Science.gov

Sample records for 5-ht2 serotonergic receptor

  1. Serotonergic modulation in neuropathy induced by oxaliplatin: effect on the 5HT2C receptor.

    PubMed

    Baptista-de-Souza, Daniela; Di Cesare Mannelli, Lorenzo; Zanardelli, Matteo; Micheli, Laura; Nunes-de-Souza, Ricardo Luiz; Canto-de-Souza, Azair; Ghelardini, Carla

    2014-07-15

    Fluoxetine has been shown to be effective in clinical and experimental studies of neuropathic pain. Besides to increase serotonin levels in the synaptic cleft, fluoxetine is able to block the serotonergic 5-HT2C receptor subtype, which in turn has been involved in the modulation of neuropathic pain. This study investigated the effect of repeated treatments with fluoxetine on the neuropathic nociceptive response induced by oxaliplatin and the effects of both treatments on 5-HT2C receptor mRNA expression and protein levels in the rat spinal cord (SC), rostral ventral medulla (RVM), midbrain periaqueductal gray (PAG) and amygdala (Amy). Nociception was assessed by paw-pressure, cold plate and Von Frey tests. Fluoxetine prevented mechanical hypersensitivity and pain threshold alterations induced by oxaliplatin but did not prevent the impairment in weight gain induced by this anticancer drug. Ex vivo analysis revealed that oxaliplatin increased the 5-HT2C receptor mRNA expression and protein levels in the SC and PAG. Similar effects were observed in fluoxetine-treated animals but only within the PAG. While oxaliplatin decreased the 5-HT2C mRNA expression levels in the Amy, fluoxetine increased their protein levels in this area. Fluoxetine impaired the oxaliplatin effects on the 5-HT2C receptor mRNA expression in the SC and Amy and protein levels in the SC. All treatments increased of 5-HT2C receptor mRNA expression and protein levels in the PAG. These results suggest that the effects of fluoxetine on neuropathic pain induced by oxaliplatin are associated with quantitative changes in the 5-HT2C receptors located within important areas of the nociceptive system.

  2. 5-HT2C receptors in psychiatric disorders: A review.

    PubMed

    Chagraoui, A; Thibaut, F; Skiba, M; Thuillez, C; Bourin, M

    2016-04-01

    5-HT2Rs have a different genomic organization from other 5-HT2Rs. 5HT2CR undergoes post-transcriptional pre-mRNA editing generating diversity among RNA transcripts. Selective post-transcriptional editing could be involved in the pathophysiology of psychiatric disorders through impairment in G-protein interactions. Moreover, it may influence the therapeutic response to agents such as atypical antipsychotic drugs. Additionally, 5-HT2CR exhibits alternative splicing. Central serotonergic and dopaminergic systems interact to modulate normal and abnormal behaviors. Thus, 5HT2CR plays a crucial role in psychiatric disorders. 5HT2CR could be a relevant pharmacological target in the treatment of neuropsychiatric disorders. The development of drugs that specifically target 5-HT2C receptors will allow for better understanding of their involvement in the pathophysiology of psychiatric disorders including schizophrenia, anxiety, and depression. Among therapeutic means currently available, most drugs used to treat highly morbid psychiatric diseases interact at least partly with 5-HT2CRs. Pharmacologically, 5HT2CRs, have the ability to generate differentially distinct response signal transduction pathways depending on the type of 5HT2CR agonist. Although this receptor property has been clearly demonstrated, in vitro, the eventual beneficial impact of this property opens new perspectives in the development of agonists that could activate signal transduction pathways leading to better therapeutic efficiency with fewer adverse effects.

  3. The serotonin 5-HT2A and 5-HT2C receptors interact with specific sets of PDZ proteins.

    PubMed

    Bécamel, Carine; Gavarini, Sophie; Chanrion, Benjamin; Alonso, Gérard; Galéotti, Nathalie; Dumuis, Aline; Bockaert, Joël; Marin, Philippe

    2004-05-01

    The 5-hydroxytryptamine type 2A (5-HT(2A)) receptor and the 5-HT(2C) receptor are closely related members of the G-protein-coupled receptors activated by serotonin that share very similar pharmacological profiles and cellular signaling pathways. These receptors express a canonical class I PDZ ligand (SXV) at their C-terminal extremity. Here, we have identified proteins that interact with the PDZ ligand of the 5-HT(2A) and 5-HT(2C) receptors by a proteomic approach associating affinity chromatography using immobilized synthetic peptides encompassing the PDZ ligand and mass spectrometry. We report that both receptor C termini interact with specific sets of PDZ proteins in vitro. The 5-HT(2C) receptor but not the 5-HT(2A) receptor binds to the Veli-3.CASK.Mint1 ternary complex and to SAP102. In addition, the 5-HT(2C) receptor binds more strongly to PSD-95 and MPP-3 than the 5-HT(2A) receptor. In contrast, a robust interaction between the 5-HT(2A) receptor and the channel-interacting PDZ protein CIPP was found, whereas CIPP did not significantly associate with the 5-HT(2C) receptor. We also show that residues located at the -1 position and upstream the PDZ ligand in the C terminus of the 5-HT(2A) and 5-HT(2C) receptors are major determinants in their interaction with specific PDZ proteins. Immunofluorescence and electron microscopy studies strongly suggested that these specific interactions also take place in living cells and that the 5-HT(2) receptor-PDZ protein complexes occur in intracellular compartments. The interaction of the 5-HT(2A) and the 5-HT(2C) receptor with specific sets of PDZ proteins may contribute to their different signal transduction properties.

  4. The role of the 5-HT2A and 5-HT2C receptors in the stimulus effects of hallucinogenic drugs. I: Antagonist correlation analysis.

    PubMed

    Fiorella, D; Rabin, R A; Winter, J C

    1995-10-01

    Investigations conducted over the past 3 decades have demonstrated that serotonergic receptors, specifically the 5-HT2A and 5-HT2C subtypes, play an important role in the behavioral effects of hallucinogenic compounds. The present study was designed to determine the respective significance of these two receptors in the stimulus effects of LSD and (-)DOM in the rat. Specifically, the interactions of a series of serotonergic antagonists (risperidone, pirenpirone, metergoline, ketanserin, loxapine, LY53857, pizotyline, spiperone, cyprohepatadine, mesulergine, promethazine, and thioridazine) with the LSD stimulus and the (-)DOM stimulus in LSD-trained subjects was defined. From these data, IC50 values were determined for the inhibition of the LSD-appropriate responding elicited by either 0.1 mg/kg LSD (15-min pretreatment time) or 0.4 mg/kg (-)DOM (75-min pretreatment). In addition, the affinities of these antagonists for 5-HT2A and 5-HT2C receptors were determined in radioligand competition studies, 5-HT2A affinity correlated significantly with IC50 values for the blockade of the LSD (r = +0.75, P < 0.05) and (-)DOM (r = +0.95, P < 0.001) stimuli in the LSD trained subjects. 5-HT2C affinity did not correlate significantly with either series of IC50 values. These data indicate that (1) the stimulus effects of LSD, and (2) the substitution of (-)DOM for the LSD stimulus are mediated by agonist activity at 5-HT2A receptors.

  5. The antidepressant-like activity of 6-methoxy-2-[4-(2-methoxyphenyl)piperazin-1-yl]-9H-xanthen-9-one involves serotonergic 5-HT(1A) and 5-HT(2A/C) receptors activation.

    PubMed

    Pytka, Karolina; Walczak, Maria; Kij, Agnieszka; Rapacz, Anna; Siwek, Agata; Kazek, Grzegorz; Olczyk, Adrian; Gałuszka, Adam; Waszkielewicz, Anna; Marona, Henryk; Sapa, Jacek; Filipek, Barbara

    2015-10-01

    Xanthone derivatives have been shown to posses many biological properties. Some of them act within the central nervous system and show neuroprotective or antidepressant-like properties. Taking this into account we investigated antidepressant-like activity in mice and the possible mechanism of action of 6-methoxy-2-[4-(2-methoxyphenyl)piperazin-1-yl]-9H-xanthen-9-one (HBK-11) - a new xanthone derivative. We demonstrated that HBK-11 produced antidepressant-like effects in the forced swim test and tail suspension test, comparable to that of venlafaxine. The combined treatment with sub-effective doses of HBK-11 and fluoxetine (but not reboxetine or bupropion) significantly reduced the immobility in the forced swim test. Moreover, the antidepressant-like activity of HBK-11 in the aforementioned test was blocked by p-chlorophenylalanine, and significantly reduced by serotonergic 5HT1A receptor antagonist - WAY-1006335 and 5HT2A/C receptor antagonist - ritanserin. As none of the above treatments influenced the spontaneous locomotor activity, it can be concluded that HBK-11 mediates its activity through a serotonergic system, and its antidepressant-like effect involves 5HT1A and 5HT2A/C receptor activation. Furthermore, at antidepressant-like doses HBK-11 did not cause the mice to display locomotor deficits in rotarod or chimney tests. Considering the pharmacokinetic profile, HBK-11 demonstrated rapid absorption after i.p. administration, high clearance value, short terminal half-life, very high volume of distribution and incomplete bioavailability. The compound studied had good penetration into the brain tissue of mice. Since studied xanthone derivative seems to present interesting, untypical mechanism of antidepressant-like action i.e. 5HT2A/C receptor activation, it may have a potential in the treatment of depressive disorders, and surely requires further studies. PMID:26210317

  6. Reduced 5-HT2A receptor signaling following selective bilateral amygdala damage

    PubMed Central

    Schlaepfer, Thomas E.; Matusch, Andreas; Reich, Harald; Shah, Nadim J.; Zilles, Karl; Maier, Wolfgang; Bauer, Andreas

    2009-01-01

    Neurobiological evidence implicates the amygdala as well as serotonergic (serotonin, 5-HT) signaling via postsynaptic 5-HT2A receptors as essential substrates of anxiety behaviors. Assuming a functional interdependence of these substrates, we hypothesized that a low-fear behavioral phenotype due to bilateral lesion of the amygdala would be associated with significant 5-HT2A receptor changes. Thus, we used [18F]altanserin positron emission tomography (PET) referenced to radioligand plasma levels and corrected for partial volume effects to quantify the spatial distribution of 5-HT2A receptor binding potential (BPP) in a rare patient with Urbach–Wiethe disease and selective bilateral amygdala calcification damage relative to 10 healthy control subjects. Consistent with our a priori hypothesis, we observed a 70% global decrease in 5-HT2A receptor BPP in the Urbach–Wiethe patient relative to controls. Thus, brain abnormalities in this patient are not restricted to the amygdala, but extend to overall 5-HT neurotransmission via 5-HT2A receptors. Our findings provide important insights into the molecular architecture of human anxiety behaviors and suggest the 5-HT2A receptor as a promising pharmacological target to control pathological anxiety. PMID:19015089

  7. Extending David Horrobin's membrane phospholipid theory of schizophrenia: overactivity of cytosolic phospholipase A(2) in the brain is caused by overdrive of coupled serotonergic 5HT(2A/2C) receptors in response to stress.

    PubMed

    Eggers, Arnold E

    2012-12-01

    David Horrobin's membrane phospholipid theory of schizophrenia has held up well over time because his therapeutic prediction that dietary supplementation with eicosapentaenoic acid (EPA) would have a therapeutic effect has been partially verified and undergoes continued testing. In the final version of his theory, he hypothesized that there was hyperactivity of phosphoslipase A(2) (PLA(2)) or a related enzyme but did not explain how the hyperactivity came about. It is known that serotonergic 5HT(2A/2C) receptors are coupled to PLA(2), which hydrolyzes both arachidonic acid (AA) and EPA from diacylglycerides at the sn-2 position. In this paper, Horrobin's theory is combined with a previously published theory of chronic stress in which it was hypothesized that a disinhibited dorsal raphe nucleus, the principal nucleus of the serotonergic system, can organize the neuropathology of diseases such as migraine, hypertension, and the metabolic syndrome. The new or combined theory is that schizophrenia is a disease of chronic stress in which a disinhibited DRN causes widespread serotonergic overdrive in the cerebral cortex. This in turn causes overdrive of cPLA(2) and both central and peripheral depletion of AA and EPA. Because EPA is present in smaller amounts, it falls below threshold for maintaining an intracellular balance between AA-derived and EPA-derived second messenger cascades, which leads to abnormal patterns of neuronal firing. There are two causes of neuronal dysfunction: the disinhibited DRN and EPA depletion. Schizophrenia is statistically associated with metabolic syndrome, hypertension, and migraine because they form a cluster of diseases with similar pathophysiology. The theory provides an explanation for both the central and peripheral phospholipid abnormalities in schizophrenia. It also explains the role of stress in schizophrenia, elevated serum PLA(2) activity in schizophrenia, the relationship between untreated schizophrenia and metabolic syndrome

  8. Activation of 5-HT2A/2C receptors reduces the excitability of cultured cortical neurons.

    PubMed

    Hu, Lingli; Liu, Chunhua; Dang, Minyan; Luo, Bin; Guo, Yiping; Wang, Haitao

    2016-10-01

    The abundant forebrain serotonergic projections are believed to modulate the activities of cortical neurons. 5-HT2 receptor among multiple subtypes of serotonin receptors contributes to the modulation of excitability, synaptic transmissions and plasticity. In the present study, whole-cell patch-clamp recording was adopted to examine whether activation of 5-HT2A/2C receptors would have any impact on the excitability of cultured cortical neurons. We found that 2,5-Dimethoxy-4-iodoamphetamine (DOI), a selective 5-HT2A/2C receptor agonist, rapidly and reversibly depressed spontaneous action potentials mimicking the effect of serotonin. The decreased excitability was also observed for current-evoked firing. Additionally DOI increased neuronal input resistance. Hyperpolarization-activated cyclic nucleotide-gated cationic channels (HCN) did not account for the inhibition of spontaneous firing. The synaptic contribution was ruled out in that DOI augmented excitation and attenuated inhibition to actually favor an increase in the excitability. Our findings revealed that activation of 5-HT2A/2C receptors reduces neuronal excitability, which would deepen our understanding of serotonergic modulation of cortical activities. PMID:27585751

  9. The antidepressant activity of inositol in the forced swim test involves 5-HT(2) receptors.

    PubMed

    Einat, H; Clenet, F; Shaldubina, A; Belmaker, R H; Bourin, M

    2001-01-01

    The effect of inositol as an antidepressant was previously demonstrated in both animal models of depression-like behavior and in clinical trials. Unlike most antidepressant drugs, inositol does not have a clear target in the synapse and was not demonstrated to alter monoamine levels in the brain. The present study attempted to draw a psychopharmacological profile of inositol's behavioral effects by exploring the interactions between the drug and specific receptor agonists and antagonists in the forced swim test. Rats received inositol treatment (or control) in combination with the serotonergic metabolism inhibitor PCPA or with the noradrenergic neurotoxin DSP-4. Results indicated that PCPA but not DSP-4 abolished the ability of inositol to cause a reduction in immobility time in the forced swim test. In mice, the specific 5-HT(2A)/5-HT(2C) antagonist ritanserin, but not the 5-HT(1A)/5-HT(1B)/beta adrenergic antagonist pindolol, abolished inositol's effect in the forced swim test. The 5-HT(2A)/5-HT(2C) agonist DOI and the 5-HT(1A) agonist 8-OH-DPAT did not have any significant effects on inositol's activity. The present data indicates that the antidepressant effect of inositol may involve 5-HT(2) receptors. It is thus possible that the effects of reuptake antidepressant drugs and the effects of inositol may have a common final pathway.

  10. 5-HT2A and 5-HT2C receptors as hypothalamic targets of developmental programming in male rats

    PubMed Central

    Martin-Gronert, Malgorzata S.; Stocker, Claire J.; Wargent, Edward T.; Cripps, Roselle L.; Garfield, Alastair S.; Jovanovic, Zorica; D'Agostino, Giuseppe; Yeo, Giles S. H.; Cawthorne, Michael A.; Arch, Jonathan R. S.; Heisler, Lora K.; Ozanne, Susan E.

    2016-01-01

    ABSTRACT Although obesity is a global epidemic, the physiological mechanisms involved are not well understood. Recent advances reveal that susceptibility to obesity can be programmed by maternal and neonatal nutrition. Specifically, a maternal low-protein diet during pregnancy causes decreased intrauterine growth, rapid postnatal catch-up growth and an increased risk for diet-induced obesity. Given that the synthesis of the neurotransmitter 5-hydroxytryptamine (5-HT) is nutritionally regulated and 5-HT is a trophic factor, we hypothesised that maternal diet influences fetal 5-HT exposure, which then influences development of the central appetite network and the subsequent efficacy of 5-HT to control energy balance in later life. Consistent with our hypothesis, pregnant rats fed a low-protein diet exhibited elevated serum levels of 5-HT, which was also evident in the placenta and fetal brains at embryonic day 16.5. This increase was associated with reduced levels of 5-HT2CR, the primary 5-HT receptor influencing appetite, in the fetal, neonatal and adult hypothalamus. As expected, a reduction of 5-HT2CR was associated with impaired sensitivity to 5-HT-mediated appetite suppression in adulthood. 5-HT primarily achieves effects on appetite by 5-HT2CR stimulation of pro-opiomelanocortin (POMC) peptides within the arcuate nucleus of the hypothalamus (ARC). We show that 5-HT2ARs are also anatomically positioned to influence the activity of ARC POMC neurons and that mRNA encoding 5-HT2AR is increased in the hypothalamus of in utero growth-restricted offspring that underwent rapid postnatal catch-up growth. Furthermore, these animals at 3 months of age are more sensitive to appetite suppression induced by 5-HT2AR agonists. These findings not only reveal a 5-HT-mediated mechanism underlying the programming of susceptibility to obesity, but also provide a promising means to correct it, by treatment with a 5-HT2AR agonist. PMID:26769798

  11. Genotype-Dependent Difference in 5-HT2C Receptor-Induced Hypolocomotion: Comparison with 5-HT2A Receptor Functional Activity

    PubMed Central

    Bazovkina, Darya V.; Kondaurova, Elena M.; Naumenko, Vladimir S.; Ponimaskin, Evgeni

    2015-01-01

    In the present study behavioral effects of the 5-HT2C serotonin receptor were investigated in different mouse strains. The 5-HT2C receptor agonist MK-212 applied intraperitoneally induced significant dose-dependent reduction of distance traveled in the open field test in CBA/Lac mice. This effect was receptor-specific because it was inhibited by the 5-HT2C receptor antagonist RS102221. To study the role of genotype in 5-HT2C receptor-induced hypolocomotion, locomotor activity of seven inbred mouse strains was measured after MK-212 acute treatment. We found that the 5-HT2C receptor stimulation by MK-212 decreased distance traveled in the open field test in CBA/Lac, C57Bl/6, C3H/He, and ICR mice, whereas it failed to affect locomotor activity in DBA/2J, Asn, and Balb/c mice. We also compared the interstrain differences in functional response to 5-HT2C and 5-HT2A receptors activation measured by the quantification of receptor-mediated head-twitches. These experiments revealed significant positive correlation between 5-HT2C and 5-HT2A receptors functional responses for all investigated mouse strains. Moreover, we found that 5-HT2A receptor activation with DOI did not change locomotor activity in CBA/Lac mice. Taken together, our data indicate the implication of 5-HT2C receptors in regulation of locomotor activity and suggest the shared mechanism for functional responses mediated by 5-HT2C and 5-HT2A receptors. PMID:26380122

  12. Genotype-Dependent Difference in 5-HT2C Receptor-Induced Hypolocomotion: Comparison with 5-HT2A Receptor Functional Activity.

    PubMed

    Bazovkina, Darya V; Kondaurova, Elena M; Naumenko, Vladimir S; Ponimaskin, Evgeni

    2015-01-01

    In the present study behavioral effects of the 5-HT2C serotonin receptor were investigated in different mouse strains. The 5-HT2C receptor agonist MK-212 applied intraperitoneally induced significant dose-dependent reduction of distance traveled in the open field test in CBA/Lac mice. This effect was receptor-specific because it was inhibited by the 5-HT2C receptor antagonist RS102221. To study the role of genotype in 5-HT2C receptor-induced hypolocomotion, locomotor activity of seven inbred mouse strains was measured after MK-212 acute treatment. We found that the 5-HT2C receptor stimulation by MK-212 decreased distance traveled in the open field test in CBA/Lac, C57Bl/6, C3H/He, and ICR mice, whereas it failed to affect locomotor activity in DBA/2J, Asn, and Balb/c mice. We also compared the interstrain differences in functional response to 5-HT2C and 5-HT2A receptors activation measured by the quantification of receptor-mediated head-twitches. These experiments revealed significant positive correlation between 5-HT2C and 5-HT2A receptors functional responses for all investigated mouse strains. Moreover, we found that 5-HT2A receptor activation with DOI did not change locomotor activity in CBA/Lac mice. Taken together, our data indicate the implication of 5-HT2C receptors in regulation of locomotor activity and suggest the shared mechanism for functional responses mediated by 5-HT2C and 5-HT2A receptors. PMID:26380122

  13. Genotype-Dependent Difference in 5-HT2C Receptor-Induced Hypolocomotion: Comparison with 5-HT2A Receptor Functional Activity.

    PubMed

    Bazovkina, Darya V; Kondaurova, Elena M; Naumenko, Vladimir S; Ponimaskin, Evgeni

    2015-01-01

    In the present study behavioral effects of the 5-HT2C serotonin receptor were investigated in different mouse strains. The 5-HT2C receptor agonist MK-212 applied intraperitoneally induced significant dose-dependent reduction of distance traveled in the open field test in CBA/Lac mice. This effect was receptor-specific because it was inhibited by the 5-HT2C receptor antagonist RS102221. To study the role of genotype in 5-HT2C receptor-induced hypolocomotion, locomotor activity of seven inbred mouse strains was measured after MK-212 acute treatment. We found that the 5-HT2C receptor stimulation by MK-212 decreased distance traveled in the open field test in CBA/Lac, C57Bl/6, C3H/He, and ICR mice, whereas it failed to affect locomotor activity in DBA/2J, Asn, and Balb/c mice. We also compared the interstrain differences in functional response to 5-HT2C and 5-HT2A receptors activation measured by the quantification of receptor-mediated head-twitches. These experiments revealed significant positive correlation between 5-HT2C and 5-HT2A receptors functional responses for all investigated mouse strains. Moreover, we found that 5-HT2A receptor activation with DOI did not change locomotor activity in CBA/Lac mice. Taken together, our data indicate the implication of 5-HT2C receptors in regulation of locomotor activity and suggest the shared mechanism for functional responses mediated by 5-HT2C and 5-HT2A receptors.

  14. Serotonin increases ERK1/2 phosphorylation in astrocytes by stimulation of 5-HT2B and 5-HT2C receptors.

    PubMed

    Li, Baoman; Zhang, Shiquen; Li, Min; Hertz, Leif; Peng, Liang

    2010-11-01

    We have previously shown that fluoxetine causes ERK(1/2) phosphorylation in cultured mouse astrocytes mediated exclusively by stimulation of 5-HT(2B) receptors (Li et al., 2008b). This raises the question whether this is also the case for serotonin (5-HT) itself. In the present study serotonin was found to induce ERK(1/2) phosphorylation by stimulation of 5-HT(2B) receptors with high affinity (EC(50): 20-30 pM), and by stimulation of 5-HT(2C) receptor with low affinity (EC(50): 1 microM or higher). ERK(1/2) phosphorylation induced by stimulation of either 5-HT(2B) or 5-HT(2C) receptors was mediated by epidermal growth factor (EGF) receptor transactivation (Peng et al., this issue), shown by the inhibitory effect of AG1478, an inhibitor of the EGF receptor tyrosine kinase, and GM6001, an inhibitor of Zn-dependent metalloproteinases, and thus of 5-HT(2B) receptor-mediated EGF receptor agonist release. It is discussed that the high potency of the 5-HT(2B)-mediated effect is consistent with literature data for binding affinity of serotonin to cloned human 5-HT(2B) receptors and with observations of low extracellular concentrations of serotonin in brain, which would allow a demonstrated moderate and modality-dependent increase in specific brain areas to activate 5-HT(2B) receptors. In contrast the relevance of the observed 5-HT(2C) receptors on astrocytes is questioned.

  15. The serotonergic hallucinogen 5-methoxy-N,N-dimethyltryptamine disrupts cortical activity in a regionally-selective manner via 5-HT(1A) and 5-HT(2A) receptors.

    PubMed

    Riga, Maurizio S; Bortolozzi, Analia; Campa, Letizia; Artigas, Francesc; Celada, Pau

    2016-02-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a natural hallucinogen, acting as a non-selective serotonin 5-HT(1A)/5-HT(2A)-R agonist. Psychotomimetic agents such as the non-competitive NMDA-R antagonist phencyclidine and serotonergic hallucinogens (DOI and 5-MeO-DMT) disrupt cortical synchrony in the low frequency range (<4 Hz) in rat prefrontal cortex (PFC), an effect reversed by antipsychotic drugs. Here we extend these observations by examining the effect of 5-MeO-DMT on low frequency cortical oscillations (LFCO, <4 Hz) in PFC, visual (V1), somatosensory (S1) and auditory (Au1) cortices, as well as the dependence of these effects on 5-HT(1A)-R and 5-HT(2A)-R, using wild type (WT) and 5-HT(2A)-R knockout (KO2A) anesthetized mice. 5-MeO-DMT reduced LFCO in the PFC of WT and KO2A mice. The effect in KO2A mice was fully prevented by the 5-HT(1A)-R antagonist WAY-100635. Systemic and local 5-MeO-DMT reduced 5-HT release in PFC mainly via 5-HT(1A)-R. Moreover, 5-MeO-DMT reduced LFCO in S1, Au1 and V1 of WT mice and only in V1 of KO2A mice, suggesting the involvement of 5-HT(1A)-R activation in the 5-MeO-DMT-induced disruption of V1 activity. In addition, antipsychotic drugs reversed 5-MeO-DMT effects in WT mice. The present results suggest that the hallucinogen action of 5-MeO-DMT is mediated by simultaneous alterations of the activity of sensory (S1, Au1, V1) and associative (PFC) cortical areas, also supporting a role of 5-HT(1A)-R stimulation in V1 and PFC, in addition to the well-known action on 5-HT(2A)-R. Moreover, the reversal by antipsychotic drugs of 5-MeO-DMT effects adds to previous literature supporting the usefulness of the present model in antipsychotic drug development.

  16. Discovering the mechanisms underlying serotonin (5-HT)2A and 5-HT2C receptor regulation following nicotine withdrawal in rats.

    PubMed

    Zaniewska, Magdalena; Alenina, Natalia; Wydra, Karolina; Fröhler, Sebastian; Kuśmider, Maciej; McCreary, Andrew C; Chen, Wei; Bader, Michael; Filip, Małgorzata

    2015-08-01

    We have previously demonstrated that nicotine withdrawal produces depression-like behavior and that serotonin (5-HT)2A/2C receptor ligands modulate that mood-like state. In the present study we aimed to identify the mechanisms (changes in radioligand binding, transcription or RNA-editing) related to such a behavioral outcome. Rats received vehicle or nicotine (0.4 mg/kg, s.c.) for 5 days in home cages. Brain 5-HT2A/2C receptors were analyzed on day 3 of nicotine withdrawal. Nicotine withdrawal increased [(3)H]ketanserin binding to 5-HT2A receptors in the ventral tegmental area and ventral dentate gyrus, yet decreased binding in the nucleus accumbens shell. Reduction in [(3)H]mesulergine binding to 5-HT2C receptors was seen in the ventral dentate gyrus. Profound decrease in the 5-HT2A receptor transcript level was noted in the hippocampus and ventral tegmental area. Out of five 5-HT2C receptor mRNA editing sites, deep sequencing data showed a reduction in editing at the E site and a trend toward reduction at the C site in the hippocampus. In the ventral tegmental area, a reduction for the frequency of CD 5-HT2C receptor transcript was seen. These results show that the reduction in the 5-HT2A receptor transcript level may be an auto-regulatory response to the increased receptor density in the hippocampus and ventral tegmental area during nicotine withdrawal, while decreased 5-HT2C receptor mRNA editing may explain the reduction in receptor labeling in the hippocampus. Serotonin (5-HT)2A/2C receptor ligands alleviate depression-like state in nicotine-withdrawn rats. Here, we show that the reduction in 5-HT2A receptor transcript level may be an auto-regulatory response to the increased receptor number in the hippocampus and ventral tegmental area during nicotine withdrawal, while attenuated 5-HT2C receptor mRNA editing in the hippocampus might explain reduced inverse agonist binding to 5-HT2C receptor and suggest a shift toward a population of more active receptors. 5

  17. New halogenated tris-(phenylalkyl)amines as h5-HT2B receptor ligands.

    PubMed

    Kapadia, Nirav; Ahmed, Shahrear; Harding, Wayne W

    2016-07-15

    A series of compounds in which various halogen substituents were incorporated into a phenyl ring of a tris-(phenylalkyl)amine scaffold, was synthesized and evaluated for affinity to h5-HT2 receptors. In general, all compounds were found to have good affinity for the 5-HT2B receptor and were selective over 5-HT2A and 5-HT2C receptors. Compound 9i was the most selective compound in this study and is the highest affinity 5-HT2B receptor ligand bearing a tris-(phenylalkyl)amine scaffold to date. PMID:27261181

  18. Blocking 5-HT2 receptor restores cardiovascular disorders in type 1 experimental diabetes

    PubMed Central

    García-Pedraza, José-Ángel; Ferreira-Santos, Pedro; Aparicio, Rubén; Montero, María-José; Morán, Asunción

    2016-01-01

    This study aimed to determine whether the serotonergic modulation, through selective 5-HT2 receptor blockade, restores cardiovascular disturbances in type 1 diabetic rats. Diabetes was induced by alloxan (150 mg/kg, s.c.) and maintained for 4 weeks. 5-HT2 receptor was blocked by sarpogrelate (30 mg/kg.day; 14 days; p.o.). Systolic blood pressure (SBP), heart rate (HR), glycaemia and body weight (BW) were monitored periodically. Animals were sacrificed at the end of the study and the heart, right kidney and thoracic aorta were removed; plasma samples were also obtained. Left ventricular hypertrophy index (LVH) and renal hypertrophy index (RH) were determined. Vascular function was studied in aorta rings; additionally, superoxide anion (O2•−) production (by lucigenin-enhanced chemiluminescence) and lipid peroxidation (by thiobarbituric acid reactive substances assay) were measured. Neither alloxan nor sarpogrelate treatments altered HR, LVH or endothelium-independent relaxation. SBP, glycaemia, BW, RH, O2•− production and lipid peroxidation were significantly altered in diabetic animals compared with controls. Sarpogrelate treatment considerably decreased SBP, RH, O2•− production and lipid peroxidation. Endothelium-dependent relaxation was severely reduced in diabetic animal aortas compared to controls; sarpogrelate treatment markedly improved it. Our outcomes show that selectively blocking 5-HT2 receptors has beneficial effects on impaired cardiovascular parameters in diabetes. PMID:27659784

  19. Activated astrocytes display increased 5-HT2a receptor expression in pathological states.

    PubMed

    Wu, C; Singh, S K; Dias, P; Kumar, S; Mann, D M

    1999-08-01

    In human brain tissues from patients dying with cerebral infarction, hypertensive encephalopathy, Alzheimer's disease, Huntington's disease, frontotemporal dementia, and Creutzfeldt-Jakob disease there is an activation of astrocytes. Such activated astrocytes display GFAP and strong 5-HT(2A), but not 5-HT(2B) or 5-HT(2C), receptor immunoreactivity; this 5-HT(2A) reaction has not been observed in normal, nonactivated astrocytes. It is suggested that an up-regulation of 5-HT(2A) receptors may be part of an early response reaction in astrocytes, possibly designed to maintain homeostasis or to induce secondary message pathways involving trophic factors or glycogenolysis. PMID:10415157

  20. The role of serotonin 5-HT2A receptors in memory and cognition

    PubMed Central

    Zhang, Gongliang; Stackman, Robert W.

    2015-01-01

    Serotonin 5-HT2A receptors (5-HT2ARs) are widely distributed in the central nervous system, especially in brain region essential for learning and cognition. In addition to endogenous 5-HT, several hallucinogens, antipsychotics, and antidepressants function by targeting 5-HT2ARs. Preclinical studies show that 5-HT2AR antagonists have antipsychotic and antidepressant properties, whereas agonist ligands possess cognition-enhancing and hallucinogenic properties. Abnormal 5-HT2AR activity is associated with a number of psychiatric disorders and conditions, including depression, schizophrenia, and drug addiction. In addition to its traditional activity as a G protein-coupled receptor (GPCR), recent studies have defined novel operations of 5-HT2ARs. Here we review progress in the (1) receptor anatomy and biology: distribution, signaling, polymerization and allosteric modulation; and (2) receptor functions: learning and memory, hallucination and spatial cognition, and mental disorders. Based on the recent progress in basic research on the 5-HT2AR, it appears that post-training 5-HT2AR activation enhances non-spatial memory consolidation, while pre-training 5-HT2AR activation facilitates fear extinction. Further, the potential influence that 5-HT2AR-elicited visual hallucinations may have on visual cue (i.e., landmark) guided spatial cognition is discussed. We conclude that the development of selective 5-HT2AR modulators to target distinct signaling pathways and neural circuits represents a new possibility for treating emotional, neuropsychiatric, and neurodegenerative disorders. PMID:26500553

  1. Structure-Activity Relationships of Constrained Phenylethylamine Ligands for the Serotonin 5-HT2 Receptors

    PubMed Central

    Isberg, Vignir; Paine, James; Leth-Petersen, Sebastian; Kristensen, Jesper L.; Gloriam, David E.

    2013-01-01

    Serotonergic ligands have proven effective drugs in the treatment of migraine, pain, obesity, and a wide range of psychiatric and neurological disorders. There is a clinical need for more highly 5-HT2 receptor subtype-selective ligands and the most attention has been given to the phenethylamine class. Conformationally constrained phenethylamine analogs have demonstrated that for optimal activity the free lone pair electrons of the 2-oxygen must be oriented syn and the 5-oxygen lone pairs anti relative to the ethylamine moiety. Also the ethyl linker has been constrained providing information about the bioactive conformation of the amine functionality. However, combined 1,2-constriction by cyclization has only been tested with one compound. Here, we present three new 1,2-cyclized phenylethylamines, 9–11, and describe their synthetic routes. Ligand docking in the 5-HT2B crystal structure showed that the 1,2-heterocyclized compounds can be accommodated in the binding site. Conformational analysis showed that 11 can only bind in a higher-energy conformation, which would explain its absent or low affinity. The amine and 2-oxygen interactions with D3.32 and S3.36, respectively, can form but shift the placement of the core scaffold. The constraints in 9–11 resulted in docking poses with the 4-bromine in closer vicinity to 5.46, which is polar only in the human 5-HT2A subtype, for which 9–11 have the lowest affinity. The new ligands, conformational analysis and docking expand the structure-activity relationships of constrained phenethylamines and contributes towards the development of 5-HT2 receptor subtype-selective ligands. PMID:24244317

  2. A comparison of the behavioural effects of 5-HT2A and 5-HT2C receptor agonists in the pigeon.

    PubMed

    Wolff, M C; Leander, J D

    2000-08-01

    Activity at the 5-HT2A receptor versus that of the 5-HT2C receptor was studied in three behavioural paradigms. In pigeons trained to discriminate 0.32 mg/kg of 1-(2,5-diemethoxy-4-iodophenyl)-2-aminopropane (DOI) (a mixed 5-HT2A/C receptor agonist) from vehicle, quipazine (0.1-1 mg/kg) and m-chlorophenylpiperazine (mCPP) (1-3 mg/kg) substituted for DOI in a dose-related manner, and this generalization was blocked by MDL100907 (0.0001-0.01 mg/kg), a selective 5-HT2A receptor antagonist. RO60-0175 (a relatively selective 5-HT2C agonist) induced partial substitution at 3 mg/kg that was antagonized by both MDL100907 and by 3 mg/kg of SB242084, a relatively selective 5-HT2C antagonist. MK212 (a mixed 5-HT2C/A agonist) induced partial substitution that was antagonized by SB242084, but not by MDL100907. On a progressive ratio 5 operant schedule (PR5) for food reinforcement, DOI, quipazine, mCPP, MK212 and R060-0175 decreased the break point; mCPP, DOI, MK212 and quipazine also induced vomiting. Although MDL100907 antagonized both the reductions of break point and vomiting, SB242084 only partially attenuated the decrease in break point observed with MK212 and DOI, and was unable to eliminate vomiting. Thus pharmacological activity at the 5-HT2A receptor can be behaviourally distinguished from pharmacological activity at the 5-HT2C receptor in the pigeon. Furthermore, the decrease in the break point of a PR5 schedule induced by 5-HT2C receptor agonists may be related to decreased appetite, whereas that induced by 5-HT2A receptor agonists may be due to unrelated factors, such as emesis. PMID:11103887

  3. Role for serotonin2A (5-HT2A) and 2C (5-HT2C) receptors in experimental absence seizures.

    PubMed

    Venzi, Marcello; David, François; Bellet, Joachim; Cavaccini, Anna; Bombardi, Cristiano; Crunelli, Vincenzo; Di Giovanni, Giuseppe

    2016-09-01

    Absence seizures (ASs) are the hallmark of childhood/juvenile absence epilepsy. Monotherapy with first-line anti-absence drugs only controls ASs in 50% of patients, indicating the need for novel therapeutic targets. Since serotonin family-2 receptors (5-HT2Rs) are known to modulate neuronal activity in the cortico-thalamo-cortical loop, the main network involved in AS generation, we investigated the effect of selective 5-HT2AR and 5-HT2CR ligands on ASs in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS), a well established polygenic rat model of these non-convulsive seizures. GAERS rats were implanted with fronto-parietal EEG electrodes under general anesthesia, and their ASs were later recorded under freely moving conditions before and after intraperitoneal administration of various 5-HT2AR and 5-HT2CR ligands. The 5-HT2A agonist TCB-2 dose-dependently decreased the total time spent in ASs, an effect that was blocked by the selective 5-HT2A antagonist MDL11,939. Both MDL11,939 and another selective 5-HT2A antagonist (M100,907) increased the length of individual seizures when injected alone. The 5-HT2C agonists lorcaserin and CP-809,101 dose-dependently suppressed ASs, an effect blocked by the selective 5-HT2C antagonist SB 242984. In summary, 5-HT2ARs and 5-HT2CRs negatively control the expression of experimental ASs, indicating that selective agonists at these 5-HT2R subtypes might be potential novel anti-absence drugs.

  4. Role for serotonin2A (5-HT2A) and 2C (5-HT2C) receptors in experimental absence seizures.

    PubMed

    Venzi, Marcello; David, François; Bellet, Joachim; Cavaccini, Anna; Bombardi, Cristiano; Crunelli, Vincenzo; Di Giovanni, Giuseppe

    2016-09-01

    Absence seizures (ASs) are the hallmark of childhood/juvenile absence epilepsy. Monotherapy with first-line anti-absence drugs only controls ASs in 50% of patients, indicating the need for novel therapeutic targets. Since serotonin family-2 receptors (5-HT2Rs) are known to modulate neuronal activity in the cortico-thalamo-cortical loop, the main network involved in AS generation, we investigated the effect of selective 5-HT2AR and 5-HT2CR ligands on ASs in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS), a well established polygenic rat model of these non-convulsive seizures. GAERS rats were implanted with fronto-parietal EEG electrodes under general anesthesia, and their ASs were later recorded under freely moving conditions before and after intraperitoneal administration of various 5-HT2AR and 5-HT2CR ligands. The 5-HT2A agonist TCB-2 dose-dependently decreased the total time spent in ASs, an effect that was blocked by the selective 5-HT2A antagonist MDL11,939. Both MDL11,939 and another selective 5-HT2A antagonist (M100,907) increased the length of individual seizures when injected alone. The 5-HT2C agonists lorcaserin and CP-809,101 dose-dependently suppressed ASs, an effect blocked by the selective 5-HT2C antagonist SB 242984. In summary, 5-HT2ARs and 5-HT2CRs negatively control the expression of experimental ASs, indicating that selective agonists at these 5-HT2R subtypes might be potential novel anti-absence drugs. PMID:27085605

  5. Tricyclic analogs cyclobenzaprine, amitriptyline and cyproheptadine inhibit the spinal reflex transmission through 5-HT(2) receptors.

    PubMed

    Honda, Motoko; Nishida, Takashi; Ono, Hideki

    2003-01-01

    The centrally acting muscle relaxant cyclobenzaprine decreases the amplitude of monosynaptic reflex potentials by inhibiting the facilitatory descending serotonergic influences in the spinal cord. Interestingly, the structure of cyclobenzaprine is much similar to those of amitriptyline and cyproheptadine. In the present study, we attempted to elucidate the relationship between 5-HT(2) receptor antagonistic and inhibitory effects of cyclobenzaprine, amitriptyline, cyproheptadine and ketanserin on the spinal reflexes. Cyclobenzaprine, amitriptyline, cyproheptadine, and ketanserin significantly inhibited facilitatory effects of 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) on flexor reflexes and mono- and polysynaptic spinal reflex potentials in spinalized rats. In intact rats, these drugs significantly reduced the mono- and polysynaptic reflex potentials. 5-HT depletion significantly prevented the depression of the spinal reflex potentials induced by these drugs. These results suggest that the inhibitory effects of cyclobenzaprine, amitriptyline, and cyproheptadine on mono- and polysynaptic reflex potentials are due to the inhibition of descending serotonergic systems through 5-HT(2) receptors in the spinal cord.

  6. INSIGHTS INTO THE REGULATION OF 5-HT2A RECEPTORS BY SCAFFOLDING PROTEINS AND KINASES

    PubMed Central

    Allen, John A.; Yadav, Prem N.

    2008-01-01

    SUMMARY 5-HT2A serotonin receptors are essential molecular targets for the actions of LSD-like hallucinogens and atypical antipsychotic drugs. 5-HT2A serotonin receptors also mediate a variety of physiological processes in peripheral and central nervous systems including platelet aggregation, smooth muscle contraction, and the modulation of mood and perception. Scaffolding proteins have emerged as important regulators of 5-HT2A receptors and our recent studies suggest multiple scaffolds exist for 5-HT2A receptors including PSD95, arrestin, and caveolin. In addition, a novel interaction has emerged between p90 ribosomal S6 kinase and 5-HT2A receptors which attenuates receptor signaling. This article reviews our recent studies and emphasizes the role of scaffolding proteins and kinases in the regulation of 5-HT2A trafficking, targeting and signaling. PMID:18640136

  7. Astrocytic transactivation by alpha2A-adrenergic and 5-HT2B serotonergic signaling.

    PubMed

    Peng, Liang; Li, Baoman; Du, Ting; Kong, Ebenezer K C; Hu, Xiaoling; Zhang, Shiquen; Shan, Xiaolei; Zhang, Meixia

    2010-11-01

    EGF receptor transactivation has been known for more than ten years. It is a signal pathway in which a G-protein-coupled receptor (GPCR) signal leads to release of a growth factor, which in turn activates the EGF receptor-tyrosine kinase in the same or adjacent cells. Astrocytes express a number of GPCRs and play key roles in brain function. Astrocytic transactivation is of special interest, since its autocrine effect may regulate gene expression and alter cell functions in the cells themselves and its paracrine effect may provide additional opportunities for cross-talk between astrocytes and their neighbors, such as neurons. The signal pathways of EGF transactivation are complicated. This does not only apply to the pathways leading to shedding of growth factor(s), but also to the downstream signal pathways of the EGF receptor, i.e., MAPK and PI3K. The latter may vary according to the type of growth factor released, the sites of tyrosine phosphorylation on the EGF receptor, and the duration of the phosphorylation. Using primary cell cultures we have found that dexmedetomidine, a specific alpha(2)-adrenergic receptor, induced shedding of HB-EGF from astrocytes, which in turn transactivated EGF receptors and stimulated astrocytic c-Fos and FosB expression. At the same time released HB-EGF protected neurons from injury caused by H(2)O(2). We have also confirmed dexmedetomidine transactivation in the brain in vivo. EGF transactivation by 5-HT(2B) receptor stimulation was responsible for up-regulation of cPLA(2) in astrocytes by fluoxetine, an antidepressant and inhibitor of the serotonin transporter, which also is a specific 5-HT(2B) agonist. PMID:20450946

  8. Serotonin increases ERK1/2 phosphorylation in astrocytes by stimulation of 5-HT2B and 5-HT2C receptors.

    PubMed

    Li, Baoman; Zhang, Shiquen; Li, Min; Hertz, Leif; Peng, Liang

    2010-11-01

    We have previously shown that fluoxetine causes ERK(1/2) phosphorylation in cultured mouse astrocytes mediated exclusively by stimulation of 5-HT(2B) receptors (Li et al., 2008b). This raises the question whether this is also the case for serotonin (5-HT) itself. In the present study serotonin was found to induce ERK(1/2) phosphorylation by stimulation of 5-HT(2B) receptors with high affinity (EC(50): 20-30 pM), and by stimulation of 5-HT(2C) receptor with low affinity (EC(50): 1 microM or higher). ERK(1/2) phosphorylation induced by stimulation of either 5-HT(2B) or 5-HT(2C) receptors was mediated by epidermal growth factor (EGF) receptor transactivation (Peng et al., this issue), shown by the inhibitory effect of AG1478, an inhibitor of the EGF receptor tyrosine kinase, and GM6001, an inhibitor of Zn-dependent metalloproteinases, and thus of 5-HT(2B) receptor-mediated EGF receptor agonist release. It is discussed that the high potency of the 5-HT(2B)-mediated effect is consistent with literature data for binding affinity of serotonin to cloned human 5-HT(2B) receptors and with observations of low extracellular concentrations of serotonin in brain, which would allow a demonstrated moderate and modality-dependent increase in specific brain areas to activate 5-HT(2B) receptors. In contrast the relevance of the observed 5-HT(2C) receptors on astrocytes is questioned. PMID:20450948

  9. Increased hypothalamic 5-HT2A receptor gene expression and effects of pharmacologic 5-HT2A receptor inactivation in obese A{sup y} mice

    SciTech Connect

    Nonogaki, Katsunori . E-mail: knonogaki-tky@umin.ac.jp; Nozue, Kana; Oka, Yoshitomo

    2006-12-29

    Serotonin (5-hydroxytryptamine; 5-HT) 2A receptors contribute to the effects of 5-HT on platelet aggregation and vascular smooth muscle cell proliferation, and are reportedly involved in decreases in plasma levels of adiponectin, an adipokine, in diabetic subjects. Here, we report that systemic administration of sarpogrelate, a 5-HT2A receptor antagonist, suppressed appetite and increased hypothalamic pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript, corticotropin releasing hormone, 5-HT2C, and 5-HT1B receptor gene expression. A{sup y} mice, which have ectopic expression of the agouti protein, significantly increased hypothalamic 5-HT2A receptor gene expression in association with obesity compared with wild-type mice matched for age. Systemic administration of sarpogrelate suppressed overfeeding, body weight gain, and hyperglycemia in obese A{sup y} mice, whereas it did not increase plasma adiponectin levels. These results suggest that obesity increases hypothalamic 5-HT2A receptor gene expression, and pharmacologic inactivation of 5-HT2A receptors inhibits overfeeding and obesity in A{sup y} mice, but did not increase plasma adiponectin levels.

  10. Functional Status of the Serotonin 5-HT2C Receptor (5-HT2CR) Drives Interlocked Phenotypes that Precipitate Relapse-Like Behaviors in Cocaine Dependence

    PubMed Central

    Anastasio, Noelle C; Stutz, Sonja J; Fox, Robert G; Sears, Robert M; Emeson, Ronald B; DiLeone, Ralph J; O'Neil, Richard T; Fink, Latham H; Li, Dingge; Green, Thomas A; Gerard Moeller, F; Cunningham, Kathryn A

    2014-01-01

    Relapse vulnerability in cocaine dependence is rooted in genetic and environmental determinants, and propelled by both impulsivity and the responsivity to cocaine-linked cues (‘cue reactivity'). The serotonin (5-hydroxytryptamine, 5-HT) 5-HT2C receptor (5-HT2CR) within the medial prefrontal cortex (mPFC) is uniquely poised to serve as a strategic nexus to mechanistically control these behaviors. The 5-HT2CR functional capacity is regulated by a number of factors including availability of active membrane receptor pools, the composition of the 5-HT2CR macromolecular protein complex, and editing of the 5-HT2CR pre-mRNA. The one-choice serial reaction time (1-CSRT) task was used to identify impulsive action phenotypes in an outbred rat population before cocaine self-administration and assessment of cue reactivity in the form of lever presses reinforced by the cocaine-associated discrete cue complex during forced abstinence. The 1-CSRT task reliably and reproducibly identified high impulsive (HI) and low impulsive (LI) action phenotypes; HI action predicted high cue reactivity. Lower cortical 5-HT2CR membrane protein levels concomitant with higher levels of 5-HT2CR:postsynaptic density 95 complex distinguished HI rats from LI rats. The frequency of edited 5-HT2CR mRNA variants was elevated with the prediction that the protein population in HI rats favors those isoforms linked to reduced signaling capacity. Genetic loss of the mPFC 5-HT2CR induced aggregate impulsive action/cue reactivity, suggesting that depressed cortical 5-HT2CR tone confers vulnerability to these interlocked behaviors. Thus, impulsive action and cue reactivity appear to neuromechanistically overlap in rodents, with the 5-HT2CR functional status acting as a neural rheostat to regulate, in part, the intersection between these vulnerability behaviors. PMID:23939424

  11. Evaluation of structural effects on 5-HT2A receptor antagonism by aporphines: identification of a new aporphine with 5-HT2A antagonist activity

    PubMed Central

    Ponnala, Shashikanth; Gonzales, Junior; Kapadia, Nirav; Navarro, Hernan A.; Harding, Wayne W.

    2014-01-01

    A set of aporphine analogs related to nantenine was evaluated for antagonist activity at 5-HT2A and α1A adrenergic receptors. With regards to 5-HT2A receptor antagonism, a C2 allyl group is detrimental to activity. The chiral center of nantenine is not important for 5-HT2A antagonist activity, however the N6 nitrogen atom is a critical feature for 5-HT2A antagonism. Compound 12b was the most potent 5-HT2A aporphine antagonist identified in this study and has similar potency to previously identified aporphine antagonists 2 and 3. The ring A and N6 modifications examined were detrimental to α1A antagonism. A slight eutomeric preference for the R enantiomer of nantenine was observed in relation to α1A antagonism. PMID:24630561

  12. Functional selectivity of hallucinogenic phenethylamine and phenylisopropylamine derivatives at human 5-hydroxytryptamine (5-HT)2A and 5-HT2C receptors.

    PubMed

    Moya, Pablo R; Berg, Kelly A; Gutiérrez-Hernandez, Manuel A; Sáez-Briones, Patricio; Reyes-Parada, Miguel; Cassels, Bruce K; Clarke, William P

    2007-06-01

    2,5-Dimethoxy-4-substituted phenylisopropylamines and phenethylamines are 5-hydroxytryptamine (serotonin) (5-HT)(2A/2C) agonists. The former are partial to full agonists, whereas the latter are partial to weak agonists. However, most data come from studies analyzing phospholipase C (PLC)-mediated responses, although additional effectors [e.g., phospholipase A(2) (PLA(2))] are associated with these receptors. We compared two homologous series of phenylisopropylamines and phenethylamines measuring both PLA(2) and PLC responses in Chinese hamster ovary-K1 cells expressing human 5-HT(2A) or 5-HT(2C) receptors. In addition, we assayed both groups of compounds as head shake inducers in rats. At the 5-HT(2C) receptor, most compounds were partial agonists for both pathways. Relative efficacy of some phenylisopropylamines was higher for both responses compared with their phenethylamine counterparts, whereas for others, no differences were found. At the 5-HT(2A) receptor, most compounds behaved as partial agonists, but unlike findings at 5-HT(2C) receptors, all phenylisopropylamines were more efficacious than their phenethylamine counterparts. 2,5-Dimethoxyphenylisopropylamine activated only the PLC pathway at both receptor subtypes, 2,5-dimethoxyphenethylamine was selective for PLC at the 5-HT(2C) receptor, and 2,5-dimethoxy-4-nitrophenethylamine was PLA(2)-specific at the 5-HT(2A) receptor. For both receptors, the rank order of efficacy of compounds differed depending upon which response was measured. The phenylisopropylamines were strong head shake inducers, whereas their phenethylamine congeners were not, in agreement with in vitro results and the involvement of 5-HT(2A) receptors in the head shake response. Our results support the concept of functional selectivity and indicate that subtle changes in ligand structure can result in significant differences in the cellular signaling profile.

  13. Serotonin 5-HT2 Receptor Interactions with Dopamine Function: Implications for Therapeutics in Cocaine Use Disorder

    PubMed Central

    Cunningham, Kathryn A.

    2015-01-01

    Cocaine exhibits prominent abuse liability, and chronic abuse can result in cocaine use disorder with significant morbidity. Major advances have been made in delineating neurobiological mechanisms of cocaine abuse; however, effective medications to treat cocaine use disorder remain to be discovered. The present review will focus on the role of serotonin (5-HT; 5-hydroxytryptamine) neurotransmission in the neuropharmacology of cocaine and related abused stimulants. Extensive research suggests that the primary contribution of 5-HT to cocaine addiction is a consequence of interactions with dopamine (DA) neurotransmission. The literature on the neurobiological and behavioral effects of cocaine is well developed, so the focus of the review will be on cocaine with inferences made about other monoamine uptake inhibitors and releasers based on mechanistic considerations. 5-HT receptors are widely expressed throughout the brain, and several different 5-HT receptor subtypes have been implicated in mediating the effects of endogenous 5-HT on DA. However, the 5-HT2A and 5-HT2C receptors in particular have been implicated as likely candidates for mediating the influence of 5-HT in cocaine abuse as well as to traits (e.g., impulsivity) that contribute to the development of cocaine use disorder and relapse in humans. Lastly, new approaches are proposed to guide targeted development of serotonergic ligands for the treatment of cocaine use disorder. PMID:25505168

  14. Serotonin 5-HT2 receptor interactions with dopamine function: implications for therapeutics in cocaine use disorder.

    PubMed

    Howell, Leonard L; Cunningham, Kathryn A

    2015-01-01

    Cocaine exhibits prominent abuse liability, and chronic abuse can result in cocaine use disorder with significant morbidity. Major advances have been made in delineating neurobiological mechanisms of cocaine abuse; however, effective medications to treat cocaine use disorder remain to be discovered. The present review will focus on the role of serotonin (5-HT; 5-hydroxytryptamine) neurotransmission in the neuropharmacology of cocaine and related abused stimulants. Extensive research suggests that the primary contribution of 5-HT to cocaine addiction is a consequence of interactions with dopamine (DA) neurotransmission. The literature on the neurobiological and behavioral effects of cocaine is well developed, so the focus of the review will be on cocaine with inferences made about other monoamine uptake inhibitors and releasers based on mechanistic considerations. 5-HT receptors are widely expressed throughout the brain, and several different 5-HT receptor subtypes have been implicated in mediating the effects of endogenous 5-HT on DA. However, the 5-HT2A and 5-HT2C receptors in particular have been implicated as likely candidates for mediating the influence of 5-HT in cocaine abuse as well as to traits (e.g., impulsivity) that contribute to the development of cocaine use disorder and relapse in humans. Lastly, new approaches are proposed to guide targeted development of serotonergic ligands for the treatment of cocaine use disorder. PMID:25505168

  15. Effects of age of serotonin 5-HT2 receptors in cocaine abusers and normal subjects

    SciTech Connect

    Wang, G.J.; Volkow, N.D.; Logan, J.

    1995-05-01

    We measured the effect of age on serotonin 5-HT2 receptor availability and compared it with the effects on dopamine D2 receptors on 19 chronic cocaine abusers (35.2{plus_minus}9.8 years, range 18-54 years old) and 19 age matched normal controls using positron emission tomography (PET) and F-18 N-methylspiperone (NMS). 5-HT2 Receptor availability was measure din frontal (FR), occipital (OC), cingulate (CI) and orbitofrontal (OF) cortices using the ratio of the distribution volume in the region of interest to that in the cerebelium (CB) which is a function of Bmax/Kd. D2 receptor availability in the basal ganglia was measured using the {open_quotes}ratio index{close_quotes} (slope of striatum/CB versus time over 180 min of the scan) which is a function of Bmax. 5-HT2 Receptor availability differed among regions and were as follows: CI>OF>OC>FC.5-HT2 Receptor availability decreased significantly with age. This effect was more accentuated for 5-HT2 receptor availability in FR than in OC(df=1, p<0.025). Striatal dopamine D2 receptors were also found to decrease significantly with age (r=0.63, p<0.007). In a given subject, D2 receptor availability was significantly correlated with 5-HT2 receptor availability in FR (r=0.51, p<0.035) but not in OC. The values for 5-HT2 receptor availability were not different in normal subjects and cocaine abusers. These results document a decline in 5-HT2 and D2 receptors with age and document an association between frontal 5-HT2 and striatal D2 receptor availability. These results did not show any changes in 5-HT2 receptor availability in cocaine abusers as compared to control subjects.

  16. A Novel Aminotetralin-Type Serotonin (5-HT) 2C Receptor-Specific Agonist and 5-HT2A Competitive Antagonist/5-HT2B Inverse Agonist with Preclinical Efficacy for Psychoses

    PubMed Central

    Morgan, Drake; Felsing, Daniel; Kondabolu, Krishnakanth; Rowland, Neil E.; Robertson, Kimberly L.; Sakhuja, Rajeev; Booth, Raymond G.

    2014-01-01

    Development of 5-HT2C agonists for treatment of neuropsychiatric disorders, including psychoses, substance abuse, and obesity, has been fraught with difficulties, because the vast majority of reported 5-HT2C selective agonists also activate 5-HT2A and/or 5-HT2B receptors, potentially causing hallucinations and/or cardiac valvulopathy. Herein is described a novel, potent, and efficacious human 5-HT2C receptor agonist, (−)-trans-(2S,4R)-4-(3′[meta]-bromophenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine (−)-MBP), that is a competitive antagonist and inverse agonist at human 5-HT2A and 5-HT2B receptors, respectively. (−)-MBP has efficacy comparable to the prototypical second-generation antipsychotic drug clozapine in three C57Bl/6 mouse models of drug-induced psychoses: the head-twitch response elicited by [2,5]-dimethoxy-4-iodoamphetamine; hyperlocomotion induced by MK-801 [(5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (dizocilpine maleate)]; and hyperlocomotion induced by amphetamine. (−)-MBP, however, does not alter locomotion when administered alone, distinguishing it from clozapine, which suppresses locomotion. Finally, consumption of highly palatable food by mice was not increased by (−)-MBP at a dose that produced at least 50% maximal efficacy in the psychoses models. Compared with (−)-MBP, the enantiomer (+)-MBP was much less active across in vitro affinity and functional assays using mouse and human receptors and also translated in vivo with comparably lower potency and efficacy. Results indicate a 5-HT2C receptor-specific agonist, such as (−)-MBP, may be pharmacotherapeutic for psychoses, without liability for obesity, hallucinations, heart disease, sedation, or motoric disorders. PMID:24563531

  17. 5-HT2 Receptor Regulation of Mitochondrial Genes: Unexpected Pharmacological Effects of Agonists and Antagonists.

    PubMed

    Harmon, Jennifer L; Wills, Lauren P; McOmish, Caitlin E; Demireva, Elena Y; Gingrich, Jay A; Beeson, Craig C; Schnellmann, Rick G

    2016-04-01

    In acute organ injuries, mitochondria are often dysfunctional, and recent research has revealed that recovery of mitochondrial and renal functions is accelerated by induction of mitochondrial biogenesis (MB). We previously reported that the nonselective 5-HT2 receptor agonist DOI [1-(4-iodo-2,5-dimethoxyphenyl)propan-2-amine] induced MB in renal proximal tubular cells (RPTCs). The goal of this study was to determine the role of 5-HT2 receptors in the regulation of mitochondrial genes and oxidative metabolism in the kidney. The 5-HT2C receptor agonist CP-809,101 [2-[(3-chlorophenyl)methoxy]-6-(1-piperazinyl)pyrazine] and antagonist SB-242,084 [6-chloro-2,3-dihydro-5-methyl-N-[6-[(2-methyl-3-pyridinyl)oxy]-3-pyridinyl]-1H-indole-1-carboxyamide dihydrochloride] were used to examine the induction of renal mitochondrial genes and oxidative metabolism in RPTCs and in mouse kidneys in the presence and absence of the 5-HT2C receptor. Unexpectedly, both CP-809,101 and SB-242,084 increased RPTC respiration and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) mRNA expression in RPTCs at 1-10 nM. In addition, CP-809,101 and SB-242,084 increased mRNA expression of PGC-1α and the mitochondrial proteins NADH dehydrogenase subunit 1 and NADH dehydrogenase (ubiquinone) β subcomplex 8 in mice. These compounds increased mitochondrial genes in RPTCs in which the 5-HT2C receptor was downregulated with small interfering RNA and in the renal cortex of mice lacking the 5-HT2C receptor. By contrast, the ability of these compounds to increase PGC-1α mRNA and respiration was blocked in RPTCs treated with 5-HT2A receptor small interfering RNA or the 5-HT2A receptor antagonist eplivanserin. In addition, the 5-HT2A receptor agonist NBOH-2C-CN [4-[2-[[(2-hydroxyphenyl)methyl]amino]ethyl]-2,5-dimethoxybenzonitrile] increased RPTC respiration at 1-100 nM. These results suggest that agonism of the 5-HT2A receptor induces MB and that the classic 5-HT2C receptor agonist CP

  18. A double dissociation in the effects of 5-HT2A and 5-HT2C receptors on the acquisition and expression of conditioned defeat in Syrian hamsters

    PubMed Central

    Harvey, Marquinta L.; Swallows, Cody L.; Cooper, Matthew A.

    2012-01-01

    Previous research indicates that serotonin enhances the development of stress-induced changes in behavior, although it is unclear which serotonin receptors mediate this effect. 5-HT2 receptors are potential candidates because activation at these receptors is associated with increased fear and anxiety. In this study we investigated whether pharmacological treatments targeting 5-HT2 receptors would alter the acquisition and expression of conditioned defeat. Conditioned defeat is a social defeat model in Syrian hamsters in which individuals display increased submissive and defensive behavior and a loss of territorial aggression when tested with a novel intruder 24 hours after an acute social defeat. The nonselective 5-HT2 receptor agonist mCPP (0.0, 0.3, 1.0 or 3.0 mg/kg) was injected either prior to social defeat training or prior to conditioned defeat testing. Also, the 5-HT2A receptor antagonist MDL 11,939 (0.0, 0.5 or 2.0 mg/kg) was injected either prior to social defeat training or prior to conditioned defeat testing. Injection of mCPP prior to testing increased the expression of conditioned defeat, but injection of mCPP prior to training did not alter the acquisition of conditioned defeat. Conversely, injection of MDL 11,939 prior to training reduced the acquisition of conditioned defeat, but injection of MDL 11,939 prior to testing did not alter the expression of conditioned defeat. Our data suggest that mCPP activates 5-HT2C receptors during testing to enhance the display of submissive and defensive behavior, whereas MDL 11,939 blocks 5-HT2A receptors during social defeat to disrupt the development of the conditioned defeat response. In sum, these results suggest that serotonin acts at separate 5-HT2 receptors to facilitate the acquisition and expression of defeat-induced changes in social behavior. PMID:22708954

  19. Expression of α(1)-adrenergic receptors in rat prefrontal cortex: cellular co-localization with 5-HT(2A) receptors.

    PubMed

    Santana, Noemí; Mengod, Guadalupe; Artigas, Francesc

    2013-06-01

    The prefrontal cortex (PFC) is involved in behavioural control and cognitive processes that are altered in schizophrenia. The brainstem monoaminergic systems control PFC function, yet the cells/networks involved are not fully known. Serotonin (5-HT) and norepinephrine (NE) increase PFC neuronal activity through the activation of α(1)-adrenergic receptors (α(1)ARs) and 5-HT(2A) receptors (5-HT(2A)Rs), respectively. Neurochemical and behavioural interactions between these receptors have been reported. Further, classical and atypical antipsychotic drugs share nm in vitro affinity for α(1)ARs while having preferential affinity for D(2) and 5-HT(2A)Rs, respectively. Using double in situ hybridization we examined the cellular expression of α(1)ARs in pyramidal (vGluT1-positive) and GABAergic (GAD(65/67)-positive) neurons in rat PFC and their co-localization with 5-HT(2A)Rs. α(1)ARs are expressed by a high proportion of pyramidal (59-85%) and GABAergic (52-79%) neurons. The expression in pyramidal neurons exhibited a dorsoventral gradient, with a lower percentage of α(1)AR-positive neurons in infralimbic cortex compared to anterior cingulate and prelimbic cortex. The expression of α(1A), α(1B) and α(1D) adrenergic receptors was segregated in different layers and subdivisions. In all them there is a high co-expression with 5-HT(2A)Rs (∼80%). These observations indicate that NE controls the activity of most PFC pyramidal neurons via α(1)ARs, either directly or indirectly, via GABAergic interneurons. Antipsychotic drugs can thus modulate the activity of PFC via α(1)AR blockade. The high co-expression with 5-HT(2A)Rs indicates a convergence of excitatory serotonergic and noradrenergic inputs onto the same neuronal populations. Moreover, atypical antipsychotics may exert a more powerful control of PFC function through the simultaneous blockade of α(1)ARs and 5-HT(2A)Rs.

  20. Expression of serotonin 5-HT(2A) receptors in the human cerebellum and alterations in schizophrenia.

    PubMed

    Eastwood, S L; Burnet, P W; Gittins, R; Baker, K; Harrison, P J

    2001-11-01

    The occurrence of human cerebellar serotonin 5-HT(2A) receptors (5-HT(2A)R) is equivocal and their status in schizophrenia unknown. Using a range of techniques, we investigated cerebellar 5-HT(2A)R expression in 16 healthy subjects and 16 subjects with schizophrenia. Immunocytochemistry with a monoclonal antibody showed labelling of Purkinje cell bodies and dendrites, as well as putative astrocytes. Western blots showed a major band at approximately 45 kDa. Receptor autoradiography and homogenate binding with [(3)H]ketanserin revealed cerebellar 5-HT(2A)R binding sites present at levels approximately a third of that in prefrontal cortex. 5-HT(2A)R mRNA was detected by reverse transcriptase-polymerase chain reaction, with higher relative levels in men than women. Several aspects of 5-HT(2A)R expression were altered in schizophrenia. 5-HT(2A)R immunoreactivity in Purkinje cells was partially redistributed from soma to dendrites and was increased in white matter. 5-HT(2A)R mRNA was decreased in the male patients. 5-HT(2A)R measured by dot blots and [(3)H]ketanserin binding (B(max) and K(d)) were not significantly altered in schizophrenia. These data show that 5-HT(2A)R gene products (mRNA, protein, binding sites) are expressed in the human cerebellum at nonnegligible levels; this bears upon 5-HT(2A)R imaging studies which use the cerebellum as a reference region. 5-HT(2A)R expression is altered in schizophrenia; the shift of 5-HT(2A)R from soma to dendrites is noteworthy since atypical antipsychotics have the opposite effect. Finally, the results emphasise that expression of a receptor gene is a mutifaceted process. Measurement of multiple parameters is necessary to give a clear picture of the normal situation and to show the profile of alterations in a disease. PMID:11574947

  1. Involvement of 5-HT2A receptors in MDMA reinforcement and cue-induced reinstatement of MDMA-seeking behaviour.

    PubMed

    Orejarena, María Juliana; Lanfumey, Laurence; Maldonado, Rafael; Robledo, Patricia

    2011-08-01

    The serotonergic system appears crucial for (±)-3,4-methylenedioxymethamphetamine (MDMA) reinforcing properties. Current evidence indicates that serotonin 5-HT2A receptors (5-HT2ARs) modulate mesolimbic dopamine (DA) activity and several behavioural responses related to the addictive properties of psychostimulants. This study evaluated the role of 5-HT2ARs in MDMA-induced reinforcement and hyperlocomotion, and the reinstatement of MDMA-seeking behaviour. Basal and MDMA-stimulated extracellular levels of DA in the nucleus accumbens (NAc) and serotonin and noradrenaline in the prefrontal cortex were also assessed. Self-administration of MDMA was blunted in 5-HT2AR knockout (KO) mice compared to wild-type (WT) littermates at both doses tested (0.125 and 0.25 mg/kg per infusion). Horizontal locomotion was increased by MDMA (10 and 20 mg/kg i.p.) to a higher extent in KO than in WT mice. DA outflow in the NAc was lower in KO compared to WT mice under basal conditions and after MDMA (20 mg/kg) challenge. In WT mice, MDMA (5 and 10 mg/kg i.p.) priming did not reinstate MDMA-seeking behaviour, while cue-induced reinstatement was prominent. This cue-induced reinstatement was blocked by administration of the selective 5-HT2AR antagonist, SR46349B (eplivanserin) at a dose of 0.5 mg/kg, but not at 0.25 mg/kg. Our results indicate that 5-HT2ARs are crucial for MDMA-induced reinforcement and cue-induced reinstatement of MDMA-seeking behaviour. These effects are probably due to the modulation of mesolimbic dopaminergic activity.

  2. Function and Distribution of 5-HT2 Receptors in the Honeybee (Apis mellifera)

    PubMed Central

    Thamm, Markus; Rolke, Daniel; Jordan, Nadine; Balfanz, Sabine; Schiffer, Christian; Baumann, Arnd; Blenau, Wolfgang

    2013-01-01

    Background Serotonin plays a pivotal role in regulating and modulating physiological and behavioral processes in both vertebrates and invertebrates. In the honeybee (Apis mellifera), serotonin has been implicated in division of labor, visual processing, and learning processes. Here, we present the cloning, heterologous expression, and detailed functional and pharmacological characterization of two honeybee 5-HT2 receptors. Methods Honeybee 5-HT2 receptor cDNAs were amplified from brain cDNA. Recombinant cell lines were established constitutively expressing receptor variants. Pharmacological properties of the receptors were investigated by Ca2+ imaging experiments. Quantitative PCR was applied to explore the expression patterns of receptor mRNAs. Results The honeybee 5-HT2 receptor class consists of two subtypes, Am5-HT2α and Am5-HT2β. Each receptor gene also gives rise to alternatively spliced mRNAs that possibly code for truncated receptors. Only activation of the full-length receptors with serotonin caused an increase in the intracellular Ca2+ concentration. The effect was mimicked by the agonists 5-methoxytryptamine and 8-OH-DPAT at low micromolar concentrations. Receptor activities were blocked by established 5-HT receptor antagonists such as clozapine, methiothepin, or mianserin. High transcript numbers were detected in exocrine glands suggesting that 5-HT2 receptors participate in secretory processes in the honeybee. Conclusions This study marks the first molecular and pharmacological characterization of two 5-HT2 receptor subtypes in the same insect species. The results presented should facilitate further attempts to unravel central and peripheral effects of serotonin mediated by these receptors. PMID:24324783

  3. Design, Synthesis, and Evaluation of Tetrasubstituted Pyridines as Potent 5-HT2C Receptor Agonists

    PubMed Central

    2015-01-01

    A series of pyrido[3,4-d]azepines that are potent and selective 5-HT2C receptor agonists is disclosed. Compound 7 (PF-04781340) is identified as a suitable lead owing to good 5-HT2C potency, selectivity over 5-HT2B agonism, and in vitro ADME properties commensurate with an orally available and CNS penetrant profile. The synthesis of a novel bicyclic tetrasubstituted pyridine core template is outlined, including rationale to account for the unexpected formation of aminopyridine 13 resulting from an ammonia cascade cyclization. PMID:25815155

  4. Multiple conformations of 5-HT2A and 5-HT 2C receptors in rat brain: an autoradiographic study with [125I](±)DOI.

    PubMed

    López-Giménez, Juan F; Vilaró, M Teresa; Palacios, José M; Mengod, Guadalupe

    2013-10-01

    Earlier autoradiographic studies with the 5-HT2 receptor agonist [(125)I](±)DOI in human brain showed unexpected biphasic competition curves for various 5-HT2A antagonists. We have performed similar studies in rat brain regions with selective 5-HT2A (M100907) and 5-HT2C (SB242084) antagonists together with ketanserin and mesulergine. The effect of GTP analogues on antagonist competition was also studied. Increasing concentrations of Gpp(NH)p or GTPγS resulted in a maximal inhibition of [(125)I](±)DOI-specific binding of approximately 50 %. M100907 competed biphasically in all regions. In the presence of 100 μM Gpp(NH)p, M100907 still displaced biphasically the remaining [(125)I](±)DOI binding. Ketanserin showed biphasic curves in some regions and monophasic curves in others. In the latter, Gpp(NH)p evidenced an additional high-affinity site. SB242084 competed biphasically in brainstem nuclei and monophasically in the other regions. In most areas, SB242084 affinities were not notably altered by Gpp(NH)p. Mesulergine competed monophasically in all regions without alteration by Gpp(NH)p. These results conform with the extended ternary complex model of receptor action: receptor exists as an equilibrium of multiple conformations, i.e. ground (R), partly activated (R*) and activated G-protein-coupled (R*G) conformation/s. Thus, [(125)I](±)DOI would label multiple conformations of both 5-HT2A and 5-HT2C receptors in rat brain, and M100907 and ketanserin would recognise these conformations with different affinities.

  5. The antidepressant effects of curcumin in the forced swimming test involve 5-HT1 and 5-HT2 receptors.

    PubMed

    Wang, Rui; Xu, Ying; Wu, Hong-Li; Li, Ying-Bo; Li, Yu-Hua; Guo, Jia-Bin; Li, Xue-Jun

    2008-01-01

    Curcuma longa is a main constituent of many traditional Chinese medicines, such as Xiaoyao-san, used to manage mental disorders effectively. Curcumin is a major active component of C. longa and its antidepressant-like effect has been previously demonstrated in the forced swimming test. The purpose of this study was to explore the possible contribution of serotonin (5-HT) receptors in the behavioral effects induced by curcumin in this animal model of depression. 5-HT was depleted by the tryptophan hydroxylase inhibitor p-chlorophenylalanine (PCPA, 100 mg/kg, i.p.) prior to the administration of curcumin, and the consequent results showed that PCPA blocked the anti-immobility effect of curcumin in forced swimming test, suggesting the involvement of the serotonergic system. Moreover, pre-treatment of pindolol (10 mg/kg, i.p., a beta-adrenoceptors blocker/5-HT(1A/1B) receptor antagonist), 4-(2'-methoxy-phenyl)-1-[2'-(n-2''-pyridinyl)-p-iodobenzamino-]ethyl-piperazine (p-MPPI, 1 mg/kg, s.c., a selective 5-HT(1A) receptor antagonist), or 1-(2-(1-pyrrolyl)-phenoxy)-3-isopropylamino-2-propanol (isamoltane, 2.5 mg/kg, i.p., a 5-HT(1B) receptor antagonist) was found to prevent the effect of curcumin (10 mg/kg) in forced swimming test. On the other hand, a sub-effective dose of curcumin (2.5 mg/kg, p.o.) produced a synergistic effect when given jointly with (+)-8-hydroxy-2-(di-n-propylamino)tetralin, (8-OH-DPAT, 1 mg/kg, i.p., a 5-HT(1A) receptor agonist), anpirtoline (0.25 mg/kg, i.p., a 5-HT(1B) receptor agonist) or ritanserin (4 mg/kg, i.p., a 5-HT(2A/2C) receptor antagonist), but not with ketanserin (5 mg/kg, i.p., a 5-HT(2A/2C) receptor antagonist with higher affinity to 5-HT(2A) receptor) or R(-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI, 1 mg/kg, i.p., a 5-HT(2A) receptor agonist). Taken together, these results indicate that the antidepressant-like effect of curcumin in the forced swimming test is related to serotonergic system and may be mediated by, at least

  6. 5-HT2A receptor activation is necessary for CO2-induced arousal

    PubMed Central

    Smith, Haleigh R.; MacAskill, Amanda; Richerson, George B.

    2015-01-01

    Hypercapnia-induced arousal from sleep is an important protective mechanism pertinent to a number of diseases. Most notably among these are the sudden infant death syndrome, obstructive sleep apnea and sudden unexpected death in epilepsy. Serotonin (5-HT) plays a significant role in hypercapnia-induced arousal. The mechanism of 5-HT's role in this protective response is unknown. Here we sought to identify the specific 5-HT receptor subtype(s) involved in this response. Wild-type mice were pretreated with antagonists against 5-HT receptor subtypes, as well as antagonists against adrenergic, cholinergic, histaminergic, dopaminergic, and orexinergic receptors before challenge with inspired CO2 or hypoxia. Antagonists of 5-HT2A receptors dose-dependently blocked CO2-induced arousal. The 5-HT2C receptor antagonist, RS-102221, and the 5-HT1A receptor agonist, 8-OH-DPAT, attenuated but did not completely block CO2-induced arousal. Blockade of non-5-HT receptors did not affect CO2-induced arousal. None of these drugs had any effect on hypoxia-induced arousal. 5-HT2 receptor agonists were given to mice in which 5-HT neurons had been genetically eliminated during embryonic life (Lmx1bf/f/p) and which are known to lack CO2-induced arousal. Application of agonists to 5-HT2A, but not 5-HT2C, receptors, dose-dependently restored CO2-induced arousal in these mice. These data identify the 5-HT2A receptor as an important mediator of CO2-induced arousal and suggest that, while 5-HT neurons can be independently activated to drive CO2-induced arousal, in the absence of 5-HT neurons and endogenous 5-HT, 5-HT receptor activation can act in a permissive fashion to facilitate CO2-induced arousal via another as yet unidentified chemosensor system. PMID:25925320

  7. The 5-HT2A serotonin receptor in executive function: Implications for neuropsychiatric and neurodegenerative diseases.

    PubMed

    Aznar, Susana; Hervig, Mona El-Sayed

    2016-05-01

    Executive function entails the interplay of a group of cognitive processes enabling the individual to anticipate consequences, attain self-control, and undertake appropriate goal-directed behaviour. Serotonin signalling at serotonin 2A receptors (5-HT2AR) has important effects on these behavioural and cognitive pathways, with the prefrontal cortex (PFC) as the central actor. Indeed, the 5-HT2ARs are highly expressed in PFC, where they modulate cortical activity and local network oscillations (brain waves). Numerous psychiatric and neurodegenerative diseases result in disrupted executive function. Animal and human studies have linked these disorders with alterations in the 5-HT2AR system, making this an important pharmacological target for the treatment of disorders with impaired cognitive function. This review aims to describe the current state of knowledge on the role of 5-HT2AR signalling in components of executive function, and how 5-HT2AR systems may relate to executive dysfunctions occurring in psychiatric and neurodegenerative diseases. We hope thereby to provide insight into how pharmacotherapy targeting the 5-HT2AR may ameliorate (or exacerbate) aspects of these disorders. PMID:26891819

  8. Possible involvement of serotonin 5-HT2 receptor in the regulation of feeding behavior through the histaminergic system.

    PubMed

    Murotani, Tomotaka; Ishizuka, Tomoko; Isogawa, Yuka; Karashima, Michitaka; Yamatodani, Atsushi

    2011-01-01

    The central histaminergic system has been proven to be involved in several physiological functions including feeding behavior. Some atypical antipsychotics like risperidone and aripiprazole are known to affect feeding behavior and to antagonize the serotonin (5-HT) receptor subtypes. To examine the possible neural relationship between the serotonergic and histaminergic systems in the anorectic effect of the antipsychotics, we studied the effect of a single administration of these drugs on food intake and hypothalamic histamine release in mice using in vivo microdialysis. Single injection of risperidone (0.5mg/kg, i.p.) or aripiprazole (1mg/kg, i.p.), which have binding affinities to 5-HT(1A, 2A, 2B) and (2C) receptors decreased food intake in C57BL/6N mice with concomitant increase of hypothalamic histamine release. However, a selective D(2)-antagonist, haloperidol (0.5mg/kg, i.p.), did not have effects on food intake or histamine release. Furthermore, in histamine H(1) receptor-deficient mice, there was no reduction of food intake induced by atypical antipsychotics, although histamine release was increased. Moreover, selective 5-HT(2A)-antagonists, volinanserin (0.5, 1mg/kg, i.p.) and ketanserin (5, 10mg/kg, i.p.), significantly increased histamine release and 5-HT(2B/2C) -antagonist, SB206553 (2.5, 5mg/kg, i.p.), slightly increased it. On the contrary, 5-HT(1A) -selective antagonist, WAY100635 (1, 2mg/kg), did not affect the histaminergic tone. These findings suggest that serotonin tonically inhibits histamine release via 5-HT(2) receptors and that antipsychotics enhance the release of hypothalamic histamine by blockade of 5-HT(2) receptors resulting in anorexia via the H(1) receptor.

  9. Support for 5-HT2C receptor functional selectivity in vivo utilizing structurally diverse, selective 5-HT2C receptor ligands and the 2,5-dimethoxy-4-iodoamphetamine elicited head-twitch response model

    PubMed Central

    Canal, Clinton E.; Booth, Raymond G.; Morgan, Drake

    2013-01-01

    There are seemingly conflicting data in the literature regarding the role of serotonin (5-HT) 5-HT2C receptors in the mouse head-twitch response (HTR) elicited by the hallucinogenic 5-HT2A/2B/2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI). Namely, both 5-HT2C receptor agonists and antagonists, regarding 5-HT2C receptor-mediated Gq-phospholipase C (PLC) signaling, reportedly attenuate the HTR response. The present experiments tested the hypothesis that both classes of 5-HT2C receptor compounds could attenuate the DOI-elicited-HTR in a single strain of mice, C57Bl/6J. The expected results were considered in accordance with ligand functional selectivity. Commercially-available 5-HT2C agonists (CP 809101, Ro 60-0175, WAY 161503, mCPP, and 1-methylpsilocin), novel 4-phenyl-2-N,N-dimethyl-aminotetralin (PAT)-type 5-HT2C agonists (with 5-HT2A/2B antagonist activity), and antagonists selective for 5-HT2A (M100907), 5-HT2C (SB-242084), and 5-HT2B/2C (SB-206553) receptors attenuated the DOI-elicited-HTR. In contrast, there were differential effects on locomotion across classes of compounds. The 5-HT2C agonists and M100907 decreased locomotion, SB-242084 increased locomotion, SB-206553 resulted in dose-dependent biphasic effects on locomotion, and the PATs did not alter locomotion. In vitro molecular pharmacology studies showed that 5-HT2C agonists potent for attenuating the DOI-elicited-HTR also reduced the efficacy of DOI to activate mouse 5-HT2C receptor-mediated PLC signaling in HEK cells. Although there were differences in affinities of a few compounds at mouse compared to human 5-HT2A or 5-HT2C receptors, all compounds tested retained their selectivity for either receptor, regardless of receptor species. Results indicate that 5-HT2C receptor agonists and antagonists attenuate the DOI-elicited-HTR in C57Bl/6J mice, and suggest that structurally diverse 5-HT2C ligands result in different 5-HT2C receptor signaling outcomes compared to DOI. PMID:23353901

  10. Role of 5-HT2A and 5-HT2C receptors in the stimulus effects of hallucinogenic drugs. II: Reassessment of LSD false positives.

    PubMed

    Fiorella, D; Rabin, R A; Winter, J C

    1995-10-01

    In the context of animal studies of hallucinogens, an LSD-false positive is defined as a drug known to be devoid of hallucinogenic activity in humans but which nonetheless fully mimics LSD in animals. Quipazine, MK-212, lisuride, and yohimbine have all been reported to be LSD false positives. The present study was designed to determine whether these compounds also substitute for the stimulus effects of the more pharmacologically selective hallucinogen (-)DOM (0.56 mg/kg, 75-min pretreatment time). The LSD and (-)DOM stimuli fully generalized to quipazine (3.0 mg/kg) and lisuride (0.2 mg/kg), but only partially generalized to MK-212 (0.1-1.0 mg/kg) and yohimbine (2-20 mg/kg). In combination tests, pirenpirone (0.08 mg/kg), a compound with both D2 and 5-HT2A affinity, blocked the substitution of quipazine and lisuride for the (-)DOM stimulus. Ketanserin (2.5 mg/kg), an antagonist with greater than 1 order of magnitude higher affinity for 5-HT2A receptors than either 5-HT2C or D2 receptors, also fully blocked the substitution of these compounds for the (-)DOM stimulus, while the selective D2 antagonist thiothixene (0.1-1.0 mg/kg) failed to block the substitution of lisuride for the (-)DOM stimulus. These results suggest that quipazine and lisuride substitute for the stimulus properties of the phenylalkglamine hallucinogen (-)DOM via agonist activity at 5-HT2A receptors. In addition, these results suggest that 5-HT2A agonist activity may be required, but is not in itself sufficient, for indolamine and phenylalkglamine compounds to elicit hallucinations in humans. Finally, it is concluded that MK-212 and yohimbine are neither LSD nor (-)DOM false positives.

  11. Dorsal raphe 5-HT(2C) receptor and GABA networks regulate anxiety produced by cocaine withdrawal.

    PubMed

    Craige, Caryne P; Lewandowski, Stacia; Kirby, Lynn G; Unterwald, Ellen M

    2015-06-01

    The serotonin system is intimately linked to both the mediation of anxiety and long-term effects of cocaine, potentially through interaction of inhibitory 5-HT2C receptor and gamma-aminobutyric acid (GABA) networks. This study characterized the function of the dorsal raphe (DR) 5-HT2C receptor and GABA network in anxiety produced by chronic cocaine withdrawal. C57BL/6 mice were injected with saline or cocaine (15 mg/kg) 3 times daily for 10 days, and tested on the elevated plus maze 30 min, 25 h, or 7 days after the last injection. Cocaine-withdrawn mice showed heightened anxiety-like behavior at 25 h of withdrawal, as compared to saline controls. Anxiety-like behavior was not different when mice were tested 30 min or 7 days after the last cocaine injection. Electrophysiology data revealed that serotonin cells from cocaine-withdrawn mice exhibited increased GABA inhibitory postsynaptic currents (IPSCs) in specific DR subregions dependent on withdrawal time (25 h or 7 d), an effect that was absent in cells from non-withdrawn mice (30 min after the last cocaine injection). Increased IPSC activity was restored to baseline levels following bath application of the 5-HT2C receptor antagonist, SB 242084. In a separate cohort of cocaine-injected mice at 25 h of withdrawal, both global and intra-DR blockade of 5-HT2C receptors prior to elevated plus maze testing attenuated anxiety-like behavior. This study demonstrates that DR 5-HT2C receptor blockade prevents anxiety-like behavior produced by cocaine withdrawal, potentially through attenuation of heightened GABA activity, supporting a role for the 5-HT2C receptor in mediating anxiety produced by cocaine withdrawal.

  12. Reactions between beta-casomorphins-7 and 5-HT2-serotonin receptors.

    PubMed

    Sokolov, O Yu; Pryanikova, N A; Kost, N V; Zolotarev, Yu A; Ryukert, E N; Zozulya, A A

    2005-11-01

    Radioreceptor analysis showed that human beta-casomorphin-7 displaced 3H-spiperone from 5-HT2-serotonin receptors of the rat cerebral frontal cortex: EC50 8 +/- 1 microM. Human and bovine beta-casomorphin-7 dose-dependently blocked serotonin-induced human platelet aggregation: IC50 5 +/- 1 and 20 +/- 4 microM, respectively. It was proved that beta-casomorphins-7 act as 5-HT2-serotonin receptor antagonists; one of the mechanisms of their biological effects is presumably associated with modulation of the serotoninergic system.

  13. The influence of 5-HT(2A) activity on a 5-HT(2C) specific in vivo assay used for early identification of multiple acting SERT and 5-HT(2C) receptor ligands.

    PubMed

    Éliás, Olivér; Nógrádi, Katalin; Domány, György; Szakács, Zoltán; Kóti, János; Szántay, Csaba; Tarcsay, Ákos; Keserű, György M; Gere, Anikó; Kiss, Béla; Kurkó, Dalma; Kolok, Sándor; Némethy, Zsolt; Kapui, Zoltán; Hellinger, Éva; Vastag, Mónika; Sághy, Katalin; Kedves, Rita; Gyertyán, István

    2016-02-01

    As a result of our exploratory programme aimed at elaborating dually acting compounds towards the serotonin (5-HT) transporter (SERT) and the 5-HT2C receptor a novel series of 3-amino-1-phenylpropoxy substituted diphenylureas was identified. From that collection two promising compounds (2 and 3) exhibiting highest 5-HT2C receptor affinity strongly inhibited the 5-HT2C receptor agonist 1-(3-chlorophenyl)piperazine (mCPP) induced hypomotility in mice. In further pursuance of that objective (2-aminoethyl)(benzyl)sulfamoyl diphenylureas and diphenylpiperazines have also been elaborated. Herein we report the synthesis of potent multiple-acting compounds from this new class. However, when two optimized representatives (6 and 14) possessing the desired in vitro profile were tested neither reduced the motor activity of mCPP treated animals. Comparative albeit limited in vitro structure-activity relationship (SAR) analysis and detailed in vivo studies are discussed and explanation for their intricate behaviour is proposed.

  14. SB 242084, a selective and brain penetrant 5-HT2C receptor antagonist.

    PubMed

    Kennett, G A; Wood, M D; Bright, F; Trail, B; Riley, G; Holland, V; Avenell, K Y; Stean, T; Upton, N; Bromidge, S; Forbes, I T; Brown, A M; Middlemiss, D N; Blackburn, T P

    1997-01-01

    SB 242084 has a high affinity (pKi 9.0) for the cloned human 5-HT2C receptor and 100- and 158-fold selectivity over the closely related cloned human 5-HT2B and 5-HT2A subtypes respectively. SB 242084 had over 100-fold selectivity over a range of other 5-HT, dopamine and adrenergic receptors. In studies of 5-HT-stimulated phosphatidylinositol hydrolysis using SH-SY5Y cells stably expressing the cloned human 5-HT2C receptor, SB 242084 acted as an antagonist with a pKb of 9.3, which closely resembled its corresponding receptor binding affinity. SB 242084 potently inhibited m-chlorophenylpiperazine (mCPP, 7 mgkg i.p. 20 min pre-test)-induced hypolocomotion in rats, a model of in vivo central 5-HT2C receptor function, with an ID50 of 0.11 mg/kg i.p., and 2.0 mg/kg p.o. SB 242084 (0.1-1 mg/kg i.p.) exhibited an anxiolytic-like profile in the rat social interaction test, increasing time spent in social interaction, but having no effect on locomotion. SB 242084 (0.1-1 mg/kg i.p.) also markedly increased punished responding in a rat Geller-Seifter conflict test of anxiety, but had no consistent effect on unpunished responding. A large acute dose of SB 242084 (30 mg/kg p.o.) had no effect on seizure susceptibility in the rat maximal electroshock seizure threshold test. Also, while SB 242084 (2 and 6 mg/kg p.o. 1 hr pre-test) antagonized the hypophagic response to mCPP, neither acute nor subchronic administration of the drug, for 5 days at 2 or 6 mg/kg p.o. twice daily, affected food intake or weight gain. The results suggest that SB 242084 is the first reported selective potent and brain penetrant 5-HT2C receptor antagonist and has anxiolytic-like activity, but does not possess either proconvulsant or hyperphagic properties which are characteristic of mutant mice lacking the 5-HT2C receptor. PMID:9225286

  15. Pyramidal Neurons in Rat Prefrontal Cortex Projecting to Ventral Tegmental Area and Dorsal Raphe Nucleus Express 5-HT2A Receptors

    PubMed Central

    Vázquez-Borsetti, Pablo; Cortés, Roser

    2009-01-01

    The prefrontal cortex (PFC) is involved in higher brain functions altered in schizophrenia. Classical antipsychotics modulate cortico-limbic circuits mainly through subcortical D2 receptor blockade, whereas second generation (atypical) antipsychotics preferentially target cortical 5-HT receptors. Anatomical and functional evidence supports a PFC-based control of the brainstem monoaminergic nuclei. Using a combination of retrograde tracing experiments and in situ hybridization we report that a substantial proportion of PFC pyramidal neurons projecting to the dorsal raphe (DR) and/or ventral tegmental area (VTA) express 5-HT2A receptors. Cholera-toxin B application into the DR and the VTA retrogradely labeled projection neurons in the medial PFC (mPFC) and in orbitofrontal cortex (OFC). In situ hybridization of 5-HT2A receptor mRNA in the same tissue sections labeled a large neuronal population in mPFC and OFC. The percentage of DR-projecting neurons expressing 5-HT2A receptor mRNA was ∼60% in mPFC and ∼75% in OFC (n = 3). Equivalent values for VTA-projecting neurons were ∼55% in both mPFC and ventral OFC. Thus, 5-HT2A receptor activation/blockade in PFC may have downstream effects on dopaminergic and serotonergic systems via direct descending pathways. Atypical antipsychotics may distally modulate monoaminergic cells through PFC 5-HT2A receptor blockade, presumably decreasing the activity of neurons receiving direct cortical inputs. PMID:19029064

  16. Therapeutic Potential of 5-HT2C Receptor Agonists for Addictive Disorders.

    PubMed

    Higgins, Guy A; Fletcher, Paul J

    2015-07-15

    The neurotransmitter 5-hydroxytryptamine (5-HT; serotonin) has long been associated with the control of a variety of motivated behaviors, including feeding. Much of the evidence linking 5-HT and feeding behavior was obtained from studies of the effects of the 5-HT releaser (dex)fenfluramine in laboratory animals and humans. Recently, the selective 5-HT2C receptor agonist lorcaserin received FDA approval for the treatment of obesity. This review examines evidence to support the use of selective 5-HT2C receptor agonists as treatments for conditions beyond obesity, including substance abuse (particularly nicotine, psychostimulant, and alcohol dependence), obsessive compulsive, and excessive gambling disorder. Following a brief survey of the early literature supporting a role for 5-HT in modulating food and drug reinforcement, we propose that intrinsic differences between SSRI and serotonin releasers may have underestimated the value of serotonin-based pharmacotherapeutics to treat clinical forms of addictive behavior beyond obesity. We then highlight the critical involvement of the 5-HT2C receptor in mediating the effect of (dex)fenfluramine on feeding and body weight gain and the evidence that 5-HT2C receptor agonists reduce measures of drug reward and impulsivity. A recent report of lorcaserin efficacy in a smoking cessation trial further strengthens the idea that 5-HT2C receptor agonists may have potential as a treatment for addiction. This review was prepared as a contribution to the proceedings of the 11th International Society for Serotonin Research Meeting held in Hermanus, South Africa, July 9-12, 2014.

  17. Synthesis and structure-affinity relationships of novel small molecule natural product derivatives capable of discriminating between serotonin 5-HT1A, 5-HT2A, 5-HT2C receptor subtypes

    PubMed Central

    Cummings, David F.; Canseco, Diana C.; Sheth, Pratikkumar; Johnson, James E.; Schetz, John A.

    2010-01-01

    Efforts to develop ligands that distinguish between clinically relevant 5-HT2A and 5-HT2C serotonin receptor subtypes have been challenging, because their sequences have high homology. Previous studies reported that a novel aplysinopsin belonging to a chemical class of natural products isolated from a marine sponge was selective for the 5-HT2C over the 5-HT2A receptor subtype. Our goal was to explore the 5-HT2A/2C receptor structure-affinity relationships of derivatives based on the aplysinopsin natural product pharmacophore. Twenty aplysinopsin derivatives were synthesized, purified and tested for their affinities for cloned human serotonin 5-HT1A, 5-HT2A and 5-HT2C receptor subtypes. Four compounds in this series had >30-fold selectivity for 5-HT2A or 5-HT2C receptors. The compound (E)-5-((5,6-dichloro-1H-indol-3-yl)methylene)-2-imino-1,3-dimethylimidazolidin-4-one (UNT-TWU-22, 16) had approximately 2100-fold selectivity for the serotonin 5-HT2C receptor subtype: an affinity for 5-HT2C equal to 46 nM and no detectable affinity for the 5-HT1A or 5-HT2A receptor subtypes. The two most important factors controlling 5-HT2A or 5-HT2C receptor subtype selectivity were the combined R1, R3-alkylation of the imidazolidinone ring and the type and number of halogens on the indole ring of the aplysinopsin pharmacophore. PMID:20570529

  18. Astrocytic 5-HT(2B) receptor as in vitro and in vivo target of SSRIs.

    PubMed

    Peng, Liang; Huang, Jingyang

    2012-12-01

    Most studies in this journal describe recent patents. The present study only has one such reference. Instead, we hope that its contents will trigger investigation of antidepressant drugs along the suggested lines and lead to ensuing patent applications - first and foremost by more focus on astrocytes. Clinical research has already pointed towards the importance of these cells, which account for one quarter of brain cortical volume and at least as much of its oxidative metabolism. Astrocytes express a multitude of receptors, including 5-HT(2B) receptors. In cultured astrocytes acute treatment with any of the five SSRIs, fluoxetine, fluvoxamine, sertraline, paroxetine, and citalopram, stimulates equipotently and with sufficient affinity to be therapeutically relevant, the 5-HT(2B) receptor. Following EGF receptor transactivation and a resultant autocrine HB-EGF stimulation, these drugs activate two interdependent signal pathways i) the Ras-Raf-Mek-ERK phosphorylation pathway and ii) the PI3K-AKT-GSK-3β pathway, eventually altering gene expression. Chronic treatment with fluoxetine upregulates gene expression of cPLA₂, ADAR2, GluK2 and 5-HT(2B) receptors, and RNA editing of the later two in cultured astrocytes and in astrocytes obtained by fluorescence-activated cell sorting of cells from fluoxetinetreated mice. Chronic treatment also down-regulates the Gq-protein-coupled receptor-induced increase of intracellular Ca²⁺ by inhibiting TRPC function, compromising astrocytic Ca²⁺ re-filling. This affects glycogenolysis and several steps in the signal pathways. Since astrocytes in the mature brain and in our cultures do not express SERT, both acute and chronic effects in cultured astrocytes must be directly mediated by 5-HT(2B) receptor activation. PMID:22963281

  19. Variability of 5-HT2C receptor cys23ser polymorphism among European populations and vulnerability to affective disorder.

    PubMed

    Lerer, B; Macciardi, F; Segman, R H; Adolfsson, R; Blackwood, D; Blairy, S; Del Favero, J; Dikeos, D G; Kaneva, R; Lilli, R; Massat, I; Milanova, V; Muir, W; Noethen, M; Oruc, L; Petrova, T; Papadimitriou, G N; Rietschel, M; Serretti, A; Souery, D; Van Gestel, S; Van Broeckhoven, C; Mendlewicz, J

    2001-09-01

    Substantial evidence supports a role for dysfunction of brain serotonergic (5-HT) systems in the pathogenesis of major affective disorder, both unipolar (recurrent major depression) and bipolar.(1) Modification of serotonergic neurotransmission is pivotally implicated in the mechanism of action of antidepressant drugs(2) and also in the action of mood stabilizing agents, particularly lithium carbonate.(3) Accordingly, genes that code for the multiple subtypes of serotonin receptors that have been cloned and are expressed in brain,(4) are strong candidates for a role in the genetic etiology of affective illness. We examined a structural variant of the serotonin 2C (5-HT2C) receptor gene (HTR2C) that gives rise to a cysteine to serine substitution in the N terminal extracellular domain of the receptor protein (cys23ser),(5) in 513 patients with recurrent major depression (MDD-R), 649 patients with bipolar (BP) affective disorder and 901 normal controls. The subjects were drawn from nine European countries participating in the European Collaborative Project on Affective Disorders. There was significant variation in the frequency of the HT2CR ser23 allele among the 10 population groups included in the sample (from 24.6% in Greek control subjects to 9.2% in Scots, chi(2) = 20.9, df 9, P = 0.01). Logistic regression analysis demonstrated that over and above this inter-population variability, there was a significant excess of HT2CR ser23 allele carriers in patients compared to normal controls that was demonstrable for both the MDD (chi(2) = 7.34, df 1, P = 0.006) and BP (chi(2) = 5.45, df 1, P = 0.02) patients. These findings support a possible role for genetically based structural variation in 5-HT2C receptors in the pathogenesis of major affective disorder.

  20. Tolerance to LSD and DOB induced shaking behaviour: differential adaptations of frontocortical 5-HT(2A) and glutamate receptor binding sites.

    PubMed

    Buchborn, Tobias; Schröder, Helmut; Dieterich, Daniela C; Grecksch, Gisela; Höllt, Volker

    2015-03-15

    Serotonergic hallucinogens, such as lysergic acid diethylamide (LSD) and dimethoxy-bromoamphetamine (DOB), provoke stereotype-like shaking behaviour in rodents, which is hypothesised to engage frontocortical glutamate receptor activation secondary to serotonin2A (5-HT2A) related glutamate release. Challenging this hypothesis, we here investigate whether tolerance to LSD and DOB correlates with frontocortical adaptations of 5-HT2A and/or overall-glutamate binding sites. LSD and DOB (0.025 and 0.25 mg/kg, i.p.) induce a ketanserin-sensitive (0.5 mg/kg, i.p., 30-min pretreatment) increase in shaking behaviour (including head twitches and wet dog shakes), which with repeated application (7× in 4 ds) is undermined by tolerance. Tolerance to DOB, as indexed by DOB-sensitive [(3)H]spiroperidol and DOB induced [(35)S]GTP-gamma-S binding, is accompanied by a frontocortical decrease in 5-HT2A binding sites and 5-HT2 signalling, respectively; glutamate-sensitive [(3)H]glutamate binding sites, in contrast, remain unchanged. As to LSD, 5-HT2 signalling and 5-HT2A binding, respectively, are not or only marginally affected, yet [(3)H]glutamate binding is significantly decreased. Correlation analysis interrelates tolerance to DOB to the reduced 5-HT2A (r=.80) as well as the unchanged [(3)H]glutamate binding sites (r=.84); tolerance to LSD, as opposed, shares variance with the reduction in [(3)H]glutamate binding sites only (r=.86). Given that DOB and LSD both induce tolerance, one correlating with 5-HT2A, the other with glutamate receptor adaptations, it might be inferred that tolerance can arise at either level. That is, if a hallucinogen (like LSD in our study) fails to induce 5-HT2A (down-)regulation, glutamate receptors (activated postsynaptic to 5-HT2A related glutamate release) might instead adapt and thus prevent further overstimulation of the cortex. PMID:25513973

  1. Tolerance to LSD and DOB induced shaking behaviour: differential adaptations of frontocortical 5-HT(2A) and glutamate receptor binding sites.

    PubMed

    Buchborn, Tobias; Schröder, Helmut; Dieterich, Daniela C; Grecksch, Gisela; Höllt, Volker

    2015-03-15

    Serotonergic hallucinogens, such as lysergic acid diethylamide (LSD) and dimethoxy-bromoamphetamine (DOB), provoke stereotype-like shaking behaviour in rodents, which is hypothesised to engage frontocortical glutamate receptor activation secondary to serotonin2A (5-HT2A) related glutamate release. Challenging this hypothesis, we here investigate whether tolerance to LSD and DOB correlates with frontocortical adaptations of 5-HT2A and/or overall-glutamate binding sites. LSD and DOB (0.025 and 0.25 mg/kg, i.p.) induce a ketanserin-sensitive (0.5 mg/kg, i.p., 30-min pretreatment) increase in shaking behaviour (including head twitches and wet dog shakes), which with repeated application (7× in 4 ds) is undermined by tolerance. Tolerance to DOB, as indexed by DOB-sensitive [(3)H]spiroperidol and DOB induced [(35)S]GTP-gamma-S binding, is accompanied by a frontocortical decrease in 5-HT2A binding sites and 5-HT2 signalling, respectively; glutamate-sensitive [(3)H]glutamate binding sites, in contrast, remain unchanged. As to LSD, 5-HT2 signalling and 5-HT2A binding, respectively, are not or only marginally affected, yet [(3)H]glutamate binding is significantly decreased. Correlation analysis interrelates tolerance to DOB to the reduced 5-HT2A (r=.80) as well as the unchanged [(3)H]glutamate binding sites (r=.84); tolerance to LSD, as opposed, shares variance with the reduction in [(3)H]glutamate binding sites only (r=.86). Given that DOB and LSD both induce tolerance, one correlating with 5-HT2A, the other with glutamate receptor adaptations, it might be inferred that tolerance can arise at either level. That is, if a hallucinogen (like LSD in our study) fails to induce 5-HT2A (down-)regulation, glutamate receptors (activated postsynaptic to 5-HT2A related glutamate release) might instead adapt and thus prevent further overstimulation of the cortex.

  2. Glossopharyngeal long-term facilitation requires serotonin 5-HT2 and NMDA receptors in rats

    PubMed Central

    Cao, Ying; Liu, Chun; Ling, Liming

    2009-01-01

    Although the glossopharyngeal nerve (IX) is mainly a sensory nerve, it innervates stylopharyngeus and some other pharyngeal muscles, whose excitations would likely improve upper airway patency since electrical IX stimulation increases pharyngeal airway size. As acute intermittent hypoxia (AIH) induces hypoglossal and genioglossal long-term facilitation (LTF), we hypothesized that AIH induces glossopharyngeal LTF, which requires serotonin 5-HT2 and NMDA receptors. Integrated IX activity was recorded in anesthetized, vagotomized, paralyzed and ventilated rats before, during and after 5 episodes of 3-min isocapnic 12% O2 with 3-min intervals of 50% O2. Either saline, ketanserin (5-HT2 antagonist, 2 mg/kg) or MK-801 (NMDA antagonist, 0.2 mg/kg) was (i.v.) injected 30–60 min before AIH. Both phasic and tonic IX activities were persistently increased (both P<0.05) after AIH in vehicle, but not ketanserin or MK-801, rats. Hypoxic glossopharyngeal responses were minimally changed after either drug. These data suggest that AIH induces both phasic and tonic glossopharyngeal LTF, which requires activation of 5-HT2 and NMDA receptors. PMID:20026287

  3. Serotonin 5-HT(2A) receptor activation induces 2-arachidonoylglycerol release through a phospholipase c-dependent mechanism.

    PubMed

    Parrish, Jason C; Nichols, David E

    2006-11-01

    To date, several studies have demonstrated that phospholipase C-coupled receptors stimulate the production of endocannabinoids, particularly 2-arachidonoylglycerol. There is now evidence that endocannabinoids are involved in phospholipase C-coupled serotonin 5-HT(2A) receptor-mediated behavioral effects in both rats and mice. The main objective of this study was to determine whether activation of the 5-HT(2A) receptor leads to the production and release of the endocannabinoid 2-arachidonoylglycerol. NIH3T3 cells stably expressing the rat 5-HT(2A) receptor were first incubated with [(3)H]-arachidonic acid for 24 h. Following stimulation with 10 mum serotonin, lipids were extracted from the assay medium, separated by thin layer chromatography, and analyzed by liquid scintillation counting. Our results indicate that 5-HT(2A) receptor activation stimulates the formation and release of 2-arachidonoylglycerol. The 5-HT(2A) receptor-dependent release of 2-arachidonoylglycerol was partially dependent on phosphatidylinositol-specific phospholipase C activation. Diacylglycerol produced downstream of 5-HT(2A) receptor-mediated phospholipase D or phosphatidylcholine-specific phospholipase C activation did not appear to contribute to 2-arachidonoylglycerol formation in NIH3T3-5HT(2A) cells. In conclusion, our results support a functional model where neuromodulatory neurotransmitters such as serotonin may act as regulators of endocannabinoid tone at excitatory synapses through the activation of phospholipase C-coupled G-protein coupled receptors. PMID:17010161

  4. Potential role of cortical 5-HT(2A) receptors in the anxiolytic action of cyamemazine in benzodiazepine withdrawal.

    PubMed

    Benyamina, Amine; Naassila, Mickaël; Bourin, Michel

    2012-07-30

    The antipsychotic cyamemazine is a potent serotonin 5-HT(2A) receptor (5-HT(2AR)) antagonist. A positron emission tomography (PET) study in human patients showed that therapeutic doses of cyamemazine produced near saturation of 5-HT(2AR) occupancy in the frontal cortex, whereas dopamine D(2) occupancy remained below the level for motor side effects observed with typical antipsychotics. Recently, numerous studies have revealed the involvement of 5-HT(2AR) in the pathophysiology of anxiety and a double-blind, randomized clinical trial showed similar efficacy of cyamemazine and bromazepam in reducing the anxiety associated with benzodiazepine withdrawal. Therefore, we reviewed the above articles about 5-HT(2AR) and anxiety in order to understand better the anxiolytic mechanisms of cyamemazine in benzodiazepine withdrawal. The 5-HT(2AR) is the most abundant serotonin receptor subtype in the cortex. Non-pharmacological studies with antisense oligodeoxynucleotides and genetically modified mice clearly showed that cortical 5-HT(2AR) signaling positively modulates anxiety-like behavior. With a few exceptions, most other studies reviewed here further support this view. Therefore, the anxiolytic efficacy of cyamemazine in benzodiazepine withdrawal can be due to a 5-HT(2AR) antagonistic activity at the cortical level.

  5. The 5-HT1A receptor agonist flesinoxan shares discriminative stimulus properties with some 5-HT2 receptor antagonists.

    PubMed

    Herremans, A H; van der Heyden, J A; van Drimmelen, M; Olivier, B

    1999-10-01

    Ten homing pigeons were trained to discriminate the selective 5-HT1A receptor agonist flesinoxan (0.25 mg/kg p.o.) from its vehicle in a fixed-ratio (FR) 30 two-key operant drug discrimination procedure. The 5-HT2 receptor antagonist mianserin (ED50 = 4.8 mg/kg) fully substituted for flesinoxan, whereas ketanserin, ritanserin, mesulergine, and SB200646A substituted only partially, suggesting an interaction between 5-HT1A and 5-HT2 receptors. However, the 5-HT2 receptor agonists [DOI (0.6 mg/kg), TFMPP (10 mg/kg), mCPP (4 mg/kg)] were unable to antagonize the flesinoxan cue. The 5-HT1A receptor antagonists DU125530 (0.5-13 mg/kg) and WAY100,635 (0.1-1 mg/kg) partially antagonized the generalization of mianserin to flesinoxan. Taken together, these results are in accordance with the hypothesis that 5-HT1A receptor activation exerts an inhibitory effect on activation of 5-HT2 receptors. These results are in broad agreement with existing theories on 5-HT1A and 5-HT2 receptor interaction. Furthermore, it is argued that the discriminative stimulus properties of a drug may undergo qualitative changes with prolonged training.

  6. Agonist-directed signaling of serotonin 5-HT2C receptors: differences between serotonin and lysergic acid diethylamide (LSD).

    PubMed

    Backstrom, J R; Chang, M S; Chu, H; Niswender, C M; Sanders-Bush, E

    1999-08-01

    For more than 40 years the hallucinogen lysergic acid diethylamide (LSD) has been known to modify serotonin neurotransmission. With the advent of molecular and cellular techniques, we are beginning to understand the complexity of LSD's actions at the serotonin 5-HT2 family of receptors. Here, we discuss evidence that signaling of LSD at 5-HT2C receptors differs from the endogenous agonist serotonin. In addition, RNA editing of the 5-HT2C receptor dramatically alters the ability of LSD to stimulate phosphatidylinositol signaling. These findings provide a unique opportunity to understand the mechanism(s) of partial agonism.

  7. Involvement of 5-HT2 receptors in the antinociceptive effect of Uncaria tomentosa.

    PubMed

    Jürgensen, Sofia; Dalbó, Sílvia; Angers, Paul; Santos, Adair Roberto Soares; Ribeiro-do-Valle, Rosa Maria

    2005-07-01

    Uncaria tomentosa (Willd.) DC (Rubiaceae) is a vine that grows in the Amazon rainforest. Its bark decoctions are used by Peruvian Indians to treat several diseases. Chemically, it consists mainly of oxindole alkaloids. An industrial fraction of U. tomentosa (UT fraction), containing 95% oxindole alkaloids, was used in this study in order to characterize its antinociceptive activity in chemical (acetic acid-induced abdominal writhing, formalin and capsaicin tests) and thermal (tail-flick and hot-plate tests) models of nociception in mice. UT fraction given by the i.p. route dose-dependently suppressed the behavioural response to the chemical stimuli in the models indicated and increased latencies in the thermal stimuli models. The antinociception caused by UT fraction in the formalin test was significantly attenuated by i.p. treatment of mice with ketanserin (5-HT2 receptor antagonist), but was not affected by naltrexone (opioid receptor antagonist), atropine (a nonselective muscarinic antagonist), l-arginine (precursor of nitric oxide), prazosin (alpha1-adrenoceptor antagonist), yohimbine (alpha2-adrenoceptor antagonist), and reserpine (a monoamine depleter). Together, these results indicate that UT fraction produces dose-related antinociception in several models of chemical and thermal pain through mechanisms that involve an interaction with 5-HT2 receptors.

  8. Controversies on the role of 5-HT(2C) receptors in the mechanisms of action of antidepressant drugs.

    PubMed

    Martin, Cedric B P; Hamon, Michel; Lanfumey, Laurence; Mongeau, Raymond

    2014-05-01

    Evidence from the various sources indicates alterations in 5-HT2C receptor functions in anxiety, depression and suicide, and other stress-related disorders treated with antidepressant drugs. Although the notion of a 5-HT2C receptor desensitization following antidepressant treatments is rather well anchored in the literature, this concept is mainly based on in vitro assays and/or behavioral assays (hypolocomotion, hyperthermia) that have poor relevance to anxio-depressive disorders. Our objective herein is to provide a comprehensive overview of the studies that have assessed the effects of antidepressant drugs on 5-HT2C receptors. Relevant molecular (second messengers, editing), neurochemical (receptor binding and mRNA levels), physiological (5-HT2C receptor-induced hyperthermia and hormone release), behavioral (5-HT2C receptor-induced changes in feeding, anxiety, defense and motor activity) data are summarized and discussed. Setting the record straight about drug-induced changes in 5-HT2C receptor function in specific brain regions should help to determine which pharmacotherapeutic strategy is best for affective and anxiety disorders. PMID:24631644

  9. Upregulation of 5-HT2C receptors in hippocampus of pilocarpine-induced epileptic rats: antagonism by Bacopa monnieri.

    PubMed

    Krishnakumar, Amee; Nandhu, M S; Paulose, C S

    2009-10-01

    Emotional disturbances, depressive mood, anxiety, aggressive behavior, and memory impairment are the common psychiatric features associated with temporal lobe epilepsy (TLE). The present study was carried out to investigate the role of Bacopa monnieri extract in hippocampus of pilocarpine-induced temporal lobe epileptic rats through the 5-HT(2C) receptor in relation to depression. Our results showed upregulation of 5-HT(2C) receptors with a decreased affinity in hippocampus of pilocarpine-induced epileptic rats. Also, there was an increase in 5-HT(2C) gene expression and inositol triphosphate content in epileptic hippocampus. Carbamazepine and B. monnieri treatments reversed the alterations in 5-HT(2C) receptor binding, gene expression, and inositol triphosphate content in treated epileptic rats as compared to untreated epileptic rats. The forced swim test confirmed the depressive behavior pattern during epilepsy that was nearly completely reversed by B. monnieri treatment.

  10. 5-HT2C Receptor Desensitization Moderates Anxiety in 5-HTT Deficient Mice: From Behavioral to Cellular Evidence

    PubMed Central

    Martin, Cédric BP; Martin, Vincent S.; Trigo, José M.; Chevarin, Caroline; Maldonado, Rafael; Fink, Latham H.; Cunningham, Kathryn A.; Hamon, Michel; Lanfumey, Laurence

    2015-01-01

    Background: Desensitization and blockade of 5-HT2C receptors (5-HT2CR) have long been thought to be central in the therapeutic action of antidepressant drugs. However, besides behavioral pharmacology studies, there is little in vivo data documenting antidepressant-induced 5-HT2CR desensitization in specific brain areas. Methods: Mice lacking the 5-HT reuptake carrier (5-HTT-/-) were used to model the consequences of chronic 5-HT reuptake inhibition with antidepressant drugs. The effect of this mutation on 5-HT2CR was evaluated at the behavioral (social interaction, novelty-suppressed feeding, and 5-HT2CR–induced hypolocomotion tests), the neurochemical, and the cellular (RT-qPCR, mRNA editing, and c-fos–induced expression) levels. Results: Although 5-HTT-/- mice had an anxiogenic profile in the novelty-suppressed feeding test, they displayed less 5-HT2CR–mediated anxiety in response to the agonist m-chlorophenylpiperazine in the social interaction test. In addition, 5-HT2CR–mediated inhibition of a stress-induced increase in 5-HT turnover, measured in various brain areas, was markedly reduced in 5-HTT-/- mutants. These indices of tolerance to 5-HT2CR stimulation were associated neither with altered levels of 5-HT2CR protein and mRNA nor with changes in pre-mRNA editing in the frontal cortex. However, basal c-fos mRNA production in cells expressing 5-HT2CR was higher in 5-HTT-/- mutants, suggesting an altered basal activity of these cells following sustained 5-HT reuptake carrier inactivation. Furthermore, the increased c-fos mRNA expression in 5-HT2CR–like immune-positive cortical cells observed in wild-type mice treated acutely with the 5-HT2CR agonist RO-60,0175 was absent in 5-HTT-/- mutants. Conclusions: Such blunted responsiveness of the 5-HT2CR system, observed at the cell signaling level, probably contributes to the moderation of the anxiety phenotype in 5-HTT-/- mice. PMID:25522398

  11. Control of sensory neuron excitability by serotonin involves 5HT2C receptors and Ca(2+)-activated chloride channels.

    PubMed

    Salzer, Isabella; Gantumur, Enkhbileg; Yousuf, Arsalan; Boehm, Stefan

    2016-11-01

    Serotonin (5HT) is a constituent of the so-called "inflammatory soup" that sensitizes nociceptors during inflammation. Nevertheless, receptors and signaling mechanisms that mediate an excitation of dorsal root ganglion (DRG) neurons by 5HT remained controversial. Therefore, capsaicin-sensitive nociceptive neurons dissociated from rat DRGs were used to investigate effects of 5HT on membrane excitability and currents through ligand- as well as voltage-gated ion channels. In 58% of the neurons tested, 5HT increased action potential firing, an effect that was abolished by the 5HT2 receptor antagonist ritanserin, but not by the 5HT3 antagonist tropisetron. Unlike other algogenic mediators, such as PGE2 and bradykinin, 5HT did not affect currents through TTX-resistant Na(+) channels or Kv7 K(+) channels. In all neurons investigated, 5HT potentiated capsaicin-evoked currents through TRPV1 channels, an effect that was attenuated by antagonists at 5HT2A (4 F 4 PP), 5HT2B (SB 204741), as well as 5HT2C (RS 102221) receptors. 5HT triggered slowly arising inward Cl(-) currents in 53% of the neurons. This effect was antagonized by the 5HT2C receptor blocker only, and the current was prevented by an inhibitor of Ca(2+)-activated chloride channels (CaCC). The 5HT-induced increase in action potential firing was also abolished by this CaCC blocker and by the TRPV1 inhibitor capsazepine. Amongst the subtype selective 5HT2 antagonists, only RS 102221 (5HT2C-selectively) counteracted the rise in action potential firing elicited by 5HT. These results show that 5HT excites DRG neurons mainly via 5HT2C receptors which concomitantly mediate a sensitization of TRPV1 channels and an opening of CaCCs.

  12. Native Serotonin 5-HT2C Receptors Are Expressed as Homodimers on the Apical Surface of Choroid Plexus Epithelial Cells

    PubMed Central

    Grinde, Ellinor; Lindsley, Tara; Teitler, Milt; Mancia, Filippo; Cowan, Ann; Mazurkiewicz, Joseph E.

    2015-01-01

    G protein–coupled receptors (GPCRs) are a prominent class of plasma membrane proteins that regulate physiologic responses to a wide variety of stimuli and therapeutic agents. Although GPCR oligomerization has been studied extensively in recombinant cells, it remains uncertain whether native receptors expressed in their natural cellular environment are monomers, dimers, or oligomers. The goal of this study was to determine the monomer/oligomer status of a native GPCR endogenously expressed in its natural cellular environment. Native 5-HT2C receptors in choroid plexus epithelial cells were evaluated using fluorescence correlation spectroscopy (FCS) with photon counting histogram (PCH). An anti–5-HT2C fragment antigen binding protein was used to label native 5-HT2C receptors. A known monomeric receptor (CD-86) served as a control for decoding the oligomer status of native 5-HT2C receptors by molecular brightness analysis. FCS with PCH revealed molecular brightness values for native 5-HT2C receptors equivalent to the molecular brightness of a homodimer. 5-HT2C receptors displayed a diffusion coefficient of 5 × 10−9 cm2/s and were expressed at 32 receptors/μm2 on the apical surface of choroid plexus epithelial cells. The functional significance and signaling capabilities of the homodimer were investigated in human embryonic kidney 293 cells using agonists that bind in a wash-resistant manner to one or both protomers of the homodimer. Whereas agonist binding to one protomer resulted in G protein activation, maximal stimulation required occupancy of both protomers. This study is the first to demonstrate the homodimeric structure of 5-HT2C receptors endogenously expressed in their native cellular environment, and identifies the homodimer as a functional signaling unit. PMID:25609374

  13. Dogmas and controversies in the handling of nitrogenous wastes: 5-HT2-like receptors are involved in triggering pulsatile urea excretion in the gulf toadfish, Opsanus beta.

    PubMed

    McDonald, M Danielle; Walsh, Patrick J

    2004-05-01

    When injected arterially, serotonin (5-hydroxytryptamine; 5-HT) has been shown to elicit naturally sized urea pulse events in the gulf toadfish, Opsanus beta. The goal of the present study was to determine which 5-HT receptor(s) was involved in mediating this serotonergic stimulation of the pulsatile excretion mechanism. Toadfish were surgically implanted with caudal arterial catheters and intraperitoneal catheters and injected with either 8-OH-DPAT (1 micro mol kg(-1)), a selective 5-HT(1A) receptor agonist, alpha-methyl-5-HT (1 micro mol kg(-1)), a 5-HT(2) receptor agonist, or ketanserin, a 5-HT(2) receptor antagonist (0.01, 0.1, 1 and 10 micro mol kg(-1)) plus alpha-methyl-5-HT. 8-OH-DPAT injection did not mediate an increase in urea excretion, ruling out the involvement of 5-HT(1A) receptors in pulsatile excretion. However, within 5 min, alpha-methyl-5-HT injection caused an increase in the excretion of urea in >95% (N=27) of the fish injected, with an average pulse size of 652+/-102 micro mol N kg(-1) (N=26). With alpha-methyl-5-HT injection there was no corresponding increase in ammonia or [(3)H]PEG 4000 permeability. Urea pulses elicited by alpha-methyl-5-HT were inhibited in a dose-dependent fashion by the 5-HT(2) receptor antagonist ketanserin, which at low doses caused a significant inhibition of pulse size and at higher doses significantly inhibited the occurrence of pulsatile excretion altogether. However, neither 8-OH-DPAT nor alpha-methyl 5-HT injection had an effect on plasma cortisol or plasma urea concentrations. These findings suggest the involvement of a 5-HT(2)-like receptor in the regulation of pulsatile urea excretion. PMID:15143134

  14. Anti-thrombotic and vascular effects of AR246686, a novel 5-HT2A receptor antagonist.

    PubMed

    Adams, John W; Ramirez, Juan; Ortuno, Danny; Shi, Yunqing; Thomsen, William; Richman, Jeremy G; Morgan, Michael; Dosa, Peter; Teegarden, Bradley R; Al-Shamma, Hussien; Behan, Dominic P; Connolly, Daniel T

    2008-05-31

    We have evaluated the anti-platelet and vascular pharmacology of AR246686, a novel 5-hydroxytryptamine2A (5-HT2A) receptor antagonist. AR246686 displayed high affinity binding to membranes of HEK cells stably expressing recombinant human and rat 5-HT2A receptors (Ki=0.2 nM and 0.4 nM, respectively). Functional antagonism (IC50=1.9 nM) with AR246686 was determined by inhibition of ligand-independent inositol phosphate accumulation in the 5-HT2A stable cell line. We observed 8.7-fold and 1360-fold higher affinity of AR246686 for the 5-HT2A receptor vs. 5-HT2C and 5-HT2B receptors, respectively. AR246686 inhibited 5-HT-induced amplification of ADP-stimulated human platelet aggregation (IC50=21 nM). Similar potency was observed for inhibition of 5-HT stimulated DNA synthesis in rat aortic smooth muscle cells (IC(50)=10 nM) and 5-HT-mediated contraction in rat aortic rings. Effects of AR246686 on arterial thrombosis and bleeding time were studied in a rat model of femoral artery occlusion. Oral dosing of AR246686 to rats resulted in prolongation of time to occlusion at 1 mg/kg, whereas increased bleeding time was observed at a dose of 20 mg/kg. In contrast, both bleeding time and time to occlusion were increased at the same dose (10 mg/kg) of clopidogrel. These results demonstrate that AR246686 is a high affinity 5-HT2A receptor antagonist with potent activity on platelets and vascular smooth muscle. Further, oral administration results in anti-thrombotic effects at doses that are free of significant effects on traumatic bleeding time.

  15. THE SEROTONIN (5-HT) 5-HT2A RECEPTOR: ASSOCIATION WITH INHERENT AND COCAINE-EVOKED BEHAVIORAL DISINHIBITION IN RATS

    PubMed Central

    Anastasio, Noelle C.; Stoffel, Erin C.; Fox, Robert G.; Bubar, Marcy J.; Rice, Kenner C.; Moeller, F. Gerard; Cunningham, Kathryn A.

    2011-01-01

    Alterations in the balance of functional activity within the serotonin (5-HT) system are hypothesized to underlie impulse control. Cocaine-dependent subjects consistently demonstrate greater impulsivity relative to non-drug using control subjects. Preclinical studies suggest that the 5-HT2A receptor (5-HT2AR) contributes to the regulation of impulsive behavior and also mediates some of the behavioral effects of cocaine. We hypothesized that the selective 5-HT2AR antagonist M100907 would reduce inherent levels of impulsivity and attenuate impulsive responding induced by cocaine in two animal models of impulsivity, the differential reinforcement of low rate (DRL) task and the one-choice serial reaction time (1-CSRT) task. M100907 reduced rates of responding in the DRL task and premature responding in the 1-CSRT task. Conversely, cocaine disrupted rates of responding in the DRL task and increased premature responding in the 1-CSRT task. M100907 attenuated cocaine-induced increases in specific markers of behavioral disinhibition in the DRL and 1-CSRT tasks. These results suggest that the 5-HT2AR regulates inherent impulsivity, and that blockade of the 5-HT2AR alleviates specific aspects of elevated levels of impulsivity induced by cocaine exposure. These data point to the 5-HT2AR as an important regulatory substrate in impulse control. PMID:21499079

  16. Cartography of 5-HT1A and 5-HT2A Receptor Subtypes in Prefrontal Cortex and Its Projections.

    PubMed

    Mengod, Guadalupe; Palacios, José M; Cortés, Roser

    2015-07-15

    Since the development of chemical neuroanatomical tools in the 1960s, a tremendous wealth of information has been generated on the anatomical components of the serotonergic system, at the microscopic level in the brain including the prefrontal cortex (PFC). The PFC receives a widespread distribution of serotonin (5-hydroxytryptamine, 5-HT) terminals from the median and dorsal raphe nuclei. 5-HT receptors were first visualized using radioligand autoradiography in the late 1980s and early 1990s and showed, in contrast to 5-HT innervation, a differential distribution of binding sites associated with different 5-HT receptor subtypes. Due to the cloning of the different 5-HT receptor subtype genes in the late 1980s and early 1990s, it was possible, using in situ hybridization histochemistry, to localize cells expressing mRNA for these receptors. Double in situ hybridization histochemistry and immunohistochemistry allowed for the chemical characterization of the phenotype of cells expressing 5-HT receptors. Tract tracing technology allowed a detailed cartography of the neuronal connections of PFC and other brain areas. Based on these data, maps have been constructed that reflect our current understanding of the different circuits where 5-HT receptors can modulate the electrophysiological, pharmacological, and behavioral functions of the PFC. We will review current knowledge regarding the cellular localization of 5-HT1A and 5-HT2A receptors in mammalian PFC and their possible functions in the neuronal circuits of the PFC. We will discuss data generated in our laboratory as well as in others, focusing on localization in the pyramidal and GABAergic neuronal cell populations in different mammalian species using molecular neuroanatomy and on the connections with other brain regions. PMID:25739427

  17. Cartography of 5-HT1A and 5-HT2A Receptor Subtypes in Prefrontal Cortex and Its Projections.

    PubMed

    Mengod, Guadalupe; Palacios, José M; Cortés, Roser

    2015-07-15

    Since the development of chemical neuroanatomical tools in the 1960s, a tremendous wealth of information has been generated on the anatomical components of the serotonergic system, at the microscopic level in the brain including the prefrontal cortex (PFC). The PFC receives a widespread distribution of serotonin (5-hydroxytryptamine, 5-HT) terminals from the median and dorsal raphe nuclei. 5-HT receptors were first visualized using radioligand autoradiography in the late 1980s and early 1990s and showed, in contrast to 5-HT innervation, a differential distribution of binding sites associated with different 5-HT receptor subtypes. Due to the cloning of the different 5-HT receptor subtype genes in the late 1980s and early 1990s, it was possible, using in situ hybridization histochemistry, to localize cells expressing mRNA for these receptors. Double in situ hybridization histochemistry and immunohistochemistry allowed for the chemical characterization of the phenotype of cells expressing 5-HT receptors. Tract tracing technology allowed a detailed cartography of the neuronal connections of PFC and other brain areas. Based on these data, maps have been constructed that reflect our current understanding of the different circuits where 5-HT receptors can modulate the electrophysiological, pharmacological, and behavioral functions of the PFC. We will review current knowledge regarding the cellular localization of 5-HT1A and 5-HT2A receptors in mammalian PFC and their possible functions in the neuronal circuits of the PFC. We will discuss data generated in our laboratory as well as in others, focusing on localization in the pyramidal and GABAergic neuronal cell populations in different mammalian species using molecular neuroanatomy and on the connections with other brain regions.

  18. 5-HT2A receptors control body temperature in mice during LPS-induced inflammation via regulation of NO production.

    PubMed

    Voronova, Irina P; Khramova, Galina M; Kulikova, Elizabeth A; Petrovskii, Dmitrii V; Bazovkina, Daria V; Kulikov, Alexander V

    2016-01-01

    G protein-coupled 5-HT2A receptors are involved in the regulation of numerous normal and pathological physiological functions. At the same time, its involvement in the regulation of body temperature (Tb) in normal conditions is obscure. Here we study the effect of the 5-HT2A receptor activation or blockade on Tb in sick animals. The experiments were carried out on adult C57BL/6 mouse males. Systemic inflammation and sickness were produced by lipopolysaccharide (LPS, 0.1mg/kg, ip), while the 5-HT2A receptor was stimulated or blocked through the administration of the receptor agonist DOI or antagonist ketanserin (1mg/kg), respectively. LPS, DOI or ketanserin alone produced no effect on Tb. However, administration of LPS together with a peripheral or central ketanserin injection reduced Tb (32.2°C). Ketanserin reversed the LPS-induced expression of inducible NO synthase in the brain. Consequently, an involvement of NO in the mechanism of the hypothermic effect of ketanserin in sick mice was hypothesized. Administration of LPS together with NO synthase inhibitor, l-nitro-arginine methyl ester (60mg/kg, ip) resulted in deep (28.5°C) and prolonged (8h) hypothermia, while administration of l-nitro-arginine methyl ester alone produced no effect on Tb. Thus, 5-HT2A receptors play a key role in Tb control in sick mice. Blockade of this GPCR produces hypothermia in mice with systemic inflammation via attenuation of LPS-induced NO production. These results indicate an unexpected role of 5-HT2A receptors in inflammation and NO production and have a considerable biological impact on understanding the mechanism of animal adaptation to pathogens and parasites. Moreover, adverse side effects of 5-HT2A receptor antagonists in patients with inflammation may be expected. PMID:26621247

  19. 5-HT2A receptors control body temperature in mice during LPS-induced inflammation via regulation of NO production.

    PubMed

    Voronova, Irina P; Khramova, Galina M; Kulikova, Elizabeth A; Petrovskii, Dmitrii V; Bazovkina, Daria V; Kulikov, Alexander V

    2016-01-01

    G protein-coupled 5-HT2A receptors are involved in the regulation of numerous normal and pathological physiological functions. At the same time, its involvement in the regulation of body temperature (Tb) in normal conditions is obscure. Here we study the effect of the 5-HT2A receptor activation or blockade on Tb in sick animals. The experiments were carried out on adult C57BL/6 mouse males. Systemic inflammation and sickness were produced by lipopolysaccharide (LPS, 0.1mg/kg, ip), while the 5-HT2A receptor was stimulated or blocked through the administration of the receptor agonist DOI or antagonist ketanserin (1mg/kg), respectively. LPS, DOI or ketanserin alone produced no effect on Tb. However, administration of LPS together with a peripheral or central ketanserin injection reduced Tb (32.2°C). Ketanserin reversed the LPS-induced expression of inducible NO synthase in the brain. Consequently, an involvement of NO in the mechanism of the hypothermic effect of ketanserin in sick mice was hypothesized. Administration of LPS together with NO synthase inhibitor, l-nitro-arginine methyl ester (60mg/kg, ip) resulted in deep (28.5°C) and prolonged (8h) hypothermia, while administration of l-nitro-arginine methyl ester alone produced no effect on Tb. Thus, 5-HT2A receptors play a key role in Tb control in sick mice. Blockade of this GPCR produces hypothermia in mice with systemic inflammation via attenuation of LPS-induced NO production. These results indicate an unexpected role of 5-HT2A receptors in inflammation and NO production and have a considerable biological impact on understanding the mechanism of animal adaptation to pathogens and parasites. Moreover, adverse side effects of 5-HT2A receptor antagonists in patients with inflammation may be expected.

  20. 5-HT2A Serotonin Receptor Density in Adult Male Rats’ Hippocampus after Morphine-based Conditioned Place Preference

    PubMed Central

    Mohammadi, Rabie; Jahanshahi, Mehrdad; Jameie, Seyed Behnamedin

    2016-01-01

    Introduction: A close interaction exists between the brain opioid and serotonin (5-HT) neurotransmitter systems. Brain neurotransmitter 5-HT plays an important role in the regulation of reward-related processing. However, a few studies have investigated the potential role of 5-HT2A receptors in this behavior. Therefore, the aim of the present study was to assess the influence of morphine and Conditioned Place Preference (CPP) on the density of 5-HT2A receptor in neurons of rat hippocampal formation. Methods: Morphine (10 mg/kg, IP) was injected in male Wistar rats for 7 consecutive days (intervention group), but control rats received just normal saline (1 mL/kg, IP). We used a hotplate test of analgesia to assess induction of tolerance to analgesic effects of morphine on days 1 and 8 of injections. Later, two groups of rats were sacrificed one day after 7 days of injections, their whole brains removed, and the striatum and PFC immediately dissected. Then, the NR1 gene expression was examined with a semi-quantitative RT-PCR method. Results: Our data showed that the maximum response was obtained with 2.5 mg/kg of morphine. The density of 5-HT2A receptor in different areas of the hippocampus increased significantly at sham-morphine and CPP groups (P<0.05). On the other hand, the CPP groups had more 5-HT2A receptors than sham-morphine groups and also the sham-morphine groups had more 5-HT2A receptors than the control groups. Conclusion: We concluded that the phenomenon of conditioned place preference induced by morphine can cause a significant increase in the number of serotonin 5-HT2A receptors in neurons of all areas of hippocampus. PMID:27563418

  1. Activation of 5-HT2B receptors in the medial amygdala causes anxiolysis in the social interaction test in the rat.

    PubMed

    Duxon, M S; Kennett, G A; Lightowler, S; Blackburn, T P; Fone, K C

    1997-01-01

    In a recent study, we reported the presence of neurones expressing 5-HT2B receptor protein in the medial amygdaloid nucleus of the adult rat brain. In the present study, bilateral micro-injection of the 5-HT2B receptor agonist 1-[5-(2-thienylmethoxy)-1H-3-indolyl]propan-2-amine hydrochloride (BW 723C86, 0.09 and 0.93 nmol, 5 min pretest) into the medial amygdaloid nuclei increased the total interaction time of a pair of male rats in the social interaction test, to a comparable extent to chlordiazepoxide (5 mg/kg p.o., 1 hr pretest) without altering locomotor activity; indicative of anxiolytic activity. The increase in social interaction was prevented by pretreatment with the 5-HT2C/2B receptor antagonist N-(1-methyl-5-indoyl)-N'-(3-pyridyl) urea hydrochloride (SB 200646A, at 2 but not 1 mg/kg p.o., 1 hr pretest), which did not alter behaviour when given alone. Intra-amygdala BW 723C86 (0.09, 0.31 and 0.93 nmol, 5 min pretest) did not significantly alter the number of punished responses made when the same rats were examined seven days later in a Vogel punished drinking test, although chlordiazepoxide (5 mg/kg p.o., 1 hr pretest) produced the expected anxiolytic profile. The results are consistent with the proposal that activation of 5-HT2B receptors in the medial amygdala induces anxiolysis in the social interaction model but has little effect on behaviour in a punished conflict model of anxiety. These data suggest that serotonergic neurotransmission in this nucleus may selectively affect specific kinds of anxiety generated by different animal models.

  2. Sound-induced seizures in serotonin 5-HT2c receptor mutant mice.

    PubMed

    Brennan, T J; Seeley, W W; Kilgard, M; Schreiner, C E; Tecott, L H

    1997-08-01

    The epilepsies are a heterogeneous collection of seizure disorders with a lifetime expectancy risk rate of 2-4%. A convergence of evidence indicates that heritable factors contribute significantly to seizure susceptibility. Genetically epilepsy-prone rodent strains have been frequently used to examine the effect of genetic factors on seizure susceptibility. The most extensively studied of these have been strains that are susceptible to sound-induced convulsions (audiogenic seizures, or AGSs). Early observations of the AGS phenomenon were made in the laboratory of Dr. Ivan Pavlov; in the course of appetite-conditioning experiments in mice, the loud bell used to signal food presentation unexpectedly produced seizures in some animals. In 1947, DBA/2 (D2) mice were found to exhibit a genetic susceptibility to AGSs stimulated by a doorbell mounted in an iron tub. Since this discovery, AGSs have been among the most intensively studied phenotypes in behavioural genetics. Although several genetic loci confer susceptibility to AGSs, the corresponding genes have not been cloned. We report that null mutant mice lacking serotonin 5-HT2C receptors are extremely susceptible to AGSs. The onset of susceptibility is between two and three months of age, with complete penetrance in adult animals. AGS-induced immediate early gene expression indicates that AGSs are subcortical phenomena in auditory circuits. This AGS syndrome is the first produced by a known genetic defect; it provides a robust model for the examination of serotoninergic mechanisms in epilepsy.

  3. Sound-induced seizures in serotonin 5-HT2c receptor mutant mice.

    PubMed

    Brennan, T J; Seeley, W W; Kilgard, M; Schreiner, C E; Tecott, L H

    1997-08-01

    The epilepsies are a heterogeneous collection of seizure disorders with a lifetime expectancy risk rate of 2-4%. A convergence of evidence indicates that heritable factors contribute significantly to seizure susceptibility. Genetically epilepsy-prone rodent strains have been frequently used to examine the effect of genetic factors on seizure susceptibility. The most extensively studied of these have been strains that are susceptible to sound-induced convulsions (audiogenic seizures, or AGSs). Early observations of the AGS phenomenon were made in the laboratory of Dr. Ivan Pavlov; in the course of appetite-conditioning experiments in mice, the loud bell used to signal food presentation unexpectedly produced seizures in some animals. In 1947, DBA/2 (D2) mice were found to exhibit a genetic susceptibility to AGSs stimulated by a doorbell mounted in an iron tub. Since this discovery, AGSs have been among the most intensively studied phenotypes in behavioural genetics. Although several genetic loci confer susceptibility to AGSs, the corresponding genes have not been cloned. We report that null mutant mice lacking serotonin 5-HT2C receptors are extremely susceptible to AGSs. The onset of susceptibility is between two and three months of age, with complete penetrance in adult animals. AGS-induced immediate early gene expression indicates that AGSs are subcortical phenomena in auditory circuits. This AGS syndrome is the first produced by a known genetic defect; it provides a robust model for the examination of serotoninergic mechanisms in epilepsy. PMID:9241279

  4. Up-regulation of 5-HT2B receptor density and receptor-mediated glycogenolysis in mouse astrocytes by long-term fluoxetine administration.

    PubMed

    Kong, Ebenezer K C; Peng, Liang; Chen, Ye; Yu, Albert C H; Hertz, Leif

    2002-02-01

    The effects were studied of short-term (1 week) versus long-term (2-3 weeks) fluoxetine treatment of primary cultures of mouse astrocytes, differentiated by treatment with dibutyryl cyclic AMP. From previous experiments it is known that acute treatment with fluoxetine stimulates glycogenolysis and increases free cytosolic Ca2+ concentration ([Ca2+]i]) in these cultures, whereas short-term (one week) treatment with 10 microM down-regulates the effects on glycogen and [Ca2+]i, when fluoxetine administration is renewed (or when serotonin is administered). Moreover, antagonist studies have shown that these responses are evoked by activation of a 5-HT2, receptor that is different from the 5-HT2A receptor and therefore at that time tentatively were interpreted as being exerted on 5-HT2C receptors. In the present study the cultures were found by RT-PCR to express mRNA for 5-HT2A and 5-HT2B receptors, but not for the 5-HT2C receptor, identifying the 5-HT2 receptor activated by fluoxetine as the 5-HT2B receptor, the most recently cloned 5-Ht2 receptor and a 5-HT receptor known to be more abundant in human, than in rodent, brain. Both short-term and long-term treatment with fluoxetine increased the specific binding of [3H]mesulergine, a ligand for alL three 5-HT2 receptors. Long-term treatment with fluoxetine caused an agonist-induced up-regulation of the glycogenolytic response to renewed administration of fluoxetine, whereas short-term treatment abolished the fluoxetine-induced hydrolysis of glycogen. Thus, during a treatment period similar to that required for fluoxetine's clinical response to occur, 5-HT2B-mediated effects are initially down-regulated and subsequently up-regulated. PMID:11930908

  5. The role of the 5-HT2A and 5-HT2C receptors in the stimulus effects of hallucinogenic drugs. III: The mechanistic basis for supersensitivity to the LSD stimulus following serotonin depletion.

    PubMed

    Fiorella, D; Helsley, S; Lorrain, D S; Rabin, R A; Winter, J C

    1995-10-01

    The present study was designed to determine the effects of p-chlorophenylalanine (PCPA) and p-chloroamphetamine (PCA) administration on (1) the levels of serotonin (5-hydroxytryptamine, 5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) in rat brain, (2) the sensitivity of LSD-trained rats to the stimulus effects of LSD, and (3) the maximal levels of 5-HT2A and 5-HT2C receptor mediated phosphoinositide (PI) hydrolysis in rat brain. PCA and PCPA both produced a significant depletion of whole brain 5-HT and 5-HIAA concentrations. The depletion of serotonin with PCPA, but not PCA, resulted in supersensitivity of LSD-trained subjects to the stimulus effects of LSD. Neither PCPA nor PCA treatment altered the maximal level of 5-HT2A receptor-mediated PI hydrolysis. However, PCPA, but not PCA, treatment resulted in a significant upregulation (46%, P < 0.05) of the maximal level of 5-HT2C receptor mediated PI hydrolysis. These data suggest that upregulation of the 5-HT2C receptor mediates the supersensitivity to LSD discriminative stimulus which follows the depletion of central nervous system serotonin by PCPA.

  6. Reelin influences the expression and function of dopamine D2 and serotonin 5-HT2A receptors: a comparative study.

    PubMed

    Varela, M J; Lage, S; Caruncho, H J; Cadavid, M I; Loza, M I; Brea, J

    2015-04-01

    Reelin is an extracellular matrix protein that plays a critical role in neuronal guidance during brain neurodevelopment and in synaptic plasticity in adults and has been associated with schizophrenia. Reelin mRNA and protein levels are reduced in various structures of post-mortem schizophrenic brains, in a similar way to those found in heterozygous reeler mice (HRM). Reelin is involved in protein expression in dendritic spines that are the major location where synaptic connections are established. Thus, we hypothesized that a genetic deficit in reelin would affect the expression and function of dopamine D2 and serotonin 5-HT2A receptors that are associated with the action of current antipsychotic drugs. In this study, D2 and 5-HT2A receptor expression and function were quantitated by using radioligand binding studies in the frontal cortex and striatum of HRM and wild-type mice (WTM). We observed increased expression (p<0.05) in striatum membranes and decreased expression (p<0.05) in frontal cortex membranes for both dopamine D2 and serotonin 5-HT2A receptors from HRM compared to WTM. Our results show parallel alterations of D2 and 5-HT2A receptors that are compatible with a possible hetero-oligomeric nature of these receptors. These changes are similar to changes described in schizophrenic patients and provide further support for the suitability of using HRM as a model for studying this disease and the effects of antipsychotic drugs. PMID:25637489

  7. 4-Bromo-2,5-dimethoxyphenethylamine (2C-B) and structurally related phenylethylamines are potent 5-HT2A receptor antagonists in Xenopus laevis oocytes

    PubMed Central

    Villalobos, Claudio A; Bull, Paulina; Sáez, Patricio; Cassels, Bruce K; Huidobro-Toro, J Pablo

    2004-01-01

    We recently described that several 2-(2,5-dimethoxy-4-substituted phenyl)ethylamines (PEAs), including 4-I=2C-I, 4-Br=2C-B, and 4-CH3=2C-D analogs, are partial agonists at 5-HT2C receptors, and show low or even negligible intrinsic efficacy at 5-HT2A receptors. These results raised the proposal that these drugs may act as 5-HT2 antagonists. To test this hypothesis, Xenopus laevis oocytes were microinjected with the rat clones for 5-HT2A or 5-HT2C receptors. The above-mentioned PEAs and its 4-H analog (2C-H) blocked the 5-HT-induced currents at 5-HT2A, but not at the 5-HT2C receptor, revealing 5-HT2 receptor subtype selectivity. The 5-HT2A receptor antagonism required a 2-min preincubation to attain maximum inhibition. All PEAs tested shifted the 5-HT concentration–response curves to the right and downward. Their potencies varied with the nature of the C(4) substituent; the relative rank order of their 5-HT2A receptor antagonist potency was 2C-I>2C-B>2C-D>2C-H. The present results demonstrate that in X. laevis oocytes, a series of 2,5-dimethoxy-4-substituted PEAs blocked the 5-HT2A but not the 5-HT2C receptor-mediated responses. As an alternative hypothesis, we suggest that the psychostimulant activity of the PEAs may not be exclusively associated with partial or full 5-HT2A receptor agonism. PMID:15006903

  8. The 5-HT2B receptor gene maps to 2q36.3-2q37.1

    SciTech Connect

    Le Coniat, M.; Berger, R.; Choi, Doo-Sup; Maroteaux, L.

    1996-02-15

    This article reports on the localization of the serotonin 5-HT2B receptor to human chromosome 2q36.3-2q37.1 using fluorescence in situ hybridization. The structure and function of this gene, as well as its expression, remain to be investigated in the human. 9 refs.

  9. Serotonin 5-HT2A receptor gene variants influence antidepressant response to repeated total sleep deprivation in bipolar depression.

    PubMed

    Benedetti, Francesco; Barbini, Barbara; Bernasconi, Alessandro; Fulgosi, Mara Cigala; Colombo, Cristina; Dallaspezia, Sara; Gavinelli, Chiara; Marino, Elena; Pirovano, Adele; Radaelli, Daniele; Smeraldi, Enrico

    2008-12-12

    5-HT2A receptor density in prefrontal cortex was associated with depression and suicide. 5-HT2A receptor gene polymorphism rs6313 was associated with 5-HT2A receptor binding potential, with the ability of individuals to use environmental support in order to prevent depression, and with sleep improvement after antidepressant treatment with mirtazapine. Studies on response to antidepressant drugs gave inconsistent results. Here we studied the effect of rs6313 on response to repeated total sleep deprivation (TSD) in 80 bipolar depressed inpatients treated with three consecutive TSD cycles (each one made of 36 h awake followed by a night of undisturbed sleep). All genotype groups showed comparable acute effects of the first TSD, but patients homozygotes for the T variant had better perceived and observed benefits from treatment than carriers of the C allele. These effects became significant after the first recovery night and during the following days, leading to a 36% higher final response rate (Hamilton depression rating<8). The higher density of postsynaptic excitatory 5-HT2A receptors in T/T homozygotes could have led to higher behavioural effects of increased 5-HT neurotransmission due to repeated TSD. Other possible mechanisms involve allostatic/homeostatic adaptation to sleep loss, and a different effect of the allele variants on epigenetic influences. Results confirm the interest for individual gene variants of the serotonin pathway in shaping clinical characteristics of depression and antidepressant response.

  10. The antidepressant 5-HT2A receptor antagonists pizotifen and cyproheptadine inhibit serotonin-enhanced platelet function.

    PubMed

    Lin, Olivia A; Karim, Zubair A; Vemana, Hari Priya; Espinosa, Enma V P; Khasawneh, Fadi T

    2014-01-01

    There is considerable interest in defining new agents or targets for antithrombotic purposes. The 5-HT2A receptor is a G-protein coupled receptor (GPCR) expressed on many cell types, and a known therapeutic target for many disease states. This serotonin receptor is also known to regulate platelet function. Thus, in our FDA-approved drug repurposing efforts, we investigated the antiplatelet activity of cyproheptadine and pizotifen, two antidepressant 5-HT2A Receptor antagonists. Our results revealed that cyproheptadine and pizotifen reversed serotonin-enhanced ADP-induced platelet aggregation in vitro and ex vivo. And the inhibitory effects of these two agents were found to be similar to that of EMD 281014, a 5-HT2A Receptor antagonist under development. In separate experiments, our studies revealed that these 5-HT2A receptor antagonists have the capacity to reduce serotonin-enhanced ADP-induced elevation in intracellular calcium levels and tyrosine phosphorylation. Using flow cytometry, we also observed that cyproheptadine, pizotifen, and EMD 281014 inhibited serotonin-enhanced ADP-induced phosphatidylserine (PS) exposure, P-selectin expression, and glycoprotein IIb-IIIa activation. Furthermore, using a carotid artery thrombosis model, these agents prolonged the time for thrombotic occlusion in mice in vivo. Finally, the tail-bleeding time was investigated to assess the effect of cyproheptadine and pizotifen on hemostasis. Our findings indicated prolonged bleeding time in both cyproheptadine- and pizotifen-treated mice. Notably, the increases in occlusion and bleeding times associated with these two agents were comparable to that of EMD 281014, and to clopidogrel, a commonly used antiplatelet drug, again, in a fashion comparable to clopidogrel and EMD 281014. Collectively, our data indicate that the antidepressant 5-HT2A antagonists, cyproheptadine and pizotifen do exert antiplatelet and thromboprotective effects, but similar to clopidogrel and EMD 281014, their

  11. 5-HT2 receptors mediate functional modulation of GABAa receptors and inhibitory synaptic transmissions in human iPS-derived neurons

    PubMed Central

    Wang, Haitao; Hu, Lingli; Liu, Chunhua; Su, Zhenghui; Wang, Lihui; Pan, Guangjin; Guo, Yiping; He, Jufang

    2016-01-01

    Neural progenitors differentiated from induced pluripotent stem cells (iPS) hold potentials for treating neurological diseases. Serotonin has potent effects on neuronal functions through multiple receptors, underlying a variety of neural disorders. Glutamate and GABA receptors have been proven functional in neurons differentiated from iPS, however, little is known about 5-HT receptor-mediated modulation in such neuronal networks. In the present study, human iPS were differentiated into cells possessing featured physiological properties of cortical neurons. Whole-cell patch-clamp recording was used to examine the involvement of 5-HT2 receptors in functional modulation of GABAergic synaptic transmission. We found that serotonin and DOI (a selective agonist of 5-HT2A/C receptor) reversibly reduced GABA-activated currents, and this 5-HT2A/C receptor mediated inhibition required G protein, PLC, PKC, and Ca2+ signaling. Serotonin increased the frequency of miniature inhibitory postsynaptic currents (mIPSCs), which could be mimicked by α-methylserotonin, a 5-HT2 receptor agonist. In contrast, DOI reduced both frequency and amplitude of mIPSCs. These findings suggested that in iPS-derived human neurons serotonin postsynaptically reduced GABAa receptor function through 5-HT2A/C receptors, but presynaptically other 5-HT2 receptors counteracted the action of 5-HT2A/C receptors. Functional expression of serotonin receptors in human iPS-derived neurons provides a pre-requisite for their normal behaviors after grafting. PMID:26837719

  12. Investigation of the role of 5-HT2 receptor subtypes in the control of the bladder and the urethra in the anaesthetized female rat

    PubMed Central

    Mbaki, Y; Ramage, A G

    2008-01-01

    Background and purpose: Micturition is controlled by central 5-HT-containing pathways. 5-HT2 receptors have been implicated in this system especially in control of the urethra, which is a drug target for treating urinary incontinence. This study investigates the role of each of the three subtypes of this receptor with emphasis on sphincter regulation. Experimental approach: Recordings of urethral and bladder pressure, external urethral sphincter (EUS) EMG, as well as the micturition reflex induced by bladder distension along with blood pressure and heart rate were made in anaesthetized rats. The effects of agonists and antagonists for 5-HT2 receptor subtypes were studied on these variables. Key results: The 5-HT2C agonists Ro 60-0175, WAY 161503 and mCPP, i.v., activated the EUS, increased urethral pressure and inhibited the micturition reflex. The effects of Ro 60-0175 on the EUS were blocked by the 5-HT2C antagonist SB 242084 and the 5-HT2A antagonists, ketanserin and MDL 100907. SB 242084 also blocked the inhibitory action on the reflex, while the 5-HT2B antagonist RS 127445 only blocked the increase in urethral pressure. The 5-HT2A receptor agonist DOI given i.v. or i.t. but not i.c.v. activated the EUS. Conclusions and implications: 5-HT2A/2C receptors located in the sacral spinal cord activate the EUS, while central 5-HT2C receptors inhibit the micturition reflex and 5-HT2B receptors, probably at the level of the urethra, increase urethral smooth muscle tone. Furthermore, 5-HT2B and 5-HT2C receptors do not seem to play an important role in the physiological regulation of micturition. PMID:18604238

  13. APORPHINOID ANTAGONISTS OF 5-HT2A RECEPTORS: FURTHER EVALUATION OF RING A SUBSTITUENTS AND THE SIZE OF RING C

    PubMed Central

    Ponnala, Shashikanth; Kapadia, Nirav; Navarro, Hernán A.; Harding, Wayne W.

    2014-01-01

    A series of ring A modified analogs of nantenine as well as structural variants in ring C were synthesized and evaluated for antagonist activity at 5-HT2A and α1A receptors. Halogenation improves 5-HT2A antagonist potency in molecules containing a C1 methoxyl/C2 methoxyl or C1 methoxyl/C2 hydroxyl moiety. Bromination or iodination (but not chlorination) with the latter moiety also significantly increased α1A antagonist potency. Homologation or contraction of ring C adversely affected antagonist activity at both receptors, implying that a six-membered ring C motif is beneficial for high antagonist potency at both receptors. Molecular docking studies suggest that the improved antagonist activity (by virtue of improved affinity) of C3 halogenated aporphines in this study, is attributable to favorable interactions with the C3 halogen and F339 and/or F340. PMID:24766771

  14. Variation within the serotonin (5-HT) 5-HT2C receptor system aligns with vulnerability to cocaine cue reactivity

    PubMed Central

    Anastasio, N C; Liu, S; Maili, L; Swinford, S E; Lane, S D; Fox, R G; Hamon, S C; Nielsen, D A; Cunningham, K A; Moeller, F G

    2014-01-01

    Cocaine dependence remains a challenging public health problem with relapse cited as a major determinant in its chronicity and severity. Environmental contexts and stimuli become reliably associated with its use leading to durable conditioned responses (‘cue reactivity') that can predict relapse as well as treatment success. Individual variation in the magnitude and influence of cue reactivity over behavior in humans and animals suggest that cue-reactive individuals may be at greater risk for the progression to addiction and/or relapse. In the present translational study, we investigated the contribution of variation in the serotonin (5-HT) 5-HT2C receptor (5-HT2CR) system in individual differences in cocaine cue reactivity in humans and rodents. We found that cocaine-dependent subjects carrying a single nucleotide polymorphism (SNP) in the HTR2C gene that encodes for the conversion of cysteine to serine at codon 23 (Ser23 variant) exhibited significantly higher attentional bias to cocaine cues in the cocaine-word Stroop task than those carrying the Cys23 variant. In a model of individual differences in cocaine cue reactivity in rats, we identified that high cocaine cue reactivity measured as appetitive approach behavior (lever presses reinforced by the discrete cue complex) correlated with lower 5-HT2CR protein expression in the medial prefrontal cortex and blunted sensitivity to the suppressive effects of the selective 5-HT2CR agonist WAY163909. Our translational findings suggest that the functional status of the 5-HT2CR system is a mechanistic factor in the generation of vulnerability to cocaine-associated cues, an observation that opens new avenues for future development of biomarker and therapeutic approaches to suppress relapse in cocaine dependence. PMID:24618688

  15. Chronic treatment with LY341495 decreases 5-HT(2A) receptor binding and hallucinogenic effects of LSD in mice.

    PubMed

    Moreno, José L; Holloway, Terrell; Rayannavar, Vinayak; Sealfon, Stuart C; González-Maeso, Javier

    2013-03-01

    Hallucinogenic drugs, such as lysergic acid diethylamide (LSD), mescaline and psilocybin, alter perception and cognitive processes. All hallucinogenic drugs have in common a high affinity for the serotonin 5-HT(2A) receptor. Metabotropic glutamate 2/3 (mGlu2/3) receptor ligands show efficacy in modulating the cellular and behavioral responses induced by hallucinogenic drugs. Here, we explored the effect of chronic treatment with the mGlu2/3 receptor antagonist 2S-2-amino-2-(1S,2S-2-carboxycyclopropan-1-yl)-3-(xanth-9-yl)-propionic acid (LY341495) on the hallucinogenic-like effects induced by LSD (0.24mg/kg). Mice were chronically (21 days) treated with LY341495 (1.5mg/kg), or vehicle, and experiments were carried out one day after the last injection. Chronic treatment with LY341495 down-regulated [(3)H]ketanserin binding in somatosensory cortex of wild-type, but not mGlu2 knockout (KO), mice. Head-twitch behavior, and expression of c-fos, egr-1 and egr-2, which are responses induced by hallucinogenic 5-HT(2A) agonists, were found to be significantly decreased by chronic treatment with LY341495. These findings suggest that repeated blockade of the mGlu2 receptor by LY341495 results in reduced 5-HT(2A) receptor-dependent hallucinogenic effects of LSD.

  16. Effects of RO 60 0175, a 5-HT(2C) receptor agonist, in three animal models of anxiety.

    PubMed

    Kennett, G; Lightowler, S; Trail, B; Bright, F; Bromidge, S

    2000-01-10

    There is some controversy as to whether 5-HT(2C) receptor agonists are anxiogenic or anxiolytic. The effects of the novel 5-HT(2C) receptor agonist, (S)-2-chloro-5-fluoro-indol-1-yl)-1-methyl ethylamine fumarate (RO 60 0175), in three models of anxiety were therefore tested. RO 60 0175 was found to induce hypolocomotion in rats at doses greater than 0.5 mg/kg s.c., an effect reversed by the selective 5-HT(2C) receptor antagonist, SB-242084. RO 60 0175 did not elicit anxiolytic-like responses in the social interaction test under high light unfamiliar conditions, but suppressed both time spent in social interaction and locomotion at doses of 1 and 3 mg/kg s.c., suggesting a sedative response. In the Vogel conflict test, RO 60 0175 had no significant action on the number of shocks taken. In the Geller-Seifter test, RO 60 0175 (0.3 and 1 mg/kg s.c.) simultaneously reduced both unpunished and punished lever pressing, a profile consistent with sedation. Finally, RO 60 0175 was tested in a rat social interaction test under low light familiar conditions optimal for the detection of anxiogenic-like responses. At 1 and 3 mg/kg s.c., RO 60 0175 reduced both time spent in social interaction and concurrent locomotion, a profile more consistent with sedation than anxiogenesis. In conclusion, RO 60 0175 induced sedative-like responses via 5-HT(2C) receptor activation, but was neither anxiolytic, nor clearly anxiogenic at the doses tested. PMID:10650160

  17. Effects of the 5-HT2B receptor agonist, BW 723C86, on three rat models of anxiety.

    PubMed

    Kennett, G A; Bright, F; Trail, B; Baxter, G S; Blackburn, T P

    1996-04-01

    1. BW 723C86 (3 and 10 mg kg-1, s.c. 30 min pretest), a 5-HT2B receptor agonist, increased total interaction, but not locomotion in a rat social interaction test, a profile consistent with anxiolysis. 2. The effect of BW 723C86 in the social interaction test is likely to be 5-HT2B receptor-mediated as it was prevented by pretreatment with the 5-HT2C/2B receptor antagonist, SB 200646A, (1 and 2 mg kg-1, p.o., 1 h pretest) which did not affect basal levels of social interaction at the doses used. 3. An anxiolytic-like action was also observed in the rat Geller-Seifter conflict test, where BW 723C86 (0.5-50 mg kg-1, s.c. 30 min pretest) modestly, but significantly increased punished, but not unpublished responding. 4. In a rat 5 min elevated x-maze test, BW 723C86 (1-10 mg kg-1, s.c.) had no significant effect. 5. The maximal anxiolytic-like effect of BW 723C86 approached that of the benzodiazepine anxiolytic, chloradiazepoxide (5 mg kg-1, s.c. 30 min pretest) in the social interaction test, but was markedly less in the Geller-Siefter test. The effect of BW 723C86 was also clearly less than chlordiazepoxide in the elevated x-maze procedure where it had no significant effect. 6. In conclusion, BW 723C86 exerted an appreciable anxiolytic-like profile in a rat social interaction test, but had a weaker effect in the Geller-Siefter and was ineffective in the elevated x-maze test used. These effects are likely to be 5-HT2B receptor-mediated. PMID:8730737

  18. N-acetylcysteine modulates hallucinogenic 5-HT(2A) receptor agonist-mediated responses: behavioral, molecular, and electrophysiological studies.

    PubMed

    Lee, Mei-Yi; Chiang, Chun-Cheng; Chiu, Hong-Yi; Chan, Ming-Huan; Chen, Hwei-Hsien

    2014-06-01

    N-acetylcysteine (NAC) has been reported to reverse the psychotomimetic effects in the rodent phencyclidine model of psychosis and shown beneficial effects in treating patients with schizophrenia. The effect of NAC has been associated with facilitating the activity of cystine-glutamate antiporters on glial cells concomitant with the release of non-vesicular glutamate, which mainly stimulates the presynaptic metabotropic glutamate receptor subtype 2 receptors (mGluR2). Recent evidence demonstrated that functional interactions between serotonin 5-HT2A receptor (5-HT(2A)R) and mGluR2 are responsible to unique cellular responses when targeted by hallucinogenic drugs. The present study determined the effects of NAC on hallucinogenic 5-HT(2A)R agonist (±)1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI)-elicited behavioral and molecular responses in mice and DOI-evoked field potentials in the mouse cortical slices. NAC significantly attenuated DOI-induced head twitch response and expression of c-Fos and Egr-2 in the infralimbic and motor cortex and suppressed the increase in the frequency of excitatory field potentials elicited by DOI in the medial prefrontal cortex. In addition, the cystine-glutamate antiporter inhibitor (S)-4-carboxyphenylglycine (CPG) and the mGluR2 antagonist LY341495 reversed the suppressing effects of NAC on DOI-induced head twitch and molecular responses and increased frequency of excitatory field potentials, supporting that NAC attenuates the 5-HT(2A)R-mediated hallucinogenic effects via increased activity of cystine-glutamate antiporter followed by activation of mGluR2 receptors. These findings implicate NAC as a potential therapeutic agent for hallucinations and psychosis associated with hallucinogen use and schizophrenia.

  19. Blockade of 5-HT2A receptors suppresses hyperthermic but not cardiovascular responses to psychosocial stress in rats.

    PubMed

    Beig, M I; Baumert, M; Walker, F R; Day, T A; Nalivaiko, E

    2009-03-31

    The aim of this study was to determine whether 5-HT2A receptors mediate cardiovascular and thermogenic responses to acute psychological stresses. For this purpose, adult male Wistar hooded rats instrumented for telemetric recordings of either electrocardiogram (ECG) (n=12) or arterial pressure (n=12) were subjected, on different days, to four 15-min episodes of social defeat. Prior to stress, animals received s.c. injection of the selective 5-HT2A receptor antagonist SR-46349B (trans-4-((3Z)3-[(2-dimethylaminoethyl)oxyimino]-3-(2-fluorophenyl)propen-1-yl)-phenol, hemifumarate) (at doses of 0.3, 1.0 and 3.0 mg/kg) or vehicle. The drug had no effect on basal heart rate or heart rate variability indexes, arterial pressure, and core body temperature. Social defeat elicited significant and substantial tachycardic (347+/-7 to 500+/-7 bpm), pressor (77+/-4 to 97+/-4 mm Hg) and hyperthermic (37.0+/-0.3 to 38.5+/-0.1 degrees C) responses. Blockade of 5-HT2A receptors, at all doses of the antagonist, completely prevented stress-induced hyperthermia. In contrast, stress-induced cardiovascular responses were not affected by the blockade (except small reduction of tachycardia by the highest dose of the drug). We conclude that in rats, 5-HT2A receptors mediate stress-induced hyperthermic responses, but are not involved in the genesis of stress-induced rises in heart rate or arterial pressure, and do not participate in cardiovascular control at rest. PMID:19356699

  20. Decreased Incentive Motivation Following Knockout or Acute Blockade of the Serotonin Transporter: Role of the 5-HT2C Receptor.

    PubMed

    Browne, Caleb J; Fletcher, Paul J

    2016-09-01

    Acute pharmacological elevation of serotonin (5-hydroxytryptamine; 5-HT) activity decreases operant responding for primary reinforcers, suggesting that 5-HT reduces incentive motivation. The mechanism by which 5-HT alters incentive motivation is unknown, but parallel evidence that 5-HT2C receptor agonists also reduce responding for primary reinforcers implicates this receptor as a potential candidate. These experiments examined whether chronic and acute disruptions of serotonin transporter (SERT) activity altered incentive motivation, and whether the 5-HT2C receptor mediated the effects of elevated 5-HT on behavior. To assess incentive motivation, we measured responding for three different reinforcers: a primary reinforcer (saccharin), a conditioned reinforcer (CRf), and an unconditioned sensory reinforcer (USRf). In the chronic condition, responding was compared between SERT knockout (SERT-KO) mice and their wild-type littermates. In the acute condition, responding was examined in wild-type mice following treatment with 10 or 20 mg/kg citalopram, or its vehicle. The ability of the selective 5-HT2C antagonist SB 242084 to prevent the effects of SERT-KO and citalopram on responding was subsequently examined. Both SERT-KO and citalopram reduced responding for saccharin, a CRf, and a USRf. Treatment with SB 242084 enhanced responding for a CRf and a USRf in SERT-KO mice and blocked the effects of citalopram on CRf and USRf responding. However, SB 242084 was unable to prevent the effects of SERT-KO or citalopram on responding for saccharin. These results support a powerful inhibitory function for 5-HT in the control of incentive motivation, and indicate that the 5-HT2C receptor mediates these effects of 5-HT in a reinforcer-dependent manner. PMID:27125304

  1. Differential modulation of feline defensive rage behavior in the medial hypothalamus by 5-HT1A and 5-HT2 receptors.

    PubMed

    Hassanain, M; Bhatt, S; Siegel, A

    2003-08-15

    Previous studies have established that the expression of defensive rage behavior in the cat is mediated over reciprocal pathways that link the medial hypothalamus and the dorsolateral quadrant of the midbrain periaqueductal gray matter (PAG). The present study was designed to determine the roles played by 5-HT(1A) and 5-HT(2C) receptors in the medial hypothalamus on the expression of defensive rage behavior elicited from electrical stimulation of the PAG. Monopolar stimulating electrodes were placed in the midbrain PAG from which defensive rage behavior could be elicited by electrical stimulation. During the course of this study, defensive rage was determined by measuring the latency of the "hissing" component of this behavior. Cannula-electrodes were implanted into sites within the medial hypothalamus from which defensive rage behavior could also be elicited by electrical stimulation in order that serotonergic compounds could be microinjected into behaviorally identifiable regions of the hypothalamus at a later time. Microinjections of the 5-HT(1A) receptor agonist 8-OHDPAT (0.1, 1.0 and 3.0 nmol) into the medial hypothalamus suppressed PAG-elicited hissing in a dose-dependent manner. Administration of the 5-HT(1A) antagonist p-MPPI (3.0 nmol) blocked the suppressive effects of 8-OHDPAT upon hissing. The suppressive effects of 8-OHDPAT were specific to defensive rage behavior because this drug (3 nmol) facilitated quiet biting attack. Microinjections of the 5-HT(2C) receptor agonist (+/-)-DOI hydrochloride into the medial hypothalamus (0.5, 1.0, and 3.0 nmol) facilitated the occurrence of PAG-elicited hissing in a dose-dependent manner. In turn, these facilitating effects were blocked by pretreatment with the selective 5-HT(2) antagonist, LY-53,857, which was microinjected into the same medial hypothalamic site. The findings of this study provide evidence that activation of 5-HT(1A) and 5-HT(2) receptors within the medial hypothalamus exert differential modulatory

  2. Differential modulation of feline defensive rage behavior in the medial hypothalamus by 5-HT1A and 5-HT2 receptors.

    PubMed

    Hassanain, M; Bhatt, S; Siegel, A

    2003-08-15

    Previous studies have established that the expression of defensive rage behavior in the cat is mediated over reciprocal pathways that link the medial hypothalamus and the dorsolateral quadrant of the midbrain periaqueductal gray matter (PAG). The present study was designed to determine the roles played by 5-HT(1A) and 5-HT(2C) receptors in the medial hypothalamus on the expression of defensive rage behavior elicited from electrical stimulation of the PAG. Monopolar stimulating electrodes were placed in the midbrain PAG from which defensive rage behavior could be elicited by electrical stimulation. During the course of this study, defensive rage was determined by measuring the latency of the "hissing" component of this behavior. Cannula-electrodes were implanted into sites within the medial hypothalamus from which defensive rage behavior could also be elicited by electrical stimulation in order that serotonergic compounds could be microinjected into behaviorally identifiable regions of the hypothalamus at a later time. Microinjections of the 5-HT(1A) receptor agonist 8-OHDPAT (0.1, 1.0 and 3.0 nmol) into the medial hypothalamus suppressed PAG-elicited hissing in a dose-dependent manner. Administration of the 5-HT(1A) antagonist p-MPPI (3.0 nmol) blocked the suppressive effects of 8-OHDPAT upon hissing. The suppressive effects of 8-OHDPAT were specific to defensive rage behavior because this drug (3 nmol) facilitated quiet biting attack. Microinjections of the 5-HT(2C) receptor agonist (+/-)-DOI hydrochloride into the medial hypothalamus (0.5, 1.0, and 3.0 nmol) facilitated the occurrence of PAG-elicited hissing in a dose-dependent manner. In turn, these facilitating effects were blocked by pretreatment with the selective 5-HT(2) antagonist, LY-53,857, which was microinjected into the same medial hypothalamic site. The findings of this study provide evidence that activation of 5-HT(1A) and 5-HT(2) receptors within the medial hypothalamus exert differential modulatory

  3. Nucleus accumbens shell excitability is decreased by methamphetamine self-administration and increased by 5-HT2C receptor inverse agonism and agonism

    PubMed Central

    Graves, Steven M.; Clark, Mary J.; Traynor, John R.; Hu, Xiu-Ti; Napier, T. Celeste

    2014-01-01

    Methamphetamine profoundly increases brain monoamines and is a widely abused psychostimulant. The effects of methamphetamine self-administration on neuron function are not known for the nucleus accumbens, a brain region involved in addictive behaviors, including drug-seeking. One therapeutic target showing preclinical promise at attenuating psychostimulant-seeking is 5-HT2C receptors; however, the effects of 5-HT2C receptor ligands on neuronal physiology are unclear. 5-HT2C receptor agonism decreases psychostimulant-mediated behaviors, and the putative 5-HT2C receptor inverse agonist, SB 206553, attenuates methamphetamine-seeking in rats. To ascertain the effects of methamphetamine, and 5-HT2C receptor inverse agonism and agonism, on neuronal function in the nucleus accumbens, we evaluated methamphetamine, SB 206553, and the 5-HT2C receptor agonist and Ro 60-0175, on neuronal excitability within the accumbens shell subregion using whole-cell current-clamp recordings in forebrain slices ex vivo. We reveal that methamphetamine self-administration decreased generation of evoked action potentials. In contrast, SB 206553 and Ro 60-0175 increased evoked spiking, effects that were prevented by the 5-HT2C receptor antagonist, SB 242084. We also assessed signaling mechanisms engaged by 5-HT2C receptors, and determined that accumbal 5-HT2C receptors stimulated Gq, but not Gi/o. These findings demonstrate that methamphetamine-induced decreases in excitability of neurons within the nucleus accumbens shell were abrogated by both 5-HT2C inverse agonism and agonism, and this effect likely involved activation of Gq–mediated signaling pathways. PMID:25229719

  4. Nucleus accumbens shell excitability is decreased by methamphetamine self-administration and increased by 5-HT2C receptor inverse agonism and agonism.

    PubMed

    Graves, Steven M; Clark, Mary J; Traynor, John R; Hu, Xiu-Ti; Napier, T Celeste

    2015-02-01

    Methamphetamine profoundly increases brain monoamines and is a widely abused psychostimulant. The effects of methamphetamine self-administration on neuron function are not known for the nucleus accumbens, a brain region involved in addictive behaviors, including drug-seeking. One therapeutic target showing preclinical promise at attenuating psychostimulant-seeking is 5-HT2C receptors; however, the effects of 5-HT2C receptor ligands on neuronal physiology are unclear. 5-HT2C receptor agonism decreases psychostimulant-mediated behaviors, and the putative 5-HT2C receptor inverse agonist, SB 206553, attenuates methamphetamine-seeking in rats. To ascertain the effects of methamphetamine, and 5-HT2C receptor inverse agonism and agonism, on neuronal function in the nucleus accumbens, we evaluated methamphetamine, SB 206553, and the 5-HT2C receptor agonist and Ro 60-0175, on neuronal excitability within the accumbens shell subregion using whole-cell current-clamp recordings in forebrain slices ex vivo. We reveal that methamphetamine self-administration decreased generation of evoked action potentials. In contrast, SB 206553 and Ro 60-0175 increased evoked spiking, effects that were prevented by the 5-HT2C receptor antagonist, SB 242084. We also assessed signaling mechanisms engaged by 5-HT2C receptors, and determined that accumbal 5-HT2C receptors stimulated Gq, but not Gi/o. These findings demonstrate that methamphetamine-induced decreases in excitability of neurons within the nucleus accumbens shell were abrogated by both 5-HT2C inverse agonism and agonism, and this effect likely involved activation of Gq-mediated signaling pathways.

  5. Pharmacological Properties and Discriminative Stimulus Effects of a Novel and Selective 5-HT2 Receptor Agonist AL-38022A [(S)-2-(8,9-dihydro-7H-pyrano[2,3-g]indazol-1-yl)-1-methylethylamine

    PubMed Central

    May, Jesse A.; Sharif, Najam A.; Chen, Hwang-Hsing; Liao, John C.; Kelly, Curtis R.; Glennon, Richard A.; Young, Richard; Li, Jun-Xu; Rice, Kenner C.; France, Charles P.

    2013-01-01

    AL-38022A is a novel synthetic serotonergic (5-HT) ligand that exhibited high affinity for each of the 5-HT2 receptor subtypes (Ki ≤ 2.2 nM), but a significantly lower (>100-fold less) affinity for other 5-HT receptors. In addition, AL-38022A displayed a very low affinity for a broad array of other receptors, neurotransmitter transport sites, ion channels, and second messenger elements, making it a relatively selective agent. AL-38022A potently stimulated functional responses via native and cloned rat (EC50 range: 1.9 – 22.5 nM) and human (EC50 range: 0.5 – 2.2 nM) 5-HT2 receptor subtypes including [Ca2+]i mobilization and tissue contractions with apparently similar potencies and intrinsic activities and was a full agonist at all 5-HT2 receptor subtypes. The CNS activity of AL-38022A was assessed by evaluating its discriminative stimulus effects in both a rat and a monkey drug discrimination paradigm using DOM as the training drug. AL-38022A fully generalized to the DOM stimulus in each of these studies; in monkeys MDL 100907 antagonized both DOM and AL-38022A. The pharmacological profile of AL-38022A suggests that it could be a useful tool in defining 5-HT2 receptor signaling and receptor characterization where 5-HT may function as a neurotransmitter. PMID:18718483

  6. Human Serotonin 5-HT2C G Protein-Coupled Receptor Homology Model from the β2 Adrenoceptor Structure: Ligand Docking and Mutagenesis Studies

    PubMed Central

    RDOVA-SINTJAGO, TANIA CÓ; VILLA, NANCY; CANAL, CLINTON; BOOTH, RAYMOND

    2013-01-01

    Activation of the serotonin (5-hydroxytryptamine, 5-HT) 5HT2C G protein-coupled receptor (GPCR) is proposed as novel pharmacotherapy for obesity and neuropsychiatric disorders. In contrast, activation of the 5-HT2A and 5-HT2B GPCRs is associated with untoward hallucinogenic and cardiopulmonary effects, respectively. There is no crystal structure available to guide design of 5-HT2C receptor-specific ligands. For this reason, a homology model of the 5-HT2C receptor was built based on the crystal structure of the human β2 adrenoceptor GPCR to delineate molecular determinants of ligand–receptor interactions for drug design purposes. Computational and experimental studies were carried out to validate the model. Binding of N(CH3)2-PAT [(1R, 3S)-(−)-trans-1-phenyl-3-N,N-dimethylamino-1,2,3,4-tetrahydronaphthalene], a novel 5-HT2C agonist/5-HT2A/2B inverse agonist, and its secondary [NH(CH3)-PAT] and primary (NH2-PAT) amine analogs were studied at the 5-HT2C wild type (WT) and D3.32A, S3.36A, and Y7.43A 5-HT2C point-mutated receptors. Reference ligands included the tertiary amines lisuride and mesulergine and the primary amine 5-HT. Modeling results indicated that 5-HT2C residues D3.32, S3.36, and Y7.43 play a role in ligand binding. Experimental ligand binding results with WT and point-mutated receptors confirmed the impact of D3.32, S3.36, and Y7.43 on ligand affinity. PMID:24244046

  7. Distinct effect of 5-HT1A and 5-HT2A receptors in the medial nucleus of the amygdala on tonic immobility behavior.

    PubMed

    de Paula, Bruna Balbino; Leite-Panissi, Christie Ramos Andrade

    2016-07-15

    The tonic immobility (TI) response is an innate fear behavior associated with intensely dangerous situations, exhibited by many species of invertebrate and vertebrate animals. In humans, it is possible that TI predicts the severity of posttraumatic stress disorder symptoms. This behavioral response is initiated and sustained by the stimulation of various groups of neurons distributed in the telencephalon, diencephalon and brainstem. Previous research has found the highest Fos-IR in the posteroventral part of the medial nucleus of the amygdala (MEA) during TI behavior; however, the neurotransmission of this amygdaloid region involved in the modulation of this innate fear behavior still needs to be clarified. Considering that a major drug class used for the treatment of psychopathology is based on serotonin (5-HT) neurotransmission, we investigated the effects of serotonergic receptor activation in the MEA on the duration of TI. The results indicate that the activation of the 5HT1A receptors or the blocking of the 5HT2 receptors of the MEA can promote a reduction in fear and/or anxiety, consequently decreasing TI duration in guinea pigs. In contrast, blocking the 5HT1A receptors or activating the 5HT2 receptors in this amygdalar region increased the TI duration, suggesting an increase in fear and/or anxiety. These alterations do not appear to be due to a modification of spontaneous motor activity, which might non-specifically affect TI duration. Thus, these results suggest a distinct role of the 5HT receptors in the MEA in innate fear modulation. PMID:27150816

  8. Examination of the hippocampal contribution to serotonin 5-HT2A receptor-mediated facilitation of object memory in C57BL/6J mice.

    PubMed

    Zhang, Gongliang; Cinalli, David; Cohen, Sarah J; Knapp, Kristina D; Rios, Lisa M; Martínez-Hernández, José; Luján, Rafael; Stackman, Robert W

    2016-10-01

    The rodent hippocampus supports non-spatial object memory. Serotonin 5-HT2A receptors (5-HT2AR) are widely expressed throughout the hippocampus. We previously demonstrated that the activation of 5-HT2ARs enhanced the strength of object memory assessed 24 h after a limited (i.e., weak memory) training procedure. Here, we examined the subcellular distribution of 5-HT2ARs in the hippocampal CA1 region and underlying mechanisms of 5-HT2AR-mediated object memory consolidation. Analyses with immuno-electron microscopy revealed the presence of 5-HT2ARs on the dendritic spines and shafts of hippocampal CA1 neurons, and presynaptic terminals in the CA1 region. In an object recognition memory procedure that places higher demand on the hippocampus, only post-training systemic or intrahippocampal administration of the 5-HT2AR agonist TCB-2 enhanced object memory. Object memory enhancement by TCB-2 was blocked by the 5-HT2AR antagonist, MDL 11,937. The memory-enhancing dose of systemic TCB-2 increased extracellular glutamate levels in hippocampal dialysate samples, and increased the mean in vivo firing rate of hippocampal CA1 neurons. In summary, these data indicate a pre- and post-synaptic distribution of 5-HT2ARs, and activation of 5-HT2ARs selectively enhanced the consolidation of object memory, without affecting encoding or retrieval. The 5-HT2AR-mediated facilitation of hippocampal memory may be associated with an increase in hippocampal neuronal firing and glutamate efflux during a post-training time window in which recently encoded memories undergo consolidation.

  9. Down-regulation of cerebellar 5-HT(2C) receptors in pilocarpine-induced epilepsy in rats: therapeutic role of Bacopa monnieri extract.

    PubMed

    Krishnakumar, Amee; Abraham, Pretty Mary; Paul, Jes; Paulose, C S

    2009-09-15

    Epilepsy is a syndrome of episodic brain dysfunction characterized by recurrent unpredictable, spontaneous seizures. Cerebellar dysfunction is a recognized complication of temporal lobe epilepsy and it is associated with seizure generation, motor deficits and memory impairment. Serotonin is known to exert a modulatory action on cerebellar function through 5HT(2C) receptors. 5-HT(2C) receptors are novel targets for developing anti-convulsant drugs. In the present study, we investigated the changes in the 5-HT(2C) receptors binding and gene expression in the cerebellum of control, epileptic and Bacopa monnieri treated epileptic rats. There was a significant down regulation of the 5-HT content (p<0.001), 5-HT(2C) gene expression (p<0.001) and 5-HT(2C) receptor binding (p<0.001) with an increased affinity (p<0.001). Carbamazepine and B. monnieri treatments to epileptic rats reversed the down regulated 5-HT content (p<0.01), 5-HT(2C) receptor binding (p<0.001) and gene expression (p<0.01) to near control level. Also, the Rotarod test confirms the motor dysfunction and recovery by B. monnieri treatment. These data suggest the neuroprotective role of B. monnieri through the upregulation of 5-HT(2C) receptor in epileptic rats. This has clinical significance in the management of epilepsy.

  10. C-(4,5,6-trimethoxyindan-1-yl)methanamine: a mescaline analogue designed using a homology model of the 5-HT2A receptor.

    PubMed

    McLean, Thomas H; Chambers, James J; Parrish, Jason C; Braden, Michael R; Marona-Lewicka, Danuta; Kurrasch-Orbaugh, Deborah; Nichols, David E

    2006-07-13

    A conformationally restricted analogue of mescaline, C-(4,5,6-trimethoxyindan-1-yl)-methanamine, was designed using a 5-HT(2A) receptor homology model. The compound possessed 3-fold higher affinity and potency than and efficacy equal to that of mescaline at the 5-HT(2A) receptor. The new analogue substituted fully for LSD in drug discrimination studies and was 5-fold more potent than mescaline. Resolution of this analogue into its enantiomers corroborated the docking experiments, showing the R-(+) isomer to have higher affinity and potency and to have efficacy similar to that of mescaline at the 5-HT(2A) receptor.

  11. Additive antidepressant-like effects of fasting with imipramine via modulation of 5-HT2 receptors in the mice.

    PubMed

    Li, Bingjin; Zhao, Jing; Lv, Jiayin; Tang, Fang; Liu, Lei; Sun, Zhihui; Wang, Liang; Siwela, Sibongile P; Wang, Yinuo; Song, Yunong; Manchishi, Stephen M; Cui, Ranji

    2014-01-01

    Recently, studies show that intermittent fasting and caloric restriction may improve symptoms of depression. However, there is little scientific evidence regarding the literature on the antidepressant-like effects of acute fasting. The present study aims to investigate the antidepressant-like effects and its influence on brain levels of the transcription factor cAMP response element-binding protein (CREB) and its phosphorylated form (p-CREB) in different time periods of fasting mice. Furthermore, the additive antidepressant-like effects of fasting with imipramine and the possible involvement of the 5-HT2 receptors were examined. In the present study 9h, but not 3h and 18h of fasting significantly reduced immobility time in the forced swimming test (FST) without alteration in locomotor activity in the open field test. 9h fasting also enhanced the ratio of p-CREB/CREB in the frontal cortex and hippocampus. Co-administration of 9h of fasting and imipramine (30mg/kg, i.p) produced the additive antidepressant-like effects in the FST and increased the ratio of p-CREB/CREB. Meanwhile, the additive effects were partially reversed by treatment with a 5-HT2A/2C receptor agonist, (±)-1-(2, 5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI) (5mg/kg, s.c). Furthermore, the antidepressant-like effects of 9h fasting was also blocked by DOI compared to the non-fasting control group. Serum corticosterone level, but not 5-HT and noradrenaline, was significantly increased in a time-dependent manner following different time periods of fasting. Taken together, these results suggest that acute fasting produces antidepressant-like effects via enhancement of the p-CREB/CREB ratio, and additive antidepressant-like effects of fasting with imipramine may be related to modulating 5-HT2 receptors. PMID:24036107

  12. N-Benzyl-5-methoxytryptamines as Potent Serotonin 5-HT2 Receptor Family Agonists and Comparison with a Series of Phenethylamine Analogues

    PubMed Central

    2015-01-01

    A series of N-benzylated-5-methoxytryptamine analogues was prepared and investigated, with special emphasis on substituents in the meta position of the benzyl group. A parallel series of several N-benzylated analogues of 2,5-dimethoxy-4-iodophenethylamine (2C-I) also was included for comparison of the two major templates (i.e., tryptamine and phenethylamine). A broad affinity screen at serotonin receptors showed that most of the compounds had the highest affinity at the 5-HT2 family receptors. Substitution at the para position of the benzyl group resulted in reduced affinity, whereas substitution in either the ortho or the meta position enhanced affinity. In general, introduction of a large lipophilic group improved affinity, whereas functional activity often followed the opposite trend. Tests of the compounds for functional activity utilized intracellular Ca2+ mobilization. Function was measured at the human 5-HT2A, 5-HT2B, and 5-HT2C receptors, as well as at the rat 5-HT2A and 5-HT2C receptors. There was no general correlation between affinity and function. Several of the tryptamine congeners were very potent functionally (EC50 values from 7.6 to 63 nM), but most were partial agonists. Tests in the mouse head twitch assay revealed that many of the compounds induced the head twitch and that there was a significant correlation between this behavior and functional potency at the rat 5-HT2A receptor. PMID:25547199

  13. Implication of 5-HT2A subtype receptors in DOI activity in the four-plates test-retest paradigm in mice.

    PubMed

    Ripoll, Nadège; Hascoët, Martine; Bourin, Michel

    2006-01-01

    The four-plates test (FPT) is an animal model of anxiety which allows the detection of anxiolytic effect not only of benzodiazepines (BZDs) but also of other non-BZDs anxiolytic compounds such as antidepressants (ADs). Furthermore, DOI, a 5-HT(2A/2C) agonist, has been shown to exert an anxiolytic-like effect in this model. Retesting mice in animal models of anxiety (test-retest paradigm) induces an anxiogenic-like and a loss of anxiolytic-like effects in response to BZDs and ADs. On the contrary, DOI has been reported to oppose the fear potentiation induced by trial 1 in the FPT. Despite DOI is considered as one of the most selective 5-HT(2A) available, it acts as agonist at all three 5-HT(2) receptor subtypes (5-HT(2A), 5-HT(2B) and 5-HT(2C)). The aim of this study was thus to investigate in the FPT test-retest paradigm, which 5-HT(2) receptor subtype(s) was involved in the DOI-induced effect in experienced mice. The effect of DOI (0.25-4 mg/kg) and the agonists, 5-HT(2B), BW 723C86 (1-16 mg/kg) and 5-HT(2C), RO 60-0175 (0.25-4 mg/kg) have also been studied. Then, antagonism studies were conducted combinating the 5-HT(2A) receptor antagonist SR 46349B, the 5-HT(2B/2C) receptor antagonist SB 206553 or the selective 5-HT(2C) receptor antagonist RS 10-2221 (at the doses of 0.1 and 1 mg/kg) with the DOI (1 mg/kg). Our study shows that the BW 723C86 had no effect on retesting mice, whereas it exerted an anxiolytic-like effect in naive mice. By contrast to DOI, the RO 60-0175 had no effect neither in naive nor experienced mice. Furthermore, only the SR 46349B antagonized the DOI-induced anti-punishment effect. Diazepam included as a positive control also increased in each case the number of punished passages in naive mice. Our findings altogether also suggest that DOI exerts its anxiolytic-like effect in the FPT test-retest paradigm through 5-HT(2A) receptors.

  14. Role of 5-HT2C Receptors in Effects of Monoamine Releasers on Intracranial Self-Stimulation in Rats

    PubMed Central

    Bauer, Clayton T.; Banks, Matthew L.; Blough, Bruce E.; Negus, S. Stevens

    2015-01-01

    Rationale Many monoamine releasers are abused by humans and produce abuse-related facilitation of intracranial self-stimulation (ICSS) in rats. Facilitation of ICSS in rats can be limited by monoamine releaser-induced serotonin (5-HT) release, but receptors that mediate 5-HT effects of monoamine releasers are unknown. Objectives Investigate whether 5-HT2C receptor activation is necessary for rate-decreasing effects produced in an ICSS procedure in rats by the 5-HT-selective monoamine releaser fenfluramine and the non-selective releasers napthylisopropylamine (PAL-287) and (+)-3,4-methylenedioxymethamphetamine ((+)-MDMA). Methods Adult male Sprague-Dawley rats with electrodes implanted in the medial forebrain bundle were trained to lever press for brain stimulation under a “frequency-rate” ICSS procedure. Effectiveness of the 5-HT2C antagonist SB 242,084 was evaluated to block rate-decreasing effects produced by (1) the 5-HT2C agonist Ro 60-0175, (2) the 5-HT-selective releaser fenfluramine, and (3) the mixed-action dopamine (DA)/norepinephrine (NE)/5-HT releasers PAL-287 (1.0-5.6 mg/kg), and (+)-MDMA (1.0-3.2 mg/kg). For comparison, effectiveness of SB 242,084 to alter rate-decreasing effects of the kappa opioid receptor agonist U69,593 and rate-increasing effects of the DA>5-HT releaser amphetamine were also examined. Results SB 242,084 pretreatment blocked rate-decreasing effects of Ro 60-0175 and fenfluramine, but not the rate-decreasing effects of U69,593 or the rate-increasing effects of amphetamine. SB 242,084 blunted the rate-decreasing effects and enhanced expression of rate-increasing effects of PAL-287 and (+)-MDMA. Conclusions These data suggest that 5-HT2C receptor activation contributes to rate-decreasing effects that are produced by selective and mixed-action 5-HT releasers in rats and that may oppose and limit the expression of abuse-related ICSS facilitation by these compounds. PMID:26041338

  15. Clozapine, but not olanzapine, disrupts conditioned avoidance response in rats by antagonizing 5-HT2A/2C receptors.

    PubMed

    Li, Ming; Sun, Tao; Mead, Alexa

    2012-04-01

    The present study was designed to assess the role of 5-HT(2A/2C) receptors in the acute and repeated effect of clozapine and olanzapine in a rat conditioned avoidance response model, a validated model of antipsychotic activity. Male Sprague-Dawley rats that were previously treated with either phencyclidine (0.5-2.0 mg/kg, sc), amphetamine (1.25-5.0 mg/kg, sc), or saline and tested in a prepulse inhibition of acoustic startle study were used. They were first trained to acquire avoidance response to a white noise (CS1) and a pure tone (CS2) that differed in their ability to predict the occurrence of footshock. Those who acquired avoidance response were administered with clozapine (10.0 mg/kg, sc) or olanzapine (1.0 mg/kg, sc) together with either saline or 1-2,5-dimethoxy-4-iodo-amphetamine (DOI, a selective 5-HT(2A/2C) agonist, 1.0 or 2.5 mg/kg, sc), and their conditioned avoidance responses were tested for four consecutive days. After two drug-free retraining days, the long-term repeated effect was assessed in a challenge test during which all rats were injected with a low dose of clozapine (5 mg/kg, sc) or olanzapine (0.5 mg/kg). Results show that pretreatment of DOI dose-dependently reversed the acute disruptive effect of clozapine on both CS1 and CS2 avoidance responses, whereas it had little effect in reversing the acute effect of olanzapine. On the challenge test, pretreatment of DOI did not alter the clozapine-induced tolerance or the olanzapine-induced sensitization effect. These results confirmed our previous findings and suggest that clozapine, but not olanzapine, acts on through 5-HT(2A/2C) receptors to achieve its acute avoidance disruptive effect and likely its therapeutic effects. The long-term clozapine tolerance and olanzapine sensitization effects appear to be mediated by non-5-HT(2A/2C) receptors.

  16. Dissecting G protein-coupled receptor signaling pathways with membrane-permeable blocking peptides. Endogenous 5-HT(2C) receptors in choroid plexus epithelial cells.

    PubMed

    Chang, M; Zhang, L; Tam, J P; Sanders-Bush, E

    2000-03-10

    To determine the intracellular signaling mechanism of the 5-HT(2C) receptor endogenously expressed in choroid plexus epithelial cells, we implemented a strategy of targeted disruption of protein-protein interactions. This strategy entails the delivery of conjugated membrane-permeable peptides that disrupt domain interaction at specific steps in the signaling cascade. As proof of concept, two peptides targeted against receptor-G protein interaction domains were examined. Only G(q)CT, which targets the receptor-G(q) protein interacting domain, disrupted 5-HT(2C) receptor-mediated phosphatidylinositide hydrolysis. G(s)CT, targeting the receptor-G(s) protein, disrupted beta2 adrenergic receptor-mediated activation of cAMP but not 5-HT(2C) receptor-mediated phosphatidylinositide hydrolysis. The peptide MPS-PLCbeta1M, mimicking the domain of phospholipase Cbeta1 (PLCbeta1) interacting with active Galpha(q), also blocked 5-HT(2C) receptor activation. In contrast, peptides PLCbeta2M and Phos that bind to and sequester free Gbetagamma subunits were ineffective at blocking 5-HT(2C) receptor-mediated phosphoinositol turnover. However, both peptides disrupted Gbetagamma-mediated alpha(2A) adrenergic receptor activation of mitogen-activated protein kinase. These results provide the first direct demonstration that active Galpha(q) subunits mediate endogenous 5-HT(2C) receptor activation of PLCbeta and that Gbetagamma subunits released from Galpha(q) heterotrimeric proteins are not involved. Comparable results were obtained with metabotropic glutamate receptor 5 expressed in astrocytes. Thus, conjugated, membrane-permeable peptides are effective tools for the dissection of intracellular signals. PMID:10702266

  17. Mechanisms intrinsic to 5-HT2B receptor-induced potentiation of NMDA receptor responses in frog motoneurones.

    PubMed

    Holohean, Alice M; Hackman, John C

    2004-10-01

    In the presence of NMDA receptor open-channel blockers [Mg(2+); (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801); 1-amino-3,5-dimethyladamantane (memantine)] and TTX, high concentrations (30-100 microm) of either 5-hydroxytryptamine (5-HT) or alpha-methyl-5-hydroxytryptamine (alpha-Me-5-HT) significantly potentiated NMDA-induced depolarizations of frog spinal cord motoneurones. Potentiation was blocked by LY-53,857 (10-30 microm), SB 206553 (10 microm), and SB 204741 (30 microm), but not by spiroxatrine (10 microm), WAY 100,635 (1-30 microm), ketanserin (10 microm), RS 102221 (10 microm), or RS 39604 (10-20 microm). Therefore, alpha-Me-5-HT's facilitatory effects appear to involve 5-HT(2B) receptors. These effects were G-protein dependent as they were prevented by prior treatment with guanylyl-5'-imidodiphosphate (GMP-PNP, 100 microm) and H-Arg-Pro-Lys-Pro-Gln-Gln-D-Trp-Phe-D-Trp-D-Trp-Met-NH(2) (GP antagonist 2A, 3-6 microm), but not by pertussis toxin (PTX, 3-6 ng ml(-1), 48 h preincubation). This potentiation was not reduced by protein kinase C inhibition with staurosporine (2.0 microm), U73122 (10 microm) or N-(2-aminoethyl)-5-isoquinolinesulfonamide HCl (H9) (77 microm) or by intracellular Ca(2+) depletion with thapsigargin (0.1 microm) (which inhibits Ca(2+)/ATPase). Exposure of the spinal cord to the L-type Ca(2+) channel blockers nifedipine (10 microm), KN-62 (5 microm) or gallopamil (100 microm) eliminated alpha-Me-5-HT's effects. The calmodulin antagonist N-(6-aminohexyl)-5-chloro-1-naphtalenesulfonamide (W7) (100 microm) diminished the potentiation. However, the calcium/calmodulin-dependent protein kinase II (CaM Kinase II) blocker KN-93 (10 microm) did not block the 5-HT enhancement of the NMDA responses. In summary, activation of 5-HT(2B) receptors by alpha-Me-5-HT facilitates NMDA-depolarizations of frog motoneurones via a G-protein, a rise in [Ca(2+)](i) from the entry of extracellular Ca(2+) through L-type Ca(2

  18. Decrease of gene expression of astrocytic 5-HT2B receptors parallels development of depressive phenotype in a mouse model of Parkinson's disease.

    PubMed

    Zhang, Xique; Song, Dan; Gu, Li; Ren, Yan; Verkhratsky, Alexei; Peng, Liang

    2015-01-01

    Astrocytes contribute to pathogenesis of neuropsychiatric disorders, including major depression. Stimulation of astroglial 5-HT2B receptors transactivates epidermal growth factor receptors (EGFRs) and regulates gene expression. Previously we reported that expression of 5-HT2B receptors in cortical astrocytes is down-regulated in animals, which developed anhedonia in response to chronic stress; moreover this down-regulation as well as anhedonia, are reversed by chronic treatment with fluoxetine. In this study we have investigated whether astrocytic 5-HT2B receptor is involved in anhedonia in C57BL/6 mice model of Parkinson' disease (PD) induced by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) for 7 days. The MPTP treatment induced anhendonia in 66.7% of animals. The appearance of depressive behavior was accompanied with motor deficiency and decrease of tyrosine hydroxylase (TH) expression. Expression of mRNA and protein of 5-HT2B receptor in animals that became anhedonic decreased to 77.3 and 79.3% of control groups, respectively; in animals that received MPTP but did not develop anhedonia the expression of 5-HT2B receptor did not change. Experiments with FACS-sorted isolated cells demonstrated that decrease in 5-HT2B receptor expression was confined to astrocytes, and did not occur in neurons. Fluoxetine corrected MPTP-induced decrease of 5-HT2B receptor expression and depressive behavior. Our findings indicate that regulation of gene expression of 5-HT2B receptors in astroglia may be associated with pathophysiological evolution of PD-induced depression.

  19. Decrease of gene expression of astrocytic 5-HT2B receptors parallels development of depressive phenotype in a mouse model of Parkinson’s disease

    PubMed Central

    Zhang, Xique; Song, Dan; Gu, Li; Ren, Yan; Verkhratsky, Alexei; Peng, Liang

    2015-01-01

    Astrocytes contribute to pathogenesis of neuropsychiatric disorders, including major depression. Stimulation of astroglial 5-HT2B receptors transactivates epidermal growth factor receptors (EGFRs) and regulates gene expression. Previously we reported that expression of 5-HT2B receptors in cortical astrocytes is down-regulated in animals, which developed anhedonia in response to chronic stress; moreover this down-regulation as well as anhedonia, are reversed by chronic treatment with fluoxetine. In this study we have investigated whether astrocytic 5-HT2B receptor is involved in anhedonia in C57BL/6 mice model of Parkinson’ disease (PD) induced by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) for 7 days. The MPTP treatment induced anhendonia in 66.7% of animals. The appearance of depressive behavior was accompanied with motor deficiency and decrease of tyrosine hydroxylase (TH) expression. Expression of mRNA and protein of 5-HT2B receptor in animals that became anhedonic decreased to 77.3 and 79.3% of control groups, respectively; in animals that received MPTP but did not develop anhedonia the expression of 5-HT2B receptor did not change. Experiments with FACS-sorted isolated cells demonstrated that decrease in 5-HT2B receptor expression was confined to astrocytes, and did not occur in neurons. Fluoxetine corrected MPTP-induced decrease of 5-HT2B receptor expression and depressive behavior. Our findings indicate that regulation of gene expression of 5-HT2B receptors in astroglia may be associated with pathophysiological evolution of PD-induced depression. PMID:26500493

  20. Decrease of gene expression of astrocytic 5-HT2B receptors parallels development of depressive phenotype in a mouse model of Parkinson's disease.

    PubMed

    Zhang, Xique; Song, Dan; Gu, Li; Ren, Yan; Verkhratsky, Alexei; Peng, Liang

    2015-01-01

    Astrocytes contribute to pathogenesis of neuropsychiatric disorders, including major depression. Stimulation of astroglial 5-HT2B receptors transactivates epidermal growth factor receptors (EGFRs) and regulates gene expression. Previously we reported that expression of 5-HT2B receptors in cortical astrocytes is down-regulated in animals, which developed anhedonia in response to chronic stress; moreover this down-regulation as well as anhedonia, are reversed by chronic treatment with fluoxetine. In this study we have investigated whether astrocytic 5-HT2B receptor is involved in anhedonia in C57BL/6 mice model of Parkinson' disease (PD) induced by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) for 7 days. The MPTP treatment induced anhendonia in 66.7% of animals. The appearance of depressive behavior was accompanied with motor deficiency and decrease of tyrosine hydroxylase (TH) expression. Expression of mRNA and protein of 5-HT2B receptor in animals that became anhedonic decreased to 77.3 and 79.3% of control groups, respectively; in animals that received MPTP but did not develop anhedonia the expression of 5-HT2B receptor did not change. Experiments with FACS-sorted isolated cells demonstrated that decrease in 5-HT2B receptor expression was confined to astrocytes, and did not occur in neurons. Fluoxetine corrected MPTP-induced decrease of 5-HT2B receptor expression and depressive behavior. Our findings indicate that regulation of gene expression of 5-HT2B receptors in astroglia may be associated with pathophysiological evolution of PD-induced depression. PMID:26500493

  1. Latent inhibition is attenuated by noise and partially restored by a 5-HT2A receptor antagonist.

    PubMed

    McDonald, L M; Moran, P M; Vythelingum, G N; Joseph, M H; Stephenson, J D; Gray, J A

    2002-12-01

    Latent inhibition (LI) is a model of attention, which is a cognitive process that can be modulated by stressors such as chronic intermittent broadband noise, e.g. caused by building work, which is particularly stressful to rats. The aim of this study was to analyse the effect of chronic noise stress, caused by a building project, on LI, and its interaction with SR 46,349B, a 5-HT2A receptor antagonist. Control groups from LI experiments conducted during periods of chronic intermittent noise were compared with control groups from LI experiments conducted in normal quiet conditions. The interaction of SR 46,349B with the effects of chronic noise stress was then tested. Chronic intermittent noise attenuated LI, an effect which was partially reversed by SR 46,349B, 2.4 mg/kg i.p. Attenuation of LI by chronic intermittent noise and reversal of this effect by SR 46,349B support suggestions that stress can modulate attention and that 5-HT2A receptors are involved in mediating the effects of chronic stress.

  2. D-serine deficiency attenuates the behavioral and cellular effects induced by the hallucinogenic 5-HT(2A) receptor agonist DOI.

    PubMed

    Santini, Martin A; Balu, Darrick T; Puhl, Matthew D; Hill-Smith, Tiffany E; Berg, Alexandra R; Lucki, Irwin; Mikkelsen, Jens D; Coyle, Joseph T

    2014-02-01

    Both the serotonin and glutamate systems have been implicated in the pathophysiology of schizophrenia, as well as in the mechanism of action of antipsychotic drugs. Psychedelic drugs act through the serotonin 2A receptor (5-HT2AR), and elicit a head-twitch response (HTR) in mice, which directly correlates to 5-HT2AR activation and is absent in 5-HT2AR knockout mice. The precise mechanism of this response remains unclear, but both an intrinsic cortico-cortical pathway and a thalamo-cortical pathway involving glutamate release have been proposed. Here, we used a genetic model of NMDAR hypofunction, the serine racemase knockout (SRKO) mouse, to explore the role of glutamatergic transmission in regulating 5-HT2AR-mediated cellular and behavioral responses. SRKO mice treated with the 5-HT2AR agonist (±)-2,5-dimethoxy-4-iodoamphetamine (DOI) showed a clearly diminished HTR and lower induction of c-fos mRNA. These altered functional responses in SRKO mice were not associated with changes in cortical or hippocampal 5-HT levels or in 5-HT2AR and metabotropic glutamate-2 receptor (mGluR2) mRNA and protein expression. Together, these findings suggest that D-serine-dependent NMDAR activity is involved in mediating the cellular and behavioral effects of 5-HT2AR activation.

  3. 5-HT2A Receptor Binding in the Frontal Cortex of Parkinson's Disease Patients and Alpha-Synuclein Overexpressing Mice: A Postmortem Study.

    PubMed

    Rasmussen, Nadja Bredo; Olesen, Mikkel Vestergaard; Brudek, Tomasz; Plenge, Per; Klein, Anders Bue; Westin, Jenny E; Fog, Karina; Wörtwein, Gitta; Aznar, Susana

    2016-01-01

    The 5-HT2A receptor is highly involved in aspects of cognition and executive function and seen to be affected in neurodegenerative diseases like Alzheimer's disease and related to the disease pathology. Even though Parkinson's disease (PD) is primarily a motor disorder, reports of impaired executive function are also steadily being associated with this disease. Not much is known about the pathophysiology behind this. The aim of this study was thereby twofold: (1) to investigate 5-HT2A receptor binding levels in Parkinson's brains and (2) to investigate whether PD associated pathology, alpha-synuclein (AS) overexpression, could be associated with 5-HT2A alterations. Binding density for the 5-HT2A-specific radioligand [(3)H]-MDL 100.907 was measured in membrane suspensions of frontal cortex tissue from PD patients. Protein levels of AS were further measured using western blotting. Results showed higher AS levels accompanied by increased 5-HT2A receptor binding in PD brains. In a separate study, we looked for changes in 5-HT2A receptors in the prefrontal cortex in 52-week-old transgenic mice overexpressing human AS. We performed region-specific 5-HT2A receptor binding measurements followed by gene expression analysis. The transgenic mice showed lower 5-HT2A binding in the frontal association cortex that was not accompanied by changes in gene expression levels. This study is one of the first to look at differences in serotonin receptor levels in PD and in relation to AS overexpression. PMID:27579212

  4. 5-HT2A Receptor Binding in the Frontal Cortex of Parkinson's Disease Patients and Alpha-Synuclein Overexpressing Mice: A Postmortem Study.

    PubMed

    Rasmussen, Nadja Bredo; Olesen, Mikkel Vestergaard; Brudek, Tomasz; Plenge, Per; Klein, Anders Bue; Westin, Jenny E; Fog, Karina; Wörtwein, Gitta; Aznar, Susana

    2016-01-01

    The 5-HT2A receptor is highly involved in aspects of cognition and executive function and seen to be affected in neurodegenerative diseases like Alzheimer's disease and related to the disease pathology. Even though Parkinson's disease (PD) is primarily a motor disorder, reports of impaired executive function are also steadily being associated with this disease. Not much is known about the pathophysiology behind this. The aim of this study was thereby twofold: (1) to investigate 5-HT2A receptor binding levels in Parkinson's brains and (2) to investigate whether PD associated pathology, alpha-synuclein (AS) overexpression, could be associated with 5-HT2A alterations. Binding density for the 5-HT2A-specific radioligand [(3)H]-MDL 100.907 was measured in membrane suspensions of frontal cortex tissue from PD patients. Protein levels of AS were further measured using western blotting. Results showed higher AS levels accompanied by increased 5-HT2A receptor binding in PD brains. In a separate study, we looked for changes in 5-HT2A receptors in the prefrontal cortex in 52-week-old transgenic mice overexpressing human AS. We performed region-specific 5-HT2A receptor binding measurements followed by gene expression analysis. The transgenic mice showed lower 5-HT2A binding in the frontal association cortex that was not accompanied by changes in gene expression levels. This study is one of the first to look at differences in serotonin receptor levels in PD and in relation to AS overexpression.

  5. 5-HT2A Receptor Binding in the Frontal Cortex of Parkinson's Disease Patients and Alpha-Synuclein Overexpressing Mice: A Postmortem Study

    PubMed Central

    Rasmussen, Nadja Bredo; Olesen, Mikkel Vestergaard; Plenge, Per; Klein, Anders Bue; Westin, Jenny E.; Fog, Karina

    2016-01-01

    The 5-HT2A receptor is highly involved in aspects of cognition and executive function and seen to be affected in neurodegenerative diseases like Alzheimer's disease and related to the disease pathology. Even though Parkinson's disease (PD) is primarily a motor disorder, reports of impaired executive function are also steadily being associated with this disease. Not much is known about the pathophysiology behind this. The aim of this study was thereby twofold: (1) to investigate 5-HT2A receptor binding levels in Parkinson's brains and (2) to investigate whether PD associated pathology, alpha-synuclein (AS) overexpression, could be associated with 5-HT2A alterations. Binding density for the 5-HT2A-specific radioligand [3H]-MDL 100.907 was measured in membrane suspensions of frontal cortex tissue from PD patients. Protein levels of AS were further measured using western blotting. Results showed higher AS levels accompanied by increased 5-HT2A receptor binding in PD brains. In a separate study, we looked for changes in 5-HT2A receptors in the prefrontal cortex in 52-week-old transgenic mice overexpressing human AS. We performed region-specific 5-HT2A receptor binding measurements followed by gene expression analysis. The transgenic mice showed lower 5-HT2A binding in the frontal association cortex that was not accompanied by changes in gene expression levels. This study is one of the first to look at differences in serotonin receptor levels in PD and in relation to AS overexpression. PMID:27579212

  6. Cognitive Impairment Induced by Delta9-tetrahydrocannabinol Occurs through Heteromers between Cannabinoid CB1 and Serotonin 5-HT2A Receptors

    PubMed Central

    Lanfumey, Laurence; Cordomí, Arnau; Pastor, Antoni; de La Torre, Rafael; Gasperini, Paola; Navarro, Gemma; Howell, Lesley A.; Pardo, Leonardo; Lluís, Carmen; Canela, Enric I.; McCormick, Peter J.; Maldonado, Rafael; Robledo, Patricia

    2015-01-01

    Activation of cannabinoid CB1 receptors (CB1R) by delta9-tetrahydrocannabinol (THC) produces a variety of negative effects with major consequences in cannabis users that constitute important drawbacks for the use of cannabinoids as therapeutic agents. For this reason, there is a tremendous medical interest in harnessing the beneficial effects of THC. Behavioral studies carried out in mice lacking 5-HT2A receptors (5-HT2AR) revealed a remarkable 5-HT2AR-dependent dissociation in the beneficial antinociceptive effects of THC and its detrimental amnesic properties. We found that specific effects of THC such as memory deficits, anxiolytic-like effects, and social interaction are under the control of 5-HT2AR, but its acute hypolocomotor, hypothermic, anxiogenic, and antinociceptive effects are not. In biochemical studies, we show that CB1R and 5-HT2AR form heteromers that are expressed and functionally active in specific brain regions involved in memory impairment. Remarkably, our functional data shows that costimulation of both receptors by agonists reduces cell signaling, antagonist binding to one receptor blocks signaling of the interacting receptor, and heteromer formation leads to a switch in G-protein coupling for 5-HT2AR from Gq to Gi proteins. Synthetic peptides with the sequence of transmembrane helices 5 and 6 of CB1R, fused to a cell-penetrating peptide, were able to disrupt receptor heteromerization in vivo, leading to a selective abrogation of memory impairments caused by exposure to THC. These data reveal a novel molecular mechanism for the functional interaction between CB1R and 5-HT2AR mediating cognitive impairment. CB1R-5-HT2AR heteromers are thus good targets to dissociate the cognitive deficits induced by THC from its beneficial antinociceptive properties. PMID:26158621

  7. Metabotropic glutamate mGlu2 receptor is necessary for the pharmacological and behavioral effects induced by hallucinogenic 5-HT2A receptor agonists.

    PubMed

    Moreno, José L; Holloway, Terrell; Albizu, Laura; Sealfon, Stuart C; González-Maeso, Javier

    2011-04-15

    Hallucinogenic drugs, including mescaline, psilocybin and lysergic acid diethylamide (LSD), act at serotonin 5-HT2A receptors (5-HT2ARs). Metabotropic glutamate receptor 2/3 (mGluR2/3) ligands show efficacy in modulating the responses induced by activation of 5-HT2ARs. The formation of a 5-HT2AR-mGluR2 complex suggests a functional interaction that affects the hallucinogen-regulated cellular signaling pathways. Here, we tested the cellular and behavioral effects of hallucinogenic 5-HT2AR agonists in mGluR2 knockout (mGluR2-KO) mice. Mice were intraperitoneally injected with the hallucinogens DOI (2 mg/kg) and LSD (0.24 mg/kg), or vehicle. Head-twitch behavioral response, expression of c-fos, which is induced by all 5-HT2AR agonists, and expression of egr-2, which is hallucinogen-specific, were determined in wild type and mGluR2-KO mice. [(3)H]Ketanserin binding displacement curves by DOI were performed in mouse frontal cortex membrane preparations. Head twitch behavior was abolished in mGluR2-KO mice. The high-affinity binding site of DOI was undetected in mGluR2-KO mice. The hallucinogen DOI induced c-fos in both wild type and mGluR2-KO mice. However, the induction of egr-2 by DOI was eliminated in mGlu2-KO mice. These findings suggest that the 5-HT2AR-mGluR2 complex is necessary for the neuropsychological responses induced by hallucinogens.

  8. Extensive Rigid Analogue Design Maps the Binding Conformation of Potent N-Benzylphenethylamine 5-HT2A Serotonin Receptor Agonist Ligands

    PubMed Central

    2012-01-01

    Based on the structure of the superpotent 5-HT2A agonist 2-(4-bromo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine, which consists of a ring-substituted phenethylamine skeleton modified with an N-benzyl group, we designed and synthesized a small library of constrained analogues to identify the optimal arrangement of the pharmacophoric elements of the ligand. Structures consisted of diversely substituted tetrahydroisoquinolines, piperidines, and one benzazepine. Based on the structure of (S,S)-9b, which showed the highest affinity of the series, we propose an optimal binding conformation. (S,S)-9b also displayed 124-fold selectivity for the 5-HT2A over the 5-HT2C receptor, making it the most selective 5-HT2A receptor agonist ligand currently known. PMID:23336049

  9. We Need 2C but Not 2B: Developing Serotonin 2C (5-HT2C) Receptor Agonists for the Treatment of CNS Disorders

    PubMed Central

    Cheng, Jianjun; Kozikowski, Alan P.

    2016-01-01

    The serotonin 2C (5-HT2C) receptor has been identified as a potential drug target for the treatment of a variety of central nervous system (CNS) disorders, such as obesity, substance abuse, and schizophrenia. In this Viewpoint article, recent progress in developing selective 5-HT2C agonists for use in treating these disorders is summarized, including the work of our group. Challenges in this field and the possible future directions are described. Homology modeling as a method to predict the binding modes of 5-HT2C ligands to the receptor is also discussed. Compared to known ligands, the improved pharmacological profiles of the 2-phenylcyclopropylmethylamine-based 5-HT2C agonists make them preferred candidates for further studies. PMID:26507582

  10. Exploration of synthetic approaches and pharmacological evaluation of PNU-69176E and its stereoisomer as 5-HT2C receptor allosteric modulators.

    PubMed

    Ding, Chunyong; Bremer, Nicole M; Smith, Thressa D; Seitz, Patricia K; Anastasio, Noelle C; Cunningham, Kathryn A; Zhou, Jia

    2012-07-18

    Allosteric modulators of the serotonin (5-HT) 5-HT(2C) receptor (5-HT(2C)R) present a unique drug design strategy to augment the response to endogenous 5-HT in a site- and event-specific manner with great potential as novel central nervous system probes and therapeutics. To date, PNU-69176E is the only reported selective positive allosteric modulator for the 5-HT(2C)R. For the first time, an optimized synthetic route to readily access PNU-69176E (1) and its diastereomer 2 has been established in moderate to good overall yields over 10 steps starting from commercially available picolinic acid. This synthetic approach not only enables a feasible preparation of a sufficient amount of 1 for use as a reference compound for secondary pharmacological studies, but also provides an efficient synthesis of key intermediates to develop novel and simplified 5-HT(2C)R allosteric modulators. Compound 1 and its diastereomer 2 were functionally characterized in Chinese hamster ovary (CHO) cells stably transfected with the 5-HT(2C)R using an intracellular calcium (Ca(i) (2+)) release assay. Compound 1 demonstrated efficacy and potency as an allosteric modulator for the 5-HT(2C)R with no intrinsic agonist activity. Compound 1 did not alter 5-HT-evoked Ca(i) (2+) in CHO cells stably transfected with the highly homologous 5-HT(2A)R. In contrast, the diastereomer 2 did not alter 5-HT-evoked Ca(i) (2+) release in 5-HT(2A)R-CHO or 5-HT(2C)R-CHO cells or exhibit intrinsic agonist activity.

  11. Activation of serotonin 5-HT(2C) receptor suppresses behavioral sensitization and naloxone-precipitated withdrawal symptoms in morphine-dependent mice.

    PubMed

    Zhang, Gongliang; Wu, Xian; Zhang, Yong-Mei; Liu, Huan; Jiang, Qin; Pang, Gang; Tao, Xinrong; Dong, Liuyi; Stackman, Robert W

    2016-02-01

    Opioid abuse and dependence have evolved into an international epidemic as a significant clinical and societal problem with devastating consequences. Repeated exposure to the opioid, for example morphine, can induce profound, long-lasting behavioral sensitization and physical dependence, which are thought to reflect neuroplasticity in neural circuitry. Central serotonin (5-HT) neurotransmission participates in the development of dependence on and the expression of withdrawal from morphine. Serotonin 5-HT(2C) receptor (5-HT(2C)R) agonists suppress psychostimulant nicotine or cocaine-induced behavioral sensitization and drug-seeking behavior; however, the impact of 5-HT(2C)R agonists on behaviors relevant to opioid abuse and dependence has not been reported. In the present study, the effects of 5-HT(2C)R activation on the behavioral sensitization and naloxone-precipitated withdrawal symptoms were examined in mice underwent repeated exposure to morphine. Male mice received morphine (10 mg/kg, s.c.) to develop behavioral sensitization. Lorcaserin, a 5-HT(2C)R agonist, prevented the induction and expression, but not the development, of morphine-induced behavioral sensitization. Another cohort of mice received increasing doses of morphine over a 7-day period to induce morphine-dependence. Pretreatment of lorcaserin, or the positive control clonidine (an alpha 2-adrenoceptor agonist), ameliorated the naloxone-precipitated withdrawal symptoms. SB 242084, a selective 5-HT(2C)R antagonist, prevented the lorcaserin-mediated suppression of behavioral sensitization and withdrawal. Chronic morphine treatment was associated with an increase in the expression of 5-HT(2C)R protein in the ventral tegmental area, locus coeruleus and nucleus accumbens. These findings suggest that 5-HT(2C)R can modulate behavioral sensitization and withdrawal in morphine-dependent mice, and the activation of 5-HT(2C)R may represent a new avenue for the treatment of opioid addiction.

  12. Effects of dominance status on conditioned defeat and expression of 5-HT1A and 5-HT2A receptors

    PubMed Central

    Morrison, Kathleen E.; Swallows, Cody L.; Cooper, Matthew A.

    2011-01-01

    Past experience can alter how individuals respond to stressful events. The brain serotonin system is a key factor modulating stress-related behavior and may contribute to individual variation in coping styles. In this study we investigated whether dominant and subordinate hamsters respond differently to social defeat and whether their behavioral responses are associated with changes in 5-HT1A and 5-HT2A receptor immunoreactivity in several limbic brain regions. We paired weight-matched hamsters in daily aggressive encounters for two weeks so that they formed a stable dominance relationship. We also included controls that were exposed to an empty cage each day for two weeks. Twenty-four hours after the final pairing or empty cage exposure, subjects were socially defeated in 3, 5-min encounters with a more aggressive hamster. Twenty-four hours after social defeat, animals were tested for conditioned defeat in a 5-min social interaction test with a non-aggressive intruder. We collected brains following conditioned defeat testing and performed immunohistochemistry for 5-HT1A and 5-HT2A receptors. We found that dominants showed less submissive and defensive behavior at conditioned defeat testing compared to both subordinates and controls. Additionally, both dominants and subordinates had an increased number of 5-HT1A immunopositive cells in the basolateral amygdala compared to controls. Subordinates also had more 5-HT1A immunopositive cells in the dorsal medial amygdala than did controls. Finally, dominants had fewer 5-HT1A immunopositive cells in the paraventricular nucleus of the hypothalamus compared to controls. Our results indicate that dominant social status results in a blunted conditioned defeat response and a distinct pattern of 5-HT1A receptor expression, which may contribute to resistance to conditioned defeat. PMID:21362435

  13. Effects of dominance status on conditioned defeat and expression of 5-HT1A and 5-HT2A receptors.

    PubMed

    Morrison, Kathleen E; Swallows, Cody L; Cooper, Matthew A

    2011-08-01

    Past experience can alter how individuals respond to stressful events. The brain serotonin system is a key factor modulating stress-related behavior and may contribute to individual variation in coping styles. In this study we investigated whether dominant and subordinate hamsters respond differently to social defeat and whether their behavioral responses are associated with changes in 5-HT1A and 5-HT2A receptor immunoreactivity in several limbic brain regions. We paired weight-matched hamsters in daily aggressive encounters for two weeks so that they formed a stable dominance relationship. We also included controls that were exposed to an empty cage each day for two weeks. Twenty-four hours after the final pairing or empty cage exposure, subjects were socially defeated in 3, 5-min encounters with a more aggressive hamster. Twenty-four hours after social defeat, animals were tested for conditioned defeat in a 5-min social interaction test with a non-aggressive intruder. We collected brains following conditioned defeat testing and performed immunohistochemistry for 5-HT1A and 5-HT2A receptors. We found that dominants showed less submissive and defensive behavior at conditioned defeat testing compared to both subordinates and controls. Additionally, both dominants and subordinates had an increased number of 5-HT1A immunopositive cells in the basolateral amygdala compared to controls. Subordinates also had more 5-HT1A immunopositive cells in the dorsal medial amygdala than did controls. Finally, dominants had fewer 5-HT1A immunopositive cells in the paraventricular nucleus of the hypothalamus compared to controls. Our results indicate that dominant social status results in a blunted conditioned defeat response and a distinct pattern of 5-HT1A receptor expression, which may contribute to resistance to conditioned defeat.

  14. Synthesis and in vitro evaluation of [18F]FECIMBI-36: A potential agonist PET ligand for 5-HT2A/2C receptors

    PubMed Central

    Prabhakaran, Jaya; Underwood, Mark D.; Dileep Kumar, J. S.; Simpson, Norman R.; Kassir, Suham A.; Bakalian, Mihran J.; Mann, J. John; Arango, Victoria

    2016-01-01

    Radiosynthesis and in vitro evaluation of [18F]-2-(4-bromo-2,5-dimethoxyphenyl)-N-(2-(2-fluoroethoxy)benzyl)ethanamine, ([18F]FECIMBI-36) or ([18F]1), a potential agonist PET imaging agent for 5-HT2A/2C receptors is described. Syntheses of reference standard 1 and the corresponding des-fluoroethyl radiolabeling precursor (2) were achieved with 75% and 65% yields, respectively. In vitro pharmacology assay of FECIMBI-36 by [3H]-ketanserin competition binding assay obtained from NIMH-PDSP showed high affinities to 5-HT2AR (Ki = 1 nM) and 5-HT2CR (Ki = 1.7 nM). Radiolabeling of FECIMBI-36 was achieved from the boc-protected precursor 2 using [18F]-fluoroethyltosylate in presence of Cs2CO3 in DMSO followed by removal of the protective group. [18F]1 was isolated using RP-HPLC in 25 ± 5% yield, purity ≥95% and specific activity 1–2 Ci/μmol (N = 6). In vitro autoradiography studies demonstrate that [18F]1 selectively label 5-HT2A and 5-HT2C receptors in slide-mounted sections of postmortem human brain using phosphor imaging. Our results indicate the potential of [18F]1 for imaging 5-HT2A/2C receptors in the high affinity state in vivo using PET imaging. PMID:26253634

  15. Synthesis and in vitro evaluation of [18F]FECIMBI-36: A potential agonist PET ligand for 5-HT2A/2C receptors.

    PubMed

    Prabhakaran, Jaya; Underwood, Mark D; Kumar, J S Dileep; Simpson, Norman R; Kassir, Suham A; Bakalian, Mihran J; Mann, J John; Arango, Victoria

    2015-09-15

    Radiosynthesis and in vitro evaluation of [(18)F]-2-(4-bromo-2,5-dimethoxyphenyl)-N-(2-(2-fluoroethoxy)benzyl)ethanamine, ([(18)F]FECIMBI-36) or ([(18)F]1), a potential agonist PET imaging agent for 5-HT2A/2C receptors is described. Syntheses of reference standard 1 and the corresponding des-fluoroethyl radiolabeling precursor (2) were achieved with 75% and 65% yields, respectively. In vitro pharmacology assay of FECIMBI-36 by [(3)H]-ketanserin competition binding assay obtained from NIMH-PDSP showed high affinities to 5-HT2AR (Ki = 1nM) and 5-HT2CR (Ki=1.7 nM). Radiolabeling of FECIMBI-36 was achieved from the boc-protected precursor 2 using [(18)F]-fluoroethyltosylate in presence of Cs2CO3 in DMSO followed by removal of the protective group. [(18)F]1 was isolated using RP-HPLC in 25 ± 5% yield, purity > 95% and specific activity 1-2Ci/μmol (N = 6). In vitro autoradiography studies demonstrate that [(18)F]1 selectively label 5-HT2A and 5-HT2C receptors in slide-mounted sections of postmortem human brain using phosphor imaging. Our results indicate the potential of [(18)F]1 for imaging 5-HT2A/2C receptors in the high affinity state in vivo using PET imaging.

  16. Serotonin Modulates Developmental Microglia via 5-HT2B Receptors: Potential Implication during Synaptic Refinement of Retinogeniculate Projections.

    PubMed

    Kolodziejczak, Marta; Béchade, Catherine; Gervasi, Nicolas; Irinopoulou, Theano; Banas, Sophie M; Cordier, Corinne; Rebsam, Alexandra; Roumier, Anne; Maroteaux, Luc

    2015-07-15

    Maturation of functional neuronal circuits during central nervous system development relies on sophisticated mechanisms. First, axonal and dendritic growth should reach appropriate targets for correct synapse elaboration. Second, pruning and neuronal death are required to eliminate redundant or inappropriate neuronal connections. Serotonin, in addition to its role as a neurotransmitter, actively participates in postnatal establishment and refinement of brain wiring in mammals. Brain resident macrophages, that is, microglia, also play an important role in developmentally regulated neuronal death as well as in synaptic maturation and elimination. Here, we tested the hypothesis of cross-regulation between microglia and serotonin during postnatal brain development in a mouse model of synaptic refinement. We found expression of the serotonin 5-HT2B receptor on postnatal microglia, suggesting that serotonin could participate in temporal and spatial synchronization of microglial functions. Using two-photon microscopy, acute brain slices, and local delivery of serotonin, we observed that microglial processes moved rapidly toward the source of serotonin in Htr2B(+/+) mice, but not in Htr2B(-/-) mice lacking the 5-HT2B receptor. We then investigated whether some developmental steps known to be controlled by serotonin could potentially result from microglia sensitivity to serotonin. Using an in vivo model of synaptic refinement during early brain development, we investigated the maturation of the retinal projections to the thalamus and observed that Htr2B(-/-) mice present anatomical alterations of the ipsilateral projecting area of retinal axons into the thalamus. In addition, activation markers were upregulated in microglia from Htr2B(-/-) compared to control neonates, in the absence of apparent morphological modifications. These results support the hypothesis that serotonin interacts with microglial cells and these interactions participate in brain maturation.

  17. Stimulation of 5-HT2C Receptors Improves Cognitive Deficits Induced by Human Tryptophan Hydroxylase 2 Loss of Function Mutation

    PubMed Central

    Del'Guidice, Thomas; Lemay, Francis; Lemasson, Morgane; Levasseur-Moreau, Jean; Manta, Stella; Etievant, Adeline; Escoffier, Guy; Doré, François Y; Roman, François S; Beaulieu, Jean-Martin

    2014-01-01

    Polymorphisms in the gene encoding the serotonin synthesis enzyme Tph2 have been identified in mental illnesses, including bipolar disorder, major depression, autism, schizophrenia, and ADHD. Deficits in cognitive flexibility and perseverative behaviors are shared common symptoms in these disorders. However, little is known about the impact of Tph2 gene variants on cognition. Mice expressing a human TPH2 variant (Tph2-KI) were used to investigate cognitive consequences of TPH2 loss of function and pharmacological treatments. We applied a recently developed behavioral assay, the automated H-maze, to study cognitive functions in Tph2-KI mice. This assay involves the consecutive discovery of three different rules: a delayed alternation task, a non-alternation task, and a delayed reversal task. Possible contribution of locomotion, reward, and sensory perception were also investigated. The expression of loss-of-function mutant Tph2 in mice was associated with impairments in reversal learning and cognitive flexibility, accompanied by perseverative behaviors similar to those observed in human clinical studies. Pharmacological restoration of 5-HT synthesis with 5-hydroxytryptophan or treatment with the 5-HT2C receptor agonist CP809.101 reduced cognitive deficits in Tph2-KI mice and abolished perseveration. In contrast, treatment with the psychostimulant methylphenidate exacerbated cognitive deficits in mutant mice. Results from this study suggest a contribution of TPH2 in the regulation of cognition. Furthermore, identification of a role for a 5-HT2 receptor agonist as a cognition-enhancing agent in mutant mice suggests a potential avenue to explore for the personalized treatment of cognitive symptoms in humans with reduced 5-HT synthesis and TPH2 polymorphisms. PMID:24196946

  18. Stimulation of 5-HT2C receptors improves cognitive deficits induced by human tryptophan hydroxylase 2 loss of function mutation.

    PubMed

    Del'Guidice, Thomas; Lemay, Francis; Lemasson, Morgane; Levasseur-Moreau, Jean; Manta, Stella; Etievant, Adeline; Escoffier, Guy; Doré, François Y; Roman, François S; Beaulieu, Jean-Martin

    2014-04-01

    Polymorphisms in the gene encoding the serotonin synthesis enzyme Tph2 have been identified in mental illnesses, including bipolar disorder, major depression, autism, schizophrenia, and ADHD. Deficits in cognitive flexibility and perseverative behaviors are shared common symptoms in these disorders. However, little is known about the impact of Tph2 gene variants on cognition. Mice expressing a human TPH2 variant (Tph2-KI) were used to investigate cognitive consequences of TPH2 loss of function and pharmacological treatments. We applied a recently developed behavioral assay, the automated H-maze, to study cognitive functions in Tph2-KI mice. This assay involves the consecutive discovery of three different rules: a delayed alternation task, a non-alternation task, and a delayed reversal task. Possible contribution of locomotion, reward, and sensory perception were also investigated. The expression of loss-of-function mutant Tph2 in mice was associated with impairments in reversal learning and cognitive flexibility, accompanied by perseverative behaviors similar to those observed in human clinical studies. Pharmacological restoration of 5-HT synthesis with 5-hydroxytryptophan or treatment with the 5-HT(2C) receptor agonist CP809.101 reduced cognitive deficits in Tph2-KI mice and abolished perseveration. In contrast, treatment with the psychostimulant methylphenidate exacerbated cognitive deficits in mutant mice. Results from this study suggest a contribution of TPH2 in the regulation of cognition. Furthermore, identification of a role for a 5-HT(2) receptor agonist as a cognition-enhancing agent in mutant mice suggests a potential avenue to explore for the personalized treatment of cognitive symptoms in humans with reduced 5-HT synthesis and TPH2 polymorphisms.

  19. Long-term Stress with Hyperglucocorticoidemia-induced Hepatic Steatosis with VLDL Overproduction Is Dependent on both 5-HT2 Receptor and 5-HT Synthesis in Liver

    PubMed Central

    Fu, Jihua; Ma, Shaoxin; Li, Xin; An, Shanshan; Li, Tao; Guo, Keke; Lin, Min; Qu, Wei; Wang, Shanshan; Dong, Xinyue; Han, Xiaoyu; Fu, Ting; Huang, Xinping; Wang, Tianying; He, Siyu

    2016-01-01

    Hepatic triglycerides production and adipose lipolysis are pivotal for long-term stress (LTS) or hyperglucocorticoidemia-induced insulin resistance. 5-hydroxytryptamine (5-HT) has been demonstrated to induce hepatic lipid metabolic abnormality by activating mammalian target of rapamycin (mTOR). In present study, we explored whether 5-HT is involved in LTS effects in liver using restraint stress-exposed rats and cultured primary rat hepatocytes and HepG2 cells. LTS with hyperglucocorticoidemia induced hepatic 5-HT synthetic increase with tryptophan hydroxylase 1 (Tph1) up-regulation, and 5-HT2 receptor (5-HT2R, including 5-HT2A, 2B receptor) up-regulation in liver and visceral adipose, as well as hepatic mTOR activation with triglycerides and VLDL overproduction with steatosis, and visceral adipose lipolytic increase with high blood free fatty acids (FFAs) level. 5-HT exposure exhibited LTS-like effects in both tissues, and both LTS and 5-HT effects could be abolished significantly by blocking 5-HT2R. In HepG2 cells dexamethasone or palmitate-induced mTOR activation with triglycerides and VLDL overproduction were accompanied by up-regulations of 5-HT synthesis and 5-HT2R, which were significantly abolished by gene silencing Tph1 or 5-HT2R and were almost fully abolished by co-silencing of both, especially on VLDL overproduction. Chemical inhibition of Tph1 or/and 5-HT2R in both hepatocytes exhibited similar abolishment with genetic inhibition on dexamethason-induced effects. 5-HT-stimulated effects in both hepatocytes were fully abolished by blocking 5-HT2R, while 5-HT itself also up-regulated 5-HT2R. In conclusion, up-regulated hepatic 5-HT synthesis and 5-HT2R induced by both glucocorticoid and FFAs are crucial for LTS-induced hepatic steatosis with VLDL overproduction, while 5-HT by acting on 5-HT2R mediates mTOR activation in liver. PMID:26884719

  20. Evidence for a 5-HT2A receptor mode of action in the anxiolytic-like properties of DOI in mice.

    PubMed

    Nic Dhonnchadha, Bríd Aine; Hascoët, Martine; Jolliet, Pascale; Bourin, Michel

    2003-12-17

    DOI [(+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane] displays a high affinity for the rat 5-HT2A, 5-HT2B and 5-HT2C receptors (pKi 7.3, 7.4 and 7.8, respectively) and acts as an agonist. DOI (0.5-4 mg/kg, i.p. 30 min pre-test) increased the number of punished passages in the mouse four plates test (FPT). The anti-punishment action of DOI (1 mg/kg, i.p. 30 min pre-test) was abolished by prior treatment with the selective 5-HT2A receptor antagonist SR 46949B (0.1 and 1 mg/kg, i.p. 45 min pre-test) but not by the selective 5-HT2C receptor antagonist RS 10-2221 (0.1 and 1 mg/kg, i.p. 45 min pre-test) nor the selective 5-HT2C/2B receptor antagonist SB 206553 (0.1 and 1 mg/kg, i.p. 45 min pre-test). An anxiolytic-like action was also observed for DOI (1 mg/kg) in the elevated plus maze (EPM). The anxiolytic-like action of DOI (1 mg/kg, i.p. 30 min pre-test) was antagonised by pre-treatment with SR 46949B (0.125 and 0.5 mg/kg, i.p. 45 min pre-test) but not by RS 10-2221 (0.1 and 1 mg/kg, i.p. 45 min pre-test) nor SB 206553 (0.1 and 1 mg/kg, i.p. 45 min pre-test). In conclusion, DOI produced an anxiolytic-like profile in the mouse FPT and EPM. These effects are likely to be 5-HT2A receptor mediated.

  1. 5-HT2C receptors in the basolateral amygdala and dorsal striatum are a novel target for the anxiolytic and antidepressant effects of exercise.

    PubMed

    Greenwood, Benjamin N; Strong, Paul V; Loughridge, Alice B; Day, Heidi E W; Clark, Peter J; Mika, Agnieszka; Hellwinkel, Justin E; Spence, Katie G; Fleshner, Monika

    2012-01-01

    Physical activity reduces the incidence and severity of psychiatric disorders such as anxiety and depression. Similarly, voluntary wheel running produces anxiolytic- and antidepressant-like effects in rodent models. The specific neurobiological mechanisms underlying the beneficial properties of exercise, however, remain unclear. One relevant pharmacological target in the treatment of psychiatric disorders is the 5-HT(2C) receptor (5-HT(2C)R). Consistent with data demonstrating the anxiogenic consequences of 5-HT(2C)R activation in humans and rodents, we have previously reported that site-specific administration of the selective 5-HT(2C)R agonist CP-809101 in the lateral/basolateral amygdala (BLA) increases shock-elicited fear while administration of CP-809101 in the dorsal striatum (DS) interferes with shuttle box escape learning. These findings suggest that activation of 5-HT(2C)R in discrete brain regions contributes to specific anxiety- and depression-like behaviors and may indicate potential brain sites involved in the anxiolytic and antidepressant effects of exercise. The current studies tested the hypothesis that voluntary wheel running reduces the behavioral consequences of 5-HT(2C)R activation in the BLA and DS, specifically enhanced shock-elicited fear and interference with shuttle box escape learning. After 6 weeks of voluntary wheel running or sedentary conditions, the selective 5-HT(2C)R agonist CP-809101 was microinjected into either the BLA or the DS of adult Fischer 344 rats, and shock-elicited fear and shuttle box escape learning was assessed. Additionally, in-situ hybridization was used to determine if 6 weeks of voluntary exercise changed levels of 5-HT(2C)R mRNA. We found that voluntary wheel running reduced the behavioral effects of CP-809101 and reduced levels of 5-HT(2C)R mRNA in both the BLA and the DS. The current data indicate that expression of 5-HT(2C)R mRNA in discrete brain sites is sensitive to physical activity status of the organism

  2. Small molecule drug screening in Drosophila identifies the 5HT2A receptor as a feeding modulation target

    PubMed Central

    Gasque, Gabriel; Conway, Stephen; Huang, Juan; Rao, Yi; Vosshall, Leslie B.

    2013-01-01

    Dysregulation of eating behavior can lead to obesity, which affects 10% of the adult population worldwide and accounts for nearly 3 million deaths every year. Despite this burden on society, we currently lack effective pharmacological treatment options to regulate appetite. We used Drosophila melanogaster larvae to develop a high-throughput whole organism screen for drugs that modulate food intake. In a screen of 3630 small molecules, we identified the serotonin (5-hydroxytryptamine or 5-HT) receptor antagonist metitepine as a potent anorectic drug. Using cell-based assays we show that metitepine is an antagonist of all five Drosophila 5-HT receptors. We screened fly mutants for each of these receptors and found that serotonin receptor 5-HT2A is the sole molecular target for feeding inhibition by metitepine. These results highlight the conservation of molecular mechanisms controlling appetite and provide a method for unbiased whole-organism drug screens to identify novel drugs and molecular pathways modulating food intake. PMID:23817146

  3. In Vivo Quantification of 5-HT2A Brain Receptors in Mdr1a KO Rats with 123I-R91150 Single-Photon Emission Computed Tomography.

    PubMed

    Dumas, Noé; Moulin-Sallanon, Marcelle; Fender, Pascal; Tournier, Benjamin B; Ginovart, Nathalie; Charnay, Yves; Millet, Philippe

    2015-01-01

    Our goal was to identify suitable image quantification methods to image 5-hydroxytryptamine2A (5-HT2A) receptors in vivo in Mdr1a knockout (KO) rats (i.e., P-glycoprotein KO) using 123I-R91150 single-photon emission computed tomography (SPECT). The 123I-R91150 binding parameters estimated with different reference tissue models (simplified reference tissue model [SRTM], Logan reference tissue model, and tissue ratio [TR] method) were compared to the estimates obtained with a comprehensive three-tissue/seven-parameter (3T/7k)-based model. The SRTM and Logan reference tissue model estimates of 5-HT2A receptor (5-HT2AR) nondisplaceable binding potential (BPND) correlated well with the absolute receptor density measured with the 3T/7k gold standard (r > .89). Quantification of 5-HT2AR using the Logan reference tissue model required at least 90 minutes of scanning, whereas the SRTM required at least 110 minutes. The TR method estimates were also highly correlated to the 5-HT2AR density (r > .91) and only required a single 20-minute scan between 100 and 120 minutes postinjection. However, a systematic overestimation of the BPND values was observed. The Logan reference tissue method is more convenient than the SRTM for the quantification of 5-HT2AR in Mdr1a KO rats using 123I-R91150 SPECT. The TR method is an interesting and simple alternative, despite its bias, as it still provides a valid index of 5-HT2AR density. PMID:26105563

  4. Serotonin (5-HT) and 5-HT2A receptor agonists suppress lipolysis in primary rat adipose cells.

    PubMed

    Hansson, Björn; Medina, Anya; Fryklund, Claes; Fex, Malin; Stenkula, Karin G

    2016-05-27

    Serotonin (5-HT) is a biogenic monoamine that functions both as a neurotransmitter and a circulating hormone. Recently, the metabolic effects of 5-HT have gained interest and peripheral 5-HT has been proposed to influence lipid metabolism in various ways. Here, we investigated the metabolic effects of 5-HT in isolated, primary rat adipose cells. Incubation with 5-HT suppressed β-adrenergically stimulated glycerol release and decreased phosphorylation of protein kinase A (PKA)-dependent substrates, hormone sensitive lipase (Ser563) and perilipin (Ser522). The inhibitory effect of 5-HT on lipolysis enhanced the anti-lipolytic effect of insulin, but sustained in the presence of phosphodiesterase inhibitors, OPC3911 and isobuthylmethylxanthine (IBMX). The relative expression of 5-HT1A, -2B and -4 receptor class family were significantly higher in adipose tissue compared to adipose cells, whereas 5-HT1D, -2A and -7 were highly expressed in isolated adipose cells. Similar to 5-HT, 5-HT2 receptor agonists reduced lipolysis while 5-HT1 receptor agonists rather decreased non-stimulated and insulin-stimulated glucose uptake. Together, these data provide evidence of a direct effect of 5-HT on adipose cells, where 5-HT suppresses lipolysis and glucose uptake, which could contribute to altered systemic lipid- and glucose metabolism. PMID:27109474

  5. Maternal lipopolysaccharide treatment differentially affects 5-HT(2A) and mGlu2/3 receptor function in the adult male and female rat offspring.

    PubMed

    Wischhof, Lena; Irrsack, Ellen; Dietz, Frank; Koch, Michael

    2015-10-01

    Maternal infection during pregnancy increases the risk for the offspring to develop schizophrenia. However, it is still not fully understood which biochemical mechanisms are responsible for the emergence of neuropsychiatric symptoms following prenatal immune activation. The serotonin (5-hydroxytryptamine, 5-HT) and glutamate system have prominently been associated with the schizophrenia pathophysiology but also with the mechanism of antipsychotic drug actions. Here, we investigated the behavioral and cellular response to 5-HT2A and metabotropic glutamate (mGlu)2/3 receptor stimulation in male and female offspring born to lipopolysaccharide (LPS)-treated mothers. Additionally, we assessed protein expression levels of prefrontal 5-HT2A and mGlu2 receptors. Prenatally LPS-exposed male and female offspring showed locomotor hyperactivity and increased head-twitch behavior in response to the 5-HT2A receptor agonist DOI. In LPS-exposed male offspring, the mGlu2/3 receptor agonist LY379268 failed to reduce DOI-induced prepulse inhibition deficits. In LPS-males, the behavioral changes were further accompanied by enhanced DOI-induced c-Fos protein expression and an up-regulation of prefrontal 5-HT2A receptors. No changes in either 5-HT2A or mGlu2 receptor protein levels were found in female offspring. Our data support the hypothesis of an involvement of maternal infection during pregnancy contributing, at least partially, to the pathology of schizophrenia. Identifying biochemical alterations that parallel the behavioral deficits may help to improve therapeutic strategies in the treatment of this mental illness. Since most studies in rodents almost exclusively include male subjects, our data further contribute to elucidating possible gender differences in the effects of prenatal infection on 5-HT2A and mGlu2/3 receptor function. PMID:26051401

  6. Signal Transduction Mechanism for Serotonin 5-HT2B Receptor-Mediated DNA Synthesis and Proliferation in Primary Cultures of Adult Rat Hepatocytes.

    PubMed

    Naito, Kota; Tanaka, Chizuru; Mitsuhashi, Manami; Moteki, Hajime; Kimura, Mitsutoshi; Natsume, Hideshi; Ogihara, Masahiko

    2016-01-01

    The involvement of serotonin (5-hydroxytryptamine; 5-HT) and the 5-HT2 receptor subtypes in the induction of DNA synthesis and proliferation was investigated in primary cultures of adult rat hepatocytes to elucidate the intracellular signal transduction mechanisms. Hepatocyte parenchymal cells maintained in a serum-free, defined medium, synthesized DNA and proliferated in the presence of 5-HT or a selective 5-HT2B receptor agonist, BW723C86, but not in the presence of 5-HT2A, or 5-HT2C receptor agonists (TCB-2 and CP809101, respectively), in a time- and dose-dependent manner. A selective 5-HT2B receptor antagonist, LY272015 (10(-7) M), and a specific phospholipase C (PLC) inhibitor, U-73122 (10(-6) M), as well as specific inhibitors of growth-related signal transducers-including AG1478, LY294002, PD98059, and rapamycin-completely inhibited 5-HT (10(-6) M)- or BW723C86 (10(-6) M)-induced hepatocyte DNA synthesis and proliferation. Both 5-HT and BW723C86 were shown to significantly stimulate the phosphorylation of epidermal growth factor (EGF)/transforming growth factor (TGF)-α receptor tyrosine kinase (p175 kDa) and extracellular signal-regulated kinase (ERK) 2 on Western blot analysis. These results suggest that the proliferative mechanism of activating 5-HT is mediated mainly through 5-HT2B receptor-stimulated Gq/PLC and EGF/TGF-α-receptor/phosphatidylinositol 3-kinase (PI3K)/ERK2/mammalian target of rapamycin (mTOR) signaling pathways in primary cultured hepatocytes.

  7. Activation of 5-HT2a Receptors in the Basolateral Amygdala Promotes Defeat-Induced Anxiety and the Acquisition of Conditioned Defeat in Syrian Hamsters

    PubMed Central

    Clinard, Catherine T.; Bader, Lauren R.; Sullivan, Molly A.; Cooper, Matthew A.

    2014-01-01

    Conditioned defeat is a model in Syrian hamsters (Mesocricetus auratus) in which normal territorial aggression is replaced by increased submissive and defensive behavior following acute social defeat. The conditioned defeat response involves both a fear-related memory for a specific opponent as well as anxiety-like behavior indicated by avoidance of novel conspecifics. We have previously shown that systemic injection of a 5-HT2a receptor antagonist reduces the acquisition of conditioned defeat. Because neural activity in the basolateral amygdala (BLA) is critical for the acquisition of conditioned defeat and BLA 5-HT2a receptors can modulate anxiety but have a limited effect on emotional memories, we investigated whether 5-HT2a receptor modulation alters defeat-induced anxiety but not defeat-related memories. We injected the 5-HT2a receptor antagonist MDL 11,939 (0 mM, 1.7 mM or 17 mM) or the 5-HT2a receptor agonist TCB-2 (0 mM, 8 mM or 80 mM) into the BLA prior to social defeat. We found that injection of MDL 11,939 into the BLA impaired acquisition of the conditioned defeat response and blocked defeat-induced anxiety in the open field, but did not significantly impair avoidance of former opponents in the Y-maze. Furthermore, we found that injection of TCB-2 into the BLA increased the acquisition of conditioned defeat and increased anxiety-like behavior in the open field, but did not alter avoidance of former opponents. Our data suggest that 5-HT2a receptor signaling in the BLA is both necessary and sufficient for the development of conditioned defeat, likely via modulation of defeat-induced anxiety. PMID:25458113

  8. Lack of Association between the Serotonin Transporter (5-HTT) and Serotonin Receptor (5-HT2A) Gene Polymorphisms with Smoking Behavior among Malaysian Malays

    PubMed Central

    Rozak, Nur Iwani A; Ahmad, Imran; Gan, Siew Hua; Abu Bakar, Ruzilawati

    2014-01-01

    Abstract An insertion/deletion polymorphism in the promoter region of the serotonin transporter gene (5-HTTLPR) and a polymorphism (rs6313) in the serotonin 2A receptor gene (5-HT2A) have previously been linked to smoking behavior. The objective of this study was to determine the possible association of the 5-HTTLPR and 5-HT2A gene polymorphisms with smoking behavior within a population of Malaysian male smokers (n=248) and non-smokers (n=248). The 5-HTTLPR genotypes were determined using the polymerase chain reaction (PCR) and were classified as short (S) alleles or long (L) alleles. The 5HT2A genotypes were determined using PCR-restriction fragment length polymorphisms (PCR-RFLP). No significant differences in the distribution frequencies of the alleles were found between the smokers and the non-smokers for the 5-HTTLPR polymorphism (x2 = 0.72, P>0.05) or the 5HT2A polymorphism (x2 = 0.73, P>0.05). This is the first study conducted on Malaysian Malay males regarding the association of 5-HTTLPR and 5HT2A polymorphisms and smoking behavior. However, the genes were not found to be associated with smoking behavior in our population. PMID:25853073

  9. Activation of serotonin 5-HT(2C) receptor suppresses behavioral sensitization and naloxone-precipitated withdrawal symptoms in heroin-treated mice.

    PubMed

    Wu, Xian; Pang, Gang; Zhang, Yong-Mei; Li, Guangwu; Xu, Shengchun; Dong, Liuyi; Stackman, Robert W; Zhang, Gongliang

    2015-10-21

    Abuse and dependence to heroin has evolved into a global epidemic as a significant clinical and societal problem with devastating consequences. Repeated exposure to heroin can induce long-lasting behavioral sensitization and withdrawal. Pharmacological activation of 5-HT2C receptors (5-HT2CRs) suppresses psychostimulant-induced drug-seeking and behavioral sensitization. The present study examined the effect of a selective 5-HT2CR agonist lorcaserin on behavioral sensitization and naloxone-precipitated withdrawal symptoms in heroin-treated mice. Male mice received heroin (1.0 mg/kg, s.c.) twice a day for 3 days and then drug treatment was suspended for 5 days. On day 9, a challenge dose of heroin (1.0 mg/kg) was administered to examine the expression of behavioral sensitization. Lorcaserin administered during the development, withdrawal or expression stage suppressed heroin-induced behavioral sensitization on day 9. Another cohort of mice received increasing doses of heroin over a 4.5-day period. Lorcaserin, or the positive control clonidine (an α2-adrenoceptor agonist) suppressed naloxone-precipitated withdrawal symptoms in heroin-treated mice. These findings suggest that activation of 5-HT2CRs suppresses behavioral sensitization and withdrawal in heroin-treated mice. Thus, pharmacological activation of 5-HT2CRs may represent a new avenue for the treatment of heroin addiction.

  10. Activation of serotonin 5-HT(2C) receptor suppresses behavioral sensitization and naloxone-precipitated withdrawal symptoms in heroin-treated mice.

    PubMed

    Wu, Xian; Pang, Gang; Zhang, Yong-Mei; Li, Guangwu; Xu, Shengchun; Dong, Liuyi; Stackman, Robert W; Zhang, Gongliang

    2015-10-21

    Abuse and dependence to heroin has evolved into a global epidemic as a significant clinical and societal problem with devastating consequences. Repeated exposure to heroin can induce long-lasting behavioral sensitization and withdrawal. Pharmacological activation of 5-HT2C receptors (5-HT2CRs) suppresses psychostimulant-induced drug-seeking and behavioral sensitization. The present study examined the effect of a selective 5-HT2CR agonist lorcaserin on behavioral sensitization and naloxone-precipitated withdrawal symptoms in heroin-treated mice. Male mice received heroin (1.0 mg/kg, s.c.) twice a day for 3 days and then drug treatment was suspended for 5 days. On day 9, a challenge dose of heroin (1.0 mg/kg) was administered to examine the expression of behavioral sensitization. Lorcaserin administered during the development, withdrawal or expression stage suppressed heroin-induced behavioral sensitization on day 9. Another cohort of mice received increasing doses of heroin over a 4.5-day period. Lorcaserin, or the positive control clonidine (an α2-adrenoceptor agonist) suppressed naloxone-precipitated withdrawal symptoms in heroin-treated mice. These findings suggest that activation of 5-HT2CRs suppresses behavioral sensitization and withdrawal in heroin-treated mice. Thus, pharmacological activation of 5-HT2CRs may represent a new avenue for the treatment of heroin addiction. PMID:26375926

  11. Aromatic interactions impact ligand binding and function at serotonin 5-HT2C G protein-coupled receptors: receptor homology modelling, ligand docking, and molecular dynamics results validated by experimental studies

    NASA Astrophysics Data System (ADS)

    Córdova-Sintjago, Tania; Villa, Nancy; Fang, Lijuan; Booth, Raymond G.

    2014-02-01

    The serotonin (5-hydroxytryptamine, 5-HT) 5-HT2 G protein-coupled receptor (GPCR) family consists of types 2A, 2B, and 2C that share ∼75% transmembrane (TM) sequence identity. Agonists for 5-HT2C receptors are under development for psychoses; whereas, at 5-HT2A receptors, antipsychotic effects are associated with antagonists - in fact, 5-HT2A agonists can cause hallucinations and 5-HT2B agonists cause cardiotoxicity. It is known that 5-HT2A TM6 residues W6.48, F6.51, and F6.52 impact ligand binding and function; however, ligand interactions with these residues at the 5-HT2C receptor have not been reported. To predict and validate molecular determinants for 5-HT2C-specific activation, results from receptor homology modelling, ligand docking, and molecular dynamics simulation studies were compared with experimental results for ligand binding and function at wild type and W6.48A, F6.51A, and F6.52A point-mutated 5-HT2C receptors.

  12. Allosteric signaling through an mGlu2 and 5-HT2A heteromeric receptor complex and its potential contribution to schizophrenia.

    PubMed

    Moreno, José L; Miranda-Azpiazu, Patricia; García-Bea, Aintzane; Younkin, Jason; Cui, Meng; Kozlenkov, Alexey; Ben-Ezra, Ariel; Voloudakis, Georgios; Fakira, Amanda K; Baki, Lia; Ge, Yongchao; Georgakopoulos, Anastasios; Morón, José A; Milligan, Graeme; López-Giménez, Juan F; Robakis, Nikolaos K; Logothetis, Diomedes E; Meana, J Javier; González-Maeso, Javier

    2016-01-12

    Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) can form multiprotein complexes (heteromers), which can alter the pharmacology and functions of the constituent receptors. Previous findings demonstrated that the Gq/11-coupled serotonin 5-HT2A receptor and the Gi/o-coupled metabotropic glutamate 2 (mGlu2) receptor-GPCRs that are involved in signaling alterations associated with psychosis-assemble into a heteromeric complex in the mammalian brain. In single-cell experiments with various mutant versions of the mGlu2 receptor, we showed that stimulation of cells expressing mGlu2-5-HT2A heteromers with an mGlu2 agonist led to activation of Gq/11 proteins by the 5-HT2A receptors. For this crosstalk to occur, one of the mGlu2 subunits had to couple to Gi/o proteins, and we determined the relative location of the Gi/o-contacting subunit within the mGlu2 homodimer of the heteromeric complex. Additionally, mGlu2-dependent activation of Gq/11, but not Gi/o, was reduced in the frontal cortex of 5-HT2A knockout mice and was reduced in the frontal cortex of postmortem brains from schizophrenic patients. These findings offer structural insights into this important target in molecular psychiatry.

  13. 3,4-methylenedioxymethamphetamine increases excitability in the dentate gyrus: role of 5HT2A receptor-induced PGE2 signaling.

    PubMed

    Collins, Stuart A; Huff, Courtney; Chiaia, Nicolas; Gudelsky, Gary A; Yamamoto, Bryan K

    2016-03-01

    3,4-methylenedioxymethamphetamine (MDMA) is a widely abused psychostimulant, which causes release of serotonin in various forebrain regions. Recently, we reported that MDMA increases extracellular glutamate concentrations in the dentate gyrus, via activation of 5HT2A receptors. We examined the role of prostaglandin signaling in mediating the effects of 5HT2A receptor activation on the increases in extracellular glutamate and the subsequent long-term loss of parvalbumin interneurons in the dentate gyrus caused by MDMA. Administration of MDMA into the dentate gyrus of rats increased PGE2 concentrations which was prevented by coadministration of MDL100907, a 5HT2A receptor antagonist. MDMA-induced increases in extracellular glutamate were inhibited by local administration of SC-51089, an inhibitor of the EP1 prostaglandin receptor. Systemic administration of SC-51089 during injections of MDMA prevented the decreases in parvalbumin interneurons observed 10 days later. The loss of parvalbumin immunoreactivity after MDMA exposure coincided with a decrease in paired-pulse inhibition and afterdischarge threshold in the dentate gyrus. These changes were prevented by inhibition of EP1 and 5HT2A receptors during MDMA. Additional experiments revealed an increased susceptibility to kainic acid-induced seizures in MDMA-treated rats, which could be prevented with SC51089 treatments during MDMA exposure. Overall, these findings suggest that 5HT2A receptors mediate MDMA-induced PGE2 signaling and subsequent increases in glutamate. This signaling mediates parvalbumin cell losses as well as physiologic changes in the dentate gyrus, suggesting that the lack of the inhibition provided by these neurons increases the excitability within the dentate gyrus of MDMA-treated rats. We hypothesized that the widely abused psychostimulant MDMA causes a loss of parvalbumin (PV) cells and increases excitability in the dentate gyrus. MDMA increases serotonin (5HT) release and activates 5HT2A

  14. Effect of fluvoxamine on platelet 5-HT2A receptors as studied by [3H]lysergic acid diethylamide ([3H]LSD) binding in healthy volunteers.

    PubMed

    Spigset, O; Mjörndal, T

    1997-09-01

    Alterations in platelet 5-HT2A receptor characteristics have been reported in major depression as well as in other psychiatric diseases, and some effort has been made to utilize platelet 5-HT2A receptor status as a biological correlate to antidepressant drug response. In order to investigate whether treatment with a selective serotonin reuptake inhibitor affects platelet 5-HT2A receptors, we have studied platelet [3H]lysergic acid diethylamide ([3H]LSD) binding in healthy subjects treated with fluvoxamine in increasing dosage once weekly for 4 weeks. After 1 week of fluvoxamine treatment (25 mg/day), both Bmax and Kd were significantly lower than before the start of the treatment (19.9 versus 25.5 fmol/mg protein, P = 0.005 for Bmax; 0.45 versus 0.93 nM, P = 0.006 for Kd). Bmax returned to baseline during week 2, whereas Kd was lower than the baseline value throughout the treatment period. After discontinuation of fluvoxamine treatment, there was a significant increase in Kd (0.50 nM before discontinuation vs. 1.14 nM after discontinuation; P = 0.001), but not in Bmax. The study demonstrates that fluvoxamine affects platelet 5-HT2A receptor status irrespective of underlying psychiatric disease, and that this effect is evident already after 1 week at a subtherapeutic fluvoxamine dose.

  15. Cardiac baroreflex facilitation evoked by hypothalamus and prefrontal cortex stimulation: role of the nucleus tractus solitarius 5-HT2A receptors.

    PubMed

    Sévoz-Couche, C; Comet, M A; Bernard, J F; Hamon, M; Laguzzi, R

    2006-10-01

    We previously showed that serotonin (5-HT2) receptor activation in the nucleus of the tractus solitarius (NTS) produced hypotension, bradycardia, and facilitation of the baroreflex bradycardia. Activation of the preoptic area (POA) of the hypothalamus, which is involved in shock-evoked passive behaviors, induces similar modifications. In addition, previous studies showed that blockade of the infralimbic (IL) part of the medial prefrontal cortex, which sends projections to POA, produced an inhibitory influence on the baroreflex cardiac response. Thus, to assess the possible implication of NTS 5-HT2 receptors in passive cardiovascular responses, we analyzed in anesthetized rats the effects of NTS inhibition and NTS 5-HT2 receptor blockade on the cardiovascular modifications induced by chemical (0.3 M D,L-homocysteic acid) and electrical (50 Hz, 150-200 microA) stimulation of IL or POA. Intra-NTS microinjections of muscimol, a GABAA receptor agonist, prevented the decreases in blood pressure and heart rate normally evoked by IL or POA activation. In addition, we found that intra-NTS microinjection of R(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidine-methanol, a specific 5-HT2A receptor antagonist, did not affect the decreases in cardiovascular baseline parameters induced by IL or POA stimulation but prevented the facilitation of the aortic baroreflex bradycardia normally observed during IL (+65 and +60%) or POA (+70 and +69%) electrical and chemical stimulation, respectively. These results show that NTS 5-HT2A receptors play a key role in the enhancement of the cardiac response of the baroreflex but not in the changes in basal heart rate and blood pressure induced by IL or POA stimulation. PMID:16763082

  16. The 5-HT2C receptor gene Cys23Ser polymorphism influences the intravaginal ejaculation latency time in Dutch Caucasian men with lifelong premature ejaculation.

    PubMed

    Janssen, Paddy Kc; Schaik, Ron van; Olivier, Berend; Waldinger, Marcel D

    2014-01-01

    It has been postulated that the persistent short intravaginal ejaculation latency time (IELT) of men with lifelong premature ejaculation (LPE) is related to 5-hydroxytryptamine (HT)2C receptor functioning. The aim of this study was to investigate the relationship of Cys23Ser 5-HT2C receptor gene polymorphism and the duration of IELT in men with LPE. Therefore, a prospective study was conducted in 64 Dutch Caucasian men with LPE. Baseline IELT during coitus was assessed by stopwatch over a 1-month period. All men were genotyped for Cys23Ser 5-HT2C receptor gene polymorphism. Allele frequencies and genotypes of Cys and Ser variants of 5-HT2C receptor gene polymorphism were determined. Association between Cys/Cys and Ser/Ser genotypes and the natural logarithm of the IELT in men with LPE were investigated. As a result, the geometric mean, median and natural mean IELT were 25.2, 27.0, 33.9 s, respectively. Of all men, 20.0%, 10.8%, 23.1% and 41.5% ejaculated within 10, 10-20, 20-30 and 30-60 s after vaginal penetration. Of the 64 men, the Cys/Cys and Ser/Ser genotype frequency for the Cys23Ser polymorphism of the 5-HT2C receptor gene was 81% and 19%, respectively. The geometric mean IELT of the wildtypes (Cys/Cys) is significantly lower (22.6 s; 95% CI 18.3-27.8 s) than in male homozygous mutants (Ser/Ser) (40.4 s; 95% CI 20.3-80.4 s) (P = 0.03). It is concluded that Cys23Ser 5-HT2C receptor gene polymorphism is associated with the IELT in men with LPE. Men with Cys/Cys genotype have shorter IELTs than men with Ser/Ser genotypes.

  17. The 5-HT2C receptor gene Cys23Ser polymorphism influences the intravaginal ejaculation latency time in Dutch Caucasian men with lifelong premature ejaculation

    PubMed Central

    Janssen, Paddy KC; van Schaik, Ron; Olivier, Berend; Waldinger, Marcel D

    2014-01-01

    It has been postulated that the persistent short intravaginal ejaculation latency time (IELT) of men with lifelong premature ejaculation (LPE) is related to 5-hydroxytryptamine (HT)2C receptor functioning. The aim of this study was to investigate the relationship of Cys23Ser 5-HT2C receptor gene polymorphism and the duration of IELT in men with LPE. Therefore, a prospective study was conducted in 64 Dutch Caucasian men with LPE. Baseline IELT during coitus was assessed by stopwatch over a 1-month period. All men were genotyped for Cys23Ser 5-HT2C receptor gene polymorphism. Allele frequencies and genotypes of Cys and Ser variants of 5-HT2C receptor gene polymorphism were determined. Association between Cys/Cys and Ser/Ser genotypes and the natural logarithm of the IELT in men with LPE were investigated. As a result, the geometric mean, median and natural mean IELT were 25.2, 27.0, 33.9 s, respectively. Of all men, 20.0%, 10.8%, 23.1% and 41.5% ejaculated within 10, 10–20, 20–30 and 30–60 s after vaginal penetration. Of the 64 men, the Cys/Cys and Ser/Ser genotype frequency for the Cys23Ser polymorphism of the 5-HT2C receptor gene was 81% and 19%, respectively. The geometric mean IELT of the wildtypes (Cys/Cys) is significantly lower (22.6 s; 95% CI 18.3–27.8 s) than in male homozygous mutants (Ser/Ser) (40.4 s; 95% CI 20.3–80.4 s) (P = 0.03). It is concluded that Cys23Ser 5-HT2C receptor gene polymorphism is associated with the IELT in men with LPE. Men with Cys/Cys genotype have shorter IELTs than men with Ser/Ser genotypes. PMID:24799636

  18. The 5-HT2C receptor gene Cys23Ser polymorphism influences the intravaginal ejaculation latency time in Dutch Caucasian men with lifelong premature ejaculation.

    PubMed

    Janssen, Paddy Kc; Schaik, Ron van; Olivier, Berend; Waldinger, Marcel D

    2014-01-01

    It has been postulated that the persistent short intravaginal ejaculation latency time (IELT) of men with lifelong premature ejaculation (LPE) is related to 5-hydroxytryptamine (HT)2C receptor functioning. The aim of this study was to investigate the relationship of Cys23Ser 5-HT2C receptor gene polymorphism and the duration of IELT in men with LPE. Therefore, a prospective study was conducted in 64 Dutch Caucasian men with LPE. Baseline IELT during coitus was assessed by stopwatch over a 1-month period. All men were genotyped for Cys23Ser 5-HT2C receptor gene polymorphism. Allele frequencies and genotypes of Cys and Ser variants of 5-HT2C receptor gene polymorphism were determined. Association between Cys/Cys and Ser/Ser genotypes and the natural logarithm of the IELT in men with LPE were investigated. As a result, the geometric mean, median and natural mean IELT were 25.2, 27.0, 33.9 s, respectively. Of all men, 20.0%, 10.8%, 23.1% and 41.5% ejaculated within 10, 10-20, 20-30 and 30-60 s after vaginal penetration. Of the 64 men, the Cys/Cys and Ser/Ser genotype frequency for the Cys23Ser polymorphism of the 5-HT2C receptor gene was 81% and 19%, respectively. The geometric mean IELT of the wildtypes (Cys/Cys) is significantly lower (22.6 s; 95% CI 18.3-27.8 s) than in male homozygous mutants (Ser/Ser) (40.4 s; 95% CI 20.3-80.4 s) (P = 0.03). It is concluded that Cys23Ser 5-HT2C receptor gene polymorphism is associated with the IELT in men with LPE. Men with Cys/Cys genotype have shorter IELTs than men with Ser/Ser genotypes. PMID:24799636

  19. The involvement of medial septum 5-HT1 and 5-HT2 receptors on ACPA-induced memory consolidation deficit: possible role of TRPC3, TRPC6 and TRPV2.

    PubMed

    Najar, Farzaneh; Nasehi, Mohammad; Haeri-Rohani, Seyed-Ali; Zarrindast, Mohammad-Reza

    2015-11-01

    The present study evaluates the roles of serotonergic receptors of the medial septum on amnesia induced by arachidonylcyclopropylamide (ACPA; as selective cannabinoid CB1 receptor agonist) in adult male Wistar rats. Cannulae were implanted in the medial septum of the brain of the rats. The animals were trained in a passive avoidance learning apparatus, and were tested 24 hours after training for step-through latency. Results indicated that post-training medial septum administration of CP94253 (5-HT1B/1D receptor agonist) and cinancerine (as 5-HT2 receptor antagonist) reduced the step-through latency showing an amnesic response, while GR127935 (5-HT1B/1D receptor antagonist) and αm5htm (as 5-HT2A/2B/2D receptor agonist) did not alter memory consolidation by themselves. On continuing the test, the results showed that CP94253 increased and GR127935 did not alter ACPA (0.02 µg/rat)-induced memory impairment, respectively. Other data indicated that αm5htm induced a modulatory effect, while cinancerine restored ACPA-induced amnesia. Using SKF-96365 (inhibitor of transient receptor potential TRPC3/6 and TRPV2 channels) demonstrated that TRPC3, TRPC3 and TRPV2 channels have a significant role, according to our results. PMID:26464456

  20. APD125, a Selective Serotonin 5-HT2A Receptor Inverse Agonist, Significantly Improves Sleep Maintenance in Primary Insomnia

    PubMed Central

    Rosenberg, Russell; Seiden, David J.; Hull, Steven G.; Erman, Milton; Schwartz, Howard; Anderson, Christen; Prosser, Warren; Shanahan, William; Sanchez, Matilde; Chuang, Emil; Roth, Thomas

    2008-01-01

    Introduction: Insomnia is a condition affecting 10% to 15% of the adult population and is characterized by difficulty falling asleep, difficulty staying asleep, or nonrestorative sleep, accompanied by daytime impairment or distress. This study evaluates APD125, a selective inverse agonist of the 5-HT2A receptor, for treatment of chronic insomnia, with particular emphasis on sleep maintenance. In phase 1 studies, APD125 improved sleep maintenance and was well tolerated. Methodology: Adult subjects (n = 173) with DSM-IV defined primary insomnia were randomized into a multicenter, double-blind, placebo-controlled, 3-way crossover study to compare 2 doses of APD125 (10 mg and 40 mg) with placebo. Each treatment period was 7 days with a 7- to 9-day washout period between treatments. Polysomnographic recordings were performed at the initial 2 screening nights and at nights (N) 1/2 and N 6/7 of each treatment period. Results: APD125 was associated with significant improvements in key sleep maintenance parameters measured by PSG. Wake time after sleep onset decreased (SEM) by 52.5 (3.2) min (10 mg) and 53.5 (3.5) min (40 mg) from baseline to N 1/2 vs. 37.8 (3.4) min for placebo, (P < 0.0001 for both doses vs placebo), and by 51.7 (3.4) min (P = 0.01) and 48.0 (3.6) min (P = 0.2) at N 6/7 vs. 44.0 (3.8) min for placebo. Significant APD125 effects on wake time during sleep were also seen (P < 0.0001 N 1/2, P < 0.001 N 6/7). The number of arousals and number of awakenings decreased significantly with APD125 treatment compared to placebo. Slow wave sleep showed a statistically significant dose-dependent increase. There was no significant decrease in latency to persistent sleep. No serious adverse events were reported, and no meaningful differences in adverse event profiles were observed between either dose of APD125 and placebo. APD125 was not associated with next-day psychomotor impairment as measured by Digit Span, Digit Symbol Copy, and Digit Symbol Coding Tests

  1. Lorcaserin, A 5-HT2C Receptor Agonist, Reduces Body Weight by Decreasing Energy Intake without Influencing Energy Expenditure

    PubMed Central

    Martin, Corby K.; Redman, Leanne M.; Zhang, Jinkun; Sanchez, Matilde; Anderson, Christen M.; Smith, Steven R.

    2011-01-01

    Context: Lorcaserin, a selective 5-hydroxytryptamine (5-HT)2C receptor agonist, reduces body weight. It is unclear whether weight loss is due to reduced energy intake (EI) or also to enhanced energy expenditure (EE). Objective: This study tested the effect of lorcaserin on EI and EE. Design, Participants, and Intervention: In a double-blind, randomized, placebo-controlled trial, 57 (39 women) overweight and obese (body mass index, 27–45 kg/m2) adults were randomized to placebo (n = 28) or 10 mg twice daily lorcaserin (n = 29) for 56 d. Weight maintenance was imposed during d 1–7. Beginning on d 8, participants followed a diet and exercise plan targeting a 600 kcal/d deficit. Outcomes: At baseline and after 7 and 56 d of treatment, we measured body weight, body composition (dual x-ray absorptiometry), blood pressure, heart rate, EI at lunch and dinner, subjective appetite ratings, and 24-h EE and 24-h-respiratory quotient (RQ), measured by indirect calorimetry in a respiratory chamber. Results: After 7 d of weight maintenance, EI was significantly (P < 0.01) reduced with lorcaserin but not placebo (mean ± sem for lorcaserin, −286 ± 86 kcal; placebo, −147 ± 89 kcal). After 56 d, lorcaserin resulted in significantly larger reductions in body weight (lorcaserin, −3.8 ± 0.4 kg; placebo, −2.2 ± 0.5 kg; P < 0.01), EI (lorcaserin, −470 ± 87 kcal; placebo, −205 ± 91 kcal; P < .05), and appetite ratings than in placebo. Changes in 24-h EE and 24-h RQ did not differ between groups, even after 24-h EE was adjusted for body weight and composition. Compared with placebo, lorcaserin had no effect on systolic or diastolic blood pressure or heart rate after 56 d. Conclusions: Lorcaserin reduces body weight through reduced EI, not altered EE or RQ. PMID:21190985

  2. Exploring the relationship between binding modes of 9-(aminomethyl)-9,10-dihydroanthracene and cyproheptadine analogues at the 5-HT2A serotonin receptor.

    PubMed

    Westkaemper, R B; Runyon, S P; Savage, J E; Roth, B L; Glennon, R A

    2001-02-26

    Comparison of the serotonin 5-HT2A receptor affinities of a parallel series of structural analogues of the novel ligand 9-aminomethyl-9,10-dihydroanthracene (AMDA) and a structurally similar prototypical tricyclic amine cyproheptadine suggests that the two agents bind to the receptor in different fashions. Examination of ligand-receptor model complexes supports the experimental data and suggests a potential origin for the differences in binding modes.

  3. 5-HT(2A) and mGlu2 receptor binding levels are related to differences in impulsive behavior in the Roman Low- (RLA) and High- (RHA) avoidance rat strains.

    PubMed

    Klein, A B; Ultved, L; Adamsen, D; Santini, M A; Tobeña, A; Fernandez-Teruel, A; Flores, P; Moreno, M; Cardona, D; Knudsen, G M; Aznar, S; Mikkelsen, J D

    2014-03-28

    The Roman Low- and High-Avoidance rat strains (RLA-I vs RHA-I) have been bidirectionally selected and bred according to their performance in the two-way active avoidance response in the shuttle-box test. Numerous studies have reported a pronounced divergence in emotionality between the two rat strains including differences in novelty seeking, anxiety, stress coping, and susceptibility to addictive substances. However, the underlying molecular mechanisms behind these divergent phenotypes are not known. Here, we determined impulsivity using the 5-choice serial reaction time task and levels of serotonin transporter (SERT), 5-HT(2A) and 5-HT(1A) receptor binding using highly specific radioligands ((3)H-escitalopram, (3)H-MDL100907 and (3)H-WAY100635) and mGlu2/3 receptor binding ((3)H-LY341495) using receptor autoradiography in fronto-cortical sections from RLA-I (n=8) and RHA-I (n=8) male rats. In the more impulsive RHA-I rats, 5-HT(2A), 5-HT(1A) and SERT binding in the frontal cortex was significantly higher compared to RLA-I rats. In contrast, mGlu2/3 receptor binding was decreased by 40% in RHA-I rats compared to RLA-I rats. To differentiate between mGlu2 and mGlu3 receptor protein levels, these were further studied using western blotting, which showed non-detectable levels of mGlu2 receptor protein in RHA rats, while no differences were observed for mGlu3 receptor protein levels. Collectively, these data show general congenital differences in the serotonergic system and a pronounced difference in mGlu2 receptor protein levels. We suggest that the differences in the serotonergic system may mediate some of the phenotypic characteristics in this strain such as hyper-impulsivity and susceptibility to drug addiction. PMID:24412375

  4. Anxiolytic-like actions of BW 723C86 in the rat Vogel conflict test are 5-HT2B receptor mediated.

    PubMed

    Kennett, G A; Trail, B; Bright, F

    1998-12-01

    The 5-HT2B receptor agonist, BW 723C86 (10, 30(mg/kg i.p. 30 min pre-test), increased the number of punishments accepted in a rat Vogel drinking conflict paradigm over 3 min, as did the benzodiazepine anxiolytics, chlordiazepoxide (2.5-10 mg/kg p.o. 1 h pre-test) and alprazolam (0.2-5 mg/kg p.o. 1 h pre-test), but not the 5-HT2C/2B receptor agonist, m-chlorophenylpiperazine (mCPP, 0.3-3 mg/kg i.p) or the 5-HT1A receptor agonist, buspirone (5-20 mg/kg p.o. 1 h pre-test). The effect of BW 723C86 was unlikely to be secondary to enhanced thirst, as BW 723C86 did not increase the time that rats with free access to water spent drinking, nor did it reduce sensitivity to shock in the apparatus. The anti-punishment effect of BW 723C86 was opposed by prior treatment with the 5-HT2/2B receptor antagonist, SB-206553 (10 and 20 mg/kg p.o. 1 h pre-test), and the selective 5-HT2B receptor antagonist, SB-215505 (1 and 3 mg/kg p.o. 1 h pre-test), but not by the selective 5-HT2C receptor antagonist, SB-242084 (5 mg/kg p.o.), or the 5-HT1A receptor antagonist, WAY 100635 (0.1 or 0.3 mg/kg s.c. 30 min pre-test). Thus, the anti-punishment action of BW 723C86 is likely to be 5-HT2B receptor mediated. This is consistent with previous reports that BW 723C86 exhibited anxiolytic-like properties in both the social interaction and Geller-Seifter conflict tests. PMID:9886683

  5. m-CPP, a 5-HT2C receptor agonist that modifies the perfusion pressure of the hindquarter vascular bed of anesthetized rat.

    PubMed

    Calama, E; Morán, A; Ortiz de Urbina, A V; Martín, M L; San Román, L

    2005-02-01

    In the present work we studied the actions of the intra-arterial administration of meta-chlorophenylpiperazine (m-CPP - a 5-HT(2C) receptor agonist) in the hindquarters of the anesthetized rat. The lowest doses used (0.001, 0.01, 0.1, 0.25 and 0.5 microg/kg) induced vasodilatation whereas the highest doses produced vasoconstriction (1, 6.25, 12.5 and 25 microg/kg). Both vasodilatation and vasoconstriction were inhibited by the 5-HT(1,2 )receptor antagonist methiothepin, whereas the 5-HT(2 )receptor antagonist ritanserin blocked only the vasoconstrictor responses. 1-[4-(1-Adamantanecarboxamido)butyl]-4-(2-methoxyphenyl)piperazine (a 5-HT(1A) receptor antagonist) and ICI 118,551 (a beta(2)-receptor antagonist) failed to modify the vasodilator responses of m-CPP. Both BRL 15572 (a 5-HT(1D) receptor antagonist) and GR 55562 (a 5-HT(1B) receptor antagonist) only partially inhibited this action. Our data reveal that m-CPP induces the 5-HT(1 )and/or non-specific vasodilator effect and 5-HT(2) vasoconstrictor effects in the hindquarter vascular bed of the rat.

  6. Effects of the 5-HT2C receptor agonist CP809101 in the amygdala on reinstatement of cocaine-seeking behavior and anxiety-like behavior.

    PubMed

    Pockros-Burgess, Lara A; Pentkowski, Nathan S; Der-Ghazarian, Taleen; Neisewander, Janet L

    2014-11-01

    Serotonin 2C receptor (5-HT2CR) agonists attenuate reinstatement of cocaine-seeking behavior. These receptors are found throughout the limbic system, including the basolateral amygdala (BlA), which is involved in forming associations between emotional stimuli and environmental cues, and the central amygdala (CeA), which is implicated in the expression of conditioned responding to emotional stimuli. This study investigated whether 5-HT2CRs in the amygdala are involved in cue and cocaine-primed reinstatement of cocaine-seeking behavior. Rats were trained to self-administer cocaine (0.75 mg/kg, i.v.) which that was paired with light and tone cues, and then subsequently they underwent daily extinction training. Rats then received bilateral microinfusions of the 5-HT2CR agonist CP809101 (0.01-1.0 μg/0.2 μl/side) into either the BlA or CeA prior to tests for cue or cocaine-primed (10 mg/kg, i.p.) reinstatement. Rats were also tested for CP809101 effects on anxiety-like behavior on the elevated plus-maze (EPM). Surprisingly, intra-BlA CP809101 had no effect on cue reinstatement, though it did increase anxiety-like behavior on the EPM. Intra-CeA infusions of CP809101 attenuated cocaine-primed reinstatement, an effect that was prevented with concurrent administration of the 5-HT2CR antagonist SB242084 (0.1 μg/0.2 μl/side). CP809101 had no effect on cue reinstatement or anxiety-like behavior on the EPM. These findings suggest that 5-HT2CRs in the BlA modulate anxiety, whereas those in the CeA modulate incentive motivational effects induced by cocaine priming injections.

  7. The influence of 5-HT2 and 5-HT4 receptor antagonists to modify drug induced disinhibitory effects in the mouse light/dark test

    PubMed Central

    Costall, Brenda; Naylor, Robert J

    1997-01-01

    The ability of 5-HT2 and 5-HT4 receptor antagonists to modify the disinhibitory profile of diazepam and other agents was investigated in male BKW mice in the light/dark test box. The 5-HT2A/2B/2C receptor antagonists ritanserin, MDL11939 and RP62203 and also methysergide, which failed to modify mouse behaviour when administered alone, caused dose-related enhancements (4 to 8 fold) in the potency of diazepam to disinhibit behavioural responding to the aversive situation of the test box. Ritanserin was shown to enhance the disinhibitory potency of other benzodiazepines, chlordiazepoxide (4 fold), temazepam (10 fold) and lorazepam (10 fold), the 5-HT1A receptor ligands, 8-OH-DPAT (25 fold), buspirone (100 fold) and lesopitron (500 fold), the 5-HT3 receptor antagonists, ondansetron (100 fold) R(+)-zacopride (100 fold) and S(−)-zacopride (greater than a 1000 fold), the substituted benzamides, sulpiride (10 fold) and tiapride (5 to 10 fold) and the cholecystokinin (CCK)A receptor antagonist, devazepide (100 fold). It also reduced the onset of action of disinhibition following treatment with the 5-HT synthesis inhibitor parachlorophenylalanine. Ritanserin failed to enhance the disinhibitory effects of the CCKB receptor antagonist CI-988, the angiotensin AT1 receptor antagonist losarten or the angiotensin converting enzyme inhibitor ceranapril. The 5-HT4 receptor antagonists SDZ205-557, GR113808 and SB204070 caused dose-related reductions in the disinhibitory effect of diazepam, returning values to those shown in vehicle treated controls. The antagonists failed to modify mouse behaviour when administered alone. GR113808 was also shown to cause a dose-related antagonism of the disinhibitory effects of chlordiazepoxide, lorazepam, 8-OH-DPAT, buspirone, lesopitron, ondansetron, R(+)-zacopride, sulpiride, tiapride, devazepide, CI-988, losarten, ceranapril and parachlorophenylalanine. It was concluded that in BKW mice (a) the failure of 5-HT2 and 5-HT4 receptor antagonists

  8. Discriminative stimulus properties of 1.25mg/kg clozapine in rats: Mediation by serotonin 5-HT2 and dopamine D4 receptors.

    PubMed

    Prus, Adam J; Wise, Laura E; Pehrson, Alan L; Philibin, Scott D; Bang-Andersen, Benny; Arnt, Jørn; Porter, Joseph H

    2016-10-01

    The atypical antipsychotic drug clozapine remains one of most effective treatments for schizophrenia, given a lack of extrapyramidal side effects, improvements in negative symptoms, cognitive impairment, and in symptoms in treatment-resistant schizophrenia. The adverse effects of clozapine, including agranulocytosis, make finding a safe clozapine-like a drug a goal for drug developers. The drug discrimination paradigm is a model of interoceptive stimulus that has been used in an effort to screen experimental drugs for clozapine-like atypical antipsychotic effects. The present study was conducted to elucidate the receptor-mediated stimulus properties that form this clozapine discriminative cue by testing selective receptor ligands in rats trained to discriminate a 1.25mg/kg dose of clozapine from vehicle in a two choice drug discrimination task. Full substitution occurred with the 5-HT2A inverse agonist M100907 and the two preferential D4/5-HT2/α1 receptor antagonists Lu 37-114 ((S)-1-(3-(2-(4-(1H-indol-5-yl)piperazin-1-yl)ethyl)indolin-1-yl)ethan-1-one) and Lu 37-254 (1-(3-(4-(1H-indol-5-yl)piperazin-1-yl)propyl)-3,4-dihydroquinolin-2(1H)-one). Partial substitution occurred with the D4 receptor antagonist Lu 38-012 and the α1 adrenoceptor antagonist prazosin. Drugs selective for 5-HT2C, 5-HT6 muscarinic, histamine H1, and benzodiazepine receptors did not substitute for clozapine. The present findings suggest that 5-HT2A inverse agonism and D4 receptor antagonism mediate the discriminative stimulus properties of 1.25mg/kg clozapine in rats, and further confirm that clozapine produces a complex compound discriminative stimulus. PMID:27502027

  9. MDMA-induced loss of parvalbumin interneurons within the dentate gyrus is mediated by 5HT2A and NMDA receptors.

    PubMed

    Collins, Stuart A; Gudelsky, Gary A; Yamamoto, Bryan K

    2015-08-15

    MDMA is a widely abused psychostimulant which causes a rapid and robust release of the monoaminergic neurotransmitters dopamine and serotonin. Recently, it was shown that MDMA increases extracellular glutamate concentrations in the dorsal hippocampus, which is dependent on serotonin release and 5HT2A/2C receptor activation. The increased extracellular glutamate concentration coincides with a loss of parvalbumin-immunoreactive (PV-IR) interneurons of the dentate gyrus region. Given the known susceptibility of PV interneurons to excitotoxicity, we examined whether MDMA-induced increases in extracellular glutamate in the dentate gyrus are necessary for the loss of PV cells in rats. Extracellular glutamate concentrations increased in the dentate gyrus during systemic and local administration of MDMA. Administration of the NMDA receptor antagonist, MK-801, during systemic injections of MDMA, prevented the loss of PV-IR interneurons seen 10 days after MDMA exposure. Local administration of MDL100907, a selective 5HT2A receptor antagonist, prevented the increases in glutamate caused by reverse dialysis of MDMA directly into the dentate gyrus and prevented the reduction of PV-IR. These findings provide evidence that MDMA causes decreases in PV within the dentate gyrus through a 5HT2A receptor-mediated increase in glutamate and subsequent NMDA receptor activation.

  10. Serotonin 5-HT2C receptor-independent expression of hypothalamic NOR1, a novel modulator of food intake and energy balance, in mice

    SciTech Connect

    Nonogaki, Katsunori; Kaji, Takao; Ohba, Yukie; Sumii, Makiko; Wakameda, Mamoru; Tamari, Tomohiro

    2009-08-21

    NOR1, Nur77 and Nurr1 are orphan nuclear receptors and members of the NR4A subfamily. Here, we report that the expression of hypothalamic NOR1 was remarkably decreased in mildly obese {beta}-endorphin-deficient mice and obese db/db mice with the leptin receptor mutation, compared with age-matched wild-type mice, whereas there were no genotypic differences in the expression of hypothalamic Nur77 or Nurr1 in these animals. The injection of NOR1 siRNA oligonucleotide into the third cerebral ventricle significantly suppressed food intake and body weight in mice. On the other hand, the decreases in hypothalamic NOR1 expression were not found in non-obese 5-HT2C receptor-deficient mice. Moreover, systemic administration of m-chlorophenylpiperazine (mCPP), a 5-HT2C/1B receptor agonist, had no effect on hypothalamic NOR1 expression, while suppressing food intake in {beta}-endorphin-deficient mice. These findings suggest that 5-HT2C receptor-independent proopiomelanocortin-derived peptides regulate the expression of hypothalamic NOR1, which is a novel modulator of feeding behavior and energy balance.

  11. Development of a Multiplex Assay for Studying Functional Selectivity of Human Serotonin 5-HT2A Receptors and Identification of Active Compounds by High-Throughput Screening.

    PubMed

    Iglesias, Alba; Lage, Sonia; Cadavid, Maria Isabel; Loza, Maria Isabel; Brea, José

    2016-09-01

    G protein-coupled receptors (GPCRs) exist as collections of conformations in equilibrium, and the efficacy of drugs has been proposed to be associated with their absolute and relative affinities for these different conformations. The serotonin 2A (5-HT2A) receptor regulates multiple physiological functions, is involved in the pathophysiology of schizophrenia, and serves as an important target of atypical antipsychotic drugs. This receptor was one of the first GPCRs for which the functional selectivity phenomenon was observed, with its various ligands exerting differential effects on the phospholipase A2 (PLA2) and phospholipase C (PLC) signaling pathways. We aimed to develop a multiplex functional assay in 96-well plates for the simultaneous measurement of the PLA2 and PLC pathways coupled to 5-HT2A receptors; this approach enables the detection of either functional selectivity or cooperativity phenomena in early drug screening stages. The suitability of the method for running screening campaigns was tested using the Prestwick Chemical Library, and 22 confirmed hits with activities of more than 90% were identified; 11 of these hits produced statistically significant differences between the two effector pathways. Thus, we have developed a miniaturized multiplex assay in 96-well plates to measure functional selectivity for 5-HT2A receptors in the early stages of the drug discovery process. PMID:27095818

  12. Partial role of 5-HT2 and 5-HT3 receptors in the activity of antidepressants in the mouse forced swimming test.

    PubMed

    Redrobe, J P; Bourin, M

    1997-05-01

    The present study was designed to evaluate the roles of 5-HT2 and 5-HT3 receptors in the mouse forced swimming test, by using selective agonists and antagonists of 5-HT(2A/C) and 5-HT3 receptor sites. Agonists/antagonists and antidepressants were administered 45 min and 30 min, respectively, prior to testing. Pretreatment with (+/-)-2,5-dimethoxy-4-iodoamphetamine (DOI) (4 mg/kg, i.p.) or 2-methyl-5-HT (4 mg/kg, i.p.) had no effect on the anti-immobility effects of any antidepressant tested. Prior administration of ritanserin (4 mg/kg, i.p.) or ketanserin (8 mg/kg, i.p.), on the other hand, potentiated the effects of sub-active doses of imipramine (8 mg/kg, i.p.) and desipramine (16 mg/kg, i.p.) but not of maprotiline (8 mg/kg, i.p.), fluoxetine (16 mg/kg, i.p.), citalopram (16 mg/kg, i.p.) or fluvoxamine (8 mg/kg, i.p.). Pretreatment with ondansetron (1 X 10(-5) mg/kg, i.p.) enhanced the antidepressant-like effects of sub-active doses of the selective serotonin reuptake inhibitors. The results of the present study suggested that, in the forced swimming test, the selective serotonin reuptake inhibitors act partially through 5-HT3 receptor sites, whereas the tricyclic antidepressants exert effects at 5-HT(2A/C) receptor sites. Anti-immobility effects of the selective noradrenaline reuptake inhibitor, maprotiline, do not seem to be mediated by 5-HT(2A/C) or 5-HT3 receptor function.

  13. Rat exposure in mice with neuropathic pain induces fear and antinociception that is not reversed by 5-HT2C receptor activation in the dorsal periaqueductal gray.

    PubMed

    Furuya-da-Cunha, Elke Mayumi; Souza, Rimenez Rodrigues de; Canto-de-Souza, Azair

    2016-07-01

    Previous studies have demonstrated that serotonin 5-HT2C receptors in the dorsal periaqueductal gray (dPAG) mediate both anxiety and antinociception in mice submitted to the elevated plus maze. The present study examined the effects of intra-dPAG infusion of the serotonin 5-HT2C receptor agonist (MK-212) in the defensive reactions and antinociception in mice with neurophatic pain confronted by a predator. Neuropathic pain was induced by chronic constriction injury (CCI) of the sciatic nerve, and predator confrontation was performed using the rat exposure test (RET). Our results demonstrated that both sham-operated and CCI mice exhibited intense defensive reactions when confronted by rats. However, rat-exposed CCI mice showed reduced pain reactivity in comparison to CCI mice exposed to a toy rat. Intra-dPAG infusion of MK-212 prior to predator exposure did not significantly alter defensive or antinociceptive responses. To our knowledge, our results represent the first evidence of RET-induced antinociception in mice. Moreover, the results of the present study suggest that 5-HT2C receptor activation in the dPAG is not critically involved in the control of predator-evoked fearful or antinociceptive responses. PMID:27059332

  14. Chronic SSRI stimulation of astrocytic 5-HT2B receptors change multiple gene expressions/editings and metabolism of glutamate, glucose and glycogen: a potential paradigm shift

    PubMed Central

    Hertz, Leif; Rothman, Douglas L.; Li, Baoman; Peng, Liang

    2015-01-01

    It is firmly believed that the mechanism of action of SSRIs in major depression is to inhibit the serotonin transporter, SERT, and increase extracellular concentration of serotonin. However, this undisputed observation does not prove that SERT inhibition is the mechanism, let alone the only mechanism, by which SSRI’s exert their therapeutic effects. It has recently been demonstrated that 5-HT2B receptor stimulation is needed for the antidepressant effect of fluoxetine in vivo. The ability of all five currently used SSRIs to stimulate the 5-HT2B receptor equipotentially in cultured astrocytes has been known for several years, and increasing evidence has shown the importance of astrocytes and astrocyte-neuronal interactions for neuroplasticity and complex brain activity. This paper reviews acute and chronic effects of 5-HT2B receptor stimulation in cultured astrocytes and in astrocytes freshly isolated from brains of mice treated with fluoxetine for 14 days together with effects of anti-depressant therapy on turnover of glutamate and GABA and metabolism of glucose and glycogen. It is suggested that these events are causally related to the mechanism of action of SSRIs and of interest for development of newer antidepressant drugs. PMID:25750618

  15. Binding of [(3)H]lysergic acid diethylamide to serotonin 5-HT(2A) receptors and of [(3)H]paroxetine to serotonin uptake sites in platelets from healthy children, adolescents and adults.

    PubMed

    Sigurdh, J; Spigset, O; Allard, P; Mjörndal, T; Hägglöf, B

    1999-11-01

    Possible age effects on binding of [(3)H]lysergic acid diethylamide ([(3)H]LSD) to serotonin 5-HT(2A) receptors and of [(3)H]paroxetine to serotonin uptake sites were studied in platelets from healthy children (11-12 years of age), adolescents (16-17 years of age) and adults. Significant overall age effects were found both for the number of binding sites (B(max)) for [(3)H]LSD binding (p < 0.001), the affinity constant (K(d)) for [(3)H]LSD binding (p < 0.001), B(max) for [(3)H]paroxetine binding (p < 0.001) and K(d) for [(3)H] paroxetine binding (p = 0.006). In general, there was a decrease in B(max) with increasing age, which predominantly occurred between the ages 11-12 years and 16-17 years for the 5-HT(2A) receptor, and after 16-17 years of age for the serotonin uptake site. These developmental changes might have an impact on the effect of treatment with serotonergic drugs in children and adolescents. When the platelet serotonin variables investigated are employed in studies in children or adolescents, age matching or, alternatively, introduction of age control in the statistical analysis should be performed.

  16. D2 and 5-HT2 receptor effects of antipsychotics: bridging basic and clinical findings using PET.

    PubMed

    Remington, G; Kapur, S

    1999-01-01

    The advent of a number of new antipsychotics has been paralleled by efforts to better delineate their mechanisms of action and, in doing so, further our understanding of schizophrenia and its pathophysiology. Technological advances, such as positron emission tomography (PET), have proven to be powerful tools in this process, allowing us to evaluate in vivo models based primarily on in vitro evidence. Combined serotonin-2/dopamine-2 (5-HT2/D2) antagonism represents one such model, and we now have PET evidence available that can be extrapolated to our understanding and clinical use of both conventional and novel antipsychotics.

  17. Activation of 5-HT(2C) receptors in the dorsal periaqueductal gray increases antinociception in mice exposed to the elevated plus-maze.

    PubMed

    Baptista, Daniela; Nunes-de-Souza, Ricardo Luiz; Canto-de-Souza, Azair

    2012-11-01

    Several findings have pointed to the role of the dorsal periaqueductal gray (dPAG) serotonin 5-HT(1A) and 5-HT(2A-C) receptor subtypes in the modulation of defensive behavior in animals exposed to the elevated plus-maze (EPM). Besides displaying anxiety-like behavior, rodents also exhibit antinociception in the EPM. This study investigated the effects of intra-dPAG injections of 5-HT(1A) and 5-HT(2B/2C) receptor ligands on EPM-induced antinociception in mice. Male Swiss mice received 0.1 μl intra-dPAG injections of vehicle, 5.6 and 10 nmol of 8-OHDPAT, a 5-HT(1A) receptor agonist (Experiment 1), or 0.01, 0.03 and 0.1 nmol of mCPP, a 5-HT(2B/2C) receptor agonist (Experiment 2). Five minutes later, each mouse received an intraperitoneal injection of 0.6% acetic acid (0.1 ml/10 g body weight; nociceptive stimulus) and was individually confined in the open (OA) or enclosed (EA) arms of the EPM for 5 min, during which the number of abdominal writhes induced by the acetic acid was recorded. While intra-dPAG injection of 8-OHDPAT did not change open-arm antinociception (OAA), mCPP (0.01 nmol) enhanced it. Combined injections of ketanserin (10 nmol/0.1 μl), a 5-HT(2A/2C) receptor antagonist, and 0.01 nmol of mCPP (Experiment 3), selectively and completely blocked the OAA enhancement induced by mCPP. Although intra-dPAG injection of mCPP (0.01 nmol) also produced antinociception in EA-confined mice (Experiment 2), this effect was not confirmed in Experiment 3. Moreover, no other compound changed the nociceptive response in EA-confined animals. These results suggest that the 5-HT(2C) receptors located within the PAG play a role in this type of environmentally induced pain inhibition in mice.

  18. Molecular Pharmacology and Ligand Docking Studies Reveal a Single Amino Acid Difference between Mouse and Human Serotonin 5-HT2A Receptors That Impacts Behavioral Translation of Novel 4-Phenyl-2-dimethylaminotetralin Ligands

    PubMed Central

    Cordova-Sintjago, Tania; Liu, Yue; Kim, Myong S.; Morgan, Drake; Booth, Raymond G.

    2013-01-01

    During translational studies to develop 4-phenyl-2-dimethylaminotetralin (PAT) compounds for neuropsychiatric disorders, the (2R,4S)-trans-(+)- and (2S,4R)-trans-(−)-enantiomers of the analog 6-hydroxy-7-chloro-PAT (6-OH-7-Cl-PAT) demonstrated unusual pharmacology at serotonin (5-HT) 5-HT2 G protein–coupled receptors (GPCRs). The enantiomers had similar affinities (Ki) at human (h) 5-HT2A receptors (∼70 nM). In an in vivo mouse model of 5-HT2A receptor activation [(±)-(2,5)-dimethoxy-4-iodoamphetamine (DOI)–elicited head twitch], however, (−)-6-OH-7-Cl-PAT was about 5-fold more potent than the (+)-enantiomer at attenuating the DOI-elicited response. It was discovered that (+)-6-OH-7-Cl-PAT (only) had ∼40-fold-lower affinity at mouse (m) compared with h5-HT2A receptors. Molecular modeling and computational ligand docking studies indicated that the 6-OH moiety of (+)- but not (−)-6-OH-7-Cl-PAT could form a hydrogen bond with serine residue 5.46 of the h5-HT2A receptor. The m5-HT2A as well as m5-HT2B, h5-HT2B, m5-HT2C, and h5-HT2C receptors have alanine at position 5.46, obviating this interaction; (+)-6-OH-7-Cl-PAT also showed ∼50-fold lower affinity than (−)-6-OH-7-Cl-PAT at m5-HT2C and h5-HT2C receptors. Mutagenesis studies confirmed that 5-HT2A S5.46 is critical for (+)- but not (−)-6-OH-7-Cl-PAT binding, as well as function. The (+)-6-OH-7-Cl-PAT enantiomer showed partial agonist effects at h5-HT2A wild-type (WT) and m5-HT2A A5.46S point-mutated receptors but did not activate m5-HT2A WT and h5-HT2A S5.46A point-mutated receptors, or h5-HT2B, h5-HT2C, and m5-HT2C receptors; (−)-6-OH-7-Cl-PAT did not activate any of the 5-HT2 receptors. Experiments also included the (2R,4S)-trans-(+)- and (2S,4R)-trans-(−)-enantiomers of 6-methoxy-7-chloro-PAT to validate hydrogen bonding interactions proposed for the corresponding 6-OH analogs. Results indicate that PAT ligand three-dimensional structure impacts target receptor binding and translational

  19. 5-HT(2C) serotonin receptor blockade prevents tau protein hyperphosphorylation and corrects the defect in hippocampal synaptic plasticity caused by a combination of environmental stressors in mice.

    PubMed

    Busceti, Carla Letizia; Di Pietro, Paola; Riozzi, Barbara; Traficante, Anna; Biagioni, Francesca; Nisticò, Robert; Fornai, Francesco; Battaglia, Giuseppe; Nicoletti, Ferdinando; Bruno, Valeria

    2015-09-01

    Exposure to multimodal sensory stressors is an everyday occurrence and sometimes becomes very intense, such as during rave parties or other recreational events. A growing body of evidence suggests that strong environmental stressors might cause neuronal dysfunction on their own in addition to their synergistic action with illicit drugs. Mice were exposed to a combination of physical and sensory stressors that are reminiscent of those encountered in a rave party. However, this is not a model of rave because it lacks the rewarding properties of rave. A 14-h exposure to environmental stressors caused an impairment of hippocampal long-term potentiation (LTP) and spatial memory, and an enhanced phosphorylation of tau protein in the CA1 and CA3 regions. These effects were transient and critically depended on the activation of 5-HT2C serotonin receptors, which are highly expressed in the CA1 region. Acute systemic injection of the selective 5-HT2C antagonist, RS-102,221 (2 mg/kg, i.p., 2 min prior the onset of stress), prevented tau hyperphosphorylation and also corrected the defects in hippocampal LTP and spatial memory. These findings suggest that passive exposure to a combination of physical and sensory stressors causes a reversible hippocampal dysfunction, which might compromise mechanisms of synaptic plasticity and spatial memory for a few days. Drugs that block 5-HT2C receptors might protect the hippocampus against the detrimental effect of environmental stressors. PMID:26145279

  20. Expression of hippocampal serotonin receptors 5-HT2C and 5-HT5A in a rat model of diet-induced obesity supplemented with tryptophan.

    PubMed

    Lopez-Esparza, Sarahi; Berumen, Laura C; Padilla, Karla; Miledi, Ricardo; García-Alcocer, Guadalupe

    2015-05-01

    Food intake regulation is a complex mechanism that involves endogenous substances and central nervous system structures like hypothalamus or even hippocampus. The neurotransmitter serotonin is distinguished as food intake mediator; within its multiples receptors, the 5-HT2C type is characterized by its inhibitory appetite action but there is no information about 5-HT5A receptors involvement in obesity disease. It is also unknown if there are any changes in the receptors expression in rats hippocampus with induced obesity during development through a high energy diet (HED) supplemented with tryptophan (W). To appreciate the receptors expression pattern in the hippocampus, obesity was induced to young Sprague Dawley rats through a HED and supplemented with W. Immunocytochemical and western blot techniques were used to study the receptor distribution and quantify the protein expression. The rats with HED diet developed obesity until week 13 of treatment. The 5-HT2C receptor expression decreased in CA1, CA2, CA3 and DG of HED group; and also in CA2, CA3 and DG for HEDW group. The 5-HT5A receptor expression only decreased in DG for HED group. Variations of the two serotonin receptors subtypes support their potential role in obesity.

  1. Participation of 5-HT1-like and 5-HT2A receptors in the contraction of human temporal artery by 5-hydroxytryptamine and related drugs.

    PubMed Central

    Verheggen, R.; Freudenthaler, S.; Meyer-Dulheuer, F.; Kaumann, A. J.

    1996-01-01

    1. We investigated the hypothesis that, as in some other large human arteries, 5-HT-induced contraction of the temporal artery is mediated through two co-existing receptor populations, 5-HT1-like- and 5-HT2A. Temporal arterial segments were obtained from patients undergoing brain surgery and rings prepared set up to contract with 5-HT and related agents. Fractions of maximal 5-HT responses mediated through 5-HT1-like and 5-HT2A receptors, f1 and f2 = 1-f1, were estimated by use of the 5-HT2A-selective antagonist ketanserin. 2. In rings with intact endothelium 5-HT evoked contractions with a -log EC50, M of 7.0. Ketanserin (10-1000 nM) antagonized part of the 5-HT-induced contractions. Ketanserin-resistant components of 5-HT-induced contractions were found with -log EC50, M of 6.9 and f1 of 0.17 (100 nM ketanserin) and -log EC50, M of 6.4 and f1 of 0.20 (1000 nM ketanserin). 3. In rings with endothelial function attenuated by enzymatic treatment, 5-HT caused contractions with a -log EC50, M of 7.2 that were partially blocked by ketanserin. Ketanserin-resistant components of 5-HT-induced contractions were found with -log EC50, M 7.4 and f1 of 0.16 (100 nM ketanserin) and -log EC50, M of 7.5 and f1 of 0.14 (1000 nM ketanserin). 4. The ketanserin-resistant component of 5-HT-evoked contraction was blocked by methiothepin (100-1000 nM) consistent with mediation through 5-HT1-like receptors. 5. In rings with intact endothelium the 5-HT1-like-selective agonist, sumatriptan, caused small contractions with a -log EC50, M of 6.5 and intrinsic activity of 0.21 with respect to 5-HT that were resistant to blockade by 1000 nM ketanserin but antagonized by 100 nM methiothepin. 6. In rings with intact endothelium the 5-HT2A receptor partial agonist SK&F 103829 (2,3,4,5-tetrahydro-8[methyl sulphonyl]-1H3-benzazepin-7-ol methensulphonate) contracted rings with a -log EC50, M of 5.0 and an intrinsic activity of 0.49 with respect to 5-HT; the effects were antagonized by ketanserin 1000

  2. Binding of [3H]paroxetine to serotonin uptake sites and of [3H]lysergic acid diethylamide to 5-HT2A receptors in platelets from women with premenstrual dysphoric disorder during gonadotropin releasing hormone treatment.

    PubMed

    Bixo, M; Allard, P; Bäckström, T; Mjörndal, T; Nyberg, S; Spigset, O; Sundström-Poromaa, I

    2001-08-01

    Changes in serotonergic parameters have been reported in psychiatric conditions such as depression but also in the premenstrual dysphoric disorder (PMDD). In addition, hormonal effects on serotonergic activity have been established. In the present study, binding of [3H]paroxetine to platelet serotonin uptake sites and binding of [3H]lysergic acid diethylamide ([3H]LSD) to platelet serotonin (5-HT)2A receptors were studied in patients with PMDD treated with a low dose of a gonadotropin releasing hormone (GnRH) agonist (buserelin) or placebo and compared to controls. The PMDD patients were relieved of premenstrual symptoms like depression and irritability during buserelin treatment. The number of [3H]paroxetine binding sites (Bmax) were significantly higher in the follicular phase in untreated PMDD patients compared to controls. When treated with buserelin the difference disappeared. No differences in [3H]LSD binding between the three groups were shown. The present study demonstrated altered platelet [3H]paroxetine binding characteristics in women with PMDD compared to controls. Furthermore, [3H]paroxetine binding was affected by PMDD treatment with a low dose of buserelin. The results are consistent with the hypothesis that changes in serotonergic transmission could be a trait in the premenstrual dysphoric disorder.

  3. 5-HT2C and GABAB receptors influence handling-induced convulsion severity in chromosome 4 congenic and DBA/2J background strain mice.

    PubMed

    Reilly, Matthew T; Milner, Lauren C; Shirley, Renee L; Crabbe, John C; Buck, Kari J

    2008-03-10

    Progress towards elucidating the underlying genetic variation for susceptibility to complex central nervous system (CNS) hyperexcitability states has just begun. Genetic mapping analyses suggest that a gene(s) on mid-chromosome 4 has pleiotropic effects on multiple CNS hyperexcitability states in mice, including alcohol and barbiturate withdrawal and convulsions elicited by chemical and audiogenic stimuli. We recently identified Mpdz within this chromosomal region as a gene that influences alcohol and barbiturate withdrawal convulsions. Mpdz encodes the multi-PDZ domain protein (MPDZ). Currently, there is limited information available about the mechanism by which MPDZ influences drug withdrawal and/or other CNS hyperexcitability states, but may involve its interaction with 5-HT2C and/or GABAB receptors. One of the most useful tools we have developed thus far is a congenic strain that possesses a segment of chromosome 4 from the C57BL/6J (donor) mouse strain superimposed on a genetic background that is >99% from the DBA/2J strain. The introduced segment spans the Mpdz gene. Here, we demonstrate that handling-induced convulsions are less severe in congenic vs. background strain mice in response to either a 5-HT2C receptor antagonist (SB242084) or a GABAB receptor agonist (baclofen), but not a GABAA receptor channel blocker (pentylenetetrazol). These data suggest that allelic variation in Mpdz, or a linked gene, influences SB242084- and baclofen-enhanced convulsions. Our results are consistent with the hypothesis that Mpdz's effects on CNS hyperexcitability, including alcohol and barbiturate withdrawal, involve MPDZ interaction with 5-HT2C and/or GABAB receptors. However, additional genes reside within the congenic interval and may also influence CNS hyperexcitability.

  4. A Model of Post-Infection Fatigue Is Associated with Increased TNF and 5-HT2A Receptor Expression in Mice.

    PubMed

    Couch, Yvonne; Xie, Qin; Lundberg, Louise; Sharp, Trevor; Anthony, Daniel C

    2015-01-01

    It is well documented that serotonin (5-HT) plays an important role in psychiatric illness. For example, myalgic encephalomyelitis (ME/CFS), which is often provoked by infection, is a disabling illness with an unknown aetiology and diagnosis is based on symptom-specific criteria. However, 5-HT2A receptor expression and peripheral cytokines are known to be upregulated in ME. We sought to examine the relationship between the 5-HT system and cytokine expression following systemic bacterial endotoxin challenge (LPS, 0.5 mg/kg i.p.), at a time when the acute sickness behaviours have largely resolved. At 24 hours post-injection mice exhibit no overt changes in locomotor behaviour, but do show increased immobility in a forced swim test, as well as decreased sucrose preference and reduced marble burying activity, indicating a depressive-like state. While peripheral IDO activity was increased after LPS challenge, central activity levels remained stable and there was no change in total brain 5-HT levels or 5-HIAA/5-HT. However, within the brain, levels of TNF and 5-HT2A receptor mRNA within various regions increased significantly. This increase in receptor expression is reflected by an increase in the functional response of the 5-HT2A receptor to agonist, DOI. These data suggest that regulation of fatigue and depressive-like moods after episodes of systemic inflammation may be regulated by changes in 5-HT receptor expression, rather than by levels of enzyme activity or cytokine expression in the CNS. PMID:26147001

  5. A Model of Post-Infection Fatigue Is Associated with Increased TNF and 5-HT2A Receptor Expression in Mice

    PubMed Central

    Couch, Yvonne; Xie, Qin; Lundberg, Louise; Sharp, Trevor; Anthony, Daniel C.

    2015-01-01

    It is well documented that serotonin (5-HT) plays an important role in psychiatric illness. For example, myalgic encephalomyelitis (ME/CFS), which is often provoked by infection, is a disabling illness with an unknown aetiology and diagnosis is based on symptom-specific criteria. However, 5-HT2A receptor expression and peripheral cytokines are known to be upregulated in ME. We sought to examine the relationship between the 5-HT system and cytokine expression following systemic bacterial endotoxin challenge (LPS, 0.5mg/kg i.p.), at a time when the acute sickness behaviours have largely resolved. At 24 hours post-injection mice exhibit no overt changes in locomotor behaviour, but do show increased immobility in a forced swim test, as well as decreased sucrose preference and reduced marble burying activity, indicating a depressive-like state. While peripheral IDO activity was increased after LPS challenge, central activity levels remained stable and there was no change in total brain 5-HT levels or 5-HIAA/5-HT. However, within the brain, levels of TNF and 5-HT2A receptor mRNA within various regions increased significantly. This increase in receptor expression is reflected by an increase in the functional response of the 5-HT2A receptor to agonist, DOI. These data suggest that regulation of fatigue and depressive-like moods after episodes of systemic inflammation may be regulated by changes in 5-HT receptor expression, rather than by levels of enzyme activity or cytokine expression in the CNS. PMID:26147001

  6. Involvement of 5-HT(2C) receptors in the anti-immobility effects of antidepressants in the forced swimming test in mice.

    PubMed

    Clenet, F; De Vos, A; Bourin, M

    2001-04-01

    Several recent studies have demonstrated that 5-HT(1A), 5-HT(1B) and 5-HT(3) receptors were implicated in the mechanism of action of antidepressants in the mouse forced swimming test. Despite extensive evidence for a role of 5-HT(2C) receptors in depression, the precise role of these receptors in the effects of clinically established antidepressants was not directly investigated in the mouse forced swimming test. This work was aimed at exploring interactions between several doses of Ro 60-0175, a recently available, full and selective 5-HT(2C) agonist, and antidepressant drugs in the mouse forced swimming test. Spontaneous locomotor activity was measured as an index of intact sensorimotor functions and the dose-effect of Ro 60-0175 alone, as well as interactions with several antidepressants, such as tricyclic antidepressants (imipramine, desipramine and maprotiline) and selective serotonin reuptake inhibitors (paroxetine, citalopram, fluoxetine, fluvoxamine and sertraline), were studied in the mouse forced swimming test. There was no intrinsic antidepressant-like effect of Ro 60-0175, but an impairment in locomotor function was detected when using doses higher than 4 mg/kg in the mouse. There was a synergistic effect of low doses of Ro 60-0175 with sub-active doses of imipramine, paroxetine, citalopram and fluvoxamine; an antagonism between the highest dose of Ro 60-0175 and the active doses of paroxetine and fluoxetine was also detected. There is evidence that 5-HT(2C) receptors may be involved in the action of antidepressants which are able to boost the concentration of serotonin in the synapse, i.e. SSRIs and imipramine

  7. Serotonin contracts the rat mesenteric artery by inhibiting 4-aminopyridine-sensitive Kv channels via the 5-HT2A receptor and Src tyrosine kinase.

    PubMed

    Sung, Dong Jun; Noh, Hyun Ju; Kim, Jae Gon; Park, Sang Woong; Kim, Bokyung; Cho, Hana; Bae, Young Min

    2013-01-01

    Serotonin (5-hydroxytryptamine (5-HT)) is a neurotransmitter that regulates a variety of functions in the nervous, gastrointestinal and cardiovascular systems. Despite such importance, 5-HT signaling pathways are not entirely clear. We demonstrated previously that 4-aminopyridine (4-AP)-sensitive voltage-gated K(+) (Kv) channels determine the resting membrane potential of arterial smooth muscle cells and that the Kv channels are inhibited by 5-HT, which depolarizes the membranes. Therefore, we hypothesized that 5-HT contracts arteries by inhibiting Kv channels. Here we studied 5-HT signaling and the detailed role of Kv currents in rat mesenteric arteries using patch-clamp and isometric tension measurements. Our data showed that inhibiting 4-AP-sensitive Kv channels contracted arterial rings, whereas inhibiting Ca(2+)-activated K(+), inward rectifier K(+) and ATP-sensitive K(+) channels had little effect on arterial contraction, indicating a central role of Kv channels in the regulation of resting arterial tone. 5-HT-induced arterial contraction decreased significantly in the presence of high KCl or the voltage-gated Ca(2+) channel (VGCC) inhibitor nifedipine, indicating that membrane depolarization and the consequent activation of VGCCs mediate the 5-HT-induced vasoconstriction. The effects of 5-HT on Kv currents and arterial contraction were markedly prevented by the 5-HT2A receptor antagonists ketanserin and spiperone. Consistently, α-methyl 5-HT, a 5-HT2 receptor agonist, mimicked the 5-HT action on Kv channels. Pretreatment with a Src tyrosine kinase inhibitor, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine, prevented both the 5-HT-mediated vasoconstriction and Kv current inhibition. Our data suggest that 4-AP-sensitive Kv channels are the primary regulator of the resting tone in rat mesenteric arteries. 5-HT constricts the arteries by inhibiting Kv channels via the 5-HT2A receptor and Src tyrosine kinase pathway. PMID:24336234

  8. Differential effects of neonatal handling on anxiety, corticosterone response to stress, and hippocampal glucocorticoid and serotonin (5-HT)2A receptors in Lewis rats.

    PubMed

    Durand, M; Sarrieau, A; Aguerre, S; Mormède, P; Chaouloff, F

    1998-05-01

    Neonatal handling (during the first 3 weeks of age) has been reported by others to diminish the hypothalamo-pituitary-adrenal (HPA) responsivity to stress in adult Long Evans rats, an effect involving a serotonin (5-HT)2A receptor-mediated increase in glucocorticoid receptor (GR) gene expression in the frontal cortex and the hippocampus. In addition, handled animals may also display enduring reductions in anxiety-related behaviours, including in the elevated plus-maze. We have thus analysed the aforementioned neuroendocrine and behavioural consequences of neonatal stress in male and female adult Lewis rats, a strain characterised by its high anxiety and its hyporesponsive HPA axis. Plasma corticosterone, but not behavioural, responses to an elevated plus-maze test were decreased in handled rats. Besides, hippocampal mineralocorticoid receptor (MR) and GR binding capacities were not different between handled and non-handled Lewis rats, an observation which could be extended to our adult Long Evans rats. Lastly, neither hippocampal nor cortical 5-HT2A receptor binding capacities in adult Lewis rats were affected by prior handling. In keeping with the failure to detect early handling-induced increases in hippocampal GR binding in 3-week old Lewis and Long Evans rats, the present study reinforces past findings indicating that environmental and genetic factors are crucial variables in the neonatal handling paradigm.

  9. Effects of imipramine and bupropion on the duration of immobility of ACTH-treated rats in the forced swim test: involvement of the expression of 5-HT2A receptor mRNA.

    PubMed

    Kitamura, Yoshihisa; Fujitani, Yoshika; Kitagawa, Kouhei; Miyazaki, Toshiaki; Sagara, Hidenori; Kawasaki, Hiromu; Shibata, Kazuhiko; Sendo, Toshiaki; Gomita, Yutaka

    2008-02-01

    We examined the effect of chronic administration of imipramine and bupropion, monoamine reuptake inhibitors, on the duration of immobility in the forced swim test and serotonin (5-HT)(2A) receptor function in the form of 5-HT(2A) receptor mRNA levels in rats chronically treated with adrenocorticotropic hormone (ACTH). The immobility-decreasing effect of bupropion without imipramine did not influence the chronic ACTH treatment. The effect on the expression of 5-HT(2A) receptor mRNA of chronic ACTH treatment was decreased by bupropion, but not imipramine. These results suggest that bupropion has the effect of reducing immobility time in the forced swim test in the tricyclic antidepressant-resistant depressive model induced by chronic ACTH treatment in rats, and that decreased 5-HT(2A) receptor mRNA levels may be involved in this phenomenon.

  10. Autoradiographic characterization of (+-)-1-(2,5-dimethoxy-4-( sup 125 I) iodophenyl)-2-aminopropane (( sup 125 I)DOI) binding to 5-HT2 and 5-HT1c receptors in rat brain

    SciTech Connect

    Appel, N.M.; Mitchell, W.M.; Garlick, R.K.; Glennon, R.A.; Teitler, M.; De Souza, E.B. )

    1990-11-01

    The 5-HT2 (serotonin) receptor has traditionally been labeled with antagonist radioligands such as (3H)ketanserin and (3H)spiperone, which label both agonist high-affinity (guanyl nucleotide-sensitive) and agonist low-affinity (guanyl nucleotide-insensitive) states of this receptor. The hallucinogen 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) is an agonist which labels the high-affinity guanyl nucleotide-sensitive state of brain 5-HT2 receptors selectively. In the present study, conditions for autoradiographic visualization of (+/-)-(125I)DOI-labeled 5-HT2 receptors were optimized and binding to slide-mounted sections was characterized with respect to pharmacology, guanyl nucleotide sensitivity and anatomical distribution. In slide-mounted rat brain sections (+/-)-(125I)DOI binding was saturable, of high affinity (KD approximately 4 nM) and displayed a pharmacologic profile typical of 5-HT2 receptors. Consistent with coupling of 5-HT2 receptors in the high-affinity state to a guanyl nucleotide regulatory protein, (125I)DOI binding was inhibited by guanyl nucleotides but not by adenosine triphosphate. Patterns of autoradiographic distribution of (125I)DOI binding to 5-HT2 receptors were similar to those seen with (3H)ketanserin- and (125I)-lysergic acid diethylamide-labeled 5-HT2 receptors. However, the density of 5-HT2 receptors labeled by the agonist (125I)DOI was markedly lower (30-50%) than that labeled by the antagonist (3H)ketanserin. High densities of (125I)DOI labeling were present in olfactory bulb, anterior regions of cerebral cortex (layer IV), claustrum, caudate putamen, globus pallidus, ventral pallidum, islands of Calleja, mammillary nuclei and inferior olive. Binding in hippocampus, thalamus and hypothalamus was generally sparse.

  11. The 5-HT(2C) receptor agonist lorcaserin reduces cocaine self-administration, reinstatement of cocaine-seeking and cocaine induced locomotor activity.

    PubMed

    Harvey-Lewis, Colin; Li, Zhaoxia; Higgins, Guy A; Fletcher, Paul J

    2016-02-01

    Lorcaserin (Lorqess, Belviq(®)) is a selective 5-HT(2C) receptor agonist that has received FDA approval for the treatment of obesity. 5-HT(2C) receptor agonists are also efficacious in decreasing multiple aspects of cocaine motivation and reward in preclinical models. This would suggest that lorcaserin is a clinically available therapeutic with the potential to treat cocaine addiction. Here we report the effects of lorcaserin (0.1 mg/kg-1.0 mg/kg) on multiple aspects of cocaine-related behaviours in rats. We find that lorcaserin dose-dependently decreases cocaine self-administration on progressive and fixed ratio schedules of reinforcement. Lorcaserin also reduces reinstatement of cocaine-seeking behaviour in response to priming injections of cocaine and/or reintroduction of cocaine-associated cues. Finally, lorcaserin dose-dependently decreases cocaine-induced hyperlocomotion. Our results, when considered in concert with similar emergent findings in non-human primates, strongly support continued research into the potential of lorcaserin as a clinical treatment for cocaine addiction.

  12. The 5-HT(2A) receptor and serotonin transporter in Asperger's disorder: A PET study with [¹¹C]MDL 100907 and [¹¹C]DASB.

    PubMed

    Girgis, Ragy R; Slifstein, Mark; Xu, Xiaoyan; Frankle, W Gordon; Anagnostou, Evdokia; Wasserman, Stacey; Pepa, Lauren; Kolevzon, Alexander; Abi-Dargham, Anissa; Laruelle, Marc; Hollander, Eric

    2011-12-30

    Evidence from biochemical, imaging, and treatment studies suggest abnormalities of the serotonin system in autism spectrum disorders, in particular in frontolimbic areas of the brain. We used the radiotracers [(11)C]MDL 100907 and [(11)C]DASB to characterize the 5-HT(2A) receptor and serotonin transporter in Asperger's Disorder. Seventeen individuals with Asperger's Disorder (age=34.3 ± 11.1 years) and 17 healthy controls (age=33.0 ± 9.6 years) were scanned with [(11)C]MDL 100907. Of the 17 patients, eight (age=29.7 ± 7.0 years) were also scanned with [¹¹C]DASB, as were eight healthy controls (age=28.7 ± 7.0 years). Patients with Asperger's Disorder and healthy control subjects were matched for age, gender, and ethnicity, and all had normal intelligence. Metabolite-corrected arterial plasma inputs were collected and data analyzed by two-tissue compartment modeling. The primary outcome measure was regional binding potential BP(ND). Neither regional [¹¹C]MDL 100907 BP(ND) nor [¹¹C]DASB BP(ND) was statistically different between the Asperger's and healthy subjects. This study failed to find significant alterations in binding parameters of 5-HT(2A) receptors and serotonin transporters in adult subjects with Asperger's disorder.

  13. Dual role of serotonin in the acquisition and extinction of reward-driven learning: involvement of 5-HT1A, 5-HT2A and 5-HT3 receptors.

    PubMed

    Frick, Luciana Romina; Bernardez-Vidal, Micaela; Hocht, Christian; Zanutto, Bonifacio Silvano; Rapanelli, Maximiliano

    2015-01-15

    Serotonin (5-HT) has been proposed as a possible encoder of reward. Nevertheless, the role of this neurotransmitter in reward-based tasks is not well understood. Given that the major serotonergic circuit in the rat brain comprises the dorsal raphe nuclei and the medial prefrontal cortex (mPFC), and because the latter structure is involved in the control of complex behaviors and expresses 1A (5-HT1A), 2A (5-HT2A), and 3 (5-HT3) receptors, the aim was to study the role of 5-HT and of these receptors in the acquisition and extinction of a reward-dependent operant conditioning task. Long Evans rats were trained in an operant conditioning task while receiving fluoxetine (serotonin reuptake inhibitor, 10mg/kg), tianeptine (serotonin reuptake enhancer, 10mg/kg), buspirone (5-HT1A partial agonist, 10mg/kg), risperidone (5-HT2A antagonist, 1mg/kg), ondansetron (5-HT3 antagonist, 2mg/kg) or vehicle. Then, animals that acquired the operant conditioning without any treatment were trained to extinct the task in the presence of the pharmacological agents. Fluoxetine impaired acquisition but improved extinction. Tianeptine administration induced the opposite effects. Buspirone induced a mild deficit in acquisition and had no effects during the extinction phase. Risperidone administration resulted in learning deficits during the acquisition phase, although it promoted improved extinction. Ondansetron treatment showed a deleterious effect in the acquisition phase and an overall improvement in the extinction phase. These data showed a differential role of 5-HT in the acquisition and extinction of an operant conditioning task, suggesting that it may have a dual function in reward encoding. PMID:24949809

  14. Potential Modes of Interaction of 9-Aminomethyl-9,10-dihydroanthracene (AMDA) Derivatives with the 5-HT2A Receptor: A Ligand Structure-Affinity Relationship, Receptor Mutagenesis and Receptor Modeling Investigation⊕

    PubMed Central

    Runyon, Scott P.; Mosier, Philip D.; Roth, Bryan L.; Glennon, Richard A.; Westkaemper, Richard B.

    2011-01-01

    The effects of 3-position substitution of 9-aminomethyl-9,10-dihydroanthracene (AMDA) on 5-HT2A receptor affinity were determined and compared to a parallel series of DOB-like 1-(2,5-dimethoxyphenyl)-2-aminopropanes substituted at the 4-position. The results were interpreted within the context of 5-HT2A receptor models that suggest that members of the DOB-like series can bind to the receptor in two distinct modes that correlate with the compounds’ functional activity. Automated ligand docking and molecular dynamics suggest that all of the AMDA derivatives, the parent of which is a 5-HT2A antagonist, bind in a fashion analogous to that for the sterically demanding antagonist DOB-like compounds. The failure of the F3406.52L mutation to adversely affect the affinity of AMDA and the 3-bromo derivative is consistent with the proposed modes of orientation. Evaluation of ligand-receptor complex models suggest that a valine/threonine exchange between the 5-HT2A and D2 receptors may be the origin of selectivity for AMDA and two substituted derivatives. PMID:18847250

  15. Cloning and immunoreactivity of the 5-HT1Mac and 5-HT2Mac receptors in the central nervous system of the freshwater prawn Macrobrachium rosenbergii

    PubMed Central

    Vázquez-Acevedo, Nietzell; Reyes-Colón, Dalynés; Ruíz-Rodríguez, Eduardo A.; Rivera, Nilsa M.; Rosenthal, Joshua; Kohn, Andrea B.; Moroz, Leonid L.; Sosa, María A.

    2009-01-01

    Biogenic amines are implicated in several mental disorders, many of which involve social interactions. Simple model systems, such as crustaceans, are often more amenable than vertebrates for studying mechanisms underlying behaviors. Although various cellular responses of biogenic amines have been characterized in crustaceans, the mechanisms linking these molecules to behavior remain largely unknown. Observed effects of serotonin receptor agonists and antagonists in abdomen posture, escape responses, and fighting have led to the suggestion that biogenic amine receptors may play a role in modulating interactive behaviors. As a first step in understanding this potential role of such receptors, we have cloned and fully sequenced two serotonin receptors, 5-HT1Mac and 5-HT2Mac, from the CNS of the freshwater prawn Macrobrachium rosenbergii, and have mapped their CNS immunohistochemical distribution. 5-HT1Mac was found primarily on the membranes of subsets of cells in all CNS ganglia, in fibers that traverse all CNS regions, and in the cytoplasm of a small number of cells in the brain, circum- and subesophageal ganglia (SEG), most of which also appear to contain dopamine. The pattern of 5-HT2Mac immunoreactivity was found to differ significantly, being found mostly in the central neuropil area of all ganglia, in glomeruli of the brain’s olfactory lobes, and in the cytoplasm of a small number of neurons in the SEG, thoracic and some abdominal ganglia. The observed differences in terms of localization, distribution within cells, and intensity of immunoreactive staining throughout the prawn’s CNS suggest that these receptors are likely to play different roles. PMID:19184976

  16. Serotonin acts through 5-HT1 and 5-HT2 receptors to exert biphasic actions on GnRH neuron excitability in the mouse.

    PubMed

    Bhattarai, Janardhan P; Roa, Juan; Herbison, Allan E; Han, Seong Kyu

    2014-02-01

    The effect of serotonin (5-HT) on the electrical excitability of GnRH neurons was examined using gramicidin perforated-patch electrophysiology in transgenic GnRH-green fluorescent protein mice. In diestrous female, the predominant effect of 5-HT was inhibition (70%) with 50% of these cells also exhibiting a late-onset excitation. Responses were dose dependent (EC(50) = 1.2μM) and persisted in the presence of amino acid receptor antagonists and tetrodotoxin, indicating a predominant postsynaptic action of 5-HT. Studies in neonatal, juvenile, peripubertal, and adult mice revealed that 5-HT exerted less potent responses from GnRH neurons with advancing postnatal age in both sexes. In adult male mice, 5-HT exerted less potent hyperpolarizing responses with more excitations compared with females. In addition, adult proestrous female GnRH neurons exhibited reduced inhibition and a complete absence of biphasic hyperpolarization-excitation responses. Studies using 5-HT receptor antagonists demonstrated that the activation of 5-HT(1A) receptors mediated the inhibitory responses, whereas the excitation was mediated by the activation of 5-HT(2A) receptors. The 5-HT-mediated hyperpolarization involved both potassium channels and adenylate cyclase activation, whereas the 5-HT excitation was dependent on protein kinase C. The effects of exogenous 5-HT were replicated using fluoxetine, which enhances endogenous 5-HT levels. These studies demonstrate that 5-HT exerts a biphasic action on most GnRH neurons whereby a fast 5HT(1A)-mediated inhibition occurs alongside a slow 5-HT(2A) excitation. The balance of 5-HT-evoked inhibition vs excitation is developmentally regulated, sexually differentiated, and variable across the estrous cycle and may play a role in regulation of hypothalamic-pituitary-gonadal axis throughout postnatal development.

  17. Molecular interactions of agonist and inverse agonist ligands at serotonin 5-HT2C G protein-coupled receptors: computational ligand docking and molecular dynamics studies validated by experimental mutagenesis results

    NASA Astrophysics Data System (ADS)

    Córdova-Sintjago, Tania C.; Liu, Yue; Booth, Raymond G.

    2015-02-01

    To understand molecular determinants for ligand activation of the serotonin 5-HT2C G protein-coupled receptor (GPCR), a drug target for obesity and neuropsychiatric disorders, a 5-HT2C homology model was built according to an adrenergic β2 GPCR (β2AR) structure and validated using a 5-HT2B GPCR crystal structure. The models were equilibrated in a simulated phosphatidyl choline membrane for ligand docking and molecular dynamics studies. Ligands included (2S, 4R)-(-)-trans-4-(3'-bromo- and trifluoro-phenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalene-2-amine (3'-Br-PAT and 3'-CF3-PAT), a 5-HT2C agonist and inverse agonist, respectively. Distinct interactions of 3'-Br-PAT and 3'-CF3-PAT at the wild-type (WT) 5-HT2C receptor model were observed and experimental 5-HT2C receptor mutagenesis studies were undertaken to validate the modelling results. For example, the inverse agonist 3'-CF3-PAT docked deeper in the WT 5-HT2C binding pocket and altered the orientation of transmembrane helices (TM) 6 in comparison to the agonist 3'-Br-PAT, suggesting that changes in TM orientation that result from ligand binding impact function. For both PATs, mutation of 5-HT2C residues S3.36, T3.37, and F5.47 to alanine resulted in significantly decreased affinity, as predicted from modelling results. It was concluded that upon PAT binding, 5-HT2C residues T3.37 and F5.47 in TMs 3 and 5, respectively, engage in inter-helical interactions with TMs 4 and 6, respectively. The movement of TMs 5 and 6 upon agonist and inverse agonist ligand binding observed in the 5-HT2C receptor modelling studies was similar to movements reported for the activation and deactivation of the β2AR, suggesting common mechanisms among aminergic neurotransmitter GPCRs.

  18. RNA splicing and editing modulation of 5-HT(2C) receptor function: relevance to anxiety and aggression in VGV mice.

    PubMed

    Martin, C B P; Ramond, F; Farrington, D T; Aguiar, A S; Chevarin, C; Berthiau, A-S; Caussanel, S; Lanfumey, L; Herrick-Davis, K; Hamon, M; Madjar, J J; Mongeau, R

    2013-06-01

    Changes in serotonin(2C) receptor (5-HTR2c) editing, splicing and density were found in conditions such as depression and suicide, but mechanisms explaining the changes in 5-HTR2c function are unknown. Thus, mice expressing only the fully edited VGV isoform of 5-HTR2c, in which clinically relevant behavioral changes are associated with alterations in splicing and receptor density, were studied. VGV mice displayed enhanced anxiety-like behavior in response to a preferential 5-HTR2c agonist in the social interaction test. Nearly half of interactions between pairs of VGV congeners consisted of fighting behaviors, whereas no fighting occurred in wild-type (WT) mice. VGV mice also exhibited a striking increase in freezing behaviors in reaction to an innately aversive ultrasonic stimulus. This behavioral phenotype occurred in conjunction with decreased brain 5-HT turnover during stress. These functional data were put in relation with the 5-HTR2c mRNA splicing process generating a truncated protein (5-HTR2c-Tr) in addition to the full-length receptor (5-HTR2c-Fl). 5-HTR2c-Tr mRNA was less abundant in many brain regions of VGV mice, which concomitantly had more 5-HTR2c than WT mice. Fluorescence resonance energy transfer and bioluminescence resonance energy transfer studies in transfected living HEK293T cells showed that 5-HTR2c-Tr interacts with 5-HTR2c-Fl. The 5-HTR2c-Tr was localized in the endoplasmic reticulum where it retained 5-HTR2c-Fl, preventing the latter to reach the plasma membrane. Consequently, 5-HTR2c-Tr decreased (3)H-mesulergine binding to 5-HTR2c-Fl at the plasma membrane in a concentration-dependent manner and more strongly with edited 5-HTR2c-Fl. These results suggest that 5-HTR2c pre-mRNA editing and splicing are entwined processes determining increased 5-HTR2c levels in pathological conditions through a deficit in 5-HTR2c-Tr.

  19. Serotonin 5-HT2A receptor binding in platelets from healthy subjects as studied by [3H]-lysergic acid diethylamide ([3H]-LSD): intra- and interindividual variability.

    PubMed

    Spigset, O; Mjörndal, T

    1997-04-01

    In studies on platelet 5-HT2A receptor binding in patients with neuropsychiatric disorders, there has been a marked variability and a considerable overlap of values between patients and controls. The causes of the large variability in 5-HT2A receptor parameters is still unsettled. In the present study, we have quantified the intra- and interindividual variability of platelet 5-HT2A receptor binding in 112 healthy subjects and explored factors that may influence 5-HT2A receptor binding, using [3H]-lysergic acid diethylamide as radioligand. Age, gender, blood pressure, and metabolic capacity of the liver enzymes CYP2D6 and CYP2C19 did not influence Bmax and Kd values. Body weight and body mass index (BMI) showed a negative correlation with Kd (p = .04 and .03, respectively), but not with Bmax. Bmax was significantly lower in the light half of the year than in the dark half of the year (p = .001), and Kd was significantly lower in the fall than in the summer and winter (p < .001). In females, there was a significant increase in Bmax from week 1 to week 2 of the menstrual cycle (p = .03). Females taking contraceptive pills had significantly higher Kd than drug-free females in weeks 1 and 4 of the menstrual cycle (p = .04). This study shows that a number of factors should be taken into account when using platelet 5-HT2A receptor binding in studies of neuropsychiatric disorders.

  20. 5-HT2CRs expressed by pro-opiomelanocortin neurons regulate insulin sensitivity in liver

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mice lacking 5-HT 2C receptors displayed hepatic insulin resistance, a phenotype normalized by re-expression of 5-HT2CRs only in pro-opiomelanocortin (POMC) neurons. 5-HT2CR deficiency also abolished the anti-diabetic effects of meta-chlorophenylpiperazine (a 5-HT2CR agonist); these effects were re...

  1. Potentiation of 5-methoxy-N,N-dimethyltryptamine-induced hyperthermia by harmaline and the involvement of activation of 5-HT1A and 5-HT2A receptors.

    PubMed

    Jiang, Xi-Ling; Shen, Hong-Wu; Yu, Ai-Ming

    2015-02-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and harmaline are serotonin (5-HT) analogs often abused together, which alters thermoregulation that may indicate the severity of serotonin toxicity. Our recent studies have revealed that co-administration of monoamine oxidase inhibitor harmaline leads to greater and prolonged exposure to 5-HT agonist 5-MeO-DMT that might be influenced by cytochrome P450 2D6 (CYP2D6) status. This study was to define the effects of harmaline and 5-MeO-DMT on thermoregulation in wild-type and CYP2D6-humanized (Tg-CYP2D6) mice, as well as the involvement of 5-HT receptors. Animal core body temperatures were monitored noninvasively in the home cages after implantation of telemetry transmitters and administration of drugs. Harmaline (5 and 15 mg/kg, i.p.) alone was shown to induce hypothermia that was significantly affected by CYP2D6 status. In contrast, higher doses of 5-MeO-DMT (10 and 20 mg/kg) alone caused hyperthermia. Co-administration of harmaline (2, 5 or 15 mg/kg) remarkably potentiated the hyperthermia elicited by 5-MeO-DMT (2 or 10 mg/kg), which might be influenced by CYP2D6 status at certain dose combination. Interestingly, harmaline-induced hypothermia was only attenuated by 5-HT1A receptor antagonist WAY-100635, whereas 5-MeO-DMT- and harmaline-5-MeO-DMT-induced hyperthermia could be suppressed by either WAY-100635 or 5-HT2A receptor antagonists (MDL-100907 and ketanserin). Moreover, stress-induced hyperthermia under home cage conditions was not affected by WAY-100635 but surprisingly attenuated by MDL-100907 and ketanserin. Our results indicate that co-administration of monoamine oxidase inhibitor largely potentiates 5-MeO-DMT-induced hyperthermia that involves the activation of both 5-HT1A and 5-HT2A receptors. These findings shall provide insights into development of anxiolytic drugs and new strategies to relieve the lethal hyperthermia in serotonin toxicity.

  2. Conjunctive effects of the 5HT(2) receptor antagonist, sarpogrelate, on thrombolysis with modified tissue plasminogen activator in different laser-induced thrombosis models.

    PubMed

    Yamashita, T; Kitamori, K; Hashimoto, M; Watanabe, S; Giddings, J C; Yamamoto, J

    2000-01-01

    The effect of the serotonin (5HT(2)) receptor antagonist, sarpogrelate, was compared with that of the selective thrombin inhibitor, argatroban, in modified tissue plasminogen activator (mt-PA)-induced thrombolysis using two laser-induced thrombosis models reflecting different levels of vascular endothelial cell damage. Bolus intravenous infusions of mt-PA (0.1, 0.2, 0.4 mg/kg) induced thrombolysis in a dose-dependent manner. Sarpogrelate (4.7 mg/kg b.i. + 1.0 mg/kg/h i.v.) given together with mt-PA (0.2 mg/kg b.i.) optimally enhanced thrombolysis (p < 0.05) in a helium-neon laser-induced model where endothelial damage was minimal but not in an argon laser model where desquamation of endothelial cells was recognized. In contrast, argatroban (0.5 mg/kg b.i. + 0.1 mg/kg/h i.v.) given with mt-PA (0.2 mg/kg b.i.) significantly enhanced thrombolysis in both laser models. The findings indicate that the effectiveness of sarpogrelate in thrombolytic therapy might depend on the extent of vascular damage. PMID:11357001

  3. Antidepressant-like activity of Tagetes lucida Cav. is mediated by 5-HT(1A) and 5-HT(2A) receptors.

    PubMed

    Bonilla-Jaime, H; Guadarrama-Cruz, G; Alarcon-Aguilar, F J; Limón-Morales, O; Vazquez-Palacios, G

    2015-10-01

    It has been demonstrated that the aqueous extract of Tagetes lucida Cav. shows an antidepressant-like effect on the forced swimming test (FST) in rats. The aim of this study was to analyze the participation of the serotoninergic system in the antidepressant-like effect of the aqueous extract of T. lucida. Different doses of the extract of T. lucida were administered at 72, 48, 24, 18 and 1 h before FST. The animals were pretreated with a 5-HT1A receptor antagonist (WAY-100635, 0.5 mg/kg), a 5-HT2A receptor antagonist (ketanserin, 5 mg/kg), a β-noradrenergic receptor antagonist (propranolol, 200 mg/kg), and with a α2-noradrenergic receptor antagonist (yohimbine, 1 mg/kg) alone or combined with the extract and pretreated with a serotonin synthesis inhibitor (PCPA) before treatment with 8-OH-DPAT + the extract of T. lucida. In addition, suboptimal doses of the 5-HT1A agonist (8-OH-DPAT) + non-effective dose of extract was analyzed in the FST. To determine the presence of flavonoids, the aqueous extract of T. lucida (20 µl, 4 mg/ml) was injected in HPLC; however, a quercetin concentration of 7.72 mg/g of extract weight was detected. A suboptimal dose of 8-OH-DPAT + extract of T. lucida decreased immobility and increased swimming and climbing. An antidepressant-like effect with the aqueous extract of T. lucida at doses of 100 and 200 mg/kg was observed on the FST with decreased immobility behavior and increased swimming; however, this effect was blocked by WAY-100635, ketanserin and PCPA but not by yohimbine and propranolol, suggesting that the extract of T. lucida could be modulating the release/reuptake of serotonin.

  4. Novel 4-substituted-N,N-dimethyltetrahydronaphthalen-2-amines: synthesis, affinity, and in silico docking studies at serotonin 5-HT2-type and histamine H1 G protein-coupled receptors.

    PubMed

    Sakhuja, Rajeev; Kondabolu, Krishnakanth; Córdova-Sintjago, Tania; Travers, Sean; Vincek, Adam S; Kim, Myong Sang; Abboud, Khalil A; Fang, Lijuan; Sun, Zhuming; Canal, Clinton E; Booth, Raymond G

    2015-04-01

    Syntheses were undertaken of derivatives of (2S,4R)-(-)-trans-4-phenyl-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine (4-phenyl-2-dimethylaminotetralin, PAT), a stereospecific agonist at the serotonin 5-HT2C G protein-coupled receptor (GPCR), with inverse agonist activity at 5-HT2A and 5-HT2B GPCRs. Molecular changes were made at the PAT C(4)-position, while preserving N,N-dimethyl substitution at the 2-position as well as trans-stereochemistry, structural features previously shown to be optimal for 5-HT2 binding. Affinities of analogs were determined at recombinant human 5-HT2 GPCRs in comparison to the phylogenetically closely-related histamine H1 GPCR, and in silico ligand docking studies were conducted at receptor molecular models to help interpret pharmacological results and guide future ligand design. In most cases, C(4)-substituted PAT analogs exhibited the same stereoselectivity ([-]-trans>[+]-trans) as the parent PAT across 5-HT2 and H1 GPCRs, albeit, with variable receptor selectivity. 4-(4'-substituted)-PAT analogs, however, demonstrated reversed stereoselectivity ([2S,4R]-[+]-trans>[2S,4R]-[-]-trans), with absolute configuration confirmed by single X-ray crystallographic data for the 4-(4'-Cl)-PAT analog. Pharmacological affinity results and computational results herein support further PAT drug development studies and provide a basis for predicting and interpreting translational results, including, for (+)-trans-4-(4'-Cl)-PAT and (-)-trans-4-(3'-Br)-PAT that were previously shown to be more potent and efficacious than their corresponding enantiomers in rodent models of psychoses, psychostimulant-induced behaviors, and compulsive feeding ('binge-eating').

  5. Novel 4-Substituted-N,N-dimethyltetrahydronaphthalen-2-amines: Synthesis, Affinity, and In Silico Docking Studies at Serotonin 5-HT2-type and Histamine H1 G Protein-Coupled Receptors

    PubMed Central

    Sakhuja, Rajeev; Kondabolu, Krishnakanth; Córdova-Sintjago, Tania; Travers, Sean; Vincek, Adam S.; Kim, Myong Sang; Abboud, Khalil A.; Fang, Lijuan; Sun, Zhuming; Canal, Clinton E.; Booth, Raymond G.

    2015-01-01

    Syntheses were undertaken of derivatives of (2S, 4R)-(−)-trans-4-phenyl-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine (4-phenyl-2-dimethylaminotetralin, PAT), a stereospecific agonist at the serotonin 5-HT2C G protein-coupled receptor (GPCR), with inverse agonist activity at 5-HT2A and 5-HT2B GPCRs. Molecular changes were made at the PAT C(4)-position, while preserving N, N-dimethyl substitution at the 2-position as well as trans-stereochemistry, structural features previously shown to be optimal for 5-HT2 binding. Affinities of analogs were determined at recombinant human 5-HT2 GPCRs in comparison to the phylogenetically closely-related histamine H1 GPCR, and in silico ligand docking studies were conducted at receptor molecular models to help interpret pharmacological results and guide future ligand design. In most cases, C(4)-substituted PAT analogs exhibited the same stereoselectivity ([−]-trans > [+]-trans) as the parent PAT across 5-HT2 and H1 GPCRs, albeit, with variable receptor selectivity. 4-(4′-substituted)-PAT analogs, however, demonstrated reversed stereoselectivity ([2S, 4R]-[+]-trans > [2S, 4R]-[−]-trans), with absolute configuration confirmed by single X-ray crystallographic data for the 4-(4′-Cl)-PAT analog. Pharmacological affinity results and computational results herein support further PAT drug development studies and provide a basis for predicting and interpreting translational results, including, for (+)-trans-4-(4′-Cl)-PAT and (−)-trans-4-(3′-Br)-PAT that were previously shown to be more potent and efficacious than their corresponding enantiomers in rodent models of psychoses, psychostimulant-induced behaviors, and compulsive feeding (‘binge-eating’). PMID:25703249

  6. The effects of a selective 5-HT2 receptor antagonist (ICI 170,809) on platelet aggregation and pupillary responses in healthy volunteers.

    PubMed Central

    Millson, D S; Jessup, C L; Swaisland, A; Haworth, S; Rushton, A; Harry, J D

    1992-01-01

    1. ICI 170,809 (2-(2-dimethylamino-2-methylpropylthio)-3-phenylquinoline hydrochloride) is a potent 5-hydroxytryptamine (5-HT) type 2 postsynaptic receptor antagonist. 2. Effects of ICI 170,809 as single oral doses (3, 7, 15 and 30 mg) or placebo were studied on the duration of antagonism for the ex vivo platelet aggregatory response to 5-HT and to the pupillary light constrictor response in eight healthy male volunteers. 3. Pupillary dark adapted responses to a 0.5 s light stimulus were measured using a portable infrared pupillometer, for up to 24 h after dosing. 4. The in vitro platelet 5-HT aggregation response was reduced by ICI 170,809, with depression of the dose-response curve to 5-HT at all concentrations of 5-HT and with no evidence for a parallel shift. 5. The ex vivo platelet 5-HT response demonstrated a dose related significant (P less than 0.02) decrease in aggregation reaching a maximum at 2 h after dosing with the effect persisting for at least 8 h after dosing with the 7 and 15 mg doses. 6. Resting pupil diameter (RPD), and light induced pupillary responses in the dark adapted pupil, showed a significant (P less than 0.01) dose related reduction with significant (P less than 0.05) effects still present with the 15 and 30 mg doses at 8 h after dosing. 7. We conclude that, changes in both ex vivo platelet aggregation to 5-HT and dark adapted pupil size, are significantly correlated (P less than 0.0001) with log plasma concentrations (ng ml-1) of ICI 170,809, enabling the assessment of 5-HT2-receptor antagonism in man. PMID:1576048

  7. C-122, a novel antagonist of serotonin receptor 5-HT2B, prevents monocrotaline-induced pulmonary arterial hypertension in rats.

    PubMed

    Zopf, David A; das Neves, Liomar A A; Nikula, Kristen J; Huang, Jinbao; Senese, Peter B; Gralinski, Michael R

    2011-11-16

    Pulmonary arterial hypertension (PAH) is a chronic disease characterized by sustained elevation of pulmonary arterial pressure that leads to right ventricle failure and death. Pulmonary resistance arterioles in PAH undergo progressive narrowing and/or occlusion. Currently approved therapies for PAH are directed primarily at relief of symptoms by interfering with vasoconstrictive signals, but do not halt the microvascular cytoproliferative process. In this study we show that C-122 (2-amino-N-(2-{4-[3-(2-trifluoromethyl-phenothiazin-10-yl)-propyl]-piperazin-1-yl}-ethyl)-acetamide trihydrochloride, a novel antagonist of serotonin receptor 5-HT(2B) (Ki=5.2 nM, IC(50)=6.9 nM), when administered to rats for three weeks in daily oral 10mg/kg doses, prevents not only monocrotaline (MCT)-induced elevations in pressure in the pulmonary arterial circuit (19 ± 0.9 mmHg vs. 28 ± 2 mmHg in MCT-vehicle group, P<0.05) and hypertrophy of the right ventricle (right ventricular wt./body wt. ratio 0.52 ± 0.02 vs. 0.64 ± 0.04 in MCT-vehicle group, P<0.05), but also muscularization of pulmonary arterioles (23% vs. 56% fully muscularized in MCT-vehicle group, P<0.05), and perivascular fibrosis in the lung. C-122 is orally absorbed in the rat, and partitions strongly into multiple tissues, including heart and lung. C-122 has significant off-target antagonist activity for histamine H-1 and several dopamine receptors, but shows no evidence of crossing the blood-brain barrier after a single 10mg/kg oral dose in rats. We conclude that C-122 can prevent microvascular remodeling and associated elevated pressures in the rat MCT model for PAH, and offers promise as a new therapeutic entity to suppress vascular smooth muscle cell proliferation in PAH patients.

  8. Food intake inhibition in rainbow trout induced by activation of serotonin 5-HT2C receptors is associated with increases in POMC, CART and CRF mRNA abundance in hypothalamus.

    PubMed

    Pérez-Maceira, Jorge J; Otero-Rodiño, Cristina; Mancebo, María J; Soengas, José L; Aldegunde, Manuel

    2016-04-01

    In rainbow trout, the food intake inhibition induced by serotonin occurs through 5-HT2C and 5-HT1A receptors, though the mechanisms involved are still unknown. Therefore, we assessed if a direct stimulation of 5-HT2C and 5-HT1A serotonin receptors (resulting in decreased food intake in rainbow trout), affects gene expression of neuropeptides involved in the control of food intake, such as pro-opiomelanocortin (POMC), cocaine- and amphetamine-regulated transcript (CART), corticotrophin releasing factor (CRF), and agouti-related peptide (AgRP). In a first set of experiments, the injection of the 5-HT2C receptor agonists MK212 (60 μg kg(-1) icv) and WAY 161503 (1 mg kg(-1) ip), and of the 5-HT1A receptor agonist 8-OH-DPAT (1 mg kg(-1) ip and 30 μg kg(-1) icv) induced food intake inhibition. In a second set of experiments, we observed that the injection of MK212 or WAY 161503 (1 and 3 mg kg(-1)) significantly increased hypothalamic POMC mRNA abundance. CART mRNA abundance in hypothalamus was enhanced by treatment with MK212 and unaffected by WAY 161503. The administration of the 5-HT1A receptor agonist 8-OH-DPAT did not induce any significant variation in the hypothalamic POMC or CART mRNA levels. CRF mRNA abundance was only affected by MK212 that increased hypothalamic values. Finally, hypothalamic AgRP mRNA abundance was only evaluated with the agonist 5-HT2C MK212 resulting in no significant effects. The results show that the reduction in food intake mediated by 5-HT2C receptors is associated with increases in hypothalamic POMC, CART and CRF mRNA abundance.

  9. ( sup 125 I)-2-(2,5-dimethoxy-4-iodophenyl)aminoethane (( sup 125 I)-2C-I) as a label for the 5-HT2 receptor in rat frontal cortex

    SciTech Connect

    Johnson, M.P.; Mathis, C.A.; Shulgin, A.T.; Hoffman, A.J.; Nichols, D.E. )

    1990-01-01

    Recent studies of 5-HT2 receptor binding have involved the use of radiolabeled agonists. This report describes the use of ({sup 125}I)-2-(2,5-dimethoxy-4-iodophenyl)aminoethane (({sup 125}I)-2C-I) as a label for low-density 5-HT2 agonist binding sites. A nonhydrolyzable analog of GTP, GppNHp, was found to inhibit the high affinity binding of ({sup 125}I)-2C-I. 5-HT and several 5-HT2 agonists and antagonists displayed high affinity for this site. In addition, a significant decrease in the Bmax value, but not the KD for ({sup 125}I)-2C-I was observed at 37 degrees C as compared to that observed at 24 degrees C. Several structure-activity relationships were investigated for displacement of ({sup 125}I)-2C-I, and the results are consistent with the importance of this receptor in the mechanism of action of hallucinogens. This study demonstrates the utility of ({sup 125}I)-2C-I as a novel radioligand and provides further data that the 5-HT2 receptor is significantly linked to hallucinogenic activity for several compounds.

  10. The effects of a 5-HT2 receptor antagonist (ICI 169,369) on changes in waking EEG, pupillary responses and state of arousal in human volunteers.

    PubMed Central

    Millson, D S; Haworth, S J; Rushton, A; Wilkinson, D; Hobson, S; Harry, J

    1991-01-01

    1. ICI 169,369 (2-(2-dimethylamino ethylthio)-3-phenyl quinoline) is a potent selective competitive antagonist of the 5-HT2 receptor in animal models. Effects of ICI 169,369 as single oral doses (80 and 120 mg) separated by 1 week, on the power spectrum of waking EEG, dark adapted pupil responses and sedation score, were studied in a double-blind, placebo controlled, randomised cross over within subject comparison, in six healthy male volunteers. 2. Pupillary responses were measured using a portable infrared pupillometer following 15 min dark adaptation, assessing resting vertical pupil diameter (RPD), light constricted diameter (MPD) and recovered final diameter (FPD) at the end of a 3 s measurement cycle. 3. Both doses of ICI 169,369 produced a mean 36% (range 10-54%) decrease in log 10 power of the waking EEG alpha activity with eyes closed (P less than 0.02), and mean 38% (range 2-86%) increase in theta activity at 2 h compared with placebo. 4. Both 80 and 120 mg doses of ICI 169,369 reduced RPD by approximately 30% from a predose value of 6.25 mm (+/- 0.87; 95% CI) and from placebo values 6.41 mm (+/- 1.06) and 7.48 mm (+/- 1.49) at 3 and 5 h after dosing. MPD was reduced by 50% with the 120 mg dose at 5 h after dosing (placebo 5.2 mm; ICI 169,369 2.7 mm; P less than 0.05). FPD was significantly reduced (P less than 0.01) by both doses at 3 h after dosing.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1958438

  11. Drug discovery targeting human 5-HT2C receptors: Residues S3.36 and Y7.43 impact ligand—binding pocket structure via hydrogen bond formation

    PubMed Central

    Canal, Clinton E.; Cordova-Sintjago, Tania C.; Villa, Nancy Y.; Fang, Li-Juan; Booth, Raymond G.

    2011-01-01

    Specific activation of serotonin (5-HT) 5-HT2C G protein-coupled receptors may be therapeutic for obesity and neuropsychiatric disorders. Mutagenesis coupled with computational and molecular modeling experiments based on the human β2 adrenergic receptor structure were employed to delineate the interactions of different ligands at human 5-HT2C residues D3.32, S3.36 and Y7.43. No binding of the tertiary amine radioligand ([3H]-mesulergine) could be detected when the 5-HT2C D3.32 residue was mutated to alanine (D3.32A). The S3.36A point-mutation greatly reduced affinity of primary amine ligands, modestly reduced affinity of a secondary amine, and except for the 5-HT2C-specific agonist N(CH3)2-PAT, affinity of tertiary amines was unaffected. Molecular modeling results indicated that the primary amines form hydrogen bonds with the S3.36 residue, whereas, with the exception of N(CH3)2-PAT, tertiary amines do not interact considerably with this residue. The Y7.43A point-mutation greatly reduced affinity of 5-HT, yet reduced to a lesser extent the affinity of tryptamine that lacks the 5-hydroxy moiety present in 5-HT; modeling results indicated that the 5-HT 5-hydroxy moiety hydrogen bonds with Y7.43 at the 5-HT2C receptor. Additional modeling results showed that 5-HT induced a hydrogen bond between Y7.43 and D3.32. Finally, modeling results revealed two low-energy binding modes for 5-HT in the 5-HT2C binding pocket, supporting the concept that multiple agonist binding modes may stabilize different receptor active conformations to influence signaling. Ligand potencies for modulating WT and point-mutated 5-HT2C receptor-mediated phospholipase C activity were in accordance with the affinity data. Ligand efficacies, however, were altered considerably by the S3.36A mutation only. PMID:22020288

  12. Molecular Determinants for Ligand Binding at Serotonin 5-HT2A and 5-HT2C GPCRs: Experimental Affinity Results Analyzed by Molecular Modeling and Ligand Docking Studies

    PubMed Central

    Sakhuja, Rajeev; Kondabolu, Krishnakanth; Canal, Clinton E.; Booth, Raymond G.

    2013-01-01

    Ligands that activate the serotonin 5-HT2C G protein-coupled receptor (GPCR) may be therapeutic for psychoses, addiction, and other neuropsychiatric disorders. Ligands that are antagonists at the closely related 5-HT2A GPCR also may treat neuropsychiatric disorders; in contrast, 5-HT2A activation may cause hallucinations. 5-HT2C-specific agonist drug design is challenging because 5-HT2 GPCRs share 80% transmembrane (TM) homology, same second messenger signaling, and no crystal structures are reported. To help delineate molecular determinants underlying differential binding and activation of 5-HT2 GPCRs, 5-HT2A, and 5-HT2C homology models were built from the β2-adrenergic GPCR crystal structure and equilibrated in a lipid phosphatidyl choline bilayer performing molecular dynamics simulations. Ligand docking studies at the 5-HT2 receptor models were conducted with the (2R, 4S)- and (2S, 4R)-enantiomers of the novel 5-HT2C agonist/5-HT2A/2B antagonist trans-4-phenyl-N,N-dimethyl-2-aminotetralin (PAT) and its 4′-chlorophenyl congners. Results indicate PAT–5-HT2 molecular interactions especially in TM domain V are important for the (2R, 4S) enantiomer, whereas, TM domain VI and VII interactions are more important for the (2S, 4R) enantiomer. PMID:23913978

  13. Blonanserin Ameliorates Phencyclidine-Induced Visual-Recognition Memory Deficits: the Complex Mechanism of Blonanserin Action Involving D3-5-HT2A and D1-NMDA Receptors in the mPFC

    PubMed Central

    Hida, Hirotake; Mouri, Akihiro; Mori, Kentaro; Matsumoto, Yurie; Seki, Takeshi; Taniguchi, Masayuki; Yamada, Kiyofumi; Iwamoto, Kunihiro; Ozaki, Norio; Nabeshima, Toshitaka; Noda, Yukihiro

    2015-01-01

    Blonanserin differs from currently used serotonin 5-HT2A/dopamine-D2 receptor antagonists in that it exhibits higher affinity for dopamine-D2/3 receptors than for serotonin 5-HT2A receptors. We investigated the involvement of dopamine-D3 receptors in the effects of blonanserin on cognitive impairment in an animal model of schizophrenia. We also sought to elucidate the molecular mechanism underlying this involvement. Blonanserin, as well as olanzapine, significantly ameliorated phencyclidine (PCP)-induced impairment of visual-recognition memory, as demonstrated by the novel-object recognition test (NORT) and increased extracellular dopamine levels in the medial prefrontal cortex (mPFC). With blonanserin, both of these effects were antagonized by DOI (a serotonin 5-HT2A receptor agonist) and 7-OH-DPAT (a dopamine-D3 receptor agonist), whereas the effects of olanzapine were antagonized by DOI but not by 7-OH-DPAT. The ameliorating effect was also antagonized by SCH23390 (a dopamine-D1 receptor antagonist) and H-89 (a protein kinase A (PKA) inhibitor). Blonanserin significantly remediated the decrease in phosphorylation levels of PKA at Thr197 and of NR1 (an essential subunit of N-methyl-D-aspartate (NMDA) receptors) at Ser897 by PKA in the mPFC after a NORT training session in the PCP-administered mice. There were no differences in the levels of NR1 phosphorylated at Ser896 by PKC in any group. These results suggest that the ameliorating effect of blonanserin on PCP-induced cognitive impairment is associated with indirect functional stimulation of the dopamine-D1-PKA-NMDA receptor pathway following augmentation of dopaminergic neurotransmission due to inhibition of both dopamine-D3 and serotonin 5-HT2A receptors in the mPFC. PMID:25120077

  14. Characterization of the 5-HT2C receptor agonist lorcaserin on efficacy and safety measures in a rat model of diet-induced obesity.

    PubMed

    Higgins, Guy A; Desnoyer, Jill; Van Niekerk, Annalise; Silenieks, Leo B; Lau, Winnie; Thevarkunnel, Sandy; Izhakova, Julia; DeLannoy, Ines Am; Fletcher, Paul J; DeLay, Josepha; Dobson, Howard

    2015-02-01

    The 5-HT2C receptor agonist lorcaserin (Belviq®) has been Food and Drug Administration (FDA) approved for the treatment of obesity. The present study is a back translational investigation into the effect of 28-day lorcaserin treatment in a diet-induced obesity (DIO) model using male, Sprague-Dawley rats. An assessment of drug effect on efficacy and multiple safety endpoints including cardiac function was undertaken. Lorcaserin (1-2 mg/kg SC b.i.d.) significantly reduced percentage body weight gain compared to vehicle-treated controls (VEH: 10.6 ± 0.4%; LOR 1: 7.6 ± 1.2%; LOR 2: 5.4 ± 0.6%). Measurement of body composition using quantitative magnetic resonance (QMR) imaging indicated this change was due to the selective reduction in body fat mass. Modest effects on food intake were recorded. At the completion of the treatment phase, echocardiography revealed no evidence for valvulopathy, that is, no aortic or mitral valve regurgitation. The pharmacokinetics of the present treatment regimen was determined over a 7-day treatment period; plasma C min and C max were in the range 13-160 ng/mL (1 mg/kg b.i.d.) and 34-264 ng/mL (2 mg/kg b.i.d.) with no evidence for drug accumulation. In sum, these studies show an effect of lorcaserin in the DIO model, that in the context of the primary endpoint measure of % body weight change was similar to that reported clinically (i.e., 3.0-5.2% vs. 3.2%). The present studies highlight the translational value of obesity models such as DIO, and suggest that assuming consideration is paid to nonspecific drug effects such as malaise, the DIO model has reasonable forward translational value to help predict clinical outcomes of a new chemical entity.

  15. Combined serotonin (5-HT)1A agonism, 5-HT(2A) and dopamine D₂ receptor antagonism reproduces atypical antipsychotic drug effects on phencyclidine-impaired novel object recognition in rats.

    PubMed

    Oyamada, Yoshihiro; Horiguchi, Masakuni; Rajagopal, Lakshmi; Miyauchi, Masanori; Meltzer, Herbert Y

    2015-05-15

    Subchronic administration of an N-methyl-D-aspartate receptor (NMDAR) antagonist, e.g. phencyclidine (PCP), produces prolonged impairment of novel object recognition (NOR), suggesting they constitute a hypoglutamate-based model of cognitive impairment in schizophrenia (CIS). Acute administration of atypical, e.g. lurasidone, but not typical antipsychotic drugs (APDs), e.g. haloperidol, are able to restore NOR following PCP (acute reversal model). Furthermore, atypical APDs, when co-administered with PCP, have been shown to prevent development of NOR deficits (prevention model). Most atypical, but not typical APDs, are more potent 5-HT(2A) receptor inverse agonists than dopamine (DA) D2 antagonists, and have been shown to enhance cortical and hippocampal efflux and to be direct or indirect 5-HT(1A) agonists in vivo. To further clarify the importance of these actions to the restoration of NOR by atypical APDs, sub-effective or non-effective doses of combinations of the 5-HT(1A) partial agonist (tandospirone), the 5-HT(2A) inverse agonist (pimavanserin), or the D2 antagonist (haloperidol), as well as the combination of all three agents, were studied in the acute reversal and prevention PCP models of CIS. Only the combination of all three agents restored NOR and prevented the development of PCP-induced deficit. Thus, this triple combination of 5-HT(1A) agonism, 5-HT(2A) antagonism/inverse agonism, and D2 antagonism is able to mimic the ability of atypical APDs to prevent or ameliorate the PCP-induced NOR deficit, possibly by stimulating signaling cascades from D1 and 5-HT(1A) receptor stimulation, modulated by D2 and 5-HT(2A) receptor antagonism. PMID:25448429

  16. Changes in the 5-HT2A receptor system in the pre-mammillary hypothalamus of the ewe are related to regulation of LH pulsatile secretion by an endogenous circannual rhythm

    PubMed Central

    Chemineau, Philippe; Daveau, Agnès; Pelletier, Jean; Malpaux, Benoît; Karsch, Fred J; Viguié, Catherine

    2003-01-01

    Background We wanted to determine if changes in the expression of serotonin 2A receptor (5HT2A receptor) gene in the premammillary hypothalamus are associated with changes in reproductive neuroendocrine status. Thus, we compared 2 groups of ovariectomized-estradiol-treated ewes that expressed high vs low LH pulsatility in two different paradigms (2 groups per paradigm): (a) refractoriness (low LH secretion) or not (high LH secretion) to short days in pineal-intact Ile-de-France ewes (RSD) and (b) endogenous circannual rhythm (ECR) in free-running pinealectomized Suffolk ewes in the active or inactive stage of their reproductive rhythm. Results In RSD ewes, density of 5HT2A receptor mRNA (by in situ hybridization) was significantly higher in the high LH group (25.3 ± 1.4 vs 21.4 ± 1.5 grains/neuron, P < 0.05) and 3H-Ketanserin binding (a specific radioligand) of the median part of the premammillary hypothalamus tended to be higher in the high group (29.1 ± 4.0 vs 24.6 ± 4.2 fmol/mg tissu-equivalent; P < 0.10). In ECR ewes, density of 5HT2A receptor mRNA and 3H-Ketanserin binding were both significantly higher in the high LH group (20.8 ± 1.6 vs 17.0 ± 1.5 grains/neuron, P < 0.01, and 19.7 ± 5.0 vs 7.4 ± 3.4 fmol/mg tissu-equivalent; P < 0.05, respectively). Conclusions We conclude that these higher 5HT2A receptor gene expression and binding activity of 5HT2A receptor in the premammillary hypothalamus are associated with stimulation of LH pulsatility expressed before the development of refractoriness to short days and prior to the decline of reproductive neuroendocrine activity during expression of the endogenous circannual rhythm. PMID:12553884

  17. The Combination of Marketed Antagonists of α1b-Adrenergic and 5-HT2A Receptors Inhibits Behavioral Sensitization and Preference to Alcohol in Mice: A Promising Approach for the Treatment of Alcohol Dependence

    PubMed Central

    Trovero, Fabrice; David, Sabrina; Bernard, Philippe; Puech, Alain; Bizot, Jean-Charles; Tassin, Jean-Pol

    2016-01-01

    Alcohol-dependence is a chronic disease with a dramatic and expensive social impact. Previous studies have indicated that the blockade of two monoaminergic receptors, α1b-adrenergic and 5-HT2A, could inhibit the development of behavioral sensitization to drugs of abuse, a hallmark of drug-seeking and drug-taking behaviors in rodents. Here, in order to develop a potential therapeutic treatment of alcohol dependence in humans, we have blocked these two monoaminergic receptors by a combination of antagonists already approved by Health Agencies. We show that the association of ifenprodil (1 mg/kg) and cyproheptadine (1 mg/kg) (α1-adrenergic and 5-HT2 receptor antagonists marketed as Vadilex ® and Periactine ® in France, respectively) blocks behavioral sensitization to amphetamine in C57Bl6 mice and to alcohol in DBA2 mice. Moreover, this combination of antagonists inhibits alcohol intake in mice habituated to alcohol (10% v/v) and reverses their alcohol preference. Finally, in order to verify that the effect of ifenprodil was not due to its anti-NMDA receptors property, we have shown that a combination of prazosin (0.5 mg/kg, an α1b-adrenergic antagonist, Mini-Press ® in France) and cyproheptadine (1 mg/kg) could also reverse alcohol preference. Altogether these findings strongly suggest that combined prazosin and cyproheptadine could be efficient as a therapy to treat alcoholism in humans. Finally, because α1b-adrenergic and 5-HT2A receptors blockade also inhibits behavioral sensitization to psychostimulants, opioids and tobacco, it cannot be excluded that this combination will exhibit some efficacy in the treatment of addiction to other abused drugs. PMID:26968030

  18. Anxiolytic-like effects of 5-HT2 ligands on three mouse models of anxiety.

    PubMed

    Nic Dhonnchadha, Bríd Aine; Bourin, Michel; Hascoët, Martine

    2003-03-18

    The behavioural effects of 5-HT(2) receptor agonists, 5-HT(2A) and 5-HT(2C) receptor antagonists were investigated in the mouse four plates test (FPT), light/dark paradigm (L/D) and the elevated plus maze (EPM), in order to elucidate the role of the 5-HT(2) receptor subtypes in these models and to address the inconclusive results previously reported using rat psychopharmacological models. All compounds were administered intraperitoneally 30 min before each test. DOI, a preferential 5-HT(2A) agonist (0.5-8 mg/kg) and BW 723C86, a 5-HT(2B) agonist (8 and 16 mg/kg) provoked an anxiolytic-like response in the FPT. In the EPM, an anxiolytic-like effect was observed for DOI (0.5, 1 and 2 mg/kg), BW 723C86 (0.5, 4, 8 and 16 mg/kg), RO 60-0175 a 5-HT(2C) agonist (4 mg/kg) and the non-selective 5-HT(2) receptor agonist mCPP (0.25 mg/kg.). Ketanserin, a 5-HT(2A/2C) non-selective receptor antagonist (0.015 and 0.03 mg/kg), induced an anxiogenic-like effect in the L/D paradigm. The 5-HT(2C) antagonists (RS 10-2221, SDZ SER082 and SB 206553) were without effect in all three tests. These behavioural results are indicative of an anxiolytic-like action of 5-HT(2) receptor agonists, an anxiogenic-like effect of 5-HT(2A) receptor antagonism, whereas the blockade of 5-HT(2C) receptors are without effect in the mouse models studied.

  19. Inhibition of SNL-induced upregulation of CGRP and NPY in the spinal cord and dorsal root ganglia by the 5-HT(2A) receptor antagonist ketanserin in rats.

    PubMed

    Wang, Dongmei; Chen, Tingjun; Gao, Yun; Quirion, Rémi; Hong, Yanguo

    2012-05-01

    Our previous study has demonstrated that topical and systemic administration of the 5-HT(2A) receptor antagonist ketanserin attenuates neuropathic pain. To explore the mechanisms involved, we examined whether ketanserin reversed the plasticity changes associated with calcitonin gene-related peptides (CGRP) and neuropeptide Y (NPY) which may reflect distinct mechanisms: involvement and compensatory protection. Behavioral responses to thermal and tactile stimuli after spinal nerve ligation (SNL) at L5 demonstrated neuropathic pain and its attenuation in the vehicle- and ketanserin-treated groups, respectively. SNL surgery induced an increase in CGRP and NPY immunoreactivity (IR) in laminae I-II of the spinal cord. L5 SNL produced an expression of NPY-IR in large, medium and small diameter neurons in dorsal root ganglion (DRG) only at L5, but not adjacent L4 and L6. Daily injection of ketanserin (0.3 mg/kg, s.c.) for two weeks suppressed the increase in CGRP-IR and NPY-IR in the spinal cord or DRG. The present study demonstrated that: (1) the expression of CGRP was enhanced in the spinal dorsal horn and NPY was expressed in the DRG containing injured neurons, but not in the adjacent DRG containing intact neurons, following L5 SNL; (2) the maladaptive changes in CGRP and NPY expression in the spinal cord and DRG mediated the bioactivity of 5-HT/5-HT(2A) receptors in neuropathic pain and (3) the blockade of 5-HT(2A) receptors by ketanserin reversed the evoked upregulation of both CGRP and NPY in the spinal cord and DRG contributing to the inhibition of neuropathic pain.

  20. The highly selective 5-hydroxytryptamine (5-HT)2A receptor antagonist, EMD 281014, significantly increases swimming and decreases immobility in male congenital learned helpless rats in the forced swim test.

    PubMed

    Patel, Jignesh G; Bartoszyk, Gerd D; Edwards, Emmeline; Ashby, Charles R

    2004-04-01

    We examined the effect of the highly selective 5-hydroxytryptamine (5-HT)(2A) receptor antagonist 7-[4-[2-(4-fluoro-phenyl)-ethyl]-piperazine-1-carbonyl]-1H-indole-3-carbonitrile HCl (EMD 281014) in congenital learned helpless male rats in the forced swim test. The administration of EMD-281014 (0.3-30 mg/kg i.p.) to congenital learned helpless rats dose-dependently and significantly (at 10 and 30 mg/kg) decreased immobility and increased swimming compared to vehicle-treated animals. Thus, EMD 281014 produces effects in the forced swim test resembling those of antidepressants.

  1. Hallucinogen-like effects of 2-([2-(4-cyano-2,5-dimethoxyphenyl) ethylamino]methyl)phenol (25CN-NBOH), a novel N-benzylphenethylamine with 100-fold selectivity for 5-HT2A receptors, in mice

    PubMed Central

    Gray, Bradley W.; Bailey, Jessica M.; Smith, Douglas; Hansen, Martin; Kristensen, Jesper L.

    2014-01-01

    Rationale 2-([2-(4-cyano-2,5-dimethoxyphenyl)ethylamino]methyl)phenol (25CN-NBOH) is structurally similar to N-benzyl substituted phenethylamine hallucinogens currently emerging as drugs of abuse. 25CN-NBOH exhibits dramatic selectivity for 5-HT2A receptors in vitro, but has not been behaviorally characterized. Objective 25CN-NBOH was compared to the traditional phenethylamine hallucinogen R(−)-2,5-dimethoxy-4-iodoamphetamine (DOI) using mouse models of drug-elicited head twitch behavior and drug discrimination. Methods Drug-elicited head twitches were quantified for 10 min following administration of various doses of either DOI or 25CN-NBOH, with and without pretreatments of 0.01 mg/kg 5-HT2A antagonist M100907 or 3.0 mg/kg 5-HT2C antagonist RS102221. The capacity of 25CN-NBOH to attenuate DOI-elicited head twitch was also investigated. Mice were trained to discriminate DOI or M100907 from saline, and 25CN-NBOH was tested for generalization. Results 25CN-NBOH induced a head twitch response in the mouse that was lower in magnitude than that of DOI, blocked by M100907, but not altered by RS102221. DOI-elicited head twitch was dose-dependently attenuated by 25CN-NBOH pretreatment. 25CN-NBOH produced an intermediate degree of generalization (55%) for the DOI training dose, and these interoceptive effects were attenuated by M100907. Finally, 25CN-NBOH did not generalize to M100907 at any dose, but ketanserin fully substituted in these animals. Conclusions 25CN-NBOH was behaviorally active, but less effective than DOI in two mouse models of hallucinogenic effects. The effectiveness with which M100907 antagonized the behavioral actions of 25CN-NBOH strongly suggests that the 5-HT2A receptor is an important site of agonist action for this compound in vivo. PMID:25224567

  2. THE EFFECT OF SEROTONIN 5-HT1A, 5-HT2 RECEPTOR LIGANDS, KETOPROFEN AND THEIR COMBINATION IN MODELS OF INDUCED PAIN IN MICE.

    PubMed

    Zygmunt, Małgorzata; Chłoń-Rzepa, Grażyna; Sapa, Jacek

    2015-01-01

    The present study was carried out to investigate the effects of the 7-(3-chlorophenyl)piperazinylalkyl derivatives of 8-alkoxypurine-2,6-dione (compounds 1-4) in two animal models of induced pain and to compare their effects with ketoprofen and with their combination. All experiments were performed on albino mice. Mice were evaluated for their responsiveness to noxious stimuli using: the hot-plate test and the phenylbenzo-quinone-induced writhing test. All compounds showed analgesic activity only in the writhing test. The analgesic activities of compounds 3 and 4 were similar to ketoprofen. The compounds slightly increased the analgesic effect of ketoprofen when used in combination in the visceral type of pain. The possible mechanisms of the antinociceptive effect of these compounds are thought to involve the activation of analgesic effect mediated by the serotonergic pathways or combination of this mechanism with other important mediators playing a role in pain modulation.

  3. Effects of the 5-HT₆ receptor antagonists SB-399885 and RO-4368554 and of the 5-HT(2A) receptor antagonist EMD 281014 on sleep and wakefulness in the rat during both phases of the light-dark cycle.

    PubMed

    Monti, Jaime M; Jantos, Héctor

    2011-01-01

    The effects of the 5-HT₆ receptor antagonists SB-399885 (2.5, 5 and 10 mg/kg) and RO-4368554 (2.5, 5 and 10 mg/kg) and of the 5-HT(2A) receptor antagonist EMD 281014 (2.5, 5 and 10 mg/kg) were studied in rats implanted for chronic sleep procedures. Administration of 10 mg/kg SB-399885, i.p., to rats 2 h after the beginning of the light phase of the light-dark cycle caused a significant increase of wakefulness (W) and a reduction of slow wave sleep (SWS), REM sleep (REMS) and the number of REM periods during 6-h recording sessions. Light sleep was increased after the whole range of doses. The increase of W and reduction of SWS and REMS occurred predominantly during the first 2-h period whereas light sleep was augmented over the first and the second 2-h recording periods. Injection of RO-4368554 (10 mg/kg, i.p.) 2 h after the beginning of the light period significantly increased W and reduced SWS and REMS during the first 2-h recording period. Administration of EMD 281014 (10 mg/kg, i.p.) during the light phase significantly increased SWS and reduced light sleep during 6-h sessions. REMS and the number of REM period were reduced with the entire range of doses. The reduction of REMS and light sleep and the increase of SWS occurred predominantly during the first and the second 2-h of recording, respectively. Injection of SB-399885 (10 mg/kg, i.p.) 2 h after the beginning of the dark period induced a significant reduction of REMS during the first 2-h of recording. In contrast, RO-4368554 did not modify values corresponding to sleep variables during the dark period. Treatment with EMD 281014 (2.5-10 mg/kg, i.p.) during the dark phase significantly increased SWS during the second 2-h period. Our study supports the proposal that blockade of postsynaptic 5-HT₆ receptors with systemic administration of SB-399885 and RO-4368554 increases W and reduces SWS and REMS during the light phase of the sleep-wake cycle. SB-399885 also induces a suppression of REMS during the dark

  4. Hallucinogenic 5-HT2AR agonists LSD and DOI enhance dopamine D2R protomer recognition and signaling of D2-5-HT2A heteroreceptor complexes.

    PubMed

    Borroto-Escuela, Dasiel O; Romero-Fernandez, Wilber; Narvaez, Manuel; Oflijan, Julia; Agnati, Luigi F; Fuxe, Kjell

    2014-01-01

    Dopamine D2LR-serotonin 5-HT2AR heteromers were demonstrated in HEK293 cells after cotransfection of the two receptors and shown to have bidirectional receptor-receptor interactions. In the current study the existence of D2L-5-HT2A heteroreceptor complexes was demonstrated also in discrete regions of the ventral and dorsal striatum with in situ proximity ligation assays (PLA). The hallucinogenic 5-HT2AR agonists LSD and DOI but not the standard 5-HT2AR agonist TCB2 and 5-HT significantly increased the density of D2like antagonist (3)H-raclopride binding sites and significantly reduced the pKiH values of the high affinity D2R agonist binding sites in (3)H-raclopride/DA competition experiments. Similar results were obtained in HEK293 cells and in ventral striatum. The effects of the hallucinogenic 5-HT2AR agonists on D2R density and affinity were blocked by the 5-HT2A antagonist ketanserin. In a forskolin-induced CRE-luciferase reporter gene assay using cotransfected but not D2R singly transfected HEK293 cells DOI and LSD but not TCB2 significantly enhanced the D2LR agonist quinpirole induced inhibition of CRE-luciferase activity. Haloperidol blocked the effects of both quinpirole alone and the enhancing actions of DOI and LSD while ketanserin only blocked the enhancing actions of DOI and LSD. The mechanism for the allosteric enhancement of the D2R protomer recognition and signalling observed is likely mediated by a biased agonist action of the hallucinogenic 5-HT2AR agonists at the orthosteric site of the 5-HT2AR protomer. This mechanism may contribute to the psychotic actions of LSD and DOI and the D2-5-HT2A heteroreceptor complex may thus be a target for the psychotic actions of hallunicogenic 5-HT2A agonists.

  5. Serotonin 5-HT1A and 5-HT2/1C receptors in the midbrain periaqueductal gray differentially modulate defensive rage behavior elicited from the medial hypothalamus of the cat.

    PubMed

    Shaikh, M B; De Lanerolle, N C; Siegel, A

    1997-08-15

    Recent studies have established that the expression of defensive rage behavior in the cat is mediated over a descending pathway from the medial hypothalamus to the dorsolateral quadrant of the midbrain periaqueductal gray matter (PAG). The present study was designed to determine the roles played by 5-HT1A and 5-HT2/1C receptors in this region of PAG in modulating defensive rage behavior elicited from the cat's medial hypothalamus. Monopolar stimulating electrodes were implanted into the medial hypothalamus from which defensive rage behavior could be elicited by electrical stimulation. During the course of the study, the 'hissing' component of the defensive rage response was used as a measure of defensive rage behavior. Cannula-electrodes were implanted into sites within the PAG from which defensive rage could also be elicited by electrical stimulation in order that 5-HT compounds could be microinjected into behaviorally identifiable regions of the PAG at a later time. Microinjections of the selective 5-HT1A agonist, (+)-8-hydroxy-dipropylaminotetralin hydrobromide (8-OHDPAT) (50 pmol, 2.0 and 3.0 nmol), into the PAG suppressed the hissing response in a dose-dependent manner. Administration of the selective 5-HT1A antagonist, 4-iodo-N-[2-[4-(methoxyphenyl)-1-piperazinyl] ethyl]-N-2-pyridinyl-benzamide hydrochloride (p-MPPI) (1.5 and 3.0 nmol), blocked the suppressive effects of 8-OHDPAT upon hissing. In contrast, microinjections of the 5-HT2/1C receptor agonist (+)-1-(4-iodo-2,5-dimethoxyphenyl)-2-aminopropane hydrochloride ((+)-DOI hydrochloride) (0.01, 1.0 and 1.5 nmol) facilitated the occurrence of hissing elicited from the medial hypothalamus in a dose-dependent manner. Immunohistochemical analysis revealed the presence of 5-HT axons and preterminals throughout the PAG, and in particular, in its dorsolateral aspect which receives major inputs from the medial hypothalamus in association with defensive rage behavior. The overall findings of the study provide

  6. Effects of central activation of serotonin 5-HT2A/2C or dopamine D2/3 receptors on the acute and repeated effects of clozapine in the conditioned avoidance response test

    PubMed Central

    Feng, Min; Gao, Jun; Sui, Nan; Li, Ming

    2014-01-01

    Rationale: Acute administration of clozapine (a gold standard of atypical antipsychotics) disrupts avoidance response in rodents, while repeated administration often causes a tolerance effect. Objective: The present study investigated the neuroanatomical basis and receptor mechanisms of acute and repeated effects of clozapine treatment in the conditioned avoidance response test in male Sprague-Dawley rats. Methods: DOI (2,5-dimethoxy-4-iodo-amphetamine, a preferential 5-HT2A/2C agonist) or quinpirole (a preferential dopamine D2/3 agonist) was microinjected into the medial prefrontal cortex (mPFC) or nucleus accumbens shell (NAs), and their effects on the acute and long-term avoidance-disruptive effect of clozapine were tested. Results: Intra-mPFC microinjection of quinpirole enhanced the acute avoidance disruptive effect of clozapine (10 mg/kg, sc), while DOI microinjections reduced it marginally. Repeated administration of clozapine (10 mg/kg, sc) daily for 5 days caused a progressive decrease in its inhibition of avoidance responding, indicating tolerance development. Intra-mPFC microinjection of DOI at 25.0 (but not 5.0) μg/side during this period completely abolished the expression of clozapine tolerance. This was indicated by the finding that clozapine-treated rats centrally infused with 25.0 μg/side DOI did not show higher levels of avoidance responses than the vehicle-treated rats in the clozapine challenge test. Microinjection of DOI into the mPFC immediately before the challenge test also decreased the expression of clozapine tolerance. Conclusions: Acute behavioral effect of clozapine can be enhanced by activation of the D2/3 receptors in the mPFC. Clozapine tolerance expression relies on the neuroplasticity initiated by its antagonist action against 5-HT2A/2C receptors in the mPFC. PMID:25288514

  7. Serotonergic innervation and serotonin receptor expression of NPY-producing neurons in the rat lateral and basolateral amygdaloid nuclei.

    PubMed

    Bonn, M; Schmitt, A; Lesch, K-P; Van Bockstaele, E J; Asan, E

    2013-03-01

    Pharmacobehavioral studies in experimental animals, and imaging studies in humans, indicate that serotonergic transmission in the amygdala plays a key role in emotional processing, especially for anxiety-related stimuli. The lateral and basolateral amygdaloid nuclei receive a dense serotonergic innervation in all species studied to date. We investigated interrelations between serotonergic afferents and neuropeptide Y (NPY)-producing neurons, which are a subpopulation of inhibitory interneurons in the rat lateral and basolateral nuclei with particularly strong anxiolytic properties. Dual light microscopic immunolabeling showed numerous appositions of serotonergic afferents on NPY-immunoreactive somata. Using electron microscopy, direct membrane appositions and synaptic contacts between serotonin-containing axon terminals and NPY-immunoreactive cellular profiles were unequivocally established. Double in situ hybridization documented that more than 50 %, and about 30-40 % of NPY mRNA-producing neurons, co-expressed inhibitory 5-HT1A and excitatory 5-HT2C mRNA receptor subtype mRNA, respectively, in both nuclei with no gender differences. Triple in situ hybridization showed that individual NPY mRNA-producing interneurons co-express both 5-HT1A and 5-HT2C mRNAs. Co-expression of NPY and 5-HT3 mRNA was not observed. The results demonstrate that serotonergic afferents provide substantial innervation of NPY-producing neurons in the rat lateral and basolateral amygdaloid nuclei. Studies of serotonin receptor subtype co-expression indicate a differential impact of the serotonergic innervation on this small, but important, population of anxiolytic interneurons, and provide the basis for future studies of the circuitry underlying serotonergic modulation of emotional stimulus processing in the amygdala.

  8. SAR of psilocybin analogs: discovery of a selective 5-HT 2C agonist.

    PubMed

    Sard, Howard; Kumaran, Govindaraj; Morency, Cynthia; Roth, Bryan L; Toth, Beth Ann; He, Ping; Shuster, Louis

    2005-10-15

    An SAR study of psilocybin and psilocin derivatives reveals that 1-methylpsilocin is a selective agonist at the h5-HT(2C) receptor. The corresponding phosphate derivative, 1-methylpsilocybin, shows efficacy in an animal model for obsessive-compulsive disorder, as does 4-fluoro-N,N-dimethyltryptamine. These results suggest a new area for development of novel 5-HT(2C) agonists with applications for drug discovery.

  9. Modulation of brainstem 5-HT1C receptors by serotonergic drugs in the rat.

    PubMed

    Pranzatelli, M R; Tailor, P T

    1994-10-01

    1. The sparse population of brainstem 5-hydroxytryptamine1C (5-HT1C) (also called 5-HT2C) receptors has received little attention despite its possible role in the serotonin syndrome and 5-HT-mediated shaking behavior. We characterized [3H]mesulergine binding in rat brainstem and, to determine if brainstem 5-HT1C sites respond to serotonergic manipulations, performed saturation studies of [3H]mesulergine binding in brainstem from rats treated chronically with 11 different 5-HT1C/2 agonists and antagonists. 2. In competition studies in vitro, the rank order of drug potency was most compatible with a 5-HT1C receptor binding site: mianserin, 5-HT, cinanserin, 1-(3-chlorophenyl)piperazine (m-CPP), 1-(2-5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), MDL 100,907, RU 24969, 5-carboxamidotryptamine (5-CT), 8-OH-DPAT, MDL 72,222. 3. Chronic treatment with the agonists quipazine and trifluoromethylphenylpiperazine (TFMPP) and the antagonists ritanserin and methiothepin significantly down-regulated brainstem 5-HT1C sites, which were 65% of [3H]mesulergine-labeled sites in brainstem. Only metergoline and ritanserin significantly increased pKD. 4. Chronic treatment in vivo with DOI, m-CPP, mianserin, methysergide, spiperone, cyproheptadine, and metergoline had no significant effect on BMAX at the dose studied. 5. These data suggest similarities in the regulation of 5-HT1C and 5-HT2 sites at which both 5-HT1C 2 agonists and antagonists also induce receptor down-regulation. 6. 5-HT1C/2 agonists and antagonists that did not down-regulate brainstem 5-HT1C sites may be more active in vivo at 5-HT2 sites, at 5-HT1C sites in other brain regions, have effects on 5-HT1C receptors not detectable at the recognition site, or differ for pharmacokinetic reasons.

  10. Dynamic alterations of serotonergic metabolism and receptors during social isolation of low- and high-active mice.

    PubMed

    Rilke, O; Freier, D; Jähkel, M; Oehler, J

    1998-04-01

    Alterations induced by social isolation (1 day to 18 weeks) in low- and high-active mice (LAM and HAM) were studied in respect to serotonin metabolism, [3H]-8-OH-DPAT binding of presynaptic (midbrain), postsynaptic (hippocampus) 5-HT1A receptors and [3H]-ketanserin binding of cortical 5-HT2A receptors. Individual housing of mice was associated with reduction of serotonin metabolism, depending on isolation time and brain structure. Whereas a transient decrease in the striatum and cortex was detected between 1 week and 6 weeks, reduction of cerebellar and hippocampal serotonin metabolism was found later (12-18 weeks). Serotonergic systems of HAM were found to be more reactive to environmental disturbances, and their serotonin metabolism was more affected by social isolation. Isolation-induced upregulation of cortical 5-HT2A receptors was measured only in HAM. Densities of postsynaptic 5-HT1A receptors in the hippocampus did differ either in grouped or isolated mice. However, there were significant differences in hippocampal 5-HT1A receptor affinity, especially between 1 day and 3 weeks. Transient downregulation of presynaptic 5-HT1A receptors in the midbrain was found in isolated mice between 3 and 6 weeks. These results are discussed in terms of interactions between serotonergic alterations and isolation-induced aggression.

  11. Heterocomplex formation of 5-HT2A-mGlu2 and its relevance for cellular signaling cascades.

    PubMed

    Delille, Hannah K; Becker, Judith M; Burkhardt, Sabrina; Bleher, Barbara; Terstappen, Georg C; Schmidt, Martin; Meyer, Axel H; Unger, Liliane; Marek, Gerard J; Mezler, Mario

    2012-06-01

    Dopamine, serotonin and glutamate play a role in the pathophysiology of schizophrenia. In the brain a functional crosstalk between the serotonin receptor 5-HT(2A) and the metabotropic glutamate receptor mGlu(2) has been demonstrated. Such a crosstalk may be mediated indirectly through neuronal networks or directly by receptor oligomerization. A direct link of the 5-HT(2A)-mGlu(2) heterocomplex formation to receptor function, i.e. to intracellular signaling, has not been fully demonstrated yet. Here we confirm the formation of 5-HT(2A)-mGlu(2) heterocomplexes using quantitative Snap/Clip-tag based HTRF methods. Additionally, mGlu(2) formed complexes with 5-HT(2B) and mGlu(5) but not 5-HT(2C) indicating that complex formation is not specific to the 5-HT(2A)-mGlu(2) pair. We studied the functional consequences of the 5-HT(2A)-mGlu(2) heterocomplex addressing cellular signaling pathways. Co-expression of receptors in HEK-293 cells had no relevant effects on signaling mediated by the individual receptors when mGlu(2) agonists, antagonists and PAMs, or 5-HT(2A) hallucinogenic and non-hallucinogenic agonists and antagonists were used. Hallucinogenic 5-HT(2A) agonists induced signaling through G(q/11), but not G(i) and thus did not lead to modulation of intracellular cAMP levels. In membranes of the medial prefrontal cortex [(3)H]-LY341495 binding competition of mGlu(2/3) agonist LY354740 was not influenced by 2,5-dimethoxy-4-iodoamphetamine (DOI). Taken together, the formation of GPCR heterocomplexes does not necessarily translate into second messenger effects. These results do not put into question the well-documented functional cross-talk of the two receptors in the brain, but do challenge the biological relevance of the 5-HT(2A)-mGlu(2) heterocomplex.

  12. Synthesis and Structure–Activity Relationships of N-Benzyl Phenethylamines as 5-HT2A/2C Agonists

    PubMed Central

    2014-01-01

    N-Benzyl substitution of 5-HT2A receptor agonists of the phenethylamine structural class of psychedelics (such as 4-bromo-2,5-dimethoxyphenethylamine, often referred to as 2C-B) confer a significant increase in binding affinity as well as functional activity of the receptor. We have prepared a series of 48 compounds with structural variations in both the phenethylamine and N-benzyl part of the molecule to determine the effects on receptor binding affinity and functional activity at 5-HT2A and 5-HT2C receptors. The compounds generally had high affinity for the 5-HT2A receptor with 8b having the highest affinity at 0.29 nM but with several other compounds also exhibiting subnanomolar binding affinities. The functional activity of the compounds was distributed over a wider range with 1b being the most potent at 0.074 nM. Most of the compounds exhibited low to moderate selectivity (1- to 40-fold) for the 5-HT2A receptor in the binding assays, although one compound 6b showed an impressive 100-fold selectivity for the 5-HT2A receptor. In the functional assay, selectivity was generally higher with 1b being more than 400-fold selective for the 5-HT2A receptor. PMID:24397362

  13. Phosphoinositide system-linked serotonin receptor subtypes and their pharmacological properties and clinical correlates.

    PubMed Central

    Pandey, S C; Davis, J M; Pandey, G N

    1995-01-01

    Serotonergic neurotransmission represents a complex mechanism involving pre- and post-synaptic events and distinct 5-HT receptor subtypes. Serotonin (5-HT) receptors have been classified into several categories, and they are termed as 5-HT1, 5-HT2, 5-HT3, 5-HT4, 5-HT5, 5-HT6 and 5-HT7 type receptors. 5-HT1 receptors have been further subdivided into 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E and 5-HT1F. 5-HT2 receptors have been divided into 5-HT2A, 5-HT2B and 5-HT2C receptors. All 5-HT2 receptor subtypes are linked to the multifunctional phosphoinositide (PI) signalling system. 5-HT3 receptors are considered ion-gated receptors and are also linked to the PI signalling system by an unknown mechanism. The 5-HT2A receptor subtype is the most widely studied of the 5-HT receptors in psychiatric disorders (for example, suicide, depression and schizophrenia) as well as in relation to the mechanism of action of antidepressant drugs. The roles of 5-HT2C and 5-HT3 receptors in psychiatric disorders are less clear. These 5-HT receptors also play an important role in alcoholism. It has been shown that 5-HT2A, 5-HT2C and 5-HT3 antagonists cause attenuation of alcohol intake in animals and humans. However, the exact mechanisms are unknown. The recent cloning of the cDNAs for 5-HT2A, 5-HT2C and 5-HT3 receptors provides the opportunity to explore the molecular mechanisms responsible for the alterations in these receptors during illness as well as pharmacotherapy. This review article will focus on the current research into the pharmacological properties, molecular biology, and clinical correlates of 5-HT2A, 5-HT2C and 5-HT3 receptors. PMID:7786883

  14. Clonidine potentiates the effects of 5-HT1A, 5-HT1B and 5-HT2A/2C antagonists and 8-OH-DPAT in the mouse forced swimming test.

    PubMed

    Redrobe, J P; Bourin, M

    1998-08-01

    The present study was undertaken to identify the receptor subtypes involved in clonidine's ability to enhance the effects of antidepressant drugs in the mouse forced swimming test. Clonidine (0.06 mg/kg, i.p.) significantly enhanced the antidepressant-like effects of subactive doses of the 5-HT1A receptor agonist, 8-OH-DPAT (1 mg/kg, i.p.; P<0.01); the 5-HT1A receptor antagonist, NAN 190 (0.5 mg/kg, i.p.; P<0.01); the 5-HT1A/1B autoreceptor antagonist, (+/-) pindolol (32 mg/kg, i.p.; P<0.01); the 5-HT2A/2C receptor antagonist, ritanserin (4 mg/kg, i.p.; P<0.01). Pretreatment with clonidine failed to increase mobility when administered in combination with the 5-HT1B receptor agonist, RU 24969 (1 mg/kg, i.p.) or the 5-HT2A receptor antagonist, ketanserin (8 mg/kg, i.p.). In conclusion, clonidine-induced anti-immobility effects are more likely mediated by 5-HT1A and 5-HT2C receptors, as well as alpha-2-adrenergic autoreceptors situated on noradrenergic neurones. The results of the present study also demonstrate that serotonergic receptor function can influence alpha-2-adrenoreceptor mediated responses in the mouse forced swimming test.

  15. Involvement of adrenergic and serotonergic receptors in antidepressant-like effect of urocortin 3 in a modified forced swimming test in mice.

    PubMed

    Tanaka, Masaru; Telegdy, Gyula

    2008-11-25

    Most of the evidence suggests that peptides in the corticotropin-releasing factor (CRF) family act on CRF receptors and are involved in depressive disorders. Urocortin 3 (Ucn 3) is specific for CRF type 2 (CRF(2)) receptors and mediates anxiolytic-like action. Little is known about the roles of Ucn 3 and CRH(2) receptors on depressive disorders. The previous study revealed that Ucn 3 elicits the antidepressant-like action by shortening the immobility time and increasing both the climbing time and the swimming time. The involvement of the adrenergic and serotonergic receptors in the antidepressant-like effect of Ucn 3 (0.5μg/2μl, i.c.v.) was studied in a modified forced swimming test (FST) in mice. Mice were pretreated with a non-selective α-adrenergic receptor antagonist, phenoxybenzamine, an α(1)/α(2β)-adrenergic receptor antagonist, prazosin, an α(2)-adrenergic receptor antagonist, yohimbine, a mixed 5-HT(1)/5-HT(2) serotonergic receptor antagonist, methysergide, a non-selective 5-HT(2) serotonergic receptor antagonist, cyproheptadine or a β-adrenergic receptor antagonist, propranolol. Phenoxybenzamine prevented the effects of Ucn 3 on the immobility time. Prazosin prevented the effects of Ucn 3 on the climbing time. Yohimbine prevented the effects of Ucn 3 on the immobility, climbing and swimming times. Methysergide prevented the effects of Ucn 3 on the immobility and climbing time. Cyproheptadine prevented the effects of Ucn 3 on the swimming time. Propranolol did not change the effects of Ucn 3. The results demonstrated that the antidepressant-like effect of Ucn 3 is mediated, at least in part, by an interaction of the α-adrenergic and serotonergic receptors in a modified mouse FST.

  16. The role of dorsal raphe nucleus serotonergic and non-serotonergic neurons, and of their receptors, in regulating waking and rapid eye movement (REM) sleep.

    PubMed

    Monti, Jaime M

    2010-10-01

    Based on electrophysiological, neurochemical, genetic and neuropharmacological approaches it is currently accepted that serotonin (5-HT) functions to promote waking (W) and to inhibit rapid-eye movement sleep (REMS). The serotonin-containing neurons of the dorsal raphe nucleus (DRN) provide part of the serotonergic innervation of the telencephalon, diencephalon, mesencephalon and rhombencephalon of laboratory animals and man. The DRN has been subdivided into several clusters on the basis of differences in cellular morphology, expression of other neurotransmitters and afferent and efferent connections. These differences among subpopulations of 5-HT neurons may have important implications for neural mechanisms underlying 5-HT modulation of sleep and waking. The DRN contains 5-HT and non-5-HT neurons. The latter express a variety of substances including dopamine, γ-aminobutyric acid (GABA) and glutamate. In addition, nitric oxide and a number of neuropeptides have been characterized in the DRN. Available evidence tends to indicate that non-5-HT cells contribute to the regulation of the activity of 5-HT neurons during the sleep-wake cycle through local circuits and/or their mediation of the effects of afferent inputs. Mutant mice that do not express 5-HT(1A) or 5-HT(1B) receptor exhibit greater amounts of REMS than their wild-type couterparts. 5-HT(2A) and 5-HT(2C) receptor knockout mice show a significant increase of W and a reduction of slow wave sleep that is related, at least in part, to the increased release of norepinephrine and dopamine. A normal circadian sleep pattern is observed in 5-HT(7) receptor knockout mice; however, the mutants spend less time in REMS. Local microinjection of 5-HT(1B), 5-HT(2A/2C), 5-HT(3) and 5-HT(7) receptor agonists into the DRN selectively suppresses REMS in the rat. In contrast, microinjection of 5-HT(1A) receptor agonists promotes REMS. Similarly, local administration of the melanin-concentrating hormone or the GABA(A) receptor

  17. 5-HT2B antagonism arrests non-canonical TGF-β1-induced valvular myofibroblast differentiation

    PubMed Central

    Hutcheson, Joshua D.; Ryzhova, Larisa M.; Setola, Vincent; Merryman, W. David

    2012-01-01

    Transforming growth factor-β1 (TGF-β1) induces myofibroblast activation of quiescent aortic valve interstitial cells (AVICs), a differentiation process implicated in calcific aortic valve disease (CAVD). The ubiquity of TGF-β1 signaling makes it difficult to target in a tissue specific manner; however, the serotonin 2B receptor (5-HT2B) is highly localized to cardiopulmonary tissues and agonism of this receptor displays pro-fibrotic effects in a TGF-β1-dependent manner. Therefore, we hypothesized that antagonism of 5-HT2B opposes TGF-β1-induced pathologic differentiation of AVICs and may offer a druggable target to prevent CAVD. To test this hypothesis, we assessed the interaction of 5-HT2B antagonism with canonical and non-canonical TGF-β1 pathways to inhibit TGF-β1-induced activation of isolated porcine AVICs in vitro. Here we show that AVIC activation and subsequent calcific nodule formation is completely mitigated by 5-HT2B antagonism. Interestingly, 5-HT2B antagonism does not inhibit canonical TGF-β1 signaling as identified by Smad3 phosphorylation and activation of a partial plasminogen activator inhibitor-1 promoter (PAI-1, a transcriptional target of Smad3), but prevents non-canonical p38 MAPK phosphorylation. It was initially suspected that 5-HT2B antagonism prevents Src tyrosine kinase phosphorylation; however, we found that this is not the case and time-lapse microscopy indicates that 5-HT2B antagonism prevents non-canonical TGF-β1 signaling by physically arresting Src tyrosine kinase. This study demonstrates the necessity of non-canonical TGF-β1 signaling in leading to pathologic AVIC differentiation. Moreover, we believe that the results of this study suggest 5-HT2B antagonism as a novel therapeutic approach for CAVD that merits further investigation. PMID:22940605

  18. Suppressant effects of selective 5-HT2 antagonists on rapid eye movement sleep in rats.

    PubMed

    Tortella, F C; Echevarria, E; Pastel, R H; Cox, B; Blackburn, T P

    1989-04-24

    The effects of the novel, highly selective serotonin-2 (5-HT2) antagonists, ICI 169,369 and ICI 170,809, on 24 h EEG sleep-wake activity were studied in the rat. Both compounds caused a dose-related increase in the latency to rapid eye movement sleep (REMS) and significantly suppressed cumulative REMS time up to 12 h postinjection. In contrast, neither drug disrupted slow-wave sleep continuity in as much as the latency to non-REMS (NREMS) and cumulative NREMS time were unchanged. However, at the highest dose tested (20 mg/kg) ICI 170,809 did produce a significant increase in total NREMS time during the second half of the sleep-awake cycle. These results demonstrate effects of selective 5-HT2 antagonists on sleep in rats which appear to be specific for REMS behavior, suggesting that the priming influence of serotonin on REMS may involve 5-HT2 receptor subtypes. The relationship between the REMS suppressant actions of these compounds and their consideration as therapeutic agents in depression is discussed.

  19. The effects of mirtazapine on central noradrenergic and serotonergic neurotransmission.

    PubMed

    de Boer, T

    1995-12-01

    Mirtazapine is a new antidepressant with a unique mode of action: it preferentially blocks the noradrenergic alpha2-auto- and heteroreceptors held responsible for controlling noradrenaline and serotonin release. In addition, mirtazapine has a low affinity for serotonin (5-HT)1A receptors but potently blocks 5-HT2 and 5-HT3 receptors. It increases serotonergic cell-firing in the dorsal raphe and 5-HT release in the hippocampus as measured by microdialysis. These effects are explained by noradrenergic enhancement of 5-HT cell-firing and blockade of noradrenaline-mediated inhibition of hippocampal 5-HT release. Because mirtazapine blocks 5-HT2 and 5-HT3 receptors, only 5-HT1-mediated transmission is enhanced. The noradrenergic activation and the consequent indirect enhancement of serotonergic transmission most probably underlie the marked therapeutic activity of mirtazapine. The blockade of 5-HT2 and 5-HT3 receptors prevents development of the side effects associated with non-selective 5-HT activation and may contribute to the anxiolytic and sleep-improving properties of this new compound. Therefore mirtazapine can be described as a noradrenergic and specific serotonergic antidepressant (NaSSA). PMID:8930006

  20. Involvement of spinal muscarinic and serotonergic receptors in the anti-allodynic effect of electroacupuncture in rats with oxaliplatin-induced neuropathic pain

    PubMed Central

    Lee, Ji Hwan; Go, Donghyun; Kim, Woojin; Lee, Giseog; Bae, Hyojeong; Quan, Fu Shi

    2016-01-01

    This study was performed to investigate whether the spinal cholinergic and serotonergic analgesic systems mediate the relieving effect of electroacupuncture (EA) on oxaliplatin-induced neuropathic cold allodynia in rats. The cold allodynia induced by an oxaliplatin injection (6 mg/kg, i.p.) was evaluated by immersing the rat's tail into cold water (4℃) and measuring the withdrawal latency. EA stimulation (2 Hz, 0.3-ms pulse duration, 0.2~0.3 mA) at the acupoint ST36, GV3, or LI11 all showed a significant anti-allodynic effect, which was stronger at ST36. The analgesic effect of EA at ST36 was blocked by intraperitoneal injection of muscarinic acetylcholine receptor antagonist (atropine, 1 mg/kg), but not by nicotinic (mecamylamine, 2 mg/kg) receptor antagonist. Furthermore, intrathecal administration of M2 (methoctramine, 10 µg) and M3 (4-DAMP, 10 µg) receptor antagonist, but not M1 (pirenzepine, 10 µg) receptor antagonist, blocked the effect. Also, spinal administration of 5-HT3 (MDL-72222, 12 µg) receptor antagonist, but not 5-HT1A (NAN-190, 15 µg) or 5-HT2A (ketanserin, 30 µg) receptor antagonist, prevented the anti-allodynic effect of EA. These results suggest that EA may have a signifi cant analgesic action against oxaliplatin-induced neuropathic pain, which is mediated by spinal cholinergic (M2, M3) and serotonergic (5-HT3) receptors. PMID:27382357

  1. Serotonergic Mechanisms in Addiction-Related Memories

    PubMed Central

    Nic Dhonnchadha, Bríd Á; Cunningham, Kathryn A.

    2008-01-01

    Drug-associated memories are a hallmark of addiction and a contributing factor in the continued use and relapse to drugs of abuse. Repeated association of drugs of abuse with conditioned stimuli leads to long-lasting behavioral responses that reflect reward-controlled learning and participate in the establishment of addiction. A greater understanding of the mechanisms underlying the formation and retrieval of drug-associated memories may shed light on potential therapeutic approaches to effectively intervene with drug use-associated memory. There is evidence to support the involvement of serotonin (5-HT) neurotransmission in learning and memory formation through the families of the 5-HT1 receptor (5-HT1R) and 5-HT2R which have also been shown to play a modulatory role in the behavioral effects induced by many psychostimulants. While there is a paucity of studies examining the effects of selective 5-HT1AR ligands, the available dataset suggests that 5-HT1BR agonists may inhibit retrieval of cocaine-associated memories. The 5-HT2AR and 5-HT2CR appear to be integral in the strong conditioned associations made between cocaine and environmental cues with 5-HT2AR antagonists and 5-HT2CR agonists possessing potency in blocking retrieval of cocaine-associated memories following cocaine self-administration procedures. The complex anatomical connectivity between 5-HT neurons and other neuronal phenotypes in limbic-corticostriatal brain structures, the heterogeneity of 5-HT receptors (5-HTXR) and the conflicting results of behavioral experiments which employ non-specific 5-HTXR ligands contribute to the complexity of interpreting the involvement of 5-HT systems in addictive-related memory processes. This review briefly traces the history of 5-HT involvement in retrieval of drug-cue associations and future targets of serotonergic manipulation that may reduce the impact that drug cues have on addictive behavior and relapse. PMID:18639587

  2. Recent advances in the neuropsychopharmacology of serotonergic hallucinogens.

    PubMed

    Halberstadt, Adam L

    2015-01-15

    Serotonergic hallucinogens, such as (+)-lysergic acid diethylamide, psilocybin, and mescaline, are somewhat enigmatic substances. Although these drugs are derived from multiple chemical families, they all produce remarkably similar effects in animals and humans, and they show cross-tolerance. This article reviews the evidence demonstrating the serotonin 5-HT2A receptor is the primary site of hallucinogen action. The 5-HT2A receptor is responsible for mediating the effects of hallucinogens in human subjects, as well as in animal behavioral paradigms such as drug discrimination, head twitch response, prepulse inhibition of startle, exploratory behavior, and interval timing. Many recent clinical trials have yielded important new findings regarding the psychopharmacology of these substances. Furthermore, the use of modern imaging and electrophysiological techniques is beginning to help unravel how hallucinogens work in the brain. Evidence is also emerging that hallucinogens may possess therapeutic efficacy. PMID:25036425

  3. Recent Advances in the Neuropsychopharmacology of Serotonergic Hallucinogens

    PubMed Central

    Halberstadt, Adam L.

    2014-01-01

    Serotonergic hallucinogens, such as (+)-lysergic acid diethylamide, psilocybin, and mescaline, are somewhat enigmatic substances. Although these drugs are derived from multiple chemical families, they all produce remarkably similar effects in animals and humans, and they show cross-tolerance. This article reviews the evidence demonstrating the serotonin 5-HT2A receptor is the primary site of hallucinogen action. The 5-HT2A receptor is responsible for mediating the effects of hallucinogens in human subjects, as well as in animal behavioral paradigms such as drug discrimination, head twitch response, prepulse inhibition of startle, exploratory behavior, and interval timing. Many recent clinical trials have yielded important new findings regarding the psychopharmacology of these substances. Furthermore, the use of modern imaging and electrophysiological techniques is beginning to help unravel how hallucinogens work in the brain. Evidence is also emerging that hallucinogens may possess therapeutic efficacy. PMID:25036425

  4. Serotonergic and nonserotonergic dorsal raphe neurons are pharmacologically and electrophysiologically heterogeneous.

    PubMed

    Marinelli, Silvia; Schnell, Stephen A; Hack, Stephen P; Christie, MacDonald J; Wessendorf, Martin W; Vaughan, Christopher W

    2004-12-01

    The dorsal raphe nucleus (DRN) projects serotonergic axons throughout the brain and is involved in a variety of physiological functions. However, it also includes a large population of cells that contain other neurotransmitters. To clarify the physiological and pharmacological differences between the serotonergic and nonserotonergic neurons of the DRN, their postsynaptic responses to 5-hydroxytryptamine (5-HT, serotonin) and to selective activation of 5-HT1A or 5-HT2A/C receptors and their action potential characteristics were determined using in vitro patch-clamp recordings. The slices containing these neurons were then immunostained for tryptophan hydroxylase (TPH), a marker of serotonergic neurons. It was found that subpopulations of both serotonergic and nonserotonergic neurons responded to 5-HT with outward (i.e., inhibitory) and inward (i.e., excitatory) currents, responded to both 5-HT1A and 5-HT2A/C receptor activation with outward and inward currents, respectively, and displayed overlapping action potential characteristics. These findings suggest that serotonergic and nonserotonergic neurons in the DRN are both heterogeneous with respect to their individual pharmacological and electrophysiological characteristics. The findings also suggest that the activity of the different populations of DRN neurons will display heterogeneous changes when the serotonergic tone in the DRN is altered by neurological disorders or by drug treatment.

  5. Insights into the influence of 5-HT2c aminoacidic variants with the inhibitory action of serotonin inverse agonists and antagonists.

    PubMed

    Galeazzi, Roberta; Massaccesi, Luca; Piva, Francesco; Principato, Giovanni; Laudadio, Emilioano

    2014-03-01

    Specific modulation of serotonin 5-HT(2C) G protein-coupled receptors may be therapeutic for obesity and neuropsychiatric disorders. The different efficacy of drugs targeting these receptors are due to the presence of genetic variants in population and this variability is still hard to predict. Therefore, in order to administer the more suitable drug, taking into account patient genotype, it is necessary to know the molecular effects of its gene nucleotide variations. In this work, starting from an accurate 3D model of 5-HT(2C), we focus on the prediction of the possible effect of some single nucleotide polymorphisms (SNPs) producing amino acidic changes in proximity of the 5-HT(2C) ligand binding site. Particularly we chose a set of 5-HT(2C) inverse agonists and antagonists which have high inhibitory activity. After prediction of the structures of the receptor-ligand complexes using molecular docking tools, we performed full atom molecular dynamics simulations in explicit lipid bilayer monitoring the interactions between ligands and trans-membrane helices of the receptor, trying to infer relations with their biological activity. Serotonin, as the natural ligand was chosen as reference compound to advance a hypothesis able to explain the receptor inhibition mechanism. Indeed we observed a different behavior between the antagonists and inverse agonist with respect to serotonin or unbounded receptor, which could be responsible, even if not directly, of receptor's inactivation. Furthermore, we analyzed five aminoacidic variants of 5HT(2C) receptor observing alterations in the interactions between ligands and receptor which give rise to changes of free energy values for every complex considered.

  6. Regulation of rat cortical 5-hydroxytryptamine2A-receptor mediated electrophysiological responses by repeated daily treatment with electroconvulsive shock or imipramine

    PubMed Central

    Marek, Gerard J.

    2008-01-01

    Down-regulation of 5-hydroxytryptamine2A (5-HT2A) receptors has been a consistent effect induced by most antidepressant drugs. In contrast, electroconvulsive shock (ECS) up-regulates the number of 5-HT2A receptor binding sites. However, the effects of antidepressants on 5-HT2A receptor-mediated responses on identified cells of the cerebral cortex has not been examined. The purpose of the present study was to compare the effects of the tricyclic antidepressant imipramine and ECS on 5-HT2A receptor-mediated electrophysiological responses involving glutamatergic and GABAergic neurotransmission in the rat medial prefrontal cortex (mPFC) and piriform cortex, respectively. The electrophysiological effects of activating 5-HT2A receptors was consistent with 5-HT2A receptor binding regulation for imipramine and ECS except for the mPFC where chronic ECS decreased the potency of 5-HT at a 5-HT2A receptor-mediated response. These findings are consistent with the general hypothesis that chronic antidepressant treatments shift the balance of serotonergic neurotransmission towards inhibitory effects in the cortex. PMID:18294819

  7. Regulation of rat cortical 5-hydroxytryptamine2A receptor-mediated electrophysiological responses by repeated daily treatment with electroconvulsive shock or imipramine.

    PubMed

    Marek, Gerard J

    2008-07-01

    Down-regulation of 5-hydroxytryptamine(2A) (5-HT(2A)) receptors has been a consistent effect induced by most antidepressant drugs. In contrast, electroconvulsive shock (ECS) up-regulates the number of 5-HT(2A) receptor binding sites. However, the effects of antidepressants on 5-HT(2A) receptor-mediated responses on identified cells of the cerebral cortex have not been examined. The purpose of the present study was to compare the effects of the tricyclic antidepressant imipramine and ECS on 5-HT(2A) receptor-mediated electrophysiological responses involving glutamatergic and GABAergic neurotransmission in the rat medial prefrontal cortex (mPFC) and piriform cortex, respectively. The electrophysiological effects of activating 5-HT(2A) receptors were consistent with 5-HT(2A) receptor binding regulation for imipramine and ECS except for the mPFC where chronic ECS decreased the potency of 5-HT at a 5-HT(2A) receptor-mediated response. These findings are consistent with the general hypothesis that chronic antidepressant treatments shift the balance of serotonergic neurotransmission towards inhibitory effects in the cortex.

  8. Molecular mechanisms of serotonergic action of the HIV-1 antiretroviral efavirenz.

    PubMed

    Dalwadi, Dhwanil A; Kim, Seongcheol; Amdani, Shahnawaz M; Chen, Zhenglan; Huang, Ren-Qi; Schetz, John A

    2016-08-01

    Efavirenz is highly effective at suppressing HIV-1, and the WHO guidelines list it as a component of the first-line antiretroviral (ARV) therapies for treatment-naïve patients. Though the pharmacological basis is unclear, efavirenz is commonly associated with a risk for neuropsychiatric adverse events (NPAEs) when taken at the prescribed dose. In many patients these NPAEs appear to subside after several weeks of treatment, though long-term studies show that in some patients the NPAEs persist. In a recent study focusing on the abuse potential of efavirenz, its receptor psychopharmacology was reported to include interactions with a number of established molecular targets for known drugs of abuse, and it displayed a prevailing behavioral profile in rodents resembling an LSD-like activity. In this report, we discovered interactions with additional serotonergic targets that may be associated with efavirenz-induced NPAEs. The most robust interactions were with 5-HT3A and 5-HT6 receptors, with more modest interactions noted for the 5-HT2B receptor and monoamine oxidase A. From a molecular mechanistic perspective, efavirenz acts as a 5-HT6 receptor inverse agonist of Gs-signaling, 5-HT2A and 5-HT2C antagonist of Gq-signaling, and a blocker of the 5-HT3A receptor currents. Efavirenz also completely or partially blocks agonist stimulation of the M1 and M3 muscarinic receptors, respectively. Schild analysis suggests that efavirenz competes for the same site on the 5-HT2A receptor as two known hallucinogenic partial agonists (±)-DOI and LSD. Prolonged exposure to efavirenz reduces 5-HT2A receptor density and responsiveness to 5-HT. Other ARVs such as zidovudine, nevirapine and emtricitabine did not share the same complex pharmacological profile as efavirenz, though some of them weakly interact with the 5-HT6 receptor or modestly block GABAA currents. PMID:27157251

  9. Effects of ginger constituents on the gastrointestinal tract: role of cholinergic M3 and serotonergic 5-HT3 and 5-HT4 receptors.

    PubMed

    Pertz, Heinz H; Lehmann, Jochen; Roth-Ehrang, René; Elz, Sigurd

    2011-07-01

    The herbal drug ginger (Zingiber officinale Roscoe) may be effective for treating nausea, vomiting, and gastric hypomotility. In these conditions, cholinergic M (3) receptors and serotonergic 5-HT (3) and 5-HT (4) receptors are involved. The major chemical constituents of ginger are [6]-gingerol, [8]-gingerol, [10]-gingerol, and [6]-shogaol. We studied the interaction of [6]-gingerol, [8]-gingerol, [10]-gingerol (racemates), and [6]-shogaol with guinea pig M (3) receptors, guinea pig 5-HT (3) receptors, and rat 5-HT (4) receptors. In whole segments of guinea pig ileum (bioassay for contractile M (3) receptors), [6]-gingerol, [8]-gingerol, [10]-gingerol, and [6]-shogaol slightly but significantly depressed the maximal carbachol response at an antagonist concentration of 10 µM. In the guinea pig myenteric plexus preparation (bioassay for contractile 5-HT (3) receptors), 5-HT maximal responses were depressed by [10]-gingerol from 93 ± 3 % to 65 ± 6 % at an antagonist concentration of 3 µM and to 48 ± 3 % at an antagonist concentration of 5 µM following desensitization of 5-HT (4) receptors and blockade of 5-HT (1) and 5-HT (2) receptors. [6]-Shogaol (3 µM) induced depression to 61 ± 3 %. In rat esophageal tunica muscularis mucosae (bioassay for relaxant 5-HT (4) receptors), [6]-gingerol, [8]-gingerol, [10]-gingerol, and [6]-shogaol (2-6.3 µM) showed no agonist effects. The maximal 5-HT response remained unaffected in the presence of the compounds. It is concluded that the efficiency of ginger in reducing nausea and vomiting may be based on a weak inhibitory effect of gingerols and shogaols at M (3) and 5-HT (3) receptors. 5-HT (4) receptors, which play a role in gastroduodenal motility, appear not to be involved in the action of these compounds. PMID:21305447

  10. Cannabinoid type-1 receptor signaling in central serotonergic neurons regulates anxiety-like behavior and sociability

    PubMed Central

    Häring, Martin; Enk, Vanessa; Aparisi Rey, Alejandro; Loch, Sebastian; Ruiz de Azua, Inigo; Weber, Tillmann; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat

    2015-01-01

    The endocannabinoid (eCB) system possesses neuromodulatory functions by influencing the release of various neurotransmitters, including γ-aminobutyric acid (GABA) and glutamate. A functional interaction between eCBs and the serotonergic system has already been suggested. Previously, we showed that cannabinoid type-1 (CB1) receptor mRNA and protein are localized in serotonergic neurons of the raphe nuclei, implying that the eCB system can modulate serotonergic functions. In order to substantiate the physiological role of the CB1 receptor in serotonergic neurons of the raphe nuclei, we generated serotonergic 5-hydroxytryptamine (5-HT) neuron-specific CB1 receptor-deficient mice, using the Cre/loxP system with a tamoxifen-inducible Cre recombinase under the control of the regulatory sequences of the tryptophan hydroxylase 2 gene (TPH2-CreERT2), thus, restricting the recombination to 5-HT neurons of the central nervous system (CNS). Applying several different behavioral paradigms, we revealed that mice lacking the CB1 receptor in serotonergic neurons are more anxious and less sociable than control littermates. Thus, we were able to show that functional CB1 receptor signaling in central serotonergic neurons modulates distinct behaviors in mice. PMID:26388750

  11. Modulating the rate and rhythmicity of perceptual rivalry alternations with the mixed 5-HT2A and 5-HT1A agonist psilocybin.

    PubMed

    Carter, Olivia L; Pettigrew, John D; Hasler, Felix; Wallis, Guy M; Liu, Guang B; Hell, Daniel; Vollenweider, Franz X

    2005-06-01

    Binocular rivalry occurs when different images are presented simultaneously to corresponding points within the left and right eyes. Under these conditions, the observer's perception will alternate between the two perceptual alternatives. Motivated by the reported link between the rate of perceptual alternations, symptoms of psychosis and an incidental observation that the rhythmicity of perceptual alternations during binocular rivalry was greatly increased 10 h after the consumption of LSD, this study aimed to investigate the pharmacology underlying binocular rivalry and to explore the connection between the timing of perceptual switching and psychosis. Psilocybin (4-phosphoryloxy-N,N-dimethyltryptamine, PY) was chosen for the study because, like LSD, it is known to act as an agonist at serotonin (5-HT)1A and 5-HT2A receptors and to produce an altered state sometimes marked by psychosis-like symptoms. A total of 12 healthy human volunteers were tested under placebo, low-dose (115 microg/kg) and high-dose (250 microg/kg) PY conditions. In line with predictions, under both low- and high-dose conditions, the results show that at 90 min postadministration (the peak of drug action), rate and rhythmicity of perceptual alternations were significantly reduced from placebo levels. Following the 90 min testing period, the perceptual switch rate successively increased, with some individuals showing increases well beyond pretest levels at the final testing, 360 min postadministration. However, as some subjects had still not returned to pretest levels by this time, the mean phase duration at 360 min was not found to differ significantly from placebo. Reflecting the drug-induced changes in rivalry phase durations, subjects showed clear changes in psychological state as indexed by the 5D-ASC (altered states of consciousness) rating scales. This study suggests the involvement of serotonergic pathways in binocular rivalry and supports the previously proposed role of a brainstem

  12. Repeated lysergic acid diethylamide in an animal model of depression: Normalisation of learning behaviour and hippocampal serotonin 5-HT2 signalling.

    PubMed

    Buchborn, Tobias; Schröder, Helmut; Höllt, Volker; Grecksch, Gisela

    2014-06-01

    A re-balance of postsynaptic serotonin (5-HT) receptor signalling, with an increase in 5-HT1A and a decrease in 5-HT2A signalling, is a final common pathway multiple antidepressants share. Given that the 5-HT1A/2A agonist lysergic acid diethylamide (LSD), when repeatedly applied, selectively downregulates 5-HT2A, but not 5-HT1A receptors, one might expect LSD to similarly re-balance the postsynaptic 5-HT signalling. Challenging this idea, we use an animal model of depression specifically responding to repeated antidepressant treatment (olfactory bulbectomy), and test the antidepressant-like properties of repeated LSD treatment (0.13 mg/kg/d, 11 d). In line with former findings, we observe that bulbectomised rats show marked deficits in active avoidance learning. These deficits, similarly as we earlier noted with imipramine, are largely reversed by repeated LSD administration. Additionally, bulbectomised rats exhibit distinct anomalies of monoamine receptor signalling in hippocampus and/or frontal cortex; from these, only the hippocampal decrease in 5-HT2 related [(35)S]-GTP-gamma-S binding is normalised by LSD. Importantly, the sham-operated rats do not profit from LSD, and exhibit reduced hippocampal 5-HT2 signalling. As behavioural deficits after bulbectomy respond to agents classified as antidepressants only, we conclude that the effect of LSD in this model can be considered antidepressant-like, and discuss it in terms of a re-balance of hippocampal 5-HT2/5-HT1A signalling. PMID:24785760

  13. Repeated lysergic acid diethylamide in an animal model of depression: Normalisation of learning behaviour and hippocampal serotonin 5-HT2 signalling.

    PubMed

    Buchborn, Tobias; Schröder, Helmut; Höllt, Volker; Grecksch, Gisela

    2014-06-01

    A re-balance of postsynaptic serotonin (5-HT) receptor signalling, with an increase in 5-HT1A and a decrease in 5-HT2A signalling, is a final common pathway multiple antidepressants share. Given that the 5-HT1A/2A agonist lysergic acid diethylamide (LSD), when repeatedly applied, selectively downregulates 5-HT2A, but not 5-HT1A receptors, one might expect LSD to similarly re-balance the postsynaptic 5-HT signalling. Challenging this idea, we use an animal model of depression specifically responding to repeated antidepressant treatment (olfactory bulbectomy), and test the antidepressant-like properties of repeated LSD treatment (0.13 mg/kg/d, 11 d). In line with former findings, we observe that bulbectomised rats show marked deficits in active avoidance learning. These deficits, similarly as we earlier noted with imipramine, are largely reversed by repeated LSD administration. Additionally, bulbectomised rats exhibit distinct anomalies of monoamine receptor signalling in hippocampus and/or frontal cortex; from these, only the hippocampal decrease in 5-HT2 related [(35)S]-GTP-gamma-S binding is normalised by LSD. Importantly, the sham-operated rats do not profit from LSD, and exhibit reduced hippocampal 5-HT2 signalling. As behavioural deficits after bulbectomy respond to agents classified as antidepressants only, we conclude that the effect of LSD in this model can be considered antidepressant-like, and discuss it in terms of a re-balance of hippocampal 5-HT2/5-HT1A signalling.

  14. 4-Fluorosulfonylpiperidines: selective 5-HT2A ligands for the treatment of insomnia.

    PubMed

    Fish, L Rebecca; Gilligan, Myra T; Humphries, Alexander C; Ivarsson, Magnus; Ladduwahetty, Tammy; Merchant, Kevin J; O'Connor, Desmond; Patel, Smita; Philipps, Elisabeth; Vargas, Hugo M; Hutson, Peter H; MacLeod, Angus M

    2005-08-15

    Incorporation of fluorine at the 4-position of an existing series of sulfonyl piperidine 5-HT2A antagonists gave compounds with increased selectivity over the IKr potassium channel. This work led to the identification of 3b, a compound that gave no increase in QTc in the anesthetized dog up to plasma levels as high as 148 microM. Furthermore, 3b has been shown to increase slow-wave sleep bout duration and to decrease the number of awakenings in rats, indicating the potential utility of 5-HT2A antagonists in the treatment of insomnia.

  15. A dual physiological character for sexual function: the role of serotonergic receptors.

    PubMed

    Motofei, Ion G

    2008-03-01

    Anatomically, sexual reflexes are mixed (somatic-autonomic) circuits, represented by emission (sympathetic centre and somatic afferents), expulsion (parasympathetic centre and somatic efferents) and erection (parasympathetic centre and somatic afferents). Physiologically, ejaculation has a dual autonomic mediation, consisting of two distinct and opposite autonomic centres (emission and expulsion), both with a positive contribution to the respective function. Experimentally, serotonin (5HT) has two distinct, opposite and positive effects on sexual function, with 5HT-(1A) agonists decreasing intravaginal ejaculatory latency and erection, and 5HT-(2C) agonists increasing both erection and ejaculatory latency. In this review I assume that 5HT modulates sexual reflexes, establishing a functional connection between the involved somatic and autonomic structures. The 5HT-(1A) receptors are assumed to make the connection between somatic pathways and sympathetic centres while the 5HT-(2C) receptors could establish the connection between somatic pathways and parasympathetic centres. Further studies will develop the cerebral sexual duality, explaining the implication of psychological factors in sexual function and the role of sexuality in psychosocial behaviour. PMID:17922864

  16. A Divergent SAR Study Allows Optimization of a Potent 5-HT2c Inhibitor to a Promising Antimalarial Scaffold

    PubMed Central

    2012-01-01

    From the 13 533 chemical structures published by GlaxoSmithKline in 2010, we identified 47 quality starting points for lead optimization. One of the most promising hits was the TCMDC-139046, a molecule presenting an indoline core, which is well-known for its anxiolytic properties by interacting with serotonin antagonist receptors 5-HT2. The inhibition of this target will complicate the clinical development of these compounds as antimalarials. Herein, we present the antimalarial profile of this series and our efforts to avoid interaction with this receptor, while maintaining a good antiparasitic potency. By using a double-divergent structure–activity relationship analysis, we have obtained a novel lead compound harboring an indoline core. PMID:24900481

  17. 1,4-Disubstituted aromatic piperazines with high 5-HT2A/D2 selectivity: Quantitative structure-selectivity investigations, docking, synthesis and biological evaluation.

    PubMed

    Möller, Dorothee; Salama, Ismail; Kling, Ralf C; Hübner, Harald; Gmeiner, Peter

    2015-09-15

    Simultaneous targeting of dopamine D2 and 5-HT2A receptors for the treatment of schizophrenia is one key feature of typical and atypical antipsychotics. In most of the top-selling antipsychotic drugs like aripiprazole and risperidone, high affinity to both receptors can be attributed to the presence of 1,4-disubstituted aromatic piperazines or piperidines as primary receptor recognition elements. Taking advantage of our in-house library of phenylpiperazine-derived dopamine receptor ligands and experimental data, we established highly significant CoMFA and CoMSIA models for the prediction of 5-HT2A over D2 selectivity. Subsequently, the models were applied to identify the selective candidates 55-57 from our newly synthesized library of GPCR ligands comprising a pyrazolo[1,5-a]pyridine head group and a 1,2,3-triazole based linker unit. The test compound 57 showed subnanomolar a Ki value (0.64 nM) for 5-HT2A and more than 10- and 30-fold selectivity over the dopamine receptor isoforms D2S and D2L, respectively. PMID:26299826

  18. Propriospinal bypass of the serotonergic system that can facilitate stepping.

    PubMed

    Gerasimenko, Yury; Musienko, Pavel; Bogacheva, Irina; Moshonkina, Tatiana; Savochin, Alexandr; Lavrov, Igor; Roy, Roland R; Edgerton, V Reggie

    2009-04-29

    The neurotransmitter systems mediating spinal locomotion in response to epidural spinal cord stimulation (ES) have not been identified. Here, we examine the role of the serotonergic system in regulating locomotor behavior of decerebrated cats during ES at L4-L5. ES elicited coordinated, weight-bearing, hindlimb stepping with plantar foot placement on a moving treadmill belt. Ketanserin [a 5-hydroxytryptamine (serotonin) (5-HT)(2/7) receptor antagonist] depressed this locomotor activity: only weak rhythmic movements without plantar foot placement and depressed EMG activity were observed. Cyproheptadine, a nonselective 5-HT blocker, prevented facilitation of stepping by epidural stimulation. These data demonstrate an important role of the serotonergic system in facilitating locomotion in the presence of epidural stimulation. In the presence of ketanserin, passive movements of one forelimb in a step-like manner immediately induced stepping of both hindlimbs with EMG patterns similar to those observed with ES without ketanserin. Thus, a non-5-HT-dependent spinal circuitry projecting from the cervical to the lumbar region of the spinal cord can facilitate stepping. The specific neurotransmitters responsible for this forelimb-facilitated stepping of the hindlimbs are unknown. These data suggest that a 5-HT(2/7) receptor-dependent pathway that processes hindlimb locomotor-like proprioception to facilitate hindlimb stepping can be complemented with proprioceptive afferents from the forelimbs via a non-5-HT(2/7) receptor neurotransmitter system. Thus, different neurotransmitter receptor systems can be used to mediate the same type of sensory event, i.e., locomotor-like proprioception to facilitate the same motor task, i.e., hindlimb stepping.

  19. The serotonergic system in motor and non-motor manifestations of Parkinson's disease.

    PubMed

    Huot, Philippe; Fox, Susan H

    2013-10-01

    The understanding of Parkinson's disease (PD) classically revolves around dopamine depletion within the striatum. However, PD is a multi-systemic disease in which extra-dopaminergic systems are affected. The serotonergic (5-HT) system is one of these and has been extensively studied in PD. Although the 5-HT system uses one transporter (SERT) and 14 receptor sub-types, most of the studies in PD have focussed on SERT and serotonergic type 1A and 2A receptors (5-HT1A and 5-HT2A). Post-mortem autoradiographic binding studies and in vivo imaging studies have suggested an involvement of the 5-HT system in PD-related anxiety, depression, psychosis and L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia. Pre-clinical and clinical pharmacological studies have shown that SERT blockade might effectively alleviate depression and dyskinesia and, more recently, might exert disease-modifying effects. Enhancing the physiological activity of 5-HT1A receptors with 5-HT1A agonists might alleviate anxiety, dyskinesia and tremor, although a deleterious effect on the anti-parkinsonian efficacy of L-DOPA may ultimately limit the use of this class of compounds. Enhanced 5-HT2A-mediated neurotransmission has been associated with depression, dyskinesia, psychosis and tremor. The current article critically reviews studies assessing the SERT, as well as 5-HT1A and 5-HT2A receptors in idiopathic PD and animal models of PD, and discusses unmet challenges to effectively treat manifestations of PD using SERT antagonists, 5-HT1A agonists and 5-HT2A antagonists.

  20. Drug pharmacokinetics and pharmacodynamics: PET and microdial studies of SR 46349B, a selective 5HT2 antagonist

    SciTech Connect

    Tan, P.; Dewey, S.L.; Gatley, S.J.

    1994-05-01

    The brain serotonin system is an important molecular target in drug development. SR 46349B is a propenone oxime ether derivative with a high affinity and selectivity for the serotonin 5HT2 receptor (Kd=1.2 nM). We have labeled SR 46349B with carbon-11 via N-methylation of a nor-precursor (supplied by Sanofi Recherche) with C-11 methyl iodide. Purification by HPLC gave [11C]SR 46349B in 98% radiochemical purity with a specific activity of 1.5 Ci/{mu}mol. Serial PET studies were carried out in a baboon for a 60 minute study period with a two hour time interval between studies. The first study was at baseline and the second after pretreatment with altanserin (0.5 mg/kg iv, 30 min prior to [11C]SR 46349B). Carbon-11 peaked at ca. 20 minutes in the frontal, parietal, temporal and occipital cortices where it plateaued for the rest of the study. Cerebellum, thalamus and striatum peaked at ca. 10 minutes and cleared to 62%, 72% and 80% of peak by 60 min. At 60 minutes, the frontal cortex to cerebellum ratio was 1.5. Treatment with altanserin reduced the frontal cortex to cerebellum ratio to 1.0. HPLC of mouse brain homogenate after [11C]SR 46349B showed >94% of the C-11 was parent compound. Microdialysis in freely moving rats after injection of SR 46349B (n=6; 10 mg/kg, ip) showed an average peak increase in extracellular dopamine of 375% which is higher than the 150% effect of altanserin. Spontaneous movements were markedly reduced. The pharmacokinetics of [11C] SR 46349B in cortical areas is consistent with the long term effects of SR 46349B on 5HT2 receptors and the elevations in extracellular dopamine without increased locomotor activity are consistent with serotonin mediated disinhibition of striatal dopamine release via blockade of serotonin receptors.

  1. Serotonin 2a Receptor and Serotonin 1a Receptor Interact Within the Medial Prefrontal Cortex During Recognition Memory in Mice

    PubMed Central

    Morici, Juan F.; Ciccia, Lucia; Malleret, Gaël; Gingrich, Jay A.; Bekinschtein, Pedro; Weisstaub, Noelia V.

    2015-01-01

    Episodic memory, can be defined as the memory for unique events. The serotonergic system one of the main neuromodulatory systems in the brain appears to play a role in it. The serotonin 2a receptor (5-HT2aR) one of the principal post-synaptic receptors for 5-HT in the brain, is involved in neuropsychiatric and neurological disorders associated with memory deficits. Recognition memory can be defined as the ability to recognize if a particular event or item was previously encountered and is thus considered, under certain conditions, a form of episodic memory. As human data suggest that a constitutively decrease of 5-HT2A signaling might affect episodic memory performance we decided to compare the performance of mice with disrupted 5-HT2aR signaling (htr2a−/−) with wild type (htr2a+/+) littermates in different recognition memory and working memory tasks that differed in the level of proactive interference. We found that ablation of 5-HT2aR signaling throughout development produces a deficit in tasks that cannot be solved by single item strategy suggesting that 5-HT2aR signaling is involved in interference resolution. We also found that in the absence of 5-HT2aR signaling serotonin has a deleterious effect on recognition memory retrieval through the activation of 5-HT1aR in the medial prefrontal cortex. PMID:26779016

  2. Serotonin 2a Receptor and Serotonin 1a Receptor Interact Within the Medial Prefrontal Cortex During Recognition Memory in Mice.

    PubMed

    Morici, Juan F; Ciccia, Lucia; Malleret, Gaël; Gingrich, Jay A; Bekinschtein, Pedro; Weisstaub, Noelia V

    2015-01-01

    Episodic memory, can be defined as the memory for unique events. The serotonergic system one of the main neuromodulatory systems in the brain appears to play a role in it. The serotonin 2a receptor (5-HT2aR) one of the principal post-synaptic receptors for 5-HT in the brain, is involved in neuropsychiatric and neurological disorders associated with memory deficits. Recognition memory can be defined as the ability to recognize if a particular event or item was previously encountered and is thus considered, under certain conditions, a form of episodic memory. As human data suggest that a constitutively decrease of 5-HT2A signaling might affect episodic memory performance we decided to compare the performance of mice with disrupted 5-HT2aR signaling (htr2a (-/-)) with wild type (htr2a (+/+)) littermates in different recognition memory and working memory tasks that differed in the level of proactive interference. We found that ablation of 5-HT2aR signaling throughout development produces a deficit in tasks that cannot be solved by single item strategy suggesting that 5-HT2aR signaling is involved in interference resolution. We also found that in the absence of 5-HT2aR signaling serotonin has a deleterious effect on recognition memory retrieval through the activation of 5-HT1aR in the medial prefrontal cortex. PMID:26779016

  3. Activation of serotonin 2A receptors underlies the psilocybin-induced effects on α oscillations, N170 visual-evoked potentials, and visual hallucinations.

    PubMed

    Kometer, Michael; Schmidt, André; Jäncke, Lutz; Vollenweider, Franz X

    2013-06-19

    Visual illusions and hallucinations are hallmarks of serotonergic hallucinogen-induced altered states of consciousness. Although the serotonergic hallucinogen psilocybin activates multiple serotonin (5-HT) receptors, recent evidence suggests that activation of 5-HT2A receptors may lead to the formation of visual hallucinations by increasing cortical excitability and altering visual-evoked cortical responses. To address this hypothesis, we assessed the effects of psilocybin (215 μg/kg vs placebo) on both α oscillations that regulate cortical excitability and early visual-evoked P1 and N170 potentials in healthy human subjects. To further disentangle the specific contributions of 5-HT2A receptors, subjects were additionally pretreated with the preferential 5-HT2A receptor antagonist ketanserin (50 mg vs placebo). We found that psilocybin strongly decreased prestimulus parieto-occipital α power values, thus precluding a subsequent stimulus-induced α power decrease. Furthermore, psilocybin strongly decreased N170 potentials associated with the appearance of visual perceptual alterations, including visual hallucinations. All of these effects were blocked by pretreatment with the 5-HT2A antagonist ketanserin, indicating that activation of 5-HT2A receptors by psilocybin profoundly modulates the neurophysiological and phenomenological indices of visual processing. Specifically, activation of 5-HT2A receptors may induce a processing mode in which stimulus-driven cortical excitation is overwhelmed by spontaneous neuronal excitation through the modulation of α oscillations. Furthermore, the observed reduction of N170 visual-evoked potentials may be a key mechanism underlying 5-HT2A receptor-mediated visual hallucinations. This change in N170 potentials may be important not only for psilocybin-induced states but also for understanding acute hallucinatory states seen in psychiatric disorders, such as schizophrenia and Parkinson's disease. PMID:23785166

  4. Activation of serotonin 2A receptors underlies the psilocybin-induced effects on α oscillations, N170 visual-evoked potentials, and visual hallucinations.

    PubMed

    Kometer, Michael; Schmidt, André; Jäncke, Lutz; Vollenweider, Franz X

    2013-06-19

    Visual illusions and hallucinations are hallmarks of serotonergic hallucinogen-induced altered states of consciousness. Although the serotonergic hallucinogen psilocybin activates multiple serotonin (5-HT) receptors, recent evidence suggests that activation of 5-HT2A receptors may lead to the formation of visual hallucinations by increasing cortical excitability and altering visual-evoked cortical responses. To address this hypothesis, we assessed the effects of psilocybin (215 μg/kg vs placebo) on both α oscillations that regulate cortical excitability and early visual-evoked P1 and N170 potentials in healthy human subjects. To further disentangle the specific contributions of 5-HT2A receptors, subjects were additionally pretreated with the preferential 5-HT2A receptor antagonist ketanserin (50 mg vs placebo). We found that psilocybin strongly decreased prestimulus parieto-occipital α power values, thus precluding a subsequent stimulus-induced α power decrease. Furthermore, psilocybin strongly decreased N170 potentials associated with the appearance of visual perceptual alterations, including visual hallucinations. All of these effects were blocked by pretreatment with the 5-HT2A antagonist ketanserin, indicating that activation of 5-HT2A receptors by psilocybin profoundly modulates the neurophysiological and phenomenological indices of visual processing. Specifically, activation of 5-HT2A receptors may induce a processing mode in which stimulus-driven cortical excitation is overwhelmed by spontaneous neuronal excitation through the modulation of α oscillations. Furthermore, the observed reduction of N170 visual-evoked potentials may be a key mechanism underlying 5-HT2A receptor-mediated visual hallucinations. This change in N170 potentials may be important not only for psilocybin-induced states but also for understanding acute hallucinatory states seen in psychiatric disorders, such as schizophrenia and Parkinson's disease.

  5. Serotonergic Regulation of Excitability of Principal Cells of the Dorsal Cochlear Nucleus

    PubMed Central

    Tang, Zheng-Quan

    2015-01-01

    The dorsal cochlear nucleus (DCN) is one of the first stations within the central auditory pathway where the basic computations underlying sound localization are initiated and heightened activity in the DCN may underlie central tinnitus. The neurotransmitter serotonin (5-hydroxytryptamine; 5-HT), is associated with many distinct behavioral or cognitive states, and serotonergic fibers are concentrated in the DCN. However, it remains unclear what is the function of this dense input. Using a combination of in vitro electrophysiology and optogenetics in mouse brain slices, we found that 5-HT directly enhances the excitability of fusiform principal cells via activation of two distinct 5-HT receptor subfamilies, 5-HT2A/2CR (5-HT2A/2C receptor) and 5-HT7R (5-HT7 receptor). This excitatory effect results from an augmentation of hyperpolarization-activated cyclic nucleotide-gated channels (Ih or HCN channels). The serotonergic regulation of excitability is G-protein-dependent and involves cAMP and Src kinase signaling pathways. Moreover, optogenetic activation of serotonergic axon terminals increased excitability of fusiform cells. Our findings reveal that 5-HT exerts a potent influence on fusiform cells by altering their intrinsic properties, which may enhance the sensitivity of the DCN to sensory input. PMID:25788672

  6. Effects of the 5-HT2A agonist psilocybin on mismatch negativity generation and AX-continuous performance task: implications for the neuropharmacology of cognitive deficits in schizophrenia.

    PubMed

    Umbricht, Daniel; Vollenweider, Franz X; Schmid, Liselotte; Grübel, Claudia; Skrabo, Anja; Huber, Theo; Koller, Rene

    2003-01-01

    Previously the NMDA (N-methyl-D-aspartate) receptor (NMDAR) antagonist ketamine was shown to disrupt generation of the auditory event-related potential (ERP) mismatch negativity (MMN) and the performance of an 'AX'-type continuous performance test (AX-CPT)--measures of auditory and visual context-dependent information processing--in a similar manner as observed in schizophrenia. This placebo-controlled study investigated effects of the 5-HT(2A) receptor agonist psilocybin on the same measures in 18 healthy volunteers. Psilocybin administration induced significant performance deficits in the AX-CPT, but failed to reduce MMN generation significantly. These results indirectly support evidence that deficient MMN generation in schizophrenia may be a relatively distinct manifestation of deficient NMDAR functioning. In contrast, secondary pharmacological effects shared by NMDAR antagonists and the 5-HT(2A) agonist (ie disruption of glutamatergic neurotransmission) may be the mechanism underlying impairments in AX-CPT performance observed during both psilocybin and ketamine administration. Comparable deficits in schizophrenia may result from independent dysfunctions of 5-HT(2A) and NMDAR-related neurotransmission.

  7. Receptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens.

    PubMed

    Rickli, Anna; Moning, Olivier D; Hoener, Marius C; Liechti, Matthias E

    2016-08-01

    The present study investigated interactions between the novel psychoactive tryptamines DiPT, 4-OH-DiPT, 4-OH-MET, 5-MeO-AMT, and 5-MeO-MiPT at monoamine receptors and transporters compared with the classic hallucinogens lysergic acid diethylamide (LSD), psilocin, N,N-dimethyltryptamine (DMT), and mescaline. We investigated binding affinities at human monoamine receptors and determined functional serotonin (5-hydroxytryptamine [5-HT]) 5-HT2A and 5-HT2B receptor activation. Binding at and the inhibition of human monoamine uptake transporters and transporter-mediated monoamine release were also determined. All of the novel tryptamines interacted with 5-HT2A receptors and were partial or full 5-HT2A agonists. Binding affinity to the 5-HT2A receptor was lower for all of the tryptamines, including psilocin and DMT, compared with LSD and correlated with the reported psychoactive doses in humans. Several tryptamines, including psilocin, DMT, DiPT, 4-OH-DiPT, and 4-OH-MET, interacted with the serotonin transporter and partially the norepinephrine transporter, similar to 3,4-methylenedioxymethamphetamine but in contrast to LSD and mescaline. LSD but not the tryptamines interacted with adrenergic and dopaminergic receptors. In conclusion, the receptor interaction profiles of the tryptamines predict hallucinogenic effects that are similar to classic serotonergic hallucinogens but also MDMA-like psychoactive properties.

  8. Receptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens.

    PubMed

    Rickli, Anna; Moning, Olivier D; Hoener, Marius C; Liechti, Matthias E

    2016-08-01

    The present study investigated interactions between the novel psychoactive tryptamines DiPT, 4-OH-DiPT, 4-OH-MET, 5-MeO-AMT, and 5-MeO-MiPT at monoamine receptors and transporters compared with the classic hallucinogens lysergic acid diethylamide (LSD), psilocin, N,N-dimethyltryptamine (DMT), and mescaline. We investigated binding affinities at human monoamine receptors and determined functional serotonin (5-hydroxytryptamine [5-HT]) 5-HT2A and 5-HT2B receptor activation. Binding at and the inhibition of human monoamine uptake transporters and transporter-mediated monoamine release were also determined. All of the novel tryptamines interacted with 5-HT2A receptors and were partial or full 5-HT2A agonists. Binding affinity to the 5-HT2A receptor was lower for all of the tryptamines, including psilocin and DMT, compared with LSD and correlated with the reported psychoactive doses in humans. Several tryptamines, including psilocin, DMT, DiPT, 4-OH-DiPT, and 4-OH-MET, interacted with the serotonin transporter and partially the norepinephrine transporter, similar to 3,4-methylenedioxymethamphetamine but in contrast to LSD and mescaline. LSD but not the tryptamines interacted with adrenergic and dopaminergic receptors. In conclusion, the receptor interaction profiles of the tryptamines predict hallucinogenic effects that are similar to classic serotonergic hallucinogens but also MDMA-like psychoactive properties. PMID:27216487

  9. Deletion of CB2 Cannabinoid Receptor Induces Schizophrenia-Related Behaviors in Mice

    PubMed Central

    Ortega-Alvaro, Antonio; Aracil-Fernández, Auxiliadora; García-Gutiérrez, María S; Navarrete, Francisco; Manzanares, Jorge

    2011-01-01

    The possible role of the CB2 receptor (CB2r) in psychiatric disorders has been considered. Several animal models use knockout (KO) mice that display schizophrenia-like behaviors and this study evaluated the role of CB2r in the regulation of such behaviors. Mice lacking the CB2r (CB2KO) were challenged in open field, light–dark box, elevated plus-maze, tail suspension, step down inhibitory avoidance, and pre-pulse inhibition tests (PPI). Furthermore, the effects of treatment with cocaine and risperidone were evaluated using the OF and the PPI test. Gene expression of dopamine D2 (D2r), adrenergic-α2C (α2Cr), serotonergic 5-HT2A and 5-HT2C receptors (5-HT2Ar and 5-HT2Cr) were studied by RT-PCR in brain regions related to schizophrenia. Deletion of CB2r decreased motor activity in the OF test, but enhanced response to acute cocaine and produced mood-related alterations, PPI deficit, and cognitive impairment. Chronic treatment with risperidone tended to impair PPI in WT mice, whereas it ‘normalized' the PPI deficit in CB2KO mice. CB2KO mice presented increased D2r and α2Cr gene expressions in the prefrontal cortex (PFC) and locus coeruleus (LC), decreased 5-HT2Cr gene expression in the dorsal raphe (DR), and 5-HT2Ar gene expression in the PFC. Chronic risperidone treatment in WT mice left α2Cr gene expression unchanged, decreased D2r gene expression (15 μg/kg), and decreased 5-HT2Cr and 5-HT2Ar in PFC and DR. In CB2KO, the gene expression of D2r in the PFC, of α2Cr in the LC, and of 5-HT2Cr and 5-HT2Ar in PFC was reduced; 5-HT2Cr and 5-HT2Ar gene expressions in DR were increased after treatment with risperidone. These results suggest that deletion of CB2r has a relation with schizophrenia-like behaviors. Pharmacological manipulation of CB2r may merit further study as a potential therapeutic target for the treatment of schizophrenia-related disorders. PMID:21430651

  10. Deletion of CB2 cannabinoid receptor induces schizophrenia-related behaviors in mice.

    PubMed

    Ortega-Alvaro, Antonio; Aracil-Fernández, Auxiliadora; García-Gutiérrez, María S; Navarrete, Francisco; Manzanares, Jorge

    2011-06-01

    The possible role of the CB(2) receptor (CB(2)r) in psychiatric disorders has been considered. Several animal models use knockout (KO) mice that display schizophrenia-like behaviors and this study evaluated the role of CB(2)r in the regulation of such behaviors. Mice lacking the CB(2)r (CB(2)KO) were challenged in open field, light-dark box, elevated plus-maze, tail suspension, step down inhibitory avoidance, and pre-pulse inhibition tests (PPI). Furthermore, the effects of treatment with cocaine and risperidone were evaluated using the OF and the PPI test. Gene expression of dopamine D(2) (D(2)r), adrenergic-α(2C) (α(2C)r), serotonergic 5-HT(2A) and 5-HT(2C) receptors (5-HT(2A)r and 5-HT(2C)r) were studied by RT-PCR in brain regions related to schizophrenia. Deletion of CB(2)r decreased motor activity in the OF test, but enhanced response to acute cocaine and produced mood-related alterations, PPI deficit, and cognitive impairment. Chronic treatment with risperidone tended to impair PPI in WT mice, whereas it 'normalized' the PPI deficit in CB(2)KO mice. CB(2)KO mice presented increased D(2)r and α(2C)r gene expressions in the prefrontal cortex (PFC) and locus coeruleus (LC), decreased 5-HT(2C)r gene expression in the dorsal raphe (DR), and 5-HT(2A)r gene expression in the PFC. Chronic risperidone treatment in WT mice left α(2C)r gene expression unchanged, decreased D(2)r gene expression (15 μg/kg), and decreased 5-HT(2C)r and 5-HT(2A)r in PFC and DR. In CB(2)KO, the gene expression of D(2)r in the PFC, of α(2C)r in the LC, and of 5-HT(2C)r and 5-HT(2A)r in PFC was reduced; 5-HT(2C)r and 5-HT(2A)r gene expressions in DR were increased after treatment with risperidone. These results suggest that deletion of CB(2)r has a relation with schizophrenia-like behaviors. Pharmacological manipulation of CB(2)r may merit further study as a potential therapeutic target for the treatment of schizophrenia-related disorders. PMID:21430651

  11. Antidepressant, Antipsychotic, and Hallucinogen Drugs for the Treatment of Psychiatric Disorders: A Convergence at the Serotonin-2A Receptor.

    PubMed

    Howland, Robert H

    2016-07-01

    Antidepressant, atypical antipsychotic, and hallucinogen drugs mediate their actions in part by interactions with the serotonin-2A (5HT2A) receptor. Serotonergic hallucinogen drugs, such as psilocybin, bind most potently as agonists at the 5HT2A receptor, producing profound changes in perception, mood, and cognition. Some of these drugs have been or are currently being investigated in small Phase 2 studies for depression, alcoholism, smoking cessation, anxiety, and posttraumatic stress disorder. However, unlike the synergistic effects of combining antidepressant and atypical antipsychotic drugs, the potential therapeutic effects of hallucinogen drugs may be attenuated by the concurrent use of these medications because antidepressant and atypical antipsychotic drugs desensitize and/or down-regulate 5HT2A receptors. This finding has important implications for optimizing the potential therapeutic use of hallucinogen drugs in psychiatry. [Journal of Psychosocial Nursing and Mental Health Services, 54(7), 21-24.]. PMID:27362381

  12. Serotonin(2C) receptors in the ventral pallidum regulate motor function in rats.

    PubMed

    Graves, Steven M; Viskniskki, Annika A; Cunningham, Kathryn A; Napier, T Celeste

    2013-08-01

    The ventral pallidum is a limbic brain region that regulates motor function. This region is extensively innervated by serotoninergic neurons from the dorsal raphe nucleus. Serotonergic receptors, including the 5-HT(2C) receptor subtype, are located in the ventral pallidum. However, little is known regarding the behavioral consequences of serotonergic transmission in the ventral pallidum, and the role of 5-HT(2C) receptors has not been studied. To address this paucity, we measured the motoric consequences of injections of 0.33-10 ng of the 5-HT(2C) receptor agonist MK 212 into the ventral pallidum of adult male Sprague-Dawley rats. We determined that locomotor activity was attenuated by 6.6 ng MK 212, and rearing was attenuated by both 1 and 6.6 ng. The motor suppressant effects of MK 212 were lost at the higher dose of 10 ng, likely reflecting a loss of selectivity of this ligand. These findings indicate negative regulation of motor function by 5-HT(2C) receptors in the ventral pallidum.

  13. Region-specific alterations of A-to-I RNA editing of serotonin 2c receptor in the cortex of suicides with major depression.

    PubMed

    Weissmann, D; van der Laan, S; Underwood, M D; Salvetat, N; Cavarec, L; Vincent, L; Molina, F; Mann, J J; Arango, V; Pujol, J F

    2016-01-01

    Brain region-specific abnormalities in serotonergic transmission appear to underlie suicidal behavior. Alterations of RNA editing on the serotonin receptor 2C (HTR2C) pre-mRNA in the brain of suicides produce transcripts that attenuate 5-HT2CR signaling by impairing intracellular G-protein coupling and subsequent intracellular signal transduction. In brain, the distribution of RNA-editing enzymes catalyzing deamination (A-to-I modification) shows regional variation, including within the cerebral cortex. We tested the hypothesis that altered pre-mRNA 5-HT2CR receptor editing in suicide is region-specific. To this end, we investigated the complete 5-HT2CR mRNA-editing profile in two architectonically distinct cortical areas involved in mood regulation and decision-making in a clinically well-characterized cohort of age- and sex-matched non-psychiatric drug-free controls and depressed suicides. By using an original biochemical detection method, that is, capillary electrophoresis single-stranded conformational polymorphism (CE-SSCP), we corroborated the 5-HT2CR mRNA-editing profile previously described in the dorsolateral prefrontal cortex (Brodmann area 9 (BA9)). Editing of 5-HT2CR mRNA displayed clear regional difference when comparing dorsolateral prefrontal cortex (BA9) and anterior cingulate cortex (BA24). Compared with non-psychiatric control individuals, alterations of editing levels of 5-HT2CR mRNA were detected in both cortical areas of depressed suicides. A marked increase in editing on 5-HT2CR was especially observed in the anterior cingulate cortex in suicides, implicating this cortical area in suicide risk. The results suggest that region-specific changes in RNA editing of 5-HT2CR mRNA and deficient receptor function likely contribute to the etiology of major depressive disorder or suicide. PMID:27576167

  14. Region-specific alterations of A-to-I RNA editing of serotonin 2c receptor in the cortex of suicides with major depression

    PubMed Central

    Weissmann, D; van der Laan, S; Underwood, M D; Salvetat, N; Cavarec, L; Vincent, L; Molina, F; Mann, J J; Arango, V; Pujol, J F

    2016-01-01

    Brain region-specific abnormalities in serotonergic transmission appear to underlie suicidal behavior. Alterations of RNA editing on the serotonin receptor 2C (HTR2C) pre-mRNA in the brain of suicides produce transcripts that attenuate 5-HT2CR signaling by impairing intracellular G-protein coupling and subsequent intracellular signal transduction. In brain, the distribution of RNA-editing enzymes catalyzing deamination (A-to-I modification) shows regional variation, including within the cerebral cortex. We tested the hypothesis that altered pre-mRNA 5-HT2CR receptor editing in suicide is region-specific. To this end, we investigated the complete 5-HT2CR mRNA-editing profile in two architectonically distinct cortical areas involved in mood regulation and decision-making in a clinically well-characterized cohort of age- and sex-matched non-psychiatric drug-free controls and depressed suicides. By using an original biochemical detection method, that is, capillary electrophoresis single-stranded conformational polymorphism (CE-SSCP), we corroborated the 5-HT2CR mRNA-editing profile previously described in the dorsolateral prefrontal cortex (Brodmann area 9 (BA9)). Editing of 5-HT2CR mRNA displayed clear regional difference when comparing dorsolateral prefrontal cortex (BA9) and anterior cingulate cortex (BA24). Compared with non-psychiatric control individuals, alterations of editing levels of 5-HT2CR mRNA were detected in both cortical areas of depressed suicides. A marked increase in editing on 5-HT2CR was especially observed in the anterior cingulate cortex in suicides, implicating this cortical area in suicide risk. The results suggest that region-specific changes in RNA editing of 5-HT2CR mRNA and deficient receptor function likely contribute to the etiology of major depressive disorder or suicide. PMID:27576167

  15. Different actions for acute and chronic administration of mirtazapine on serotonergic transmission associated with raphe nuclei and their innervation cortical regions.

    PubMed

    Yamamura, Satoshi; Abe, Masao; Nakagawa, Masanori; Ochi, Shinichiro; Ueno, Shu-ichi; Okada, Motohiro

    2011-03-01

    The atypical antidepressant, mirtazapine enhances noradrenergic transmission, but its effects on serotonergic transmission remain to be clarified. The present study determined the effects of acute and chronic administration of mirtazapine on serotonergic transmissions in raphe nuclei and their innervation regions, frontal and entorhinal cortex, using multiple-probes microdialysis with real-time PCR and western blotting. Acute administration of mirtazapine did not affect extracellular serotonin level in raphe nuclei or cortex; however, chronic administration increased extracellular serotonin level in raphe nuclei without affecting that in cortex. Blockade of 5-HT1A receptor, but not that of the 5-HT2A/2C receptor, enhanced the effects of acute administration of mirtazapine on extracellular serotonin level in raphe nuclei. Chronic mirtazapine administration reduced the inhibitory function associated with somatodendritic 5-HT1A receptor in raphe nuclei, but enhanced postsynaptic 5-HT1A receptor in serotonergic innervated cortical regions. Chronic administration reduced the expression of mRNA and protein of serotonin transporter and 5-HT1A receptor in raphe nuclei, but not in the cortices. These results suggested that acute administration of mirtazapine probably activated serotonergic transmission, but its stimulatory action was abolished by activated inhibitory 5-HT1A receptor. Chronic administration of mirtazapine resulted in increased extracellular serotonin level via reduction of serotonin transporter with reduction of somatodendritic 5-HT1A autoreceptor function in raphe nuclei. These pharmacological actions of mirtazapine include its serotonergic profiles as noradrenergic and specific serotonergic antidepressant (NaSSA). PMID:21195096

  16. Effect of GABAergic ligands on the anxiolytic-like activity of DOI (a 5-HT(2A/2C) agonist) in the four-plate test in mice.

    PubMed

    Massé, Fabienne; Hascoët, Martine; Bourin, Michel

    2007-01-01

    5-HTergic and GABAergic systems are involved in neurobiology of anxiety. Precedent studies have demonstrated that SSRIs possessed an anxiolytic-like effect in the four-plate test (FPT) at doses that did not modify spontaneous locomotor activity. This effect seems to be mediated through the activation of 5-HT(2A) postsynaptic receptors. The purpose of the present study was to examine the implication of GABA system in the anxiolytic-like activity of DOI in the FPT. To achieve this, the co-administration of DOI (5-HT(2A/2C) receptor agonists) with GABA(A) and GABA(B) receptor ligands was evaluated in the FPT. Alprazolam, diazepam and muscimol (for higher dose) potentiated the anxiolytic-like effect of DOI. Bicuculline, picrotoxin and baclofen inhibited the anxiolytic-like effect of DOI. Flumazenil and CGP 35348 had no effect on the anxiolytic-like activity of DOI. These results suggest that the GABA system seems to be strongly implicated in the anxiolytic-like activity of DOI in the FPT.

  17. 5-HT2A Gene Variants Moderate the Association between PTSD and Reduced Default Mode Network Connectivity.

    PubMed

    Miller, Mark W; Sperbeck, Emily; Robinson, Meghan E; Sadeh, Naomi; Wolf, Erika J; Hayes, Jasmeet P; Logue, Mark; Schichman, Steven A; Stone, Angie; Milberg, William; McGlinchey, Regina

    2016-01-01

    The default mode network (DMN) has been used to study disruptions of functional connectivity in a wide variety of psychiatric and neurological conditions, including posttraumatic stress disorder (PTSD). Studies indicate that the serotonin system exerts a modulatory influence on DMN connectivity; however, no prior study has examined associations between serotonin receptor gene variants and DMN connectivity in either clinical or healthy samples. We examined serotonin receptor single nucleotide polymorphisms (SNPs), PTSD, and their interactions for association with DMN connectivity in 134 White non-Hispanic veterans. We began by analyzing candidate SNPs identified in prior meta-analyses of relevant psychiatric traits and found that rs7997012 (an HTR2A SNP), implicated previously in anti-depressant medication response in the Sequenced Treatment Alternatives for Depression study (STAR(*)D; McMahon et al., 2006), interacted with PTSD to predict reduced connectivity between the posterior cingulate cortex (PCC) and the right medial prefrontal cortex and right middle temporal gyrus (MTG). rs130058 (HTR1B) was associated with connectivity between the PCC and right angular gyrus. We then expanded our analysis to 99 HTR1B and HTR2A SNPs and found two HTR2A SNPs (rs977003 and rs7322347) that significantly moderated the association between PTSD severity and the PCC-right MTG component of the DMN after correcting for multiple testing. Finally, to obtain a more precise localization of the most significant SNP × PTSD interaction, we performed a whole cortex vertex-wise analysis of the rs977003 effect. This analysis revealed the locus of the pre-frontal effect to be in portions of the superior frontal gyrus, while the temporal lobe effect was centered in the middle and inferior temporal gyri. These findings point to the influence of HTR2A variants on DMN connectivity and advance knowledge of the role of 5-HT2A receptors in the neurobiology of PTSD. PMID:27445670

  18. 5-HT2A Gene Variants Moderate the Association between PTSD and Reduced Default Mode Network Connectivity

    PubMed Central

    Miller, Mark W.; Sperbeck, Emily; Robinson, Meghan E.; Sadeh, Naomi; Wolf, Erika J.; Hayes, Jasmeet P.; Logue, Mark; Schichman, Steven A.; Stone, Angie; Milberg, William; McGlinchey, Regina

    2016-01-01

    The default mode network (DMN) has been used to study disruptions of functional connectivity in a wide variety of psychiatric and neurological conditions, including posttraumatic stress disorder (PTSD). Studies indicate that the serotonin system exerts a modulatory influence on DMN connectivity; however, no prior study has examined associations between serotonin receptor gene variants and DMN connectivity in either clinical or healthy samples. We examined serotonin receptor single nucleotide polymorphisms (SNPs), PTSD, and their interactions for association with DMN connectivity in 134 White non-Hispanic veterans. We began by analyzing candidate SNPs identified in prior meta-analyses of relevant psychiatric traits and found that rs7997012 (an HTR2A SNP), implicated previously in anti-depressant medication response in the Sequenced Treatment Alternatives for Depression study (STAR*D; McMahon et al., 2006), interacted with PTSD to predict reduced connectivity between the posterior cingulate cortex (PCC) and the right medial prefrontal cortex and right middle temporal gyrus (MTG). rs130058 (HTR1B) was associated with connectivity between the PCC and right angular gyrus. We then expanded our analysis to 99 HTR1B and HTR2A SNPs and found two HTR2A SNPs (rs977003 and rs7322347) that significantly moderated the association between PTSD severity and the PCC-right MTG component of the DMN after correcting for multiple testing. Finally, to obtain a more precise localization of the most significant SNP × PTSD interaction, we performed a whole cortex vertex-wise analysis of the rs977003 effect. This analysis revealed the locus of the pre-frontal effect to be in portions of the superior frontal gyrus, while the temporal lobe effect was centered in the middle and inferior temporal gyri. These findings point to the influence of HTR2A variants on DMN connectivity and advance knowledge of the role of 5-HT2A receptors in the neurobiology of PTSD. PMID:27445670

  19. Serotonergic innervation of the amygdala: targets, receptors, and implications for stress and anxiety.

    PubMed

    Asan, Esther; Steinke, Maria; Lesch, Klaus-Peter

    2013-06-01

    The amygdala is a core component of neural circuits that mediate processing of emotional, particularly anxiety and fear-related stimuli across species. In addition, the nuclear complex plays a key role in the central nervous system stress response, and alterations in amygdala responsivity are found in neuropsychiatric disorders, especially those precipitated or sustained by stressors. Serotonin has been shown to shape and fine-tune neural plasticity in development and adulthood, thereby allowing for network flexibility and adaptive capacity in response to environmental challenges, and is implicated in the modulation of stimulus processing and stress sensitivity in the amygdala. The fact that altered amygdala activity patterns are observed upon pharmacological manipulations of serotonergic transmission, as well as in carriers of genetic variations in serotonin pathway-associated signaling molecules representing risk factors for neuropsychiatric disorders, underlines the importance of understanding the role and mode of action of serotonergic transmission in the amygdala for human psychopathology. Here, we present a short overview over organizational principles of the amygdala in rodents, non-human primates and humans, and review findings on the origin, morphology, and targets of serotonergic innervation, the distribution patterns and cellular expression of serotonin receptors, and the consequences of stress and pharmacological manipulations of serotonergic transmission in the amygdala, focusing particularly on the extensively studied basolateral complex and central nucleus.

  20. Evidence for a common biological basis of the Absorption trait, hallucinogen effects, and positive symptoms: epistasis between 5-HT2a and COMT polymorphisms.

    PubMed

    Ott, Ulrich; Reuter, Martin; Hennig, Juergen; Vaitl, Dieter

    2005-08-01

    Absorption represents a disposition to experience altered states of consciousness characterized by intensively focused attention. It is correlated with hypnotic susceptibility and includes phenomena ranging from vivid perceptions and imaginations to mystical experiences. Based on the assumption that drug-induced and naturally occurring mystical experiences share common neural mechanisms, we hypothesized that Absorption is influenced by the T102C polymorphism affecting the 5-HT2a receptor, which is known to be an important target site of hallucinogens like LSD. Based on the pivotal role ascribed to the prefrontal executive control network for absorbed attention and positive symptoms in schizophrenia, it was further hypothesized that Absorption is associated with the VAL158MET polymorphism of the catechol-O-methyltransferase (COMT) gene affecting the dopaminergic neurotransmitter system. The Tellegen Absorption Scale was administered to 336 subjects (95 male, 241 female). Statistical analysis revealed that the group with the T/T genotype of the T102C polymorphism, implying a stronger binding potential of the 5-HT2a receptor, indeed had significantly higher Absorption scores (F = 10.00, P = 0.002), while no main effect was found for the COMT polymorphism. However, the interaction between T102C and COMT genotypes yielded significance (F = 3.89; P = 0.049), underlining the known functional interaction between the 5-HT and the dopaminergic system. These findings point to biological foundations of the personality trait of Absorption.

  1. Dorsal prefrontal cortical serotonin 2A receptor binding indices are differentially related to individual scores on harm avoidance.

    PubMed

    Baeken, Chris; Bossuyt, Axel; De Raedt, Rudi

    2014-02-28

    Although the serotonergic system has been implicated in healthy as well as in pathological emotional states, knowledge about its involvement in personality is limited. Earlier research on this topic suggests that post-synaptic 5-HT2A receptors could be involved in particular in frontal cortical areas. In drug-naïve healthy individuals, we examined the relationship between these 5-HT2A receptors and the temperament dimension harm avoidance (HA) using 123I-5-I-R91150 single photon emission computed tomography (SPECT). HA is a personality feature closely related to stress, anxiety and depression proneness, and it is thought to be mediated by the serotonergic system. We focused on the prefrontal cortices as these regions are frequently implicated in cognitive processes related to a variety of affective disorders. We found a positive relationship between dorsal prefrontal cortical (DPFC) 5-HT2A receptor binding indices (BI) and individual HA scores. Further, our results suggest that those individuals with a tendency to worry or to ruminate are particularly prone to display significantly higher 5-HT2A receptor BI in the left DPFC. Although we only examined psychologically healthy individuals, this relationship suggests a possible vulnerability for affective disorders. PMID:24412555

  2. Contrasting mechanisms of action and sensitivity to antipsychotics of phencyclidine versus amphetamine: importance of nucleus accumbens 5-HT2A sites for PCP-induced locomotion in the rat.

    PubMed

    Millan, M J; Brocco, M; Gobert, A; Joly, F; Bervoets, K; Rivet, J; Newman-Tancredi, A; Audinot, V; Maurel, S

    1999-12-01

    In the present study, the comparative mechanisms of action of phencyclidine (PCP) and amphetamine were addressed employing the parameter of locomotion in rats. PCP-induced locomotion (PLOC) was potently blocked by the selective serotonin (5-HT)2A vs. D2 antagonists, SR46349, MDL100,907, ritanserin and fananserin, which barely affected amphetamine-induced locomotion (ALOC). In contrast, the selective D2 vs. 5-HT2A antagonists, eticlopride, raclopride and amisulpride, preferentially inhibited ALOC vs. PLOC. The potency of these drugs and 12 multireceptorial antipsychotics in inhibiting PLOC vs. ALOC correlated significantly with affinities at 5-HT2A vs. D2 receptors, respectively. Amphetamine and PCP both dose dependently increased dialysate levels of dopamine (DA) and 5-HT in the nucleus accumbens, striatum and frontal cortex (FCX) of freely moving rats, but PCP was proportionally more effective than amphetamine in elevating levels of 5-HT vs. DA in the accumbens. Further, whereas microinjection of PCP into the accumbens elicited locomotion, its introduction into the striatum or FCX was ineffective. The action of intra-accumbens PCP, but not intra-accumbens amphetamine, was abolished by SR46349 and clozapine. Parachloroamphetamine, which depleted accumbens pools of 5-HT but not DA, likewise abolished PLOC without affecting ALOC. In contrast, intra-accumbens 6-hydroxydopamine (6-OHDA), which depleted DA but not 5-HT, abolished ALOC but only partially attenuated PLOC. In conclusion, PLOC involves (indirect) activation of accumbens-localized 5-HT2A receptors by 5-HT. PLOC is, correspondingly, more potently blocked than ALOC by antipsychotics displaying marked affinity at 5-HT2A receptors.

  3. Effects of chronic treatment with two selective 5-HT2 antagonists on sleep in the rat.

    PubMed

    Pastel, R H; Echevarria, E; Cox, B; Blackburn, T P; Tortella, F C

    1993-04-01

    The effect of chronic administration of 2(2-dimethylaminoethylthio)-3-phenylquinoline (ICI-169,369) and 2(2-dimethylamino-2-methylpropylthio)-3-phenylquinoline (ICI-170,809), two selective 5-HT2 antagonists, on sleep was studied in rats. As previously shown, the acute effect of ICI-170,809 was to increase latency to rapid eye movement sleep (REMS), decrease the number of REM periods (REMPs), suppress the cumulative amount of REMS over 12 h, and increase the duration of REMPs in the first 6 h, while having no effect on non-REM sleep (NREMS). Administration of ICI-169,369 had similar effects except no change was seen in the duration of REMPs and cumulative REMS was suppressed for 24 h. When given 2 x daily for 5 days, tolerance to the REMS suppressant effects developed in both drugs. After discontinuation of treatment, a REMS rebound occurred after ICI-170,809, but not ICI-169,369. No significant effect on NREMS was seen after administration of ICI-170,809, whereas ICI-169,369 lowered 24-h cumulative NREMS on the fifth day of administration.

  4. Anxiolytic-like effect of 5-HT(2) ligands and benzodiazepines co-administration: comparison of two animal models of anxiety (the four-plate test and the elevated plus maze).

    PubMed

    Massé, Fabienne; Nic Dhonnchadha, Brid Aine; Hascoët, Martine; Bourin, Michel

    2007-02-27

    Animal models of anxiety remain a useful tool for evaluating the anxiolytic-like effect of new treatments. Even though many tests are similarly based on exploration tasks, using more than one animal model is all the more recommended since there are qualitative differences between such tests. Furthermore, although many tests are excellent tool for detecting benzodiazepines/GABA compounds, inconsistent results have been reported for 5-HT ligands. Here, two animal models have been chosen, the elevated plus maze (EPM) based on the natural aversion of rodents for open spaces and the four-plates test (FPT) a models involving the animal's conditioned response to stressful events. In a recent study, we have demonstrated that the 5-HT(2A/2C) agonist DOI and the 5-HT(2B) agonist BW 723C86 were shown to produce an anxiolytic-like effect in both tests. This study aimed to evaluate a putative interaction between benzodiazepine and 5-HT(2) ligands in the FPT and the EPM. Indeed, close distribution of GABA(A) and 5-HT(2) receptors was found in brain structures leading to functional interrelation. In the FPT, sub-active doses of alprazolam and diazepam were strongly potentiated by DOI. BW 723C86, also potentiated the anxiolytic-like effect of the two benzodiazepines with a weaker effect. In the same way, DOI and benzodiazepines administration induced an increase in the anxiolytic-like parameters in the EPM with a strongest effect observed with alprazolam. Regardless of anxiety models used in this study, 5-HT(2A) ligands exerted facilitatory influence upon GABAergic system. Therefore, the FPT and the EPM might implicate the same kind of anxiety.

  5. Weight Loss After RYGB Is Independent of and Complementary to Serotonin 2C Receptor Signaling in Male Mice

    PubMed Central

    Carmody, Jill S.; Ahmad, Nadia N.; Machineni, Sriram; Lajoie, Scott

    2015-01-01

    Roux-en-Y gastric bypass (RYGB) typically leads to substantial, long-term weight loss (WL) and diabetes remission, although there is a wide variation in response to RYGB among individual patients. Defining the pathways through which RYGB works should aid in the development of less invasive anti-obesity treatments, whereas identifying weight-regulatory pathways unengaged by RYGB could facilitate the development of therapies that complement the beneficial effects of surgery. Activation of serotonin 2C receptors (5-HT2CR) by serotonergic drugs causes WL in humans and animal models. 5-HT2CR are located on neurons that activate the melanocortin-4 receptors, which are essential for WL after RYGB. We therefore sought to determine whether 5-HT2CR signaling is also essential for metabolic effects of RYGB or whether it is a potentially complementary pathway, the activation of which could extend the benefits of RYGB. Diet-induced obese male mice deficient for the 5-HT2CR and their wild-type littermates underwent RYGB or sham operation. Both groups lost similar amounts of weight after RYGB, demonstrating that the improved metabolic phenotype after RYGB is 5-HT2CR independent. Consistent with this hypothesis, wild-type RYGB-treated mice lost additional weight after the administration of the serotonergic drugs fenfluramine and meta-chlorophenylpiperazine but not the nonserotonergic agent topiramate. The fact that RYGB does not depend on 5-HT2CR signaling suggests that there are important WL mechanisms not fully engaged by surgery that could potentially be harnessed for medical treatment. These results suggest a rational basis for designing medical-surgical combination therapies to optimize clinical outcomes by exploiting complementary physiological mechanisms of action. PMID:26066076

  6. Serotonin 2A receptor agonist binding in the human brain with [11C]Cimbi-36

    PubMed Central

    Ettrup, Anders; da Cunha-Bang, Sophie; McMahon, Brenda; Lehel, Szabolcs; Dyssegaard, Agnete; Skibsted, Anine W; Jørgensen, Louise M; Hansen, Martin; Baandrup, Anders O; Bache, Søren; Svarer, Claus; Kristensen, Jesper L; Gillings, Nic; Madsen, Jacob; Knudsen, Gitte M

    2014-01-01

    [11C]Cimbi-36 was recently developed as a selective serotonin 2A (5-HT2A) receptor agonist radioligand for positron emission tomography (PET) brain imaging. Such an agonist PET radioligand may provide a novel, and more functional, measure of the serotonergic system and agonist binding is more likely than antagonist binding to reflect 5-HT levels in vivo. Here, we show data from a first-in-human clinical trial with [11C]Cimbi-36. In 29 healthy volunteers, we found high brain uptake and distribution according to 5-HT2A receptors with [11C]Cimbi-36 PET. The two-tissue compartment model using arterial input measurements provided the most optimal quantification of cerebral [11C]Cimbi-36 binding. Reference tissue modeling was feasible as it induced a negative but predictable bias in [11C]Cimbi-36 PET outcome measures. In five subjects, pretreatment with the 5-HT2A receptor antagonist ketanserin before a second PET scan significantly decreased [11C]Cimbi-36 binding in all cortical regions with no effects in cerebellum. These results confirm that [11C]Cimbi-36 binding is selective for 5-HT2A receptors in the cerebral cortex and that cerebellum is an appropriate reference tissue for quantification of 5-HT2A receptors in the human brain. Thus, we here describe [11C]Cimbi-36 as the first agonist PET radioligand to successfully image and quantify 5-HT2A receptors in the human brain. PMID:24780897

  7. Mice Lacking Serotonin 2C Receptors Have increased Affective Responses to Aversive Stimuli

    PubMed Central

    Bonasera, Stephen J.; Schenk, A. Katrin; Luxenberg, Evan J.; Wang, Xidao; Basbaum, Allan; Tecott, Laurence H.

    2015-01-01

    Although central serotonergic systems are known to influence responses to noxious stimuli, mechanisms underlying serotonergic modulation of pain responses are unclear. We proposed that serotonin 2C receptors (5-HT2CRs), which are expressed within brain regions implicated in sensory and affective responses to pain, contribute to the serotonergic modulation of pain responses. In mice constitutively lacking 5-HT2CRs (2CKO mice) we found normal baseline sensory responses to noxious thermal, mechanical and chemical stimuli. In contrast, 2CKO mice exhibited a selective enhancement of affect-related ultrasonic afterdischarge vocalizations in response to footshock. Enhanced affect-related responses to noxious stimuli were also exhibited by 2CKO mice in a fear-sensitized startle assay. The extent to which a brief series of unconditioned footshocks produced enhancement of acoustic startle responses was markedly increased in 2CKO mice. As mesolimbic dopamine pathways influence affective responses to noxious stimuli, and these pathways are disinhibited in 2CKO mice, we examined the sensitivity of footshock-induced enhancement of startle to dopamine receptor blockade. Systemic administration of the dopamine D2/D3 receptor antagonist raclopride selectively reduced footshock-induced enhancement of startle without influencing baseline acoustic startle responses. We propose that 5-HT2CRs regulate affective behavioral responses to unconditioned aversive stimuli through mechanisms involving the disinhibition of ascending dopaminergic pathways. PMID:26630489

  8. Serotonergic hallucinogens as translational models relevant to schizophrenia.

    PubMed

    Halberstadt, Adam L; Geyer, Mark A

    2013-11-01

    One of the oldest models of schizophrenia is based on the effects of serotonergic hallucinogens such as mescaline, psilocybin, and (+)-lysergic acid diethylamide (LSD), which act through the serotonin 5-HT(2A) receptor. These compounds produce a 'model psychosis' in normal individuals that resembles at least some of the positive symptoms of schizophrenia. Based on these similarities, and because evidence has emerged that the serotonergic system plays a role in the pathogenesis of schizophrenia in some patients, animal models relevant to schizophrenia have been developed based on hallucinogen effects. Here we review the behavioural effects of hallucinogens in four of those models, the receptor and neurochemical mechanisms for the effects and their translational relevance. Despite the difficulty of modelling hallucinogen effects in nonverbal species, animal models of schizophrenia based on hallucinogens have yielded important insights into the linkage between 5-HT and schizophrenia and have helped to identify receptor targets and interactions that could be exploited in the development of new therapeutic agents. PMID:23942028

  9. The effect of intrahippocampal injections of ritanserin (5HT2A/2C antagonist) and granisetron (5HT3 antagonist) on learning as assessed in the spatial version of the water maze.

    PubMed

    Naghdi, Nasser; Harooni, Hooman E

    2005-02-28

    5HT(2A/2C) and 5HT(3) receptors have an important role in cognitive behavior specially in spatial learning and memory but the literature concerning the role of these receptors in hippocampus in cognition remains controversial. In the present study a 5HT(2A/2C) antagonist ritanserin (0, 2, 4, 8 microg/0.5 microl) and a 5HT(3) antagonist granisetron (0.0, 0.05, 0.25, 0.5 microg/0.5 microl) were injected bilaterally into the CA1 region of rat hippocampus, 20 min before each training session in Morris Water Maze (MWM) task. Compare with control group, ritanserin (4 microg/0.5 microl) significantly reduced the escape latency and traveled distance of swimming to platform, but granisetron (0.25 microg/0.5 microl) significantly increased those parameters. Both drugs had no effect on escape latency and traveled distance of a non-spatial visual discrimination task. These results suggest a differential role of 5HT(2A/2C) and 5HT(3) receptors during spatial learning that ritanserin improves rat performance in spatial discrimination task whereas granisetron impairs it.

  10. The effects of the preferential 5-HT2A agonist psilocybin on prepulse inhibition of startle in healthy human volunteers depend on interstimulus interval.

    PubMed

    Vollenweider, Franz X; Csomor, Philipp A; Knappe, Bernhard; Geyer, Mark A; Quednow, Boris B

    2007-09-01

    Schizophrenia patients exhibit impairments in prepulse inhibition (PPI) of the startle response. Hallucinogenic 5-HT(2A) receptor agonists are used for animal models of schizophrenia because they mimic some symptoms of schizophrenia in humans and induce PPI deficits in animals. Nevertheless, one report indicates that the 5-HT(2A) receptor agonist psilocybin increases PPI in healthy humans. Hence, we investigated these inconsistent results by assessing the dose-dependent effects of psilocybin on PPI in healthy humans. Sixteen subjects each received placebo or 115, 215, and 315 microg/kg of psilocybin at 4-week intervals in a randomized and counterbalanced order. PPI at 30-, 60-, 120-, 240-, and 2000-ms interstimulus intervals (ISIs) was measured 90 and 165 min after drug intake, coinciding with the peak and post-peak effects of psilocybin. The effects of psilocybin on psychopathological core dimensions and sustained attention were assessed by the Altered States of Consciousness Rating Scale (5D-ASC) and the Frankfurt Attention Inventory (FAIR). Psilocybin dose-dependently reduced PPI at short (30 ms), had no effect at medium (60 ms), and increased PPI at long (120-2000 ms) ISIs, without affecting startle reactivity or habituation. Psilocybin dose-dependently impaired sustained attention and increased all 5D-ASC scores with exception of Auditory Alterations. Moreover, psilocybin-induced impairments in sustained attention performance were positively correlated with reduced PPI at the 30 ms ISI and not with the concomitant increases in PPI observed at long ISIs. These results confirm the psilocybin-induced increase in PPI at long ISIs and reveal that psilocybin also produces a decrease in PPI at short ISIs that is correlated with impaired attention and consistent with deficient PPI in schizophrenia.

  11. Single cell laser dissection with molecular beacon polymerase chain reaction identifies 2A as the predominant serotonin receptor subtype in hypoglossal motoneurons.

    PubMed

    Zhan, G; Shaheen, F; Mackiewicz, M; Fenik, P; Veasey, S C

    2002-01-01

    We hypothesize that sleep state-dependent withdrawal of serotonin (5-hydroxytryptamine, 5-HT) at upper airway (UAW) dilator motoneurons contributes significantly to sleep-related suppression of dilator muscle activity in obstructive sleep apnea. Identification of 5-HT receptor subtypes involved in postsynaptic facilitation of UAW motoneuron activity may provide pharmacotherapies for this prevalent disorder. We have adapted two assays to provide semi-quantitative measurements of mRNA copy numbers for 5-HT receptor subtypes in single UAW motoneurons. Specifically, soma of 111 hypoglossal (XII) motoneurons in 10 adult male rats were captured using a laser dissection microscope, and then used individually in single round molecular beacon polymerase chain reaction (PCR) for real-time quantitation of 5-HT(2A), 5-HT(2C), 5-HT(3), 5-HT(4), 5-HT(5A), 5-HT(5B), 5-HT(6) or 5-HT(7) receptor. Receptor mRNA copy numbers from single XII motoneurons were compared to control samples from within the XII nucleus and lateral medulla. All 20 motoneuronal soma assayed for the 5-HT(2A) receptor had measurable copy numbers (7028+/-2656 copies/cell). In contrast, copy numbers for the 5-HT(2A) receptor in XII non-motoneuronal (n=17) and lateral medulla (n=15) samples were 81+/-51 copies and 83+/-35 copies, respectively, P<0.05. Seven of 13 XII motoneurons assayed had measurable 5-HT(2C) receptor copy numbers of mRNA (287+/-112 copies/cell). XII soma had minimal 5-HT(3), 5-HT(4), 5-HT(5A), 5-HT(5B), 5-HT(6) or 5-HT(7) receptor mRNA. 5-HT(2A) receptor mRNA presence within XII motoneurons was confirmed with digoxigenin-labeled in situ hybridization. In summary, combined use of laser dissection and molecular beacon PCR revealed 5-HT(2A) receptor as the predominant 5-HT receptor mRNA in XII motoneurons, and identified small quantities of 5-HT(2C) receptor. This information will allow a more complete understanding of serotonergic control of respiratory activity.

  12. Inhibitory role of the serotonergic system on estrogen receptor α expression in the female rat hypothalamus.

    PubMed

    Ito, Hiroyuki; Shimogawa, Yuji; Kohagura, Daisuke; Moriizumi, Tetsuji; Yamanouchi, Korehito

    2014-11-01

    The role of the serotonergic system in regulating the expression of estrogen receptor (ER) α in the hypothalamus was investigated in ovariectomized rats by injecting a serotonin synthesis inhibitor, parachlorophenylalanine (PCPA), or by destroying the dorsal raphe nucleus (DR). The number of ERα-immunoreactive (ir) cells was counted in the anteroventral periventricular nucleus in the preoptic area (AVPV), ventrolateral ventromedial hypothalamic nucleus (vlVMN), and arcuate nucleus (ARCN). Seven days after ovariectomy, 100mg/kg PCPA or saline was injected daily for 4 days. Alternatively, radiofrequency lesioning of the DR (DRL) or sham lesions were made on the same time of ovariectomy. One-day after the last injection of PCPA or 7 days after brain surgery, the brain was fixed for immunostaining of ERα and the number of ERα-ir cell were counted in the nuclei of interest. The mean number of ERα-ir cells/mm(3) (density) in the AVPV of the PCPA or DRL groups was statistically higher than that in the saline or sham group. In the vlVMN and ARCN of the PCPA or DRL groups, the mean density of ERα-ir cells was comparable to the saline or sham groups. These results suggest that the serotonergic system of the DR plays an inhibitory role on the expression of ERα in the AVPV, but not in the vlVMN and ARCN.

  13. Serotonin modulates insect hemocyte phagocytosis via two different serotonin receptors.

    PubMed

    Qi, Yi-Xiang; Huang, Jia; Li, Meng-Qi; Wu, Ya-Su; Xia, Ren-Ying; Ye, Gong-Yin

    2016-01-01

    Serotonin (5-HT) modulates both neural and immune responses in vertebrates, but its role in insect immunity remains uncertain. We report that hemocytes in the caterpillar, Pieris rapae are able to synthesize 5-HT following activation by lipopolysaccharide. The inhibition of a serotonin-generating enzyme with either pharmacological blockade or RNAi knock-down impaired hemocyte phagocytosis. Biochemical and functional experiments showed that naive hemocytes primarily express 5-HT1B and 5-HT2B receptors. The blockade of 5-HT1B significantly reduced phagocytic ability; however, the blockade of 5-HT2B increased hemocyte phagocytosis. The 5-HT1B-null Drosophila melanogaster mutants showed higher mortality than controls when infected with bacteria, due to their decreased phagocytotic ability. Flies expressing 5-HT1B or 5-HT2B RNAi in hemocytes also showed similar sensitivity to infection. Combined, these data demonstrate that 5-HT mediates hemocyte phagocytosis through 5-HT1B and 5-HT2B receptors and serotonergic signaling performs critical modulatory functions in immune systems of animals separated by 500 million years of evolution. PMID:26974346

  14. Serotonin modulates insect hemocyte phagocytosis via two different serotonin receptors

    PubMed Central

    Qi, Yi-xiang; Huang, Jia; Li, Meng-qi; Wu, Ya-su; Xia, Ren-ying; Ye, Gong-yin

    2016-01-01

    Serotonin (5-HT) modulates both neural and immune responses in vertebrates, but its role in insect immunity remains uncertain. We report that hemocytes in the caterpillar, Pieris rapae are able to synthesize 5-HT following activation by lipopolysaccharide. The inhibition of a serotonin-generating enzyme with either pharmacological blockade or RNAi knock-down impaired hemocyte phagocytosis. Biochemical and functional experiments showed that naive hemocytes primarily express 5-HT1B and 5-HT2B receptors. The blockade of 5-HT1B significantly reduced phagocytic ability; however, the blockade of 5-HT2B increased hemocyte phagocytosis. The 5-HT1B-null Drosophila melanogaster mutants showed higher mortality than controls when infected with bacteria, due to their decreased phagocytotic ability. Flies expressing 5-HT1B or 5-HT2B RNAi in hemocytes also showed similar sensitivity to infection. Combined, these data demonstrate that 5-HT mediates hemocyte phagocytosis through 5-HT1B and 5-HT2B receptors and serotonergic signaling performs critical modulatory functions in immune systems of animals separated by 500 million years of evolution. DOI: http://dx.doi.org/10.7554/eLife.12241.001 PMID:26974346

  15. Genetic dysfunction of serotonin 2A receptor hampers response to antidepressant drugs: A translational approach.

    PubMed

    Qesseveur, Gaël; Petit, Anne Cécile; Nguyen, Hai Thanh; Dahan, Lionel; Colle, Romain; Rotenberg, Samuel; Seif, Isabelle; Robert, Pauline; David, Denis; Guilloux, Jean-Philippe; Gardier, Alain M; Verstuyft, Céline; Becquemont, Laurent; Corruble, Emmanuelle; Guiard, Bruno P

    2016-06-01

    Pharmacological studies have yielded valuable insights into the role of the serotonin 2A (5-HT2A) receptor in major depressive disorder (MDD) and antidepressant drugs (ADs) response. However, it is still unknown whether genetic variants in the HTR2A gene affect the therapeutic outcome of ADs and the mechanism underlying the regulation of such response remains poorly described. In this context, a translational human-mouse study offers a unique opportunity to address the possibility that variations in the HTR2A gene may represent a relevant marker to predict the efficacy of ADs. In a first part of this study, we investigated in depressed patients the effect of three HTR2A single nucleotide polymorphisms (SNPs), selected for their potential functional consequences on 5-HT2A receptor (rs6313, rs6314 and rs7333412), on response and remission rates after 3 months of antidepressant treatments. We also explored the consequences of the constitutive genetic inactivation of the 5-HT2A receptor (i.e. in 5-HT2A(-/-) mice) on the activity of acute and prolonged administration of SSRIs. Our clinical data indicate that GG patients for the rs7333412 SNP were less prone to respond to ADs than AA/AG patients. In the preclinical study, we demonstrated that the 5-HT2A receptor exerts an inhibitory influence on the neuronal activity of the serotonergic system after acute administration of SSRIs. However, while the chronic administration of the SSRIs escitalopram or fluoxetine elicited a progressive increased in the firing rate of 5-HT neurons in 5-HT2A(+/+) mice, it failed to do so in 5-HT2A(-/-) mutants. These electrophysiological impairments were associated with a decreased ability of the chronic administration of fluoxetine to stimulate hippocampal plasticity and to produce antidepressant-like activities. Genetic loss of the 5-HT2A receptor compromised the activity of chronic treatment with SSRIs, making this receptor a putative marker to predict ADs response. PMID:26764241

  16. Modulation of GABA release from the thalamic reticular nucleus by cocaine and caffeine: role of serotonin receptors.

    PubMed

    Goitia, Belén; Rivero-Echeto, María Celeste; Weisstaub, Noelia V; Gingrich, Jay A; Garcia-Rill, Edgar; Bisagno, Verónica; Urbano, Francisco J

    2016-02-01

    Serotonin receptors are targets of drug therapies for a variety of neuropsychiatric and neurodegenerative disorders. Cocaine inhibits the re-uptake of serotonin (5-HT), dopamine, and noradrenaline, whereas caffeine blocks adenosine receptors and opens ryanodine receptors in the endoplasmic reticulum. We studied how 5-HT and adenosine affected spontaneous GABAergic transmission from thalamic reticular nucleus. We combined whole-cell patch clamp recordings of miniature inhibitory post-synaptic currents (mIPSCs) in ventrobasal thalamic neurons during local (puff) application of 5-HT in wild type (WT) or knockout mice lacking 5-HT2A receptors (5-HT2A -/-). Inhibition of mIPSCs frequency by low (10 μM) and high (100 μM) 5-HT concentrations was observed in ventrobasal neurons from 5-HT2A -/- mice. In WT mice, only 100 μM 5-HT significantly reduced mIPSCs frequency. In 5-HT2A -/- mice, NAN-190, a specific 5-HT1A antagonist, prevented the 100 μM 5-HT inhibition while blocking H-currents that prolonged inhibition during post-puff periods. The inhibitory effects of 100 μM 5-HT were enhanced in cocaine binge-treated 5-HT2A -/- mice. Caffeine binge treatment did not affect 5-HT-mediated inhibition. Our findings suggest that both 5-HT1A and 5-HT2A receptors are present in pre-synaptic thalamic reticular nucleus terminals. Serotonergic-mediated inhibition of GABA release could underlie aberrant thalamocortical physiology described after repetitive consumption of cocaine. Our findings suggest that both 5-HT1A , 5-HT2A and A1 receptors are present in pre-synaptic TRN terminals. 5-HT1A and A1 receptors would down-regulate adenylate cyclase, whereas 5-HT1A would also increase the probability of the opening of G-protein-activated inwardly rectifying K(+) channels (GIRK). Sustained opening of GIRK channels would hyperpolarize pre-synaptic terminals activating H-currents, resulting in less GABA release. 5-HT2A -would activate PLC and IP3 , increasing intracellular [Ca(2+) ] and

  17. Association study of T102C 5-HT2A polymorphism in schizophrenic patients: diagnosis, psychopathology, and suicidal behavior

    PubMed Central

    Correa, Humberto; De Marco, Luiz; Boson, Wolfanga; Nicolato, Rodrigo; Teixeira, Antó L.; Campo, Valdir R.; Romano-Silva, Marco A.

    2007-01-01

    The objective of this study was to examine the association between the serotonin (5-HT)2A gene polymorphism (102T/C) and suicidal behavior in schizophrenic inpatients. We studied 129 subjects who met the diagnostic criteria for schizophrenia according to a structured clinicai interview (MINI-PLUS), Patients underwent a semistructured interview to assess suicide attempt history and its characteristics, in addition, at least one close relative of the patient was interviewed to assess prohand and family suicidal behavior. Healthy controls were students and hospital staff members free of psychiatric and medical illness. Genotypes were determined after polymerase chain reaction amplification of the region of 5-HT2A/T102C containing the polymorphic site and digestion with the restriction enzyme Hpall, We found no association between suicidal attempt history and suicide attempt characteristics and genotypic or aileie frequencies. Suicidal behavior was also not associated with demographic or psychopathological characteristics. These results suggest that the S-HT2A gene polymorphism (102T/C) is not involved in genetic susceptibility to suicidal behavior, but further studies in a larger sample are needed. PMID:17506229

  18. Effects of naftidrofuryl oxalate, a 5-HT2 antagonist, on neuronal damage and local cerebral blood flow following transient cerebral ischemia in gerbils.

    PubMed

    Fujikura, H; Kato, H; Araki, T; Ban, H; Hasegawa, Y; Kogure, K

    1994-02-01

    Effects of naftidrofuryl oxalate (naftidrofuryl), a 5-HT2 antagonist, on neuronal damage and local cerebral blood flow was examined in a gerbil model of transient forebrain ischemia. Effect of ketanserin tartrate (ketanserin), another 5-HT2 antagonist, on neuronal damage was also examined. Pretreatment with naftidrofuryl or ketanserin prevented hippocampal CA1 neuronal loss after 5 min of transient ischemia. Naftidrofuryl did not improve hippocampal blood flow during and 1 h after transient ischemia determined by [14C]iodoantipyrine autoradiography but increased blood flow in the caudate-putamen 1 h after transient ischemia. The results show that: (1) the 5-HT2 antagonists protect against hippocampal CA1 neuronal damage; and (2) the protective effect of naftidrofuryl may not be caused by a hemodynamic mechanism but by a direct inhibitory neuromodulation via 5-HT2 antagonistic action.

  19. Involvement of 5-HT receptor subtypes in the discriminative stimulus properties of mescaline.

    PubMed

    Appel, J B; Callahan, P M

    1989-01-01

    In order to further evaluate the extent to which particular 5-HT receptor subtypes (5-HT1, 5-HT2) might be involved in the behavioral effects of hallucinogenic drugs, rats were trained to discriminate mescaline (10 mg/kg i.p.) from saline and were given substitution (generalization) and combination (antagonism) tests with putatively selective serotonergic and related neuroactive compounds. The mescaline cue generalized to relatively high doses of the 5-HT2 agonists, 2,5-dimethoxy-4-methylamphetamine (DOM), LSD and psilocybin; the extent of generalization to 5-HT1 agonists (8-hydroxy-2-[diethylamino]tetralin (8-OHDPAT), RU-24969 and 8-hydroxy-2-[di-n-propylamino]tetralin (TFMPP] was unclear. Combinations of the training drug and sufficiently high doses of 5-HT2 antagonists (ketanserin, LY-53857, pirenperone) were followed by saline-lever responding; less selective central 5-HT (metergoline), and DA (SCH-23390, haloperidol) antagonists, did not block the mescaline cue. These data suggest that 5-HT2 receptors are involved in the stimulus properties of mescaline.

  20. Pharmacogenetic Study of Serotonin Transporter and 5HT2A Genotypes in Autism

    PubMed Central

    Najjar, Fedra; Owley, Thomas; Mosconi, Matthew W.; Jacob, Suma; Hur, Kwan; Guter, Stephen J.; Sweeney, John A.; Gibbons, Robert D; Bishop, Jeffrey R.

    2015-01-01

    Abstract Objective: The purpose of this study was to determine whether polymorphisms in the serotonin transporter (SLC6A4) and serotonin-2A receptor (HTR2A) genes are associated with response to escitalopram in patients with autism spectrum disorder (ASD). Methods: Forty-four participants with ASD were enrolled in a 6 week, forced titration, open label examination of the selective serotonin reuptake inhibitor (SSRI) escitalopram. Doses increased at weekly intervals starting at 2.5mg daily with a maximum possible dose of 20 mg daily achieved by the end of the study. If adverse events were experienced, participants subsequently received the previously tolerated dose for the duration of study. SLC6A4 (5-HTTLPR) and HTR2A (rs7997012) genotype groups were assessed in relation to treatment outcomes and drug doses. Results: Insistence on sameness and irritability symptoms significantly improved over the course of the 6 week treatment period (p<0.0001) in this open-label trial. There were no significant differences observed in the rate of symptom improvement over time across genotype groups. Similarly, dosing trajectory was not significantly associated with genotype groups. Conclusions: Previous studies have identified SLC6A4 and HTR2A associations with SSRI response in patients with depression and 5-HTTLPR (SLC6A4) associations with escitalopram response in ASD. We did not observe evidence for similar relationships in this ASD study. PMID:26262902

  1. Tramadol and Tramadol+Caffeine Synergism in the Rat Formalin Test Are Mediated by Central Opioid and Serotonergic Mechanisms

    PubMed Central

    Carrillo-Munguía, Norma; González-Trujano, Ma. Eva; Huerta, Miguel; Trujillo, Xochitl; Díaz-Reval, M. Irene

    2015-01-01

    Different analgesic combinations with caffeine have shown this drug to be capable of increasing the analgesic effect. Many combinations with nonsteroidal anti-inflammatory drugs (NSAIDs) have been carried out, but, in regard to opioids, only combinations with morphine and tramadol have been reported. The antinociceptive synergism mechanism of these combinations is not well understood. The purpose of the present study was to determine the participation of spinal and supraspinal opioidergic and serotonergic systems in the synergic effect of the tramadol+caffeine combination in the rat formalin test. At the supraspinal level, the opioid antagonist, naloxone, completely reversed the effect of the drug combination, whereas ketanserin, a 5-HT2 receptor antagonist, inhibited the effect by 60%; however, ondansetron, a 5-HT3 receptor antagonist, did not alter the combination effect. When the antagonists were intrathecally administered, there was a significant reduction in all tramadol-caffeine combination effects. With respect to tramadol alone, there was significant participation of the opioid system at the supraspinal level, whereas it was the serotonergic system that participated at the spinal level by means of the two receptors studied. In conclusion, the tramadol+caffeine combination synergically activated the opioid and serotonergic systems at the supraspinal level, as well as at the spinal level, to produce the antinociception. PMID:26146627

  2. Nicotine increases GABAergic input on rat dorsal raphe serotonergic neurons through alpha7 nicotinic acetylcholine receptor.

    PubMed

    Hernández-Vázquez, F; Chavarría, K; Garduño, J; Hernández-López, S; Mihailescu, S P

    2014-12-15

    The dorsal raphe nucleus (DRN) contains large populations of serotonergic (5-HT) neurons. This nucleus receives GABAergic inhibitory afferents from many brain areas and from DRN interneurons. Both GABAergic and 5-HT DRN neurons express functional nicotinic acetylcholine receptors (nAChRs). Previous studies have demonstrated that nicotine increases 5-HT release and 5-HT DRN neuron discharge rate by stimulating postsynaptic nAChRs and by increasing glutamate and norepinephrine release inside DRN. However, the influence of nicotine on the GABAergic input to 5-HT DRN neurons was poorly investigated. Therefore, the aim of this work was to determine the effect of nicotine on GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs) of 5-HT DRN neurons and the subtype of nAChR(s) involved in this response. Experiments were performed in coronal slices obtained from young Wistar rats. GABAergic sIPSCs were recorded from post hoc-identified 5-HT DRN neurons with the whole cell voltage patch-clamp technique. Administration of nicotine (1 μM) increased sIPSC frequency in 72% of identified 5-HT DRN neurons. This effect was not reproduced by the α4β2 nAChR agonist RJR-2403 and was not influenced by TTX (1 μM). It was mimicked by the selective agonist for α7 nAChR, PNU-282987, and exacerbated by the positive allosteric modulator of the same receptor, PNU-120596. The nicotine-induced increase in sIPSC frequency was independent on voltage-gated calcium channels and dependent on Ca(2+)-induced Ca(2+) release (CICR). These results demonstrate that nicotine increases the GABAergic input to most 5-HT DRN neurons, by activating α7 nAChRs and producing CICR in DRN GABAergic terminals.

  3. Nicotine increases GABAergic input on rat dorsal raphe serotonergic neurons through alpha7 nicotinic acetylcholine receptor.

    PubMed

    Hernández-Vázquez, F; Chavarría, K; Garduño, J; Hernández-López, S; Mihailescu, S P

    2014-12-15

    The dorsal raphe nucleus (DRN) contains large populations of serotonergic (5-HT) neurons. This nucleus receives GABAergic inhibitory afferents from many brain areas and from DRN interneurons. Both GABAergic and 5-HT DRN neurons express functional nicotinic acetylcholine receptors (nAChRs). Previous studies have demonstrated that nicotine increases 5-HT release and 5-HT DRN neuron discharge rate by stimulating postsynaptic nAChRs and by increasing glutamate and norepinephrine release inside DRN. However, the influence of nicotine on the GABAergic input to 5-HT DRN neurons was poorly investigated. Therefore, the aim of this work was to determine the effect of nicotine on GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs) of 5-HT DRN neurons and the subtype of nAChR(s) involved in this response. Experiments were performed in coronal slices obtained from young Wistar rats. GABAergic sIPSCs were recorded from post hoc-identified 5-HT DRN neurons with the whole cell voltage patch-clamp technique. Administration of nicotine (1 μM) increased sIPSC frequency in 72% of identified 5-HT DRN neurons. This effect was not reproduced by the α4β2 nAChR agonist RJR-2403 and was not influenced by TTX (1 μM). It was mimicked by the selective agonist for α7 nAChR, PNU-282987, and exacerbated by the positive allosteric modulator of the same receptor, PNU-120596. The nicotine-induced increase in sIPSC frequency was independent on voltage-gated calcium channels and dependent on Ca(2+)-induced Ca(2+) release (CICR). These results demonstrate that nicotine increases the GABAergic input to most 5-HT DRN neurons, by activating α7 nAChRs and producing CICR in DRN GABAergic terminals. PMID:25231613

  4. Mechanisms linking depression co-morbid with obesity: An approach for serotonergic type 3 receptor antagonist as novel therapeutic intervention.

    PubMed

    Kurhe, Yeshwant; Mahesh, Radhakrishnan

    2015-10-01

    Despite of the enormous research, therapeutic treatment for depression has always been a serious issue. Even though depression and obesity are individual abnormal health conditions, each act as a triggering factor for the other. Obese individuals are twice prone to develop depression than that of non-obese persons. The exact mechanism how obesity increases the risk for depression still remains an area of interest for research in neuropsychopharmacology. Depression and obesity share some common pathological pathways such as hyperactivity of hypothalamic-pituitary-adrenal (HPA) axis, dysregulation of oxidant/antioxidant system balance, higher level of inflammatory cytokines, leptin resistance, altered plasma glucose, insulin resistance, reduced neuronal brain derived neurotrophic factor (BDNF) and decreased serotonergic neurotransmission in various regions of brain. The antidepressant-like effect of 5-HT3 receptor antagonists through allosteric modulation of serotonergic pathways is well evident from several research investigations belonging to our and some in other laboratories. Furthermore, serotonin regulates diet intake, leptin, corticosterone, inflammatory mechanisms, altered plasma glucose, insulin resistance and BDNF concentration in brain. The present review deals with various biological mechanisms involved in depression co-morbid with obesity and 5-HT3 receptor antagonists by modulation of serotonergic system as a therapeutic target for such co-morbid disorder.

  5. Serotonergic innervation of the inner ear: is it involved in the general physiological control of the auditory receptor?

    PubMed

    Bartolomé, M Visitación; Gil-Loyzaga, Pablo

    2005-01-01

    The auditory pathway of mammals is composed of two complementary ascending afferent and descending efferent independent systems. The brainstem nuclei and cochlear projections for these systems are now well-known. In addition, a highly conspicuous distribution for serotonergic fibers was recently reported. This study focused on these serotonergic fibers and their neurons of origin. We identified several different types of serotonergic brainstem neurons surrounding the superior olivary complex and around the periolivary nuclei. Even though the 5-hydroxytryptamine (5-HT) efferent cochlear innervation originates in the periolivary area of the superior olivary complex system projecting to the cochlea, it is not involved in the transduction of pure tones during auditory processing. However, recent findings, after cochlear blockade of serotonin transporters, strongly suggested that this neuroactive substance has an important turnover within the auditory receptor. The presence of a conspicuous peripheral nerve distribution together with a particular brainstem origin could define a complex role for this innervation. Therefore, 5-HT fibers projecting to the cochlea might be involved, as in other parts of the auditory pathway, in alertness, attention, control of sleep or wakefulness cycles, and state of urgency prior to the transduction processing at the auditory receptor. A lack, or reduction, of the function of these fibers could result in pathological alterations. PMID:16639911

  6. mRNA expression profile of serotonin receptor subtypes and distribution of serotonergic terminations in marmoset brain

    PubMed Central

    Shukla, Rammohan; Watakabe, Akiya; Yamamori, Tetsuo

    2014-01-01

    To better understand serotonin function in the primate brain, we examined the mRNA expression patterns of all the 13 members of the serotonin receptor (5HTR) family, by in situ hybridization (ISH) and the distribution of serotonergic terminations by serotonin transporter (SERT) protein immunohistochemical analysis. Ten of the 13 5HTRs showed significant mRNA expressions in the marmoset brain. Our study shows several new features of the organization of serotonergic systems in the marmoset brain. (1) The thalamus expressed only a limited number of receptor subtypes compared with the cortex, hippocampus, and other subcortical regions. (2) In the cortex, there are layer-selective and area-selective mRNA expressions of 5HTRs. (3) Highly localized mRNA expressions of 5HT1F and 5HT3A were observed. (4) There was a conspicuous overlap of the mRNA expressions of receptor subtypes known to have somatodendritic localization of receptor proteins with dense serotonergic terminations in the visual cortex, the central lateral (CL) nucleus of the thalamus, the presubiculum, and the medial mammillary nucleus of the hypothalamus. This suggests a high correlation between serotonin availability and receptor expression at these locations. (5) The 5HTRs show differences in mRNA expression pattern between the marmoset and mouse cortices whereas the patterns of both the species were much similar in the hippocampus. We discuss the possible roles of 5HTRs in the marmoset brain revealed by the analysis of their overall mRNA expression patterns. PMID:24904298

  7. The effect of a selective 5-HT2 antagonist, ketanserin, on the pulmonary responses to Escherichia coli endotoxin.

    PubMed Central

    Ball, H. A.; Parratt, J. R.; Rodger, I. W.

    1983-01-01

    5-Hydroxytryptamine (5-HT, 5-160 microgram kg-1) injected intravenously in pentobarbitone-anaesthetized, open-chest cats caused dose-dependent increases in pulmonary arterial and intratracheal pressures. There was also a marked systemic hypotension and bradycardia. The pulmonary effects were completely prevented by ketanserin (0.2 mg kg-1), a selective 5-HT2 blocking drug. Ketanserin (0.2 mg kg-1) itself lowered arterial pressure (by 30-40 mmHg) but this systemic hypotension was relatively transient. Endotoxin (E. coli) administration resulted in pulmonary hypertension, increases in intratracheal pressure and airways resistance and reductions in lung compliance and in arterial PO2. Only the airways resistance response was modified by ketanserin (0.2 mg kg-1), suggesting a relatively unimportant role for 5-HT in mediating the acute, pulmonary effects of endotoxin in this species. The reductions in arterial (mixed venous) pH and in PO2 that resulted from endotoxin administration were not affected by pretreatment with ketanserin. PMID:6360280

  8. Combined unilateral blockade of cholinergic, peptidergic, and serotonergic receptors in the ventral respiratory column does not affect breathing in awake or sleeping goats

    PubMed Central

    Muere, Clarissa; Neumueller, Suzanne; Olesiak, Samantha; Miller, Justin; Langer, Thomas; Hodges, Matthew R.; Pan, Lawrence

    2015-01-01

    Previous work in intact awake and sleeping goats has found that unilateral blockade of excitatory inputs in the ventral respiratory column (VRC) elicits changes in the concentrations of multiple neurochemicals, including serotonin (5-HT), substance P, glycine, and GABA, while increasing or having no effect on breathing. These findings are consistent with the concept of interdependence between neuromodulators, whereby attenuation of one modulator elicits compensatory changes in other modulators to maintain breathing. Because there is a large degree of redundancy and multiplicity of excitatory inputs to the VRC, we herein tested the hypothesis that combined unilateral blockade of muscarinic acetylcholine (mACh), neurokinin-1 (NK1, the receptor for substance P), and 5-HT2A receptors would elicit changes in multiple neurochemicals, but would not change breathing. We unilaterally reverse-dialyzed a cocktail of antagonists targeting these receptors into the VRC of intact adult goats. Breathing was continuously monitored while effluent fluid from dialysis was collected for quantification of neurochemicals. We found that neither double blockade of mACh and NK1 receptors, nor triple blockade of mACh, NK1, and 5-HT2A receptors significantly affected breathing (P ≥ 0.05) in goats that were awake or in non-rapid eye movement (NREM) sleep. However, both double and triple blockade increased the effluent concentration of substance P (P < 0.001) and decreased GABA concentrations. These findings support our hypothesis and, together with past data, suggest that both in wakefulness and NREM sleep, multiple neuromodulator systems collaborate to stabilize breathing when a deficit in one or multiple excitatory neuromodulators exists. PMID:26023224

  9. Impact of RNA Editing on Functions of the Serotonin 2C Receptor in vivo

    PubMed Central

    Olaghere da Silva, Uade B.; Morabito, Michael V.; Canal, Clinton E.; Airey, David C.; Emeson, Ronald B.; Sanders-Bush, Elaine

    2009-01-01

    Transcripts encoding 5-HT2C receptors are modified posttranscriptionally by RNA editing, generating up to 24 protein isoforms. In recombinant cells, the fully edited isoform, 5-HT2C-VGV, exhibits blunted G-protein coupling and reduced constitutive activity. The present studies examine the signal transduction properties of 5-HT2C-VGV receptors in brain to determine the in vivo consequences of altered editing. Using mice solely expressing the 5-HT2C-VGV receptor (VGV/Y), we demonstrate reduced G-protein coupling efficiency and high-affinity agonist binding of brain 5-HT2C-VGV receptors. However, enhanced behavioral sensitivity to a 5-HT2C receptor agonist was also seen in mice expressing 5-HT2C-VGV receptors, an unexpected finding given the blunted G-protein coupling. In addition, mice expressing 5-HT2C-VGV receptors had greater sensitivity to a 5-HT2C inverse agonist/antagonist enhancement of dopamine turnover relative to wild-type mice. These behavioral and biochemical results are most likely explained by increases in 5-HT2C receptor binding sites in the brains of mice solely expressing 5-HT2C-VGV receptors. We conclude that 5-HT2C-VGV receptor signaling in brain is blunted, but this deficiency is masked by a marked increase in 5-HT2C receptor binding site density in mice solely expressing the VGV isoform. These findings suggest that RNA editing may regulate the density of 5-HT2C receptor binding sites in brain. We further caution that the pattern of 5-HT2C receptor RNA isoforms may not reflect the pattern of protein isoforms, and hence the inferred overall function of the receptor. PMID:20582266

  10. Serotonin 2A Receptors in Obsessive-Compulsive Disorder: a Positron Emission Tomography Study with [11C]MDL 100907

    PubMed Central

    Simpson, H. Blair; Slifstein, Mark; Bender, James; Xu, Xiaoyan; Hackett, Elizabeth; Maher, Michael J.; Abi-Dargham, Anissa

    2014-01-01

    Background Serotonergic abnormalities are hypothesized to contribute to obsessive-compulsive disorder (OCD). This study used positron emission tomography (PET) with the radioligand [11C]MDL 100907 to examine whether the distribution of one of the serotonin receptors, the 5-HT2A receptor, is altered in OCD. Methods Nineteen OCD subjects, free of psychiatric medications and depression, and 19 matched healthy controls underwent PET scans following injection of [11C]MDL 100907. Total distribution volumes (VT) were derived by kinetic analysis using the arterial input function. Two measures of 5-HT2A availability were computed (BPND and BPP). Groups were compared using a region of interest (ROI) analysis and voxelwise analysis of spatially normalized parametric maps. ROIs included cortical regions (orbitofrontal, dorsolateral prefrontal, medial prefrontal, anterior cingulate, temporal, parietal, occipital, and insular cortex) and limbic regions (entorhinal cortex, parahippocampal gyrus, and medial temporal lobe). Results No significant group differences were observed in [11C]MDL 100907 BPND or BPP in the ROIs or in the voxelwise analysis of BPND maps. There was a significant correlation in the orbitofrontal cortex between [11C] MDL 100907 binding and age of onset, with earlier age of onset associated with higher binding. Conclusions In contrast to prior reports, people with OCD (free of psychiatric medications and depression) are not characterized as a group by major changes in 5-HT2A availability in cortical or limbic brain regions. Further research is warranted to examine potential differences in 5-HT2A availability between early and late onset OCD and to assess 5-HT2A function in relation to other neurotransmitter systems implicated in OCD. PMID:21855857

  11. Multiple receptor subtypes mediate the effects of serotonin on rat subfornical organ neurons

    NASA Technical Reports Server (NTRS)

    Scrogin, K. E.; Johnson, A. K.; Schmid, H. A.

    1998-01-01

    The subfornical organ (SFO) receives significant serotonergic innervation. However, few reports have examined the functional effects of serotonin on SFO neurons. This study characterized the effects of serotonin on spontaneously firing SFO neurons in the rat brain slice. Of 31 neurons tested, 80% responded to serotonin (1-100 microM) with either an increase (n = 15) or decrease (n = 10) in spontaneous activity. Responses to serotonin were dose dependent and persisted after synaptic blockade. Excitatory responses could also be mimicked by the 5-hydroxytryptamine (5-HT)2A/2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI; 1-10 microM) and could be blocked by the 5-HT2A/2C-receptor antagonist LY-53,857 (10 microM). LY-53,857 unmasked inhibitory responses to serotonin in 56% of serotonin-excited cells tested. Serotonin-inhibited cells were also inhibited by the 5-HT1A-receptor agonist 8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT; 1-10 microM; n = 7). The data indicate that SFO neurons are responsive to serotonin via postsynaptic activation of multiple receptor subtypes. The results suggest that excitatory responses to serotonin are mediated by 5-HT2A or 5-HT2C receptors and that inhibitory responses may be mediated by 5-HT1A receptors. In addition, similar percentages of serotonin-excited and -inhibited cells were also sensitive to ANG II. As such the functional relationship between serotonin and ANG II in the SFO remains unclear.

  12. The HPA and immune axes in stress: the involvement of the serotonergic system.

    PubMed

    Leonard, B E

    2005-10-01

    The impact of acute and chronic stress on the hypothalamic-pituitary-adrenal (HPA) axis is reviewed and evidence presented that corticotrophin releasing factor (CRF) is the stress neurotransmitter which plays an important role in the activation of the central sympathetic and serotonergic systems. The activity of CRF is expressed through specific receptors (CRF 1 and 2) that are antagonistic in their actions and widely distributed in the limbic regions of the brain, as well as in the hypothalamus, and on immune cells. The mechanism whereby chronic stress, via the CRF induced activation of the dorsal raphe nucleus, can induce a change in the serotonergic system, involves an increase in the 5HT2A and a decrease in the 5HT1A receptor mediated function. Such changes contribute to the onset of anxiety and depression. In addition, the hypersecretion of glucocorticoids that is associated with chronic stress and depression desensitises the central glucocorticoid receptors to the negative feedback inhibition of the HPA axis. This indirectly results in the further activation of the HPA axis. The rise in pro-inflammatory cytokines that usually accompanies the chronic stress response results in a further stimulation of the HPA axis thereby adding to the stress response. While CRF would appear to play a pivotal role, evidence is provided that simultaneous changes in the serotonergic and noradrenergic systems, combined with the activation of peripheral and central macrophages that increase the pro-inflammatory cytokine concentrations in the brain and blood, also play a critical role in predisposing to anxiety and depression. Neurodegenerative changes in the brain that frequently occur in the elderly patient with major depression, could result from the activation of indoleaminedioxygenase (IDO), a widely distributed enzyme that converts tryptophan via the kynenine pathway to for the neurotoxic end product quinolinic acid. PMID:16459240

  13. The involvement of serotonergic system in the antidepressant effect of zinc in the forced swim test.

    PubMed

    Szewczyk, Bernadeta; Poleszak, Ewa; Wlaź, Piotr; Wróbel, Andrzej; Blicharska, Eliza; Cichy, Agnieszka; Dybała, Małgorzata; Siwek, Agata; Pomierny-Chamioło, Lucyna; Piotrowska, Anna; Brański, Piotr; Pilc, Andrzej; Nowak, Gabriel

    2009-03-17

    Recent preclinical data indicated the antidepressant-like activity of zinc in different tests and models of depression. The present study investigates the involvement of the serotonergic system in zinc activity in the forced swim test (FST) in mice and rats. The combined treatment of sub-effective doses of zinc (hydroaspartate, 2.5 mg Zn/kg) and citalopram (15 mg/kg), fluoxetine (5 mg/kg) but not with reboxetine (2.5 mg/kg) significantly reduces the immobility time in the FST in mice. These treatments had no influence on the spontaneous locomotor activity. Moreover, while the antidepressant-like effect of zinc (5 mg/kg) in the FST was significantly blocked by pretreatment with inhibitor of serotonin synthesis, p-chlorophenylalanine (pCPA, 3x200 mg/kg), 5HT-2(A/C) receptor antagonist, ritanserin (4 mg/kg) or 5HT-1A receptor antagonist, WAY 1006335 (0.1 mg/kg), the zinc-induced reduction in the locomotor activity was not affected by these serotonin modulator agents. These results indicate the specific involvement of the serotonergic system in antidepressant but not the motion behavior of zinc in mice. Also, an increase in the swimming but not climbing parameter of the rat FST observed following zinc administration (2.5 and 5 mg Zn/kg) indicates the serotonin pathway participation. This present data indicates that the antidepressant-like activity of zinc observed in the FST involves interaction with the serotonergic system.

  14. Methamidophos Exposure During the Early Postnatal Period of Mice: Immediate and Late-Emergent Effects on the Cholinergic and Serotonergic Systems and Behavior

    PubMed Central

    Abreu-Villaça, Yael

    2013-01-01

    Organophosphates (OPs) are among the most used pesticides. Although some OPs have had their use progressively more restricted, other OPs are being used without sufficient investigation of their effects. Here, we investigated the immediate neurochemical and delayed neurochemical and behavioral actions of the OP methamidophos to verify whether there are concerns regarding exposure during early postnatal development. From the third to the nineth postnatal day (PN), Swiss mice were sc injected with methamidophos (1mg/kg). At PN10, we assessed cholinergic and serotonergic biomarkers in the cerebral cortex and brainstem. From PN60 to PN63, mice were submitted to a battery of behavioral tests and subsequently to biochemical analyses. At PN10, the effects were restricted to females and to the cholinergic system: Methamidophos promoted increased choline transporter binding in the brainstem. At PN63, in the brainstem, there was a decrease in choline transporter, a female-only decrease in 5HT1A and a male-only increase in 5HT2 receptor binding. In the cortex, choline acetyltransferase activity was decreased and 5HT2 receptor binding was increased both in males and females. Methamidophos elicited behavioral alterations, suggestive of increased depressive-like behavior and impaired decision making. There were no significant alterations on anxiety-related measures and on memory/learning. Methamidophos elicited cholinergic and serotonergic alterations that depended on brain region, sex, and age of the animals. These outcomes, together with the behavioral effects, indicate that this OP is deleterious to the developing brain and that alterations are indeed identified long after the end of exposure. PMID:23596261

  15. Methamidophos exposure during the early postnatal period of mice: immediate and late-emergent effects on the cholinergic and serotonergic systems and behavior.

    PubMed

    Lima, Carla S; Dutra-Tavares, Ana C; Nunes, Fernanda; Nunes-Freitas, André L; Ribeiro-Carvalho, Anderson; Filgueiras, Cláudio C; Manhães, Alex C; Meyer, Armando; Abreu-Villaça, Yael

    2013-07-01

    Organophosphates (OPs) are among the most used pesticides. Although some OPs have had their use progressively more restricted, other OPs are being used without sufficient investigation of their effects. Here, we investigated the immediate neurochemical and delayed neurochemical and behavioral actions of the OP methamidophos to verify whether there are concerns regarding exposure during early postnatal development. From the third to the nineth postnatal day (PN), Swiss mice were sc injected with methamidophos (1mg/kg). At PN10, we assessed cholinergic and serotonergic biomarkers in the cerebral cortex and brainstem. From PN60 to PN63, mice were submitted to a battery of behavioral tests and subsequently to biochemical analyses. At PN10, the effects were restricted to females and to the cholinergic system: Methamidophos promoted increased choline transporter binding in the brainstem. At PN63, in the brainstem, there was a decrease in choline transporter, a female-only decrease in 5HT1A and a male-only increase in 5HT2 receptor binding. In the cortex, choline acetyltransferase activity was decreased and 5HT2 receptor binding was increased both in males and females. Methamidophos elicited behavioral alterations, suggestive of increased depressive-like behavior and impaired decision making. There were no significant alterations on anxiety-related measures and on memory/learning. Methamidophos elicited cholinergic and serotonergic alterations that depended on brain region, sex, and age of the animals. These outcomes, together with the behavioral effects, indicate that this OP is deleterious to the developing brain and that alterations are indeed identified long after the end of exposure. PMID:23596261

  16. Serotonergic neural links from the dorsal raphe nucleus modulate defensive behaviours organised by the dorsomedial hypothalamus and the elaboration of fear-induced antinociception via locus coeruleus pathways.

    PubMed

    Biagioni, Audrey Francisco; de Freitas, Renato Leonardo; da Silva, Juliana Almeida; de Oliveira, Rithiele Cristina; de Oliveira, Ricardo; Alves, Vani Maria; Coimbra, Norberto Cysne

    2013-04-01

    Decrease of γ-aminobutyric acid (GABA)-mediated neurotransmission in the dorsomedial hypothalamus (DMH) evokes instinctive fear-like responses. The aim of the present study was to investigate the involvement of the serotonin (5-HT)- and norepinephrine-mediated pathways of the endogenous pain inhibitory system, including the dorsal raphe nucleus (DRN) and the locus coeruleus (LC), in the defensive responses and antinociceptive processes triggered by the blockade of GABAergic receptors in the DMH. The intra-hypothalamic microinjection of the GABA(A) receptor antagonist bicuculline (40 ng/200 nL) elicited elaborate defensive behaviours interspersed with exploratory responses. This escape behaviour was followed by significantly increased pain thresholds, a phenomenon known as fear-induced antinociception. Furthermore, at 5 and 14 days after DRN serotonin-containing neurons were damaged using the selective neurotoxin 5,7-dihydroxytryptamine (5,7-DHT), the frequency and duration of alertness and escape behaviour evoked by the GABA(A) receptor blockade in the DMH decreased, as well as fear-induced antinociception. Pre-treatment with the non-selective 5-HT receptor antagonist methysergide, the 5-HT(2A/2C) receptor antagonist ketanserin and the 5-HT(2A) receptor selective antagonist R-96544 in the LC also decreased fear-induced antinociception, without significant changes in the expression of defensive behaviours. These data suggest that the serotonergic neurons of the DRN are directly involved in the organisation of defensive responses as well as in the elaboration of the innate fear-induced antinociception. However, serotonin-mediated inputs from the NDR to the LC modulate only fear-induced antinociception and not the defensive behaviours evoked by GABA(A) receptor blockade in the DMH. PMID:23201351

  17. Serotonergic neural links from the dorsal raphe nucleus modulate defensive behaviours organised by the dorsomedial hypothalamus and the elaboration of fear-induced antinociception via locus coeruleus pathways.

    PubMed

    Biagioni, Audrey Francisco; de Freitas, Renato Leonardo; da Silva, Juliana Almeida; de Oliveira, Rithiele Cristina; de Oliveira, Ricardo; Alves, Vani Maria; Coimbra, Norberto Cysne

    2013-04-01

    Decrease of γ-aminobutyric acid (GABA)-mediated neurotransmission in the dorsomedial hypothalamus (DMH) evokes instinctive fear-like responses. The aim of the present study was to investigate the involvement of the serotonin (5-HT)- and norepinephrine-mediated pathways of the endogenous pain inhibitory system, including the dorsal raphe nucleus (DRN) and the locus coeruleus (LC), in the defensive responses and antinociceptive processes triggered by the blockade of GABAergic receptors in the DMH. The intra-hypothalamic microinjection of the GABA(A) receptor antagonist bicuculline (40 ng/200 nL) elicited elaborate defensive behaviours interspersed with exploratory responses. This escape behaviour was followed by significantly increased pain thresholds, a phenomenon known as fear-induced antinociception. Furthermore, at 5 and 14 days after DRN serotonin-containing neurons were damaged using the selective neurotoxin 5,7-dihydroxytryptamine (5,7-DHT), the frequency and duration of alertness and escape behaviour evoked by the GABA(A) receptor blockade in the DMH decreased, as well as fear-induced antinociception. Pre-treatment with the non-selective 5-HT receptor antagonist methysergide, the 5-HT(2A/2C) receptor antagonist ketanserin and the 5-HT(2A) receptor selective antagonist R-96544 in the LC also decreased fear-induced antinociception, without significant changes in the expression of defensive behaviours. These data suggest that the serotonergic neurons of the DRN are directly involved in the organisation of defensive responses as well as in the elaboration of the innate fear-induced antinociception. However, serotonin-mediated inputs from the NDR to the LC modulate only fear-induced antinociception and not the defensive behaviours evoked by GABA(A) receptor blockade in the DMH.

  18. Enriched Expression of Serotonin 1B and 2A Receptor Genes in Macaque Visual Cortex and their Bidirectional Modulatory Effects on Neuronal Responses

    PubMed Central

    Watakabe, Akiya; Komatsu, Yusuke; Sadakane, Osamu; Shimegi, Satoshi; Takahata, Toru; Higo, Noriyuki; Tochitani, Shiro; Hashikawa, Tsutomu; Naito, Tomoyuki; Osaki, Hironobu; Sakamoto, Hiroshi; Okamoto, Masahiro; Ishikawa, Ayako; Hara, Shin-ichiro; Akasaki, Takafumi; Sato, Hiromichi

    2009-01-01

    To study the molecular mechanism how cortical areas are specialized in adult primates, we searched for area-specific genes in macaque monkeys and found striking enrichment of serotonin (5-hydroxytryptamine, 5-HT) 1B receptor mRNA, and to a lesser extent, of 5-HT2A receptor mRNA, in the primary visual area (V1). In situ hybridization analyses revealed that both mRNA species were highly concentrated in the geniculorecipient layers IVA and IVC, where they were coexpressed in the same neurons. Monocular inactivation by tetrodotoxin injection resulted in a strong and rapid (<3 h) downregulation of these mRNAs, suggesting the retinal activity dependency of their expression. Consistent with the high expression level in V1, clear modulatory effects of 5-HT1B and 5-HT2A receptor agonists on the responses of V1 neurons were observed in in vivo electrophysiological experiments. The modulatory effect of the 5-HT1B agonist was dependent on the firing rate of the recorded neurons: The effect tended to be facilitative for neurons with a high firing rate, and suppressive for those with a low firing rate. The 5-HT2A agonist showed opposite effects. These results suggest that this serotonergic system controls the visual response in V1 for optimization of information processing toward the incoming visual inputs. PMID:19056862

  19. Reduced vesicular monoamine transport disrupts serotonin signaling but does not cause serotonergic degeneration.

    PubMed

    Alter, Shawn P; Stout, Kristen A; Lohr, Kelly M; Taylor, Tonya N; Shepherd, Kennie R; Wang, Minzheng; Guillot, Thomas S; Miller, Gary W

    2016-01-01

    We previously demonstrated that mice with reduced expression of the vesicular monoamine transporter 2 (VMAT2 LO) undergo age-related degeneration of the catecholamine-producing neurons of the substantia nigra pars compacta and locus ceruleus and exhibit motor disturbances and depressive-like behavior. In this work, we investigated the effects of reduced vesicular transport on the function and viability of serotonin neurons in these mice. Adult (4-6 months of age), VMAT2 LO mice exhibit dramatically reduced (90%) serotonin release capacity, as measured by fast scan cyclic voltammetry. We observed changes in serotonin receptor responsivity in in vivo pharmacological assays. Aged (months) VMAT2 LO mice exhibited abolished 5-HT1A autoreceptor sensitivity, as determined by 8-OH-DPAT (0.1 mg/kg) induction of hypothermia. When challenged with the 5HT2 agonist, 2,5-dimethoxy-4-iodoamphetamine (1 mg/kg), VMAT2 LO mice exhibited a marked increase (50%) in head twitch responses. We observed sparing of serotonergic terminals in aged mice (18-24 months) throughout the forebrain by SERT immunohistochemistry and [(3)H]-paroxetine binding in striatal homogenates of aged VMAT2 LO mice. In contrast to their loss of catecholamine neurons of the substantia nigra and locus ceruleus, aged VMAT2 LO mice do not exhibit a change in the number of serotonergic (TPH2+) neurons within the dorsal raphe, as measured by unbiased stereology at 26-30 months. Collectively, these data indicate that reduced vesicular monoamine transport significantly disrupts serotonergic signaling, but does not drive degeneration of serotonin neurons.

  20. CPB-K mice a mouse model of schizophrenia? Differences in dopaminergic, serotonergic and behavioral markers compared to BALB/cJ mice.

    PubMed

    Panther, P; Nullmeier, S; Dobrowolny, H; Schwegler, H; Wolf, R

    2012-04-21

    Schizophrenia is characterized by disturbances in social behavior, sensorimotor gating and cognitive function, that are discussed to be caused by a termination of different transmitter systems. Beside morphological alterations in cortical and subcortical areas reduced AMPA- NMDA-, 5-HT2-receptor densities and increased 5-HT1-receptor densities are found in the hippocampus.The two inbred mouse strains CPB-K and BALB/cJ are known to display considerable differences in cognitive function and prepulse inhibition, a stable marker of sensorimotor gating. Furthermore, CPB-K mice exhibit lower NMDA-, AMPA- and increased 5-HT-receptor densities in the hippocampus as compared to BALB/cJ mice. We investigated both mouse strains in social interaction test for differences in social behavior and with immuncytochemical approaches for alterations of dopaminergic and serotonergic parameters. Our results can be summarized as follows: compared to BALB/cJ, CPB-K mice showed:(1) significantly reduced traveling distance and number of contacts in social interaction test, (2) differences in the number of serotonin transporter-immunoreactive neurons and volume of raphe nuclei and a lower serotonergic fiber density in the ventral and dorsal hippocampal subfields CA1 and CA3, (3) no alterations of dopaminergic markers like neuron number, neuron density and volume in subregions of substantia nigra and ventral tegmental area, but a significantly higher dopaminergic fiber density in the dorsal hippocampus, the ventral hippocampus of CA1 and gyrus dentatus, (4) no significant differences in serotonergic and dopaminergic fiber densities in the amygdala.Based on our results and previous studies, CPB-K mice compared to BALB/cJ may serve as an important model to understand the interaction of the serotonergic and dopaminergic system and their impact on sensorimotor gating and cognitive function as related to neuropsychiatric disorders like schizophrenia.

  1. The serotonin 2C receptor potently modulates the head-twitch response in mice induced by a phenethylamine hallucinogen

    PubMed Central

    Canal, Clinton E.; Olaghere da Silva, Uade B.; Gresch, Paul J.; Watt, Erin E.; Sanders-Bush, Elaine

    2010-01-01

    Rationale Hallucinogenic serotonin 2A (5-HT2A) receptor partial agonists, such as (±)-1-(2,5-dimethoxy-4-iodo-phenyl)-2-aminopropane hydrochloride (DOI), induce a frontal cortex-dependent head-twitch response (HTR) in rodents, a behavioral proxy of a hallucinogenic response that is blocked by 5-HT2A receptor antagonists. In addition to 5-HT2A receptors, DOI and most other serotonin-like hallucinogens have high affinity and potency as partial agonists at 5-HT2C receptors. Objectives We tested for involvement of 5-HT2C receptors in the HTR induced by DOI. Results Comparison of 5-HT2C receptor knockout and wild-type littermates revealed an approximately 50% reduction in DOI-induced HTR in knockout mice. Also, pretreatment with either the 5-HT2C receptor antagonist SB206553 or SB242084 eradicated a twofold difference in DOI-induced HTR between the standard inbred mouse strains C57BL/6J and DBA/2J, and decreased the DOI-induced HTR by at least 50% in both strains. None of several measures of 5-HT2A receptors in frontal cortex explained the strain difference, including 5-HT2A receptor density, Gαq or Gαi/o protein levels, phospholipase C activity, or DOI-induced expression of Egr1 and Egr2. 5-HT2C receptor density in the brains of C57BL/6J and DBA/2J was also equivalent, suggesting that 5-HT2C receptor-mediated intracellular signaling or other physiological modulators of the HTR may explain the strain difference in response to DOI. Conclusions We conclude that the HTR to DOI in mice is strongly modulated by 5-HT2C receptor activity. This novel finding invites reassessment of hallucinogenic mechanisms involving 5-HT2 receptors. PMID:20165943

  2. Corticotropin-releasing hormone receptor type 1-deficiency enhances hippocampal serotonergic neurotransmission: an in vivo microdialysis study in mutant mice.

    PubMed

    Peñalva, R G; Flachskamm, C; Zimmermann, S; Wurst, W; Holsboer, F; Reul, J M H M; Linthorst, A C E

    2002-01-01

    Corticotropin-releasing hormone plays an important role in the coordination of various responses to stress. Previous research has implicated both corticotropin-releasing hormone and the serotonergic system as causative factors in the development and course of stress-related psychiatric disorders such as major depression. To delineate the role of the corticotropin-releasing hormone receptor type 1 (CRH-R1) in the interactions between corticotropin-releasing hormone and serotonergic neurotransmission, in vivo microdialysis was performed in CRH-R1-deficient mice under basal (home cage) and stress (forced swimming) conditions. Hippocampal dialysates were used to measure extracellular levels of serotonin and its metabolite 5-hydroxyindoleacetic acid, and free corticosterone levels to monitor the status of the hypothalamic-pituitary-adrenocortical axis. Moreover, behavioural activity was assessed by visual observation and a scoring paradigm. Both wild-type and heterozygous mutant mice showed a clear diurnal rhythm in free corticosterone. Free corticosterone concentrations were, however, lower in heterozygous mutant mice than in wild-type animals and undetectable in homozygous CRH-R1-deficient mice. Homozygous CRH-R1-deficient mice showed enhanced hippocampal levels of 5-hydroxyindoleacetic acid but not of serotonin during the light and the dark phase of the diurnal cycle, which may point to an enhanced synthesis of serotonin in the raphe-hippocampal system. Moreover, the mutation resulted in higher behavioural activity in the home cage during the light but not during the dark period. Forced swimming caused a rise in hippocampal serotonin followed by a further increase after the end of the stress paradigm in all genotypes. Homozygous and heterozygous mutant mice showed, however, a significantly amplified serotonin response to the forced swimming as compared to wild-type control animals. We conclude that CRH-R1-deficiency results in reduced hypothalamic

  3. Likelihood of mechanistic roles for dopaminergic, serotonergic and glutamatergic receptors in tardive dyskinesia: A comparison of genetic variants in two independent patient populations

    PubMed Central

    Ivanova, Svetlana A; Loonen, Anton JM; Bakker, P Roberto; Freidin, Maxim B; ter Woerds, Nienke J; Al Hadithy, Asmar FY; Semke, Arkadiy V; Fedorenko, Olga Yu; Brouwers, Jacobus RBJ; Bokhan, Nikolay A; van Os, Jim; van Harten, Peter N; Wilffert, Bob

    2016-01-01

    Objectives: An established theory for the pathogenesis of tardive dyskinesia is disturbed dopaminergic receptor sensitivity and/or dopaminergic intracellular signaling. We examined associations between genetic variants of neurotransmitter receptors and tardive dyskinesia. Methods: We assessed tardive dyskinesia in Caucasian psychiatric inpatients from Siberia (N = 431) and a long-stay population from the Netherlands (N = 168). These patients were genotyped for 43 tag single nucleotide polymorphisms in five neurotransmitter receptor genes, and the results for the two populations were compared. Results: Several significant associations with tardive dyskinesia were identified, but only GRIN2A (rs1345423) was found in both patient populations. This lack of agreement was probably due to the small effect size of the associations, the multiple testing and the small sample size of the Dutch patient population. After reviewing the literature, we propose that the constitutive stimulatory activity of serotonergic type 2 receptors may be relevant. Conclusions: Inactivity of the serotonergic, type 2C receptor or blockade of these receptors by atypical antipsychotic drugs may decrease the vulnerability to develop tardive dyskinesia. PMID:27127627

  4. Further investigations of the serotonergic properties of the ibogaine-induced discriminative stimulus.

    PubMed

    Helsley, S; Rabin, R A; Winter, J C

    1999-02-01

    1. 5-HT3, 5-HT2C, and 5-HT1A receptor ligands were assessed in rats trained to discriminate ibogaine from water. 2. Significant ibogaine-appropriate responding was observed following treatment with the 5-HT2C agonists MK-212 (79.6%) and mCPP (76.4%). This substitution was completely antagonized by metergoline, an agent with 5-HT2C antagonist properties. However, metergoline was ineffective against ibogaine itself. This suggests that although ibogaine may act as an agonist at 5-HT2C receptors, this interaction is not essential to its discriminative cue. 3. Neither the 5-HT3 agonist, mCPBG (44.3%), nor the 5-HT3 antagonist, ondansetron (48.9%) substituted for ibogaine. Likewise, the 5-HT1A agonist 8-OH-DPAT (34.7%) and the 5-HT1A antagonist WAY-100635 (30.1%) failed to substitute. Furthermore, WAY-100635 failed to antagonize the ibogaine cue. 4. Unlike 5-HT2C receptors, 5-HT1A and 5-HT3 receptors do not appear to be involved in the ibogaine stimulus.

  5. Decreased striatal dopamine receptor binding in primary focal dystonia: a D2 or D3 defect?

    PubMed Central

    Karimi, Morvarid; Moerlein, Stephen M.; Videen, Tom O.; Luedtke, Robert R.; Taylor, Michelle; Mach, Robert H.; Perlmutter, Joel S.

    2010-01-01

    Dystonia is an involuntary movement disorder characterized by repetitive patterned or sustained muscle contractions causing twisting or abnormal postures. Several lines of evidence suggest that abnormalities of dopaminergic pathways contribute to the pathophysiology of dystonia. In particular dysfunction of D2-like receptors that mediate function of the indirect pathway in the basal ganglia may play a key role. We have demonstrated with positron emission tomography (PET) that patients with primary focal cranial or hand dystonia have reduced putamenal specific binding of [18F]spiperone a non-selective D2-like radioligand with nearly equal affinity for serotonergic 5-HT(2A) sites. We then repeated the study with [18F]N-methyl-benperidol (NMB), a more selective D2-like receptor radioligand with minimal affinity for 5-HT(2A). Surprisingly, there was no decrease in NMB binding in the putamen of subjects with dystonia. Our findings excluded reductions of putamenal uptake greater than 20% with 95% confidence intervals. Following analysis of the in vitro selectivity of NMB and spiperone demonstrated that NMB was highly selective for D2 receptors relative to D3 receptors (200-fold difference in affinity), whereas spiperone has similar affinity for all three of the D2-like receptor subtypes. These findings coupled with other literature suggest that a defect in D3, rather than D2, receptor expression may be associated with primary focal dystonia. PMID:20960437

  6. Optimization of 2-phenylcyclopropylmethylamines as selective serotonin 2C receptor agonists and their evaluation as potential antipsychotic agents.

    PubMed

    Cheng, Jianjun; Giguère, Patrick M; Onajole, Oluseye K; Lv, Wei; Gaisin, Arsen; Gunosewoyo, Hendra; Schmerberg, Claire M; Pogorelov, Vladimir M; Rodriguiz, Ramona M; Vistoli, Giulio; Wetsel, William C; Roth, Bryan L; Kozikowski, Alan P

    2015-02-26

    The discovery of a new series of compounds that are potent, selective 5-HT2C receptor agonists is described herein as we continue our efforts to optimize the 2-phenylcyclopropylmethylamine scaffold. Modifications focused on the alkoxyl substituent present on the aromatic ring led to the identification of improved ligands with better potency at the 5-HT2C receptor and excellent selectivity against the 5-HT2A and 5-HT2B receptors. ADMET studies coupled with a behavioral test using the amphetamine-induced hyperactivity model identified four compounds possessing drug-like profiles and having antipsychotic properties. Compound (+)-16b, which displayed an EC50 of 4.2 nM at 5-HT2C, no activity at 5-HT2B, and an 89-fold selectivity against 5-HT2A, is one of the most potent and selective 5-HT2C agonists reported to date. The likely binding mode of this series of compounds to the 5-HT2C receptor was also investigated in a modeling study, using optimized models incorporating the structures of β2-adrenergic receptor and 5-HT2B receptor. PMID:25633969

  7. Sex differences and serotonergic mechanisms in the behavioural effects of psilocin.

    PubMed

    Tylš, Filip; Páleníček, Tomáš; Kadeřábek, Lukáš; Lipski, Michaela; Kubešová, Anna; Horáček, Jiří

    2016-06-01

    Psilocybin has recently attracted a great deal of attention as a clinical research and therapeutic tool. The aim of this paper is to bridge two major knowledge gaps regarding its behavioural pharmacology - sex differences and the underlying receptor mechanisms. We used psilocin (0.25, 1 and 4 mg/kg), an active metabolite of psilocybin, in two behavioural paradigms - the open-field test and prepulse inhibition (PPI) of the acoustic startle reaction. Sex differences were evaluated with respect to the phase of the female cycle. The contribution of serotonin receptors in the behavioural action was tested in male rats with selective serotonin receptor antagonists: 5-HT1A receptor antagonist (WAY100635 1 mg/kg), 5-HT2A receptor antagonist (MDL100907 0.5 mg/kg), 5-HT2B receptor antagonist (SB215505 1 mg/kg) and 5-HT2C receptor antagonist (SB242084 1 mg/kg). Psilocin induced dose-dependent inhibition of locomotion and suppression of normal behaviour in rats (behavioural serotonin syndrome, impaired PPI). The effects were more pronounced in male rats than in females. The inhibition of locomotion was normalized by 5-HT1A and 5-HT2B/C antagonists; however, PPI was not affected significantly by these antagonists. Our findings highlight an important issue of sex-specific reactions to psilocin and that apart from 5-HT2A-mediated effects 5-HT1A and 5-HT2C/B receptors also play an important role. These findings have implications for recent clinical trials. PMID:26461483

  8. Serotonergic-postsynaptic receptors modulate gripping-induced immobility episodes in male taiep rats.

    PubMed

    Eguibar, José R; Cortés, M C; Ita, M L

    2009-09-01

    The Taiep rat is a myelin mutant with a motor syndrome characterized by tremor, ataxia, immobility, epilepsy, and paralysis. The rat shows a hypomyelination followed by a progressive demyelination. During immobilities taiep rats show a REM-like sleep pattern and a disorganized sleep-wake pattern suggesting taiep rats as a model of narcolepsy-cataplexy. Our study analyzed the role of postsynaptic serotonin receptors in the expression of gripping-induced immobility episodes (IEs) in 8-month-old male taiep rats. The specific postsynaptic serotonin agonist +/-1-(2,5-dimethoxy-4-iodoamphetamine hydrochloride (+/-DOI) decreased the frequency of gripping-induced IEs, but that was not the case with alpha-methyl-serotonin maleate (alpha-methyl-5HT), a nonspecific postsynaptic agonist. Although the serotonin antagonists, ketanserine and metergoline, produced a biphasic effect, first a decrease followed by an increase with higher doses, similar effects were obtained with a mean duration of gripping-induced IEs. These findings correlate with the pharmacological observations in narcoleptic dogs and humans in which serotonin-reuptake inhibitors improve cataplexy, particularly in long-term treatment that could change the serotonin receptor levels. Polysomnographic recordings showed an increase in the awakening time and a decrease in the slow wave and rapid eye movement sleep concomitant with a decrease in immobilities after use of +/-DOI, this being stronger with the highest dose. Taken together, our results show that postsynaptic serotonin receptors are involved in the modulation in gripping-induced IEs caused by the changes in the organization of the sleep-wake cycle in taiep rats. It is possible that specific agonists, without side effects, could be a useful treatment in human narcoleptic patients. PMID:19484723

  9. N1-methyl-2-125I-lysergic acid diethylamide, a preferred ligand for in vitro and in vivo characterization of serotonin receptors.

    PubMed

    Hoffman, B J; Scheffel, U; Lever, J R; Karpa, M D; Hartig, P R

    1987-01-01

    Methylation of 2-125I-lysergic acid diethylamide (125I-LSD) at the N1 position produces a new derivative, N1-methyl-2-125I-lysergic acid diethylamide (125I-MIL), with improved selectivity and higher affinity for serotonin 5-HT2 receptors. In rat frontal cortex homogenates, specific binding of 125I-MIL represents 80-90% of total binding, and the apparent dissociation constant (KD) for serotonin 5-HT2 receptors is 0.14 nM (using 2 mg of tissue/ml). 125I-MIL also displays a high affinity for serotonin 5-HT1C receptors, with an apparent dissociation constant of 0.41 nM at this site. 125I-MIL exhibits at least 60-fold higher affinity for serotonin 5-HT2 receptors than for other classes of neurotransmitter receptors, with the dopamine D2 receptor as its most potent secondary binding site. Studies of the association and dissociation kinetics of 125I-MIL reveal a strong temperature dependence, with very slow association and dissociation rates at 0 degree C. Autoradiographic experiments confirm the improved specificity of 125I-MIL. Selective labeling of serotonin receptors was observed in all brain areas examined. In vivo binding studies in mice indicate that 125I-MIL is the best serotonin receptor label yet described, with the highest frontal cortex to cerebellum ratio of any serotonergic radioligand. 125I-MIL is a promising ligand for both in vitro and in vivo labeling of serotonin receptors in the mammalian brain.

  10. Different serotonin receptor agonists have distinct effects on sound-evoked responses in inferior colliculus.

    PubMed

    Hurley, Laura M

    2006-11-01

    The neuromodulator serotonin has a complex set of effects on the auditory responses of neurons within the inferior colliculus (IC), a midbrain auditory nucleus that integrates a wide range of inputs from auditory and nonauditory sources. To determine whether activation of different types of serotonin receptors is a source of the variability in serotonergic effects, four selective agonists of serotonin receptors in the serotonin (5-HT) 1 and 5-HT2 families were iontophoretically applied to IC neurons, which were monitored for changes in their responses to auditory stimuli. Different agonists had different effects on neural responses. The 5-HT1A agonist had mixed facilitatory and depressive effects, whereas 5-HT1B and 5-HT2C agonists were both largely facilitatory. Different agonists changed threshold and frequency tuning in ways that reflected their effects on spike count. When pairs of agonists were applied sequentially to the same neurons, selective agonists sometimes affected neurons in ways that were similar to serotonin, but not to other selective agonists tested. Different agonists also differentially affected groups of neurons classified by the shapes of their frequency-tuning curves, with serotonin and the 5-HT1 receptors affecting proportionally more non-V-type neurons relative to the other agonists tested. In all, evidence suggests that the diversity of serotonin receptor subtypes in the IC is likely to account for at least some of the variability of the effects of serotonin and that receptor subtypes fulfill specialized roles in auditory processing. PMID:16870843

  11. Beta-adrenergic receptor sensitivity, autonomic balance and serotonergic activity in practitioners of Transcendental Meditation

    SciTech Connect

    Hill, D.A.

    1989-01-01

    The aim of this thesis was to investigate the acute autonomic effects of the Transcendental Meditation Program (TM) and resolve the conflict arising from discrepant neurochemical and psychophysiological data. Three experimental investigations were performed. The first examined beta{sub 2}-adrenergic receptors (AR's) on peripheral blood lymphocytes, via (I{sup 125})iodocyanopindolol binding, in 10 male mediating and 10 age matched non-meditating control subjects, to test the hypothesis that the long-term practice of TM and the TM Sidhi Program (TMSP) reduces end organ sensitivity to adrenergic agonists. The second investigated respiratory sinus arrhythmia (an indirect measure of cardiac Parasympathetic Nervous System tone), and skin resistance (a measure of Sympathetic Nervous System tone) during periods of spontaneous respiratory apneusis, a phenomenon occurring during TM that is known to mark the subjective experience of transcending. The third was within subject investigation of the acute effects of the TMSP on 5-hydroxytryptamine (5-HT) activity. Platelet 5-HT was assayed by high pressure liquid chromatography with electrochemical detection, plasma prolactin (PL) and lutenizing hormone (LH) by radioimmunoassay, tryptophan by spectrofluorimetry, and alpha-1-acid glycoprotein (AGP, a modulator of 5-HT uptake) by radial immunodiffusion assay.

  12. Endocannabinoids blunt the augmentation of synaptic transmission by serotonin 2A receptors in the nucleus tractus solitarii (nTS).

    PubMed

    Austgen, James R; Kline, David D

    2013-11-01

    Serotonin (5-Hydroxytryptamine, 5-HT) and the 5-HT2 receptor modulate cardiovascular and autonomic function in part through actions in the nTS, the primary termination and integration point for cardiorespiratory afferents in the brainstem. In other brain regions, 5-HT2 receptors (5-HT2R) modify synaptic transmission directly, as well as through 5-HT2AR-induced endocannabinoid release. This study examined the role of 5-HT2AR as well as their interaction with endocannabinoids on neurotransmission in the nucleus tractus solitarii (nTS). Excitatory postsynaptic currents (EPSCs) in monosynaptic nTS neurons were recorded in the horizontal brainstem slice during activation and blockade of 5-HT2ARs. 5-HT2AR activation augmented solitary tract (TS) evoked EPSC amplitude whereas 5-HT2AR blockade depressed TS-EPSC amplitude at low and high TS stimulation rates. The 5-HT2AR-induced increase in neurotransmission was reduced by endocannabinoid receptor block and increased endogenous endocannabinoids in the synaptic cleft during high frequency, but not low, TS stimulation. Endocannabinoids did not tonically modify EPSCs. These data suggest 5-HT acting through the 5-HT2AR is an excitatory neuromodulator in the nTS and its effects are modulated by the endocannabinoid system.

  13. Three distinct amine receptors operating at different levels within the locomotory circuit are each essential for the serotonergic modulation of chemosensation in Caenorhabditis elegans.

    PubMed

    Harris, Gareth P; Hapiak, Vera M; Wragg, Rachel T; Miller, Sarah B; Hughes, Lindsay J; Hobson, Robert J; Steven, Robert; Bamber, Bruce; Komuniecki, Richard W

    2009-02-01

    Serotonin modulates behavioral plasticity in both vertebrates and invertebrates and in Caenorhabditis elegans regulates key behaviors, including locomotion, aversive learning and olfaction through at least four different 5-HT receptors. In the present study, we examined the serotonergic stimulation of aversive responses to dilute octanol in animals containing null alleles of these 5-HT receptors. Both ser-1 and mod-1 null animals failed to increase sensitivity to dilute octanol on food/5-HT, in contrast to wild-type, ser-4 or ser-7 null animals. 5-HT sensitivity was restored by the expression of MOD-1 and SER-1 in the AIB or potentially the AIY, and RIA interneurons of mod-1 and ser-1 null animals, respectively. Because none of these 5-HT receptors appear to be expressed in the ASH sensory neurons mediating octanol sensitivity, we identified a 5-HT(6)-like receptor, F16D3.7(SER-5), that was required for food/5-HT-dependent increases in octanol sensitivity. ser-5 null animals failed to increase octanol sensitivity in the presence of food/5-HT and sensitivity could be restored by expression of SER-5 in the ASHs. Similarly, the RNAi knockdown of ser-5 expression in the ASHs of wild-type animals also abolished 5-HT-dependent increases in octanol sensitivity, suggesting that SER-5 modulates the octanol responsiveness of the ASHs directly. Together, these results suggest that multiple amine receptors, functioning at different levels within the locomotory circuit, are each essential for the serotonergic modulation of ASH-mediated aversive responses. PMID:19193891

  14. Altered serotonergic neurotransmission but normal hypothalamic-pituitary-adrenocortical axis activity in mice chronically treated with the corticotropin-releasing hormone receptor type 1 antagonist NBI 30775.

    PubMed

    Oshima, Akihiko; Flachskamm, Cornelia; Reul, Johannes M H M; Holsboer, Florian; Linthorst, Astrid C E

    2003-12-01

    Antagonists of the corticotropin-releasing hormone receptor type 1 (CRH-R1) are regarded as promising tools for the treatment of stress-related psychiatric disorders. Owing to the intricate relationship between CRH and serotonin (5-HT), we studied the effects of chronic oral treatment of C57Bl6/N mice with the CRH-R1 antagonist NBI 30775 (formerly known as R121919) on hippocampal serotonergic neurotransmission during basal (on 15th day of treatment) and stress (forced swimming; on 16th day of treatment) conditions by in vivo microdialysis. Given the important role of CRH in the regulation of hypothalamic-pituitary-adrenocortical (HPA) axis activity and behavior, the effects of NBI 30775 on dialysate-free corticosterone levels, and on home cage and forced swimming-related behavior were also assessed. Chronic administration of NBI 30775 (18.4+/-0.9 mg/kg/day) did not result in alterations in food consumption and body weight. NBI 30775 caused complex changes in hippocampal serotonergic neurotransmission. Whereas no effects on the diurnal rhythms of 5-HT and its metabolite 5-hydroxyindoleacetic acid were found, the responses of the neurotransmitter and its metabolite to 10 min of forced swim stress were reduced and prolonged, respectively. NBI 30775 did not change free corticosterone levels over the diurnal rhythm. Moreover, NBI 30775-treated mice showed a similar forced swim stress-induced increase in corticosterone as observed in the control group. No effects of NBI 30775 on home cage, and swim stress-related active behaviors (climbing, swimming) and immobility were found. Thus, whereas chronic antagonism of CRH-R1 did not compromise HPA axis performance and behavior, distinct changes in serotonergic neurotransmission developed. Owing to the important role of 5-HT in the pathophysiology of mood and anxiety disorders, the latter observation may contribute to the therapeutical efficacy of CRH-R1 antagonists in these illnesses. PMID:12915860

  15. The antinociceptive effects of intravenous tianeptine in colorectal distension-induced visceral pain in rats: the role of 5-HT₃ receptors.

    PubMed

    Bilge, S Sırrı; Bozkurt, Ayhan; Ilkaya, Fatih; Ciftcioğlu, Engin; Kesim, Yüksel; Uzbay, Tayfun I

    2012-04-15

    Tianeptine is an unusual tricyclic antidepressant drug. In this study, we aimed to investigate the antinociceptive effect of tianeptine on visceral pain in rats and to determine whether possible antinociceptive effect of tianeptine is mediated by serotonergic (5-HT(2,3)) and noradrenergic (α(1,2)) receptor subtypes. Male Sprague Dawley rats (250-300 g) were supplied with a venous catheter, for drug administrations, and enameled nichrome electrodes, for electromyography, at external oblique musculature. Colorectal distension (CRD) was employed as the noxious visceral stimulus and the visceromotor response (VMR) to CRD was quantified electromyographically before and 5, 15, 30, 60, 90 and 120 min after tianeptine administration. Antagonists were administered 10 min before tianeptine for their ability to change tianeptine antinociception. Intravenous administration of tianeptine (2.5-20 mg/kg) produced a dose-dependent reduction in VMR. Administration of 5-HT(3) receptor antagonist ondansetron (0.5, 1 and 2 mg/kg), but not 5-HT(2) receptor antagonist ketanserine (0.5, 1 and 2 mg/kg), reduced the antinociceptive effect of tianeptine (10mg/kg). In addition, administration of α(1)-adrenoceptor antagonist prazosin (1 mg/kg) or α(2)-adrenoceptor antagonist yohimbine (1 mg/kg) did not cause any significant effect on the tianeptine-induced antinociception. Our data indicate that intravenous tianeptine exerts a pronounced antinociception against CRD-induced visceral pain in rats, and suggests that the antinociceptive effect of tianeptine appears to be mediated in part by 5-HT(3) receptors, but does not involve 5-HT(2) receptors or α-adrenoceptors.

  16. The antinociceptive effects of intravenous tianeptine in colorectal distension-induced visceral pain in rats: the role of 5-HT₃ receptors.

    PubMed

    Bilge, S Sırrı; Bozkurt, Ayhan; Ilkaya, Fatih; Ciftcioğlu, Engin; Kesim, Yüksel; Uzbay, Tayfun I

    2012-04-15

    Tianeptine is an unusual tricyclic antidepressant drug. In this study, we aimed to investigate the antinociceptive effect of tianeptine on visceral pain in rats and to determine whether possible antinociceptive effect of tianeptine is mediated by serotonergic (5-HT(2,3)) and noradrenergic (α(1,2)) receptor subtypes. Male Sprague Dawley rats (250-300 g) were supplied with a venous catheter, for drug administrations, and enameled nichrome electrodes, for electromyography, at external oblique musculature. Colorectal distension (CRD) was employed as the noxious visceral stimulus and the visceromotor response (VMR) to CRD was quantified electromyographically before and 5, 15, 30, 60, 90 and 120 min after tianeptine administration. Antagonists were administered 10 min before tianeptine for their ability to change tianeptine antinociception. Intravenous administration of tianeptine (2.5-20 mg/kg) produced a dose-dependent reduction in VMR. Administration of 5-HT(3) receptor antagonist ondansetron (0.5, 1 and 2 mg/kg), but not 5-HT(2) receptor antagonist ketanserine (0.5, 1 and 2 mg/kg), reduced the antinociceptive effect of tianeptine (10mg/kg). In addition, administration of α(1)-adrenoceptor antagonist prazosin (1 mg/kg) or α(2)-adrenoceptor antagonist yohimbine (1 mg/kg) did not cause any significant effect on the tianeptine-induced antinociception. Our data indicate that intravenous tianeptine exerts a pronounced antinociception against CRD-induced visceral pain in rats, and suggests that the antinociceptive effect of tianeptine appears to be mediated in part by 5-HT(3) receptors, but does not involve 5-HT(2) receptors or α-adrenoceptors. PMID:22348811

  17. Characterization, solubilization and partial purification of serotonin 5-HT1C receptors

    SciTech Connect

    Yagaloff, K.A.

    1986-01-01

    /sup 125/I-Lysergic acid diethylamide (/sup 125/I-LSD) binds with high affinity to a unique serotonergic site on rat choroid plexus. These sites were localized to choroid plexus epithelial cells using a novel high resolution autoradiographic technique. In membrane preparations, the serotonergic site density was 3100 fmol/mg protein, which is 10 fold higher than the density of any other serotonergic site in brain homogenates. The pharmacology of this site, termed the 5-HT1c site, does not match that of 5-Ht1a, 5-HT1b or 5HT2 serotonergic sites. 5-Ht1c sites were solubilized from pig choroid plexus using the zwitterionic detergent, CHAPS. High affinity labelling of the solubilized site was obtained using the serotonergic radioligand, N1-methyl-2-(/sup 125/I)lysergic acid diethylamide (/sup 125/I-MIL). Choroid plexus tumors obtained from transgenic mice were examined for the presence of serotonin 5-HT1c receptors. /sup 125/I-LSD binding to choroid plexus tumors displays a pharmacological profile that matches the properties of 5-HT1c receptors in normal choroid plexus. The tumor exhibits the highest site density of serotonin receptors (6600 fmol/mg protein) found in any tissue. /sup 125/I-LSD autoradiography of brain sections from transgenic mice shows high levels of specific labelling over the tumor. The affinities of various indolealkyl, phenlakyl and beta-carboline derivatives for the serotonin 5-HT1c receptor were measured in pig choroid plexus using /sup 125/I-MIL. Serotonin precursors and metabolites were all very weak inhibitors of specific /sup 125/I-MIL binding. Structure-affinity relationships were determined for a number of indolealkylamine analogues. Only serotonin is present in cerebrospinal fluid at concentrations near its 5-HT1c inhibition constant, suggesting that serotonin is the natural 5-HT1c agonist.

  18. A Miniaturized Screen of a Schistosoma mansoni Serotonergic G Protein-Coupled Receptor Identifies Novel Classes of Parasite-Selective Inhibitors.

    PubMed

    Chan, John D; McCorvy, John D; Acharya, Sreemoyee; Johns, Malcolm E; Day, Timothy A; Roth, Bryan L; Marchant, Jonathan S

    2016-05-01

    Schistosomiasis is a tropical parasitic disease afflicting ~200 million people worldwide and current therapy depends on a single drug (praziquantel) which exhibits several non-optimal features. These shortcomings underpin the need for next generation anthelmintics, but the process of validating physiologically relevant targets ('target selection') and pharmacologically profiling them is challenging. Remarkably, even though over a quarter of current human therapeutics target rhodopsin-like G protein coupled receptors (GPCRs), no library screen of a flatworm GPCR has yet been reported. Here, we have pharmacologically profiled a schistosome serotonergic GPCR (Sm.5HTR) implicated as a downstream modulator of PZQ efficacy, in a miniaturized screening assay compatible with high content screening. This approach employs a split luciferase based biosensor sensitive to cellular cAMP levels that resolves the proximal kinetics of GPCR modulation in intact cells. Data evidence a divergent pharmacological signature between the parasitic serotonergic receptor and the closest human GPCR homolog (Hs.5HTR7), supporting the feasibility of optimizing parasitic selective pharmacophores. New ligands, and chemical series, with potency and selectivity for Sm.5HTR over Hs.5HTR7 are identified in vitro and validated for in vivo efficacy against schistosomules and adult worms. Sm.5HTR also displayed a property resembling irreversible inactivation, a phenomenon discovered at Hs.5HTR7, which enhances the appeal of this abundantly expressed parasite GPCR as a target for anthelmintic ligand design. Overall, these data underscore the feasibility of profiling flatworm GPCRs in a high throughput screening format competent to resolve different classes of GPCR modulators. Further, these data underscore the promise of Sm.5HTR as a chemotherapeutically vulnerable node for development of next generation anthelmintics. PMID:27187180

  19. A Miniaturized Screen of a Schistosoma mansoni Serotonergic G Protein-Coupled Receptor Identifies Novel Classes of Parasite-Selective Inhibitors

    PubMed Central

    Chan, John D.; McCorvy, John D.; Acharya, Sreemoyee; Day, Timothy A.; Roth, Bryan L.; Marchant, Jonathan S.

    2016-01-01

    Schistosomiasis is a tropical parasitic disease afflicting ~200 million people worldwide and current therapy depends on a single drug (praziquantel) which exhibits several non-optimal features. These shortcomings underpin the need for next generation anthelmintics, but the process of validating physiologically relevant targets (‘target selection’) and pharmacologically profiling them is challenging. Remarkably, even though over a quarter of current human therapeutics target rhodopsin-like G protein coupled receptors (GPCRs), no library screen of a flatworm GPCR has yet been reported. Here, we have pharmacologically profiled a schistosome serotonergic GPCR (Sm.5HTR) implicated as a downstream modulator of PZQ efficacy, in a miniaturized screening assay compatible with high content screening. This approach employs a split luciferase based biosensor sensitive to cellular cAMP levels that resolves the proximal kinetics of GPCR modulation in intact cells. Data evidence a divergent pharmacological signature between the parasitic serotonergic receptor and the closest human GPCR homolog (Hs.5HTR7), supporting the feasibility of optimizing parasitic selective pharmacophores. New ligands, and chemical series, with potency and selectivity for Sm.5HTR over Hs.5HTR7 are identified in vitro and validated for in vivo efficacy against schistosomules and adult worms. Sm.5HTR also displayed a property resembling irreversible inactivation, a phenomenon discovered at Hs.5HTR7, which enhances the appeal of this abundantly expressed parasite GPCR as a target for anthelmintic ligand design. Overall, these data underscore the feasibility of profiling flatworm GPCRs in a high throughput screening format competent to resolve different classes of GPCR modulators. Further, these data underscore the promise of Sm.5HTR as a chemotherapeutically vulnerable node for development of next generation anthelmintics. PMID:27187180

  20. Involvement of the serotonergic type 1A (5-HT1A) receptor in the agranular insular cortex in the consolidation of memory for inhibitory avoidance in rats.

    PubMed

    Mello e Souza, T; Rodrigues, C; Souza, M M; Vinadé, E; Coitinho, A; Choi, H; Izquierdo, I

    2001-09-01

    Adult male Wistar rats were bilaterally implanted with indwelling cannulae in the agranular insular cortex of the prefrontal cortex. After recovery, animals were trained in a step-down inhibitory avoidance task (3.0-s, 0.4-mA footshock) and received, immediately after training, a 0.5-microl infusion of the serotonergic type 1A (5-HT1A) receptor agonist dipropylamino-8-hydroxy-1,2,3,4-tetrahydronaphthalene hydrobromide (8-OH-DPAT) or of the 5- HT1A receptor antagonist 1-(2-methoxyphenyl)-4-[4-(2-phthalimido)butyl] piperazine hydrobromide (NAN-190), or of vehicle alone (20% DMSO). Retention testing was carried out 24 h after training. 8-OH-DPAT (1.25 and 6.25 microg but not 0.0125 or 0.125 microg) was amnesic. NAN-190 was not effective at 0.125 or 1.25 microg any dose but reversed amnesia when given at 1.250 microg simultaneously with both effective doses of 8-OH-DPAT. These results show that an overactivation of 5-HT1A receptors in the agranular insular cortex impairs memory consolidation of inhibitory avoidance, in rats, immediately after training. This suggests that these receptors of the insular cortex may modulate memory consolidation.

  1. Not only serotonergic system, but also dopaminergic system involved in albiflorin against chronic unpredictable mild stress-induced depression-like behavior in rats.

    PubMed

    Song, Jingjing; Hou, Xintong; Hu, Xinyu; Lu, Chengyu; Liu, Chungang; Wang, Juan; Liu, Wei; Teng, Lirong; Wang, Di

    2015-12-01

    Albiflorin (AF), separated from the root of Paeonia lactiflora Pall, possesses neuro-protective and anti-inflammatory activities. Based on previous results, our present research aims to investigate the antidepressant-like activity of AF in chronic unpredictable mild stress (CUMS)-induced rat model of depression. Eight weeks of CUMS process successfully established depression-like rat model, as evidenced by the enhanced immobility time in forced swimming test and the reduced sucrose preference, which were reversed to near normal by AF (20 mg/kg and 40 mg/kg) and fluoxetine (3 mg/kg; positive drug) treated. Compared to non-treated depression-like rats, the increased levels of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HTAA) in serum and hypothalamus, and the reduced expressions of 5-HT1A receptor and 5-HT2A receptor in hypothalamus were observed after AF and fluoxetine oral administration indicating that AF-mediated antidepressant-like effect may be related to the normalization of serotonergic system. Additionally, four-week AF treated rats significantly showed improvement in the reduced dopamine and noradrenalin concentration in serum and hypothalamus as observed on depression-like rats. Altered levels of tyrosine hydroxylase, dopamine D2 receptor and dopamine transporter in hypothalamus reverted to the normal level after treatment with both AF and fluoxetine. All these data demonstrate that not only serotonergic system, but also dopaminergic system is involved in AF-mediated antidepressant-like effect in CUMS-induced rat model of depression. PMID:26475043

  2. Traxoprodil, a selective antagonist of the NR2B subunit of the NMDA receptor, potentiates the antidepressant-like effects of certain antidepressant drugs in the forced swim test in mice.

    PubMed

    Poleszak, Ewa; Stasiuk, Weronika; Szopa, Aleksandra; Wyska, Elżbieta; Serefko, Anna; Oniszczuk, Anna; Wośko, Sylwia; Świąder, Katarzyna; Wlaź, Piotr

    2016-08-01

    One of the newest substances, whose antidepressant activity was shown is traxoprodil, which is a selective antagonist of the NR2B subunit of the NMDA receptor. The main goal of the present study was to evaluate the effect of traxoprodil on animals' behavior using the forced swim test (FST), as well as the effect of traxoprodil (10 mg/kg) on the activity of antidepressants, such as imipramine (15 mg/kg), fluoxetine (5 mg/kg), escitalopram (2 mg/kg) and reboxetine (2.5 mg/kg). Serotonergic lesion and experiment using the selective agonists of serotonin receptors 5-HT1A and 5-HT2 was conducted to evaluate the role of the serotonergic system in the antidepressant action of traxoprodil. Brain concentrations of tested agents were determined using HPLC. The results showed that traxoprodil at a dose of 20 and 40 mg/kg exhibited antidepressant activity in the FST and it was not related to changes in animals' locomotor activity. Co-administration of traxoprodil with imipramine, fluoxetine or escitalopram, each in subtherapeutic doses, significantly affected the animals' behavior in the FST and, what is important, these changes were not due to the severity of locomotor activity. The observed effect of traxoprodil is only partially associated with serotonergic system and is independent of the effect on the 5-HT1A and 5-HT2 serotonin receptors. The results of an attempt to assess the nature of the interaction between traxoprodil and the tested drugs show that in the case of joint administration of traxoprodil and fluoxetine, imipramine or escitalopram, there were interactions in the pharmacokinetic phase.

  3. Traxoprodil, a selective antagonist of the NR2B subunit of the NMDA receptor, potentiates the antidepressant-like effects of certain antidepressant drugs in the forced swim test in mice.

    PubMed

    Poleszak, Ewa; Stasiuk, Weronika; Szopa, Aleksandra; Wyska, Elżbieta; Serefko, Anna; Oniszczuk, Anna; Wośko, Sylwia; Świąder, Katarzyna; Wlaź, Piotr

    2016-08-01

    One of the newest substances, whose antidepressant activity was shown is traxoprodil, which is a selective antagonist of the NR2B subunit of the NMDA receptor. The main goal of the present study was to evaluate the effect of traxoprodil on animals' behavior using the forced swim test (FST), as well as the effect of traxoprodil (10 mg/kg) on the activity of antidepressants, such as imipramine (15 mg/kg), fluoxetine (5 mg/kg), escitalopram (2 mg/kg) and reboxetine (2.5 mg/kg). Serotonergic lesion and experiment using the selective agonists of serotonin receptors 5-HT1A and 5-HT2 was conducted to evaluate the role of the serotonergic system in the antidepressant action of traxoprodil. Brain concentrations of tested agents were determined using HPLC. The results showed that traxoprodil at a dose of 20 and 40 mg/kg exhibited antidepressant activity in the FST and it was not related to changes in animals' locomotor activity. Co-administration of traxoprodil with imipramine, fluoxetine or escitalopram, each in subtherapeutic doses, significantly affected the animals' behavior in the FST and, what is important, these changes were not due to the severity of locomotor activity. The observed effect of traxoprodil is only partially associated with serotonergic system and is independent of the effect on the 5-HT1A and 5-HT2 serotonin receptors. The results of an attempt to assess the nature of the interaction between traxoprodil and the tested drugs show that in the case of joint administration of traxoprodil and fluoxetine, imipramine or escitalopram, there were interactions in the pharmacokinetic phase. PMID:26924124

  4. The Relationship Between Single Nucleotide Polymorphisms in 5-HT2A Signal Transduction-Related Genes and the Response Efficacy to Selective Serotonin Reuptake Inhibitor Treatments in Chinese Patients with Major Depressive Disorder

    PubMed Central

    Li, Heng-Fen; Yu, Xue; He, Cha-Ye; Kou, Shao-Jie; Cao, Su-Xia

    2012-01-01

    Objective: To explore the possible relationship between six single nucleotide polymorphisms (SNPs) (rs6311 and rs6305 of 5-HT2A, rs5443 of Gβ3, rs2230739 of ACDY9, rs1549870 of PDE1A and rs255163 of CREB1, which are all related with 5-HT2A the signal transduction pathway) and the response efficacy to selective serotonin reuptake inhibitor (SSRI) treatments in major depressive disorder (MDD) Chinese. Methods: This study included 194 depressed patients to investigate the influence of 6 polymorphisms in 5-HT2A signal transduction-related genes on the efficacy of SSRIs assessed over 1 year. The efficacies of SSRIs on 194 MDD patients were evaluated in an 8-week open-trial study. Over 1 year, a follow-up study was completed for 174 of them to observe the long-term efficacy of SSRIs. The optimal-scaling regression analysis was used for testing the relationship between the different genotypes of five SNPs and the efficacy in MDD. Results: It showed that the patients with rs5443TT and rs2230739GG have a relatively good efficacy in response to short-term SSRIs. We also found that good efficacy appeared in depressed patients with rs2230739GG in response to long-term SSRIs. Conclusions: It suggested that different genotypes of rs5443 and rs2230739 might influence the signal transduction pathways of second message and affect therapeutic efficacy. PMID:22480177

  5. Receptor binding properties of amperozide.

    PubMed

    Svartengren, J; Simonsson, P

    1990-01-01

    The receptor pharmacology of amperozide was investigated with in vitro radioligand binding technique. Amperozide possessed a high affinity to the 5-HT2 receptors (Ki = 16.5 +/- 2.1 nM) and a moderate affinity to alpha 1-adrenergic receptors of rat cerebral cortical membranes (Ki = 172 +/- 14 nM). The affinity of amperozide for striatal and limbic dopamine D2 receptors was low and not significantly different (Ki +/- S.E.M. = 540 +/- 59 nM vs 403 +/- 42 nM; p less than 0.11, n = 4). The affinity for striatal and limbic 5-HT2 receptors was measured as well and found to be very close to the affinity to the cerebral cortical 5-HT2 receptor. The drug affinity for D2 and 5-HT2 receptors seems thus not to be influenced by the location of the receptor moiety. The affinity for several other rat brain receptors such as 5-HT1A, alpha 2-adrenergic, dopamine D1, muscarinic M1 and M2, opiate sigma and beta 2-adrenergic was low. The pseudo-Hill coefficient of the amperozide competition binding curve was consistently higher than one indicating antagonistic and complex interactions with the 5-HT2 receptor or with alpha 1-adrenergic and dopamine D2 receptors. The antagonistic properties of amperozide were investigated by its ability to antagonize the serotonin-induced formation of inositol-1-phosphate in human blood platelets. Amperozide inhibited this 5-HT2 receptor-mediated intracellular response with similar potency as ketanserin. These results suggest that amperozide is a selective 5-HT2 receptor antagonist.

  6. 5-Hydroxytryptamine 2A receptor signaling cascade modulates adiponectin and plasminogen activator inhibitor 1 expression in adipose tissue.

    PubMed

    Uchida-Kitajima, Shoko; Yamauchi, Toshimasa; Takashina, Youko; Okada-Iwabu, Miki; Iwabu, Masato; Ueki, Kohjiro; Kadowaki, Takashi

    2008-09-01

    Knowledge of the regulatory factors associated with down-regulation of adiponectin gene expression and up-regulation of PAI-1 gene expression is crucial to understand the pathophysiological basis of obesity and metabolic diseases, and could establish new treatment strategies for these conditions. We showed that expression of 5-HT(2A) receptors was up-regulated in hypertrophic 3T3-L1 adipocytes, which exhibited decreased expression of adiponectin and increased expression of PAI-1. 5-HT(2A) receptor antagonists and suppression of 5-HT(2A) receptor gene expression enhanced adiponectin expression. Activation of Gq negatively regulated adiponectin expression, and inhibition of mitogen-activated protein kinase reversed the Gq-induced effect. Moreover, the 5-HT(2A) receptor blockade reduced PAI-1 expression. These findings indicate that antagonism of 5-HT(2A) receptors in adipocytes could improve the obesity-linked decreases in adiponectin expression and increases in PAI-1 expression.

  7. Cortical Serotonin Type-2 Receptor Density in Parents of Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Goldberg, Jeremy; Anderson, George M.; Zwaigenbaum, Lonnie; Hall, Geoffrey B. C.; Nahmias, Claude; Thompson, Ann; Szatmari, Peter

    2009-01-01

    Parents (N = 19) of children with autism spectrum disorders (ASD) and adult controls (N = 17) underwent positron emission tomography (PET) using [[superscript 18]F]setoperone to image cortical serotonin type-2 (5-HT2) receptors. The 5-HT2 binding potentials (BPs) were calculated by ratioing [[superscript 18]F]setoperone intensity in regions of…

  8. Age-Dependent Switch of the Role of Serotonergic 5-HT1A Receptors in Gating Long-Term Potentiation in Rat Visual Cortex In Vivo

    PubMed Central

    Gagolewicz, Peter J.; Dringenberg, Hans C.

    2016-01-01

    The rodent primary visual cortex (V1) is densely innervated by serotonergic axons and previous in vitro work has shown that serotonin (5-HT) can modulate plasticity (e.g., long-term potentiation (LTP)) at V1 synapses. However, little work has examined the effects of 5-HT on LTP under in vivo conditions. We examined the role of 5-HT on LTP in V1 elicited by theta burst stimulation (TBS) of the lateral geniculate nucleus in urethane-anesthetized (adult and juvenile) rats. Thalamic TBS consistently induced potentiation of field postsynaptic potentials (fPSPs) recorded in V1. While 5-HT application (0.1–10 mM) itself did not alter LTP levels, the broad-acting 5-HT receptor antagonists methiothepin (1 mM) resulted in a clear facilitation of LTP in adult animals, an effect that was mimicked by the selective 5-HT1A receptor antagonist WAY 100635 (1 mM). Interestingly, in juvenile rats, WAY 100635 application inhibited LTP, indicative of an age-dependent switch in the role of 5-HT1A receptors in gating V1 plasticity. Analyses of spontaneous electrocorticographic (ECoG) activity in V1 indicated that the antagonist-induced LTP enhancement was not related to systematic changes in oscillatory activity in V1. Together, these data suggest a facilitating role of 5-HT1A receptor activation on LTP in the juvenile V1, which switches to a tonic, inhibitory influence in adulthood. PMID:27247804

  9. Multiple microvascular and astroglial 5-hydroxytryptamine receptor subtypes in human brain: molecular and pharmacologic characterization.

    PubMed

    Cohen, Z; Bouchelet, I; Olivier, A; Villemure, J G; Ball, R; Stanimirovic, D B; Hamel, E

    1999-08-01

    Physiologic and anatomic evidence suggest that 5-hydroxytryptamine (5-HT) neurons regulate local cerebral blood flow and blood-brain barrier permeability. To evaluate the possibility that some of these effects occur directly on the blood vessels, molecular and/or pharmacologic approaches were used to assess the presence of 5-HT receptors in human brain microvascular fractions, endothelial and smooth muscle cell cultures, as well as in astroglial cells which intimately associate with intraparenchymal blood vessels. Isolated microvessels and capillaries consistently expressed messages for the h5-HT1B, h5-HT1D, 5-HT1F, 5-HT2A but not 5-HT7 receptors. When their distribution within the vessel wall was studied in more detail, it was found that capillary endothelial cells exhibited mRNA for the h5-HT1D and for the 5-HT7 receptors whereas microvascular smooth muscle cells, in addition to h5-HT1D and 5-HT7, also showed polymerase chain reaction products for h5-HT1B receptors. Expression of 5-HT1F and 5-HT2A receptor mRNAs was never detected in any of the microvascular cell cultures. In contrast, messages for all 5-HT receptors tested were detected in human brain astrocytes with a predominance of the 5-HT2A and 5-HT7 subtypes. In all cultures, sumatriptan inhibited (35-58%, P < .05) the forskolin-stimulated production of cyclic AMP, an effect blocked by the 5-HT1B/1D receptor antagonists GR127935 and GR55562. In contrast, 5-carboxamidotryptamine induced strong increases (> or = 400%, P < .005) in basal cyclic AMP levels that were abolished by mesulergine, a nonselective 5-HT7 receptor antagonist. Only astroglial cells showed a ketanserin-sensitive increase (177%, P < .05) in IP3 formation when exposed to 5-HT. These results show that specific populations of functional 5-HT receptors are differentially distributed within the various cellular compartments of the human cortical microvascular bed, and that human brain astroglial cells are endowed with multiple 5-HT receptors

  10. 5-HT1A/1B, 5-HT6, and 5-HT7 serotonergic receptors recruitment in tonic-clonic seizure-induced antinociception: role of dorsal raphe nucleus.

    PubMed

    Freitas, Renato Leonardo; Ferreira, Célio Marcos dos Reis; Urbina, Maria Angélica Castiblanco; Mariño, Andrés Uribe; Carvalho, Andressa Daiane; Butera, Giuseppe; de Oliveira, Ana Maria; Coimbra, Norberto Cysne

    2009-05-01

    Pharmacological studies have been focused on the involvement of different neural pathways in the organization of antinociception that follows tonic-clonic seizures, including 5-hydroxytryptamine (5-HT)-, norepinephrine-, acetylcholine- and endogenous opioid peptide-mediated mechanisms, giving rise to more in-depth comprehension of this interesting post-ictal antinociceptive phenomenon. The present work investigated the involvement of 5-HT(1A/1B), 5-HT(6), and 5-HT(7) serotonergic receptors through peripheral pretreatment with methiothepin at doses of 0.5, 1.0, 2.0 and 3.0 mg/kg in the organization of the post-ictal antinociception elicited by pharmacologically (with pentylenetetrazole at 64 mg/kg)-induced tonic-clonic seizures. Methiothepin at 1.0 mg/kg blocked the post-ictal antinociception recorded after the end of seizures, whereas doses of 2.0 and 3.0 mg/kg potentiated the post-ictal antinociception. The nociceptive thresholds were kept higher than those of the control group. However, when the same 5-hydroxytryptamine receptors antagonist was microinjected (at 1.0, 3.0 and 5.0 microg/0.2 microL) in the dorsal raphe nucleus, a mesencephalic structure rich in serotonergic neurons and 5-HT receptors, the post-ictal hypo-analgesia was consistently antagonized. The present findings suggest a dual effect of methiothepin, characterized by a disinhibitory effect on the post-ictal antinociception when peripherally administered (possibly due to an antagonism of pre-synaptic 5-HT(1A) serotonergic autoreceptors in the pain endogenous inhibitory system) and an inhibitory effect (possibly due to a DRN post-synaptic 5-HT(1B), 5-HT(6), and 5-HT(7) serotonergic receptors blockade) when centrally administered. The present data also suggest that serotonin-mediated mechanisms of the dorsal raphe nucleus exert a key-role in the modulation of the post-ictal antinociception.

  11. Activity-dependent serotonergic excitation of callosal projection neurons in the mouse prefrontal cortex

    PubMed Central

    Stephens, Emily K.; Avesar, Daniel; Gulledge, Allan T.

    2014-01-01

    Layer 5 pyramidal neurons (L5PNs) in the mouse prefrontal cortex respond to serotonin (5-HT) according to their long-distance axonal projections; 5-HT1A (1A) receptors mediate inhibitory responses in corticopontine (CPn) L5PNs, while 5-HT2A (2A) receptors can enhance action potential (AP) output in callosal/commissural (COM) L5PNs, either directly (in “COM-excited” neurons), or following brief 1A-mediated inhibition (in “COM-biphasic” neurons). Here we compare the impact of 5-HT on the excitability of CPn and COM L5PNs experiencing variable excitatory drive produced by current injection (DC current or simulated synaptic current) or with exogenous glutamate. 5-HT delivered at resting membrane potentials, or paired with subthreshold depolarizing input, hyperpolarized CPn and COM-biphasic L5PNs and failed to promote AP generation in COM-excited L5PNs. Conversely, when paired with suprathreshold excitatory drive generating multiple APs, 5-HT suppressed AP output in CPn L5PNs, enhanced AP generation in COM-excited L5PNs, and generated variable responses in COM-biphasic L5PNs. While COM-excited neurons failed to respond to 5-HT in the presence of a 2A receptor antagonist, 32% of CPn neurons exhibited 2A-dependent excitation following blockade of 1A receptors. The presence of pharmacologically revealed 2A receptors in CPn L5PNs was correlated with the duration of 1A-mediated inhibition, yet biphasic excitatory responses to 5-HT were never observed, even when 5-HT was paired with strong excitatory drive. Our results suggest that 2A receptors selectively amplify the output of COM L5PNs experiencing suprathreshold excitatory drive, while shaping the duration of 1A-mediated inhibition in a subset of CPn L5PNs. Activity-dependent serotonergic excitation of COM L5PNs, combined with 1A-mediated inhibition of CPn and COM-biphasic L5PNs, may facilitate executive function by focusing network activity within cortical circuits subserving the most appropriate behavioral output

  12. Serotonergic receptor mechanisms underlying antidepressant-like action in the progesterone withdrawal model of hormonally induced depression in rats.

    PubMed

    Li, Yan; Raaby, Kasper F; Sánchez, Connie; Gulinello, Maria

    2013-11-01

    Hormonally induced mood disorders such as premenstrual dysphoric disorder (PMDD) are characterized by a range of physical and affective symptoms including anxiety, irritability, anhedonia, social withdrawal and depression. Studies demonstrated rodent models of progesterone withdrawal (PWD) have a high level of constructive and descriptive validity to model hormonally-induced mood disorders in women. Here we evaluate the effects of several classes of antidepressants in PWD female Long-Evans rats using the forced swim test (FST) as a measure of antidepressant activity. The study included fluoxetine, duloxetine, amitriptyline and an investigational multimodal antidepressant, vortioxetine (5-HT(3), 5-HT(7) and 5-HT(1D) receptor antagonist; 5-HT(1B) receptor partial agonist; 5-HT(1A) receptor agonist; inhibitor of the serotonin transporter (SERT)). After 14 days of administration, amitriptyline and vortioxetine significantly reduced immobility in the FST whereas fluoxetine and duloxetine were ineffective. After 3 injections over 48 h, neither fluoxetine nor duloxetine reduced immobility, whereas amitriptyline and vortioxetine significantly reduced FST immobility during PWD. When administered acutely during PWD, the 5-HT(1A) receptor agonist, flesinoxan, significantly reduced immobility, whereas the 5-HT(1A) receptor antagonist, WAY-100635, increased immobility. The 5-HT(3) receptor antagonist, ondansetron, significantly reduced immobility, whereas the 5-HT(3) receptor agonist, SR-57227, increased immobility. The 5-HT(7) receptor antagonist, SB-269970, was inactive, although the 5-HT(7) receptor agonist, AS-19, significantly increased PWD-induced immobility. None of the compounds investigated (ondansetron, flesinoxan and SB-269970) improved the effect of fluoxetine during PWD. These data indicate that modulation of specific 5-HT receptor subtypes is critical for manipulating FST immobility in this model of hormone-induced depression.

  13. Serotonin 2C receptor activates a distinct population of arcuate pro-opiomelanocortin neurons via TRPC channels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Serotonin 2C receptors (5-HT2CRs) expressed by pro-opiomelanocortin (POMC) neurons of hypothalamic arcuate nucleus regulate food intake, energy homeostasis ,and glucose metabolism. However, the cellular mechanisms underlying the effects of 5-HT to regulate POMC neuronal activity via 5-HT2CRs have no...

  14. Serotonergic hypothesis of sleepwalking.

    PubMed

    Juszczak, Grzegorz R; Swiergiel, Artur H

    2005-01-01

    Despite widespread prevalence of sleepwalking, its etiology and pathophysiology are not well understood. However, there is some evidence that sleepwalking can be precipitated by sleep-disordered breathing. A hypothesis is proposed that serotonergic system may be a link between sleep-disordered breathing and sleepwalking. Serotonergic neurons meet basic requirements for such a role because they are activated by hypercapnia, provide a tonic excitatory drive that gates afferent inputs to motoneurons, and the activity of serotonergic neurons can be dissociated from the level of arousal. This paper discusses also drug-induced somnambulism and co-occurrence of sleepwalking and other disorders such as migraine and febrile illness.

  15. The antidepressant-like effect of 7-fluoro-1,3-diphenylisoquinoline-1-amine in the mouse forced swimming test is mediated by serotonergic and dopaminergic systems.

    PubMed

    Pesarico, Ana Paula; Sampaio, Tuane Bazanella; Stangherlin, Eluza Curte; Mantovani, Anderson C; Zeni, Gilson; Nogueira, Cristina Wayne

    2014-10-01

    The aim of the present study was to investigate the role of monoaminergic system in the antidepressant-like action of 7-fluoro-1,3-diphenylisoquinoline-1-amine (FDPI), a derivative of isoquinoline class, in Swiss mice. The antidepressant-like effect of FDPI was characterized in the modified forced swimming test (FST) and the possible mechanism of action was investigated by using serotonergic, dopaminergic and noradrenergic antagonists. Monoamine oxidase (MAO) activity and [(3)H]serotonin (5-HT) uptake were determined in prefrontal cortices of mice. The results showed that FDPI (1, 10 and 20mg/kg, i.g.) reduced the immobility time and increased the swimming time but did not alter climbing time in the modified FST. These effects were similar to those of paroxetine (8mg/kg, i.p.), a positive control. Pretreatments with p-chlorophenylalanine (100mg/kg, i.p., an inhibitor of 5-HT synthesis), WAY100635 (0.1mg/kg, s.c., 5-HT1A antagonist), ondansetron (1mg/kg, i.p., a 5-HT3 receptor antagonist), haloperidol (0.2mg/kg, i.p., a non-selective D2 receptor antagonist) and SCH23390 (0.05mg/kg, s.c., a D1 receptor antagonist) were effective to block the antidepressant-like effect of FDPI at a dose of 1mg/kg in the FST. Ritanserin (1mg/kg, i.p., a 5-HT2A/2C receptor antagonist), sulpiride (50mg/kg, i.p., a D2 and D3 receptor antagonist), prazosin (1mg/kg, i.p., an α1 receptor antagonist), yohimbine (1mg/kg, i.p., an α2 receptor antagonist) and propranolol (2mg/kg, i.p., a β receptor antagonist) did not modify the effect of FDPI in the FST. FDPI did not change synaptosomal [(3)H]5-HT uptake. At doses of 10 and 20mg/kg FDPI inhibited MAO-A and MAO-B activities. These results suggest that antidepressant-like effect of FDPI is mediated mostly by serotonergic and dopaminergic systems.

  16. Elevated serotonergic signaling amplifies synaptic noise and facilitates the emergence of epileptiform network oscillations

    PubMed Central

    Puzerey, Pavel A.; Decker, Michael J.

    2014-01-01

    Serotonin fibers densely innervate the cortical sheath to regulate neuronal excitability, but its role in shaping network dynamics remains undetermined. We show that serotonin provides an excitatory tone to cortical neurons in the form of spontaneous synaptic noise through 5-HT3 receptors, which is persistent and can be augmented using fluoxetine, a selective serotonin re-uptake inhibitor. Augmented serotonin signaling also increases cortical network activity by enhancing synaptic excitation through activation of 5-HT2 receptors. This in turn facilitates the emergence of epileptiform network oscillations (10–16 Hz) known as fast runs. A computational model of cortical dynamics demonstrates that these two combined mechanisms, increased background synaptic noise and enhanced synaptic excitation, are sufficient to replicate the emergence fast runs and their statistics. Consistent with these findings, we show that blocking 5-HT2 receptors in vivo significantly raises the threshold for convulsant-induced seizures. PMID:25122717

  17. Iodine 125-lysergic acid diethylamide binds to a novel serotonergic site on rat choroid plexus epithelial cells

    SciTech Connect

    Yagaloff, K.A.; Hartig, P.R.

    1985-12-01

    /sup 125/I-Lysergic acid diethylamide (/sup 125/I-LSD) binds with high affinity to serotonergic sites on rat choroid plexus. These sites were localized to choroid plexus epithelial cells by use of a novel high resolution stripping film technique for light microscopic autoradiography. In membrane preparations from rat choroid plexus, the serotonergic site density was 3100 fmol/mg of protein, which is 10-fold higher than the density of any other serotonergic site in brain homogenates. The choroid plexus site exhibits a novel pharmacology that does not match the properties of 5-hydroxytryptamine-1a (5-HT1a), 5-HT1b, or 5-HT2 serotonergic sites. /sup 125/I-LSD binding to the choroid plexus site is potently inhibited by mianserin, serotonin, and (+)-LSD. Other serotonergic, dopaminergic, and adrenergic agonists and antagonists exhibit moderate to weak affinities for this site. The rat choroid plexus /sup 125/I-LSD binding site appears to represent a new type of serotonergic site which is located on non-neuronal cells in this tissue.

  18. Cartography of serotonergic circuits

    PubMed Central

    Sparta, Dennis R.; Stuber, Garret D.

    2014-01-01

    Summary Serotonin is an essential neuromodulator, but the precise circuit connectivity that regulates serotonergic neurons has not been well defined. Using rabies virus tracing strategies Weissbourd et al., and Dorocic et al., in this issue of Neuron and Ogawa et al., in Cell Reports provide a comprehensive map of the inputs to serotonergic neurons; highlighting the complexity and diversity of potential upstream cellular regulators. PMID:25102556

  19. Cartography of serotonergic circuits.

    PubMed

    Sparta, Dennis R; Stuber, Garret D

    2014-08-01

    Serotonin is an essential neuromodulator, but the precise circuit connectivity that regulates serotonergic neurons has not been well defined. Using rabies virus tracing strategies Weissbourd et al. (2014) and Pollak Dorocic et al. (2014) in this issue of Neuron and Ogawa et al. (2014) in Cell Reports provide a comprehensive map of the inputs to serotonergic neurons, highlighting the complexity and diversity of potential upstream cellular regulators.

  20. 5HT3 receptor antagonist (ondansetron) reverses depressive behavior evoked by chronic unpredictable stress in mice: modulation of hypothalamic-pituitary-adrenocortical and brain serotonergic system.

    PubMed

    Gupta, Deepali; Radhakrishnan, Mahesh; Kurhe, Yeshwant

    2014-09-01

    serotonergic system. Further, the study represents that 5HT3 receptor antagonists can be a potential therapeutic candidate for stress-related depressive disorders. PMID:24909071

  1. Stimulation of glutamate receptors in the ventral tegmental area is necessary for serotonin-2 receptor-induced increases in mesocortical dopamine release.

    PubMed

    Pehek, E A; Hernan, A E

    2015-04-01

    Modulation of dopamine (DA) released by serotonin-2 (5-HT2) receptors has been implicated in the mechanism of action of antipsychotic drugs. The mesocortical DA system has been implicated particularly in the cognitive deficits observed in schizophrenia. Agonism at 5-HT2A receptors in the prefrontal cortex (PFC) is associated with increases in cortical DA release. Evidence indicates that 5-HT2A receptors in the cortex regulate mesocortical DA release through stimulation of a "long-loop" feedback system from the PFC to the ventral tegmental area (VTA) and back. However, a causal role for VTA glutamate in the 5-HT2-induced increases in PFC DA has not been established. The present study does so by measuring 5-HT2 agonist-induced DA release in the cortex after infusions of glutamate antagonists into the VTA of the rat. Infusions of a combination of a N-methyl-d-aspartic acid (NMDA) (AP-5: 2-amino-5-phosphopentanoic acid) and an AMPA/kainate (CNQX: 6-cyano-7-nitroquinoxaline-2,3-dione) receptor antagonist into the VTA blocked the increases in cortical DA produced by administration of the 5-HT2 agonist DOI [(±)-2,5-dimethoxy-4-iodoamphetamine] (2.5mg/kg s.c.). These results demonstrate that stimulation of glutamate receptors in the VTA is necessary for 5-HT2 agonist-induced increases in cortical DA.

  2. Stimulation of glutamate receptors in the ventral tegmental area is necessary for serotonin-2 receptor-induced increases in mesocortical dopamine release.

    PubMed

    Pehek, E A; Hernan, A E

    2015-04-01

    Modulation of dopamine (DA) released by serotonin-2 (5-HT2) receptors has been implicated in the mechanism of action of antipsychotic drugs. The mesocortical DA system has been implicated particularly in the cognitive deficits observed in schizophrenia. Agonism at 5-HT2A receptors in the prefrontal cortex (PFC) is associated with increases in cortical DA release. Evidence indicates that 5-HT2A receptors in the cortex regulate mesocortical DA release through stimulation of a "long-loop" feedback system from the PFC to the ventral tegmental area (VTA) and back. However, a causal role for VTA glutamate in the 5-HT2-induced increases in PFC DA has not been established. The present study does so by measuring 5-HT2 agonist-induced DA release in the cortex after infusions of glutamate antagonists into the VTA of the rat. Infusions of a combination of a N-methyl-d-aspartic acid (NMDA) (AP-5: 2-amino-5-phosphopentanoic acid) and an AMPA/kainate (CNQX: 6-cyano-7-nitroquinoxaline-2,3-dione) receptor antagonist into the VTA blocked the increases in cortical DA produced by administration of the 5-HT2 agonist DOI [(±)-2,5-dimethoxy-4-iodoamphetamine] (2.5mg/kg s.c.). These results demonstrate that stimulation of glutamate receptors in the VTA is necessary for 5-HT2 agonist-induced increases in cortical DA. PMID:25637799

  3. Serotonin 2A and 2B receptor-induced phrenic motor facilitation: differential requirement for spinal NADPH oxidase activity

    PubMed Central

    MacFarlane, P.M.; Vinit, S.; Mitchell, G.S.

    2011-01-01

    Acute intermittent hypoxia (AIH) facilitates phrenic motor output by a mechanism that requires spinal serotonin (type 2) receptor activation, NADPH oxidase activity and formation of reactive oxygen species (ROS). Episodic spinal serotonin (5-HT) receptor activation alone, without changes in oxygenation, is sufficient to elicit NADPH oxidase-dependent phrenic motor facilitation (pMF). Here we investigated: 1) whether serotonin 2A and/or 2B (5-HT2a/b) receptors are expressed in identified phrenic motor neurons, and 2) which receptor subtype is capable of eliciting NADPH-oxidase-dependent pMF. In anesthetized, artificially ventilated adult rats, episodic C4 intrathecal injections (3 × 6µl injections, 5 min intervals) of a 5-HT2a (DOI) or 5-HT2b (BW723C86) receptor agonist elicited progressive and sustained increases in integrated phrenic nerve burst amplitude (i.e. pMF), an effect lasting at least 90 minutes post-injection for both receptor subtypes. 5-HT2a and 5-HT2b receptor agonist-induced pMF were both blocked by selective antagonists (ketanserin and SB206553, respectively), but not by antagonists to the other receptor subtype. Single injections of either agonist failed to elicit pMF, demonstrating a need for episodic receptor activation. Phrenic motor neurons retrogradely labeled with cholera toxin B fragment expressed both 5-HT2a and 5-HT2b receptors. Pre-treatment with NADPH oxidase inhibitors (apocynin and DPI) blocked 5-HT2b, but not 5-HT2a-induced pMF. Thus, multiple spinal type 2 serotonin receptors elicit pMF, but they act via distinct mechanisms that differ in their requirement for NADPH oxidase activity. PMID:21223996

  4. A complex interaction between glycine/NMDA receptors and serotonergic/noradrenergic antidepressants in the forced swim test in mice.

    PubMed

    Poleszak, Ewa; Wlaź, Piotr; Szewczyk, Bernadeta; Wlaź, Aleksandra; Kasperek, Regina; Wróbel, Andrzej; Nowak, Gabriel

    2011-11-01

    Both clinical and preclinical studies demonstrate the antidepressant activity of the functional NMDA receptor antagonists. In this study, we assessed the effects of two glycine/NMDA receptor ligands, namely L-701,324 (antagonist) and D: -cycloserine (a partial agonist) on the action of antidepressant drugs with different pharmacological profiles in the forced swim test in mice. Swim sessions were conducted by placing mice individually in glass cylinders filled with warmed water for 6 min. The duration of behavioral immobility during the last 4 min of the test was evaluated. The locomotor activity of mice was measured with photoresistor actimeters. L-701,324 and D: -cycloserine given with reboxetine (administered in subeffective doses) did not change the behavior of animals in the forced swim test. A potentiating effect was seen when both tested glycine site ligands were given concomitantly with imipramine or fluoxetine in this test. The lesion of noradrenaline nerve terminals produced by DSP-4 neither altered the baseline activity nor influenced the antidepressant-like action of L-701,324 or D: -cycloserine. The depletion of serotonin by p-CPA did not alter baseline activity in the forced swim test. However, it completely antagonized the antidepressant-like action produced by L-701,324 and D: -cycloserine. Moreover, the antidepressant-like effects of imipramine, fluoxetine and reboxetine were abolished by D: -serine, a full agonist of glycine/NMDA receptors. The present study demonstrates that glycine/NMDA receptor functional antagonists enhance the antidepressant-like action of serotonin, but not noradrenaline-based antidepressants and such their activity seems to depend on serotonin rather than noradrenaline pathway.

  5. Serotonin receptors expressed in Drosophila mushroom bodies differentially modulate larval locomotion.

    PubMed

    Silva, Bryon; Goles, Nicolás I; Varas, Rodrigo; Campusano, Jorge M

    2014-01-01

    Drosophila melanogaster has been successfully used as a simple model to study the cellular and molecular mechanisms underlying behaviors, including the generation of motor programs. Thus, it has been shown that, as in vertebrates, CNS biogenic amines (BA) including serotonin (5HT) participate in motor control in Drosophila. Several evidence show that BA systems innervate an important association area in the insect brain previously associated to the planning and/or execution of motor programs, the Mushroom Bodies (MB). The main objective of this work is to evaluate the contribution of 5HT and its receptors expressed in MB to motor behavior in fly larva. Locomotion was evaluated using an automated tracking system, in Drosophila larvae (3(rd)-instar) exposed to drugs that affect the serotonergic neuronal transmission: alpha-methyl-L-dopa, MDMA and fluoxetine. In addition, animals expressing mutations in the 5HT biosynthetic enzymes or in any of the previously identified receptors for this amine (5HT1AR, 5HT1BR, 5HT2R and 5HT7R) were evaluated in their locomotion. Finally, RNAi directed to the Drosophila 5HT receptor transcripts were expressed in MB and the effect of this manipulation on motor behavior was assessed. Data obtained in the mutants and in animals exposed to the serotonergic drugs, suggest that 5HT systems are important regulators of motor programs in fly larvae. Studies carried out in animals pan-neuronally expressing the RNAi for each of the serotonergic receptors, support this idea and further suggest that CNS 5HT pathways play a role in motor control. Moreover, animals expressing an RNAi for 5HT1BR, 5HT2R and 5HT7R in MB show increased motor behavior, while no effect is observed when the RNAi for 5HT1AR is expressed in this region. Thus, our data suggest that CNS 5HT systems are involved in motor control, and that 5HT receptors expressed in MB differentially modulate motor programs in fly larvae.

  6. Serotonin Receptors Expressed in Drosophila Mushroom Bodies Differentially Modulate Larval Locomotion

    PubMed Central

    Silva, Bryon; Goles, Nicolás I.; Varas, Rodrigo; Campusano, Jorge M.

    2014-01-01

    Drosophila melanogaster has been successfully used as a simple model to study the cellular and molecular mechanisms underlying behaviors, including the generation of motor programs. Thus, it has been shown that, as in vertebrates, CNS biogenic amines (BA) including serotonin (5HT) participate in motor control in Drosophila. Several evidence show that BA systems innervate an important association area in the insect brain previously associated to the planning and/or execution of motor programs, the Mushroom Bodies (MB). The main objective of this work is to evaluate the contribution of 5HT and its receptors expressed in MB to motor behavior in fly larva. Locomotion was evaluated using an automated tracking system, in Drosophila larvae (3rd-instar) exposed to drugs that affect the serotonergic neuronal transmission: alpha-methyl-L-dopa, MDMA and fluoxetine. In addition, animals expressing mutations in the 5HT biosynthetic enzymes or in any of the previously identified receptors for this amine (5HT1AR, 5HT1BR, 5HT2R and 5HT7R) were evaluated in their locomotion. Finally, RNAi directed to the Drosophila 5HT receptor transcripts were expressed in MB and the effect of this manipulation on motor behavior was assessed. Data obtained in the mutants and in animals exposed to the serotonergic drugs, suggest that 5HT systems are important regulators of motor programs in fly larvae. Studies carried out in animals pan-neuronally expressing the RNAi for each of the serotonergic receptors, support this idea and further suggest that CNS 5HT pathways play a role in motor control. Moreover, animals expressing an RNAi for 5HT1BR, 5HT2R and 5HT7R in MB show increased motor behavior, while no effect is observed when the RNAi for 5HT1AR is expressed in this region. Thus, our data suggest that CNS 5HT systems are involved in motor control, and that 5HT receptors expressed in MB differentially modulate motor programs in fly larvae. PMID:24586928

  7. Serotonergic and glutamatergic neurons at the ventral medullary surface of the human infant: Observations relevant to central chemosensitivity in early human life.

    PubMed

    Paterson, David S; Thompson, Eric G; Kinney, Hannah C

    2006-01-30

    Central chemoreception is the mechanism by which the brain detects the level of carbon dioxide (CO(2)) in the arterial blood and alters breathing accordingly in order to maintain it within physiological levels. The ventral surface of the medulla oblongata (VMS) of animals has long been recognized as a site of chemosensitivity, culminating in the recent identification of chemosensitive serotonergic (5-HT) and glutamatergic (Glut) neurons in this region. In this study, we analyzed the distribution of 5-HT and Glut neurons and their receptors in the arcuate nucleus (Arc) at the VMS of the human infant, using single-and double-label immunohistochemistry with specific antibodies. We also examined the expression of astrocytes, as experimental evidence suggests that astrocytes mediate, at least in part, central chemosensitivity via 5-HT and/or Glut receptors. We identified a small number of 5-HT neurons (approximately 5% of Arc neurons), distributed over the entire extent of the VMS, a large number of Glut neurons (approximately 95% of Arc neurons) that localized almost exclusively to the medial Arc, and a large number of astrocytes distributed across the entire extent of the VMS. The Arc also contained 5-HT(1A), kainate (GluR5), and 5-HT(2A) receptors, which localized predominantly to 5-HT neurons, glutamate neurons and astrocytes, respectively. Astrocytes also expressed the vesicular glutamate transporter 2 and low levels of 5-HT(1A) and kainate (GluR5) receptors, indicating that astrocytes may store and release glutamate, possibly in response to stimulation by 5-HT and/or Glut. These observations suggest that important functional interactions exist between 5-HT, glutamate, and astrocytes in the Arc. They also support the idea that the Arc is homologous to chemosensitive zones at the VMS in experimental animals. These data are important towards delineating the role of the human Arc in modulation of homeostasis, and its dysfunction in brainstem-associated pathologies

  8. Ondansetron, a 5HT3 receptor antagonist reverses depression and anxiety-like behavior in streptozotocin-induced diabetic mice: possible implication of serotonergic system.

    PubMed

    Gupta, Deepali; Radhakrishnan, Mahesh; Kurhe, Yeshwant

    2014-12-01

    Increased prevalence and high comorbidity of depression-like mood disorders and diabetes have prompted investigation of new targets and potential contributing agents. There is considerable evidence supporting the inconsistent clinical efficacy and persistent undesirable effects of existing antidepressant therapy for depression associated with diabetes. Therefore, the present study was aimed at investigating the effect of ondansetron, a selective 5HT3 receptor antagonist in attenuating depression and anxiety-like behavior comorbid with diabetes. Experimentally, Swiss albino mice were rendered diabetic by a single intraperitoneal (i.p.) injection of streptozotocin (STZ, 200 mg/kg). After 8 weeks, diabetic mice received a single dose of vehicle/ondansetron (0.5 and 1 mg/kg, p.o.)/fluoxetine (the positive control, 10 mg/kg p.o.) for 28 days. Thereafter, behavioral studies were conducted to test depression-like behavior using forced swim test (FST) and anxiety-like deficits using hole-board and light-dark tests, followed by biochemical estimation of serotonin content in discrete brain regions. The results demonstrated that, STZ-induced diabetic mice exhibited increased duration of immobility and decreased swimming behavior in FST, reduced exploratory behavior during hole-board test and increased aversion to brightly illuminated light area in light-dark test as compared to non-diabetic mice, while ondansetron (similar to fluoxetine) treatment significantly reversed the same. Biochemical assay revealed that ondansetron administration attenuated diabetes-induced neurochemical impairment of serotonin function, indicated by elevated serotonin levels in discrete brain regions of diabetic mice. Collectively, the data indicate that ondansetron may reverse depression and anxiety-like behavioral deficits associated with diabetes in mice and modulation of serotonergic activity may be a key mechanism of the compound.

  9. Structural Basis for Molecular Recognition at Serotonin Receptors

    PubMed Central

    Wang, Chong; Jiang, Yi; Ma, Jinming; Wu, Huixian; Wacker, Daniel; Katritch, Vsevolod; Han, Gye Won; Liu, Wei; Huang, Xi-Ping; Vardy, Eyal; McCorvy, John D.; Gao, Xiang; Zhou, Edward X.; Melcher, Karsten; Zhang, Chenghai; Bai, Fang; Yang, Huaiyu; Yang, Linlin; Jiang, Hualiang; Roth, Bryan L.; Cherezov, Vadim; Stevens, Raymond C.; Xu, H. Eric

    2013-01-01

    Serotonin or 5-hydroxytryptamine (5-HT) regulates a wide spectrum of human physiology through the 5-HT receptor family. We report the crystal structures of the human 5-HT1B G protein-coupled receptor bound to the agonist anti-migraine medications ergotamine and dihydroergotamine. The structures reveal similar binding modes for these ligands, which occupy the orthosteric pocket and an extended binding pocket close to the extracellular loops. The orthosteric pocket is formed by residues conserved in the 5-HT receptor family, clarifying the family-wide agonist activity of 5-HT. Compared to the accompanying structure of the 5-HT2B receptor, the 5-HT1B receptor displays a 3 angstrom outward shift at the extracellular end of helix V, resulting in a more open extended pocket that explains subtype selectivity. Together with docking and mutagenesis studies, these structures provide a comprehensive structural basis for understanding receptor-ligand interactions and designing subtype-selective serotonergic drugs. PMID:23519210

  10. Differential interactions of indolealkylamines with 5-hydroxytryptamine receptor subtypes.

    PubMed

    McKenna, D J; Repke, D B; Lo, L; Peroutka, S J

    1990-03-01

    Affinities of drugs for 21 indolealkylamine derivatives, some with putative hallucinogenic activity, were determined at 5-HT1A, 5-HT2A and 5-HT2B recognition sites, using radioligand competition studies. Nearly all of the derivatives displayed greatest potency for the 5-HT2A receptor, labelled by [125I]R-(-)DOI in the cortex of the rat. Most derivatives displayed 2-10 times lower affinity at the HT2B receptor labelled by [3H]ketanserin in bovine cortex. Derivatives lacking ring substituents displayed lower affinities for all of the recognition sites, compared to derivatives substituted in the 4- or 5-position of the indole ring. The 4-hydroxylated derivatives displayed 25-380-fold selectivity for the 5-HT2A site, vs the 5-HT1A site, while the 5-substituted derivatives displayed approximately equal potency at the 5-HT1A and 5-HT2A sites. Affinity of all the compounds at the 5-HT2B site was greater than 300 nM. The 6-substituted derivatives displayed greater than micromolar affinities for all of the 5-HT recognition sites examined. The size of the N,N-dialkyl substituent was a secondary determinant of affinity, with groups larger than N,N-diisopropyl resulting in a marked reduction in affinity at both the 5-HT2A and 5-HT1A recognition sites. This study demonstrated that hallucinogenic 4-hydroxy-indolealkylamines, like psychotomimetic phenylisopropylamines, bind potently and selectively to the 5-HT2A recognition site, labelled by [125I]R-(-)DOI. This provides further evidence indicating that this recently described subtype of the 5-HT2 receptor may partially mediate the action of hallucinogenic agents.

  11. Involvement of pre- and post-synaptic serotonergic receptors of dorsal raphe nucleus neural network in the control of the sweet-substance-induced analgesia in adult Rattus norvegicus (Rodentia, Muridae).

    PubMed

    Miyase, Cátia Isumi; Kishi, Renato; de Freitas, Renato Leonardo; Paz, Denise Amorim; Coimbra, Norberto Cysne

    2005-05-13

    In order to investigate the effects of monoaminergic mechanisms of the dorsal raphe nucleus on the elaboration and control of sweet-substance-induced antinociception, male albino Wistar rats weighing 180-200 g received sucrose solution (250 g/L) for 14 days as their only source of liquid. After the chronic consumption of sucrose solution, each animal was pretreated with unilateral microinjection of methiothepin mesylate (5.0 microg/0.2 microL), or methysergide maleate (5.0 microg/0.2 microL) in the dorsal raphe nucleus. Each rat consumed an average of 15.6g sucrose/day. Their tail withdrawal latencies in the tail-flick test were measured immediately before and after this treatment. An analgesia index was calculated from the withdrawal latencies before and after the pharmacological treatment. The blockade of serotonergic receptor in the dorsal raphe nucleus with methysergide after the chronic intake of sucrose decreased the sweet-induced antinociception. However, microinjections of methiothepin in the dorsal raphe nucleus did not cause a similar effect on the tail-flick latencies after the chronic intake of sucrose solution, increasing the sweet-substance-induced analgesia. These results indicate the involvement of serotonin as a neurotransmitter in the sucrose-produced antinociception. Considering that the blockade of pre-synaptic serotonergic receptors of the neural networks of the dorsal raphe nucleus with methiothepin did not decrease the sweet-substance-induced antinociception, and the central blockade of post-synaptic serotonergic receptors decreased the sucrose-induced analgesia, the modulation of the release of serotonin in the neural substrate of the dorsal raphe nucleus seems to be crucial for the organization of this interesting antinociceptive process.

  12. Pathophysiologic basis of anorexia: focus on the interaction between ghrelin dynamics and the serotonergic system.

    PubMed

    Takeda, Hiroshi; Nakagawa, Koji; Okubo, Naoto; Nishimura, Mie; Muto, Shuichi; Ohnishi, Shunsuke; Sakamoto, Naoya; Hosono, Hidetaka; Asaka, Masahiro

    2013-01-01

    Anorexia is an important issue in the management of elderly patients with cancer because it contributes to the development of malnutrition, increases morbidity and mortality, and negatively affects patients' quality of life. This review summarizes the potential mechanisms of the development of anorexia in three animal models that mimic the situations commonly seen in elderly patients receiving chemotherapy. Cisplatin-induced anorexia is attributable to a decrease in peripheral and central ghrelin secretion caused by the stimulation of serotonin (5-hydroxytryptamine; 5-HT)2B and 5-HT2C receptors via 5-HT secretion. Age-associated anorexia is caused by an increase in plasma leptin, which results from disturbed reactivity of ghrelin in the hypothalamus and regulation of ghrelin secretion. Environmental change causes the activation of central 5-HT1B and 5-HT2C receptors and the melanocortin-4 receptor system, resulting in a decrease in circulating ghrelin levels which lowers food intake. New therapeutic approaches based on these pathophysiological mechanisms are warranted for the treatment of anorexia in cancer patients, especially elderly ones.

  13. 5-Hydroxytryptamine2A serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites.

    PubMed

    Jakab, R L; Goldman-Rakic, P S

    1998-01-20

    To identify the cortical sites where 5-hydroxytryptamine2A (5-HT2A) serotonin receptors respond to the action of hallucinogens and atypical antipsychotic drugs, we have examined the cellular and subcellular distribution of these receptors in the cerebral cortex of macaque monkeys (with a focus on prefrontal areas) by using light and electron microscopic immunocytochemical techniques. 5-HT2A receptor immunoreactivity was detected in all cortical layers, among which layers II and III and layers V and VI were intensely stained, and layer IV was weakly labeled. The majority of the receptor-labeled cells were pyramidal neurons and the most intense immunolabeling was consistently confined to their parallelly aligned proximal apical dendrites that formed two intensely stained bands above and below layer IV. In double-label experiments, 5-HT2A label was found in calbindin D28k-positive, nonphosphorylated-neurofilament-positive, and immuno-negative pyramidal cells, suggesting that probably all pyramidal cells express 5-HT2A receptors. 5-HT2A label was also found in large- and medium-size interneurons, some of which were immuno-positive for calbindin. 5-HT2A receptor label was also associated with axon terminals. These findings reconcile the data on the receptor's cortical physiology and localization by (i) establishing that 5-HT2A receptors are located postsynaptically and presynaptically, (ii) demonstrating that pyramidal neurons constitute the major 5-HT2A-receptor-expressing cells in the cortex, and (iii) supporting the view that the apical dendritic field proximal to the pyramidal cell soma is the "hot spot" for 5-HT2A-receptor-mediated physiological actions relevant to normal and "psychotic" functional states of the cerebral cortex.

  14. Mice with altered serotonin 2C receptor RNA editing display characteristics of Prader-Willi Syndrome

    PubMed Central

    Morabito, Michael V.; Abbas, Atheir I.; Hood, Jennifer L.; Kesterson, Robert A.; Jacobs, Michelle M.; Kump, David S.; Hachey, David L.; Roth, Bryan L.; Emeson, Ronald B.

    2010-01-01

    RNA transcripts encoding the 2C-subtype of serotonin (5HT2C) receptor undergo up to five adenosine-to-inosine editing events to encode twenty-four protein isoforms. To examine the effects of altered 5HT2C editing in vivo, we generated mutant mice solely expressing the fully-edited (VGV) isoform of the receptor. Mutant animals present phenotypic characteristics of Prader-Willi Syndrome (PWS) including a failure to thrive, decreased somatic growth, neonatal muscular hypotonia, and reduced food consumption followed by post-weaning hyperphagia. Though previous studies have identified alterations in both 5HT2C receptor expression and 5HT2C-mediated behaviors in both PWS patients and mouse models of this disorder, to our knowledge the 5HT2C gene is the first locus outside the PWS imprinted region in which mutations can phenocopy numerous aspects of this syndrome. These results not only strengthen the link between the molecular etiology of PWS and altered 5HT2C expression, but also demonstrate the importance of normal patterns of 5HT2C RNA editing in vivo. PMID:20394819

  15. Serotonergic involvement in methamphetamine-induced locomotor activity: