Science.gov

Sample records for 5-ht2a antagonist mdl

  1. Reversal of amphetamine-induced behaviours by MDL 100,907, a selective 5-HT2A antagonist.

    PubMed

    Moser, P C; Moran, P M; Frank, R A; Kehne, J H

    1996-01-01

    MDL 100,907 is a potent and selective antagonist of the 5-HT2A receptor which, unlike other antagonists at this receptor, has little affinity for the 5-HT2C receptor. We have investigated the antipsychotic potential of MDL 100,907 by examining its ability to antagonise different behavioural effects of amphetamine in rats. MDL 100,907 reversed the locomotor stimulant effects of amphetamine in rats without itself having any effect on locomotor activity. It also antagonised the disruptive effects of amphetamine on the development of latent inhibition. In contrast, MDL 100,907 had no effect on the discriminative stimulus properties of amphetamine, nor did it affect the ability of amphetamine to reduce the threshold required to sustain rewarding brain stimulation in the ventral tegmental area. This profile is different from that of typical and atypical neuroleptics, and also from other 5-HT2 receptor antagonists, which lack the selectivity of MDL 100,907. These results suggest that MDL 100,907 may have a unique interaction with dopaminergic systems and support the further development of selective 5-HT2 receptor antagonists as a novel therapeutic strategy for schizophrenia.

  2. Effects of the 5-HT receptor antagonists GR127935 (5-HT1B/1D) and MDL100907 (5-HT2A) in the consolidation of learning.

    PubMed

    Meneses, A; Terrón, J A; Hong, E

    1997-12-01

    We have previously reported that 5-HT1B/1D and 5-HT2A/2B/2C receptors play a role in learning and memory. The present investigation was devoted to analyze further in the autoshaping learning task: (1) the effects of the 5-HT1A/1B/1D receptor agonist, GR46611, the 5-HT1B/1D receptor antagonist, GR127935, and the selective 5-HT2A receptor antagonist, MDL100907. Consistent with a role of 5-HT1B/1D receptors in learning, the post-training injection of GR46611 (1-10 mg/kg) decreased the consolidation of learning whereas GR127935 (10 mg/kg) increased it; the effects of both drugs were reversed by PCA pretreatment. GR127935 abolished the decrease induced by GR46611, TFMPP and mCPP, whereas MDL100907 (0.1-3.0 mg/kg) had no effect by itself but abolished the effects of DOI, ketanserin and TFMPP and moderately inhibited the effects elicited by mCPP, 1-NP and mesulergine. Neither did GR127935 nor MDL100907 significantly modify the increase in the consolidation of learning induced by 8-OH-DPAT. Thus, the present findings suggest that stimulation of presynaptic 5-HT1B/1D receptors impairs the consolidation of learning whilst stimulation of 5-HT2A/2C receptors enhances it; the blockade of 5-HT2A receptors has no effects. In addition, 5-HT2 receptors seem to modulate this cognitive stage.

  3. Selective 5HT2A and 5HT6 Receptor Antagonists Promote Sleep in Rats

    PubMed Central

    Morairty, Stephen R.; Hedley, Linda; Flores, Judith; Martin, Renee; Kilduff, Thomas S.

    2008-01-01

    Study Objectives: Serotonin (5-HT) has long been implicated in the control of sleep and wakefulness. This study evaluated the hypnotic efficacy of the 5-HT6 antagonist RO4368554 (RO) and the 5-HT2A receptor antagonist MDL100907 (MDL) relative to zolpidem. Design: A randomized, repeated-measures design was utilized in which Wistar rats received intraperitoneal injections of RO (1.0, 3.0, and 10 mg/kg), MDL (0.1, 1.0 and 3.0 mg/kg), zolpidem (10 mg/kg), or vehicle in the middle of the dark (active) period. Electroencephalogram, electromyogram, body temperature (Tb) and locomotor activity were analyzed for 6 hours after injection. Measurements and Results: RO, MDL, and zolpidem all produced significant increases in sleep and decreases in waking, compared with vehicle control. All 3 doses of MDL produced more consolidated sleep, increased non-rapid eye movement sleep (NREM) sleep, and increased electroencephalographic delta power during NREM sleep. The highest dose of RO (10.0 mg/kg) produced significant increases in sleep and decreases in waking during hour 2 following dosing. These increases in sleep duration were associated with greater delta power during NREM sleep. ZO Zolpidem induced sleep with the shortest latency and significantly increased NREM sleep and delta power but also suppressed rapid eye movement sleep sleep; in contrast, neither RO nor MDL affected rapid eye movement sleep. Whereas RO did not affect Tb, both zolpidem and MDL reduced Tb relative to vehicle-injected controls. Conclusions: These results support a role for 5-HT2A receptor modulation in NREM sleep and suggest a previously unrecognized role for 5-HT6 receptors in sleep-wake regulation. Citation: Morairty SR; Hedley L; Flores J; Martin R; Kilduff TS. Selective 5HT2A and 5HT6 receptor antagonists promote sleep in rats. SLEEP 2008;31(1):34-44. PMID:18220076

  4. Functions of 5-HT2A receptor and its antagonists in the cardiovascular system.

    PubMed

    Nagatomo, Takafumi; Rashid, Mamunur; Abul Muntasir, Habib; Komiyama, Tadazumi

    2004-10-01

    The serotonin (5-hydroxytryptamine, 5-HT) receptors have conventionally been divided into seven subfamilies, most of which have several subtypes. Among them, 5-HT(2A) receptor is associated with the contraction of vascular smooth muscle, platelet aggregation and thrombus formation and coronary artery spasms. Accordingly, selective 5-HT(2A) antagonists may have potential in the treatment of cardiovascular diseases. Sarpogrelate, a selective 5-HT(2A) antagonist, has been introduced clinically as a therapeutic agent for the treatment of ischemic diseases associated with thrombosis. Molecular modeling studies also suggest that sarpogrelate is a 5-HT(2A) selective antagonist and is likely to have pharmacological effects beneficial in the treatment of cardiovascular diseases. This review describes the above findings as well as the signaling linkages of the 5-HT(2A) receptors and the mode of agonist binding to 5-HT(2A) receptor using data derived from molecular modeling and site-directed mutagenesis.

  5. The selective 5-HT2A receptor antagonist M100907 enhances antidepressant-like behavioral effects of the SSRI fluoxetine.

    PubMed

    Marek, Gerard J; Martin-Ruiz, Raul; Abo, Allyson; Artigas, Francesc

    2005-12-01

    The addition of low doses of atypical antipsychotic drugs, which saturate 5-HT(2A) receptors, enhances the therapeutic effect of selective serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibitors (SSRIs) in patients with major depression as well as treatment-refractory obsessive-compulsive disorder. The purpose of the present studies was to test the effects of combined treatment with a low dose of a highly selective 5-HT(2A) receptor antagonist (M100907; formerly MDL 100,907) and low doses of a SSRI using a behavioral screen in rodents (the differential-reinforcement-of low rate 72-s schedule of reinforcement; DRL 72-s) which previously has been shown to be sensitive both to 5-HT(2) antagonists and SSRIs. M100907 has a approximately 100-fold or greater selectivity at 5-HT(2A) receptors vs other 5-HT receptor subtypes, and would not be expected to appreciably occupy non-5-HT(2A) receptors at doses below 100 microg/kg. M100907 increased the reinforcement rate, decreased the response rate, and shifted the inter-response time distributions to the right in a pattern characteristic of antidepressant drugs. In addition, a positive synergistic interaction occurred when testing low doses of the 5-HT(2A) receptor antagonist (6.25-12.5 microg/kg) with clinically relevant doses of the SSRI fluoxetine (2.5-5 mg/kg), which both exerted minimal antidepressant-like effects by themselves. In vivo microdialysis study revealed that a low dose of M100907 (12.5 microg/kg) did not elevate extracellular 5-HT levels in the prefrontal cortex over those observed with fluoxetine alone (5 mg/kg). These results will be discussed in the context that the combined blockade of 5-HT(2A) receptors and serotonin transporters (SERT) may result in greater efficacy in treating neuropsychiatric syndromes than blocking either site alone.

  6. (±)-Nantenine analogs as antagonists at human 5-HT2A receptors: C1 and flexible congeners

    PubMed Central

    Chaudhary, Sandeep; Pecic, Stevan; LeGendre, Onica; Navarro, Hérnan A.; Harding, Wayne W.

    2009-01-01

    C1 and flexible analogs of (±)-nantenine were synthesized and evaluated for antagonist activity at human 5-HT2A receptors in a calcium mobilization assay. This work has resulted in the identification of the most potent 5-HT2A antagonist known based on an aporphine. Our results also suggest that the C1 position may be a key site for increasing 5-HT2A antagonist activity in this compound series. In addition, the structural rigidity of the aporphine core appears to be required for nantenine to function as a 5-HT2A antagonist. PMID:19328689

  7. 5-HT2A receptor antagonist M100907 reduces serotonin synthesis: An autoradiographic study

    PubMed Central

    Hasegawa, Shu; Fikre-Merid, Maraki; Diksic, Mirko

    2013-01-01

    The effects of the administration of the serotonin (5-HT)2A antagonist, M100907, on 5-HT synthesis rates, were evaluated using the α-[14C]methyl-L-tryptophan (α-MTrp) autoradiographic method. In the treatment study, M100907 (10 mg/kg) was injected intraperitoneally 30 min before the α-MTrp injection (30 μCi over 2 min). A single dose of M100907 caused a significant decrease in the synthesis in the anterior olfactory nucleus, accumbens nucleus, frontal cortex, sensory-motor cortex, cingulate cortex, medial caudate-putamen, dorsal thalamus, substantia nigra, inferior collicus, raphe magnus nucleus, superior olive, and raphe pallidus nucleus. These data suggest that the terminal 5-HT2A receptors are involved in the regulation of 5-HT synthesis in the entire brain. Further, 5-HT synthesis is likely regulated by the 5-HT2A antagonistic property of M100907 in the cortices, anterior olfactory nucleus, caudate putamen, and nucleus accumbens. PMID:22056993

  8. 5-HT2A receptor antagonists improve motor impairments in the MPTP mouse model of Parkinson's disease.

    PubMed

    Ferguson, Marcus C; Nayyar, Tultul; Deutch, Ariel Y; Ansah, Twum A

    2010-01-01

    Clinical observations have suggested that ritanserin, a 5-HT(2A/C) receptor antagonist may reduce motor deficits in persons with Parkinson's Disease (PD). To better understand the potential antiparkinsonian actions of ritanserin, we compared the effects of ritanserin with the selective 5-HT(2A) receptor antagonist M100907 and the selective 5-HT(2C) receptor antagonist SB 206553 on motor impairments in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP-treated mice exhibited decreased performance on the beam-walking apparatus. These motor deficits were reversed by acute treatment with L-3,4-dihydroxyphenylalanine (levodopa). Both the mixed 5-HT(2A/C) antagonist ritanserin and the selective 5-HT(2A) antagonist M100907 improved motor performance on the beam-walking apparatus. In contrast, SB 206553 was ineffective in improving the motor deficits in MPTP-treated mice. These data suggest that 5-HT(2A) receptor antagonists may represent a novel approach to ameliorate motor symptoms of Parkinson's disease.

  9. Extended characterisation of the serotonin 2A (5-HT2A) receptor-selective PET radiotracer 11C-MDL100907 in humans: quantitative analysis, test-retest reproducibility, and vulnerability to endogenous 5-HT tone

    PubMed Central

    Talbot, Peter S.; Slifstein, Mark; Hwang, Dah-Ren; Huang, Yiyun; Scher, Erica; Abi-Dargham, Anissa; Laruelle, Marc

    2011-01-01

    Introduction scanning properties and analytic methodology of the 5-HT2A receptor-selective positron emission tomography (PET) tracer 11C-MDL100907 have been partially characterised in previous reports. We present an extended characterisation in healthy human subjects. Methods 64 11C-MDL100907 PET scans with metabolite-corrected arterial input function were performed in 39 healthy adults (18–55 yr). 12 subjects were scanned twice (duration 150 min) to provide data on plasma analysis, model order estimation, and stability and test-retest characteristics of outcome measures. All other scans were 90 min duration. 3 subjects completed scanning at baseline and following 5-HT2A receptor antagonist medication (risperidone or ciproheptadine) to provide definitive data on the suitability of the cerebellum as reference region. 10 subjects were scanned under reduced 5-HT and control conditions using rapid tryptophan depletion to investigate vulnerability to competition with endogenous 5-HT. 13 subjects were scanned as controls in clinical protocols. Pooled data were used to analyze the relationship between tracer injected mass and receptor occupancy, and age-related decline in 5-HT2A receptors. Results optimum analytic method was a 2-tissue compartment model with arterial input function. However, basis function implementation of SRTM may be suitable for measuring between-group differences non-invasively and warrants further investigation. Scan duration of 90 minutes achieved stable outcome measures in all cortical regions except orbitofrontal which required 120 minutes. Binding potential (BPP and BPND) test-retest variability was very good (7–11%) in neocortical regions other than orbitofrontal, and moderately good (14–20%) in orbitofrontal cortex and medial temporal lobe. Saturation occupancy of 5-HT2A receptors by risperidone validates the use of the cerebellum as a region devoid of specific binding for the purposes of PET. We advocate a mass limit of 4.6 µg to remain

  10. The 5-HT(2A) receptor and serotonin transporter in Asperger's disorder: A PET study with [¹¹C]MDL 100907 and [¹¹C]DASB.

    PubMed

    Girgis, Ragy R; Slifstein, Mark; Xu, Xiaoyan; Frankle, W Gordon; Anagnostou, Evdokia; Wasserman, Stacey; Pepa, Lauren; Kolevzon, Alexander; Abi-Dargham, Anissa; Laruelle, Marc; Hollander, Eric

    2011-12-30

    Evidence from biochemical, imaging, and treatment studies suggest abnormalities of the serotonin system in autism spectrum disorders, in particular in frontolimbic areas of the brain. We used the radiotracers [(11)C]MDL 100907 and [(11)C]DASB to characterize the 5-HT(2A) receptor and serotonin transporter in Asperger's Disorder. Seventeen individuals with Asperger's Disorder (age=34.3 ± 11.1 years) and 17 healthy controls (age=33.0 ± 9.6 years) were scanned with [(11)C]MDL 100907. Of the 17 patients, eight (age=29.7 ± 7.0 years) were also scanned with [¹¹C]DASB, as were eight healthy controls (age=28.7 ± 7.0 years). Patients with Asperger's Disorder and healthy control subjects were matched for age, gender, and ethnicity, and all had normal intelligence. Metabolite-corrected arterial plasma inputs were collected and data analyzed by two-tissue compartment modeling. The primary outcome measure was regional binding potential BP(ND). Neither regional [¹¹C]MDL 100907 BP(ND) nor [¹¹C]DASB BP(ND) was statistically different between the Asperger's and healthy subjects. This study failed to find significant alterations in binding parameters of 5-HT(2A) receptors and serotonin transporters in adult subjects with Asperger's disorder.

  11. The antidepressant 5-HT2A receptor antagonists pizotifen and cyproheptadine inhibit serotonin-enhanced platelet function.

    PubMed

    Lin, Olivia A; Karim, Zubair A; Vemana, Hari Priya; Espinosa, Enma V P; Khasawneh, Fadi T

    2014-01-01

    There is considerable interest in defining new agents or targets for antithrombotic purposes. The 5-HT2A receptor is a G-protein coupled receptor (GPCR) expressed on many cell types, and a known therapeutic target for many disease states. This serotonin receptor is also known to regulate platelet function. Thus, in our FDA-approved drug repurposing efforts, we investigated the antiplatelet activity of cyproheptadine and pizotifen, two antidepressant 5-HT2A Receptor antagonists. Our results revealed that cyproheptadine and pizotifen reversed serotonin-enhanced ADP-induced platelet aggregation in vitro and ex vivo. And the inhibitory effects of these two agents were found to be similar to that of EMD 281014, a 5-HT2A Receptor antagonist under development. In separate experiments, our studies revealed that these 5-HT2A receptor antagonists have the capacity to reduce serotonin-enhanced ADP-induced elevation in intracellular calcium levels and tyrosine phosphorylation. Using flow cytometry, we also observed that cyproheptadine, pizotifen, and EMD 281014 inhibited serotonin-enhanced ADP-induced phosphatidylserine (PS) exposure, P-selectin expression, and glycoprotein IIb-IIIa activation. Furthermore, using a carotid artery thrombosis model, these agents prolonged the time for thrombotic occlusion in mice in vivo. Finally, the tail-bleeding time was investigated to assess the effect of cyproheptadine and pizotifen on hemostasis. Our findings indicated prolonged bleeding time in both cyproheptadine- and pizotifen-treated mice. Notably, the increases in occlusion and bleeding times associated with these two agents were comparable to that of EMD 281014, and to clopidogrel, a commonly used antiplatelet drug, again, in a fashion comparable to clopidogrel and EMD 281014. Collectively, our data indicate that the antidepressant 5-HT2A antagonists, cyproheptadine and pizotifen do exert antiplatelet and thromboprotective effects, but similar to clopidogrel and EMD 281014, their

  12. Biochemical profile of YM992, a novel selective serotonin reuptake inhibitor with 5-HT2A receptor antagonistic activity.

    PubMed

    Hatanaka, K; Nomura, T; Hidaka, K; Takeuchi, H; Yatsugi, S; Fujii, M; Yamaguchi, T

    1996-01-01

    YM992, (S)-2-[[(7-fluoro-4-indanyl)oxy]methyl]morpholine monohydrochloride, exhibited the biochemical profile of a selective serotonin (5-HT) reuptake inhibitor (SSRI) with 5-HT2A receptor antagonistic activity. YM922 showed the same high affinity as fluoxetine against the 5-HT reuptake site (Ki = 21 nM) and a similar affinity to that of crazodone against the 5-HT2A receptor (Ki = 86 nM). In other receptor binding studies, an affinity for the adrenergic alpha 1 receptor (Ki = 200 nM) and 5-HT2C receptor (Ki = 680 nM) was observed. In a monoamine uptake study, YM992 showed a selective 5-HT uptake inhibition (IC50 = 0.15 microM), but only very weakly inhibited both noradrenaline (NA) and dopamine (DA) uptake (IC50 = 3.1 microM (NA), > 10 microM (DA)). YM992 was also found to potently inhibit the aggregation of human platelets (IC50 = 1.9 microM), revealing antagonistic activity for the 5-HT2A receptor in vitro. Enhanced serotonergic neurotransmission, in particular that mediated by the 5-HT1A receptor, has recently been reported to be important in the long-term treatment of depressive disorders with antidepressants. In addition, some 5-HT1A receptor-mediated responses are known to be potentiated by co-administration of 5-HT2A receptor antagonists. Thus, YM992, having both selective 5-HT reuptake inhibition and 5-HT2A antagonistic activity, might show potent therapeutic activity as a novel antidepressant in comparison with conventional SSRIs.

  13. Cognition-induced modulation of serotonin in the orbitofrontal cortex: a controlled cross-over PET study of a delayed match-to-sample task using the 5-HT2a receptor antagonist [18F]altanserin.

    PubMed

    Hautzel, Hubertus; Müller, Hans-Wilhelm; Herzog, Hans; Grandt, Rüdiger

    2011-10-01

    Behavioral and cellular studies indicate that serotonin interacting with the 5-HT2a receptor (5-HT2aR) is involved in cognitive processes supporting working memory (WM). However, 5-HT receptor neuroimaging studies directly relating WM-induced neuronal activations to concomitant changes in the availability of 5-HT receptors as a functional measure for serotonin release are lacking. This controlled cross-over PET study aimed to identify brain regions with WM-induced changes in the binding potential (BP(nd)) of the 5-HT2aR antagonist [(18)F]altanserin. Ten young males underwent a delayed match-to-sample task using photographs of faces and a control task. The BP(nd)s for both conditions were calculated by applying Ichise's noninvasive plot. Statistics were performed with the SPM toolbox statistical nonparametric mapping (SnPM3) particularly suited for analyzing whole-brain PET data in an exploratory way. A higher BP(nd) for [(18)F]altanserin during WM versus control was found in the orbitofrontal cortex (OFC) pointing towards an increased [(18)F]altanserin/5-HT2aR interaction in OFC while BP(nd) decreases during WM were not found. Furthermore, no BP(nd) changes in regions known from functional neuroimaging studies to be more specifically involved in WM were identified. These findings may suggest that the increased [(18)F]altanserin BP(nd) under WM challenge and hence the increased availability of 5-HT2aR reflects a decrease in local OFC serotonin. As the OFC plays a prominent role in decision-making and supports cognitive processes related to the central executive functions of WM it might be modulated by the serotoninergic system via the 5-HT2aR in order to support and optimize basic cognitive functions.

  14. Responding for a conditioned reinforcer, and its enhancement by nicotine, is blocked by dopamine receptor antagonists and a 5-HT(2C) receptor agonist but not by a 5-HT(2A) receptor antagonist.

    PubMed

    Guy, Elizabeth Glenn; Fletcher, Paul J

    2014-10-01

    An aspect of nicotine reinforcement that may contribute to tobacco addiction is the effect of nicotine to enhance the motivational properties of reward-associated cues, or conditioned stimuli (CSs). Several studies have now shown that nicotine enhances responding for a stimulus that has been paired with a natural reinforcer. This effect of nicotine to enhance responding for a conditioned reinforcer is likely due to nicotine-induced enhancements in mesolimbic dopaminergic activity, but this has not been directly assessed. In this study, we assessed roles for dopamine (DA) D1 or D2 receptors, and two serotonin (5-HT) receptor subtypes known to modulate DA activity, the 5-HT2C or 5-HT2A subtypes, on nicotine-enhanced responding for a conditioned reinforcer. Water-restricted rats were exposed to Pavlovian conditioning sessions, where a CS was paired with water delivery. Then, in a second phase, animals were required to perform a novel, lever-pressing response for presentations of the CS as a conditioned reinforcer. Nicotine (0.4 mg/kg) enhanced responding for the conditioned reinforcer. To examine potential roles for dopamine (DA) and serotonin (5-HT) receptors in this effect, separate groups of animals were used to assess the impact of administering the D1 receptor antagonist SCH 23390, D2 receptor antagonist eticlopride, 5-HT2C receptor agonist Ro 60-0175, or 5-HT2A receptor antagonist M100907 on nicotine-enhanced responding for conditioned reinforcement. SCH 23390, eticlopride, and Ro 60-0175 all reduced responding for conditioned reinforcement, and the ability of nicotine to enhance this effect. M100907 did not alter this behavior. Together, these studies indicate that DA D1 and D2 receptors, but not 5-HT2A receptors, contribute to the effect of nicotine to enhance responding for a conditioned reinforcer. This effect can also be modulated by 5-HT2C receptor activation.

  15. The highly selective 5-hydroxytryptamine (5-HT)2A receptor antagonist, EMD 281014, significantly increases swimming and decreases immobility in male congenital learned helpless rats in the forced swim test.

    PubMed

    Patel, Jignesh G; Bartoszyk, Gerd D; Edwards, Emmeline; Ashby, Charles R

    2004-04-01

    We examined the effect of the highly selective 5-hydroxytryptamine (5-HT)(2A) receptor antagonist 7-[4-[2-(4-fluoro-phenyl)-ethyl]-piperazine-1-carbonyl]-1H-indole-3-carbonitrile HCl (EMD 281014) in congenital learned helpless male rats in the forced swim test. The administration of EMD-281014 (0.3-30 mg/kg i.p.) to congenital learned helpless rats dose-dependently and significantly (at 10 and 30 mg/kg) decreased immobility and increased swimming compared to vehicle-treated animals. Thus, EMD 281014 produces effects in the forced swim test resembling those of antidepressants.

  16. Repeated 7-Day Treatment with the 5-HT2C Agonist Lorcaserin or the 5-HT2A Antagonist Pimavanserin Alone or in Combination Fails to Reduce Cocaine vs Food Choice in Male Rhesus Monkeys.

    PubMed

    Banks, Matthew L; Negus, S Stevens

    2017-04-01

    Cocaine use disorder is a global public health problem for which there are no Food and Drug Administration-approved pharmacotherapies. Emerging preclinical evidence has implicated both serotonin (5-HT) 2C and 2A receptors as potential mechanisms for mediating serotonergic attenuation of cocaine abuse-related neurochemical and behavioral effects. Therefore, the present study aim was to determine whether repeated 7-day treatment with the 5-HT2C agonist lorcaserin (0.1-1.0 mg/kg per day, intramuscular; 0.032-0.1 mg/kg/h, intravenous) or the 5-HT2A inverse agonist/antagonist pimavanserin (0.32-10 mg/kg per day, intramuscular) attenuated cocaine reinforcement under a concurrent 'choice' schedule of cocaine and food availability in rhesus monkeys. During saline treatment, cocaine maintained a dose-dependent increase in cocaine vs food choice. Repeated pimavanserin (3.2 mg/kg per day) treatments significantly increased small unit cocaine dose choice. Larger lorcaserin (1.0 mg/kg per day and 0.1 mg/kg/h) and pimavanserin (10 mg/kg per day) doses primarily decreased rates of operant behavior. Coadministration of ineffective lorcaserin (0.1 mg/kg per day) and pimavanserin (0.32 mg/kg per day) doses also failed to significantly alter cocaine choice. These results suggest that neither 5-HT2C receptor activation nor 5-HT2A receptor blockade are sufficient to produce a therapeutic-like decrease in cocaine choice and a complementary increase in food choice. Overall, these results do not support the clinical utility of 5-HT2C agonists and 5-HT2A inverse agonists/antagonists alone or in combination as candidate anti-cocaine use disorder pharmacotherapies.

  17. Effects of the 5-HT2C receptor agonist Ro60-0175 and the 5-HT2A receptor antagonist M100907 on nicotine self-administration and reinstatement.

    PubMed

    Fletcher, Paul J; Rizos, Zoë; Noble, Kevin; Soko, Ashlie D; Silenieks, Leo B; Lê, Anh Dzung; Higgins, Guy A

    2012-06-01

    The reinforcing effects of nicotine are mediated in part by brain dopamine systems. Serotonin, acting via 5-HT(2A) and 5-HT(2C) receptors, modulates dopamine function. In these experiments we examined the effects of the 5-HT(2C) receptor agonist Ro60-0175 and the 5-HT(2A) receptor antagonist (M100907, volinanserin) on nicotine self-administration and reinstatement of nicotine-seeking. Male Long-Evans rats self-administered nicotine (0.03 mg/kg/infusion, IV) on either a FR5 or a progressive ratio schedule of reinforcement. Ro60-0175 reduced responding for nicotine on both schedules. While Ro60-0175 also reduced responding for food reinforcement, response rates under drug treatment were several-fold higher than in animals responding for nicotine. M100907 did not alter responding for nicotine, or food, on either schedule. In tests of reinstatement of nicotine-seeking, rats were first trained to lever press for IV infusions of nicotine; each infusion was also accompanied by a compound cue consisting of a light and tone. This response was then extinguished over multiple sessions. Injecting rats with a nicotine prime (0.15 mg/kg) reinstated responding; reinstatement was also observed when responses were accompanied by the nicotine associated cue. Ro60-0175 attenuated reinstatement of responding induced by nicotine and by the cue. The effects of Ro60-0175 on both forms of reinstatement were blocked by the 5-HT(2C) receptor antagonist SB242084. M100907 also reduced reinstatement induced by either the nicotine prime or by the nicotine associated cue. The results indicate that 5-HT(2C) and 5-HT(2A) receptors may be potential targets for therapies to treat some aspects of nicotine dependence.

  18. The Combination of Marketed Antagonists of α1b-Adrenergic and 5-HT2A Receptors Inhibits Behavioral Sensitization and Preference to Alcohol in Mice: A Promising Approach for the Treatment of Alcohol Dependence.

    PubMed

    Trovero, Fabrice; David, Sabrina; Bernard, Philippe; Puech, Alain; Bizot, Jean-Charles; Tassin, Jean-Pol

    2016-01-01

    Alcohol-dependence is a chronic disease with a dramatic and expensive social impact. Previous studies have indicated that the blockade of two monoaminergic receptors, α1b-adrenergic and 5-HT2A, could inhibit the development of behavioral sensitization to drugs of abuse, a hallmark of drug-seeking and drug-taking behaviors in rodents. Here, in order to develop a potential therapeutic treatment of alcohol dependence in humans, we have blocked these two monoaminergic receptors by a combination of antagonists already approved by Health Agencies. We show that the association of ifenprodil (1 mg/kg) and cyproheptadine (1 mg/kg) (α1-adrenergic and 5-HT2 receptor antagonists marketed as Vadilex ® and Periactine ® in France, respectively) blocks behavioral sensitization to amphetamine in C57Bl6 mice and to alcohol in DBA2 mice. Moreover, this combination of antagonists inhibits alcohol intake in mice habituated to alcohol (10% v/v) and reverses their alcohol preference. Finally, in order to verify that the effect of ifenprodil was not due to its anti-NMDA receptors property, we have shown that a combination of prazosin (0.5 mg/kg, an α1b-adrenergic antagonist, Mini-Press ® in France) and cyproheptadine (1 mg/kg) could also reverse alcohol preference. Altogether these findings strongly suggest that combined prazosin and cyproheptadine could be efficient as a therapy to treat alcoholism in humans. Finally, because α1b-adrenergic and 5-HT2A receptors blockade also inhibits behavioral sensitization to psychostimulants, opioids and tobacco, it cannot be excluded that this combination will exhibit some efficacy in the treatment of addiction to other abused drugs.

  19. The Combination of Marketed Antagonists of α1b-Adrenergic and 5-HT2A Receptors Inhibits Behavioral Sensitization and Preference to Alcohol in Mice: A Promising Approach for the Treatment of Alcohol Dependence

    PubMed Central

    Trovero, Fabrice; David, Sabrina; Bernard, Philippe; Puech, Alain; Bizot, Jean-Charles; Tassin, Jean-Pol

    2016-01-01

    Alcohol-dependence is a chronic disease with a dramatic and expensive social impact. Previous studies have indicated that the blockade of two monoaminergic receptors, α1b-adrenergic and 5-HT2A, could inhibit the development of behavioral sensitization to drugs of abuse, a hallmark of drug-seeking and drug-taking behaviors in rodents. Here, in order to develop a potential therapeutic treatment of alcohol dependence in humans, we have blocked these two monoaminergic receptors by a combination of antagonists already approved by Health Agencies. We show that the association of ifenprodil (1 mg/kg) and cyproheptadine (1 mg/kg) (α1-adrenergic and 5-HT2 receptor antagonists marketed as Vadilex ® and Periactine ® in France, respectively) blocks behavioral sensitization to amphetamine in C57Bl6 mice and to alcohol in DBA2 mice. Moreover, this combination of antagonists inhibits alcohol intake in mice habituated to alcohol (10% v/v) and reverses their alcohol preference. Finally, in order to verify that the effect of ifenprodil was not due to its anti-NMDA receptors property, we have shown that a combination of prazosin (0.5 mg/kg, an α1b-adrenergic antagonist, Mini-Press ® in France) and cyproheptadine (1 mg/kg) could also reverse alcohol preference. Altogether these findings strongly suggest that combined prazosin and cyproheptadine could be efficient as a therapy to treat alcoholism in humans. Finally, because α1b-adrenergic and 5-HT2A receptors blockade also inhibits behavioral sensitization to psychostimulants, opioids and tobacco, it cannot be excluded that this combination will exhibit some efficacy in the treatment of addiction to other abused drugs. PMID:26968030

  20. Activation of 5-HT2a receptors in the basolateral amygdala promotes defeat-induced anxiety and the acquisition of conditioned defeat in Syrian hamsters.

    PubMed

    Clinard, Catherine T; Bader, Lauren R; Sullivan, Molly A; Cooper, Matthew A

    2015-03-01

    Conditioned defeat is a model in Syrian hamsters (Mesocricetus auratus) in which normal territorial aggression is replaced by increased submissive and defensive behavior following acute social defeat. The conditioned defeat response involves both a fear-related memory for a specific opponent as well as anxiety-like behavior indicated by avoidance of novel conspecifics. We have previously shown that systemic injection of a 5-HT2a receptor antagonist reduces the acquisition of conditioned defeat. Because neural activity in the basolateral amygdala (BLA) is critical for the acquisition of conditioned defeat and BLA 5-HT2a receptors can modulate anxiety but have a limited effect on emotional memories, we investigated whether 5-HT2a receptor modulation alters defeat-induced anxiety but not defeat-related memories. We injected the 5-HT2a receptor antagonist MDL 11,939 (0 mM, 1.7 mM or 17 mM) or the 5-HT2a receptor agonist TCB-2 (0 mM, 8 mM or 80 mM) into the BLA prior to social defeat. We found that injection of MDL 11,939 into the BLA impaired acquisition of the conditioned defeat response and blocked defeat-induced anxiety in the open field, but did not significantly impair avoidance of former opponents in the Y-maze. Furthermore, we found that injection of TCB-2 into the BLA increased the acquisition of conditioned defeat and increased anxiety-like behavior in the open field, but did not alter avoidance of former opponents. Our data suggest that 5-HT2a receptor signaling in the BLA is both necessary and sufficient for the development of conditioned defeat, likely via modulation of defeat-induced anxiety.

  1. MDMA Increases Excitability in the Dentate Gyrus: Role of 5HT2A Receptor Induced PGE2 Signaling

    PubMed Central

    Collins, Stuart A.; Huff, Courtney; Chiaia, Nicolas; Gudelsky, Gary A.; Yamamoto, Bryan K.

    2015-01-01

    MDMA is a widely abused psychostimulant which causes release of serotonin in various forebrain regions. Recently, we reported that MDMA increases extracellular glutamate concentrations in the dentate gyrus, via activation of 5HT2A receptors. We examined the role of prostaglandin signaling in mediating the effects of 5HT2A receptor activation on the increases in extracellular glutamate and the subsequent long-term loss of parvalbumin interneurons in the dentate gyrus caused by MDMA. Administration of MDMA into the dentate gyrus of rats increased PGE2 concentrations which was prevented by coadministration of MDL100907, a 5HT2A receptor antagonist. MDMA-induced increases in extracellular glutamate were inhibited by local administration of SC-51089, an inhibitor of the EP1 prostaglandin receptor. Systemic administration of SC-51089 during injections of MDMA prevented the decreases in parvalbumin interneurons observed 10 days later. The loss of parvalbumin immunoreactivity after MDMA exposure coincided with a decrease in paired-pulse inhibition and afterdischarge threshold in the dentate gyrus. These changes were prevented by inhibition of EP1 and 5HT2A receptors during MDMA. Additional experiments revealed an increased susceptibility to kainic acid-induced seizures in MDMA treated rats which could be prevented with SC51089 treatments during MDMA exposure. Overall, these findings suggest that 5HT2A receptors mediate MDMA-induced PGE2 signaling and subsequent increases in glutamate. This signaling mediates parvalbumin cell losses as well as physiologic changes in the dentate gyrus, suggesting that the lack of the inhibition provided by these neurons increases the excitability within the dentate gyrus of MDMA treated rats. PMID:26670377

  2. Involvement of 5-HT(2A/2B/2C) receptors on memory formation: simple agonism, antagonism, or inverse agonism?

    PubMed

    Meneses, Alfredo

    2002-12-01

    1. The 5-HT2 receptors subdivision into the 5-HT(2A/2B/2C) subtypes along with the advent of the selective antagonists has allowed a more detailed investigation on the role and therapeutic significance of these subtypes in cognitive functions. The present study further analyzed the 5-HT2 receptors role on memory consolidation. 2. The SB-200646 (a selective 5-HT(2B/2C) receptor antagonist) and LY215840 (a nonselective 5-HT(2/7) receptor antagonist) posttraining administration had no effect on an autoshaped memory consolidation. However, both drugs significantly and differentially antagonized the memory impairments induced by 1-(3-chlorophenyl)piperazine (mCPP), 1-naphtyl-piperazine (1-NP), mesulergine, or N-(3-trifluoromethylphenyl) piperazine (TFMPP). 3. In contrast, SB-200646 failed to modify the facilitatory procognitive effect produced by (+/-)-2.5-dimethoxy-4-iodoamphetamine (DOI) or ketanserin, which were sensitive to MDL100907 (a selective 5-HT2A receptor antagonist) and to a LY215840 high dose. 4. Finally, SB-200646 reversed the learning deficit induced by dizocilpine, but not that by scopolamine: while SB-200646 and MDL100907 coadministration reversed memory deficits induced by both drugs. 5. It is suggested that 5-HT(2B/2C) receptors might be involved on memory formation probably mediating a suppressive or constraining action. Whether the drug-induced memory impairments in this study are explained by simple agonism, antagonism, or inverse agonism at 5-HT2 receptors remains unclear at this time. 6. Notably, the 5-HT2 receptor subtypes blockade may provide some benefit to reverse poor memory consolidation conditions associated with decreasedcholinergic, glutamatergic, and/or serotonergic neurotransmission.

  3. Increased hypothalamic 5-HT2A receptor gene expression and effects of pharmacologic 5-HT2A receptor inactivation in obese A{sup y} mice

    SciTech Connect

    Nonogaki, Katsunori . E-mail: knonogaki-tky@umin.ac.jp; Nozue, Kana; Oka, Yoshitomo

    2006-12-29

    Serotonin (5-hydroxytryptamine; 5-HT) 2A receptors contribute to the effects of 5-HT on platelet aggregation and vascular smooth muscle cell proliferation, and are reportedly involved in decreases in plasma levels of adiponectin, an adipokine, in diabetic subjects. Here, we report that systemic administration of sarpogrelate, a 5-HT2A receptor antagonist, suppressed appetite and increased hypothalamic pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript, corticotropin releasing hormone, 5-HT2C, and 5-HT1B receptor gene expression. A{sup y} mice, which have ectopic expression of the agouti protein, significantly increased hypothalamic 5-HT2A receptor gene expression in association with obesity compared with wild-type mice matched for age. Systemic administration of sarpogrelate suppressed overfeeding, body weight gain, and hyperglycemia in obese A{sup y} mice, whereas it did not increase plasma adiponectin levels. These results suggest that obesity increases hypothalamic 5-HT2A receptor gene expression, and pharmacologic inactivation of 5-HT2A receptors inhibits overfeeding and obesity in A{sup y} mice, but did not increase plasma adiponectin levels.

  4. MDMA-induced loss of parvalbumin interneurons within the dentate gyrus is mediated by 5HT2A and NMDA receptors.

    PubMed

    Collins, Stuart A; Gudelsky, Gary A; Yamamoto, Bryan K

    2015-08-15

    MDMA is a widely abused psychostimulant which causes a rapid and robust release of the monoaminergic neurotransmitters dopamine and serotonin. Recently, it was shown that MDMA increases extracellular glutamate concentrations in the dorsal hippocampus, which is dependent on serotonin release and 5HT2A/2C receptor activation. The increased extracellular glutamate concentration coincides with a loss of parvalbumin-immunoreactive (PV-IR) interneurons of the dentate gyrus region. Given the known susceptibility of PV interneurons to excitotoxicity, we examined whether MDMA-induced increases in extracellular glutamate in the dentate gyrus are necessary for the loss of PV cells in rats. Extracellular glutamate concentrations increased in the dentate gyrus during systemic and local administration of MDMA. Administration of the NMDA receptor antagonist, MK-801, during systemic injections of MDMA, prevented the loss of PV-IR interneurons seen 10 days after MDMA exposure. Local administration of MDL100907, a selective 5HT2A receptor antagonist, prevented the increases in glutamate caused by reverse dialysis of MDMA directly into the dentate gyrus and prevented the reduction of PV-IR. These findings provide evidence that MDMA causes decreases in PV within the dentate gyrus through a 5HT2A receptor-mediated increase in glutamate and subsequent NMDA receptor activation.

  5. Blockade of Serotonin 5-HT2A Receptors Suppresses Behavioral Sensitization and Naloxone-Precipitated Withdrawal Symptoms in Morphine-Treated Mice

    PubMed Central

    Pang, Gang; Wu, Xian; Tao, Xinrong; Mao, Ruoying; Liu, Xueke; Zhang, Yong-Mei; Li, Guangwu; Stackman, Robert W.; Dong, Liuyi; Zhang, Gongliang

    2016-01-01

    The increasing prescription of opioids is fueling an epidemic of addiction and overdose deaths. Morphine is a highly addictive drug characterized by a high relapse rate – even after a long period of abstinence. Serotonin (5-HT) neurotransmission participates in the development of morphine dependence, as well as the expression of morphine withdrawal. In this study, we examined the effect of blockade of 5-HT2A receptors (5-HT2ARs) on morphine-induced behavioral sensitization and withdrawal in male mice. 5-HT2AR antagonist MDL 11,939 (0.5 mg/kg, i.p.) suppressed acute morphine (5.0 mg/kg, s.c.)-induced increase in locomotor activity. Mice received morphine (10 mg/kg, s.c.) twice a day for 3 days and then drug treatment was suspended for 5 days. On day 9, a challenge dose of morphine (10 mg/kg) was administered to induce the expression of behavioral sensitization. MDL 11,939 (0.5 mg/kg, i.p.) pretreatment suppressed the expression of morphine-induced behavioral sensitization. Another cohort of mice received increasing doses of morphine over a 7-day period to induce morphine-dependence. MDL 11,939 (0.5 mg/kg, i.p.) prevented naloxone-precipitated withdrawal in morphine-dependent mice on day 7. Moreover, chronic morphine treatment increased 5-HT2AR protein level and decreased the phosphorylation of extracellular signal-regulated kinases in the prefrontal cortex. Together, these results by the first time demonstrate that 5-HT2ARs modulate opioid dependence and blockade of 5-HT2AR may represent a novel strategy for the treatment of morphine use disorders. Highlights (i) Blockade of 5-HT2A receptors suppresses the expression of morphine-induced behavioral sensitization. (ii) Blockade of 5-HT2A receptors suppresses naloxone-precipitated withdrawal in morphine-treated mice. (iii) Chronic morphine exposure induces an increase in 5-HT2A receptor protein level and a decrease in ERK protein phosphorylation in prefrontal cortex. PMID:28082900

  6. Role of 5-HT1B, 5-HT2A and 5-HT2C receptors in learning.

    PubMed

    Meneses, A; Hong, E

    1997-08-01

    The effects of post-training (i.p.) injection of TFMPP, mCPP, DOI or 1-NP in the autoshaping learning task was explored. Furthermore, the post-training effects of these agonists after treatment with the antagonists (+/-)-pindolol, (+/-)-propranolol, NAN-190, ketanserin, ritanserin, mesulergine, MDL-72222 or p-chloroamphetamine (5-HT depleter) were studied. Rats were individually trained with a lever-press response (conditioned response; CR) on the autoshaping task and tested 24 h later. The results showed that the injection of TFMPP (1-10 mg/kg), mCPP (1-10 mg/kg), 1-NP (0.1-1.0 mg/kg) or mesulergine (0.4 mg/kg) decreased the rate of CR, while DOI (0.01-0.1 mg/kg) and ritanserin (0.5 mg/kg) and ketanserin (0.001-0.1 mg/kg) increased it. However, the effect induced by TFMPP was reversed by (+/-)-pindolol, ketanserin, ritanserin and PCA; the mCPP-induced effect was antagonized by (+/-)-propranolol, ketanserin, ritanserin and MDL-72222; and the effect produced by 1-NP was reversed by ketanserin, ritanserin and PCA. In addition, the increment in CR provoked by DOI was enhanced by ketanserin, and reversed by ritanserin, mesulergine and PCA. These findings suggest that TFMPP, 1-NP and DOI exerted their effects via stimulation of presynaptic 5-HT receptors. The effects of mCPP most probably reflect activation of postsynaptic receptors. The present data suggest that both 5-HT1B and 5-HT2A-2C receptors play a significant role in the consolidation of learning.

  7. 5-HT2A/C receptors mediate the antipsychotic-like effects of alstonine.

    PubMed

    Linck, V M; Bessa, M M; Herrmann, A P; Iwu, M M; Okunji, C O; Elisabetsky, E

    2012-01-10

    The purpose of this study was to determine the effects of alstonine, an indole alkaloid with putative antipsychotic effects, on working memory by using the step-down inhibitory avoidance paradigm and MK801-induced working memory deficits in mice. Additionally, the role of serotonin 5-HT2A/C receptors in the effects of alstonine on mouse models associated with positive (MK801-induced hyperlocomotion), negative (MK801-induced social interaction deficit), and cognitive (MK801-induced working memory deficit) schizophrenia symptoms was examined. Treatment with alstonine was able to prevent MK801-induced working memory deficit, indicating its potential benefit for cognitive deficits now seen as a core symptom in the disease. Corroborating previously reported data, alstonine was also effective in counteracting MK801-induced hyperlocomotion and social interaction deficit. Ritanserin, a 5-HT2A/C receptor antagonist, prevented alstonine's effects on these three behavioral parameters. This study presents additional evidence that 5-HT2A/C receptors are central to the antipsychotic-like effects of alstonine, consistently seen in mouse models relevant to the three dimensions of schizophrenia symptoms.

  8. 5-HT2A receptor activation is necessary for CO2-induced arousal

    PubMed Central

    Smith, Haleigh R.; MacAskill, Amanda; Richerson, George B.

    2015-01-01

    Hypercapnia-induced arousal from sleep is an important protective mechanism pertinent to a number of diseases. Most notably among these are the sudden infant death syndrome, obstructive sleep apnea and sudden unexpected death in epilepsy. Serotonin (5-HT) plays a significant role in hypercapnia-induced arousal. The mechanism of 5-HT's role in this protective response is unknown. Here we sought to identify the specific 5-HT receptor subtype(s) involved in this response. Wild-type mice were pretreated with antagonists against 5-HT receptor subtypes, as well as antagonists against adrenergic, cholinergic, histaminergic, dopaminergic, and orexinergic receptors before challenge with inspired CO2 or hypoxia. Antagonists of 5-HT2A receptors dose-dependently blocked CO2-induced arousal. The 5-HT2C receptor antagonist, RS-102221, and the 5-HT1A receptor agonist, 8-OH-DPAT, attenuated but did not completely block CO2-induced arousal. Blockade of non-5-HT receptors did not affect CO2-induced arousal. None of these drugs had any effect on hypoxia-induced arousal. 5-HT2 receptor agonists were given to mice in which 5-HT neurons had been genetically eliminated during embryonic life (Lmx1bf/f/p) and which are known to lack CO2-induced arousal. Application of agonists to 5-HT2A, but not 5-HT2C, receptors, dose-dependently restored CO2-induced arousal in these mice. These data identify the 5-HT2A receptor as an important mediator of CO2-induced arousal and suggest that, while 5-HT neurons can be independently activated to drive CO2-induced arousal, in the absence of 5-HT neurons and endogenous 5-HT, 5-HT receptor activation can act in a permissive fashion to facilitate CO2-induced arousal via another as yet unidentified chemosensor system. PMID:25925320

  9. 5-HT2A receptors control body temperature in mice during LPS-induced inflammation via regulation of NO production.

    PubMed

    Voronova, Irina P; Khramova, Galina M; Kulikova, Elizabeth A; Petrovskii, Dmitrii V; Bazovkina, Daria V; Kulikov, Alexander V

    2016-01-01

    G protein-coupled 5-HT2A receptors are involved in the regulation of numerous normal and pathological physiological functions. At the same time, its involvement in the regulation of body temperature (Tb) in normal conditions is obscure. Here we study the effect of the 5-HT2A receptor activation or blockade on Tb in sick animals. The experiments were carried out on adult C57BL/6 mouse males. Systemic inflammation and sickness were produced by lipopolysaccharide (LPS, 0.1mg/kg, ip), while the 5-HT2A receptor was stimulated or blocked through the administration of the receptor agonist DOI or antagonist ketanserin (1mg/kg), respectively. LPS, DOI or ketanserin alone produced no effect on Tb. However, administration of LPS together with a peripheral or central ketanserin injection reduced Tb (32.2°C). Ketanserin reversed the LPS-induced expression of inducible NO synthase in the brain. Consequently, an involvement of NO in the mechanism of the hypothermic effect of ketanserin in sick mice was hypothesized. Administration of LPS together with NO synthase inhibitor, l-nitro-arginine methyl ester (60mg/kg, ip) resulted in deep (28.5°C) and prolonged (8h) hypothermia, while administration of l-nitro-arginine methyl ester alone produced no effect on Tb. Thus, 5-HT2A receptors play a key role in Tb control in sick mice. Blockade of this GPCR produces hypothermia in mice with systemic inflammation via attenuation of LPS-induced NO production. These results indicate an unexpected role of 5-HT2A receptors in inflammation and NO production and have a considerable biological impact on understanding the mechanism of animal adaptation to pathogens and parasites. Moreover, adverse side effects of 5-HT2A receptor antagonists in patients with inflammation may be expected.

  10. 5-HT2A Receptor Binding in the Frontal Cortex of Parkinson's Disease Patients and Alpha-Synuclein Overexpressing Mice: A Postmortem Study.

    PubMed

    Rasmussen, Nadja Bredo; Olesen, Mikkel Vestergaard; Brudek, Tomasz; Plenge, Per; Klein, Anders Bue; Westin, Jenny E; Fog, Karina; Wörtwein, Gitta; Aznar, Susana

    2016-01-01

    The 5-HT2A receptor is highly involved in aspects of cognition and executive function and seen to be affected in neurodegenerative diseases like Alzheimer's disease and related to the disease pathology. Even though Parkinson's disease (PD) is primarily a motor disorder, reports of impaired executive function are also steadily being associated with this disease. Not much is known about the pathophysiology behind this. The aim of this study was thereby twofold: (1) to investigate 5-HT2A receptor binding levels in Parkinson's brains and (2) to investigate whether PD associated pathology, alpha-synuclein (AS) overexpression, could be associated with 5-HT2A alterations. Binding density for the 5-HT2A-specific radioligand [(3)H]-MDL 100.907 was measured in membrane suspensions of frontal cortex tissue from PD patients. Protein levels of AS were further measured using western blotting. Results showed higher AS levels accompanied by increased 5-HT2A receptor binding in PD brains. In a separate study, we looked for changes in 5-HT2A receptors in the prefrontal cortex in 52-week-old transgenic mice overexpressing human AS. We performed region-specific 5-HT2A receptor binding measurements followed by gene expression analysis. The transgenic mice showed lower 5-HT2A binding in the frontal association cortex that was not accompanied by changes in gene expression levels. This study is one of the first to look at differences in serotonin receptor levels in PD and in relation to AS overexpression.

  11. INCREASED 5-HT2A RECEPTOR AVAILABILITY IN THE ORBITOFRONTAL CORTEX OF PHYSICALLY AGGRESSIVE PERSONALITY DISORDERED PATIENTS

    PubMed Central

    Rosell, Daniel R.; Thompson, Judy L.; Slifstein, Mark; Xu, Xiaoyan; Frankle, W. Gordon; New, Antonia S.; Goodman, Marianne; Weinstein, Shauna R.; Laruelle, Marc; Dargham, Anissa Abi; Siever, Larry J.

    2011-01-01

    Background Impulsive physical aggression is a common and problematic feature of many personality disorders. The serotonergic system is known to be involved in the pathophysiology of aggression, and multiple lines of evidence have implicated the 5-HT2A receptor (5-HT2AR). We sought to examine the role of the 5-HT2AR in impulsive aggression specifically in the orbitofrontal cortex (OFC), given that our own studies and an extensive literature indicate that serotonergic disturbances in the OFC are linked to aggression. We have previously hypothesized that increased 5-HT2AR function in the OFC is a state phenomenon which promotes impulsive aggression. Methods 5-HT2AR availability was measured with positron emission tomography and the selective 5-HT2AR antagonist radioligand [11C]MDL100907 in two groups of impulsively aggressive personality disordered patients --14 with current physical aggression, and 15 without current physical aggression --and 25 healthy controls. Clinical ratings of various symptom dimensions were also obtained. Results Orbitofrontal 5-HT2AR availability was greater in patients with current physical aggression compared to patients without current physical aggression and healthy controls; no differences in OFC 5-HT2AR availability were observed between patients without current physical aggression and healthy controls. No significant differences in 5-HT2AR availability were observed in other brain regions examined. Among both groups of impulsively aggressive personality disordered patients combined, OFC 5-HT2AR availability was correlated, specifically, with a state measure of impulsive aggression. Conclusions These findings are consistent with our previously described model in which impulsive aggression is related to dynamic changes in 5-HT2AR function in the OFC. PMID:20434136

  12. Agonist properties of N,N-dimethyltryptamine at serotonin 5-HT2A and 5-HT2C receptors.

    PubMed

    Smith, R L; Canton, H; Barrett, R J; Sanders-Bush, E

    1998-11-01

    Extensive behavioral and biochemical evidence suggests an agonist role at the 5-HT2A receptor, and perhaps the 5-HT2C receptor, in the mechanism of action of hallucinogenic drugs. However the published in vitro pharmacological properties of N,N-dimethyltryptamine (DMT), an hallucinogenic tryptamine analog, are not consistent with this hypothesis. We, therefore, undertook an extensive investigation into the properties of DMT at 5-HT2A and 5-HT2C receptors. In fibroblasts transfected with the 5-HT2A receptor or the 5-HT2C receptor, DMT activated the major intracellular signaling pathway (phosphoinositide hydrolysis) to an extent comparable to that produced by serotonin. Because drug efficacy changes with receptor density and cellular microenvironment, we also examined the properties of DMT in native preparations using a behavioral and biochemical approach. Rats were trained to discriminate an antagonist ketanserin from an agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) in a two-lever choice paradigm. Pharmacological studies showed that responding on the DOI and ketanserin lever reflected agonist and antagonist activity at 5-HT2A receptors, and hence, was a suitable model for evaluating the in vivo functional properties of DMT. Like other 5-HT2A receptor agonists, DMT substituted fully for DOI. Intact choroid plexus was used to evaluate the agonist properties at endogenous 5-HT2C receptors; DMT was a partial agonist at 5-HT2C receptors in this native preparation. Thus, we conclude that DMT behaves as an agonist at both 5-HT2A and 5-HT2A receptors. One difference was evident in that the 5-HT2C, but not the 5-HT2A, receptor showed a profound desensitization to DMT over time. This difference is interesting in light of the recent report that the hallucinogenic activity of DMT does not tolerate in humans and suggests the 5-HT2C receptor plays a less prominent role in the action of DMT.

  13. Potentiation of 5-methoxy-N,N-dimethyltryptamine-induced hyperthermia by harmaline and the involvement of activation of 5-HT1A and 5-HT2A receptors

    PubMed Central

    Jiang, Xi-Ling; Shen, Hong-Wu; Yu, Ai-Ming

    2014-01-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and harmaline are serotonin (5-HT) analogs often abused together, which alters thermoregulation that may indicate the severity of serotonin toxicity. Our recent studies have revealed that co-administration of monoamine oxidase inhibitor harmaline leads to greater and prolonged exposure to 5-HT agonist 5-MeO-DMT that might be influenced by cytochrome P450 2D6 (CYP2D6) status. This study was to define the effects of harmaline and 5-MeO-DMT on thermoregulation in wild-type and CYP2D6-humanized (Tg-CYP2D6) mice, as well as the involvement of 5-HT receptors. Animal core body temperatures were monitored noninvasively in the home cages after implantation of telemetry transmitters and administration of drugs. Harmaline (5 and 15 mg/kg, i.p.) alone was shown to induce hypothermia that was significantly affected by CYP2D6 status. In contrast, higher doses of 5-MeO-DMT (10 and 20 mg/kg) alone caused hyperthermia. Co-administration of harmaline (2, 5 or 15 mg/kg) remarkably potentiated the hyperthermia elicited by 5-MeO-DMT (2 or 10 mg/kg), which might be influenced by CYP2D6 status at certain dose combination. Interestingly, harmaline-induced hypothermia was only attenuated by 5-HT1A receptor antagonist WAY-100635, whereas 5-MeO-DMT- and harmaline-5-MeO-DMT-induced hyperthermia could be suppressed by either WAY-100635 or 5-HT2A receptor antagonists (MDL-100907 and ketanserin). Moreover, stress-induced hyperthermia under home cage conditions was not affected by WAY-100635 but surprisingly attenuated by MDL-100907 and ketanserin. Our results indicate that co-administration of monoamine oxidase inhibitor largely potentiates 5-MeO-DMT-induced hyperthermia that involves the activation of both 5-HT1A and 5-HT2A receptors. These findings shall provide insights into development of anxiolytic drugs and new strategies to relieve the lethal hyperthermia in serotonin toxicity. PMID:25446678

  14. Potentiation of 5-methoxy-N,N-dimethyltryptamine-induced hyperthermia by harmaline and the involvement of activation of 5-HT1A and 5-HT2A receptors.

    PubMed

    Jiang, Xi-Ling; Shen, Hong-Wu; Yu, Ai-Ming

    2015-02-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and harmaline are serotonin (5-HT) analogs often abused together, which alters thermoregulation that may indicate the severity of serotonin toxicity. Our recent studies have revealed that co-administration of monoamine oxidase inhibitor harmaline leads to greater and prolonged exposure to 5-HT agonist 5-MeO-DMT that might be influenced by cytochrome P450 2D6 (CYP2D6) status. This study was to define the effects of harmaline and 5-MeO-DMT on thermoregulation in wild-type and CYP2D6-humanized (Tg-CYP2D6) mice, as well as the involvement of 5-HT receptors. Animal core body temperatures were monitored noninvasively in the home cages after implantation of telemetry transmitters and administration of drugs. Harmaline (5 and 15 mg/kg, i.p.) alone was shown to induce hypothermia that was significantly affected by CYP2D6 status. In contrast, higher doses of 5-MeO-DMT (10 and 20 mg/kg) alone caused hyperthermia. Co-administration of harmaline (2, 5 or 15 mg/kg) remarkably potentiated the hyperthermia elicited by 5-MeO-DMT (2 or 10 mg/kg), which might be influenced by CYP2D6 status at certain dose combination. Interestingly, harmaline-induced hypothermia was only attenuated by 5-HT1A receptor antagonist WAY-100635, whereas 5-MeO-DMT- and harmaline-5-MeO-DMT-induced hyperthermia could be suppressed by either WAY-100635 or 5-HT2A receptor antagonists (MDL-100907 and ketanserin). Moreover, stress-induced hyperthermia under home cage conditions was not affected by WAY-100635 but surprisingly attenuated by MDL-100907 and ketanserin. Our results indicate that co-administration of monoamine oxidase inhibitor largely potentiates 5-MeO-DMT-induced hyperthermia that involves the activation of both 5-HT1A and 5-HT2A receptors. These findings shall provide insights into development of anxiolytic drugs and new strategies to relieve the lethal hyperthermia in serotonin toxicity.

  15. Insights into the regulation of 5-HT2A serotonin receptors by scaffolding proteins and kinases.

    PubMed

    Allen, John A; Yadav, Prem N; Roth, Bryan L

    2008-11-01

    5-HT(2A) serotonin receptors are essential molecular targets for the actions of LSD-like hallucinogens and atypical antipsychotic drugs. 5-HT(2A) serotonin receptors also mediate a variety of physiological processes in peripheral and central nervous systems including platelet aggregation, smooth muscle contraction, and the modulation of mood and perception. Scaffolding proteins have emerged as important regulators of 5-HT(2A) receptors and our recent studies suggest multiple scaffolds exist for 5-HT(2A) receptors including PSD95, arrestin, and caveolin. In addition, a novel interaction has emerged between p90 ribosomal S6 kinase and 5-HT(2A) receptors which attenuates receptor signaling. This article reviews our recent studies and emphasizes the role of scaffolding proteins and kinases in the regulation of 5-HT(2A) trafficking, targeting and signaling.

  16. The Role of 5-HT2A, 5-HT2C and mGlu2 Receptors in the Behavioral Effects of Tryptamine Hallucinogens N,N-Dimethyltryptamine and N,N-Diisopropyltryptamine in Rats and Mice

    PubMed Central

    Carbonaro, Theresa M.; Eshleman, Amy J.; Forster, Michael J.; Cheng, Kejun; Rice, Kenner C.; Gatch, Michael B.

    2014-01-01

    Rationale: Serotonin 5-HT2A and 5-HT2C receptors are thought to be the primary pharmacological mechanisms for serotonin-mediated hallucinogenic drugs, but recently there has been interest in metabotropic glutamate (mGluR2) receptors as contributors to the mechanism of hallucinogens. Objective: The present study assesses the role of these 5-HT and glutamate receptors as molecular targets for two tryptamine hallucinogens, N,N-dimethyltryptamine (DMT) and N,N-diisopropyltryptamine (DiPT). Methods: Drug discrimination, head twitch and radioligand binding assays were used. A 5-HT2AR inverse agonist (MDL100907), 5-HT2CR antagonist (SB242084) and mGluR2/3 agonist (LY379268) were tested for their ability to attenuate the discriminative stimulus effects of DMT and DiPT; an mGluR2/3 antagonist (LY341495) was tested for potentiation. MDL100907 was used to attenuate head twitches induced by DMT and DiPT. Radioligand binding studies and inosital-1-phosphate (IP-1) accumulation were performed at the 5-HT2CR for DiPT. Results: MDL100907 fully blocked the discriminative stimulus effects of DMT, but only partially blocked DiPT. SB242084 partially attenuated the discriminative stimulus effects of DiPT, but produced minimal attenuation of DMT’s effects. LY379268 produced potent, but only partial blockade of the discriminative stimulus effects of DMT. LY341495 facilitated DMT- and DiPT-like effects. Both compounds elicited head twitches (DiPT>DMT) which were blocked by MDL1000907. DiPT was a low potency full agonist at 5-HT2CR in vitro. Conclusions: The 5-HT2AR likely plays a major role in mediating the effects of both compounds. 5-HT2C and mGluR2 receptors likely modulate the discriminative stimulus effects of both compounds to some degree. PMID:24985890

  17. Chronic treatment with LY341495 decreases 5-HT(2A) receptor binding and hallucinogenic effects of LSD in mice.

    PubMed

    Moreno, José L; Holloway, Terrell; Rayannavar, Vinayak; Sealfon, Stuart C; González-Maeso, Javier

    2013-03-01

    Hallucinogenic drugs, such as lysergic acid diethylamide (LSD), mescaline and psilocybin, alter perception and cognitive processes. All hallucinogenic drugs have in common a high affinity for the serotonin 5-HT(2A) receptor. Metabotropic glutamate 2/3 (mGlu2/3) receptor ligands show efficacy in modulating the cellular and behavioral responses induced by hallucinogenic drugs. Here, we explored the effect of chronic treatment with the mGlu2/3 receptor antagonist 2S-2-amino-2-(1S,2S-2-carboxycyclopropan-1-yl)-3-(xanth-9-yl)-propionic acid (LY341495) on the hallucinogenic-like effects induced by LSD (0.24mg/kg). Mice were chronically (21 days) treated with LY341495 (1.5mg/kg), or vehicle, and experiments were carried out one day after the last injection. Chronic treatment with LY341495 down-regulated [(3)H]ketanserin binding in somatosensory cortex of wild-type, but not mGlu2 knockout (KO), mice. Head-twitch behavior, and expression of c-fos, egr-1 and egr-2, which are responses induced by hallucinogenic 5-HT(2A) agonists, were found to be significantly decreased by chronic treatment with LY341495. These findings suggest that repeated blockade of the mGlu2 receptor by LY341495 results in reduced 5-HT(2A) receptor-dependent hallucinogenic effects of LSD.

  18. 5-HT2A receptor gene polymorphisms in Croatian subjects with autistic disorder.

    PubMed

    Hranilovic, Dubravka; Blazevic, Sofia; Babic, Marina; Smurinic, Maja; Bujas-Petkovic, Zorana; Jernej, Branimir

    2010-08-15

    Disturbances in the expression/function of the 5-HT2A receptor are implicated in autism. The association of the 5-HT2A receptor gene with autism was studied in the Croatian population. Distribution frequencies for alleles, genotypes and haplotypes of -1438 A/G and His452Tyr polymorphisms were compared in samples of 103 autistic and 214 control subjects. Significant overrepresentation of the G allele and the GG genotype of the -1438 A/G polymorphism was observed in group of autistic subjects, supporting the possible involvement of the 5-HT2A receptor in the development of autism.

  19. Differential involvement of 5-HT(2A) receptors in the discriminative-stimulus effects of cocaine and methamphetamine.

    PubMed

    Munzar, Patrik; Justinova, Zuzana; Kutkat, Scott W; Goldberg, Steven R

    2002-02-01

    Involvement of 5-HT(2A) receptors in the discriminative-stimulus effects of cocaine versus methamphetamine was studied in Sprague Dawley rats (n=10) trained to discriminate 10 mg/kg cocaine, i.p., from saline under a fixed-ratio 10 (FR10) schedule of food presentation. The ability of (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), a 5-HT(2A) receptor agonist, and ketanserin, a 5-HT(2A) receptor antagonist, to either substitute for or block the discriminative-stimulus effects of cocaine, or to shift the cocaine dose-response curve, was evaluated. DOI (0.18-1.0 mg/kg) partially substituted for the training dose of 10 mg/kg cocaine, but only at doses that decreased rates of responding. At the highest dose of DOI tested (1.0 mg/kg), there was about 65% cocaine-appropriate responding. Substitution of DOI for cocaine and DOI-induced decreases in rates of responding were completely reversed by ketanserin (3.0 mg/kg). Ketanserin (3.0 mg/kg) also produced a significant shift to the right of the cocaine dose-response curve and antagonized increases in rates of responding produced by lower doses of cocaine. Ketanserin (1.0-10.0 mg/kg), however, did not block the discriminative-stimulus effects of the training dose of cocaine. When DOI (0.3 mg/kg) was co-administered with different doses of cocaine, there was a slight leftward shift in the cocaine dose-response curve, which was not significant and appeared to reflect simple additive effects of DOI and cocaine. In contrast, the same dose of DOI (0.3 mg/kg) produced a marked and highly significant shift to the left of the methamphetamine (0.18-1.0 mg/kg) dose-response curve in the same subjects and the effects of DOI and methamphetamine were clearly more than additive. The present findings provide new evidence that there is some serotonergic modulation of cocaine's discriminative-stimulus actions, which appears to involve stimulation of 5-HT(2A) receptors. However, involvement of 5-HT(2A) receptor activity in the

  20. The role of serotonin 5-HT2A receptors in memory and cognition

    PubMed Central

    Zhang, Gongliang; Stackman, Robert W.

    2015-01-01

    Serotonin 5-HT2A receptors (5-HT2ARs) are widely distributed in the central nervous system, especially in brain region essential for learning and cognition. In addition to endogenous 5-HT, several hallucinogens, antipsychotics, and antidepressants function by targeting 5-HT2ARs. Preclinical studies show that 5-HT2AR antagonists have antipsychotic and antidepressant properties, whereas agonist ligands possess cognition-enhancing and hallucinogenic properties. Abnormal 5-HT2AR activity is associated with a number of psychiatric disorders and conditions, including depression, schizophrenia, and drug addiction. In addition to its traditional activity as a G protein-coupled receptor (GPCR), recent studies have defined novel operations of 5-HT2ARs. Here we review progress in the (1) receptor anatomy and biology: distribution, signaling, polymerization and allosteric modulation; and (2) receptor functions: learning and memory, hallucination and spatial cognition, and mental disorders. Based on the recent progress in basic research on the 5-HT2AR, it appears that post-training 5-HT2AR activation enhances non-spatial memory consolidation, while pre-training 5-HT2AR activation facilitates fear extinction. Further, the potential influence that 5-HT2AR-elicited visual hallucinations may have on visual cue (i.e., landmark) guided spatial cognition is discussed. We conclude that the development of selective 5-HT2AR modulators to target distinct signaling pathways and neural circuits represents a new possibility for treating emotional, neuropsychiatric, and neurodegenerative disorders. PMID:26500553

  1. Examination of the hippocampal contribution to serotonin 5-HT2A receptor-mediated facilitation of object memory in C57BL/6J mice.

    PubMed

    Zhang, Gongliang; Cinalli, David; Cohen, Sarah J; Knapp, Kristina D; Rios, Lisa M; Martínez-Hernández, José; Luján, Rafael; Stackman, Robert W

    2016-10-01

    The rodent hippocampus supports non-spatial object memory. Serotonin 5-HT2A receptors (5-HT2AR) are widely expressed throughout the hippocampus. We previously demonstrated that the activation of 5-HT2ARs enhanced the strength of object memory assessed 24 h after a limited (i.e., weak memory) training procedure. Here, we examined the subcellular distribution of 5-HT2ARs in the hippocampal CA1 region and underlying mechanisms of 5-HT2AR-mediated object memory consolidation. Analyses with immuno-electron microscopy revealed the presence of 5-HT2ARs on the dendritic spines and shafts of hippocampal CA1 neurons, and presynaptic terminals in the CA1 region. In an object recognition memory procedure that places higher demand on the hippocampus, only post-training systemic or intrahippocampal administration of the 5-HT2AR agonist TCB-2 enhanced object memory. Object memory enhancement by TCB-2 was blocked by the 5-HT2AR antagonist, MDL 11,937. The memory-enhancing dose of systemic TCB-2 increased extracellular glutamate levels in hippocampal dialysate samples, and increased the mean in vivo firing rate of hippocampal CA1 neurons. In summary, these data indicate a pre- and post-synaptic distribution of 5-HT2ARs, and activation of 5-HT2ARs selectively enhanced the consolidation of object memory, without affecting encoding or retrieval. The 5-HT2AR-mediated facilitation of hippocampal memory may be associated with an increase in hippocampal neuronal firing and glutamate efflux during a post-training time window in which recently encoded memories undergo consolidation.

  2. Role of serotonin 5-HT2A receptors in the development of cardiac hypertrophy in response to aortic constriction in mice.

    PubMed

    Lairez, O; Cognet, T; Schaak, S; Calise, D; Guilbeau-Frugier, C; Parini, A; Mialet-Perez, J

    2013-06-01

    Serotonin, in addition to its fundamental role as a neurotransmitter, plays a critical role in the cardiovascular system, where it is thought to be involved in the development of cardiac hypertrophy and failure. Indeed, we recently found that mice with deletion of monoamine oxidase A had enhanced levels of blood and cardiac 5-HT, which contributed to exacerbation of hypertrophy in a model of experimental pressure overload. 5-HT2A receptors are expressed in the heart and mediate a hypertrophic response to 5-HT in cardiac cells. However, their role in cardiac remodeling in vivo and the signaling pathways associated are not well understood. In the present study, we evaluated the effect of a selective 5-HT2A receptor antagonist, M100907, on the development of cardiac hypertrophy induced by transverse aortic constriction (TAC). Cardiac 5-HT2A receptor expression was transiently increased after TAC, and was recapitulated in cardiomyocytes, as observed with 5-HT2A in situ labeling by immunohistochemistry. Selective blockade of 5-HT2A receptors prevented the development of cardiac hypertrophy, as measured by echocardiography, cardiomyocyte area and heart weight-to-body weight ratio. Interestingly, activation of calmodulin kinase (CamKII), which is a core mechanism in cardiac hypertrophy, was reduced in cardiac samples from M100907-treated TAC mice compared to vehicle-treated mice. In addition, phosphorylation of histone deacetylase 4 (HDAC4), a downstream partner of CamKII was significantly diminished in M100907-treated TAC mice. Thus, our results show that selective blockade of 5-HT2A receptors has beneficial effect in the development of cardiac hypertrophy through inhibition of the CamKII/HDAC4 pathway.

  3. MDL72222, a serotonin 5-HT3 receptor antagonist, blocks MDMA's ability to establish a conditioned place preference.

    PubMed

    Bilsky, E J; Reid, L D

    1991-06-01

    Methylenedioxymethamphetamine (MDMA) has previously been shown to produce a positive conditioned place preference (CPP) among rats. Here the effects of doses of a specific 5-HT3 antagonist, MDL72222, on MDMA's ability to produce a CPP were assessed. A dose of MDL72222 (0.03 mg/kg) blocked the establishment of a MDMA CPP. These results support the suggestions that compounds affecting the 5-HT3 receptor may be of particular interest in studying the pharmacology of self-administered drugs.

  4. Emotional management and 5-HT2A receptor gene variance in patients with schizophrenia.

    PubMed

    Lo, Chi-Hsuan; Tsai, Guochuan E; Liao, Chun-Hui; Wang, Ming-Yu; Chang, Jane Pei-Chen; Tsuang, Hui-Chun; Lane, Hsien-Yuan

    2010-02-01

    Individuals with schizophrenia exhibit impaired social cognitive functions, particularly emotion management. Emotion management may be partially regulated by the serotoninergic system; the -1438 A/G polymorphism in the promoter region of the 5-HT2A gene can modulate 5-HT2A activity and is linked to certain emotional traits and anger- and aggression-related behaviors. The current study aimed to investigate whether this 5-HT2A genetic variance is associated with social cognitive function, particularly the management of emotions. One hundred and fifteen patients with chronic schizophrenia were stabilized with an optimal-dose of antipsychotic treatment. All were genotyped for the -1438 A/G polymorphism and assessed with symptom rating scales, neurocognitive instruments, and the "Managing Emotions" section of Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT). Multiple regression showed that patients with the A/G genotype performed better than those with G/G in managing emotion (p=0.018) but did not differ from those with the A/A genotype. Regarding the two subtasks of the Managing Emotions section, the A/G heterozygotes also performed better than the G/G homozygotes in the emotion management (p=0.026) and emotional relations (p=0.027) subtasks. The results suggest that variability in the 5-HT2A gene may influence emotion management in patients with schizophrenia.

  5. 5-HT2A SEROTONIN RECEPTOR BIOLOGY: Interacting proteins, kinases and paradoxical regulation

    PubMed Central

    Roth, Bryan L

    2011-01-01

    5-hydroxytryptamine2A (5-HT2A) serotonin receptors are important pharmacological targets for a large number of central nervous system and peripheral serotonergic medications. In this review article I summarize work mainly from my lab regarding serotonin receptor anatomy, pharmacology, signaling and regulation. I highlight the role of serotonin receptor interacting proteins and the emerging paradigm of G-protein coupled receptor functional selectivity. PMID:21288474

  6. 5-HT2A SNPs and the Temperament and Character Inventory.

    PubMed

    Serretti, Alessandro; Calati, Raffaella; Giegling, Ina; Hartmann, Annette M; Möller, Hans-Jürgen; Colombo, Cristina; Rujescu, Dan

    2007-08-15

    Temperamental traits, the most basic part of personality, have been largely correlated with neurotransmitter systems and are under genetic control. Among serotonin candidates, the 2A receptor (5-HT(2A)) received considerable attention. We analyzed four SNPs (rs643627, rs594242, rs6311 and rs6313) in the 5-HT(2A) gene and their association with personality traits, as measured with the Temperament and Character Inventory (TCI). The sample was composed of three sub-groups: two German sub-samples, consisting of a healthy group of 289 subjects (42.6% males, mean age: 45.2+/-14.9) and a psychiatric patient group of 111 suicide attempters (38.7% males, mean age: 39.2+/-13.6), and an Italian sub-sample, composed of 60 mood disorder patients (35.0% males, mean age: 44.0+/-14.8). Controlling for sex, age and educational level, the SNPs were not strongly associated with personality dimensions. Only the rs594242 showed an association with Self-Directedness (p=0.003) in the German sample, while rs6313 was marginally associated with Novelty Seeking (p=0.01) in the Italian sample. We conclude that 5-HT(2A) SNPs may marginally modulate personality traits but further studies are required.

  7. Effects of the 5-HT2A agonist psilocybin on mismatch negativity generation and AX-continuous performance task: implications for the neuropharmacology of cognitive deficits in schizophrenia.

    PubMed

    Umbricht, Daniel; Vollenweider, Franz X; Schmid, Liselotte; Grübel, Claudia; Skrabo, Anja; Huber, Theo; Koller, Rene

    2003-01-01

    Previously the NMDA (N-methyl-D-aspartate) receptor (NMDAR) antagonist ketamine was shown to disrupt generation of the auditory event-related potential (ERP) mismatch negativity (MMN) and the performance of an 'AX'-type continuous performance test (AX-CPT)--measures of auditory and visual context-dependent information processing--in a similar manner as observed in schizophrenia. This placebo-controlled study investigated effects of the 5-HT(2A) receptor agonist psilocybin on the same measures in 18 healthy volunteers. Psilocybin administration induced significant performance deficits in the AX-CPT, but failed to reduce MMN generation significantly. These results indirectly support evidence that deficient MMN generation in schizophrenia may be a relatively distinct manifestation of deficient NMDAR functioning. In contrast, secondary pharmacological effects shared by NMDAR antagonists and the 5-HT(2A) agonist (ie disruption of glutamatergic neurotransmission) may be the mechanism underlying impairments in AX-CPT performance observed during both psilocybin and ketamine administration. Comparable deficits in schizophrenia may result from independent dysfunctions of 5-HT(2A) and NMDAR-related neurotransmission.

  8. The role of peripheral 5HT2A and 5HT1A receptors on the orofacial formalin test in rats with persistent temporomandibular joint inflammation.

    PubMed

    Okamoto, K; Imbe, H; Tashiro, A; Kimura, A; Donishi, T; Tamai, Y; Senba, E

    2005-01-01

    The role of peripheral serotonin (5HT) 2A and 5HT1A receptors on the orofacial nocifensive behavioral activities evoked by the injection of formalin into the masseter muscle was evaluated in the rats with persistent temporomandibular joint (TMJ) inflammation evoked by Complete Freund's Adjuvant (CFA). The orofacial nocifensive behavioral activities evoked by the injection of formalin into masseter muscle were significantly enhanced at 1 day (CFA day 1 group) or 7 days (CFA day 7 group) during TMJ inflammation. Pretreatment with local administration of 5HT2A receptor antagonist, ketanserin (0.01, 0.1 mg/rat) into the masseter muscle or systemic administration of ketanserin via i.p. injection (1 mg/kg) reduced the orofacial nocifensive behavioral activities of the late phase evoked by formalin injection into masseter muscle on the side of TMJ inflammation (CFA day 7 group). However, local (0.001-0.1 mg/rat) or systemic (1 mg/kg) administration of 5HT1A receptor antagonist, propranolol, into masseter muscle did not produce the antinociceptive effect in CFA day 7 group. Moreover, local administration of ketanserin (0.1 mg) or propranolol (0.1 mg) into masseter muscle did not inhibit nocifensive orofacial behavior in rats without TMJ inflammation. These data suggest that persistent TMJ inflammation causes the elevation of the orofacial nocifensive behavior, and peripheral 5HT2A receptors play an important role in mediating the deep craniofacial tissue nociception in rats with TMJ inflammation.

  9. Hallucinogenic 5-HT2AR agonists LSD and DOI enhance dopamine D2R protomer recognition and signaling of D2-5-HT2A heteroreceptor complexes.

    PubMed

    Borroto-Escuela, Dasiel O; Romero-Fernandez, Wilber; Narvaez, Manuel; Oflijan, Julia; Agnati, Luigi F; Fuxe, Kjell

    2014-01-03

    Dopamine D2LR-serotonin 5-HT2AR heteromers were demonstrated in HEK293 cells after cotransfection of the two receptors and shown to have bidirectional receptor-receptor interactions. In the current study the existence of D2L-5-HT2A heteroreceptor complexes was demonstrated also in discrete regions of the ventral and dorsal striatum with in situ proximity ligation assays (PLA). The hallucinogenic 5-HT2AR agonists LSD and DOI but not the standard 5-HT2AR agonist TCB2 and 5-HT significantly increased the density of D2like antagonist (3)H-raclopride binding sites and significantly reduced the pKiH values of the high affinity D2R agonist binding sites in (3)H-raclopride/DA competition experiments. Similar results were obtained in HEK293 cells and in ventral striatum. The effects of the hallucinogenic 5-HT2AR agonists on D2R density and affinity were blocked by the 5-HT2A antagonist ketanserin. In a forskolin-induced CRE-luciferase reporter gene assay using cotransfected but not D2R singly transfected HEK293 cells DOI and LSD but not TCB2 significantly enhanced the D2LR agonist quinpirole induced inhibition of CRE-luciferase activity. Haloperidol blocked the effects of both quinpirole alone and the enhancing actions of DOI and LSD while ketanserin only blocked the enhancing actions of DOI and LSD. The mechanism for the allosteric enhancement of the D2R protomer recognition and signalling observed is likely mediated by a biased agonist action of the hallucinogenic 5-HT2AR agonists at the orthosteric site of the 5-HT2AR protomer. This mechanism may contribute to the psychotic actions of LSD and DOI and the D2-5-HT2A heteroreceptor complex may thus be a target for the psychotic actions of hallunicogenic 5-HT2A agonists.

  10. 5-HT2A receptors are involved in cognitive but not antidepressant effects of fluoxetine.

    PubMed

    Castañé, Anna; Kargieman, Lucila; Celada, Pau; Bortolozzi, Analía; Artigas, Francesc

    2015-08-01

    The prefrontal cortex (PFC) plays a crucial role in cognitive and affective functions. It contains a rich serotonergic (serotonin, 5-HT) innervation and a high density of 5-HT receptors. Endogenous 5-HT exerts robust actions on the activity of pyramidal neurons in medial PFC (mPFC) via excitatory 5-HT2A and inhibitory 5-HT1A receptors, suggesting the involvement of 5-HT neurotransmission in cortical functions. However, the underlying mechanisms must be elucidated. Here we examine the role of 5-HT2A receptors in the processing of emotional and cognitive signals evoked by increasing the 5-HT tone after acute blockade of the 5-HT transporter. Fluoxetine (5-20mg/kg i.p.) dose-dependently reduced the immobility time in the tail-suspension test in wild-type (WT) and 5-HT2Aknockout (KO2A) mice, with non-significant differences between genotypes. Fluoxetine (10mg/kg i.p.) significantly impaired mice performance in the novel object recognition test 24h post-administration in WT, but not in KO2A mice. The comparable effect of fluoxetine on extracellular 5-HT in the mPFC of both genotypes suggests that presynaptic differences are not accountable. In contrast, single unit recordings of mPFC putative pyramidal neurons showed that fluoxetine (1.8-7.2mg/kg i.v.) significantly increased neuronal discharge in KO2A but not in WT mice. This effect is possibly mediated by an altered excitatory/inhibitory balance in the PFC in KO2A mice. Overall, the present results suggest that 5-HT2A receptors play a detrimental role in long-term memory deficits mediated by an excess 5-HT in PFC.

  11. Disrupting 5-HT2A Receptor/PDZ Protein Interactions Reduces Hyperalgesia and Enhances SSRI Efficacy in Neuropathic Pain

    PubMed Central

    Pichon, Xavier; Wattiez, Anne S; Becamel, Carine; Ehrlich, Ingrid; Bockaert, Joel; Eschalier, Alain; Marin, Philippe; Courteix, Christine

    2010-01-01

    Antidepressants are one of the first-line treatments for neuropathic pain. Despite the influence of serotonin (5-hydroxytryptamine, 5-HT) in pain modulation, selective serotonin reuptake inhibitors (SSRIs) are less effective than tricyclic antidepressants. Here, we show, in diabetic neuropathic rats, an alteration of the antihyperalgesic effect induced by stimulation of 5-HT2A receptors, which are known to mediate SSRI-induced analgesia. 5-HT2A receptor density was not changed in the spinal cord of diabetic rats, whereas postsynaptic density protein-95 (PSD-95), one of the PSD-95/disc large suppressor/zonula occludens-1 (PDZ) domain containing proteins interacting with these receptors, was upregulated. Intrathecal injection of a cell-penetrating peptidyl mimetic of the 5-HT2A receptor C-terminus, which disrupts 5-HT2A receptor–PDZ protein interactions, induced an antihyperalgesic effect in diabetic rats, which results from activation of 5-HT2A receptors by endogenous 5-HT. The peptide also enhanced antihyperalgesia induced by the SSRI fluoxetine. Its effects likely resulted from an increase in receptor responsiveness, because it revealed functional 5-HT2A receptor-operated Ca2+ responses in neurons, an effect mimicked by knockdown of PSD-95. Hence, 5-HT2A receptor/PDZ protein interactions might contribute to the resistance to SSRI-induced analgesia in painful diabetic neuropathy. Disruption of these interactions might be a valuable strategy to design novel treatments for neuropathic pain and to increase the effectiveness of SSRIs. PMID:20531396

  12. Crucial role of the 5-HT2C receptor, but not of the 5-HT2A receptor, in the down regulation of stimulated dopamine release produced by pressure exposure in freely moving rats.

    PubMed

    Kriem, B; Rostain, J C; Abraini, J H

    1998-06-15

    Helium pressure of more than 2 MPa is a well known factor underlying pressure-dependent central neuroexcitatory disorders, referred to as the high-pressure neurological syndrome. This includes an increase in both serotonin (5-HT) and dopamine (DA) release. The relationship between the increase in 5-HT transmission produced by helium pressure and its effect on DA release has been clarified in a recent study, which have first demonstrated that the helium pressure-induced increase in DA release was dependent on some 5-HT receptor activation. In the present study, we examined in freely moving rats the role of 5-HT2A and 5-HT2C receptors in the increase in DA release induced by 8 MPa helium pressure. We used the 5-HT2A receptor antagonist ketanserin and the 5-HT2C receptor agonist m-CPP which have been demonstrated to reduce DA function. Because neither ketanserin is an ideal 5-HT2A receptor antagonist nor m-CPP an ideal 5-HT2C receptor agonist, additional experiments were made at normal pressure to check up on the selectivity of ketanserin and m-CPP for 5-HT2A and 5-HT2C receptors, respectively. Administration of m-CPP reduced both DA basal level and the helium pressure-induced increase in DA release, whereas administration of ketanserin only showed a little effect on the increase in DA release produced by high helium pressure. These results suggest that the 5-HT2C receptor, but not the 5-HT2A receptor, would play a crucial role in the helium pressure-induced increase in DA release. This further suggests that helium pressure may simultaneously induce an increase in 5-HT transmission at the level of 5-HT2A receptors and a decrease in 5-HT transmission at the level of 5-HT2C receptors.

  13. Horse chestnut extract contracts bovine vessels and affects human platelet aggregation through 5-HT(2A) receptors: an in vitro study.

    PubMed

    Felixsson, Emma; Persson, Ingrid A-L; Eriksson, Andreas C; Persson, Karin

    2010-09-01

    Extract from seeds and bark of horse chestnut (Aesculus hippocastanum L) is used as an herbal medicine against chronic venous insufficiency. The effect and mechanism of action on veins, arteries, and platelets are not fully understood. The aim of this study was to investigate the effects and mechanisms of action of horse chestnut on the contraction of bovine mesenteric veins and arteries, and human platelet aggregation. Contraction studies showed that horse chestnut extract dose-dependently contracted both veins and arteries, with the veins being the most sensitive. Contraction of both veins and arteries were significantly inhibited by the 5-HT(2A) receptor antagonist ketanserin. No effect on contraction was seen with the cyclooxygenase inhibitor indomethacin, the alpha(1) receptor antagonist prazosin or the angiotensin AT(1) receptor antagonist saralasin neither in veins nor arteries. ADP-induced human platelet aggregation was significantly reduced by horse chestnut. A further reduction was seen with the extract in the presence of ketanserin. In conclusion, horse chestnut contraction of both veins and arteries is, at least partly, mediated through 5-HT(2A) receptors. Human platelet aggregation is reduced by horse chestnut. The clinical importance of these findings concerning clinical use, possible adverse effects, and drug interactions remains to be investigated.

  14. Novel class of arylpiperazines containing N-acylated amino acids: their synthesis, 5-HT1A, 5-HT2A receptor affinity, and in vivo pharmacological evaluation.

    PubMed

    Zajdel, Paweł; Subra, Gilles; Bojarski, Andrzej J; Duszyńska, Beata; Tatarczyńska, Ewa; Nikiforuk, Agnieszka; Chojnacka-Wójcik, Ewa; Pawłowski, Maciej; Martinez, Jean

    2007-04-15

    Novel arylpiperazines with N-acylated amino acids, selected on the basis of a preliminary screening of two libraries previously synthesized on SynPhase Lanterns, were prepared in solution and their affinity for 5-HT(1A), 5-HT(2A), and D(2) receptors was evaluated. The compounds bearing (3-acylamino)pyrrolidine-2,5-dione (19-26) and N-acylprolinamide (29-34) moieties showed high affinity for 5-HT(1A) (K(i)=3-47 nM), high-to-low for 5-HT(2A) (K(i)=4.2-990 nM), and low for D(2) receptors (K(i)=0.77-21.19 microM). All the new o-methoxy derivatives of (3-acylamino)pyrrolidine-2,5-diones tested in vivo revealed agonistic activity at postsynaptic 5-HT(1A) receptors, while m-chloro derivatives were classified as antagonists of these sites; similar relations were observed for o-methoxy (29) and m-chlorophenylpiperazine derivatives of N-acylprolinamides. The reported results show that the amino acid-derived terminal fragment modified the in vivo functional profile. Finally, the selected compounds 19 and 20, a 5-HT(1A) partial agonist and a full agonist, respectively, and 26, a mixed 5-HT(1A)/5-HT(2A) antagonist, were evaluated in preclinical animal models of depression and anxiety. The project allowed selecting the lead compound 20 which exhibited an anxiolytic-like effect in the four-plate test in mice and revealed distinct antidepressant-like effects in the forced swimming and tail suspension tests in mice.

  15. Potential Modes of Interaction of 9-Aminomethyl-9,10-dihydroanthracene (AMDA) Derivatives with the 5-HT2A Receptor: A Ligand Structure-Affinity Relationship, Receptor Mutagenesis and Receptor Modeling Investigation⊕

    PubMed Central

    Runyon, Scott P.; Mosier, Philip D.; Roth, Bryan L.; Glennon, Richard A.; Westkaemper, Richard B.

    2011-01-01

    The effects of 3-position substitution of 9-aminomethyl-9,10-dihydroanthracene (AMDA) on 5-HT2A receptor affinity were determined and compared to a parallel series of DOB-like 1-(2,5-dimethoxyphenyl)-2-aminopropanes substituted at the 4-position. The results were interpreted within the context of 5-HT2A receptor models that suggest that members of the DOB-like series can bind to the receptor in two distinct modes that correlate with the compounds’ functional activity. Automated ligand docking and molecular dynamics suggest that all of the AMDA derivatives, the parent of which is a 5-HT2A antagonist, bind in a fashion analogous to that for the sterically demanding antagonist DOB-like compounds. The failure of the F3406.52L mutation to adversely affect the affinity of AMDA and the 3-bromo derivative is consistent with the proposed modes of orientation. Evaluation of ligand-receptor complex models suggest that a valine/threonine exchange between the 5-HT2A and D2 receptors may be the origin of selectivity for AMDA and two substituted derivatives. PMID:18847250

  16. Selective blockade of 5-HT2A receptors attenuates the increased temperature response in brown adipose tissue to restraint stress in rats.

    PubMed

    Ootsuka, Youichirou; Blessing, William W; Nalivaiko, Eugene

    2008-03-01

    Previous studies have demonstrated that 5-HT2A receptors may be involved in the central control of thermoregulation and of the cardiovascular system. Our aim was to test whether these receptors mediate thermogenic and tachycardiac responses induced by acute psychological stress. Three groups of adult male Hooded Wistar rats were instrumented with: (i) a thermistor in the interscapular area (for recording brown adipose tissue temperature) and an ultrasound Doppler probe (to record tail blood flow); (ii) temperature dataloggers to record core body temperature; (iii) ECG electrodes. On the day of the experiment, rats were subjected to a 30-min restraint stress preceded by s.c. injection of either vehicle or SR-46349B (a serotonin 2A receptor antagonist) at doses of 0.01, 0.1 and 1.0 mg/kg. The restraint stress caused a rise in brown adipose tissue temperature (from, mean +/- s.e.m., 36.6 +/- 0.2 to 38.0 +/- 0.2 degrees C), transient cutaneous vasoconstriction (tail blood flow decreased from 12 +/- 2 to 5 +/- 1 cm/s), increase in heart rate (from 303 +/- 15 to 453 +/- 15 bpm at the peak, then reduced to 393 +/- 12 bpm at the steady state), and defaecation (6 +/- 1 pellets per restraint session). The core body temperature was not affected by the restraint. Blockade of 5-HT2A receptors attenuated the increase in brown adipose tissue temperature and transient cutaneous vasoconstriction, but not tachycardia and defaecation elicited by restraint stress. These results indicate that psychological stress causes activation of 5-HT2A receptors in neural pathways that control thermogenesis in the brown adipose tissue and facilitate cutaneous vasoconstriction.

  17. 5-HT2A Serotonin Receptor Density in Adult Male Rats’ Hippocampus after Morphine-based Conditioned Place Preference

    PubMed Central

    Mohammadi, Rabie; Jahanshahi, Mehrdad; Jameie, Seyed Behnamedin

    2016-01-01

    Introduction: A close interaction exists between the brain opioid and serotonin (5-HT) neurotransmitter systems. Brain neurotransmitter 5-HT plays an important role in the regulation of reward-related processing. However, a few studies have investigated the potential role of 5-HT2A receptors in this behavior. Therefore, the aim of the present study was to assess the influence of morphine and Conditioned Place Preference (CPP) on the density of 5-HT2A receptor in neurons of rat hippocampal formation. Methods: Morphine (10 mg/kg, IP) was injected in male Wistar rats for 7 consecutive days (intervention group), but control rats received just normal saline (1 mL/kg, IP). We used a hotplate test of analgesia to assess induction of tolerance to analgesic effects of morphine on days 1 and 8 of injections. Later, two groups of rats were sacrificed one day after 7 days of injections, their whole brains removed, and the striatum and PFC immediately dissected. Then, the NR1 gene expression was examined with a semi-quantitative RT-PCR method. Results: Our data showed that the maximum response was obtained with 2.5 mg/kg of morphine. The density of 5-HT2A receptor in different areas of the hippocampus increased significantly at sham-morphine and CPP groups (P<0.05). On the other hand, the CPP groups had more 5-HT2A receptors than sham-morphine groups and also the sham-morphine groups had more 5-HT2A receptors than the control groups. Conclusion: We concluded that the phenomenon of conditioned place preference induced by morphine can cause a significant increase in the number of serotonin 5-HT2A receptors in neurons of all areas of hippocampus. PMID:27563418

  18. Hallucinogen-like effects of N,N-dipropyltryptamine (DPT): possible mediation by serotonin 5-HT1A and 5-HT2A receptors in rodents

    PubMed Central

    Fantegrossi, William E.; Reissig, Chad J.; Katz, Elyse B.; Yarosh, Haley L.; Rice, Kenner C.; Winter, Jerrold C.

    2008-01-01

    N,N-dipropyltryptamine (DPT) is a synthetic tryptamine hallucinogen which has been used psychotherapeutically in humans, but has been studied preclinically only rarely. In the present studies, DPT was tested in a drug-elicited head twitch assay in mice, and in rats trained to discriminate lysergic acid diethylamide (LSD), N,N-dimethyl-4-phosphoryloxytryptamine (psilocybin), or 3,4-methylenedioxymethamphetamine (MDMA). A separate group of rats was also trained to recognize DPT itself as a discriminative stimulus, and in all cases, the behavioral effects of DPT were challenged with the selective serotonin (5-HT)2A antagonist M100907, the 5-HT1A selective antagonist WAY-100635, or their combination. In the head twitch assay, DPT elicited dose-dependent effects, producing a biphasic dose-effect curve. WAY-100635 produced a parallel rightward shift in the dose-effect curve for head twitches, indicative of surmountable antagonism, but the antagonist effects of M100907 were functionally insurmountable. DPT produced partial to full substitution when tested in rats trained to discriminate LSD, psilocybin or MDMA, and served as a discriminative stimulus. In all cases, the antagonist effects of M100907 were more profound than were those of WAY-100635. DPT is thus active in two rodent models relevant to 5-HT2 agonist activity. The effectiveness with which M100907 antagonizes the behavioral actions of this compound strongly suggests that the 5-HT2A receptor is an important site of action for DPT, but the modulatory actions of WAY-100635 also imply a 5-HT1A-mediated component to the actions of this compound. PMID:17905422

  19. Serotonin 5-HT2A receptor gene variants influence antidepressant response to repeated total sleep deprivation in bipolar depression.

    PubMed

    Benedetti, Francesco; Barbini, Barbara; Bernasconi, Alessandro; Fulgosi, Mara Cigala; Colombo, Cristina; Dallaspezia, Sara; Gavinelli, Chiara; Marino, Elena; Pirovano, Adele; Radaelli, Daniele; Smeraldi, Enrico

    2008-12-12

    5-HT2A receptor density in prefrontal cortex was associated with depression and suicide. 5-HT2A receptor gene polymorphism rs6313 was associated with 5-HT2A receptor binding potential, with the ability of individuals to use environmental support in order to prevent depression, and with sleep improvement after antidepressant treatment with mirtazapine. Studies on response to antidepressant drugs gave inconsistent results. Here we studied the effect of rs6313 on response to repeated total sleep deprivation (TSD) in 80 bipolar depressed inpatients treated with three consecutive TSD cycles (each one made of 36 h awake followed by a night of undisturbed sleep). All genotype groups showed comparable acute effects of the first TSD, but patients homozygotes for the T variant had better perceived and observed benefits from treatment than carriers of the C allele. These effects became significant after the first recovery night and during the following days, leading to a 36% higher final response rate (Hamilton depression rating<8). The higher density of postsynaptic excitatory 5-HT2A receptors in T/T homozygotes could have led to higher behavioural effects of increased 5-HT neurotransmission due to repeated TSD. Other possible mechanisms involve allostatic/homeostatic adaptation to sleep loss, and a different effect of the allele variants on epigenetic influences. Results confirm the interest for individual gene variants of the serotonin pathway in shaping clinical characteristics of depression and antidepressant response.

  20. Expression of α(1)-adrenergic receptors in rat prefrontal cortex: cellular co-localization with 5-HT(2A) receptors.

    PubMed

    Santana, Noemí; Mengod, Guadalupe; Artigas, Francesc

    2013-06-01

    The prefrontal cortex (PFC) is involved in behavioural control and cognitive processes that are altered in schizophrenia. The brainstem monoaminergic systems control PFC function, yet the cells/networks involved are not fully known. Serotonin (5-HT) and norepinephrine (NE) increase PFC neuronal activity through the activation of α(1)-adrenergic receptors (α(1)ARs) and 5-HT(2A) receptors (5-HT(2A)Rs), respectively. Neurochemical and behavioural interactions between these receptors have been reported. Further, classical and atypical antipsychotic drugs share nm in vitro affinity for α(1)ARs while having preferential affinity for D(2) and 5-HT(2A)Rs, respectively. Using double in situ hybridization we examined the cellular expression of α(1)ARs in pyramidal (vGluT1-positive) and GABAergic (GAD(65/67)-positive) neurons in rat PFC and their co-localization with 5-HT(2A)Rs. α(1)ARs are expressed by a high proportion of pyramidal (59-85%) and GABAergic (52-79%) neurons. The expression in pyramidal neurons exhibited a dorsoventral gradient, with a lower percentage of α(1)AR-positive neurons in infralimbic cortex compared to anterior cingulate and prelimbic cortex. The expression of α(1A), α(1B) and α(1D) adrenergic receptors was segregated in different layers and subdivisions. In all them there is a high co-expression with 5-HT(2A)Rs (∼80%). These observations indicate that NE controls the activity of most PFC pyramidal neurons via α(1)ARs, either directly or indirectly, via GABAergic interneurons. Antipsychotic drugs can thus modulate the activity of PFC via α(1)AR blockade. The high co-expression with 5-HT(2A)Rs indicates a convergence of excitatory serotonergic and noradrenergic inputs onto the same neuronal populations. Moreover, atypical antipsychotics may exert a more powerful control of PFC function through the simultaneous blockade of α(1)ARs and 5-HT(2A)Rs.

  1. LSD and DOB: interaction with 5-HT2A receptors to inhibit NMDA receptor-mediated transmission in the rat prefrontal cortex.

    PubMed

    Arvanov, V L; Liang, X; Russo, A; Wang, R Y

    1999-09-01

    Both the phenethylamine hallucinogen (-)-1-2, 5-dimethoxy-4-bromophenyl-2-aminopropane (DOB), a selective serotonin 5-HT2A,2C receptor agonist, and the indoleamine hallucinogen D-lysergic acid diethylamide (LSD, which binds to 5-HT1A, 1B, 1D, 1E, 1F, 2A, 2C, 5, 6, 7, dopamine D1 and D2, and alpha1 and alpha2 adrenergic receptors), but not their non-hallucinogenic congeners, inhibited N-methyl-D-aspartate (NMDA)-induced inward current and NMDA receptor-mediated synaptic responses evoked by electrical stimulation of the forceps minor in pyramidal cells of the prefrontal cortical slices. The inhibitory effect of hallucinogens was mimicked by 5-HT in the presence of selective 5-HT1A and 5-HT3 receptor antagonists. The inhibitory action of DOB, LSD and 5-HT on the NMDA transmission was blocked by the 5-HT2A receptor antagonists R-(+)-alpha-(2, 3-dimethoxyphenil)-1-[4-fluorophenylethyl]-4-piperidineme thanol (M100907) and ketanserin. However, at low concentrations, when both LSD and DOB by themselves only partially depressed the NMDA response, they blocked the inhibitory effect of 5-HT, suggesting a partial agonist action. Whereas N-(4-aminobutyl)-5-chloro-2-naphthalenesulphonamide (W-7, a calmodulin antagonist) and N-[2-[[[3-(4'-chlorophenyl)- 2-propenyl]methylamino]methyl]phenyl]-N-(2-hydroxyethyl)-4'-methoxy-b enzenesulphonamide phosphate (KN-93, a Ca2+/CaM-KII inhibitor), but not the negative control 2-[N-4'methoxybenzenesulphonyl]amino-N-(4'-chlorophenyl)-2-propeny l-N -methylbenzylamine phosphate (KN-92), blocked the inhibitory action of LSD and DOB, the selective protein kinase C inhibitor chelerythrine was without any effect. We conclude that phenethylamine and indoleamine hallucinogens may exert their hallucinogenic effect by interacting with 5-HT2A receptors via a Ca2+/CaM-KII-dependent signal transduction pathway as partial agonists and modulating the NMDA receptors-mediated sensory, perceptual, affective and cognitive processes.

  2. The atypical 5-HT2 receptor mediating tachycardia in pithed rats: pharmacological correlation with the 5-HT2A receptor subtype

    PubMed Central

    Centurión, David; Ortiz, Mario I; Saxena, Pramod R; Villalón, Carlos M

    2002-01-01

    In pithed rats, 5-HT mediates tachycardia both directly (by 5-HT2 receptors) and indirectly (by a tyramine-like effect). The receptor mediating tachycardia directly has been classified as an ‘atypical' 5-HT2 receptor since it was ‘weakly' blocked by ketanserin. Moreover, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), a 5-HT2 agonist, failed to mimic 5-HT-induced tachycardia. Since 5-HT2 receptors consist of 5-HT2A, 5-HT2B and 5-HT2C subtypes, this study investigated if these subtypes mediate the above response. In pithed rats, intraperitoneally (i.p.) pre-treated with reserpine (5 mg kg−1), intravenous (i.v.) administration of 5-HT, 5-methoxytryptamine (5-MeO-T), 1-(3-chlorophenyl) piperazine (mCPP) and 5-carboxamidotryptamine (5-CT) (10, 30, 100 and 300 μg kg−1 each), produced dose-dependent tachycardic responses. Interestingly, DOI (10 – 1000 μg kg−1, i.v.) induced only slight, dose-unrelated, tachycardic responses, whilst the 5-HT2C agonist, Ro 60-0175 (10 – 1000 μg kg−1, i.v.), produced a slight tachycardia only at 300 and 1000 μg kg−1. In contrast, sumatriptan and 1-(m-trifluoromethylphenyl)- piperazine (TFMPP) were inactive. The rank order of potency was: 5-HT⩾5-MeO-T> mCPP⩾5-CT⩾DOI>Ro 60-0175. The tachycardic responses to 5-HT, which remained unaffected after i.v. saline (0.3 and 1 ml kg−1) or propranolol (3 mg kg−1), were selectively blocked by the 5-HT2A antagonists ketanserin (30 and 100 μg kg−1) or spiperone (10 and 30 μg kg−1) as well as by the non-selective 5-HT2 antagonists, ritanserin (10 and 30 μg kg−1) or mesulergine (100 μg kg−1). Remarkably, these responses were unaffected by the antagonists rauwolscine (5-HT2B), SB204741 (5-HT2B/2C) or Ro 04-6790 (5-ht6) (300 and 1000 μg kg−1 each). These results suggest that the ‘atypical' 5-HT2 receptors mediating tachycardia in reserpinized pithed rats are pharmacologically similar to the 5-HT2A

  3. Long-lasting alterations in 5-HT2A receptor after a binge regimen of methamphetamine in mice.

    PubMed

    Chiu, Hong-Yi; Chan, Ming-Huan; Lee, Mei-Yi; Chen, Shao-Tsu; Zhan, Zih-Yi; Chen, Hwei-Hsien

    2014-10-01

    The repeated administration of methamphetamine (MA) to animals in a single-day 'binge' dosing regimen produces damage to dopamine and serotonin terminals and psychosis-like behaviours similar to those observed in MA abusers. The present study aimed to examine the effects of MA binge exposure on 5-HT2A receptors, the subtype of serotonin receptors putatively involved in psychosis. ICR male mice were treated with MA (4 × 5 mg/kg) or saline at 2 h intervals. Recognition memory and social behaviours were sequentially evaluated by a novel location recognition test, a novel object recognition test, a social interaction and a nest-building test to confirm the persistent cognitive and behavioural impairments after this dosing regimen. Subsequently, a hallucinogenic 5-HT2A/2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI)-induced head-twitch, molecular and electrophysiological responses were monitored. Finally, the levels of 5-HT2C, 5-HT1A, 5-HT2A and mGlu2 receptors in the medial prefrontal cortex were determined. MA binge exposure produced recognition memory impairment, reduced social behaviours, and increased DOI-induced head-twitch response, c-Fos and Egr-2 expression and field potentials in the medial prefrontal cortex. Furthermore, MA binge exposure increased 5-HT2A and decreased mGlu2 receptor expression in the medial frontal cortex, whereas 5-HT2C and 5-HT1A receptors were unaffected. These data reveal that the increased behavioural, molecular and electrophysiological responses to DOI might be associated with an up-regulation of 5-HT2A receptors in the medial prefrontal cortex after MA binge exposure. Identifying the biochemical alterations that parallel the behavioural changes in a mouse model of MA binge exposure may facilitate targeting therapies for treatment of MA-related psychiatric disorders.

  4. Internalization and recycling of 5-HT2A receptors activated by serotonin and protein kinase C-mediated mechanisms

    PubMed Central

    Bhattacharyya, Samarjit; Puri, Sapna; Miledi, Ricardo; Panicker, Mitradas M.

    2002-01-01

    Serotonin (5-HT), a major neurotransmitter, has a large number of G protein-coupled receptors in mammals. On activation by exposure to their ligand, 5-HT2 receptor subtypes increase IP3 levels and undergo desensitization and internalization. To visualize the receptor in cells during these processes, we have constructed a 5-HT2A-enhanced GFP (SR2-GFP) fusion receptor. We show that this fusion receptor undergoes internalization on exposure to its natural ligand, 5-HT. Because 5-HT2A receptors activate the phospholipase C pathway, we studied the effect of protein kinase C (PKC) on the internalization process and found that activation of PKC by its specific activator phorbol 12-myristate 13-acetate, in the absence of 5-HT, leads to internalization of the receptor. Moreover, inhibition of PKC by its inhibitor sphingosine in the presence of 5-HT prevents the internalization process, suggesting that activation of PKC is sufficient and necessary for the internalization of 5-HT2A receptors. We also show that SR2-GFP recycles back to the plasma membrane after 5-HT-dependent internalization, suggesting a mechanism for resensitization. In addition, receptors that have been internalized on addition of phorbol 12-myristate 13-acetate in the absence of 5-HT also recycle to the surface, with a time course similar to that seen after activation of the receptors by 5-HT. Our study suggests that 5-HT2A receptors internalize and return to the surface after both serotonin- and PKC-mediated processes. This study reveals a role for PKC in receptor internalization and also shows that 5-HT2A receptors are recycled. PMID:12388782

  5. Molecular dynamics of 5-HT1A and 5-HT2A serotonin receptors with methylated buspirone analogues

    NASA Astrophysics Data System (ADS)

    Bronowska, Agnieszka; Chilmonczyk, Zdzisław; Leś, Andrzej; Edvardsen, Øyvind; Østensen, Roy; Sylte, Ingebrigt

    2001-11-01

    In the present study experimentally determined ligand selectivity of three methylated buspirone analogues (denoted as MM2, MM5 and P55) towards 5-HT1A and 5-HT2A serotonin receptors was theoretically investigated on a molecular level. The relationships between the ligand structure and 5-HT1A and 5-HT2A receptor affinities were studied and the results were found to be in agreement with the available site-directed mutagenesis and binding affinity data. Molecular dynamics (MD) simulations of ligand-receptor complexes were performed for each investigated analogue, docked twice into the central cavity of 5-HT1A/5-HT2A, each time in a different orientation. Present results were compared with our previous theoretical results, obtained for buspirone and its non-methylated analogues. It was found that due to the presence of the methyl group in the piperazine ring the ligand position alters and the structure of the ligand-receptor complex is modified. Further, the positions of derivatives with pyrimidinyl aromatic moiety and quinolinyl moiety are significantly different at the 5-HT2A receptor. Thus, methylation of such derivatives alters the 3D structures of ligand-receptor complexes in different ways. The ligand-induced changes of the receptor structures were also analysed. The obtained results suggest, that helical domains of both receptors have different dynamical behaviour. Moreover, both location and topography of putative binding sites for buspirone analogues are different at 5-HT1A and 5-HT2A receptors.

  6. Enhanced responsivity of 5-HT2A receptors at warm ambient temperatures is responsible for the augmentation of the 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI)-induced hyperthermia

    PubMed Central

    Zhang, Gongliang; Tao, Rui

    2011-01-01

    Warm ambient temperature facilitates hyperthermia and other neurotoxic responses elicited by psychogenic drugs such as MDMA and methamphetamine. However, little is known about the neural mechanism underlying such effects. In the present study, we tested the hypothesis that a warm ambient temperature may enhance the responsivity of 5-HT2A receptors in the central nervous system and thereafter cause an augmented response to 5-HT2A receptor agonists. This hypothesis was tested by measuring changes in body-core temperature in response to the 5-HT2A receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) administered at four different ambient temperature levels: 12 °C (cold), 22 °C (standard), 27 °C (thermoneutral zone) and 32 °C (warm). It was found that DOI only evoked a small increase in body-core temperature at the standard (22 °C) or thermoneutral ambient temperature (27 °C). In contrast, there was a large increase in body-core temperature when the experiments were conducted at the warmer ambient temperature (32 °C). Interestingly, the effect of DOI at the cold ambient temperature of 12 °C was significantly reduced. Moreover, the ambient temperature-dependent response to DOI was completely blocked by pretreatment with the 5-HT2A receptor antagonist ketanserin. Taken together, these findings support the hypothesis that 5-HT2A receptors may be responsible for some neurotoxic effects of psychogenic drugs in the central nervous system, the activity of which is functionally inhibited at cold but enhanced at warm ambient temperature in contrast to that at standard experimental conditions. PMID:21172407

  7. 5-HT2A/C receptors do not mediate the attenuation of compulsive checking by mCPP in the quinpirole sensitization rat model of obsessive-compulsive disorder (OCD).

    PubMed

    Tucci, Mark C; Dvorkin-Gheva, Anna; Johnson, Eric; Wong, Michael; Szechtman, Henry

    2015-02-15

    There is emerging evidence for a dopamine (DA)-serotonin (5-HT) interaction underlying obsessive-compulsive disorder (OCD). In the quinpirole sensitization rat model of OCD, compulsive checking is induced by chronic treatment with the DA agonist quinpirole, and is attenuated by the 5-HT agonist drug mCPP. However, mCPP has affinity for a number of 5-HT receptor subtypes, and it is unknown by which receptors mCPP exerts its effects on quinpirole-treated animals. The present study tested in rats whether mCPP activity at 5-HT2A/C receptors mediates the attenuation of compulsive checking in quinpirole-treated animals. Rats were chronically treated with quinpirole on the open field for the induction of compulsive checking. Following the induction phase, animals were treated with mCPP (1.25 mg/kg) and the selective 5-HT2A/C receptor antagonist ritanserin (1 mg/kg or 5 mg/kg) to test whether blockade of 5-HT2A/C receptors inhibits attenuation of checking by mCPP. Results showed that as expected, quinpirole induced compulsive checking, and mCPP reduced its performance. However, 5-HT2A/C receptor blockade by ritanserin did not inhibit the attenuation of compulsive checking by mCPP. These results suggest that the reduction in compulsive checking by mCPP is not mediated by activity at 5-HT2A/C receptors, but by another receptor subtype.

  8. Dopamine neurotransmission is involved in the attenuating effects of 5-HT3 receptor antagonist MDL 72222 on acute methamphetamine-induced locomotor hyperactivity in mice.

    PubMed

    Yoo, Ji-Hoon; Nam, Yun-Sun; Lee, Seok-Yong; Jang, Choon-Gon

    2008-01-01

    We have previously shown that 5-HT3 receptors are involved in the development and expression of methamphetamine (MAP)-induced locomotor sensitization in mice. In the present study, we further examined whether the dopaminergic system is involved in the attenuating effects of MDL 72222, a 5-HT3 receptor antagonist, on acute MAP-induced locomotor hyperactivity. For this, we examined alterations of dopamine (DA) in the form of D1 receptor, D2 receptor, and dopamine transporter (DAT) binding labeled with [3H]SCH23390 for D1, [3H]raclopride for D2, and [3H]mazindol for DAT binding in the mouse brains with acute MAP exposure or pretreatment of MDL 72222 with MAP. No significant differences were detected in the D1 receptor, D2 receptor, or DAT binding between any of the groups studied. Interestingly, we found increased DA levels in the striatum following acute MAP exposure; these increased levels were reversed by pretreatment with MDL 72222, but did not affect 5-HT levels in the dorsal raphe. Overall, our results suggest that dopamine neurotransmission plays an important role in the attenuating effects of 5-HT3 receptor antagonist MDL 72222 on acute MAP-induced locomotor hyperactivity in mice.

  9. Evidence for 5-HT1B/1D and 5-HT2A receptors mediating constriction of the canine internal carotid circulation

    PubMed Central

    Centurión, David; Ortiz, Mario I; Sánchez-López, Araceli; De Vries, Peter; Saxena, Pramod R; Villalón, Carlos M

    2001-01-01

    The present study has investigated the preliminary pharmacological profile of the receptors mediating vasoconstriction to 5-hydroxytryptamine (5-HT) in the internal carotid bed of vagosympathectomised dogs. One minute intracarotid infusions of the agonists 5-HT (0.1–10 μg min−1), sumatriptan (0.3–10 μg min−1; 5-HT1B/1D), 5-methoxytryptamine (1–100 μg min−1; 5-HT1, 5-HT2, 5-HT4, 5-ht6 and 5-HT7) or DOI (0.31–10 μg min−1; 5-HT2), but not 5-carboxamidotryptamine (0.01–0.3 μg min−1; 5-HT1, 5-ht5A and 5-HT7), 1-(m-chlorophenyl)-biguanide (mCPBG; 1–1000 μg min−1; 5-HT3) or cisapride (1–1000 μg min−1; 5-HT4), resulted in dose-dependent decreases in internal carotid blood flow, without changing blood pressure or heart rate. The vasoconstrictor responses to 5-HT, which remained unaffected after saline, were resistant to blockade by i.v. administration of the antagonists ritanserin (100 μg kg−1; 5-HT2A/2B/2C) in combination with tropisetron (3000 μg kg−1; 5-HT3/4) or the cyclo-oxygenase inhibitor, indomethacin (5000 μg kg−1), but were abolished by the 5-HT1B/1D receptor antagonist, GR127935 (30 μg kg−1). Interestingly, after administration of GR127935, the subsequent administration of ritanserin unmasked a dose-dependent vasodilator component. GR127935 or saline did not practically modify the vasoconstrictor effects of 5-MeO-T. In animals receiving GR127935, the subsequent administration of ritanserin abolished the vasoconstrictor responses to 5-MeO-T unmasking a dose-dependent vasodilator component. The vasoconstriction induced by sumatriptan was antagonized by GR127935, but not by ritanserin. Furthermore, ritanserin (100 μg kg−1) or ketanserin (100 μg kg−1; 5-HT2A), but not GR127935, abolished DOI-induced vasoconstrictor responses. The above results suggest that 5-HT-induced internal carotid vasoconstriction is predominantly mediated by 5-HT1B/1D and 5-HT2A receptors

  10. Effects of Constant Flickering Light on Refractive Status, 5-HT and 5-HT2A Receptor in Guinea Pigs

    PubMed Central

    Li, Tao; Zheng, Changyue; Ji, Shunmei; Ma, Yuanyuan; Zhang, Shuangshuang; Zhou, Xiaodong

    2016-01-01

    Purpose To investigate the effects of constant flickering light on refractive development, the role of serotonin (i.e.5-hydroxytryptamine, 5-HT)and 5-HT2A receptor in myopia induced by flickering light in guinea pigs. Methods Forty-five guinea pigs were randomly divided into three groups: control, form deprivation myopia (FDM) and flickering light induced myopia (FLM) groups(n = 15 for each group). The right eyes of the FDM group were covered with semitransparent hemispherical plastic shells serving as eye diffusers. Guinea pigs in FLM group were raised with illumination of a duty cycle of 50% at a flash frequency of 0.5Hz. The refractive status, axial length (AL), corneal radius of curvature(CRC) were measured by streak retinoscope, A-scan ultrasonography and keratometer, respectively. Ultramicroscopy images were taken by electron microscopy. The concentrations of 5-HTin the retina, vitreous body and retinal pigment epithelium (RPE) were assessed by high performance liquid chromatography, the retinal 5-HT2A receptor expression was evaluated by immunohistofluorescence and western blot. Results The refraction of FDM and FLM eyes became myopic from some time point (the 4th week and the 6th week, respectively) in the course of the experiment, which was indicated by significantly decreased refraction and longer AL when compared with the controls (p<0.05). The concentrations of 5-HT in the retina, vitreous body and RPE of FDM and FLM eyes were significantly increased in comparison with those of control eyes (both p<0.05). Similar to FDM eyes, the expression of retinal 5-HT2A receptor in FLM eyes was significantly up-regulated compared to that of control eyes (both p<0.05). Western blot analysis showed that retinal 5-HT2A receptor level elevated less in the FLM eyes than that in the FDM eyes. Moreover, the levels of norepinephrine and epinephrine in FDM and FLM groups generally decreased when compared with control groups (all p<0.05). Conclusions Constant flickering

  11. Effects of serotonin (5-hydroxytryptamine, 5-HT) reuptake inhibition plus 5-HT(2A) receptor antagonism on the firing activity of norepinephrine neurons.

    PubMed

    Szabo, Steven T; Blier, Pierre

    2002-09-01

    YM992 [(S)-2-[[(7-fluoro-4-indanyl)oxy]methyl]morpholine monohydrochloride] is a selective serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibitor (SSRI) and a potent 5-HT(2A) antagonist. The aim of the present study was to assess, using in vivo extracellular unitary recordings, the effect of acute and sustained administration of YM992 (40 mg kg(-1) day(-1) s.c., using osmotic minipumps) on the spontaneous firing activity of locus coeruleus (LC) norepinephrine (NE) neurons. Acute intravenous injection of YM992 (4 mg kg(-1)) significantly decreased NE neuron firing activity by 29% and blocked the inhibitory effect of a subsequent injection of the 5-HT(2) agonist DOI [1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride]. A 2-day treatment with YM992 decreased the firing rate of NE neurons by 66%, whereas a partial recovery was observed after a 7-day treatment and a complete one after a 21-day treatment. Following the injection of the alpha(2)-adrenoceptor antagonist idazoxan (1 mg kg(-1) i.v.), NE neuron firing was equalized in controls and 2-day YM992-treated rats. This put into evidence an increased degree of activation of alpha(2)-adrenergic autoreceptors in the treated rats. The suppressant effect of the alpha(2)-adrenoceptor agonist clonidine was significantly decreased in long-term YM992-treated rats. The recovery of LC firing activity after long-term YM992 administration could thus be explained by a decreased sensitivity of alpha(2)-adrenergic autoreceptors. Sustained SSRI administration leads to a gradual reduction of the firing activity of NE neurons during long-term administration, whereas YM992 produced opposite effects. The exact basis for the increased synaptic availability of NE by YM992 remains to be elucidated. This NE activity, resulting from 5-HT reuptake inhibition plus 5-HT(2A) receptor antagonism, might confer additional benefits in affective and anxiety disorders.

  12. Detection of new biased agonists for the serotonin 5-HT2A receptor: modeling and experimental validation.

    PubMed

    Martí-Solano, Maria; Iglesias, Alba; de Fabritiis, Gianni; Sanz, Ferran; Brea, José; Loza, M Isabel; Pastor, Manuel; Selent, Jana

    2015-04-01

    Detection of biased agonists for the serotonin 5-HT2A receptor can guide the discovery of safer and more efficient antipsychotic drugs. However, the rational design of such drugs has been hampered by the difficulty detecting the impact of small structural changes on signaling bias. To overcome these difficulties, we characterized the dynamics of ligand-receptor interactions of known biased and balanced agonists using molecular dynamics simulations. Our analysis revealed that interactions with residues S5.46 and N6.55 discriminate compounds with different functional selectivity. Based on our computational predictions, we selected three derivatives of the natural balanced ligand serotonin and experimentally validated their ability to act as biased agonists. Remarkably, our approach yielded compounds promoting an unprecedented level of signaling bias at the 5-HT2A receptor, which could help interrogate the importance of particular pathways in conditions like schizophrenia.

  13. T102C polymorphism in the 5HT2A gene and schizophrenia: relation to phenotype and drug response variability.

    PubMed Central

    Joober, R; Benkelfat, C; Brisebois, K; Toulouse, A; Turecki, G; Lal, S; Bloom, D; Labelle, A; Lalonde, P; Fortin, D; Alda, M; Palmour, R; Rouleau, G A

    1999-01-01

    Although genes play a major role in the etiology of schizophrenia, no major genes involved in this disease have been identified. However, several genes with small effect have been reported, though inconsistently, to increase the risk for schizophrenia. Recently, the 5HT2A 2 allele (T102C polymorphism) was reported to be over-represented in patients with schizophrenia. Other reports have found an excess of allele 2(C) only in schizophrenic patients who are resistant to clozapine, not in those who respond to clozapine. In this study, the 5HT2A receptor allele 2 frequencies were compared between 2 groups of patients with schizophrenia (39 responders and 63 nonresponders) based on long-term outcome and response to typical neuroleptics. A control group of 90 healthy volunteers screened for mental disorders was also included. Genotype 2/2 tended to be more frequent in patients with schizophrenia with poor long-term outcome and poor response to typical neuroleptics (Bonferroni corrected p = 0.09). This difference was significant in men (Bonferroni corrected p = 0.054) but not in women. In addition, the age at first contact with psychiatric care was significantly younger in the patients with schizophrenia with genotype 2/2 than in patients with genotype 1/1. These result suggest that the 5HT2A-receptor gene may play a role in a subset of schizophrenia characterized by poor long-term outcome and poor response to neuroleptics. PMID:10212557

  14. Effects of the serotonin 5-HT2A and 5-HT2C receptor ligands on the discriminative stimulus effects of nicotine in rats.

    PubMed

    Zaniewska, Magdalena; McCreary, Andrew C; Przegaliński, Edmund; Filip, Malgorzata

    2007-10-01

    The present study tested the hypothesis that serotonergic (5-HT) 5-HT2A or 5-HT2C receptors or their pharmacological stimulation modulated the discriminative stimulus effects of nicotine in male Wistar rats. To this end the selective 5-HT2A receptor antagonist R-(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl]-4-piperidinemethanol (M100,907; 0.5-1 mg/kg, i.p.), the functional 5-HT2A receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI; 0.1-1 mg/kg, s.c.), the selective 5-HT2C receptor antagonist 6-chloro-5-methyl-1-{[2-(2-methylpyrid-3-yloxy)pyrid-5-yl]carbamoyl}indoline (SB 242,084; 0.25-1 mg/kg, i.p.) and the 5-HT2C receptor agonists (S)-2-chloro-5-fluoro-indol-1-yl)-1-methylethylamine fumarate (Ro 60-0175; 0.3-1 mg/kg, s.c.) and (7bR, 10aR)-1,2,3,4,8,9,10,10a-octahydro-7bH-cyclopenta-[b][1,4]diazepino[6,7,1hi]indole (WAY 163,909; 0.75-1.5 mg/kg, i.p.) were used. Additionally, the effects of the selective alpha4beta2 nicotinic acetylcholine receptor subtype agonist 5-iodo-3-(2(S)-azetidinylmethoxy)pyridine (5-IA; 0.01 mg/kg, s.c.) were investigated. In rats trained to discriminate (-)-nicotine (0.4 mg/kg, s.c.) from saline in a two-lever, water-reinforced fixed ratio 10 task, substitutions were not observed with 5-HT2 receptor ligands (<32% nicotine-lever responding), conversely 5-IA induced a full substitution (100% nicotine-lever responding). In combination studies, fixed doses of M100,907 (0.5-1 mg/kg) or SB 242,084 (0.25-1 mg/kg) did not alter the dose-response curve of nicotine, while DOI (0.3 mg/kg), Ro 60-0175 (1 mg/kg) and WAY 163,909 (1 and 1.5 mg/kg) attenuated the discriminative stimulus effects of nicotine. The decrease in the expression of the discriminative stimulus effects of nicotine produced by DOI was blocked by M100,907 (1 mg/kg), but not by SB 242,084 (1 mg/kg), while that evoked by Ro 60-0175 or WAY 163,909 was blocked by SB 242,084 (1 mg/kg), but not by M100,907 (1 mg/kg). Further studies showed that

  15. Serotonin 5-HT2A but not 5-HT2C receptor antagonism reduces hyperlocomotor activity induced in dopamine-depleted rats by striatal administration of the D1 agonist SKF 82958.

    PubMed

    Bishop, Christopher; Daut, Gregory S; Walker, Paul D

    2005-09-01

    While recent work has indicated that D1 receptor agonist-induced hyperlocomotion in DA-depleted rats is reduced by striatal 5-HT2 receptor antagonism, the 5-HT receptor(s) subtypes mediating these effects are not yet known. In the present study, we examined the influence(s) of striatal 5-HT2A and 5-HT2C receptors on locomotor behavior induced by D1 agonism in neonatal DA-depleted rats. On postnatal day 3, male Sprague-Dawley rats (n=68) were treated with either vehicle or 6-hydroxydopamine (6-OHDA; 60 microg) which produced >98% DA depletion. Sixty days later, all rats were fitted with bilateral striatal cannulae. A subset of control and 6-OHDA-lesioned rats (n=20) was tested for locomotor responses to striatal infusion of the D1 agonist SKF 82958 (0, 0.1, 1.0, 10 microg/side). The remaining rats (n=48) were tested for locomotor responses to intrastriatal SKF 82958 (2.0 microg/side) alone or in combination with the 5-HT2A- or 5-HT2C-preferring antagonists M100907 or RS102221 (0.1 or 1.0 microg/side), respectively. Intrastriatal SKF 82958 dose-dependently increased measures of motor activity within DA-depleted rats. This hyperlocomotor activity was suppressed by co-infusion of M100907, but not RS102221. These results indicate that DA depletion strengthens striatal 5-HT2A/D1 receptor interactions and suggest that 5-HT2A receptor antagonists may prove useful in reducing D1-related movements.

  16. Blonanserin Ameliorates Phencyclidine-Induced Visual-Recognition Memory Deficits: the Complex Mechanism of Blonanserin Action Involving D3-5-HT2A and D1-NMDA Receptors in the mPFC

    PubMed Central

    Hida, Hirotake; Mouri, Akihiro; Mori, Kentaro; Matsumoto, Yurie; Seki, Takeshi; Taniguchi, Masayuki; Yamada, Kiyofumi; Iwamoto, Kunihiro; Ozaki, Norio; Nabeshima, Toshitaka; Noda, Yukihiro

    2015-01-01

    Blonanserin differs from currently used serotonin 5-HT2A/dopamine-D2 receptor antagonists in that it exhibits higher affinity for dopamine-D2/3 receptors than for serotonin 5-HT2A receptors. We investigated the involvement of dopamine-D3 receptors in the effects of blonanserin on cognitive impairment in an animal model of schizophrenia. We also sought to elucidate the molecular mechanism underlying this involvement. Blonanserin, as well as olanzapine, significantly ameliorated phencyclidine (PCP)-induced impairment of visual-recognition memory, as demonstrated by the novel-object recognition test (NORT) and increased extracellular dopamine levels in the medial prefrontal cortex (mPFC). With blonanserin, both of these effects were antagonized by DOI (a serotonin 5-HT2A receptor agonist) and 7-OH-DPAT (a dopamine-D3 receptor agonist), whereas the effects of olanzapine were antagonized by DOI but not by 7-OH-DPAT. The ameliorating effect was also antagonized by SCH23390 (a dopamine-D1 receptor antagonist) and H-89 (a protein kinase A (PKA) inhibitor). Blonanserin significantly remediated the decrease in phosphorylation levels of PKA at Thr197 and of NR1 (an essential subunit of N-methyl-D-aspartate (NMDA) receptors) at Ser897 by PKA in the mPFC after a NORT training session in the PCP-administered mice. There were no differences in the levels of NR1 phosphorylated at Ser896 by PKC in any group. These results suggest that the ameliorating effect of blonanserin on PCP-induced cognitive impairment is associated with indirect functional stimulation of the dopamine-D1-PKA-NMDA receptor pathway following augmentation of dopaminergic neurotransmission due to inhibition of both dopamine-D3 and serotonin 5-HT2A receptors in the mPFC. PMID:25120077

  17. DRD2, DRD3 and 5HT2A receptor genes polymorphisms in obsessive-compulsive disorder.

    PubMed

    Nicolini, H; Cruz, C; Camarena, B; Orozco, B; Kennedy, J L; King, N; Weissbecker, K; de la Fuente, J R; Sidenberg, D

    1996-12-01

    We performed an association analysis of the DRD2, DRD3 and 5HT2A genes polymorphisms in 67 Obsessive-Compulsive Disorder (OCD) patients and 54 healthy controls. There were no statistically significant differences in genotype or allele frequencies for any of the polymorphisms studied between OCD subjects and controls. For the subgrouped analysis, no results were significant after correction for multiple testing, although homozygosity of DRD2/A2A2 in subjects displaying vocal or motor tics approached significance compared to controls (Fisher exact test, P = 0.008). Our results may follow the notion that OCD patients with tics represent a different genetic subtype of the disease.

  18. Expression of 5-HT2A receptors in prefrontal cortex pyramidal neurons projecting to nucleus accumbens. Potential relevance for atypical antipsychotic action.

    PubMed

    Mocci, Giuseppe; Jiménez-Sánchez, Laura; Adell, Albert; Cortés, Roser; Artigas, Francesc

    2014-04-01

    The prefrontal cortex (PFC) is involved in higher brain functions altered in schizophrenia. Classical antipsychotic drugs modulate information processing in cortico-limbic circuits via dopamine D2 receptor blockade in nucleus accumbens (NAc) whereas atypical antipsychotic drugs preferentially target cortical serotonin (5-HT) receptors. The brain networks involved in the therapeutic action of atypical drugs are not fully understood. Previous work indicated that medial PFC (mPFC) pyramidal neurons projecting to ventral tegmental area express 5-HT2A receptors suggesting that atypical antipsychotic drugs modulate dopaminergic activity distally, via 5-HT2A receptor (5-HT2A-R) blockade in PFC. Since the mPFC also projects heavily to NAc, we examined whether NAc-projecting pyramidal neurons also express 5-HT2A-R. Using a combination of retrograde tracing experiments and in situ hybridization we report that a substantial proportion of mPFC-NAc pyramidal neurons in rat brain express 5-HT2A-R mRNA in a layer- and area-specific manner (up to 68% in layer V of contralateral cingulate). The functional relevance of 5-HT2A-R to modulate mPFC-NAc projections was examined in dual-probe microdialysis experiments. The application of the preferential 5-HT2A-R agonist DOI into mPFC enhanced glutamate release locally (+66 ± 18%) and in NAc (+74 ± 12%) indicating that cortical 5-HT2A-R activation augments glutamatergic transmission in NAc. Since NAc integrates glutamatergic and dopaminergic inputs, blockade of 5-HT2A-R by atypical drugs may reduce cortical excitatory inputs onto GABAergic neurons of NAc, adding to dopamine D2 receptor blockade. Together with previous observations, the present results suggest that atypical antipsychotic drugs may control the activity of the mesolimbic pathway at cell body and terminal level.

  19. Association study of T102C 5-HT2A polymorphism in schizophrenic patients: diagnosis, psychopathology, and suicidal behavior

    PubMed Central

    Correa, Humberto; De Marco, Luiz; Boson, Wolfanga; Nicolato, Rodrigo; Teixeira, Antó L.; Campo, Valdir R.; Romano-Silva, Marco A.

    2007-01-01

    The objective of this study was to examine the association between the serotonin (5-HT)2A gene polymorphism (102T/C) and suicidal behavior in schizophrenic inpatients. We studied 129 subjects who met the diagnostic criteria for schizophrenia according to a structured clinicai interview (MINI-PLUS), Patients underwent a semistructured interview to assess suicide attempt history and its characteristics, in addition, at least one close relative of the patient was interviewed to assess prohand and family suicidal behavior. Healthy controls were students and hospital staff members free of psychiatric and medical illness. Genotypes were determined after polymerase chain reaction amplification of the region of 5-HT2A/T102C containing the polymorphic site and digestion with the restriction enzyme Hpall, We found no association between suicidal attempt history and suicide attempt characteristics and genotypic or aileie frequencies. Suicidal behavior was also not associated with demographic or psychopathological characteristics. These results suggest that the S-HT2A gene polymorphism (102T/C) is not involved in genetic susceptibility to suicidal behavior, but further studies in a larger sample are needed. PMID:17506229

  20. Antidepressant-like activity of Tagetes lucida Cav. is mediated by 5-HT(1A) and 5-HT(2A) receptors.

    PubMed

    Bonilla-Jaime, H; Guadarrama-Cruz, G; Alarcon-Aguilar, F J; Limón-Morales, O; Vazquez-Palacios, G

    2015-10-01

    It has been demonstrated that the aqueous extract of Tagetes lucida Cav. shows an antidepressant-like effect on the forced swimming test (FST) in rats. The aim of this study was to analyze the participation of the serotoninergic system in the antidepressant-like effect of the aqueous extract of T. lucida. Different doses of the extract of T. lucida were administered at 72, 48, 24, 18 and 1 h before FST. The animals were pretreated with a 5-HT1A receptor antagonist (WAY-100635, 0.5 mg/kg), a 5-HT2A receptor antagonist (ketanserin, 5 mg/kg), a β-noradrenergic receptor antagonist (propranolol, 200 mg/kg), and with a α2-noradrenergic receptor antagonist (yohimbine, 1 mg/kg) alone or combined with the extract and pretreated with a serotonin synthesis inhibitor (PCPA) before treatment with 8-OH-DPAT + the extract of T. lucida. In addition, suboptimal doses of the 5-HT1A agonist (8-OH-DPAT) + non-effective dose of extract was analyzed in the FST. To determine the presence of flavonoids, the aqueous extract of T. lucida (20 µl, 4 mg/ml) was injected in HPLC; however, a quercetin concentration of 7.72 mg/g of extract weight was detected. A suboptimal dose of 8-OH-DPAT + extract of T. lucida decreased immobility and increased swimming and climbing. An antidepressant-like effect with the aqueous extract of T. lucida at doses of 100 and 200 mg/kg was observed on the FST with decreased immobility behavior and increased swimming; however, this effect was blocked by WAY-100635, ketanserin and PCPA but not by yohimbine and propranolol, suggesting that the extract of T. lucida could be modulating the release/reuptake of serotonin.

  1. The antidepressant-like activity of 6-methoxy-2-[4-(2-methoxyphenyl)piperazin-1-yl]-9H-xanthen-9-one involves serotonergic 5-HT(1A) and 5-HT(2A/C) receptors activation.

    PubMed

    Pytka, Karolina; Walczak, Maria; Kij, Agnieszka; Rapacz, Anna; Siwek, Agata; Kazek, Grzegorz; Olczyk, Adrian; Gałuszka, Adam; Waszkielewicz, Anna; Marona, Henryk; Sapa, Jacek; Filipek, Barbara

    2015-10-05

    Xanthone derivatives have been shown to posses many biological properties. Some of them act within the central nervous system and show neuroprotective or antidepressant-like properties. Taking this into account we investigated antidepressant-like activity in mice and the possible mechanism of action of 6-methoxy-2-[4-(2-methoxyphenyl)piperazin-1-yl]-9H-xanthen-9-one (HBK-11) - a new xanthone derivative. We demonstrated that HBK-11 produced antidepressant-like effects in the forced swim test and tail suspension test, comparable to that of venlafaxine. The combined treatment with sub-effective doses of HBK-11 and fluoxetine (but not reboxetine or bupropion) significantly reduced the immobility in the forced swim test. Moreover, the antidepressant-like activity of HBK-11 in the aforementioned test was blocked by p-chlorophenylalanine, and significantly reduced by serotonergic 5HT1A receptor antagonist - WAY-1006335 and 5HT2A/C receptor antagonist - ritanserin. As none of the above treatments influenced the spontaneous locomotor activity, it can be concluded that HBK-11 mediates its activity through a serotonergic system, and its antidepressant-like effect involves 5HT1A and 5HT2A/C receptor activation. Furthermore, at antidepressant-like doses HBK-11 did not cause the mice to display locomotor deficits in rotarod or chimney tests. Considering the pharmacokinetic profile, HBK-11 demonstrated rapid absorption after i.p. administration, high clearance value, short terminal half-life, very high volume of distribution and incomplete bioavailability. The compound studied had good penetration into the brain tissue of mice. Since studied xanthone derivative seems to present interesting, untypical mechanism of antidepressant-like action i.e. 5HT2A/C receptor activation, it may have a potential in the treatment of depressive disorders, and surely requires further studies.

  2. Evidence for the involvement of the serotonergic 5-HT2A/C and 5-HT3 receptors in the antidepressant-like effect caused by oral administration of bis selenide in mice.

    PubMed

    Jesse, Cristiano R; Wilhelm, Ethel A; Bortolatto, Cristiani F; Nogueira, Cristina W

    2010-03-17

    The present study investigated a possible antidepressant-like activity of bis selenide using two predictive tests for antidepressant effect on rodents: the forced swimming test (FST) and the tail suspension test (TST). Bis selenide (0.5-5 mg/kg, p.o.) decreased the immobility time in the mouse FST and TST. The anti-immobility effect of bis selenide (1 mg/kg, p.o.) in the TST was prevented by the pretreatment of mice with p-chlorophenylalanine methyl ester (PCPA; 100 mg/kg, i.p., an inhibitor of serotonin synthesis), ketanserin (1 mg/kg, i.p., a 5-HT(2A/2C) receptor antagonist), and ondasentron (1 mg/kg, i.p., a 5-HT(3) receptor antagonist). Pretreatment of mice with prazosin (1 mg/kg, i.p., an alpha(1)-adrenoceptor antagonist), yohimbine (1 mg/kg, i.p., an alpha(2)-adrenoceptor antagonist), propranolol (2 mg/kg, i.p., a beta-adrenoceptor antagonist), SCH23390 (0.05 mg/kg, s.c., a dopamine D(1) receptor antagonist), sulpiride (50 mg/kg, i.p., a dopamine D(2) receptor antagonist), or WAY 100635 (0.1 mg/kg, s.c., a selective 5-HT(1A) receptor antagonist) did not block the antidepressant-like effect of bis selenide (1 mg/kg, p.o.) in the TST. Administration of bis selenide (0.1 mg/kg, p.o.) and fluoxetine (1 mg/kg), at subeffective doses, produced an antidepressant-like effect in the TST. Bis selenide did not alter Na(+) K(+) ATPase, MAO-A and MAO-B activities in whole brains of mice. Bis selenide produced an antidepressant-like effect in the mouse TST and FST, which may be related to the serotonergic system (5-HT(2A/2C) and 5-HT(3) receptors).

  3. Long-term estrogen therapy and 5-HT(2A) receptor binding in postmenopausal women; a single photon emission tomography (SPET) study.

    PubMed

    Compton, J; Travis, M J; Norbury, R; Erlandsson, K; van Amelsvoort, T; Daly, E; Waddington, W; Matthiasson, P; Eersels, J L H; Whitehead, M; Kerwin, R W; Ell, P J; Murphy, D G M

    2008-01-01

    Variation in estrogen level is reported by some to affect brain maturation and memory. The neurobiological basis for this may include modulation of the serotonergic system. No neuroimaging studies have directly examined the effect of extended estrogen therapy (ET), on the 5-HT(2A) receptor in human brain. We investigated the effect of long-term ET on cortical 5-HT(2A) receptor availability in postmenopausal women. In a cross-sectional study, we compared cortical 5-HT(2A) receptor availability in 17 postmenopausal ERT-naive women and 17 long-term oophorectomised estrogen-users, age- and IQ-matched using single photon emission tomography and the selective 5-HT(2A) receptor ligand (123)I-5-I-R91150. Also, we used the Revised Wechsler Memory Scale to relate memory function to 5-HT(2A) receptor availability. Never-users had significantly higher 5-HT(2A) receptor availability than estrogen-users in hippocampus (1.17 vs. 1.11, respectively, p=0.02), although this did not remain significant after correction for multiple comparisons. Hippocampal 5-HT(2A) receptor availability correlated negatively with verbal and general memory and delayed recall (r=-0.45, p=0.01; r=-0.40, p=0.02; r=-0.36, p=0.04). Right superior temporal 5-HT(2A) receptor availability correlated negatively with verbal memory (r=-0.36, p=0.04). In estrogen-users, receptor availability correlated negatively with verbal and general memory (r=-0.70, p=0.002; r=-0.69, p=0.002); and in never-users, receptor availability negatively correlated with attention and concentration (r=-0.54, p=0.02). Long-term ET may be associated with lower 5-HT(2A) receptor availability in hippocampus. This may reflect increased activity within the serotonergic pathway leading to down-regulation of post-synaptic receptor. Also, increased availability of the 5-HT(2A) receptor in hippocampus is associated with poorer memory function.

  4. Psychological, neuroimaging, and biochemical studies on functional association between impulsive behavior and the 5-HT2A receptor gene polymorphism in humans.

    PubMed

    Nomura, Michio; Nomura, Yasuyuki

    2006-11-01

    It has been suggested that impulsive behavior is caused by dysfunctional serotonergic 5-HT neurotransmission in the central nervous system (CNS). Brain neuroimaging studies have shown that behavioral inhibition is linked to the activation of cortex sites such as the ventral frontal cortex. Positron emission tomography (PET) imaging with [(18)F]altanserin to characterize 5-HT(2A) receptor binding revealed a reduction in 5-HT(2A) binding in the ventral frontal cortex in women who had recovered from impulsive diseases. These clinical, neuroimaging, and pharmacological studies appear to support the hypothesis that functional alteration of neurotransmission due to genetic polymorphisms of the 5-HT receptors may be involved in impulsive behavior modulation. Following evaluation by a self-reporting measure, it was proposed that a polymorphism in the promoter of the 5-HT(2A) receptor gene is the underlying cause of impulsive behavior; however, this hypothesis is not convincing. We examined whether the polymorphism in the 5-HT(2A) receptor gene promoter is involved in impulsive aggression by evaluating a behavioral task (Go/No-go task) in normal volunteers. The polymorphism of the 5-HT(2A) receptor gene promoter in lymphocytes from 71 volunteers was analyzed by using PCR. Impulsivity was defined as the number of commission errors (responding when one should not) recorded during a Go/No-go task; a larger number of commission errors indicate greater difficulty in inhibiting impulsive behavior. The subjects of the A-1438A allele group for the 5-HT(2A) receptor gene made more commission errors under the punishment-reward (PR)condition in a Go/No-go task than those in the G-1438G group. In the present review, we discuss and suggest the possible involvement of the A-1438A polymorphism of the 5HT2A receptor gene promoter in impulsive behavior. This hypothesis was evaluated by using a behavioral task measure that could directly reveal impulsive behavioral traits in humans.

  5. 5-HT(2A) and mGlu2 receptor binding levels are related to differences in impulsive behavior in the Roman Low- (RLA) and High- (RHA) avoidance rat strains.

    PubMed

    Klein, A B; Ultved, L; Adamsen, D; Santini, M A; Tobeña, A; Fernandez-Teruel, A; Flores, P; Moreno, M; Cardona, D; Knudsen, G M; Aznar, S; Mikkelsen, J D

    2014-03-28

    The Roman Low- and High-Avoidance rat strains (RLA-I vs RHA-I) have been bidirectionally selected and bred according to their performance in the two-way active avoidance response in the shuttle-box test. Numerous studies have reported a pronounced divergence in emotionality between the two rat strains including differences in novelty seeking, anxiety, stress coping, and susceptibility to addictive substances. However, the underlying molecular mechanisms behind these divergent phenotypes are not known. Here, we determined impulsivity using the 5-choice serial reaction time task and levels of serotonin transporter (SERT), 5-HT(2A) and 5-HT(1A) receptor binding using highly specific radioligands ((3)H-escitalopram, (3)H-MDL100907 and (3)H-WAY100635) and mGlu2/3 receptor binding ((3)H-LY341495) using receptor autoradiography in fronto-cortical sections from RLA-I (n=8) and RHA-I (n=8) male rats. In the more impulsive RHA-I rats, 5-HT(2A), 5-HT(1A) and SERT binding in the frontal cortex was significantly higher compared to RLA-I rats. In contrast, mGlu2/3 receptor binding was decreased by 40% in RHA-I rats compared to RLA-I rats. To differentiate between mGlu2 and mGlu3 receptor protein levels, these were further studied using western blotting, which showed non-detectable levels of mGlu2 receptor protein in RHA rats, while no differences were observed for mGlu3 receptor protein levels. Collectively, these data show general congenital differences in the serotonergic system and a pronounced difference in mGlu2 receptor protein levels. We suggest that the differences in the serotonergic system may mediate some of the phenotypic characteristics in this strain such as hyper-impulsivity and susceptibility to drug addiction.

  6. The serotonergic hallucinogen 5-methoxy-N,N-dimethyltryptamine disrupts cortical activity in a regionally-selective manner via 5-HT(1A) and 5-HT(2A) receptors.

    PubMed

    Riga, Maurizio S; Bortolozzi, Analia; Campa, Letizia; Artigas, Francesc; Celada, Pau

    2016-02-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a natural hallucinogen, acting as a non-selective serotonin 5-HT(1A)/5-HT(2A)-R agonist. Psychotomimetic agents such as the non-competitive NMDA-R antagonist phencyclidine and serotonergic hallucinogens (DOI and 5-MeO-DMT) disrupt cortical synchrony in the low frequency range (<4 Hz) in rat prefrontal cortex (PFC), an effect reversed by antipsychotic drugs. Here we extend these observations by examining the effect of 5-MeO-DMT on low frequency cortical oscillations (LFCO, <4 Hz) in PFC, visual (V1), somatosensory (S1) and auditory (Au1) cortices, as well as the dependence of these effects on 5-HT(1A)-R and 5-HT(2A)-R, using wild type (WT) and 5-HT(2A)-R knockout (KO2A) anesthetized mice. 5-MeO-DMT reduced LFCO in the PFC of WT and KO2A mice. The effect in KO2A mice was fully prevented by the 5-HT(1A)-R antagonist WAY-100635. Systemic and local 5-MeO-DMT reduced 5-HT release in PFC mainly via 5-HT(1A)-R. Moreover, 5-MeO-DMT reduced LFCO in S1, Au1 and V1 of WT mice and only in V1 of KO2A mice, suggesting the involvement of 5-HT(1A)-R activation in the 5-MeO-DMT-induced disruption of V1 activity. In addition, antipsychotic drugs reversed 5-MeO-DMT effects in WT mice. The present results suggest that the hallucinogen action of 5-MeO-DMT is mediated by simultaneous alterations of the activity of sensory (S1, Au1, V1) and associative (PFC) cortical areas, also supporting a role of 5-HT(1A)-R stimulation in V1 and PFC, in addition to the well-known action on 5-HT(2A)-R. Moreover, the reversal by antipsychotic drugs of 5-MeO-DMT effects adds to previous literature supporting the usefulness of the present model in antipsychotic drug development.

  7. Discovering the mechanisms underlying serotonin (5-HT)2A and 5-HT2C receptor regulation following nicotine withdrawal in rats.

    PubMed

    Zaniewska, Magdalena; Alenina, Natalia; Wydra, Karolina; Fröhler, Sebastian; Kuśmider, Maciej; McCreary, Andrew C; Chen, Wei; Bader, Michael; Filip, Małgorzata

    2015-08-01

    We have previously demonstrated that nicotine withdrawal produces depression-like behavior and that serotonin (5-HT)2A/2C receptor ligands modulate that mood-like state. In the present study we aimed to identify the mechanisms (changes in radioligand binding, transcription or RNA-editing) related to such a behavioral outcome. Rats received vehicle or nicotine (0.4 mg/kg, s.c.) for 5 days in home cages. Brain 5-HT2A/2C receptors were analyzed on day 3 of nicotine withdrawal. Nicotine withdrawal increased [(3)H]ketanserin binding to 5-HT2A receptors in the ventral tegmental area and ventral dentate gyrus, yet decreased binding in the nucleus accumbens shell. Reduction in [(3)H]mesulergine binding to 5-HT2C receptors was seen in the ventral dentate gyrus. Profound decrease in the 5-HT2A receptor transcript level was noted in the hippocampus and ventral tegmental area. Out of five 5-HT2C receptor mRNA editing sites, deep sequencing data showed a reduction in editing at the E site and a trend toward reduction at the C site in the hippocampus. In the ventral tegmental area, a reduction for the frequency of CD 5-HT2C receptor transcript was seen. These results show that the reduction in the 5-HT2A receptor transcript level may be an auto-regulatory response to the increased receptor density in the hippocampus and ventral tegmental area during nicotine withdrawal, while decreased 5-HT2C receptor mRNA editing may explain the reduction in receptor labeling in the hippocampus. Serotonin (5-HT)2A/2C receptor ligands alleviate depression-like state in nicotine-withdrawn rats. Here, we show that the reduction in 5-HT2A receptor transcript level may be an auto-regulatory response to the increased receptor number in the hippocampus and ventral tegmental area during nicotine withdrawal, while attenuated 5-HT2C receptor mRNA editing in the hippocampus might explain reduced inverse agonist binding to 5-HT2C receptor and suggest a shift toward a population of more active receptors. 5

  8. Interaction between serotonin 5-HT2A receptor gene and dopamine transporter (DAT1) gene polymorphisms influences personality trait of persistence in Austrian Caucasians.

    PubMed

    Schosser, Alexandra; Fuchs, Karoline; Scharl, Theresa; Schloegelhofer, Monika; Kindler, Jochen; Mossaheb, Nilufar; Kaufmann, Rainer M; Leisch, Friedrich; Kasper, Siegfried; Sieghart, Werner; Aschauer, Harald N

    2010-03-01

    We examined 89 normal volunteers using Cloninger's Temperament and Character Inventory (TCI). Genotyping the 102T/C polymorphism of the serotonin 5HT2A receptor gene and the ser9gly polymorphism in exon 1 of the dopamine D3 receptor (DRD3) gene was performed using PCR-RFLP, whereas the dopamine transporter (DAT1) gene variable number of tandem repeats (VNTR) polymorphism was investigated using PCR amplification followed by electrophoresis in an 8% acrylamide gel with a set of size markers. We found a nominally significant association between gender and harm avoidance (P=0.017; women showing higher scores). There was no association of either DAT1, DRD3 or 5HT2A alleles or genotypes with any dimension of the TCI applying Kruskal-Wallis rank-sum tests. Comparing homozygote and heterozygote DAT1 genotypes, we found higher novelty seeking scores in homozygotes (P=0.054). We further found a nominally significant interaction between DAT1 and 5HT2A homo-/heterozygous gene variants (P=0.0071; DAT1 and 5HT2A genotypes P value of 0.05), performing multivariate analysis of variance (MANOVA). Examining the temperamental TCI subscales, this interaction was associated with persistence (genotypes: P=0.004; homo-/heterozygous gene variants: P=0.0004). We conclude that an interaction between DAT1 and 5HT2A genes might influence the temperamental personality trait persistence.

  9. Regional distribution and behavioral correlates of 5-HT(2A) receptors in Alzheimer's disease with [(18)F]deuteroaltanserin and PET.

    PubMed

    Santhosh, Lekshmi; Estok, Kristina M; Vogel, Rebecca S; Tamagnan, Gilles D; Baldwin, Ronald M; Mitsis, Effie M; Macavoy, Martha G; Staley, Julie K; van Dyck, Christopher H

    2009-09-30

    Postmortem studies show reductions in brain serotonin 2A (5-HT(2A)) receptors in Alzheimer's disease (AD). Converging evidence also suggests that serotonergic dysregulation may contribute to behavioral symptoms that frequently occur in AD. This study aimed to define regional reductions in 5-HT(2A) binding in AD patients and to examine their behavioral correlates. Nine patients with probable AD and eight elderly controls were studied using a constant infusion paradigm for equilibrium modeling of [(18)F]deuteroaltanserin with positron emission tomography (PET). Region of interest analyses were performed on PET images coregistered to MRI scans. The outcome measures BP(P) (ratio of specific brain uptake to total plasma parent concentration) and BP(ND) (ratio of specific to nondisplaceable uptake) were obtained for pertinent cortical and subcortical regions. AD patients showed a statistically significant decrease in the anterior cingulate in both BP(P) and BP(ND), but in no other region. Within the AD patient sample, no significant correlations were observed between regional 5-HT(2A) binding and behavioral measures, including depressive and psychotic symptoms. These results confirm a reduction in cortical 5-HT(2A) receptors in AD, specifically in the anterior cingulate. However, in a limited AD patient sample, they fail to demonstrate a relationship between regional 5-HT(2A) binding and major behavioral symptoms.

  10. Distribution of 5-HT2A receptor immunoreactivity in the rat amygdaloid complex and colocalization with γ-aminobutyric acid.

    PubMed

    Bombardi, Cristiano

    2011-01-25

    The 5-HT2A receptor (5-HT2Ar) is located in a variety of excitatory and inhibitory neurons in many regions of the central nervous system and is a major target for atypical antipsychotic drugs. In the present study, an immunoperoxidase experiment was used to investigate the distribution of 5-HT2Ar immunoreactivity in the rat amygdaloid complex. In the basolateral amygdala, the colocalization of 5-HT2Ar with inhibitory transmitter γ-aminobutyric acid (GABA) was studied using double-immunofluorescence confocal microscopy. The staining pattern obtained was colchicine-sensitive. In fact, pretreatment with colchicine increased the number of 5-HT2Ar-immunoreactive somata. Accordingly, with the exception of the intercalated nuclei, the amygdaloid complex of colchicine-injected rats exhibited a high density of 5-HT2Ar-IR somata. Morphological analyses indicated that 5-HT2Ar was located on both excitatory and inhibitory neurons in the rat amygdaloid complex. In addition, double-immunofluorescence observations revealed that the great majority of GABA-immunoreactive neurons in the basolateral amygdala exhibited 5-HT2Ar immunoreactivity (66.3%-70.6% depending on the nucleus). These data help to clarify the complex role of the 5-HT2Ar in the amygdaloid complex suggesting that this receptor can regulate amygdaloid activity by acting on different neuronal populations.

  11. Extensive Rigid Analogue Design Maps the Binding Conformation of Potent N-Benzylphenethylamine 5-HT2A Serotonin Receptor Agonist Ligands

    PubMed Central

    2012-01-01

    Based on the structure of the superpotent 5-HT2A agonist 2-(4-bromo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine, which consists of a ring-substituted phenethylamine skeleton modified with an N-benzyl group, we designed and synthesized a small library of constrained analogues to identify the optimal arrangement of the pharmacophoric elements of the ligand. Structures consisted of diversely substituted tetrahydroisoquinolines, piperidines, and one benzazepine. Based on the structure of (S,S)-9b, which showed the highest affinity of the series, we propose an optimal binding conformation. (S,S)-9b also displayed 124-fold selectivity for the 5-HT2A over the 5-HT2C receptor, making it the most selective 5-HT2A receptor agonist ligand currently known. PMID:23336049

  12. Increasing spinal 5-HT2A receptor responsiveness mediates anti-allodynic effect and potentiates fluoxetine efficacy in neuropathic rats. Evidence for GABA release.

    PubMed

    Dupuis, Amandine; Wattiez, Anne-Sophie; Pinguet, Jérémy; Richard, Damien; Libert, Frédéric; Chalus, Maryse; Aissouni, Youssef; Sion, Benoit; Ardid, Denis; Marin, Philippe; Eschalier, Alain; Courteix, Christine

    2017-04-01

    Antidepressants are one of the first line treatments for neuropathic pain but their use is limited by the incidence and severity of side effects of tricyclics and the weak effectiveness of selective serotonin reuptake inhibitors (SSRIs). Serotonin type 2A (5-HT2A) receptors interact with PDZ proteins that regulate their functionality and SSRI efficacy to alleviate pain. We investigated whether an interfering peptide (TAT-2ASCV) disrupting the interaction between 5-HT2A receptors and associated PDZ proteins would improve the treatment of traumatic neuropathic allodynia. Tactile allodynia was assessed in spinal nerve ligation-induced neuropathic pain in rats using von Frey filaments after acute treatment with TAT-2ASCV and/or 5-HT2A receptor agonist, alone or in combination with repeated treatment with fluoxetine. In vivo microdialysis was performed in order to examine the involvement of GABA in TAT-2ASCV/fluoxetine treatment-associated analgesia. TAT-2ASCV (100ng, single i.t. injection) improved SNL-induced tactile allodynia by increasing 5-HT2A receptor responsiveness to endogenous 5-HT. Fluoxetine alone (10mg/kg, five i.p. injections) slightly increased tactile thresholds and its co-administration with TAT-2ASCV (100ng, single i.t. injection) further enhanced the anti-allodynic effect. This effect depends on the integrity of descending serotonergic bulbospinal pathways and spinal release of GABA. The anti-allodynic effect of fluoxetine can be enhanced by disrupting 5-HT2A receptor-PDZ protein interactions. This enhancement depends on 5-HT2A receptor activation, spinal GABA release and GABAA receptor activation.

  13. Differential regulation of 5-HT2A receptor mRNA expression following withdrawal from a chronic escalating dose regimen of D-amphetamine.

    PubMed

    Horner, Kristen A; Gilbert, Yamiece E; Noble, Erika S

    2011-05-16

    Several lines of evidence indicate that psychostimulant withdrawal can induce negative emotional symptoms, such as anhedonia and dysphoria, which may be due in part, to dysfunction of the serotonin (5-HT) system, including alterations in 5-HT receptors. For example, changes in 5-HT(2A) receptor function in prefrontal cortex (PFC) have been reported in association with psychostimulant withdrawal. However, it is not known if alterations in 5-HT(2A) receptor mRNA expression occur in the PFC or other limbic-associated areas following withdrawal from chronic psychostimulant treatment. The goal of the current study was to determine the effects of chronic, escalating doses of D-amphetamine (D-AMPH) and withdrawal on the expression of 5-HT(2A) receptors in the cortex, caudate putamen, NAc and hippocampus of rat brain. Animals were treated three times a day for 4 days with escalating doses of D-AMPH (1-10 mg/kg). Twenty-four hours after the final dose of D-AMPH, animals were sacrificed and the tissue processed for in situ hybridization histochemistry. Chronic, escalating doses of D-AMPH, followed by a 24 h withdrawal period, significantly decreased 5-HT(2A) receptor mRNA expression in the prefrontal, motor and cingulate cortices, while 5-HT(2A) receptor mRNA expression in the NAc, caudal CPu and hippocampus were significantly increased. These data indicate that region-specific changes in 5-HT(2A) receptor mRNA expression occur in limbic system and associated areas following chronic D-AMPH treatment, supporting the notion that alterations in the 5-HT system may contribute to the negative emotional aspects of psychostimulant withdrawal.

  14. Cognitive Impairment Induced by Delta9-tetrahydrocannabinol Occurs through Heteromers between Cannabinoid CB1 and Serotonin 5-HT2A Receptors.

    PubMed

    Viñals, Xavier; Moreno, Estefanía; Lanfumey, Laurence; Cordomí, Arnau; Pastor, Antoni; de La Torre, Rafael; Gasperini, Paola; Navarro, Gemma; Howell, Lesley A; Pardo, Leonardo; Lluís, Carmen; Canela, Enric I; McCormick, Peter J; Maldonado, Rafael; Robledo, Patricia

    2015-07-01

    Activation of cannabinoid CB1 receptors (CB1R) by delta9-tetrahydrocannabinol (THC) produces a variety of negative effects with major consequences in cannabis users that constitute important drawbacks for the use of cannabinoids as therapeutic agents. For this reason, there is a tremendous medical interest in harnessing the beneficial effects of THC. Behavioral studies carried out in mice lacking 5-HT2A receptors (5-HT2AR) revealed a remarkable 5-HT2AR-dependent dissociation in the beneficial antinociceptive effects of THC and its detrimental amnesic properties. We found that specific effects of THC such as memory deficits, anxiolytic-like effects, and social interaction are under the control of 5-HT2AR, but its acute hypolocomotor, hypothermic, anxiogenic, and antinociceptive effects are not. In biochemical studies, we show that CB1R and 5-HT2AR form heteromers that are expressed and functionally active in specific brain regions involved in memory impairment. Remarkably, our functional data shows that costimulation of both receptors by agonists reduces cell signaling, antagonist binding to one receptor blocks signaling of the interacting receptor, and heteromer formation leads to a switch in G-protein coupling for 5-HT2AR from Gq to Gi proteins. Synthetic peptides with the sequence of transmembrane helices 5 and 6 of CB1R, fused to a cell-penetrating peptide, were able to disrupt receptor heteromerization in vivo, leading to a selective abrogation of memory impairments caused by exposure to THC. These data reveal a novel molecular mechanism for the functional interaction between CB1R and 5-HT2AR mediating cognitive impairment. CB1R-5-HT2AR heteromers are thus good targets to dissociate the cognitive deficits induced by THC from its beneficial antinociceptive properties.

  15. Cognitive Impairment Induced by Delta9-tetrahydrocannabinol Occurs through Heteromers between Cannabinoid CB1 and Serotonin 5-HT2A Receptors

    PubMed Central

    Lanfumey, Laurence; Cordomí, Arnau; Pastor, Antoni; de La Torre, Rafael; Gasperini, Paola; Navarro, Gemma; Howell, Lesley A.; Pardo, Leonardo; Lluís, Carmen; Canela, Enric I.; McCormick, Peter J.; Maldonado, Rafael; Robledo, Patricia

    2015-01-01

    Activation of cannabinoid CB1 receptors (CB1R) by delta9-tetrahydrocannabinol (THC) produces a variety of negative effects with major consequences in cannabis users that constitute important drawbacks for the use of cannabinoids as therapeutic agents. For this reason, there is a tremendous medical interest in harnessing the beneficial effects of THC. Behavioral studies carried out in mice lacking 5-HT2A receptors (5-HT2AR) revealed a remarkable 5-HT2AR-dependent dissociation in the beneficial antinociceptive effects of THC and its detrimental amnesic properties. We found that specific effects of THC such as memory deficits, anxiolytic-like effects, and social interaction are under the control of 5-HT2AR, but its acute hypolocomotor, hypothermic, anxiogenic, and antinociceptive effects are not. In biochemical studies, we show that CB1R and 5-HT2AR form heteromers that are expressed and functionally active in specific brain regions involved in memory impairment. Remarkably, our functional data shows that costimulation of both receptors by agonists reduces cell signaling, antagonist binding to one receptor blocks signaling of the interacting receptor, and heteromer formation leads to a switch in G-protein coupling for 5-HT2AR from Gq to Gi proteins. Synthetic peptides with the sequence of transmembrane helices 5 and 6 of CB1R, fused to a cell-penetrating peptide, were able to disrupt receptor heteromerization in vivo, leading to a selective abrogation of memory impairments caused by exposure to THC. These data reveal a novel molecular mechanism for the functional interaction between CB1R and 5-HT2AR mediating cognitive impairment. CB1R-5-HT2AR heteromers are thus good targets to dissociate the cognitive deficits induced by THC from its beneficial antinociceptive properties. PMID:26158621

  16. Tolerance to LSD and DOB induced shaking behaviour: differential adaptations of frontocortical 5-HT(2A) and glutamate receptor binding sites.

    PubMed

    Buchborn, Tobias; Schröder, Helmut; Dieterich, Daniela C; Grecksch, Gisela; Höllt, Volker

    2015-03-15

    Serotonergic hallucinogens, such as lysergic acid diethylamide (LSD) and dimethoxy-bromoamphetamine (DOB), provoke stereotype-like shaking behaviour in rodents, which is hypothesised to engage frontocortical glutamate receptor activation secondary to serotonin2A (5-HT2A) related glutamate release. Challenging this hypothesis, we here investigate whether tolerance to LSD and DOB correlates with frontocortical adaptations of 5-HT2A and/or overall-glutamate binding sites. LSD and DOB (0.025 and 0.25 mg/kg, i.p.) induce a ketanserin-sensitive (0.5 mg/kg, i.p., 30-min pretreatment) increase in shaking behaviour (including head twitches and wet dog shakes), which with repeated application (7× in 4 ds) is undermined by tolerance. Tolerance to DOB, as indexed by DOB-sensitive [(3)H]spiroperidol and DOB induced [(35)S]GTP-gamma-S binding, is accompanied by a frontocortical decrease in 5-HT2A binding sites and 5-HT2 signalling, respectively; glutamate-sensitive [(3)H]glutamate binding sites, in contrast, remain unchanged. As to LSD, 5-HT2 signalling and 5-HT2A binding, respectively, are not or only marginally affected, yet [(3)H]glutamate binding is significantly decreased. Correlation analysis interrelates tolerance to DOB to the reduced 5-HT2A (r=.80) as well as the unchanged [(3)H]glutamate binding sites (r=.84); tolerance to LSD, as opposed, shares variance with the reduction in [(3)H]glutamate binding sites only (r=.86). Given that DOB and LSD both induce tolerance, one correlating with 5-HT2A, the other with glutamate receptor adaptations, it might be inferred that tolerance can arise at either level. That is, if a hallucinogen (like LSD in our study) fails to induce 5-HT2A (down-)regulation, glutamate receptors (activated postsynaptic to 5-HT2A related glutamate release) might instead adapt and thus prevent further overstimulation of the cortex.

  17. Cartography of 5-HT1A and 5-HT2A Receptor Subtypes in Prefrontal Cortex and Its Projections.

    PubMed

    Mengod, Guadalupe; Palacios, José M; Cortés, Roser

    2015-07-15

    Since the development of chemical neuroanatomical tools in the 1960s, a tremendous wealth of information has been generated on the anatomical components of the serotonergic system, at the microscopic level in the brain including the prefrontal cortex (PFC). The PFC receives a widespread distribution of serotonin (5-hydroxytryptamine, 5-HT) terminals from the median and dorsal raphe nuclei. 5-HT receptors were first visualized using radioligand autoradiography in the late 1980s and early 1990s and showed, in contrast to 5-HT innervation, a differential distribution of binding sites associated with different 5-HT receptor subtypes. Due to the cloning of the different 5-HT receptor subtype genes in the late 1980s and early 1990s, it was possible, using in situ hybridization histochemistry, to localize cells expressing mRNA for these receptors. Double in situ hybridization histochemistry and immunohistochemistry allowed for the chemical characterization of the phenotype of cells expressing 5-HT receptors. Tract tracing technology allowed a detailed cartography of the neuronal connections of PFC and other brain areas. Based on these data, maps have been constructed that reflect our current understanding of the different circuits where 5-HT receptors can modulate the electrophysiological, pharmacological, and behavioral functions of the PFC. We will review current knowledge regarding the cellular localization of 5-HT1A and 5-HT2A receptors in mammalian PFC and their possible functions in the neuronal circuits of the PFC. We will discuss data generated in our laboratory as well as in others, focusing on localization in the pyramidal and GABAergic neuronal cell populations in different mammalian species using molecular neuroanatomy and on the connections with other brain regions.

  18. 5-HT2A Gene Variants Moderate the Association between PTSD and Reduced Default Mode Network Connectivity.

    PubMed

    Miller, Mark W; Sperbeck, Emily; Robinson, Meghan E; Sadeh, Naomi; Wolf, Erika J; Hayes, Jasmeet P; Logue, Mark; Schichman, Steven A; Stone, Angie; Milberg, William; McGlinchey, Regina

    2016-01-01

    The default mode network (DMN) has been used to study disruptions of functional connectivity in a wide variety of psychiatric and neurological conditions, including posttraumatic stress disorder (PTSD). Studies indicate that the serotonin system exerts a modulatory influence on DMN connectivity; however, no prior study has examined associations between serotonin receptor gene variants and DMN connectivity in either clinical or healthy samples. We examined serotonin receptor single nucleotide polymorphisms (SNPs), PTSD, and their interactions for association with DMN connectivity in 134 White non-Hispanic veterans. We began by analyzing candidate SNPs identified in prior meta-analyses of relevant psychiatric traits and found that rs7997012 (an HTR2A SNP), implicated previously in anti-depressant medication response in the Sequenced Treatment Alternatives for Depression study (STAR(*)D; McMahon et al., 2006), interacted with PTSD to predict reduced connectivity between the posterior cingulate cortex (PCC) and the right medial prefrontal cortex and right middle temporal gyrus (MTG). rs130058 (HTR1B) was associated with connectivity between the PCC and right angular gyrus. We then expanded our analysis to 99 HTR1B and HTR2A SNPs and found two HTR2A SNPs (rs977003 and rs7322347) that significantly moderated the association between PTSD severity and the PCC-right MTG component of the DMN after correcting for multiple testing. Finally, to obtain a more precise localization of the most significant SNP × PTSD interaction, we performed a whole cortex vertex-wise analysis of the rs977003 effect. This analysis revealed the locus of the pre-frontal effect to be in portions of the superior frontal gyrus, while the temporal lobe effect was centered in the middle and inferior temporal gyri. These findings point to the influence of HTR2A variants on DMN connectivity and advance knowledge of the role of 5-HT2A receptors in the neurobiology of PTSD.

  19. 5-HT2A Gene Variants Moderate the Association between PTSD and Reduced Default Mode Network Connectivity

    PubMed Central

    Miller, Mark W.; Sperbeck, Emily; Robinson, Meghan E.; Sadeh, Naomi; Wolf, Erika J.; Hayes, Jasmeet P.; Logue, Mark; Schichman, Steven A.; Stone, Angie; Milberg, William; McGlinchey, Regina

    2016-01-01

    The default mode network (DMN) has been used to study disruptions of functional connectivity in a wide variety of psychiatric and neurological conditions, including posttraumatic stress disorder (PTSD). Studies indicate that the serotonin system exerts a modulatory influence on DMN connectivity; however, no prior study has examined associations between serotonin receptor gene variants and DMN connectivity in either clinical or healthy samples. We examined serotonin receptor single nucleotide polymorphisms (SNPs), PTSD, and their interactions for association with DMN connectivity in 134 White non-Hispanic veterans. We began by analyzing candidate SNPs identified in prior meta-analyses of relevant psychiatric traits and found that rs7997012 (an HTR2A SNP), implicated previously in anti-depressant medication response in the Sequenced Treatment Alternatives for Depression study (STAR*D; McMahon et al., 2006), interacted with PTSD to predict reduced connectivity between the posterior cingulate cortex (PCC) and the right medial prefrontal cortex and right middle temporal gyrus (MTG). rs130058 (HTR1B) was associated with connectivity between the PCC and right angular gyrus. We then expanded our analysis to 99 HTR1B and HTR2A SNPs and found two HTR2A SNPs (rs977003 and rs7322347) that significantly moderated the association between PTSD severity and the PCC-right MTG component of the DMN after correcting for multiple testing. Finally, to obtain a more precise localization of the most significant SNP × PTSD interaction, we performed a whole cortex vertex-wise analysis of the rs977003 effect. This analysis revealed the locus of the pre-frontal effect to be in portions of the superior frontal gyrus, while the temporal lobe effect was centered in the middle and inferior temporal gyri. These findings point to the influence of HTR2A variants on DMN connectivity and advance knowledge of the role of 5-HT2A receptors in the neurobiology of PTSD. PMID:27445670

  20. Repeated adolescent MDMA ("Ecstasy") exposure in rats increases behavioral and neuroendocrine responses to a 5-HT2A/2C agonist.

    PubMed

    Biezonski, Dominik K; Courtemanche, Andrea B; Hong, Sang B; Piper, Brian J; Meyer, Jerrold S

    2009-02-03

    MDMA (3,4-methylenedioxymethamphetamine) is a popular recreational drug among adolescents. The present study aimed to determine the effects of repeated intermittent administration of 10 mg/kg MDMA during adolescence on behavioral (Experiment 1) and neuroendocrine (Experiment 2) responses of rats to the 5-HT(2A/2C) agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) and on [(3)H]ketanserin binding to 5-HT(2A) receptors. In the first experiment, MDMA pretreatment increased the frequency of head twitches and back muscle contractions, but not wet-dog shakes, to a high-dose DOI challenge. In the second experiment, both the prolactin and corticosterone responses to DOI were potentiated in MDMA-pretreated animals. No changes were found in 5-HT(2A) receptor binding in the hypothalamus or other forebrain areas that were examined. These results indicate that intermittent adolescent MDMA exposure enhances sensitivity of 5-HT(2A/2C) receptors in the CNS, possibly through changes in downstream signaling mechanisms.

  1. Cerebral metabolic responses to 5-HT2A/C receptor activation in mice with genetically modified serotonin transporter (SERT) expression.

    PubMed

    Dawson, Neil; Ferrington, Linda; Lesch, Klaus-Peter; Kelly, Paul A T

    2011-01-01

    Variation in the human serotonin transporter gene (hSERT; 5-HTT) resulting in a life-long alteration in SERT function influences anxiety and the risk of developing affective disorders. The mechanisms underlying the influence of the hSERT gene on these phenotypes remain unclear but may involve altered 5-HT receptor function. Here we characterise the cerebral metabolic response to 5-HT(2A/C) receptor activation in two transgenic mouse models of altered SERT function, SERT knock-out (SERT KO) and hSERT over-expressing (hSERT OE) mice, to test the hypothesis that genetically mediated variability in SERT expression alters 5-HT(2A/C) function. We found that a constitutive increase in SERT expression (hSERT OE) enhanced, whereas a constitutive decrease in SERT expression (SERT KO) attenuated, 5-HT(2A/C) function. Therefore, altered 5-HT(2A/C) receptor functioning in response to hSERT gene variation may contribute to its influence on affective phenotypes.

  2. Allosteric signaling through an mGlu2 and 5-HT2A heteromeric receptor complex and its potential contribution to schizophrenia

    PubMed Central

    Moreno, José L.; Miranda-Azpiazu, Patricia; García-Bea, Aintzane; Younkin, Jason; Cui, Meng; Kozlenkov, Alexey; Ben-Ezra, Ariel; Voloudakis, Georgios; Fakira, Amanda K.; Baki, Lia; Ge, Yongchao; Georgakopoulos, Anastasios; Morón, José A.; Milligan, Graeme; López-Giménez, Juan F.; Robakis, Nikolaos K.; Logothetis, Diomedes E.; Meana, J. Javier; González-Maeso, Javier

    2016-01-01

    Heterotrimeric guanine nucleotide–binding protein (G protein)–coupled receptors (GPCRs) can form multiprotein complexes (heteromers), which can alter the pharmacology and functions of the constituent receptors. Previous findings demonstrated that the Gq/11-coupled serotonin 5-HT2A receptor and the Gi/o-coupled metabotropic glutamate 2 (mGlu2) receptor—GPCRs that are involved in signaling alterations associated with psychosis—assemble into a heteromeric complex in the mammalian brain. In single-cell experiments with various mutant versions of the mGlu2 receptor, we showed that stimulation of cells expressing mGlu2–5-HT2A heteromers with an mGlu2 agonist led to activation of Gq/11 proteins by the 5-HT2A receptors. For this crosstalk to occur, one of the mGlu2 subunits had to couple to Gi/o proteins, and we determined the relative location of the Gi/o-contacting subunit within the mGlu2 homodimer of the heteromeric complex. Additionally, mGlu2-dependent activation of Gq/11, but not Gi/o, was reduced in the frontal cortex of 5-HT2A knockout mice and was reduced in the frontal cortex of postmortem brains from schizophrenic patients. These findings offer structural insights into this important target in molecular psychiatry. PMID:26758213

  3. A homology-based model of the human 5-HT2A receptor derived from an in silico activated G-protein coupled receptor

    NASA Astrophysics Data System (ADS)

    Chambers, James J.; Nichols, David E.

    2002-07-01

    A homology-based model of the 5-HT2A receptor was produced utilizing an activated form of the bovine rhodopsin (Rh) crystal structure [1,2]. In silico activation of the Rh structure was accomplished by isomerization of the 11- cis-retinal (1) chromophore, followed by constrained molecular dynamics to relax the resultant high energy structure. The activated form of Rh was then used as a structural template for development of a human 5-HT2A receptor model. Both the 5-HT2A receptor and Rh are members of the G-protein coupled receptor (GPCR) super-family. The resulting homology model of the receptor was then used for docking studies of compounds representing a cross-section of structural classes that activate the 5-HT2A receptor, including ergolines, tryptamines, and amphetamines. The ligand/receptor complexes that ensued were refined and the final binding orientations were observed to be compatible with much of the data acquired through both diversified ligand design and site directed mutagenesis.

  4. Amelioration of hypoxia-induced striatal 5-HT(2A) receptor, 5-HT transporter and HIF1 alterations by glucose, oxygen and epinephrine in neonatal rats.

    PubMed

    Anju, T R; Paulose, C S

    2011-09-20

    Alterations in neurotransmitters and its receptors expression induce brain injury during neonatal hypoxic insult. Molecular processes regulating the serotonergic receptors play an important role in the control of respiration under hypoxic insult. The present study focused on the serotonergic regulation of neonatal hypoxia and its resuscitation methods. Receptor binding assays and gene expression studies were done to evaluate the changes in 5HT(2A) receptors and its transporter in the corpus striatum of hypoxic neonatal rats and hypoxic rats resuscitated with glucose, oxygen and epinephrine. Total 5HT and 5HT(2A) receptor number was increased in hypoxic neonates along with an up regulation of 5HT(2A) receptor and 5HT transporter gene. The enhanced striatal 5HT(2A) receptors modulate the ventilatory response to hypoxia. Immediate glucose resuscitation was found to ameliorate the receptor and transporter alterations. Hypoxia induced ATP depletion mediated reduction in blood glucose levels can be encountered by glucose administration and oxygenation helps in overcoming the anaerobic condition. The adverse effect of immediate oxygenation and epinephrine supplementation was also reported. This has immense clinical significance in establishing a proper resuscitation for the management of neonatal hypoxia.

  5. Effect of fluvoxamine on platelet 5-HT2A receptors as studied by [3H]lysergic acid diethylamide ([3H]LSD) binding in healthy volunteers.

    PubMed

    Spigset, O; Mjörndal, T

    1997-09-01

    Alterations in platelet 5-HT2A receptor characteristics have been reported in major depression as well as in other psychiatric diseases, and some effort has been made to utilize platelet 5-HT2A receptor status as a biological correlate to antidepressant drug response. In order to investigate whether treatment with a selective serotonin reuptake inhibitor affects platelet 5-HT2A receptors, we have studied platelet [3H]lysergic acid diethylamide ([3H]LSD) binding in healthy subjects treated with fluvoxamine in increasing dosage once weekly for 4 weeks. After 1 week of fluvoxamine treatment (25 mg/day), both Bmax and Kd were significantly lower than before the start of the treatment (19.9 versus 25.5 fmol/mg protein, P = 0.005 for Bmax; 0.45 versus 0.93 nM, P = 0.006 for Kd). Bmax returned to baseline during week 2, whereas Kd was lower than the baseline value throughout the treatment period. After discontinuation of fluvoxamine treatment, there was a significant increase in Kd (0.50 nM before discontinuation vs. 1.14 nM after discontinuation; P = 0.001), but not in Bmax. The study demonstrates that fluvoxamine affects platelet 5-HT2A receptor status irrespective of underlying psychiatric disease, and that this effect is evident already after 1 week at a subtherapeutic fluvoxamine dose.

  6. Hallucinogen-like effects of 2-([2-(4-cyano-2,5-dimethoxyphenyl) ethylamino]methyl)phenol (25CN-NBOH), a novel N-benzylphenethylamine with 100-fold selectivity for 5-HT2A receptors, in mice

    PubMed Central

    Gray, Bradley W.; Bailey, Jessica M.; Smith, Douglas; Hansen, Martin; Kristensen, Jesper L.

    2014-01-01

    Rationale 2-([2-(4-cyano-2,5-dimethoxyphenyl)ethylamino]methyl)phenol (25CN-NBOH) is structurally similar to N-benzyl substituted phenethylamine hallucinogens currently emerging as drugs of abuse. 25CN-NBOH exhibits dramatic selectivity for 5-HT2A receptors in vitro, but has not been behaviorally characterized. Objective 25CN-NBOH was compared to the traditional phenethylamine hallucinogen R(−)-2,5-dimethoxy-4-iodoamphetamine (DOI) using mouse models of drug-elicited head twitch behavior and drug discrimination. Methods Drug-elicited head twitches were quantified for 10 min following administration of various doses of either DOI or 25CN-NBOH, with and without pretreatments of 0.01 mg/kg 5-HT2A antagonist M100907 or 3.0 mg/kg 5-HT2C antagonist RS102221. The capacity of 25CN-NBOH to attenuate DOI-elicited head twitch was also investigated. Mice were trained to discriminate DOI or M100907 from saline, and 25CN-NBOH was tested for generalization. Results 25CN-NBOH induced a head twitch response in the mouse that was lower in magnitude than that of DOI, blocked by M100907, but not altered by RS102221. DOI-elicited head twitch was dose-dependently attenuated by 25CN-NBOH pretreatment. 25CN-NBOH produced an intermediate degree of generalization (55%) for the DOI training dose, and these interoceptive effects were attenuated by M100907. Finally, 25CN-NBOH did not generalize to M100907 at any dose, but ketanserin fully substituted in these animals. Conclusions 25CN-NBOH was behaviorally active, but less effective than DOI in two mouse models of hallucinogenic effects. The effectiveness with which M100907 antagonized the behavioral actions of 25CN-NBOH strongly suggests that the 5-HT2A receptor is an important site of agonist action for this compound in vivo. PMID:25224567

  7. Effects of olanzapine and betahistine co-treatment on serotonin transporter, 5-HT2A and dopamine D2 receptor binding density.

    PubMed

    Lian, Jiamei; Huang, Xu-Feng; Pai, Nagesh; Deng, Chao

    2013-12-02

    Olanzapine is widely used in treating multiple domains of schizophrenia symptoms but induces serious metabolic side-effects. Recent evidence has showed that co-treatment of betahistine (a histaminergic H1 receptor agonist and H3 receptor antagonist) is effective for preventing olanzapine-induced weight gain/obesity, however it is not clear whether this co-treatment affects on the primary therapeutic receptor binding sites of olanzapine such as serotonergic 5-HT2A receptors (5-HT2AR) and dopaminergic D2 receptors (D2R). Therefore, this study investigated the effects of this co-treatment on 5-HT2AR, 5-HT transporter (5-HTT) and D2R bindings in various brain regions involved in antipsychotic efficacy. Female Sprague Dawley rats were administered orally (t.i.d.) with either olanzapine (1mg/kg), betahistine (2.7 mg/kg), olanzapine plus betahistine (O+B), or vehicle (control) for 2 weeks. Quantitative autoradiography was used to detect the density of [(3)H]ketanserin, [(3)H]paroxetine and [(3)H]raclopride binding site to 5-HT2AR, 5-HTT and D2R. Compared to the controls, olanzapine significantly decreased [(3)H]ketanserin bindings to 5-HT2AR in the prefrontal cortex, cingulate cortex, and nucleus accumbens. Similar changes in 5-HT2AR bindings in these nuclei were also observed in the O+B co-treatment group. Olanzapine also significantly decreased [(3)H]paroxetine binding to 5-HTT in the ventral tegmental area and substantia nigra, however, both olanzapine only and O+B co-treatment did not affect [(3)H]raclopride binding to D2R. The results confirmed the important role of 5-HT2AR in the efficacy of olanzapine, which is not influenced by the O+B co-treatment. Therefore, betahistine co-treatment would be an effective combination therapy to reduce olanzapine-induced weight gain side-effects without affecting olanzapine's actions on 5-HT2AR transmissions.

  8. Dual role of serotonin in the acquisition and extinction of reward-driven learning: involvement of 5-HT1A, 5-HT2A and 5-HT3 receptors.

    PubMed

    Frick, Luciana Romina; Bernardez-Vidal, Micaela; Hocht, Christian; Zanutto, Bonifacio Silvano; Rapanelli, Maximiliano

    2015-01-15

    Serotonin (5-HT) has been proposed as a possible encoder of reward. Nevertheless, the role of this neurotransmitter in reward-based tasks is not well understood. Given that the major serotonergic circuit in the rat brain comprises the dorsal raphe nuclei and the medial prefrontal cortex (mPFC), and because the latter structure is involved in the control of complex behaviors and expresses 1A (5-HT1A), 2A (5-HT2A), and 3 (5-HT3) receptors, the aim was to study the role of 5-HT and of these receptors in the acquisition and extinction of a reward-dependent operant conditioning task. Long Evans rats were trained in an operant conditioning task while receiving fluoxetine (serotonin reuptake inhibitor, 10mg/kg), tianeptine (serotonin reuptake enhancer, 10mg/kg), buspirone (5-HT1A partial agonist, 10mg/kg), risperidone (5-HT2A antagonist, 1mg/kg), ondansetron (5-HT3 antagonist, 2mg/kg) or vehicle. Then, animals that acquired the operant conditioning without any treatment were trained to extinct the task in the presence of the pharmacological agents. Fluoxetine impaired acquisition but improved extinction. Tianeptine administration induced the opposite effects. Buspirone induced a mild deficit in acquisition and had no effects during the extinction phase. Risperidone administration resulted in learning deficits during the acquisition phase, although it promoted improved extinction. Ondansetron treatment showed a deleterious effect in the acquisition phase and an overall improvement in the extinction phase. These data showed a differential role of 5-HT in the acquisition and extinction of an operant conditioning task, suggesting that it may have a dual function in reward encoding.

  9. Repeated administration of Yokukansan inhibits DOI-induced head-twitch response and decreases expression of 5-hydroxytryptamine (5-HT)2A receptors in the prefrontal cortex.

    PubMed

    Egashira, Nobuaki; Iwasaki, Katsunori; Ishibashi, Ayumi; Hayakawa, Kazuhide; Okuno, Ryoko; Abe, Moe; Uchida, Naoki; Mishima, Kenichi; Takasaki, Kotaro; Nishimura, Ryoji; Oishi, Ryozo; Fujiwara, Michihiro

    2008-08-01

    Behavioral and psychological symptoms of dementia (BPSD) are commonly seen in patients with Alzheimer's disease (AD) and other forms of senile dementia. BPSD have a serious impact on the quality of life of dementia patients, as well as their caregivers. However, an effective drug therapy for BPSD has not been established. Recently, the traditional Japanese medicine Yokukansan (YKS, Yi-gan san in Chinese) has been reported to improve BPSD in a randomized, single-blind, placebo-controlled study. Moreover, abnormalities of the serotonin (5-HT) system such as 5-HT2A receptors have been reported to be associated with BPSD of AD patients. In the present study, we investigated the effect of YKS on head-twitch response induced by 2,5-dimethoxy-4-iodoamphetamine (DOI, 5 mg/kg, i.p.) in mice, a behavioral response that is mediated, in part, by 5-HT2A receptors. Acute treatment with YKS (100 and 300 mg/kg, p.o.) had no effect on the DOI-induced head-twitch response, whilst 14 days repeated treatment with YKS (300 mg/kg, p.o.) significantly inhibited this response. Moreover, repeated treatment with YKS (300 mg/kg, p.o.) decreased expression of 5-HT2A receptors in the prefrontal cortex, which is part of the circuitry mediating the head-twitch response. These findings suggest that the inhibition of DOI-induced head-twitch response by YKS may be mediated, in part, by altered expression of 5-HT2A receptors in the prefrontal cortex, which suggests the involvement of the 5-HT system in psychopharmacological effects of YKS.

  10. Differences in 5-HT2A and mGlu2 Receptor Expression Levels and Repressive Epigenetic Modifications at the 5-HT2A Promoter Region in the Roman Low- (RLA-I) and High- (RHA-I) Avoidance Rat Strains.

    PubMed

    Fomsgaard, Luna; Moreno, Jose L; de la Fuente Revenga, Mario; Brudek, Tomasz; Adamsen, Dea; Rio-Alamos, Cristobal; Saunders, Justin; Klein, Anders Bue; Oliveras, Ignasi; Cañete, Toni; Blazquez, Gloria; Tobeña, Adolf; Fernandez-Teruel, Albert; Gonzalez-Maeso, Javier; Aznar, Susana

    2017-03-06

    The serotonin 2A (5-HT2A) and metabotropic glutamate 2 (mGlu2) receptors regulate each other and are associated with schizophrenia. The Roman high- (RHA-I) and the Roman low- (RLA-I) avoidance rat strains present well-differentiated behavioral profiles, with the RHA-I strain emerging as a putative genetic rat model of schizophrenia-related features. The RHA-I strain shows increased 5-HT2A and decreased mGlu2 receptor binding levels in prefrontal cortex (PFC). Here, we looked for differences in gene expression and transcriptional regulation of these receptors. The striatum (STR) was included in the analysis. 5-HT2A, 5-HT1A, and mGlu2 mRNA and [(3)H]ketanserin binding levels were measured in brain homogenates. As expected, 5-HT2A binding was significantly increased in PFC in the RHA-I rats, while no difference in binding was observed in STR. Surprisingly, 5-HT2A gene expression was unchanged in PFC but significantly decreased in STR. mGlu2 receptor gene expression was significantly decreased in both PFC and STR. No differences were observed for the 5-HT1A receptor. Chromatin immunoprecipitation assay revealed increased trimethylation of histone 3 at lysine 27 (H3K27me3) at the promoter region of the HTR2A gene in the STR. We further looked at the Akt/GSK3 signaling pathway, a downstream point of convergence of the serotonin and glutamate system, and found increased phosphorylation levels of GSK3β at tyrosine 216 and increased β-catenin levels in the PFC of the RHA-I rats. These results reveal region-specific regulation of the 5-HT2A receptor in the RHA-I rats probably due to absence of mGlu2 receptor that may result in differential regulation of downstream pathways.

  11. Effects of central activation of serotonin 5-HT2A/2C or dopamine D2/3 receptors on the acute and repeated effects of clozapine in the conditioned avoidance response test

    PubMed Central

    Feng, Min; Gao, Jun; Sui, Nan; Li, Ming

    2014-01-01

    Rationale: Acute administration of clozapine (a gold standard of atypical antipsychotics) disrupts avoidance response in rodents, while repeated administration often causes a tolerance effect. Objective: The present study investigated the neuroanatomical basis and receptor mechanisms of acute and repeated effects of clozapine treatment in the conditioned avoidance response test in male Sprague-Dawley rats. Methods: DOI (2,5-dimethoxy-4-iodo-amphetamine, a preferential 5-HT2A/2C agonist) or quinpirole (a preferential dopamine D2/3 agonist) was microinjected into the medial prefrontal cortex (mPFC) or nucleus accumbens shell (NAs), and their effects on the acute and long-term avoidance-disruptive effect of clozapine were tested. Results: Intra-mPFC microinjection of quinpirole enhanced the acute avoidance disruptive effect of clozapine (10 mg/kg, sc), while DOI microinjections reduced it marginally. Repeated administration of clozapine (10 mg/kg, sc) daily for 5 days caused a progressive decrease in its inhibition of avoidance responding, indicating tolerance development. Intra-mPFC microinjection of DOI at 25.0 (but not 5.0) μg/side during this period completely abolished the expression of clozapine tolerance. This was indicated by the finding that clozapine-treated rats centrally infused with 25.0 μg/side DOI did not show higher levels of avoidance responses than the vehicle-treated rats in the clozapine challenge test. Microinjection of DOI into the mPFC immediately before the challenge test also decreased the expression of clozapine tolerance. Conclusions: Acute behavioral effect of clozapine can be enhanced by activation of the D2/3 receptors in the mPFC. Clozapine tolerance expression relies on the neuroplasticity initiated by its antagonist action against 5-HT2A/2C receptors in the mPFC. PMID:25288514

  12. A 5-HT2A/2C receptor agonist, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane, mitigates developmental neurotoxicity of ethanol to serotonergic neurons.

    PubMed

    Ishiguro, Tsukasa; Sakata-Haga, Hiromi; Fukui, Yoshihiro

    2016-07-01

    Prenatal ethanol exposure causes the reduction of serotonergic (5-HTergic) neurons in the midbrain raphe nuclei. In the present study, we examined whether an activation of signaling via 5-HT2A and 5-HT2C receptors during the fetal period is able to prevent the reduction of 5-HTergic neurons induced by prenatal ethanol exposure. Pregnant Sprague-Dawley rats were given a liquid diet containing 2.5 to 5.0% (w/v) ethanol on gestational days (GDs) 10 to 20 (Et). As a pair-fed control, other pregnant rats were fed the same liquid diet except that the ethanol was replaced by isocaloric sucrose (Pf). Each Et and Pf group was subdivided into two groups; one of the groups was treated with 1 mg/kg (i.p.) of 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), an agonist for 5-HT2A/2C receptors, during GDs 13 to 19 (Et-DOI or Pf-DOI), and another was injected with saline vehicle only (Et-Sal or Pf-Sal). Their fetuses were removed by cesarean section on GD 19 or 20, and fetal brains were collected. An immunohistological examination of 5-HTergic neurons in the fetuses on embryonic day 20 using an antibody against tryptophan hydroxylase revealed that the number of 5-HTergic neurons in the midbrain raphe nuclei was significantly reduced in the Et-Sal fetuses compared to that of the Pf-Sal and Pf-DOI fetuses, whereas there were no significant differences between Et-DOI and each Pf control. Thus, we concluded that the reduction of 5-HTergic neurons that resulted in prenatal ethanol exposure could be alleviated by the enhancement of signaling via 5-HT2A/2C receptors during the fetal period.

  13. A Model of Post-Infection Fatigue Is Associated with Increased TNF and 5-HT2A Receptor Expression in Mice

    PubMed Central

    Couch, Yvonne; Xie, Qin; Lundberg, Louise; Sharp, Trevor; Anthony, Daniel C.

    2015-01-01

    It is well documented that serotonin (5-HT) plays an important role in psychiatric illness. For example, myalgic encephalomyelitis (ME/CFS), which is often provoked by infection, is a disabling illness with an unknown aetiology and diagnosis is based on symptom-specific criteria. However, 5-HT2A receptor expression and peripheral cytokines are known to be upregulated in ME. We sought to examine the relationship between the 5-HT system and cytokine expression following systemic bacterial endotoxin challenge (LPS, 0.5mg/kg i.p.), at a time when the acute sickness behaviours have largely resolved. At 24 hours post-injection mice exhibit no overt changes in locomotor behaviour, but do show increased immobility in a forced swim test, as well as decreased sucrose preference and reduced marble burying activity, indicating a depressive-like state. While peripheral IDO activity was increased after LPS challenge, central activity levels remained stable and there was no change in total brain 5-HT levels or 5-HIAA/5-HT. However, within the brain, levels of TNF and 5-HT2A receptor mRNA within various regions increased significantly. This increase in receptor expression is reflected by an increase in the functional response of the 5-HT2A receptor to agonist, DOI. These data suggest that regulation of fatigue and depressive-like moods after episodes of systemic inflammation may be regulated by changes in 5-HT receptor expression, rather than by levels of enzyme activity or cytokine expression in the CNS. PMID:26147001

  14. Quantitative structure-activity relationship of phenoxyphenyl-methanamine compounds with 5HT2A, SERT, and hERG activities.

    PubMed

    Mente, Scot; Gallaschun, Randall; Schmidt, Anne; Lebel, Lorrie; Vanase-Frawley, Michelle; Fliri, Anton

    2008-12-01

    QSAR models have been used to evaluate activities for compounds in the phenoxyphenyl-methanamine (PPMA) class of compounds. These models utilize Hammett-type donating-withdrawing substituent values as well as simple parameters to describe substituent size and elucidate the SAR of the 'A' and 'B' rings. Using this methodology, intuitive QSAR relationships were found for the three biological activities with R(2) values of 0.73, 0.45, and 0.58 for 5HT(2A), SerT, and hERG activities.

  15. Individual Differences in Impulsive Action Reflect Variation in the Cortical Serotonin 5-HT2A Receptor System

    PubMed Central

    Fink, Latham HL; Anastasio, Noelle C; Fox, Robert G; Rice, Kenner C; Moeller, F Gerard; Cunningham, Kathryn A

    2015-01-01

    Impulsivity is an important feature of multiple neuropsychiatric disorders, and individual variation in the degree of inherent impulsivity could play a role in the generation or exacerbation of problematic behaviors. Serotonin (5-HT) actions at the 5-HT2AR receptor (5-HT2AR) promote and 5-HT2AR antagonists suppress impulsive action (the inability to withhold premature responses; motor impulsivity) upon systemic administration or microinfusion directly into the medial prefrontal cortex (mPFC), a node in the corticostriatal circuit that is thought to play a role in the regulation of impulsive action. We hypothesized that the functional capacity of the 5-HT2AR, which is governed by its expression, localization, and protein/protein interactions (eg, postsynaptic density 95 (PSD95)), may drive the predisposition to inherent impulsive action. Stable high-impulsive (HI) and low-impulsive (LI) phenotypes were identified from an outbred rodent population with the 1-choice serial reaction time (1-CSRT) task. HI rats exhibited a greater head-twitch response following administration of the preferential 5-HT2AR agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) and were more sensitive to the effects of the selective 5-HT2AR antagonist M100907 to suppress impulsive action relative to LI rats. A positive correlation was observed between levels of premature responses and 5-HT2AR binding density in frontal cortex ([3H]-ketanserin radioligand binding). Elevated mPFC 5-HT2AR protein expression concomitant with augmented association of the 5-HT2AR with PSD95 differentiated HI from LI rats. The observed differential sensitivity of HI and LI rats to 5-HT2AR ligands and associated distinct 5-HT2AR protein profiles provide evidence that spontaneously occurring individual differences in impulsive action reflect variation in the cortical 5-HT2AR system. PMID:25666313

  16. Cerebral 5-HT release correlates with [(11)C]Cimbi36 PET measures of 5-HT2A receptor occupancy in the pig brain.

    PubMed

    Jørgensen, Louise M; Weikop, Pia; Villadsen, Jonas; Visnapuu, Tanel; Ettrup, Anders; Hansen, Hanne D; Baandrup, Anders O; Andersen, Flemming L; Bjarkam, Carsten R; Thomsen, Carsten; Jespersen, Bo; Knudsen, Gitte M

    2017-02-01

    Positron emission tomography (PET) can, when used with appropriate radioligands, non-invasively generate temporal and spatial information about acute changes in brain neurotransmitter systems. We for the first time evaluate the novel 5-HT2A receptor agonist PET radioligand, [(11)C]Cimbi-36, for its sensitivity to detect changes in endogenous cerebral 5-HT levels, as induced by different pharmacological challenges. To enable a direct translation of PET imaging data to changes in brain 5-HT levels, we calibrated the [(11)C]Cimbi-36 PET signal in the pig brain by simultaneous measurements of extracellular 5-HT levels with microdialysis and [(11)C]Cimbi-36 PET after various acute interventions (saline, citalopram, citalopram + pindolol, fenfluramine). In a subset of pigs, para-chlorophenylalanine pretreatment was given to deplete cerebral 5-HT. The interventions increased the cerebral extracellular 5-HT levels to 2-11 times baseline, with fenfluramine being the most potent pharmacological enhancer of 5-HT release, and induced a varying degree of decline in [(11)C]Cimbi-36 binding in the brain, consistent with the occupancy competition model. The observed correlation between changes in the extracellular 5-HT level in the pig brain and the 5-HT2A receptor occupancy indicates that [(11)C]Cimbi-36 binding is sensitive to changes in endogenous 5-HT levels, although only detectable with PET when the 5-HT release is sufficiently high.

  17. Evidence for a common biological basis of the Absorption trait, hallucinogen effects, and positive symptoms: epistasis between 5-HT2a and COMT polymorphisms.

    PubMed

    Ott, Ulrich; Reuter, Martin; Hennig, Juergen; Vaitl, Dieter

    2005-08-05

    Absorption represents a disposition to experience altered states of consciousness characterized by intensively focused attention. It is correlated with hypnotic susceptibility and includes phenomena ranging from vivid perceptions and imaginations to mystical experiences. Based on the assumption that drug-induced and naturally occurring mystical experiences share common neural mechanisms, we hypothesized that Absorption is influenced by the T102C polymorphism affecting the 5-HT2a receptor, which is known to be an important target site of hallucinogens like LSD. Based on the pivotal role ascribed to the prefrontal executive control network for absorbed attention and positive symptoms in schizophrenia, it was further hypothesized that Absorption is associated with the VAL158MET polymorphism of the catechol-O-methyltransferase (COMT) gene affecting the dopaminergic neurotransmitter system. The Tellegen Absorption Scale was administered to 336 subjects (95 male, 241 female). Statistical analysis revealed that the group with the T/T genotype of the T102C polymorphism, implying a stronger binding potential of the 5-HT2a receptor, indeed had significantly higher Absorption scores (F = 10.00, P = 0.002), while no main effect was found for the COMT polymorphism. However, the interaction between T102C and COMT genotypes yielded significance (F = 3.89; P = 0.049), underlining the known functional interaction between the 5-HT and the dopaminergic system. These findings point to biological foundations of the personality trait of Absorption.

  18. The secret ingredient for social success of young males: a functional polymorphism in the 5HT2A serotonin receptor gene.

    PubMed

    Dijkstra, Jan Kornelis; Lindenberg, Siegwart; Zijlstra, Lieuwe; Bouma, Esther; Veenstra, René

    2013-01-01

    In adolescence, being socially successful depends to a large extent on being popular with peers. Even though some youths have what it takes to be popular, they are not, whereas others seem to have a secret ingredient that just makes the difference. In this study the G-allele of a functional polymorphism in the promotor region of the 5HT2A serotonin receptor gene (-G1438A) was identified as a secret ingredient for popularity among peers. These findings build on and extend previous work by Burt (2008, 2009). Tackling limitations from previous research, the role of the 5HT2A serotonin receptor gene was examined in adolescent males (N = 285; average age 13) using a unique sample of the TRAILS study. Carrying the G-allele enhanced the relation between aggression and popularity, particularly for those boys who have many female friends. This seems to be an "enhancer" effect of the G-allele whereby popularity relevant characteristics are made more noticeable. There is no "popularity gene", as the G-allele by itself had no effect on popularity.

  19. Effect of GABAergic ligands on the anxiolytic-like activity of DOI (a 5-HT(2A/2C) agonist) in the four-plate test in mice.

    PubMed

    Massé, Fabienne; Hascoët, Martine; Bourin, Michel

    2007-01-01

    5-HTergic and GABAergic systems are involved in neurobiology of anxiety. Precedent studies have demonstrated that SSRIs possessed an anxiolytic-like effect in the four-plate test (FPT) at doses that did not modify spontaneous locomotor activity. This effect seems to be mediated through the activation of 5-HT(2A) postsynaptic receptors. The purpose of the present study was to examine the implication of GABA system in the anxiolytic-like activity of DOI in the FPT. To achieve this, the co-administration of DOI (5-HT(2A/2C) receptor agonists) with GABA(A) and GABA(B) receptor ligands was evaluated in the FPT. Alprazolam, diazepam and muscimol (for higher dose) potentiated the anxiolytic-like effect of DOI. Bicuculline, picrotoxin and baclofen inhibited the anxiolytic-like effect of DOI. Flumazenil and CGP 35348 had no effect on the anxiolytic-like activity of DOI. These results suggest that the GABA system seems to be strongly implicated in the anxiolytic-like activity of DOI in the FPT.

  20. Test-retest variability of high resolution positron emission tomography (PET) imaging of cortical serotonin (5HT2A) receptors in older, healthy adults

    PubMed Central

    2009-01-01

    Background Position emission tomography (PET) imaging using [18F]-setoperone to quantify cortical 5-HT2A receptors has the potential to inform pharmacological treatments for geriatric depression and dementia. Prior reports indicate a significant normal aging effect on serotonin 5HT2A receptor (5HT2AR) binding potential. The purpose of this study was to assess the test-retest variability of [18F]-setoperone PET with a high resolution scanner (HRRT) for measuring 5HT2AR availability in subjects greater than 60 years old. Methods: Six healthy subjects (age range = 65–78 years) completed two [18F]-setoperone PET scans on two separate occasions 5–16 weeks apart. Results The average difference in the binding potential (BPND) as measured on the two occasions in the frontal and temporal cortical regions ranged between 2 and 12%, with the lowest intraclass correlation coefficient in anterior cingulate regions. Conclusion We conclude that the test-retest variability of [18F]-setoperone PET in elderly subjects is comparable to that of [18F]-setoperone and other 5HT2AR radiotracers in younger subject samples. PMID:19580676

  1. Effects of imipramine and bupropion on the duration of immobility of ACTH-treated rats in the forced swim test: involvement of the expression of 5-HT2A receptor mRNA.

    PubMed

    Kitamura, Yoshihisa; Fujitani, Yoshika; Kitagawa, Kouhei; Miyazaki, Toshiaki; Sagara, Hidenori; Kawasaki, Hiromu; Shibata, Kazuhiko; Sendo, Toshiaki; Gomita, Yutaka

    2008-02-01

    We examined the effect of chronic administration of imipramine and bupropion, monoamine reuptake inhibitors, on the duration of immobility in the forced swim test and serotonin (5-HT)(2A) receptor function in the form of 5-HT(2A) receptor mRNA levels in rats chronically treated with adrenocorticotropic hormone (ACTH). The immobility-decreasing effect of bupropion without imipramine did not influence the chronic ACTH treatment. The effect on the expression of 5-HT(2A) receptor mRNA of chronic ACTH treatment was decreased by bupropion, but not imipramine. These results suggest that bupropion has the effect of reducing immobility time in the forced swim test in the tricyclic antidepressant-resistant depressive model induced by chronic ACTH treatment in rats, and that decreased 5-HT(2A) receptor mRNA levels may be involved in this phenomenon.

  2. Comparison of the anti-dopamine D₂ and anti-serotonin 5-HT(2A) activities of chlorpromazine, bromperidol, haloperidol and second-generation antipsychotics parent compounds and metabolites thereof.

    PubMed

    Suzuki, Hidenobu; Gen, Keishi; Inoue, Yuichi

    2013-04-01

    Second-generation antipsychotics, which have become the standard drug therapies for schizophrenia, are known to have a serotonin 5-HT(2A) receptor blocking effect in addition to a dopamine D₂ receptor blocking effect. However, although chlorpromazine (CPZ) has a 5-HT(2A) receptor blocking effect and has the profile of a second-generation antipsychotic in vitro, it loses this pharmacological profile in vivo. In order to elucidate the differences between the in vivo and in vitro pharmacological characteristics of CPZ, we used a radioreceptor assay to measure the anti-D₂ activity and the anti-5-HT(2A) activity of CPZ and five major metabolites of CPZ, and compared the results to the anti-D₂ activity and anti-5-HT(2A) activity of risperidone, zotepine, perospirone, the major metabolites of each of these drugs, and olanzapine, bromperidol, and haloperidol. The subjects were 182 patients who had received diagnoses of schizophrenia based on the DSM-IV criteria. The results revealed that CPZ exhibited little anti-5-HT(2A) activity, regardless of the anti-D₂ activity level, and that none of the metabolites possessed anti-5-HT(2A) activity. However, both the parent compounds and the metabolites of each of the second-generation antipsychotics possessed both anti-D₂ activity and anti-5-HT(2A) activity. This clarified that, unlike second-generation antipsychotics, the reason CPZ loses its second-generation antipsychotic profiles in vivo is because it does not have any metabolites that possess anti-5-HT(2A) activity.

  3. Targeting dopamine D3 and serotonin 5-HT1A and 5-HT2A receptors for developing effective antipsychotics: synthesis, biological characterization, and behavioral studies.

    PubMed

    Brindisi, Margherita; Butini, Stefania; Franceschini, Silvia; Brogi, Simone; Trotta, Francesco; Ros, Sindu; Cagnotto, Alfredo; Salmona, Mario; Casagni, Alice; Andreassi, Marco; Saponara, Simona; Gorelli, Beatrice; Weikop, Pia; Mikkelsen, Jens D; Scheel-Kruger, Jorgen; Sandager-Nielsen, Karin; Novellino, Ettore; Campiani, Giuseppe; Gemma, Sandra

    2014-11-26

    Combination of dopamine D3 antagonism, serotonin 5-HT1A partial agonism, and antagonism at 5-HT2A leads to a novel approach to potent atypical antipsychotics. Exploitation of the original structure-activity relationships resulted in the identification of safe and effective antipsychotics devoid of extrapyramidal symptoms liability, sedation, and catalepsy. The potential atypical antipsychotic 5bb was selected for further pharmacological investigation. The distribution of c-fos positive cells in the ventral striatum confirmed the atypical antipsychotic profile of 5bb in agreement with behavioral rodent studies. 5bb administered orally demonstrated a biphasic effect on the MK801-induced hyperactivity at dose levels not able to induce sedation, catalepsy, or learning impairment in passive avoidance. In microdialysis studies, 5bb increased the dopamine efflux in the medial prefrontal cortex. Thus, 5bb represents a valuable lead for the development of atypical antipsychotics endowed with a unique pharmacological profile for addressing negative symptoms and cognitive deficits in schizophrenia.

  4. The effects of the preferential 5-HT2A agonist psilocybin on prepulse inhibition of startle in healthy human volunteers depend on interstimulus interval.

    PubMed

    Vollenweider, Franz X; Csomor, Philipp A; Knappe, Bernhard; Geyer, Mark A; Quednow, Boris B

    2007-09-01

    Schizophrenia patients exhibit impairments in prepulse inhibition (PPI) of the startle response. Hallucinogenic 5-HT(2A) receptor agonists are used for animal models of schizophrenia because they mimic some symptoms of schizophrenia in humans and induce PPI deficits in animals. Nevertheless, one report indicates that the 5-HT(2A) receptor agonist psilocybin increases PPI in healthy humans. Hence, we investigated these inconsistent results by assessing the dose-dependent effects of psilocybin on PPI in healthy humans. Sixteen subjects each received placebo or 115, 215, and 315 microg/kg of psilocybin at 4-week intervals in a randomized and counterbalanced order. PPI at 30-, 60-, 120-, 240-, and 2000-ms interstimulus intervals (ISIs) was measured 90 and 165 min after drug intake, coinciding with the peak and post-peak effects of psilocybin. The effects of psilocybin on psychopathological core dimensions and sustained attention were assessed by the Altered States of Consciousness Rating Scale (5D-ASC) and the Frankfurt Attention Inventory (FAIR). Psilocybin dose-dependently reduced PPI at short (30 ms), had no effect at medium (60 ms), and increased PPI at long (120-2000 ms) ISIs, without affecting startle reactivity or habituation. Psilocybin dose-dependently impaired sustained attention and increased all 5D-ASC scores with exception of Auditory Alterations. Moreover, psilocybin-induced impairments in sustained attention performance were positively correlated with reduced PPI at the 30 ms ISI and not with the concomitant increases in PPI observed at long ISIs. These results confirm the psilocybin-induced increase in PPI at long ISIs and reveal that psilocybin also produces a decrease in PPI at short ISIs that is correlated with impaired attention and consistent with deficient PPI in schizophrenia.

  5. Variation in Dopamine D2 and Serotonin 5-HT2A Receptor Genes is Associated with Working Memory Processing and Response to Treatment with Antipsychotics

    PubMed Central

    Blasi, Giuseppe; Selvaggi, Pierluigi; Fazio, Leonardo; Antonucci, Linda Antonella; Taurisano, Paolo; Masellis, Rita; Romano, Raffaella; Mancini, Marina; Zhang, Fengyu; Caforio, Grazia; Popolizio, Teresa; Apud, Jose; Weinberger, Daniel R; Bertolino, Alessandro

    2015-01-01

    Dopamine D2 and serotonin 5-HT2A receptors contribute to modulate prefrontal cortical physiology and response to treatment with antipsychotics in schizophrenia. Similarly, functional variation in the genes encoding these receptors is also associated with these phenotypes. In particular, the DRD2 rs1076560 T allele predicts a lower ratio of expression of D2 short/long isoforms, suboptimal working memory processing, and better response to antipsychotic treatment compared with the G allele. Furthermore, the HTR2A T allele is associated with lower 5-HT2A expression, impaired working memory processing, and poorer response to antipsychotics compared with the C allele. Here, we investigated in healthy subjects whether these functional polymorphisms have a combined effect on prefrontal cortical physiology and related cognitive behavior linked to schizophrenia as well as on response to treatment with second-generation antipsychotics in patients with schizophrenia. In a total sample of 620 healthy subjects, we found that subjects with the rs1076560 T and rs6314 T alleles have greater fMRI prefrontal activity during working memory. Similar results were obtained within the attentional domain. Also, the concomitant presence of the rs1076560 T/rs6314 T alleles also predicted lower behavioral accuracy during working memory. Moreover, we found that rs1076560 T carrier/rs6314 CC individuals had better responses to antipsychotic treatment in two independent samples of patients with schizophrenia (n=63 and n=54, respectively), consistent with the previously reported separate effects of these genotypes. These results indicate that DRD2 and HTR2A genetic variants together modulate physiological prefrontal efficiency during working memory and also modulate the response to antipsychotics. Therefore, these results suggest that further exploration is needed to better understand the clinical consequences of these genotype–phenotype relationships. PMID:25563748

  6. Serotonin 5-HT2A receptor binding in platelets from healthy subjects as studied by [3H]-lysergic acid diethylamide ([3H]-LSD): intra- and interindividual variability.

    PubMed

    Spigset, O; Mjörndal, T

    1997-04-01

    In studies on platelet 5-HT2A receptor binding in patients with neuropsychiatric disorders, there has been a marked variability and a considerable overlap of values between patients and controls. The causes of the large variability in 5-HT2A receptor parameters is still unsettled. In the present study, we have quantified the intra- and interindividual variability of platelet 5-HT2A receptor binding in 112 healthy subjects and explored factors that may influence 5-HT2A receptor binding, using [3H]-lysergic acid diethylamide as radioligand. Age, gender, blood pressure, and metabolic capacity of the liver enzymes CYP2D6 and CYP2C19 did not influence Bmax and Kd values. Body weight and body mass index (BMI) showed a negative correlation with Kd (p = .04 and .03, respectively), but not with Bmax. Bmax was significantly lower in the light half of the year than in the dark half of the year (p = .001), and Kd was significantly lower in the fall than in the summer and winter (p < .001). In females, there was a significant increase in Bmax from week 1 to week 2 of the menstrual cycle (p = .03). Females taking contraceptive pills had significantly higher Kd than drug-free females in weeks 1 and 4 of the menstrual cycle (p = .04). This study shows that a number of factors should be taken into account when using platelet 5-HT2A receptor binding in studies of neuropsychiatric disorders.

  7. A new class of arylpiperazine derivatives: the library synthesis on SynPhase lanterns and biological evaluation on serotonin 5-HT(1A) and 5-HT(2A) receptors.

    PubMed

    Zajdel, Paweł; Subra, Gilles; Bojarski, Andrzej J; Duszyńska, Beata; Pawłowski, Maciej; Martinez, Jean

    2004-01-01

    An efficient solid-supported method for the synthesis of a new class of arylpiperazine derivatives containing amino acid residues has been developed. A 72-membered library was synthesized on SynPhase Lanterns functionalized by a BAL linker. A one-pot cleavage/cyclization step of aspartic and glutamic acid derivatives yielded succinimide- and pyroglutamyl-containing ligands (chemsets 9 and 10). The library representatives under study showed different levels of affinity for 5-HT(1A) and 5-HT(2A) receptors (estimated K(i) = 24-4000 and 1-2130 nM, respectively). Several dual 5-HT(1A)/5-HT(2A) ligands were found, of which two (9(3,3) and 9(3,5)) displayed high 5-HT(2A) affinity comparable to that of the reference drug ritanserin. A set of individual fragment contributions for the prediction of 5-HT(1A) and 5-HT(2A) affinity of all the library members were defined on the basis of the Free-Wilson analysis of 26 compounds. An alkylarylpiperazine fragment had essentially the same impact on the affinity for both receptors, whereas different terminal amide fragments were preferred by 5-HT(1A) (chemset 17, R(2) = adamantyl) and 5-HT(2A) (chemset 9, R(2) = norborn-2-ylmethyl) binding sites.

  8. Platelet 5-hydroxytryptamine (5-HT) transporter and 5-HT2A receptor binding after chronic hypercorticosteronemia, (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane administration or neurotoxin-induced depletion of central nervous system 5-HT in the rat.

    PubMed

    Owens, M J; Ballenger, C A; Knight, D L; Nemeroff, C B

    1996-09-01

    There is considerable evidence that the number of platelet 5-hydroxytryptamine (5-HT) transporter binding sites, as measured by [3H]imipramine binding, are significantly decreased, and platelet 5-HT2 receptor density is increased, in drug-free patients with major depression. To investigate whether these changes in the platelet 5-HT transporter or 5-HT2 receptor sites resulted from known or hypothesized biochemical changes observed in major depression, we examined, in the rat, whether a chronic hyperglucocorticoid state, or decreases or increases in central nervous system 5-HT neurotransmission, altered binding of the selective ligands [3H]citalopram and [125I] (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane to platelet and brain 5-HT transporters and 5-HT2 receptors, respectively. Chronic (6 weeks) hypercorticosteronemia did not alter either brain or platelet 5-HT transporter or 5-HT2A receptor binding. Similarly, 8-week administration of the 5-HT2A/5-HT2C agonist (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane, at a dose which down-regulates brain 5-HT2A/2C receptors, did not alter brain or platelet 5-HT transporters or platelet 5-HT2A receptors. Additionally, para-chloroamphetamine-(11 weeks) or fenfluramine-induced chronic (1.5-10 weeks) depletion of central nervous system 5-HT did not alter platelet 5-HT transporter or 5-HT2A receptor binding. Finally, there was no correlation between the number of 5-HT transporters in brain and platelets in any of the control or treatment groups. These findings suggest that the observed changes in platelet 5-HT transporter and 5-HT2A receptor binding in depressed patients are more apt to be of genetic origin (i.e., trait-dependent) rather than an epiphenomenon of hypercortisolemia or altered central nervous system 5-HT status.

  9. Modulating the rate and rhythmicity of perceptual rivalry alternations with the mixed 5-HT2A and 5-HT1A agonist psilocybin.

    PubMed

    Carter, Olivia L; Pettigrew, John D; Hasler, Felix; Wallis, Guy M; Liu, Guang B; Hell, Daniel; Vollenweider, Franz X

    2005-06-01

    Binocular rivalry occurs when different images are presented simultaneously to corresponding points within the left and right eyes. Under these conditions, the observer's perception will alternate between the two perceptual alternatives. Motivated by the reported link between the rate of perceptual alternations, symptoms of psychosis and an incidental observation that the rhythmicity of perceptual alternations during binocular rivalry was greatly increased 10 h after the consumption of LSD, this study aimed to investigate the pharmacology underlying binocular rivalry and to explore the connection between the timing of perceptual switching and psychosis. Psilocybin (4-phosphoryloxy-N,N-dimethyltryptamine, PY) was chosen for the study because, like LSD, it is known to act as an agonist at serotonin (5-HT)1A and 5-HT2A receptors and to produce an altered state sometimes marked by psychosis-like symptoms. A total of 12 healthy human volunteers were tested under placebo, low-dose (115 microg/kg) and high-dose (250 microg/kg) PY conditions. In line with predictions, under both low- and high-dose conditions, the results show that at 90 min postadministration (the peak of drug action), rate and rhythmicity of perceptual alternations were significantly reduced from placebo levels. Following the 90 min testing period, the perceptual switch rate successively increased, with some individuals showing increases well beyond pretest levels at the final testing, 360 min postadministration. However, as some subjects had still not returned to pretest levels by this time, the mean phase duration at 360 min was not found to differ significantly from placebo. Reflecting the drug-induced changes in rivalry phase durations, subjects showed clear changes in psychological state as indexed by the 5D-ASC (altered states of consciousness) rating scales. This study suggests the involvement of serotonergic pathways in binocular rivalry and supports the previously proposed role of a brainstem

  10. New arylpiperazinylalkyl derivatives of 8-alkoxy-purine-2,6-dione and dihydro[1,3]oxazolo[2,3-f]purinedione targeting the serotonin 5-HT1A /5-HT2A /5-HT7 and dopamine D2 receptors.

    PubMed

    Chłoń-Rzepa, Grażyna; Zagórska, Agnieszka; Bucki, Adam; Kołaczkowski, Marcin; Pawłowski, Maciej; Satała, Grzegorz; Bojarski, Andrzej J; Partyka, Anna; Wesołowska, Anna; Pękala, Elżbieta; Słoczyńska, Karolina

    2015-04-01

    To obtain potential antidepressants and/or antipsychotics, a series of new long-chain arylpiperazine derivatives of 8-alkoxy-purine-2,6-dione (10-24) and dihydro[1,3]oxazolo[2,3-f]purinedione (30-34) were synthesized and their serotonin (5-HT1A , 5-HT2A , 5-HT6 , 5-HT7 ) and dopamine (D2 ) receptor affinities were determined. The study allowed the identification of some potent 5-HT1A /5-HT7 /D2 ligands with moderate affinity for 5-HT2A sites. The binding mode of representative compounds from both chemical classes (11 and 31) in the site of 5-HT1A receptor was analyzed in computational studies. In functional in vitro studies, the selected compounds 15 and 16 showed antagonistic properties for the evaluated receptors. 8-Methoxy-7-{4-[4-(2-methoxyphenyl)-piperazin-1-yl]-butyl}-1,3-dimethyl-purine-2,6-dione (15) showed a lack of activity in terms and under the conditions of the forced swim, four plate and amphetamine-induced hyperactivity tests in mice, probably as a result of its high first pass effect in the liver.

  11. Evaluation of 5-HT2A and mGlu2/3 receptors in postmortem prefrontal cortex of subjects with major depressive disorder: effect of antidepressant treatment.

    PubMed

    Muguruza, Carolina; Miranda-Azpiazu, Patricia; Díez-Alarcia, Rebeca; Morentin, Benito; González-Maeso, Javier; Callado, Luis F; Meana, J Javier

    2014-11-01

    Several studies have demonstrated alterations in serotonin 5-HT2A (5-HT2AR) and glutamate metabotropic mGlu2 (mGlu2R) receptors in depression, but never in the same sample population. Recently it has been shown that both receptors form a functional receptor heterocomplex that is altered in schizophrenia. The present study evaluates the gene expression and protein density of 5-HT2AR and mGlu2/3R in the postmortem prefrontal cortex of subjects with major depressive disorder (n = 14) compared with control subjects (n = 14) in a paired design. No significant differences between subjects with depression and controls in the relative mRNA levels of the genes HTR2A, GRM2 and GRM3 were observed. The 5-HT2AR density evaluated by [(3)H]ketanserin binding was significantly lower in antidepressant-treated subjects (Bmax = 313 ± 17 fmol/mg protein; p < 0.05) compared to controls (Bmax = 360 ± 12 fmol/mg protein) but not in antidepressant-free subjects (Bmax = 394 ± 16 fmol/mg protein; p > 0.05). In rats, chronic treatment with citalopram (10 mg/kg/day) and mirtazapine (5 mg/kg/day) decreased mRNA expression and 5-HT2AR density whereas reboxetine (20 mg/kg/day) modified only mRNA expression. The mGlu2/3R density evaluated by [(3)H]LY341495 binding was not significantly different between depression and control subjects. The present results demonstrate no changes in expression and density of both 5-HT2AR and mGlu2/3R in the postmortem prefrontal cortex of subjects with major depressive disorder under basal conditions. However, antidepressant treatment induces a decrease in 5-HT2AR density. This finding suggests that 5-HT2AR down-regulation may be a mechanism for antidepressant effect.

  12. Stress and withdrawal from d-amphetamine alter 5-HT2A receptor mRNA expression in the prefrontal cortex.

    PubMed

    Murray, Ryan C; Hebbard, John C; Logan, Anna S; Vanchipurakel, Golda A; Gilbert, Yamiece E; Horner, Kristen A

    2014-01-24

    Psychostimulant withdrawal results in emotional, behavioral, and cognitive impairments, which may be exacerbated by stress. However, little is known about the neurochemical changes that occur when these two conditions are experienced concomitantly. 5-HT2A receptor (5-HT2AR) mRNA expression in the prefrontal cortex (PFC) is diminished following withdrawal from d-amphetamine (AMPH) and may underlie the emotional and cognitive impairments observed in psychostimulant withdrawal, but whether stress affects 5-HT2AR mRNA expression during psychostimulant withdrawal is unknown. The goal of this study was to examine the impact of forced swim test (FST) exposure during AMPH withdrawal on 5-HT2AR mRNA expression in PFC. Animals were treated 3 times a day for 4 days with escalating doses of AMPH (1-10mg/kg) and 24h or 4 days after the final injection, animals were subjected to FST. At 24h of withdrawal, AMPH-treated animals showed greater immobility in FST and at 4 days of withdrawal, AMPH-treated animals did not show immobility. At 24h of withdrawal, animals showed lower 5-HT2AR mRNA expression in the PFC relative to saline-treated animals, and exposure to FST did not further decrease expression in these animals. At 4 days of withdrawal, AMPH-treated animals showed greater 5-HT2AR mRNA expression relative to saline-treated animals in the PFC, an effect that was diminished by exposure to FST. These data indicate that stress and short-term AMPH withdrawal affect prefrontal 5-HT2AR mRNA expression to a similar degree, and stress experienced during long-term AMPH withdrawal can diminish the recovery of 5-HT2AR mRNA expression. Together, these data suggest that exposure to stress during extended AMPH withdrawal could prolong withdrawal-induced, 5-HT2AR mRNA expression which could be related to 5-HT2AR mediated deficits.

  13. Polymorphism of the 5-HT2A Receptor Gene: Association with Stress-Related Indices in Healthy Middle-Aged Adults

    PubMed Central

    Fiocco, Alexandra J.; Joober, Ridha; Poirier, Judes; Lupien, Sonia

    2007-01-01

    Past research has concentrated on the stress system and personality in order to explain the variance found in cognitive performance in old age. A growing body of research is starting to focus on genetic polymorphism as an individual difference factor to explain the observed heterogeneity in cognitive function. While the functional mechanism is still under investigation, polymorphism of the 5-HT2A receptor gene (−1438A/G) has been linked to certain behavioral and physiological outcomes, including cortisol secretion, the expression of certain personality traits, and memory performance. It was the goal of the present study to investigate the association between the −1438A/G polymorphism and stress hormone secretion, stress-related psychological measures, and cognitive performance in a group of adults between the ages of 50 and 65. To examine these associations, 101 middle-aged adults were recruited, completed a battery of psychological questionnaires and were administered a battery of cognitive tasks that assess frontal lobe and hippocampal function. Basal and stress-reactive salivary cortisol levels were collected, at home and in the laboratory. Analyses on psychological measures showed that participants with the GG genotype reported significantly higher levels of neuroticism compared to the AG group and higher levels of depression and more emotion-based coping strategies compared to both the AG and AA group. In terms of cortisol secretion, the AA genotype was related to a significantly higher awakening cortisol response (ACR) compared to the AG and GG group and the GG genotype group displayed a greater increase in cortisol secretion following a psychosocial stressor compared to the two other groups. On measures of cognitive performance, the AA genotype group performed significantly better on a test of declarative memory and selective attention compared to the other two groups. Together, these results suggest that carriers of the GG genotype are more susceptible

  14. Chronic betahistine co-treatment reverses olanzapine's effects on dopamine D₂ but not 5-HT2A/2C bindings in rat brains.

    PubMed

    Lian, Jiamei; Huang, Xu-Feng; Pai, Nagesh; Deng, Chao

    2015-01-02

    Olanzapine is widely prescribed for treating schizophrenia and other mental disorders, although it leads to severe body weight gain/obesity. Chronic co-treatment with betahistine has been found to significantly decrease olanzapine-induced weight gain; however, it is not clear whether this co-treatment affects the therapeutic effects of olanzapine. This study investigated the effects of chronic treatment of olanzapine and/or betahistine on the binding density of the serotonergic 5-HT2A (5-HT2AR) and 5-HT2C (5-HT2CR) receptors, 5-HT transporter (5-HTT), and dopaminergic D₂ receptors (D₂R) in the brain regions involved in antipsychotic efficacy, including the prefrontal cortex (PFC), cingulate cortex (Cg), nucleus accumbens (NAc), and caudate putamen (CPu). Rats were treated with olanzapine (1 mg/kg, t.i.d.) or vehicle for 3.5 weeks, and then olanzapine treatment was withdrawn for 19 days. From week 6, the two groups were divided into 4 groups (n=6) for 5 weeks' treatment: (1) olanzapine-only (1 mg/kg, t.i.d.), (2) betahistine-only (9.6 mg/kg, t.i.d.), (3) olanzapine and betahistine co-treatment (O+B), and (4) vehicle. Compared to the control, the olanzapine-only treatment significantly decreased the bindings of 5-HT2AR, 5-HT2CR, and 5-HTT in the PFC, Cg, and NAc. Similar changes were observed in the rats receiving the O+B co-treatment. The olanzapine-only treatment significantly increased the D₂R binding in the Cg, NAc, and CPu, while the betahistine-only treatment reduced D₂R binding. The co-treatment of betahistine reversed the D₂R bindings in the NAc and CPu that were increased by olanzapine. Therefore, chronic O+B co-treatment has similar effects on serotonin transmission as the olanzapine-only treatment, but reverses the D₂R that is up-regulated by chronic olanzapine treatment. The co-treatment maintains the therapeutic effects of olanzapine but decreases/prevents the excess weight gain.

  15. Stimulation of 5-HT1A, 5-HT1B, 5-HT2A/2C, 5-HT3 and 5-HT4 receptors or 5-HT uptake inhibition: short- and long-term memory.

    PubMed

    Meneses, Alfredo

    2007-11-22

    In order to determine whether short- (STM) and long-term memory (LTM) function in serial or parallel manner, serotonin (5-hydroxtryptamine, 5-HT) receptor agonists were tested in autoshaping task. Results show that control-vehicle animals were modestly but significantly mastering the autoshaping task as illustrated by memory scores between STM and LTM. Thus, post-training administration of 8-OHDPAT (agonist for 5-HT(1A/7) receptors) only at 0.250 and 0.500 mg/kg impaired both STM and LTM. CGS12066 (agonist for 5-HT(1B)) produced biphasic affects, at 5.0 mg/kg impaired STM but at 1.0 and 10.0 mg/kg, respectively, improved or impaired LTM. DOI (agonist for 5-HT(2A/2C) receptors) dose-dependently impaired STM and, at 10.0 mg/kg only impaired LTM. Both, STM and LTM were impaired by either mCPP (mainly agonist for 5-HT(2C) receptors) or mesulergine (mainly antagonist for 5-HT(2C) receptors) lower dose. The 5-HT(3) agonist mCPBG at 1.0 impaired STM and its higher dose impaired both STM and LTM. RS67333 (partial agonist for 5-HT(4) receptors), at 5.0 and 10.0 mg/kg facilitated both STM and LTM. The higher dose of fluoxetine (a 5-HT uptake inhibitor) improved both STM and LTM. Using as head-pokes during CS as an indirect measure of food-intake showed that of 30 memory changes, 21 of these were unrelated to the former. While some STM or LTM impairments can be attributed to decrements in food-intake, but not memory changes (either increase or decreases) produced by 8-OHDPAT, CGS12066, RS67333 or fluoxetine. Except for animals treated with DOI, mCPBG or fluoxetine, other groups treated with 5-HT agonists 6 h following autoshaping training showed similar LTM and unmodified CS-head-pokes scores.

  16. Differences in the C-terminus contribute to variations in trafficking between rat and human 5-HT(2A) receptor isoforms: identification of a primate-specific tripeptide ASK motif that confers GRK-2 and beta arrestin-2 interactions.

    PubMed

    Bhattacharya, Aditi; Sankar, Shobhana; Panicker, Mitradas M

    2010-02-01

    Internalization and recycling of G-protein coupled receptors are important cellular processes regulating receptor function. These are receptor-subtype and cell type-specific. Although important, trafficking variations between receptor isoforms of different species has received limited attention. We report here, differences in internalization and recycling between rat and human serotonin 2A receptor (5-HT(2A)R) isoforms expressed in human embryonic kidney 293 cells in response to serotonin. Although the human and rat 5-HT(2A)Rs differ by only a few amino acids, the human receptor takes longer to recycle to the cell surface after internalization, with the additional involvement of beta arrestin-2 and G-protein receptor kinase 2. The interaction of beta arrestin-2 with the human receptor causes the delay in recycling and is dependent on a primate-specific ASK motif present in the C-terminus of the receptor. Conversion of this motif to NCT, the corresponding sequence present in the rat isoform, results in the human isoform trafficking like the rat receptor. Replacing the serine 457 with alanine in the ASK motif of human isoform resulted in faster recycling, although with continued arrestin-dependent internalization. This study establishes significant differences between the two isoforms with important implications in our understanding of the human 5-HT(2A)R functions; and indicates that extrapolating results from non-human receptor isoforms to human subtypes is not without caveats.

  17. Assessment of the roles of serines 5.43(239) and 5.46(242) for binding and potency of agonist ligands at the human serotonin 5-HT2A receptor.

    PubMed

    Braden, Michael R; Nichols, David E

    2007-11-01

    We assessed the relative importance of two serine residues located near the top of transmembrane helix 5 of the human 5-HT(2A) receptor, comparing the wild type with S5.43(239)A or S5.46(242)A mutations. Using the ergoline lysergic acid diethylamide (LSD), and a series of substituted tryptamine and phenethylamine 5-HT(2A) receptor agonists, we found that Ser5.43(239) is more critical for agonist binding and function than Ser5.46(242). Ser5.43(239) seems to engage oxygen substituents at either the 4- or 5-position of tryptamine ligands and the 5-position of phenylalkylamine ligands. Even when a direct binding interaction cannot occur, our data suggest that Ser5.43(239) is still important for receptor activation. Polar ring-substituted tryptamine ligands also seem to engage Ser5.46(242), but tryptamines lacking such a substituent may adopt an alternate binding orientation that does not engage this residue. Our results are consistent with the role of Ser5.43(239) as a hydrogen bond donor, whereas Ser5.46(242) seems to serve as a hydrogen bond acceptor. These results are consistent with the functional topography and utility of our in silico-activated homology model of the h5-HT(2A) receptor. In addition, being more distal from the absolutely conserved Pro5.50, a strong interaction with Ser5.43(239) may be more effective in straightening the kink in helix 5, a feature that is possibly common to all type A GPCRs that have polar residues at position 5.43.

  18. Binding of [(3)H]lysergic acid diethylamide to serotonin 5-HT(2A) receptors and of [(3)H]paroxetine to serotonin uptake sites in platelets from healthy children, adolescents and adults.

    PubMed

    Sigurdh, J; Spigset, O; Allard, P; Mjörndal, T; Hägglöf, B

    1999-11-01

    Possible age effects on binding of [(3)H]lysergic acid diethylamide ([(3)H]LSD) to serotonin 5-HT(2A) receptors and of [(3)H]paroxetine to serotonin uptake sites were studied in platelets from healthy children (11-12 years of age), adolescents (16-17 years of age) and adults. Significant overall age effects were found both for the number of binding sites (B(max)) for [(3)H]LSD binding (p < 0.001), the affinity constant (K(d)) for [(3)H]LSD binding (p < 0.001), B(max) for [(3)H]paroxetine binding (p < 0.001) and K(d) for [(3)H] paroxetine binding (p = 0.006). In general, there was a decrease in B(max) with increasing age, which predominantly occurred between the ages 11-12 years and 16-17 years for the 5-HT(2A) receptor, and after 16-17 years of age for the serotonin uptake site. These developmental changes might have an impact on the effect of treatment with serotonergic drugs in children and adolescents. When the platelet serotonin variables investigated are employed in studies in children or adolescents, age matching or, alternatively, introduction of age control in the statistical analysis should be performed.

  19. Serotonin (5-HT) 5-HT2A Receptor (5-HT2AR):5-HT2CR Imbalance in Medial Prefrontal Cortex Associates with Motor Impulsivity.

    PubMed

    Anastasio, Noelle C; Stutz, Sonja J; Fink, Latham H L; Swinford-Jackson, Sarah E; Sears, Robert M; DiLeone, Ralph J; Rice, Kenner C; Moeller, F Gerard; Cunningham, Kathryn A

    2015-07-15

    A feature of multiple neuropsychiatric disorders is motor impulsivity. Recent studies have implicated serotonin (5-HT) systems in medial prefrontal cortex (mPFC) in mediating individual differences in motor impulsivity, notably the 5-HT2AR receptor (5-HT2AR) and 5-HT2CR. We investigated the hypothesis that differences in the ratio of 5-HT2AR:5-HT2CR protein expression in mPFC would predict the individual level of motor impulsivity and that the engineered loss of the 5-HT2CR would result in high motor impulsivity concomitant with elevated 5-HT2AR expression and pharmacological sensitivity to the selective 5-HT2AR antagonist M100907. High and low impulsive rats were identified in a 1-choice serial reaction time task. Native protein levels of the 5-HT2AR and the 5-HT2CR predicted the intensity of motor impulsivity and the 5-HT2AR:5-HT2CR ratio in mPFC positively correlated with levels of premature responses in individual outbred rats. The possibility that the 5-HT2AR and 5-HT2CR act in concert to control motor impulsivity is supported by the observation that high phenotypic motor impulsivity associated with a diminished mPFC synaptosomal 5-HT2AR:5-HT2CR protein:protein interaction. Knockdown of mPFC 5-HT2CR resulted in increased motor impulsivity and triggered a functional disruption of the local 5-HT2AR:5-HT2CR balance as evidenced by a compensatory upregulation of 5-HT2AR protein expression and a leftward shift in the potency of M100907 to suppress impulsive behavior. We infer that there is an interactive relationship between the mPFC 5-HT2AR and 5-HT2CR, and that a 5-HT2AR:5-HT2CR imbalance may be a functionally relevant mechanism underlying motor impulsivity.

  20. Serotonin (5-HT) 5-HT2A Receptor (5-HT2AR):5-HT2CR Imbalance in Medial Prefrontal Cortex Associates with Motor Impulsivity

    PubMed Central

    Anastasio, Noelle C.; Stutz, Sonja J.; Fink, Latham H. L.; Swinford-Jackson, Sarah E.; Sears, Robert M; DiLeone, Ralph J.; Rice, Kenner C.; Moeller, F. Gerard; Cunningham, Kathryn A.

    2016-01-01

    A feature of multiple neuropsychiatric disorders is motor impulsivity. Recent studies have implicated serotonin (5-HT) systems in medial prefrontal cortex (mPFC) in mediating individual differences in motor impulsivity, notably the 5-HT2AR receptor (5-HT2AR) and 5-HT2CR. We investigated the hypothesis that differences in the ratio of 5-HT2AR:5-HT2CR protein expression in mPFC would predict the individual level of motor impulsivity and that the engineered loss of the 5-HT2CR would result in high motor impulsivity concomitant with elevated 5-HT2AR expression and pharmacological sensitivity to the selective 5-HT2AR antagonist M100907. High and low impulsive rats were identified in a 1-choice serial reaction time task. Native protein levels of the 5-HT2AR and the 5-HT2CR predicted the intensity of motor impulsivity and the 5-HT2AR:5-HT2CR ratio in mPFC positively correlated with levels of premature responses in individual outbred rats. The possibility that the 5-HT2AR and 5-HT2CR act in concert to control motor impulsivity is supported by the observation that high phenotypic motor impulsivity associated with a diminished mPFC synaptosomal 5-HT2AR:5-HT2CR protein:protein interaction. Knockdown of mPFC 5-HT2CR resulted in increased motor impulsivity and triggered a functional disruption of the local 5-HT2AR:5-HT2CR balance as evidenced by a compensatory upregulation of 5-HT2AR protein expression and a leftward shift in the potency of M100907 to suppress impulsive behavior. We infer that there is an interactive relationship between the mPFC 5-HT2AR and 5-HT2CR, and that a 5-HT2AR:5-HT2CR imbalance may be a functionally-relevant mechanism underlying motor impulsivity. PMID:26120876

  1. Binding of [3H]paroxetine to serotonin uptake sites and of [3H]lysergic acid diethylamide to 5-HT2A receptors in platelets from women with premenstrual dysphoric disorder during gonadotropin releasing hormone treatment.

    PubMed

    Bixo, M; Allard, P; Bäckström, T; Mjörndal, T; Nyberg, S; Spigset, O; Sundström-Poromaa, I

    2001-08-01

    Changes in serotonergic parameters have been reported in psychiatric conditions such as depression but also in the premenstrual dysphoric disorder (PMDD). In addition, hormonal effects on serotonergic activity have been established. In the present study, binding of [3H]paroxetine to platelet serotonin uptake sites and binding of [3H]lysergic acid diethylamide ([3H]LSD) to platelet serotonin (5-HT)2A receptors were studied in patients with PMDD treated with a low dose of a gonadotropin releasing hormone (GnRH) agonist (buserelin) or placebo and compared to controls. The PMDD patients were relieved of premenstrual symptoms like depression and irritability during buserelin treatment. The number of [3H]paroxetine binding sites (Bmax) were significantly higher in the follicular phase in untreated PMDD patients compared to controls. When treated with buserelin the difference disappeared. No differences in [3H]LSD binding between the three groups were shown. The present study demonstrated altered platelet [3H]paroxetine binding characteristics in women with PMDD compared to controls. Furthermore, [3H]paroxetine binding was affected by PMDD treatment with a low dose of buserelin. The results are consistent with the hypothesis that changes in serotonergic transmission could be a trait in the premenstrual dysphoric disorder.

  2. Restricted access to standard or high fat chow alters sensitivity of rats to the 5-HT2A/2C receptor agonist 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM)

    PubMed Central

    Serafine, Katherine M.; France, Charles P.

    2017-01-01

    Feeding conditions can impact sensitivity to drugs acting on dopamine receptors; less is known about the impact of feeding conditions on the effects of drugs acting on serotonin (5-HT) receptors. This study examined the effects of feeding condition on sensitivity to the direct-acting 5-HT2A/2C receptor agonist 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM; 0.1–3.2 mg/kg) and the direct-acting dopamineD3/D2 receptor agonist quinpirole (0.0032–0.32 mg/kg). Male Sprague-Dawley rats had free access (11 weeks) followed by restricted access (6 weeks) to high (34.3%, n = 8) fat or standard (5.7% fat; n = 7) chow. Rats eating high fat chow became insulin resistant and gained more weight than rats eating standard chow. Free access to high fat chow did not alter sensitivity to DOM-induced head twitch but increased sensitivity to quinpirole-induced yawning. Restricting access to high fat or standard chow shifted the DOM-induced head twitch dose-response curve to the right and shifted the quinpirole-induced yawning dose-response curve downward in both groups of rats. Some drugs of abuse and many therapeutic drugs act on 5-HT and dopamine systems; these results demonstrate that feeding condition impacts sensitivity to drugs acting on these systems, thereby possibly impacting vulnerability to abuse as well as therapeutic effectiveness of drugs. PMID:24346289

  3. Extending David Horrobin's membrane phospholipid theory of schizophrenia: overactivity of cytosolic phospholipase A(2) in the brain is caused by overdrive of coupled serotonergic 5HT(2A/2C) receptors in response to stress.

    PubMed

    Eggers, Arnold E

    2012-12-01

    David Horrobin's membrane phospholipid theory of schizophrenia has held up well over time because his therapeutic prediction that dietary supplementation with eicosapentaenoic acid (EPA) would have a therapeutic effect has been partially verified and undergoes continued testing. In the final version of his theory, he hypothesized that there was hyperactivity of phosphoslipase A(2) (PLA(2)) or a related enzyme but did not explain how the hyperactivity came about. It is known that serotonergic 5HT(2A/2C) receptors are coupled to PLA(2), which hydrolyzes both arachidonic acid (AA) and EPA from diacylglycerides at the sn-2 position. In this paper, Horrobin's theory is combined with a previously published theory of chronic stress in which it was hypothesized that a disinhibited dorsal raphe nucleus, the principal nucleus of the serotonergic system, can organize the neuropathology of diseases such as migraine, hypertension, and the metabolic syndrome. The new or combined theory is that schizophrenia is a disease of chronic stress in which a disinhibited DRN causes widespread serotonergic overdrive in the cerebral cortex. This in turn causes overdrive of cPLA(2) and both central and peripheral depletion of AA and EPA. Because EPA is present in smaller amounts, it falls below threshold for maintaining an intracellular balance between AA-derived and EPA-derived second messenger cascades, which leads to abnormal patterns of neuronal firing. There are two causes of neuronal dysfunction: the disinhibited DRN and EPA depletion. Schizophrenia is statistically associated with metabolic syndrome, hypertension, and migraine because they form a cluster of diseases with similar pathophysiology. The theory provides an explanation for both the central and peripheral phospholipid abnormalities in schizophrenia. It also explains the role of stress in schizophrenia, elevated serum PLA(2) activity in schizophrenia, the relationship between untreated schizophrenia and metabolic syndrome

  4. Potent enhancement of (/sup 3/H)nitrendipine binding in rat cerebral cortical and cardiac homogenates: a putative mechanism for the action of MDL 12,330A

    SciTech Connect

    Lee, H.R.; Jaros, J.A.; Roeske, W.R.; Wiech, N.L.; Ursillo, R.; Yamamura, H.I.

    1985-06-01

    (/sup 3/H)Nitrendipine ((/sup 3/H)NTD), a specific high-affinity calcium channel antagonist, was used to label dihydropyridine binding sites associated with calcium channels in rat cerebral cortical and cardiac homogenates. A novel lactamimide compound, MDL 12,330A, has been shown previously to have negative inotropic and chronotropic effects in isolated working guinea-pig hearts and these effects are reversed by the administration of calcium. MDL 12,330A is potent in enhancing (/sup 3/H)NTD binding in membranes prepared from the cerebral cortex and the heart, with EC50 values of 6.1 X 10(-8) and 3.4 X 10(-8) M, respectively, at 37 degrees C. This allosteric effect by MDL 12,330A is similar to that produced by a known calcium channel antagonist, d-cis diltiazem, which has been shown previously to enhance (/sup 3/H)NTD binding at 37 degrees C. The extent of enhancement by MDL 12,330A depends on incubation temperature (37 degrees C greater than 25 degrees C greater than 0 degrees C). The mechanism of this enhancement by MDL 12,330A is due to a decrease in the dissociation rate constant of the dihydropyridine-calcium channel supramolecular complex. MDL 12,330A is the most potent drug thus far examined which demonstrates the enhancement of (/sup 3/H)NTD binding.

  5. Effect of MDL-Type alkaloids on tall larkspur toxicosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Larkspur plants contain numerous norditerpenoid alkaloids which include the 7, 8-methylenedioxylycoctonine (MDL) -type alkaloids and the N-(methylsuccinimido) anthranoyllycoctonine (MSAL) -type alkaloids. The MSAL-type alkaloids are generally much more toxic (typically > 20x) than the MDL-type alka...

  6. 5-HT2 Receptor Regulation of Mitochondrial Genes: Unexpected Pharmacological Effects of Agonists and Antagonists.

    PubMed

    Harmon, Jennifer L; Wills, Lauren P; McOmish, Caitlin E; Demireva, Elena Y; Gingrich, Jay A; Beeson, Craig C; Schnellmann, Rick G

    2016-04-01

    In acute organ injuries, mitochondria are often dysfunctional, and recent research has revealed that recovery of mitochondrial and renal functions is accelerated by induction of mitochondrial biogenesis (MB). We previously reported that the nonselective 5-HT2 receptor agonist DOI [1-(4-iodo-2,5-dimethoxyphenyl)propan-2-amine] induced MB in renal proximal tubular cells (RPTCs). The goal of this study was to determine the role of 5-HT2 receptors in the regulation of mitochondrial genes and oxidative metabolism in the kidney. The 5-HT2C receptor agonist CP-809,101 [2-[(3-chlorophenyl)methoxy]-6-(1-piperazinyl)pyrazine] and antagonist SB-242,084 [6-chloro-2,3-dihydro-5-methyl-N-[6-[(2-methyl-3-pyridinyl)oxy]-3-pyridinyl]-1H-indole-1-carboxyamide dihydrochloride] were used to examine the induction of renal mitochondrial genes and oxidative metabolism in RPTCs and in mouse kidneys in the presence and absence of the 5-HT2C receptor. Unexpectedly, both CP-809,101 and SB-242,084 increased RPTC respiration and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) mRNA expression in RPTCs at 1-10 nM. In addition, CP-809,101 and SB-242,084 increased mRNA expression of PGC-1α and the mitochondrial proteins NADH dehydrogenase subunit 1 and NADH dehydrogenase (ubiquinone) β subcomplex 8 in mice. These compounds increased mitochondrial genes in RPTCs in which the 5-HT2C receptor was downregulated with small interfering RNA and in the renal cortex of mice lacking the 5-HT2C receptor. By contrast, the ability of these compounds to increase PGC-1α mRNA and respiration was blocked in RPTCs treated with 5-HT2A receptor small interfering RNA or the 5-HT2A receptor antagonist eplivanserin. In addition, the 5-HT2A receptor agonist NBOH-2C-CN [4-[2-[[(2-hydroxyphenyl)methyl]amino]ethyl]-2,5-dimethoxybenzonitrile] increased RPTC respiration at 1-100 nM. These results suggest that agonism of the 5-HT2A receptor induces MB and that the classic 5-HT2C receptor agonist CP

  7. Effect of MDL-type alkaloids on tall larkspur toxicosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Larkspur plants contain numerous norditerpenoid alkaloids which include the 7, 8-methylenedioxylycoctonine (MDL) -type alkaloids and the N-(methylsuccinimido) anthranoyllycoctonine (MSAL) -type alkaloids. The MSAL-type alkaloids are generally much more toxic (typically > 20x). Toxicity of many tal...

  8. Sparse Coding and Dictionary Learning Based on the MDL Principle

    DTIC Science & Technology

    2010-10-01

    dependencies, in a natural way. We demonstrate the performance of the proposed framework with results for image denoising and classification tasks...The idea of using MDL for sparse signal coding was explored in the context of wavelet-based image denoising [6, 7]. These pioneer- ing works were...restricted to denoising using fixed orthonormal basis (wavelets). In addition, the underlying probabilistic models used to describe the transform

  9. New 1-arylindoles based serotonin 5-HT7 antagonists. Synthesis and binding evaluation studies.

    PubMed

    Sagnes, Charlène; Fournet, Guy; Satala, Grzegorz; Bojarski, Andrzej J; Joseph, Benoît

    2014-03-21

    Based on 5-HT1A and 5-HT7 ligand MR25003 scaffold, a new series of 1-aryl indole analogues were prepared and evaluated against 5-HT7 receptors. Modulations of aryl moieties provided a large number of new indolic derivatives. Most of compounds tested have displayed 5-HT7 affinity in the nanomolar range. Among them, 1-(naphthyl)indole derivative 3p (Ki (5-HT7) = 4.5 nM) showed also a good selectivity over 5-HT1A, 5-HT2A and 5-HT6 receptors. This compound was pharmacology characterized as an antagonist.

  10. 40 CFR 721.2582 - Reaction product of alkylene diamine, MDl, substituted carbomonocyclic amine and alkylamine...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reaction product of alkylene diamine... Reaction product of alkylene diamine, MDl, substituted carbomonocyclic amine and alkylamine (generic). (a... generically as reaction product of alkylene diamine, MDl, substituted carbomonocyclic amine and...

  11. 40 CFR 721.2582 - Reaction product of alkylene diamine, MDl, substituted carbomonocyclic amine and alkylamine...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reaction product of alkylene diamine... Reaction product of alkylene diamine, MDl, substituted carbomonocyclic amine and alkylamine (generic). (a... generically as reaction product of alkylene diamine, MDl, substituted carbomonocyclic amine and...

  12. 40 CFR 721.2582 - Reaction product of alkylene diamine, MDl, substituted carbomonocyclic amine and alkylamine...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reaction product of alkylene diamine... Reaction product of alkylene diamine, MDl, substituted carbomonocyclic amine and alkylamine (generic). (a... generically as reaction product of alkylene diamine, MDl, substituted carbomonocyclic amine and...

  13. 40 CFR 721.2582 - Reaction product of alkylene diamine, MDl, substituted carbomonocyclic amine and alkylamine...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Reaction product of alkylene diamine... Reaction product of alkylene diamine, MDl, substituted carbomonocyclic amine and alkylamine (generic). (a... generically as reaction product of alkylene diamine, MDl, substituted carbomonocyclic amine and...

  14. 40 CFR 721.2582 - Reaction product of alkylene diamine, MDl, substituted carbomonocyclic amine and alkylamine...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reaction product of alkylene diamine... Reaction product of alkylene diamine, MDl, substituted carbomonocyclic amine and alkylamine (generic). (a... generically as reaction product of alkylene diamine, MDl, substituted carbomonocyclic amine and...

  15. 5-HT2 receptors modulate the expression of antipsychotic-induced dopamine supersensitivity.

    PubMed

    Charron, Alexandra; Hage, Cynthia El; Servonnet, Alice; Samaha, Anne-Noël

    2015-12-01

    Antipsychotic treatment can produce supersensitivity to dopamine receptor stimulation. This compromises the efficacy of ongoing treatment and increases the risk of relapse to psychosis upon treatment cessation. Serotonin 5-HT2 receptors modulate dopamine function and thereby influence dopamine-dependent responses. Here we evaluated the hypothesis that 5-HT2 receptors modulate the behavioural expression of antipsychotic-induced dopamine supersensitivity. To this end, we first treated rats with the antipsychotic haloperidol using a clinically relevant treatment regimen. We then assessed the effects of a 5-HT2 receptor antagonist (ritanserin; 0.01 and 0.1mg/kg) and of a 5-HT2A receptor antagonist (MDL100,907; 0.025-0.1mg/kg) on amphetamine-induced psychomotor activity. Antipsychotic-treated rats showed increased amphetamine-induced locomotion relative to antipsychotic-naïve rats, indicating a dopamine supersensitive state. At the highest dose tested (0.1mg/kg for both antagonists), both ritanserin and MDL100,907 suppressed amphetamine-induced locomotion in antipsychotic-treated rats, while having no effect on this behaviour in control rats. In parallel, antipsychotic treatment decreased 5-HT2A receptor density in the prelimbic cortex and nucleus accumbens core and increased 5-HT2A receptor density in the caudate-putamen. Thus, activation of either 5-HT2 receptors or of 5-HT2A receptors selectively is required for the full expression of antipsychotic-induced dopamine supersensitivity. In addition, antipsychotic-induced dopamine supersensitivity enhances the ability of 5-HT2/5-HT2A receptors to modulate dopamine-dependent behaviours. These effects are potentially linked to changes in 5-HT2A receptor density in the prefrontal cortex and the striatum. These observations raise the possibility that blockade of 5-HT2A receptors might overcome some of the behavioural manifestations of antipsychotic-induced dopamine supersensitivity.

  16. Quantification of MDL-induced signal degradation in MIMO-OFDM mode-division multiplexing systems.

    PubMed

    Tian, Yu; Li, Juhao; Zhu, Paikun; Wu, Zhongying; Chen, Yuanxiang; He, Yongqi; Chen, Zhangyuan

    2016-08-22

    Mode-division multiplexing (MDM) transmission over few-mode optical fiber has emerged as a promising technology to enhance transmission capacity, in which multiple-input-multiple-output (MIMO) digital signal processing (DSP) after coherent detection is used to demultiplex the signals. Compared with conventional single-mode systems, MIMO-MDM systems suffer non-recoverable signal degradation induced by mode-dependent loss (MDL). In this paper, the MDL-induced signal degradation in orthogonal-frequency-division-multiplexing (OFDM) MDM systems is theoretically quantified in terms of mode-average error vector magnitude (EVM) through frequency domain norm analysis. A novel scalar MDL metric is proposed considering the probability distribution of the practical MDM input signals, and a closed-form expression for EVM measured after zero-force (ZF) MIMO equalization is derived. Simulation results show that the EVM estimations utilizing the novel MDL metric remain unbiased for unrepeated links. For a 6 × 100 km 20-mode MDM transmission system, the estimation accuracy is improved by more than 90% compared with that utilizing traditional condition number (CN) based MDL metric. The proposed MDL metric can be used to predict the MDL-induced SNR penalty in a theoretical manner, which will be beneficial for the design of practical MIMO-MDM systems.

  17. Potent inhibition of human immunodeficiency virus by MDL 101028, a novel sulphonic acid polymer.

    PubMed

    Taylor, D L; Brennan, T M; Bridges, C G; Mullins, M J; Tyms, A S; Jackson, R; Cardin, A D

    1995-10-01

    MDL 101028, a novel biphenyl disulphonic acid urea co-polymer was designed and synthesised as a heparin mimetic. This low molecular weight polymer showed potent inhibition of human immunodeficiency virus type 1 (HIV-1) replication in a number of host-cell/virus systems, including primary clinical isolates of the virus cultured in human peripheral blood mononuclear cells (PBMCs). When compared with the heterogeneous polysulphated molecules, heparin and dextran sulphate, this chemically defined compound showed equivalent antiviral activity with 50% inhibitory concentrations (IC50s) in the range 0.27-3.0 micrograms/ml in the host-cell/virus systems tested. MDL 101028 also inhibited the replication of HIV type 2 and the simian immunodeficiency virus (SIV), as well as HIV-1 variants resistant to reverse transcriptase inhibitors. Virus growth was blocked when exposure of T-lymphocytes to MDL 101028 was restricted to the virus absorption stage, or even in whole blood conditions. MDL 101028 did not irreversibly inactivate virions, and in contrast to heparin, did not inhibit the attachment of radiolabelled HIV-1 to CD4+ T-cells. MDL 101028 blocked HIV-induced cell-to-cell fusion and this activity appears to explain the mechanism of its antiviral action. The antiviral evaluation of discrete oligomer molecules of MDL 101028 showed that a polymer chain length of six repeating units had optimal potency. The lack of anticoagulant properties and significant antiviral activity in whole blood may allow the development of MDL 101028 as a treatment of HIV infections.

  18. Inhibition of ADP-ribosyltransferase activity of cholera toxin by MDL 12330A and chlorpromazine.

    PubMed

    Bitonti, A J

    1984-04-30

    ADP-ribosylation by cholera toxin of the guanine nucleotide binding regulatory protein (Gs) of rat liver membrane adenylate cyclase was inhibited by 0.1-1 mM MDL 12330A or 0.1-1 mM chlorpromazine. Basal as well as cholera toxin activated adenylate cyclase activity in liver membranes was also inhibited by the two drugs. NAD glycohydrolase activity and self-ADP-ribosylation of cholera toxin were also inhibited by MDL 12330A and chlorpromazine. These effects of MDL 12330A and chlorpromazine may be related to their effects on cholera toxin-induced fluid secretion in vivo.

  19. MDL-1, a growth- and tumor-suppressor, slows aging and prevents germline hyperplasia and hypertrophy in C. elegans.

    PubMed

    Riesen, Michèle; Feyst, Inna; Rattanavirotkul, Nattaphong; Ezcurra, Marina; Tullet, Jennifer M A; Papatheodorou, Irene; Ziehm, Matthias; Au, Catherine; Gilliat, Ann F; Hellberg, Josephine; Thornton, Janet M; Gems, David

    2014-02-01

    In C. elegans, increased lifespan in daf-2 insulin/IGF-1 receptor mutants is accompanied by up-regulation of the MDL-1 Mad basic helix-loop-helix leucine zipper transcription factor. Here we describe the role of mdl-1 in C. elegans germline proliferation and aging. The deletion allele mdl-1(tm311) shortened lifespan, and did so significantly more so in long-lived daf-2 mutants implying that mdl-1(+) contributes to effects of daf-2 on lifespan. mdl-1 mutant hermaphrodites also lay increased numbers of unfertilized oocytes. During aging, unfertilized oocytes in the uterus develop into tumors, whose development was accelerated by mdl-1(tm311). Opposite phenotypes were seen in daf-2 mutants, i.e. mdl-1 and daf-2 mutant germlines are hyperplastic and hypoplastic, respectively. Thus, MDL-1, like its mammalian orthologs, is an inhibitor of cell proliferation and growth that slows progression of an age-related pathology in C. elegans (uterine tumors). In addition, intestine-limited rescue of mdl-1 increased lifespan but not to wild type levels. Thus, mdl-1 likely acts both in the intestine and the germline to influence age-related mortality.

  20. MDL-1, a growth- and tumor-suppressor, slows aging and prevents germline hyperplasia and hypertrophy in C. elegans

    PubMed Central

    Riesen, Michèle; Feyst, Inna; Rattanavirotkul, Nattaphong; Ezcurra, Marina; Tullet, Jennifer M.A.; Papatheodorou, Irene; Ziehm, Matthias; Au, Catherine; Gilliat, Ann F.; Hellberg, Josephine; Thornton, Janet M.; Gems, David

    2014-01-01

    In C. elegans, increased lifespan in daf-2 insulin/IGF-1 receptor mutants is accompanied by up-regulation of the MDL-1 Mad basic helix-loop-helix leucine zipper transcription factor. Here we describe the role of mdl-1 in C. elegans germline proliferation and aging. The deletion allele mdl-1(tm311) shortened lifespan, and did so significantly more so in long-lived daf-2 mutants implying that mdl-1(+) contributes to effects of daf-2 on lifespan. mdl-1 mutant hermaphrodites also lay increased numbers of unfertilized oocytes. During aging, unfertilized oocytes in the uterus develop into tumors, whose development was accelerated by mdl-1(tm311). Opposite phenotypes were seen in daf-2 mutants, i.e. mdl-1 and daf-2 mutant germlines are hyperplastic and hypoplastic, respectively. Thus, MDL-1, like its mammalian orthologs, is an inhibitor of cell proliferation and growth that slows progression of an age-related pathology in C. elegans (uterine tumors). In addition, intestine-limited rescue of mdl-1 increased lifespan but not to wild type levels. Thus, mdl-1 likely acts both in the intestine and the germline to influence age-related mortality. PMID:24531613

  1. Lysergic acid diethylamide-induced Fos expression in rat brain: role of serotonin-2A receptors.

    PubMed

    Gresch, P J; Strickland, L V; Sanders-Bush, E

    2002-01-01

    Lysergic acid diethylamide (LSD) produces altered mood and hallucinations in humans and binds with high affinity to serotonin-2A (5-HT(2A)) receptors. Although LSD interacts with other receptors, the activation of 5-HT(2A) receptors is thought to mediate the hallucinogenic properties of LSD. The goal of this study was to identify the brain sites activated by LSD and to determine the influence of 5-HT(2A) receptors in this activation. Rats were pretreated with the 5-HT(2A) receptor antagonist MDL 100907 (0.3 mg/kg, i.p.) or vehicle 30 min prior to LSD (500 microg/kg, i.p.) administration and killed 3 h later. Brain tissue was examined for Fos protein expression by immunohistochemistry. LSD administration produced a five- to eight-fold increase in Fos-like immunoreactivity in medial prefrontal cortex, anterior cingulate cortex, and central nucleus of amygdala. However, in dorsal striatum and nucleus accumbens no increase in Fos-like immunoreactivity was observed. Pretreatment with MDL 100907 completely blocked LSD-induced Fos-like immunoreactivity in medial prefrontal cortex and anterior cingulate cortex, but only partially blocked LSD-induced Fos-like immunoreactivity in amygdala. Double-labeled immunohistochemistry revealed that LSD did not induce Fos-like immunoreactivity in cortical cells expressing 5-HT(2A) receptors, suggesting an indirect activation of cortical neurons. These results indicate that the LSD activation of medial prefrontal cortex and anterior cingulate cortex is mediated by 5-HT(2A) receptors, whereas in amygdala 5-HT(2A) receptor activation is a component of the response. These findings support the hypothesis that the medial prefrontal cortex, anterior cingulate cortex, and perhaps the amygdala, are important regions involved in the production of hallucinations.

  2. Prophylactic and therapeutic effects of acute systemic injections of EMD 281014, a selective serotonin 2A receptor antagonist on anxiety induced by predator stress in rats.

    PubMed

    Adamec, Robert; Creamer, Katherine; Bartoszyk, Gerd D; Burton, Paul

    2004-11-03

    We examined the effect of the selective serotonin 2A (5-HT(2A)) receptor antagonist 7-[4-[2-(4-fluoro-phenyl)-ethyl]-piperazine-1-carbonyl]-1H-indole-3-carbon itrile HCl (EMD 281014) [Bartoszyk, G.D., van Amsterdam, C., Bottcher, H., Seyfried, C.A., 2003. EMD 281014, a new selective serotonin 5-HT2A receptor antagonist. Eur. J. Pharmacol. 473, 229-230.] on change in affect following predator stress. Predator stress involved a 5 min unprotected exposure of rats to a domestic cat. Behavioral effects of stress were evaluated with hole board, plus maze, light/dark box and acoustic startle tests 1 week after stress. Predator stress increased anxiety-like behavior in the plus maze, light/dark box, and elevated response to acoustic startle. EMD 281014 (0.001, 0.01, 0.1, 1 or 10 mg/kg) and vehicle injection (ip) occurred either 10 min after predator stress (prophylactic testing), or 90 min prior to behavioral testing for the effects of predator stress (therapeutic testing 1 week after predator stress). In prophylactic testing, EMD 281014 prevented stress potentiation of startle in a dose dependent manner, though the most effective doses were midrange (0.01 and 0.1 mg/kg). Prophylactic administration of EMD 281014 also prevented stress-induced increase of open arm avoidance in the plus maze in a clear dose dependent manner (from 0.01 mg/kg onward). In therapeutic testing, EMD 281014 had no clear drug dependent effects on stress elevation of startle or on behavior of stressed rats in the elevated plus maze. Finally, EMD 281014 did not block the effects of stress on behavior in the light/dark box when given prophylactically or therapeutically. Findings implicate 5-HT(2A) receptors in initiation of some but not all lasting changes in anxiety-like behavior following predator stress. Potential clinical significance of findings are discussed.

  3. Effect of dopamine and serotonin receptor antagonists on fencamfamine-induced abolition of latent inhibition.

    PubMed

    de Aguiar, Cilene Rejane Ramos Alves; de Aguiar, Marlison José Lima; DeLucia, Roberto; Silva, Maria Teresa Araujo

    2013-01-05

    The purpose of this investigation was to verify the role of dopamine and serotonin receptors in the effect of fencamfamine (FCF) on latent inhibition. FCF is a psychomotor stimulant with an indirect dopaminergic action. Latent inhibition is a model of attention. Latent inhibition is blocked by dopaminergic agents and facilitated by dopamine receptor agonists. FCF has been shown to abolish latent inhibition. The serotonergic system may also participate in the neurochemical mediation of latent inhibition. The selective dopamine D(1) receptor antagonist SCH 23390 (7-chloro-3-methyl-1-phenyl-1,2,4,5-tetrahydro-3-benzazepin-8-ol), D(2) receptor antagonists pimozide (PIM) and methoclopramide (METH), and serotonin 5-HT(2A/C) receptor antagonist ritanserin (RIT) were used in the present study. Latent inhibition was evaluated using a conditioned emotional response procedure. Male Wistar rats that were water-restricted were subjected to a three-phase procedure: preexposure to a tone, tone-shock conditioning, and a test of the effect of the tone on licking frequency. All of the drugs were administered before the preexposure and conditioning phases. The results showed that FCF abolished latent inhibition, and this effect was clearly antagonized by PIM and METH and moderately attenuated by SCH 23390. At the doses used in the present study, RIT pretreatment did not affect latent inhibition and did not eliminate the effect of FCF, suggesting that the FCF-induced abolition of latent inhibition is not mediated by serotonin 5-HT(2A/C) receptors. These results suggest that the effect of FCF on latent inhibition is predominantly related to dopamine D(2) receptors and that dopamine D(2) receptors participate in attention processes.

  4. Effects of various serotonin agonists, antagonists, and uptake inhibitors on the discriminative stimulus effects of methamphetamine in rats.

    PubMed

    Munzar, P; Laufert, M D; Kutkat, S W; Nováková, J; Goldberg, S R

    1999-10-01

    Neurochemical studies indicate that methamphetamine increases central serotonin (5-HT) levels more markedly than other psychomotor stimulants such as amphetamine or cocaine. In the present study, we investigated 5-HT involvement in the discriminative stimulus effects of methamphetamine. In Sprague-Dawley rats trained to discriminate 1.0 mg/kg methamphetamine i.p. from saline under a fixed-ratio schedule of food presentation, the effects of selected 5-HT agonists, antagonists, and uptake inhibitors were tested. Fluoxetine (1.8-18.0 mg/kg) and clomipramine (3.0-18.0 mg/kg), selective serotonin uptake inhibitors, did not produce any methamphetamine-like discriminative stimulus effects when administered alone, but fluoxetine (5.6 mg/kg), unlike clomipramine (5.6 mg/kg), significantly shifted the methamphetamine dose-response curve to the left. Both 8-hydroxy-2-dipropylaminotetralin (0.03-0.56 mg/kg), a full agonist, and buspirone (1.0-10.0 mg/kg), a partial agonist at 5-HT(1A) receptors, partially generalized to the training dose of methamphetamine but only at high doses that decreased response rate. This generalization was antagonized by the coadministration of the 5-HT(1A) antagonist WAY-100635 (1.0 mg/kg). WAY-100635 (1.0 mg/kg) also partially reversed the leftward shift of the methamphetamine dose-response curve produced by fluoxetine. (+/-)-1-(2, 5-Dimethoxy-4-iodophenyl)-2-aminopropane (0.3 mg/kg), a 5-HT(2A/2C) agonist, shifted the methamphetamine dose-response curve to the left, and this leftward shift was antagonized by the coadministration of ketanserin (3.0 mg/kg), a 5-HT(2A/2C) antagonist. Ketanserin (3.0 mg/kg) also produced a shift to the right in the methamphetamine dose-response curve and completely reversed the leftward shift in the methamphetamine dose-response curve produced by fluoxetine. In contrast, tropisetron (1.0 mg/kg), a 5-HT(3) antagonist, produced a shift to the left of the methamphetamine dose-response curve, and this effect of tropisetron

  5. 5-HT2B Receptor Antagonists Inhibit Fibrosis and Protect from RV Heart Failure

    PubMed Central

    Janssen, Wiebke; Schymura, Yves; Novoyatleva, Tatyana; Luitel, Himal; Tretyn, Aleksandra; Pullamsetti, Soni Savai; Weissmann, Norbert; Seeger, Werner; Ghofrani, Hossein Ardeschir; Schermuly, Ralph Theo

    2015-01-01

    Objective. The serotonin (5-HT) pathway was shown to play a role in pulmonary hypertension (PH), but its functions in right ventricular failure (RVF) remain poorly understood. The aim of the current study was to investigate the effects of Terguride (5-HT2A and 2B receptor antagonist) or SB204741 (5-HT2B receptor antagonist) on right heart function and structure upon pulmonary artery banding (PAB) in mice. Methods. Seven days after PAB, mice were treated for 14 days with Terguride (0.2 mg/kg bid) or SB204741 (5 mg/kg day). Right heart function and remodeling were assessed by right heart catheterization, magnetic resonance imaging (MRI), and histomorphometric methods. Total secreted collagen content was determined in mouse cardiac fibroblasts isolated from RV tissues. Results. Chronic treatment with Terguride or SB204741 reduced right ventricular fibrosis and showed improved heart function in mice after PAB. Moreover, 5-HT2B receptor antagonists diminished TGF-beta1 induced collagen synthesis of RV cardiac fibroblasts in vitro. Conclusion. 5-HT2B receptor antagonists reduce collagen deposition, thereby inhibiting right ventricular fibrosis. Chronic treatment prevented the development and progression of pressure overload-induced RVF in mice. Thus, 5-HT2B receptor antagonists represent a valuable novel therapeutic approach for RVF. PMID:25667920

  6. Statistical Analysis of the Performance of MDL Enumeration for Multiple-Missed Detection in Array Processing.

    PubMed

    Du, Fei; Li, Yibo; Jin, Shijiu

    2015-08-18

    An accurate performance analysis on the MDL criterion for source enumeration in array processing is presented in this paper. The enumeration results of MDL can be predicted precisely by the proposed procedure via the statistical analysis of the sample eigenvalues, whose distributive properties are investigated with the consideration of their interactions. A novel approach is also developed for the performance evaluation when the source number is underestimated by a number greater than one, which is denoted as "multiple-missed detection", and the probability of a specific underestimated source number can be estimated by ratio distribution analysis. Simulation results are included to demonstrate the superiority of the presented method over available results and confirm the ability of the proposed approach to perform multiple-missed detection analysis.

  7. Statistical Analysis of the Performance of MDL Enumeration for Multiple-Missed Detection in Array Processing

    PubMed Central

    Du, Fei; Li, Yibo; Jin, Shijiu

    2015-01-01

    An accurate performance analysis on the MDL criterion for source enumeration in array processing is presented in this paper. The enumeration results of MDL can be predicted precisely by the proposed procedure via the statistical analysis of the sample eigenvalues, whose distributive properties are investigated with the consideration of their interactions. A novel approach is also developed for the performance evaluation when the source number is underestimated by a number greater than one, which is denoted as “multiple-missed detection”, and the probability of a specific underestimated source number can be estimated by ratio distribution analysis. Simulation results are included to demonstrate the superiority of the presented method over available results and confirm the ability of the proposed approach to perform multiple-missed detection analysis. PMID:26295232

  8. Near-ML detection for MDL-impaired few-mode fiber transmission.

    PubMed

    Lobato, Adriana; Rabe, Johannes; Ferreira, Filipe; Kuschnerov, Maxim; Spinnler, Bernhard; Lankl, Berthold

    2015-04-20

    Few-mode fiber transmission systems are typically impaired by mode-dependent loss (MDL). In an MDL-impaired link, maximum-likelihood (ML) detection yields a significant advantage in system performance compared to linear equalizers, such as zero-forcing and minimum-mean square error equalizers. However, the computational effort of the ML detection increases exponentially with the number of modes and the cardinality of the constellation. We present two methods that allow for near-ML performance without being afflicted with the enormous computational complexity of ML detection: improved reduced-search ML detection and sphere decoding. Both algorithms are tested regarding their performance and computational complexity in simulations of three and six spatial modes with QPSK and 16QAM constellations.

  9. The Calpain Inhibitor MDL28170 Induces the Expression of Apoptotic Markers in Leishmania amazonensis Promastigotes

    PubMed Central

    Marinho, Fernanda A.; Gonçalves, Keyla C. S.; Oliveira, Simone S. C.; Gonçalves, Diego S.; Matteoli, Filipe P.; Seabra, Sergio H.; Oliveira, Ana Carolina S.; Bellio, Maria; Oliveira, Selma S.; Souto-Padrón, Thaïs; d'Avila-Levy, Claudia M.; Santos, André L. S.; Branquinha, Marta H.

    2014-01-01

    Background Human cutaneous leishmaniasis is caused by distinct species, including Leishmania amazonensis. Treatment of cutaneous leishmaniasis is far from satisfactory due to increases in drug resistance and relapses, and toxicity of compounds to the host. As a consequence for this situation, the development of new leishmanicidal drugs and the search of new targets in the parasite biology are important goals. Methodology/Principal Findings In this study, we investigated the mechanism of death pathway induced by the calpain inhibitor MDL28170 on Leishmania amazonensis promastigote forms. The combined use of different techniques was applied to contemplate this goal. MDL28170 treatment with IC50 (15 µM) and two times the IC50 doses induced loss of parasite viability, as verified by resazurin assay, as well as depolarization of the mitochondrial membrane, which was quantified by JC-1 staining. Scanning and transmission electron microscopic images revealed drastic alterations on the parasite morphology, some of them resembling apoptotic-like death, including cell shrinking, surface membrane blebs and altered chromatin condensation pattern. The lipid rearrangement of the plasma membrane was detected by Annexin-V labeling. The inhibitor also induced a significant increase in the proportion of cells in the sub-G0/G1 phase, as quantified by propidium iodide staining, as well as genomic DNA fragmentation, detected by TUNEL assay. In cells treated with MDL28170 at two times the IC50 dose, it was also possible to observe an oligonucleossomal DNA fragmentation by agarose gel electrophoresis. Conclusions/Significance The data presented in the current study suggest that MDL28170 induces apoptotic marker expression in promastigotes of L. amazonensis. Altogether, the results described in the present work not only provide a rationale for further exploration of the mechanism of action of calpain inhibitors against trypanosomatids, but may also widen the investigation of the

  10. Myeloid DAP12-associating lectin (MDL)-1 regulates synovial inflammation and bone erosion associated with autoimmune arthritis.

    PubMed

    Joyce-Shaikh, Barbara; Bigler, Michael E; Chao, Cheng-Chi; Murphy, Erin E; Blumenschein, Wendy M; Adamopoulos, Iannis E; Heyworth, Paul G; Antonenko, Svetlana; Bowman, Edward P; McClanahan, Terrill K; Phillips, Joseph H; Cua, Daniel J

    2010-03-15

    DNAX adaptor protein 12 (DAP12) is a trans-membrane adaptor molecule that transduces activating signals in NK and myeloid cells. Absence of functional Dap12 results in osteoclast defects and bone abnormalities. Because DAP12 has no extracelluar binding domains, it must pair with cell surface receptors for signal transduction. There are at least 15 known DAP12-associating cell surface receptors with distinct temporal and cell type-specific expression patterns. Our aim was to determine which receptors may be important in DAP12-associated bone pathologies. Here, we identify myeloid DAP12-associating lectin (MDL)-1 receptor (also known as CLEC5A) as a key regulator of synovial injury and bone erosion during autoimmune joint inflammation. Activation of MDL-1 leads to enhanced recruitment of inflammatory macrophages and neutrophils to the joint and promotes bone erosion. Functional blockade of MDL-1 receptor via Mdl1 deletion or treatment with MDL-1-Ig fusion protein reduces the clinical signs of autoimmune joint inflammation. These findings suggest that MDL-1 receptor may be a therapeutic target for treatment of immune-mediated skeletal disorders.

  11. Inhibitory Effect of Serotonin Antagonist on Leukocyte-Endothelial Interactions In Vivo and In Vitro

    PubMed Central

    Kataoka, Hiroshi; Ariyama, Yuno; Deushi, Michiyo; Osaka, Mizuko; Nitta, Kosaku; Yoshida, Masayuki

    2016-01-01

    Background Although 5-HT2A serotonergic antagonists have been used to treat vascular disease in patients with diabetes mellitus or obesity, their effects on leukocyte-endothelial interactions have not been fully investigated. In this study, we assessed the effects of sarpogrelate hydrochloride (SRPO), a 5-HT2A receptor inverse agonist, on leukocyte-endothelial cell interactions in obesity both in vivo and in vitro. Methods and Findings In the in vivo experiment, C57BL/6 mice were fed a high-fat high-fructose diet (HFFD), comprising 20% fat and 30% fructose, with or without intraperitoneal injection of 5 mg/kg/day SRPO for 4 weeks. The body weight, visceral fat weight, and serum monocyte chemoattractant protein-1 levels in the mice increased significantly with the HFFD, but these effects were prevented by chronic injections of SRPO. Intravital microscopy of the femoral artery detected significant leukocyte-endothelial interactions after treatment with HFFD, but these leukocyte-endothelial interactions were reduced in the mice injected with SRPO. In the in vitro experiment, pre-incubation of activated human umbilical vein endothelial cells (HUVECs) with platelet-rich plasma (PRP) induced THP-1 cell adhesion under physiological flow conditions, but the adhesion was reduced by pretreatment of PRP with SRPO. A fluorescent immunobinding assay showed that PRP induced significant upregulation of E-selectin in HUVECs, but this upregulation was reduced by pretreatment of PRP with SRPO. In other in vitro conditions, pre-incubation of THP-1 cells with phorbol 12-myristate 13-acetate increased the adhesion of THP-1 cells to activated HUVECs under rotational conditions, but this adhesion was reduced by pretreatment with SRPO. Western blotting analysis showed that protein kinase C α activation in THP-1 cells was inhibited by SRPO. Conclusion Our findings indicated that SRPO inhibits vascular inflammation in obesity via inactivation of platelets and leukocytes, and improvement of

  12. Simultaneous depletion of Atm and Mdl rebalances cytosolic Fe-S cluster assembly but not heme import into the mitochondrion of Trypanosoma brucei.

    PubMed

    Horáková, Eva; Changmai, Piya; Paris, Zdeněk; Salmon, Didier; Lukeš, Julius

    2015-11-01

    ABC transporter mitochondrial 1 (Atm1) and multidrug resistance-like 1 (Mdl) are mitochondrial ABC transporters. Although Atm1 was recently suggested to transport different forms of glutathione from the mitochondrion, which are used for iron-sulfur (Fe-S) cluster maturation in the cytosol, the function of Mdl remains elusive. In Trypanosoma brucei, we identified one homolog of each of these genes, TbAtm and TbMdl, which were downregulated either separately or simultaneously using RNA interference. Individual depletion of TbAtm and TbMdl led to limited growth defects. In cells downregulated for TbAtm, the enzymatic activities of the Fe-S cluster proteins aconitase and fumarase significantly decreased in the cytosol but not in the mitochondrion. Downregulation of TbMdl did not cause any change in activities of the Fe-S proteins. Unexpectedly, the simultaneous downregulation of TbAtm and TbMdl did not result in any growth defect, nor were the Fe-S cluster protein activities altered in either the cytosolic or mitochondrial compartments. Additionally, TbAtm and TbMdl were able to partially restore the growth of the Saccharomyces cerevisiae Δatm1 and Δmdl2 null mutants, respectively. Because T. brucei completely lost the heme b biosynthesis pathway, this cofactor has to be obtained from the host. Based on our results, TbMdl is a candidate for mitochondrial import of heme b, which was markedly decreased in both TbMdl and TbAtm + TbMdl knockdowns. Moreover, the levels of heme a were strongly decreased in the same knockdowns, suggesting that TbMdl plays a key role in heme a biosynthesis, thus affecting the overall heme homeostasis in T. brucei.

  13. Corpus callosum analysis using MDL-based sequential models of shape and appearance

    NASA Astrophysics Data System (ADS)

    Stegmann, Mikkel B.; Davies, Rhodri H.; Ryberg, Charlotte

    2004-05-01

    This paper describes a method for automatically analysing and segmenting the corpus callosum from magnetic resonance images of the brain based on the widely used Active Appearance Models (AAMs) by Cootes et al. Extensions of the original method, which are designed to improve this specific case are proposed, but all remain applicable to other domain problems. The well-known multi-resolution AAM optimisation is extended to include sequential relaxations on texture resolution, model coverage and model parameter constraints. Fully unsupervised analysis is obtained by exploiting model parameter convergence limits and a maximum likelihood estimate of shape and pose. Further, the important problem of modelling object neighbourhood is addressed. Finally, we describe how correspondence across images is achieved by selecting the minimum description length (MDL) landmarks from a set of training boundaries using the recently proposed method of Davies et al. This MDL-approach ensures a unique parameterisation of corpus callosum contour variation, which is crucial for neurological studies that compare reference areas such as rostrum, splenium, et cetera. We present quantitative and qualitative results that show that the method produces accurate, robust and rapid segmentations in a cross sectional study of 17 subjects, establishing its feasibility as a fully automated clinical tool for analysis and segmentation.

  14. Kisspeptin antagonists.

    PubMed

    Roseweir, Antonia Kathryn; Millar, Robert P

    2013-01-01

    Kisspeptin is now known to be an important regulator of the hypothalamic--pituitary-gonadal axis and is the target of a range of regulators, such as steroid hormone feedback, nutritional and metabolic regulation. Kisspeptin binds to its cognate receptor, KISS1R (also called GPR54), on GnRH neurons and stimulates their activity, which in turn provides an obligatory signal for GnRH secretion-thus gating down-stream events supporting reproduction. The development of peripherally active kisspeptin antagonists could offer a unique therapeutic agent for treating hormone-dependent disorders of reproduction, including precocious puberty, endometriosis, and metastatic prostate cancer. The following chapter discusses the advances made in the search for both peptide and small molecule kisspeptin antagonists and their use in delineating the role of kisspeptin within the reproductive system. To date, four peptide antagonists and one small molecule antagonist have been designed.

  15. The hallucinogen 1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane (DOI) increases cortical extracellular glutamate levels in rats.

    PubMed

    Scruggs, Jennifer L; Schmidt, Dennis; Deutch, Ariel Y

    2003-08-07

    Activation of the cerebral cortex is seen during hallucinations. The 5-HT(2A/C) agonist 1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane (DOI) is a potent hallucinogen that has been proposed to act by targeting 5-HT(2A) heteroceptors on thalamocortical neurons and eliciting release of glutamate from these cells, which in turn drives cortical neurons. We used in vivo microdialysis to determine if DOI increases extracellular glutamate levels. Systemic administration of DOI significantly increased extracellular glutamate levels in the somatosensory cortex of the freely-moving rat. Similarly, intracortical administration of DOI by reverse dialysis increased cortical extracellular glutamate levels. No consistent changes in either extracellular GABA or glycine levels were observed in response to DOI. The increase in glutamate levels elicited by intracortical DOI was blocked by treatment with the selective 5-HT(2A) antagonist MDL 100,907. These data are consistent with the hypothesis that 5-HT(2A) receptor-mediated regulation of glutamate release is the mechanism through which hallucinogens activate the cerebral cortex.

  16. Synthesis and structure-activity relationships of new carbonyl guanidine derivatives as novel dual 5-HT2B and 5-HT7 receptor antagonists.

    PubMed

    Moritomo, Ayako; Yamada, Hiroyoshi; Watanabe, Toshihiro; Itahana, Hirotsune; Akuzawa, Shinobu; Okada, Minoru; Ohta, Mitsuaki

    2013-12-15

    To identify potent dual 5-HT2B and 5-HT7 receptor antagonists, we synthesized a series of novel carbonyl guanidine derivatives and examined their structure-activity relationships. Among these compounds, N-(9-hydroxy-9H-fluorene-2-carbonyl)guanidine (10) had a good in vitro profile, that is, potent affinity for human 5-HT2B and 5-HT7 receptor subtypes (Ki=1.8 nM and Ki=17.6 nM, respectively) and high selectivity over 5-HT2A, 5-HT2C, α1, D2 and M1 receptors. Compound 10 also showed a suppressing effect on 5-HT-induced dural protein extravasation in guinea pigs when orally administered.

  17. Effects of repeated daily treatments with a 5-HT3 receptor antagonist on dopamine neurotransmission and functional activity of 5-HT3 receptors within the nucleus accumbens of Wistar rats.

    PubMed

    Liu, Wen; Thielen, Richard J; McBride, William J

    2006-06-01

    A previous study indicated that pretreatment with repeated daily injections of serotonin-3 (5-HT3) receptor antagonists subsequently reduced the effectiveness of the 5-HT3 antagonists to attenuate ethanol intake under 24-h free-choice conditions; one possibility to account for this is that the functional activity of the 5-HT3 receptor may have been altered by prior treatment with the antagonists. The present experiments were conducted to examine the effects of local perfusion of the 5-HT3 agonist 1-(m-chlorophenyl)-biguanide (CPBG) on the extracellular levels of dopamine (DA) in the nucleus accumbens (ACB) and ventral tegmental area (VTA) of adult male Wistar rats that had received repeated daily injections of the 5-HT3 antagonist, MDL 72222 (MDL). In vivo microdialysis was used to test the hypothesis that alterations in 5-HT3 receptor function have occurred with repeated antagonist injections. One group was given daily injections of MDL (1 mg/kg, s.c.) for 10 consecutive days (MDL group), and the other group was administered saline for 10 days (saline group). On the day after the last treatment, rats were implanted with a unilateral guide cannula aimed at either the ACB or VTA. Two days later, the microdialysis probe was inserted into the guide cannula; on the next day, microdialysis experiments were conducted to determine the extracellular levels of DA in the ACB or VTA. Local perfusion of CPBG (17.5, 35, 70 microM) in the ACB significantly stimulated DA release in the saline- and MDL-treated animals. In terms of percent baseline, the CPBG-stimulated DA release was higher in the MDL-treated group than in the saline-treated group in both the ACB and VTA; however, on the basis of the extracellular concentration, there were no significant differences in the ACB between the two groups. Using the no-net-flux microdialysis, it was determine that the basal extracellular concentration of DA in the ACB was approximately 60% lower in the MDL group than saline group; there

  18. Selective 5-hydroxytryptamine2 receptor antagonists protect against the neurotoxicity of methylenedioxymethamphetamine in rats.

    PubMed

    Schmidt, C J; Abbate, G M; Black, C K; Taylor, V L

    1990-11-01

    The serotonergic deficits resulting from methylenedioxymethamphetamine (MDMA)-induced neurotoxicity were prevented by the simultaneous administration of 5-hydroxytryptamine2 (5-HT2) receptor antagonists such as MDL 11,939 or ritanserin. This effect was not region specific as protection was observed in the cortex, hippocampus and striatum 1 week after the administration of a single dose of MDMA. MDL 11,939 also showed some efficacy at reducing the deficits in 5-HT concentrations and tryptophan hydroxylase activity produced by multiple administrations of MDMA. Protection against the neurotoxicity required the administration of MDL 11,939 within 1 hr of MDMA indicating 5-HT2 receptor activation was an early event in the process leading to terminal damage. Examination of the effect of the 5-HT2 receptor blockade on the early neurochemical alterations induced by MDMA revealed an inhibitory effect on MDMA-stimulated dopamine synthesis. Analysis of these data and the associated changes in dopamine metabolites indicates that 5-HT2 receptor antagonists block MDMA-induced neurotoxicity by interfering with the ability of the dopamine neuron to maintain its cytoplasmic pool of transmitter and thereby sustain carrier-mediated dopamine release.

  19. Using the U.S. Geological Survey National Water Quality Laboratory LT-MDL to Evaluate and Analyze Data

    USGS Publications Warehouse

    Bonn, Bernadine A.

    2008-01-01

    A long-term method detection level (LT-MDL) and laboratory reporting level (LRL) are used by the U.S. Geological Survey?s National Water Quality Laboratory (NWQL) when reporting results from most chemical analyses of water samples. Changing to this method provided data users with additional information about their data and often resulted in more reported values in the low concentration range. Before this method was implemented, many of these values would have been censored. The use of the LT-MDL and LRL presents some challenges for the data user. Interpreting data in the low concentration range increases the need for adequate quality assurance because even small contamination or recovery problems can be relatively large compared to concentrations near the LT-MDL and LRL. In addition, the definition of the LT-MDL, as well as the inclusion of low values, can result in complex data sets with multiple censoring levels and reported values that are less than a censoring level. Improper interpretation or statistical manipulation of low-range results in these data sets can result in bias and incorrect conclusions. This document is designed to help data users use and interpret data reported with the LTMDL/ LRL method. The calculation and application of the LT-MDL and LRL are described. This document shows how to extract statistical information from the LT-MDL and LRL and how to use that information in USGS investigations, such as assessing the quality of field data, interpreting field data, and planning data collection for new projects. A set of 19 detailed examples are included in this document to help data users think about their data and properly interpret lowrange data without introducing bias. Although this document is not meant to be a comprehensive resource of statistical methods, several useful methods of analyzing censored data are demonstrated, including Regression on Order Statistics and Kaplan-Meier Estimation. These two statistical methods handle complex

  20. Serotonin regulates brain-derived neurotrophic factor expression in select brain regions during acute psychological stress

    PubMed Central

    Jiang, De-guo; Jin, Shi-li; Li, Gong-ying; Li, Qing-qing; Li, Zhi-ruo; Ma, Hong-xia; Zhuo, Chuan-jun; Jiang, Rong-huan; Ye, Min-jie

    2016-01-01

    Previous studies suggest that serotonin (5-HT) might interact with brain-derived neurotrophic factor (BDNF) during the stress response. However, the relationship between 5-HT and BDNF expression under purely psychological stress is unclear. In this study, one hour before psychological stress exposure, the 5-HT1A receptor agonist 8-OH-DPAT or antagonist MDL73005, or the 5-HT2A receptor agonist DOI or antagonist ketanserin were administered to rats exposed to psychological stress. Immunohistochemistry and in situ hybridization revealed that after psychological stress, with the exception of the ventral tegmental area, BDNF protein and mRNA expression levels were higher in the 5-HT1A and the 5-HT2A receptor agonist groups compared with the solvent control no-stress or psychological stress group in the CA1 and CA3 of the hippocampus, prefrontal cortex, central amygdaloid nucleus, dorsomedial hypothalamic nucleus, dentate gyrus, shell of the nucleus accumbens and the midbrain periaqueductal gray. There was no significant difference between the two agonist groups. In contrast, after stress exposure, BDNF protein and mRNA expression levels were lower in the 5-HT1A and 5-HT2A receptor antagonist groups than in the solvent control non-stress group, with the exception of the ventral tegmental area. Our findings suggest that 5-HT regulates BDNF expression in a rat model of acute psychological stress. PMID:27857753

  1. Serotonin regulates brain-derived neurotrophic factor expression in select brain regions during acute psychological stress.

    PubMed

    Jiang, De-Guo; Jin, Shi-Li; Li, Gong-Ying; Li, Qing-Qing; Li, Zhi-Ruo; Ma, Hong-Xia; Zhuo, Chuan-Jun; Jiang, Rong-Huan; Ye, Min-Jie

    2016-09-01

    Previous studies suggest that serotonin (5-HT) might interact with brain-derived neurotrophic factor (BDNF) during the stress response. However, the relationship between 5-HT and BDNF expression under purely psychological stress is unclear. In this study, one hour before psychological stress exposure, the 5-HT1A receptor agonist 8-OH-DPAT or antagonist MDL73005, or the 5-HT2A receptor agonist DOI or antagonist ketanserin were administered to rats exposed to psychological stress. Immunohistochemistry and in situ hybridization revealed that after psychological stress, with the exception of the ventral tegmental area, BDNF protein and mRNA expression levels were higher in the 5-HT1A and the 5-HT2A receptor agonist groups compared with the solvent control no-stress or psychological stress group in the CA1 and CA3 of the hippocampus, prefrontal cortex, central amygdaloid nucleus, dorsomedial hypothalamic nucleus, dentate gyrus, shell of the nucleus accumbens and the midbrain periaqueductal gray. There was no significant difference between the two agonist groups. In contrast, after stress exposure, BDNF protein and mRNA expression levels were lower in the 5-HT1A and 5-HT2A receptor antagonist groups than in the solvent control non-stress group, with the exception of the ventral tegmental area. Our findings suggest that 5-HT regulates BDNF expression in a rat model of acute psychological stress.

  2. PRESEE: an MDL/MML algorithm to time-series stream segmenting.

    PubMed

    Xu, Kaikuo; Jiang, Yexi; Tang, Mingjie; Yuan, Changan; Tang, Changjie

    2013-01-01

    Time-series stream is one of the most common data types in data mining field. It is prevalent in fields such as stock market, ecology, and medical care. Segmentation is a key step to accelerate the processing speed of time-series stream mining. Previous algorithms for segmenting mainly focused on the issue of ameliorating precision instead of paying much attention to the efficiency. Moreover, the performance of these algorithms depends heavily on parameters, which are hard for the users to set. In this paper, we propose PRESEE (parameter-free, real-time, and scalable time-series stream segmenting algorithm), which greatly improves the efficiency of time-series stream segmenting. PRESEE is based on both MDL (minimum description length) and MML (minimum message length) methods, which could segment the data automatically. To evaluate the performance of PRESEE, we conduct several experiments on time-series streams of different types and compare it with the state-of-art algorithm. The empirical results show that PRESEE is very efficient for real-time stream datasets by improving segmenting speed nearly ten times. The novelty of this algorithm is further demonstrated by the application of PRESEE in segmenting real-time stream datasets from ChinaFLUX sensor networks data stream.

  3. Final Environmental Assessment for Proposed Multi-Purpose Machine Gun Range at Joint Base McGuire-Dix-Lakehurst (JB MDL), New Jersey

    DTIC Science & Technology

    2015-09-01

    Proposed MPMGR July 2015 JB MDL, New Jersey 2-2 Heating would be accomplished through electrical, geothermal , heat pump, or solar power. No fuel storage...drinking water and wastewater treatment facilities Consider using captured biogases in combined heat and power systems , and renewable energy (wind...Planning, and Conservation System ISBC Infantry Squad Battle Course JB MDL Joint Base McGuire-Dix- Lakehurst Ldn Day-Night Level MBTA Migratory Bird

  4. Inhibition of peripheral aromatization in baboons by an enzyme-activated aromatase inhibitor (MDL 18,962)

    SciTech Connect

    Longcope, C.; Femino, A.; Johnston, J.O.

    1988-05-01

    The peripheral aromatization ((rho)BM) of androstenedione (A) and testosterone (T) was measured before and after administration of the aromatase inhibitor 10-(2 propynyl)estr-4-ene-3,17-dione (MDL-18,962) to five mature female baboons, Papio annubis. The measurements were made by infusing (3H)androstenedione/(14C)estrone or (3H)testosterone/(14C)estradiol for 3.5 h and collecting blood samples during the infusions and all urine for 96 h from the start of the infusion. Blood samples were analyzed for radioactivity as infused and product steroids, and the data were used to calculate MCRs. An aliquot of the pooled urine was analyzed for the glucuronides of estrone and estradiol and used to calculate the (rho)BM. MDL-18,962 was administered as a pulse in polyethylene glycol-400 (1-5 ml) either iv or via gastric tube 30 min before administration of the radiolabeled steroids. Control studies were done with and without polyethylene glycol-400 administration. When MDL-18,962 was given iv at 4 mg/kg, the aromatization of A was decreased 91.8 +/- 0.9% from the control value of 1.23 +/- 0.13% to 0.11 +/- 0.01%. At the same dose, aromatization of T was decreased 82.0 +/- 7.1%, from a control value of 0.20 +/- 0.03% to 0.037 +/- 0.018%. When MDL-18,962 was given iv at doses of 0.4, 0.1, 0.04, and 0.01 mg/kg, the values for aromatization of A were 0.16 +/- 0.03%, 0.18 +/- 0.06%, 0.37 +/- 11%, and 0.65 +/- 0.09%, respectively. The administration of MDL-18,962 via gastric tube at 4 mg/kg as a pulse decreased the aromatization of A from 1.35 +/- 0.06% to 0.43 +/- 0.12%, an inhibition of 67.2 +/- 10.7%. When administered via gastric tube daily for 5 days at 4 mg/kg, the aromatization of A fell from 1.35 +/- 0.06% to 0.063 +/- 0.003%, an inhibition of 84.4 +/- 0.5%.

  5. Effects of the 5-HT(6) receptor antagonist Ro 04-6790 on learning consolidation.

    PubMed

    Meneses, A

    2001-01-08

    The 5-HT(6) receptor antagonist Ro-04-6790 or 8-OH-DPAT injection improved learning consolidation on an autoshaping task, while mCPP, scopolamine and dizocilpine decreased the performance. The effect induced by scopolamine, but not that induced by mCPP, was reversed completely by Ro-04-6790, while dizocilpine effect was antagonized partially. Nevertheless, ritanserin or WAY 100635, but not Ro 04-6790, antagonized the 8-OH-DPAT facilitatory effects on learning consolidation. As WAY 100635 did not modify the Ro 04-6790 facilitatory effect, hence 5-HT(1A), and/or 5-HT(7), but not 5-HT(6), receptors might mediate the 8-OH-DPAT facilitatory effect on learning consolidation. Since, the Ro 04-6790 facilitatory effect was unaffected by 5-HT(1A), 5-HT(2A)/(2B)/(2C), 5-HT(3) or 5-HT(4) receptor blockade, thereby, the facilitatory effect induced by Ro 04-6790 involved specifically 5-HT(6) receptors. Indeed, the present data provide further support to the notion that, 5-HT(6) receptors play a significant part in the learning consolidation under normal and dysfunctional memory conditions.

  6. ACTH Antagonists

    PubMed Central

    Clark, Adrian John; Forfar, Rachel; Hussain, Mashal; Jerman, Jeff; McIver, Ed; Taylor, Debra; Chan, Li

    2016-01-01

    Adrenocorticotropin (ACTH) acts via a highly selective receptor that is a member of the melanocortin receptor subfamily of type 1 G protein-coupled receptors. The ACTH receptor, also known as the melanocortin 2 receptor (MC2R), is unusual in that it is absolutely dependent on a small accessory protein, melanocortin receptor accessory protein (MRAP) for cell surface expression and function. ACTH is the only known naturally occurring agonist for this receptor. This lack of redundancy and high degree of ligand specificity suggests that antagonism of this receptor could provide a useful therapeutic aid and a potential investigational tool. Clinical situations in which this could be useful include (1) Cushing’s disease and ectopic ACTH syndrome – especially while preparing for definitive treatment of a causative tumor, or in refractory cases, or (2) congenital adrenal hyperplasia – as an adjunct to glucocorticoid replacement. A case for antagonism in other clinical situations in which there is ACTH excess can also be made. In this article, we will explore the scientific and clinical case for an ACTH antagonist, and will review the evidence for existing and recently described peptides and modified peptides in this role. PMID:27547198

  7. How Good Is Crude MDL for Solving the Bias-Variance Dilemma? An Empirical Investigation Based on Bayesian Networks

    PubMed Central

    Cruz-Ramírez, Nicandro; Acosta-Mesa, Héctor Gabriel; Mezura-Montes, Efrén; Guerra-Hernández, Alejandro; Hoyos-Rivera, Guillermo de Jesús; Barrientos-Martínez, Rocío Erandi; Gutiérrez-Fragoso, Karina; Nava-Fernández, Luis Alonso; González-Gaspar, Patricia; Novoa-del-Toro, Elva María; Aguilera-Rueda, Vicente Josué; Ameca-Alducin, María Yaneli

    2014-01-01

    The bias-variance dilemma is a well-known and important problem in Machine Learning. It basically relates the generalization capability (goodness of fit) of a learning method to its corresponding complexity. When we have enough data at hand, it is possible to use these data in such a way so as to minimize overfitting (the risk of selecting a complex model that generalizes poorly). Unfortunately, there are many situations where we simply do not have this required amount of data. Thus, we need to find methods capable of efficiently exploiting the available data while avoiding overfitting. Different metrics have been proposed to achieve this goal: the Minimum Description Length principle (MDL), Akaike’s Information Criterion (AIC) and Bayesian Information Criterion (BIC), among others. In this paper, we focus on crude MDL and empirically evaluate its performance in selecting models with a good balance between goodness of fit and complexity: the so-called bias-variance dilemma, decomposition or tradeoff. Although the graphical interaction between these dimensions (bias and variance) is ubiquitous in the Machine Learning literature, few works present experimental evidence to recover such interaction. In our experiments, we argue that the resulting graphs allow us to gain insights that are difficult to unveil otherwise: that crude MDL naturally selects balanced models in terms of bias-variance, which not necessarily need be the gold-standard ones. We carry out these experiments using a specific model: a Bayesian network. In spite of these motivating results, we also should not overlook three other components that may significantly affect the final model selection: the search procedure, the noise rate and the sample size. PMID:24671204

  8. How good is crude MDL for solving the bias-variance dilemma? An empirical investigation based on Bayesian networks.

    PubMed

    Cruz-Ramírez, Nicandro; Acosta-Mesa, Héctor Gabriel; Mezura-Montes, Efrén; Guerra-Hernández, Alejandro; Hoyos-Rivera, Guillermo de Jesús; Barrientos-Martínez, Rocío Erandi; Gutiérrez-Fragoso, Karina; Nava-Fernández, Luis Alonso; González-Gaspar, Patricia; Novoa-del-Toro, Elva María; Aguilera-Rueda, Vicente Josué; Ameca-Alducin, María Yaneli

    2014-01-01

    The bias-variance dilemma is a well-known and important problem in Machine Learning. It basically relates the generalization capability (goodness of fit) of a learning method to its corresponding complexity. When we have enough data at hand, it is possible to use these data in such a way so as to minimize overfitting (the risk of selecting a complex model that generalizes poorly). Unfortunately, there are many situations where we simply do not have this required amount of data. Thus, we need to find methods capable of efficiently exploiting the available data while avoiding overfitting. Different metrics have been proposed to achieve this goal: the Minimum Description Length principle (MDL), Akaike's Information Criterion (AIC) and Bayesian Information Criterion (BIC), among others. In this paper, we focus on crude MDL and empirically evaluate its performance in selecting models with a good balance between goodness of fit and complexity: the so-called bias-variance dilemma, decomposition or tradeoff. Although the graphical interaction between these dimensions (bias and variance) is ubiquitous in the Machine Learning literature, few works present experimental evidence to recover such interaction. In our experiments, we argue that the resulting graphs allow us to gain insights that are difficult to unveil otherwise: that crude MDL naturally selects balanced models in terms of bias-variance, which not necessarily need be the gold-standard ones. We carry out these experiments using a specific model: a Bayesian network. In spite of these motivating results, we also should not overlook three other components that may significantly affect the final model selection: the search procedure, the noise rate and the sample size.

  9. Particle System Based Adaptive Sampling on Spherical Parameter Space to Improve the MDL Method for Construction of Statistical Shape Models

    PubMed Central

    Zhou, Xiangrong; Hirano, Yasushi; Tachibana, Rie; Hara, Takeshi; Kido, Shoji; Fujita, Hiroshi

    2013-01-01

    Minimum description length (MDL) based group-wise registration was a state-of-the-art method to determine the corresponding points of 3D shapes for the construction of statistical shape models (SSMs). However, it suffered from the problem that determined corresponding points did not uniformly spread on original shapes, since corresponding points were obtained by uniformly sampling the aligned shape on the parameterized space of unit sphere. We proposed a particle-system based method to obtain adaptive sampling positions on the unit sphere to resolve this problem. Here, a set of particles was placed on the unit sphere to construct a particle system whose energy was related to the distortions of parameterized meshes. By minimizing this energy, each particle was moved on the unit sphere. When the system became steady, particles were treated as vertices to build a spherical mesh, which was then relaxed to slightly adjust vertices to obtain optimal sampling-positions. We used 47 cases of (left and right) lungs and 50 cases of livers, (left and right) kidneys, and spleens for evaluations. Experiments showed that the proposed method was able to resolve the problem of the original MDL method, and the proposed method performed better in the generalization and specificity tests. PMID:23861721

  10. MDL constrained 3-D grayscale skeletonization algorithm for automated extraction of dendrites and spines from fluorescence confocal images.

    PubMed

    Yuan, Xiaosong; Trachtenberg, Joshua T; Potter, Steve M; Roysam, Badrinath

    2009-12-01

    This paper presents a method for improved automatic delineation of dendrites and spines from three-dimensional (3-D) images of neurons acquired by confocal or multi-photon fluorescence microscopy. The core advance presented here is a direct grayscale skeletonization algorithm that is constrained by a structural complexity penalty using the minimum description length (MDL) principle, and additional neuroanatomy-specific constraints. The 3-D skeleton is extracted directly from the grayscale image data, avoiding errors introduced by image binarization. The MDL method achieves a practical tradeoff between the complexity of the skeleton and its coverage of the fluorescence signal. Additional advances include the use of 3-D spline smoothing of dendrites to improve spine detection, and graph-theoretic algorithms to explore and extract the dendritic structure from the grayscale skeleton using an intensity-weighted minimum spanning tree (IW-MST) algorithm. This algorithm was evaluated on 30 datasets organized in 8 groups from multiple laboratories. Spines were detected with false negative rates less than 10% on most datasets (the average is 7.1%), and the average false positive rate was 11.8%. The software is available in open source form.

  11. Characterization of the discriminative stimulus effects of lorcaserin in rats.

    PubMed

    Serafine, Katherine M; Rice, Kenner C; France, Charles P

    2016-09-01

    Lorcaserin is approved by the Food and Drug Administration for treating obesity and is under consideration for treating substance use disorders; it has agonist properties at serotonin (5-HT)2C receptors and might also have agonist properties at other 5-HT receptor subtypes. This study used drug discrimination to investigate the mechanism(s) of action of lorcaserin. Male Sprague-Dawley rats discriminated 0.56 mg/kg i.p. lorcaserin from saline while responding under a fixed-ratio 5 schedule for food. Lorcaserin (0.178-1.0 mg/kg) dose-dependently increased lorcaserin-lever responding. The 5-HT2C receptor agonist mCPP and the 5-HT2A receptor agonist DOM each occasioned greater than 90% lorcaserin-lever responding in seven of eight rats. The 5-HT1A receptor agonist 8-OH-DPAT occasioned greater than 90% lorcaserin-lever responding in four of seven rats. The 5-HT2C receptor selective antagonist SB 242084 attenuated lorcaserin-lever responding in all eight rats and the 5-HT2A receptor selective antagonist MDL 100907 attenuated lorcaserin-lever responding in six of seven rats. These results suggest that, in addition to agonist properties at 5-HT2C receptors, lorcaserin also has agonist properties at 5-HT2A and 5-HT1A receptors. Because some drugs with 5-HT2A receptor agonist properties are abused, it is important to fully characterize the behavioral effects of lorcaserin while considering its potential for treating substance use disorders.

  12. Behavioral and pharmacokinetic interactions between monoamine oxidase inhibitors and the hallucinogen 5-methoxy-N,N-dimethyltryptamine.

    PubMed

    Halberstadt, Adam L

    2016-04-01

    Monoamine oxidase inhibitors (MAOIs) are often ingested together with tryptamine hallucinogens, but relatively little is known about the consequences of their combined use. We have shown previously that monoamine oxidase-A (MAO-A) inhibitors alter the locomotor profile of the hallucinogen 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) in rats, and enhance its interaction with 5-HT2A receptors. The goal of the present studies was to investigate the mechanism for the interaction between 5-MeO-DMT and MAOIs, and to determine whether other behavioral responses to 5-MeO-DMT are similarly affected. Hallucinogens disrupt prepulse inhibition (PPI) in rats, an effect typically mediated by 5-HT2A activation. 5-MeO-DMT also disrupts PPI but the effect is primarily attributable to 5-HT1A activation. The present studies examined whether an MAOI can alter the respective contributions of 5-HT1A and 5-HT2A receptors to the effects of 5-MeO-DMT on PPI. A series of interaction studies using the 5-HT1A antagonist WAY-100,635 and the 5-HT2A antagonist MDL 11,939 were performed to assess the respective contributions of these receptors to the behavioral effects of 5-MeO-DMT in rats pretreated with an MAOI. The effects of MAO-A inhibition on the pharmacokinetics of 5-MeO-DMT and its metabolism to bufotenine were assessed using liquid chromatography-electrospray ionization-selective reaction monitoring-tandem mass spectrometry (LC-ESI-SRM-MS/MS). 5-MeO-DMT (1mg/kg) had no effect on PPI when tested 45-min post-injection but disrupted PPI in animals pretreated with the MAO-A inhibitor clorgyline or the MAO-A/B inhibitor pargyline. The combined effect of 5-MeO-DMT and pargyline on PPI was antagonized by pretreatment with either WAY-100,635 or MDL 11,939. Inhibition of MAO-A increased the level of 5-MeO-DMT in plasma and whole brain, but had no effect on the conversion of 5-MeO-DMT to bufotenine, which was found to be negligible. The present results confirm that 5-MeO-DMT can disrupt PPI by

  13. Pharmacokinetics of M100240 and MDL 100,173, a dual angiotensin-converting enzyme/neutral endopeptidase inhibitor, in healthy young and elderly volunteers.

    PubMed

    Emmons, Gary T; Argenti, Rick; Martin, Louis L; Martin, Nancy E; Jensen, Bradford K

    2004-08-01

    M100240 is an acetate thioester of MDL 100,173-a dual angiotensin-converting enzyme (ACE)/neutral endopeptidase (NEP) inhibitor-in phase II development. The pharmacokinetics of M100240 and MDL 100,173 were compared in young and elderly subjects. Pharmacokinetic data were obtained from 12 young (ages 18-45 years, 10 male, 2 female) and 12 elderly (ages 65-85 years, 7 male, 5 female) healthy subjects in a parallel-group, open-label study. Following an overnight fast, subjects received a single 25-mg oral dose of M100240. Serial plasma concentrations of M100240 and MDL 100,173 were determined using a validated liquid chromatography/tandem mass spectrometry (LC/MS/MS) method, and pharmacokinetic parameters were calculated with noncompartmental methods. Single-dose treatment with M100240 was well tolerated in both groups of subjects, with no clinically significant changes in vital signs, ECG recordings, or laboratory safety parameters. M100240 was rapidly absorbed and converted to MDL 100,173, with M100240 concentrations no longer detectable at 3 to 4 hours postdose in both groups. The pharmacokinetics of the pharmacologically active MDL 100,173 were similar for both groups. Although maximum concentrations of M100240 were generally higher in elderly versus young subjects (C(max) 0.48 ng/mL vs. 0.17 ng/mL), systemic availability of M100240 was quite low and variable with plasma, and this apparent difference in parent drug exposure is unlikely to have important clinical implications. No age-related differences in the pharmacokinetic parameters of MDL 100,173 (C(max) 8.16 vs. 9.62 ng/mL, t(max) 1.25 vs. 1.5 h, AUC((0-last)) 81.6 vs. 72.2 ng x h/mL) were observed between young and elderly subjects, respectively. In conclusion, there are no age-related differences in the pharmacokinetics of MDL 100,173 between young and elderly subjects.

  14. Effects of the selective 5-HT7 receptor antagonist SB-269970 on premature responding in the five-choice serial reaction time test in rats.

    PubMed

    Nikiforuk, Agnieszka; Hołuj, Małgorzata; Potasiewicz, Agnieszka; Popik, Piotr

    2015-08-01

    The antagonists of serotonin 5-HT7 receptors have been demonstrated to ameliorate cognitive impairments in pharmacological animal models of schizophrenia that involve blockade of N-methyl-D-aspartate receptors (NMDARs). The administration of NMDAR antagonists evokes a broad range of cognitive deficits, including a loss of impulse control. The involvement of 5-HT7 receptors in the modulation of impulsivity has been recently suggested but has not been studied in great detail. The aim of the present study was to examine the effect of a selective 5-HT7 receptor antagonist SB-269970 on a measure of impulsive action, i.e., premature responding on the five-choice serial reaction time task (5-CSRTT) in rats. The antagonist of 5-HT2A receptor M100,907 was used as a positive control. The efficacies of both compounds were assessed in conditions of increased impulsivity that were produced by the administration of the NMDAR antagonist MK-801 or/and non-drug stimuli, i.e., using variable inter-trial intervals (vITIs). To examine the general ability of SB-269970 to counteract the MK-801-induced impairments, a discrete paired-trial delayed alternation task in a T-maze was employed. MK-801 significantly increased the number of premature responses in 5-CSRTT, and this effect was abolished by the administration of M100,907 (0.5 mg/kg) and SB-269970 (1 mg/kg). In addition, M100,907, but not SB-269970, reduced premature responding in the prolonged ITI trials. Both M100,907 and SB-269970 attenuated MK-801-induced working memory impairment in a T-maze. The present study demonstrated the efficacy of SB-269970 against MK-801-induced premature responding in the 5-CSRTT. This anti-impulsive action may offer additional benefits to the cognitive-enhancing effects of pharmacological blockade of 5-HT7 receptors.

  15. Effects of a Serotonin 2C Agonist and a 2A Antagonist on Actigraphy-Based Sleep Parameters Disrupted by Methamphetamine Self-Administration in Rhesus Monkeys.

    PubMed

    Perez Diaz, Maylen; Andersen, Monica L; Rice, Kenner C; Howell, Leonard L

    2017-01-18

    Sleep disorders and substance abuse are highly comorbid and we have previously shown that methamphetamine self-administration significantly disrupts activity-based sleep parameters in rhesus monkeys. To the best of our knowledge, no study has evaluated the effectiveness of any pharmacological intervention to attenuate the effects of methamphetamine on nighttime activity under well-controlled conditions in laboratory animals. Thus, we examined the effects of a 5-HT2C receptor agonist, WAY163909, and a 5-HT2A receptor antagonist, M100907, given alone and in combination, on actigraphy-based sleep parameters disrupted by methamphetamine self-administration in non-human primates. Adult male/female rhesus monkeys self-administered methamphetamine (0.03 mg/kg/injection, i.v.) under a fixed-ratio 20 schedule of reinforcement (60-min sessions once a day, 5 days per week). Nighttime activity was evaluated using Actiwatch monitors. WAY163909 (0.1, 0.3, and 1.0 mg/kg), M100907 (0.03, 0.1, and 0.3 mg/kg), and a combination (0.1 mg/kg M100+0.3 mg/kg WAY) were administered i.m. before lights-out. Each dose was given for five consecutive days during which self-administration took place in the morning. Both drugs improved activity-based sleep measures disrupted by methamphetamine by decreasing sleep latency and increasing sleep efficiency compared with vehicle. By combining these drugs, their individual effects were significantly enhanced. Agonists at the 5-HT2C receptor and antagonists at the 5-HT2A receptor show promise as potential treatments for the sleep-disrupting effects of stimulants when used alone and in combination. Combining subthreshold doses of WAY and M100 produced significant improvements in nighttime activity measures while avoiding the general motor-decreasing effects of the high dose of WAY.Neuropsychopharmacology advance online publication, 18 January 2017; doi:10.1038/npp.2016.280.

  16. 5-HT1B receptor-mediated contractions in human temporal artery: evidence from selective antagonists and 5-HT receptor mRNA expression

    PubMed Central

    Verheggen, R; Hundeshagen, A G; Brown, A M; Schindler, M; Kaumann, A J

    1998-01-01

    In the human temporal artery both 5-HT1-like and 5-HT2A receptors mediate the contractile effects of 5-hydroxytryptamine (5-HT) and we have suggested that the 5-HT1-like receptors resemble more closely recombinant 5-HT1B than 5-HT1D receptors. To investigate further which subtype is involved, we investigated the blockade of 5-HT-induced contractions by the 5-HT1B-selective antagonist SB-224289 (2,3,6,7-tetrahydro-1′-methyl-5-{2-methyl-4′[(5-methyl-1,2,4-oxadiazole-3-yl) biphenyl-4-yl] carbonyl} furo[2,3-f]indole-3-spiro-4′-piperidine oxalate) and the 5-HT1D-selective antagonist BRL-15572 (1-phenyl-3[4-3-chlorophenyl piperazin-1-yl] phenylpropan-2-ol). We also used RT-PCR to search for the mRNA of 5-HT1B, 5-HT1D and other 5-HT receptors.The contractile effects of 5-HT in temporal artery rings were partially antagonized by SB-224289 (20, 200 nM) (apparent KB=1 nM) and ketanserin (1 μM) but not by BRL-15572 (500 nM).Sumatriptan evoked contractions (EC50, 170 nM) that were resistant to blockade by BRL-15572 (500 nM) but antagonized by SB-224289 (20, 200 nM).The potency of 5-HT (EC50) was estimated to be 94 nM for the ketanserin-sensitive receptor and 34 nM for the SB-224289-sensitive receptor. The fraction of maximal 5-HT response mediated through SB-224289-sensitive receptors was 0.20–0.67, the remainder being mediated through ketanserin-sensitive receptors.We detected arterial receptor mRNA for the following receptors (incidence): 5-HT1B (8/8), 5-HT1D (2/8), 5-HT1F (0/4), 5-HT2A (0/8), 5-HT2B (0/8), 5-HT2C (0/8), 5-HT4 (4/8) and 5-HT7 (4/8).We conclude that the ketanserin-resistant fraction of the 5-HT effects and the effects of sumatriptan are mediated by 5-HT1B receptors. The lack of antagonism by BRL-15572 rules out 5-HT1D receptors as mediators of the contractile effects of 5-HT and sumatriptan. PMID:9723944

  17. Effects of direct- and indirect-acting serotonin receptor agonists on the antinociceptive and discriminative stimulus effects of morphine in rhesus monkeys.

    PubMed

    Li, Jun-Xu; Koek, Wouter; Rice, Kenner C; France, Charles P

    2011-04-01

    Serotonergic (5-HT) systems modulate pain, and drugs acting on 5-HT systems are used with opioids to treat pain. This study examined the effects of 5-HT receptor agonists on the antinociceptive and discriminative stimulus effects of morphine in monkeys. Morphine increased tail-withdrawal latency in a dose-related manner; 5-HT receptor agonists alone increased tail-withdrawal latency at 50 °C but not 55 °C water. The antinociceptive effects of morphine occurred with smaller doses when monkeys received an indirect-acting (fenfluramine) or direct acting (8-OH-DPAT, F13714, buspirone, quipazine, DOM, and 2C-T-7) agonist. The role of 5-HT receptor subtypes in these interactions was confirmed with selective 5-HT(1A) (WAY100635) and 5-HT(2A) (MDL100907) receptor antagonists. None of the 5-HT drugs had morphine-like discriminative stimulus effects; however, fenfluramine and 5-HT(2A) receptor agonists attenuated the discriminative stimulus effects of morphine and this attenuation was prevented by MDL100907. The 5-HT(1A) receptor agonists did not alter the discriminative stimulus effects of morphine. Thus, 5-HT receptor agonists increase the potency of morphine in an assay of antinociception, even under conditions where 5-HT agonists are themselves without effect (ie, 55 °C water), without increasing (and in some cases decreasing) the potency of morphine in a drug discrimination assay. Whereas 5-HT(2A) receptor agonists increase the potency of morphine for antinociception at doses that have no effect on the rate of operant responding, 5-HT(1A) receptor agonists increase the potency of morphine only at doses that eliminate operant responding. These data suggest that drugs acting selectively on 5-HT receptor subtypes could help to improve the use of opioids for treating pain.

  18. Effect of 5-HT2A Receptor Polymorphisms, Work Stressors, and Social Support on Job Strain among Petroleum Workers in Xinjiang, China

    PubMed Central

    Jiang, Yu; Tang, Jinhua; Li, Rong; Zhao, Junling; Song, Zhixin; Ge, Hua; Lian, Yulong; Liu, Jiwen

    2016-01-01

    Previous studies have shown that work stressors and social support influence job strain. However, few studies have examined the impact of individual differences on job strain. In Xinjiang, there are a large number of petroleum workers in arid deserts. The present study investigated the effects of work stressors, social support, and 5-hydroxytryptamine receptor (5-HTR2A) genotype on the etiology of job strain among petroleum workers in Xinjiang. A cross-sectional study was carried out between January and August 2013. A total of 700 workers were selected by a three-stage stratified sampling method. 5-HTR2A genotypes were determined with the SNaPshot single nucleotide polymorphism assay. Work stressors and job strain were evaluated with the Occupational Stress Inventory-Revised questionnaire. Social support was assessed with the Chinese Social Support Rating Scale. Work overload and responsibility were significantly associated with job strain. Low social support was associated with severe vocational and interpersonal strain. High social support was a protective factor against job strain (odds ratio (OR) = 0.32, 95% confidence interval (CI): 0.14–0.76). The CC genotype of rs6313 and the AA genotype of rs2070040 were linked to severe vocational strain. Ordinal logistic regression analysis revealed that the CC genotype of rs6313 was linked to higher risk of job strain than the TT genotype (OR = 1.88, 95% CI: 1.10–3.23). These data provide evidence that work stressors, low social support, and 5-HTR2A gene polymorphism contributes to the risk of job strain. PMID:27999378

  19. Effect of 5-HT2A Receptor Polymorphisms, Work Stressors, and Social Support on Job Strain among Petroleum Workers in Xinjiang, China.

    PubMed

    Jiang, Yu; Tang, Jinhua; Li, Rong; Zhao, Junling; Song, Zhixin; Ge, Hua; Lian, Yulong; Liu, Jiwen

    2016-12-19

    Previous studies have shown that work stressors and social support influence job strain. However, few studies have examined the impact of individual differences on job strain. In Xinjiang, there are a large number of petroleum workers in arid deserts. The present study investigated the effects of work stressors, social support, and 5-hydroxytryptamine receptor (5-HTR2A) genotype on the etiology of job strain among petroleum workers in Xinjiang. A cross-sectional study was carried out between January and August 2013. A total of 700 workers were selected by a three-stage stratified sampling method. 5-HTR2A genotypes were determined with the SNaPshot single nucleotide polymorphism assay. Work stressors and job strain were evaluated with the Occupational Stress Inventory-Revised questionnaire. Social support was assessed with the Chinese Social Support Rating Scale. Work overload and responsibility were significantly associated with job strain. Low social support was associated with severe vocational and interpersonal strain. High social support was a protective factor against job strain (odds ratio (OR) = 0.32, 95% confidence interval (CI): 0.14-0.76). The CC genotype of rs6313 and the AA genotype of rs2070040 were linked to severe vocational strain. Ordinal logistic regression analysis revealed that the CC genotype of rs6313 was linked to higher risk of job strain than the TT genotype (OR = 1.88, 95% CI: 1.10-3.23). These data provide evidence that work stressors, low social support, and 5-HTR2A gene polymorphism contributes to the risk of job strain.

  20. Distinct effect of 5-HT1A and 5-HT2A receptors in the medial nucleus of the amygdala on tonic immobility behavior.

    PubMed

    de Paula, Bruna Balbino; Leite-Panissi, Christie Ramos Andrade

    2016-07-15

    The tonic immobility (TI) response is an innate fear behavior associated with intensely dangerous situations, exhibited by many species of invertebrate and vertebrate animals. In humans, it is possible that TI predicts the severity of posttraumatic stress disorder symptoms. This behavioral response is initiated and sustained by the stimulation of various groups of neurons distributed in the telencephalon, diencephalon and brainstem. Previous research has found the highest Fos-IR in the posteroventral part of the medial nucleus of the amygdala (MEA) during TI behavior; however, the neurotransmission of this amygdaloid region involved in the modulation of this innate fear behavior still needs to be clarified. Considering that a major drug class used for the treatment of psychopathology is based on serotonin (5-HT) neurotransmission, we investigated the effects of serotonergic receptor activation in the MEA on the duration of TI. The results indicate that the activation of the 5HT1A receptors or the blocking of the 5HT2 receptors of the MEA can promote a reduction in fear and/or anxiety, consequently decreasing TI duration in guinea pigs. In contrast, blocking the 5HT1A receptors or activating the 5HT2 receptors in this amygdalar region increased the TI duration, suggesting an increase in fear and/or anxiety. These alterations do not appear to be due to a modification of spontaneous motor activity, which might non-specifically affect TI duration. Thus, these results suggest a distinct role of the 5HT receptors in the MEA in innate fear modulation.

  1. Cultural consonance, a 5HT2A receptor polymorphism, and depressive symptoms: a longitudinal study of gene x culture interaction in urban Brazil.

    PubMed

    Dressler, William W; Balieiro, Mauro C; Ribeiro, Rosane P; Dos Santos, José Ernesto

    2009-01-01

    In this study in urban Brazil we examine, as a predictor of depressive symptoms, the interaction between a single nucleotide polymorphism in the 2A receptor in the serotonin system (-1438G/A) and cultural consonance in family life, a measure of the degree to which an individual perceives her family as corresponding to a widely shared cultural model of the prototypical family. A community sample of 144 adults was followed over a 2-year-period. Cultural consonance in family life was assessed by linking individuals' perceptions of their own families with a shared cultural model of the family derived from cultural consensus analysis. The -1438G/A polymorphism in the 2A serotonin receptor was genotyped using a standard protocol for DNA extracted from leukocytes. Covariates included age, sex, socioeconomic status, and stressful life events. Cultural consonance in family life was prospectively associated with depressive symptoms. In addition, the interaction between genotype and cultural consonance in family life was significant. For individuals with the A/A variant of the -1438G/A polymorphism of the 2A receptor gene, the effect of cultural consonance in family life on depressive symptoms over a 2-year-period was larger (beta = -0.533, P < 0.01) than those effects for individuals with either the G/A (beta = -0.280, P < 0.10) or G/G (beta = -0.272, P < 0.05) variants. These results are consistent with a process in which genotype moderates the effects of culturally meaningful social experience on depressive symptoms.

  2. Ketanserin, a 5-HT2 receptor antagonist, decreases nicotine self-administration in rats.

    PubMed

    Levin, Edward D; Slade, Susan; Johnson, Michael; Petro, Ann; Horton, Kofi; Williams, Paul; Rezvani, Amir H; Rose, Jed E

    2008-12-14

    Nicotine intake constitutes a principal mechanism for tobacco addiction. In addition to primary effects on nicotinic acetylcholine receptors, nicotine has cascading effects, which may also underlie its neurobehavioral actions. Nicotine induces serotonin (5-HT) release, which has not classically been thought to be involved in tobacco addiction as dopamine has. However, addiction can be characterized more as a disorder of compulsion than a disorder of enjoyment. 5-HT mechanisms play key roles in compulsive disorders. Nicotine-induced 5-HT release may be a key to tobacco addiction. Ketanserin, a 5-HT2a and 5-HT2c receptor antagonist, significantly attenuates nicotine effects on attention and memory. These studies were conducted to determine if ketanserin would reduce nicotine self-administration in rats. Male Sprague-Dawley rats (N=12) were given initial food pellet training and then 10 sessions of nicotine self-administration training (0.03 mg/kg/infusion, i.v.). Then the rats were administered ketanserin (1 or 2 mg/kg, s.c.) or the saline vehicle. Ketanserin (2 mg/kg) significantly decreased nicotine self-administration. This did not seem to be due to sedative or amnestic effects of ketanserin. In a second study, the effects of repeated administration of 2 mg/kg ketanserin (N=11) vs. saline injections (N=10) were examined. In the initial phase, the acute effectiveness of ketanserin in significantly reducing nicotine self-administration was replicated. The effect became attenuated during the following several sessions, but the significant effect became re-established during the final phases of this two-week study. 5-HT mechanisms play critical roles in the maintenance of nicotine self-administration. Better understanding of those roles may help lead to new 5-HT-based treatments for tobacco addiction.

  3. Induction of mixed function oxidase activity in man by rifapentine (MDL 473), a long-acting rifamycin derivative.

    PubMed Central

    Vital Durand, D; Hampden, C; Boobis, A R; Park, B K; Davies, D S

    1986-01-01

    The effects of rifapentine (MDL 473) administration on hepatic mixed function oxidase activity in man have been investigated in six healthy volunteers. Administration of rifapentine (600 mg 48 h-1) for 10 days resulted in a significant reduction in antipyrine half-life (from 13.2 +/- 1.0 h to 7.7 +/- 0.4 h) and a corresponding increase in its total body clearance (from 41.8 +/- 5.5 ml min-1 to 67.4 +/- 5.6 ml min-1). Twelve days after stopping rifapentine administration, these values had largely returned to base-line. 24-Hour excretion of 6 beta-hydroxycortisol was significantly increased, by approximately three-fold, following administration of rifapentine for 10 days. Again, 12 days after stopping drug administration, 6 beta-hydroxycortisol excretion had returned to pretreatment values. Clearance of antipyrine to its three oxidative metabolites was increased by rifapentine administration, although the increase for 3-hydroxymethylantipyrine was not significant. The greatest increase (+140%) was observed for norantipyrine. Twelve days after the last dose of rifapentine, all values had returned to control levels. It is concluded that, like rifampicin, rifapentine is a potent inducer of mixed function oxidase activity in man and that the possibility of clinically significant drug interactions should be anticipated in the therapeutic use of this compound. PMID:3947503

  4. Retinal Neuroprotective Effects of Flibanserin, an FDA-Approved Dual Serotonin Receptor Agonist-Antagonist

    PubMed Central

    Ryals, Renee C.; Ku, Cristy A.; Fischer, Cody M.; Patel, Rachel C.; Datta, Shreya; Yang, Paul; Wen, Yuquan; Hen, René; Pennesi, Mark E.

    2016-01-01

    Purpose To assess the neuroprotective effects of flibanserin (formerly BIMT-17), a dual 5-HT1A agonist and 5-HT2A antagonist, in a light-induced retinopathy model. Methods Albino BALB/c mice were injected intraperitoneally with either vehicle or increasing doses of flibanserin ranging from 0.75 to 15 mg/kg flibanserin. To assess 5-HT1A-mediated effects, BALB/c mice were injected with 10 mg/kg WAY 100635, a 5-HT1A antagonist, prior to 6 mg/kg flibanserin and 5-HT1A knockout mice were injected with 6 mg/kg flibanserin. Injections were administered once immediately prior to light exposure or over the course of five days. Light exposure lasted for one hour at an intensity of 10,000 lux. Retinal structure was assessed using spectral domain optical coherence tomography and retinal function was assessed using electroretinography. To investigate the mechanisms of flibanserin-mediated neuroprotection, gene expression, measured by RT-qPCR, was assessed following five days of daily 15 mg/kg flibanserin injections. Results A five-day treatment regimen of 3 to 15 mg/kg of flibanserin significantly preserved outer retinal structure and function in a dose-dependent manner. Additionally, a single-day treatment regimen of 6 to 15 mg/kg of flibanserin still provided significant protection. The action of flibanserin was hindered by the 5-HT1A antagonist, WAY 100635, and was not effective in 5-HT1A knockout mice. Creb, c-Jun, c-Fos, Bcl-2, Cast1, Nqo1, Sod1, and Cat were significantly increased in flibanserin-injected mice versus vehicle-injected mice. Conclusions Intraperitoneal delivery of flibanserin in a light-induced retinopathy mouse model provides retinal neuroprotection. Mechanistic data suggests that this effect is mediated through 5-HT1A receptors and that flibanserin augments the expression of genes capable of reducing mitochondrial dysfunction and oxidative stress. Since flibanserin is already FDA-approved for other indications, the potential to repurpose this drug for

  5. Cytoplasmic Actin Is an Extracellular Insect Immune Factor which Is Secreted upon Immune Challenge and Mediates Phagocytosis and Direct Killing of Bacteria, and Is a Plasmodium Antagonist

    PubMed Central

    Sandiford, Simone L.; Dong, Yuemei; Pike, Andrew; Blumberg, Benjamin J.; Bahia, Ana C.; Dimopoulos, George

    2015-01-01

    Actin is a highly versatile, abundant, and conserved protein, with functions in a variety of intracellular processes. Here, we describe a novel role for insect cytoplasmic actin as an extracellular pathogen recognition factor that mediates antibacterial defense. Insect actins are secreted from cells upon immune challenge through an exosome-independent pathway. Anopheles gambiae actin interacts with the extracellular MD2-like immune factor AgMDL1, and binds to the surfaces of bacteria, mediating their phagocytosis and direct killing. Globular and filamentous actins display distinct functions as extracellular immune factors, and mosquito actin is a Plasmodium infection antagonist. PMID:25658622

  6. Muscarinic Receptor Antagonists.

    PubMed

    Matera, Maria Gabriella; Cazzola, Mario

    2017-01-01

    Parasympathetic activity is increased in patients with chronic obstructive pulmonary disease (COPD) and asthma and appears to be the major reversible component of airway obstruction. Therefore, treatment with muscarinic receptor antagonists is an effective bronchodilator therapy in COPD and also in asthmatic patients. In recent years, the accumulating evidence that the cholinergic system controls not only contraction by airway smooth muscle but also the functions of inflammatory cells and airway epithelial cells has suggested that muscarinic receptor antagonists could exert other effects that may be of clinical relevance when we must treat a patient suffering from COPD or asthma. There are currently six muscarinic receptor antagonists licenced for use in the treatment of COPD, the short-acting muscarinic receptor antagonists (SAMAs) ipratropium bromide and oxitropium bromide and the long-acting muscarinic receptor antagonists (LAMAs) aclidinium bromide, tiotropium bromide, glycopyrronium bromide and umeclidinium bromide. Concerns have been raised about possible associations of muscarinic receptor antagonists with cardiovascular safety, but the most advanced compounds seem to have an improved safety profile. Further beneficial effects of SAMAs and LAMAs are seen when added to existing treatments, including LABAs, inhaled corticosteroids and phosphodiesterase 4 inhibitors. The importance of tiotropium bromide in the maintenance treatment of COPD, and likely in asthma, has spurred further research to identify new LAMAs. There are a number of molecules that are being identified, but only few have reached the clinical development.

  7. Do serotonin(1-7) receptors modulate short and long-term memory?

    PubMed

    Meneses, A

    2007-05-01

    Evidence from invertebrates to human studies indicates that serotonin (5-hydroxytryptamine; 5-HT) system modulates short- (STM) and long-term memory (LTM). This work is primarily focused on analyzing the contribution of 5-HT, cholinergic and glutamatergic receptors as well as protein synthesis to STM and LTM of an autoshaping learning task. It was observed that the inhibition of hippocampal protein synthesis or new mRNA did not produce a significant effect on autoshaping STM performance but it did impair LTM. Both non-contingent protein inhibition and 5-HT depletion showed no effects. It was basically the non-selective 5-HT receptor antagonist cyproheptadine, which facilitated STM. However, the blockade of glutamatergic and cholinergic transmission impaired STM. In contrast, the selective 5-HT(1B) receptor antagonist SB-224289 facilitated both STM and LTM. Selective receptor antagonists for the 5-HT(1A) (WAY100635), 5-HT(1D) (GR127935), 5-HT(2A) (MDL100907), 5-HT(2C/2B) (SB-200646), 5-HT(3) (ondansetron) or 5-HT(4) (GR125487), 5-HT(6) (Ro 04-6790, SB-399885 and SB-35713) or 5-HT(7) (SB-269970) did not impact STM. Nevertheless, WAY100635, MDL100907, SB-200646, GR125487, Ro 04-6790, SB-399885 or SB-357134 facilitated LTM. Notably, some of these changes shown to be independent of food-intake. Concomitantly, these data indicate that '5-HT tone via 5-HT(1B) receptors' might function in a serial manner from STM to LTM, whereas working in parallel using 5-HT(1A), 5-HT(2A), 5-HT(2B/2C), 5-HT(4), or 5-HT(6) receptors.

  8. ADN-1184 a monoaminergic ligand with 5-HT6/7 receptor antagonist activity: pharmacological profile and potential therapeutic utility

    PubMed Central

    Kołaczkowski, M; Mierzejewski, P; Bieńkowski, P; Wesołowska, A; Newman-Tancredi, A

    2014-01-01

    Background and Purpose Many dementia patients exhibit behavioural and psychological symptoms (BPSD) that include psychosis, aggressivity, depression and anxiety. Antipsychotic drugs are frequently prescribed but fail to significantly attenuate mood deficits, may interfere with cognitive function and are associated with motor and cardiac side effects, which are problematic in elderly patients. A need therefore exists for drugs that are better suited for the treatment of BPSD. Experimental Approach We used in vitro cellular and in vivo behavioural tests to characterize ADN-1184, a novel arylsulfonamide ligand with potential utility for treatment of BPSD. Key Results ADN-1184 exhibits substantial 5-HT6/5-HT7/5-HT2A/D2 receptor affinity and antagonist properties in vitro. In tests of antipsychotic-like activity, it reversed MK-801-induced hyperactivity and stereotypies and inhibited conditioned avoidance response (MED = 3 mg·kg−1 i.p.). Remarkably, ADN-1184 also reduced immobility time in the forced swim test at low doses (0.3 and 1 mg·kg−1 i.p.; higher doses were not significantly active). Notably, up to 30 mg·kg−1 ADN-1184 did not impair memory performance in the passive avoidance test or elicit significant catalepsy and only modestly inhibited spontaneous locomotor activity (MED = 30 mg·kg−1 i.p.). Conclusions and Implications ADN-1184 combines antipsychotic-like with antidepressant-like properties without interfering with memory function or locomotion. This profile is better than that of commonly used atypical antipsychotics tested under the same conditions and suggests that it is feasible to identify drugs that improve BPSD, without exacerbating cognitive deficit or movement impairment, which are of particular concern in patients with dementia. PMID:24199650

  9. Opioid Antagonist Impedes Exposure.

    ERIC Educational Resources Information Center

    Merluzzi, Thomas V.; And Others

    1991-01-01

    Thirty spider-phobic adults underwent exposure to 17 phobic-related, graded performance tests. Fifteen subjects were assigned to naltrexone, an opioid antagonist, and 15 were assigned to placebo. Naltrexone had a significant effect on exposure, with naltrexone subjects taking significantly longer to complete first 10 steps of exposure and with…

  10. Behavioural interactions between 5-hydroxytryptophan, neuroleptic agents and 5-HT receptor antagonists in modifying rodent responding to aversive situations.

    PubMed Central

    Costall, B.; Naylor, R. J.

    1995-01-01

    1. The ability of 5-hydroxytryptophan, 5-HT2 receptor antagonists and typical and atypical neuroleptic agents to modify behavioural responding to aversive situations was investigated in the mouse light/dark test and rat social interaction. 2. The administration of 5-hydroxytryptophan inhibited rat social interaction and the exploratory behaviour of mice in the light/dark test. 3. The 5-HT2 receptor antagonists, ketanserin, ritanserin, MDL11939, methysergide and RP62203, the neuroleptic agents, spiperone, haloperidol and benperidol, and the atypical neuroleptic agent, clozapine, when administered alone failed to modify mouse or rat behaviour. In contrast, when administered alone, sulpiride in rats and mice and thioridazine in rats disinhibited behaviour. 4. Methysergide, RP62203, ketanserin, ritanserin and MDL11939 antagonized the inhibitory effects of 5-hydroxytryptophan or reversed the inhibitory effects to one of disinhibition. 5. Low doses of spiperone (but not haloperidol or benperidol) also antagonized the inhibitory effects of 5-hydroxytryptophan in the rat but not the mouse. Higher doses of the three neuroleptic agents caused locomotor depression in both rats and mice which obscured any specific changes in behavioural responding to the aversive situations. 6. The disinhibitory profile of sulpiride in both mice and rats and thioridazine in rats was evident during their interaction with 5-hydroxytryptophan. Thioridazine in the mouse and clozapine in rats and mice also reversed the inhibitory effects of 5-hydroxytryptophan to one of disinhibition. 7. In summary, we present evidence that the atypical neuroleptic agents, thioridazine and clozapine, with their known affinity for the 5-HT2 receptors, can mimic the actions of reference 5-HT2 receptor antagonists to antagonize the inhibitory effects of 5-hydroxytryptophan in rodent models of anxiety. The results are intepreted in terms of drug action on different 5-HT2 and other 5-HT receptor subtypes. In addition

  11. 5-HT1A receptors modulate the consolidation of learning in normal and cognitively impaired rats.

    PubMed

    Meneses, A; Hong, E

    1999-03-01

    Attempts were made to further analyze the role of 5-HT1A receptors in consolidation of learning by evaluating the role of these receptors in cognitively normal and impaired animals. The effects of post-training administration of 8-OH-DPAT and 5-HT1A receptor antagonists, WAY 100135, WAY 100635, and S-UH-301, plus the cholinergic and glutamatergic antagonists, scopolamine and dizolcipine, respectively, were determined using an autoshaping learning task. The results showed that 8-OH-DPAT increased the number of conditioned responses, whereas WAY100135, WAY100635, and S-UH-301, and the 5-HT depleter, p-chloroamphetamine (PCA), had no effect. PCA did not change the silent properties of the 5-HT1A receptor antagonists. PCA, WAY100635, and S-UH-301, but not GR127935 (a 5-HT1B/1D-receptor antagonist) or MDL100907 (a 5-HT2A receptor antagonist), reversed the effect to 8-OH-DPAT. Ketanserin (a 5-HT2A/2C receptor antagonist) and ondansetron (a 5-HT3 receptor antagonist), at a dose that increased the conditioned responses by itself, reversed the effect of 8-OH-DPAT. Moreover, 8-OH-DPAT or S-UH-301 reversed the learning deficit induced by scopolamine and dizocilpine whereas WAY100635 reversed the effect of scopolamine only. These data confirm a role for presynaptic 5-HT1A receptors during the consolidation of learning and support the hypothesis that serotonergic, cholinergic, and glutamatergic systems interact in cognitively impaired animals.

  12. Investigation of the superconducting proximity effect (SPE) and magnetic dead layers (MDL) in thin film double layers

    NASA Astrophysics Data System (ADS)

    Tateishi, Go

    When a thin superconducting film (S film) is condensed onto a thin normal conducting film (N film), the first layers of the S film loose their superconductivity. This phenomenon is generally called the "superconducting proximity effect (SPE)". As an investigation of SPE we focus on the transition temperature of extremely thin NS double layers in the thin regime. Normal metal is condensed on top of insulating Sb, then Pb is deposited on it in small steps. The transition temperature is plotted in an inverse Tc-reduction 1/Delta T c =1/(Ts - Tc) versus Pb thickness graph. To compare our experimental results with the theoretical prediction, a numerical calculation of the SN double layer is performed by our group using the linear gap equation. As a result, there are large discrepancies between the experimental and theoretical results generally. The results of the NS double layers can be divided into three groups in terms of their discrepancies between experiment and theory.(1) Non-coupling (Tc = 0 K): N= Mg, Ag, Cu, Au. There are large deviations between experiment and theory by a factor to the order of 2.5. (2) Weak coupling (Tc is low (< 2.5 K)) : N=Cd, Zn, Al. Deviation is present, but only by a factor of 1.5. (3) Intermediate coupling (T c is around half of Pb's (≈ 4.5 K)) : N=In, Sn. The experimental results agree with the theory. Next, we examine the detection of the magnetic dead layer (MDL) of Ni thin films in terms of the anomalous Hall effect (AHE) with several non-magnetic metal substrates. In our results, when Ni film is contact with a polyvalent metal substrate film, the sandwich film has around 2 to 3.5 at.lay. of magnetic dead layers. However we have not observed the magnetic dead Ni layers with the alkali and noble metal substrate film. Finally, we revisit the Pb/Ni system to measure the magnetic scattering of Ni with the method of Weak Localization (WL) to compare with the dephasing rate due to the Tc-reduction. In this series, we use only very thin

  13. Advantages of an antagonist: bicuculline and other GABA antagonists

    PubMed Central

    Johnston, Graham AR

    2013-01-01

    The convulsant alkaloid bicuculline continues to be investigated more than 40 years after the first publication of its action as an antagonist of receptors for the inhibitory neurotransmitter GABA. This historical perspective highlights key aspects of the discovery of bicuculline as a GABA antagonist and the sustained interest in this and other GABA antagonists. The exciting advances in the molecular biology, pharmacology and physiology of GABA receptors provide a continuing stimulus for the discovery of new antagonists with increasing selectivity for the myriad of GABA receptor subclasses. Interesting GABA antagonists not structurally related to bicuculline include gabazine, salicylidene salicylhydrazide, RU5135 and 4-(3-biphenyl-5-(4-piperidyl)-3-isoxazole. Bicuculline became the benchmark antagonist for what became known as GABAA receptors, but not all ionotropic GABA receptors are susceptible to bicuculline. In addition, not all GABAA receptor antagonists are convulsants. Thus there are still surprises in store as the study of GABA receptors evolves. PMID:23425285

  14. alpha2-Adrenoreceptor antagonists.

    PubMed

    Mayer, P; Imbert, T

    2001-06-01

    A review of the literature relating to the therapeutic potential of alpha2-adrenoceptor antagonists published between 1990 and 2000 is presented. Although extensively studied since the early 1970s in a wide spectrum of therapeutic applications, the distinction of alpha2-adrenoceptor subtypes and some emerging evidence concerning new applications in neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases, obesity and schizophrenia, have refreshed an interest in this class of agents.

  15. MDMA modulates spontaneous firing of subthalamic nucleus neurons in vitro.

    PubMed

    Liebig, Luise; von Ameln-Mayerhofer, Andreas; Hentschke, Harald

    2015-01-01

    3,4-Methylene-dioxy-N-methylamphetamine (MDMA, 'ecstasy') has a broad spectrum of molecular targets in the brain, among them receptors and transporters of the serotonergic (5-hydroxytryptamine, 5-HT) and noradrenergic systems. Its action on the serotonergic system modulates motor systems in rodents and humans. Although parts of the basal ganglia could be identified as mediators of the motor effects of MDMA, very little is known about the role of the subthalamic nucleus (STN). Therefore, this study investigated the modulation of spontaneous action potential activity of the STN by MDMA (2.5-20 µM) in vitro. MDMA had very heterogeneous effects, ranging from a complete but reversible inhibition to a more than twofold increase in firing at 5 µM. On average, MDMA excited STN neurons moderately, but lost its excitatory effect in the presence of the 5-HT(2A) antagonist MDL 11,939. 5-HT(1A) receptors did not appear to play a major role. Effects of MDMA on transporters for serotonin (SERT) and norepinephrine (NET) were investigated by coapplication of the reuptake inhibitors citalopram and desipramine, respectively. Similar to the effects of 5-HT(2A) receptor blockade, antagonism of SERT and NET bestowed an inhibitory effect on MDMA. From these results, we conclude that both the 5-HT and the noradrenergic system mediate MDMA-induced effects on STN neurons.

  16. Directly Observable Behavioral Effects of Lorcaserin in Rats

    PubMed Central

    Serafine, Katherine M.; Rice, Kenner C.

    2015-01-01

    (1R)-8-chloro-1-methyl-2,3,4,5-tetrahydro-1H-3-benzazepine (lorcaserin) is approved by the United States Food and Drug Administration for treating obesity, and its therapeutic effects are thought to result from agonist activity at serotonin (5-HT)2C receptors. Lorcaserin has affinity for other 5-HT receptor subtypes, although its activity at those subtypes is not fully described. The current study compared the behavioral effects of lorcaserin (0.0032–32.0 mg/kg) to the effects of other 5-HT receptor selective agonists in rats (n = 8). The 5-HT2C receptor selective agonist 1-(3-chlorophenyl)piperazine (mCPP, 0.032–1.0 mg/kg) and lorcaserin induced yawning which was attenuated by the 5-HT2C receptor selective antagonist 6-chloro-5-methyl-N-(6-[(2-methylpyridin-3-yl)oxy]pydidin-3-yl)indoline-1-carboxamide (1.0 mg/kg). The 5-HT2A receptor selective agonist 2,5-dimethoxy-4-methylamphetamine (0.1–3.2 mg/kg) induced head twitching, which was attenuated by the 5-HT2A receptor selective antagonist R-(+)-2,3-dimethoxyphenyl-1-[2-(4-piperidine)-methanol] (MDL 100907, 0.01 mg/kg), lorcaserin (3.2 mg/kg), and mCPP (3.2 mg/kg). In rats pretreated with MDL 100907 (1.0 mg/kg), lorcaserin also induced head twitching. At larger doses, lorcaserin produced forepaw treading, which was attenuated by the 5-HT1A receptor selective antagonist N-(2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl)-N-(2-pyridyl)cyclohexanecarboxamide (0.178 mg/kg). While the behavioral effects of lorcaserin in rats are consistent with it having agonist activity at 5-HT2C receptors, these data suggest that at larger doses it also has agonist activity at 5-HT2A and possibly 5-HT1A receptors. Mounting evidence suggests that 5-HT2C receptor agonists might be effective for treating drug abuse. A more complete description of the activity of lorcaserin at 5-HT receptor subtypes will facilitate a better understanding of the mechanisms that mediate its therapeutic effects. PMID:26384326

  17. Behavioral tolerance to lysergic acid diethylamide is associated with reduced serotonin-2A receptor signaling in rat cortex.

    PubMed

    Gresch, Paul J; Smith, Randy L; Barrett, Robert J; Sanders-Bush, Elaine

    2005-09-01

    Tolerance is defined as a decrease in responsiveness to a drug after repeated administration. Tolerance to the behavioral effects of hallucinogens occurs in humans and animals. In this study, we used drug discrimination to establish a behavioral model of lysergic acid diethylamide (LSD) tolerance and examined whether tolerance to the stimulus properties of LSD is related to altered serotonin receptor signaling. Rats were trained to discriminate 60 microg/kg LSD from saline in a two-lever drug discrimination paradigm. Two groups of animals were assigned to either chronic saline treatment or chronic LSD treatment. For chronic treatment, rats from each group were injected once per day with either 130 microg/kg LSD or saline for 5 days. Rats were tested for their ability to discriminate either saline or 60 microg/kg LSD, 24 h after the last chronic injection. Rats receiving chronic LSD showed a 44% reduction in LSD lever selection, while rats receiving chronic vehicle showed no change in percent choice on the LSD lever. In another group of rats receiving the identical chronic LSD treatment, LSD-stimulated [35S]GTPgammaS binding, an index of G-protein coupling, was measured in the rat brain by autoradiography. After chronic LSD, a significant reduction in LSD-stimulated [35S]GTPgammaS binding was observed in the medial prefrontal cortex and anterior cingulate cortex. Furthermore, chronic LSD produced a significant reduction in 2,5-dimethoxy-4-iodoamphetamine-stimulated [35S]GTPgammaS binding in medial prefrontal cortex and anterior cingulate cortex, which was blocked by MDL 100907, a selective 5-HT2A receptor antagonist, but not SB206553, a 5-HT2C receptor antagonist, indicating a reduction in 5-HT2A receptor signaling. 125I-LSD binding to 5-HT2A receptors was reduced in cortical regions, demonstrating a reduction in 5-HT2A receptor density. Taken together, these results indicate that adaptive changes in LSD-stimulated serotonin receptor signaling may mediate tolerance

  18. Small Molecule CXCR3 Antagonists.

    PubMed

    Andrews, Stephen P; Cox, Rhona J

    2016-04-14

    Chemokines and their receptors are known to play important roles in disease. More than 40 chemokine ligands and 20 chemokine receptors have been identified, but, to date, only two small molecule chemokine receptor antagonists have been approved by the FDA. The chemokine receptor CXCR3 was identified in 1996, and nearly 20 years later, new areas of CXCR3 disease biology continue to emerge. Several classes of small molecule CXCR3 antagonists have been developed, and two have shown efficacy in preclinical models of inflammatory disease. However, only one CXCR3 antagonist has been evaluated in clinical trials, and there remain many opportunities to further investigate known classes of CXCR3 antagonists and to identify new chemotypes. This Perspective reviews the known CXCR3 antagonists and considers future opportunities for the development of small molecules for clinical evaluation.

  19. Synthesis and structure-activity relationships of a new model of arylpiperazines. 5. Study of the physicochemical influence of the pharmacophore on 5-HT(1a)/alpha(1)-adrenergic receptor affinity: synthesis of a new derivative with mixed 5-HT(1a)/d(2) antagonist properties.

    PubMed

    López-Rodríguez, M L; Morcillo, M J; Fernández, E; Porras, E; Orensanz, L; Beneytez, M E; Manzanares, J; Fuentes, J A

    2001-01-18

    In this paper we have designed and synthesized a test series of 32 amide arylpiperazine derivatives VI in order to gain insight into the physicochemical influence of the pharmacophores of 5-HT(1A) and alpha(1)-adrenergic receptors. The training set was designed applying a fractional factorial design using six physicochemical descriptors. The amide moiety is a bicyclohydantoin or a diketopiperazine (X = -(CH(2))(3)-, -(CH(2))(4)-; m = 0, 1), the spacer length is 3 or 4 methylene units, which are the optimum values for both receptors, and the aromatic substituent R occupies the ortho- or meta-position and has been selected from a database of 387 substituents using the EDISFAR program. The 5-HT(1A) and alpha(1)-adrenergic receptor binding affinities of synthesized compounds VI (1-32) have been determined. This data set has been used to derive classical quantitative structure-activity relationships (QSAR) and neural networks models for both receptors (following paper). A comparison of these models gives information for the design of the new ligand EF-7412 (46) (5-HT(1A): K(i) = 27 nM; alpha(1): K(i) > 1000 nM). This derivative displays affinity for the dopamine D(2) receptor (K(i) = 22 nM) and is selective versus all other receptors examined (5-HT(2A), 5-HT(3), 5-HT(4) and Bz; K(i) > 1000 nM). EF-7412 (46) acts as an antagonist in vivo in pre- and postsynaptic 5-HT(1A) receptor sites and as an antagonist in the dopamine D(2) receptor. Thus, EF-7412 (46) is a derivative with mixed 5-HT(1A)/D(2) antagonist properties and this derivative could be useful as a pharmacological tool.

  20. Inhibition of alpha-glucosidase I of the glycoprotein-processing enzymes by 6-O-butanoyl castanospermine (MDL 28,574) and its consequences in human immunodeficiency virus-infected T cells.

    PubMed Central

    Taylor, D L; Kang, M S; Brennan, T M; Bridges, C G; Sunkara, P S; Tyms, A S

    1994-01-01

    The 6-O-butanoyl derivative of castanospermine (MDL 28,574) was previously shown to be approximately 30-fold more potent than the naturally occurring molecule at inhibiting the replication of human immunodeficiency virus (HIV) (D. L. Taylor, P. S. Sunkara, P. S. Liu, M. S. Kang, T. L. Bowlin, and A. S. Tyms, AIDS 5:693-698, 1991). We now report that consistent with its improved anti-HIV activity, MDL 28,574 is more effective (50% inhibitory concentration [IC50], 20 microM) than the parent molecule (IC50, 254 microM) at causing the accumulation of glucosylated oligosaccharides in HIV-infected cells by inhibition of glycoprotein processing. These were predominantly of the glucose 3 type, as determined by P4 Bio-Gel analysis after digestion with purified alpha-glucosidase I, indicating that, intracellularly, this enzyme is the major target for inhibition. MDL 28,574, however, was less active (IC50, 1.27 microM) than castanospermine (IC50, 0.12 microM) against the mutual target enzyme, cellular alpha-glucosidase I, in a cell-free assay system. The increased effects of MDL 28,574 against alpha-glucosidase I in cell culture were attributed to the improved cellular uptake of the more lipophilic derivative. Inhibition of this enzyme activity in HIV-infected H9 cells impaired viral glycoprotein processing and resulted in the expression of abnormally configured gp120. This did not affect virus production, but the virions had decreased infectivity which was partially related to a reduced ability to bind to CD4+ T cells. Images PMID:7986008

  1. Effects of 5-HT drugs in prefrontal cortex during memory formation and the ketamine amnesia-model.

    PubMed

    Liy-Salmeron, Gustavo; Meneses, Alfredo

    2008-01-01

    This article describes a series of experiments investigating the effects of systemic or intraprefrontal administration of serotonergic agents on ketamine induced memory deficits in rats. First, rats were trained on an operant autoshaping task. Immediately after training, rats were injected with different doses of drug or saline. Following drug administration, rats were tested after 1.5 h for short-term memory (STM) and 24 h for long-term memory (LTM) of conditioned response. An increase or decrease in number of conditioned responses was an index of retention. The major results of this work show that ketamine impaired STM and this effect was reversed, by either systemic or intraprefrontal cortex administration of the agonist 5-HT(1A/7) 8-OH-DPAT, the 5-HT receptor antagonists MDL100907 (5-HT(2A)), SB-399885 (5-HT(6)), and SB-269970 (5-HT(7)). The ketamine STM-impairment effect was not altered by the 5-HT(1A) antagonist WAY 100635 or the 5-HT(1B) antagonist SB-224289. Notably, prefrontal cortex inhibition of translation or transcription interrupted STM without affecting LTM suggesting different signaling mechanisms. The interacting effect of NMDA and serotonin agents in memory function is an interesting and important area of study; both receptors are considered to be important targets for the development of antipsychotic medication. Particularly, 5-HT(1A/7), 5-HT(2A) 5-HT(6), and 5-HT(7) receptors present in prefrontal cortex, represent important targets for development of drugs for the treatment of SMT-deficits.

  2. The alpha2 adrenergic receptor antagonist idazoxan, but not the serotonin-2A receptor antagonist M100907, partially attenuated reward deficits associated with nicotine, but not amphetamine, withdrawal in rats.

    PubMed

    Semenova, Svetlana; Markou, Athina

    2010-10-01

    Based on phenomenological similarities between anhedonia (reward deficits) associated with drug withdrawal and the negative symptoms of schizophrenia, we showed previously that the atypical antipsychotic clozapine attenuated reward deficits associated with psychostimulant withdrawal. Antagonism of alpha(2) adrenergic and 5-HT(2A) receptors may contribute to these effects of clozapine. We investigated here whether blockade of alpha(2) or 5-HT(2A) receptors by idazoxan and M100907, respectively, would reverse anhedonic aspects of psychostimulant withdrawal. Idazoxan treatment facilitated recovery from spontaneous nicotine, but not amphetamine, withdrawal by attenuating reward deficits and increase the number of somatic signs. Thus, alpha(2) adrenoceptor blockade may have beneficial effects against nicotine withdrawal and may be involved in the effects of clozapine previously observed. M100907 worsened the anhedonia associated with nicotine and amphetamine withdrawal, suggesting that monotherapy with M100907 may exacerbate the expression of the negative symptoms of schizophrenia or nicotine withdrawal symptoms in people, including schizophrenia patients, attempting to quit smoking.

  3. Could the 5-HT1B receptor inverse agonism affect learning consolidation?

    PubMed

    Meneses, A

    2001-03-01

    Diverse evidence indicates that, the 5-HT system might play a role in learning and memory, since it occurs in brain areas mediating such processes and 5-HT drugs modulate them. Hence in this work, in order to explore further 5-HT involvement on learning and memory 5-HT1B receptors' role is investigated. Evidence indicates that SB-224289 (a 5-HT1B receptor inverse agonist) post-training injection facilitated learning consolidation in an associative autoshaping learning task, this effect was partially reversed by GR 127935 (a 5-HT1B/1D receptor antagonist), but unaffected by MDL 100907 (a 5-HT2A receptor antagonist) or ketanserin (a 5-HT1D/2A/7 receptor antagonist) at low doses. Moreover, SB-224289 antagonized the learning deficit produced by TFMPP (a 5-HT1A/1B/1D/2A/2C receptor agonist), GR 46611 (a 5-HT1A/1B/1D receptor agonist), mCPP (a 5-HT2A/2C/3/7 receptor agonist/antagonist) or GR 127935 (at low dose). SB-224289 did not alter the 8-OH-DPAT (a 5-HT1A/7 receptor agonist) learning facilitatory effect. SB-224289 eliminated the deficit learning produced by the anticholinergic muscarinic scopolamine or the glutamatergic antagonist dizocilpine. Administration of both, GR 127935 (5mg/kg) plus ketanserin (0.01 mg/kg) did not modify learning consolidation; nevertheless, when ketanserin dose was increased (0.1-1.0mg/kg) and SB-224289 dose was maintained constant, a learning facilitation effect was observed. Notably, SB-224289 at 1.0mg/kg potentiated a subeffective dose of the 5-HT1B/1D receptor agonist/antagonist mixed GR 127935, which facilitated learning consolidation and this effect was abolished by ketanserin at a higher dose. Collectively, the data confirm and extend the earlier findings with GR 127935 and the effects of non-selective 5-HT(1B) receptor agonists. Clearly 5-HT1B agonists induced a learning deficit which can be reversed with SB-224289. Perhaps more importantly, SB-224289 enhances learning consolidation when given alone and can reverse the deficits

  4. Opioid antagonists for smoking cessation

    PubMed Central

    David, Sean P; Lancaster, Tim; Stead, Lindsay F; Evins, A. Eden; Prochaska, Judith J

    2014-01-01

    Background The reinforcing properties of nicotine may be mediated through release of various neurotransmitters both centrally and systemically. People who smoke report positive effects such as pleasure, arousal, and relaxation as well as relief of negative affect, tension, and anxiety. Opioid (narcotic) antagonists are of particular interest to investigators as potential agents to attenuate the rewarding effects of cigarette smoking. Objectives To evaluate the efficacy of opioid antagonists in promoting long-term smoking cessation. The drugs include naloxone and the longer-acting opioid antagonist naltrexone. Search methods We searched the Cochrane Tobacco Addiction Group Specialised Register for trials of naloxone, naltrexone and other opioid antagonists and conducted an additional search of MEDLINE using ’Narcotic antagonists’ and smoking terms in April 2013. We also contacted investigators, when possible, for information on unpublished studies. Selection criteria We considered randomised controlled trials comparing opioid antagonists to placebo or an alternative therapeutic control for smoking cessation. We included in the meta-analysis only those trials which reported data on abstinence for a minimum of six months. We also reviewed, for descriptive purposes, results from short-term laboratory-based studies of opioid antagonists designed to evaluate psycho-biological mediating variables associated with nicotine dependence. Data collection and analysis We extracted data in duplicate on the study population, the nature of the drug therapy, the outcome measures, method of randomisation, and completeness of follow-up. The main outcome measure was abstinence from smoking after at least six months follow-up in patients smoking at baseline. Abstinence at end of treatment was a secondary outcome. We extracted cotinine- or carbon monoxide-verified abstinence where available. Where appropriate, we performed meta-analysis, pooling risk ratios using a Mantel

  5. Mineralcorticoid antagonists in heart failure.

    PubMed

    D'Elia, Emilia; Krum, Henry

    2014-10-01

    Mineralocorticoid receptor antagonists (MRAs) have become mandated therapy in patients with reduced ejection fraction (systolic) heart failure (HF) across all symptom classes. These agents should also be prescribed in the early post-myocardial infarction setting in those with reduced ejection fraction and either HF symptoms or diabetes. This article explores the pathophysiological role of aldosterone, an endogenous ligand for the mineralcorticoid receptor (MR), and summarizes the clinical data supporting guideline recommendations for these agents in systolic HF. The use of MRAs in novel areas beyond systolic HF ejection is also explored. Finally, the current status of newer agents will be examined.

  6. NK-1 Antagonists and Itch.

    PubMed

    Ständer, Sonja; Luger, Thomas A

    2015-01-01

    Substance P (SP) is an important mediator of pro-inflammatory mechanisms in the skin. It targets multiple cells such as keratinocytes, mast cells, and fibroblasts which are involved in the cutaneous generation of pruritus. This suggests that SP is an interesting target for therapy. In fact, in recent case reports and case series, SP antagonists demonstrated a significant antipruritic effect in acute and chronic pruritus such as drug-induced pruritus, paraneoplastic pruritus, prurigo nodularis, cutaneous T-cell lymphoma, and brachioradial pruritus.

  7. Antidepressant-like effect of the extract from leaves of Schinus molle L. in mice: evidence for the involvement of the monoaminergic system.

    PubMed

    Machado, Daniele G; Kaster, Manuella P; Binfaré, Ricardo W; Dias, Munique; Santos, Adair R S; Pizzolatti, Moacir G; Brighente, Inês M C; Rodrigues, Ana Lúcia S

    2007-03-30

    Schinus molle L. (Anacardiaceae), among other uses, is popularly employed for the treatment of depression. In this study, the antidepressant-like effect of the hexanic extract from leaves of S. molle was investigated in the mouse tail suspension test (TST), a predictive model of depression. The immobility time in the TST was significantly reduced by the extract (dose range 30-600 mg/kg, p.o.), without accompanying changes in ambulation when assessed in an open-field test. The efficacy of extract was found to be comparable to that of fluoxetine (10 mg/kg, p.o.). The anti-immobility effect of the extract (100 mg/kg, p.o.) was prevented by pretreatment of mice with p-chlorophenylalanine methyl ester (PCPA, 100 mg/kg, i.p., an inhibitor of serotonin synthesis, for four consecutive days), NAN-190 (0.5 mg/kg, i.p., a 5-HT(1A) receptor antagonist), WAY100635 (0.1 mg/kg, s.c., a selective 5-HT(1A) receptor antagonist), ketanserin (5 mg/kg, i.p., a 5-HT(2A/2C) receptor antagonist), MDL72222 (0.1 mg/kg, i.p., a 5-HT(3) receptor antagonist), prazosin (1 mg/kg, i.p., an alpha(1)-adrenoceptor antagonist), yohimbine (1 mg/kg, i.p., an alpha(2)-adrenoceptor antagonist), SCH23390 (0.05 mg/kg, s.c., a D(1) receptor antagonist) or sulpiride (50 mg/kg, i.p., a D(2) receptor antagonist). It may be concluded that the hexanic extract of S. molle produces an antidepressant-like effect that seems to be dependent on its interaction with the serotonergic, noradrenergic and dopaminergic systems. These results provide evidence that the extract from S. molle shares with established antidepressants some pharmacological effects, at least at a preclinical level.

  8. Vitamin K antagonists: beyond bleeding.

    PubMed

    Krüger, Thilo; Floege, Jürgen

    2014-01-01

    Warfarin is the most widely used oral anticoagulant in clinical use today. Indications range from prosthetic valve replacement to recurrent thromboembolic events due to antiphospholipid syndrome. In hemodialysis (HD) patients, warfarin use is even more frequent than in the nonrenal population due to increased cardiovascular comorbidities. The use of warfarin in dialysis patients with atrial fibrillation requires particular caution because side effects may outweigh the assumed benefit of reduced stroke rates. Besides increased bleeding risk, coumarins exert side effects which are not in the focus of clinical routine, yet they deserve special consideration in dialysis patients and should influence the decision of whether or not to prescribe vitamin K antagonists in cases lacking clear guidelines. Issues to be taken into consideration in HD patients are the induction or acceleration of cardiovascular calcifications, a 10-fold increased risk of calciphylaxis and problems related to maintaining a target INR range. New anticoagulants like direct thrombin inhibitors are promising but have not yet been approved for ESRD patients. Here, we summarize the nontraditional side effects of coumarins and give recommendations about the use of vitamin K antagonists in ESRD patients.

  9. Structure-based virtual screening and characterization of a novel IL-6 antagonistic compound from synthetic compound database

    PubMed Central

    Wang, Jing; Qiao, Chunxia; Xiao, He; Lin, Zhou; Li, Yan; Zhang, Jiyan; Shen, Beifen; Fu, Tinghuan; Feng, Jiannan

    2016-01-01

    According to the three-dimensional (3D) complex structure of (hIL-6⋅hIL-6R⋅gp 130)2 and the binding orientation of hIL-6, three compounds with high affinity to hIL-6R and bioactivity to block hIL-6 in vitro were screened theoretically from the chemical databases, including 3D-Available Chemicals Directory (ACD) and MDL Drug Data Report (MDDR), by means of the computer-guided virtual screening method. Using distance geometry, molecular modeling and molecular dynamics trajectory analysis methods, the binding mode and binding energy of the three compounds were evaluated theoretically. Enzyme-linked immunosorbent assay analysis demonstrated that all the three compounds could block IL-6 binding to IL-6R specifically. However, only compound 1 could effectively antagonize the function of hIL-6 and inhibit the proliferation of XG-7 cells in a dose-dependent manner, whereas it showed no cytotoxicity to SP2/0 or L929 cells. These data demonstrated that the compound 1 could be a promising candidate of hIL-6 antagonist. PMID:28008232

  10. Cholinergic antagonists in a solitary wasp venom.

    PubMed

    Piek, T; Mantel, P

    1986-01-01

    The venom of the solitary wasp Philanthus triangulum contains a cholinergic antagonist of the nicotinic receptor of the rectus abdominis muscle of the frog, Xenopus laevis. The venom of African P. triangulum contains two different cholinergic factors, a competitive and a non-competitive antagonist. The venom of the European P. triangulum may not contain a competitive antagonist of the nicotinic receptor of X. laevis, but only a very strong non-competitive antagonist. The possible non-synonymity of both groups of P. triangulum is discussed.

  11. Adolescent anabolic-androgenic steroid exposure alters lateral anterior hypothalamic serotonin-2A receptors in aggressive male hamsters.

    PubMed

    Schwartzer, Jared J; Ricci, Lesley A; Melloni, Richard H

    2009-05-16

    Chronic anabolic-androgenic steroid (AAS) treatment during adolescence facilitates offensive aggression in male Syrian hamsters (Mesocricetus auratus). Serotonin (5-HT) modulates aggressive behavior and has been shown to be altered after chronic treatment with AAS. Furthermore, 5-HT type 2 receptors have been implicated in the control of aggression. For example, treatment with 5-HT(2A) receptor antagonists suppress the generation of the offensive aggressive phenotype. However, it is unclear whether these receptors are sensitive to adolescent AAS exposure. The current study assessed whether treatment with AAS throughout adolescence influenced the immunohistochemical localization of 5-HT(2A) in areas of the hamster brain implicated in the control of aggression. Hamsters were administered AAS (5.0 mg/kg) each day throughout adolescence, scored for offensive aggression, and then examined for differences in 5-HT(2A)-immunoreactivity (5-HT(2A)-ir). When compared with non-aggressive oil-treated controls, aggressive AAS-treated hamsters showed significant increases in 5-HT(2A)-ir fibers in the lateral portion of the anterior hypothalamus (LAH). Further analysis revealed that AAS treatment also produced a significant increase in the number of cells expressing 5-HT(2A)-ir in the LAH. Together, these results support a role for altered 5-HT(2A) expression and further implicate the LAH as a central brain region important in the control of adolescent AAS-induced offensive aggression.

  12. A new alcohol antagonist: Phaclofen

    SciTech Connect

    Allan, A.M. ); Harris, R.A. )

    1989-01-01

    The ability of the GABA{sub B} receptor antagonist, phaclofen to alter behavioral effects of ethanol was evaluated by loss of righting reflex (sleep time), motor incoordination (bar holding), spontaneous locomotion (open field activity) and hypothermia. Pretreatment with phaclofen significantly decreased the effects of ethanol on motor incoordination, locomotor activity and hypothermia. However, phaclofen had no effect on either pentobarbital- or diazepam-induced motor incoordination. Phaclofen slightly increased the ED{sub 50} for loss of the righting reflex but did not alter either the duration of reflex loss produced by ethanol or blood ethanol levels at awakening. Our results suggest phaclofen is rapidly inactivated resulting in difficulty in observing antagonism of long duration ethanol effects. These findings suggest that the GABA{sub B} system may play a role in mediating several important actions of ethanol.

  13. Client Perceptions of Two Antagonist Programs.

    ERIC Educational Resources Information Center

    Capone, Thomas A.; And Others

    1980-01-01

    Reports results of a questionnaire administered to participants in an antagonist drug outpatient clinic and an antagonist drug work-release program to obtain awareness of acceptance of the program participants. Naltrexone patients recommended an alternative method of administering the drug and changing the money system to award deserving inmates…

  14. Antianginal Actions of Beta-Adrenoceptor Antagonists

    PubMed Central

    2007-01-01

    Angina pectoris is usually the first clinical sign of underlying myocardial ischemia, which results from an imbalance between oxygen supply and oxygen demand in the heart. This report describes the pharmacology of β-adrenoceptor antagonists as it relates to the treatment of angina. The β-adrenoceptor antagonists are widely used in long-term maintenance therapy to prevent acute ischemic episodes in patients with chronic stable angina. Beta-adrenoceptor antagonists competitively inhibit the binding of endogenous catecholamines to β1-adrenoceptors in the heart. Their anti-ischemic effects are due primarily to a reduction in myocardial oxygen demand. By decreasing heart rate, myocardial contractility and afterload, β-adrenoceptor antagonists reduce myocardial workload and oxygen consumption at rest as well as during periods of exertion or stress. Predictable adverse effects include bradycardia and cardiac depression, both of which are a direct result of the blockade of cardiac β1-adrenoceptors, but adverse effects related to the central nervous system (eg, lethargy, sleep disturbances, and depression) may also be bothersome to some patients. Beta-adrenoceptor antagonists must be used cautiously in patients with diabetes mellitus, peripheral vascular disease, heart failure, and asthma or other obstructive airway diseases. Beta-adrenoceptor antagonists may be used in combination with nitrates or calcium channel blockers, which takes advantage of the diverse mechanisms of action of drugs from each pharmacologic category. Moreover, concurrent use of β-adrenoceptor antagonists may alleviate the reflex tachycardia that sometimes occurs with other antianginal agents. PMID:17998992

  15. Antagonistic coevolution accelerates molecular evolution

    PubMed Central

    Paterson, Steve; Vogwill, Tom; Buckling, Angus; Benmayor, Rebecca; Spiers, Andrew J.; Thomson, Nicholas R.; Quail, Mike; Smith, Frances; Walker, Danielle; Libberton, Ben; Fenton, Andrew; Hall, Neil; Brockhurst, Michael A.

    2013-01-01

    The Red Queen hypothesis proposes that coevolution of interacting species (such as hosts and parasites) should drive molecular evolution through continual natural selection for adaptation and counter-adaptation1–3. Although the divergence observed at some host-resistance4–6 and parasite-infectivity7–9 genes is consistent with this, the long time periods typically required to study coevolution have so far prevented any direct empirical test. Here we show, using experimental populations of the bacterium Pseudomonas fluorescens SBW25 and its viral parasite, phage Φ2 (refs 10, 11), that the rate of molecular evolution in the phage was far higher when both bacterium and phage coevolved with each other than when phage evolved against a constant host genotype. Coevolution also resulted in far greater genetic divergence between replicate populations, which was correlated with the range of hosts that coevolved phage were able to infect. Consistent with this, the most rapidly evolving phage genes under coevolution were those involved in host infection. These results demonstrate, at both the genomic and phenotypic level, that antagonistic coevolution is a cause of rapid and divergent evolution, and is likely to be a major driver of evolutionary change within species. PMID:20182425

  16. Antagonists of the kappa opioid receptor.

    PubMed

    Urbano, Mariangela; Guerrero, Miguel; Rosen, Hugh; Roberts, Edward

    2014-05-01

    The research community has increasingly focused on the development of OPRK antagonists as pharmacotherapies for the treatment of depression, anxiety, addictive disorders and other psychiatric conditions produced or exacerbated by stress. Short-acting OPRK antagonists have been recently developed as a potential improvement over long-acting prototypic ligands including nor-BNI and JDTic. Remarkably the short-acting LY2456302 is undergoing phase II clinical trials for the augmentation of the antidepressant therapy in treatment-resistant depression. This Letter reviews relevant chemical and pharmacological advances in the identification and development of OPRK antagonists.

  17. Emerging cardiovascular indications of mineralocorticoid receptor antagonists.

    PubMed

    Parviz, Yasir; Iqbal, Javaid; Pitt, Bertram; Adlam, David; Al-Mohammad, Abdallah; Zannad, Faiez

    2015-04-01

    Mineralocorticoid receptor (MR) antagonism is a well-established treatment modality for patients with hypertension, heart failure, and left ventricular systolic dysfunction (LVSD) post-myocardial infarction (MI). There are emerging data showing potential benefits of MR antagonists in other cardiovascular conditions. Studies have shown association between MR activation and the development of myocardial fibrosis, coronary artery disease, metabolic syndrome, and cerebrovascular diseases. This review examines the preclinical and clinical data of MR antagonists for novel indications including heart failure with preserved ejection fraction (HFPEF), pulmonary arterial hypertension (PAH), arrhythmia, sudden cardiac death, valvular heart disease, metabolic syndrome, renal disease, and stroke. MR antagonists are not licensed for these conditions yet; however, emerging data suggest that indication for MR antagonists are likely to broaden; further studies are warranted.

  18. Plant Evolution: Evolving Antagonistic Gene Regulatory Networks.

    PubMed

    Cooper, Endymion D

    2016-06-20

    Developing a structurally complex phenotype requires a complex regulatory network. A new study shows how gene duplication provides a potential source of antagonistic interactions, an important component of gene regulatory networks.

  19. Macrophages: micromanagers of antagonistic signaling nanoclusters.

    PubMed

    Eggeling, Christian; Davis, Simon J

    2017-04-03

    How cells integrate antagonistic receptor signaling events is enigmatic. Using superresolution optical microscopy, Lopes et al. (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201608094) demonstrate the nanometer-scale molecular reorganization of antagonistic signaling receptors in macrophages, after engagement by the receptors of activating and inhibitory ligands. They propose that large-scale rearrangements of this type underpin decision-making by these cells.

  20. Calcium antagonists and atherosclerosis protection in hypertension.

    PubMed

    Hernández, Rafael Hernández; Armas-Hernández, María José; Velasco, Manuel; Israili, Zafar H; Armas-Padilla, María Cristina

    2003-01-01

    Calcium antagonists are effective in hypertensive patients of all ethnic groups, irrespective of age, dietary salt intake, salt-sensitivity status or plasma renin activity profile. Some prospective studies show that the calcium antagonists, nifedipine GITS and nitrendipine, reduce cardiovascular morbidity and mortality at least to the same extent as the diuretics. Other prospective studies are in progress to evaluate the effect of calcium antagonists on cardiovascular morbidity and mortality, and the progression of atherosclerosis in hypertensive patients. Calcium antagonists, especially the highly lipophilic amlodipine, lacidipine and nisoldipine, are shown to possess antioxidant properties. These drugs reduce the oxidation of LDL and its influx into the arterial wall, and reduce atherosclerotic lesions in animals. Platelet production of malondialdehyde, a marker of oxygen free radical formation, is suppressed by amlodipine, lacidipine or nifedipine in hypertensive patients. New evidence from long-term clinical trials of calcium antagonists indicates that these drugs can reduce the rate of progression of atherosclerosis in hypertensive and coronary heart disease patients. In the Regression Growth Evaluation Statin Study (REGRESS), co-administration of calcium antagonist, amlodipine or nifedipine with pravasatin caused a significant reduction in the appearance of new angiographic lesions. In the Verapamil in Hypertension and Atherosclerosis Study (VHAS), verapamil was more effective than chlorthalidone in promoting regression of thicker carotid lesions in parallel with a reduction in the incidence of cardiovascular events. In the Prospective Randomized Evaluation of the Vascular Effects of Norvasc Trial (PREVENT), amlodipine slowed the progression of early coronary atherosclerosis in patients with coronary artery disease. In a subprotocol of the Intervention as a Goal in the Hypertension Treatment (INSIGHT) study, nifedipine GITS significantly decreased intima

  1. Embryo implantation and GnRH antagonists: embryo implantation: the Rubicon for GnRH antagonists.

    PubMed

    Hernandez, E R

    2000-06-01

    When gonadotrophin-releasing hormone (GnRH) was discovered, the agonist and antagonist of GnRH were developed to control the release of FSH and LH by the gonadotrophs. More than 10 years of research were needed to develop a GnRH antagonist free of histamine release. Recent studies have shown that these GnRH antagonists are effective in preventing a rise in LH during ovarian stimulation in IVF. However, a decrease in ongoing pregnancies seems to suggest that implantation rates per transferred embryo are reduced in GnRH antagonist-stimulated cycles. In my opinion, these data highlight an area less well known to clinicians: the role of the GnRH antagonist at the cellular level in extrapituitary tissues. There are sufficient data in the literature suggesting that GnRH antagonist is an inhibitor of the cell cycle by decreasing the synthesis of growth factors. Given that, for folliculogenesis, blastomere formation and endometrium development, mitosis is everything; the interaction between the GnRH antagonist and the GnRH receptor (present in all these cells and tissues) may compromise the mitotic programme of these cells. This is the Rubicon for the GnRH antagonist: to demonstrate irrevocably that, at the minimal doses necessary to suppress LH release, it does not affect processes such as implantation, embryo development and folliculogenesis.

  2. Antagonist-Elicited Cannabis Withdrawal in Humans

    PubMed Central

    Gorelick, David A.; Goodwin, Robert S.; Schwilke, Eugene; Schwope, David M.; Darwin, William D.; Kelly, Deanna L.; McMahon, Robert P.; Liu, Fang; Ortemann-Renon, Catherine; Bonnet, Denis; Huestis, Marilyn A.

    2013-01-01

    Cannabinoid CB1 receptor antagonists have potential therapeutic benefits, but antagonist-elicited cannabis withdrawal has not been reported in humans. Ten male daily cannabis smokers received 8 days of increasingly frequent 20-mg oral Δ9-tetrahydrocannabinol (THC) dosages (40–120 mg/d) around-the-clock to standardize cannabis dependence while residing on a closed research unit. On the ninth day, double-blind placebo or 20- (suggested therapeutic dose) or 40-mg oral rimonabant, a CB1-cannabinoid receptor antagonist, was administered. Cannabis withdrawal signs and symptoms were assessed before and for 23.5 hours after rimonabant. Rimonabant, THC, and 11-hydroxy-THC plasma concentrations were quantified by mass spectrometry. The first 6 subjects received 20-mg rimonabant (1 placebo); the remaining 4 subjects received 40-mg rimonabant (1 placebo). Fourteen subjects enrolled; 10 completed before premature termination because of withdrawal of rimonabant from clinical development. Three of 5 subjects in the 20-mg group, 1 of 3 in the 40-mg group, and none of 2 in the placebo group met the prespecified withdrawal criterion of 150% increase or higher in at least 3 visual analog scales for cannabis withdrawal symptoms within 3 hours of rimonabant dosing. There were no significant associations between visual analog scale, heart rate, or blood pressure changes and peak rimonabant plasma concentration, area-under-the-rimonabant-concentration-by-time curve (0–8 hours), or peak rimonabant/THC or rimonabant/(THC + 11-hydroxy-THC) plasma concentration ratios. In summary, prespecified criteria for antagonist-elicited cannabis withdrawal were not observed at the 20- or 40-mg rimonabant doses. These data do not preclude antagonist-elicited withdrawal at higher rimonabant doses. PMID:21869692

  3. Antagonistic and synergistic interactions among predators.

    PubMed

    Huxel, Gary R

    2007-08-01

    The structure and dynamics of food webs are largely dependent upon interactions among consumers and their resources. However, interspecific interactions such as intraguild predation and interference competition can also play a significant role in the stability of communities. The role of antagonistic/synergistic interactions among predators has been largely ignored in food web theory. These mechanisms influence predation rates, which is one of the key factors regulating food web structure and dynamics, thus ignoring them can potentially limit understanding of food webs. Using nonlinear models, it is shown that critical aspects of multiple predator food web dynamics are antagonistic/synergistic interactions among predators. The influence of antagonistic/synergistic interactions on coexistence of predators depended largely upon the parameter set used and the degree of feeding niche differentiation. In all cases when there was no effect of antagonism or synergism (a ( ij )=1.00), the predators coexisted. Using the stable parameter set, coexistence occurred across the range of antagonism/synergism used. However, using the chaotic parameter strong antagonism resulted in the extinction of one or both species, while strong synergism tended to coexistence. Whereas using the limit cycle parameter set, coexistence was strongly dependent on the degree of feeding niche overlap. Additionally increasing the degree of feeding specialization of the predators on the two prey species increased the amount of parameter space in which coexistence of the two predators occurred. Bifurcation analyses supported the general pattern of increased stability when the predator interaction was synergistic and decreased stability when it was antagonistic. Thus, synergistic interactions should be more common than antagonistic interactions in ecological systems.

  4. Antagonist-elicited cannabis withdrawal in humans.

    PubMed

    Gorelick, David A; Goodwin, Robert S; Schwilke, Eugene; Schwope, David M; Darwin, William D; Kelly, Deanna L; McMahon, Robert P; Liu, Fang; Ortemann-Renon, Catherine; Bonnet, Denis; Huestis, Marilyn A

    2011-10-01

    Cannabinoid CB1 receptor antagonists have potential therapeutic benefits, but antagonist-elicited cannabis withdrawal has not been reported in humans. Ten male daily cannabis smokers received 8 days of increasingly frequent 20-mg oral Δ⁹-tetrahydrocannabinol (THC) dosages (40-120 mg/d) around-the-clock to standardize cannabis dependence while residing on a closed research unit. On the ninth day, double-blind placebo or 20- (suggested therapeutic dose) or 40-mg oral rimonabant, a CB1-cannabinoid receptor antagonist, was administered. Cannabis withdrawal signs and symptoms were assessed before and for 23.5 hours after rimonabant. Rimonabant, THC, and 11-hydroxy-THC plasma concentrations were quantified by mass spectrometry. The first 6 subjects received 20-mg rimonabant (1 placebo); the remaining 4 subjects received 40-mg rimonabant (1 placebo). Fourteen subjects enrolled; 10 completed before premature termination because of withdrawal of rimonabant from clinical development. Three of 5 subjects in the 20-mg group, 1 of 3 in the 40-mg group, and none of 2 in the placebo group met the prespecified withdrawal criterion of 150% increase or higher in at least 3 visual analog scales for cannabis withdrawal symptoms within 3 hours of rimonabant dosing. There were no significant associations between visual analog scale, heart rate, or blood pressure changes and peak rimonabant plasma concentration, area-under-the-rimonabant-concentration-by-time curve (0-8 hours), or peak rimonabant/THC or rimonabant/(THC + 11-hydroxy-THC) plasma concentration ratios. In summary, prespecified criteria for antagonist-elicited cannabis withdrawal were not observed at the 20- or 40-mg rimonabant doses. These data do not preclude antagonist-elicited withdrawal at higher rimonabant doses.

  5. Progress in corticotropin-releasing factor-1 antagonist development

    PubMed Central

    Zorrilla, Eric P.; Koob, George F.

    2010-01-01

    Corticotropin-releasing factor (CRF) receptor antagonists have been sought since the stress-secreted peptide was isolated in 1981. Although evidence suggests the limited efficacy of CRF1 antagonists as antidepressants, CRF1 antagonists might be novel pharmacotherapies for anxiety and addiction. Progress in understanding the two-domain model of ligand–receptor interactions for CRF family receptors might yield chemically novel CRF1 receptor antagonists, including peptide CRF1 antagonists, antagonists with signal transduction selectivity and nonpeptide CRF1 antagonists that act via the extracellular (rather than transmembrane) domains. Novel ligands that conform to prevalent pharmacophore and exhibit drug-like pharmacokinetic properties have been identified. The therapeutic utility of CRF1 antagonists should soon be clearer: several small molecules are currently in Phase II/III clinical trials for depression, anxiety and irritable bowel syndrome. PMID:20206287

  6. Novel benzimidazole-based MCH R1 antagonists.

    PubMed

    Carpenter, Andrew J; Al-Barazanji, Kamal A; Barvian, Kevin K; Bishop, Michael J; Britt, Christy S; Cooper, Joel P; Goetz, Aaron S; Grizzle, Mary K; Hertzog, Donald L; Ignar, Diane M; Morgan, Ronda O; Peckham, Gregory E; Speake, Jason D; Swain, Will R

    2006-10-01

    The identification of an MCH R1 antagonist screening hit led to the optimization of a class of benzimidazole-based MCH R1 antagonists. Structure-activity relationships and efforts to optimize pharmacokinetic properties are detailed along with the demonstration of the effectiveness of an MCH R1 antagonist in an animal model of obesity.

  7. Development of Kappa Opioid Receptor Antagonists

    PubMed Central

    Carroll, F. Ivy; Carlezon, William A.

    2013-01-01

    Kappa opioid receptors (KORs) belong to the G-protein coupled class of receptors (GPCRs). They are activated by the endogenous opioid peptide dynorphin (DYN) and expressed at particularly high levels within brain areas implicated in modulation of motivation, emotion, and cognitive function. Chronic activation of KORs in animal models has maladaptive effects including increases in behaviors that reflect depression, the propensity to engage in drug-seeking behavior, and drug craving. The fact that KOR activation has such a profound influence on behaviors often triggered by stress has led to interest in selective KOR antagonists as potential therapeutic agents. This perspective provides a description of preclinical research conducted in the development of several different classes of selective KOR antagonists, a summary of the clinical studies conducted thus far, and recommendations for the type of work needed in the future to determine if these agents would be useful as pharmacotherapies for neuropsychiatric illness. PMID:23360448

  8. The treatment of hyponatraemia using vasopressin antagonists.

    PubMed

    Gross, P; Palm, C

    2000-03-01

    Hyponatraemia is a frequent electrolyte disorder. It is primarily attributable to vasopressin excess plus sustained fluid intake. Hyponatraemia causes CNS symptoms, especially during the first 2-4 days; these symptoms are related to brain swelling. Hyponatraemia occurs in the setting of liver cirrhosis and congestive cardiac failure, in which it is related to stimulation by low arterial blood pressure acting through baroreceptors. Hyponatraemia also occurs in the syndrome of inappropriate antidiuretic hormone secretion, usually from neoplasms releasing vasopressin. The conventional treatment of hyponatraemia used to be fluid restriction and treatment of the underlying disorder. This kind of treatment has been unreliable, cumbersome and difficult to comply with for the patient. In the future, effective vasopressin V2 antagonists will become available for clinical use in the treatment of hyponatraemia, and are expected to improve the management of hyponatraemia. Pharmacological characteristics and observations of biological effects of three antagonists are reported in the present article.

  9. TRPV1 antagonists as potential antitussive agents.

    PubMed

    McLeod, Robbie L; Correll, Craig C; Jia, Yanlin; Anthes, John C

    2008-01-01

    Cough is an important defensive pulmonary reflex that removes irritants, fluids, or foreign materials from the airways. However, when cough is exceptionally intense or when it is chronic and/or nonproductive it may require pharmacologic suppression. For many patients, antitussive therapies consist of OTC products with inconsequential efficacies. On the other hand, the prescription antitussive market is dominated by older opioid drugs such as codeine. Unfortunately, "codeine-like" drugs suppress cough at equivalent doses that also often produce significant ancillary liabilities such as GI constipation, sedation, and respiratory depression. Thus, the discovery of a novel and effective antitussive drug with an improved side effect profile relative to codeine would fulfill an unmet clinical need in the treatment of cough. Afferent pulmonary nerves are endowed with a multitude of potential receptor targets, including TRPV1, that could act to attenuate cough. The evidence linking TRPV1 to cough is convincing. TRPV1 receptors are found on sensory respiratory nerves that are important in the generation of the cough reflex. Isolated pulmonary vagal afferent nerves are responsive to TRPV1 stimulation. In vivo, TRPV1 agonists such as capsaicin elicit cough when aerosolized and delivered to the lungs. Pertinent to the debate on the potential use of TRPV1 antagonist as antitussive agents are the observations that airway afferent nerves become hypersensitive in diseased and inflamed lungs. For example, the sensitivity of capsaicin-induced cough responses following upper respiratory tract infection and in airway inflammatory diseases such as asthma and COPD is increased relative to that of control responses. Indeed, we have demonstrated that TRPV1 antagonism can attenuate antigen-induced cough in the allergic guinea pig. However, it remains to be determined if the emerging pharmacologic profile of TRPV1 antagonists will translate into a novel human antitussive drug. Current

  10. Interactions of Freshwater Cyanobacteria with Bacterial Antagonists

    PubMed Central

    Beier, Sara; Grabherr, Manfred

    2017-01-01

    ABSTRACT Cyanobacterial and algal mass development, or blooms, have severe effects on freshwater and marine systems around the world. Many of these phototrophs produce a variety of potent toxins, contribute to oxygen depletion, and affect water quality in several ways. Coexisting antagonists, such as cyanolytic bacteria, hold the potential to suppress, or even terminate, such blooms, yet the nature of this interaction is not well studied. We isolated 31 cyanolytic bacteria affiliated with the genera Pseudomonas, Stenotrophomonas, Acinetobacter, and Delftia from three eutrophic freshwater lakes in Sweden and selected four phylogenetically diverse bacterial strains with strong-to-moderate lytic activity. To characterize their functional responses to the presence of cyanobacteria, we performed RNA sequencing (RNA-Seq) experiments on coculture incubations, with an initial predator-prey ratio of 1:1. Genes involved in central cellular pathways, stress-related heat or cold shock proteins, and antitoxin genes were highly expressed in both heterotrophs and cyanobacteria. Heterotrophs in coculture expressed genes involved in cell motility, signal transduction, and putative lytic activity. l,d-Transpeptidase was the only significantly upregulated lytic gene in Stenotrophomonas rhizophila EK20. Heterotrophs also shifted their central metabolism from the tricarboxylic acid cycle to the glyoxylate shunt. Concurrently, cyanobacteria clearly show contrasting antagonistic interactions with the four tested heterotrophic strains, which is also reflected in the physical attachment to their cells. In conclusion, antagonistic interactions with cyanobacteria were initiated within 24 h, and expression profiles suggest varied responses for the different cyanobacteria and studied cyanolytes. IMPORTANCE Here, we present how gene expression profiles can be used to reveal interactions between bloom-forming freshwater cyanobacteria and antagonistic heterotrophic bacteria. Species

  11. Medicinal chemistry of competitive kainate receptor antagonists.

    PubMed

    Larsen, Ann M; Bunch, Lennart

    2011-02-16

    Kainic acid (KA) receptors belong to the group of ionotropic glutamate receptors and are expressed throughout in the central nervous system (CNS). The KA receptors have been shown to be involved in neurophysiological functions such as mossy fiber long-term potentiation (LTP) and synaptic plasticity and are thus potential therapeutic targets in CNS diseases such as schizophrenia, major depression, neuropathic pain and epilepsy. Extensive effort has been made to develop subtype-selective KA receptor antagonists in order to elucidate the physiological function of each of the five subunits known (GluK1-5). However, to date only selective antagonists for the GluK1 subunit have been discovered, which underlines the strong need for continued research in this area. The present review describes the structure-activity relationship and pharmacological profile for 10 chemically distinct classes of KA receptor antagonists comprising, in all, 45 compounds. To the medicinal chemist this information will serve as reference guidance as well as an inspiration for future effort in this field.

  12. Medicinal Chemistry of Competitive Kainate Receptor Antagonists

    PubMed Central

    2010-01-01

    Kainic acid (KA) receptors belong to the group of ionotropic glutamate receptors and are expressed throughout in the central nervous system (CNS). The KA receptors have been shown to be involved in neurophysiological functions such as mossy fiber long-term potentiation (LTP) and synaptic plasticity and are thus potential therapeutic targets in CNS diseases such as schizophrenia, major depression, neuropathic pain and epilepsy. Extensive effort has been made to develop subtype-selective KA receptor antagonists in order to elucidate the physiological function of each of the five subunits known (GluK1−5). However, to date only selective antagonists for the GluK1 subunit have been discovered, which underlines the strong need for continued research in this area. The present review describes the structure−activity relationship and pharmacological profile for 10 chemically distinct classes of KA receptor antagonists comprising, in all, 45 compounds. To the medicinal chemist this information will serve as reference guidance as well as an inspiration for future effort in this field. PMID:22778857

  13. NMDA Receptor Antagonists for Treatment of Depression

    PubMed Central

    Ates-Alagoz, Zeynep; Adejare, Adeboye

    2013-01-01

    Depression is a psychiatric disorder that affects millions of people worldwide. Individuals battling this disorder commonly experience high rates of relapse, persistent residual symptoms, functional impairment, and diminished well-being. Medications have important utility in stabilizing moods and daily functions of many individuals. However, only one third of patients had considerable improvement with a standard antidepressant after 2 months and all patients had to deal with numerous side effects. The N-methyl-d-aspartate (NMDA) receptor family has received special attention because of its critical role in psychiatric disorders. Direct targeting of the NMDA receptor could result in more rapid antidepressant effects. Antidepressant-like effects of NMDA receptor antagonists have been demonstrated in different animal models. MK-801 (a use-dependent channel blocker), and CGP 37849 (an NMDA receptor antagonist) have shown antidepressant properties in preclinical studies, either alone or combined with traditional antidepressants. A recent development is use of ketamine clinically for refractory depression. The purpose of this review is to examine and analyze current literature on the role of NMDA receptor antagonists for treatment of depression and whether this is a feasible route in drug discovery. PMID:24276119

  14. Pharmacological analysis of calcium antagonist receptors

    SciTech Connect

    Reynolds, I.J.

    1987-01-01

    This work focuses on two aspects of the action of calcium antagonist drugs, namely, the interaction of drugs with receptors for verapamil-like calcium antagonists, and the interactions of drugs with voltage-sensitive calcium fluxes in rat brain synaptosomes. From binding studies I have found that the ligand of choice for labeling the verapamil receptor is (-)(/sup 3/H)desmethoxy-verapamil. This drug labels potently, reversibly and stereoselectively two receptors in membranes prepared from rat brain and rabbit skeletal muscle tissues. In equilibrium studies dihydropyridine calcium antagonists interact in a non-competitive fashion, while many non-DHPs are apparently competitive. In-depth kinetic studies in skeletal muscle membranes indicate that the two receptors are linked in a negative heterotropic fashion, and that low-affinity binding of (-) (/sup 3/H)desmethoxy-verapamil may be to the diltiazem receptor. However, these studies were not able to distinguish between the hypothesis that diltiazem binds to spatially separate, allosterically coupled receptors, and the hypothesis that diltiazem binds to a subsite of the verapamil receptor.

  15. Activation of serotonin 2A receptors underlies the psilocybin-induced effects on α oscillations, N170 visual-evoked potentials, and visual hallucinations.

    PubMed

    Kometer, Michael; Schmidt, André; Jäncke, Lutz; Vollenweider, Franz X

    2013-06-19

    Visual illusions and hallucinations are hallmarks of serotonergic hallucinogen-induced altered states of consciousness. Although the serotonergic hallucinogen psilocybin activates multiple serotonin (5-HT) receptors, recent evidence suggests that activation of 5-HT2A receptors may lead to the formation of visual hallucinations by increasing cortical excitability and altering visual-evoked cortical responses. To address this hypothesis, we assessed the effects of psilocybin (215 μg/kg vs placebo) on both α oscillations that regulate cortical excitability and early visual-evoked P1 and N170 potentials in healthy human subjects. To further disentangle the specific contributions of 5-HT2A receptors, subjects were additionally pretreated with the preferential 5-HT2A receptor antagonist ketanserin (50 mg vs placebo). We found that psilocybin strongly decreased prestimulus parieto-occipital α power values, thus precluding a subsequent stimulus-induced α power decrease. Furthermore, psilocybin strongly decreased N170 potentials associated with the appearance of visual perceptual alterations, including visual hallucinations. All of these effects were blocked by pretreatment with the 5-HT2A antagonist ketanserin, indicating that activation of 5-HT2A receptors by psilocybin profoundly modulates the neurophysiological and phenomenological indices of visual processing. Specifically, activation of 5-HT2A receptors may induce a processing mode in which stimulus-driven cortical excitation is overwhelmed by spontaneous neuronal excitation through the modulation of α oscillations. Furthermore, the observed reduction of N170 visual-evoked potentials may be a key mechanism underlying 5-HT2A receptor-mediated visual hallucinations. This change in N170 potentials may be important not only for psilocybin-induced states but also for understanding acute hallucinatory states seen in psychiatric disorders, such as schizophrenia and Parkinson's disease.

  16. #MdlPwriters: Fourteen Powerful Voices

    ERIC Educational Resources Information Center

    Stivers, Julie

    2017-01-01

    This article asks: What messages are school librarians sending to students of color if the only authors invited to visit schools are white? The author argues that bringing authors of color--image makers--to schools to speak to, and work with, students of color is a vital piece of culturally relevant library practice. School librarians must…

  17. From the Cover: Glutamate antagonists limit tumor growth

    NASA Astrophysics Data System (ADS)

    Rzeski, Wojciech; Turski, Lechoslaw; Ikonomidou, Chrysanthy

    2001-05-01

    Neuronal progenitors and tumor cells possess propensity to proliferate and to migrate. Glutamate regulates proliferation and migration of neurons during development, but it is not known whether it influences proliferation and migration of tumor cells. We demonstrate that glutamate antagonists inhibit proliferation of human tumor cells. Colon adenocarcinoma, astrocytoma, and breast and lung carcinoma cells were most sensitive to the antiproliferative effect of the N-methyl-D-aspartate antagonist dizocilpine, whereas breast and lung carcinoma, colon adenocarcinoma, and neuroblastoma cells responded most favorably to the -amino-3-hydroxy-5-methyl-4-isoxazole-propionate antagonist GYKI52466. The antiproliferative effect of glutamate antagonists was Ca2+ dependent and resulted from decreased cell division and increased cell death. Morphological alterations induced by glutamate antagonists in tumor cells consisted of reduced membrane ruffling and pseudopodial protrusions. Furthermore, glutamate antagonists decreased motility and invasive growth of tumor cells. These findings suggest anticancer potential of glutamate antagonists.

  18. Investigation of orexin-2 selective receptor antagonists: Structural modifications resulting in dual orexin receptor antagonists.

    PubMed

    Skudlarek, Jason W; DiMarco, Christina N; Babaoglu, Kerim; Roecker, Anthony J; Bruno, Joseph G; Pausch, Mark A; O'Brien, Julie A; Cabalu, Tamara D; Stevens, Joanne; Brunner, Joseph; Tannenbaum, Pamela L; Wuelfing, W Peter; Garson, Susan L; Fox, Steven V; Savitz, Alan T; Harrell, Charles M; Gotter, Anthony L; Winrow, Christopher J; Renger, John J; Kuduk, Scott D; Coleman, Paul J

    2017-03-15

    In an ongoing effort to explore the use of orexin receptor antagonists for the treatment of insomnia, dual orexin receptor antagonists (DORAs) were structurally modified, resulting in compounds selective for the OX2R subtype and culminating in the discovery of 23, a highly potent, OX2R-selective molecule that exhibited a promising in vivo profile. Further structural modification led to an unexpected restoration of OX1R antagonism. Herein, these changes are discussed and a rationale for selectivity based on computational modeling is proposed.

  19. Antagonistic functional duality of cancer genes.

    PubMed

    Stepanenko, A A; Vassetzky, Y S; Kavsan, V M

    2013-10-25

    Cancer evolution is a stochastic process both at the genome and gene levels. Most of tumors contain multiple genetic subclones, evolving in either succession or in parallel, either in a linear or branching manner, with heterogeneous genome and gene alterations, extensively rewired signaling networks, and addicted to multiple oncogenes easily switching with each other during cancer progression and medical intervention. Hundreds of discovered cancer genes are classified according to whether they function in a dominant (oncogenes) or recessive (tumor suppressor genes) manner in a cancer cell. However, there are many cancer "gene-chameleons", which behave distinctly in opposite way in the different experimental settings showing antagonistic duality. In contrast to the widely accepted view that mutant NADP(+)-dependent isocitrate dehydrogenases 1/2 (IDH1/2) and associated metabolite 2-hydroxyglutarate (R)-enantiomer are intrinsically "the drivers" of tumourigenesis, mutant IDH1/2 inhibited, promoted or had no effect on cell proliferation, growth and tumorigenicity in diverse experiments. Similar behavior was evidenced for dozens of cancer genes. Gene function is dependent on genetic network, which is defined by the genome context. The overall changes in karyotype can result in alterations of the role and function of the same genes and pathways. The diverse cell lines and tumor samples have been used in experiments for proving gene tumor promoting/suppressive activity. They all display heterogeneous individual karyotypes and disturbed signaling networks. Consequently, the effect and function of gene under investigation can be opposite and versatile in cells with different genomes that may explain antagonistic duality of cancer genes and the cell type- or the cellular genetic/context-dependent response to the same protein. Antagonistic duality of cancer genes might contribute to failure of chemotherapy. Instructive examples of unexpected activity of cancer genes and

  20. Neuromuscular adaptations following antagonist resisted training.

    PubMed

    MacKenzie, Sasho J; Rannelli, Luke A; Yurchevich, Jordan J

    2010-01-01

    The purpose was to assess a novel form of strength training, antagonist resisted training (ART), with potential use in microgravity and athletic rehabilitation settings. ART uses the force from antagonist muscles, during cocontractions, as the source of resistance for the agonists. Strength and electromyography (EMG) measurements were recorded before and after a 6-week training program during which participants trained the left arm while the right arm served as a control. Training was designed so that the elbow extensors (antagonists) served as resistance for the elbow flexors (agonists). Elbow flexor and extensor strengths were measured during maximal isometric contractions with the elbow fixed at 90 degrees. EMG was recorded from the biceps brachii and lateral head of the triceps brachii during all strength tests. EMG was also recorded from both muscles during a maximal isometric cocontraction of the elbow flexors and extensors. Elbow flexion strength increased significantly for the trained arm (5.8%) relative to the control (0.5%) (p = 0.003). Elbow extension strength of the trained limb also increased significantly (8.5%) relative to the control (4.5%) (p = 0.029). Biceps and triceps EMG, during maximum strength tests, increased significantly for the trained arm (18.5 and 18.6%) relative to the control (0.5 and -5.2%) (p = 0.035 and p = 0.01). Biceps and triceps EMG, during maximum cocontraction tests, increased significantly for the trained arm (30.1 and 61.1%) relative to the control (9.2 and 1.1%) (p = 0.042 and p = 0.0005). ART was found to increase strength and therefore could be an effective form of resistance training. Because it requires no equipment, ART may be especially applicable in microgravity environments, which have space and weight constraints.

  1. Mineralocorticoid receptor antagonists and endothelial function

    PubMed Central

    Maron, Bradley A.; Leopold, Jane A.

    2010-01-01

    Hyperaldosteronism has been associated with endothelial dysfunction and impaired vascular reactivity in patients with hypertension or congestive heart failure. The mineralocorticoid receptor (MR) antagonists spironolactone and eplerenone have been shown to reduce morbidity and mortality, in part, by ameliorating the adverse effects of aldosterone on vascular function. Although spironolactone and eplerenone are increasingly utilized in patients with cardiovascular disease, widespread clinical use is limited by the development of gynecomastia with spironolactone and hyperkalemia with both agents. This suggests that the development of newer agents with favorable side effect profiles is warranted. PMID:18729003

  2. Elucidating the `Jekyll and Hyde' Nature of PXR: The Case for Discovering Antagonists or Allosteric Antagonists

    PubMed Central

    Biswas, Arunima; Mani, Sridhar; Redinbo, Matthew R.; Krasowski, Matthew D.; Li, Hao; Ekins, Sean

    2010-01-01

    The pregnane X receptor belongs to the nuclear hormone receptor superfamily and is involved in the transcriptional control of numerous genes. It was originally thought that it was a xenobiotic sensor controlling detoxification pathways. Recent studies have shown an increasingly important role in inflammation and cancer, supporting its function in abrogating tissue damage. PXR orthologs and PXR-like pathways have been identified in several non-mammalian species which corroborate a conserved role for PXR in cellular detoxification. In summary, PXR has a multiplicity of roles in vivo and is being revealed as behaving like a “Jekyll and Hyde” nuclear hormone receptor. The importance of this review is to elucidate the need for discovery of antagonists of PXR to further probe its biology and therapeutic applications. Although several PXR agonists are already reported, virtually nothing is known about PXR antagonists. Here, we propose the development of PXR antagonists through chemical, genetic and molecular modeling approaches. Based on this review it will be clear that antagonists of PXR and PXR-like pathways will have widespread utility in PXR biology and therapeutics. PMID:19415465

  3. Rational discovery of novel nuclear hormone receptor antagonists

    NASA Astrophysics Data System (ADS)

    Schapira, Matthieu; Raaka, Bruce M.; Samuels, Herbert H.; Abagyan, Ruben

    2000-02-01

    Nuclear hormone receptors (NRs) are potential targets for therapeutic approaches to many clinical conditions, including cancer, diabetes, and neurological diseases. The crystal structure of the ligand binding domain of agonist-bound NRs enables the design of compounds with agonist activity. However, with the exception of the human estrogen receptor-, the lack of antagonist-bound "inactive" receptor structures hinders the rational design of receptor antagonists. In this study, we present a strategy for designing such antagonists. We constructed a model of the inactive conformation of human retinoic acid receptor- by using information derived from antagonist-bound estrogen receptor-α and applied a computer-based virtual screening algorithm to identify retinoic acid receptor antagonists. Thus, the currently available crystal structures of NRs may be used for the rational design of antagonists, which could lead to the development of novel drugs for a variety of diseases.

  4. Antioxidant effects of calcium antagonists in rat brain homogenates.

    PubMed

    Yao, K; Ina, Y; Nagashima, K; Ohmori, K; Ohno, T

    2000-06-01

    We studied the antioxidant activities of calcium antagonists against autoxidation in rat brain homogenates. The homogenates were incubated for 30 min at 37 degrees C with or without a calcium antagonist and subsequently assayed for lipid peroxide content. Percent inhibition of the lipid peroxidation was used as an index of the antioxidant effect. Dihydropyridine calcium antagonists exhibited concentration-dependent (3-300 micromol/l) inhibitory effects against lipid peroxidation. The relative order of antioxidant potency and associated IC50 values (micromol/l) of the calcium antagonists for inhibition of the lipid peroxidation were as follows: nifedipine (51.5)>barnidipine (58.6)>benidipine (71.2)>nicardipine (129.3)>amlodipine (135.5)>nilvadipine (167.3)>nitrendipine (252.1)> diltiazem (>300)=verapamil (>300). These results suggest that some dihydropyridine calcium antagonists show antioxidant properties. The antioxidant effects of the calcium antagonists may contribute to their pharmacological actions.

  5. Opioid antagonists and the sexual satiation phenomenon.

    PubMed

    Rodríguez-Manzo, G; Fernández-Guasti, A

    1995-11-01

    This study evaluates the effects of the IP injection of naloxone (0.3, 3 and 30 mg/kg) and naltrexone (0.2, 2 and 20 mg/kg) on the sexual satiation phenomenon. It was found that both antagonists exert a dose-based biphasic effect on the proportion of sexually exhausted rats displaying copulation. The intermediate doses of both opioid antagonists were more effective than the low and high doses in increasing the percentage of animals engaged in copulation. The analysis of the specific sexual behaviour parameters revealed that naloxone produces a slight inhibitory effect at the lowest dose, evidenced as an increase in the intromission number. The higher doses of this compound facilitated copulation reflected as a shortening of the ejaculation latency and the interintromission interval (III) and an increase in the copulatory rate. Naltrexone treatment had only facilitatory effects at the lower doses by reducing the III. The higher doses of naloxone (3 and 30 mg/kg) and the intermediate dose of naltrexone (2 mg/kg) decreased the spontaneous ambulatory behaviour of sexually satiated rats without impairing sexual behaviour execution. Data suggest a participation of the endogenous opioid systems in the sexual inhibition resulting from sexual exhaustion.

  6. D-Cycloserine: Agonist turned antagonist.

    PubMed

    Lanthorn, T H

    1994-10-01

    D-Cycloserine can enhance activation of the NMDA receptor complex and could enhance the induction of long-term potentiation (LTP). In animals and humans, D-cycloserine can enhance performance in learning and memory tasks. This enhancing effect can disappear during repeated administration. The enhancing effects are also lost when higher doses are used, and replaced by behavioral and biochemical effects like those produced by NMDA antagonists. It has been reported that NMDA agonists, applied before or after tetanic stimulation, can block the induction of LTP. This may be the result of feedback inhibition of second messenger pathways stimulated by receptor activation. This may explain the antagonist-like effects of glycine partial agonists like D-cycloserine. In clinical trials of D-cycloserine in age-associated memory impairment (AAMI) and Alzheimer's disease, chronic treatment provided few positive effects on learning and memory. This may be due to inhibition of second messenger pathways following chronic stimulation of the receptor complex.

  7. Zebrafish phenotypic screen identifies novel Notch antagonists.

    PubMed

    Velaithan, Vithya; Okuda, Kazuhide Shaun; Ng, Mei Fong; Samat, Norazwana; Leong, Sze Wei; Faudzi, Siti Munirah Mohd; Abas, Faridah; Shaari, Khozirah; Cheong, Sok Ching; Tan, Pei Jean; Patel, Vyomesh

    2017-04-01

    Zebrafish represents a powerful in vivo model for phenotype-based drug discovery to identify clinically relevant small molecules. By utilizing this model, we evaluated natural product derived compounds that could potentially modulate Notch signaling that is important in both zebrafish embryogenesis and pathogenic in human cancers. A total of 234 compounds were screened using zebrafish embryos and 3 were identified to be conferring phenotypic alterations similar to embryos treated with known Notch inhibitors. Subsequent secondary screens using HEK293T cells overexpressing truncated Notch1 (HEK293TΔE) identified 2 compounds, EDD3 and 3H4MB, to be potential Notch antagonists. Both compounds reduced protein expression of NOTCH1, Notch intracellular domain (NICD) and hairy and enhancer of split-1 (HES1) in HEK293TΔE and downregulated Notch target genes. Importantly, EDD3 treatment of human oral cancer cell lines demonstrated reduction of Notch target proteins and genes. EDD3 also inhibited proliferation and induced G0/G1 cell cycle arrest of ORL-150 cells through inducing p27(KIP1). Our data demonstrates the utility of the zebrafish phenotypic screen and identifying EDD3 as a promising Notch antagonist for further development as a novel therapeutic agent.

  8. Sexually antagonistic selection in human male homosexuality.

    PubMed

    Camperio Ciani, Andrea; Cermelli, Paolo; Zanzotto, Giovanni

    2008-06-18

    Several lines of evidence indicate the existence of genetic factors influencing male homosexuality and bisexuality. In spite of its relatively low frequency, the stable permanence in all human populations of this apparently detrimental trait constitutes a puzzling 'Darwinian paradox'. Furthermore, several studies have pointed out relevant asymmetries in the distribution of both male homosexuality and of female fecundity in the parental lines of homosexual vs. heterosexual males. A number of hypotheses have attempted to give an evolutionary explanation for the long-standing persistence of this trait, and for its asymmetric distribution in family lines; however a satisfactory understanding of the population genetics of male homosexuality is lacking at present. We perform a systematic mathematical analysis of the propagation and equilibrium of the putative genetic factors for male homosexuality in the population, based on the selection equation for one or two diallelic loci and Bayesian statistics for pedigree investigation. We show that only the two-locus genetic model with at least one locus on the X chromosome, and in which gene expression is sexually antagonistic (increasing female fitness but decreasing male fitness), accounts for all known empirical data. Our results help clarify the basic evolutionary dynamics of male homosexuality, establishing this as a clearly ascertained sexually antagonistic human trait.

  9. Hypocretin antagonists in insomnia treatment and beyond.

    PubMed

    Ruoff, Chad; Cao, Michelle; Guilleminault, Christian

    2011-01-01

    Hypocretin neuropeptides have been shown to regulate transitions between wakefulness and sleep through stabilization of sleep promoting GABAergic and wake promoting cholinergic/monoaminergic neural pathways. Hypocretin also influences other physiologic processes such as metabolism, appetite, learning and memory, reward and addiction, and ventilatory drive. The discovery of hypocretin and its effect upon the sleep-wake cycle has led to the development of a new class of pharmacologic agents that antagonize the physiologic effects of hypocretin (i.e. hypocretin antagonists). Further investigation of these agents may lead to novel therapies for insomnia without the side-effect profile of currently available hypnotics (e.g. impaired cognition, confusional arousals, and motor balance difficulties). However, antagonizing a system that regulates the sleep-wake cycle while also influencing non-sleep physiologic processes may create an entirely different but equally concerning side-effect profile such as transient loss of muscle tone (i.e. cataplexy) and a dampened respiratory drive. In this review, we will discuss the discovery of hypocretin and its receptors, hypocretin and the sleep-wake cycle, hypocretin antagonists in the treatment of insomnia, and other implicated functions of the hypocretin system.

  10. Sexually Antagonistic Selection in Human Male Homosexuality

    PubMed Central

    Camperio Ciani, Andrea; Cermelli, Paolo; Zanzotto, Giovanni

    2008-01-01

    Several lines of evidence indicate the existence of genetic factors influencing male homosexuality and bisexuality. In spite of its relatively low frequency, the stable permanence in all human populations of this apparently detrimental trait constitutes a puzzling ‘Darwinian paradox’. Furthermore, several studies have pointed out relevant asymmetries in the distribution of both male homosexuality and of female fecundity in the parental lines of homosexual vs. heterosexual males. A number of hypotheses have attempted to give an evolutionary explanation for the long-standing persistence of this trait, and for its asymmetric distribution in family lines; however a satisfactory understanding of the population genetics of male homosexuality is lacking at present. We perform a systematic mathematical analysis of the propagation and equilibrium of the putative genetic factors for male homosexuality in the population, based on the selection equation for one or two diallelic loci and Bayesian statistics for pedigree investigation. We show that only the two-locus genetic model with at least one locus on the X chromosome, and in which gene expression is sexually antagonistic (increasing female fitness but decreasing male fitness), accounts for all known empirical data. Our results help clarify the basic evolutionary dynamics of male homosexuality, establishing this as a clearly ascertained sexually antagonistic human trait. PMID:18560521

  11. Synthesis of actively adjustable springs by antagonistic redundant actuation

    NASA Technical Reports Server (NTRS)

    Yi, Byung-Ju; Freeman, Robert A.

    1992-01-01

    A methodology for active spring generation is presented based on antagonistic redundant actuation. Antagonistic properties are characterized using an effective system stiffness. 'Antagonistic stiffness' is generated by preloading a closed-chain (parallel) linkage system. Internal load distribution is investigated along with the necessary conditions for spring synthesis. The performance and stability of a proposed active spring are shown by simulation, and applications are discussed.

  12. Structural, conformational, biochemical, and pharmacological study of some amides derived from 3,7-dimethyl-3,7-diazabicyclo [3.3.1] nonan-9-amine as potential 5-HT 3 receptor antagonists

    NASA Astrophysics Data System (ADS)

    Fernández, M. J.; Huertas, R. M.; Gálvez, E.; Orjales, A.; Berisa, A.; Labeaga, L.; Garcia, A. G.; Uceda, G.; Server-Carrió, J.; Martinez-Ripoll, M.

    1995-12-01

    A series of amides derived from 3,7-dimethyl-3,7-diazabicyclo [3.3.1] nonan-9-amine have been synthesized and examined by 1H and 13C NMR spectroscopy and the crystal structure of 9-(2,4,6-trichlorobenzamido)-3,7-dimethyl-3,7-diazabicyclo[3.3.1] nonane hydrochloride ( 4a·HCl) has been determined by X-ray diffraction. These compounds adopt an almost perfect chair-chair conformation with the NCH 3 groups in equatorial position. This conformation is nearly the same as that observed for compound 4a in the solid state. From binding studies of compounds 4a-c, compound 4b demonstrated the ability to efficiently displace [ 3H]GR65630 bound to bovine brain area postrema membranes to an extent comparable to MDL 72222. In the von Bezold-Jarish reflex, compound 4b showed significant results at a dose of 25 mg Kg -1. It is shown for the first time that a series of compounds with a bispidine skeleton linked through an amide moiety to several aromatic rings, shows 5-HT 3 antagonistic profiles.

  13. Antagonists of IAP proteins as cancer therapeutics.

    PubMed

    Dynek, Jasmin N; Vucic, Domagoj

    2013-05-28

    Inhibitor of apoptosis (IAP) proteins play pivotal roles in cellular survival by blocking apoptosis, modulating signal transduction, and affecting cellular proliferation. Through their interactions with inducers and effectors of apoptosis IAP proteins can effectively suppress apoptosis triggered by diverse stimuli including death receptor signaling, irradiation, chemotherapeutic agents, or growth factor withdrawal. Evasion of apoptosis, in part due to the action of IAP proteins, enhances resistance of cancer cells to treatment with chemotherapeutic agents and contributes to tumor progression. Additionally, IAP genes are known to be subject to amplification, mutation, and chromosomal translocation in human malignancies and autoimmune diseases. In this review we will discuss the role of IAP proteins in cancer and the development of antagonists targeting IAP proteins for cancer treatment.

  14. Mutually-antagonistic interactions in baseball networks

    NASA Astrophysics Data System (ADS)

    Saavedra, Serguei; Powers, Scott; McCotter, Trent; Porter, Mason A.; Mucha, Peter J.

    2010-03-01

    We formulate the head-to-head matchups between Major League Baseball pitchers and batters from 1954 to 2008 as a bipartite network of mutually-antagonistic interactions. We consider both the full network and single-season networks, which exhibit structural changes over time. We find interesting structure in the networks and examine their sensitivity to baseball’s rule changes. We then study a biased random walk on the matchup networks as a simple and transparent way to (1) compare the performance of players who competed under different conditions and (2) include information about which particular players a given player has faced. We find that a player’s position in the network does not correlate with his placement in the random walker ranking. However, network position does have a substantial effect on the robustness of ranking placement to changes in head-to-head matchups.

  15. Drug effects: agonistic and antagonistic processes.

    PubMed

    Flaten, Magne Arve

    2009-12-01

    The research presented here has shown that tolerance to drugs can be accelerated by conditioning processes. Placebo effects may be considered the opposite of tolerance, and we have shown that placebo effects may be objectively recorded by physiological measures (electromyography, skin conductance responses, and event-related potentials), as well as by behavioral and subjective methods. The placebo response, or more precisely, the expectation of drug effects, can add to the effect of the drug. Drug antagonistic expectations can also reverse the effect of the drug. There is some evidence that placebo effects are strongest when expectations are reinforced by administration of an active drug. Expectations have graded effects and may affect symptoms to a smaller or larger degree. Although drug effects can be considered stimuli, the investigation of the role of classical conditioning in drug use and drug effects involves special issues that must be carefully considered.

  16. An animal model of schizophrenia based on chronic LSD administration: old idea, new results.

    PubMed

    Marona-Lewicka, Danuta; Nichols, Charles D; Nichols, David E

    2011-09-01

    Many people who take LSD experience a second temporal phase of LSD intoxication that is qualitatively different, and was described by Daniel Freedman as "clearly a paranoid state." We have previously shown that the discriminative stimulus effects of LSD in rats also occur in two temporal phases, with initial effects mediated by activation of 5-HT(2A) receptors (LSD30), and the later temporal phase mediated by dopamine D2-like receptors (LSD90). Surprisingly, we have now found that non-competitive NMDA antagonists produced full substitution in LSD90 rats, but only in older animals, whereas in LSD30, or in younger animals, these drugs did not mimic LSD. Chronic administration of low doses of LSD (>3 months, 0.16 mg/kg every other day) induces a behavioral state characterized by hyperactivity and hyperirritability, increased locomotor activity, anhedonia, and impairment in social interaction that persists at the same magnitude for at least three months after cessation of LSD treatment. These behaviors, which closely resemble those associated with psychosis in humans, are not induced by withdrawal from LSD; rather, they are the result of neuroadaptive changes occurring in the brain during the chronic administration of LSD. These persistent behaviors are transiently reversed by haloperidol and olanzapine, but are insensitive to MDL-100907. Gene expression analysis data show that chronic LSD treatment produced significant changes in multiple neurotransmitter system-related genes, including those for serotonin and dopamine. Thus, we propose that chronic treatment of rats with low doses of LSD can serve as a new animal model of psychosis that may mimic the development and progression of schizophrenia, as well as model the established disease better than current acute drug administration models utilizing amphetamine or NMDA antagonists such as PCP.

  17. Role of 5-HT(1A) and 5-HT(7) receptors in the facilitatory response induced by 8-OH-DPAT on learning consolidation.

    PubMed

    Meneses, A; Terrón, J A

    2001-06-01

    The present study further explored the mechanisms involved in the facilitatory effect induced by (+/-)-8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) on learning consolidation. For this purpose, we analyzed in parallel the effects of LY215840 and ritanserin, two 5-HT(2) receptor antagonists with high affinity for the 5-HT(7) receptor, and WAY100635, a selective 5-HT(1A) receptor antagonist, on the facilitatory effect induced by 8-OH-DPAT on learning consolidation. We also determined whether LY215840 and/or ritanserin could be beneficial in restoring a deficient learning condition. Using the model of autoshaping task, post-training injection of LY215840 or WAY100635 had no effect on learning consolidation. However, both drugs abolished the enhancing effect of 8-OH-DPAT, with LY215840 being slightly more effective than WAY100635 in this respect. Ritanserin produced an increase in performance by itself and also abolished the effect of 8-OH-DPAT. Remarkably, selective blockade of 5-HT(2A) and 5-HT(2B/2C) receptors with MDL100907 and SB200646, respectively, failed to alter the 8-OH-DPAT effect. LY215840 and ritanserin, at the doses that inhibited the 8-OH-DPAT-induced response, reversed the learning deficits induced by scopolamine and dizocilpine. The present results suggest that the enhancing effect produced by 8-OH-DPAT on learning consolidation involves activation of 5-HT(1A) receptors and an additional mechanism, probably related to the 5-HT(7) receptor. Blockade of 5-HT(2) receptors, and perhaps of 5-HT(7) receptors as well, may provide some benefit in reversing learning deficits associated with decreased cholinergic and/or glutamatergic neurotransmission.

  18. Identification of a sulfonamide series of CCR2 antagonists.

    PubMed

    Peace, Simon; Philp, Joanne; Brooks, Carl; Piercy, Val; Moores, Kitty; Smethurst, Chris; Watson, Steve; Gaines, Simon; Zippoli, Mara; Mookherjee, Claudette; Ife, Robert

    2010-07-01

    A series of sulfonamide CCR2 antagonists was identified by high-throughput screening. Management of molecular weight and physical properties, in particular moderation of lipophilicity and study of pK(a), yielded highly potent CCR2 antagonists exhibiting good pharmacokinetic properties and improved potency in the presence of human plasma.

  19. Antagonistic and Bargaining Games in Optimal Marketing Decisions

    ERIC Educational Resources Information Center

    Lipovetsky, S.

    2007-01-01

    Game theory approaches to find optimal marketing decisions are considered. Antagonistic games with and without complete information, and non-antagonistic games techniques are applied to paired comparison, ranking, or rating data for a firm and its competitors in the market. Mix strategy, equilibrium in bi-matrix games, bargaining models with…

  20. [Effects of PAF antagonists in experimental models. Therapeutical perspectives].

    PubMed

    Desquand, S

    1993-01-01

    The discovery, during the last ten years, of Platelet Activating Factor (PAF) antagonists with different frameworks, but efficient on platelets tests, led the authors to study their activity in vivo against PAF-induced effects. These antagonists inhibit, with various potencies, the effects of PAF administration such as hypotension and bronchoconstriction in different animal species. Since PAF is assumed to play a central role in many diseases, effects of its antagonists have been studied in experimentally induced pathologies and in few clinical studies. We have been particularly interested in their effects on the first manifestation of asthma which is hypersensitivity. This manifestation is experimentally reproduced by anaphylactic bronchoconstriction, usually in the guinea-pig. Our results showed that different sensitization procedures may determine the relative efficiency of a PAF antagonist on subsequent antigen challenge. Indeed, the booster injection of antigen to a pre-sensitized animal could account for the refractoriness of anaphylactic bronchoconstriction to PAF antagonists. This booster injection mimics the clinical situation of atopic patients repeatedly exposed to allergen. Thus, it seems that immediate hypersensitivity could not be treated by the unique administration of a PAF antagonist. However, those antagonists may have more benefit in the clinical management of the late phase of asthma and of hyperreactivity and could thus provide anti-asthmatic drugs. PAF antagonists may have also therapeutical effects in septic shock, in myocardial ischemia and cardiac rhythm disturbances, in brain damage following cerebral ischemia and neurological trauma, in gastric and intestinal damages or in some inflammatory reactions.

  1. Microbial antagonists of Verticillium dahliae colonize cotton root system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Verticillium wilt remains one of the most severe diseases affecting cotton production in Uzbekistan. We are investigating microbial antagonist to control this pathogen. To this end, we have identified several antagonists of Verticillium dahliae (Bacillus sp. 234, Bacillus sp. 3, Streptomyces roseofl...

  2. Third Generation Mineralocorticoid Receptor Antagonists; Why We Need a Fourth

    PubMed Central

    Gomez-Sanchez, Elise

    2015-01-01

    The first mineralocorticoid receptor (MR) antagonist, spironolactone, was developed almost 60 years ago to treat primary aldosteronism and pathological edema. Its use waned in part due to its lack of selectivity. Subsequently knowledge of the scope of MR function was expanded along with clinical evidence of the therapeutic importance of MR antagonists to prevent the ravages of inappropriate MR activation. Forty-two years elapsed between the first and MR-selective second generation of MR antagonists. Fifteen years later, despite serious shortcomings of the existing antagonists, a third generation antagonist has yet to be marketed. Progress has been slowed by the lack of appreciation of the large variety of cell types that express the MR and its diverse cell-type-specific actions, as well as its uniquely complex interactions actions at the molecular level. New MR antagonists should preferentially target the inflammatory and fibrotic effects of MR and perhaps its excitatory effects on sympathetic nervous system, but not the renal tubular epithelium or neurons of the cortex and hippocampus. This review briefly describes efforts to develop a third generation MR antagonist and why fourth generation antagonists and selective agonists based on structural determinants of tissue and ligand-specific MR activation should be contemplated. PMID:26466326

  3. Pharmacological and clinical importance of narcotic antagonists and mixed antagonists — use in cardiology

    PubMed Central

    Coltart, D. John; Malcolm, Alasdair D.

    1979-01-01

    1 The treatment of pain of cardiac origin requires a knowledge of the haemodynamic action of the analgesic agents used. 2 The haemodynamic effects of morphine, diamorphine, pavaveretum, pethidine and pentazocine are reviewed. 3 Clinical experience with the new antagonist analgesic buprenorphine is reported. 4 These studies indicate that buprenorphine may be the agent of choice for the relief of severe pain in patients with unstable circulation. PMID:465292

  4. Prostanoid receptor antagonists: development strategies and therapeutic applications

    PubMed Central

    Jones, RL; Giembycz, MA; Woodward, DF

    2009-01-01

    Identification of the primary products of cyclo-oxygenase (COX)/prostaglandin synthase(s), which occurred between 1958 and 1976, was followed by a classification system for prostanoid receptors (DP, EP1, EP2 …) based mainly on the pharmacological actions of natural and synthetic agonists and a few antagonists. The design of potent selective antagonists was rapid for certain prostanoid receptors (EP1, TP), slow for others (FP, IP) and has yet to be achieved in certain cases (EP2). While some antagonists are structurally related to the natural agonist, most recent compounds are ‘non-prostanoid’ (often acyl-sulphonamides) and have emerged from high-throughput screening of compound libraries, made possible by the development of (functional) assays involving single recombinant prostanoid receptors. Selective antagonists have been crucial to defining the roles of PGD2 (acting on DP1 and DP2 receptors) and PGE2 (on EP1 and EP4 receptors) in various inflammatory conditions; there are clear opportunities for therapeutic intervention. The vast endeavour on TP (thromboxane) antagonists is considered in relation to their limited pharmaceutical success in the cardiovascular area. Correspondingly, the clinical utility of IP (prostacyclin) antagonists is assessed in relation to the cloud hanging over the long-term safety of selective COX-2 inhibitors. Aspirin apart, COX inhibitors broadly suppress all prostanoid pathways, while high selectivity has been a major goal in receptor antagonist development; more targeted therapy may require an intermediate position with defined antagonist selectivity profiles. This review is intended to provide overviews of each antagonist class (including prostamide antagonists), covering major development strategies and current and potential clinical usage. PMID:19624532

  5. Antagonistic neural networks underlying differentiated leadership roles

    PubMed Central

    Boyatzis, Richard E.; Rochford, Kylie; Jack, Anthony I.

    2014-01-01

    The emergence of two distinct leadership roles, the task leader and the socio-emotional leader, has been documented in the leadership literature since the 1950s. Recent research in neuroscience suggests that the division between task-oriented and socio-emotional-oriented roles derives from a fundamental feature of our neurobiology: an antagonistic relationship between two large-scale cortical networks – the task-positive network (TPN) and the default mode network (DMN). Neural activity in TPN tends to inhibit activity in the DMN, and vice versa. The TPN is important for problem solving, focusing of attention, making decisions, and control of action. The DMN plays a central role in emotional self-awareness, social cognition, and ethical decision making. It is also strongly linked to creativity and openness to new ideas. Because activation of the TPN tends to suppress activity in the DMN, an over-emphasis on task-oriented leadership may prove deleterious to social and emotional aspects of leadership. Similarly, an overemphasis on the DMN would result in difficulty focusing attention, making decisions, and solving known problems. In this paper, we will review major streams of theory and research on leadership roles in the context of recent findings from neuroscience and psychology. We conclude by suggesting that emerging research challenges the assumption that role differentiation is both natural and necessary, in particular when openness to new ideas, people, emotions, and ethical concerns are important to success. PMID:24624074

  6. Endothelin receptor antagonists in pulmonary arterial hypertension.

    PubMed

    Dupuis, J; Hoeper, M M

    2008-02-01

    The endothelin (ET) system, especially ET-1 and the ET(A) and ET(B) receptors, has been implicated in the pathogenesis of pulmonary arterial hypertension (PAH). Together with prostanoids and phosphodiesterase 5 inhibitors, ET receptor antagonists have become mainstays in the current treatment of PAH. Three substances are currently available for the treatment of PAH. One of these substances, bosentan, blocks both ET(A) and ET(B) receptors, whereas the two other compounds, sitaxsentan and ambrisentan, are more selective blockers of the ET(A) receptor. There is ongoing debate as to whether selective or nonselective ET receptor blockade is advantageous in the setting of PAH, although there is no clear evidence that receptor selectivity is relevant with regard to the clinical effects of these drugs. For the time being, other features, such as safety profiles and the potential for pharmacokinetic interactions with other drugs used in the treatment of PAH, may be more important than selectivity or nonselectivity when selecting treatments for individual patients.

  7. Antagonists for acute oral cadmium chloride intoxication

    SciTech Connect

    Basinger, M.A.; Jones, M.M.; Holscher, M.A.; Vaughn, W.K.

    1988-01-01

    An examination has been carried out on the relative efficacy of a number of chelating agents when acting as antagonists for oral cadmium chloride intoxication in mice. The compounds were administered orally after the oral administration of cadmium chloride at 1 mmol/kg. Of the compounds examined, several were useful in terms of enhancing survival, but by far the most effective in both enhancing survival and leaving minimal residual levels of cadmium in the liver and the kidney, was meso-2,3-dimercaptosuccinic acid (DMSA). Several polyaminocarboxylic acids also enhanced survival. The most effective of these in reducing liver and kidney levels of cadmium were diethylenetriaminepentaacetic acid (DTPA), trans-1,2-diaminocyclohexane-N,N,N'N'-tetraacetic acid (CDTA), and triethylenetetraminehexaacetic acid (TTHA). D-Penicillamine (DPA) was found to promote survival but also led to kidney cadmium levels higher than those found in the controls. Sodium 2,3-dimercaptopropane-1-sulfonate (DMPS) was as effective in promoting survival as DMSA but left levels of cadmium in the kidney and liver that were approximately four times greater than those found with DMSA.

  8. New potential uroselective NO-donor alpha1-antagonists.

    PubMed

    Boschi, Donatella; Tron, Gian Cesare; Di Stilo, Antonella; Fruttero, Roberta; Gasco, Alberto; Poggesi, Elena; Motta, Gianni; Leonardi, Amedeo

    2003-08-14

    A recent uroselective alpha(1)-adrenoceptor antagonist, REC15/2739, has been joined with nitrooxy and furoxan NO-donor moieties to give new NO-donor alpha(1)-antagonists. All the compounds studied proved to be potent and selective ligands of human cloned alpha(1a)-receptor subtype. Derivatives 6 and 7 were able to relax the prostatic portion of rat vas deferens contracted by (-)-noradrenaline because of both their alpha(1A)-antagonist and their NO-donor properties.

  9. Multiple Targeting Approaches on Histamine H3 Receptor Antagonists

    PubMed Central

    Khanfar, Mohammad A.; Affini, Anna; Lutsenko, Kiril; Nikolic, Katarina; Butini, Stefania; Stark, Holger

    2016-01-01

    With the very recent market approval of pitolisant (Wakix®), the interest in clinical applications of novel multifunctional histamine H3 receptor antagonists has clearly increased. Since histamine H3 receptor antagonists in clinical development have been tested for a variety of different indications, the combination of pharmacological properties in one molecule for improved pharmacological effects and reduced unwanted side-effects is rationally based on the increasing knowledge on the complex neurotransmitter regulations. The polypharmacological approaches on histamine H3 receptor antagonists on different G-protein coupled receptors, transporters, enzymes as well as on NO-signaling mechanism are described, supported with some lead structures. PMID:27303254

  10. Multiple Targeting Approaches on Histamine H3 Receptor Antagonists.

    PubMed

    Khanfar, Mohammad A; Affini, Anna; Lutsenko, Kiril; Nikolic, Katarina; Butini, Stefania; Stark, Holger

    2016-01-01

    With the very recent market approval of pitolisant (Wakix®), the interest in clinical applications of novel multifunctional histamine H3 receptor antagonists has clearly increased. Since histamine H3 receptor antagonists in clinical development have been tested for a variety of different indications, the combination of pharmacological properties in one molecule for improved pharmacological effects and reduced unwanted side-effects is rationally based on the increasing knowledge on the complex neurotransmitter regulations. The polypharmacological approaches on histamine H3 receptor antagonists on different G-protein coupled receptors, transporters, enzymes as well as on NO-signaling mechanism are described, supported with some lead structures.

  11. The muscarinic antagonists scopolamine and atropine are competitive antagonists at 5-HT3 receptors.

    PubMed

    Lochner, Martin; Thompson, Andrew J

    2016-09-01

    Scopolamine is a high affinity muscarinic antagonist that is used for the prevention of post-operative nausea and vomiting. 5-HT3 receptor antagonists are used for the same purpose and are structurally related to scopolamine. To examine whether 5-HT3 receptors are affected by scopolamine we examined the effects of this drug on the electrophysiological and ligand binding properties of 5-HT3A receptors expressed in Xenopus oocytes and HEK293 cells, respectively. 5-HT3 receptor-responses were reversibly inhibited by scopolamine with an IC50 of 2.09 μM. Competitive antagonism was shown by Schild plot (pA2 = 5.02) and by competition with the 5-HT3 receptor antagonists [(3)H]granisetron (Ki = 6.76 μM) and G-FL (Ki = 4.90 μM). The related molecule, atropine, similarly inhibited 5-HT evoked responses in oocytes with an IC50 of 1.74 μM, and competed with G-FL with a Ki of 7.94 μM. The reverse experiment revealed that granisetron also competitively bound to muscarinic receptors (Ki = 6.5 μM). In behavioural studies scopolamine is used to block muscarinic receptors and induce a cognitive deficit, and centrally administered concentrations can exceed the IC50 values found here. It is therefore possible that 5-HT3 receptors are also inhibited. Studies that utilise higher concentrations of scopolamine should be mindful of these potential off-target effects.

  12. Single exposure of dopamine D1 antagonist prevents and D2 antagonist attenuates methylphenidate effect

    PubMed Central

    Claussen, Catherine M; Witte, Lindsey J; Dafny, Nachum

    2015-01-01

    Methylphenidate (MPD) is a readily prescribed drug for the treatment of attention deficit hyperactivity disorder (ADHD) and moreover is used illicitly by youths for its cognitive-enhancing effects and recreation. MPD exposure in rodents elicits increased locomotor activity. Repetitive MPD exposure leads to further augmentation of their locomotor activity. This behavioral response is referred to as behavioral sensitization. Behavioral sensitization is used as an experimental marker for a drug’s ability to elicit dependence. There is evidence that dopamine (DA) is a key player in the acute and chronic MPD effect; however, the role of DA in the effects elicited by MPD is still debated. The objective of this study was to investigate the role of D1 and/or D2 DA receptors in the acute and chronic effect of MPD on locomotor activity. The study lasted for 12 consecutive days. Seven groups of male Sprague Dawley® rats were used. A single D1 or D2 antagonist was given before and after acute and chronic MPD administration. Single injection of D1 DA antagonist was able to significantly attenuate the locomotor activity when given prior to the initial MPD exposure and after repetitive MPD exposure, while the D2 DA antagonist partially attenuated the locomotor activity only when given before the second MPD exposure. The results show the role, at least in part, of the D1 DA receptor in the mechanism of behavioral sensitization, whereas the D2 DA receptor only partially modulates the response to acute and chronic MPD. PMID:27186140

  13. Anthropomorphic finger antagonistically actuated by SMA plates.

    PubMed

    Engeberg, Erik D; Dilibal, Savas; Vatani, Morteza; Choi, Jae-Won; Lavery, John

    2015-08-20

    Most robotic applications that contain shape memory alloy (SMA) actuators use the SMA in a linear or spring shape. In contrast, a novel robotic finger was designed in this paper using SMA plates that were thermomechanically trained to take the shape of a flexed human finger when Joule heated. This flexor actuator was placed in parallel with an extensor actuator that was designed to straighten when Joule heated. Thus, alternately heating and cooling the flexor and extensor actuators caused the finger to flex and extend. Three different NiTi based SMA plates were evaluated for their ability to apply forces to a rigid and compliant object. The best of these three SMAs was able to apply a maximum fingertip force of 9.01N on average. A 3D CAD model of a human finger was used to create a solid model for the mold of the finger covering skin. Using a 3D printer, inner and outer molds were fabricated to house the actuators and a position sensor, which were assembled using a multi-stage casting process. Next, a nonlinear antagonistic controller was developed using an outer position control loop with two inner MOSFET current control loops. Sine and square wave tracking experiments demonstrated minimal errors within the operational bounds of the finger. The ability of the finger to recover from unexpected disturbances was also shown along with the frequency response up to 7 rad s(-1). The closed loop bandwidth of the system was 6.4 rad s(-1) when operated intermittently and 1.8 rad s(-1) when operated continuously.

  14. [Angiotensin II receptor antagonists: different or equivalent?].

    PubMed

    Mounier-Vehier, C; Devos, P

    ARA-II: Angiotensin II receptor antagonists (ARA-II) belong to a recent class of antihypertensive drugs whose mechanism of action is similar to converting enzyme inhibitors (CEI). ARA-II are particularly interesting due to the excellent clinical and biological tolerance, similar to placebo, and their antihypertensive efficacy, comparable with classical drug classes. PUBLISHED TRIALS: A meta-analysis, published by Conlin in the American Journal of Hypertension, suggests that ARA-II, specifically losartan, valsartan, irbesartan and candesartan, have an equipotent blood pressure lowering effect. The careful lecture of this meta-analysis however discloses a faulty methodology from which no valid conclusion can be drawn. Since this early publication, several other comparative studies have been published. These multicentric, randomized double-blind studies enrolled a sufficient number of patients and demonstrated a clinical difference between certain ARA-II at usual dosages. CLINICAL PRACTICE: These studies do have an impact on everyday practice. For the practitioner, the goal is to obtain and then maintain a long-term and optimal reduction in the blood pressure level (reduction or prevention of target-organ disorders and cardiovascular complications of high blood pressure). This reduction in the cardiovascular risk will also depend directly on tolerance and compliance to the antihypertensive treatment. This element must also be considered in assessing treatment efficacy, independent of the blood pressure lowering effect. The results of several other studies will be published in 2001-2003. These large-scale studies on ARA-II related morbidity and mortality will be most useful in determining the role of these drugs in different therapeutic strategies compared with other drug classes.

  15. The pharmacological properties of lipophilic calcium antagonists.

    PubMed

    van Zwieten, P A

    1998-01-01

    Several types of calcium antagonists (CA) (verapamil, diltiazem, nifedipine and related drugs) may be used as antihypertensives. In practice, the dihydropyridines (nifedipine and related drugs) are the CA used most frequently as antihypertensives. Apart from the lowering of blood pressure CA may lead to other, theoretically beneficial, effects: regression of left ventricular and vascular hypertrophy, renal protection, weak natriuretic, weak antiplatelet, anti-ischaemic and antiatherogenic activity. Several new dihydropyridine CA have been introduced in recent years. The advantages of the newer compounds, such as amlodipine, felodipine, isradipine, lacidipine and lercanidipine, may include: vasoselectivity, hence little or no cardiodepressant activity; an improved kinetic profile, resulting in a slow onset and long duration of action, fewer side-effects such as reflex tachycardia and headache, owing to the slow onset of the antihypertensive action. For a few newer CA a predominant effect on specialized circulatory beds (renal, coronary and cerebral) has been claimed. The new CA, which are clearly lipophilic, deserve special attention. Owing to the lipophilic character of such compounds considerable concentration occurs in lipid-containing membrane depots. The CA thus concentrated are slowly released from these depots and, subsequently, reach their targets, the L-type calcium channels. This phenomenon explains both the slow onset and the long duration of action of these CA. Owing to the slow onset of action reflex tachycardia is virtually absent. The long duration of action allows satisfactory control of blood pressure in hypertensives by means of a single daily dose. A few lipophilic dihydropyridine CA are vasoselective. This property implies that at therapeutic, vasodilatory dosages no cardiodepressant activity occurs. Lercanidipine is a recently introduced example of a lipophilic and vasoselective dihydropyridine CA. It is an effective vasodilator

  16. Complications of TNF-α antagonists and iron homeostasis

    EPA Science Inventory

    TNF-α is a central regulator of inflammation and its blockade downregulates other proinflammatory cytokines, chemokines, and growth factors. Subsequently, TNF-α antagonists are currently used in treatment regimens directed toward several inflammatory diseases. Despite a beneficia...

  17. Solution structures and molecular interactions of selective melanocortin receptor antagonists.

    PubMed

    Lee, Chul-Jin; Yun, Ji-Hye; Lim, Sung-Kil; Lee, Weontae

    2010-12-01

    The solution structures and inter-molecular interaction of the cyclic melanocortin antagonists SHU9119, JKC363, HS014, and HS024 with receptor molecules have been determined by NMR spectroscopy and molecular modeling. While SHU9119 is known as a nonselective antagonist, JKC363, HS014, and HS024 are selective for the melanocortin subtype-4 receptor (MC4R) involved in modulation of food intake. Data from NMR and molecular dynamics suggest that the conformation of the Trp9 sidechain in the three MC4R-selective antagonists is quite different from that of SHU9119. This result strongly supports the concept that the spatial orientation of the hydrophobic aromatic residue is more important for determining selectivity than the presence of a basic, "arginine-like" moiety responsible for biological activity. We propose that the conformation of hydrophobic residues of MCR antagonists is critical for receptor-specific selectivity.

  18. Structure-based drug design identifies novel LPA3 antagonists

    PubMed Central

    Fells, James I.; Tsukahara, Ryoko; Liu, Jianxiong; Tigyi, Gabor; Parrill, Abby L.

    2009-01-01

    Compound 5 ([5-(3-nitrophenoxy)-1,3-dioxo-1,3-dihydro-2-isoindol-2-yl]acetic acid) was identified as a weak selective LPA3 antagonist (IC50=4504 nM) in a virtual screening effort to optimize a dual LPA2&3 antagonist. Structure-based drug design techniques were used to prioritize similarity search matches of compound 5. This strategy rapidly identified 10 novel antagonists. The two most efficacious compounds identified inhibit activation of the LPA3 receptor by 200 nM LPA with IC50 values of 752 nM and 2992 nM. These compounds additionally define changes to our previously reported pharmacophore that will improve its ability to identify more potent and selective LPA3 receptor antagonists. The results of the combined computational and experimental screening are reported. PMID:19800804

  19. Structure-based drug design identifies novel LPA3 antagonists.

    PubMed

    Fells, James I; Tsukahara, Ryoko; Liu, Jianxiong; Tigyi, Gabor; Parrill, Abby L

    2009-11-01

    Compound 5 ([5-(3-nitrophenoxy)-1,3-dioxo-1,3-dihydro-2-isoindol-2-yl]acetic acid) was identified as a weak selective LPA(3) antagonist (IC(50)=4504 nM) in a virtual screening effort to optimize a dual LPA(2 and 3) antagonist. Structure-based drug design techniques were used to prioritize similarity search matches of compound 5. This strategy rapidly identified 10 novel antagonists. The two most efficacious compounds identified inhibit activation of the LPA(3) receptor by 200 nM LPA with IC(50) values of 752 nM and 2992 nM. These compounds additionally define changes to our previously reported pharmacophore that will improve its ability to identify more potent and selective LPA(3) receptor antagonists. The results of the combined computational and experimental screening are reported.

  20. Assortative mating by fitness and sexually antagonistic genetic variation.

    PubMed

    Arnqvist, Göran

    2011-07-01

    Recent documentations of sexually antagonistic genetic variation in fitness have spurred an interest in the mechanisms that may act to maintain such variation in natural populations. Using individual-based simulations, I show that positive assortative mating by fitness increases the amount of sexually antagonistic genetic variance in fitness, primarily by elevating the equilibrium frequency of heterozygotes, over most of the range of sex-specific selection and dominance. Further, although the effects of assortative mating by fitness on the protection conditions of polymorphism in sexually antagonistic loci were relatively minor, it widens the protection conditions under most reasonable scenarios (e.g., under heterozygote superiority when fitness is averaged across the sexes) but can also somewhat narrow the protection conditions under other circumstances. The near-ubiquity of assortative mating in nature suggests that it may contribute to upholding standing sexually antagonistic genetic variation in fitness.

  1. Vasopressin-receptor antagonist therapy in patients with hyponatraemia.

    PubMed

    Vachharajani, Tushar; Vachharajani, Vidula

    2007-07-01

    Hyponatraemia often complicates the treatment of underlying conditions in patients who are seriously ill. Arginine vasopressin receptor antagonists block the action of arginine vasopressin and correct sodium and water imbalance in patients with euvolaemic or hypervolaemic hyponatraemia.

  2. Antagonistic interactions of soil pseudomonads are structured in time.

    PubMed

    Kraemer, Susanne A; Soucy, Jean-Paul R; Kassen, Rees

    2017-04-06

    Social interactions have been invoked as potential major selective forces structuring natural microbial communities and thus may help explain the astonishing bacterial diversity of natural ecosystems. Here, we investigate the prevalence and structure of exotoxin-mediated antagonistic interactions among free-living soil Pseudomonas strains collected over the course of two years at distances of up to one kilometer. Unlike some previous studies on antagonistic interactions among natural isolates, we found the prevalence of exotoxin-mediated inhibitions to be relatively low. When present, antagonistic interactions show a weakly negative relationship with genetic relatedness and metabolic similarity. Intriguingly, isolates sampled from the same growing season were significantly more likely to inhibit each other than they were to inhibit isolates from different growing seasons. Exotoxin-mediated antagonistic interactions between soil pseudomonads thus seem to be structured in time but do not appear to be a major selective force structuring free-living soil bacterial communities of soil pseudomonads.

  3. Structure-activity relationships of benzothiazole GPR35 antagonists.

    PubMed

    Abdalhameed, Manahil M; Zhao, Pingwei; Hurst, Dow P; Reggio, Patricia H; Abood, Mary E; Croatt, Mitchell P

    2017-02-01

    The first structure-activity relationships for a benzothiazole scaffold acting as an antagonist at GPR35 is presented. Analogues were designed based on a lead compound that was previously determined to have selective activity as a GPR35 antagonist. The synthetic route was modular in nature to independently explore the role of the middle and both ends of the scaffold. The activities of the analogues illustrate the importance of all three segments of the compound.

  4. Structure-activity relationships of benzothiazole GPR35 antagonists

    PubMed Central

    Abdalhameed, Manahil M.; Zhao, Pingwei; Hurst, Dow P.; Reggio, Patricia H.; Abood, Mary E.; Croatt, Mitchell P.

    2017-01-01

    The first structure-activity relationships for a benzothiazole scaffold acting as an antagonist at GPR35 is presented. Analogues were designed based on a lead compound that was previously determined to have selective activity as a GPR35 antagonist. The synthetic route was modular in nature to independently explore the role of the middle and both ends of the scaffold. The activities of the analogues illustrate the importance of all three segments of the compound. PMID:27989666

  5. Discovery of Novel Triazole-Based Opioid Receptor Antagonists

    PubMed Central

    Zhang, Qiang; Keenan, Susan M.; Peng, Youyi; Nair, Anil C.; Yu, Seong Jae; Howells, Richard D.; Welsh, William J.

    2009-01-01

    We report the computer-aided design, chemical synthesis, and biological evaluation of a novel family of δ opioid receptor (DOR) antagonists containing a 1,2,4-triazole core structure that are structurally distinct from other known opioid receptor active ligands. Among those δ antagonists sharing this core structure, 8 exhibited strong binding affinity (Ki = 50 nM) for the DOR and appreciable selectivity for δ over μ and opioid receptors (δ/μ = 80; δ/κ > 200). PMID:16821764

  6. Identification of M-CSF agonists and antagonists

    DOEpatents

    Pandit, Jayvardhan; Jancarik, Jarmila; Kim, Sung-Hou; Koths, Kirston; Halenbeck, Robert; Fear, Anna Lisa; Taylor, Eric; Yamamoto, Ralph; Bohm, Andrew

    2000-02-15

    The present invention is directed to methods for crystallizing macrophage colony stimulating factor. The present invention is also directed to methods for designing and producing M-CSF agonists and antagonists using information derived from the crystallographic structure of M-CSF. The invention is also directed to methods for screening M-CSF agonists and antagonists. In addition, the present invention is directed to an isolated, purified, soluble and functional M-CSF receptor.

  7. CXCR2 receptor antagonists: a medicinal chemistry perspective.

    PubMed

    Dwyer, Michael P; Yu, Younong

    2014-01-01

    Dysregulated leukocyte recruitment is believed to be a key contributor to various acute and chronic inflammatory disorders which can lead to serious pathological consequences. Chemokines are small molecular weight proteins that have been shown to be imperative in the direction of leukocytes to the sites of inflammation. In humans, several of these chemokines (CXCL8 and CXCL1) are elevated in inflammatory disorders such as asthma, arthritis, and chronic obstructive pulmonary disease (COPD). These chemokines modulate their downstream effects thru G-protein coupled receptors, such as CXCR2, making the identification of small-molecule antagonists of this receptor attractive towards developing novel therapies to treat inflammatory conditions. Since the first report of a CXCR2 receptor antagonist in 1998, there has been a considerable effort conducted mainly in the pharmaceutical industry to identify novel classes of CXCR2 receptor antagonists. Over a dozen distinct classes of CXCR2 receptor antagonists have been reported in the literature to date with a number of these compounds having reached mid-stage clinical trials. This review will provide a broad overview the medicinal chemistry efforts over the past 15 years towards the identification of CXCR2 receptor antagonists. The discussion will focus upon the early preclinical space covering the structure activity relationships (SAR), pharmacology, as well in preclinical in vivo evaluation for the different series of CXCR2 receptor antagonists. In addition, the available clinical data for the most advanced compounds in the clinic will be discussed and along with a perspective of the area moving forward.

  8. Neuronal death enhanced by N-methyl-d-aspartate antagonists

    PubMed Central

    Ikonomidou, Chrysanthy; Stefovska, Vanya; Turski, Lechoslaw

    2000-01-01

    Glutamate promotes neuronal survival during brain development and destroys neurons after injuries in the mature brain. Glutamate antagonists are in human clinical trials aiming to demonstrate limitation of neuronal injury after head trauma, which consists of both rapid and slowly progressing neurodegeneration. Furthermore, glutamate antagonists are considered for neuroprotection in chronic neurodegenerative disorders with slowly progressing cell death only. Therefore, humans suffering from Huntington's disease, characterized by slowly progressing neurodegeneration of the basal ganglia, are subjected to trials with glutamate antagonists. Here we demonstrate that progressive neurodegeneration in the basal ganglia induced by the mitochondrial toxin 3-nitropropionate or in the hippocampus by traumatic brain injury is enhanced by N-methyl-d-aspartate antagonists but ameliorated by α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate antagonists. These observations reveal that N-methyl-d-aspartate antagonists may increase neurodestruction in mature brain undergoing slowly progressing neurodegeneration, whereas blockade of the action of glutamate at α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptors may be neuroprotective. PMID:11058158

  9. Early Illustrations of Geste Antagoniste in Cervical and Generalized Dystonia

    PubMed Central

    Broussolle, Emmanuel; Laurencin, Chloé; Bernard, Emilien; Thobois, Stéphane; Danaila, Teodor; Krack, Paul

    2015-01-01

    Background Geste antagoniste, or sensory trick, is a voluntary maneuver that temporarily reduces the severity of dystonic postures or movements. We present a historical review of early reports and illustrations of geste antagoniste. Results In 1894, Brissaud described this phenomenon in Paris in patients with torticollis. He noted that a violent muscular contraction could be reversed by a minor voluntary action. He considered the improvement obtained by what he called “simple mannerisms, childish behaviour or fake pathological movements” was proof of the psychogenic origin of what he named mental torticollis. This concept was supported by photographical illustrations of the patients. The term geste antagoniste was used by Brissaud’s pupils, Meige and Feindel, in their 1902 monograph on movement disorders. Other reports and illustrations of this sign were published in Europe between 1894 and 1906. Although not mentioned explicitly, geste antagoniste was also illustrated in a case report of generalized dystonia in Oppenheim’s 1911 seminal description of dystonia musculorum deformans in Berlin. Discussion Brissaud-Meige’s misinterpretation of the geste antagoniste unfortunately anchored the psychogenic origin of dystonia for decades. In New York, Herz brought dystonia back into the realm of organic neurology in 1944. Thereafter, it was given prominence by other authors, notably Fahn and Marsden in the 1970–1980s. Nowadays, neurologists routinely investigate for geste antagoniste when a dystonic syndrome is suspected, because it provides a further argument in favor of dystonia. The term alleviating maneuver was proposed in 2014 to replace sensory trick or geste antagoniste. This major sign is now part of the motor phenomenology of the 2013 Movement Disorder Society’s classification of dystonia. PMID:26417535

  10. Boosting Adaptive Immunity: A New Role for PAFR Antagonists

    PubMed Central

    Koga, Marianna M.; Bizzarro, Bruna; Sá-Nunes, Anderson; Rios, Francisco J.; Jancar, Sonia

    2016-01-01

    We have previously shown that the Platelet-Activating Factor Receptor (PAFR) engagement in murine macrophages and dendritic cells (DCs) promotes a tolerogenic phenotype reversed by PAFR-antagonists treatment in vitro. Here, we investigated whether a PAFR antagonist would modulate the immune response in vivo. Mice were subcutaneously injected with OVA or OVA with PAFR-antagonist WEB2170 on days 0 and 7. On day 14, OVA–specific IgG2a and IgG1 were measured in the serum. The presence of WEB2170 during immunization significantly increased IgG2a without affecting IgG1 levels. When WEB2170 was added to OVA in complete Freund’s adjuvant, enhanced IgG2a but not IgG1 production was also observed, and CD4+ FoxP3+ T cell frequency in the spleen was reduced compared to mice immunized without the antagonist. Similar results were observed in PAFR-deficient mice, along with increased Tbet mRNA expression in the spleen. Additionally, bone marrow-derived DCs loaded with OVA were transferred into naïve mice and their splenocytes were co-cultured with fresh OVA-loaded DCs. CD4+ T cell proliferation was higher in the group transferred with DCs treated with the PAFR-antagonist. We propose that the activation of PAFR by ligands present in the site of immunization is able to fine-tune the adaptive immune response. PMID:27966635

  11. GnRH antagonists may affect endometrial receptivity

    PubMed Central

    Rackow, Beth W.; Kliman, Harvey J.; Taylor, Hugh S.

    2009-01-01

    Study objective HOXA10 is an essential regulator of endometrial receptivity. To determine the effect of gonadotropin releasing hormone (GnRH) antagonists on endometrial receptivity we assessed endometrial HOXA10 expression in GnRH antagonist, GnRH agonist, and natural cycles. Design Prospective case-control study Setting University academic medical center Patients Nineteen subjects were included: 12 subjects underwent controlled ovarian hyperstimulation (COH) with recombinant follicle stimulating hormone (rFSH) and used either a GnRH antagonist or a GnRH agonist; 7 control subjects underwent natural cycles. Interventions Pipelle endometrial biopsies were obtained 11 days after human chorionic gonadotropin (hCG) administration or spontaneous luteinizing hormone (LH) surge in untreated cycles, respectively. Immunohistochemistry was used to assess HOXA10 protein expression in endometrial glands and stroma. Main outcome measure(s) Endometrial HOXA10 protein expression Results HOXA10 expression was significantly decreased in endometrial stromal cells in GnRH antagonist treated cycles compared with GnRH agonist treated cycles or natural cycle controls. There was no significant difference in glandular cell HOXA10 expression among the three groups. Conclusions Use of GnRH antagonists may be associated with impaired HOXA10 expression in endometrial stromal cells, and thus may affect endometrial receptivity. PMID:18410932

  12. Pharmacophore development for antagonists at α1 adrenergic receptor subtypes

    NASA Astrophysics Data System (ADS)

    Bremner, J. B.; Coban, B.; Griffith, R.

    1996-12-01

    Many receptors, including α1 adrenergic receptors, have a range of subtypes. This offers possibilities for the development of highly selective antagonists with potentially fewer detrimental effects. Antagonists developed for α1A receptors, for example, would have potential in the treatment of benign prostatic hyperplasia. As part of the molecular design process, structural features necessary for the selective affinity for α1A and α1B adrenergic receptors have been investigated. The molecular modelling software (particularly the Apex module) of Molecular Simulations, Inc. was used to develop pharmacophore models for these two subtypes. Low-energy conformations of a set of known antagonists were used as input, together with a classification of the receptor affinity data. The biophores proposed by the program were evaluated and pharmacophores were proposed. The pharmacophore models were validated by testing the fit of known antagonists, not included in the training set. The critical structural feature for selectivity between the α1A and α1B adrenergic receptor sites is the distance between the basic nitrogen atom and the centre of an aromatic ring system. This will be exploited in the design and synthesis of structurally new selective antagonists for these sites.

  13. Small molecule antagonists for chemokine CCR3 receptors.

    PubMed

    Willems, Lianne I; Ijzerman, Ad P

    2010-09-01

    The chemokine receptor CCR3 is believed to play a role in the development of allergic diseases such as asthma, atopic dermatitis, and allergic rhinitis. Despite the conflicting results that have been reported regarding the importance of eosinophils and CCR3 in allergic inflammation, inhibition of this receptor with small molecule antagonists is thought to provide a valuable approach for the treatment of these diseases. This review describes the structure-activity relationships (SAR) of small molecule CCR3 antagonists as reported in the scientific and patent literature. Various chemical classes of small molecule CCR3 antagonists have been described so far, including (bi)piperidine and piperazine derivatives, N-arylalkylpiperidine urea derivatives and (N-ureidoalkyl)benzylpiperidines, phenylalanine derivatives, morpholinyl derivatives, pyrrolidinohydroquinazolines, arylsulfonamides, amino-alkyl amides, imidazole- and pyrimidine-based antagonists, and bicyclic diamines. The (N-ureidoalkyl)benzylpiperidines are the best studied class in view of their generally high affinity and antagonizing potential. For many of these antagonists subnanomolar IC(50) values were reported for binding to CCR3 along with the ability to effectively inhibit intracellular calcium mobilization and eosinophil chemotaxis induced by CCR3 agonist ligands in vitro.

  14. Mixed antagonistic effects of bilobalide at rho1 GABAC receptor.

    PubMed

    Huang, S H; Duke, R K; Chebib, M; Sasaki, K; Wada, K; Johnston, G A R

    2006-01-01

    Bilobalide was found to be a moderately potent antagonist with a weak use-dependent effect at recombinant human rho(1) GABA(C) receptors expressed in Xenopus oocytes using two-electrode voltage clamp methodology. Antagonism of bilobalide at homomeric rho(1) GABA(C) receptors appeared to be mixed. At low concentration, bilobalide (3 microM) caused a parallel right shift and surmountable GABA maximal response of the GABA dose-response curve characteristic of a competitive antagonist. At high concentrations, bilobalide (10-100 microM) caused nonparallel right shifts and reduced maximal GABA responses of GABA dose-response curves characteristic of a noncompetitive antagonist. The potency of bilobalide appears to be dependent on the concentrations of GABA and was more potent at lower GABA concentrations. The mechanism of action of bilobalide at rho(1) GABA(C) receptors appears to be similar to that of the chloride channel blocker picrotoxinin.

  15. Enhancer Responses to Similarly Distributed Antagonistic Gradients in Development

    PubMed Central

    Zinzen, Robert P; Papatsenko, Dmitri

    2007-01-01

    Formation of spatial gene expression patterns in development depends on transcriptional responses mediated by gene control regions, enhancers. Here, we explore possible responses of enhancers to overlapping gradients of antagonistic transcriptional regulators in the Drosophila embryo. Using quantitative models based on enhancer structure, we demonstrate how a pair of antagonistic transcription factor gradients with similar or even identical spatial distributions can lead to the formation of distinct gene expression domains along the embryo axes. The described mechanisms are sufficient to explain the formation of the anterior and the posterior knirps expression, the posterior hunchback expression domain, and the lateral stripes of rhomboid expression and of other ventral neurogenic ectodermal genes. The considered principles of interaction between antagonistic gradients at the enhancer level can also be applied to diverse developmental processes, such as domain specification in imaginal discs, or even eyespot pattern formation in the butterfly wing. PMID:17500585

  16. Neuroprotective Effects of Glutamate Antagonists and Extracellular Acidity

    NASA Astrophysics Data System (ADS)

    Kaku, David A.; Giffard, Rona G.; Choi, Dennis W.

    1993-06-01

    Glutamate antagonists protect neurons from hypoxic injury both in vivo and in vitro, but in vitro studies have not been done under the acidic conditions typical of hypoxia-ischemia in vivo. Consistent with glutamate receptor antagonism, extracellular acidity reduced neuronal death in murine cortical cultures that were deprived of oxygen and glucose. Under these acid conditions, N-methyl-D-aspartate and α-amino-3-hydroxy-5-methyl-4-isox-azolepropionate-kainate antagonists further reduced neuronal death, such that some neurons tolerated prolonged oxygen and glucose deprivation almost as well as did astrocytes. Neuroprotection induced by this combination exceeded that induced by glutamate antagonists alone, suggesting that extracellular acidity has beneficial effects beyond the attenuation of ionotropic glutamate receptor activation.

  17. Discovery of the improved antagonistic prolactin variants by library screening.

    PubMed

    Liu, Yun; Gong, Wei; Breinholt, Jens; Nørskov-Lauritsen, Leif; Zhang, Jinchao; Ma, Qinhong; Chen, Jianhe; Panina, Svetlana; Guo, Wei; Li, Tengkun; Zhang, Jingyuan; Kong, Meng; Liu, Zibing; Mao, Jingjing; Christensen, Leif; Hu, Sean; Wang, Lingyun

    2011-11-01

    Prolactin (PRL), a potent growth stimulator of the mammary epithelium, has been suggested to be a factor contributing to the development and progression of breast and prostate cancer. Several PRL receptor (PRLR) antagonists have been identified in the past decades, but their in vivo growth inhibitory potency was restricted by low receptor affinity, rendering them pharmacologically unattractive for clinical treatment. Thus, higher receptor affinity is essential for the development of improved PRLR antagonistic variants with improved in vivo potency. In this study, we generated Site 1 focused protein libraries of human G129R-PRL mutants and screened for those with increased affinity to the human PRLR. By combining the mutations with enhanced affinities for PRLR, we identified a novel G129R-PRL variant with mutations at Site 1 that render nearly 50-fold increase in the antagonistic potency in vitro.

  18. Thermodynamic analysis of antagonist and agonist interactions with dopamine receptors.

    PubMed

    Duarte, E P; Oliveira, C R; Carvalho, A P

    1988-03-01

    The binding of [3H]spiperone to dopamine D-2 receptors and its inhibition by antagonists and agonists were examined in microsomes derived from the sheep caudate nucleus, at temperatures between 37 and 1 degree C, and the thermodynamic parameters of the binding were evaluated. The affinity of the receptor for the antagonists, spiperone and (+)-butaclamol, decreased as the incubation temperature decreased; the affinity for haloperidol did not further decrease at temperatures below 15 degrees C. The binding of the antagonists was associated with very large increases in entropy, as expected for hydrophobic interactions. The enthalpy and entropy changes associated with haloperidol binding were dependent on temperature, in contrast to those associated with spiperone and (+)-butaclamol. The magnitude of the entropy increase associated with the specific binding of the antagonists did not correlate with the degree of lipophilicity of these drugs. The data suggest that, in addition to hydrophobic forces, other forces are also involved in the antagonist-dopamine receptor interactions, and that a conformational change of the receptor could occur when the antagonist binds. Agonist binding data are consistent with a two-state model of the receptor, a high-affinity state (RH) and a low-affinity state (RL). The affinity of dopamine binding to the RH decreased with decreasing temperatures below 20 degrees C, whereas the affinity for the RL increased at low temperatures. In contrast, the affinity of apomorphine for both states of receptor decreased as the temperature decreased from 30 to 8 degrees C. A clear distinction between the energetics of high-affinity and low-affinity agonist binding was observed. The formation of the high-affinity complex was associated with larger increases in enthalpy and entropy than the interaction with the low-affinity state was. The results suggest that the interaction of the receptor with the G-proteins, induced or stabilized by the binding of

  19. Discovery of Tertiary Sulfonamides as Potent Liver X Receptor Antagonists

    SciTech Connect

    Zuercher, William J.; Buckholz†, Richard G.; Campobasso, Nino; Collins, Jon L.; Galardi, Cristin M.; Gampe, Robert T.; Hyatt, Stephen M.; Merrihew, Susan L.; Moore, John T.; Oplinger, Jeffrey A.; Reid, Paul R.; Spearing, Paul K.; Stanley, Thomas B.; Stewart, Eugene L.; Willson, Timothy M.

    2010-08-12

    Tertiary sulfonamides were identified in a HTS as dual liver X receptor (LXR, NR1H2, and NR1H3) ligands, and the binding affinity of the series was increased through iterative analogue synthesis. A ligand-bound cocrystal structure was determined which elucidated key interactions for high binding affinity. Further characterization of the tertiary sulfonamide series led to the identification of high affinity LXR antagonists. GSK2033 (17) is the first potent cell-active LXR antagonist described to date. 17 may be a useful chemical probe to explore the cell biology of this orphan nuclear receptor.

  20. Scaffold variations in amine warhead of histamine H₃ receptor antagonists.

    PubMed

    Wingen, Kerstin; Stark, Holger

    2013-12-01

    The histamine H₃ receptor (H₃R) is involved in numerous regulatory neurotransmission processes and there-fore, is a prominent target for centrally occurring disease with some promising clinical candidates. Previous research resulted in the identification of a core pharmacophore blueprint for H₃R antagonists/inverse agonists, which when inserted in a molecule, mostly ensures acceptable affinity. Nevertheless, variations of scaffold and peripheral areas can increase potency and pharmacokinetic profile of drug candidates. The variations in amine scaffolds of antagonists for this aminergic GPCR are of special importance.

  1. Barnidipine, a long-acting slow onset calcium antagonist.

    PubMed

    Korstanje, C

    2000-11-01

    Barnidipine is a stereochemically pure dihydropyridine calcium antagonist with a high potency. The drug showed a slow onset and long-lasting vasorelaxating effect in vitro, and strong antihypertensive activity in hypertension models. Barnidipine was shown to have a high vasoselectivity and offered protection in cardiac and renal ischaemia models. The in vitro drug:drug interaction profile suggests a low potential for clinically relevant interactions with concomitant medication. It can be anticipated that barnidipine is an attractive calcium antagonist, offering good blood pressure control without compensatory baroreflex activity.

  2. Modulation of GABA release from the thalamic reticular nucleus by cocaine and caffeine: role of serotonin receptors.

    PubMed

    Goitia, Belén; Rivero-Echeto, María Celeste; Weisstaub, Noelia V; Gingrich, Jay A; Garcia-Rill, Edgar; Bisagno, Verónica; Urbano, Francisco J

    2016-02-01

    Serotonin receptors are targets of drug therapies for a variety of neuropsychiatric and neurodegenerative disorders. Cocaine inhibits the re-uptake of serotonin (5-HT), dopamine, and noradrenaline, whereas caffeine blocks adenosine receptors and opens ryanodine receptors in the endoplasmic reticulum. We studied how 5-HT and adenosine affected spontaneous GABAergic transmission from thalamic reticular nucleus. We combined whole-cell patch clamp recordings of miniature inhibitory post-synaptic currents (mIPSCs) in ventrobasal thalamic neurons during local (puff) application of 5-HT in wild type (WT) or knockout mice lacking 5-HT2A receptors (5-HT2A -/-). Inhibition of mIPSCs frequency by low (10 μM) and high (100 μM) 5-HT concentrations was observed in ventrobasal neurons from 5-HT2A -/- mice. In WT mice, only 100 μM 5-HT significantly reduced mIPSCs frequency. In 5-HT2A -/- mice, NAN-190, a specific 5-HT1A antagonist, prevented the 100 μM 5-HT inhibition while blocking H-currents that prolonged inhibition during post-puff periods. The inhibitory effects of 100 μM 5-HT were enhanced in cocaine binge-treated 5-HT2A -/- mice. Caffeine binge treatment did not affect 5-HT-mediated inhibition. Our findings suggest that both 5-HT1A and 5-HT2A receptors are present in pre-synaptic thalamic reticular nucleus terminals. Serotonergic-mediated inhibition of GABA release could underlie aberrant thalamocortical physiology described after repetitive consumption of cocaine. Our findings suggest that both 5-HT1A , 5-HT2A and A1 receptors are present in pre-synaptic TRN terminals. 5-HT1A and A1 receptors would down-regulate adenylate cyclase, whereas 5-HT1A would also increase the probability of the opening of G-protein-activated inwardly rectifying K(+) channels (GIRK). Sustained opening of GIRK channels would hyperpolarize pre-synaptic terminals activating H-currents, resulting in less GABA release. 5-HT2A -would activate PLC and IP3 , increasing intracellular [Ca(2+) ] and

  3. Retention and Outcome in a Narcotic Antagonist Treatment Program.

    ERIC Educational Resources Information Center

    Capone, Thomas; And Others

    1986-01-01

    Patients in an outpatient narcotic antagonist treatment program were followed through their course of treatment. Those who remained longer were found to enter treatment with more stable employment records and less recent opiate use. They also appeared more successful at termination, with better vocational stability, less extraneous drug use, and…

  4. Endothelin receptor antagonists and cardiovascular diseases of aging.

    PubMed

    Love, M P; McMurray, J J

    2001-01-01

    Our understanding of the role of the endothelin system in human cardiovascular physiology and pathophysiology has evolved very rapidly since the initial description of its constituent parts in 1988. Endothelin-1 (ET-1) is the predominant endothelin isoform in the human cardiovascular system and has potent vasoconstrictor, mitogenic and antinatriuretic properties which have implicated it in the pathophysiology of a number of cardiovascular diseases. The effects of ET-1 have been shown to be mediated by 2 principal endothelin receptor subtypes: ET(A) and ET(B). The development of a range of peptidic and nonpeptidic endothelin receptor antagonists represents an exciting breakthrough in human cardiovascular therapeutics. Two main classes of endothelin receptor antagonist have been developed for possible human therapeutic use: ET(A)-selective and nonselective antagonists. Extensive laboratory and clinical research with these agents has highlighted their promise in various cardiovascular diseases. Randomised, placebo-controlled clinical trials have yielded very encouraging results in patients with hypertension and chronic heart failure with more preliminary data suggesting a possible role in the treatment and prevention of atherosclerosis and stroke. Much more research is needed, however, before endothelin receptor antagonists can be considered for clinical use.

  5. Fine-Tuning Development Through Antagonistic Peptides: An Emerging Theme.

    PubMed

    Lee, Jin Suk; De Smet, Ive

    2016-12-01

    Peptide ligand-receptor kinase interactions have emerged as a key component of plant growth and development. Now, highly related small signaling peptides have been shown to act antagonistically on the same receptor kinase, providing new insights into how plants optimize developmental processes using competitive peptides.

  6. Novel benzopolycyclic amines with NMDA receptor antagonist activity.

    PubMed

    Valverde, Elena; Sureda, Francesc X; Vázquez, Santiago

    2014-05-01

    A new series of benzopolycyclic amines active as NMDA receptor antagonists were synthesized. Most of them exhibited increased activity compared with related analogues previously published. All the tested compounds were more potent than clinically approved amantadine and one of them displayed a lower IC50 value than memantine, an anti-Alzheimer's approved drug.

  7. Non-NMDA receptor antagonist-induced drinking in rat

    NASA Technical Reports Server (NTRS)

    Xu, Z.; Johnson, A. K.

    1998-01-01

    Glutamate has been implicated in the central control of mechanisms that maintain body fluid homeostasis. The present studies demonstrate that intracerebroventricular (i.c.v.) injections of the non-N-methyl-d-aspartate (NMDA) receptor antagonists 6, 7-dinitroquinoxaline-2,3-dione (DNQX) and 6-cyano-7-nitroquinoxaline-2,3 dione (CNQX) induce drinking in rats. The dipsogenic effect of i.c.v. DNQX was antagonized by the non-NMDA receptor agonist alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA). The water intake induced by DNQX was also blocked by pretreatment with a NMDA receptor antagonist, MK-801, but not by angiotensin type 1 (AT1) or acetylcholine muscarinic receptor antagonists (losartan and atropine). The results indicate that non-NMDA receptors may exert a tonic inhibitory effect within brain circuits that control dipsogenic activity and that functional integrity of NMDA receptors may be required for the non-NMDA receptor antagonists to induce water intake. Copyright 1998 Published by Elsevier Science B.V.

  8. [Medical economics evaluation of 5-HT3 receptor antagonist drugs].

    PubMed

    Utsunomiya, Junpei; Hirano, Shigeki; Fukui, Aiko; Funabashi, Kazuaki; Deguchi, Yuko; Yamada, Susumu; Naito, Kazuyuki

    2010-10-01

    At Komaki City Hospital, the drug cost in connection with cancer chemotherapy was re-examined as part of improved management along with the introduction of DPC in July 2008. With due attention to the 5-HT3 receptor antagonists, both the change from injections to oral drugs and the change from brand-name drugs to generic drugs were tried between July 2008 and June 2009. After that, in order to examine the economic impact of these changes, we investigated and analyzed the number of medications, the cost of medicine purchased, and the average drug cost per medication of the 5-HT3 receptor antagonists between April 2008 and September 2009. As a result, the cost of 5-HT3 receptor antagonists purchased decreased greatly, and the impact of the improvement was mainly due to the change to oral drugs, and partially to the change to generic drugs. Therefore, from the viewpoint of hospital economic improvement in DPC, it was thought that the change to oral drugs(5-HT3 receptor antagonists)is given top priority.

  9. Medium-Induced Antagonistic Behavior in Staphylococcus Aureus.

    ERIC Educational Resources Information Center

    Benathen, Isaiah A.

    1992-01-01

    Antagonism is the production of substances by microorganisms that inhibit or prevent the growth of other bacteria. This paper demonstrates the antagonistic behavior of gram-positive coccus on the B. subtilis and Enterococcus faecalis gram-positive microorganisms, showing that the process of antagonism is sometimes dependent on the nutritional…

  10. The Effect of Antagonist Muscle Sensory Input on Force Regulation

    PubMed Central

    Onushko, Tanya; Schmit, Brian D.; Hyngstrom, Allison

    2015-01-01

    The purpose of this study was to understand how stretch-related sensory feedback from an antagonist muscle affects agonist muscle output at different contraction levels in healthy adults. Ten young (25.3 ± 2.4 years), healthy subjects performed constant isometric knee flexion contractions (agonist) at 6 torque levels: 5%, 10%, 15%, 20%, 30%, and 40% of their maximal voluntary contraction. For half of the trials, subjects received patellar tendon taps (antagonist sensory feedback) during the contraction. We compared error in targeted knee flexion torque and hamstring muscle activity, with and without patellar tendon tapping, across the 6 torque levels. At lower torque levels (5%, 10%, and 15%), subjects produced greater knee torque error following tendon tapping compared with the same torque levels without tendon tapping. In contrast, we did not find any difference in torque output at higher target levels (20%, 30%, and 40%) between trials with and without tendon tapping. We also observed a load-dependent increase in the magnitude of agonist muscle activity after tendon taps, with no associated load-dependent increase in agonist and antagonist co-activation, or reflex inhibition from the antagonist tapping. The findings suggest that at relatively low muscle activity there is a deficiency in the ability to correct motor output after sensory disturbances, and cortical centers (versus sub-cortical) are likely involved. PMID:26186590

  11. Characterization of a novel non-steroidal glucocorticoid receptor antagonist

    SciTech Connect

    Li, Qun-Yi; Zhang, Meng; Hallis, Tina M.; DeRosier, Therese A.; Yue, Jian-Min; Ye, Yang; Mais, Dale E.; Wang, Ming-Wei

    2010-01-15

    Selective antagonists of the glucocorticoid receptor (GR) are desirable for the treatment of hypercortisolemia associated with Cushing's syndrome, psychic depression, obesity, diabetes, neurodegenerative diseases, and glaucoma. NC3327, a non-steroidal small molecule with potent binding affinity to GR (K{sub i} = 13.2 nM), was identified in a high-throughput screening effort. As a full GR antagonist, NC3327 greatly inhibits the dexamethasone (Dex) induction of marker genes involved in hepatic gluconeogenesis, but has a minimal effect on matrix metalloproteinase 9 (MMP-9), a GR responsive pro-inflammatory gene. Interestingly, the compound recruits neither coactivators nor corepressors to the GR complex but competes with glucocorticoids for the interaction between GR and a coactivator peptide. Moreover, NC3327 does not trigger GR nuclear translocation, but significantly blocks Dex-induced GR transportation to the nucleus, and thus appears to be a 'competitive' GR antagonist. Therefore, the non-steroidal compound, NC3327, may represent a new class of GR antagonists as potential therapeutics for a variety of cortisol-related endocrine disorders.

  12. Aryl biphenyl-3-ylmethylpiperazines as 5-HT7 receptor antagonists.

    PubMed

    Kim, Jeeyeon; Kim, Youngjae; Tae, Jinsung; Yeom, Miyoung; Moon, Bongjin; Huang, Xi-Ping; Roth, Bryan L; Lee, Kangho; Rhim, Hyewhon; Choo, Il Han; Chong, Youhoon; Keum, Gyochang; Nam, Ghilsoo; Choo, Hyunah

    2013-11-01

    The 5-HT7 receptor (5-HT7 R) is a promising therapeutic target for the treatment of depression and neuropathic pain. The 5-HT7 R antagonist SB-269970 exhibited antidepressant-like activity, whereas systemic administration of the 5-HT7 R agonist AS-19 significantly inhibited mechanical hypersensitivity and thermal hyperalgesia. In our efforts to discover selective 5-HT7 R antagonists or agonists, aryl biphenyl-3-ylmethylpiperazines were designed, synthesized, and biologically evaluated against the 5-HT7 R. Among the synthesized compounds, 1-([2'-methoxy-(1,1'-biphenyl)-3-yl]methyl)-4-(2-methoxyphenyl)piperazine (28) was the best binder to the 5-HT7 R (pKi =7.83), and its antagonistic property was confirmed by functional assays. The selectivity profile of compound 28 was also recorded for the 5-HT7 R over other serotonin receptor subtypes, such as 5-HT1 R, 5-HT2 R, 5-HT3 R, and 5-HT6 R. In a molecular modeling study, the 2-methoxyphenyl moiety attached to the piperazine ring of compound 28 was proposed to be essential for the antagonistic function.

  13. Diversity, distribution, and antagonistic activities of rhizobacteria of Panax notoginseng

    PubMed Central

    Fan, Ze-Yan; Miao, Cui-Ping; Qiao, Xin-Guo; Zheng, You-Kun; Chen, Hua-Hong; Chen, You-Wei; Xu, Li-Hua; Zhao, Li-Xing; Guan, Hui-Lin

    2015-01-01

    Background Rhizobacteria play an important role in plant defense and could be promising sources of biocontrol agents. This study aimed to screen antagonistic bacteria and develop a biocontrol system for root rot complex of Panax notoginseng. Methods Pure-culture methods were used to isolate bacteria from the rhizosphere soil of notoginseng plants. The identification of isolates was based on the analysis of 16S ribosomal RNA (rRNA) sequences. Results A total of 279 bacteria were obtained from rhizosphere soils of healthy and root-rot notoginseng plants, and uncultivated soil. Among all the isolates, 88 showed antagonistic activity to at least one of three phytopathogenic fungi, Fusarium oxysporum, Fusarium solani, and Phoma herbarum mainly causing root rot disease of P. notoginseng. Based on the 16S rRNA sequencing, the antagonistic bacteria were characterized into four clusters, Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetesi. The genus Bacillus was the most frequently isolated, and Bacillus siamensis (Hs02), Bacillus atrophaeus (Hs09) showed strong antagonistic activity to the three pathogens. The distribution pattern differed in soil types, genera Achromobacter, Acidovorax, Brevibacterium, Brevundimonas, Flavimonas, and Streptomyces were only found in rhizosphere of healthy plants, while Delftia, Leclercia, Brevibacillus, Microbacterium, Pantoea, Rhizobium, and Stenotrophomonas only exist in soil of diseased plant, and Acinetobacter only exist in uncultivated soil. Conclusion The results suggest that diverse bacteria exist in the P. notoginseng rhizosphere soil, with differences in community in the same field, and antagonistic isolates may be good potential biological control agent for the notoginseng root-rot diseases caused by F. oxysporum, Fusarium solani, and Panax herbarum. PMID:27158229

  14. Design, synthesis, and structure-activity relationship of novel CCR2 antagonists.

    PubMed

    Kothandaraman, Shankaran; Donnely, Karla L; Butora, Gabor; Jiao, Richard; Pasternak, Alexander; Morriello, Gregori J; Goble, Stephen D; Zhou, Changyou; Mills, Sander G; Maccoss, Malcolm; Vicario, Pasquale P; Ayala, Julia M; Demartino, Julie A; Struthers, Mary; Cascieri, Margaret A; Yang, Lihu

    2009-03-15

    A series of novel 1-aminocyclopentyl-3-carboxyamides incorporating substituted tetrahydropyran moieties have been synthesized and subsequently evaluated for their antagonistic activity against the human CCR2 receptor. Among them analog 59 was found to posses potent antagonistic activity.

  15. Combined antagonism of adrenoceptors and dopamine and 5-HT receptors underlies the atypical profile of clozapine.

    PubMed

    Prinssen, E P; Ellenbroek, B A; Cools, A R

    1994-09-01

    Previous studies have shown that alpha 1-adrenoceptors, dopamine D1-like and 5-HT2A receptors play an important role in the effects of the atypical neuroleptic, clozapine, on the parameter modelling antipsychotic efficacy in the paw test. Therefore, it became of interest to investigate whether antagonism of all these receptors together would give rise to effects characteristic of clozapine. The effects of the combined administration of the alpha 1-adrenoceptor antagonist phenoxybenzamine, the dopamine D1 receptor antagonist, SCH 39166 (4-(4-chloro-3-methoxyphenyl)-1,2- dihydronaphthalene), and the 5-HT2A receptor antagonist, ketanserin, were therefore measured in the paw test. The present data show that all three drugs together, but not simply combinations of two out of three, produced a profile similar to that of clozapine: a significant increase in the parameter modelling antipsychotic efficacy and no change in the parameter modelling extrapyramidal side-effects.

  16. Lead Optimization Studies of Cinnamic Amide EP2 Antagonists

    PubMed Central

    2015-01-01

    Prostanoid receptor EP2 can play a proinflammatory role, exacerbating disease pathology in a variety of central nervous system and peripheral diseases. A highly selective EP2 antagonist could be useful as a drug to mitigate the inflammatory consequences of EP2 activation. We recently identified a cinnamic amide class of EP2 antagonists. The lead compound in this class (5d) displays anti-inflammatory and neuroprotective actions. However, this compound exhibited moderate selectivity to EP2 over the DP1 prostanoid receptor (∼10-fold) and low aqueous solubility. We now report compounds that display up to 180-fold selectivity against DP1 and up to 9-fold higher aqueous solubility than our previous lead. The newly developed compounds also display higher selectivity against EP4 and IP receptors and a comparable plasma pharmacokinetics. Thus, these compounds are useful for proof of concept studies in a variety of models where EP2 activation is playing a deleterious role. PMID:24773616

  17. From Bioinactive ACTH to ACTH Antagonist: The Clinical Perspective

    PubMed Central

    Ghaddhab, Chiraz; Vuissoz, Jean-Marc; Deladoëy, Johnny

    2017-01-01

    The adrenocorticotropic hormone (ACTH) is a pituitary hormone derived from a larger peptide, the proopiomelanocortin (POMC), as are the MSHs (α-MSH, β-MSH, and γ-MSH) and the β-LPH-related polypeptides (Figure 1A). ACTH drives adrenal steroidogenesis and growth of the adrenal gland. ACTH is a 39 amino acid polypeptide that binds and activates its cognate receptor [melanocortin receptor 2 (MC2R)] through the two regions H6F7R8W9 and K15K16R17R18P19. Most POMC-derived polypeptides contain the H6F7R8W9 sequence that is conserved through evolution. This explains the difficulties in developing selective agonists or antagonists to the MCRs. In this review, we will discuss the clinical aspects of the role of ACTH in physiology and disease, and potential clinical use of selective ACTH antagonists. PMID:28228747

  18. Lead optimization studies of cinnamic amide EP2 antagonists.

    PubMed

    Ganesh, Thota; Jiang, Jianxiong; Yang, Myung-Soon; Dingledine, Ray

    2014-05-22

    Prostanoid receptor EP2 can play a proinflammatory role, exacerbating disease pathology in a variety of central nervous system and peripheral diseases. A highly selective EP2 antagonist could be useful as a drug to mitigate the inflammatory consequences of EP2 activation. We recently identified a cinnamic amide class of EP2 antagonists. The lead compound in this class (5d) displays anti-inflammatory and neuroprotective actions. However, this compound exhibited moderate selectivity to EP2 over the DP1 prostanoid receptor (∼10-fold) and low aqueous solubility. We now report compounds that display up to 180-fold selectivity against DP1 and up to 9-fold higher aqueous solubility than our previous lead. The newly developed compounds also display higher selectivity against EP4 and IP receptors and a comparable plasma pharmacokinetics. Thus, these compounds are useful for proof of concept studies in a variety of models where EP2 activation is playing a deleterious role.

  19. Therapeutic antagonists and conformational regulation of integrin function.

    PubMed

    Shimaoka, Motomu; Springer, Timothy A

    2003-09-01

    Integrins are a structurally elaborate family of adhesion molecules that transmit signals bi-directionally across the plasma membrane by undergoing large-scale structural rearrangements. By regulating cell-cell and cell-matrix contacts, integrins participate in a wide range of biological processes, including development, tissue repair, angiogenesis, inflammation and haemostasis. From a therapeutic standpoint, integrins are probably the most important class of cell-adhesion receptors. Recent progress in the development of integrin antagonists has resulted in their clinical application and has shed new light on integrin biology. On the basis of their mechanism of action, small-molecule integrin antagonists fall into three different classes. Each of these classes affect the equilibria that relate integrin conformational states, but in different ways.

  20. Agonist-antagonist combinations in opioid dependence: a translational approach

    PubMed Central

    Mannelli, P.

    2011-01-01

    Summary The potential therapeutic benefits of co-administering opiate agonist and antagonist agents remain largely to be investigated. This paper focuses on the mechanisms of very low doses of naltrexone that help modulate the effects of methadone withdrawal and review pharmacological properties of the buprenorphine/naltrexone combination that support its clinical investigation. The bench-to-bedside development of the very low dose naltrexone treatment can serve as a translational paradigm to investigate and treat drug addiction. Further research on putative mechanisms elicited by the use of opioid agonist-antagonist combinations may lead to effective pharmacological alternatives to the gold standard methadone treatment, also useful for the management of the abuse of non opioid drugs and alcohol. PMID:22448305

  1. Non-imidazole histamine NO-donor H3-antagonists.

    PubMed

    Tosco, Paolo; Bertinaria, Massimo; Di Stilo, Antonella; Cena, Clara; Fruttero, Roberta; Gasco, Alberto

    2005-01-01

    Recently a series of H3-antagonists related to Imoproxifan was realised (I); in these products the oxime substructure of the lead was constrained in NO-donor furoxan systems and in the corresponding furazan derivatives. In this paper, a new series of compounds derived from I by substituting the imidazole ring with the ethoxycarbonylpiperazino moiety present in the non-imidazole H3-ligand A-923 is described. For all the products synthesis and preliminary pharmacological characterisation, as well as their hydrophilic-lipophilic balance, are reported. The imidazole ring replacement generally results in a decreased H3-antagonist activity with respect to the analogues of series I and, in some cases, induces relaxing effects on the electrically contracted guinea-pig ileum, probably due to increased affinity for other receptor systems.

  2. Antagonists of Plant-parasitic Nematodes in Florida Citrus

    PubMed Central

    Walter, David Evans; Kaplan, David T.

    1990-01-01

    In a survey of antagonists of nematodes in 27 citrus groves, each with a history of Tylenchulus semipenetrans infestation, and 17 noncitrus habitats in Florida, approximately 24 species of microbial antagonists capable of attacking vermiform stages of Radopholus citrophilus were recovered. Eleven of these microbes and a species of Pasteuria also were observed attacking vermiform stages of T. semipenetrans. Verticillium chlamydosporium, Paecilomyces lilacinus, P. marquandii, Streptomyces sp., Arthrobotrys oligospora, and Dactylella ellipsospora were found infecting T. semipenetrans egg masses. Two species of nematophagous amoebae, five species of predatory nematodes, and 29 species of nematophagous arthropods also were detected. Nematode-trapping fungi and nematophagous arthropods were common inhabitants of citrus groves with a history of citrus nematode infestation; however, obligate parasites of nematodes were rare. PMID:19287759

  3. Antagonistic Coevolution of Marine Planktonic Viruses and Their Hosts

    NASA Astrophysics Data System (ADS)

    Martiny, Jennifer B. H.; Riemann, Lasse; Marston, Marcia F.; Middelboe, Mathias

    2014-01-01

    The potential for antagonistic coevolution between marine viruses and their (primarily bacterial) hosts is well documented, but our understanding of the consequences of this rapid evolution is in its infancy. Acquisition of resistance against co-occurring viruses and the subsequent evolution of virus host range in response have implications for bacterial mortality rates as well as for community composition and diversity. Drawing on examples from a range of environments, we consider the potential dynamics, underlying genetic mechanisms and fitness costs, and ecological impacts of virus-host coevolution in marine waters. Given that much of our knowledge is derived from laboratory experiments, we also discuss potential challenges and approaches in scaling up to diverse, complex networks of virus-host interactions. Finally, we note that a variety of novel approaches for characterizing virus-host interactions offer new hope for a mechanistic understanding of antagonistic coevolution in marine plankton.

  4. Antagonistic otolith-visual units in cat vestibular nuclei

    NASA Technical Reports Server (NTRS)

    Daunton, Nancy G.; Christensen, Carol A.

    1992-01-01

    The nature of neural coding of visual (Vis) and vestibular (Vst) information on translational motion in the region of the vestibular nuclei was investigated using extracellular single-unit recordings in alert adult cats. Responses were recorded and averaged over 60 cycles of stimulation in the vertical and horizontal planes, which included the Vst (movement of the animal in the dark), Vis (movement within lighted visual surround), and combined Vis and Vst (movement of the animal within the lighted stationary visual surround). Data are reported on responses to stimulations along the axis showing maximal sensitivity. A small number of units were identified that showed an antagonistic relationship between their Vis and Vst responses (since they were maximally excited by Vis and by Vst stimulations in the same direction). Results suggest that antagonistic units may belong to an infrequently encountered, but functionally distinct, class of neurons.

  5. Antagonistic coevolution of marine planktonic viruses and their hosts.

    PubMed

    Martiny, Jennifer B H; Riemann, Lasse; Marston, Marcia F; Middelboe, Mathias

    2014-01-01

    The potential for antagonistic coevolution between marine viruses and their (primarily bacterial) hosts is well documented, but our understanding of the consequences of this rapid evolution is in its infancy. Acquisition of resistance against co-occurring viruses and the subsequent evolution of virus host range in response have implications for bacterial mortality rates as well as for community composition and diversity. Drawing on examples from a range of environments, we consider the potential dynamics, underlying genetic mechanisms and fitness costs, and ecological impacts of virus-host coevolution in marine waters. Given that much of our knowledge is derived from laboratory experiments, we also discuss potential challenges and approaches in scaling up to diverse, complex networks of virus-host interactions. Finally, we note that a variety of novel approaches for characterizing virus-host interactions offer new hope for a mechanistic understanding of antagonistic coevolution in marine plankton.

  6. Antagonists of Plant-parasitic Nematodes in Florida Citrus.

    PubMed

    Walter, D E; Kaplan, D T

    1990-10-01

    In a survey of antagonists of nematodes in 27 citrus groves, each with a history of Tylenchulus semipenetrans infestation, and 17 noncitrus habitats in Florida, approximately 24 species of microbial antagonists capable of attacking vermiform stages of Radopholus citrophilus were recovered. Eleven of these microbes and a species of Pasteuria also were observed attacking vermiform stages of T. semipenetrans. Verticillium chlamydosporium, Paecilomyces lilacinus, P. marquandii, Streptomyces sp., Arthrobotrys oligospora, and Dactylella ellipsospora were found infecting T. semipenetrans egg masses. Two species of nematophagous amoebae, five species of predatory nematodes, and 29 species of nematophagous arthropods also were detected. Nematode-trapping fungi and nematophagous arthropods were common inhabitants of citrus groves with a history of citrus nematode infestation; however, obligate parasites of nematodes were rare.

  7. The serotonin 2C receptor potently modulates the head-twitch response in mice induced by a phenethylamine hallucinogen

    PubMed Central

    Canal, Clinton E.; Olaghere da Silva, Uade B.; Gresch, Paul J.; Watt, Erin E.; Sanders-Bush, Elaine

    2010-01-01

    Rationale Hallucinogenic serotonin 2A (5-HT2A) receptor partial agonists, such as (±)-1-(2,5-dimethoxy-4-iodo-phenyl)-2-aminopropane hydrochloride (DOI), induce a frontal cortex-dependent head-twitch response (HTR) in rodents, a behavioral proxy of a hallucinogenic response that is blocked by 5-HT2A receptor antagonists. In addition to 5-HT2A receptors, DOI and most other serotonin-like hallucinogens have high affinity and potency as partial agonists at 5-HT2C receptors. Objectives We tested for involvement of 5-HT2C receptors in the HTR induced by DOI. Results Comparison of 5-HT2C receptor knockout and wild-type littermates revealed an approximately 50% reduction in DOI-induced HTR in knockout mice. Also, pretreatment with either the 5-HT2C receptor antagonist SB206553 or SB242084 eradicated a twofold difference in DOI-induced HTR between the standard inbred mouse strains C57BL/6J and DBA/2J, and decreased the DOI-induced HTR by at least 50% in both strains. None of several measures of 5-HT2A receptors in frontal cortex explained the strain difference, including 5-HT2A receptor density, Gαq or Gαi/o protein levels, phospholipase C activity, or DOI-induced expression of Egr1 and Egr2. 5-HT2C receptor density in the brains of C57BL/6J and DBA/2J was also equivalent, suggesting that 5-HT2C receptor-mediated intracellular signaling or other physiological modulators of the HTR may explain the strain difference in response to DOI. Conclusions We conclude that the HTR to DOI in mice is strongly modulated by 5-HT2C receptor activity. This novel finding invites reassessment of hallucinogenic mechanisms involving 5-HT2 receptors. PMID:20165943

  8. Potent and orally efficacious benzothiazole amides as TRPV1 antagonists.

    PubMed

    Besidski, Yevgeni; Brown, William; Bylund, Johan; Dabrowski, Michael; Dautrey, Sophie; Harter, Magali; Horoszok, Lucy; Hu, Yin; Johnson, Dean; Johnstone, Shawn; Jones, Paul; Leclerc, Sandrine; Kolmodin, Karin; Kers, Inger; Labarre, Maryse; Labrecque, Denis; Laird, Jennifer; Lundström, Therese; Martino, John; Maudet, Mickaël; Munro, Alexander; Nylöf, Martin; Penwell, Andrea; Rotticci, Didier; Slaitas, Andis; Sundgren-Andersson, Anna; Svensson, Mats; Terp, Gitte; Villanueva, Huascar; Walpole, Christopher; Zemribo, Ronald; Griffin, Andrew M

    2012-10-01

    Benzothiazole amides were identified as TRPV1 antagonists from high throughput screening using recombinant human TRPV1 receptor and structure-activity relationships were explored to pinpoint key pharmacophore interactions. By increasing aqueous solubility, through the attachment of polar groups to the benzothiazole core, and enhancing metabolic stability, by blocking metabolic sites, the drug-like properties and pharmokinetic profiles of benzothiazole compounds were sufficiently optimized such that their therapeutic potential could be verified in rat pharmacological models of pain.

  9. Optimization of amide-based EP3 receptor antagonists.

    PubMed

    Lee, Esther C Y; Futatsugi, Kentaro; Arcari, Joel T; Bahnck, Kevin; Coffey, Steven B; Derksen, David R; Kalgutkar, Amit S; Loria, Paula M; Sharma, Raman

    2016-06-01

    Prostaglandin E receptor subtype 3 (EP3) antagonism may treat a variety of symptoms from inflammation to cardiovascular and metabolic diseases. Previously, most EP3 antagonists were large acidic ligands that mimic the substrate, prostaglandin E2 (PGE2). This manuscript describes the optimization of a neutral small molecule amide series with improved lipophilic efficiency (LipE) also known as lipophilic ligand efficiency (LLE) ((a) Nat. Rev. Drug Disc.2007, 6, 881; (b) Annu. Rep. Med. Chem.2010, 45, 380).

  10. Exploration of a new series of PAR1 antagonists.

    PubMed

    Planty, Bruno; Pujol, Chantal; Lamothe, Marie; Maraval, Catherine; Horn, Clemens; Le Grand, Bruno; Perez, Michel

    2010-03-01

    Two series of new PAR1 antagonists have been identified. The first incorporates a cinnamoylpiperidine motif and the second a cinnamoylpyridine pattern. The synthesis, biological activity and structure-activity relationship of these compounds are presented. In each series, one analog showed potent in vivo antithrombotic activity in a rat AV shunt model, with up to 53% inhibition at 1.25mpk iv for compound 30.

  11. Human glucagon receptor antagonists based on alkylidene hydrazides.

    PubMed

    Ling, Anthony; Plewe, Michael; Gonzalez, Javier; Madsen, Peter; Sams, Christian K; Lau, Jesper; Gregor, Vlad; Murphy, Doug; Teston, Kimberly; Kuki, Atsuo; Shi, Shenghua; Truesdale, Larry; Kiel, Dan; May, John; Lakis, James; Anderes, Kenna; Iatsimirskaia, Eugenia; Sidelmann, Ulla G; Knudsen, Lotte B; Brand, Christian L; Polinsky, Alex

    2002-02-25

    A series of alkylidene hydrazide derivatives containing an alkoxyaryl moiety was optimized. The resulting hydrazide-ethers were competitive antagonists at the human glucagon receptor. Pharmacokinetic experiments showed fast clearance of most of the compounds tested. A representative compound [4-hydroxy-3-cyanobenzoic acid (4-isopropylbenzyloxy-3,5-dimethoxymethylene)hydrazide] with an IC50 value of 20 nM was shown to reduce blood glucose levels in fasted rats.

  12. Calmodulin antagonists promote TRA-8 therapy of resistant pancreatic cancer

    PubMed Central

    Yuan, Kaiyu; Yong, Sun; Xu, Fei; Zhou, Tong; McDonald, Jay M; Chen, Yabing

    2015-01-01

    Pancreatic cancer is highly malignant with limited therapy and a poor prognosis. TRAIL-activating therapy has been promising, however, clinical trials have shown resistance and limited responses of pancreatic cancers. We investigated the effects of calmodulin(CaM) antagonists, trifluoperazine(TFP) and tamoxifen(TMX), on TRA-8-induced apoptosis and tumorigenesis of TRA-8-resistant pancreatic cancer cells, and underlying mechanisms. TFP or TMX alone did not induce apoptosis of resistant PANC-1 cells, while they dose-dependently enhanced TRA-8-induced apoptosis. TMX treatment enhanced efficacy of TRA-8 therapy on tumorigenesis in vivo. Analysis of TRA-8-induced death-inducing-signaling-complex (DISC) identified recruitment of survival signals, CaM/Src, into DR5-associated DISC, which was inhibited by TMX/TFP. In contrast, TMX/TFP increased TRA-8-induced DISC recruitment/activation of caspase-8. Consistently, caspase-8 inhibition blocked the effects of TFP/TMX on TRA-8-induced apoptosis. Moreover, TFP/TMX induced DR5 expression. With a series of deletion/point mutants, we identified CaM antagonist-responsive region in the putative Sp1-binding domain between −295 to −300 base pairs of DR5 gene. Altogether, we have demonstrated that CaM antagonists enhance TRA-8-induced apoptosis of TRA-8-resistant pancreatic cancer cells by increasing DR5 expression and enhancing recruitment of apoptotic signal while decreasing survival signals in DR5-associated DISC. Our studies support the use of these readily available CaM antagonists combined with TRAIL-activating agents for pancreatic cancer therapy. PMID:26320171

  13. Pyrrolidinyl phenylurea derivatives as novel CCR3 antagonists.

    PubMed

    Nitta, Aiko; Iura, Yosuke; Inoue, Hideki; Sato, Ippei; Morihira, Koichiro; Kubota, Hirokazu; Morokata, Tatsuaki; Takeuchi, Makoto; Ohta, Mitsuaki; Tsukamoto, Shin-ichi; Imaoka, Takayuki; Takahashi, Toshiya

    2012-11-15

    Optimization starting with our lead compound 1 (IC(50)=4.9 nM) led to the identification of pyrrolidinyl phenylurea derivatives. Further modification toward improvement of the bioavailability provided (R)-1-(1-((6-fluoronaphthalen-2-yl)methyl)pyrrolidin-3-yl)-3-(2-(2-hydroxyethoxy)phenyl)urea 32 (IC(50)=1.7 nM), a potent and orally active CCR3 antagonist.

  14. Effect of a Hypocretin/Orexin Antagonist on Neurocogniive Performance

    DTIC Science & Technology

    2014-09-01

    until animals performed the water maze tests. SLEEP DEPRIVATION PROCEDURES Animals were sleep deprived (SD) from ZT12-18 by progressive manual... sleep and performance , and the effects of these compounds on biomarkers associated with normal sleep . BODY Task 2. Test the hypothesis that...antagonist almorexant promotes sleep without impairment of performance in rats" was published in Frontiers in Neuroscience in January, 2014. Progress

  15. Systemic Mineralocorticoid Antagonists in the Treatment of Central Serous Chorioretinopathy.

    PubMed

    Yang, Dong; Eliott, Dean

    2017-01-01

    Central serous chorioretinopathy (CSCR) is a challenging disease characterized by subretinal serous fluid accumulation. The complex pathogenesis is still not fully understood, but is thought to be multifactorial and involves exogenous and endogenous factors affecting the choroid and retinal pigment epithelium. The involvement of corticosteroids is undisputed, while the contribution of mineralocorticoid pathways is under investigation. This review addresses the proposed pathogenesis models and the evidence for systemic treatment of CSCR with mineralocorticoid antagonists.

  16. Discovery of new muscarinic acetylcholine receptor antagonists from Scopolia tangutica

    PubMed Central

    Du, Nana; Liu, Yanfang; Zhang, Xiuli; Wang, Jixia; Zhao, Jianqiang; He, Jian; Zhou, Han; Mei, Lijuan; Liang, Xinmiao

    2017-01-01

    Scopolia tangutica (S. tangutica) is a traditional Chinese medicinal plant used for antispasmodics, anesthesia, analgesia and sedation. Its pharmacological activities are mostly associated with the antagonistic activity at muscarinic acetylcholine receptors (mAchRs) of several known alkaloids such as atropine and scopolamine. With our recent identification of four hydroxycinnamic acid amides from S. tangutica, we hypothesized that this plant may contain previously unidentified alkaloids that may also contribute to its in vivo effect. Herein, we used a bioassay-guided multi-dimension separation strategy to discover novel mAchR antagonists from S. tangutica. The core of this approach is to use label-free cell phenotypic assay to first identify active fractions, and then to guide purification of active ligands. Besides four tropanes and six cinnamic acid amides that have been previously isolated from S. tangutica, we recently identified two new tropanes, one new cinnamic acid amide, and nine other compounds. Six tropane compounds purified from S. tangutica for the first time were confirmed to be competitive antagonists of muscarinic receptor 3 (M3), including the two new ones 8 and 12 with IC50 values of 1.97 μM and 4.47 μM, respectively. Furthermore, the cinnamic acid amide 17 displayed 15-fold selectivity for M1 over M3 receptors. These findings will be useful in designing lead compounds for mAchRs and elucidating mechanisms of action of S. tangutica. PMID:28387362

  17. Synergistic and antagonistic drug combinations depend on network topology.

    PubMed

    Yin, Ning; Ma, Wenzhe; Pei, Jianfeng; Ouyang, Qi; Tang, Chao; Lai, Luhua

    2014-01-01

    Drug combinations may exhibit synergistic or antagonistic effects. Rational design of synergistic drug combinations remains a challenge despite active experimental and computational efforts. Because drugs manifest their action via their targets, the effects of drug combinations should depend on the interaction of their targets in a network manner. We therefore modeled the effects of drug combinations along with their targets interacting in a network, trying to elucidate the relationships between the network topology involving drug targets and drug combination effects. We used three-node enzymatic networks with various topologies and parameters to study two-drug combinations. These networks can be simplifications of more complex networks involving drug targets, or closely connected target networks themselves. We found that the effects of most of the combinations were not sensitive to parameter variation, indicating that drug combinational effects largely depend on network topology. We then identified and analyzed consistent synergistic or antagonistic drug combination motifs. Synergistic motifs encompass a diverse range of patterns, including both serial and parallel combinations, while antagonistic combinations are relatively less common and homogenous, mostly composed of a positive feedback loop and a downstream link. Overall our study indicated that designing novel synergistic drug combinations based on network topology could be promising, and the motifs we identified could be a useful catalog for rational drug combination design in enzymatic systems.

  18. [5-HT3 receptor antagonist als analgetics in rheumatic diseases].

    PubMed

    Müller, W; Fiebich, B L; Stratz, T

    2006-10-01

    Various rheumatic diseases like fibromyalgia, systemic inflammatory rheumatic disorders and localized diseases, such as arthritides and activated arthroses, tendinopathies and periarthropathies, as well as trigger points can be improved considerably by treatment with the 5-HT3 receptor antagonist tropisetron. Particularly in the latter group of diseases, local injections have done surprisingly rapid analgesic action. This effect matches that of local anesthetics, but lasts considerably longer and is comparable to local injections of local anesthetics combined with corticosteroids. The action of the 5-HT3 receptor antagonists can be attributed to an antinociceptive effect that occurs at the same time as an antiphlogistic and probably also an immunosuppressive effect. Whereas an inhibited release of substance P from the nociceptors, and possibly some other neurokins as well, seems to be the most likely explanation for the antinociceptive action, the antiphlogistic effect is primarily due to an inhibited formation of various different phlogistic substances; in some conditions, like systemic inflammatory rheumatic diseases, for example, the 5-HT3 receptor antagonists may exert an immunosuppressive effect in addition to this.

  19. The complex roles of Wnt antagonists in RCC.

    PubMed

    Saini, Sharanjot; Majid, Shahana; Dahiya, Rajvir

    2011-10-25

    Renal cell carcinoma (RCC) is the most lethal of all the genitourinary cancers, as it is generally refractory to current treatment regimens, including chemotherapy and radiation therapy. Targeted therapies against critical signaling pathways associated with RCC pathogenesis, such as vascular endothelial growth factor, von Hippel-Lindau tumor suppressor and mammalian target of rapamycin, have shown limited efficacy so far. Thus, Wnt signaling, which is known to be intricately involved in the pathogenesis of RCC, has attracted much interest. Several Wnt signaling components have been examined in RCC, and, while studies suggest that Wnt signaling is constitutively active in RCC, the molecular mechanisms differ considerably from other human carcinomas. Increasing evidence indicates that secreted Wnt antagonists have important roles in RCC pathogenesis. Considering these vital roles, it has been postulated--and supported by experimental evidence--that the functional loss of Wnt antagonists, for example by promoter hypermethylation, can contribute to constitutive activation of the Wnt pathway, resulting in carcinogenesis through dysregulation of cell proliferation and differentiation. However, subsequent functional studies of these Wnt antagonists have demonstrated the inherent complexities underlying their role in RCC pathogenesis.

  20. μ Opioid receptor: novel antagonists and structural modeling

    PubMed Central

    Kaserer, Teresa; Lantero, Aquilino; Schmidhammer, Helmut; Spetea, Mariana; Schuster, Daniela

    2016-01-01

    The μ opioid receptor (MOR) is a prominent member of the G protein-coupled receptor family and the molecular target of morphine and other opioid drugs. Despite the long tradition of MOR-targeting drugs, still little is known about the ligand-receptor interactions and structure-function relationships underlying the distinct biological effects upon receptor activation or inhibition. With the resolved crystal structure of the β-funaltrexamine-MOR complex, we aimed at the discovery of novel agonists and antagonists using virtual screening tools, i.e. docking, pharmacophore- and shape-based modeling. We suggest important molecular interactions, which active molecules share and distinguish agonists and antagonists. These results allowed for the generation of theoretically validated in silico workflows that were employed for prospective virtual screening. Out of 18 virtual hits evaluated in in vitro pharmacological assays, three displayed antagonist activity and the most active compound significantly inhibited morphine-induced antinociception. The new identified chemotypes hold promise for further development into neurochemical tools for studying the MOR or as potential therapeutic lead candidates. PMID:26888328

  1. Effects of two antagonistic ecosystem engineers on infaunal diversity

    NASA Astrophysics Data System (ADS)

    González-Ortiz, V.; Alcazar, P.; Vergara, J. J.; Pérez-Lloréns, J. L.; Brun, F. G.

    2014-02-01

    The role of ecosystem engineers has been highlighted in recent decades because of their importance for ecosystem functioning, although the interaction between different antagonistic engineer species and their effects on ecosystems have been so far poorly investigated. Coastal areas are good natural laboratories to explore such interactions, since they are often inhabited by macrophyte beds (autogenic engineers) and bioturbator species (allogenic engineers) with antagonistic effects on ecosystem properties and processes (e.g. species diversity, nutrient fluxes, etc.). The main goal of this study was to determine how coexisting antagonistic ecosystem engineers could influence benthic diversity and available resources in soft-bottom areas. To achieve this goal, a two-month experiment was carried out in situ by introducing artificial seagrass patches in a soft-bottom area inhabited by the fiddler crab Uca tangeri. Both the experimental exclusion of burrows as well as the presence of artificial seagrass-like structures (mimics) resulted in higher macrobenthic density and species richness in the benthic community. Resource availability for organisms (sediment chlorophyll a and epiphytes) was also favoured by the presence of mimics. Therefore, the higher structural complexity (above- and below-ground) associated with seagrass mimics promoted positive effects for infauna such as creation of a new habitat ready to colonize, reduction of the crab burrowing activity and the enhancement of resource availability, which resulted in increased diversity in the benthic community.

  2. Does intergenerational social mobility affect antagonistic attitudes towards ethnic minorities?

    PubMed

    Tolsma, Jochem; de Graaf, Nan Dirk; Quillian, Lincoln

    2009-06-01

    Up till now, no study satisfactorily addressed the effect of social mobility on antagonistic attitudes toward ethnic minorities. In this contribution, we investigate the effect of educational and class intergenerational mobility on ethnic stereotypes, ethnic threat, and opposition to ethnic intermarriage by using diagonal mobility models. We test several hypotheses derived from ethnic competition theory and socialization theory with data from the Social and Cultural Developments in The Netherlands surveys (SOCON, waves 1995, 2000, and 2005) and The Netherlands Kinship and Panel Study (NKPS, wave 2002). We find that the relative influence of social origin and social destination depends on the specific origin and destination combination. If one moves to a more tolerant social destination position, the influence of the social origin position is negligible. If on the other hand, one is socially mobile to a less tolerant social position, the impact of the origin on antagonistic attitudes is substantial and may even exceed the impact of the destination category. This confirms our hypothesis that adaptation to more tolerant norms is easier than adaptation to less tolerant norms. We find only meagre evidence for the hypothesis that downward mobility leads to frustration and consequently to more antagonistic attitudes.

  3. μ Opioid receptor: novel antagonists and structural modeling

    NASA Astrophysics Data System (ADS)

    Kaserer, Teresa; Lantero, Aquilino; Schmidhammer, Helmut; Spetea, Mariana; Schuster, Daniela

    2016-02-01

    The μ opioid receptor (MOR) is a prominent member of the G protein-coupled receptor family and the molecular target of morphine and other opioid drugs. Despite the long tradition of MOR-targeting drugs, still little is known about the ligand-receptor interactions and structure-function relationships underlying the distinct biological effects upon receptor activation or inhibition. With the resolved crystal structure of the β-funaltrexamine-MOR complex, we aimed at the discovery of novel agonists and antagonists using virtual screening tools, i.e. docking, pharmacophore- and shape-based modeling. We suggest important molecular interactions, which active molecules share and distinguish agonists and antagonists. These results allowed for the generation of theoretically validated in silico workflows that were employed for prospective virtual screening. Out of 18 virtual hits evaluated in in vitro pharmacological assays, three displayed antagonist activity and the most active compound significantly inhibited morphine-induced antinociception. The new identified chemotypes hold promise for further development into neurochemical tools for studying the MOR or as potential therapeutic lead candidates.

  4. Antagonistic interaction networks among bacteria from a cold soil environment.

    PubMed

    Prasad, Sathish; Manasa, Poorna; Buddhi, Sailaja; Singh, Shiv Mohan; Shivaji, Sisinthy

    2011-11-01

    Microbial antagonism in an Arctic soil habitat was demonstrated by assessing the inhibitory interactions between bacterial isolates from the same location. Of 139 isolates obtained from five soil samples, 20 antagonists belonging to the genera, Arthrobacter, Pseudomonas and Flavobacterium were identified. Inter-genus, inter-species and inter-strain antagonism was observed between the interacting members. The extent of antagonism was temperature dependent. In some cases, antagonism was enhanced at 4 °C but suppressed at 18 °C while in some the reverse phenomenon was observed. To interpret antagonism from an ecological perspective, the interacting members were delineated according to their positional roles in a theoretical antagonistic network. When only one antimicrobial producer (P) was present, all the other members permitted grouping into either sensitive (S) or resistant (R). Composite interactive types such as PSR, PS, PR or SR could be designated only when at least two producers were present. Mapping of all possible antagonistic interaction networks based on the individual positional roles of the interactive types illustrates the existence of complex and interconnected networks among microbial communities.

  5. Newer calcium channel antagonists and the treatment of hypertension.

    PubMed

    Cummins, D F

    1999-07-01

    Calcium channel antagonists have become popular medications for the management of hypertension. These agents belong to the diphenylalkylamine, benzothiazepine, dihydropyridine, or tetralol chemical classes. Although the medications share a common pharmacological mechanism in reducing peripheral vascular resistance, clinical differences between the sub-classes can be linked to structural profiles. This heterogeneity is manifested by differences in vascular selectivity, effects on cardiac conduction and adverse events. The lack of differentiation between calcium channel antagonists in clinical trials has contributed to uncertainty associated with their impact on morbidity and mortality. Data from more recent studies in specific patient populations underscores the importance of investigating these antihypertensives as individual agents. A proposed therapeutic classification system suggests that newer agents should share the slow onset and long-acting antihypertensive effect of amlodipine. Additionally, a favourable trough-to-peak ratio has been recommended as an objective measurement of efficacy. The newer drugs, barnidipine and lacidipine, have a therapeutic profile similar to amlodipine, but trough-to-peak ratios are not substantially greater than the recommended minimum of 0.50. Aranidipine, cilnidipine and efonidipine have unique pharmacological properties that distinguish them from traditional dihydropyridines. Although clinical significance is unconfirmed, these newer options may be beneficial for patients with co-morbid conditions that preclude use of older antagonists.

  6. The effects of histamine H3-receptor antagonists on amygdaloid kindled seizures in rats.

    PubMed

    Kakinoki, H; Ishizawa, K; Fukunaga, M; Fujii, Y; Kamei, C

    1998-07-15

    The effects of histamine H3-receptor antagonists, thioperamide, and clobenpropit on amygdaloid kindled seizures were investigated in rats. Both intracerebroventricular (i.c.v.) and intraperitoneal (i.p.) injections of H3-antagonists resulted in a dose-related inhibition of amygdaloid kindled seizures. An inhibition induced by thioperamide was antagonized by an H3-agonist [(R)-alpha-methylhistamine] and H1-antagonists (diphenhydramine and chlorpheniramine). On the other hand, an H2-antagonist (cimetidine and ranitidine) caused no antagonistic effect. Metoprine, an inhibitor of N-methyltransferase was also effective in inhibiting amygdaloid kindled seizure, and this effect was augmented by thioperamide treatment.

  7. Arginine mimetic structures in biologically active antagonists and inhibitors.

    PubMed

    Masic, Lucija Peterlin

    2006-01-01

    Peptidomimetics have found wide application as bioavailable, biostable, and potent mimetics of naturally occurring biologically active peptides. L-Arginine is a guanidino group-containing basic amino acid, which is positively charged at neutral pH and is involved in many important physiological and pathophysiological processes. Many enzymes display a preference for the arginine residue that is found in many natural substrates and in synthetic inhibitors of many trypsin-like serine proteases, e.g. thrombin, factor Xa, factor VIIa, trypsin, and in integrin receptor antagonists, used to treat many blood-coagulation disorders. Nitric oxide (NO), which is produced by oxidation of L-arginine in an NADPH- and O(2)-dependent process catalyzed by isoforms of nitric oxide synthase (NOS), exhibits diverse roles in both normal and pathological physiologies and has been postulated to be a contributor to the etiology of various diseases. Development of NOS inhibitors as well as analogs and mimetics of the natural substrate L-arginine, is desirable for potential therapeutic use and for a better understanding of their conformation when bound in the arginine binding site. The guanidino residue of arginine in many substrates, inhibitors, and antagonists forms strong ionic interactions with the carboxylate of an aspartic acid moiety, which provides specificity for the basic amino acid residue in the active side. However, a highly basic guanidino moiety incorporated in enzyme inhibitors or receptor antagonists is often associated with low selectivity and poor bioavailability after peroral application. Thus, significant effort is focused on the design and preparation of arginine mimetics that can confer selective inhibition for specific trypsin-like serine proteases and NOS inhibitors as well as integrin receptor antagonists and possess reduced basicity for enhanced oral bioavailability. This review will describe the survey of arginine mimetics designed to mimic the function of the

  8. Anti free radical action of calcium antagonists and H1 and H2 receptors antagonists in neoplastic disease.

    PubMed

    della Rovere, F; Broccio, M; Granata, A; Zirilli, A; Brugnano, L; Artemisia, A; Broccio, G

    1996-01-01

    The blood of the subjects suffering from Neoplastic Disease (ND) shows phenomena of membrane peroxidation due to the presence of Free Radicals (FRs), in a quantity much greater than the one observed in the blood of healthy subjects. This can be detected either by calculating the time necessary for the formation of "Heinz bodies" (Hbs), (p < 0.00001) after oxidative stress of the blood in vitro with acetylphenylidrazine (APH), or by calculating the methemoglobin (metHb) quantity that forms after the same treatment (P < 0.00001). The statistical analyses we carried out showed that metHb formation was not affected by age, sex, smoking habits, red blood cell number, Hb, Ht or tumor staging. In this study, by using equal parameters of investigation, we noted that the blood of the subjects with ND who were previously treated with calcium-antagonists drugs and with antagonists of H1 and H2 receptors, gave results completely superimposable on the results obtained from healthy subjects, implying that the treatment had avoided the increase of FRs. Therefore we concluded that calcium-antagonists and the antagonists of the H1 and H2 receptors behave as antioxidant substances, having decreased the FRs damaging activity on the cellular membranes, thus controlling, although to a limited degree, the pejorative evolution of the disease. It is also important to remember that investigations into the ND, even possible screenings, must take into account the above said data, submitting the subjects under investigation to a pharmacological wash out, particularly with those substances which, are considered to be scavengers of FRs. Some of these substances are investigated in this work.

  9. Conformational studies of 3-amino-1-alkyl-cyclopentane carboxamide CCR2 antagonists leading to new spirocyclic antagonists.

    PubMed

    Pasternak, Alexander; Goble, Stephen D; Doss, George A; Tsou, Nancy N; Butora, Gabor; Vicario, Pasquale P; Ayala, Julia Marie; Struthers, Mary; Demartino, Julie A; Mills, Sander G; Yang, Lihu

    2008-02-15

    In an effort to shed light on the active binding conformation of our 3-amino-1-alkyl-cyclopentane carboxamide CCR2 antagonists, we prepared several conformationally constrained analogs resulting from backbone cyclization. Evaluation of CCR2 binding affinities for these analogs gave insight into the optimal relative positions of the piperidine and benzylamide moieties while simultaneously leading to the discovery of a new, potent lead type based upon a spirocyclic acetal scaffold.

  10. Classification and virtual screening of androgen receptor antagonists.

    PubMed

    Li, Jiazhong; Gramatica, Paola

    2010-05-24

    Computational tools, such as quantitative structure-activity relationship (QSAR), are highly useful as screening support for prioritization of substances of very high concern (SVHC). From the practical point of view, QSAR models should be effective to pick out more active rather than inactive compounds, expressed as sensitivity in classification works. This research investigates the classification of a big data set of endocrine-disrupting chemicals (EDCs)-androgen receptor (AR) antagonists, mainly aiming to improve the external sensitivity and to screen for potential AR binders. The kNN, lazy IB1, and ADTree methods and the consensus approach were used to build different models, which improve the sensitivity on external chemicals from 57.1% (literature) to 76.4%. Additionally, the models' predictive abilities were further validated on a blind collected data set (sensitivity: 85.7%). Then the proposed classifiers were used: (i) to distinguish a set of AR binders into antagonists and agonists; (ii) to screen a combined estrogen receptor binder database to find out possible chemicals that can bind to both AR and ER; and (iii) to virtually screen our in-house environmental chemical database. The in silico screening results suggest: (i) that some compounds can affect the normal endocrine system through a complex mechanism binding both to ER and AR; (ii) new EDCs, which are nonER binders, but can in silico bind to AR, are recognized; and (iii) about 20% of compounds in a big data set of environmental chemicals are predicted as new AR antagonists. The priority should be given to them to experimentally test the binding activities with AR.

  11. Cardiovascular effects of ghrelin antagonist in conscious rats.

    PubMed

    Vlasova, Maria A; Järvinen, Kristiina; Herzig, Karl-Heinz

    2009-08-07

    Ghrelin, a 28 aa growth-hormone-releasing peptide, has been shown to increase food intake and decrease arterial pressure in animals and in humans. Recently, a ghrelin antagonist (GhA), [d-Lys-3]-GHRP-6, was demonstrated to decrease food intake in mice, but its cardiovascular actions have not been described. In the present study, the effects of the GhA on cardiovascular parameters in conscious rats were investigated and the involvement of the sympathetic nervous system evaluated. Mean arterial pressure (MAP) and heart rate (HR) measurements were assessed by radiotelemetry. GhA was administered in doses of 2, 4 and 6 mg/kg subcutaneously (s.c.). MAP as well as HR was dose-dependently elevated after sc application of GhA. Sympathetic blockade of alpha-adrenoreceptors with phentolamine (3 mg/kg, s.c.) and simultaneous antagonism of beta(1)-adrenoreceptors with atenolol (10 mg/kg, s.c.) abolished the increase in MAP and HR induced by GhA (4 mg/kg, s.c.). Administration of phentolamine alone inhibited the increase of MAP, but not HR; atenolol alone abolished the elevation of both MAP and HR evoked by GhA. These results suggest that the peripheral injection of ghrelin antagonist increases arterial pressure and heart rate, at least in part, through the activation of the sympathetic nervous system. Therefore, the use of the ghrelin antagonist system as a therapeutic target for reduction in food intake might lead to serious side effects like elevated blood pressure in humans mostly already having an elevated blood pressure as part of their metabolic syndrome.

  12. Making safer preoperative arrangements for patients using vitamin K antagonists

    PubMed Central

    van Fessem, Joris; Willems, Jessica; Kruip, Marieke; Hoeks, Sanne; Jan Stolker, Robert

    2017-01-01

    Use of vitamin K antagonists creates a risk for patient health and safety. The Dutch framework “Nationwide Standard Integrated Care of Anticoagulation” propagates a shared plan and responsibility by surgeon and anesthesiologist together in the preoperative setting. In our institution, this framework had not been implemented. Therefore, a quality-improvement project was started at the Anesthesia Department to improve perioperative safety. After exploration of barriers, multiple interventions were carried out to encourage co-workers at the preoperative screening department to take shared responsibility: distribution of prints, adjustments in electronic patient records, introduction of a protocol and education sessions. Efficacy was measured retrospectively performing a before-after study collecting perioperative data of patients using vitamin K antagonists. The primary outcome measure was the percentage of predefined safe preoperative plans. Secondary outcome measures were (1) incidence of postoperative bleeding and thrombo-embolic events within the first 24 hours after intervention and (2) necessity to preoperative correction of anticoagulation. Before intervention 72 (29%) safe, 93 (38%) partially unsafe and 83 (33%) unsafe arrangements were made. After the intervention these numbers were 105 (80%), 23 (17%) en 4 (3%), respectively: a significant 51% increase in safe preoperative plans (P<0.001). We observed no significant difference (P=0.369) regarding bleeding and thrombo-embolic events: pre-intervention 12 (5%) cases of postoperative bleeding were documented, vs. 6 (5%) post intervention and the number of thrombo-embolic events was 5 (2%) vs. 0. Also, no significant differences concerning preoperative correction of anticoagulation were observed: 11 (4%) vs. 8 (6%) (P=0.489). This quality improvement project demonstrates a major improvement in safer preoperative arrangements in our institution regarding vitamin K antagonists, using the described interventions

  13. Sexually Antagonistic “Zygotic Drive” of the Sex Chromosomes

    PubMed Central

    Rice, William R.; Gavrilets, Sergey; Friberg, Urban

    2008-01-01

    Genomic conflict is perplexing because it causes the fitness of a species to decline rather than improve. Many diverse forms of genomic conflict have been identified, but this extant tally may be incomplete. Here, we show that the unusual characteristics of the sex chromosomes can, in principle, lead to a previously unappreciated form of sexual genomic conflict. The phenomenon occurs because there is selection in the heterogametic sex for sex-linked mutations that harm the sex of offspring that does not carry them, whenever there is competition among siblings. This harmful phenotype can be expressed as an antagonistic green-beard effect that is mediated by epigenetic parental effects, parental investment, and/or interactions among siblings. We call this form of genomic conflict sexually antagonistic “zygotic drive”, because it is functionally equivalent to meiotic drive, except that it operates during the zygotic and postzygotic stages of the life cycle rather than the meiotic and gametic stages. A combination of mathematical modeling and a survey of empirical studies is used to show that sexually antagonistic zygotic drive is feasible, likely to be widespread in nature, and that it can promote a genetic “arms race” between the homo- and heteromorphic sex chromosomes. This new category of genomic conflict has the potential to strongly influence other fundamental evolutionary processes, such as speciation and the degeneration of the Y and W sex chromosomes. It also fosters a new genetic hypothesis for the evolution of enigmatic fitness-reducing traits like the high frequency of spontaneous abortion, sterility, and homosexuality observed in humans. PMID:19096519

  14. Short stature caused by a natural growth hormone antagonist.

    PubMed

    Chihara, K; Takahashi, Y; Kaji, H; Goji, K; Okimura, Y; Abe, H

    1998-01-01

    Severe short stature in a male child due to a single mutation in the GH-1 gene was first reported in 1996 by Takahashi et al. [N Engl J Med 1996;334:432-436]. This missense mutation was predicted to convert codon 77 from arginine (R) to cysteine (C). The child's chronological age was 4 years and 11 months, and his bone age 2 years and 6 months, i.e., equal to only 51% of his chronological age. Body proportions were normal except for the prominent forehead and saddle nose. Pituitary size was normal on magnetic resonance imaging examinations. Serum IGF-1, IGFBP-3 and GHBP were all decreased or at the lower limit of the normal range. Nocturnal urinary growth hormone (GH) excretion was high. Isoelectric focusing analysis revealed the presence of an abnormal GH peak in addition to the normal one. The R77C mutant GH possessed a 6 times greater affinity to GHBP than the wild-type GH, and inhibited tyrosine phosphorylation in IM-9 cells 10 times more potently than the wild-type GH, showing an antagonistic or a dominant negative action. In agreement with the antagonistic property of the mutant GH exhibited, the child did not show any increase in serum IGF-1 levels after exogenous hGH administration. It should be noted that the child in this study is not a typical case of Kowarski syndrome in which endogenous GH is found to be simply bioinactive, as in the patient we recently described elsewhere. Therefore, this patient's condition should be categorized as a new syndrome of short stature caused by a natural GH antagonist.

  15. Non-vitamin K antagonist oral anticoagulants and heart failure.

    PubMed

    Isnard, Richard; Bauer, Fabrice; Cohen-Solal, Alain; Damy, Thibaud; Donal, Erwan; Galinier, Michel; Hagège, Albert; Jourdain, Patrick; Leclercq, Christophe; Sabatier, Rémi; Trochu, Jean-Noël; Cohen, Ariel

    2016-11-01

    Thromboembolism contributes to morbidity and mortality in patients with heart failure (HF), and atrial fibrillation (AF) is one of the main factors promoting this complication. As they share many risk factors, HF and AF frequently coexist, and patients with both conditions are at a particularly high risk of thromboembolism. Non-vitamin K antagonist oral anticoagulants (NOACs) are direct antagonists of thrombin (dabigatran) and factor Xa (rivaroxaban, apixaban and edoxaban), and were designed to overcome the limitations of vitamin K antagonists. Compared with warfarin in non-valvular AF, NOACs demonstrated non-inferiority with better safety, most particularly for intracranial haemorrhages. Therefore, the European Society of Cardiology guidelines recommend NOACs for most patients with non-valvular AF. Subgroups of patients with both AF and HF from the pivotal studies investigating the safety and efficacy of NOACs have been analysed and, for each NOAC, results were similar to those of the total analysis population. A recent meta-analysis of these subgroups has confirmed the better efficacy and safety of NOACs in patients with AF and HF - particularly the 41% decrease in the incidence of intracranial haemorrhages. The prothrombotic state associated with HF suggests that patients with HF in sinus rhythm could also benefit from treatment with NOACs. However, in the absence of clinical trial data supporting this indication, current guidelines do not recommend anticoagulant treatment of patients with HF in sinus rhythm. In conclusion, recent analyses of pivotal studies support the use of NOACs in accordance with their indications in HF patients with non-valvular AF.

  16. Behavioral approach to nondyskinetic dopamine antagonists: identification of seroquel.

    PubMed

    Warawa, E J; Migler, B M; Ohnmacht, C J; Needles, A L; Gatos, G C; McLaren, F M; Nelson, C L; Kirkland, K M

    2001-02-01

    A great need exists for antipsychotic drugs which will not induce extrapyramidal symptoms (EPS) and tardive dyskinesias (TDs). These side effects are deemed to be a consequence of nonselective blockade of nigrostriatal and mesolimbic dopamine D2 receptors. Nondyskinetic clozapine (1) is a low-potency D2 dopamine receptor antagonist which appears to act selectively in the mesolimbic area. In this work dopamine antagonism was assessed in two mouse behavioral assays: antagonism of apomorphine-induced climbing and antagonism of apomorphine-induced disruption of swimming. The potential for the liability of dyskinesias was determined in haloperidol-sensitized Cebus monkeys. Initial examination of a few close cogeners of 1 enhanced confidence in the Cebus model as a predictor of dyskinetic potential. Considering dibenzazepines, 2 was not dyskinetic whereas 2a was dyskinetic. Among dibenzodiazepines, 1 did not induce dyskinesias whereas its N-2-(2-hydroxyethoxy)ethyl analogue 3 was dyskinetic. The emergence of such distinctions presented an opportunity. Thus, aromatic and N-substituted analogues of 6-(piperazin-1-yl)-11H-dibenz[b,e]azepines and 11-(piperazin-1-yl)dibenzo[b,f][1,4]thiazepines and -oxazepines were prepared and evaluated. 11-(4-[2-(2-Hydroxyethoxy)ethyl]piperazin-1-yl)dibenzo[b,f][1,4]thiazepine (23) was found to be an apomorphine antagonist comparable to clozapine. It was essentially nondyskinetic in the Cebus model. With 23 as a platform, a number of N-substituted analogues were found to be good apomorphine antagonists but all were dyskinetic.

  17. Esthetic Prosthetic Restorations: Reliability and Effects on Antagonist Dentition

    PubMed Central

    Daou, Elie E.

    2015-01-01

    Recent advances in ceramics have greatly improved the functional and esthetic properties of restorative materials. New materials offer an esthetic and functional oral rehabilitation, however their impact on opposing teeth is not welldocumented. Peer-reviewed articles published till December 2014 were identified through Pubmed (Medline and Elsevier). Scientifically, there are several methods of measuring the wear process of natural dentition which enhances the comparison of the complicated results. This paper presents an overview of the newly used prosthetic materials and their implication on antagonist teeth or prostheses, especially emphasizing the behavior of zirconia restorations. PMID:26962376

  18. The pharmacology of fluparoxan: a selective alpha 2-adrenoceptor antagonist.

    PubMed

    Halliday, C A; Jones, B J; Skingle, M; Walsh, D M; Wise, H; Tyers, M B

    1991-04-01

    1. This paper describes the pharmacology of the novel alpha 2-adrenoceptor antagonist fluparoxan (GR 50360) which is currently being studied clinically as a potential anti-depressant. Idazoxan and yohimbine were included in many studies for comparison. 2. In the rat isolated, field-stimulated vas deferens and the guinea-pig isolated, field-stimulated ileum preparations, fluparoxan was a reversible competitive antagonist of the inhibitory responses to the alpha 2-adrenoceptor agonist UK-14304 with pKB values of 7.87 and 7.89 respectively. In the rat isolated anococcygeus muscle, fluparoxan was a much weaker competitive antagonist of the contractile response to the alpha 1-adrenoceptor agonist phenylephrine with a pKB of 4.45 giving an alpha 2: alpha 1-adrenoceptor selectivity ratio of greater than 2500. 3. In the conscious mouse, fluparoxan (0.2-3.0 mg kg-1) was effective by the oral route and of similar potency to idazoxan in preventing clonidine-induced hypothermia and antinociception. In the rat, UK-14304-induced hypothermia (ED50 = 1.4 mg kg-1, p.o. or 0.5 mg kg-1, i.v.) and rotarod impairment (ED50 = 1.1 mg kg-1 p.o. or 1.3 mg kg-1, i.v.) were antagonized by fluparoxan. Fluparoxan, 0.67-6 mg kg-1, p.o., also prevented UK-14304-induced sedation and bradycardia in the dog. 4. In specificity studies fluparoxan had low or no affinity for a wide range of neurotransmitter receptor sites at concentrations up to at least 1 x 10(-5) M. It displayed weak affinity for 5-HT1A (pIC50 = 5.9) and 5-HT1B (pKi = 5.5) binding sites in rat brain. 5. We conclude that fluparoxan is a highly selective and potent alpha 2-adrenoceptor antagonist. The density of rat brain [3H]-dihydroalprenolol binding sites was reduced by 26% when fluparoxan was administered chronically for 6 days at a dose of 12 mg kg- 1 orally twice daily. The down-regulation of beta-adrenoceptors by fluparoxan is consistent with its antidepressant potential.

  19. Lymphocyte homing antagonists in the treatment of inflammatory bowel diseases.

    PubMed

    Saruta, Masayuki; Papadakis, Konstantinos A

    2014-09-01

    Lymphocyte homing antagonists represent promising therapeutic agents for the treatment of idiopathic inflammatory bowel disease (IBD). Several critical molecules involved in the recruitment of inflammatory cells in the intestine, including integrins and chemokine receptors, have been successfully targeted for the treatment of IBD. These agents have shown great promise for the induction and maintenance of remission for both Crohn disease and ulcerative colitis. This article discusses currently approved prototypic agents for the treatment of IBD (natalizumab, anti-α4 integrin; vedolizumab, anti-α4β7 integrin), and several other agents in the same class currently under development.

  20. Antagonistic action of pitrazepin on human and rat GABAA receptors

    PubMed Central

    Demuro, Angelo; Martinez-Torres, Ataulfo; Francesconi, Walter; Miledi, Ricardo

    1999-01-01

    Pitrazepin, 3-(piperazinyl-1)-9H-dibenz(c,f) triazolo(4,5-a)azepin is a piperazine antagonist of GABA in a variety of electrophysiological and in vitro binding studies involving GABA and glycine receptors. In the present study we have investigated the effects of pitrazepin, and the GABAA antagonist bicuculline, on membrane currents elicited by GABA in Xenopus oocytes injected with rat cerebral cortex mRNA or cDNAs encoding α1β2 or α1β2γ2S human GABAA receptor subunits.The three types of GABAA receptors expressed were reversibly antagonized by bicuculline and pitrazepin in a concentration-dependent manner. GABA dose-current response curves for the three types of receptors were shifted to the right, in a parallel manner, by increasing concentrations of pitrazepin.Schild analyses gave pA2 values of 6.42±0.62, n=4, 6.41±1.2, n=5 and 6.21±1.24, n=6, in oocytes expressing rat cerebral cortex, α1β2 or α1β2γ2S human GABAA receptors respectively (values are given as means±s.e.mean), and the Hill coefficients were all close to unity. All this is consistent with the notion that pitrazepin acts as a competitive antagonist of these GABAA receptors; and that their antagonism by pitrazepin is not strongly dependent on the subunit composition of the receptors here studied.Since pitrazepin has been reported to act also at the benzodiazepine binding site, we studied the effect of the benzodiazepine antagonist Ro 15-1788 (flumazenil) on the inhibition of α1β2γ2S receptors by pitrazepin. Co-application of Ro 15-1788 did not alter the inhibiting effect of pitrazepin. Moreover, pitrazepin did not antagonize the potentiation of GABA-currents by flunitrazepam. All this suggests that pitrazepin does not affect the GABA receptor-chloride channel by interacting with the benzodiazepine receptor site. PMID:10369456

  1. [Vitamin K antagonist, direct oral anticoagulants: Where is the truth?

    PubMed

    Laroche, J-P; Schved, J-F

    2016-12-01

    Vitamin K antagonists (VKA) and direct oral anticoagulants (DOACs) are now in competition. The companies are trying to replace VKA by DOACs, totally or at least greatly VKA should VKA disappear in favor of DOACs? There are still many questions about DOACs. The purpose of this article is to make a well-considered decision in this area. The aim is not to denigrate one or the other but to share things between these two families of anticoagulants. Physicians using these drugs must have a full knowledge about compared efficacy and safety. We feel necessary to increase distance between effective results of the clinical trials and industrial communication around DOACs.

  2. Substituted Tetrahydroisoquinolines as Selective Antagonists for the Orexin 1 Receptor

    PubMed Central

    Perrey, David A.; German, Nadezhda A.; Gilmour, Brian P.; Li, Jun-Xu; Harris, Danni L.; Thomas, Brian F.; Zhang, Yanan

    2013-01-01

    Increasing evidence implicates the orexin 1 (OX1) receptor in reward processes, suggesting OX1 antagonism could be therapeutic in drug addiction. In a program to develop an OX1 selective antagonist, we designed and synthesized a series of substituted tetrahydroisoquinolines and determined their potency in OX1 and OX2 calcium mobilization assays. Structure-activity relationship (SAR) studies revealed limited steric tolerance and preference for electron deficiency at the 7-position. Pyridylmethyl groups were shown to be optimal for activity at the acetamide position. Computational studies resulted in a pharmacophore model and confirmed the SAR results. Compound 72 significantly attenuated the development of place preference for cocaine in rats. PMID:23941044

  3. Hypothesis: is infantile autism a hypoglutamatergic disorder? Relevance of glutamate - serotonin interactions for pharmacotherapy.

    PubMed

    Carlsson, M L

    1998-01-01

    Based on 1) neuroanatomical and neuroimaging studies indicating aberrations in brain regions that are rich in glutamate neurons and 2) similarities between symptoms produced by N-methyl-D-aspartate (NMDA) antagonists in healthy subjects and those seen in autism, it is proposed in the present paper that infantile autism is a hypoglutamatergic disorder. Possible future pharmacological interventions in autism are discussed in the light of the intimate interplay between central glutamate and serotonin, notably the serotonin (5-HT) 2A receptor. The possible benefit of treatment with glutamate agonists [e.g. agents acting on the modulatory glycine site of the NMDA receptor, or so-called ampakines acting on the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor] is discussed, as well as the potential usefulness of a selective 5-HT2A receptor antagonist.

  4. Plasma-etching science meets technology in the MDL

    SciTech Connect

    Greenberg, K.E.; Miller, P.A.; Patteson, R.; Smith, B.K.

    1993-03-01

    Results from fundamental investigations of low-temperature plasma systems were used to improve chamber-to-chamber reproducibility and reliability in commercial plasma-etching equipment. The fundamental studies were performed with a GEC RF Reference Cell, a laboratory research system designed to facilitate experimental and theoretical studies of plasma systems. Results and diagnostics from the Reference Cell studies were then applied to analysis and rectification of chamber-to-chamber variability on a commercial, multichamber, plasma reactor. Pertinent results were transferred to industry.

  5. Safety profile of mineralocorticoid receptor antagonists: Spironolactone and eplerenone.

    PubMed

    Lainscak, Mitja; Pelliccia, Francesco; Rosano, Giuseppe; Vitale, Cristiana; Schiariti, Michele; Greco, Cesare; Speziale, Giuseppe; Gaudio, Carlo

    2015-12-01

    Spironolactone was first developed over 50 years ago as a potent mineralocorticoid receptor antagonist with undesirable side effects; it was followed a decade ago by eplerenone, which is less potent but much more mineralocorticoid receptor-specific. From a marginal role as a potassium-sparing diuretic, spironolactone has been shown to be an extraordinarily effective adjunctive agent in the treatment of progressive heart failure. Also, spironolactone is safe and protective in arterial hypertension, particularly in patients with so-called resistant hypertension. Eplerenone is the second oral aldosterone antagonist available for the treatment of arterial hypertension and heart failure. Treatment with eplerenone has been associated with decreased blood pressure and improved survival for patients with heart failure and reduced left ventricular ejection fraction. Due to the selectivity of eplerenone for the aldosterone receptor, severe adverse effects such as gynecomastia and vaginal bleeding seem to be less likely in patients who take eplerenone than in those who take spironolactone. The most common and potentially dangerous side effect of spironolactone--hyperkalemia--is also observed with eplerenone but the findings from clinical trials do not indicate more hyperkalemia induced drug withdrawals. Treatment with eplerenone should be initiated at a dosage of 25mg once daily and titrated to a target dosage of 50mg once daily preferably within 4 weeks. Serum potassium levels and renal function should be assessed prior to initiating eplerenone therapy, and periodic monitoring is recommended, especially in patients at high risk of developing hyperkalemia.

  6. NMDA receptor antagonists extend the sensitive period for imprinting.

    PubMed

    Parsons, C H; Rogers, L J

    2000-03-01

    Filial imprinting in the domestic chick occurs during a sensitive period of development. The exact timing of this period can vary according to the methods used to measure imprinting. Using our imprinting paradigm, we have shown that normal, dark-reared chicks lose the ability to imprint after the second day post-hatching. Further, we reported that chicks treated 10 h after hatching with a mixture of the noncompetitive NMDA receptor antagonist ketamine (55 mg/kg) and the alpha(2)-adrenergic receptor agonist xylazine (6 mg/kg) were able to imprint on day 8 after hatching, whereas controls treated with saline did not imprint. We now show that the effect of the ketamine-xylazine mixture can be mimicked by treating chicks with ketamine alone or with another noncompetitive NMDA receptor antagonist, MK-801 (5 mg/kg). Treating chicks with a single dose of ketamine (55 mg/kg) or with a single dose of xylazine (6 mg/kg) failed to produce the effect on the sensitive period. However, prolonging the action of ketamine by treating chicks with two doses of ketamine (at 10 and 12 h after hatching) did allow imprinting on day 8. In contrast, prolonging the action of xylazine had no effect on the sensitive period for imprinting. Chicks treated with MK-801 were also able to imprint on day 8. Thus, we have evidence that the NMDA receptor system is involved in the mechanisms that control the sensitive period for imprinting.

  7. Fires can benefit plants by disrupting antagonistic interactions.

    PubMed

    García, Y; Castellanos, M C; Pausas, J G

    2016-12-01

    Fire has a key role in the ecology and evolution of many ecosystems, yet its effects on plant-insect interactions are poorly understood. Because interacting species are likely to respond to fire differently, disruptions of the interactions are expected. We hypothesized that plants that regenerate after fire can benefit through the disruption of their antagonistic interactions. We expected stronger effects on interactions with specialist predators than with generalists. We studied two interactions between two Mediterranean plants (Ulex parviflorus, Asphodelus ramosus) and their specialist seed predators after large wildfires. In A. ramosus we also studied the generalist herbivores. We sampled the interactions in burned and adjacent unburned areas during 2 years by estimating seed predation, number of herbivores and fruit set. To assess the effect of the distance to unburned vegetation we sampled plots at two distance classes from the fire perimeter. Even 3 years after the fires, Ulex plants experienced lower seed damage by specialists in burned sites. The presence of herbivores on Asphodelus decreased in burned locations, and the variability in their presence was significantly related to fruit set. Generalist herbivores were unaffected. We show that plants can benefit from fire through the disruption of their antagonistic interactions with specialist seed predators for at least a few years. In environments with a long fire history, this effect might be one additional mechanism underlying the success of fire-adapted plants.

  8. A prototypical Sigma-1 receptor antagonist protects against brain ischemia.

    PubMed

    Schetz, John A; Perez, Evelyn; Liu, Ran; Chen, Shiuhwei; Lee, Ivan; Simpkins, James W

    2007-11-21

    Previous studies indicate that the Sigma-1 ligand 4-phenyl-1-(4-phenylbutyl) piperidine (PPBP) protects the brain from ischemia. Less clear is whether protection is mediated by agonism or antagonism of the Sigma-1 receptor, and whether drugs already in use for other indications and that interact with the Sigma-1 receptor might also prevent oxidative damage due to conditions such as cerebral ischemic stroke. The antipsychotic drug haloperidol is an antagonist of Sigma-1 receptors and in this study it potently protects against oxidative stress-related cell death in vitro at low concentrations. The protective potency of haloperidol and a number of other butyrophenone compounds positively correlate with their affinity for a cloned Sigma-1 receptor, and the protection is mimicked by a Sigma-1 receptor-selective antagonist (BD1063), but not an agonist (PRE-084). In vivo, an acute low dose (0.05 mg/kg s.c.) of haloperidol reduces by half the ischemic lesion volume induced by a transient middle cerebral artery occlusion. These in vitro and in vivo pre-clinical results suggest that a low dose of acutely administered haloperidol might have a novel application as a protective agent against ischemic cerebral stroke and other types of brain injury with an ischemic component.

  9. Abnormal reciprocal inhibition between antagonist muscles in Parkinson's disease.

    PubMed

    Meunier, S; Pol, S; Houeto, J L; Vidailhet, M

    2000-05-01

    Disynaptic Ia reciprocal inhibition acts, at the spinal level, by actively inhibiting antagonist motor neurons and reducing the inhibition of agonist motor neurons. The deactivation of this pathway in Parkinson's disease is still debated. Disynaptic reciprocal inhibition of H reflexes in the forearm flexor muscles was examined in 15 control subjects and 16 treated parkinsonian patients at rest and at the onset of a voluntary wrist flexion. Two patients were reassessed 18 h after withdrawal of antiparkinsonian medication. At rest, the level of Ia reciprocal inhibition between the wrist antagonist muscles was not significantly different between patients and controls. In contrast, clear abnormalities of this inhibition were revealed by voluntary movements in the patients. In normal subjects, at the onset of a wrist flexion, Ia reciprocal inhibition showed a large decrease, and we argue that this decrease is supraspinal in origin. On the less affected sides of the patients the descending modulation was still present but lower than in controls; on the more affected sides this modulation had vanished almost completely. These movement-induced abnormalities of disynaptic Ia reciprocal inhibition were closely associated with Parkinson's disease but were probably not dependent on L-dopa. They could play a role in the disturbances of precise voluntary movements observed in Parkinson's disease.

  10. CCR9 Antagonists in the Treatment of Ulcerative Colitis

    PubMed Central

    Bekker, Pirow; Ebsworth, Karen; Walters, Matthew J.; Berahovich, Robert D.; Ertl, Linda S.; Charvat, Trevor T.; Punna, Sreenivas; Powers, Jay P.; Campbell, James J.; Sullivan, Timothy J.; Jaen, Juan C.; Schall, Thomas J.

    2015-01-01

    While it has long been established that the chemokine receptor CCR9 and its ligand CCL25 are essential for the movement of leukocytes into the small intestine and the development of small-intestinal inflammation, the role of this chemokine-receptor pair in colonic inflammation is not clear. Toward this end, we compared colonic CCL25 protein levels in healthy individuals to those in patients with ulcerative colitis. In addition, we determined the effect of CCR9 pharmacological inhibition in the mdr1a−/− mouse model of ulcerative colitis. Colon samples from patients with ulcerative colitis had significantly higher levels of CCL25 protein compared to healthy controls, a finding mirrored in the mdr1a−/− mice. In the mdr1a−/− mice, CCR9 antagonists significantly decreased the extent of wasting and colonic remodeling and reduced the levels of inflammatory cytokines in the colon. These findings indicate that the CCR9:CCL25 pair plays a causative role in ulcerative colitis and suggest that CCR9 antagonists will provide a therapeutic benefit in patients with colonic inflammation. PMID:26457007

  11. The use of melanocortin antagonists in cachexia of chronic disease.

    PubMed

    Scarlett, Jarrad M; Marks, Daniel L

    2005-10-01

    Cachexia is a wasting syndrome that frequently develops in the setting of chronic diseases including cancer, congestive heart failure, chronic obstructive pulmonary disease, AIDS, renal failure and liver failure. Loss of lean body mass is believed to be a significant factor contributing to morbidity and mortality in these chronic diseases; however, there are currently no treatments available that have proven to be effective in reversing the progressive loss of lean body mass in cachectic patients. Evidence from animal models suggests a compelling link between inflammation, the central melanocortin system and cachexia. This review summarises the current evidence supporting the role of the melanocortin 4 (MC4) receptor subtype in cachexia, and discusses the development and use of small-molecule MC4 antagonists, which have proved to be effective in preventing the loss of lean body mass in animal models of cachexia. MC4 antagonists represent an attractive therapeutic approach for cachexia that may attenuate the loss of lean body mass in cachectic patients.

  12. The evolution of histamine H₃ antagonists/inverse agonists.

    PubMed

    Lebois, Evan P; Jones, Carrie K; Lindsley, Craig W

    2011-01-01

    This article describes our efforts along with recent advances in the development, biological evaluation and clinical proof of concept of small molecule histamine H₃ antagonists/inverse agonists. The H3 receptor is a presynaptic autoreceptor within the Class A GPCR family, but also functions as a heteroreceptor modulating levels of neurotransmitters such as dopamine, acetylcholine, norepinephrine, serotonin, GABA and glutamate. Thus, H₃R has garnered a great deal of interest from the pharmaceutical industry for the possible treatment of obesity, epilepsy, sleep/wake, schizophrenia, Alzheimer's disease, neuropathic pain and ADHD. Within the two main classes of H₃ ligands, both imidazole and non-imidazole derived, have shown sufficient potency and specificity which culminated with efficacy in preclinical models for various CNS disorders. Importantly, conserved elements have been identified within the small molecule H₃ ligand scaffolds that resulted in a highly predictive pharmacophore model. Understanding of the pharmacophore model has allowed several groups to dial H₃R activity into scaffolds designed for other CNS targets, and engender directed polypharmacology. Moreover, Abbott, GSK, Pfizer and several others have reported positive Phase I and/or Phase II data with structurally diverse H₃R antagonists/inverse agonists.

  13. Evodiamine as a novel antagonist of aryl hydrocarbon receptor

    SciTech Connect

    Yu, Hui; Tu, Yongjiu; Zhang, Chun; Fan, Xia; Wang, Xi; Wang, Zhanli; Liang, Huaping

    2010-11-05

    Research highlights: {yields} Evodiamine interacted with the AhR. {yields} Evodiamine inhibited the specific binding of [{sup 3}H]-TCDD to the AhR. {yields} Evodiamine acts as an antagonist of the AhR. -- Abstract: Evodiamine, the major bioactive alkaloid isolated from Wu-Chu-Yu, has been shown to interact with a wide variety of proteins and modify their expression and activities. In this study, we investigated the interaction between evodiamine and the aryl hydrocarbon receptor (AhR). Molecular modeling results revealed that evodiamine directly interacted with the AhR. Cytosolic receptor binding assay also provided the evidence that evodiamine could interact with the AhR with the K{sub i} value of 28.4 {+-} 4.9 nM. In addition, we observed that evodiamine suppressed the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced nuclear translocation of the AhR and the expression of CYP1A1 dose-dependently. These results suggested that evodiamine was able to bind to the AhR as ligand and exhibit antagonistic effects.

  14. Human homosexuality: a paradigmatic arena for sexually antagonistic selection?

    PubMed

    Camperio Ciani, Andrea; Battaglia, Umberto; Zanzotto, Giovanni

    2015-01-29

    Sexual conflict likely plays a crucial role in the origin and maintenance of homosexuality in our species. Although environmental factors are known to affect human homosexual (HS) preference, sibling concordances and population patterns related to HS indicate that genetic components are also influencing this trait in humans. We argue that multilocus, partially X-linked genetic factors undergoing sexually antagonistic selection that promote maternal female fecundity at the cost of occasional male offspring homosexuality are the best candidates capable of explaining the frequency, familial clustering, and pedigree asymmetries observed in HS male proband families. This establishes male HS as a paradigmatic example of sexual conflict in human biology. HS in females, on the other hand, is currently a more elusive phenomenon from both the empirical and theoretical standpoints because of its fluidity and marked environmental influence. Genetic and epigenetic mechanisms, the latter involving sexually antagonistic components, have been hypothesized for the propagation and maintenance of female HS in the population. However, further data are needed to truly clarify the evolutionary dynamics of this trait.

  15. Human Homosexuality: A Paradigmatic Arena for Sexually Antagonistic Selection?

    PubMed Central

    Ciani, Andrea Camperio; Battaglia, Umberto; Zanzotto, Giovanni

    2015-01-01

    Sexual conflict likely plays a crucial role in the origin and maintenance of homosexuality in our species. Although environmental factors are known to affect human homosexual (HS) preference, sibling concordances and population patterns related to HS indicate that genetic components are also influencing this trait in humans. We argue that multilocus, partially X-linked genetic factors undergoing sexually antagonistic selection that promote maternal female fecundity at the cost of occasional male offspring homosexuality are the best candidates capable of explaining the frequency, familial clustering, and pedigree asymmetries observed in HS male proband families. This establishes male HS as a paradigmatic example of sexual conflict in human biology. HS in females, on the other hand, is currently a more elusive phenomenon from both the empirical and theoretical standpoints because of its fluidity and marked environmental influence. Genetic and epigenetic mechanisms, the latter involving sexually antagonistic components, have been hypothesized for the propagation and maintenance of female HS in the population. However, further data are needed to truly clarify the evolutionary dynamics of this trait. PMID:25635045

  16. Carbobenzoxy amino acids: Structural requirements for cholecystokinin receptor antagonist activity

    SciTech Connect

    Maton, P.N.; Sutliff, V.E.; Jensen, R.T.; Gardner, J.D.

    1985-04-01

    The authors used dispersed acini prepared from guinea pig pancreas to examine 28 carbobenzoxy (CBZ) amino acids for their abilities to function as cholecystokinin receptor antagonists. All amino acid derivatives tested, except for CBZ-alanine, CBZ-glycine, and N alpha-CBZ- lysine, were able to inhibit the stimulation of amylase secretion caused by the C-terminal octapeptide of cholecystokinin. In general, there was a good correlation between the ability of a carbobenzoxy amino acid to inhibit stimulated amylase secretion and the ability of the amino acid derivative to inhibit binding of /sup 125/I-cholecystokinin. The inhibition of cholecystokinin-stimulated amylase secretion was competitive, fully reversible, and specific for those secretagogues that interact with the cholecystokinin receptor. The potencies with which the various carbobenzoxy amino acids inhibited the action of cholecystokinin varied 100-fold and CBZ-cystine was the most potent cholecystokinin receptor antagonist. This variation in potency was primarily but not exclusively a function of the hydrophobicity of the amino acid side chain.

  17. Contrasting effects of intralocus sexual conflict on sexually antagonistic coevolution

    PubMed Central

    Pennell, Tanya M.; de Haas, Freek J. H.; Morrow, Edward H.; van Doorn, G. Sander

    2016-01-01

    Evolutionary conflict between the sexes can induce arms races in which males evolve traits that are detrimental to the fitness of their female partners, and vice versa. This interlocus sexual conflict (IRSC) has been proposed as a cause of perpetual intersexual antagonistic coevolution with wide-ranging evolutionary consequences. However, theory suggests that the scope for perpetual coevolution is limited, if traits involved in IRSC are subject to pleiotropic constraints. Here, we consider a biologically plausible form of pleiotropy that has hitherto been ignored in treatments of IRSC and arrive at drastically different conclusions. Our analysis is based on a quantitative genetic model of sexual conflict, in which genes controlling IRSC traits have side effects in the other sex, due to incompletely sex-limited gene expression. As a result, the genes are exposed to intralocus sexual conflict (IASC), a tug-of-war between opposing male- and female-specific selection pressures. We find that the interaction between the two forms of sexual conflict has contrasting effects on antagonistic coevolution: Pleiotropic constraints stabilize the dynamics of arms races if the mating traits are close to evolutionary equilibrium but can prevent populations from ever reaching such a state. Instead, the sexes are drawn into a continuous cycle of arms races, causing the buildup of IASC, alternated by phases of IASC resolution that trigger the next arms race. These results encourage an integrative perspective on the biology of sexual conflict and generally caution against relying exclusively on equilibrium stability analysis. PMID:26755609

  18. [Mineralocorticoid receptor antagonists and therapeutic strategies of cardiovascular damage].

    PubMed

    Verdugo, Fernando J; Montellano, Felipe A; Carreño, Juan E; Marusic, Elisa T

    2014-01-01

    In recent years, much attention has focused on the role of aldosterone and mineralocorticoid receptors (MRs) in the pathophysiology of hypertension and cardiovascular disease. Patients with primary aldosteronism, in whom angiotensin II levels are low, have a higher incidence of cardiovascular complications than patients with essential hypertension. The Randomized Aldactone Evaluation Study (RALES) demonstrated that adding a non-specific MR antagonist, spironolactone, to a standard therapy that included angiotensin-converting enzyme (ACE) inhibitors, loop diuretics, and digoxin, significantly reduced morbidity and mortality in patients with moderate to severe heart failure. Similarly, the Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study (EPHESUS) showed that the addition of a selective MR antagonist (ARM), eplerenone, to an optimal medical therapy reduces morbidity and mortality among patients with acute myocardial infarction complicated by left ventricular dysfunction and heart failure. These data suggest that aldosterone induces cardiac injury through activation of MRs and support the notion that MR blockade has beneficial effects on aldosterone-dependent cardiac injury, through mechanisms that cannot be simply explained by hemodynamic changes. Although, MRA are highly effective in patients with heart failure, the risk of hyperkalemia should not be overlooked. Serious hyperkalemia events were reported in some MRA clinical trials; however these risks can be mitigated through appropriate patient selection, dose selection, patient education, monitoring, and follow-up.

  19. Quinidine as a muscarinic antagonist: a structural approach.

    PubMed

    Ciechanowicz-Rutkowska, M; Oleksyn, B J; Suszko-Purzycka, A; Lipińska, T

    1992-06-01

    The synthesis, spectroscopic characteristics, and single-crystal X-ray structural analysis of quitenidine methyl ester monohydrate, a derivative of the muscarinic antagonist quinidine, are presented. Quitenidine methyl ester monohydrate (C20H24N2O4.H2O) crystallizes in the orthorhombic space group P2(1)2(1)2(1), with a = 16.69(3) A, b = 12.46(2) A, c = 9.70(1) A, and Z = 4. The crystal structure was refined to a discrepancy factor (R) of 0.097. Substitution of the quinidine vinyl chain with a carboxymethyl group does not influence the conformation. The carboxymethyl group is positionally disordered, a fact that complicates refinement of the structure. The water molecule is bonded to the quinuclidine nitrogen atom, and the hydroxyl group forms an intermolecular hydrogen bond with the quinoline nitrogen atom. The molecular structure of the ester was compared with those of quinidine, quinine, and four other antimuscarinic agents. An approximately linear relationship between the distance from the nonaromatic nitrogen to the plane of the aromatic part of the molecules and the blocking potency of these agents was noted; the greater this distance, the more potent is the antagonist.

  20. Psilocybin-induced deficits in automatic and controlled inhibition are attenuated by ketanserin in healthy human volunteers.

    PubMed

    Quednow, Boris B; Kometer, Michael; Geyer, Mark A; Vollenweider, Franz X

    2012-02-01

    The serotonin-2A receptor (5-HT(2A)R) has been implicated in the pathogenesis of schizophrenia and related inhibitory gating and behavioral inhibition deficits of schizophrenia patients. The hallucinogen psilocybin disrupts automatic forms of sensorimotor gating and response inhibition in humans, but it is unclear so far whether the 5-HT(2A)R or 5-HT(1A)R agonist properties of its bioactive metabolite psilocin account for these effects. Thus, we investigated whether psilocybin-induced deficits in automatic and controlled inhibition in healthy humans could be attenuated by the 5-HT(2A/2C)R antagonist ketanserin. A total of 16 healthy participants received placebo, ketanserin (40 mg p.o.), psilocybin (260 μg/kg p.o.), or psilocybin plus ketanserin in a double-blind, randomized, and counterbalanced order. Sensorimotor gating was measured by prepulse inhibition (PPI) of the acoustic startle response. The effects on psychopathological core dimensions and behavioral inhibition were assessed by the altered states of consciousness questionnaire (5D-ASC), and the Color-Word Stroop Test. Psilocybin decreased PPI at short lead intervals (30 ms), increased all 5D-ASC scores, and selectively increased errors in the interference condition of the Stroop Test. Stroop interference and Stroop effect of the response latencies were increased under psilocybin as well. Psilocybin-induced alterations were attenuated by ketanserin pretreatment, whereas ketanserin alone had no significant effects. These findings suggest that the disrupting effects of psilocybin on automatic and controlled inhibition processes are attributable to 5-HT(2A)R stimulation. Sensorimotor gating and attentional control deficits of schizophrenia patients might be due to changes within the 5-HT(2A)R system.

  1. Inhibition of alpha oscillations through serotonin-2A receptor activation underlies the visual effects of ayahuasca in humans.

    PubMed

    Valle, Marta; Maqueda, Ana Elda; Rabella, Mireia; Rodríguez-Pujadas, Aina; Antonijoan, Rosa Maria; Romero, Sergio; Alonso, Joan Francesc; Mañanas, Miquel Àngel; Barker, Steven; Friedlander, Pablo; Feilding, Amanda; Riba, Jordi

    2016-07-01

    Ayahuasca is an Amazonian psychotropic plant tea typically obtained from two plants, Banisteriopsis caapi and Psychotria viridis. It contains the psychedelic 5-HT2A and sigma-1 agonist N,N-dimethyltryptamine (DMT) plus β-carboline alkaloids with monoamine-oxidase (MAO)-inhibiting properties. Although the psychoactive effects of ayahuasca have commonly been attributed solely to agonism at the 5-HT2A receptor, the molecular target of classical psychedelics, this has not been tested experimentally. Here we wished to study the contribution of the 5-HT2A receptor to the neurophysiological and psychological effects of ayahuasca in humans. We measured drug-induced changes in spontaneous brain oscillations and subjective effects in a double-blind randomized placebo-controlled study involving the oral administration of ayahuasca (0.75mg DMT/kg body weight) and the 5-HT2A antagonist ketanserin (40mg). Twelve healthy, experienced psychedelic users (5 females) participated in four experimental sessions in which they received the following drug combinations: placebo+placebo, placebo+ayahuasca, ketanserin+placebo and ketanserin+ayahuasca. Ayahuasca induced EEG power decreases in the delta, theta and alpha frequency bands. Current density in alpha-band oscillations in parietal and occipital cortex was inversely correlated with the intensity of visual imagery induced by ayahuasca. Pretreatment with ketanserin inhibited neurophysiological modifications, reduced the correlation between alpha and visual effects, and attenuated the intensity of the subjective experience. These findings suggest that despite the chemical complexity of ayahuasca, 5-HT2A activation plays a key role in the neurophysiological and visual effects of ayahuasca in humans.

  2. Effects of the hallucinogen 2,5-dimethoxy-4-iodophenethylamine (2C-I) and superpotent N-benzyl derivatives on the head twitch response.

    PubMed

    Halberstadt, Adam L; Geyer, Mark A

    2014-02-01

    N-benzyl substitution markedly enhances the affinity of phenethylamine hallucinogens at the 5-HT(2A) receptor. N-benzyl substituted derivatives of 2,5-dimethoxy-4-iodophenethylamine (2C-I), such as N-(2-methoxybenzyl)-2,5-dimethoxy-4-iodophenethylamine (25I-NBOMe) and N-(2,3-methylenedioxybenzyl)-2,5-dimethoxy-4-iodophenethylamine (25I-NBMD), have appeared recently as designer drugs, but have not been characterized behaviorally. The head twitch response (HTR) is induced by 5-HT(2A) receptor activation in rats and mice, and is widely used as a behavioral proxy for hallucinogen effects in humans. Nevertheless, it is not clear whether phenethylamine hallucinogens reliably provoke this behavior. Hence, we investigated whether 2C-I, 25I-NBOMe and 25I-NBMD induce head twitches in C57BL/6J mice. The HTR was assessed using a head-mounted magnet and a magnetometer coil. 2C-I (1-10 mg/kg SC), 25I-NBOMe (0.1-1 mg/kg SC), and 25I-NBMD (1-10 mg/kg SC) induced the HTR. 25I-NBOMe displayed 14-fold higher potency than 2C-I, and the selective 5-HT(2A) antagonist M100,907 completely blocked the HTR induced by all three compounds. These findings show that phenethylamine hallucinogens induce the HTR by activating 5-HT(2A) receptors. Our results demonstrate that 25I-NBOMe is a highly potent derivative of 2C-I, confirming previous in vitro findings that N-benzyl substitution increases 5-HT(2A) affinity. Given the high potency and ease of synthesis of N-benzylphenethylamines, it is likely that the recreational use of these hallucinogens will become more widespread in the future.

  3. Is All Radiation-Induced Emesis Ameliorated by 5-HT3 Receptor Antagonists

    DTIC Science & Technology

    1992-01-01

    5 - HT3 receptor antagonists ;~// 9-72 Bernard M.I Rabin 0’) and Gregory L. Kingt2) -) Behavioral Sciences and 2 PhYSzo~o~y Dcpiarlrnvni . Arm,. ii - R...RY Exposing ferrets to gamuma rays or X-rays produces vomiting that can be attenuated by 5 - HT3 receptor antagonists and by subdiaphraqmatic vagotomy...Pretreating ferrets with serotonin type-3 ( 5 - HT3 ) receptor antagonists or performing bilateral subdiaphragmatic vagotomy reliably attenuates the

  4. Interaction of Pyridostigmine with the 5-HT(3) Receptor Antagonist Ondansetron in Guinea Pigs

    DTIC Science & Technology

    1993-05-13

    5 - HT3 RECEPTOR - ANTAGONIST .ONDANSETRON IN GUINEA PIGS BR. Capacio, CE. Byers...apart. REFERENCES 1. Fozard JR. 5 -HT; The Enigma Variations. =JE, 8, 501-506 (December 1987). 2. Watling KJ. 5 - HT3 Receptor Agonists and Antagonists . In... 5 -HT receptor subtype three antagonists (5HT 3 ) such as the compound ondansetron (OND) have been identified as useful in the treatment of

  5. In dermographic urticaria H2 receptor antagonists have a small but therapeutically irrelevant additional effect compared with H1 antagonists alone.

    PubMed

    Sharpe, G R; Shuster, S

    1993-11-01

    Two studies of the additional effect of an H2 receptor antagonist when given in combination with an H1 antagonist were undertaken in dermographic urticaria. Using a randomized, double-blind, crossover design in 19 patients, a combination of cetirizine (10 mg at night) and ranitidine (150 mg twice daily) was compared with a combination of cetirizine (10 mg at night) and placebo. The addition of ranitidine did not produce any significant difference in linear analogue scores for weal, itch or sleep disturbance. There was a significant depression of the frictional force/wealing response curve with an increase in wealing threshold (P < 0.0001) following the addition of H2 blockade. The wealing threshold was 54.7 +/- 4.4 (mean +/- SEM) g/mm2 for the H1 antagonist alone, and 73.2 +/- 5.7 for the combination of H1 and H2 antagonists. In a second similar study involving nine different patients, comparing terfenadine (120 mg twice daily) with a combination of terfenadine and ranitidine (150 mg twice daily), the weal threshold was 59.8 +/- 6.6 for the H1 antagonist alone, and 73.0 +/- 6.4 for the combination of H1 and H2 antagonists. Thus, in dermographic urticaria, adding an H2 antagonist to treatment with a potent H1 antagonist gives a small, significant reduction in wealing response, but no symptomatic benefit. We conclude that involvement of the H2 receptor in this urticarial disease is minimal, and does not justify the use of H2 receptor antagonists.

  6. High antagonist potency of GT-2227 and GT-2331, new histamine H3 receptor antagonists, in two functional models.

    PubMed

    Tedford, C E; Hoffmann, M; Seyedi, N; Maruyama, R; Levi, R; Yates, S L; Ali, S M; Phillips, J G

    1998-06-26

    GT-2227 (4-(6-cyclohexylhex-cis-3-enyl)imidazole) and GT-2331 ((1R,2R)-4-(2-(5,5-dimethylhex-1-ynyl)cyclopropyl)imidazole) were developed as new potent histamine H3 receptor antagonists. The functional activity of these ligands on the histamine H3 receptor-mediated inhibition of neurogenic contraction of the guinea-pig jejunum and histamine H3 receptor-mediated inhibition of norepinephrine release from guinea-pig heart synaptosomes were investigated. GT-2227 and GT-2331 both antagonized the inhibitory effects of (R)-alpha-methylhistamine on the contraction induced by electrical field stimulation in the guinea-pig jejunum with pA2 values of 7.9+/-0.1 and 8.5+/-0.03, respectively. In addition, GT-2227 and GT-2331 antagonized the inhibition of norepinephrine release in cardiac synaptosomes by GT-2203 ((1R,2R)-trans-2-(1H-imidazol-4-yl)cyclopropylamine), a histamine H3 receptor agonist. The current results demonstrate the antagonist activity for both GT-2227 and GT-2331 in two functional assays for histamine H3 receptors.

  7. Functionalized Congeners of P2Y1 Receptor Antagonists:

    SciTech Connect

    de Castro, Sonia; Maruoka, Hiroshi; Hong, Kunlun; Kilbey, II, S Michael; Costanzi, Stefano; Hechler, Béatrice; Gachet, Christian; Harden, T. Kendall; Jacobson, Kenneth A.

    2010-01-01

    The P2Y{sub 1} receptor is a prothrombotic G protein-coupled receptor (GPCR) activated by ADP. Preference for the North (N) ring conformation of the ribose moiety of adenine nucleotide 3',5'-bisphosphate antagonists of the P2Y{sub 1} receptor was established by using a ring-constrained methanocarba (a bicyclo[3.1.0]hexane) ring as a ribose substitute. A series of covalently linkable N{sup 6}-methyl-(N)-methanocarba-2'-deoxyadenosine-3',5'-bisphosphates containing extended 2-alkynyl chains was designed, and binding affinity at the human (h) P2Y{sub 1} receptor determined. The chain of these functionalized congeners contained hydrophilic moieties, a reactive substituent, or biotin, linked via an amide. Variation of the chain length and position of an intermediate amide group revealed high affinity of carboxylic congener 8 (K{sub i} 23 nM) and extended amine congener 15 (K{sub i} 132 nM), both having a 2-(1-pentynoyl) group. A biotin conjugate 18 containing an extended {epsilon}-aminocaproyl spacer chain exhibited higher affinity than a shorter biotinylated analogue. Alternatively, click coupling of terminal alkynes of homologous 2-dialkynyl nucleotide derivatives to alkyl azido groups produced triazole derivatives that bound to the P2Y{sub 1} receptor following deprotection of the bisphosphate groups. The preservation of receptor affinity of the functionalized congeners was consistent with new P2Y{sub 1} receptor modeling and ligand docking. Attempted P2Y{sub 1} antagonist conjugation to PAMAM dendrimer carriers by amide formation or palladium-catalyzed reaction between an alkyne on the dendrimer and a 2-iodopurine-derivatized nucleotide was unsuccessful. A dialkynyl intermediate containing the chain length favored in receptor binding was conjugated to an azide-derivatized dendrimer, and the conjugate inhibited ADP-promoted human platelet aggregation. This is the first example of attaching a strategically functionalized P2Y receptor antagonist to a PAMAM dendrimer to

  8. Tamoxifen resistant breast cancer: coregulators determine the direction of transcription by antagonist-occupied steroid receptors.

    PubMed

    Takimoto, G S; Graham, J D; Jackson, T A; Tung, L; Powell, R L; Horwitz, L D; Horwitz, K B

    1999-01-01

    Pharmacological antagonists of steroid receptor action had been thought to exert their effects by a passive mechanism driven principally by the ability of the antagonist to compete with agonist for the ligand binding site. However, recent analyses of antagonist-occupied receptor function suggest a more complex picture. Antagonists can be subdivided into two groups, type I, or pure antagonists, and type II, or mixed antagonists that can have variable transcriptional activity based upon differential dimerization and DNA binding properties. This led us to propose that receptor antagonism may not simply be a passive competition for the ligand binding site, but may, in some cases, involve active recruitment of corepressor or coactivator proteins to produce a mixed transcriptional phenotype. We used a yeast two-hybrid screen to identify proteins that interact specifically with antagonist-occupied receptors. Two proteins have been characterized: L7/SPA, a ribosome-associated protein that is localized in both the cytoplasm and nucleus, but with no known extranucleolar nuclear function; and hN-CoR, the human homolog of the mouse thyroid receptor corepressor mN-CoR. In in vivo transcription assays we show that L7/SPA enhances the partial agonist activity of type II mixed antagonists, and that N-CoR and the related corepressor, SMRT, suppresses it. The coregulators do not affect agonists or pure antagonists. Moreover, the net agonist activity seen with mixed antagonists is a function of the ratio of coactivator to corepressor. Based upon these results, we proposed that in breast tumors the inappropriate agonist activity seen with therapeutic antagonists such as tamoxifen is responsible for the hormone-resistant state. To confirm this, we are quantitating coactivator/corepressor ratios in breast tumor cells lines and clinical breast cancers. Results should provide new insights into the mechanisms underlying the progression of breast cancer to hormone resistance, and may

  9. Effect of olanzapine on scopolamine induced deficits in differential reinforcement of low rate 72s (DRL-72s) schedule in rats: involvement of the serotonergic receptors in restoring the deficits.

    PubMed

    Jayarajan, Pradeep; Nirogi, Ramakrishna; Shinde, Anil

    2013-11-15

    Scopolamine, a non-selective muscarinic receptor antagonist has widespread central nervous system effects. Muscarinic receptors located in the central nervous system play a vital role in the modulation of impulsivity. The objective of the current study was to evaluate the effect of scopolamine on impulsivity using differential-reinforcement-of-low-rate 72-s schedule (DRL-72s) and to demonstrate the involvement of serotonergic receptors in mediating the effect of olanzapine (atypical antipsychotic) on scopolamine induced impulsivity. Scopolamine impaired the performance of the rats trained under DRL-72s schedule. Olanzapine reversed the deficits induced by scopolamine. We evaluated the effect of donepezil (cholinesterase inhibitor), SB-742457 (5-HT6 and 5-HT2a antagonist), and haloperidol (typical antipsychotic) in rats challenged with scopolamine in the DRL-72s schedule to identify the receptor(s) involved in reversing the deficits. SB-742457 partially reversed the deficits, but donepezil and haloperidol did not show any effects on the deficits induced by scopolamine. Olanzapine and SB-742457 shifted the peak location (PkL) towards longer IRT duration, indicating a decrease in motor impulsivity. Modulation of scopolamine-induced impulsivity by olanzapine could be partly due to its antagonistic action at 5-HT2a and 5-HT6 receptors, respectively. Superior effects of olanzapine on impulsivity in schizophrenic patients may be mediated through the antagonism of 5-HT2a and 5-HT6 receptors.

  10. Cangrelor: a novel P2Y12 receptor antagonist.

    PubMed

    Norgard, Nicholas B

    2009-08-01

    Antiplatelet therapy is critical in the prevention of thrombotic complications of acute coronary syndrome and percutaneous coronary interventions. Current antiplatelet agents (aspirin, clopidogrel and glycoprotein IIb/IIIa antagonists) have demonstrated the capacity to reduce major adverse cardiac events. However, these agents have limitations that compromise their clinical utility. The platelet P2Y12 receptor plays a central role in platelet function and is a focus in the development of antiplatelet therapies. Cangrelor is a potent, competitive inhibitor of the P2Y12 receptor that is administered by intravenous infusion and rapidly achieves near complete inhibition of ADP-induced platelet aggregation. This investigational drug has been studied for use during coronary procedures and the management of patients experiencing acute coronary syndrome and is undergoing evaluation for use in the prevention of perioperative stent thrombosis.

  11. 1/f scaling in heart rate requires antagonistic autonomic control

    NASA Astrophysics Data System (ADS)

    Struzik, Zbigniew R.; Hayano, Junichiro; Sakata, Seiichiro; Kwak, Shin; Yamamoto, Yoshiharu

    2004-11-01

    We present systematic evidence for the origins of 1/f -type temporal scaling in human heart rate. The heart rate is regulated by the activity of two branches of the autonomic nervous system: the parasympathetic (PNS) and the sympathetic (SNS) nervous systems. We examine alterations in the scaling property when the balance between PNS and SNS activity is modified, and find that the relative PNS suppression by congestive heart failure results in a substantial increase in the Hurst exponent H towards random-walk scaling 1/f2 and a similar breakdown is observed with relative SNS suppression by primary autonomic failure. These results suggest that 1/f scaling in heart rate requires the intricate balance between the antagonistic activity of PNS and SNS.

  12. Vasopressin receptor antagonists, heart failure, and polycystic kidney disease.

    PubMed

    Torres, Vicente E

    2015-01-01

    The synthesis of nonpeptide orally bioavailable vasopressin antagonists devoid of agonistic activity (vaptans) has made possible the selective blockade of vasopressin receptor subtypes for therapeutic purposes. Vaptans acting on the vasopressin V2 receptors (aquaretics) have attracted attention as a possible therapy for heart failure and polycystic kidney disease. Despite a solid rationale and encouraging preclinical testing, aquaretics have not improved clinical outcomes in randomized clinical trials for heart failure. Additional clinical trials with select population targets, more flexible dosing schedules, and possibly a different drug type or combination (balanced V1a/V2 receptor antagonism) may be warranted. Aquaretics are promising for the treatment of autosomal dominant polycystic kidney disease and have been approved in Japan for this indication. More studies are needed to better define their long-term safety and efficacy and optimize their utilization.

  13. Discovery and characterization of carbamothioylacrylamides as EP2 selective antagonists.

    PubMed

    Ganesh, Thota; Jiang, Jianxiong; Shashidharamurthy, Rangaiah; Dingledine, Ray

    2013-07-11

    Prostanoid receptor EP2 is emerging as a novel target for development of anti-inflammatory drugs for the treatment of chronic neurodegenerative and peripheral diseases; however, the availability of EP2 antagonist probes for exploration of peripheral disease models is very limited. We now report identification and characterization of a novel chemical class of compounds that show nanomolar potency and competitive antagonism of the EP2 receptor. A compound in this class, TG6-129, showed prolonged plasma half-life and did not cross the blood brain barrier. This compound also suppressed the induction of inflammatory mRNA markers in a macrophage cell line upon activation of EP2. Thus, this compound could be useful as a probe for a variety of peripheral chronic inflammatory diseases such as rheumatoid arthritis and chronic obstructive pulmonary disease, in which EP2 appears to play a pathogenic role.

  14. PAI-1 antagonists: the promise and the peril.

    PubMed

    Vaughan, Douglas E

    2011-01-01

    The plasminogen activator (i.e., fibrinolytic) system is one of the key endogenous defense mechanisms against intravascular thrombosis. Thrombolytic agents represent the only direct way of augmenting fibrinolytic activity in humans, and have proven to be of value in the treatment of acute myocardial infarction and stroke. Although these agents are efficacious in the acute setting, they are not a viable option for long-term use. Net fibrinolytic activity is plasma is largely determined by the balance between tissue-type plasminogen activator (t-PA) and its natural, fast-acting inhibitor, plasminogen activator inhibitor-1 (PAI-1). The recent development of specific PAI-1 antagonists promises to expand the limits of understanding of the role of the fibrinolytic system in human disease, and to break through the current confines of therapeutic options that can effectively restore and augment the activity of the fibrinolytic system.

  15. Nef proteins from simian immunodeficiency viruses are tetherin antagonists

    PubMed Central

    Zhang, Fengwen; Wilson, Sam J.; Langford, Wilmina; Virgen, Beatriz; Gregory, Devon; Johnson, Marc; Munch, Jan; Kirchhoff, Frank; Bieniasz, Paul D.; Hatziioannou, Theodora

    2010-01-01

    The tetherin/BST2/CD317 protein blocks the release of HIV-1 and other enveloped viruses by inducing tethering of nascent particles to infected cell surfaces. The HIV-1 Vpu protein antagonizes the antiviral activity of human but not monkey tetherins and many simian immunodeficiency viruses (SIVs) do not encode Vpu. Here, we show that the apparently ‘missing’ anti-tetherin activity in SIVs has been acquired by several SIV Nef proteins. Specifically, SIVMAC/SIVSMM, SIVAGM and SIVBLU Nef proteins can suppress tetherin activity. Notably, tetherin antagonism by SIV Nef proteins is species-specific, is genetically separable from other Nef activities and is most evident with simian rather than human tetherin proteins. Accordingly, a critical determinant of sensitivity to SIVMAC Nef in the tetherin cytoplasmic tail is variable in nonhuman primate tetherins and deleted in human tetherin, likely due to selective pressures imposed by viral antagonists, perhaps including Nef proteins. PMID:19501037

  16. M sub 1 muscarinic antagonists interact with. sigma. recognition sites

    SciTech Connect

    Hudkins, R.L. ); DeHaven-Hudkins, D.L. )

    1991-01-01

    The M{sub 1}-selective muscarinic antagonists aprophen, caramiphen, carbetapentane, 2-DAEX, dicyclomine, hexahydrosiladifenidol, iodocaramiphen, nitrocaramiphen, oxybutynin and trihexyphenidyl potently inhibited binding to {sigma} sites in brain. Both basic ester and non-ester structural type compounds which exhibit affinity for the muscarinic receptor also demonstrated affinity for the {sigma} site, while the classical antimuscarinic agents atropine and QNB, and the tricyclic pirenzepine, were ineffective in binding to this site. The authors also observed a significant correlation between the K{sub i} values for {sigma}compounds to inhibit ({sup 3}H)pirenzepine binding and their IC{sub 50} values to inhibit carbachol-stimulated phosphoinositide turnover. These observations may aid in elucidating the relationship of {sigma} binding to inhibition of phosphoinositide turnover stimulated by cholinergic agonists.

  17. Physico-chemical pathways in radioprotective action of calmodulin antagonists

    NASA Astrophysics Data System (ADS)

    Varshney, Rajeev; Kale, R. K.

    1996-04-01

    Ghost membranes prepared from erythrocytes of Swiss albino mice were irradiated with gamma rays at a dose rate of 0.9 Gy/s. The fluidity of membrane decreased with radiation dose and in the presence of calmodulin antagonists (CA) like chlorpromazine (CPZ), promethazine (PMZ) and trimeprazine (TMZ) it increased. Radiation induced release of Ca 2+ from membranes. This release was inhibited by CA mainly by CPZ and PMZ. Being Ca 2+ dependent, the changes in the activity of acetylcholine estrase (AchE) following irradiation was also studied. Radiation decreased the activity of AchE in dose dependent manner. Presence of CPZ and PMZ diminished the radiation induced inhibition of AchE but not in the presence of TMZ at the lower concentration tested. It is suggested that apart from scavenging of free radicals, CA perhaps exert their euxoic radioprotective effect through Ca 2+ dependent processes.

  18. Acyclic Tethers Mimicking Subunits of Polysaccharide Ligands: Selectin Antagonists

    PubMed Central

    2014-01-01

    We report on the design and synthesis of molecules having E- and P-selectins blocking activity both in vitro and in vivo. The GlcNAc component of the selectin ligand sialyl LewisX was replaced by an acyclic tether that links two saccharide units. The minimization of intramolecular dipole–dipole interactions and the gauche effect would be at the origin of the conformational bias imposed by this acyclic tether. The stereoselective synthesis of these molecules, their biochemical and biological evaluations using surface plasmon resonance spectroscopy (SPR), and in vivo assays are described. Because the structure of our analogues differs from the most potent E-selectin antagonists reported, our acyclic analogues offer new opportunities for chemical diversity. PMID:25221666

  19. Mesenteric vascular reactivity to histamine receptor agonists and antagonists. [Dogs

    SciTech Connect

    Walus, K.M.; Fondacaro, J.D.; Jacobson, E.D.

    1981-05-01

    Response patterns of intestinal blood flow, oxygen extraction and consumption, blood flow distribution, and motility were assessed during intraarterial infusions of histamine, histamine after H1 or H2 blockade, dimaprit or dimaprit after H2 blockade. Histamine produced an initial peak response of blood flow with a slow decrease thereafter. Oxygen extraction was evenly depressed throughout the infusion, and oxygen consumption increased at the beginning. All initial responses were blocked by tripelennamine. Ranitidine, a new H2 antagonist, accelerated the decay of all responses. Dimaprit produced effects identical to those of histamine after tripelennamine. Distribution of blood flow was unchanged at the beginning of histamine infusion, but subsequently showed a shift to muscularis which was blocked by tripelennamine. Histamine usually stimulated intestinal contractions and this effect was abolished by tripelennamine. Thus, H1 stimulation, besides producing an initial vasodilation, increases oxygen uptake and redistributes flow to the muscularis.

  20. Identification of Bexarotene as a PPARγ Antagonist with HDX

    PubMed Central

    Marciano, David P.; Kuruvilla, Dana S.; Pascal, Bruce D.; Griffin, Patrick R.

    2015-01-01

    The retinoid x receptors (RXRs) are the pharmacological target of Bexarotene, an antineoplastic agent indicated for the treatment of cutaneous T cell lymphoma (CTCL). The RXRs form heterodimers with several nuclear receptors (NRs), including peroxisome proliferator-activated receptor gamma (PPARγ), to regulate target gene expression through cooperative recruitment of transcriptional machinery. Here we have applied hydrogen/deuterium exchange (HDX) mass spectrometry to characterize the effects of Bexarotene on the conformational plasticity of the intact RXRα:PPARγ heterodimer. Interestingly, addition of Bexarotene to PPARγ in the absence of RXRα induced protection from solvent exchange, suggesting direct receptor binding. This observation was confirmed using a competitive binding assay. Furthermore, Bexarotene functioned as a PPARγ antagonist able to alter rosiglitazone induced transactivation in a cell based promoter:reporter transactivation assay. Together these results highlight the complex polypharmacology of lipophilic NR targeted small molecules and the utility of HDX for identifying and characterizing these interactions. PMID:26451138

  1. Oxycodone with an opioid receptor antagonist: A review.

    PubMed

    Davis, Mellar P; Goforth, Harold W

    2016-01-01

    The rationale for putting opioid antagonists with an agonist is to improve pain control, to reduce side effects, and/or to reduce abuse. The combination of prolonged release (PR) oxycodone and naloxone reduces constipation as demonstrated in multiple studies and has been designated a tamper-resistant opioid by the Food and Drug Administration. Bioequivalence of the combination product compared with PR oxycodone has not been established. Several of the pivotal studies provided suboptimal laxative support in the control arm of the randomized trials. Two noninferiority trials have demonstrated equivalent analgesia between PR oxycodone and the combination product at doses of less than 120 mg of oxycodone per day. There appears to be an analgesic ceiling above 80-120 mg of oxycodone per day. Safety monitoring during randomized trials was not been well described in published manuscripts. Benefits appear to be better for those with chronic noncancer pain compared with individuals with cancer when constipation was the primary outcome.

  2. Antagonistic pleiotropy involving promoter sequences in a virus

    PubMed Central

    Presloid, John B.; Ebendick-Corpus, Bonnie E.; Zárate, Selene; Novella, Isabel S.

    2008-01-01

    Selection of specialist genotypes, that is, populations with limited niche width, promotes the maintenance of diversity. Specialization to a particular environment may have a cost in other environments, including fitness tradeoffs. When the tradeoffs are the result of mutations that have a beneficial effect in the selective environment, but a deleterious effect in other environment, we have antagonistic pleiotropy. Alternatively, tradeoffs can result from the fixation of mutations that are neutral in the selective environment but have a negative effect in other environment, and thus the tradeoff is due to mutation accumulation. We tested the mechanisms underlying the fitness tradeoffs observed during adaptation to persistent infection of vesicular stomatitis virus in insect cells by sequencing the full-length genomes of twelve strains with a history of replication in a single niche (acute mammalian infection or persistent insect infection) or in temporally-heterogeneous niches, and correlated genetic and fitness changes. Ecological theory predicts a correlation between the selective environment and the niche width of the evolved populations, such that adaptation to single niches should lead to the selection of specialists and niche cycling should result in the selection of generalists. Contrary to this expectation, adaptation to one of the single niches resulted in a generalist and adaptation to a heterogeneous environment led to the selection of a specialist. Only one-third of the mutations that accumulated during persistent infection had a fitness cost that could be explained in all cases by antagonistic pleiotropy. Mutations involved in fitness tradeoffs included changes in regulatory sequences, particularly at the 3′ termini of the genomes, which contain the single promoter that controls viral transcription and replication. PMID:18644381

  3. SP 01-3 ALDOSTERONE ANTAGONISTS IN HEART FAILURE.

    PubMed

    Johnston, Colin

    2016-09-01

    Aldosterone's deleterious pathophysiological effects on the cardiovascular system if blocked by mineralcorticord antagonists (MRAs) logically should lead to improvement in heart function and outcomes in heart failure (HF). The first trial to test this hypothesis was tthe RALES trial in 1999 which treated patients with class III-IV HF with spironolactone. It showed significant reduction in mortality and cardiovascular hospitalzation rates. This was confirmed & extended in EMHASIS-HF RCT with classs II-III being treated with ACEIs & BB who received placebo or elperinone (a MRA) with again a statistically significant fall in mortality & hospitalization.The possible cardioprotective effects of MRA post acute myocardial infarct (MI) is less clear. The EPHESUS RCT in 2003 demostrated that elperinone given 3-14 days AMI in patients with early signs of HF reduced mortality & morbidity. However in the ALBTROSS trial using spironolactone 2 days after AMI showed no benfit in patients without HF but in a subgroup with ST elevation there was a 80% reduction in mortality after 6 months. However a recent meta-analysis from 25 RCT with data invovling 19,333 patients with either HF or post MI assigned aldosterone antagonists (AA)or placebo showed a 18% reduction in mortality including a 20% fall in CV mortality and a 19% reduction in SCD.The role of AA in HFPEF is even even more contraversial. The TOPCAT RCT of 3445 patients with symptomatc HFPEF randomised to spironolactone failed to meet the primary composite end point of death, aborted cardiac arrest or hospitalization although there was a reduction in hospitalization for HF (HR 0.83 P = 0.04).The differences between selective or non-selective MRAs, their ADRs & off target effects will also be discussed.

  4. Adenosine receptor antagonist and augmented vasodilation during hypoxic exercise.

    PubMed

    Casey, Darren P; Madery, Brandon D; Pike, Tasha L; Eisenach, John H; Dietz, Niki M; Joyner, Michael J; Wilkins, Brad W

    2009-10-01

    We tested the hypothesis that adenosine contributes to augmented skeletal muscle vasodilation during hypoxic exercise. In separate protocols, subjects performed incremental rhythmic forearm exercise (10% and 20% of maximum) during normoxia and normocapnic hypoxia (80% arterial O2 saturation). In protocol 1 (n = 8), subjects received an intra-arterial administration of saline (control) and aminophylline (adenosine receptor antagonist). In protocol 2 (n = 10), subjects received intra-arterial phentolamine (alpha-adrenoceptor antagonist) and combined phentolamine and aminophylline administration. Forearm vascular conductance (FVC; in ml x min(-1).100 mmHg(-1)) was calculated from forearm blood flow (in ml/min) and blood pressure (in mmHg). In protocol 1, the change in FVC (DeltaFVC; change from normoxic baseline) during hypoxic exercise with saline was 172 +/- 29 and 314 +/- 34 ml x min(-1) x 100 mmHg(-1) (10% and 20%, respectively). Aminophylline administration did not affect DeltaFVC during hypoxic exercise at 10% (190 +/- 29 ml x min(-1)x100 mmHg(-1), P = 0.4) or 20% (287 +/- 48 ml x min(-1) x 100 mmHg(-1), P = 0.3). In protocol 2, DeltaFVC due to hypoxic exercise with phentolamine infusion was 313 +/- 30 and 453 +/- 41 ml x min(-1) x 100 mmHg(-1) (10% and 20% respectively). DeltaFVC was similar at 10% (352 +/- 39 ml min(-1) x 100 mmHg(-1), P = 0.8) and 20% (528 +/- 45 ml x min(-1) x 100 mmHg(-1), P = 0.2) hypoxic exercise with combined phentolamine and aminophylline. In contrast, DeltaFVC to exogenous adenosine was reduced by aminophylline administration in both protocols (P < 0.05 for both). These observations suggest that adenosine receptor activation is not obligatory for the augmented hyperemia during hypoxic exercise in humans.

  5. Guanidinoethyl sulphonate is a glycine receptor antagonist in striatum.

    PubMed

    Sergeeva, Olga A; Chepkova, Aisa N; Haas, Helmut L

    2002-11-01

    1. Guanidinoethyl sulphonate (GES) is an analogue of taurine and an inhibitor of taurine transport. Interactions of GES with GABA(A) and glycine receptors are studied by whole cell recording and fast drug application in isolated striatal neurons of the mouse. 2. We confirm that GES is a weak agonist at GABA(A) receptors, and is able to antagonize GABA-evoked responses. GES did not gate GlyR. 3. GES antagonized glycine responses in a concentration-dependent and surmountable manner. Glycine dose-response curves were shifted to the right by GES (0.5 mM), yielding EC(50)s and Hill coefficients of 62 micro M and 2.5 in control, 154 micro M and 1.3 in the presence of GES. 4. GlyR-mediated taurine responses were competitively antagonized by GES. Taurine dose-response curves, in contrast to the glycine dose-response curves were shifted by GES to the right in a parallel manner. 5. The GlyR-block by GES was not voltage-dependent. 6. In contrast to our findings in the mouse, in rat striatal neurons which lack expression of the alpha3 GlyR subunit, GES shifted the glycine dose-response curve to the right in a parallel way without affecting the maximal response. Subtype-specificity of the GES action at GlyR must await further investigation in artificial expression systems. 7. We conclude that GES is a competitive antagonist at GlyR. The antagonistic action of GES at inhibitory ionotropic receptors can explain its epileptogenic action. Care must be taken with the interpretation of data on GES evoked taurine release.

  6. Sexually antagonistic cytonuclear fitness interactions in Drosophila melanogaster.

    PubMed Central

    Rand, D M; Clark, A G; Kann, L M

    2001-01-01

    Theoretical and empirical studies have shown that selection cannot maintain a joint nuclear-cytoplasmic polymorphism within a population except under restrictive conditions of frequency-dependent or sex-specific selection. These conclusions are based on fitness interactions between a diploid autosomal locus and a haploid cytoplasmic locus. We develop a model of joint transmission of X chromosomes and cytoplasms and through simulation show that nuclear-cytoplasmic polymorphisms can be maintained by selection on X-cytoplasm interactions. We test aspects of the model with a "diallel" experiment analyzing fitness interactions between pairwise combinations of X chromosomes and cytoplasms from wild strains of Drosophila melanogaster. Contrary to earlier autosomal studies, significant fitness interactions between X chromosomes and cytoplasms are detected among strains from within populations. The experiment further demonstrates significant sex-by-genotype interactions for mtDNA haplotype, cytoplasms, and X chromosomes. These interactions are sexually antagonistic--i.e., the "good" cytoplasms in females are "bad" in males--analogous to crossing reaction norms. The presence or absence of Wolbachia did not alter the significance of the fitness effects involving X chromosomes and cytoplasms but tended to reduce the significance of mtDNA fitness effects. The negative fitness correlations between the sexes demonstrated in our empirical study are consistent with the conditions that maintain cytoplasmic polymorphism in simulations. Our results suggest that fitness interactions with the sex chromosomes may account for some proportion of cytoplasmic variation in natural populations. Sexually antagonistic selection or reciprocally matched fitness effects of nuclear-cytoplasmic genotypes may be important components of cytonuclear fitness variation and have implications for mitochondrial disease phenotypes that differ between the sexes. PMID:11560895

  7. Agonistic and antagonistic estrogens in licorice root (Glycyrrhiza glabra).

    PubMed

    Simons, Rudy; Vincken, Jean-Paul; Mol, Loes A M; The, Susan A M; Bovee, Toine F H; Luijendijk, Teus J C; Verbruggen, Marian A; Gruppen, Harry

    2011-07-01

    The roots of licorice (Glycyrrhiza glabra) are a rich source of flavonoids, in particular, prenylated flavonoids, such as the isoflavan glabridin and the isoflavene glabrene. Fractionation of an ethyl acetate extract from licorice root by centrifugal partitioning chromatography yielded 51 fractions, which were characterized by liquid chromatography-mass spectrometry and screened for activity in yeast estrogen bioassays. One third of the fractions displayed estrogenic activity towards either one or both estrogen receptors (ERs; ERα and ERβ). Glabrene-rich fractions displayed an estrogenic response, predominantly to the ERα. Surprisingly, glabridin did not exert agonistic activity to both ER subtypes. Several fractions displayed higher responses than the maximum response obtained with the reference compound, the natural hormone 17β-estradiol (E(2)). The estrogenic activities of all fractions, including this so-called superinduction, were clearly ER-mediated, as the estrogenic response was inhibited by 20-60% by known ER antagonists, and no activity was found in yeast cells that did not express the ERα or ERβ subtype. Prolonged exposure of the yeast to the estrogenic fractions that showed superinduction did, contrary to E(2), not result in a decrease of the fluorescent response. Therefore, the superinduction was most likely the result of stabilization of the ER, yeast-enhanced green fluorescent protein, or a combination of both. Most fractions displaying superinduction were rich in flavonoids with single prenylation. Glabridin displayed ERα-selective antagonism, similar to the ERα-selective antagonist RU 58668. Whereas glabridin was able to reduce the estrogenic response of E(2) by approximately 80% at 6 × 10(-6) M, glabrene-rich fractions only exhibited agonistic responses, preferentially on ERα.

  8. Anticonvulsive effect of nonimidazole histamine H3 receptor antagonists.

    PubMed

    Sadek, Bassem; Kuder, Kamil; Subramanian, Dhanasekaran; Shafiullah, Mohamed; Stark, Holger; Lażewska, Dorota; Adem, Abdu; Kieć-Kononowicz, Katarzyna

    2014-06-01

    To determine the potential of histamine H3 receptor (H3R) ligands as new antiepileptic drugs (AEDs), aromatic ether, and diether derivatives (1-12) belonging to the nonimidazole class of ligands, with high in-vitro binding affinity at human H3R, were tested for their in-vivo anticonvulsive activity in the maximal electroshock (MES)-induced and pentylenetetrazole (PTZ)-kindled seizure models in rats. The anticonvulsive effects of a systemic injection of 1-12 on MES-induced and PTZ-kindled seizures were evaluated against the reference AED phenytoin (PHT) and the structurally related H3R antagonist/inverse agonist pitolisant (PIT). Among the most promising ligands 2, 4, 5, and 11, there was a significant and dose-dependent reduction in the duration of tonic hind limb extension (THLE) in MES-induced seizure subsequent to administration of 4 and 5 [(5, 10, and 15 mg/kg, intraperitoneally (i.p.)]. The protective effects observed for the 1-(3-(3-(4-chlorophenyl)propoxy)propyl)-3-methylpiperidine derivative 11 at 10 mg/kg, i.p. were significantly greater than those of PIT, and were reversed by pretreatment with the central nervous system penetrant H1R antagonist pyrilamine (PYR) (10 mg/kg). Moreover, the protective action of the reference AED PHT, at a dose of 5 mg/kg (without considerable protection in the MES model), was significantly augmented when coadministered with derivative 11 (5 mg/kg, i.p.). Surprisingly, pretreatment with derivative 7 (10 mg/kg, i.p.), an ethylphenoxyhexyl-piperidine derivative without considerable protection in the MES model, potently altered PTZ-kindled seizure, significantly prolonged myoclonic latency time, and clearly shortened the total seizure time when compared with control, PHT, and PIT. These interesting results highlight the potential of H3R ligands as new AEDs or as adjuvants to available AED therapeutics.

  9. Peripheral 5-HT2-like receptors. Can they be classified with the available antagonists?

    PubMed Central

    Leff, P.; Martin, G. R.

    1986-01-01

    Interactions between 5-hydroxytryptamine (5-HT) and the so-called 5-HT2 receptor antagonists ketanserin, spiperone, trazodone and methysergide were studied in isolated preparations of the rabbit aorta, rat jugular vein, and rat caudal artery. Trazodone and spiperone were apparently simple competitive antagonists since they produced antagonism that was surmountable over the concentration range studied and, in each tissue, their apparent affinity appeared to be independent of the antagonist concentration. Furthermore, concentration-ratios obtained with the two antagonists in combination suggested that antagonism was additive, implying mutual competition with a single population of 5-HT receptors. Ketanserin was a non-surmountable antagonist of 5-HT in the rat caudal artery and methysergide demonstrated surmountable, competitive antagonism only in the rabbit aorta. Antagonist dissociation constants estimated for apparently competitive interactions showed that ketanserin, spiperone and trazodone expressed affinities which differed according to the tissue used. In the case of trazodone, affinity estimates differed by as much as 12 fold. These discrepancies were independent of the 5-HT receptor agonist used and could not be attributed to an inadequate equilibration of the antagonist. These results can be interpreted in two ways: either the receptors in the different tissues are heterogeneous or the antagonists used here must be considered as unreliable probes for the classification of 5-HT2-like receptors. PMID:2943354

  10. Marketed New Drug Delivery Systems for Opioid Agonists/Antagonists Administration: A Rapid Overview

    PubMed Central

    Soltani, Hoda; Pardakhty, Abbas

    2016-01-01

    Novel drug delivery systems for controlled-release of opioid agonists as a long time painkillers or opioid antagonists for opium, heroin, and alcohol addiction are under development or in clinical use today. In this article, the field of “new drug delivery systems” is momentarily reviewed from the viewpoint of the marketed opioid agonists/antagonists dosage forms today. PMID:27882209

  11. Histamine-Induced Hypotension Modified by H1 and H2 Antagonists.

    DTIC Science & Technology

    The hypotensive response of monkeys to exogenous histamine was measured when the histamine was given without antagonist, after chlorpheniramine (10...percent maximal response was: without antagonist, 0.115 micrograms/kg; after chlorpheniramine , 13.5 micrograms/kg; after chlorpheniramine and

  12. A long-acting GH receptor antagonist through fusion to GH binding protein

    PubMed Central

    Wilkinson, Ian R.; Pradhananga, Sarbendra L.; Speak, Rowena; Artymiuk, Peter J.; Sayers, Jon R.; Ross, Richard J.

    2016-01-01

    Acromegaly is a human disease of growth hormone (GH) excess with considerable morbidity and increased mortality. Somatostatin analogues are first line medical treatment but the disease remains uncontrolled in up to 40% of patients. GH receptor (GHR) antagonist therapy is more effective but requires frequent high-dose injections. We have developed an alternative technology for generating a long acting potent GHR antagonist through translational fusion of a mutated GH linked to GH binding protein and tested three candidate molecules. All molecules had the amino acid change (G120R), creating a competitive GHR antagonist and we tested the hypothesis that an amino acid change in the GH binding domain (W104A) would increase biological activity. All were antagonists in bioassays. In rats all antagonists had terminal half-lives >20 hours. After subcutaneous administration in rabbits one variant displayed a terminal half-life of 40.5 hours. A single subcutaneous injection of the same variant in rabbits resulted in a 14% fall in IGF-I over 7 days. In conclusion: we provide proof of concept that a fusion of GHR antagonist to its binding protein generates a long acting GHR antagonist and we confirmed that introducing the W104A amino acid change in the GH binding domain enhances antagonist activity. PMID:27731358

  13. Addressing PXR liabilities of phthalazine-based hedgehog/smoothened antagonists using novel pyridopyridazines.

    PubMed

    Kaizerman, Jacob A; Aaron, Wade; An, Songzhu; Austin, Richard; Brown, Matt; Chong, Angela; Huang, Tom; Hungate, Randall; Jiang, Ben; Johnson, Michael G; Lee, Gary; Lucas, Brian S; Orf, Jessica; Rong, Minqing; Toteva, Maria M; Wickramasinghe, Dineli; Xu, Guifen; Ye, Qiuping; Zhong, Wendy; McMinn, Dustin L

    2010-08-01

    Pyridopyridazine antagonists of the hedgehog signaling pathway are described. Designed to optimize our previously described phthalazine smoothened antagonists, a representative compound eliminates a PXR liability while retaining potency and in vitro metabolic stability. Moreover, the compound has improved efficacy in a hedgehog/smoothened signaling mouse pharmacodynamic model.

  14. Cannabinoid discrimination and antagonism by CB(1) neutral and inverse agonist antagonists.

    PubMed

    Kangas, Brian D; Delatte, Marcus S; Vemuri, V Kiran; Thakur, Ganesh A; Nikas, Spyridon P; Subramanian, Kumara V; Shukla, Vidyanand G; Makriyannis, Alexandros; Bergman, Jack

    2013-03-01

    Cannabinoid receptor 1 (CB(1)) inverse agonists (e.g., rimonabant) have been reported to produce adverse effects including nausea, emesis, and anhedonia that limit their clinical applications. Recent laboratory studies suggest that the effects of CB(1) neutral antagonists differ from those of such inverse agonists, raising the possibility of improved clinical utility. However, little is known regarding the antagonist properties of neutral antagonists. In the present studies, the CB(1) inverse agonist SR141716A (rimonabant) and the CB(1) neutral antagonist AM4113 were compared for their ability to modify CB(1) receptor-mediated discriminative stimulus effects in nonhuman primates trained to discriminate the novel CB(1) full agonist AM4054. Results indicate that AM4054 serves as an effective CB(1) discriminative stimulus, with an onset and time course of action comparable with that of the CB(1) agonist Δ(9)-tetrahydrocannabinol, and that the inverse agonist rimonabant and the neutral antagonist AM4113 produce dose-related rightward shifts in the AM4054 dose-effect curve, indicating that both drugs surmountably antagonize the discriminative stimulus effects of AM4054. Schild analyses further show that rimonabant and AM4113 produce highly similar antagonist effects, as evident in comparable pA(2) values (6.9). Taken together with previous studies, the present data suggest that the improved safety profile suggested for CB(1) neutral antagonists over inverse agonists is not accompanied by a loss of antagonist action at CB(1) receptors.

  15. Marketed New Drug Delivery Systems for Opioid Agonists/Antagonists Administration: A Rapid Overview.

    PubMed

    Soltani, Hoda; Pardakhty, Abbas

    2016-04-01

    Novel drug delivery systems for controlled-release of opioid agonists as a long time painkillers or opioid antagonists for opium, heroin, and alcohol addiction are under development or in clinical use today. In this article, the field of "new drug delivery systems" is momentarily reviewed from the viewpoint of the marketed opioid agonists/antagonists dosage forms today.

  16. Coptis extracts enhance the anticancer effect of estrogen receptor antagonists on human breast cancer cells.

    PubMed

    Liu, Jing; He, Chengwei; Zhou, Keyuan; Wang, Jingdong; Kang, Jing X

    2009-01-09

    Estrogen receptor (ER) antagonists have been widely used for breast cancer treatment, but the efficacy and drug resistance remain to be clinical concerns. The purpose of this study was to determine whether the extracts of coptis, an anti-inflammatory herb, improve the anticancer efficacy of ER antagonists. The results showed that the combined treatment of ER antagonists and the crude extract of coptis or its purified compound berberine conferred synergistic growth inhibitory effect on MCF-7 cells (ER+), but not on MDA-MB-231 cells (ER-). Similar results were observed in the combined treatment of fulvestrant, a specific aromatase antagonist. Analysis of the expression of breast cancer related genes indicated that EGFR, HER2, bcl-2, and COX-2 were significantly downregulated, while IFN-beta and p21 were remarkably upregulated by berberine. Our results suggest that coptis extracts could be promising adjuvant to ER antagonists in ER positive breast cancer treatment through regulating expression of multiple genes.

  17. Electrophysiological impact of trazodone on the dopamine and norepinephrine systems in the rat brain.

    PubMed

    Ghanbari, Ramez; El Mansari, Mostafa; Blier, Pierre

    2012-07-01

    Previous study has documented the long-term effects of the antidepressant trazodone on the serotonin (5-HT) system. The present work examined the impact of sustained trazodone on ventral tegmental area (VTA) dopamine (DA) and locus ceruleus (LC) norepinephrine (NE) neurons firing activity, and characterized its effects at 5-HT(2C), 5-HT(2A) receptors and α₁- and α₂-adrenoceptors. Electrophysiological recordings were carried out in anesthetized rats. Subcutaneously implanted minipumps delivered vehicle or trazodone (10 mg/kg/day) for 2 or 14 days. Administration of trazodone for 2 and 14 days did not alter the firing activity of DA neurons. Systemic injection of trazodone, however, reversed the inhibitory effect of the 5-HT(2C) receptor agonist Ro 60,0175 on the DA neuronal firing, suggesting an antagonistic action of trazodone at this receptor. Administration of trazodone for 2 days significantly enhanced the NE neurons firing. Despite a return of the NE neurons firing rate to the baseline following 14-day trazodone, the percentage of neurons discharging in burst was increased by this regimen. Administration of trazodone for 14 days enhanced the tonic activation of postsynaptic α₂-adrenoceptors, as indicated by the disinhibitory effect of the α₂-adrenoceptor antagonist idazoxan on hippocampus pyramidal neurons firing. The inhibitory effect of acute trazodone on dorsal raphe (DR) 5-HT neurons firing was shown to be through the 5-HT(1A) receptor. Systemic injection of trazodone reversed the inhibitory action of 5-HT(2A) agonist DOI on the NE neurons firing rate, indicating its antagonistic action at 5-HT(2A) receptors. The enhancement in α₂-adrenergic transmission by trazodone, and its 5-HT(2A) and 5-HT(2C) receptor antagonism may contribute to its therapeutic action in major depression.

  18. The identification of a series of novel, soluble non-peptidic neuropeptide Y Y2 receptor antagonists.

    PubMed

    Lunniss, Gillian E; Barnes, Ashley A; Barton, Nick; Biagetti, Matteo; Bianchi, Federica; Blowers, Stephen M; Caberlotto, Laura L; Emmons, Amanda; Holmes, Ian P; Montanari, Dino; Norris, Roz; Puckey, Gemma V; Walters, Dewi J; Watson, Steve P; Willis, John

    2010-12-15

    The identification and subsequent optimisation of a selective non-peptidic NPY Y2 antagonist series is described. This led to the development of amine 2, a selective, soluble NPY Y2 receptor antagonist with enhanced CNS exposure.

  19. The NK1 receptor antagonist L822429 reduces heroin reinforcement.

    PubMed

    Barbier, Estelle; Vendruscolo, Leandro F; Schlosburg, Joel E; Edwards, Scott; Juergens, Nathan; Park, Paula E; Misra, Kaushik K; Cheng, Kejun; Rice, Kenner C; Schank, Jesse; Schulteis, Gery; Koob, George F; Heilig, Markus

    2013-05-01

    Genetic deletion of the neurokinin 1 receptor (NK1R) has been shown to decrease the reinforcing properties of opioids, but it is unknown whether pharmacological NK1R blockade has the same effect. Here, we examined the effect of L822429, a rat-specific NK1R antagonist, on the reinforcing properties of heroin in rats on short (1 h: ShA) or long (12 h: LgA) access to intravenous heroin self-administration. ShA produces heroin self-administration rates that are stable over time, whereas LgA leads to an escalation of heroin intake thought to model important dependence-related aspects of addiction. L822429 reduced heroin self-administration and the motivation to consume heroin, measured using a progressive-ratio schedule, in both ShA and LgA rats. L822429 also decreased anxiety-like behavior in both groups, measured on the elevated plus maze, but did not affect mechanical hypersensitivity observed in LgA rats. Expression of TacR1 (the gene encoding NK1R) was decreased in reward- and stress-related brain areas both in ShA and LgA rats compared with heroin-naïve rats, but did not differ between the two heroin-experienced groups. In contrast, passive exposure to heroin produced increases in TacR1 expression in the prefrontal cortex and nucleus accumbens. Taken together, these results show that pharmacological NK1R blockade attenuates heroin reinforcement. The observation that animals with ShA and LgA to heroin were similarly affected by L822429 indicates that the SP/NK1R system is not specifically involved in neuroadaptations that underlie escalation resulting from LgA self-administration. Instead, the NK1R antagonist appears to attenuate acute, positively reinforcing properties of heroin and may be useful as an adjunct to relapse prevention in detoxified opioid-dependent subjects.

  20. Anticonvulsant effects of isomeric nonimidazole histamine H3 receptor antagonists.

    PubMed

    Sadek, Bassem; Saad, Ali; Schwed, Johannes Stephan; Weizel, Lilia; Walter, Miriam; Stark, Holger

    2016-01-01

    Phenytoin (PHT), valproic acid, and modern antiepileptic drugs (AEDs), eg, remacemide, loreclezole, and safinamide, are only effective within a maximum of 70%-80% of epileptic patients, and in many cases the clinical use of AEDs is restricted by their side effects. Therefore, a continuous need remains to discover innovative chemical entities for the development of active and safer AEDs. Ligands targeting central histamine H3 receptors (H3Rs) for epilepsy might be a promising therapeutic approach. To determine the potential of H3Rs ligands as new AEDs, we recently reported that no anticonvulsant effects were observed for the (S)-2-(4-(3-(piperidin-1-yl)propoxy)benzylamino)propanamide (1). In continuation of our research, we asked whether anticonvulsant differences in activities will be observed for its R-enantiomer, namely, (R)-2-(4-(3-(piperidin-1-yl)propoxy)benzylamino)propaneamide (2) and analogs thereof, in maximum electroshock (MES)-, pentylenetetrazole (PTZ)-, and strychnine (STR)-induced convulsion models in rats having PHT and valproic acid (VPA) as reference AEDs. Unlike the S-enantiomer (1), the results show that animals pretreated intraperitoneally (ip) with the R-enantiomer 2 (10 mg/kg) were moderately protected in MES and STR induced models, whereas proconvulsant effect was observed for the same ligand in PTZ-induced convulsion models. However, animals pretreated with intraperitoneal doses of 5, 10, or 15 mg/kg of structurally bulkier (R)-enantiomer (3), in which 3-piperidinopropan-1-ol in ligand 2 was replaced by (4-(3-(piperidin-1-yl)propoxy)phenyl)methanol, and its (S)-enantiomer (4) significantly and in a dose-dependent manner reduced convulsions or exhibited full protection in MES and PTZ convulsions model, respectively. Interestingly, the protective effects observed for the (R)-enantiomer (3) in MES model were significantly greater than those of the standard H3R inverse agonist/antagonist pitolisant, comparable with those observed for PHT, and

  1. Dotarizine versus flunarizine as calcium antagonists in chromaffin cells.

    PubMed Central

    Villarroya, M; Gandía, L; Lara, B; Albillos, A; López, M G; García, A G

    1995-01-01

    1. Dotarizine is a novel piperazine derivative structurally related to flunarizine that is currently being evaluated in clinical trials for its antimigraine and antivertigo effects. This clinical profile may be related to its Ca2+ antagonist properties. Therefore, the actions of both compounds as calcium antagonists were compared in bovine chromaffin cells. 2. Dotarizine and flunarizine blocked 45Ca2+ uptake into K+ depolarized chromaffin cells (70 mM K+/0.5 mM Ca2+ for 60 s) in a concentration-dependent manner, with IC50s of 4.8 and 6.7 microM, respectively. 3. Dotarizine and flunarizine also inhibited the whole-cell Ca2+ and Ba2+ currents (ICa, IBa) in voltage-clamped chromaffin cells, induced by depolarizing test pulses to 0 mV, during 50 ms, from a holding potential of -80 mV. Blockade exhibited IC50s of 4 microM for dotarizine and 2.2 microM for flunarizine. Dotarizine increased the rate of inactivation of ICa and IBa; inhibition of whole-cell currents was use-dependent. 4. Transient increases of the cytosolic Ca2+ concentration, [Ca2+]i, produced by K+ stimulation (70 mM K+ for 5 s) of single fura-2-loaded chromaffin cells, were also inhibited by dotarizine and flunarizine with IC50s of 1.2 and 0.6 microM, respectively. Upon washout of dotarizine, the [Ca2+]i increases recovered fully after 5-10 min. In contrast, the responses remained largely inhibited 10 min after washing out flunarizine. 5. Catecholamine release induced by K+ stimulation (10-s pulses of 70 mM) was inhibited by dotarizine with an IC50 of 2.6 microM and by flunarizine with an IC50 of 1.2 microM. The blocking effects of both compounds developed slowly, and was fully established after 20-30 min of superfusion.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7881736

  2. Anticonvulsant effects of isomeric nonimidazole histamine H3 receptor antagonists

    PubMed Central

    Sadek, Bassem; Saad, Ali; Schwed, Johannes Stephan; Weizel, Lilia; Walter, Miriam; Stark, Holger

    2016-01-01

    Phenytoin (PHT), valproic acid, and modern antiepileptic drugs (AEDs), eg, remacemide, loreclezole, and safinamide, are only effective within a maximum of 70%–80% of epileptic patients, and in many cases the clinical use of AEDs is restricted by their side effects. Therefore, a continuous need remains to discover innovative chemical entities for the development of active and safer AEDs. Ligands targeting central histamine H3 receptors (H3Rs) for epilepsy might be a promising therapeutic approach. To determine the potential of H3Rs ligands as new AEDs, we recently reported that no anticonvulsant effects were observed for the (S)-2-(4-(3-(piperidin-1-yl)propoxy)benzylamino)propanamide (1). In continuation of our research, we asked whether anticonvulsant differences in activities will be observed for its R-enantiomer, namely, (R)-2-(4-(3-(piperidin-1-yl)propoxy)benzylamino)propaneamide (2) and analogs thereof, in maximum electroshock (MES)-, pentylenetetrazole (PTZ)-, and strychnine (STR)-induced convulsion models in rats having PHT and valproic acid (VPA) as reference AEDs. Unlike the S-enantiomer (1), the results show that animals pretreated intraperitoneally (ip) with the R-enantiomer 2 (10 mg/kg) were moderately protected in MES and STR induced models, whereas proconvulsant effect was observed for the same ligand in PTZ-induced convulsion models. However, animals pretreated with intraperitoneal doses of 5, 10, or 15 mg/kg of structurally bulkier (R)-enantiomer (3), in which 3-piperidinopropan-1-ol in ligand 2 was replaced by (4-(3-(piperidin-1-yl)propoxy)phenyl)methanol, and its (S)-enantiomer (4) significantly and in a dose-dependent manner reduced convulsions or exhibited full protection in MES and PTZ convulsions model, respectively. Interestingly, the protective effects observed for the (R)-enantiomer (3) in MES model were significantly greater than those of the standard H3R inverse agonist/antagonist pitolisant, comparable with those observed for PHT, and

  3. Effect of calmodulin antagonists on the growth and graviresponsiveness of primary roots of maize.

    PubMed

    Stinemetz, C L; Hasenstein, K H; Young, L M; Evans, M L

    1992-11-01

    We examined the effect of calmodulin (CaM) antagonists applied at the root tip on root growth, gravity-induced root curvature, and the movement of calcium across the root tip and auxin (IAA) across the elongation zone of gravistimulated roots. All of the CaM antagonists used in these studies delayed gravity-induced curvature at a concentration (1 micromole) that did not affect root growth. Calmodulin antagonists (> or = 1 micromole) inhibited downward transport of label from 45Ca2+ across the caps of gravistimulated roots relative to the downward transport of 45Ca2+ in gravistimulated roots which were not treated with CaM antagonists. Application of CaM antagonists at the root tip (> or = 1 micromole) also decreased the relative downward movement of label from 3H-IAA applied to the upper side of the elongation zone of gravistimulated roots. In general, tip application of antagonists inhibited neither the upward transport of 45Ca2+ in the root tip nor the upward movement of label from 3H-IAA in the elongation zone of gravistimulated roots. Thus, roots treated with CaM antagonists > or = 1 micromole become less graviresponsive and exhibit reduced or even a reversal of downward polarity of calcium transport across the root tip and IAA transport across the elongation zone. The results indicate that calmodulin-regulated events play a role in root gravitropism.