-01

    Psychostimulants, such as cocaine and amphetamines, act primarily through the monoamine neurotransmitters dopamine (DA), norepinephrine, and serotonin. Although stimulant addiction research has largely focused on DA, medication development efforts targeting the dopaminergic system have thus far been unsuccessful, leading to alternative strategies aimed at abating stimulant abuse. Noradrenergic compounds have shown promise in altering the behavioral effects of stimulants in rodents, nonhuman primates, and humans. In this review, we discuss the contribution of each adrenergic receptor (AR) subtype (α1, α2, and β) to five stimulant-induced behaviors relevant to addiction: locomotor activity, conditioned place preference, anxiety, discrimination, and self-administration. AR manipulation has diverse effects on these behaviors; each subtype profoundly influences outcomes in some paradigms but is inconsequential in others. The functional neuroanatomy and intracellular signaling mechanisms underlying the impact of AR activation/blockade on these behaviors remain largely unknown, presenting a new frontier for research on psychostimulant–AR interactions. PMID:24499709

  6. Peripheral NMDA Receptors Mediate Antidromic Nerve Stimulation-Induced Tactile Hypersensitivity in the Rat

    PubMed Central

    Jang, Jun Ho; Nam, Taick Sang; Jun, Jaebeom; Jung, Se Jung; Kim, Dong-Wook; Leem, Joong Woo

    2015-01-01

    We investigated the role of peripheral NMDA receptors (NMDARs) in antidromic nerve stimulation-induced tactile hypersensitivity outside the skin area innervated by stimulated nerve. Tetanic electrical stimulation (ES) of the decentralized L5 spinal nerve, which induced enlargement of plasma extravasation, resulted in tactile hypersensitivity in the L4 plantar dermatome of the hind-paw. When intraplantar (i.pl.) injection was administered into the L4 dermatome before ES, NMDAR and group-I metabotropic Glu receptor (mGluR) antagonists and group-II mGluR agonist but not AMPA/kainate receptor antagonist prevented ES-induced hypersensitivity. I.pl. injection of PKA or PKC inhibitors also prevented ES-induced hypersensitivity. When the same injections were administered after establishment of ES-induced hypersensitivity, hypersensitivity was partially reduced by NMDAR antagonist only. In naïve animals, i.pl. Glu injection into the L4 dermatome induced tactile hypersensitivity, which was blocked by NMDAR antagonist and PKA and PKC inhibitors. These results suggest that the peripheral release of Glu, induced by antidromic nerve stimulation, leads to the expansion of tactile hypersensitive skin probably via nociceptor sensitization spread due to the diffusion of Glu into the skin near the release site. In addition, intracellular PKA- and PKC-dependent mechanisms mediated mainly by NMDAR activation are involved in Glu-induced nociceptor sensitization and subsequent hypersensitivity. PMID:26770021

  7. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells

    SciTech Connect

    Raufman, Jean-Pierre; Cheng, Kunrong; Saxena, Neeraj; Chahdi, Ahmed; Belo, Angelica; Khurana, Sandeep; Xie, Guofeng

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Muscarinic receptor agonists stimulated robust human colon cancer cell invasion. Black-Right-Pointing-Pointer Anti-matrix metalloproteinase1 antibody pre-treatment blocks cell invasion. Black-Right-Pointing-Pointer Bile acids stimulate MMP1 expression, cell migration and MMP1-dependent invasion. -- Abstract: Mammalian matrix metalloproteinases (MMPs) which degrade extracellular matrix facilitate colon cancer cell invasion into the bloodstream and extra-colonic tissues; in particular, MMP1 expression correlates strongly with advanced colon cancer stage, hematogenous metastasis and poor prognosis. Likewise, muscarinic receptor signaling plays an important role in colon cancer; muscarinic receptors are over-expressed in colon cancer compared to normal colon epithelial cells. Muscarinic receptor activation stimulates proliferation, migration and invasion of human colon cancer cells. In mouse intestinal neoplasia models genetic ablation of muscarinic receptors attenuates carcinogenesis. In the present work, we sought to link these observations by showing that MMP1 expression and activation plays a mechanistic role in muscarinic receptor agonist-induced colon cancer cell invasion. We show that acetylcholine, which robustly increases MMP1 expression, stimulates invasion of HT29 and H508 human colon cancer cells into human umbilical vein endothelial cell monolayers - this was abolished by pre-incubation with atropine, a non-selective muscarinic receptor inhibitor, and by pre-incubation with anti-MMP1 neutralizing antibody. Similar results were obtained using a Matrigel chamber assay and deoxycholyltaurine (DCT), an amidated dihydroxy bile acid associated with colon neoplasia in animal models and humans, and previously shown to interact functionally with muscarinic receptors. DCT treatment of human colon cancer cells resulted in time-dependent, 10-fold increased MMP1 expression, and DCT-induced cell invasion was also blocked by pre

  8. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells.

    PubMed

    Raufman, Jean-Pierre; Cheng, Kunrong; Saxena, Neeraj; Chahdi, Ahmed; Belo, Angelica; Khurana, Sandeep; Xie, Guofeng

    2011-11-18

    Mammalian matrix metalloproteinases (MMPs) which degrade extracellular matrix facilitate colon cancer cell invasion into the bloodstream and extra-colonic tissues; in particular, MMP1 expression correlates strongly with advanced colon cancer stage, hematogenous metastasis and poor prognosis. Likewise, muscarinic receptor signaling plays an important role in colon cancer; muscarinic receptors are over-expressed in colon cancer compared to normal colon epithelial cells. Muscarinic receptor activation stimulates proliferation, migration and invasion of human colon cancer cells. In mouse intestinal neoplasia models genetic ablation of muscarinic receptors attenuates carcinogenesis. In the present work, we sought to link these observations by showing that MMP1 expression and activation plays a mechanistic role in muscarinic receptor agonist-induced colon cancer cell invasion. We show that acetylcholine, which robustly increases MMP1 expression, stimulates invasion of HT29 and H508 human colon cancer cells into human umbilical vein endothelial cell monolayers - this was abolished by pre-incubation with atropine, a non-selective muscarinic receptor inhibitor, and by pre-incubation with anti-MMP1 neutralizing antibody. Similar results were obtained using a Matrigel chamber assay and deoxycholyltaurine (DCT), an amidated dihydroxy bile acid associated with colon neoplasia in animal models and humans, and previously shown to interact functionally with muscarinic receptors. DCT treatment of human colon cancer cells resulted in time-dependent, 10-fold increased MMP1 expression, and DCT-induced cell invasion was also blocked by pre-treatment with anti-MMP1 antibody. This study contributes to understanding mechanisms underlying muscarinic receptor agonist-induced promotion of colon cancer and, more importantly, indicates that blocking MMP1 expression and activation has therapeutic promise to stop or retard colon cancer invasion and dissemination. PMID:22027145

  9. Artificial Sweeteners Stimulate Adipogenesis and Suppress Lipolysis Independently of Sweet Taste Receptors*

    PubMed Central

    Simon, Becky R.; Parlee, Sebastian D.; Learman, Brian S.; Mori, Hiroyuki; Scheller, Erica L.; Cawthorn, William P.; Ning, Xiaomin; Gallagher, Katherine; Tyrberg, Björn; Assadi-Porter, Fariba M.; Evans, Charles R.; MacDougald, Ormond A.

    2013-01-01

    G protein-coupled receptors mediate responses to a myriad of ligands, some of which regulate adipocyte differentiation and metabolism. The sweet taste receptors T1R2 and T1R3 are G protein-coupled receptors that function as carbohydrate sensors in taste buds, gut, and pancreas. Here we report that sweet taste receptors T1R2 and T1R3 are expressed throughout adipogenesis and in adipose tissues. Treatment of mouse and human precursor cells with artificial sweeteners, saccharin and acesulfame potassium, enhanced adipogenesis. Saccharin treatment of 3T3-L1 cells and primary mesenchymal stem cells rapidly stimulated phosphorylation of Akt and downstream targets with functions in adipogenesis such as cAMP-response element-binding protein and FOXO1; however, increased expression of peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein α was not observed until relatively late in differentiation. Saccharin-stimulated Akt phosphorylation at Thr-308 occurred within 5 min, was phosphatidylinositol 3-kinase-dependent, and occurred in the presence of high concentrations of insulin and dexamethasone; phosphorylation of Ser-473 occurred more gradually. Surprisingly, neither saccharin-stimulated adipogenesis nor Thr-308 phosphorylation was dependent on expression of T1R2 and/or T1R3, although Ser-473 phosphorylation was impaired in T1R2/T1R3 double knock-out precursors. In mature adipocytes, artificial sweetener treatment suppressed lipolysis even in the presence of forskolin, and lipolytic responses were correlated with phosphorylation of hormone-sensitive lipase. Suppression of lipolysis by saccharin in adipocytes was also independent of T1R2 and T1R3. These results suggest that some artificial sweeteners have previously uncharacterized metabolic effects on adipocyte differentiation and metabolism and that effects of artificial sweeteners on adipose tissue biology may be largely independent of the classical sweet taste receptors, T1R2 and T1R3. PMID

  10. Artificial sweeteners stimulate adipogenesis and suppress lipolysis independently of sweet taste receptors.

    PubMed

    Simon, Becky R; Parlee, Sebastian D; Learman, Brian S; Mori, Hiroyuki; Scheller, Erica L; Cawthorn, William P; Ning, Xiaomin; Gallagher, Katherine; Tyrberg, Björn; Assadi-Porter, Fariba M; Evans, Charles R; MacDougald, Ormond A

    2013-11-01

    G protein-coupled receptors mediate responses to a myriad of ligands, some of which regulate adipocyte differentiation and metabolism. The sweet taste receptors T1R2 and T1R3 are G protein-coupled receptors that function as carbohydrate sensors in taste buds, gut, and pancreas. Here we report that sweet taste receptors T1R2 and T1R3 are expressed throughout adipogenesis and in adipose tissues. Treatment of mouse and human precursor cells with artificial sweeteners, saccharin and acesulfame potassium, enhanced adipogenesis. Saccharin treatment of 3T3-L1 cells and primary mesenchymal stem cells rapidly stimulated phosphorylation of Akt and downstream targets with functions in adipogenesis such as cAMP-response element-binding protein and FOXO1; however, increased expression of peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein α was not observed until relatively late in differentiation. Saccharin-stimulated Akt phosphorylation at Thr-308 occurred within 5 min, was phosphatidylinositol 3-kinase-dependent, and occurred in the presence of high concentrations of insulin and dexamethasone; phosphorylation of Ser-473 occurred more gradually. Surprisingly, neither saccharin-stimulated adipogenesis nor Thr-308 phosphorylation was dependent on expression of T1R2 and/or T1R3, although Ser-473 phosphorylation was impaired in T1R2/T1R3 double knock-out precursors. In mature adipocytes, artificial sweetener treatment suppressed lipolysis even in the presence of forskolin, and lipolytic responses were correlated with phosphorylation of hormone-sensitive lipase. Suppression of lipolysis by saccharin in adipocytes was also independent of T1R2 and T1R3. These results suggest that some artificial sweeteners have previously uncharacterized metabolic effects on adipocyte differentiation and metabolism and that effects of artificial sweeteners on adipose tissue biology may be largely independent of the classical sweet taste receptors, T1R2 and T1R3. PMID

  11. Pharmacological evidence for the mediation of the panicolytic effect of fluoxetine by dorsal periaqueductal gray matter μ-opioid receptors.

    PubMed

    Roncon, Camila Marroni; Almada, Rafael Carvalho; Maraschin, Jhonatan Christian; Audi, Elisabeth Aparecida; Zangrossi, Hélio; Graeff, Frederico Guilherme; Coimbra, Norberto Cysne

    2015-12-01

    Previously reported results have shown that the inhibitory effect of fluoxetine on escape behavior, interpreted as a panicolytic-like effect, is blocked by pretreatment with either the opioid receptor antagonist naloxone or the 5-HT1A receptor (5-HT1A-R) antagonist WAY100635 via injection into the dorsal periaqueductal gray matter (dPAG). Additionally, reported evidence indicates that the μ-opioid receptor (MOR) interacts with the 5-HT1A-R in the dPAG. In the present work, pretreatment of the dPAG with the selective MOR blocker CTOP antagonized the anti-escape effect of chronic fluoxetine (10 mg/kg, i.p., daily, for 21 days), as measured in the elevated T-maze (ETM) test, indicating mediation of this effect by the MOR. In addition, the combined administration of sub-effective doses of the selective MOR agonist DAMGO (intra-dPAG) and sub-effective doses of chronic as well as subchronic (7 days) fluoxetine increased avoidance and escape latencies, suggesting that the activation of MORs may facilitate and accelerate the effects of fluoxetine. The current observation that MORs located in the dPAG mediate the anti-escape effect of fluoxetine may open new perspectives for the development of more efficient and fast-acting panic-alleviating drugs. PMID:26320545

  12. Galanin subtype 1 and subtype 2 receptors mediate opposite anxiety-like effects in the rat dorsal raphe nucleus.

    PubMed

    Morais, J S; Souza, M M; Campanha, T M N; Muller, C J T; Bittencourt, A S; Bortoli, V C; Schenberg, L C; Beijamini, V

    2016-11-01

    About 40% of the dorsal raphe nucleus (DRN) neurons co-express serotonin (5-HT) and galanin. Serotonergic pathways from the DRN to the amygdala facilitate learned anxiety, while those from the DRN to the dorsal periaqueductal grey matter (DPAG) impair innate anxiety. Previously, we showed that galanin infusion in the DRN of rats induces anxiolytic effect by impairing inhibitory avoidance without changing escape behaviour in the elevated T-maze (ETM). Here, we evaluated: (1) which galanin receptors would be involved in the anxiolytic effect of galanin in the DRN of rats tested in the ETM; (2) the effects of galanin intra-DRN on panic-like behaviours evoked by electrical stimulation of the DPAG. The activation of DRN GAL1 receptors by M617 (1.0 and 3.0nmol) facilitated inhibitory avoidance, whereas the activation of GAL2 receptors by AR-M1896 (3.0nmol) impaired the inhibitory avoidance in the ETM, suggesting an anxiogenic and an anxiolytic-like effect respectively. Both agonists did not change escape behaviour in the ETM or locomotor activity in the open field. The anxiolytic effect of AR-M1896 was attenuated by the prior administration of WAY100635 (0.18nmol), a 5-HT1A antagonist. Galanin (0.3nmol) administered in the DRN increased discreetly flight behaviours induced by electrical stimulation of the DPAG, suggesting a panicolytic effect. Together, our results showed that galanin mediates opposite anxiety responses in the DRN by activation of GAL1 and GAL2 receptors. The anxiolytic effect induced by activation of Gal2 receptors may depend on serotonergic tone. Finally, the role of galanin in panic related behaviours remains uncertain. PMID:27498247

  13. Skeletal muscle beta-receptors and isoproterenol-stimulated vasodilation in canine heart failure

    SciTech Connect

    Frey, M.J.; Lanoce, V.; Molinoff, P.B.; Wilson, J.R. )

    1989-11-01

    To investigate whether heart failure alters beta-adrenergic receptors on skeletal muscle and its associated vasculature, the density of beta-adrenergic receptors, isoproterenol-stimulated adenylate cyclase activity, and coupling of the guanine nucleotide-binding regulatory protein were compared in 18 control dogs and 16 dogs with heart failure induced by 5-8 wk of ventricular pacing at 260 beats/min. Hindlimb vascular responses to isoproterenol were compared in eight controls and eight of the dogs with heart failure. In dogs with heart failure, the density of beta-receptors on skeletal muscle was reduced in both gastrocnemius (control: 50 +/- 5; heart failure: 33 +/- 8 fmol/mg of protein) and semitendinosus muscle (control: 43 +/- 9; heart failure: 27 +/- 9 fmol/mg of protein, both P less than 0.05). Receptor coupling to the ternary complex, as determined by isoproterenol competition curves with and without guanosine 5'-triphosphate (GTP), was unchanged. Isoproterenol-stimulated adenylate cyclase activity was significantly decreased in semitendinosus muscle (control: 52.4 +/- 4.6; heart failure: 36.5 +/- 9.5 pmol.mg-1.min-1; P less than 0.05) and tended to be decreased in gastrocnemius muscle (control: 40.1 +/- 8.5; heart failure: 33.5 +/- 4.5 pmol.mg-1.min-1; P = NS). Isoproterenol-induced hindlimb vasodilation was not significantly different in controls and in dogs with heart failure. These findings suggest that heart failure causes downregulation of skeletal muscle beta-adrenergic receptors, probably due to receptor exposure to elevated catecholamine levels, but does not reduce beta-receptor-mediated vasodilation in muscle.

  14. Extracellular matrix hyaluronan signals via its CD44 receptor in the increased responsiveness to mechanical stimulation.

    PubMed

    Ferrari, L F; Araldi, D; Bogen, O; Levine, J D

    2016-06-01

    We propose that the extracellular matrix (ECM) signals CD44, a hyaluronan receptor, to increase the responsiveness to mechanical stimulation in the rat hind paw. We report that intradermal injection of hyaluronidase induces mechanical hyperalgesia, that is inhibited by co-administration of a CD44 receptor antagonist, A5G27. The intradermal injection of low (LMWH) but not high (HMWH) molecular weight hyaluronan also induces mechanical hyperalgesia, an effect that was attenuated by pretreatment with HMWH or A5G27. Pretreatment with HMWH also attenuated the hyperalgesia induced by hyaluronidase. Similarly, intradermal injection of A6, a CD44 receptor agonist, produced hyperalgesia that was inhibited by HMWH and A5G27. Inhibitors of protein kinase A (PKA) and Src, but not protein kinase C (PKC), significantly attenuated the hyperalgesia induced by both A6 and LMWH. Finally, to determine if CD44 receptor signaling is involved in a preclinical model of inflammatory pain, we evaluated the effect of A5G27 and HMWH on the mechanical hyperalgesia associated with the inflammation induced by carrageenan. Both A5G27 and HMWH attenuated carrageenan-induced mechanical hyperalgesia. Thus, while LMWH acts at its cognate receptor, CD44, to induce mechanical hyperalgesia, HMWH acts at the same receptor as an antagonist. That the local administration of HMWH or A5G27 inhibits carrageenan-induced hyperalgesia supports the suggestion that carrageenan produces changes in the ECM that contributes to inflammatory pain. These studies define a clinically relevant role for signaling by the hyaluronan receptor, CD44, in increased responsiveness to mechanical stimulation. PMID:26996509

  15. Treadmill exercise alleviates stress-induced impairment of social interaction through 5-hydroxytryptamine 1A receptor activation in rats

    PubMed Central

    Kim, Tae-Woon; Lim, Baek-Vin; Kim, Kijeong; Seo, Jin-Hee; Kim, Chang-Ju

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) and its receptors tyrosine kinase B (trkB), and cyclic adenosine monophosphate response element binding protein (CREB) have been suggested as the neurobiological risk factors causing depressive disorder. Serotonin (5-hydroxytryptamine, 5-HT) plays an important role in the pathogenesis of depression. We in-vestigated the effect of treadmill exercise on social interaction in relation with BDNF and 5-HT expressions following stress in rats. Stress was induced by applying inescapable 0.2 mA electric foot shock to the rats for 7 days. The rats in the exercise groups were forced to run on a motorized treadmill for 30 min once a day for 4 weeks. Social interaction test and western blot for BDNF, TrkB, pCREB, and 5-HT1A in the hippocampus were performed. The results indicate that the spend time with unfamiliar partner was decreased by stress, in contrast, treadmill exercise increased the spending time in the stress-induced rats. Expressions of BDNF, TrkB, and pCREB were decreased by stress, in contrast, treadmill exercise enhanced expressions of BDNF, TrkB, and pCREB in the stress-induced rats. In addition, 5-HT1A receptor expression was de-creased by stress, in contrast, treadmill exercise enhanced 5-HT1A expression in the stress-induced rats. In the present study, treadmill exercise alleviated stress-induced social interaction impairment through enhancing hippocampal plasticity and serotonergic function in the hippocampus. These effects of treadmill exercise are achieved through 5-HT1A receptor activation. PMID:26331133

  16. Treadmill exercise alleviates stress-induced impairment of social interaction through 5-hydroxytryptamine 1A receptor activation in rats.

    PubMed

    Kim, Tae-Woon; Lim, Baek-Vin; Kim, Kijeong; Seo, Jin-Hee; Kim, Chang-Ju

    2015-08-01

    Brain-derived neurotrophic factor (BDNF) and its receptors tyrosine kinase B (trkB), and cyclic adenosine monophosphate response element binding protein (CREB) have been suggested as the neurobiological risk factors causing depressive disorder. Serotonin (5-hydroxytryptamine, 5-HT) plays an important role in the pathogenesis of depression. We in-vestigated the effect of treadmill exercise on social interaction in relation with BDNF and 5-HT expressions following stress in rats. Stress was induced by applying inescapable 0.2 mA electric foot shock to the rats for 7 days. The rats in the exercise groups were forced to run on a motorized treadmill for 30 min once a day for 4 weeks. Social interaction test and western blot for BDNF, TrkB, pCREB, and 5-HT1A in the hippocampus were performed. The results indicate that the spend time with unfamiliar partner was decreased by stress, in contrast, treadmill exercise increased the spending time in the stress-induced rats. Expressions of BDNF, TrkB, and pCREB were decreased by stress, in contrast, treadmill exercise enhanced expressions of BDNF, TrkB, and pCREB in the stress-induced rats. In addition, 5-HT1A receptor expression was de-creased by stress, in contrast, treadmill exercise enhanced 5-HT1A expression in the stress-induced rats. In the present study, treadmill exercise alleviated stress-induced social interaction impairment through enhancing hippocampal plasticity and serotonergic function in the hippocampus. These effects of treadmill exercise are achieved through 5-HT1A receptor activation. PMID:26331133

  17. Receptor-mediated uptake of low density lipoprotein stimulates bile acid synthesis by cultured rat hepatocytes

    SciTech Connect

    Junker, L.H.; Davis, R.A. )

    1989-12-01

    The cellular mechanisms responsible for the lipoprotein-mediated stimulation of bile acid synthesis in cultured rat hepatocytes were investigated. Adding 280 micrograms/ml of cholesterol in the form of human or rat low density lipoprotein (LDL) to the culture medium increased bile acid synthesis by 1.8- and 1.6-fold, respectively. As a result of the uptake of LDL, the synthesis of (14C)cholesterol from (2-14C)acetate was decreased and cellular cholesteryl ester mass was increased. Further studies demonstrated that rat apoE-free LDL and apoE-rich high density lipoprotein (HDL) both stimulated bile acid synthesis 1.5-fold, as well as inhibited the formation of (14C)cholesterol from (2-14C)acetate. Reductive methylation of LDL blocked the inhibition of cholesterol synthesis, as well as the stimulation of bile acid synthesis, suggesting that these processes require receptor-mediated uptake. To identify the receptors responsible, competitive binding studies using 125I-labeled apoE-free LDL and 125I-labeled apoE-rich HDL were performed. Both apoE-free LDL and apoE-rich HDL displayed an equal ability to compete for binding of the other, suggesting that a receptor or a group of receptors that recognizes both apolipoproteins is involved. Additional studies show that hepatocytes from cholestyramine-treated rats displayed 2.2- and 3.4-fold increases in the binding of apoE-free LDL and apoE-rich HDL, respectively. These data show for the first time that receptor-mediated uptake of LDL by the liver is intimately linked to processes activating bile acid synthesis.

  18. Inhibitory effect of PYY on vagally stimulated acid secretion is mediated predominantly by Y1 receptors.

    PubMed

    Lloyd, K C; Grandt, D; Aurang, K; Eysselein, V E; Schimiczek, M; Reeve, J R

    1996-01-01

    Two molecular forms of peptide YY (PYY), PYY-(1--36) and PYY-(3--36), are abundant in rabbit intestine and blood. We have previously shown that PYY-(1--36) (PYYI) activates equipotently Y1 and Y2 receptors and PYY-(3--36) (PYY II) is a highly selective agonist for Y2 receptors. In the present study, we examined the effect of exogenous infusion of PYY on vagally stimulated gastric acid secretion in awake rabbits with chronic gastric fistula. To determine the specific PYY receptor(s) that mediates this effect, we used a highly selective Y1 agonist, Pro34-PYY, a synthetic PYY, and a Y2-selective agonist, PYY II. Vagal stimulation of acid secretion was elicited by an intravenous bolus injection of insulin (0.125 U/kg) 30 min after beginning a 180-min intravenous infusion of either PYY I, PYY II, or [Pro34]-PYY after a 50 micrograms/kg i.v. bolus of atropine followed immediately by a 500 micrograms/kg sc injection. During infusion of 200 pmol.kg 1.h-1 PYY I, acid output was significantly inhibited to 45 +/- 13% of maximum acid output 60 min after injection of insulin. Similarly, acid output during infusion of 200 pmol.kg-1.h-1 [Pro34]-PYY was significantly inhibited to 52 +/- 12% of maximum. In contrast, acid output during infusion of 200 pmol.kg-1.h-1 of PYY II was not significantly inhibited (101 +/- 18% of maximum). Infusion of double the dose (400 pmol.kg-1.h-1) of PYY II resulted in acid inhibition (51 = 15% of maximum), whereas infusion of the same dose did not significantly enhance acid inhibition by infusion of either PYY I or [Pro34]-PYY (28 +/- 11 and 42 +/- 15% of maximum). These results indicate that PYY, acting predominantly at Y1 receptors, is a potent inhibitor of vagally stimulated acid secretion in adult rabbits. PMID:8772509

  19. Modulation of GABA release from the thalamic reticular nucleus by cocaine and caffeine: role of serotonin receptors.

    PubMed

    Goitia, Belén; Rivero-Echeto, María Celeste; Weisstaub, Noelia V; Gingrich, Jay A; Garcia-Rill, Edgar; Bisagno, Verónica; Urbano, Francisco J

    2016-02-01

    Serotonin receptors are targets of drug therapies for a variety of neuropsychiatric and neurodegenerative disorders. Cocaine inhibits the re-uptake of serotonin (5-HT), dopamine, and noradrenaline, whereas caffeine blocks adenosine receptors and opens ryanodine receptors in the endoplasmic reticulum. We studied how 5-HT and adenosine affected spontaneous GABAergic transmission from thalamic reticular nucleus. We combined whole-cell patch clamp recordings of miniature inhibitory post-synaptic currents (mIPSCs) in ventrobasal thalamic neurons during local (puff) application of 5-HT in wild type (WT) or knockout mice lacking 5-HT2A receptors (5-HT2A -/-). Inhibition of mIPSCs frequency by low (10 μM) and high (100 μM) 5-HT concentrations was observed in ventrobasal neurons from 5-HT2A -/- mice. In WT mice, only 100 μM 5-HT significantly reduced mIPSCs frequency. In 5-HT2A -/- mice, NAN-190, a specific 5-HT1A antagonist, prevented the 100 μM 5-HT inhibition while blocking H-currents that prolonged inhibition during post-puff periods. The inhibitory effects of 100 μM 5-HT were enhanced in cocaine binge-treated 5-HT2A -/- mice. Caffeine binge treatment did not affect 5-HT-mediated inhibition. Our findings suggest that both 5-HT1A and 5-HT2A receptors are present in pre-synaptic thalamic reticular nucleus terminals. Serotonergic-mediated inhibition of GABA release could underlie aberrant thalamocortical physiology described after repetitive consumption of cocaine. Our findings suggest that both 5-HT1A , 5-HT2A and A1 receptors are present in pre-synaptic TRN terminals. 5-HT1A and A1 receptors would down-regulate adenylate cyclase, whereas 5-HT1A would also increase the probability of the opening of G-protein-activated inwardly rectifying K(+) channels (GIRK). Sustained opening of GIRK channels would hyperpolarize pre-synaptic terminals activating H-currents, resulting in less GABA release. 5-HT2A -would activate PLC and IP3 , increasing intracellular [Ca(2+) ] and

  20. Synaptic NMDA receptor stimulation activates PP1 by inhibiting its phosphorylation by Cdk5

    PubMed Central

    Hou, Hailong; Sun, Lu; Siddoway, Benjamin A.; Petralia, Ronald S.; Yang, Hongtian; Gu, Hua; Nairn, Angus C.

    2013-01-01

    The serine/threonine protein phosphatase protein phosphatase 1 (PP1) is known to play an important role in learning and memory by mediating local and downstream aspects of synaptic signaling, but how PP1 activity is controlled in different forms of synaptic plasticity remains unknown. We find that synaptic N-methyl-d-aspartate (NMDA) receptor stimulation in neurons leads to activation of PP1 through a mechanism involving inhibitory phosphorylation at Thr320 by Cdk5. Synaptic stimulation led to proteasome-dependent degradation of the Cdk5 regulator p35, inactivation of Cdk5, and increased auto-dephosphorylation of Thr320 of PP1. We also found that neither inhibitor-1 nor calcineurin were involved in the control of PP1 activity in response to synaptic NMDA receptor stimulation. Rather, the PP1 regulatory protein, inhibitor-2, formed a complex with PP1 that was controlled by synaptic stimulation. Finally, we found that inhibitor-2 was critical for the induction of long-term depression in primary neurons. Our work fills a major gap regarding the regulation of PP1 in synaptic plasticity. PMID:24189275

  1. Gastrointestinal hormones stimulate growth of Foregut Neuroendocrine Tumors by transactivating the EGF receptor

    PubMed Central

    Di Florio, Alessia; Sancho, Veronica; Moreno, Paola; Fave, Gianfranco Delle; Jensen, Robert T.

    2012-01-01

    Foregut Neuroendocrine Tumors[NETs] usually pursuit a benign course, but some show aggressive behavior. The treatment of patients with advanced NETs is marginally effective and new approaches are needed. In other tumors, transactivation of the EGF receptor(EGFR) by growth factors, gastrointestinal(GI) hormones and lipids can stimulate growth, which has led to new treatments. Recent studies show a direct correlation between NET malignancy and EGFR expression, EGFR inhibition decreases basal NET growth and an autocrine growth effect exerted by GI hormones, for some NETs. To determine if GI hormones can stimulate NET growth by inducing transactivation of EGFR, we examined the ability of EGF, TGFα and various GI hormones to stimulate growth of the human foregut carcinoid, BON, the somatostatinoma QGP-1 and the rat islet tumor, Rin-14B-cell lines. The EGFR tyrosine-kinase inhibitor, AG1478 strongly inhibited EGF and the GI hormones stimulated cell growth, both in BON and QGP-1 cells. In all the three neuroendocrine cell lines studied, we found EGF, TGFα and the other growth-stimulating GI hormones increased Tyr1068 EGFR phosphorylation. In BON cells, both the GI hormones neurotensin and a bombesin analogue caused a time- and dose-dependent increase in EGFR phosphorylation, which was strongly inhibited by AG1478. Moreover, we found this stimulated phosphorylation was dependent on Src kinases, PKCs, matrix metalloproteinase activation and the generation of reactive oxygen species. These results raise the possibility that disruption of this signaling cascade by either EGFR inhibition alone or combined with receptor antagonists may be a novel therapeutic approach for treatment of foregut NETs/PETs. PMID:23220008

  2. A neomutation of the thyroid-stimulating hormone receptor in a severe neonatal hyperthyroidism.

    PubMed

    de Roux, N; Polak, M; Couet, J; Leger, J; Czernichow, P; Milgrom, E; Misrahi, M

    1996-06-01

    Until recently, neonatal hyperthyroidism has been considered to be related to the transplacental passage of thyroid-stimulating Ig present in the serum of the mother. We report here the case of a newborn who presented with severe hyperthyroidism, diffuse goiter, and important ocular signs (eyelid retraction and possibly proptosis). However, the absence of thyroid pathology in the parents and the lack of antithyroid antibodies in the mother and in the patient led us to suspect a nonimmune aetiology. Direct genomic sequencing of the last exon of the TSH receptor in the patient revealed a T-->C transversion yielding to a Met453-->Thr heterozygous substitution in the second transmembrane domain of the receptor. The mutation was absent in both parents. Eukaryotic expression analysis in COS-7 cells yielded a mutated receptor that produced constitutive activation of adenylate cyclase without enhancement of phospholipase C activity. PMID:8964822

  3. Direct angiotensin II type 2 receptor stimulation decreases dopamine synthesis in the rat striatum.

    PubMed

    Mertens, Birgit; Vanderheyden, Patrick; Michotte, Yvette; Sarre, Sophie

    2010-06-01

    A relationship between the central renin angiotensin system and the dopaminergic system has been described in the striatum. However, the role of the angiotensin II type 2 (AT(2)) receptor in this interaction has not yet been established. The present study examined the outcome of direct AT(2) receptor stimulation on dopamine (DA) release and synthesis by means of the recently developed nonpeptide AT(2) receptor agonist, compound 21 (C21). The effects of AT(2) receptor agonism on the release of DA and its major metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) and on the activity of tyrosine hydroxylase (TH), the rate-limiting enzyme in the catecholamine biosynthesis, were investigated using in vivo microdialysis. Local administration of C21 (0.1 and 1 microM) resulted in a decrease of the extracellular DOPAC levels, whereas extracellular DA concentrations remained unaltered, suggesting a reduced synthesis of DA. This effect was mediated by the AT(2) receptor since it could be blocked by the AT(2) receptor antagonist PD123319 (1 microM). A similar effect was observed after local striatal (10 nM) as well as systemic (0.3 and 3 mg/kg i.p.) administration of the AT(1) receptor antagonist, candesartan. TH activity as assessed by accumulation of extracellular levels of L-DOPA after inhibition of amino acid decarboxylase with NSD1015, was also reduced after local administration of C21 (0.1 and 1 microM) and candesartan (10 nM). Together, these data suggest that AT(1) and AT(2) receptors in the striatum exert an opposite effect on the modulation of DA synthesis rather than DA release. PMID:20097214

  4. Properties of follicle-stimulating-hormone receptor in cell membranes of bovine testis.

    PubMed Central

    Cheng, K W

    1975-01-01

    A simple method for preparing plasma membranes from bovine testes is described. Bovine testicular receptor has a high affinity and specificity for 125I-labelled human FSH (follicle-stimulating hormone). The specific binding of 125I-labelled human FSH to the plasma membranes is a saturable process with respect to the amounts of receptor protein and FSH added. The association and dissociation of 125I-labelled human FSH are time- and temperature-dependent, and the binding of labelled human FSH to bovine testicular receptor is strong and not readily reversible. Scatchard [Ann. N.Y. Acad. Sci. (1949) 51, 660-672] analysis indicates a dissociation constant, Kd, of 9.8 X10(-11)M, and 5.9 X 10(-14)mol of binding sites/mg of membrane protein. The testicular membrane receptor is heat-labile. Preheating at 40 degrees C for 15 min destroyed 30% of the binding activity. Specific binding is pH-dependent, with an optimum between pH 7.0 and 7.5. Brief exposure to extremes of pH caused irreversible damage to the receptors. The ionic strength of the incubation medium markedly affects the association of 125I-labelled human FSH with its testicular receptor. Various cations at concentrations of 0.1M inhibit almost completely the binding of 125I-labelled human FSH. Nuclectides and steroid hormones at concentrations of 1mM and 5mu/ml respectively have no effect on the binding of FSH to its receptor. Incubation of membranes with and chymotrypsin resulted in an almost complete loss of binding activity, suggesting that protein moieties are essential for the binding of 125I-labelled human FSH. Binding of 125I-labelled human FSH to bovine testicular receptor does not result in destruction or degradation of the hormone. PMID:242318

  5. Activation of EP4 receptors contributes to prostaglandin E2-mediated stimulation of renal sensory nerves.

    PubMed

    Kopp, Ulla C; Cicha, Michael Z; Nakamura, Kazuhiro; Nüsing, Rolf M; Smith, Lori A; Hökfelt, Tomas

    2004-12-01

    Induction of cyclooxygenase-2 (COX-2) in the renal pelvic wall increases prostaglandin E(2) (PGE(2)) leading to stimulation of cAMP production, which results in substance P (SP) release and activation of renal mechanosensory nerves. The subtype of PGE receptors involved, EP2 and/or EP4, was studied by immunohistochemistry and renal pelvic administration of agonists and antagonists of EP2 and EP4 receptors. EP4 receptor-like immunoreactivity (LI) was colocalized with calcitonin gene-related peptide (CGRP)-LI in dorsal root ganglia (DRGs) at Th(9)-L(1) and in nerve terminals in the renal pelvic wall. Th(9)-L(1) DRG neurons also contained EP3 receptor-LI and COX-2-LI, each of which was colocalized with CGRP-LI in some neurons. No renal pelvic nerves contained EP3 receptor-LI and only very few nerves COX-2-LI. The EP1/EP2 receptor antagonist AH-6809 (20 microM) had no effect on SP release produced by PGE(2) (0.14 microM) from an isolated rat renal pelvic wall preparation. However, the EP4 receptor antagonist L-161,982 (10 microM) blocked the SP release produced by the EP2/EP4 receptor agonist butaprost (10 microM) 12 +/- 2 vs. 2 +/- 1 and PGE(2), 9 +/- 1 vs. 1 +/- 0 pg/min. The SP release by butaprost and PGE(2) was similarly blocked by the EP4 receptor antagonist AH-23848 (30 microM). In anesthetized rats, the afferent renal nerve activity (ARNA) responses to butaprost 700 +/- 100 and PGE(2).780 +/- 100%.s (area under the curve of ARNA vs. time) were unaffected by renal pelvic perfusion with AH-6809. However, 1 microM L-161,982 and 10 microM AH-23848 blocked the ARNA responses to butaprost by 94 +/- 5 and 78 +/- 10%, respectively, and to PGE(2) by 74 +/- 16 and 74 +/- 11%, respectively. L-161,982 also blocked the ARNA response to increasing renal pelvic pressure 10 mmHg, 85 +/- 5%. In conclusion, PGE(2) increases renal pelvic release of SP and ARNA by activating EP4 receptors on renal sensory nerve fibers. PMID:15292051

  6. Hypotonicity stimulates renal epithelial sodium transport by activating JNK via receptor tyrosine kinases.

    PubMed

    Taruno, Akiyuki; Niisato, Naomi; Marunaka, Yoshinori

    2007-07-01

    We previously reported that hypotonic stress stimulated transepithelial Na(+) transport via a pathway dependent on protein tyrosine kinase (PTK; Niisato N, Van Driessche W, Liu M, Marunaka Y. J Membr Biol 175: 63-77, 2000). However, it is still unknown what type of PTK mediates this stimulation. In the present study, we investigated the role of receptor tyrosine kinase (RTK) in the hypotonic stimulation of Na(+) transport. In renal epithelial A6 cells, we observed inhibitory effects of AG1478 [an inhibitor of the EGF receptor (EGFR)] and AG1296 [an inhibitor of the PDGF receptor (PDGFR)] on both the hypotonic stress-induced stimulation of Na(+) transport and the hypotonic stress-induced ligand-independent activation of EGFR. We further studied whether hypotonic stress activates members of the MAP kinase family, ERK1/2, p38 MAPK, and JNK/SAPK, via an RTK-dependent pathway. The present study indicates that hypotonic stress induced phosphorylation of ERK1/2 and JNK/SAPK, but not p38 MAPK, that the hypotonic stress-induced phosphorylation of ERK1/2 and JNK/SAPK was diminished by coapplication of AG1478 and AG1296, and that only JNK/SAPK was involved in the hypotonic stimulation of Na(+) transport. A further study using cyclohexamide (a protein synthesis inhibitor) suggests that both RTK and JNK/SAPK contributed to the protein synthesis-independent early phase in hypotonic stress-induced Na(+) transport, but not to the protein synthesis-dependent late phase. The present study also suggests involvement of phosphatidylinositol 3-kinase (PI3-kinase) in RTK-JNK/SAPK cascade-mediated Na(+) transport. These observations indicate that 1) hypotonic stress activates JNK/SAPK via RTKs in a ligand-independent pathway, 2) the RTK-JNK/SAPK cascade acts as a mediator of hypotonic stress for stimulation of Na(+) transport, and 3) PI3-kinase is involved in the RTK-JNK/SAPK cascade for the hypotonic stress-induced stimulation of Na(+) transport. PMID:17344192

  7. Angiotensin AT2-receptor stimulation improves survival and neurological outcome after experimental stroke in mice.

    PubMed

    Schwengel, Katja; Namsolleck, Pawel; Lucht, Kristin; Clausen, Bettina H; Lambertsen, Kate L; Valero-Esquitino, Veronica; Thöne-Reineke, Christa; Müller, Susanne; Widdop, Robert E; Denton, Kate M; Horiuchi, Masatsugu; Iwai, Masaru; Boato, Francesco; Dahlöf, Björn; Hallberg, Anders; Unger, Thomas; Steckelings, U Muscha

    2016-08-01

    This study investigated the effect of post-stroke, direct AT2-receptor (AT2R) stimulation with the non-peptide AT2R-agonist compound 21 (C21) on infarct size, survival and neurological outcome after middle cerebral artery occlusion (MCAO) in mice and looked for potential underlying mechanisms. C57/BL6J or AT2R-knockout mice (AT2-KO) underwent MCAO for 30 min followed by reperfusion. Starting 45 min after MCAO, mice were treated once daily for 4 days with either vehicle or C21 (0.03 mg/kg ip). Neurological deficits were scored daily. Infarct volumes were measured 96 h post-stroke by MRI. C21 significantly improved survival after MCAO when compared to vehicle-treated mice. C21 treatment had no impact on infarct size, but significantly attenuated neurological deficits. Expression of brain-derived neurotrophic factor (BDNF), tyrosine kinase receptor B (TrkB) (receptor for BDNF) and growth-associated protein 43 (GAP-43) were significantly increased in the peri-infarct cortex of C21-treated mice when compared to vehicle-treated mice. Furthermore, the number of apoptotic neurons was significantly decreased in the peri-infarct cortex in mice treated with C21 compared to controls. There were no effects of C21 on neurological outcome, infarct size and expression of BDNF or GAP-43 in AT2-KO mice. From these data, it can be concluded that AT2R stimulation attenuates early mortality and neurological deficits after experimental stroke through neuroprotective mechanisms in an AT2R-specific way. Key message • AT2R stimulation after MCAO in mice reduces mortality and neurological deficits.• AT2R stimulation increases BDNF synthesis and protects neurons from apoptosis.• The AT2R-agonist C21 acts protectively when applied post-stroke and peripherally. PMID:26983606

  8. Interaction of urokinase with specific receptors stimulates mobilization of bovine adrenal capillary endothelial cells

    SciTech Connect

    Fibbi, G.; Ziche, M.; Morbidelli, L. ); Magnelli, L.; Del Rosso, M. )

    1988-12-01

    On the basis of {sup 125}I-labeled plasminogen activator binding analysis the authors have found that bovine adrenal capillary endothelial cells have specific receptors for human urinary-type plasminogen activator on the cell membrane. Each cell exposes about 37,000 free receptors with a K{sub d} of 0.8958{times}10{sup {minus}12} M. A monoclonal antibody against the 17,500 proteolytic fragment of the A chain of the plasminogen activator, not containing the catalytic site of the enzyme, impaired the specific binding, thus suggesting the involvement of a sequence present on the A chain in the interaction with the receptor, as previously shown in other cell model systems. Both the native molecule and the A chain are able to stimulate endothelial cell motility in the Boyden chamber, when used at nanomolar concentrations. The use of the same monoclonal antibody that can inhibit ligand-receptor interaction can impair the plasminogen activator and A-chain-induced endothelial cell motility, suggesting that under the conditions used in this in vitro model system, the motility of bovine adrenal capillary endothelial cells depends on the specific interaction of the ligand with free receptors on the surface of endothelial cells.

  9. Dissociation between neural and vascular responses to sympathetic stimulation : contribution of local adrenergic receptor function

    NASA Technical Reports Server (NTRS)

    Jacob, G.; Costa, F.; Shannon, J.; Robertson, D.; Biaggioni, I.

    2000-01-01

    Sympathetic activation produced by various stimuli, eg, mental stress or handgrip, evokes regional vascular responses that are often nonhomogeneous. This phenomenon is believed to be the consequence of the recruitment of differential central neural pathways or of a sympathetically mediated vasodilation. The purpose of this study was to determine whether a similar heterogeneous response occurs with cold pressor stimulation and to test the hypothesis that local differences in adrenergic receptor function could be in part responsible for this diversity. In 8 healthy subjects, local norepinephrine spillover and blood flow were measured in arms and legs at baseline and during sympathetic stimulation induced by baroreflex mechanisms (nitroprusside infusion) or cold pressor stimulation. At baseline, legs had higher vascular resistance (27+/-5 versus 17+/-2 U, P=0.05) despite lower norepinephrine spillover (0.28+/-0.04 versus 0.4+/-0.05 mg. min(-1). dL(-1), P=0.03). Norepinephrine spillover increased similarly in both arms and legs during nitroprusside infusion and cold pressor stimulation. On the other hand, during cold stimulation, vascular resistance increased in arms but not in legs (20+/-9% versus -7+/-4%, P=0.03). Increasing doses of isoproterenol and phenylephrine were infused intra-arterially in arms and legs to estimate beta-mediated vasodilation and alpha-induced vasoconstriction, respectively. beta-Mediated vasodilation was significantly lower in legs compared with arms. Thus, we report a dissociation between norepinephrine spillover and vascular responses to cold stress in lower limbs characterized by a paradoxical decrease in local resistance despite increases in sympathetic activity. The differences observed in adrenergic receptor responses cannot explain this phenomenon.

  10. Stimulation of pulmonary rapidly adapting receptors by inhaled wood smoke in rats.

    PubMed

    Lai, C J; Kou, Y R

    1998-04-15

    1. The stimulation of pulmonary rapidly adapting receptors (RARs) by wood smoke was investigated. Impulses from seventy RARs were recorded in fifty-nine anaesthetized, open-chest and artificially ventilated rats; responses to delivery of 6 ml of wood smoke into the lungs were studied in sixty-one receptors whereas responses to histamine (10 or 100 microg kg-1, i.v.) were studied in the other nine. 2. Delivery of wood smoke stimulated fifty-two of the sixty-one RARs studied. When stimulated, an intense burst of discharge was evoked within 1 or 2 s of smoke delivery. This increased activity quickly peaked in 1-3 s (Delta = 15.8 +/- 1.6 impulses s-1; n = 61; mean +/- s.e.m.), then declined and yet remained at a level higher than the baseline activity. The mean duration of the stimulation was 25.1 +/- 2.7 s. In contrast, smoke delivery did not affect tracheal pressure. 3. Peak responses of RARs to wood smoke were partially reduced by removal of smoke particulates and were largely attenuated by pretreatment with dimethylthiourea (DMTU, a hydroxyl radical scavenger), indomethacin (Indo, a cyclo-oxygenase inhibitor), or both DMTU and Indo (DMTU + Indo). Conversely, the peak responses of RARs were not significantly affected by pretreatment with isoprenaline (a bronchodilator) or vehicle for these chemicals. Additionally, pretreatment with DMTU, Indo, or DMTU + Indo did not significantly alter the RAR sensitivity to mechanical stimulation (constant-pressure lung inflation; 20 cmH2O). 4. Of the nine RARs tested, six were stimulated by histamine and their sensitivity to this chemical irritant was not altered by pretreatment with DMTU + Indo. 5. The results suggest that both the particulates and gas phases are responsible for, and both the hydroxyl radical and cyclo-oxygenase products are involved in, the stimulation of RARs by wood smoke. Furthermore, changes in lung mechanics following smoke delivery are not the cause of this afferent stimulation. PMID:9508820

  11. Allergic sensitization modifies the pulmonary expression of 5-hydroxytryptamine receptors in guinea pigs.

    PubMed

    Córdoba-Rodríguez, Guadalupe; Vargas, Mario H; Ruiz, Víctor; Carbajal, Verónica; Campos-Bedolla, Patricia; Mercadillo-Herrera, Paulina; Arreola-Ramírez, José Luis; Segura-Medina, Patricia

    2016-03-01

    There is mounting evidence that 5-hydroxytryptamine (5-HT) plays a role in asthma. However, scarce information exists about the pulmonary expression of 5-HT receptors and its modification after allergic sensitization. In the present work, we explored the expression of 5-HT1A, 5-HT2A, 5-HT3, 5-HT4, 5-ht5a, 5-HT6, and 5-HT7 receptors in lungs from control and sensitized guinea pigs through qPCR and Western blot. In control animals, mRNA from all receptors was detectable in lung homogenates, especially from 5-HT2A and 5-HT4 receptors. Sensitized animals had decreased mRNA expression of 5-HT2A and 5-HT4 receptors and increased that of 5-HT7 receptor. In contrast, they had increased protein expression of 5-HT2A receptor in bronchial epithelium and of 5-HT4 receptor in lung parenchyma. The degree of airway response to the allergic challenge was inversely correlated with mRNA expression of the 5-HT1A receptor. In summary, our results showed that major 5-HT receptor subtypes are constitutively expressed in the guinea pig lung, and that allergic sensitization modifies the expression of 5-HT2A, 5-HT4, and 5-HT7 receptors. PMID:26657047

  12. The therapeutic potential of erythropoiesis-stimulating agents for tissue protection: a tale of two receptors.

    PubMed

    Brines, Michael

    2010-01-01

    Erythropoietin (EPO) is a well-known therapeutic protein employed widely in the treatment of anemia. Over the past decade, abundant evidence has shown that in addition to its systemic role in the regulation of plasma pO(2) by modulating erythrocyte numbers, EPO is also a cytoprotective molecule made locally in response to injury or metabolic stress. Many studies have shown beneficial effects of EPO administration in reducing damage caused by ischemia-reperfusion, trauma, cytotoxicity, infection and inflammation in a variety of organs and tissues. Notably, the receptor mediating the nonerythropoietic effects of EPO differs from the one responsible for hematopoiesis. The tissue-protective receptor exhibits a lower affinity for EPO and is a heteromer consisting of EPO receptor monomers in association with the common receptor that is also employed by granulocyte macrophage colony-stimulating factor, interleukin 3, and interleukin 5. This heteromeric receptor is expressed immediately following injury, whereas EPO production is delayed. Thus, early administration of EPO can dramatically reduce the deleterious components of the local inflammatory cascade. However, a high dose of EPO is required and this also stimulates the bone marrow to produce highly reactive platelets and activates the vascular endothelium into a prothrombotic state. To circumvent these undesirable effects, the EPO molecule has been successfully altered to selectively eliminate erythropoietic and prothrombotic potencies, while preserving tissue-protective activities. Very recently, small peptide mimetics have been developed that recapitulate the tissue-protective activities of EPO. Nonerythropoietic tissue-protective molecules hold high promise in a wide variety of acute and chronic diseases. PMID:20093809

  13. Studies on the structure of the follicle-stimulating hormone receptor using photoaffinity labeling procedures

    SciTech Connect

    Smith, R.A.

    1985-01-01

    The general objective of this project was to study the structure of the follicle stimulating hormone (FSH) receptor using affinity labeling methods. A low density fraction derived from homogenates of bovine testis was found to contain high affinity and low capacity receptors specific for FSH. Electron microscopic examination of the fraction revealed structure resembling multilamellar membranous vesicles (MV). For photoaffinity labeling of the FSH receptors in MV, an azidobenzoyl-/sup 125/I-analog of human FSH was prepared (/sup 125/I-AB-hFSH) and binding of specific FSH receptors was studied. /sup 125/I-AB-hFSH binding of receptors was inhibited in a dose dependent manner by unlabeled hFSH, and binding was not prevented by structurally-related human chorionic gonadotropin (hCG). The formation of photocrosslinked protein of relative molecular mass (M/sub r/) 54,000, 64,000, 76,000, 84,000, 97,000 and 116,000 was found to be inhibited by unlabeled hFSH in a dose related manner, and to be dependent on photoactivation of the FSH derivative. The interpretation of the photoaffinity labeling experiments was that three proteins associated with the FSH receptor were photoaffinity labeled. Analysis by indirect means suggested that the three proteins were assembled to form oligomeric complexes, and based on the intensities and composition of the oligomeric species, spatial relationships of the polypeptides with respect to each other on the membrane surface were deduced. The results of photoaffinity labeling suggest the FSH receptor is composed of three subunits of M/sub r/ 38,000, 48,000, and 81,000 and exists in the membrane in part as a M/sub r/ 330,000 dimer.

  14. Preselection Thymocytes Are More Sensitive to T Cell Receptor Stimulation Than Mature T Cells

    PubMed Central

    Davey, Gayle M.; Schober, Sonya L.; Endrizzi, Bart T.; Dutcher, Angela K.; Jameson, Stephen C.; Hogquist, Kristin A.

    1998-01-01

    During T cell development, thymocytes which are tolerant to self-peptides but reactive to foreign peptides are selected. The current model for thymocyte selection proposes that self-peptide–major histocompatibility complex (MHC) complexes that bind the T cell receptor with low affinity will promote positive selection while those with high affinity will result in negative selection. Upon thymocyte maturation, such low affinity self-peptide–MHC ligands no longer provoke a response, but foreign peptides can incidentally be high affinity ligands and can therefore stimulate T cells. For this model to work, thymocytes must be more sensitive to ligand than mature T cells. Contrary to this expectation, several groups have shown that thymocytes are less responsive than mature T cells to anti-T cell receptor for antigen (TCR)/CD3 mAb stimulation. Additionally, the lower TCR levels on thymocytes, compared with T cells, would potentially correlate with decreased thymocyte sensitivity. Here we compared preselection thymocytes and mature T cells for early activation events in response to peptide–MHC ligands. Remarkably, the preselection thymocytes were more responsive than mature T cells when stimulated with low affinity peptide variants, while both populations responded equally well to the antigenic peptide. This directly demonstrates the increased sensitivity of thymocytes compared with T cells for TCR engagement by peptide–MHC complexes. PMID:9815264

  15. Thrombin stimulates fibroblast procollagen production via proteolytic activation of protease-activated receptor 1.

    PubMed Central

    Chambers, R C; Dabbagh, K; McAnulty, R J; Gray, A J; Blanc-Brude, O P; Laurent, G J

    1998-01-01

    Thrombin is a multifunctional serine protease that has a crucial role in blood coagulation. It is also a potent mesenchymal cell mitogen and chemoattractant and might therefore have an important role in the recruitment and local proliferation of mesenchymal cells at sites of tissue injury. We hypothesized that thrombin might also affect the deposition of connective tissue proteins at these sites by directly stimulating fibroblast procollagen production. To address this hypothesis, the effect of thrombin on procollagen production and gene expression by human foetal lung fibroblasts was assessed over 48 h. Thrombin stimulated procollagen production at concentrations of 1 nM and above, with maximal increases of between 60% and 117% at 10 nM thrombin. These effects of thrombin were, at least in part, due to increased steady-state levels of alpha1(I) procollagen mRNA. They could furthermore be reproduced with thrombin receptor-activating peptides for the protease-activated receptor 1 (PAR-1) and were completely abolished when thrombin was rendered proteolytically inactive with the specific inhibitors d-Phe-Pro-ArgCH2Cl and hirudin, indicating that thrombin is mediating these effects via the proteolytic activation of PAR-1. These results suggest that thrombin might influence the deposition of connective tissue proteins during normal wound healing and the development of tissue fibrosis by stimulating fibroblast procollagen production. PMID:9639571

  16. Nonlinear relationship between alpha 1-adrenergic receptor occupancy and norepinephrine-stimulated calcium flux in cultured vascular smooth muscle cells

    SciTech Connect

    Colucci, W.S.; Brock, T.A.; Gimbrone, M.A. Jr.; Alexander, R.W.

    1985-05-01

    To determine the relationship between vascular alpha 1-adrenergic receptor occupancy and receptor-coupled calcium flux, the authors have studied (/sup 3/H)prazosin binding and l-norepinephrine-induced /sup 45/Ca efflux in cultured vascular smooth muscle cells isolated from the rabbit aorta. In a crude cellular homogenate, (/sup 3/H)prazosin bound to a single high affinity site, whereas l-norepinephrine (NE) binding was best described by a two-site model. NE-stimulated /sup 45/Ca efflux was concentration-dependent (EC/sup 50/ = 108 nM) and potently inhibited by prazosin (IC/sup 50/ = 0.15 nM). For the total receptor pool identified by (/sup 3/H)prazosin binding, the relationship between receptor occupancy by NE and NE-stimulated /sup 45/Ca efflux was markedly nonlinear, such that 50% of maximum NE-stimulated efflux occurred with occupancy of only approximately 7% of receptors. These two experimental approaches provide direct evidence for the presence in cultured rabbit aortic smooth muscle cells of a sizable pool of alpha 1-adrenergic receptors in excess of those needed for maximum NE-stimulated /sup 45/Ca efflux. This evidence of ''spare'' receptors, together with the finding of two affinity states of agonist binding, raises the possibility of functional heterogeneity of alpha 1-adrenergic receptors in this system.

  17. Hormone stimulation of androgen receptor mediates dynamic changes in DNA methylation patterns at regulatory elements

    PubMed Central

    Dhiman, Vineet K.; Attwood, Kristopher; Campbell, Moray J.; Smiraglia, Dominic J.

    2015-01-01

    DNA methylation is an epigenetic modification that contributes to stable gene silencing by interfering with the ability of transcriptional regulators to bind to DNA. Recent findings have revealed that hormone stimulation of certain nuclear receptors induces rapid, dynamic changes in DNA methylation patterns alongside transcriptional responses at a subset of target loci, over time. However, the ability of androgen receptor (AR) to dynamically regulate gene transcription is relatively under-studied and its role in the regulation of DNA methylation patterns remains to be elucidated. Here we demonstrate in normal prostate cells that hormone stimulated AR activity results in dynamic changes in the transcription rate and DNA methylation patterns at the AR target genes, TIPARP and SGK1. Time-resolved chromatin immunoprecipitation experiments on the SGK1 locus reveals dynamic recruitment of AR and RNA Polymerase II, as well as the recruitment of proteins involved in the DNA demethylation process, TET1 and TDG. Furthermore, the presence of DNA methylation at dynamic regions inhibits protein binding and transcriptional activity of SGK1. These findings establish AR activity as a contributing factor to the dynamic regulation of DNA methylation patterns at target genes in prostate biology and infer further complexity involved in nuclear receptor mediation of transcriptional regulation. PMID:26646795

  18. Wedelolactone induces growth of breast cancer cells by stimulation of estrogen receptor signalling.

    PubMed

    Nehybova, Tereza; Smarda, Jan; Daniel, Lukas; Brezovsky, Jan; Benes, Petr

    2015-08-01

    Wedelolactone, a plant coumestan, was shown to act as anti-cancer agent for breast and prostate carcinomas in vitro and in vivo targeting multiple cellular proteins including androgen receptors, 5-lipoxygenase and topoisomerase IIα. It is cytotoxic to breast, prostate, pituitary and myeloma cancer cell lines in vitro at μM concentrations. In this study, however, a novel biological activity of nM dose of wedelolactone was demonstrated. Wedelolactone acts as agonist of estrogen receptors (ER) α and β as demonstrated by transactivation of estrogen response element (ERE) in cells transiently expressing either ERα or ERβ and by molecular docking of this coumestan into ligand binding pocket of both ERα and ERβ. In breast cancer cells, wedelolactone stimulates growth of estrogen receptor-positive cells, expression of estrogen-responsive genes and activates rapid non-genomic estrogen signalling. All these effects can be inhibited by pretreatment with pure ER antagonist ICI 182,780 and they are not observed in ER-negative breast cancer cells. We conclude that wedelolactone acts as phytoestrogen in breast cancer cells by stimulating ER genomic and non-genomic signalling pathways. PMID:25934092

  19. A model for the stimulation of taste receptor cells by salt.

    PubMed Central

    DeSimone, J A; Price, S

    1976-01-01

    A taste cell mucosal surface is regarded as a planar region containing bound anionic sites and openings to ionic channels. It is assumed that the bulk aqueous properties of the exterior phase are not continuous with the surface but terminate at a plane near the surface. The region between the (Stern) plane and the membrane is regarded as having a lower dielectric constant than bulk water. This fact admits the possibility of ion pair formation between fixed sites and mobile cations. Mobile ion pairs entering the region may also bind to a fixed anionic site. Thus, it is assumed that mobile cations and ion pairs are potential determining species at the surface. Binding cations neutralizes surface charges, whereas binding mobile ion pairs does not. This competition accounts for the observed anion effect on stimulation of tast receptors by sodium salts. The potential profile is constructed by superimposing the phase boundary potentials with an ionic diffusion potential across the membrane. The model accounts for the anion effect on receptor potential, pH effects, the reversal of polarity when cells are treated with FeCl3, and the so-called "water reponse," depolarization of the taste cell upon dilution of the stimulant solution below a critical lower limit. The proposed model does not require both bound cationic and anionic receptors, and further suggests that limited access to a Stern-like region continuous with membrane channels may generally serve to control transport of ions. PMID:938727

  20. Immunoglobulin-like domain containing receptor 1 mediates fat-stimulated cholecystokinin secretion.

    PubMed

    Chandra, Rashmi; Wang, Yu; Shahid, Rafiq A; Vigna, Steven R; Freedman, Neil J; Liddle, Rodger A

    2013-08-01

    Cholecystokinin (CCK) is a satiety hormone produced by discrete enteroendocrine cells scattered among absorptive cells of the small intestine. CCK is released into blood following a meal; however, the mechanisms inducing hormone secretion are largely unknown. Ingested fat is the major stimulant of CCK secretion. We recently identified a novel member of the lipoprotein remnant receptor family known as immunoglobulin-like domain containing receptor 1 (ILDR1) in intestinal CCK cells and postulated that this receptor conveyed the signal for fat-stimulated CCK secretion. In the intestine, ILDR1 is expressed exclusively in CCK cells. Orogastric administration of fatty acids elevated blood levels of CCK in wild-type mice but not Ildr1-deficient mice, although the CCK secretory response to trypsin inhibitor was retained. The uptake of fluorescently labeled lipoproteins in ILDR1-transfected CHO cells and release of CCK from isolated intestinal cells required a unique combination of fatty acid plus HDL. CCK secretion secondary to ILDR1 activation was associated with increased [Ca2+]i, consistent with regulated hormone release. These findings demonstrate that ILDR1 regulates CCK release through a mechanism dependent on fatty acids and lipoproteins and that absorbed fatty acids regulate gastrointestinal hormone secretion. PMID:23863714

  1. Interaction of the Clostridium difficile Binary Toxin CDT and Its Host Cell Receptor, Lipolysis-stimulated Lipoprotein Receptor (LSR)*

    PubMed Central

    Hemmasi, Sarah; Czulkies, Bernd A.; Schorch, Björn; Veit, Antonia; Aktories, Klaus; Papatheodorou, Panagiotis

    2015-01-01

    CDT (Clostridium difficile transferase) is a binary, actin ADP-ribosylating toxin frequently associated with hypervirulent strains of the human enteric pathogen C. difficile, the most serious cause of antibiotic-associated diarrhea and pseudomembranous colitis. CDT leads to the collapse of the actin cytoskeleton and, eventually, to cell death. Low doses of CDT result in the formation of microtubule-based protrusions on the cell surface that increase the adherence and colonization of C. difficile. The lipolysis-stimulated lipoprotein receptor (LSR) is the host cell receptor for CDT, and our aim was to gain a deeper insight into the interplay between both proteins. We show that CDT interacts with the extracellular, Ig-like domain of LSR with an affinity in the nanomolar range. We identified LSR splice variants in the colon carcinoma cell line HCT116 and disrupted the LSR gene in these cells by applying the CRISPR-Cas9 technology. LSR truncations ectopically expressed in LSR knock-out cells indicated that intracellular parts of LSR are not essential for plasma membrane targeting of the receptor and cellular uptake of CDT. By generating a series of N- and C-terminal truncations of the binding component of CDT (CDTb), we found that amino acids 757–866 of CDTb are sufficient for binding to LSR. With a transposon-based, random mutagenesis approach, we identified potential LSR-interacting epitopes in CDTb. This study increases our understanding about the interaction between CDT and its receptor LSR, which is key to the development of anti-toxin strategies for preventing cell entry of the toxin. PMID:25882847

  2. Vasopressin receptors in the brain, liver and kidney of rats following osmotic stimulation.

    PubMed

    Landgraf, R; Szot, P; Dorsa, D M

    1991-03-29

    The binding site concentration (Bmax) and equilibrium dissociation constant (Kd) for [3H]-arginine vasopressin (AVP) binding sites were measured in limbic brain areas (septum, dorsal hippocampus, amygdala) and liver and kidney of control and osmotically stimulated male Wistar rats. Membrane binding was performed in these five areas 30, 60 and 180 min following intraperitoneal injection of hypertonic saline. This paradigm resulted in no significant change in binding characteristics in the septum, dorsal hippocampus, amygdala and liver from control treated rats. In contrast, the kidney Bmax was significantly reduced 60 min following osmotic stimulation, with no effect on affinity. These results also suggest that AVP receptors in the CNS are relatively resistant to regulatory effects of an acute AVP exposure. PMID:1828184

  3. Serotonergic receptor mechanisms underlying antidepressant-like action in the progesterone withdrawal model of hormonally induced depression in rats.

    PubMed

    Li, Yan; Raaby, Kasper F; Sánchez, Connie; Gulinello, Maria

    2013-11-01

    Hormonally induced mood disorders such as premenstrual dysphoric disorder (PMDD) are characterized by a range of physical and affective symptoms including anxiety, irritability, anhedonia, social withdrawal and depression. Studies demonstrated rodent models of progesterone withdrawal (PWD) have a high level of constructive and descriptive validity to model hormonally-induced mood disorders in women. Here we evaluate the effects of several classes of antidepressants in PWD female Long-Evans rats using the forced swim test (FST) as a measure of antidepressant activity. The study included fluoxetine, duloxetine, amitriptyline and an investigational multimodal antidepressant, vortioxetine (5-HT(3), 5-HT(7) and 5-HT(1D) receptor antagonist; 5-HT(1B) receptor partial agonist; 5-HT(1A) receptor agonist; inhibitor of the serotonin transporter (SERT)). After 14 days of administration, amitriptyline and vortioxetine significantly reduced immobility in the FST whereas fluoxetine and duloxetine were ineffective. After 3 injections over 48 h, neither fluoxetine nor duloxetine reduced immobility, whereas amitriptyline and vortioxetine significantly reduced FST immobility during PWD. When administered acutely during PWD, the 5-HT(1A) receptor agonist, flesinoxan, significantly reduced immobility, whereas the 5-HT(1A) receptor antagonist, WAY-100635, increased immobility. The 5-HT(3) receptor antagonist, ondansetron, significantly reduced immobility, whereas the 5-HT(3) receptor agonist, SR-57227, increased immobility. The 5-HT(7) receptor antagonist, SB-269970, was inactive, although the 5-HT(7) receptor agonist, AS-19, significantly increased PWD-induced immobility. None of the compounds investigated (ondansetron, flesinoxan and SB-269970) improved the effect of fluoxetine during PWD. These data indicate that modulation of specific 5-HT receptor subtypes is critical for manipulating FST immobility in this model of hormone-induced depression. PMID:24016840

  4. Caloric restriction stimulates autophagy in rat cortical neurons through neuropeptide Y and ghrelin receptors activation.

    PubMed

    Ferreira-Marques, Marisa; Aveleira, Célia A; Carmo-Silva, Sara; Botelho, Mariana; Pereira de Almeida, Luís; Cavadas, Cláudia

    2016-07-01

    Caloric restriction is an anti-aging intervention known to extend lifespan in several experimental models, at least in part, by stimulating autophagy. Caloric restriction increases neuropeptide Y (NPY) in the hypothalamus and plasma ghrelin, a peripheral gut hormone that acts in hypothalamus to modulate energy homeostasis. NPY and ghrelin have been shown to be neuroprotective in different brain areas and to induce several physiological modifications similar to those induced by caloric restriction. However, the effect of NPY and ghrelin in autophagy in cortical neurons is currently not known. Using a cell culture of rat cortical neurons we investigate the involvement of NPY and ghrelin in caloric restriction-induced autophagy. We observed that a caloric restriction mimetic cell culture medium stimulates autophagy in rat cortical neurons and NPY or ghrelin receptor antagonists blocked this effect. On the other hand, exogenous NPY or ghrelin stimulate autophagy in rat cortical neurons. Moreover, NPY mediates the stimulatory effect of ghrelin on autophagy in rat cortical neurons. Since autophagy impairment occurs in aging and age-related neurodegenerative diseases, NPY and ghrelin synergistic effect on autophagy stimulation may suggest a new strategy to delay aging process. PMID:27441412

  5. Leptospiral lipopolysaccharide stimulates the expression of toll-like receptor 2 and cytokines in pig fibroblasts.

    PubMed

    Guo, Yijie; Fukuda, Tomokazu; Donai, Kenichiro; Kuroda, Kengo; Masuda, Mizuki; Nakamura, Shuichi; Yoneyama, Hiroshi; Isogai, Emiko

    2015-02-01

    Pigs throughout the world are afflicted with leptospirosis, causing serious economic losses and potential hazards to human health. Although it has been known that leptospiral lipopolysaccharide (L-LPS) is involved in an immunological reaction between an antigen and a host cell, little is known about how the immune system of pigs can respond to L-LPS. Here, we stimulated pig fibroblasts by L-LPS and then quantitatively measured gene and protein expression levels of two toll-like receptors (TLRs), TLR2 and TLR4, by real-time PCR and Western blotting. As a result, expression of TLR2 was found to be significantly up-regulated within 24 h after L-LPS stimulation whereas induction of TLR4 expression was relatively weak. We also revealed that of myeloid differentiation primary response gene 88 (MyD88), interleukin 6 (IL-6) and IL-8 gene expressions were markedly up-regulated by L-LPS stimulation. These results may suggest that the pig cell can activate TLR2 rather than TLR4 by L-LPS stimulation, thereby inducing expression of cytokines. PMID:25039909

  6. Caloric restriction stimulates autophagy in rat cortical neurons through neuropeptide Y and ghrelin receptors activation

    PubMed Central

    Carmo-Silva, Sara; Botelho, Mariana; de Almeida, Luís Pereira; Cavadas, Cláudia

    2016-01-01

    Caloric restriction is an anti-aging intervention known to extend lifespan in several experimental models, at least in part, by stimulating autophagy. Caloric restriction increases neuropeptide Y (NPY) in the hypothalamus and plasma ghrelin, a peripheral gut hormone that acts in hypothalamus to modulate energy homeostasis. NPY and ghrelin have been shown to be neuroprotective in different brain areas and to induce several physiological modifications similar to those induced by caloric restriction. However, the effect of NPY and ghrelin in autophagy in cortical neurons is currently not known. Using a cell culture of rat cortical neurons we investigate the involvement of NPY and ghrelin in caloric restriction-induced autophagy. We observed that a caloric restriction mimetic cell culture medium stimulates autophagy in rat cortical neurons and NPY or ghrelin receptor antagonists blocked this effect. On the other hand, exogenous NPY or ghrelin stimulate autophagy in rat cortical neurons. Moreover, NPY mediates the stimulatory effect of ghrelin on autophagy in rat cortical neurons. Since autophagy impairment occurs in aging and age-related neurodegenerative diseases, NPY and ghrelin synergistic effect on autophagy stimulation may suggest a new strategy to delay aging process. PMID:27441412

  7. Functional interaction between mutations in the granulocyte colony-stimulating factor receptor in severe congenital neutropenia.

    PubMed

    Ward, Alister C; Gits, Judith; Majeed, Fidel; Aprikyan, Andrew A; Lewis, Rowena S; O'Sullivan, Lynda A; Freedman, Melvin; Shigdar, Sarah; Touw, Ivo P; Dale, David C; Dror, Yigal

    2008-08-01

    Most severe congenital neutropenia (SCN) cases possess constitutive neutrophil elastase mutations; a smaller cohort has acquired mutations truncating the granulocyte colony-stimulating factor receptor (G-CSF-R). We have described a case with constitutive extracellular G-CSF-R mutation hyporesponsive to ligand. Here we report two independent acquired G-CSF-R truncation mutations and a novel constitutive neutrophil elastase mutation in this patient. Co-expression of a truncated receptor chain restored STAT5 signalling responses of the extracellular G-CSF-R mutant, while constitutively-active STAT5 enhanced its proliferative capacity. These data add to our knowledge of SCN and further highlight the importance of STAT5 in mediating proliferative responses to G-CSF. PMID:18513286

  8. Stimulation of peripheral cholinergic nerves by glutamate indicates a new peripheral glutamate receptor.

    PubMed

    Aas, P; Tansø, R; Fonnum, F

    1989-05-01

    The bronchial smooth muscle of the rat was examined for contractile responses to excitatory amino acids. The nerve-mediated contraction induced by electrical field stimulation was enhanced by exogenous L-glutamate (L-Glu). The apparent affinity (ED50) of L-Glu was 3.5 +/- 0.1 mM. Both tetrodotoxin and hemicholinium-3 completely abolished the electrical field-induced contraction and therefore the potentiation by L-Glu, which indicates that L-Glu has a prejunctional effect. Concentrations of L-Glu higher than 22 mM inhibited the electrical field-induced contractions and enhanced the tonus of the smooth muscle by postjunctional stimulation. The ED50 of exogenous ACh was not altered by L-Glu. High concentrations (62 mM) of L-Glu increased the intrinsic activity (alpha) of ACh, indicating a postjunctional potentiation of ACh-induced contractions. L-Glu did not inhibit the activity of acetylcholinesterase, therefore the postjunctional potentiation was not due to ACh accumulation. Inhibition of the electrical field-induced contraction was seen with high concentrations of D-Glu, L-aspartate (L-Asp), L-alpha-amino adipate and ibotenate. Neither glutamate diethyl ester nor 2-amino-5-phosphonovalerate had any inhibitory effects on the L-Glu- and L-Asp-induced alterations of the electrical field-stimulated contraction or on the L-Glu-enhanced tonus of the bronchial smooth muscle. Kainate, N-methyl-D-aspartate, quisqualate and N-acetyl-aspartyl-glutamate had only minor transient potentiating effects on the electrical field-induced contraction. The results provide evidence for a L-Glu receptor in rat bronchi that has a different specificity for glutamate agonists and antagonists than the L-Glu receptor described in the CNS. The receptor seems to be located prejunctionally and enhances nerve-mediated responses and thereby stimulates the bronchial smooth muscle to contract. The possible involvement of this type of receptor in the 'Chinese restaurant syndrome' is discussed. PMID

  9. The prolactin receptor mediates HOXA1-stimulated oncogenicity in mammary carcinoma cells.

    PubMed

    Hou, Lin; Xu, Bing; Mohankumar, Kumarasamypet M; Goffin, Vincent; Perry, Jo K; Lobie, Peter E; Liu, Dong-Xu

    2012-12-01

    The HOX genes are a highly conserved subgroup of homeodomain-containing transcription factors that are crucial to normal development. Forced expression of HOXA1 results in oncogenic transformation of immortalized human mammary cells with aggressive tumour formation in vivo. Microarray analysis identified that the prolactin receptor (PRLR) was significantly upregulated by forced expression of HOXA1 in mammary carcinoma cells. To determine prolactin (PRL) involvement in HOXA1‑induced oncogenicity in mammary carcinoma cells (MCF-7), we examined the effect of human prolactin (hPRL)-initiated PRLR signal transduction on changes in cellular behaviour mediated by HOXA1. Forced expression of HOXA1 in MCF-7 cells increased PRLR mRNA and protein expression. Forced expression of HOXA1 also enhanced hPRL-stimulated phosphorylation of both STAT5A/B and p44/42 MAPK, and increased subsequent transcriptional activity of STAT5A and STAT5B, and Elk-1 and Sap1a, respectively. Moreover, forced expression of HOXA1 in MCF-7 cells enhanced the hPRL‑stimulated increase in total cell number as a consequence of enhanced cell proliferation and cell survival, and also enhanced hPRL-stimulated anchorage-independent growth in soft agar. Increased anchorage-independent growth was attenuated by the PRLR antagonist ∆1-9-G129R‑hPRL. In conclusion, we have demonstrated that HOXA1 increases expression of the cell surface receptor PRLR and enhances PRLR-mediated signal transduction. Thus, the PRLR is one mediator of HOXA1‑stimulated oncogenicity in mammary carcinoma cells. PMID:23064471

  10. Extracellular Nucleotides Inhibit Insulin Receptor Signaling, Stimulate Autophagy and Control Lipoprotein Secretion

    PubMed Central

    Chatterjee, Cynthia; Sparks, Daniel L.

    2012-01-01

    Hyperglycemia is associated with abnormal plasma lipoprotein metabolism and with an elevation in circulating nucleotide levels. We evaluated how extracellular nucleotides may act to perturb hepatic lipoprotein secretion. Adenosine diphosphate (ADP) (>10 µM) acts like a proteasomal inhibitor to stimulate apoB100 secretion and inhibit apoA-I secretion from human liver cells at 4 h and 24 h. ADP blocks apoA-I secretion by stimulating autophagy. The nucleotide increases cellular levels of the autophagosome marker, LC3-II, and increases co-localization of LC3 with apoA-I in punctate autophagosomes. ADP affects autophagy and apoA-I secretion through P2Y13. Overexpression of P2Y13 increases cellular LC3-II levels by ∼50% and blocks induction of apoA-I secretion. Conversely, a siRNA-induced reduction in P2Y13 protein expression of 50% causes a similar reduction in cellular LC3-II levels and a 3-fold stimulation in apoA-I secretion. P2Y13 gene silencing blocks the effects of ADP on autophagy and apoA-I secretion. A reduction in P2Y13 expression suppresses ERK1/2 phosphorylation, increases the phosphorylation of IR-β and protein kinase B (Akt) >3-fold, and blocks the inhibition of Akt phosphorylation by TNFα and ADP. Conversely, increasing P2Y13 expression significantly inhibits insulin-induced phosphorylation of insulin receptor (IR-β) and Akt, similar to that observed after treatment with ADP. Nucleotides therefore act through P2Y13, ERK1/2 and insulin receptor signaling to stimulate autophagy and affect hepatic lipoprotein secretion. PMID:22590634

  11. A selective TSH receptor antagonist inhibits stimulation of thyroid function in female mice.

    PubMed

    Neumann, Susanne; Nir, Eshel A; Eliseeva, Elena; Huang, Wenwei; Marugan, Juan; Xiao, Jingbo; Dulcey, Andrés E; Gershengorn, Marvin C

    2014-01-01

    Because the TSH receptor (TSHR) plays an important role in the pathogenesis of thyroid disease, a TSHR antagonist could be a novel treatment. We attempted to develop a small molecule, drug-like antagonist of TSHR signaling that is selective and active in vivo. We synthesized NCGC00242364 (ANTAG3) by chemical modification of a previously reported TSHR antagonist. We tested its potency, efficacy, and selectivity in a model cell system in vitro by measuring its activity to inhibit stimulation of cAMP production stimulated by TSH, LH, or FSH. We tested the in vivo activity of ANTAG3 by measuring its effects to lower serum free T4 and thyroid gene expression in female BALB/c mice continuously treated with ANTAG3 for 3 days and given low doses of TRH continuously or stimulated by a single administration of a monoclonal thyroid-stimulating antibody M22. ANTAG3 was selective for TSHR inhibition; half-maximal inhibitory doses were 2.1 μM for TSHR and greater than 30 μM for LH and FSH receptors. In mice treated with TRH, ANTAG3 lowered serum free T4 by 44% and lowered mRNAs for sodium-iodide cotransporter and thyroperoxidase by 75% and 83%, respectively. In mice given M22, ANTAG3 lowered serum free T4 by 38% and lowered mRNAs for sodium-iodide cotransporter and thyroperoxidase by 73% and 40%, respectively. In conclusion, we developed a selective TSHR antagonist that is effective in vivo in mice. This is the first report of a small-molecule TSHR antagonist active in vivo and may lead to a drug to treat Graves' disease. PMID:24169564

  12. Misfolding Ectodomain Mutations of the Lutropin Receptor Increase Efficacy of Hormone Stimulation.

    PubMed

    Charmandari, E; Guan, R; Zhang, M; Silveira, L G; Fan, Q R; Chrousos, G P; Sertedaki, A C; Latronico, A C; Segaloff, D L

    2016-01-01

    We demonstrate 2 novel mutations of the LHCGR, each homozygous, in a 46,XY patient with severe Leydig cell hypoplasia. One is a mutation in the signal peptide (p.Gln18_Leu19ins9; referred to here as SP) that results in an alteration of the coding sequence of the N terminus of the mature mutant receptor. The other mutation (p.G71R) is also within the ectodomain. Similar to many other inactivating mutations, the cell surface expression of recombinant human LHR(SP,G71R) is greatly reduced due to intracellular retention. However, we made the unusual discovery that the intrinsic efficacy for agonist-stimulated cAMP in the reduced numbers of receptors on the cell surface was greatly increased relative to the same low number of cell surface wild-type receptor. Remarkably, this appears to be a general attribute of misfolding mutations in the ectodomains, but not serpentine domains, of the gonadotropin receptors. These findings suggest that there must be a common, shared mechanism by which disparate mutations in the ectodomain that cause misfolding and therefore reduced cell surface expression concomitantly confer increased agonist efficacy to those receptor mutants on the cell surface. Our data further suggest that, due to their increased agonist efficacy, extremely small changes in cell surface expression of misfolded ectodomain mutants cause larger than expected alterations in the cellular response to agonist. Therefore, for inactivating LHCGR mutations causing ectodomain misfolding, the numbers of cell surface mutant receptors on fetal Leydig cells of 46,XY individuals exert a more exquisite effect on the relative severity of the clinical phenotypes than already appreciated. PMID:26554443

  13. PGE2 Signaling Through the EP4 Receptor on Fibroblasts Upregulates RANKL and Stimulates Osteolysis

    PubMed Central

    Tsutsumi, Ryosuke; Xie, Chao; Wei, Xiaochao; Zhang, Minjie; Zhang, Xinping; Flick, Lisa M.; Schwarz, Edward M.; O'Keefe, Regis J.

    2009-01-01

    Periprosthetic osteolysis is the most common cause of aseptic loosening in total joint arthroplasty. The role of inflammatory mediators such as prostaglandin E2 (PGE2) and osteoclast promoting factors including RANKL in the pathogenesis of osteolysis has been well characterized. However, the PGE2 receptor (EP1, EP2, or EP4), and cell type in which it is expressed, which is responsible for PGE2 induction of RANKL during wear debris–induced osteolysis, has yet to be elucidated. To address this, we used mice genetically deficient in these EP receptors to assess PGE2 and wear debris responses in vitro and in vivo. Wear debris–induced osteolysis and RANKL expression were observed at similar levels in WT, EP1−/−, and EP2−/− mice, indicating that these receptors do not mediate PGE2 signals in this process. A conditional knockout approach was used to eliminate EP4 expression in FSP1+ fibroblasts that are the predominant source of RANKL. In the absence of EP4, fibroblasts do not express RANKL after stimulation with particles or PGE2, nor do they exhibit high levels of osteoclasts and osteolysis. These results show that periprosthetic fibroblasts are important mediators of osteolysis through the expression of RANKL, which is induced after PGE2 signaling through the EP4 receptor. PMID:19419302

  14. Effects of serotonin 2A/1A receptor stimulation on social exclusion processing.

    PubMed

    Preller, Katrin H; Pokorny, Thomas; Hock, Andreas; Kraehenmann, Rainer; Stämpfli, Philipp; Seifritz, Erich; Scheidegger, Milan; Vollenweider, Franz X

    2016-05-01

    Social ties are crucial for physical and mental health. However, psychiatric patients frequently encounter social rejection. Moreover, an increased reactivity to social exclusion influences the development, progression, and treatment of various psychiatric disorders. Nevertheless, the neuromodulatory substrates of rejection experiences are largely unknown. The preferential serotonin (5-HT) 2A/1A receptor agonist, psilocybin (Psi), reduces the processing of negative stimuli, but whether 5-HT2A/1A receptor stimulation modulates the processing of negative social interactions remains unclear. Therefore, this double-blind, randomized, counterbalanced, cross-over study assessed the neural response to social exclusion after the acute administration of Psi (0.215 mg/kg) or placebo (Pla) in 21 healthy volunteers by using functional magnetic resonance imaging (fMRI) and resting-state magnetic resonance spectroscopy (MRS). Participants reported a reduced feeling of social exclusion after Psi vs. Pla administration, and the neural response to social exclusion was decreased in the dorsal anterior cingulate cortex (dACC) and the middle frontal gyrus, key regions for social pain processing. The reduced neural response in the dACC was significantly correlated with Psi-induced changes in self-processing and decreased aspartate (Asp) content. In conclusion, 5-HT2A/1A receptor stimulation with psilocybin seems to reduce social pain processing in association with changes in self-experience. These findings may be relevant to the normalization of negative social interaction processing in psychiatric disorders characterized by increased rejection sensitivity. The current results also emphasize the importance of 5-HT2A/1A receptor subtypes and the Asp system in the control of social functioning, and as prospective targets in the treatment of sociocognitive impairments in psychiatric illnesses. PMID:27091970

  15. Locomotor-activated neurons of the cat. II. Noradrenergic innervation and colocalization with NEα1a or NEα2b receptors in the thoraco-lumbar spinal cord

    PubMed Central

    Johnson, Dawn M. G.; Riesgo, Mirta I.; Pinzon, Alberto

    2011-01-01

    Norepinephrine (NE) is a strong modulator and/or activator of spinal locomotor networks. Thus noradrenergic fibers likely contact neurons involved in generating locomotion. The aim of the present study was to investigate the noradrenergic innervation of functionally related, locomotor-activated neurons within the thoraco-lumbar spinal cord. This was accomplished by immunohistochemical colocalization of noradrenergic fibers using dopamine-β-hydroxylase or NEα1A and NEα2B receptors with cells expressing the c-fos gene activity-dependent marker Fos. Experiments were performed on paralyzed, precollicular-postmamillary decerebrate cats, in which locomotion was induced by electrical stimulation of the mesencephalic locomotor region. The majority of Fos labeled neurons, especially abundant in laminae VII and VIII throughout the thoraco-lumbar (T13-L7) region of locomotor animals, showed close contacts with multiple noradrenergic boutons. A small percentage (10–40%) of Fos neurons in the T7-L7 segments showed colocalization with NEα1A receptors. In contrast, NEα2B receptor immunoreactivity was observed in 70–90% of Fos cells, with no obvious rostrocaudal gradient. In comparison with results obtained from our previous study on the same animals, a significantly smaller proportion of Fos labeled neurons were innervated by noradrenergic than serotonergic fibers, with significant differences observed for laminae VII and VIII in some segments. In lamina VII of the lumbar segments, the degree of monoaminergic receptor subtype/Fos colocalization examined statistically generally fell into the following order: NEα2B = 5-HT2A ≥ 5-HT7 = 5-HT1A > NEα1A. These results suggest that noradrenergic modulation of locomotion involves NEα1A/NEα2B receptors on noradrenergic-innervated locomotor-activated neurons within laminae VII and VIII of thoraco-lumbar segments. Further study of the functional role of these receptors in locomotion is warranted. PMID:21307324

  16. Protection against ventricular fibrillation via cholinergic receptor stimulation and the generation of nitric oxide

    PubMed Central

    Kalla, Manish; Chotalia, Minesh; Coughlan, Charles; Hao, Guoliang; Crabtree, Mark J.; Tomek, Jakub; Bub, Gil; Paterson, David J.

    2016-01-01

    Key points Animal studies suggest an anti‐fibrillatory action of the vagus nerve on the ventricle, although the exact mechanism is controversial.Using a Langendorff perfused rat heart, we show that the acetylcholine analogue carbamylcholine raises ventricular fibrillation threshold (VFT) and flattens the electrical restitution curve.The anti‐fibrillatory action of carbamylcholine was prevented by the nicotinic receptor antagonist mecamylamine, inhibitors of neuronal nitric oxide synthase (nNOS) and soluble guanylyl cyclase (sGC), and can be mimicked by the nitric oxide (NO) donor sodium nitroprusside.Carbamylcholine increased NO metabolite content in the coronary effluent and this was prevented by mecamylamine.The anti‐fibrillatory action of both carbamylcholine and sodium nitroprusside was ultimately dependent on muscarinic receptor stimulation as all effects were blocked by atropine.These data demonstrate a protective effect of carbamylcholine on VFT that depends upon both muscarinic and nicotinic receptor stimulation, where the generation of NO is likely to be via a neuronal nNOS–sGC dependent pathway. Abstract Implantable cardiac vagal nerve stimulators are a promising treatment for ventricular arrhythmia in patients with heart failure. Animal studies suggest the anti‐fibrillatory effect may be nitric oxide (NO) dependent, although the exact site of action is controversial. We investigated whether a stable analogue of acetylcholine could raise ventricular fibrillation threshold (VFT), and whether this was dependent on NO generation and/or muscarinic/nicotinic receptor stimulation. VFT was determined in Langendorff perfused rat hearts by burst pacing until sustained VF was induced. Carbamylcholine (CCh, 200 nmol l–1, n = 9) significantly (P < 0.05) reduced heart rate from 292 ± 8 to 224 ± 6 b.p.m. Independent of this heart rate change, CCh caused a significant increase in VFT (control 1.5 ± 0.3 mA, CCh 2.4 ± 0.4 mA, wash 1.1

  17. The human D2 dopamine receptor synergizes with the A2A adenosine receptor to stimulate adenylyl cyclase in PC12 cells.

    PubMed

    Kudlacek, Oliver; Just, Herwig; Korkhov, Vladimir M; Vartian, Nina; Klinger, Markus; Pankevych, Halyna; Yang, Qiong; Nanoff, Christian; Freissmuth, Michael; Boehm, Stefan

    2003-07-01

    The adenosine A(2A) receptor and the dopamine D(2) receptor are prototypically coupled to G(s) and G(i)/G(o), respectively. In striatal intermediate spiny neurons, these receptors are colocalized in dendritic spines and act as mutual antagonists. This antagonism has been proposed to occur at the level of the receptors or of receptor-G protein coupling. We tested this model in PC12 cells which endogenously express A(2A) receptors. The human D(2) receptor was introduced into PC12 cells by stable transfection. A(2A)-agonist-mediated inhibition of D(2) agonist binding was absent in PC12 cell membranes but present in HEK293 cells transfected as a control. However, in the resulting PC12 cell lines, the action of the D(2) agonist quinpirole depended on the expression level of the D(2) receptor: at low and high receptor levels, the A(2A)-agonist-induced elevation of cAMP was enhanced and inhibited, respectively. Forskolin-stimulated cAMP formation was invariably inhibited by quinpirole. The effects of quinpirole were abolished by pretreatment with pertussis toxin. A(2A)-receptor-mediated cAMP formation was inhibited by other G(i)/G(o)-coupled receptors that were either endogenously present (P(2y12)-like receptor for ADP) or stably expressed after transfection (A(1) adenosine, metabotropic glutamate receptor-7A). Similarly, voltage activated Ca(2+) channels were inhibited by the endogenous P(2Y) receptor and by the heterologously expressed A(1) receptor but not by the D(2) receptor. These data indicate functional segregation of signaling components. Our observations are thus compatible with the proposed model that D(2) and A(2A) receptors are closely associated, but they highlight the fact that this interaction can also support synergism. PMID:12784121

  18. 5-HT1D receptor inhibits renal sympathetic neurotransmission by nitric oxide pathway in anesthetized rats.

    PubMed

    García-Pedraza, José-Ángel; García, Mónica; Martín, María-Luisa; Morán, Asunción

    2015-09-01

    Although serotonin has been shown to inhibit peripheral sympathetic outflow, serotonin regulation on renal sympathetic outflow has not yet been elucidated. This study investigated which 5-HT receptor subtypes are involved. Wistar rats were anesthetized (sodium pentobarbital; 60mg/kg, i.p.), and prepared for in situ autoperfused rat kidney, which allows continuous measurement of systemic blood pressure (SBP), heart rate (HR) and renal perfusion pressure (PP). Electrical stimulation of renal sympathetic nerves resulted in frequency-dependent increases in PP (18.3±1.0, 43.7±2.7 and 66.7±4.0 for 2, 4 and 6Hz, respectively), without altering SBP or HR. 5-HT, 5-carboxamidotryptamine (5-HT1/7 agonist) (0.00000125-0.1μg/kg each) or l-694,247 (5-HT1D agonist; 0.0125μg/kg) i.a. bolus inhibited vasopressor responses by renal nerve electrical stimulation, unlike i.a. bolus of agonists α-methyl-5-HT (5-HT2), 1-PBG (5-HT3), cisapride (5-HT4), AS-19 (5-HT7), CGS-12066B (5-HT1B) or 8-OH-DPAT (5-HT1A) (0.0125μg/kg each). The effect of l-694,247 did not affect the exogenous norepinephrine-induced vasoconstrictions, whereas was abolished by antagonist LY310762 (5-HT1D; 1mg/kg) or l-NAME (nitric oxide; 10mg/kg), but not by indomethacin (COX1/2; 2mg/kg) or glibenclamide (ATP-dependent K(+) channel; 20mg/kg). These results suggest that 5-HT mechanism-induced inhibition of rat vasopressor renal sympathetic outflow is mainly mediated by prejunctional 5-HT1D receptors via nitric oxide release. PMID:26003124

  19. Intrathecal 5-methoxy-N,N-dimethyltryptamine in mice modulates 5-HT1 and 5-HT3 receptors.

    PubMed

    Alhaider, A A; Hamon, M; Wilcox, G L

    1993-11-01

    The antinociceptive effects of intrathecally administered 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT), a potent 5-HT receptor agonist, were studied in three behavioral tests in mice: the tail-flick test and the intrathecal substance P and N-methyl-D-aspartic acid (NMDA) assays. Intrathecal administration of 5-MeO-DMT (4.6-92 nmol/mouse) produced a significant prolongation of the tail-flick latency. This action was blocked by 5-HT3 and gamma-aminobutyric acidA (GABAA) receptor antagonists but not by 5-HT2, 5-HT1A, 5-HT1B or 5-HT1S receptor antagonists. Binding studies indicated that 5-MeO-DMT had very low affinity for 5-HT3 receptors. 5-MeO-DMT inhibited biting behavior while increasing scratching behavior induced by intrathecally administered substance P. The inhibition of biting behavior was antagonized by intrathecal co-administration of 5-HT1B and GABAA receptor antagonists while 5-HT1A, 5-HT1S, 5-HT2 and 5-HT3 receptor antagonists had no effect. 5-MeO-DMT-enhanced scratching behavior was inhibited by all the antagonists used except ketanserin and bicuculline, suggesting the involvement of 5-HT1A, 5-HT1B, 5-HT1S, 5-HT3 and GABAA receptors. NMDA-induced biting behavior was inhibited by 5-MeO-DMT pretreatment; this action was antagonized by 5-HT1B, 5-HT3 and GABAA receptor antagonists. The involvement of these receptors in 5-MeO-DMT action suggests that it may promote release of 5-HT (5-hydroxytryptamine, serotonin). PMID:7507056

  20. Androgen receptor and miRNA-126* axis controls follicle-stimulating hormone receptor expression in porcine ovarian granulosa cells.

    PubMed

    Du, Xing; Li, Qiqi; Pan, Zengxiang; Li, Qifa

    2016-08-01

    Androgen, which acts via the androgen receptor (AR), plays crucial roles in mammalian ovarian function. Recent studies showed that androgen/AR signaling regulates follicle-stimulating hormone receptor (FSHR) expression in follicles; however, the detailed mechanism underlying this regulation remained unknown. Here, we demonstrate that AR and miR-126* cooperate to inhibit FSHR expression and function in pig follicular granulosa cells (pGCs). In pGCs, overexpression of AR decreased, whereas knockdown increased, FSHR mRNA and protein expression; however, neither manipulation affected FSHR promoter activity. Using a dual-luciferase reporter assay, we found that the FSHR gene is a direct target of miR-126*, which inhibits FSHR expression and increases the rate of AR-induced apoptosis in pGCs. Collectively, our data show for the first time that the AR/miR-126* axis exerts synergetic effects in the regulation of FSHR expression and apoptosis in pGCs. Our findings thus define a novel pathway, AR/miR-126*/FSHR, that regulates mammalian GC functions. PMID:27222597

  1. Stimulation of Sigma-1 Receptor Ameliorates Depressive-like Behaviors in CaMKIV Null Mice.

    PubMed

    Moriguchi, Shigeki; Sakagami, Hiroyuki; Yabuki, Yasushi; Sasaki, Yuzuru; Izumi, Hisanao; Zhang, Chen; Han, Feng; Fukunaga, Kohji

    2015-12-01

    Sigma-1 receptor (Sig-1R) is a molecular chaperone regulating calcium efflux from the neuronal endoplasmic reticulum to the mitochondria. Calcium/calmodulin-dependent protein kinase IV (CaMKIV) null mice exhibit depressive-like behaviors and impaired neurogenesis as assessed by bromodeoxyuridine (BrdU) incorporation into newborn cells of the hippocampal dentate gyrus (DG). Here, we demonstrate that chronic stimulation of Sig-1R by treatment with the agonist SA4503 or the SSRI fluvoxamine for 14 days improves depressive-like behaviors in CaMKIV null mice. By contrast, treatment with paroxetine, which lacks affinity for Sig-1R, did not alter these behaviors. Reduced numbers of BrdU-positive cells and decreased brain-derived neurotrophic factor (BDNF) mRNA expression and protein kinase B (Akt; Ser-473) phosphorylation seen in the DG of CaMKIV null mice were significantly rescued by chronic Sig-1R stimulation. Interestingly, reduced ATP production observed in the DG of CaMKIV null mice was improved by chronic Sig-1R stimulation. Such stimulation also improved hippocampal long-term potentiation (LTP) induction and maintenance, which are impaired in the DG of CaMKIV null mice. LTP rescue was closely associated with both increases in calcium/calmodulin-dependent protein kinase II (CaMKII) autophosphorylation and GluA1 (Ser-831) phosphorylation. Taken together, Sig-1R stimulation by SA4503 or fluvoxamine treatment increased hippocampal neurogenesis, which is closely associated with amelioration of depressive-like behaviors in CaMKIV null mice. PMID:25316382

  2. Beta2-adrenergic receptor stimulation inhibits nitric oxide generation by Mycobacterium avium infected macrophages.

    PubMed

    Boomershine, C S; Lafuse, W P; Zwilling, B S

    1999-11-01

    Catecholamine regulation of nitric oxide (NO) production by IFNgamma-primed macrophages infected with Mycobacterium avium was investigated. Epinephrine treatment of IFNgamma-primed macrophages at the time of M. avium infection inhibited the anti-mycobacterial activity of the cells. The anti-mycobacterial activity of macrophages correlated with NO production. Using specific adrenergic receptor agonists, the abrogation of mycobacterial killing and decreased NO production by catecholamines was shown to be mediated via the beta2-adrenergic receptor. Elevation of intracellular cAMP levels mimicked the catecholamine-mediated inhibition of NO in both M. avium infected and LPS stimulated macrophages. Specific inhibitors of both adenylate cyclase and protein kinase A prevented the beta2-adrenoceptor-mediated inhibition of nitric oxide production. Beta2-adrenoreceptor stimulation at the time of M. avium infection of IFNgamma-primed macrophages also inhibited expression of iNOS mRNA. These observations show that catecholamine hormones can affect the outcome of macrophage-pathogen interactions and suggest that one result of sympathetic nervous system activation is the suppression of the capacity of macrophages to produce anti-microbial effector molecules. PMID:10580815

  3. Acute inhalation of ozone stimulates bronchial C-fibers and rapidly adapting receptors in dogs

    SciTech Connect

    Coleridge, J.C.G.; Coleridge, H.M.; Schelegle, E.S.; Green, J.F. Univ. of California, San Francisco )

    1993-05-01

    To identify the afferents responsible for initiating the vagally mediated respiratory changes evoked by acute exposure to ozone, the authors recorded vagal impulses in anesthetized, open-chest, artificially ventilated dogs and examined the pulmonary afferent response to ozone (2--3 ppM in air) delivered to the lower trachea for 20--60 min. Bronchial C-fibers (BrCs) were the lung afferents most susceptible to ozone, the activity of 10 of 11 BrCs increasing from 0.2 [+-] 0.2 to 4.6 [+-] 1.3 impulses/s within 1--7 min of ozone exposure. Ten of 15 rapidly adapting receptors (RARs) were stimulated by ozone, their activity increasing from 1.5 [+-] 0.4 to 4.7 [+-] 0.7 impulses/s. Stimulation of RARs (but not of BrCs) appeared secondary to the ozone-induced reduction of lung compliance because it was abolished by hyperinflation of the lungs. Ozone had little effect on pulmonary C-fibers or slowly adapting pulmonary stretch receptors. The authors' results suggest that both BrCs and RARs contribute to the tachypnea and bronchoconstriction evoked by acute exposure to ozone when vagal conduction is intact and that BrCs alone are responsible for the vagally mediated tachypnea that survives vagal cooling to 7[degrees]C. 23 refs., 5 figs.

  4. Profiles of Basal and stimulated receptor signaling networks predict drug response in breast cancer lines.

    PubMed

    Niepel, Mario; Hafner, Marc; Pace, Emily A; Chung, Mirra; Chai, Diana H; Zhou, Lili; Schoeberl, Birgit; Sorger, Peter K

    2013-09-24

    Identifying factors responsible for variation in drug response is essential for the effective use of targeted therapeutics. We profiled signaling pathway activity in a collection of breast cancer cell lines before and after stimulation with physiologically relevant ligands, which revealed the variability in network activity among cells of known genotype and molecular subtype. Despite the receptor-based classification of breast cancer subtypes, we found that the abundance and activity of signaling proteins in unstimulated cells (basal profile), as well as the activity of proteins in stimulated cells (signaling profile), varied within each subtype. Using a partial least-squares regression approach, we constructed models that significantly predicted sensitivity to 23 targeted therapeutics. For example, one model showed that the response to the growth factor receptor ligand heregulin effectively predicted the sensitivity of cells to drugs targeting the cell survival pathway mediated by PI3K (phosphoinositide 3-kinase) and Akt, whereas the abundance of Akt or the mutational status of the enzymes in the pathway did not. Thus, basal and signaling protein profiles may yield new biomarkers of drug sensitivity and enable the identification of appropriate therapies in cancers characterized by similar functional dysregulation of signaling networks. PMID:24065145

  5. Stimulation of olfactory receptors alters regulation of [Cai] in olfactory neurons of the catfish (Ictalurus punctatus).

    PubMed

    Restrepo, D; Boyle, A G

    1991-03-01

    Intracellular calcium was measured in single olfactory neurons from the channel catfish (Ictalurus punctatus) using the fluorescent Ca2+ indicator fura 2. In 5% of the cells, olfactory stimuli (amino acids) elicited an influx of calcium through the plasma membrane which led to a rapid transient increase in intracellular calcium concentration. Amino acids did not induce release of calcium from internal stores in these cells. Some cells responded specifically to one stimulus (L-alanine, L-arginine, L-norleucine and L-glutamate) while one cell responded to all stimuli. An increase in intracellular calcium could also be elicited in 50% of the cells by direct G-protein stimulation using aluminum fluoride. Because the fraction of cells which respond to direct G-protein stimulation is substantially larger than the fraction of cells responding to amino acids, we tested for possible damage of receptor proteins due to exposure of the olfactory neurons to papain during cell isolation. We find that pretreatment with papain does not alter specific binding of L-alanine and L-arginine to olfactory receptor sites in isolated olfactory cilia. The results are discussed in terms of their relevance to olfactory transduction. PMID:2051471

  6. Antagonizing the parathyroid calcium receptor stimulates parathyroid hormone secretion and bone formation in osteopenic rats.

    PubMed

    Gowen, M; Stroup, G B; Dodds, R A; James, I E; Votta, B J; Smith, B R; Bhatnagar, P K; Lago, A M; Callahan, J F; DelMar, E G; Miller, M A; Nemeth, E F; Fox, J

    2000-06-01

    Parathyroid hormone (PTH) is an effective bone anabolic agent, but it must be administered parenterally. An orally active anabolic agent would provide a valuable alternative for treating osteoporosis. NPS 2143 is a novel, selective antagonist (a "calcilytic") of the parathyroid cell Ca(2+) receptor. Daily oral administration of NPS 2143 to osteopenic ovariectomized (OVX) rats caused a sustained increase in plasma PTH levels, provoking a dramatic increase in bone turnover but no net change in bone mineral density. Concurrent oral administration of NPS 2143 and subcutaneous infusion of 17beta-estradiol also resulted in increased bone turnover. However, the antiresorptive action of estrogen decreased the extent of bone resorption stimulated by the elevated PTH levels, leading to an increase in bone mass compared with OVX controls or to either treatment alone. Despite the sustained stimulation to the parathyroid gland, parathyroid cells did not undergo hyperplasia. These data demonstrate that an increase in endogenous PTH secretion, induced by antagonism of the parathyroid cell Ca(2+) receptor with a small molecule, leads to a dramatic increase in bone turnover, and they suggest a novel approach to the treatment of osteoporosis. PMID:10841518

  7. Antagonizing the parathyroid calcium receptor stimulates parathyroid hormone secretion and bone formation in osteopenic rats

    PubMed Central

    Gowen, Maxine; Stroup, George B.; Dodds, Robert A.; James, Ian E.; Votta, Bart J.; Smith, Brian R.; Bhatnagar, Pradip K.; Lago, Amparo M.; Callahan, James F.; DelMar, Eric G.; Miller, Michael A.; Nemeth, Edward F.; Fox, John

    2000-01-01

    Parathyroid hormone (PTH) is an effective bone anabolic agent, but it must be administered parenterally. An orally active anabolic agent would provide a valuable alternative for treating osteoporosis. NPS 2143 is a novel, selective antagonist (a “calcilytic”) of the parathyroid cell Ca2+ receptor. Daily oral administration of NPS 2143 to osteopenic ovariectomized (OVX) rats caused a sustained increase in plasma PTH levels, provoking a dramatic increase in bone turnover but no net change in bone mineral density. Concurrent oral administration of NPS 2143 and subcutaneous infusion of 17β-estradiol also resulted in increased bone turnover. However, the antiresorptive action of estrogen decreased the extent of bone resorption stimulated by the elevated PTH levels, leading to an increase in bone mass compared with OVX controls or to either treatment alone. Despite the sustained stimulation to the parathyroid gland, parathyroid cells did not undergo hyperplasia. These data demonstrate that an increase in endogenous PTH secretion, induced by antagonism of the parathyroid cell Ca2+ receptor with a small molecule, leads to a dramatic increase in bone turnover, and they suggest a novel approach to the treatment of osteoporosis. PMID:10841518

  8. Rac-mediated Stimulation of Phospholipase Cγ2 Amplifies B Cell Receptor-induced Calcium Signaling.

    PubMed

    Walliser, Claudia; Tron, Kyrylo; Clauss, Karen; Gutman, Orit; Kobitski, Andrei Yu; Retlich, Michael; Schade, Anja; Röcker, Carlheinz; Henis, Yoav I; Nienhaus, G Ulrich; Gierschik, Peter

    2015-07-10

    The Rho GTPase Rac is crucially involved in controlling multiple B cell functions, including those regulated by the B cell receptor (BCR) through increased cytosolic Ca(2+). The underlying molecular mechanisms and their relevance to the functions of intact B cells have thus far remained unknown. We have previously shown that the activity of phospholipase Cγ2 (PLCγ2), a key constituent of the BCR signalosome, is stimulated by activated Rac through direct protein-protein interaction. Here, we use a Rac-resistant mutant of PLCγ2 to functionally reconstitute cultured PLCγ2-deficient DT40 B cells and to examine the effects of the Rac-PLCγ2 interaction on BCR-mediated changes of intracellular Ca(2+) and regulation of Ca(2+)-regulated and nuclear-factor-of-activated-T-cell-regulated gene transcription at the level of single, intact B cells. The results show that the functional Rac-PLCγ2 interaction causes marked increases in the following: (i) sensitivity of B cells to BCR ligation; (ii) BCR-mediated Ca(2+) release from intracellular stores; (iii) Ca(2+) entry from the extracellular compartment; and (iv) nuclear translocation of the Ca(2+)-regulated nuclear factor of activated T cells. Hence, Rac-mediated stimulation of PLCγ2 activity serves to amplify B cell receptor-induced Ca(2+) signaling. PMID:25903139

  9. Structural modifications of the serotonin 5-HT7 receptor agonist N-(4-cyanophenylmethyl)-4-(2-biphenyl)-1-piperazinehexanamide (LP-211) to improve in vitro microsomal stability: A case study.

    PubMed

    Lacivita, Enza; Podlewska, Sabina; Speranza, Luisa; Niso, Mauro; Satała, Grzegorz; Perrone, Roberto; Perrone-Capano, Carla; Bojarski, Andrzej J; Leopoldo, Marcello

    2016-09-14

    The 5-HT7 serotonin receptor is revealing a promising target for innovative therapeutic strategies of neurodevelopmental and neuropsychiatric disorders. Here, we report the synthesis of thirty long-chain arylpiperazine analogs of the selective and brain penetrant 5-HT7 receptor agonist LP-211 (1) designed to enhance stability towards microsomal oxidative metabolism. Commonly used medicinal chemistry strategies were used (i.e., reduction of overall lipophilicity, introduction of electron-withdrawing groups, blocking of potential vulnerable sites of metabolism), and in vitro microsomal stability was tested. The data showed that the adopted design strategy does not directly translate into improvements in stability. Instead, the metabolic stability of the compounds was related to the presence of specific substituents in well-defined regions of the molecule. The collected data allowed for the construction of a machine learning model that, in a given chemical space, is able to describe and quantitatively predict the metabolic stability of the compounds. The majority of the synthesized compounds maintained high affinity for 5-HT7 receptors and showed selectivity towards 5-HT6 and dopamine D2 receptors and different selectivity for 5-HT1A and α1 adrenergic receptors. Compound 50 showed 3-fold higher in vitro stability towards oxidative metabolism than 1 and was able to stimulate neurite outgrowth in neuronal primary cultures through the 5-HT7 receptor in a shorter time and at a lower concentration than the agonist 1. A preliminary disposition study in mice revealed that compound 50 was metabolically stable and was able to pass the blood-brain barrier, thus representing a new tool for studying the pharmacotherapeutic potential of 5-HT7 receptor in vivo. PMID:27318552

  10. Phencyclidine-induced social withdrawal results from deficient stimulation of cannabinoid CB₁ receptors: implications for schizophrenia.

    PubMed

    Seillier, Alexandre; Martinez, Alex A; Giuffrida, Andrea

    2013-08-01

    The neuronal mechanisms underlying social withdrawal, one of the core negative symptoms of schizophrenia, are not well understood. Recent studies suggest an involvement of the endocannabinoid system in the pathophysiology of schizophrenia and, in particular, of negative symptoms. We used biochemical, pharmacological, and behavioral approaches to investigate the role played by the endocannabinoid system in social withdrawal induced by sub-chronic administration of phencyclidine (PCP). Pharmacological enhancement of endocannabinoid levels via systemic administration of URB597, an inhibitor of endocannabinoid degradation, reversed social withdrawal in PCP-treated rats via stimulation of CB1 receptors, but reduced social interaction in control animals through activation of a cannabinoid/vanilloid-sensitive receptor. In addition, the potent CB agonist CP55,940 reversed PCP-induced social withdrawal in a CB₁-dependent manner, whereas pharmacological blockade of CB₁ receptors by either AM251 or SR141716 reduced the time spent in social interaction in control animals. PCP-induced social withdrawal was accompanied by a decrease of anandamide (AEA) levels in the amygdala and prefrontal cortex, and these deficits were reversed by URB597. As CB₁ receptors are predominantly expressed on GABAergic interneurons containing the anxiogenic peptide cholecystokinin (CCK), we also examined whether the PCP-induced social withdrawal resulted from deficient CB₁-mediated modulation of CCK transmission. The selective CCK2 antagonist LY225910 blocked both PCP- and AM251-induced social withdrawal, but not URB597 effect in control rats. Taken together, these findings indicate that AEA-mediated activation of CB₁ receptors is crucial for social interaction, and that PCP-induced social withdrawal results from deficient endocannabinoid transmission. PMID:23563893

  11. Association of follicle stimulating hormone receptor promoter with ovarian response in IVF-ET patients

    PubMed Central

    Dan, Wang; Jing, Gao; Liangbin, Xia; Ting, Zhang; Ying, Zeng

    2015-01-01

    Background: Poor ovarian response phenomenon has been observed in some of the in vitro fertilization-embryo transfer patients. Some investigations found that follicle stimulating hormone receptor (FSHR) gene plays a role in the process, but no direct evidence shows the correlation between genotypes of FSHR and ovarian response. Objective: Exploring the molecular mechanism behind the mutation of FSHR promoter association with ovarian granulosa cells and poor ovarian response. Materials and Methods: This cross sectional study was performed using 158 women undergoing the controlled short program ovarian stimulation for IVF treatment. The 263 bp DNA fragments before the follicle stimulating hormone (FSH) receptor 5' initiation site were sequenced in the patients under IVF cycle, 70 of which had poor ovarian response and 88 showed normal ovarian responses. Results: With a mutation rate of 40%, 63 in 158 cases showed a 29th site G→A point mutation; among the mutated cases, the mutation rate of the poor ovarian responders was significantly higher than the normal group (60% versus 23.9%; χ2=21.450, p<0.001). Besides, the variability was also obvious in antral follicle count, and ovum pick-ups. The estradiol peak values and the number of mature eggs between the two groups had significant difference. However, there was no obvious variability (t=0.457, p=0.324) in the basic FSH values between the two groups (normal group, 7.2±2.3 U/L; mutation group, 7.1±2.0 U/L). Conclusion: The activity of FSHR promoter is significantly affected by the 29th site G→A mutation that will weaken promoter activity and result in poor response to FSH. PMID:26730247

  12. Molecular characterization and quantification of the follicle-stimulating hormone receptor in turbot (Scophthalmus maximus).

    PubMed

    Jia, Yudong; Sun, Ai; Meng, Zhen; Liu, Baoliang; Lei, Jilin

    2016-02-01

    Molecular cloning, characterization, and functional analysis of follicle-stimulating hormone receptor (FSHR) in female turbot (Scophthalmus maximus) were evaluated. Results showed that the full-length FSHR cDNA was 3824 bp long and contained a 2202 bp open reading frame that encoded a mature protein of 733 amino acids (aa) and a signal peptide of 18 aa. Multiple sequence analyses showed that turbot FSHR has high homology with the corresponding genes of other teleosts and significant homology with that of Hippoglossus hippoglossus. Turbot FSHR has the typical structural architecture of glycoprotein hormone receptors consisting of a large N-terminal extracellular domain, seven transmembrane domains and short C-terminal intracellular domain. FSHR mRNA was found to be abundant in the ovaries, but deficient in eyes, intestine, brain, muscle, gills, spleen, stomach, heart and kidney. Furthermore, FSHR mRNA was found to increase gradually from pre-vitellogenesis to migratory nucleus stages, with the highest values observed during the late vitellogenesis stage of the reproductive cycle. However, FSHR mRNA was found to decrease dramatically during the atresia stage. Meanwhile, functional analysis with HEK293T cells continual expressing FSHR demonstrated that FSHR was specifically stimulated by ovine FSH, but not ovine LH. These results indicate that turbot FSHR is mainly involved in the stimulation of vitellogenesis, regulation of oocyte maturation as well as promotion of ovarian development via specific ligand binding. These findings open doors to further investigation of physiological functions of FSHR, which will be valuable for fish reproduction and broodstock management. PMID:26358315

  13. Activation of brain somatostatin2 receptors stimulates feeding in mice: analysis of food intake microstructure

    PubMed Central

    Stengel, Andreas; Goebel, Miriam; Wang, Lixin; Rivier, Jean; Kobelt, Peter; Mönnikes, Hubert; Taché, Yvette

    2010-01-01

    We recently reported that the oligosomatostatin receptor agonist, ODT8-SST increases food intake in rats via the somatostatin2 receptor (sst2). We characterized ingestive behavior following intracerebroventricular (icv) injection of a selective sst2 agonist in freely fed mice during the light phase. The sst2 agonist (0.01, 0.03, 0.1, 0.3 or 1µg/mouse) injected icv under short inhalation anesthesia dose-dependently increased cumulative light phase food intake over 4h compared to vehicle with a 3.1-times increase at 1µg/mouse (p<0.05). Likewise, the sst2,3,5 agonist octreotide (0.3 or 1µg/mouse) dose-dependently increased 4-h food intake, whereas selective sst1 or sst4 agonists at 1µg/mouse did not. In vehicle-treated mice, high fat diet increased caloric intake/4h by 2.8-times compared to regular diet (p<0.05) and values were further increased 1.4-times/4h by the sst2 agonist. Automated continuous assessment of food intake established a 6.6-times higher food intake during the dark phase due to increased number of meals, meal size, meal duration and rate of ingestion compared to non-treated mice during the light phase. During the first 4h post icv sst2 agonist injection, mice had a 57% increase in number of meals with a 60% higher rate of ingestion, and a 61% reduction in inter-meal intervals, whereas meal sizes were not altered compared to vehicle. These data indicate that activation of brain sst2 receptors potently stimulates ingestive behavior under basal or high fat diet-stimulated conditions in mice. The shortened inter-meal interval suggests an inhibitory effect of the sst2 agonist on “satiety”, whereas “satiation” is not altered as indicated by normal meal size. PMID:20851136

  14. Magnesium Sulfate Protects Against the Bioenergetic Consequences of Chronic Glutamate Receptor Stimulation

    PubMed Central

    Clerc, Pascaline; Young, Christina A.; Bordt, Evan A.; Grigore, Alina M.; Fiskum, Gary; Polster, Brian M.

    2013-01-01

    Extracellular glutamate is elevated following brain ischemia or trauma and contributes to neuronal injury. We tested the hypothesis that magnesium sulfate (MgSO4, 3 mM) protects against metabolic failure caused by excitotoxic glutamate exposure. Rat cortical neuron preparations treated in medium already containing a physiological concentration of Mg2+ (1 mM) could be segregated based on their response to glutamate (100 µM). Type I preparations responded with a decrease or small transient increase in oxygen consumption rate (OCR). Type II neurons responded with >50% stimulation in OCR, indicating a robust response to increased energy demand without immediate toxicity. Pre-treatment with MgSO4 improved the initial bioenergetic response to glutamate and ameliorated subsequent loss of spare respiratory capacity, measured following addition of the uncoupler FCCP, in Type I but not Type II neurons. Spare respiratory capacity in Type I neurons was also improved by incubation with MgSO4 or NMDA receptor antagonist MK801 in the absence of glutamate treatment. This finding indicates that the major difference between Type I and Type II preparations is the amount of endogenous glutamate receptor activity. Incubation of Type II neurons with 5 µM glutamate prior to excitotoxic (100 µM) glutamate exposure recapitulated a Type I phenotype. MgSO4 protected against an excitotoxic glutamate-induced drop in neuronal ATP both with and without prior 5 µM glutamate exposure. Results indicate that MgSO4 protects against chronic moderate glutamate receptor stimulation and preserves cellular ATP following treatment with excitotoxic glutamate. PMID:24236167

  15. Methylphenidate and μ opioid receptor interactions: A pharmacological target for prevention of stimulant abuse

    PubMed Central

    Zhu, Jinmin; Spencer, Thomas J.; Kachroo, Anil; Liu-Chen, Lee-Yuan; Biederman, Joseph; Bhide, Pradeep G.

    2011-01-01

    Methylphenidate (MPH) is one of the most commonly used and highly effective treatments for attention deficit hyperactivity disorder (ADHD) in children and adults. As the therapeutic use of MPH has increased, so has its abuse and illicit street-use. Yet, the mechanisms associated with development of MPH-associated abuse and dependence are not well understood making it difficult to develop methods to help its mitigation. As a result, many ADHD patients especially children and youth, that could benefit from MPH treatment do not receive it and risk life-long disabilities associated with untreated ADHD. Therefore, understanding the mechanisms associated with development of MPH addiction and designing methods to prevent it assume high public health significance. Using a mouse model we show that supra-therapeutic doses of MPH produce rewarding effects (surrogate measure for addiction in humans) in a conditioned place preference paradigm and upregulate μ opioid receptor (MOPR) activity in the striatum and nucleus accumbens, brain regions associated with reward circuitry. Co-administration of naltrexone, a non-selective opioid receptor antagonist, prevents MPH-induced MOPR activation and the rewarding effects. The MPH-induced MOPR activation and rewarding effect require activation of the dopamine D1 but not the D2 receptor. These findings identify the MOPR as a potential target for attenuating rewarding effects of MPH and suggest that a formulation that combines naltrexone with MPH could be a useful pharmaceutical approach to alleviate abuse potential of MPH and other stimulants. PMID:21545805

  16. Extranuclear Actions of the Androgen Receptor Enhance Glucose-Stimulated Insulin Secretion in the Male.

    PubMed

    Navarro, Guadalupe; Xu, Weiwei; Jacobson, David A; Wicksteed, Barton; Allard, Camille; Zhang, Guanyi; De Gendt, Karel; Kim, Sung Hoon; Wu, Hongju; Zhang, Haitao; Verhoeven, Guido; Katzenellenbogen, John A; Mauvais-Jarvis, Franck

    2016-05-10

    Although men with testosterone deficiency are at increased risk for type 2 diabetes (T2D), previous studies have ignored the role of testosterone and the androgen receptor (AR) in pancreatic β cells. We show that male mice lacking AR in β cells (βARKO) exhibit decreased glucose-stimulated insulin secretion (GSIS), leading to glucose intolerance. The AR agonist dihydrotestosterone (DHT) enhances GSIS in cultured male islets, an effect that is abolished in βARKO(-/y) islets and human islets treated with an AR antagonist. In β cells, DHT-activated AR is predominantly extranuclear and enhances GSIS by increasing islet cAMP and activating the protein kinase A. In mouse and human islets, the insulinotropic effect of DHT depends on activation of the glucagon-like peptide-1 (GLP-1) receptor, and accordingly, DHT amplifies the incretin effect of GLP-1. This study identifies AR as a novel receptor that enhances β cell function, a finding with implications for the prevention of T2D in aging men. PMID:27133133

  17. Prolactin stimulates cell proliferation through a long form of prolactin receptor and K+ channel activation.

    PubMed Central

    Van Coppenolle, Fabien; Skryma, Roman; Ouadid-Ahidouch, Halima; Slomianny, Christian; Roudbaraki, Morad; Delcourt, Philippe; Dewailly, Etienne; Humez, Sandrine; Crépin, Alexandre; Gourdou, Isabelle; Djiane, Jean; Bonnal, Jean-Louis; Mauroy, Brigitte; Prevarskaya, Natalia

    2004-01-01

    PRL (prolactin) has been implicated in the proliferation and differentiation of numerous tissues, including the prostate gland. However, the PRL-R (PRL receptor) signal transduction pathway, leading to the stimulation of cell proliferation, remains unclear and has yet to be mapped. The present study was undertaken to develop a clear understanding of the mechanisms involved in this pathway and, in particular, to determine the role of K(+) channels. We used androgen-sensitive prostate cancer (LNCaP) cells whose proliferation is known to be stimulated by PRL. Reverse transcriptase PCR analysis showed that LNCaP cells express a long form of PRL-R, but do not produce its intermediate isoform. Patch-clamp techniques showed that the application of 5 nM PRL increased both the macroscopic K(+) current amplitude and the single K(+)-channel open probability. This single-channel activity increase was reduced by the tyrosine kinase inhibitors genistein, herbimycin A and lavandustine A, thereby indicating that tyrosine kinase phosphorylation is required in PRL-induced K(+) channel stimulation. PRL enhances p59( fyn ) phosphorylation by a factor of 2 after a 10 min application in culture. In addition, where an antip59( fyn ) antibody is present in the patch pipette, PRL no longer increases K(+) current amplitude. Furthermore, the PRL-stimulated proliferation is inhibited by the K(+) channel inhibitors alpha-dendrotoxin and tetraethylammonium. Thus, as K(+) channels are known to be involved in LNCaP cell proliferation, we suggest that K(+) channel modulation by PRL, via p59( fyn ) pathway, is the primary ionic event in PRL signal transduction, triggering cell proliferation. PMID:14565846

  18. Central oxytocin receptor stimulation attenuates the orexigenic effects of butorphanol tartrate.

    PubMed

    Olszewski, Pawel K; Klockars, Oscar A; Klockars, Anica; Levine, Allen S

    2016-09-28

    Butorphanol tartrate (BT), a mixed µ/κ/δ opioid receptor agonist, is one of the most potent orexigens known to date. The central mechanisms through which BT causes hyperphagia are largely unknown. Interestingly, BT suppresses meal-end activation of neurons synthesizing anorexigenic neuropeptide, oxytocin (OT), which suggests that BT promotes hyperphagia by silencing OT-derived satiety signaling. As OT terminates consumption by acting by distinct hindbrain and forebrain circuits, we investigated whether stimulation of the OT receptor in the forebrain or the hindbrain [through lateral ventricular (LV) and fourth ventricular (4V) OT injections] leads to termination of food intake induced by BT. We established effective doses of BT on chow intake in ad-libitum-fed and overnight-deprived rats as well as effective doses of LV and 4V OT in deprived animals. Then, we determined doses of LV and 4V OT that reduce hyperphagia produced by BT in sated and deprived rats. Finally, we assessed whether OT's effects on BT-induced feeding can be suppressed by an OT receptor antagonist. 4 mg/kg BT increased intake in ad-libitum-fed and overnight-deprived rats, whereas LV and 4V OT at 1 μg caused a decrease in deprived rats. BT-induced chow intake in hungry and sated animals was suppressed by a very low, 0.1 μg dose of 4V OT, whereas 1 μg OT was effective LV. The effect of OT was attenuated by OT receptor antagonist, L-368 899. Reduced activity of the OT circuit, especially its hindbrain component, is a critical factor in shaping the magnitude of consumption in response to BT treatment. PMID:27471903

  19. Nitric oxide and hypoxia stimulate erythropoietin receptor via MAPK kinase in endothelial cells.

    PubMed

    Cokic, Bojana B Beleslin; Cokic, Vladan P; Suresh, Sukanya; Wirt, Stacey; Noguchi, Constance Tom

    2014-03-01

    Erythropoietin receptor (EPOR) expression level determines the extent of erythropoietin (EPO) response. Previously we showed that EPOR expression in endothelial cells is increased at low oxygen tension and that EPO stimulation of endothelial cells during hypoxia can increase endothelial nitric oxide (NO) synthase (eNOS) expression and activation as well as NO production. We now observe that while EPO can stimulate NO production, NO in turn can regulate EPOR expression. Human umbilical vein endothelial cells (HUVEC) treated with 10-50 μM of NO donor diethylenetriamine NONOate (DETANO) for 24h showed significant induction of EPOR gene expression at 5% and 2% of oxygen. Also human bone marrow microvascular endothelial cell line (TrHBMEC) cultured at 21 and 2% oxygen with 50 μM DETANO demonstrated a time and oxygen dependent induction of EPOR mRNA expression after 24 and 48 h, particularly at low oxygen tension. EPOR protein was also induced by DETANO at 2% oxygen in TrHBMEC and HUVEC. The activation of signaling pathways by NO donor stimulation appeared to be distinct from EPO stimulation. In reporter gene assays, DETANO treatment of HeLa cells at 2% oxygen increased EPOR promoter activity indicated by a 48% increase in luciferase activity with a 2 kb EPOR promoter fragment and a 71% increase in activity with a minimal EPOR promoter fragment containing 0.2 kb 5'. We found that DETANO activated MAPK kinase in TrHBMEC both in normoxia and hypoxia, while MAPK kinase inhibition showed significant reduction of EPOR mRNA gene expression at low oxygen tension, suggesting MAPK involvement in NO mediated induction of EPOR. Furthermore, DETANO stimulated Akt anti-apoptotic activity after 30 min in normoxia, whereas it inhibited Akt phosphorylation in hypoxia. In contrast, EPO did not significantly increase MAPK activity while EPO stimulated Akt phosphorylation in TrHBMEC in normoxia and hypoxia. These observations provide a new effect of NO on EPOR expression to enhance EPO

  20. Stimulation of rat hepatic low density lipoprotein receptors by glucagon. Evidence of a novel regulatory mechanism in vivo.

    PubMed Central

    Rudling, M; Angelin, B

    1993-01-01

    We studied the influence of glucagon on hepatic LDL receptors and plasma lipoproteins in rats. A dose-dependent (maximum, threefold) increase in LDL-receptor binding was evident already at a dose of 2 x 4 micrograms, and detectable 3 h after injection; concomitantly, cholesterol and apolipoprotein (apo) B and apoE within LDL and large HDL decreased in plasma. LDL receptor mRNA levels were however unaltered or reduced. Hepatic microsomal cholesterol was increased and the enzymatic activities of 3-hydroxy-3-methylglutaryl coenzyme A reductase and cholesterol 7 alpha-hydroxylase in hepatic microsomes were reduced. Insulin alone increased receptor binding and receptor mRNA levels twofold, but plasma cholesterol was unchanged and plasma apoE and apoB increased. Administration of insulin to glucagon-treated animals reduced the LDL-receptor binding to control levels and apoB appeared in LDL particles. Estrogen treatment increased LDL-receptor binding and mRNA levels five- and eightfold, respectively. Combined treatment with glucagon and estrogen reduced the stimulation of LDL-receptor mRNA levels by 80% although LDL-receptor binding was unchanged. Immunoblot analysis showed that glucagon increased the number of hepatic LDL receptors. We conclude that glucagon induces the number of hepatic LDL receptors by a mechanism not related to increased mRNA levels, suggesting the presence of a posttranscriptional regulatory mechanism present in the liver in vivo. Images PMID:8514887

  1. What is the effect of nicotinic acetylcholine receptor stimulation on osteoarthritis in a rodent animal model?

    PubMed Central

    Bock, Kilian; Plaass, Christian; Coger, Vincent; Peck, Claas-Tido; Reimers, Kerstin; Stukenborg-Colsman, Christina; Claassen, Leif

    2016-01-01

    Objectives: Despite the rising number of patients with osteoarthritis, no sufficient chondroprotective and prophylactic therapy for osteoarthritis has been established yet. The purpose of this study was to verify whether stimulation of the nicotinic acetylcholine receptor via nicotine has a beneficial effect on cartilage degeneration in the development of osteoarthritis and is capable of reducing the expression of proinflammatory cytokines and cartilage degrading enzymes in synovial membranes after osteoarthritis induction. Methods: Experimental osteoarthritis was induced in Lewis rats using a standardized osteoarthritis model with monoiodoacetate. A total of 16 Lewis rats were randomized into four groups: control, sham + nicotine application, osteoarthritis, and osteoarthritis + nicotine application. Nicotine (0.625 mg/kg twice daily) was administered intraperitoneally for 42 days. We analyzed histological sections, radiological images and the expression of the proinflammatory cytokines, such as interleukin-1β, tumor necrosis factor-α and interleukin-6, and of matrix metalloproteases 3, 9 and 13 and tissue inhibitors of metalloprotease-1 in synovial membranes via quantitative polymerase chain reaction. Results: Histological and x-ray examination revealed cartilage degeneration in the osteoarthritis group compared to control or sham + nicotine groups (histological control vs osteoarthritis: p = 0.002 and x-ray control vs osteoarthritis: p = 0.004). Nicotine treatment reduced the cartilage degeneration without significant differences. Osteoarthritis induction led to a higher expression of proinflammatory cytokines and matrix metalloproteases as compared to control groups. This effect was attenuated after nicotine administration. The differences of proinflammatory cytokines and matrix metalloproteases did not reach statistical significance. Conclusion: With the present small-scale study, we could not prove a positive effect of nicotinic

  2. Positive AMPA receptor modulation rapidly stimulates BDNF release and increases dendritic mRNA translation.

    PubMed

    Jourdi, Hussam; Hsu, Yu-Tien; Zhou, Miou; Qin, Qingyu; Bi, Xiaoning; Baudry, Michel

    2009-07-01

    Brain-derived neurotrophic factor (BDNF) stimulates local dendritic mRNA translation and is involved in formation and consolidation of memory. 2H,3H,6aH-pyrrolidino[2'',1''-3',2']1,3-oxazino[6',5'-5,4]-benzo[e]1,4-dioxan-10-one (CX614), one of the best-studied positive AMPA receptor modulators (also known as ampakines), increases BDNF mRNA and protein and facilitates long-term potentiation (LTP) induction. Several other ampakines also improve performance in various behavioral and learning tasks. Since local dendritic protein synthesis has been implicated in LTP stabilization and in memory consolidation, this study investigated whether CX614 could influence synaptic plasticity by upregulating dendritic protein translation. CX614 treatment of primary neuronal cultures and acute hippocampal slices rapidly activated the translation machinery and increased local dendritic protein synthesis. CX614-induced activation of translation was blocked by K252a [(9S,10R,12R)-2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-i][1,6]benzodiazocine-10-carboxylic acid methyl ester], CNQX, APV, and TTX, and was inhibited in the presence of an extracellular BDNF scavenger, TrkB-Fc. The acute effect of CX614 on translation was mediated by increased BDNF release as demonstrated with a BDNF scavenging assay using TrkB-Fc during CX614 treatment of cultured primary neurons and was blocked by nifedipine, ryanodine, and lack of extracellular Ca(2+) in acute hippocampal slices. Finally, CX614, like BDNF, rapidly increased dendritic translation of an exogenous translation reporter. Together, our results demonstrate that positive modulation of AMPA receptors rapidly stimulates dendritic translation, an effect mediated by BDNF secretion and TrkB receptor activation. They also suggest that increased BDNF secretion and stimulation of local protein synthesis contribute to the effects of ampakines on synaptic plasticity. PMID:19587275

  3. Caffeine-induced behavioral stimulation is dose-dependent and associated with A1 adenosine receptor occupancy.

    PubMed

    Kaplan, G B; Greenblatt, D J; Kent, M A; Cotreau, M M; Arcelin, G; Shader, R I

    1992-05-01

    Caffeine's psychomotor stimulant effects may relate to its blockade of central adenosine receptors. We examined acute caffeine effects on motor activity, adenosine receptor occupancy in vivo, and receptor affinity and density ex vivo. Acute doses of caffeine-sodium benzoate (0, 20, 40, and 60 mg/kg, intraperitoneally [0, 0.10, 0.21, 0.31 mu mol/kg]) were given to CD-1 mice and their activity was measured in an animal activity monitor over a 1-hour period. Adenosine receptor occupancy in vivo was quantified in mice 1 hour postdosage, using the high-affinity, A1 receptor selective adenosine antagonist [3H]-8-cyclopentyl-1,3-dipropylxanthine. Adenosine receptor binding affinities and densities were determined from analyses of binding studies in cortical, hippocampal, and brainstem membranes from treated mice (0 and 40 mg/kg caffeine). Caffeine doses of 20 and 40 mg/kg, corresponding to mean brain concentrations of 5 and 17 micrograms/g, increased all horizontal and vertical motor activity measures and stereotypy counts, as compared to doses of 0 and 60 mg/kg. Additionally, all acute caffeine doses significantly altered specific A1 binding in vivo (decreasing binding between 55% and 73% versus vehicle), presumably as it occupied A1 receptors. Therefore, at doses of 20 and 40 mg/kg, caffeine stimulated motor activity as it occupied A1 receptors; at a dose of 60 mg/kg (mean brain concentration of 26 micrograms/g) caffeine had no stimulant effect even though it appeared to occupy A1 receptors. Acute caffeine dosage did not alter ex vivo adenosine receptor binding affinity or density in any brain regions.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1599605

  4. Electrical Stimulation Decreases Coupling Efficiency Between Beta-Adrenergic Receptors and Cyclic AMP Production in Cultured Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.

    1999-01-01

    Electrical stimulation of skeletal muscle cells in culture is an effective way to simulate the effects of muscle contraction and its effects on gene expression in muscle cells. Expression of the beta-adrenergic receptor and its coupling to cyclic AMP synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy, and the goal of this project was to determine if electrical stimulation altered the beta-adrenergic response in muscle cells. Chicken skeletal muscle cells that had been grown for seven days in culture were subjected to electrical stimulation for an additional two days at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. At the end of this two-day stimulation period, beta-adrenergic receptor population was measured by the binding of tritium-labeled CGP-12177 to muscle cells, and coupling to cAMP synthesis was measured by Radioimmunoassay (RIA) after treating the cells for 10 min with the potent (beta)AR agonist, isoproterenol. The number of beta adrenergic receptors and the basal levels of intracellular cyclic AMP were not affected by electrical stimulation. However, the ability of these cells to synthesize cyclic AMP was reduced by approximately 50%. Thus, an enhanced level of contraction reduces the coupling efficiency of beta-adrenergic receptors for cyclic AMP production.

  5. Basal and adenosine receptor-stimulated levels of cAMP are reduced in lymphocytes from alcoholic patients

    SciTech Connect

    Diamond, I.; Wrubel, B.; Estrin, W.; Gordon, A.

    1987-03-01

    Alcoholism causes serious neurologic disease that may be due, in part, to the ability of ethanol to interact with neural cell membranes and change neuronal function. Adenosine receptors are membrane-bound proteins that appear to mediate some of the effects of ethanol in the brain. Human lymphocytes also have adenosine receptors, and their activation causes increases in cAMP levels. To test the hypothesis that basal and adenosine receptor-stimulated cAMP levels in lymphocytes might be abnormal in alcoholism, the authors studied lymphocytes from 10 alcoholic subjects, 10 age- and sex-matched normal individuals, and 10 patients with nonalcoholic liver disease. Basal and adenosine receptor-stimulated cAMP levels were reduced 75% in lymphocytes from alcoholic subjects. Also, there was a 76% reduction in ethanol stimulation of cAMP accumulation in lymphocytes from alcoholics. Similar results were demonstrable in isolated T cells. Unlike other laboratory tests examined, these measurements appeared to distinguish alcoholics from normal subjects and from patients with nonalcoholic liver disease. Reduced basal and adenosine receptor-stimulated levels of cAMP in lymphocytes from alcoholics may reflect a change in cell membranes due either to chronic alcohol abuse or to a genetic predisposition unique to alcoholic subjects.

  6. [Leu]enkephalin stimulates carbohydrate metabolism in isolated hepatocytes and kidney tubule fragments by interaction with angiotensin II receptors.

    PubMed Central

    Hothi, S K; Randall, D P; Titheradge, M A

    1989-01-01

    The possibility that the effects of [Leu]enkephalin in vitro on hepatic carbohydrate metabolism are mediated by interaction with angiotensin II receptors has been examined. Preincubation of hepatocytes with either the angiotensin II receptor antagonist [Sar1,Ile8]angiotensin II or 10 mM-dithiothreitol abolished the ability of both angiotensin II and [Leu]enkephalin to increase phosphorylase a in hepatocytes prepared from fed rats. Dithiothreitol had no effect on the stimulation of phosphorylase in the presence of glucagon or phenylephrine, although it also inhibited the response to vasopressin. [Leu]enkephalin displaced specifically bound 125I-labelled angiotensin II from hepatic plasma membranes over a concentration range of 10(-7)-10(-5) M. This correlated with the dose-response required to stimulate phosphorylase activity in intact hepatocytes and suggests that the effects of the opioid peptides on carbohydrate metabolism in liver are the result of cross-reactivity of the peptides with angiotensin II receptors. Addition of 10(-5) M-[Leu]enkephalin to isolated kidney tubule fragments stimulated gluconeogenesis from 5 mM-pyruvate, the magnitude of stimulation being comparable to that by either angiotensin II or adrenaline. This effect of the opioid peptide was also abolished by pretreatment of the tubules with [Sar1,Ile8]angiotensin II, suggesting that the ability of [Leu]enkephalin to interact with angiotensin II receptors is not restricted to the liver, but may occur in other tissues where both receptors occur together. PMID:2930480

  7. A Long Lasting β1 Adrenergic Receptor Stimulation of cAMP/Protein Kinase A (PKA) Signal in Cardiac Myocytes*

    PubMed Central

    Fu, Qin; Kim, Sungjin; Soto, Dagoberto; De Arcangelis, Vania; DiPilato, Lisa; Liu, Shubai; Xu, Bing; Shi, Qian; Zhang, Jin; Xiang, Yang K.

    2014-01-01

    Small-molecule, ligand-activated G protein-coupled receptors are generally thought to be rapidly desensitized within a period of minutes through receptor phosphorylation and internalization after repeated or prolonged stimulation. This transient G protein-coupled receptor activation remains at odds with many observed long-lasting cellular and physiological responses. Here, using live cell imaging of cAMP with a FRET-based biosensor and myocyte contraction assay, we show that the catecholamine-activated β1 adrenergic receptor (β1AR) continuously stimulates second messenger cAMP synthesis in primary cardiac myocytes and neurons, which lasts for more than 8 h (a decay t½ of 3.9 h) in cardiac myocytes. However, the β1AR-induced cAMP signal is counterbalanced and masked by the receptor-bound phosphodiesterase (PDE) 4D8-dependent cAMP hydrolysis. Inhibition of PDE4 activity recovers the receptor-induced cAMP signal and promotes contractile response in mouse hearts during extended periods of agonist stimulation. β1AR associates with PDE4D8 through the receptor C-terminal PDZ motif-dependent binding to synaptic-associated protein 97 (SAP97). Knockdown of SAP97 or mutation of the β1AR PDZ motif disrupts the complex and promotes sustained agonist-induced cAMP activity, PKA phosphorylation, and cardiac myocyte contraction response. Together, these findings unveil a long lasting adrenergic signal in neurons and myocytes under prolonged stimulation and an underappreciated role of PDE that is essential in classic receptor signaling desensitization and in maintaining a long lasting cAMP equilibrium for ligand-induced physiological response. PMID:24713698

  8. Enhancement of peripheral nerve regeneration due to treadmill training and electrical stimulation is dependent on androgen receptor signaling.

    PubMed

    Thompson, Nicholas J; Sengelaub, Dale R; English, Arthur W

    2014-05-01

    Moderate exercise in the form of treadmill training and brief electrical nerve stimulation both enhance axon regeneration after peripheral nerve injury. Different regimens of exercise are required to enhance axon regeneration in male and female mice (Wood et al.: Dev Neurobiol 72 (2012) 688-698), and androgens are suspected to be involved. We treated mice with the androgen receptor blocker, flutamide, during either exercise or electrical stimulation, to evaluate the role of androgen receptor signaling in these activity-based methods of enhancing axon regeneration. The common fibular (CF) and tibial (TIB) nerves of thy-1-YFP-H mice, in which axons in peripheral nerves are marked by yellow fluorescent protein (YFP), were transected and repaired using CF and TIB nerve grafts harvested from non-fluorescent donor mice. Silastic capsules filled with flutamide were implanted subcutaneously to release the drug continuously. Exercised mice were treadmill trained 5 days/week for 2 weeks, starting on the third day post-transection. For electrical stimulation, the sciatic nerve was stimulated continuously for 1 h prior to nerve transection. After 2 weeks, lengths of YFP+ profiles of regenerating axons were measured from harvested nerves. Both exercise and electrical stimulation enhanced axon regeneration, but this enhancement was blocked completely by flutamide treatments. Signaling through androgen receptors is necessary for the enhancing effects of treadmill exercise or electrical stimulation on axon regeneration in cut peripheral nerves. PMID:24293191

  9. Postnatal Treadmill Exercise Alleviates Prenatal Stress-Induced Anxiety in Offspring Rats by Enhancing Cell Proliferation Through 5-Hydroxytryptamine 1A Receptor Activation

    PubMed Central

    2016-01-01

    Purpose: Stress during pregnancy is a risk factor for the development of anxiety-related disorders in offspring later in life. The effects of treadmill exercise on anxiety-like behaviors and hippocampal cell proliferation were investigated using rats exposed to prenatal stress. Methods: Exposure of pregnant rats to a hunting dog in an enclosed room was used to induce stress. Anxiety-like behaviors of offspring were evaluated using the elevated plus maze test. Immunohistochemistry for the detection of 5-bromo-2ʹ- deoxyuridine and doublecortin (DCX) in the hippocampal dentate gyrus and 5-hydroxytryptamine 1A receptors (5-HT1A) in the dorsal raphe was conducted. Brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) levels in the hippocampus were evaluated by western blot analysis. Results: Offspring of maternal rats exposed to stress during pregnancy showed anxiety-like behaviors. Offspring also showed reduced expression of BDNF, TrkB, and DCX in the dentate gyrus, decreased cell proliferation in the hippocampus, and reduced 5-HT1A expression in the dorsal raphe. Postnatal treadmill exercise by offspring, but not maternal exercise during pregnancy, enhanced cell proliferation and expression of these proteins. Conclusions: Postnatal treadmill exercise ameliorated anxiety-like behaviors in offspring of stressed pregnant rats, and the alleviating effect of exercise on these behaviors is hypothesized to result from enhancement of cell proliferation through 5-HT1A activation in offspring rats. PMID:27230461

  10. Targeting the thyroid-stimulating hormone receptor with small molecule ligands and antibodies

    PubMed Central

    Davies, Terry F; Latif, Rauf

    2015-01-01

    Introduction The thyroid-stimulating hormone receptor (TSHR) is the essential molecule for thyroid growth and thyroid hormone production. Since it is also a key autoantigen in Graves’ disease and is involved in thyroid cancer pathophysiology, the targeting of the TSHR offers a logical model for disease control. Areas covered We review the structure and function of the TSHR and the progress in both small molecule ligands and TSHR antibodies for their therapeutic potential. Expert opinion Stabilization of a preferential conformation for the TSHR by allosteric ligands and TSHR antibodies with selective modulation of the signaling pathways is now possible. These tools may be the next generation of therapeutics for controlling the pathophysiological consequences mediated by the effects of the TSHR in the thyroid and other extrathyroidal tissues. PMID:25768836

  11. Graves' Disease Mechanisms: The Role of Stimulating, Blocking, and Cleavage Region TSH Receptor Antibodies.

    PubMed

    Morshed, S A; Davies, T F

    2015-09-01

    The immunologic processes involved in Graves' disease (GD) have one unique characteristic--the autoantibodies to the TSH receptor (TSHR)--which have both linear and conformational epitopes. Three types of TSHR antibodies (stimulating, blocking, and cleavage) with different functional capabilities have been described in GD patients, which induce different signaling effects varying from thyroid cell proliferation to thyroid cell death. The establishment of animal models of GD by TSHR antibody transfer or by immunization with TSHR antigen has confirmed its pathogenic role and, therefore, GD is the result of a breakdown in TSHR tolerance. Here we review some of the characteristics of TSHR antibodies with a special emphasis on new developments in our understanding of what were previously called "neutral" antibodies and which we now characterize as autoantibodies to the "cleavage" region of the TSHR ectodomain. PMID:26361259

  12. Activating Parabrachial Cannabinoid CB1 Receptors Selectively Stimulates Feeding of Palatable Foods in Rats

    PubMed Central

    DiPatrizio, Nicholas V.; Simansky, Kenny J.

    2009-01-01

    The endocannabinoid system is emerging as an integral component in central and peripheral regulation of feeding and energy balance. Our investigation analyzed behavioral roles for cannabinoid mechanisms of the pontine parabrachial nucleus (PBN) in modulating intake of presumably palatable foods containing fat and/or sugar. The PBN serves to gate neurotransmission associated with, but not limited to, the gustatory properties of food. Immunofluorescence and in vitro [35S]GTPγS autoradiography of rat tissue sections containing the PBN revealed the presence of cannabinoid receptors and their functional capability to couple to their G-proteins following incubation with the endocannabinoid, 2-arachidonoyl glycerol (2-AG). The selective cannabinoid 1 receptor (CB1R) antagonist, AM251, prevented the response, demonstrating CB1R mediation of 2-AG induced coupling. Microinfusions of 2-AG into the PBN in behaving rats robustly stimulated feeding of pellets high in content of fat and sucrose (HFS), pure sucrose and pure fat (Crisco®), during the first 30min following infusion. In contrast, 2-AG failed to increase consumption of standard chow, even when the feeding regimen was manipulated to match baseline intakes of HFS. Orexigenic responses to 2-AG were attenuated by AM251, again indicating CB1R mediation of 2-AG actions. Furthermore, responses were regionally specific, as 2-AG failed to alter intake when infused into sites ~500µm caudal to infusions that successfully stimulated feeding. Our data suggest that hedonically-positive sensory properties of food enable endocannabinoids at PBN CB1Rs to initiate increases in eating and more generally, these pathways may serve a larger role in brain functions controlling behavioral responses for natural reward. PMID:18815256

  13. Impaired Cognition after Stimulation of P2Y1 Receptors in the Rat Medial Prefrontal Cortex

    PubMed Central

    Koch, Holger; Bespalov, Anton; Drescher, Karla; Franke, Heike; Krügel, Ute

    2015-01-01

    We hypothesize that cortical ATP and ADP accumulating in the extracellular space, eg during prolonged network activity, contribute to a decline in cognitive performance in particular via stimulation of the G protein-coupled P2Y1 receptor (P2Y1R) subtype. Here, we report first evidence on P2Y1R-mediated control of cognitive functioning in rats using bilateral microinfusions of the selective agonist MRS2365 into medial prefrontal cortex (mPFC). MRS2365 attenuated prepulse inhibition of the acoustic startle reflex while having no impact on startle amplitude. Stimulation of P2Y1Rs deteriorated performance accuracy in the delayed non-matching to position task in a delay dependent manner and increased the rate of magazine entries consistent with both working memory disturbances and impaired impulse control. Further, MRS2365 significantly impaired performance in the reversal learning task. These effects might be related to MRS2365-evoked increase of dopamine observed by microdialysis to be short-lasting in mPFC and long-lasting in the nucleus accumbens. P2Y1Rs were identified on pyramidal cells and parvalbumin-positive interneurons, but not on tyrosine hydroxylase-positive fibers, which argues for an indirect activation of dopaminergic afferents in the cortex by MRS2365. Collectively, these results suggest that activation of P2Y1Rs in the mPFC impairs inhibitory control and behavioral flexibility mediated by increased mesocorticolimbic activity and local disinhibition. PMID:25027332

  14. Statins stimulate the production of a soluble form of the receptor for advanced glycation end products

    PubMed Central

    Quade-Lyssy, Patricia; Kanarek, Anna Maria; Baiersdörfer, Markus; Postina, Rolf; Kojro, Elzbieta

    2013-01-01

    The beneficial effects of statin therapy in the reduction of cardiovascular pathogenesis, atherosclerosis, and diabetic complications are well known. The receptor for advanced glycation end products (RAGE) plays an important role in the progression of these diseases. In contrast, soluble forms of RAGE act as decoys for RAGE ligands and may prevent the development of RAGE-mediated disorders. Soluble forms of RAGE are either produced by alternative splicing [endogenous secretory RAGE (esRAGE)] or by proteolytic shedding mediated by metalloproteinases [shed RAGE (sRAGE)]. Therefore we analyzed whether statins influence the production of soluble RAGE. Lovastatin treatment of either mouse alveolar epithelial cells endogenously expressing RAGE or HEK cells overexpressing RAGE caused induction of RAGE shedding, but did not influence secretion of esRAGE from HEK cells overexpressing esRAGE. Lovastatin-induced secretion of sRAGE was also evident after restoration of the isoprenylation pathway, demonstrating a correlation of sterol biosynthesis and activation of RAGE shedding. Lovastatin-stimulated induction of RAGE shedding was completely abolished by a metalloproteinase ADAM10 inhibitor. We also demonstrate that statins stimulate RAGE shedding at low physiologically relevant concentrations. Our results show that statins, due to their cholesterol-lowering effects, increase the soluble RAGE level by inducing RAGE shedding, and by doing this, might prevent the development of RAGE-mediated pathogenesis. PMID:23966666

  15. Trypanosoma cruzi and Its Soluble Antigens Induce NET Release by Stimulating Toll-Like Receptors

    PubMed Central

    Diniz, Larissa Figueiredo Alves; Souza, Priscila Silva Sampaio; Pinge-Filho, Phileno; Toledo, Karina Alves

    2015-01-01

    Neutrophils release fibrous traps of DNA, histones, and granule proteins known as neutrophil extracellular traps (NETs), which contribute to microbicidal killing and have been implicated in autoimmunity. The role of NET formation in the host response to nonbacterial pathogens is not well-understood. In this study, we investigated the release of NETs by human neutrophils upon their interaction with Trypanosoma cruzi (Y strain) parasites. Our results showed that human neutrophils stimulated by T. cruzi generate NETs composed of DNA, histones, and elastase. The release occurred in a dose-, time-, and reactive oxygen species-dependent manner to decrease trypomastigote and increase amastigote numbers of the parasites without affecting their viability. NET release was decreased upon blocking with antibodies against Toll-like receptors 2 and 4. In addition, living parasites were not mandatory in the release of NETs induced by T. cruzi, as the same results were obtained when molecules from its soluble extract were tested. Our results increase the understanding of the stimulation of NETs by parasites, particularly T. cruzi. We suggest that contact of T. cruzi with NETs during Chagas’s disease can limit infection by affecting the infectivity/pathogenicity of the parasite. PMID:26431537

  16. The angiotensin II-AT1 receptor stimulates reactive oxygen species within the cell nucleus

    SciTech Connect

    Pendergrass, Karl D.; Gwathmey, TanYa M.; Michalek, Ryan D.; Grayson, Jason M.; Chappell, Mark C.

    2009-06-26

    We and others have reported significant expression of the Ang II Type 1 receptor (AT1R) on renal nuclei; thus, the present study assessed the functional pathways and distribution of the intracellular AT1R on isolated nuclei. Ang II (1 nM) stimulated DCF fluorescence, an intranuclear indicator of reactive oxygen species (ROS), while the AT1R antagonist losartan or the NADPH oxidase (NOX) inhibitor DPI abolished the increase in ROS. Dual labeling of nuclei with antibodies against nucleoporin 62 (Nup62) and AT1R or the NADPH oxidase isoform NOX4 revealed complete overlap of the Nup62 and AT1R (99%) by flow cytometry, while NOX4 was present on 65% of nuclei. Treatment of nuclei with a PKC agonist increased ROS while the PKC inhibitor GF109203X or PI3 kinase inhibitor LY294002 abolished Ang II stimulation of ROS. We conclude that the Ang II-AT1R-PKC axis may directly influence nuclear function within the kidney through a redox sensitive pathway.

  17. Promotion of adipogenesis by an EP2 receptor agonist via stimulation of angiogenesis in pulmonary emphysema.

    PubMed

    Tsuji, Takao; Yamaguchi, Kazuhiro; Kikuchi, Ryota; Itoh, Masayuki; Nakamura, Hiroyuki; Nagai, Atsushi; Aoshiba, Kazutetsu

    2014-08-01

    Body weight loss is a common manifestation in patients with chronic obstructive pulmonary disease (COPD), particularly those with severe emphysema. Adipose angiogenesis is a key mediator of adipogenesis and use of pro-angiogenic agents may serve as a therapeutic option for lean COPD patients. Since angiogenesis is stimulated by PGE2, we examined whether ONO-AE1-259, a selective E-prostanoid (EP) 2 receptor agonist, might promote adipose angiogenesis and adipogenesis in a murine model of elastase-induced pulmonary emphysema (EIE mice). Mice were intratracheally instilled with elastase or saline, followed after 4 weeks by intraperitoneal administration of ONO-AE1-259 for 4 weeks. The subcutaneous adipose tissue (SAT) weight decreased in the EIE mice, whereas in the EIE mice treated with ONO-AE1-259, the SAT weight was largely restored, which was associated with significant increases in SAT adipogenesis, angiogenesis, and VEGF protein production. In contrast, ONO-AE1-259 administration induced no alteration in the weight of the visceral adipose tissue. These results suggest that in EIE mice, ONO-AE1-259 stimulated adipose angiogenesis possibly via VEGF production, and thence, adipogenesis. Our data pave the way for the development of therapeutic interventions for weight loss in emphysema patients, e.g., use of pro-angiogenic agents targeting the adipose tissue vascular component. PMID:24911647

  18. Muscarinic acetylcholine receptor-mediated stimulation of retinal ganglion cell photoreceptors.

    PubMed

    Sodhi, Puneet; Hartwick, Andrew T E

    2016-09-01

    Melanopsin-dependent phototransduction in intrinsically photosensitive retinal ganglion cells (ipRGCs) involves a Gq-coupled phospholipase C (PLC) signaling cascade. Acetylcholine, released in the mammalian retina by starburst amacrine cells, can also activate Gq-PLC pathways through certain muscarinic acetylcholine receptors (mAChRs). Using multielectrode array recordings of rat retinas, we demonstrate that robust spiking responses can be evoked in neonatal and adult ipRGCs after bath application of the muscarinic agonist carbachol. The stimulatory action of carbachol on ipRGCs was a direct effect, as confirmed through calcium imaging experiments on isolated ipRGCs in purified cultures. Using flickering (6 Hz) yellow light stimuli at irradiances below the threshold for melanopsin activation, spiking responses could be elicited in ipRGCs that were suppressed by mAChR antagonism. Therefore, this work identified a novel melanopsin-independent pathway for stimulating sustained spiking in ganglion cell photoreceptors. This mAChR-mediated pathway could enhance ipRGC spiking responses in conditions known to evoke retinal acetylcholine release, such as those involving flickering or moving visual stimuli. Furthermore, this work identifies a pharmacological approach for light-independent ipRGC stimulation that could be targeted by mAChR agonists. PMID:27055770

  19. Enhanced emotional empathy after mineralocorticoid receptor stimulation in women with borderline personality disorder and healthy women.

    PubMed

    Wingenfeld, Katja; Kuehl, Linn K; Janke, Katrin; Hinkelmann, Kim; Dziobek, Isabel; Fleischer, Juliane; Otte, Christian; Roepke, Stefan

    2014-07-01

    The mineralocorticoid receptor (MR) is highly expressed in the hippocampus and prefrontal cortex. MR have an important role in appraisal processes and in modulating stress-associated emotional reactions but it is not known whether the MR affects empathy. Borderline personality disorder (BPD) is characterized by disturbed emotion regulation and alterations in empathy. In the current study, we examined whether stimulation of the MR enhances empathy in patients with BPD and healthy individuals. In a placebo-controlled study, we randomized 38 women with BPD and without psychotropic medication, and 35 healthy women to either placebo or 0.4 mg fludrocortisone, an MR agonist. Subsequently, all participants underwent two tests of social cognition, the Multifaceted Empathy Test (MET) and the Movie for the Assessment of Social Cognition (MASC), measuring cognitive and emotional facets of empathy. Eighteen BPD patients and 18 healthy women received placebo, whereas 20 BPD patients and 17 healthy women received fludrocortisone. In the MET, fludrocortisone enhanced emotional empathy across groups, whereas cognitive empathy was not affected. In the MASC, no effect of fludrocortisone could be revealed. In both tests, BPD patients and healthy women did not differ significantly in cognitive and emotional empathy and in their response to fludrocortisone. Stimulation of MR enhanced emotional empathy in healthy women and in BPD patients. Whether fludrocortisone might have a therapeutic role in psychotherapeutic processes, remains to be elucidated. PMID:24535100

  20. Tamoxifen stimulates in vivo growth of drug-resistant estrogen receptor-negative breast cancer.

    PubMed

    Maenpaa, J; Wiebe, V; Koester, S; Wurz, G; Emshoff, V; Seymour, R; Sipila, P; DeGregorio, M

    1993-01-01

    An estrogen receptor-negative, multidrug-resistant MDA-MB-A1 human breast cancer cell line was grown in culture with and without a noninhibitory concentration (0.5 microM) of tamoxifen for 122 days. Tamoxifen-treated and control cells were inoculated into opposite flanks of nine nude mice, where they produced measurable tumors in every case. Six of the animals were treated with tamoxifen at 500 micrograms/day for 22 days. Although no inhibitory nor stimulatory effect of tamoxifen was seen in vitro, tamoxifen had a clear tumor-growth-stimulating effect in mice. The most pronounced stimulatory effects were observed in the cells that had been cultured with tamoxifen. Within 3 weeks of the start of tamoxifen therapy, the cells grown in the presence of tamoxifen produced tumors with a mean size of 380 mm2, whereas the cells not pretreated with tamoxifen had tumors of 220 mm2. In contrast, in mice not receiving tamoxifen, the sizes of the tumors were 190 and 140 mm2, respectively. These preliminary results suggest that prolonged in vitro tamoxifen exposure induces cellular changes that result in tumors that are stimulated to grow faster in mice following tamoxifen treatment. PMID:8339392

  1. Contribution of non-genetic factors to dopamine and serotonin receptor availability in the adult human brain.

    PubMed

    Borg, J; Cervenka, S; Kuja-Halkola, R; Matheson, G J; Jönsson, E G; Lichtenstein, P; Henningsson, S; Ichimiya, T; Larsson, H; Stenkrona, P; Halldin, C; Farde, L

    2016-08-01

    The dopamine (DA) and serotonin (5-HT) neurotransmission systems are of fundamental importance for normal brain function and serve as targets for treatment of major neuropsychiatric disorders. Despite central interest for these neurotransmission systems in psychiatry research, little is known about the regulation of receptor and transporter density levels. This lack of knowledge obscures interpretation of differences in protein availability reported in psychiatric patients. In this study, we used positron emission tomography (PET) in a twin design to estimate the relative contribution of genetic and environmental factors, respectively, on dopaminergic and serotonergic markers in the living human brain. Eleven monozygotic and 10 dizygotic healthy male twin pairs were examined with PET and [(11)C]raclopride binding to the D2- and D3-dopamine receptor and [(11)C]WAY100635 binding to the serotonin 5-HT1A receptor. Heritability, shared environmental effects and individual-specific non-shared effects were estimated for regional D2/3 and 5-HT1A receptor availability in projection areas. We found a major contribution of genetic factors (0.67) on individual variability in striatal D2/3 receptor binding and a major contribution of environmental factors (pairwise shared and unique individual; 0.70-0.75) on neocortical 5-HT1A receptor binding. Our findings indicate that individual variation in neuroreceptor availability in the adult brain is the end point of a nature-nurture interplay, and call for increased efforts to identify not only the genetic but also the environmental factors that influence neurotransmission in health and disease. PMID:26821979

  2. The Therapeutic Potential of Toll-like Receptor 7 Stimulation in Asthma

    PubMed Central

    Drake, Matthew G.; Kaufman, Elad H.; Fryer, Allison D.; Jacoby, David B.

    2012-01-01

    Asthma is an inflammatory disorder of the airways frequently characterized by an excessive Th2 adaptive immune response. Activation of Toll-like receptor (TLR)-7, a single-stranded viral RNA receptor that is highly expressed in the airways, triggers a rapid innate immune response and favors a subsequent Th1 response. Because of this role in pulmonary immunoregulation, TLR7 has gained considerable interest as a therapeutic target in asthma. Synthetic TLR7 ligands, including the imidazoquinolines imiquimod (R837) and resiquimod (R848), and 8-hydroxyadenine derivatives have been developed for other clinical indications. TLR7 activation prevents ovalbumin-induced airway hyperreactivity, eosinophilic inflammation, goblet cell hyperplasia and airway remodeling in murine models of asthma. TLR7 activation also inhibits viral replication in the lung and prevents virus-induced airway hyperreactivity. Furthermore, it has recently been shown that stimulating TLR7 rapidly relaxes airway smooth muscle, dilating the airways. This bronchodilating effect, which occurs in seconds to minutes and depends on rapid production of nitric oxide, indicates that TLR7 can signal via previously unrecognized pathways. The effects of decreasing the allergic Th2 response, acting as an immediate bronchodilator, and promoting an antiviral immune environment, make TLR7 an attractive drug target. We examine the current understanding of TLR7 as a therapeutic target and its translation to asthma treatment in humans. PMID:23078048

  3. Monte Carlo loop refinement and virtual screening of the thyroid-stimulating hormone receptor transmembrane domain

    PubMed Central

    Ali, M. Rejwan; Latif, Rauf; Davies, Terry F.; Mezei, Mihaly

    2015-01-01

    Metropolis Monte Carlo (MMC) loop refinement has been performed on the three extracellular loops (ECLs) of rhodopsin and opsin-based homology models of the thyroid-stimulating hormone receptor transmembrane domain, a class A type G protein-coupled receptor. The Monte Carlo sampling technique, employing torsion angles of amino acid side chains and local moves for the six consecutive backbone torsion angles, has previously reproduced the conformation of several loops with known crystal structures with accuracy consistently less than 2 Å. A grid-based potential map, which includes van der Waals, electrostatics, hydrophobic as well as hydrogen-bond potentials for bulk protein environment and the solvation effect, has been used to significantly reduce the computational cost of energy evaluation. A modified sigmoidal distance-dependent dielectric function has been implemented in conjunction with the desolvation and hydrogen-bonding terms. A long high-temperature simulation with 2 kcal/mol repulsion potential resulted in extensive sampling of the conformational space. The slow annealing leading to the low-energy structures predicted secondary structure by the MMC technique. Molecular docking with the reported agonist reproduced the binding site within 1.5 Å. Virtual screening performed on the three lowest structures showed that the ligand-binding mode in the inter-helical region is dependent on the ECL conformations. PMID:25012978

  4. Development of Follicle-Stimulating Hormone Receptor Binding Probes to Image Ovarian Xenografts

    PubMed Central

    Lee, Chung-Wein; Guo, Lili; Matei, Daniela; Stantz, Keith

    2015-01-01

    The Follicle-Stimulating Hormone Receptor (FSHR) is used as an imaging biomarker for the detection of ovarian cancer (OC). FSHR is highly expressed on ovarian tumors and involved with cancer development and metastatic signaling pathways. A decapeptide specific to the FSHR extracellular domain is synthesized and conjugated to fluorescent dyes to image OC cells in vitro and tumors xenograft model in vivo. The in vitro binding curve and the average number of FSHR per cell are obtained for OVCAR-3 cells by a high resolution flow cytometer. For the decapeptide, the measured EC50 was 160 μM and the average number of receptors per cell was 1.7 × 107. The decapeptide molecular imaging probe reached a maximum tumor to muscle ratio five hours after intravenous injection and a dose-dependent plateau after 24–48 hours. These results indicate the potential application of a small molecular weight imaging probe specific to ovarian cancer through binding to FSHR. Based on these results, multimeric constructs are being developed to optimize binding to ovarian cells and tumors. PMID:26779384

  5. Progesterone stimulates respiration through a central nervous system steroid receptor-mediated mechanism in cat.

    PubMed Central

    Bayliss, D A; Millhorn, D E; Gallman, E A; Cidlowski, J A

    1987-01-01

    We have examined the effect on respiration of the steroid hormone progesterone, administered either intravenously or directly into the medulla oblongata in anesthetized and paralyzed male and female cats. The carotid sinus and vagus nerves were cut, and end-tidal PCO2 and temperature were kept constant with servo-controllers. Phrenic nerve activity was used to quantitate central respiratory activity. Repeated doses of progesterone (from 0.1 to 2.0 micrograms/kg, cumulative) caused a sustained (greater than 45 min) facilitation of phrenic nerve activity in female and male cats; however, the response was much more variable in females. Progesterone injected into the region of nucleus tractus solitarii, a respiratory-related area in the medulla oblongata, also caused a prolonged stimulation of respiration. Progesterone administration at high concentration by both routes also caused a substantial hypotension. Identical i.v. doses of other classes of steroid hormones (17 beta-estradiol, testosterone, and cortisol) did not elicit the same respiratory effect. Pretreatment with RU 486, a progesterone-receptor antagonist, blocked the facilitatory effect of progesterone. We conclude that progesterone acts centrally through a steroid receptor-mediated mechanism to facilitate respiration. PMID:3478727

  6. Alpha-melanocyte-stimulating hormone down-regulates CXC receptors through activation of neutrophil elastase.

    PubMed

    Manna, Sunil K; Sarkar, Abira; Sreenivasan, Yashin

    2006-03-01

    Considering the role of interleukin-8 (IL-8) in a large number of acute and chronic inflammatory diseases, the regulation of IL-8-mediated biological responses is important. Alpha-melanocyte-stimulating hormone (alpha-MSH), a tridecapeptide, inhibits most forms of inflammation by an unknown mechanism. In the present study, we have found that alpha-MSH interacts predominantly with melanocortin-1 receptors and inhibits several IL-8-induced biological responses in macrophages and neutrophils. It down-regulated receptors for IL-8 but not for TNF, IL-4, IL-13 or TNF-related apoptosis-inducing ligand (TRAIL) in neutrophils. It down-regulated CXCR type 1 and 2 but not mRNA levels. alpha-MSH did not inhibit IL-8 binding in purified cell membrane or affinity-purified CXCR. IL-8 or anti-CXCR Ab protected against alpha-MSH-mediated inhibition of IL-8 binding. The level of neutrophil elastase, a specific serine protease, but not cathepsin G or proteinase 3 increased in alpha-MSH-treated cells, and restoration of CXCR by specific neutrophil elastase or serine protease inhibitors indicates the involvement of elastase in alpha-MSH-induced down-regulation of CXCR. These studies suggest that alpha-MSH inhibits IL-8-mediated biological responses by down-regulating CXCR through induction of serine protease and that alpha-MSH acts as a potent immunomodulator in neutrophil-driven inflammatory distress. PMID:16479540

  7. Monte Carlo loop refinement and virtual screening of the thyroid-stimulating hormone receptor transmembrane domain.

    PubMed

    Ali, M Rejwan; Latif, Rauf; Davies, Terry F; Mezei, Mihaly

    2015-01-01

    Metropolis Monte Carlo (MMC) loop refinement has been performed on the three extracellular loops (ECLs) of rhodopsin and opsin-based homology models of the thyroid-stimulating hormone receptor transmembrane domain, a class A type G protein-coupled receptor. The Monte Carlo sampling technique, employing torsion angles of amino acid side chains and local moves for the six consecutive backbone torsion angles, has previously reproduced the conformation of several loops with known crystal structures with accuracy consistently less than 2 Å. A grid-based potential map, which includes van der Waals, electrostatics, hydrophobic as well as hydrogen-bond potentials for bulk protein environment and the solvation effect, has been used to significantly reduce the computational cost of energy evaluation. A modified sigmoidal distance-dependent dielectric function has been implemented in conjunction with the desolvation and hydrogen-bonding terms. A long high-temperature simulation with 2 kcal/mol repulsion potential resulted in extensive sampling of the conformational space. The slow annealing leading to the low-energy structures predicted secondary structure by the MMC technique. Molecular docking with the reported agonist reproduced the binding site within 1.5 Å. Virtual screening performed on the three lowest structures showed that the ligand-binding mode in the inter-helical region is dependent on the ECL conformations. PMID:25012978

  8. Progesterone stimulates respiration through a central nervous system steroid receptor-mediated mechanism in cat.

    PubMed

    Bayliss, D A; Millhorn, D E; Gallman, E A; Cidlowski, J A

    1987-11-01

    We have examined the effect on respiration of the steroid hormone progesterone, administered either intravenously or directly into the medulla oblongata in anesthetized and paralyzed male and female cats. The carotid sinus and vagus nerves were cut, and end-tidal PCO2 and temperature were kept constant with servo-controllers. Phrenic nerve activity was used to quantitate central respiratory activity. Repeated doses of progesterone (from 0.1 to 2.0 micrograms/kg, cumulative) caused a sustained (greater than 45 min) facilitation of phrenic nerve activity in female and male cats; however, the response was much more variable in females. Progesterone injected into the region of nucleus tractus solitarii, a respiratory-related area in the medulla oblongata, also caused a prolonged stimulation of respiration. Progesterone administration at high concentration by both routes also caused a substantial hypotension. Identical i.v. doses of other classes of steroid hormones (17 beta-estradiol, testosterone, and cortisol) did not elicit the same respiratory effect. Pretreatment with RU 486, a progesterone-receptor antagonist, blocked the facilitatory effect of progesterone. We conclude that progesterone acts centrally through a steroid receptor-mediated mechanism to facilitate respiration. PMID:3478727

  9. Activation of macrophages stimulated by the bengkoang fiber extract through toll-like receptor 4.

    PubMed

    Kumalasari, Ika Dyah; Nishi, Kosuke; Putra, Agus Budiawan Naro; Sugahara, Takuya

    2014-07-25

    Bengkoang (Pachyrhizus erosus (L.) Urban) is an edible root tuber containing fairly large amounts of carbohydrates and crude fibers. Our previous studies showed that the bengkoang fiber extract (BFE) stimulates activation of macrophages, leading to induction of phagocytotic activity and cytokine production. In the present study we investigated the mechanism underlying activation of murine macrophages by BFE. BFE increased production of TNF-α, IL-6, and nitric oxide by J774.1 cells. In addition BFE also facilitated the gene expression levels of inducible nitric oxide synthase. We examined the effect of a TLR4 inhibitor on cytokine production to investigate the membrane receptor of macrophage activation by BFE. Treatment of J774.1 cells with the TLR4 inhibitor significantly inhibited production of IL-6 and TNF-α, suggesting that TLR4 is the target membrane receptor for BFE. The main signal molecules located downstream of TLR4 such as JNK, p38, ERK, and NF-κB were activated by BFE treatment. The immunostimulatory effect of BFE was cancelled by the pectinase treatment, suggesting that the active ingredient in BFE is pectin-like molecules. Overall results suggested that BFE activates J774.1 cells via the MAPK and NF-κB signaling pathways. PMID:24770453

  10. Iron Mediates N-Methyl-d-aspartate Receptor-dependent Stimulation of Calcium-induced Pathways and Hippocampal Synaptic Plasticity*

    PubMed Central

    Muñoz, Pablo; Humeres, Alexis; Elgueta, Claudio; Kirkwood, Alfredo; Hidalgo, Cecilia; Núñez, Marco T.

    2011-01-01

    Iron deficiency hinders hippocampus-dependent learning processes and impairs cognitive performance, but current knowledge on the molecular mechanisms underlying the unique role of iron in neuronal function is sparse. Here, we investigated the participation of iron on calcium signal generation and ERK1/2 stimulation induced by the glutamate agonist N-methyl-d-aspartate (NMDA), and the effects of iron addition/chelation on hippocampal basal synaptic transmission and long-term potentiation (LTP). Addition of NMDA to primary hippocampal cultures elicited persistent calcium signals that required functional NMDA receptors and were independent of calcium influx through L-type calcium channels or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors; NMDA also promoted ERK1/2 phosphorylation and nuclear translocation. Iron chelation with desferrioxamine or inhibition of ryanodine receptor (RyR)-mediated calcium release with ryanodine-reduced calcium signal duration and prevented NMDA-induced ERK1/2 activation. Iron addition to hippocampal neurons readily increased the intracellular labile iron pool and stimulated reactive oxygen species production; the antioxidant N-acetylcysteine or the hydroxyl radical trapper MCI-186 prevented these responses. Iron addition to primary hippocampal cultures kept in calcium-free medium elicited calcium signals and stimulated ERK1/2 phosphorylation; RyR inhibition abolished these effects. Iron chelation decreased basal synaptic transmission in hippocampal slices, inhibited iron-induced synaptic stimulation, and impaired sustained LTP in hippocampal CA1 neurons induced by strong stimulation. In contrast, iron addition facilitated sustained LTP induction after suboptimal tetanic stimulation. Together, these results suggest that hippocampal neurons require iron to generate RyR-mediated calcium signals after NMDA receptor stimulation, which in turn promotes ERK1/2 activation, an essential step of sustained LTP. PMID:21296883

  11. δ-Opioid receptors stimulate the metabolic sensor AMP-activated protein kinase through coincident signaling with G(q/11)-coupled receptors.

    PubMed

    Olianas, Maria C; Dedoni, Simona; Olianas, Alessandra; Onali, Pierluigi

    2012-02-01

    AMP-activated protein kinase (AMPK) and δ-opioid receptors (DORs) are both involved in controlling cell survival, energy metabolism, and food intake, but little is known on the interaction between these two signaling molecules. Here we show that activation of human DORs stably expressed in Chinese hamster ovary (CHO) cells increased AMPK activity and AMPK phosphorylation on Thr172. DOR-induced AMPK phosphorylation was prevented by pertussis toxin, reduced by protein kinase A (PKA) activators, and unaffected by PKA, transforming growth factor-β-activated kinase 1, mitogen-activated protein kinase, and protein kinase C inhibitors. Conversely, the DOR effect was reduced by Ca(2+)/calmodulin-dependent protein kinase kinase (CaMKK) inhibition, apyrase treatment, G(q/11) antagonism, and blockade of P2 purinergic receptors. Apyrase treatment also depressed DOR stimulation of intracellular Ca(2+) concentration, whereas P2 receptor antagonism blocked DOR stimulation of inositol phosphate accumulation. In SH-SY5Y neuroblastoma cells and primary olfactory bulb neurons, DOR activation failed to affect AMPK phosphorylation per se but potentiated the stimulation by either muscarinic agonists or 2-methyl-thio-ADP. Sequestration of G protein βγ subunits (Gβγ) blocked the DOR potentiation of AMPK phosphorylation induced by oxotremorine-M. In CHO cells, the AMPK activator 5-aminoimidazole-4-carboxamide1-β-D-ribonucleoside stimulated AMPK phosphorylation and glucose uptake, whereas pharmacological inhibition of AMPK, expression of a dominant-negative mutant of AMPKα1, and P2Y receptor blockade reduced DOR-stimulated glucose uptake. The data indicate that in different cell systems, DOR activation up-regulates AMPK through a Gβγ-dependent synergistic interaction with G(q/11)-coupled receptors, potentiating Ca(2+) release and CaMKKβ-dependent AMPK phosphorylation. In CHO cells, this coincident signaling mechanism is involved in DOR-induced glucose uptake. PMID:22031472

  12. Ceramide stimulates ABCA12 expression via peroxisome proliferator-activated receptor {delta} in human keratinocytes.

    PubMed

    Jiang, Yan J; Uchida, Yoshikazu; Lu, Biao; Kim, Peggy; Mao, Cungui; Akiyama, Masashi; Elias, Peter M; Holleran, Walter M; Grunfeld, Carl; Feingold, Kenneth R

    2009-07-10

    ABCA12 (ATP binding cassette transporter, family 12) is a cellular membrane transporter that facilitates the delivery of glucosylceramides to epidermal lamellar bodies in keratinocytes, a process that is critical for permeability barrier formation. Following secretion of lamellar bodies into the stratum corneum, glucosylceramides are metabolized to ceramides, which comprise approximately 50% of the lipid in stratum corneum. Gene mutations of ABCA12 underlie harlequin ichthyosis, a devastating skin disorder characterized by abnormal lamellar bodies and a severe barrier abnormality. Recently we reported that peroxisome proliferator-activated receptor (PPAR) and liver X receptor activators increase ABCA12 expression in human keratinocytes. Here we demonstrate that ceramide (C(2)-Cer and C(6)-Cer), but not C(8)-glucosylceramides, sphingosine, or ceramide 1-phosphate, increases ABCA12 mRNA expression in a dose- and time-dependent manner. Inhibitors of glucosylceramide synthase, sphingomyelin synthase, and ceramidase and small interfering RNA knockdown of human alkaline ceramidase, which all increase endogenous ceramide levels, also increased ABCA12 mRNA levels. Moreover, simultaneous treatment with C(6)-Cer and each of these same inhibitors additively increased ABCA12 expression, indicating that ceramide is an important inducer of ABCA12 expression and that the conversion of ceramide to other sphingolipids or metabolites is not required. Finally, both exogenous and endogenous ceramides preferentially stimulate PPARdelta expression (but not other PPARs or liver X receptors), whereas PPARdelta knockdown by siRNA transfection specifically diminished the ceramide-induced increase in ABCA12 mRNA levels, indicating that PPARdelta is a mediator of the ceramide effect. Together, these results show that ceramide, an important lipid component of epidermis, up-regulates ABCA12 expression via the PPARdelta-mediated signaling pathway, providing a substrate-driven, feed

  13. Nitric oxide stimulates the proliferation of neural stem cells bypassing the epidermal growth factor receptor.

    PubMed

    Carreira, Bruno Pereira; Morte, Maria Inês; Inácio, Angela; Costa, Gabriel; Rosmaninho-Salgado, Joana; Agasse, Fabienne; Carmo, Anália; Couceiro, Patrícia; Brundin, Patrik; Ambrósio, António Francisco; Carvalho, Caetana Monteiro; Araújo, Inês Maria

    2010-07-01

    Nitric oxide (NO) was described to inhibit the proliferation of neural stem cells. Some evidence suggests that NO, under certain conditions, can also promote cell proliferation, although the mechanisms responsible for a potential proliferative effect of NO in neural stem cells have remained unaddressed. In this work, we investigated and characterized the proliferative effect of NO in cell cultures obtained from the mouse subventricular zone. We found that the NO donor NOC-18 (10 microM) increased cell proliferation, whereas higher concentrations (100 microM) inhibited cell proliferation. Increased cell proliferation was detected rapidly following exposure to NO and was prevented by blocking the mitogen-activated kinase (MAPK) pathway, independently of the epidermal growth factor (EGF) receptor. Downstream of the EGF receptor, NO activated p21Ras and the MAPK pathway, resulting in a decrease in the nuclear presence of the cyclin-dependent kinase inhibitor 1, p27(KIP1), allowing for cell cycle progression. Furthermore, in a mouse model that shows increased proliferation of neural stem cells in the hippocampus following seizure injury, we observed that the absence of inducible nitric oxide synthase (iNOS(-/-) mice) prevented the increase in cell proliferation observed following seizures in wild-type mice, showing that NO from iNOS origin is important for increased cell proliferation following a brain insult. Overall, we show that NO is able to stimulate the proliferation of neural stem cells bypassing the EGF receptor and promoting cell division. Moreover, under pathophysiological conditions in vivo, NO from iNOS origin also promotes proliferation in the hippocampus. PMID:20506358

  14. Insulin Receptor Substrate 1, the Hub Linking Follicle-stimulating Hormone to Phosphatidylinositol 3-Kinase Activation.

    PubMed

    Law, Nathan C; Hunzicker-Dunn, Mary E

    2016-02-26

    The ubiquitous phosphatidylinositol 3-kinase (PI3K) signaling pathway regulates many cellular functions. However, the mechanism by which G protein-coupled receptors (GPCRs) signal to activate PI3K is poorly understood. We have used ovarian granulosa cells as a model to investigate this pathway, based on evidence that the GPCR agonist follicle-stimulating hormone (FSH) promotes the protein kinase A (PKA)-dependent phosphorylation of insulin receptor substrate 1 (IRS1) on tyrosine residues that activate PI3K. We report that in the absence of FSH, granulosa cells secrete a subthreshold concentration of insulin-like growth factor-1 (IGF-1) that primes the IGF-1 receptor (IGF-1R) but fails to promote tyrosine phosphorylation of IRS1. FSH via PKA acts to sensitize IRS1 to the tyrosine kinase activity of the IGF-1R by activating protein phosphatase 1 (PP1) to promote dephosphorylation of inhibitory Ser/Thr residues on IRS1, including Ser(789). Knockdown of PP1β blocks the ability of FSH to activate PI3K in the presence of endogenous IGF-1. Activation of PI3K thus requires both PKA-mediated relief of IRS1 inhibition and IGF-1R-dependent tyrosine phosphorylation of IRS1. Treatment with FSH and increasing concentrations of exogenous IGF-1 triggers synergistic IRS1 tyrosine phosphorylation at PI3K-activating residues that persists downstream through protein kinase B (AKT) and FOXO1 (forkhead box protein O1) to drive synergistic expression of genes that underlies follicle maturation. Based on the ability of GPCR agonists to synergize with IGFs to enhance gene expression in other cell types, PP1 activation to relieve IRS1 inhibition may be a more general mechanism by which GPCRs act with the IGF-1R to activate PI3K/AKT. PMID:26702053

  15. Vasopressin/V2 receptor stimulates renin synthesis in the collecting duct.

    PubMed

    Gonzalez, Alexis A; Cifuentes-Araneda, Flavia; Ibaceta-Gonzalez, Cristobal; Gonzalez-Vergara, Alex; Zamora, Leonardo; Henriquez, Ricardo; Rosales, Carla B; Navar, L Gabriel; Prieto, Minolfa C

    2016-02-15

    Renin is synthesized in the principal cells of the collecting duct (CD), and its production is increased via cAMP in angiotensin (ANG) II-dependent hypertension, despite suppression of juxtaglomerular (JG) renin. Vasopressin, one of the effector hormones of the renin-angiotensin system (RAS) via the type 2-receptor (V2R), activates the cAMP/PKA/cAMP response element-binding protein (CREB) pathway and aquaporin-2 expression in principal cells of the CD. Accordingly, we hypothesized that activation of V2R increases renin synthesis via PKA/CREB, independently of ANG II type 1 (AT1) receptor activation in CD cells. Desmopressin (DDAVP; 10(-6) M), a selective V2R agonist, increased renin mRNA (∼3-fold), prorenin (∼1.5-fold), and renin (∼2-fold) in cell lysates and cell culture media in the M-1 CD cell line. Cotreatment with DDAVP+H89 (PKA inhibitor) or CREB short hairpin (sh) RNA prevented this response. H89 also blunted DDAVP-induced CREB phosphorylation and nuclear localization. In 48-h water-deprived (WD) mice, prorenin-renin protein levels were increased in the renal inner medulla (∼1.4- and 1.8-fold). In WD mice treated with an ACE inhibitor plus AT1 receptor blockade, renin mRNA and prorenin protein levels were still higher than controls, while renin protein content was not changed. In M-1 cells, ANG II or DDAVP increased prorenin-renin protein levels; however, there were no further increases by combined treatment. These results indicate that in the CD the activation of the V2R stimulates renin synthesis via the PKA/CREB pathway independently of RAS, suggesting a critical role for vasopressin in the regulation of renin in the CD. PMID:26608789

  16. Homeobox A7 stimulates breast cancer cell proliferation by up-regulating estrogen receptor-alpha

    SciTech Connect

    Zhang, Yu; Cheng, Jung-Chien; Huang, He-Feng; Leung, Peter C.K.

    2013-11-01

    Highlights: •HOXA7 regulates MCF7 cell proliferation. •HOXA7 up-regulates ERα expression. •HOXA7 mediates estrogen-induced MCF7 cell proliferation. -- Abstract: Breast cancer is the most common hormone-dependent malignancy in women. Homeobox (HOX) transcription factors regulate many cellular functions, including cell migration, proliferation and differentiation. The aberrant expression of HOX genes has been reported to be associated with human reproductive cancers. Estradiol (E2) and its nuclear receptors, estrogen receptor (ER)-alpha and ER-beta, are known to play critical roles in the regulation of breast cancer cell growth. However, an understanding of the potential relationship between HOXA7 and ER in breast cancer cells is limited. In this study, our results demonstrate that knockdown of HOXA7 in MCF7 cells significantly decreased cell proliferation and ERα expression. In addition, HOXA7 knockdown attenuated E2-induced cell proliferation as well as progesterone receptor (PR) expression. The stimulatory effects of E2 on cell proliferation and PR expression were abolished by co-treatment with ICI 182780, a selective ERα antagonist. In contrast, overexpression of HOXA7 significantly stimulated cell proliferation and ERα expression. Moreover, E2-induced cell proliferation, as well as PR expression, was enhanced by the overexpression of HOXA7. Neither knockdown nor overexpression of HOXA7 affected the ER-beta levels. Our results demonstrate a novel mechanistic role for HOXA7 in modulating breast cancer cell proliferation via regulation of ERα expression. This finding contributes to our understanding of the role HOXA7 plays in regulating the proliferation of ER-positive cancer cells.

  17. Icariin Stimulates Differentiation and Suppresses Adipocytic Transdifferentiation of Primary Osteoblasts Through Estrogen Receptor-Mediated Pathway.

    PubMed

    Zhang, Dawei; Fong, Chichun; Jia, Zhenbin; Cui, Liao; Yao, Xinsheng; Yang, Mengsu

    2016-08-01

    Icariin, the main constituent of Herba Epimedii, appears to be a promising alternative to classic drugs used to treat osteoporosis. However, the detailed molecular mechanisms of its action and the role of icariin in the cross-talk between osteoblasts and adipocytes remain unclear. The present study was designed to investigate the gene expression profile of primary osteoblasts in the presence of icariin, and the effects of icariin on the differentiation and adipogenic transdifferentiation of osteoblasts. Cellular and molecular markers expressed during osteoblastic differentiation were assessed by cytochemical analysis, real-time quantitative PCR, Western blotting, and cDNA microarray analysis. Results indicated that icariin up-regulated the expression of runt-related transcription factor 2 (Runx2), bone morphogenetic protein 2 (Bmp2), and collagen type 1 (Col1) genes, and down-regulated the expression of the peroxisome proliferator-activated receptor γ (Pparg) and CCAAT/enhancer-binding protein β (Cebpb) genes. These effects were blocked by ICI 182,780, suggesting that icariin may be acting via the estrogen receptor (ER). Results also demonstrated that the ratio of osteoprotegerin (Opg)/receptor activator of nuclear factor kappa B ligand (Rankl) expression was up-regulated following treatment with icariin. In total, osteoblastic gene expression profile analysis suggested that 33 genes were affected by icariin; these could be sub-divided into nine functional categories. It appears that icariin could stimulate the differentiation and mineralization of osteoblasts, regulate the differentiation of osteoclasts, and inhibit the adipogenic transdifferentiation of osteoblasts, therefore increasing the number of osteoblasts undergoing differentiation to mature osteoblasts, via an ER-mediated pathway. In summary, icariin may exhibit beneficial effects on bone health, especially for patients with osteoporosis and obesity. PMID:27061090

  18. Role of CRF receptor 1 in central CRF-induced stimulation of colonic propulsion in rats.

    PubMed

    Martínez, V; Taché, Y

    2001-03-01

    The CRF receptor subtype mediating the colonic and gastric motor responses to central CRF was investigated in conscious rats. CRF (0.6 microg/rat) injected intracerebroventicularly (i.c.v.) or 1 h water avoidance stress stimulated defecation (pellet/60 min: 4.1+/-1.0 and 8.7+/-0.7 respectively vs. 0.3+/-0.3 in i.c.v. vehicle/no stress). The CRF receptor 1 (CRF-R1) antagonist, NBI-27914 (50-100 microg/rat) injected i.c.v., abolished the colonic response to i.c.v. CRF and dose-dependently reduced that induced by water avoidance stress. NBI-27914 (100 microg/rat) injected peripherally did not influence the defecatory response to stress. The peptide CRF-R1/R2 antagonist, astressin (10 microg/rat, i.c.v.) inhibited the colonic motor response to i.c.v. CRF and stress similarly as NBI-27914 injected i.c.v. at 100 microg/rat. Intracisternal (i.c.) injection of astressin (10 microg/rat) also completely prevented CRF (0.6 g, i.c.)-induced delayed gastric emptying while i.c. NBI-27914 (50 or 100 microg) had no effect. These results indicate a differential role of central CRF receptor subtypes in the colonic stimulatory and gastric inhibitory motor responses to central CRF and that the CRF component of stress-related activation of colonic expulsion is primarily mediated by CRF-R1. PMID:11222989

  19. Regulation of surface expression of the granulocyte/macrophage colony-stimulating factor receptor in normal human myeloid cells

    SciTech Connect

    Cannistra, S.A.; Groshek, P.; Griffin, J.D. ); Garlick, R.; Miller, J. )

    1990-01-01

    Recombinant human granulocyte/macrophage colony-stimulating factor (GM-CSF) exerts stimulatory effects on hematopoietic cells through binding to specific, high-affinity receptors. By using radiolabeled GM-CSF with high specific activity, the authors have investigated the factors and mechanisms that regulate GM-CSF receptor expression in normal human neutrophils, monocytes, and partially purified bone marrow myeloid progenitor cells. The neutrophil GM-CSF receptor was found to rapidly internalize in the presence of ligand through a mechanism that required endocytosis. Out of a large panel of naturally occurring humoral factors tested, only GM-CSF itself, tumor necrosis factor, and formyl-Met-Leu-Phe were found to down-regulate neutrophil GM-CSF receptor expression after a 2-hr exposure at biologically active concentrations. Since formyl-Met-Leu-Phe is known to stimulate neutrophil protein kinase C activity, they also tested the ability of protein kinase C agonists to modulate GM-CSF receptor expression. Phorbol 12-myristate 13-acetate, bryostatin-1, and 1,2-dioctanoylglycerol were found to induce rapid down-regulation of the GM-CSF receptor in neutrophils, monocytes, and partially purified myeloid progenitor cells, suggesting that this effect may be at least partially mediated by protein kinase C. These data suggest that certain activators of neutrophil function may negatively regulate their biological effects by inducing down-regulation of the GM-CSF receptor.

  20. Effects of left atrial receptor stimulation on carotid chemoreceptor-induced renal responses in dogs.

    PubMed

    Karim, F; al-Obaidi, M

    1992-10-01

    1. Dogs were anaesthetized with thiopentone sodium and alpha-chloralose and artificially ventilated. The carotid sinus regions were vascularly isolated and perfused with arterial or venous blood to stimulate the chemoreceptors. Left atrial receptors were stimulated by distending four balloons, three in the left pulmonary vein-atrial junctions and one in the left atrial appendage. Mean aortic pressure was held constant by means of a pressure control device. Atenolol and atropine (2.0 and 0.5 mg kg-1, respectively), and gallamine triethiodide (3.0 mg kg-1 h-1) were given I.V. Renal blood flow was measured by an electromagnetic flowmeter, glomerular filtration rate by creatinine clearance, urinary sodium by flame photometry and solute excretion by osmometry. 2. In fifteen tests in eight dogs (in one dog responses of both left and right kidneys were determined), at a constant aortic pressure (AoP) of 92.0 +/- 3