Science.gov

Sample records for 5-ht2a antagonist mdl

  1. Evaluation of structural effects on 5-HT2A receptor antagonism by aporphines: identification of a new aporphine with 5-HT2A antagonist activity

    PubMed Central

    Ponnala, Shashikanth; Gonzales, Junior; Kapadia, Nirav; Navarro, Hernan A.; Harding, Wayne W.

    2014-01-01

    A set of aporphine analogs related to nantenine was evaluated for antagonist activity at 5-HT2A and α1A adrenergic receptors. With regards to 5-HT2A receptor antagonism, a C2 allyl group is detrimental to activity. The chiral center of nantenine is not important for 5-HT2A antagonist activity, however the N6 nitrogen atom is a critical feature for 5-HT2A antagonism. Compound 12b was the most potent 5-HT2A aporphine antagonist identified in this study and has similar potency to previously identified aporphine antagonists 2 and 3. The ring A and N6 modifications examined were detrimental to α1A antagonism. A slight eutomeric preference for the R enantiomer of nantenine was observed in relation to α1A antagonism. PMID:24630561

  2. The 5-HT(2A) receptor and serotonin transporter in Asperger's disorder: A PET study with [¹¹C]MDL 100907 and [¹¹C]DASB.

    PubMed

    Girgis, Ragy R; Slifstein, Mark; Xu, Xiaoyan; Frankle, W Gordon; Anagnostou, Evdokia; Wasserman, Stacey; Pepa, Lauren; Kolevzon, Alexander; Abi-Dargham, Anissa; Laruelle, Marc; Hollander, Eric

    2011-12-30

    Evidence from biochemical, imaging, and treatment studies suggest abnormalities of the serotonin system in autism spectrum disorders, in particular in frontolimbic areas of the brain. We used the radiotracers [(11)C]MDL 100907 and [(11)C]DASB to characterize the 5-HT(2A) receptor and serotonin transporter in Asperger's Disorder. Seventeen individuals with Asperger's Disorder (age=34.3 ± 11.1 years) and 17 healthy controls (age=33.0 ± 9.6 years) were scanned with [(11)C]MDL 100907. Of the 17 patients, eight (age=29.7 ± 7.0 years) were also scanned with [¹¹C]DASB, as were eight healthy controls (age=28.7 ± 7.0 years). Patients with Asperger's Disorder and healthy control subjects were matched for age, gender, and ethnicity, and all had normal intelligence. Metabolite-corrected arterial plasma inputs were collected and data analyzed by two-tissue compartment modeling. The primary outcome measure was regional binding potential BP(ND). Neither regional [¹¹C]MDL 100907 BP(ND) nor [¹¹C]DASB BP(ND) was statistically different between the Asperger's and healthy subjects. This study failed to find significant alterations in binding parameters of 5-HT(2A) receptors and serotonin transporters in adult subjects with Asperger's disorder.

  3. APORPHINOID ANTAGONISTS OF 5-HT2A RECEPTORS: FURTHER EVALUATION OF RING A SUBSTITUENTS AND THE SIZE OF RING C

    PubMed Central

    Ponnala, Shashikanth; Kapadia, Nirav; Navarro, Hernán A.; Harding, Wayne W.

    2014-01-01

    A series of ring A modified analogs of nantenine as well as structural variants in ring C were synthesized and evaluated for antagonist activity at 5-HT2A and α1A receptors. Halogenation improves 5-HT2A antagonist potency in molecules containing a C1 methoxyl/C2 methoxyl or C1 methoxyl/C2 hydroxyl moiety. Bromination or iodination (but not chlorination) with the latter moiety also significantly increased α1A antagonist potency. Homologation or contraction of ring C adversely affected antagonist activity at both receptors, implying that a six-membered ring C motif is beneficial for high antagonist potency at both receptors. Molecular docking studies suggest that the improved antagonist activity (by virtue of improved affinity) of C3 halogenated aporphines in this study, is attributable to favorable interactions with the C3 halogen and F339 and/or F340. PMID:24766771

  4. The antidepressant 5-HT2A receptor antagonists pizotifen and cyproheptadine inhibit serotonin-enhanced platelet function.

    PubMed

    Lin, Olivia A; Karim, Zubair A; Vemana, Hari Priya; Espinosa, Enma V P; Khasawneh, Fadi T

    2014-01-01

    There is considerable interest in defining new agents or targets for antithrombotic purposes. The 5-HT2A receptor is a G-protein coupled receptor (GPCR) expressed on many cell types, and a known therapeutic target for many disease states. This serotonin receptor is also known to regulate platelet function. Thus, in our FDA-approved drug repurposing efforts, we investigated the antiplatelet activity of cyproheptadine and pizotifen, two antidepressant 5-HT2A Receptor antagonists. Our results revealed that cyproheptadine and pizotifen reversed serotonin-enhanced ADP-induced platelet aggregation in vitro and ex vivo. And the inhibitory effects of these two agents were found to be similar to that of EMD 281014, a 5-HT2A Receptor antagonist under development. In separate experiments, our studies revealed that these 5-HT2A receptor antagonists have the capacity to reduce serotonin-enhanced ADP-induced elevation in intracellular calcium levels and tyrosine phosphorylation. Using flow cytometry, we also observed that cyproheptadine, pizotifen, and EMD 281014 inhibited serotonin-enhanced ADP-induced phosphatidylserine (PS) exposure, P-selectin expression, and glycoprotein IIb-IIIa activation. Furthermore, using a carotid artery thrombosis model, these agents prolonged the time for thrombotic occlusion in mice in vivo. Finally, the tail-bleeding time was investigated to assess the effect of cyproheptadine and pizotifen on hemostasis. Our findings indicated prolonged bleeding time in both cyproheptadine- and pizotifen-treated mice. Notably, the increases in occlusion and bleeding times associated with these two agents were comparable to that of EMD 281014, and to clopidogrel, a commonly used antiplatelet drug, again, in a fashion comparable to clopidogrel and EMD 281014. Collectively, our data indicate that the antidepressant 5-HT2A antagonists, cyproheptadine and pizotifen do exert antiplatelet and thromboprotective effects, but similar to clopidogrel and EMD 281014, their

  5. Anti-thrombotic and vascular effects of AR246686, a novel 5-HT2A receptor antagonist.

    PubMed

    Adams, John W; Ramirez, Juan; Ortuno, Danny; Shi, Yunqing; Thomsen, William; Richman, Jeremy G; Morgan, Michael; Dosa, Peter; Teegarden, Bradley R; Al-Shamma, Hussien; Behan, Dominic P; Connolly, Daniel T

    2008-05-31

    We have evaluated the anti-platelet and vascular pharmacology of AR246686, a novel 5-hydroxytryptamine2A (5-HT2A) receptor antagonist. AR246686 displayed high affinity binding to membranes of HEK cells stably expressing recombinant human and rat 5-HT2A receptors (Ki=0.2 nM and 0.4 nM, respectively). Functional antagonism (IC50=1.9 nM) with AR246686 was determined by inhibition of ligand-independent inositol phosphate accumulation in the 5-HT2A stable cell line. We observed 8.7-fold and 1360-fold higher affinity of AR246686 for the 5-HT2A receptor vs. 5-HT2C and 5-HT2B receptors, respectively. AR246686 inhibited 5-HT-induced amplification of ADP-stimulated human platelet aggregation (IC50=21 nM). Similar potency was observed for inhibition of 5-HT stimulated DNA synthesis in rat aortic smooth muscle cells (IC(50)=10 nM) and 5-HT-mediated contraction in rat aortic rings. Effects of AR246686 on arterial thrombosis and bleeding time were studied in a rat model of femoral artery occlusion. Oral dosing of AR246686 to rats resulted in prolongation of time to occlusion at 1 mg/kg, whereas increased bleeding time was observed at a dose of 20 mg/kg. In contrast, both bleeding time and time to occlusion were increased at the same dose (10 mg/kg) of clopidogrel. These results demonstrate that AR246686 is a high affinity 5-HT2A receptor antagonist with potent activity on platelets and vascular smooth muscle. Further, oral administration results in anti-thrombotic effects at doses that are free of significant effects on traumatic bleeding time.

  6. Latent inhibition is attenuated by noise and partially restored by a 5-HT2A receptor antagonist.

    PubMed

    McDonald, L M; Moran, P M; Vythelingum, G N; Joseph, M H; Stephenson, J D; Gray, J A

    2002-12-01

    Latent inhibition (LI) is a model of attention, which is a cognitive process that can be modulated by stressors such as chronic intermittent broadband noise, e.g. caused by building work, which is particularly stressful to rats. The aim of this study was to analyse the effect of chronic noise stress, caused by a building project, on LI, and its interaction with SR 46,349B, a 5-HT2A receptor antagonist. Control groups from LI experiments conducted during periods of chronic intermittent noise were compared with control groups from LI experiments conducted in normal quiet conditions. The interaction of SR 46,349B with the effects of chronic noise stress was then tested. Chronic intermittent noise attenuated LI, an effect which was partially reversed by SR 46,349B, 2.4 mg/kg i.p. Attenuation of LI by chronic intermittent noise and reversal of this effect by SR 46,349B support suggestions that stress can modulate attention and that 5-HT2A receptors are involved in mediating the effects of chronic stress.

  7. 4-Bromo-2,5-dimethoxyphenethylamine (2C-B) and structurally related phenylethylamines are potent 5-HT2A receptor antagonists in Xenopus laevis oocytes

    PubMed Central

    Villalobos, Claudio A; Bull, Paulina; Sáez, Patricio; Cassels, Bruce K; Huidobro-Toro, J Pablo

    2004-01-01

    We recently described that several 2-(2,5-dimethoxy-4-substituted phenyl)ethylamines (PEAs), including 4-I=2C-I, 4-Br=2C-B, and 4-CH3=2C-D analogs, are partial agonists at 5-HT2C receptors, and show low or even negligible intrinsic efficacy at 5-HT2A receptors. These results raised the proposal that these drugs may act as 5-HT2 antagonists. To test this hypothesis, Xenopus laevis oocytes were microinjected with the rat clones for 5-HT2A or 5-HT2C receptors. The above-mentioned PEAs and its 4-H analog (2C-H) blocked the 5-HT-induced currents at 5-HT2A, but not at the 5-HT2C receptor, revealing 5-HT2 receptor subtype selectivity. The 5-HT2A receptor antagonism required a 2-min preincubation to attain maximum inhibition. All PEAs tested shifted the 5-HT concentration–response curves to the right and downward. Their potencies varied with the nature of the C(4) substituent; the relative rank order of their 5-HT2A receptor antagonist potency was 2C-I>2C-B>2C-D>2C-H. The present results demonstrate that in X. laevis oocytes, a series of 2,5-dimethoxy-4-substituted PEAs blocked the 5-HT2A but not the 5-HT2C receptor-mediated responses. As an alternative hypothesis, we suggest that the psychostimulant activity of the PEAs may not be exclusively associated with partial or full 5-HT2A receptor agonism. PMID:15006903

  8. The role of the 5-HT2A and 5-HT2C receptors in the stimulus effects of hallucinogenic drugs. I: Antagonist correlation analysis.

    PubMed

    Fiorella, D; Rabin, R A; Winter, J C

    1995-10-01

    Investigations conducted over the past 3 decades have demonstrated that serotonergic receptors, specifically the 5-HT2A and 5-HT2C subtypes, play an important role in the behavioral effects of hallucinogenic compounds. The present study was designed to determine the respective significance of these two receptors in the stimulus effects of LSD and (-)DOM in the rat. Specifically, the interactions of a series of serotonergic antagonists (risperidone, pirenpirone, metergoline, ketanserin, loxapine, LY53857, pizotyline, spiperone, cyprohepatadine, mesulergine, promethazine, and thioridazine) with the LSD stimulus and the (-)DOM stimulus in LSD-trained subjects was defined. From these data, IC50 values were determined for the inhibition of the LSD-appropriate responding elicited by either 0.1 mg/kg LSD (15-min pretreatment time) or 0.4 mg/kg (-)DOM (75-min pretreatment). In addition, the affinities of these antagonists for 5-HT2A and 5-HT2C receptors were determined in radioligand competition studies, 5-HT2A affinity correlated significantly with IC50 values for the blockade of the LSD (r = +0.75, P < 0.05) and (-)DOM (r = +0.95, P < 0.001) stimuli in the LSD trained subjects. 5-HT2C affinity did not correlate significantly with either series of IC50 values. These data indicate that (1) the stimulus effects of LSD, and (2) the substitution of (-)DOM for the LSD stimulus are mediated by agonist activity at 5-HT2A receptors.

  9. The effect of intrahippocampal injections of ritanserin (5HT2A/2C antagonist) and granisetron (5HT3 antagonist) on learning as assessed in the spatial version of the water maze.

    PubMed

    Naghdi, Nasser; Harooni, Hooman E

    2005-02-28

    5HT(2A/2C) and 5HT(3) receptors have an important role in cognitive behavior specially in spatial learning and memory but the literature concerning the role of these receptors in hippocampus in cognition remains controversial. In the present study a 5HT(2A/2C) antagonist ritanserin (0, 2, 4, 8 microg/0.5 microl) and a 5HT(3) antagonist granisetron (0.0, 0.05, 0.25, 0.5 microg/0.5 microl) were injected bilaterally into the CA1 region of rat hippocampus, 20 min before each training session in Morris Water Maze (MWM) task. Compare with control group, ritanserin (4 microg/0.5 microl) significantly reduced the escape latency and traveled distance of swimming to platform, but granisetron (0.25 microg/0.5 microl) significantly increased those parameters. Both drugs had no effect on escape latency and traveled distance of a non-spatial visual discrimination task. These results suggest a differential role of 5HT(2A/2C) and 5HT(3) receptors during spatial learning that ritanserin improves rat performance in spatial discrimination task whereas granisetron impairs it.

  10. Clonidine potentiates the effects of 5-HT1A, 5-HT1B and 5-HT2A/2C antagonists and 8-OH-DPAT in the mouse forced swimming test.

    PubMed

    Redrobe, J P; Bourin, M

    1998-08-01

    The present study was undertaken to identify the receptor subtypes involved in clonidine's ability to enhance the effects of antidepressant drugs in the mouse forced swimming test. Clonidine (0.06 mg/kg, i.p.) significantly enhanced the antidepressant-like effects of subactive doses of the 5-HT1A receptor agonist, 8-OH-DPAT (1 mg/kg, i.p.; P<0.01); the 5-HT1A receptor antagonist, NAN 190 (0.5 mg/kg, i.p.; P<0.01); the 5-HT1A/1B autoreceptor antagonist, (+/-) pindolol (32 mg/kg, i.p.; P<0.01); the 5-HT2A/2C receptor antagonist, ritanserin (4 mg/kg, i.p.; P<0.01). Pretreatment with clonidine failed to increase mobility when administered in combination with the 5-HT1B receptor agonist, RU 24969 (1 mg/kg, i.p.) or the 5-HT2A receptor antagonist, ketanserin (8 mg/kg, i.p.). In conclusion, clonidine-induced anti-immobility effects are more likely mediated by 5-HT1A and 5-HT2C receptors, as well as alpha-2-adrenergic autoreceptors situated on noradrenergic neurones. The results of the present study also demonstrate that serotonergic receptor function can influence alpha-2-adrenoreceptor mediated responses in the mouse forced swimming test.

  11. The highly selective 5-hydroxytryptamine (5-HT)2A receptor antagonist, EMD 281014, significantly increases swimming and decreases immobility in male congenital learned helpless rats in the forced swim test.

    PubMed

    Patel, Jignesh G; Bartoszyk, Gerd D; Edwards, Emmeline; Ashby, Charles R

    2004-04-01

    We examined the effect of the highly selective 5-hydroxytryptamine (5-HT)(2A) receptor antagonist 7-[4-[2-(4-fluoro-phenyl)-ethyl]-piperazine-1-carbonyl]-1H-indole-3-carbonitrile HCl (EMD 281014) in congenital learned helpless male rats in the forced swim test. The administration of EMD-281014 (0.3-30 mg/kg i.p.) to congenital learned helpless rats dose-dependently and significantly (at 10 and 30 mg/kg) decreased immobility and increased swimming compared to vehicle-treated animals. Thus, EMD 281014 produces effects in the forced swim test resembling those of antidepressants.

  12. Effects of the 5-HT₆ receptor antagonists SB-399885 and RO-4368554 and of the 5-HT(2A) receptor antagonist EMD 281014 on sleep and wakefulness in the rat during both phases of the light-dark cycle.

    PubMed

    Monti, Jaime M; Jantos, Héctor

    2011-01-01

    The effects of the 5-HT₆ receptor antagonists SB-399885 (2.5, 5 and 10 mg/kg) and RO-4368554 (2.5, 5 and 10 mg/kg) and of the 5-HT(2A) receptor antagonist EMD 281014 (2.5, 5 and 10 mg/kg) were studied in rats implanted for chronic sleep procedures. Administration of 10 mg/kg SB-399885, i.p., to rats 2 h after the beginning of the light phase of the light-dark cycle caused a significant increase of wakefulness (W) and a reduction of slow wave sleep (SWS), REM sleep (REMS) and the number of REM periods during 6-h recording sessions. Light sleep was increased after the whole range of doses. The increase of W and reduction of SWS and REMS occurred predominantly during the first 2-h period whereas light sleep was augmented over the first and the second 2-h recording periods. Injection of RO-4368554 (10 mg/kg, i.p.) 2 h after the beginning of the light period significantly increased W and reduced SWS and REMS during the first 2-h recording period. Administration of EMD 281014 (10 mg/kg, i.p.) during the light phase significantly increased SWS and reduced light sleep during 6-h sessions. REMS and the number of REM period were reduced with the entire range of doses. The reduction of REMS and light sleep and the increase of SWS occurred predominantly during the first and the second 2-h of recording, respectively. Injection of SB-399885 (10 mg/kg, i.p.) 2 h after the beginning of the dark period induced a significant reduction of REMS during the first 2-h of recording. In contrast, RO-4368554 did not modify values corresponding to sleep variables during the dark period. Treatment with EMD 281014 (2.5-10 mg/kg, i.p.) during the dark phase significantly increased SWS during the second 2-h period. Our study supports the proposal that blockade of postsynaptic 5-HT₆ receptors with systemic administration of SB-399885 and RO-4368554 increases W and reduces SWS and REMS during the light phase of the sleep-wake cycle. SB-399885 also induces a suppression of REMS during the dark

  13. Inhibition of SNL-induced upregulation of CGRP and NPY in the spinal cord and dorsal root ganglia by the 5-HT(2A) receptor antagonist ketanserin in rats.

    PubMed

    Wang, Dongmei; Chen, Tingjun; Gao, Yun; Quirion, Rémi; Hong, Yanguo

    2012-05-01

    Our previous study has demonstrated that topical and systemic administration of the 5-HT(2A) receptor antagonist ketanserin attenuates neuropathic pain. To explore the mechanisms involved, we examined whether ketanserin reversed the plasticity changes associated with calcitonin gene-related peptides (CGRP) and neuropeptide Y (NPY) which may reflect distinct mechanisms: involvement and compensatory protection. Behavioral responses to thermal and tactile stimuli after spinal nerve ligation (SNL) at L5 demonstrated neuropathic pain and its attenuation in the vehicle- and ketanserin-treated groups, respectively. SNL surgery induced an increase in CGRP and NPY immunoreactivity (IR) in laminae I-II of the spinal cord. L5 SNL produced an expression of NPY-IR in large, medium and small diameter neurons in dorsal root ganglion (DRG) only at L5, but not adjacent L4 and L6. Daily injection of ketanserin (0.3 mg/kg, s.c.) for two weeks suppressed the increase in CGRP-IR and NPY-IR in the spinal cord or DRG. The present study demonstrated that: (1) the expression of CGRP was enhanced in the spinal dorsal horn and NPY was expressed in the DRG containing injured neurons, but not in the adjacent DRG containing intact neurons, following L5 SNL; (2) the maladaptive changes in CGRP and NPY expression in the spinal cord and DRG mediated the bioactivity of 5-HT/5-HT(2A) receptors in neuropathic pain and (3) the blockade of 5-HT(2A) receptors by ketanserin reversed the evoked upregulation of both CGRP and NPY in the spinal cord and DRG contributing to the inhibition of neuropathic pain.

  14. The Combination of Marketed Antagonists of α1b-Adrenergic and 5-HT2A Receptors Inhibits Behavioral Sensitization and Preference to Alcohol in Mice: A Promising Approach for the Treatment of Alcohol Dependence

    PubMed Central

    Trovero, Fabrice; David, Sabrina; Bernard, Philippe; Puech, Alain; Bizot, Jean-Charles; Tassin, Jean-Pol

    2016-01-01

    Alcohol-dependence is a chronic disease with a dramatic and expensive social impact. Previous studies have indicated that the blockade of two monoaminergic receptors, α1b-adrenergic and 5-HT2A, could inhibit the development of behavioral sensitization to drugs of abuse, a hallmark of drug-seeking and drug-taking behaviors in rodents. Here, in order to develop a potential therapeutic treatment of alcohol dependence in humans, we have blocked these two monoaminergic receptors by a combination of antagonists already approved by Health Agencies. We show that the association of ifenprodil (1 mg/kg) and cyproheptadine (1 mg/kg) (α1-adrenergic and 5-HT2 receptor antagonists marketed as Vadilex ® and Periactine ® in France, respectively) blocks behavioral sensitization to amphetamine in C57Bl6 mice and to alcohol in DBA2 mice. Moreover, this combination of antagonists inhibits alcohol intake in mice habituated to alcohol (10% v/v) and reverses their alcohol preference. Finally, in order to verify that the effect of ifenprodil was not due to its anti-NMDA receptors property, we have shown that a combination of prazosin (0.5 mg/kg, an α1b-adrenergic antagonist, Mini-Press ® in France) and cyproheptadine (1 mg/kg) could also reverse alcohol preference. Altogether these findings strongly suggest that combined prazosin and cyproheptadine could be efficient as a therapy to treat alcoholism in humans. Finally, because α1b-adrenergic and 5-HT2A receptors blockade also inhibits behavioral sensitization to psychostimulants, opioids and tobacco, it cannot be excluded that this combination will exhibit some efficacy in the treatment of addiction to other abused drugs. PMID:26968030

  15. A comparison of the behavioural effects of 5-HT2A and 5-HT2C receptor agonists in the pigeon.

    PubMed

    Wolff, M C; Leander, J D

    2000-08-01

    Activity at the 5-HT2A receptor versus that of the 5-HT2C receptor was studied in three behavioural paradigms. In pigeons trained to discriminate 0.32 mg/kg of 1-(2,5-diemethoxy-4-iodophenyl)-2-aminopropane (DOI) (a mixed 5-HT2A/C receptor agonist) from vehicle, quipazine (0.1-1 mg/kg) and m-chlorophenylpiperazine (mCPP) (1-3 mg/kg) substituted for DOI in a dose-related manner, and this generalization was blocked by MDL100907 (0.0001-0.01 mg/kg), a selective 5-HT2A receptor antagonist. RO60-0175 (a relatively selective 5-HT2C agonist) induced partial substitution at 3 mg/kg that was antagonized by both MDL100907 and by 3 mg/kg of SB242084, a relatively selective 5-HT2C antagonist. MK212 (a mixed 5-HT2C/A agonist) induced partial substitution that was antagonized by SB242084, but not by MDL100907. On a progressive ratio 5 operant schedule (PR5) for food reinforcement, DOI, quipazine, mCPP, MK212 and R060-0175 decreased the break point; mCPP, DOI, MK212 and quipazine also induced vomiting. Although MDL100907 antagonized both the reductions of break point and vomiting, SB242084 only partially attenuated the decrease in break point observed with MK212 and DOI, and was unable to eliminate vomiting. Thus pharmacological activity at the 5-HT2A receptor can be behaviourally distinguished from pharmacological activity at the 5-HT2C receptor in the pigeon. Furthermore, the decrease in the break point of a PR5 schedule induced by 5-HT2C receptor agonists may be related to decreased appetite, whereas that induced by 5-HT2A receptor agonists may be due to unrelated factors, such as emesis. PMID:11103887

  16. A Novel Aminotetralin-Type Serotonin (5-HT) 2C Receptor-Specific Agonist and 5-HT2A Competitive Antagonist/5-HT2B Inverse Agonist with Preclinical Efficacy for Psychoses

    PubMed Central

    Morgan, Drake; Felsing, Daniel; Kondabolu, Krishnakanth; Rowland, Neil E.; Robertson, Kimberly L.; Sakhuja, Rajeev; Booth, Raymond G.

    2014-01-01

    Development of 5-HT2C agonists for treatment of neuropsychiatric disorders, including psychoses, substance abuse, and obesity, has been fraught with difficulties, because the vast majority of reported 5-HT2C selective agonists also activate 5-HT2A and/or 5-HT2B receptors, potentially causing hallucinations and/or cardiac valvulopathy. Herein is described a novel, potent, and efficacious human 5-HT2C receptor agonist, (−)-trans-(2S,4R)-4-(3′[meta]-bromophenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine (−)-MBP), that is a competitive antagonist and inverse agonist at human 5-HT2A and 5-HT2B receptors, respectively. (−)-MBP has efficacy comparable to the prototypical second-generation antipsychotic drug clozapine in three C57Bl/6 mouse models of drug-induced psychoses: the head-twitch response elicited by [2,5]-dimethoxy-4-iodoamphetamine; hyperlocomotion induced by MK-801 [(5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (dizocilpine maleate)]; and hyperlocomotion induced by amphetamine. (−)-MBP, however, does not alter locomotion when administered alone, distinguishing it from clozapine, which suppresses locomotion. Finally, consumption of highly palatable food by mice was not increased by (−)-MBP at a dose that produced at least 50% maximal efficacy in the psychoses models. Compared with (−)-MBP, the enantiomer (+)-MBP was much less active across in vitro affinity and functional assays using mouse and human receptors and also translated in vivo with comparably lower potency and efficacy. Results indicate a 5-HT2C receptor-specific agonist, such as (−)-MBP, may be pharmacotherapeutic for psychoses, without liability for obesity, hallucinations, heart disease, sedation, or motoric disorders. PMID:24563531

  17. Activation of 5-HT2a Receptors in the Basolateral Amygdala Promotes Defeat-Induced Anxiety and the Acquisition of Conditioned Defeat in Syrian Hamsters

    PubMed Central

    Clinard, Catherine T.; Bader, Lauren R.; Sullivan, Molly A.; Cooper, Matthew A.

    2014-01-01

    Conditioned defeat is a model in Syrian hamsters (Mesocricetus auratus) in which normal territorial aggression is replaced by increased submissive and defensive behavior following acute social defeat. The conditioned defeat response involves both a fear-related memory for a specific opponent as well as anxiety-like behavior indicated by avoidance of novel conspecifics. We have previously shown that systemic injection of a 5-HT2a receptor antagonist reduces the acquisition of conditioned defeat. Because neural activity in the basolateral amygdala (BLA) is critical for the acquisition of conditioned defeat and BLA 5-HT2a receptors can modulate anxiety but have a limited effect on emotional memories, we investigated whether 5-HT2a receptor modulation alters defeat-induced anxiety but not defeat-related memories. We injected the 5-HT2a receptor antagonist MDL 11,939 (0 mM, 1.7 mM or 17 mM) or the 5-HT2a receptor agonist TCB-2 (0 mM, 8 mM or 80 mM) into the BLA prior to social defeat. We found that injection of MDL 11,939 into the BLA impaired acquisition of the conditioned defeat response and blocked defeat-induced anxiety in the open field, but did not significantly impair avoidance of former opponents in the Y-maze. Furthermore, we found that injection of TCB-2 into the BLA increased the acquisition of conditioned defeat and increased anxiety-like behavior in the open field, but did not alter avoidance of former opponents. Our data suggest that 5-HT2a receptor signaling in the BLA is both necessary and sufficient for the development of conditioned defeat, likely via modulation of defeat-induced anxiety. PMID:25458113

  18. Increased hypothalamic 5-HT2A receptor gene expression and effects of pharmacologic 5-HT2A receptor inactivation in obese A{sup y} mice

    SciTech Connect

    Nonogaki, Katsunori . E-mail: knonogaki-tky@umin.ac.jp; Nozue, Kana; Oka, Yoshitomo

    2006-12-29

    Serotonin (5-hydroxytryptamine; 5-HT) 2A receptors contribute to the effects of 5-HT on platelet aggregation and vascular smooth muscle cell proliferation, and are reportedly involved in decreases in plasma levels of adiponectin, an adipokine, in diabetic subjects. Here, we report that systemic administration of sarpogrelate, a 5-HT2A receptor antagonist, suppressed appetite and increased hypothalamic pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript, corticotropin releasing hormone, 5-HT2C, and 5-HT1B receptor gene expression. A{sup y} mice, which have ectopic expression of the agouti protein, significantly increased hypothalamic 5-HT2A receptor gene expression in association with obesity compared with wild-type mice matched for age. Systemic administration of sarpogrelate suppressed overfeeding, body weight gain, and hyperglycemia in obese A{sup y} mice, whereas it did not increase plasma adiponectin levels. These results suggest that obesity increases hypothalamic 5-HT2A receptor gene expression, and pharmacologic inactivation of 5-HT2A receptors inhibits overfeeding and obesity in A{sup y} mice, but did not increase plasma adiponectin levels.

  19. MDMA-induced loss of parvalbumin interneurons within the dentate gyrus is mediated by 5HT2A and NMDA receptors.

    PubMed

    Collins, Stuart A; Gudelsky, Gary A; Yamamoto, Bryan K

    2015-08-15

    MDMA is a widely abused psychostimulant which causes a rapid and robust release of the monoaminergic neurotransmitters dopamine and serotonin. Recently, it was shown that MDMA increases extracellular glutamate concentrations in the dorsal hippocampus, which is dependent on serotonin release and 5HT2A/2C receptor activation. The increased extracellular glutamate concentration coincides with a loss of parvalbumin-immunoreactive (PV-IR) interneurons of the dentate gyrus region. Given the known susceptibility of PV interneurons to excitotoxicity, we examined whether MDMA-induced increases in extracellular glutamate in the dentate gyrus are necessary for the loss of PV cells in rats. Extracellular glutamate concentrations increased in the dentate gyrus during systemic and local administration of MDMA. Administration of the NMDA receptor antagonist, MK-801, during systemic injections of MDMA, prevented the loss of PV-IR interneurons seen 10 days after MDMA exposure. Local administration of MDL100907, a selective 5HT2A receptor antagonist, prevented the increases in glutamate caused by reverse dialysis of MDMA directly into the dentate gyrus and prevented the reduction of PV-IR. These findings provide evidence that MDMA causes decreases in PV within the dentate gyrus through a 5HT2A receptor-mediated increase in glutamate and subsequent NMDA receptor activation.

  20. 3,4-methylenedioxymethamphetamine increases excitability in the dentate gyrus: role of 5HT2A receptor-induced PGE2 signaling.

    PubMed

    Collins, Stuart A; Huff, Courtney; Chiaia, Nicolas; Gudelsky, Gary A; Yamamoto, Bryan K

    2016-03-01

    3,4-methylenedioxymethamphetamine (MDMA) is a widely abused psychostimulant, which causes release of serotonin in various forebrain regions. Recently, we reported that MDMA increases extracellular glutamate concentrations in the dentate gyrus, via activation of 5HT2A receptors. We examined the role of prostaglandin signaling in mediating the effects of 5HT2A receptor activation on the increases in extracellular glutamate and the subsequent long-term loss of parvalbumin interneurons in the dentate gyrus caused by MDMA. Administration of MDMA into the dentate gyrus of rats increased PGE2 concentrations which was prevented by coadministration of MDL100907, a 5HT2A receptor antagonist. MDMA-induced increases in extracellular glutamate were inhibited by local administration of SC-51089, an inhibitor of the EP1 prostaglandin receptor. Systemic administration of SC-51089 during injections of MDMA prevented the decreases in parvalbumin interneurons observed 10 days later. The loss of parvalbumin immunoreactivity after MDMA exposure coincided with a decrease in paired-pulse inhibition and afterdischarge threshold in the dentate gyrus. These changes were prevented by inhibition of EP1 and 5HT2A receptors during MDMA. Additional experiments revealed an increased susceptibility to kainic acid-induced seizures in MDMA-treated rats, which could be prevented with SC51089 treatments during MDMA exposure. Overall, these findings suggest that 5HT2A receptors mediate MDMA-induced PGE2 signaling and subsequent increases in glutamate. This signaling mediates parvalbumin cell losses as well as physiologic changes in the dentate gyrus, suggesting that the lack of the inhibition provided by these neurons increases the excitability within the dentate gyrus of MDMA-treated rats. We hypothesized that the widely abused psychostimulant MDMA causes a loss of parvalbumin (PV) cells and increases excitability in the dentate gyrus. MDMA increases serotonin (5HT) release and activates 5HT2A

  1. Role for serotonin2A (5-HT2A) and 2C (5-HT2C) receptors in experimental absence seizures.

    PubMed

    Venzi, Marcello; David, François; Bellet, Joachim; Cavaccini, Anna; Bombardi, Cristiano; Crunelli, Vincenzo; Di Giovanni, Giuseppe

    2016-09-01

    Absence seizures (ASs) are the hallmark of childhood/juvenile absence epilepsy. Monotherapy with first-line anti-absence drugs only controls ASs in 50% of patients, indicating the need for novel therapeutic targets. Since serotonin family-2 receptors (5-HT2Rs) are known to modulate neuronal activity in the cortico-thalamo-cortical loop, the main network involved in AS generation, we investigated the effect of selective 5-HT2AR and 5-HT2CR ligands on ASs in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS), a well established polygenic rat model of these non-convulsive seizures. GAERS rats were implanted with fronto-parietal EEG electrodes under general anesthesia, and their ASs were later recorded under freely moving conditions before and after intraperitoneal administration of various 5-HT2AR and 5-HT2CR ligands. The 5-HT2A agonist TCB-2 dose-dependently decreased the total time spent in ASs, an effect that was blocked by the selective 5-HT2A antagonist MDL11,939. Both MDL11,939 and another selective 5-HT2A antagonist (M100,907) increased the length of individual seizures when injected alone. The 5-HT2C agonists lorcaserin and CP-809,101 dose-dependently suppressed ASs, an effect blocked by the selective 5-HT2C antagonist SB 242984. In summary, 5-HT2ARs and 5-HT2CRs negatively control the expression of experimental ASs, indicating that selective agonists at these 5-HT2R subtypes might be potential novel anti-absence drugs.

  2. Role for serotonin2A (5-HT2A) and 2C (5-HT2C) receptors in experimental absence seizures.

    PubMed

    Venzi, Marcello; David, François; Bellet, Joachim; Cavaccini, Anna; Bombardi, Cristiano; Crunelli, Vincenzo; Di Giovanni, Giuseppe

    2016-09-01

    Absence seizures (ASs) are the hallmark of childhood/juvenile absence epilepsy. Monotherapy with first-line anti-absence drugs only controls ASs in 50% of patients, indicating the need for novel therapeutic targets. Since serotonin family-2 receptors (5-HT2Rs) are known to modulate neuronal activity in the cortico-thalamo-cortical loop, the main network involved in AS generation, we investigated the effect of selective 5-HT2AR and 5-HT2CR ligands on ASs in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS), a well established polygenic rat model of these non-convulsive seizures. GAERS rats were implanted with fronto-parietal EEG electrodes under general anesthesia, and their ASs were later recorded under freely moving conditions before and after intraperitoneal administration of various 5-HT2AR and 5-HT2CR ligands. The 5-HT2A agonist TCB-2 dose-dependently decreased the total time spent in ASs, an effect that was blocked by the selective 5-HT2A antagonist MDL11,939. Both MDL11,939 and another selective 5-HT2A antagonist (M100,907) increased the length of individual seizures when injected alone. The 5-HT2C agonists lorcaserin and CP-809,101 dose-dependently suppressed ASs, an effect blocked by the selective 5-HT2C antagonist SB 242984. In summary, 5-HT2ARs and 5-HT2CRs negatively control the expression of experimental ASs, indicating that selective agonists at these 5-HT2R subtypes might be potential novel anti-absence drugs. PMID:27085605

  3. 4-Fluorosulfonylpiperidines: selective 5-HT2A ligands for the treatment of insomnia.

    PubMed

    Fish, L Rebecca; Gilligan, Myra T; Humphries, Alexander C; Ivarsson, Magnus; Ladduwahetty, Tammy; Merchant, Kevin J; O'Connor, Desmond; Patel, Smita; Philipps, Elisabeth; Vargas, Hugo M; Hutson, Peter H; MacLeod, Angus M

    2005-08-15

    Incorporation of fluorine at the 4-position of an existing series of sulfonyl piperidine 5-HT2A antagonists gave compounds with increased selectivity over the IKr potassium channel. This work led to the identification of 3b, a compound that gave no increase in QTc in the anesthetized dog up to plasma levels as high as 148 microM. Furthermore, 3b has been shown to increase slow-wave sleep bout duration and to decrease the number of awakenings in rats, indicating the potential utility of 5-HT2A antagonists in the treatment of insomnia.

  4. A double dissociation in the effects of 5-HT2A and 5-HT2C receptors on the acquisition and expression of conditioned defeat in Syrian hamsters

    PubMed Central

    Harvey, Marquinta L.; Swallows, Cody L.; Cooper, Matthew A.

    2012-01-01

    Previous research indicates that serotonin enhances the development of stress-induced changes in behavior, although it is unclear which serotonin receptors mediate this effect. 5-HT2 receptors are potential candidates because activation at these receptors is associated with increased fear and anxiety. In this study we investigated whether pharmacological treatments targeting 5-HT2 receptors would alter the acquisition and expression of conditioned defeat. Conditioned defeat is a social defeat model in Syrian hamsters in which individuals display increased submissive and defensive behavior and a loss of territorial aggression when tested with a novel intruder 24 hours after an acute social defeat. The nonselective 5-HT2 receptor agonist mCPP (0.0, 0.3, 1.0 or 3.0 mg/kg) was injected either prior to social defeat training or prior to conditioned defeat testing. Also, the 5-HT2A receptor antagonist MDL 11,939 (0.0, 0.5 or 2.0 mg/kg) was injected either prior to social defeat training or prior to conditioned defeat testing. Injection of mCPP prior to testing increased the expression of conditioned defeat, but injection of mCPP prior to training did not alter the acquisition of conditioned defeat. Conversely, injection of MDL 11,939 prior to training reduced the acquisition of conditioned defeat, but injection of MDL 11,939 prior to testing did not alter the expression of conditioned defeat. Our data suggest that mCPP activates 5-HT2C receptors during testing to enhance the display of submissive and defensive behavior, whereas MDL 11,939 blocks 5-HT2A receptors during social defeat to disrupt the development of the conditioned defeat response. In sum, these results suggest that serotonin acts at separate 5-HT2 receptors to facilitate the acquisition and expression of defeat-induced changes in social behavior. PMID:22708954

  5. Contrasting mechanisms of action and sensitivity to antipsychotics of phencyclidine versus amphetamine: importance of nucleus accumbens 5-HT2A sites for PCP-induced locomotion in the rat.

    PubMed

    Millan, M J; Brocco, M; Gobert, A; Joly, F; Bervoets, K; Rivet, J; Newman-Tancredi, A; Audinot, V; Maurel, S

    1999-12-01

    In the present study, the comparative mechanisms of action of phencyclidine (PCP) and amphetamine were addressed employing the parameter of locomotion in rats. PCP-induced locomotion (PLOC) was potently blocked by the selective serotonin (5-HT)2A vs. D2 antagonists, SR46349, MDL100,907, ritanserin and fananserin, which barely affected amphetamine-induced locomotion (ALOC). In contrast, the selective D2 vs. 5-HT2A antagonists, eticlopride, raclopride and amisulpride, preferentially inhibited ALOC vs. PLOC. The potency of these drugs and 12 multireceptorial antipsychotics in inhibiting PLOC vs. ALOC correlated significantly with affinities at 5-HT2A vs. D2 receptors, respectively. Amphetamine and PCP both dose dependently increased dialysate levels of dopamine (DA) and 5-HT in the nucleus accumbens, striatum and frontal cortex (FCX) of freely moving rats, but PCP was proportionally more effective than amphetamine in elevating levels of 5-HT vs. DA in the accumbens. Further, whereas microinjection of PCP into the accumbens elicited locomotion, its introduction into the striatum or FCX was ineffective. The action of intra-accumbens PCP, but not intra-accumbens amphetamine, was abolished by SR46349 and clozapine. Parachloroamphetamine, which depleted accumbens pools of 5-HT but not DA, likewise abolished PLOC without affecting ALOC. In contrast, intra-accumbens 6-hydroxydopamine (6-OHDA), which depleted DA but not 5-HT, abolished ALOC but only partially attenuated PLOC. In conclusion, PLOC involves (indirect) activation of accumbens-localized 5-HT2A receptors by 5-HT. PLOC is, correspondingly, more potently blocked than ALOC by antipsychotics displaying marked affinity at 5-HT2A receptors.

  6. Heterocomplex formation of 5-HT2A-mGlu2 and its relevance for cellular signaling cascades.

    PubMed

    Delille, Hannah K; Becker, Judith M; Burkhardt, Sabrina; Bleher, Barbara; Terstappen, Georg C; Schmidt, Martin; Meyer, Axel H; Unger, Liliane; Marek, Gerard J; Mezler, Mario

    2012-06-01

    Dopamine, serotonin and glutamate play a role in the pathophysiology of schizophrenia. In the brain a functional crosstalk between the serotonin receptor 5-HT(2A) and the metabotropic glutamate receptor mGlu(2) has been demonstrated. Such a crosstalk may be mediated indirectly through neuronal networks or directly by receptor oligomerization. A direct link of the 5-HT(2A)-mGlu(2) heterocomplex formation to receptor function, i.e. to intracellular signaling, has not been fully demonstrated yet. Here we confirm the formation of 5-HT(2A)-mGlu(2) heterocomplexes using quantitative Snap/Clip-tag based HTRF methods. Additionally, mGlu(2) formed complexes with 5-HT(2B) and mGlu(5) but not 5-HT(2C) indicating that complex formation is not specific to the 5-HT(2A)-mGlu(2) pair. We studied the functional consequences of the 5-HT(2A)-mGlu(2) heterocomplex addressing cellular signaling pathways. Co-expression of receptors in HEK-293 cells had no relevant effects on signaling mediated by the individual receptors when mGlu(2) agonists, antagonists and PAMs, or 5-HT(2A) hallucinogenic and non-hallucinogenic agonists and antagonists were used. Hallucinogenic 5-HT(2A) agonists induced signaling through G(q/11), but not G(i) and thus did not lead to modulation of intracellular cAMP levels. In membranes of the medial prefrontal cortex [(3)H]-LY341495 binding competition of mGlu(2/3) agonist LY354740 was not influenced by 2,5-dimethoxy-4-iodoamphetamine (DOI). Taken together, the formation of GPCR heterocomplexes does not necessarily translate into second messenger effects. These results do not put into question the well-documented functional cross-talk of the two receptors in the brain, but do challenge the biological relevance of the 5-HT(2A)-mGlu(2) heterocomplex.

  7. 5-HT2A receptor activation is necessary for CO2-induced arousal

    PubMed Central

    Smith, Haleigh R.; MacAskill, Amanda; Richerson, George B.

    2015-01-01

    Hypercapnia-induced arousal from sleep is an important protective mechanism pertinent to a number of diseases. Most notably among these are the sudden infant death syndrome, obstructive sleep apnea and sudden unexpected death in epilepsy. Serotonin (5-HT) plays a significant role in hypercapnia-induced arousal. The mechanism of 5-HT's role in this protective response is unknown. Here we sought to identify the specific 5-HT receptor subtype(s) involved in this response. Wild-type mice were pretreated with antagonists against 5-HT receptor subtypes, as well as antagonists against adrenergic, cholinergic, histaminergic, dopaminergic, and orexinergic receptors before challenge with inspired CO2 or hypoxia. Antagonists of 5-HT2A receptors dose-dependently blocked CO2-induced arousal. The 5-HT2C receptor antagonist, RS-102221, and the 5-HT1A receptor agonist, 8-OH-DPAT, attenuated but did not completely block CO2-induced arousal. Blockade of non-5-HT receptors did not affect CO2-induced arousal. None of these drugs had any effect on hypoxia-induced arousal. 5-HT2 receptor agonists were given to mice in which 5-HT neurons had been genetically eliminated during embryonic life (Lmx1bf/f/p) and which are known to lack CO2-induced arousal. Application of agonists to 5-HT2A, but not 5-HT2C, receptors, dose-dependently restored CO2-induced arousal in these mice. These data identify the 5-HT2A receptor as an important mediator of CO2-induced arousal and suggest that, while 5-HT neurons can be independently activated to drive CO2-induced arousal, in the absence of 5-HT neurons and endogenous 5-HT, 5-HT receptor activation can act in a permissive fashion to facilitate CO2-induced arousal via another as yet unidentified chemosensor system. PMID:25925320

  8. 5-HT2A receptors control body temperature in mice during LPS-induced inflammation via regulation of NO production.

    PubMed

    Voronova, Irina P; Khramova, Galina M; Kulikova, Elizabeth A; Petrovskii, Dmitrii V; Bazovkina, Daria V; Kulikov, Alexander V

    2016-01-01

    G protein-coupled 5-HT2A receptors are involved in the regulation of numerous normal and pathological physiological functions. At the same time, its involvement in the regulation of body temperature (Tb) in normal conditions is obscure. Here we study the effect of the 5-HT2A receptor activation or blockade on Tb in sick animals. The experiments were carried out on adult C57BL/6 mouse males. Systemic inflammation and sickness were produced by lipopolysaccharide (LPS, 0.1mg/kg, ip), while the 5-HT2A receptor was stimulated or blocked through the administration of the receptor agonist DOI or antagonist ketanserin (1mg/kg), respectively. LPS, DOI or ketanserin alone produced no effect on Tb. However, administration of LPS together with a peripheral or central ketanserin injection reduced Tb (32.2°C). Ketanserin reversed the LPS-induced expression of inducible NO synthase in the brain. Consequently, an involvement of NO in the mechanism of the hypothermic effect of ketanserin in sick mice was hypothesized. Administration of LPS together with NO synthase inhibitor, l-nitro-arginine methyl ester (60mg/kg, ip) resulted in deep (28.5°C) and prolonged (8h) hypothermia, while administration of l-nitro-arginine methyl ester alone produced no effect on Tb. Thus, 5-HT2A receptors play a key role in Tb control in sick mice. Blockade of this GPCR produces hypothermia in mice with systemic inflammation via attenuation of LPS-induced NO production. These results indicate an unexpected role of 5-HT2A receptors in inflammation and NO production and have a considerable biological impact on understanding the mechanism of animal adaptation to pathogens and parasites. Moreover, adverse side effects of 5-HT2A receptor antagonists in patients with inflammation may be expected. PMID:26621247

  9. 5-HT2A receptors control body temperature in mice during LPS-induced inflammation via regulation of NO production.

    PubMed

    Voronova, Irina P; Khramova, Galina M; Kulikova, Elizabeth A; Petrovskii, Dmitrii V; Bazovkina, Daria V; Kulikov, Alexander V

    2016-01-01

    G protein-coupled 5-HT2A receptors are involved in the regulation of numerous normal and pathological physiological functions. At the same time, its involvement in the regulation of body temperature (Tb) in normal conditions is obscure. Here we study the effect of the 5-HT2A receptor activation or blockade on Tb in sick animals. The experiments were carried out on adult C57BL/6 mouse males. Systemic inflammation and sickness were produced by lipopolysaccharide (LPS, 0.1mg/kg, ip), while the 5-HT2A receptor was stimulated or blocked through the administration of the receptor agonist DOI or antagonist ketanserin (1mg/kg), respectively. LPS, DOI or ketanserin alone produced no effect on Tb. However, administration of LPS together with a peripheral or central ketanserin injection reduced Tb (32.2°C). Ketanserin reversed the LPS-induced expression of inducible NO synthase in the brain. Consequently, an involvement of NO in the mechanism of the hypothermic effect of ketanserin in sick mice was hypothesized. Administration of LPS together with NO synthase inhibitor, l-nitro-arginine methyl ester (60mg/kg, ip) resulted in deep (28.5°C) and prolonged (8h) hypothermia, while administration of l-nitro-arginine methyl ester alone produced no effect on Tb. Thus, 5-HT2A receptors play a key role in Tb control in sick mice. Blockade of this GPCR produces hypothermia in mice with systemic inflammation via attenuation of LPS-induced NO production. These results indicate an unexpected role of 5-HT2A receptors in inflammation and NO production and have a considerable biological impact on understanding the mechanism of animal adaptation to pathogens and parasites. Moreover, adverse side effects of 5-HT2A receptor antagonists in patients with inflammation may be expected.

  10. 5-HT2A Receptor Binding in the Frontal Cortex of Parkinson's Disease Patients and Alpha-Synuclein Overexpressing Mice: A Postmortem Study.

    PubMed

    Rasmussen, Nadja Bredo; Olesen, Mikkel Vestergaard; Brudek, Tomasz; Plenge, Per; Klein, Anders Bue; Westin, Jenny E; Fog, Karina; Wörtwein, Gitta; Aznar, Susana

    2016-01-01

    The 5-HT2A receptor is highly involved in aspects of cognition and executive function and seen to be affected in neurodegenerative diseases like Alzheimer's disease and related to the disease pathology. Even though Parkinson's disease (PD) is primarily a motor disorder, reports of impaired executive function are also steadily being associated with this disease. Not much is known about the pathophysiology behind this. The aim of this study was thereby twofold: (1) to investigate 5-HT2A receptor binding levels in Parkinson's brains and (2) to investigate whether PD associated pathology, alpha-synuclein (AS) overexpression, could be associated with 5-HT2A alterations. Binding density for the 5-HT2A-specific radioligand [(3)H]-MDL 100.907 was measured in membrane suspensions of frontal cortex tissue from PD patients. Protein levels of AS were further measured using western blotting. Results showed higher AS levels accompanied by increased 5-HT2A receptor binding in PD brains. In a separate study, we looked for changes in 5-HT2A receptors in the prefrontal cortex in 52-week-old transgenic mice overexpressing human AS. We performed region-specific 5-HT2A receptor binding measurements followed by gene expression analysis. The transgenic mice showed lower 5-HT2A binding in the frontal association cortex that was not accompanied by changes in gene expression levels. This study is one of the first to look at differences in serotonin receptor levels in PD and in relation to AS overexpression. PMID:27579212

  11. 5-HT2A Receptor Binding in the Frontal Cortex of Parkinson's Disease Patients and Alpha-Synuclein Overexpressing Mice: A Postmortem Study.

    PubMed

    Rasmussen, Nadja Bredo; Olesen, Mikkel Vestergaard; Brudek, Tomasz; Plenge, Per; Klein, Anders Bue; Westin, Jenny E; Fog, Karina; Wörtwein, Gitta; Aznar, Susana

    2016-01-01

    The 5-HT2A receptor is highly involved in aspects of cognition and executive function and seen to be affected in neurodegenerative diseases like Alzheimer's disease and related to the disease pathology. Even though Parkinson's disease (PD) is primarily a motor disorder, reports of impaired executive function are also steadily being associated with this disease. Not much is known about the pathophysiology behind this. The aim of this study was thereby twofold: (1) to investigate 5-HT2A receptor binding levels in Parkinson's brains and (2) to investigate whether PD associated pathology, alpha-synuclein (AS) overexpression, could be associated with 5-HT2A alterations. Binding density for the 5-HT2A-specific radioligand [(3)H]-MDL 100.907 was measured in membrane suspensions of frontal cortex tissue from PD patients. Protein levels of AS were further measured using western blotting. Results showed higher AS levels accompanied by increased 5-HT2A receptor binding in PD brains. In a separate study, we looked for changes in 5-HT2A receptors in the prefrontal cortex in 52-week-old transgenic mice overexpressing human AS. We performed region-specific 5-HT2A receptor binding measurements followed by gene expression analysis. The transgenic mice showed lower 5-HT2A binding in the frontal association cortex that was not accompanied by changes in gene expression levels. This study is one of the first to look at differences in serotonin receptor levels in PD and in relation to AS overexpression.

  12. 5-HT2A Receptor Binding in the Frontal Cortex of Parkinson's Disease Patients and Alpha-Synuclein Overexpressing Mice: A Postmortem Study

    PubMed Central

    Rasmussen, Nadja Bredo; Olesen, Mikkel Vestergaard; Plenge, Per; Klein, Anders Bue; Westin, Jenny E.; Fog, Karina

    2016-01-01

    The 5-HT2A receptor is highly involved in aspects of cognition and executive function and seen to be affected in neurodegenerative diseases like Alzheimer's disease and related to the disease pathology. Even though Parkinson's disease (PD) is primarily a motor disorder, reports of impaired executive function are also steadily being associated with this disease. Not much is known about the pathophysiology behind this. The aim of this study was thereby twofold: (1) to investigate 5-HT2A receptor binding levels in Parkinson's brains and (2) to investigate whether PD associated pathology, alpha-synuclein (AS) overexpression, could be associated with 5-HT2A alterations. Binding density for the 5-HT2A-specific radioligand [3H]-MDL 100.907 was measured in membrane suspensions of frontal cortex tissue from PD patients. Protein levels of AS were further measured using western blotting. Results showed higher AS levels accompanied by increased 5-HT2A receptor binding in PD brains. In a separate study, we looked for changes in 5-HT2A receptors in the prefrontal cortex in 52-week-old transgenic mice overexpressing human AS. We performed region-specific 5-HT2A receptor binding measurements followed by gene expression analysis. The transgenic mice showed lower 5-HT2A binding in the frontal association cortex that was not accompanied by changes in gene expression levels. This study is one of the first to look at differences in serotonin receptor levels in PD and in relation to AS overexpression. PMID:27579212

  13. Potentiation of 5-methoxy-N,N-dimethyltryptamine-induced hyperthermia by harmaline and the involvement of activation of 5-HT1A and 5-HT2A receptors.

    PubMed

    Jiang, Xi-Ling; Shen, Hong-Wu; Yu, Ai-Ming

    2015-02-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and harmaline are serotonin (5-HT) analogs often abused together, which alters thermoregulation that may indicate the severity of serotonin toxicity. Our recent studies have revealed that co-administration of monoamine oxidase inhibitor harmaline leads to greater and prolonged exposure to 5-HT agonist 5-MeO-DMT that might be influenced by cytochrome P450 2D6 (CYP2D6) status. This study was to define the effects of harmaline and 5-MeO-DMT on thermoregulation in wild-type and CYP2D6-humanized (Tg-CYP2D6) mice, as well as the involvement of 5-HT receptors. Animal core body temperatures were monitored noninvasively in the home cages after implantation of telemetry transmitters and administration of drugs. Harmaline (5 and 15 mg/kg, i.p.) alone was shown to induce hypothermia that was significantly affected by CYP2D6 status. In contrast, higher doses of 5-MeO-DMT (10 and 20 mg/kg) alone caused hyperthermia. Co-administration of harmaline (2, 5 or 15 mg/kg) remarkably potentiated the hyperthermia elicited by 5-MeO-DMT (2 or 10 mg/kg), which might be influenced by CYP2D6 status at certain dose combination. Interestingly, harmaline-induced hypothermia was only attenuated by 5-HT1A receptor antagonist WAY-100635, whereas 5-MeO-DMT- and harmaline-5-MeO-DMT-induced hyperthermia could be suppressed by either WAY-100635 or 5-HT2A receptor antagonists (MDL-100907 and ketanserin). Moreover, stress-induced hyperthermia under home cage conditions was not affected by WAY-100635 but surprisingly attenuated by MDL-100907 and ketanserin. Our results indicate that co-administration of monoamine oxidase inhibitor largely potentiates 5-MeO-DMT-induced hyperthermia that involves the activation of both 5-HT1A and 5-HT2A receptors. These findings shall provide insights into development of anxiolytic drugs and new strategies to relieve the lethal hyperthermia in serotonin toxicity.

  14. INSIGHTS INTO THE REGULATION OF 5-HT2A RECEPTORS BY SCAFFOLDING PROTEINS AND KINASES

    PubMed Central

    Allen, John A.; Yadav, Prem N.

    2008-01-01

    SUMMARY 5-HT2A serotonin receptors are essential molecular targets for the actions of LSD-like hallucinogens and atypical antipsychotic drugs. 5-HT2A serotonin receptors also mediate a variety of physiological processes in peripheral and central nervous systems including platelet aggregation, smooth muscle contraction, and the modulation of mood and perception. Scaffolding proteins have emerged as important regulators of 5-HT2A receptors and our recent studies suggest multiple scaffolds exist for 5-HT2A receptors including PSD95, arrestin, and caveolin. In addition, a novel interaction has emerged between p90 ribosomal S6 kinase and 5-HT2A receptors which attenuates receptor signaling. This article reviews our recent studies and emphasizes the role of scaffolding proteins and kinases in the regulation of 5-HT2A trafficking, targeting and signaling. PMID:18640136

  15. Blockade of 5-HT2A receptors suppresses hyperthermic but not cardiovascular responses to psychosocial stress in rats.

    PubMed

    Beig, M I; Baumert, M; Walker, F R; Day, T A; Nalivaiko, E

    2009-03-31

    The aim of this study was to determine whether 5-HT2A receptors mediate cardiovascular and thermogenic responses to acute psychological stresses. For this purpose, adult male Wistar hooded rats instrumented for telemetric recordings of either electrocardiogram (ECG) (n=12) or arterial pressure (n=12) were subjected, on different days, to four 15-min episodes of social defeat. Prior to stress, animals received s.c. injection of the selective 5-HT2A receptor antagonist SR-46349B (trans-4-((3Z)3-[(2-dimethylaminoethyl)oxyimino]-3-(2-fluorophenyl)propen-1-yl)-phenol, hemifumarate) (at doses of 0.3, 1.0 and 3.0 mg/kg) or vehicle. The drug had no effect on basal heart rate or heart rate variability indexes, arterial pressure, and core body temperature. Social defeat elicited significant and substantial tachycardic (347+/-7 to 500+/-7 bpm), pressor (77+/-4 to 97+/-4 mm Hg) and hyperthermic (37.0+/-0.3 to 38.5+/-0.1 degrees C) responses. Blockade of 5-HT2A receptors, at all doses of the antagonist, completely prevented stress-induced hyperthermia. In contrast, stress-induced cardiovascular responses were not affected by the blockade (except small reduction of tachycardia by the highest dose of the drug). We conclude that in rats, 5-HT2A receptors mediate stress-induced hyperthermic responses, but are not involved in the genesis of stress-induced rises in heart rate or arterial pressure, and do not participate in cardiovascular control at rest. PMID:19356699

  16. Chronic treatment with LY341495 decreases 5-HT(2A) receptor binding and hallucinogenic effects of LSD in mice.

    PubMed

    Moreno, José L; Holloway, Terrell; Rayannavar, Vinayak; Sealfon, Stuart C; González-Maeso, Javier

    2013-03-01

    Hallucinogenic drugs, such as lysergic acid diethylamide (LSD), mescaline and psilocybin, alter perception and cognitive processes. All hallucinogenic drugs have in common a high affinity for the serotonin 5-HT(2A) receptor. Metabotropic glutamate 2/3 (mGlu2/3) receptor ligands show efficacy in modulating the cellular and behavioral responses induced by hallucinogenic drugs. Here, we explored the effect of chronic treatment with the mGlu2/3 receptor antagonist 2S-2-amino-2-(1S,2S-2-carboxycyclopropan-1-yl)-3-(xanth-9-yl)-propionic acid (LY341495) on the hallucinogenic-like effects induced by LSD (0.24mg/kg). Mice were chronically (21 days) treated with LY341495 (1.5mg/kg), or vehicle, and experiments were carried out one day after the last injection. Chronic treatment with LY341495 down-regulated [(3)H]ketanserin binding in somatosensory cortex of wild-type, but not mGlu2 knockout (KO), mice. Head-twitch behavior, and expression of c-fos, egr-1 and egr-2, which are responses induced by hallucinogenic 5-HT(2A) agonists, were found to be significantly decreased by chronic treatment with LY341495. These findings suggest that repeated blockade of the mGlu2 receptor by LY341495 results in reduced 5-HT(2A) receptor-dependent hallucinogenic effects of LSD.

  17. Expression of serotonin 5-HT(2A) receptors in the human cerebellum and alterations in schizophrenia.

    PubMed

    Eastwood, S L; Burnet, P W; Gittins, R; Baker, K; Harrison, P J

    2001-11-01

    The occurrence of human cerebellar serotonin 5-HT(2A) receptors (5-HT(2A)R) is equivocal and their status in schizophrenia unknown. Using a range of techniques, we investigated cerebellar 5-HT(2A)R expression in 16 healthy subjects and 16 subjects with schizophrenia. Immunocytochemistry with a monoclonal antibody showed labelling of Purkinje cell bodies and dendrites, as well as putative astrocytes. Western blots showed a major band at approximately 45 kDa. Receptor autoradiography and homogenate binding with [(3)H]ketanserin revealed cerebellar 5-HT(2A)R binding sites present at levels approximately a third of that in prefrontal cortex. 5-HT(2A)R mRNA was detected by reverse transcriptase-polymerase chain reaction, with higher relative levels in men than women. Several aspects of 5-HT(2A)R expression were altered in schizophrenia. 5-HT(2A)R immunoreactivity in Purkinje cells was partially redistributed from soma to dendrites and was increased in white matter. 5-HT(2A)R mRNA was decreased in the male patients. 5-HT(2A)R measured by dot blots and [(3)H]ketanserin binding (B(max) and K(d)) were not significantly altered in schizophrenia. These data show that 5-HT(2A)R gene products (mRNA, protein, binding sites) are expressed in the human cerebellum at nonnegligible levels; this bears upon 5-HT(2A)R imaging studies which use the cerebellum as a reference region. 5-HT(2A)R expression is altered in schizophrenia; the shift of 5-HT(2A)R from soma to dendrites is noteworthy since atypical antipsychotics have the opposite effect. Finally, the results emphasise that expression of a receptor gene is a mutifaceted process. Measurement of multiple parameters is necessary to give a clear picture of the normal situation and to show the profile of alterations in a disease. PMID:11574947

  18. N-acetylcysteine modulates hallucinogenic 5-HT(2A) receptor agonist-mediated responses: behavioral, molecular, and electrophysiological studies.

    PubMed

    Lee, Mei-Yi; Chiang, Chun-Cheng; Chiu, Hong-Yi; Chan, Ming-Huan; Chen, Hwei-Hsien

    2014-06-01

    N-acetylcysteine (NAC) has been reported to reverse the psychotomimetic effects in the rodent phencyclidine model of psychosis and shown beneficial effects in treating patients with schizophrenia. The effect of NAC has been associated with facilitating the activity of cystine-glutamate antiporters on glial cells concomitant with the release of non-vesicular glutamate, which mainly stimulates the presynaptic metabotropic glutamate receptor subtype 2 receptors (mGluR2). Recent evidence demonstrated that functional interactions between serotonin 5-HT2A receptor (5-HT(2A)R) and mGluR2 are responsible to unique cellular responses when targeted by hallucinogenic drugs. The present study determined the effects of NAC on hallucinogenic 5-HT(2A)R agonist (±)1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI)-elicited behavioral and molecular responses in mice and DOI-evoked field potentials in the mouse cortical slices. NAC significantly attenuated DOI-induced head twitch response and expression of c-Fos and Egr-2 in the infralimbic and motor cortex and suppressed the increase in the frequency of excitatory field potentials elicited by DOI in the medial prefrontal cortex. In addition, the cystine-glutamate antiporter inhibitor (S)-4-carboxyphenylglycine (CPG) and the mGluR2 antagonist LY341495 reversed the suppressing effects of NAC on DOI-induced head twitch and molecular responses and increased frequency of excitatory field potentials, supporting that NAC attenuates the 5-HT(2A)R-mediated hallucinogenic effects via increased activity of cystine-glutamate antiporter followed by activation of mGluR2 receptors. These findings implicate NAC as a potential therapeutic agent for hallucinations and psychosis associated with hallucinogen use and schizophrenia.

  19. Activated astrocytes display increased 5-HT2a receptor expression in pathological states.

    PubMed

    Wu, C; Singh, S K; Dias, P; Kumar, S; Mann, D M

    1999-08-01

    In human brain tissues from patients dying with cerebral infarction, hypertensive encephalopathy, Alzheimer's disease, Huntington's disease, frontotemporal dementia, and Creutzfeldt-Jakob disease there is an activation of astrocytes. Such activated astrocytes display GFAP and strong 5-HT(2A), but not 5-HT(2B) or 5-HT(2C), receptor immunoreactivity; this 5-HT(2A) reaction has not been observed in normal, nonactivated astrocytes. It is suggested that an up-regulation of 5-HT(2A) receptors may be part of an early response reaction in astrocytes, possibly designed to maintain homeostasis or to induce secondary message pathways involving trophic factors or glycogenolysis. PMID:10415157

  20. The role of serotonin 5-HT2A receptors in memory and cognition

    PubMed Central

    Zhang, Gongliang; Stackman, Robert W.

    2015-01-01

    Serotonin 5-HT2A receptors (5-HT2ARs) are widely distributed in the central nervous system, especially in brain region essential for learning and cognition. In addition to endogenous 5-HT, several hallucinogens, antipsychotics, and antidepressants function by targeting 5-HT2ARs. Preclinical studies show that 5-HT2AR antagonists have antipsychotic and antidepressant properties, whereas agonist ligands possess cognition-enhancing and hallucinogenic properties. Abnormal 5-HT2AR activity is associated with a number of psychiatric disorders and conditions, including depression, schizophrenia, and drug addiction. In addition to its traditional activity as a G protein-coupled receptor (GPCR), recent studies have defined novel operations of 5-HT2ARs. Here we review progress in the (1) receptor anatomy and biology: distribution, signaling, polymerization and allosteric modulation; and (2) receptor functions: learning and memory, hallucination and spatial cognition, and mental disorders. Based on the recent progress in basic research on the 5-HT2AR, it appears that post-training 5-HT2AR activation enhances non-spatial memory consolidation, while pre-training 5-HT2AR activation facilitates fear extinction. Further, the potential influence that 5-HT2AR-elicited visual hallucinations may have on visual cue (i.e., landmark) guided spatial cognition is discussed. We conclude that the development of selective 5-HT2AR modulators to target distinct signaling pathways and neural circuits represents a new possibility for treating emotional, neuropsychiatric, and neurodegenerative disorders. PMID:26500553

  1. Reduced 5-HT2A receptor signaling following selective bilateral amygdala damage

    PubMed Central

    Schlaepfer, Thomas E.; Matusch, Andreas; Reich, Harald; Shah, Nadim J.; Zilles, Karl; Maier, Wolfgang; Bauer, Andreas

    2009-01-01

    Neurobiological evidence implicates the amygdala as well as serotonergic (serotonin, 5-HT) signaling via postsynaptic 5-HT2A receptors as essential substrates of anxiety behaviors. Assuming a functional interdependence of these substrates, we hypothesized that a low-fear behavioral phenotype due to bilateral lesion of the amygdala would be associated with significant 5-HT2A receptor changes. Thus, we used [18F]altanserin positron emission tomography (PET) referenced to radioligand plasma levels and corrected for partial volume effects to quantify the spatial distribution of 5-HT2A receptor binding potential (BPP) in a rare patient with Urbach–Wiethe disease and selective bilateral amygdala calcification damage relative to 10 healthy control subjects. Consistent with our a priori hypothesis, we observed a 70% global decrease in 5-HT2A receptor BPP in the Urbach–Wiethe patient relative to controls. Thus, brain abnormalities in this patient are not restricted to the amygdala, but extend to overall 5-HT neurotransmission via 5-HT2A receptors. Our findings provide important insights into the molecular architecture of human anxiety behaviors and suggest the 5-HT2A receptor as a promising pharmacological target to control pathological anxiety. PMID:19015089

  2. Examination of the hippocampal contribution to serotonin 5-HT2A receptor-mediated facilitation of object memory in C57BL/6J mice.

    PubMed

    Zhang, Gongliang; Cinalli, David; Cohen, Sarah J; Knapp, Kristina D; Rios, Lisa M; Martínez-Hernández, José; Luján, Rafael; Stackman, Robert W

    2016-10-01

    The rodent hippocampus supports non-spatial object memory. Serotonin 5-HT2A receptors (5-HT2AR) are widely expressed throughout the hippocampus. We previously demonstrated that the activation of 5-HT2ARs enhanced the strength of object memory assessed 24 h after a limited (i.e., weak memory) training procedure. Here, we examined the subcellular distribution of 5-HT2ARs in the hippocampal CA1 region and underlying mechanisms of 5-HT2AR-mediated object memory consolidation. Analyses with immuno-electron microscopy revealed the presence of 5-HT2ARs on the dendritic spines and shafts of hippocampal CA1 neurons, and presynaptic terminals in the CA1 region. In an object recognition memory procedure that places higher demand on the hippocampus, only post-training systemic or intrahippocampal administration of the 5-HT2AR agonist TCB-2 enhanced object memory. Object memory enhancement by TCB-2 was blocked by the 5-HT2AR antagonist, MDL 11,937. The memory-enhancing dose of systemic TCB-2 increased extracellular glutamate levels in hippocampal dialysate samples, and increased the mean in vivo firing rate of hippocampal CA1 neurons. In summary, these data indicate a pre- and post-synaptic distribution of 5-HT2ARs, and activation of 5-HT2ARs selectively enhanced the consolidation of object memory, without affecting encoding or retrieval. The 5-HT2AR-mediated facilitation of hippocampal memory may be associated with an increase in hippocampal neuronal firing and glutamate efflux during a post-training time window in which recently encoded memories undergo consolidation.

  3. Molecular Determinants for Ligand Binding at Serotonin 5-HT2A and 5-HT2C GPCRs: Experimental Affinity Results Analyzed by Molecular Modeling and Ligand Docking Studies

    PubMed Central

    Sakhuja, Rajeev; Kondabolu, Krishnakanth; Canal, Clinton E.; Booth, Raymond G.

    2013-01-01

    Ligands that activate the serotonin 5-HT2C G protein-coupled receptor (GPCR) may be therapeutic for psychoses, addiction, and other neuropsychiatric disorders. Ligands that are antagonists at the closely related 5-HT2A GPCR also may treat neuropsychiatric disorders; in contrast, 5-HT2A activation may cause hallucinations. 5-HT2C-specific agonist drug design is challenging because 5-HT2 GPCRs share 80% transmembrane (TM) homology, same second messenger signaling, and no crystal structures are reported. To help delineate molecular determinants underlying differential binding and activation of 5-HT2 GPCRs, 5-HT2A, and 5-HT2C homology models were built from the β2-adrenergic GPCR crystal structure and equilibrated in a lipid phosphatidyl choline bilayer performing molecular dynamics simulations. Ligand docking studies at the 5-HT2 receptor models were conducted with the (2R, 4S)- and (2S, 4R)-enantiomers of the novel 5-HT2C agonist/5-HT2A/2B antagonist trans-4-phenyl-N,N-dimethyl-2-aminotetralin (PAT) and its 4′-chlorophenyl congners. Results indicate PAT–5-HT2 molecular interactions especially in TM domain V are important for the (2R, 4S) enantiomer, whereas, TM domain VI and VII interactions are more important for the (2S, 4R) enantiomer. PMID:23913978

  4. Activation of 5-HT2A/2C receptors reduces the excitability of cultured cortical neurons.

    PubMed

    Hu, Lingli; Liu, Chunhua; Dang, Minyan; Luo, Bin; Guo, Yiping; Wang, Haitao

    2016-10-01

    The abundant forebrain serotonergic projections are believed to modulate the activities of cortical neurons. 5-HT2 receptor among multiple subtypes of serotonin receptors contributes to the modulation of excitability, synaptic transmissions and plasticity. In the present study, whole-cell patch-clamp recording was adopted to examine whether activation of 5-HT2A/2C receptors would have any impact on the excitability of cultured cortical neurons. We found that 2,5-Dimethoxy-4-iodoamphetamine (DOI), a selective 5-HT2A/2C receptor agonist, rapidly and reversibly depressed spontaneous action potentials mimicking the effect of serotonin. The decreased excitability was also observed for current-evoked firing. Additionally DOI increased neuronal input resistance. Hyperpolarization-activated cyclic nucleotide-gated cationic channels (HCN) did not account for the inhibition of spontaneous firing. The synaptic contribution was ruled out in that DOI augmented excitation and attenuated inhibition to actually favor an increase in the excitability. Our findings revealed that activation of 5-HT2A/2C receptors reduces neuronal excitability, which would deepen our understanding of serotonergic modulation of cortical activities. PMID:27585751

  5. Effects of the 5-HT2A agonist psilocybin on mismatch negativity generation and AX-continuous performance task: implications for the neuropharmacology of cognitive deficits in schizophrenia.

    PubMed

    Umbricht, Daniel; Vollenweider, Franz X; Schmid, Liselotte; Grübel, Claudia; Skrabo, Anja; Huber, Theo; Koller, Rene

    2003-01-01

    Previously the NMDA (N-methyl-D-aspartate) receptor (NMDAR) antagonist ketamine was shown to disrupt generation of the auditory event-related potential (ERP) mismatch negativity (MMN) and the performance of an 'AX'-type continuous performance test (AX-CPT)--measures of auditory and visual context-dependent information processing--in a similar manner as observed in schizophrenia. This placebo-controlled study investigated effects of the 5-HT(2A) receptor agonist psilocybin on the same measures in 18 healthy volunteers. Psilocybin administration induced significant performance deficits in the AX-CPT, but failed to reduce MMN generation significantly. These results indirectly support evidence that deficient MMN generation in schizophrenia may be a relatively distinct manifestation of deficient NMDAR functioning. In contrast, secondary pharmacological effects shared by NMDAR antagonists and the 5-HT(2A) agonist (ie disruption of glutamatergic neurotransmission) may be the mechanism underlying impairments in AX-CPT performance observed during both psilocybin and ketamine administration. Comparable deficits in schizophrenia may result from independent dysfunctions of 5-HT(2A) and NMDAR-related neurotransmission.

  6. Role of 5-HT2A and 5-HT2C receptors in the stimulus effects of hallucinogenic drugs. II: Reassessment of LSD false positives.

    PubMed

    Fiorella, D; Rabin, R A; Winter, J C

    1995-10-01

    In the context of animal studies of hallucinogens, an LSD-false positive is defined as a drug known to be devoid of hallucinogenic activity in humans but which nonetheless fully mimics LSD in animals. Quipazine, MK-212, lisuride, and yohimbine have all been reported to be LSD false positives. The present study was designed to determine whether these compounds also substitute for the stimulus effects of the more pharmacologically selective hallucinogen (-)DOM (0.56 mg/kg, 75-min pretreatment time). The LSD and (-)DOM stimuli fully generalized to quipazine (3.0 mg/kg) and lisuride (0.2 mg/kg), but only partially generalized to MK-212 (0.1-1.0 mg/kg) and yohimbine (2-20 mg/kg). In combination tests, pirenpirone (0.08 mg/kg), a compound with both D2 and 5-HT2A affinity, blocked the substitution of quipazine and lisuride for the (-)DOM stimulus. Ketanserin (2.5 mg/kg), an antagonist with greater than 1 order of magnitude higher affinity for 5-HT2A receptors than either 5-HT2C or D2 receptors, also fully blocked the substitution of these compounds for the (-)DOM stimulus, while the selective D2 antagonist thiothixene (0.1-1.0 mg/kg) failed to block the substitution of lisuride for the (-)DOM stimulus. These results suggest that quipazine and lisuride substitute for the stimulus properties of the phenylalkglamine hallucinogen (-)DOM via agonist activity at 5-HT2A receptors. In addition, these results suggest that 5-HT2A agonist activity may be required, but is not in itself sufficient, for indolamine and phenylalkglamine compounds to elicit hallucinations in humans. Finally, it is concluded that MK-212 and yohimbine are neither LSD nor (-)DOM false positives.

  7. Hallucinogenic 5-HT2AR agonists LSD and DOI enhance dopamine D2R protomer recognition and signaling of D2-5-HT2A heteroreceptor complexes.

    PubMed

    Borroto-Escuela, Dasiel O; Romero-Fernandez, Wilber; Narvaez, Manuel; Oflijan, Julia; Agnati, Luigi F; Fuxe, Kjell

    2014-01-01

    Dopamine D2LR-serotonin 5-HT2AR heteromers were demonstrated in HEK293 cells after cotransfection of the two receptors and shown to have bidirectional receptor-receptor interactions. In the current study the existence of D2L-5-HT2A heteroreceptor complexes was demonstrated also in discrete regions of the ventral and dorsal striatum with in situ proximity ligation assays (PLA). The hallucinogenic 5-HT2AR agonists LSD and DOI but not the standard 5-HT2AR agonist TCB2 and 5-HT significantly increased the density of D2like antagonist (3)H-raclopride binding sites and significantly reduced the pKiH values of the high affinity D2R agonist binding sites in (3)H-raclopride/DA competition experiments. Similar results were obtained in HEK293 cells and in ventral striatum. The effects of the hallucinogenic 5-HT2AR agonists on D2R density and affinity were blocked by the 5-HT2A antagonist ketanserin. In a forskolin-induced CRE-luciferase reporter gene assay using cotransfected but not D2R singly transfected HEK293 cells DOI and LSD but not TCB2 significantly enhanced the D2LR agonist quinpirole induced inhibition of CRE-luciferase activity. Haloperidol blocked the effects of both quinpirole alone and the enhancing actions of DOI and LSD while ketanserin only blocked the enhancing actions of DOI and LSD. The mechanism for the allosteric enhancement of the D2R protomer recognition and signalling observed is likely mediated by a biased agonist action of the hallucinogenic 5-HT2AR agonists at the orthosteric site of the 5-HT2AR protomer. This mechanism may contribute to the psychotic actions of LSD and DOI and the D2-5-HT2A heteroreceptor complex may thus be a target for the psychotic actions of hallunicogenic 5-HT2A agonists.

  8. Implication of 5-HT2A subtype receptors in DOI activity in the four-plates test-retest paradigm in mice.

    PubMed

    Ripoll, Nadège; Hascoët, Martine; Bourin, Michel

    2006-01-01

    The four-plates test (FPT) is an animal model of anxiety which allows the detection of anxiolytic effect not only of benzodiazepines (BZDs) but also of other non-BZDs anxiolytic compounds such as antidepressants (ADs). Furthermore, DOI, a 5-HT(2A/2C) agonist, has been shown to exert an anxiolytic-like effect in this model. Retesting mice in animal models of anxiety (test-retest paradigm) induces an anxiogenic-like and a loss of anxiolytic-like effects in response to BZDs and ADs. On the contrary, DOI has been reported to oppose the fear potentiation induced by trial 1 in the FPT. Despite DOI is considered as one of the most selective 5-HT(2A) available, it acts as agonist at all three 5-HT(2) receptor subtypes (5-HT(2A), 5-HT(2B) and 5-HT(2C)). The aim of this study was thus to investigate in the FPT test-retest paradigm, which 5-HT(2) receptor subtype(s) was involved in the DOI-induced effect in experienced mice. The effect of DOI (0.25-4 mg/kg) and the agonists, 5-HT(2B), BW 723C86 (1-16 mg/kg) and 5-HT(2C), RO 60-0175 (0.25-4 mg/kg) have also been studied. Then, antagonism studies were conducted combinating the 5-HT(2A) receptor antagonist SR 46349B, the 5-HT(2B/2C) receptor antagonist SB 206553 or the selective 5-HT(2C) receptor antagonist RS 10-2221 (at the doses of 0.1 and 1 mg/kg) with the DOI (1 mg/kg). Our study shows that the BW 723C86 had no effect on retesting mice, whereas it exerted an anxiolytic-like effect in naive mice. By contrast to DOI, the RO 60-0175 had no effect neither in naive nor experienced mice. Furthermore, only the SR 46349B antagonized the DOI-induced anti-punishment effect. Diazepam included as a positive control also increased in each case the number of punished passages in naive mice. Our findings altogether also suggest that DOI exerts its anxiolytic-like effect in the FPT test-retest paradigm through 5-HT(2A) receptors.

  9. Genotype-Dependent Difference in 5-HT2C Receptor-Induced Hypolocomotion: Comparison with 5-HT2A Receptor Functional Activity

    PubMed Central

    Bazovkina, Darya V.; Kondaurova, Elena M.; Naumenko, Vladimir S.; Ponimaskin, Evgeni

    2015-01-01

    In the present study behavioral effects of the 5-HT2C serotonin receptor were investigated in different mouse strains. The 5-HT2C receptor agonist MK-212 applied intraperitoneally induced significant dose-dependent reduction of distance traveled in the open field test in CBA/Lac mice. This effect was receptor-specific because it was inhibited by the 5-HT2C receptor antagonist RS102221. To study the role of genotype in 5-HT2C receptor-induced hypolocomotion, locomotor activity of seven inbred mouse strains was measured after MK-212 acute treatment. We found that the 5-HT2C receptor stimulation by MK-212 decreased distance traveled in the open field test in CBA/Lac, C57Bl/6, C3H/He, and ICR mice, whereas it failed to affect locomotor activity in DBA/2J, Asn, and Balb/c mice. We also compared the interstrain differences in functional response to 5-HT2C and 5-HT2A receptors activation measured by the quantification of receptor-mediated head-twitches. These experiments revealed significant positive correlation between 5-HT2C and 5-HT2A receptors functional responses for all investigated mouse strains. Moreover, we found that 5-HT2A receptor activation with DOI did not change locomotor activity in CBA/Lac mice. Taken together, our data indicate the implication of 5-HT2C receptors in regulation of locomotor activity and suggest the shared mechanism for functional responses mediated by 5-HT2C and 5-HT2A receptors. PMID:26380122

  10. Genotype-Dependent Difference in 5-HT2C Receptor-Induced Hypolocomotion: Comparison with 5-HT2A Receptor Functional Activity.

    PubMed

    Bazovkina, Darya V; Kondaurova, Elena M; Naumenko, Vladimir S; Ponimaskin, Evgeni

    2015-01-01

    In the present study behavioral effects of the 5-HT2C serotonin receptor were investigated in different mouse strains. The 5-HT2C receptor agonist MK-212 applied intraperitoneally induced significant dose-dependent reduction of distance traveled in the open field test in CBA/Lac mice. This effect was receptor-specific because it was inhibited by the 5-HT2C receptor antagonist RS102221. To study the role of genotype in 5-HT2C receptor-induced hypolocomotion, locomotor activity of seven inbred mouse strains was measured after MK-212 acute treatment. We found that the 5-HT2C receptor stimulation by MK-212 decreased distance traveled in the open field test in CBA/Lac, C57Bl/6, C3H/He, and ICR mice, whereas it failed to affect locomotor activity in DBA/2J, Asn, and Balb/c mice. We also compared the interstrain differences in functional response to 5-HT2C and 5-HT2A receptors activation measured by the quantification of receptor-mediated head-twitches. These experiments revealed significant positive correlation between 5-HT2C and 5-HT2A receptors functional responses for all investigated mouse strains. Moreover, we found that 5-HT2A receptor activation with DOI did not change locomotor activity in CBA/Lac mice. Taken together, our data indicate the implication of 5-HT2C receptors in regulation of locomotor activity and suggest the shared mechanism for functional responses mediated by 5-HT2C and 5-HT2A receptors. PMID:26380122

  11. Genotype-Dependent Difference in 5-HT2C Receptor-Induced Hypolocomotion: Comparison with 5-HT2A Receptor Functional Activity.

    PubMed

    Bazovkina, Darya V; Kondaurova, Elena M; Naumenko, Vladimir S; Ponimaskin, Evgeni

    2015-01-01

    In the present study behavioral effects of the 5-HT2C serotonin receptor were investigated in different mouse strains. The 5-HT2C receptor agonist MK-212 applied intraperitoneally induced significant dose-dependent reduction of distance traveled in the open field test in CBA/Lac mice. This effect was receptor-specific because it was inhibited by the 5-HT2C receptor antagonist RS102221. To study the role of genotype in 5-HT2C receptor-induced hypolocomotion, locomotor activity of seven inbred mouse strains was measured after MK-212 acute treatment. We found that the 5-HT2C receptor stimulation by MK-212 decreased distance traveled in the open field test in CBA/Lac, C57Bl/6, C3H/He, and ICR mice, whereas it failed to affect locomotor activity in DBA/2J, Asn, and Balb/c mice. We also compared the interstrain differences in functional response to 5-HT2C and 5-HT2A receptors activation measured by the quantification of receptor-mediated head-twitches. These experiments revealed significant positive correlation between 5-HT2C and 5-HT2A receptors functional responses for all investigated mouse strains. Moreover, we found that 5-HT2A receptor activation with DOI did not change locomotor activity in CBA/Lac mice. Taken together, our data indicate the implication of 5-HT2C receptors in regulation of locomotor activity and suggest the shared mechanism for functional responses mediated by 5-HT2C and 5-HT2A receptors.

  12. Potential role of cortical 5-HT(2A) receptors in the anxiolytic action of cyamemazine in benzodiazepine withdrawal.

    PubMed

    Benyamina, Amine; Naassila, Mickaël; Bourin, Michel

    2012-07-30

    The antipsychotic cyamemazine is a potent serotonin 5-HT(2A) receptor (5-HT(2AR)) antagonist. A positron emission tomography (PET) study in human patients showed that therapeutic doses of cyamemazine produced near saturation of 5-HT(2AR) occupancy in the frontal cortex, whereas dopamine D(2) occupancy remained below the level for motor side effects observed with typical antipsychotics. Recently, numerous studies have revealed the involvement of 5-HT(2AR) in the pathophysiology of anxiety and a double-blind, randomized clinical trial showed similar efficacy of cyamemazine and bromazepam in reducing the anxiety associated with benzodiazepine withdrawal. Therefore, we reviewed the above articles about 5-HT(2AR) and anxiety in order to understand better the anxiolytic mechanisms of cyamemazine in benzodiazepine withdrawal. The 5-HT(2AR) is the most abundant serotonin receptor subtype in the cortex. Non-pharmacological studies with antisense oligodeoxynucleotides and genetically modified mice clearly showed that cortical 5-HT(2AR) signaling positively modulates anxiety-like behavior. With a few exceptions, most other studies reviewed here further support this view. Therefore, the anxiolytic efficacy of cyamemazine in benzodiazepine withdrawal can be due to a 5-HT(2AR) antagonistic activity at the cortical level.

  13. Small molecule drug screening in Drosophila identifies the 5HT2A receptor as a feeding modulation target

    PubMed Central

    Gasque, Gabriel; Conway, Stephen; Huang, Juan; Rao, Yi; Vosshall, Leslie B.

    2013-01-01

    Dysregulation of eating behavior can lead to obesity, which affects 10% of the adult population worldwide and accounts for nearly 3 million deaths every year. Despite this burden on society, we currently lack effective pharmacological treatment options to regulate appetite. We used Drosophila melanogaster larvae to develop a high-throughput whole organism screen for drugs that modulate food intake. In a screen of 3630 small molecules, we identified the serotonin (5-hydroxytryptamine or 5-HT) receptor antagonist metitepine as a potent anorectic drug. Using cell-based assays we show that metitepine is an antagonist of all five Drosophila 5-HT receptors. We screened fly mutants for each of these receptors and found that serotonin receptor 5-HT2A is the sole molecular target for feeding inhibition by metitepine. These results highlight the conservation of molecular mechanisms controlling appetite and provide a method for unbiased whole-organism drug screens to identify novel drugs and molecular pathways modulating food intake. PMID:23817146

  14. Serotonin 5-HT(2A) receptor activation induces 2-arachidonoylglycerol release through a phospholipase c-dependent mechanism.

    PubMed

    Parrish, Jason C; Nichols, David E

    2006-11-01

    To date, several studies have demonstrated that phospholipase C-coupled receptors stimulate the production of endocannabinoids, particularly 2-arachidonoylglycerol. There is now evidence that endocannabinoids are involved in phospholipase C-coupled serotonin 5-HT(2A) receptor-mediated behavioral effects in both rats and mice. The main objective of this study was to determine whether activation of the 5-HT(2A) receptor leads to the production and release of the endocannabinoid 2-arachidonoylglycerol. NIH3T3 cells stably expressing the rat 5-HT(2A) receptor were first incubated with [(3)H]-arachidonic acid for 24 h. Following stimulation with 10 mum serotonin, lipids were extracted from the assay medium, separated by thin layer chromatography, and analyzed by liquid scintillation counting. Our results indicate that 5-HT(2A) receptor activation stimulates the formation and release of 2-arachidonoylglycerol. The 5-HT(2A) receptor-dependent release of 2-arachidonoylglycerol was partially dependent on phosphatidylinositol-specific phospholipase C activation. Diacylglycerol produced downstream of 5-HT(2A) receptor-mediated phospholipase D or phosphatidylcholine-specific phospholipase C activation did not appear to contribute to 2-arachidonoylglycerol formation in NIH3T3-5HT(2A) cells. In conclusion, our results support a functional model where neuromodulatory neurotransmitters such as serotonin may act as regulators of endocannabinoid tone at excitatory synapses through the activation of phospholipase C-coupled G-protein coupled receptors. PMID:17010161

  15. Evidence for a 5-HT2A receptor mode of action in the anxiolytic-like properties of DOI in mice.

    PubMed

    Nic Dhonnchadha, Bríd Aine; Hascoët, Martine; Jolliet, Pascale; Bourin, Michel

    2003-12-17

    DOI [(+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane] displays a high affinity for the rat 5-HT2A, 5-HT2B and 5-HT2C receptors (pKi 7.3, 7.4 and 7.8, respectively) and acts as an agonist. DOI (0.5-4 mg/kg, i.p. 30 min pre-test) increased the number of punished passages in the mouse four plates test (FPT). The anti-punishment action of DOI (1 mg/kg, i.p. 30 min pre-test) was abolished by prior treatment with the selective 5-HT2A receptor antagonist SR 46949B (0.1 and 1 mg/kg, i.p. 45 min pre-test) but not by the selective 5-HT2C receptor antagonist RS 10-2221 (0.1 and 1 mg/kg, i.p. 45 min pre-test) nor the selective 5-HT2C/2B receptor antagonist SB 206553 (0.1 and 1 mg/kg, i.p. 45 min pre-test). An anxiolytic-like action was also observed for DOI (1 mg/kg) in the elevated plus maze (EPM). The anxiolytic-like action of DOI (1 mg/kg, i.p. 30 min pre-test) was antagonised by pre-treatment with SR 46949B (0.125 and 0.5 mg/kg, i.p. 45 min pre-test) but not by RS 10-2221 (0.1 and 1 mg/kg, i.p. 45 min pre-test) nor SB 206553 (0.1 and 1 mg/kg, i.p. 45 min pre-test). In conclusion, DOI produced an anxiolytic-like profile in the mouse FPT and EPM. These effects are likely to be 5-HT2A receptor mediated.

  16. Multiple conformations of 5-HT2A and 5-HT 2C receptors in rat brain: an autoradiographic study with [125I](±)DOI.

    PubMed

    López-Giménez, Juan F; Vilaró, M Teresa; Palacios, José M; Mengod, Guadalupe

    2013-10-01

    Earlier autoradiographic studies with the 5-HT2 receptor agonist [(125)I](±)DOI in human brain showed unexpected biphasic competition curves for various 5-HT2A antagonists. We have performed similar studies in rat brain regions with selective 5-HT2A (M100907) and 5-HT2C (SB242084) antagonists together with ketanserin and mesulergine. The effect of GTP analogues on antagonist competition was also studied. Increasing concentrations of Gpp(NH)p or GTPγS resulted in a maximal inhibition of [(125)I](±)DOI-specific binding of approximately 50 %. M100907 competed biphasically in all regions. In the presence of 100 μM Gpp(NH)p, M100907 still displaced biphasically the remaining [(125)I](±)DOI binding. Ketanserin showed biphasic curves in some regions and monophasic curves in others. In the latter, Gpp(NH)p evidenced an additional high-affinity site. SB242084 competed biphasically in brainstem nuclei and monophasically in the other regions. In most areas, SB242084 affinities were not notably altered by Gpp(NH)p. Mesulergine competed monophasically in all regions without alteration by Gpp(NH)p. These results conform with the extended ternary complex model of receptor action: receptor exists as an equilibrium of multiple conformations, i.e. ground (R), partly activated (R*) and activated G-protein-coupled (R*G) conformation/s. Thus, [(125)I](±)DOI would label multiple conformations of both 5-HT2A and 5-HT2C receptors in rat brain, and M100907 and ketanserin would recognise these conformations with different affinities.

  17. THE SEROTONIN (5-HT) 5-HT2A RECEPTOR: ASSOCIATION WITH INHERENT AND COCAINE-EVOKED BEHAVIORAL DISINHIBITION IN RATS

    PubMed Central

    Anastasio, Noelle C.; Stoffel, Erin C.; Fox, Robert G.; Bubar, Marcy J.; Rice, Kenner C.; Moeller, F. Gerard; Cunningham, Kathryn A.

    2011-01-01

    Alterations in the balance of functional activity within the serotonin (5-HT) system are hypothesized to underlie impulse control. Cocaine-dependent subjects consistently demonstrate greater impulsivity relative to non-drug using control subjects. Preclinical studies suggest that the 5-HT2A receptor (5-HT2AR) contributes to the regulation of impulsive behavior and also mediates some of the behavioral effects of cocaine. We hypothesized that the selective 5-HT2AR antagonist M100907 would reduce inherent levels of impulsivity and attenuate impulsive responding induced by cocaine in two animal models of impulsivity, the differential reinforcement of low rate (DRL) task and the one-choice serial reaction time (1-CSRT) task. M100907 reduced rates of responding in the DRL task and premature responding in the 1-CSRT task. Conversely, cocaine disrupted rates of responding in the DRL task and increased premature responding in the 1-CSRT task. M100907 attenuated cocaine-induced increases in specific markers of behavioral disinhibition in the DRL and 1-CSRT tasks. These results suggest that the 5-HT2AR regulates inherent impulsivity, and that blockade of the 5-HT2AR alleviates specific aspects of elevated levels of impulsivity induced by cocaine exposure. These data point to the 5-HT2AR as an important regulatory substrate in impulse control. PMID:21499079

  18. Synthesis and Structure–Activity Relationships of N-Benzyl Phenethylamines as 5-HT2A/2C Agonists

    PubMed Central

    2014-01-01

    N-Benzyl substitution of 5-HT2A receptor agonists of the phenethylamine structural class of psychedelics (such as 4-bromo-2,5-dimethoxyphenethylamine, often referred to as 2C-B) confer a significant increase in binding affinity as well as functional activity of the receptor. We have prepared a series of 48 compounds with structural variations in both the phenethylamine and N-benzyl part of the molecule to determine the effects on receptor binding affinity and functional activity at 5-HT2A and 5-HT2C receptors. The compounds generally had high affinity for the 5-HT2A receptor with 8b having the highest affinity at 0.29 nM but with several other compounds also exhibiting subnanomolar binding affinities. The functional activity of the compounds was distributed over a wider range with 1b being the most potent at 0.074 nM. Most of the compounds exhibited low to moderate selectivity (1- to 40-fold) for the 5-HT2A receptor in the binding assays, although one compound 6b showed an impressive 100-fold selectivity for the 5-HT2A receptor. In the functional assay, selectivity was generally higher with 1b being more than 400-fold selective for the 5-HT2A receptor. PMID:24397362

  19. The serotonin 5-HT2A and 5-HT2C receptors interact with specific sets of PDZ proteins.

    PubMed

    Bécamel, Carine; Gavarini, Sophie; Chanrion, Benjamin; Alonso, Gérard; Galéotti, Nathalie; Dumuis, Aline; Bockaert, Joël; Marin, Philippe

    2004-05-01

    The 5-hydroxytryptamine type 2A (5-HT(2A)) receptor and the 5-HT(2C) receptor are closely related members of the G-protein-coupled receptors activated by serotonin that share very similar pharmacological profiles and cellular signaling pathways. These receptors express a canonical class I PDZ ligand (SXV) at their C-terminal extremity. Here, we have identified proteins that interact with the PDZ ligand of the 5-HT(2A) and 5-HT(2C) receptors by a proteomic approach associating affinity chromatography using immobilized synthetic peptides encompassing the PDZ ligand and mass spectrometry. We report that both receptor C termini interact with specific sets of PDZ proteins in vitro. The 5-HT(2C) receptor but not the 5-HT(2A) receptor binds to the Veli-3.CASK.Mint1 ternary complex and to SAP102. In addition, the 5-HT(2C) receptor binds more strongly to PSD-95 and MPP-3 than the 5-HT(2A) receptor. In contrast, a robust interaction between the 5-HT(2A) receptor and the channel-interacting PDZ protein CIPP was found, whereas CIPP did not significantly associate with the 5-HT(2C) receptor. We also show that residues located at the -1 position and upstream the PDZ ligand in the C terminus of the 5-HT(2A) and 5-HT(2C) receptors are major determinants in their interaction with specific PDZ proteins. Immunofluorescence and electron microscopy studies strongly suggested that these specific interactions also take place in living cells and that the 5-HT(2) receptor-PDZ protein complexes occur in intracellular compartments. The interaction of the 5-HT(2A) and the 5-HT(2C) receptor with specific sets of PDZ proteins may contribute to their different signal transduction properties.

  20. Potential Modes of Interaction of 9-Aminomethyl-9,10-dihydroanthracene (AMDA) Derivatives with the 5-HT2A Receptor: A Ligand Structure-Affinity Relationship, Receptor Mutagenesis and Receptor Modeling Investigation⊕

    PubMed Central

    Runyon, Scott P.; Mosier, Philip D.; Roth, Bryan L.; Glennon, Richard A.; Westkaemper, Richard B.

    2011-01-01

    The effects of 3-position substitution of 9-aminomethyl-9,10-dihydroanthracene (AMDA) on 5-HT2A receptor affinity were determined and compared to a parallel series of DOB-like 1-(2,5-dimethoxyphenyl)-2-aminopropanes substituted at the 4-position. The results were interpreted within the context of 5-HT2A receptor models that suggest that members of the DOB-like series can bind to the receptor in two distinct modes that correlate with the compounds’ functional activity. Automated ligand docking and molecular dynamics suggest that all of the AMDA derivatives, the parent of which is a 5-HT2A antagonist, bind in a fashion analogous to that for the sterically demanding antagonist DOB-like compounds. The failure of the F3406.52L mutation to adversely affect the affinity of AMDA and the 3-bromo derivative is consistent with the proposed modes of orientation. Evaluation of ligand-receptor complex models suggest that a valine/threonine exchange between the 5-HT2A and D2 receptors may be the origin of selectivity for AMDA and two substituted derivatives. PMID:18847250

  1. Involvement of 5-HT2A receptors in MDMA reinforcement and cue-induced reinstatement of MDMA-seeking behaviour.

    PubMed

    Orejarena, María Juliana; Lanfumey, Laurence; Maldonado, Rafael; Robledo, Patricia

    2011-08-01

    The serotonergic system appears crucial for (±)-3,4-methylenedioxymethamphetamine (MDMA) reinforcing properties. Current evidence indicates that serotonin 5-HT2A receptors (5-HT2ARs) modulate mesolimbic dopamine (DA) activity and several behavioural responses related to the addictive properties of psychostimulants. This study evaluated the role of 5-HT2ARs in MDMA-induced reinforcement and hyperlocomotion, and the reinstatement of MDMA-seeking behaviour. Basal and MDMA-stimulated extracellular levels of DA in the nucleus accumbens (NAc) and serotonin and noradrenaline in the prefrontal cortex were also assessed. Self-administration of MDMA was blunted in 5-HT2AR knockout (KO) mice compared to wild-type (WT) littermates at both doses tested (0.125 and 0.25 mg/kg per infusion). Horizontal locomotion was increased by MDMA (10 and 20 mg/kg i.p.) to a higher extent in KO than in WT mice. DA outflow in the NAc was lower in KO compared to WT mice under basal conditions and after MDMA (20 mg/kg) challenge. In WT mice, MDMA (5 and 10 mg/kg i.p.) priming did not reinstate MDMA-seeking behaviour, while cue-induced reinstatement was prominent. This cue-induced reinstatement was blocked by administration of the selective 5-HT2AR antagonist, SR46349B (eplivanserin) at a dose of 0.5 mg/kg, but not at 0.25 mg/kg. Our results indicate that 5-HT2ARs are crucial for MDMA-induced reinforcement and cue-induced reinstatement of MDMA-seeking behaviour. These effects are probably due to the modulation of mesolimbic dopaminergic activity.

  2. 5-HT2A Serotonin Receptor Density in Adult Male Rats’ Hippocampus after Morphine-based Conditioned Place Preference

    PubMed Central

    Mohammadi, Rabie; Jahanshahi, Mehrdad; Jameie, Seyed Behnamedin

    2016-01-01

    Introduction: A close interaction exists between the brain opioid and serotonin (5-HT) neurotransmitter systems. Brain neurotransmitter 5-HT plays an important role in the regulation of reward-related processing. However, a few studies have investigated the potential role of 5-HT2A receptors in this behavior. Therefore, the aim of the present study was to assess the influence of morphine and Conditioned Place Preference (CPP) on the density of 5-HT2A receptor in neurons of rat hippocampal formation. Methods: Morphine (10 mg/kg, IP) was injected in male Wistar rats for 7 consecutive days (intervention group), but control rats received just normal saline (1 mL/kg, IP). We used a hotplate test of analgesia to assess induction of tolerance to analgesic effects of morphine on days 1 and 8 of injections. Later, two groups of rats were sacrificed one day after 7 days of injections, their whole brains removed, and the striatum and PFC immediately dissected. Then, the NR1 gene expression was examined with a semi-quantitative RT-PCR method. Results: Our data showed that the maximum response was obtained with 2.5 mg/kg of morphine. The density of 5-HT2A receptor in different areas of the hippocampus increased significantly at sham-morphine and CPP groups (P<0.05). On the other hand, the CPP groups had more 5-HT2A receptors than sham-morphine groups and also the sham-morphine groups had more 5-HT2A receptors than the control groups. Conclusion: We concluded that the phenomenon of conditioned place preference induced by morphine can cause a significant increase in the number of serotonin 5-HT2A receptors in neurons of all areas of hippocampus. PMID:27563418

  3. Participation of 5-HT1-like and 5-HT2A receptors in the contraction of human temporal artery by 5-hydroxytryptamine and related drugs.

    PubMed Central

    Verheggen, R.; Freudenthaler, S.; Meyer-Dulheuer, F.; Kaumann, A. J.

    1996-01-01

    1. We investigated the hypothesis that, as in some other large human arteries, 5-HT-induced contraction of the temporal artery is mediated through two co-existing receptor populations, 5-HT1-like- and 5-HT2A. Temporal arterial segments were obtained from patients undergoing brain surgery and rings prepared set up to contract with 5-HT and related agents. Fractions of maximal 5-HT responses mediated through 5-HT1-like and 5-HT2A receptors, f1 and f2 = 1-f1, were estimated by use of the 5-HT2A-selective antagonist ketanserin. 2. In rings with intact endothelium 5-HT evoked contractions with a -log EC50, M of 7.0. Ketanserin (10-1000 nM) antagonized part of the 5-HT-induced contractions. Ketanserin-resistant components of 5-HT-induced contractions were found with -log EC50, M of 6.9 and f1 of 0.17 (100 nM ketanserin) and -log EC50, M of 6.4 and f1 of 0.20 (1000 nM ketanserin). 3. In rings with endothelial function attenuated by enzymatic treatment, 5-HT caused contractions with a -log EC50, M of 7.2 that were partially blocked by ketanserin. Ketanserin-resistant components of 5-HT-induced contractions were found with -log EC50, M 7.4 and f1 of 0.16 (100 nM ketanserin) and -log EC50, M of 7.5 and f1 of 0.14 (1000 nM ketanserin). 4. The ketanserin-resistant component of 5-HT-evoked contraction was blocked by methiothepin (100-1000 nM) consistent with mediation through 5-HT1-like receptors. 5. In rings with intact endothelium the 5-HT1-like-selective agonist, sumatriptan, caused small contractions with a -log EC50, M of 6.5 and intrinsic activity of 0.21 with respect to 5-HT that were resistant to blockade by 1000 nM ketanserin but antagonized by 100 nM methiothepin. 6. In rings with intact endothelium the 5-HT2A receptor partial agonist SK&F 103829 (2,3,4,5-tetrahydro-8[methyl sulphonyl]-1H3-benzazepin-7-ol methensulphonate) contracted rings with a -log EC50, M of 5.0 and an intrinsic activity of 0.49 with respect to 5-HT; the effects were antagonized by ketanserin 1000

  4. Reelin influences the expression and function of dopamine D2 and serotonin 5-HT2A receptors: a comparative study.

    PubMed

    Varela, M J; Lage, S; Caruncho, H J; Cadavid, M I; Loza, M I; Brea, J

    2015-04-01

    Reelin is an extracellular matrix protein that plays a critical role in neuronal guidance during brain neurodevelopment and in synaptic plasticity in adults and has been associated with schizophrenia. Reelin mRNA and protein levels are reduced in various structures of post-mortem schizophrenic brains, in a similar way to those found in heterozygous reeler mice (HRM). Reelin is involved in protein expression in dendritic spines that are the major location where synaptic connections are established. Thus, we hypothesized that a genetic deficit in reelin would affect the expression and function of dopamine D2 and serotonin 5-HT2A receptors that are associated with the action of current antipsychotic drugs. In this study, D2 and 5-HT2A receptor expression and function were quantitated by using radioligand binding studies in the frontal cortex and striatum of HRM and wild-type mice (WTM). We observed increased expression (p<0.05) in striatum membranes and decreased expression (p<0.05) in frontal cortex membranes for both dopamine D2 and serotonin 5-HT2A receptors from HRM compared to WTM. Our results show parallel alterations of D2 and 5-HT2A receptors that are compatible with a possible hetero-oligomeric nature of these receptors. These changes are similar to changes described in schizophrenic patients and provide further support for the suitability of using HRM as a model for studying this disease and the effects of antipsychotic drugs. PMID:25637489

  5. Serotonin 5-HT2A receptor gene variants influence antidepressant response to repeated total sleep deprivation in bipolar depression.

    PubMed

    Benedetti, Francesco; Barbini, Barbara; Bernasconi, Alessandro; Fulgosi, Mara Cigala; Colombo, Cristina; Dallaspezia, Sara; Gavinelli, Chiara; Marino, Elena; Pirovano, Adele; Radaelli, Daniele; Smeraldi, Enrico

    2008-12-12

    5-HT2A receptor density in prefrontal cortex was associated with depression and suicide. 5-HT2A receptor gene polymorphism rs6313 was associated with 5-HT2A receptor binding potential, with the ability of individuals to use environmental support in order to prevent depression, and with sleep improvement after antidepressant treatment with mirtazapine. Studies on response to antidepressant drugs gave inconsistent results. Here we studied the effect of rs6313 on response to repeated total sleep deprivation (TSD) in 80 bipolar depressed inpatients treated with three consecutive TSD cycles (each one made of 36 h awake followed by a night of undisturbed sleep). All genotype groups showed comparable acute effects of the first TSD, but patients homozygotes for the T variant had better perceived and observed benefits from treatment than carriers of the C allele. These effects became significant after the first recovery night and during the following days, leading to a 36% higher final response rate (Hamilton depression rating<8). The higher density of postsynaptic excitatory 5-HT2A receptors in T/T homozygotes could have led to higher behavioural effects of increased 5-HT neurotransmission due to repeated TSD. Other possible mechanisms involve allostatic/homeostatic adaptation to sleep loss, and a different effect of the allele variants on epigenetic influences. Results confirm the interest for individual gene variants of the serotonin pathway in shaping clinical characteristics of depression and antidepressant response.

  6. Expression of α(1)-adrenergic receptors in rat prefrontal cortex: cellular co-localization with 5-HT(2A) receptors.

    PubMed

    Santana, Noemí; Mengod, Guadalupe; Artigas, Francesc

    2013-06-01

    The prefrontal cortex (PFC) is involved in behavioural control and cognitive processes that are altered in schizophrenia. The brainstem monoaminergic systems control PFC function, yet the cells/networks involved are not fully known. Serotonin (5-HT) and norepinephrine (NE) increase PFC neuronal activity through the activation of α(1)-adrenergic receptors (α(1)ARs) and 5-HT(2A) receptors (5-HT(2A)Rs), respectively. Neurochemical and behavioural interactions between these receptors have been reported. Further, classical and atypical antipsychotic drugs share nm in vitro affinity for α(1)ARs while having preferential affinity for D(2) and 5-HT(2A)Rs, respectively. Using double in situ hybridization we examined the cellular expression of α(1)ARs in pyramidal (vGluT1-positive) and GABAergic (GAD(65/67)-positive) neurons in rat PFC and their co-localization with 5-HT(2A)Rs. α(1)ARs are expressed by a high proportion of pyramidal (59-85%) and GABAergic (52-79%) neurons. The expression in pyramidal neurons exhibited a dorsoventral gradient, with a lower percentage of α(1)AR-positive neurons in infralimbic cortex compared to anterior cingulate and prelimbic cortex. The expression of α(1A), α(1B) and α(1D) adrenergic receptors was segregated in different layers and subdivisions. In all them there is a high co-expression with 5-HT(2A)Rs (∼80%). These observations indicate that NE controls the activity of most PFC pyramidal neurons via α(1)ARs, either directly or indirectly, via GABAergic interneurons. Antipsychotic drugs can thus modulate the activity of PFC via α(1)AR blockade. The high co-expression with 5-HT(2A)Rs indicates a convergence of excitatory serotonergic and noradrenergic inputs onto the same neuronal populations. Moreover, atypical antipsychotics may exert a more powerful control of PFC function through the simultaneous blockade of α(1)ARs and 5-HT(2A)Rs.

  7. Combined serotonin (5-HT)1A agonism, 5-HT(2A) and dopamine D₂ receptor antagonism reproduces atypical antipsychotic drug effects on phencyclidine-impaired novel object recognition in rats.

    PubMed

    Oyamada, Yoshihiro; Horiguchi, Masakuni; Rajagopal, Lakshmi; Miyauchi, Masanori; Meltzer, Herbert Y

    2015-05-15

    Subchronic administration of an N-methyl-D-aspartate receptor (NMDAR) antagonist, e.g. phencyclidine (PCP), produces prolonged impairment of novel object recognition (NOR), suggesting they constitute a hypoglutamate-based model of cognitive impairment in schizophrenia (CIS). Acute administration of atypical, e.g. lurasidone, but not typical antipsychotic drugs (APDs), e.g. haloperidol, are able to restore NOR following PCP (acute reversal model). Furthermore, atypical APDs, when co-administered with PCP, have been shown to prevent development of NOR deficits (prevention model). Most atypical, but not typical APDs, are more potent 5-HT(2A) receptor inverse agonists than dopamine (DA) D2 antagonists, and have been shown to enhance cortical and hippocampal efflux and to be direct or indirect 5-HT(1A) agonists in vivo. To further clarify the importance of these actions to the restoration of NOR by atypical APDs, sub-effective or non-effective doses of combinations of the 5-HT(1A) partial agonist (tandospirone), the 5-HT(2A) inverse agonist (pimavanserin), or the D2 antagonist (haloperidol), as well as the combination of all three agents, were studied in the acute reversal and prevention PCP models of CIS. Only the combination of all three agents restored NOR and prevented the development of PCP-induced deficit. Thus, this triple combination of 5-HT(1A) agonism, 5-HT(2A) antagonism/inverse agonism, and D2 antagonism is able to mimic the ability of atypical APDs to prevent or ameliorate the PCP-induced NOR deficit, possibly by stimulating signaling cascades from D1 and 5-HT(1A) receptor stimulation, modulated by D2 and 5-HT(2A) receptor antagonism. PMID:25448429

  8. Cardiac baroreflex facilitation evoked by hypothalamus and prefrontal cortex stimulation: role of the nucleus tractus solitarius 5-HT2A receptors.

    PubMed

    Sévoz-Couche, C; Comet, M A; Bernard, J F; Hamon, M; Laguzzi, R

    2006-10-01

    We previously showed that serotonin (5-HT2) receptor activation in the nucleus of the tractus solitarius (NTS) produced hypotension, bradycardia, and facilitation of the baroreflex bradycardia. Activation of the preoptic area (POA) of the hypothalamus, which is involved in shock-evoked passive behaviors, induces similar modifications. In addition, previous studies showed that blockade of the infralimbic (IL) part of the medial prefrontal cortex, which sends projections to POA, produced an inhibitory influence on the baroreflex cardiac response. Thus, to assess the possible implication of NTS 5-HT2 receptors in passive cardiovascular responses, we analyzed in anesthetized rats the effects of NTS inhibition and NTS 5-HT2 receptor blockade on the cardiovascular modifications induced by chemical (0.3 M D,L-homocysteic acid) and electrical (50 Hz, 150-200 microA) stimulation of IL or POA. Intra-NTS microinjections of muscimol, a GABAA receptor agonist, prevented the decreases in blood pressure and heart rate normally evoked by IL or POA activation. In addition, we found that intra-NTS microinjection of R(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidine-methanol, a specific 5-HT2A receptor antagonist, did not affect the decreases in cardiovascular baseline parameters induced by IL or POA stimulation but prevented the facilitation of the aortic baroreflex bradycardia normally observed during IL (+65 and +60%) or POA (+70 and +69%) electrical and chemical stimulation, respectively. These results show that NTS 5-HT2A receptors play a key role in the enhancement of the cardiac response of the baroreflex but not in the changes in basal heart rate and blood pressure induced by IL or POA stimulation. PMID:16763082

  9. Serotonin contracts the rat mesenteric artery by inhibiting 4-aminopyridine-sensitive Kv channels via the 5-HT2A receptor and Src tyrosine kinase.

    PubMed

    Sung, Dong Jun; Noh, Hyun Ju; Kim, Jae Gon; Park, Sang Woong; Kim, Bokyung; Cho, Hana; Bae, Young Min

    2013-01-01

    Serotonin (5-hydroxytryptamine (5-HT)) is a neurotransmitter that regulates a variety of functions in the nervous, gastrointestinal and cardiovascular systems. Despite such importance, 5-HT signaling pathways are not entirely clear. We demonstrated previously that 4-aminopyridine (4-AP)-sensitive voltage-gated K(+) (Kv) channels determine the resting membrane potential of arterial smooth muscle cells and that the Kv channels are inhibited by 5-HT, which depolarizes the membranes. Therefore, we hypothesized that 5-HT contracts arteries by inhibiting Kv channels. Here we studied 5-HT signaling and the detailed role of Kv currents in rat mesenteric arteries using patch-clamp and isometric tension measurements. Our data showed that inhibiting 4-AP-sensitive Kv channels contracted arterial rings, whereas inhibiting Ca(2+)-activated K(+), inward rectifier K(+) and ATP-sensitive K(+) channels had little effect on arterial contraction, indicating a central role of Kv channels in the regulation of resting arterial tone. 5-HT-induced arterial contraction decreased significantly in the presence of high KCl or the voltage-gated Ca(2+) channel (VGCC) inhibitor nifedipine, indicating that membrane depolarization and the consequent activation of VGCCs mediate the 5-HT-induced vasoconstriction. The effects of 5-HT on Kv currents and arterial contraction were markedly prevented by the 5-HT2A receptor antagonists ketanserin and spiperone. Consistently, α-methyl 5-HT, a 5-HT2 receptor agonist, mimicked the 5-HT action on Kv channels. Pretreatment with a Src tyrosine kinase inhibitor, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine, prevented both the 5-HT-mediated vasoconstriction and Kv current inhibition. Our data suggest that 4-AP-sensitive Kv channels are the primary regulator of the resting tone in rat mesenteric arteries. 5-HT constricts the arteries by inhibiting Kv channels via the 5-HT2A receptor and Src tyrosine kinase pathway. PMID:24336234

  10. Blonanserin Ameliorates Phencyclidine-Induced Visual-Recognition Memory Deficits: the Complex Mechanism of Blonanserin Action Involving D3-5-HT2A and D1-NMDA Receptors in the mPFC

    PubMed Central

    Hida, Hirotake; Mouri, Akihiro; Mori, Kentaro; Matsumoto, Yurie; Seki, Takeshi; Taniguchi, Masayuki; Yamada, Kiyofumi; Iwamoto, Kunihiro; Ozaki, Norio; Nabeshima, Toshitaka; Noda, Yukihiro

    2015-01-01

    Blonanserin differs from currently used serotonin 5-HT2A/dopamine-D2 receptor antagonists in that it exhibits higher affinity for dopamine-D2/3 receptors than for serotonin 5-HT2A receptors. We investigated the involvement of dopamine-D3 receptors in the effects of blonanserin on cognitive impairment in an animal model of schizophrenia. We also sought to elucidate the molecular mechanism underlying this involvement. Blonanserin, as well as olanzapine, significantly ameliorated phencyclidine (PCP)-induced impairment of visual-recognition memory, as demonstrated by the novel-object recognition test (NORT) and increased extracellular dopamine levels in the medial prefrontal cortex (mPFC). With blonanserin, both of these effects were antagonized by DOI (a serotonin 5-HT2A receptor agonist) and 7-OH-DPAT (a dopamine-D3 receptor agonist), whereas the effects of olanzapine were antagonized by DOI but not by 7-OH-DPAT. The ameliorating effect was also antagonized by SCH23390 (a dopamine-D1 receptor antagonist) and H-89 (a protein kinase A (PKA) inhibitor). Blonanserin significantly remediated the decrease in phosphorylation levels of PKA at Thr197 and of NR1 (an essential subunit of N-methyl-D-aspartate (NMDA) receptors) at Ser897 by PKA in the mPFC after a NORT training session in the PCP-administered mice. There were no differences in the levels of NR1 phosphorylated at Ser896 by PKC in any group. These results suggest that the ameliorating effect of blonanserin on PCP-induced cognitive impairment is associated with indirect functional stimulation of the dopamine-D1-PKA-NMDA receptor pathway following augmentation of dopaminergic neurotransmission due to inhibition of both dopamine-D3 and serotonin 5-HT2A receptors in the mPFC. PMID:25120077

  11. Clozapine, but not olanzapine, disrupts conditioned avoidance response in rats by antagonizing 5-HT2A/2C receptors.

    PubMed

    Li, Ming; Sun, Tao; Mead, Alexa

    2012-04-01

    The present study was designed to assess the role of 5-HT(2A/2C) receptors in the acute and repeated effect of clozapine and olanzapine in a rat conditioned avoidance response model, a validated model of antipsychotic activity. Male Sprague-Dawley rats that were previously treated with either phencyclidine (0.5-2.0 mg/kg, sc), amphetamine (1.25-5.0 mg/kg, sc), or saline and tested in a prepulse inhibition of acoustic startle study were used. They were first trained to acquire avoidance response to a white noise (CS1) and a pure tone (CS2) that differed in their ability to predict the occurrence of footshock. Those who acquired avoidance response were administered with clozapine (10.0 mg/kg, sc) or olanzapine (1.0 mg/kg, sc) together with either saline or 1-2,5-dimethoxy-4-iodo-amphetamine (DOI, a selective 5-HT(2A/2C) agonist, 1.0 or 2.5 mg/kg, sc), and their conditioned avoidance responses were tested for four consecutive days. After two drug-free retraining days, the long-term repeated effect was assessed in a challenge test during which all rats were injected with a low dose of clozapine (5 mg/kg, sc) or olanzapine (0.5 mg/kg). Results show that pretreatment of DOI dose-dependently reversed the acute disruptive effect of clozapine on both CS1 and CS2 avoidance responses, whereas it had little effect in reversing the acute effect of olanzapine. On the challenge test, pretreatment of DOI did not alter the clozapine-induced tolerance or the olanzapine-induced sensitization effect. These results confirmed our previous findings and suggest that clozapine, but not olanzapine, acts on through 5-HT(2A/2C) receptors to achieve its acute avoidance disruptive effect and likely its therapeutic effects. The long-term clozapine tolerance and olanzapine sensitization effects appear to be mediated by non-5-HT(2A/2C) receptors.

  12. Association study of T102C 5-HT2A polymorphism in schizophrenic patients: diagnosis, psychopathology, and suicidal behavior

    PubMed Central

    Correa, Humberto; De Marco, Luiz; Boson, Wolfanga; Nicolato, Rodrigo; Teixeira, Antó L.; Campo, Valdir R.; Romano-Silva, Marco A.

    2007-01-01

    The objective of this study was to examine the association between the serotonin (5-HT)2A gene polymorphism (102T/C) and suicidal behavior in schizophrenic inpatients. We studied 129 subjects who met the diagnostic criteria for schizophrenia according to a structured clinicai interview (MINI-PLUS), Patients underwent a semistructured interview to assess suicide attempt history and its characteristics, in addition, at least one close relative of the patient was interviewed to assess prohand and family suicidal behavior. Healthy controls were students and hospital staff members free of psychiatric and medical illness. Genotypes were determined after polymerase chain reaction amplification of the region of 5-HT2A/T102C containing the polymorphic site and digestion with the restriction enzyme Hpall, We found no association between suicidal attempt history and suicide attempt characteristics and genotypic or aileie frequencies. Suicidal behavior was also not associated with demographic or psychopathological characteristics. These results suggest that the S-HT2A gene polymorphism (102T/C) is not involved in genetic susceptibility to suicidal behavior, but further studies in a larger sample are needed. PMID:17506229

  13. C-(4,5,6-trimethoxyindan-1-yl)methanamine: a mescaline analogue designed using a homology model of the 5-HT2A receptor.

    PubMed

    McLean, Thomas H; Chambers, James J; Parrish, Jason C; Braden, Michael R; Marona-Lewicka, Danuta; Kurrasch-Orbaugh, Deborah; Nichols, David E

    2006-07-13

    A conformationally restricted analogue of mescaline, C-(4,5,6-trimethoxyindan-1-yl)-methanamine, was designed using a 5-HT(2A) receptor homology model. The compound possessed 3-fold higher affinity and potency than and efficacy equal to that of mescaline at the 5-HT(2A) receptor. The new analogue substituted fully for LSD in drug discrimination studies and was 5-fold more potent than mescaline. Resolution of this analogue into its enantiomers corroborated the docking experiments, showing the R-(+) isomer to have higher affinity and potency and to have efficacy similar to that of mescaline at the 5-HT(2A) receptor.

  14. Antidepressant-like activity of Tagetes lucida Cav. is mediated by 5-HT(1A) and 5-HT(2A) receptors.

    PubMed

    Bonilla-Jaime, H; Guadarrama-Cruz, G; Alarcon-Aguilar, F J; Limón-Morales, O; Vazquez-Palacios, G

    2015-10-01

    It has been demonstrated that the aqueous extract of Tagetes lucida Cav. shows an antidepressant-like effect on the forced swimming test (FST) in rats. The aim of this study was to analyze the participation of the serotoninergic system in the antidepressant-like effect of the aqueous extract of T. lucida. Different doses of the extract of T. lucida were administered at 72, 48, 24, 18 and 1 h before FST. The animals were pretreated with a 5-HT1A receptor antagonist (WAY-100635, 0.5 mg/kg), a 5-HT2A receptor antagonist (ketanserin, 5 mg/kg), a β-noradrenergic receptor antagonist (propranolol, 200 mg/kg), and with a α2-noradrenergic receptor antagonist (yohimbine, 1 mg/kg) alone or combined with the extract and pretreated with a serotonin synthesis inhibitor (PCPA) before treatment with 8-OH-DPAT + the extract of T. lucida. In addition, suboptimal doses of the 5-HT1A agonist (8-OH-DPAT) + non-effective dose of extract was analyzed in the FST. To determine the presence of flavonoids, the aqueous extract of T. lucida (20 µl, 4 mg/ml) was injected in HPLC; however, a quercetin concentration of 7.72 mg/g of extract weight was detected. A suboptimal dose of 8-OH-DPAT + extract of T. lucida decreased immobility and increased swimming and climbing. An antidepressant-like effect with the aqueous extract of T. lucida at doses of 100 and 200 mg/kg was observed on the FST with decreased immobility behavior and increased swimming; however, this effect was blocked by WAY-100635, ketanserin and PCPA but not by yohimbine and propranolol, suggesting that the extract of T. lucida could be modulating the release/reuptake of serotonin.

  15. Effects of dominance status on conditioned defeat and expression of 5-HT1A and 5-HT2A receptors

    PubMed Central

    Morrison, Kathleen E.; Swallows, Cody L.; Cooper, Matthew A.

    2011-01-01

    Past experience can alter how individuals respond to stressful events. The brain serotonin system is a key factor modulating stress-related behavior and may contribute to individual variation in coping styles. In this study we investigated whether dominant and subordinate hamsters respond differently to social defeat and whether their behavioral responses are associated with changes in 5-HT1A and 5-HT2A receptor immunoreactivity in several limbic brain regions. We paired weight-matched hamsters in daily aggressive encounters for two weeks so that they formed a stable dominance relationship. We also included controls that were exposed to an empty cage each day for two weeks. Twenty-four hours after the final pairing or empty cage exposure, subjects were socially defeated in 3, 5-min encounters with a more aggressive hamster. Twenty-four hours after social defeat, animals were tested for conditioned defeat in a 5-min social interaction test with a non-aggressive intruder. We collected brains following conditioned defeat testing and performed immunohistochemistry for 5-HT1A and 5-HT2A receptors. We found that dominants showed less submissive and defensive behavior at conditioned defeat testing compared to both subordinates and controls. Additionally, both dominants and subordinates had an increased number of 5-HT1A immunopositive cells in the basolateral amygdala compared to controls. Subordinates also had more 5-HT1A immunopositive cells in the dorsal medial amygdala than did controls. Finally, dominants had fewer 5-HT1A immunopositive cells in the paraventricular nucleus of the hypothalamus compared to controls. Our results indicate that dominant social status results in a blunted conditioned defeat response and a distinct pattern of 5-HT1A receptor expression, which may contribute to resistance to conditioned defeat. PMID:21362435

  16. Effects of dominance status on conditioned defeat and expression of 5-HT1A and 5-HT2A receptors.

    PubMed

    Morrison, Kathleen E; Swallows, Cody L; Cooper, Matthew A

    2011-08-01

    Past experience can alter how individuals respond to stressful events. The brain serotonin system is a key factor modulating stress-related behavior and may contribute to individual variation in coping styles. In this study we investigated whether dominant and subordinate hamsters respond differently to social defeat and whether their behavioral responses are associated with changes in 5-HT1A and 5-HT2A receptor immunoreactivity in several limbic brain regions. We paired weight-matched hamsters in daily aggressive encounters for two weeks so that they formed a stable dominance relationship. We also included controls that were exposed to an empty cage each day for two weeks. Twenty-four hours after the final pairing or empty cage exposure, subjects were socially defeated in 3, 5-min encounters with a more aggressive hamster. Twenty-four hours after social defeat, animals were tested for conditioned defeat in a 5-min social interaction test with a non-aggressive intruder. We collected brains following conditioned defeat testing and performed immunohistochemistry for 5-HT1A and 5-HT2A receptors. We found that dominants showed less submissive and defensive behavior at conditioned defeat testing compared to both subordinates and controls. Additionally, both dominants and subordinates had an increased number of 5-HT1A immunopositive cells in the basolateral amygdala compared to controls. Subordinates also had more 5-HT1A immunopositive cells in the dorsal medial amygdala than did controls. Finally, dominants had fewer 5-HT1A immunopositive cells in the paraventricular nucleus of the hypothalamus compared to controls. Our results indicate that dominant social status results in a blunted conditioned defeat response and a distinct pattern of 5-HT1A receptor expression, which may contribute to resistance to conditioned defeat.

  17. The antidepressant-like activity of 6-methoxy-2-[4-(2-methoxyphenyl)piperazin-1-yl]-9H-xanthen-9-one involves serotonergic 5-HT(1A) and 5-HT(2A/C) receptors activation.

    PubMed

    Pytka, Karolina; Walczak, Maria; Kij, Agnieszka; Rapacz, Anna; Siwek, Agata; Kazek, Grzegorz; Olczyk, Adrian; Gałuszka, Adam; Waszkielewicz, Anna; Marona, Henryk; Sapa, Jacek; Filipek, Barbara

    2015-10-01

    Xanthone derivatives have been shown to posses many biological properties. Some of them act within the central nervous system and show neuroprotective or antidepressant-like properties. Taking this into account we investigated antidepressant-like activity in mice and the possible mechanism of action of 6-methoxy-2-[4-(2-methoxyphenyl)piperazin-1-yl]-9H-xanthen-9-one (HBK-11) - a new xanthone derivative. We demonstrated that HBK-11 produced antidepressant-like effects in the forced swim test and tail suspension test, comparable to that of venlafaxine. The combined treatment with sub-effective doses of HBK-11 and fluoxetine (but not reboxetine or bupropion) significantly reduced the immobility in the forced swim test. Moreover, the antidepressant-like activity of HBK-11 in the aforementioned test was blocked by p-chlorophenylalanine, and significantly reduced by serotonergic 5HT1A receptor antagonist - WAY-1006335 and 5HT2A/C receptor antagonist - ritanserin. As none of the above treatments influenced the spontaneous locomotor activity, it can be concluded that HBK-11 mediates its activity through a serotonergic system, and its antidepressant-like effect involves 5HT1A and 5HT2A/C receptor activation. Furthermore, at antidepressant-like doses HBK-11 did not cause the mice to display locomotor deficits in rotarod or chimney tests. Considering the pharmacokinetic profile, HBK-11 demonstrated rapid absorption after i.p. administration, high clearance value, short terminal half-life, very high volume of distribution and incomplete bioavailability. The compound studied had good penetration into the brain tissue of mice. Since studied xanthone derivative seems to present interesting, untypical mechanism of antidepressant-like action i.e. 5HT2A/C receptor activation, it may have a potential in the treatment of depressive disorders, and surely requires further studies. PMID:26210317

  18. The serotonergic hallucinogen 5-methoxy-N,N-dimethyltryptamine disrupts cortical activity in a regionally-selective manner via 5-HT(1A) and 5-HT(2A) receptors.

    PubMed

    Riga, Maurizio S; Bortolozzi, Analia; Campa, Letizia; Artigas, Francesc; Celada, Pau

    2016-02-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a natural hallucinogen, acting as a non-selective serotonin 5-HT(1A)/5-HT(2A)-R agonist. Psychotomimetic agents such as the non-competitive NMDA-R antagonist phencyclidine and serotonergic hallucinogens (DOI and 5-MeO-DMT) disrupt cortical synchrony in the low frequency range (<4 Hz) in rat prefrontal cortex (PFC), an effect reversed by antipsychotic drugs. Here we extend these observations by examining the effect of 5-MeO-DMT on low frequency cortical oscillations (LFCO, <4 Hz) in PFC, visual (V1), somatosensory (S1) and auditory (Au1) cortices, as well as the dependence of these effects on 5-HT(1A)-R and 5-HT(2A)-R, using wild type (WT) and 5-HT(2A)-R knockout (KO2A) anesthetized mice. 5-MeO-DMT reduced LFCO in the PFC of WT and KO2A mice. The effect in KO2A mice was fully prevented by the 5-HT(1A)-R antagonist WAY-100635. Systemic and local 5-MeO-DMT reduced 5-HT release in PFC mainly via 5-HT(1A)-R. Moreover, 5-MeO-DMT reduced LFCO in S1, Au1 and V1 of WT mice and only in V1 of KO2A mice, suggesting the involvement of 5-HT(1A)-R activation in the 5-MeO-DMT-induced disruption of V1 activity. In addition, antipsychotic drugs reversed 5-MeO-DMT effects in WT mice. The present results suggest that the hallucinogen action of 5-MeO-DMT is mediated by simultaneous alterations of the activity of sensory (S1, Au1, V1) and associative (PFC) cortical areas, also supporting a role of 5-HT(1A)-R stimulation in V1 and PFC, in addition to the well-known action on 5-HT(2A)-R. Moreover, the reversal by antipsychotic drugs of 5-MeO-DMT effects adds to previous literature supporting the usefulness of the present model in antipsychotic drug development.

  19. 5-HT(2A) and mGlu2 receptor binding levels are related to differences in impulsive behavior in the Roman Low- (RLA) and High- (RHA) avoidance rat strains.

    PubMed

    Klein, A B; Ultved, L; Adamsen, D; Santini, M A; Tobeña, A; Fernandez-Teruel, A; Flores, P; Moreno, M; Cardona, D; Knudsen, G M; Aznar, S; Mikkelsen, J D

    2014-03-28

    The Roman Low- and High-Avoidance rat strains (RLA-I vs RHA-I) have been bidirectionally selected and bred according to their performance in the two-way active avoidance response in the shuttle-box test. Numerous studies have reported a pronounced divergence in emotionality between the two rat strains including differences in novelty seeking, anxiety, stress coping, and susceptibility to addictive substances. However, the underlying molecular mechanisms behind these divergent phenotypes are not known. Here, we determined impulsivity using the 5-choice serial reaction time task and levels of serotonin transporter (SERT), 5-HT(2A) and 5-HT(1A) receptor binding using highly specific radioligands ((3)H-escitalopram, (3)H-MDL100907 and (3)H-WAY100635) and mGlu2/3 receptor binding ((3)H-LY341495) using receptor autoradiography in fronto-cortical sections from RLA-I (n=8) and RHA-I (n=8) male rats. In the more impulsive RHA-I rats, 5-HT(2A), 5-HT(1A) and SERT binding in the frontal cortex was significantly higher compared to RLA-I rats. In contrast, mGlu2/3 receptor binding was decreased by 40% in RHA-I rats compared to RLA-I rats. To differentiate between mGlu2 and mGlu3 receptor protein levels, these were further studied using western blotting, which showed non-detectable levels of mGlu2 receptor protein in RHA rats, while no differences were observed for mGlu3 receptor protein levels. Collectively, these data show general congenital differences in the serotonergic system and a pronounced difference in mGlu2 receptor protein levels. We suggest that the differences in the serotonergic system may mediate some of the phenotypic characteristics in this strain such as hyper-impulsivity and susceptibility to drug addiction. PMID:24412375

  20. Discovering the mechanisms underlying serotonin (5-HT)2A and 5-HT2C receptor regulation following nicotine withdrawal in rats.

    PubMed

    Zaniewska, Magdalena; Alenina, Natalia; Wydra, Karolina; Fröhler, Sebastian; Kuśmider, Maciej; McCreary, Andrew C; Chen, Wei; Bader, Michael; Filip, Małgorzata

    2015-08-01

    We have previously demonstrated that nicotine withdrawal produces depression-like behavior and that serotonin (5-HT)2A/2C receptor ligands modulate that mood-like state. In the present study we aimed to identify the mechanisms (changes in radioligand binding, transcription or RNA-editing) related to such a behavioral outcome. Rats received vehicle or nicotine (0.4 mg/kg, s.c.) for 5 days in home cages. Brain 5-HT2A/2C receptors were analyzed on day 3 of nicotine withdrawal. Nicotine withdrawal increased [(3)H]ketanserin binding to 5-HT2A receptors in the ventral tegmental area and ventral dentate gyrus, yet decreased binding in the nucleus accumbens shell. Reduction in [(3)H]mesulergine binding to 5-HT2C receptors was seen in the ventral dentate gyrus. Profound decrease in the 5-HT2A receptor transcript level was noted in the hippocampus and ventral tegmental area. Out of five 5-HT2C receptor mRNA editing sites, deep sequencing data showed a reduction in editing at the E site and a trend toward reduction at the C site in the hippocampus. In the ventral tegmental area, a reduction for the frequency of CD 5-HT2C receptor transcript was seen. These results show that the reduction in the 5-HT2A receptor transcript level may be an auto-regulatory response to the increased receptor density in the hippocampus and ventral tegmental area during nicotine withdrawal, while decreased 5-HT2C receptor mRNA editing may explain the reduction in receptor labeling in the hippocampus. Serotonin (5-HT)2A/2C receptor ligands alleviate depression-like state in nicotine-withdrawn rats. Here, we show that the reduction in 5-HT2A receptor transcript level may be an auto-regulatory response to the increased receptor number in the hippocampus and ventral tegmental area during nicotine withdrawal, while attenuated 5-HT2C receptor mRNA editing in the hippocampus might explain reduced inverse agonist binding to 5-HT2C receptor and suggest a shift toward a population of more active receptors. 5

  1. Lack of Association between the Serotonin Transporter (5-HTT) and Serotonin Receptor (5-HT2A) Gene Polymorphisms with Smoking Behavior among Malaysian Malays

    PubMed Central

    Rozak, Nur Iwani A; Ahmad, Imran; Gan, Siew Hua; Abu Bakar, Ruzilawati

    2014-01-01

    Abstract An insertion/deletion polymorphism in the promoter region of the serotonin transporter gene (5-HTTLPR) and a polymorphism (rs6313) in the serotonin 2A receptor gene (5-HT2A) have previously been linked to smoking behavior. The objective of this study was to determine the possible association of the 5-HTTLPR and 5-HT2A gene polymorphisms with smoking behavior within a population of Malaysian male smokers (n=248) and non-smokers (n=248). The 5-HTTLPR genotypes were determined using the polymerase chain reaction (PCR) and were classified as short (S) alleles or long (L) alleles. The 5HT2A genotypes were determined using PCR-restriction fragment length polymorphisms (PCR-RFLP). No significant differences in the distribution frequencies of the alleles were found between the smokers and the non-smokers for the 5-HTTLPR polymorphism (x2 = 0.72, P>0.05) or the 5HT2A polymorphism (x2 = 0.73, P>0.05). This is the first study conducted on Malaysian Malay males regarding the association of 5-HTTLPR and 5HT2A polymorphisms and smoking behavior. However, the genes were not found to be associated with smoking behavior in our population. PMID:25853073

  2. Pyramidal Neurons in Rat Prefrontal Cortex Projecting to Ventral Tegmental Area and Dorsal Raphe Nucleus Express 5-HT2A Receptors

    PubMed Central

    Vázquez-Borsetti, Pablo; Cortés, Roser

    2009-01-01

    The prefrontal cortex (PFC) is involved in higher brain functions altered in schizophrenia. Classical antipsychotics modulate cortico-limbic circuits mainly through subcortical D2 receptor blockade, whereas second generation (atypical) antipsychotics preferentially target cortical 5-HT receptors. Anatomical and functional evidence supports a PFC-based control of the brainstem monoaminergic nuclei. Using a combination of retrograde tracing experiments and in situ hybridization we report that a substantial proportion of PFC pyramidal neurons projecting to the dorsal raphe (DR) and/or ventral tegmental area (VTA) express 5-HT2A receptors. Cholera-toxin B application into the DR and the VTA retrogradely labeled projection neurons in the medial PFC (mPFC) and in orbitofrontal cortex (OFC). In situ hybridization of 5-HT2A receptor mRNA in the same tissue sections labeled a large neuronal population in mPFC and OFC. The percentage of DR-projecting neurons expressing 5-HT2A receptor mRNA was ∼60% in mPFC and ∼75% in OFC (n = 3). Equivalent values for VTA-projecting neurons were ∼55% in both mPFC and ventral OFC. Thus, 5-HT2A receptor activation/blockade in PFC may have downstream effects on dopaminergic and serotonergic systems via direct descending pathways. Atypical antipsychotics may distally modulate monoaminergic cells through PFC 5-HT2A receptor blockade, presumably decreasing the activity of neurons receiving direct cortical inputs. PMID:19029064

  3. Extensive Rigid Analogue Design Maps the Binding Conformation of Potent N-Benzylphenethylamine 5-HT2A Serotonin Receptor Agonist Ligands

    PubMed Central

    2012-01-01

    Based on the structure of the superpotent 5-HT2A agonist 2-(4-bromo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine, which consists of a ring-substituted phenethylamine skeleton modified with an N-benzyl group, we designed and synthesized a small library of constrained analogues to identify the optimal arrangement of the pharmacophoric elements of the ligand. Structures consisted of diversely substituted tetrahydroisoquinolines, piperidines, and one benzazepine. Based on the structure of (S,S)-9b, which showed the highest affinity of the series, we propose an optimal binding conformation. (S,S)-9b also displayed 124-fold selectivity for the 5-HT2A over the 5-HT2C receptor, making it the most selective 5-HT2A receptor agonist ligand currently known. PMID:23336049

  4. Cognitive Impairment Induced by Delta9-tetrahydrocannabinol Occurs through Heteromers between Cannabinoid CB1 and Serotonin 5-HT2A Receptors

    PubMed Central

    Lanfumey, Laurence; Cordomí, Arnau; Pastor, Antoni; de La Torre, Rafael; Gasperini, Paola; Navarro, Gemma; Howell, Lesley A.; Pardo, Leonardo; Lluís, Carmen; Canela, Enric I.; McCormick, Peter J.; Maldonado, Rafael; Robledo, Patricia

    2015-01-01

    Activation of cannabinoid CB1 receptors (CB1R) by delta9-tetrahydrocannabinol (THC) produces a variety of negative effects with major consequences in cannabis users that constitute important drawbacks for the use of cannabinoids as therapeutic agents. For this reason, there is a tremendous medical interest in harnessing the beneficial effects of THC. Behavioral studies carried out in mice lacking 5-HT2A receptors (5-HT2AR) revealed a remarkable 5-HT2AR-dependent dissociation in the beneficial antinociceptive effects of THC and its detrimental amnesic properties. We found that specific effects of THC such as memory deficits, anxiolytic-like effects, and social interaction are under the control of 5-HT2AR, but its acute hypolocomotor, hypothermic, anxiogenic, and antinociceptive effects are not. In biochemical studies, we show that CB1R and 5-HT2AR form heteromers that are expressed and functionally active in specific brain regions involved in memory impairment. Remarkably, our functional data shows that costimulation of both receptors by agonists reduces cell signaling, antagonist binding to one receptor blocks signaling of the interacting receptor, and heteromer formation leads to a switch in G-protein coupling for 5-HT2AR from Gq to Gi proteins. Synthetic peptides with the sequence of transmembrane helices 5 and 6 of CB1R, fused to a cell-penetrating peptide, were able to disrupt receptor heteromerization in vivo, leading to a selective abrogation of memory impairments caused by exposure to THC. These data reveal a novel molecular mechanism for the functional interaction between CB1R and 5-HT2AR mediating cognitive impairment. CB1R-5-HT2AR heteromers are thus good targets to dissociate the cognitive deficits induced by THC from its beneficial antinociceptive properties. PMID:26158621

  5. Maternal lipopolysaccharide treatment differentially affects 5-HT(2A) and mGlu2/3 receptor function in the adult male and female rat offspring.

    PubMed

    Wischhof, Lena; Irrsack, Ellen; Dietz, Frank; Koch, Michael

    2015-10-01

    Maternal infection during pregnancy increases the risk for the offspring to develop schizophrenia. However, it is still not fully understood which biochemical mechanisms are responsible for the emergence of neuropsychiatric symptoms following prenatal immune activation. The serotonin (5-hydroxytryptamine, 5-HT) and glutamate system have prominently been associated with the schizophrenia pathophysiology but also with the mechanism of antipsychotic drug actions. Here, we investigated the behavioral and cellular response to 5-HT2A and metabotropic glutamate (mGlu)2/3 receptor stimulation in male and female offspring born to lipopolysaccharide (LPS)-treated mothers. Additionally, we assessed protein expression levels of prefrontal 5-HT2A and mGlu2 receptors. Prenatally LPS-exposed male and female offspring showed locomotor hyperactivity and increased head-twitch behavior in response to the 5-HT2A receptor agonist DOI. In LPS-exposed male offspring, the mGlu2/3 receptor agonist LY379268 failed to reduce DOI-induced prepulse inhibition deficits. In LPS-males, the behavioral changes were further accompanied by enhanced DOI-induced c-Fos protein expression and an up-regulation of prefrontal 5-HT2A receptors. No changes in either 5-HT2A or mGlu2 receptor protein levels were found in female offspring. Our data support the hypothesis of an involvement of maternal infection during pregnancy contributing, at least partially, to the pathology of schizophrenia. Identifying biochemical alterations that parallel the behavioral deficits may help to improve therapeutic strategies in the treatment of this mental illness. Since most studies in rodents almost exclusively include male subjects, our data further contribute to elucidating possible gender differences in the effects of prenatal infection on 5-HT2A and mGlu2/3 receptor function. PMID:26051401

  6. Tolerance to LSD and DOB induced shaking behaviour: differential adaptations of frontocortical 5-HT(2A) and glutamate receptor binding sites.

    PubMed

    Buchborn, Tobias; Schröder, Helmut; Dieterich, Daniela C; Grecksch, Gisela; Höllt, Volker

    2015-03-15

    Serotonergic hallucinogens, such as lysergic acid diethylamide (LSD) and dimethoxy-bromoamphetamine (DOB), provoke stereotype-like shaking behaviour in rodents, which is hypothesised to engage frontocortical glutamate receptor activation secondary to serotonin2A (5-HT2A) related glutamate release. Challenging this hypothesis, we here investigate whether tolerance to LSD and DOB correlates with frontocortical adaptations of 5-HT2A and/or overall-glutamate binding sites. LSD and DOB (0.025 and 0.25 mg/kg, i.p.) induce a ketanserin-sensitive (0.5 mg/kg, i.p., 30-min pretreatment) increase in shaking behaviour (including head twitches and wet dog shakes), which with repeated application (7× in 4 ds) is undermined by tolerance. Tolerance to DOB, as indexed by DOB-sensitive [(3)H]spiroperidol and DOB induced [(35)S]GTP-gamma-S binding, is accompanied by a frontocortical decrease in 5-HT2A binding sites and 5-HT2 signalling, respectively; glutamate-sensitive [(3)H]glutamate binding sites, in contrast, remain unchanged. As to LSD, 5-HT2 signalling and 5-HT2A binding, respectively, are not or only marginally affected, yet [(3)H]glutamate binding is significantly decreased. Correlation analysis interrelates tolerance to DOB to the reduced 5-HT2A (r=.80) as well as the unchanged [(3)H]glutamate binding sites (r=.84); tolerance to LSD, as opposed, shares variance with the reduction in [(3)H]glutamate binding sites only (r=.86). Given that DOB and LSD both induce tolerance, one correlating with 5-HT2A, the other with glutamate receptor adaptations, it might be inferred that tolerance can arise at either level. That is, if a hallucinogen (like LSD in our study) fails to induce 5-HT2A (down-)regulation, glutamate receptors (activated postsynaptic to 5-HT2A related glutamate release) might instead adapt and thus prevent further overstimulation of the cortex. PMID:25513973

  7. Tolerance to LSD and DOB induced shaking behaviour: differential adaptations of frontocortical 5-HT(2A) and glutamate receptor binding sites.

    PubMed

    Buchborn, Tobias; Schröder, Helmut; Dieterich, Daniela C; Grecksch, Gisela; Höllt, Volker

    2015-03-15

    Serotonergic hallucinogens, such as lysergic acid diethylamide (LSD) and dimethoxy-bromoamphetamine (DOB), provoke stereotype-like shaking behaviour in rodents, which is hypothesised to engage frontocortical glutamate receptor activation secondary to serotonin2A (5-HT2A) related glutamate release. Challenging this hypothesis, we here investigate whether tolerance to LSD and DOB correlates with frontocortical adaptations of 5-HT2A and/or overall-glutamate binding sites. LSD and DOB (0.025 and 0.25 mg/kg, i.p.) induce a ketanserin-sensitive (0.5 mg/kg, i.p., 30-min pretreatment) increase in shaking behaviour (including head twitches and wet dog shakes), which with repeated application (7× in 4 ds) is undermined by tolerance. Tolerance to DOB, as indexed by DOB-sensitive [(3)H]spiroperidol and DOB induced [(35)S]GTP-gamma-S binding, is accompanied by a frontocortical decrease in 5-HT2A binding sites and 5-HT2 signalling, respectively; glutamate-sensitive [(3)H]glutamate binding sites, in contrast, remain unchanged. As to LSD, 5-HT2 signalling and 5-HT2A binding, respectively, are not or only marginally affected, yet [(3)H]glutamate binding is significantly decreased. Correlation analysis interrelates tolerance to DOB to the reduced 5-HT2A (r=.80) as well as the unchanged [(3)H]glutamate binding sites (r=.84); tolerance to LSD, as opposed, shares variance with the reduction in [(3)H]glutamate binding sites only (r=.86). Given that DOB and LSD both induce tolerance, one correlating with 5-HT2A, the other with glutamate receptor adaptations, it might be inferred that tolerance can arise at either level. That is, if a hallucinogen (like LSD in our study) fails to induce 5-HT2A (down-)regulation, glutamate receptors (activated postsynaptic to 5-HT2A related glutamate release) might instead adapt and thus prevent further overstimulation of the cortex.

  8. APD125, a Selective Serotonin 5-HT2A Receptor Inverse Agonist, Significantly Improves Sleep Maintenance in Primary Insomnia

    PubMed Central

    Rosenberg, Russell; Seiden, David J.; Hull, Steven G.; Erman, Milton; Schwartz, Howard; Anderson, Christen; Prosser, Warren; Shanahan, William; Sanchez, Matilde; Chuang, Emil; Roth, Thomas

    2008-01-01

    Introduction: Insomnia is a condition affecting 10% to 15% of the adult population and is characterized by difficulty falling asleep, difficulty staying asleep, or nonrestorative sleep, accompanied by daytime impairment or distress. This study evaluates APD125, a selective inverse agonist of the 5-HT2A receptor, for treatment of chronic insomnia, with particular emphasis on sleep maintenance. In phase 1 studies, APD125 improved sleep maintenance and was well tolerated. Methodology: Adult subjects (n = 173) with DSM-IV defined primary insomnia were randomized into a multicenter, double-blind, placebo-controlled, 3-way crossover study to compare 2 doses of APD125 (10 mg and 40 mg) with placebo. Each treatment period was 7 days with a 7- to 9-day washout period between treatments. Polysomnographic recordings were performed at the initial 2 screening nights and at nights (N) 1/2 and N 6/7 of each treatment period. Results: APD125 was associated with significant improvements in key sleep maintenance parameters measured by PSG. Wake time after sleep onset decreased (SEM) by 52.5 (3.2) min (10 mg) and 53.5 (3.5) min (40 mg) from baseline to N 1/2 vs. 37.8 (3.4) min for placebo, (P < 0.0001 for both doses vs placebo), and by 51.7 (3.4) min (P = 0.01) and 48.0 (3.6) min (P = 0.2) at N 6/7 vs. 44.0 (3.8) min for placebo. Significant APD125 effects on wake time during sleep were also seen (P < 0.0001 N 1/2, P < 0.001 N 6/7). The number of arousals and number of awakenings decreased significantly with APD125 treatment compared to placebo. Slow wave sleep showed a statistically significant dose-dependent increase. There was no significant decrease in latency to persistent sleep. No serious adverse events were reported, and no meaningful differences in adverse event profiles were observed between either dose of APD125 and placebo. APD125 was not associated with next-day psychomotor impairment as measured by Digit Span, Digit Symbol Copy, and Digit Symbol Coding Tests

  9. Cartography of 5-HT1A and 5-HT2A Receptor Subtypes in Prefrontal Cortex and Its Projections.

    PubMed

    Mengod, Guadalupe; Palacios, José M; Cortés, Roser

    2015-07-15

    Since the development of chemical neuroanatomical tools in the 1960s, a tremendous wealth of information has been generated on the anatomical components of the serotonergic system, at the microscopic level in the brain including the prefrontal cortex (PFC). The PFC receives a widespread distribution of serotonin (5-hydroxytryptamine, 5-HT) terminals from the median and dorsal raphe nuclei. 5-HT receptors were first visualized using radioligand autoradiography in the late 1980s and early 1990s and showed, in contrast to 5-HT innervation, a differential distribution of binding sites associated with different 5-HT receptor subtypes. Due to the cloning of the different 5-HT receptor subtype genes in the late 1980s and early 1990s, it was possible, using in situ hybridization histochemistry, to localize cells expressing mRNA for these receptors. Double in situ hybridization histochemistry and immunohistochemistry allowed for the chemical characterization of the phenotype of cells expressing 5-HT receptors. Tract tracing technology allowed a detailed cartography of the neuronal connections of PFC and other brain areas. Based on these data, maps have been constructed that reflect our current understanding of the different circuits where 5-HT receptors can modulate the electrophysiological, pharmacological, and behavioral functions of the PFC. We will review current knowledge regarding the cellular localization of 5-HT1A and 5-HT2A receptors in mammalian PFC and their possible functions in the neuronal circuits of the PFC. We will discuss data generated in our laboratory as well as in others, focusing on localization in the pyramidal and GABAergic neuronal cell populations in different mammalian species using molecular neuroanatomy and on the connections with other brain regions. PMID:25739427

  10. 5-HT2A Gene Variants Moderate the Association between PTSD and Reduced Default Mode Network Connectivity.

    PubMed

    Miller, Mark W; Sperbeck, Emily; Robinson, Meghan E; Sadeh, Naomi; Wolf, Erika J; Hayes, Jasmeet P; Logue, Mark; Schichman, Steven A; Stone, Angie; Milberg, William; McGlinchey, Regina

    2016-01-01

    The default mode network (DMN) has been used to study disruptions of functional connectivity in a wide variety of psychiatric and neurological conditions, including posttraumatic stress disorder (PTSD). Studies indicate that the serotonin system exerts a modulatory influence on DMN connectivity; however, no prior study has examined associations between serotonin receptor gene variants and DMN connectivity in either clinical or healthy samples. We examined serotonin receptor single nucleotide polymorphisms (SNPs), PTSD, and their interactions for association with DMN connectivity in 134 White non-Hispanic veterans. We began by analyzing candidate SNPs identified in prior meta-analyses of relevant psychiatric traits and found that rs7997012 (an HTR2A SNP), implicated previously in anti-depressant medication response in the Sequenced Treatment Alternatives for Depression study (STAR(*)D; McMahon et al., 2006), interacted with PTSD to predict reduced connectivity between the posterior cingulate cortex (PCC) and the right medial prefrontal cortex and right middle temporal gyrus (MTG). rs130058 (HTR1B) was associated with connectivity between the PCC and right angular gyrus. We then expanded our analysis to 99 HTR1B and HTR2A SNPs and found two HTR2A SNPs (rs977003 and rs7322347) that significantly moderated the association between PTSD severity and the PCC-right MTG component of the DMN after correcting for multiple testing. Finally, to obtain a more precise localization of the most significant SNP × PTSD interaction, we performed a whole cortex vertex-wise analysis of the rs977003 effect. This analysis revealed the locus of the pre-frontal effect to be in portions of the superior frontal gyrus, while the temporal lobe effect was centered in the middle and inferior temporal gyri. These findings point to the influence of HTR2A variants on DMN connectivity and advance knowledge of the role of 5-HT2A receptors in the neurobiology of PTSD. PMID:27445670

  11. Cartography of 5-HT1A and 5-HT2A Receptor Subtypes in Prefrontal Cortex and Its Projections.

    PubMed

    Mengod, Guadalupe; Palacios, José M; Cortés, Roser

    2015-07-15

    Since the development of chemical neuroanatomical tools in the 1960s, a tremendous wealth of information has been generated on the anatomical components of the serotonergic system, at the microscopic level in the brain including the prefrontal cortex (PFC). The PFC receives a widespread distribution of serotonin (5-hydroxytryptamine, 5-HT) terminals from the median and dorsal raphe nuclei. 5-HT receptors were first visualized using radioligand autoradiography in the late 1980s and early 1990s and showed, in contrast to 5-HT innervation, a differential distribution of binding sites associated with different 5-HT receptor subtypes. Due to the cloning of the different 5-HT receptor subtype genes in the late 1980s and early 1990s, it was possible, using in situ hybridization histochemistry, to localize cells expressing mRNA for these receptors. Double in situ hybridization histochemistry and immunohistochemistry allowed for the chemical characterization of the phenotype of cells expressing 5-HT receptors. Tract tracing technology allowed a detailed cartography of the neuronal connections of PFC and other brain areas. Based on these data, maps have been constructed that reflect our current understanding of the different circuits where 5-HT receptors can modulate the electrophysiological, pharmacological, and behavioral functions of the PFC. We will review current knowledge regarding the cellular localization of 5-HT1A and 5-HT2A receptors in mammalian PFC and their possible functions in the neuronal circuits of the PFC. We will discuss data generated in our laboratory as well as in others, focusing on localization in the pyramidal and GABAergic neuronal cell populations in different mammalian species using molecular neuroanatomy and on the connections with other brain regions.

  12. 5-HT2A Gene Variants Moderate the Association between PTSD and Reduced Default Mode Network Connectivity

    PubMed Central

    Miller, Mark W.; Sperbeck, Emily; Robinson, Meghan E.; Sadeh, Naomi; Wolf, Erika J.; Hayes, Jasmeet P.; Logue, Mark; Schichman, Steven A.; Stone, Angie; Milberg, William; McGlinchey, Regina

    2016-01-01

    The default mode network (DMN) has been used to study disruptions of functional connectivity in a wide variety of psychiatric and neurological conditions, including posttraumatic stress disorder (PTSD). Studies indicate that the serotonin system exerts a modulatory influence on DMN connectivity; however, no prior study has examined associations between serotonin receptor gene variants and DMN connectivity in either clinical or healthy samples. We examined serotonin receptor single nucleotide polymorphisms (SNPs), PTSD, and their interactions for association with DMN connectivity in 134 White non-Hispanic veterans. We began by analyzing candidate SNPs identified in prior meta-analyses of relevant psychiatric traits and found that rs7997012 (an HTR2A SNP), implicated previously in anti-depressant medication response in the Sequenced Treatment Alternatives for Depression study (STAR*D; McMahon et al., 2006), interacted with PTSD to predict reduced connectivity between the posterior cingulate cortex (PCC) and the right medial prefrontal cortex and right middle temporal gyrus (MTG). rs130058 (HTR1B) was associated with connectivity between the PCC and right angular gyrus. We then expanded our analysis to 99 HTR1B and HTR2A SNPs and found two HTR2A SNPs (rs977003 and rs7322347) that significantly moderated the association between PTSD severity and the PCC-right MTG component of the DMN after correcting for multiple testing. Finally, to obtain a more precise localization of the most significant SNP × PTSD interaction, we performed a whole cortex vertex-wise analysis of the rs977003 effect. This analysis revealed the locus of the pre-frontal effect to be in portions of the superior frontal gyrus, while the temporal lobe effect was centered in the middle and inferior temporal gyri. These findings point to the influence of HTR2A variants on DMN connectivity and advance knowledge of the role of 5-HT2A receptors in the neurobiology of PTSD. PMID:27445670

  13. Allosteric signaling through an mGlu2 and 5-HT2A heteromeric receptor complex and its potential contribution to schizophrenia.

    PubMed

    Moreno, José L; Miranda-Azpiazu, Patricia; García-Bea, Aintzane; Younkin, Jason; Cui, Meng; Kozlenkov, Alexey; Ben-Ezra, Ariel; Voloudakis, Georgios; Fakira, Amanda K; Baki, Lia; Ge, Yongchao; Georgakopoulos, Anastasios; Morón, José A; Milligan, Graeme; López-Giménez, Juan F; Robakis, Nikolaos K; Logothetis, Diomedes E; Meana, J Javier; González-Maeso, Javier

    2016-01-12

    Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) can form multiprotein complexes (heteromers), which can alter the pharmacology and functions of the constituent receptors. Previous findings demonstrated that the Gq/11-coupled serotonin 5-HT2A receptor and the Gi/o-coupled metabotropic glutamate 2 (mGlu2) receptor-GPCRs that are involved in signaling alterations associated with psychosis-assemble into a heteromeric complex in the mammalian brain. In single-cell experiments with various mutant versions of the mGlu2 receptor, we showed that stimulation of cells expressing mGlu2-5-HT2A heteromers with an mGlu2 agonist led to activation of Gq/11 proteins by the 5-HT2A receptors. For this crosstalk to occur, one of the mGlu2 subunits had to couple to Gi/o proteins, and we determined the relative location of the Gi/o-contacting subunit within the mGlu2 homodimer of the heteromeric complex. Additionally, mGlu2-dependent activation of Gq/11, but not Gi/o, was reduced in the frontal cortex of 5-HT2A knockout mice and was reduced in the frontal cortex of postmortem brains from schizophrenic patients. These findings offer structural insights into this important target in molecular psychiatry.

  14. Effect of fluvoxamine on platelet 5-HT2A receptors as studied by [3H]lysergic acid diethylamide ([3H]LSD) binding in healthy volunteers.

    PubMed

    Spigset, O; Mjörndal, T

    1997-09-01

    Alterations in platelet 5-HT2A receptor characteristics have been reported in major depression as well as in other psychiatric diseases, and some effort has been made to utilize platelet 5-HT2A receptor status as a biological correlate to antidepressant drug response. In order to investigate whether treatment with a selective serotonin reuptake inhibitor affects platelet 5-HT2A receptors, we have studied platelet [3H]lysergic acid diethylamide ([3H]LSD) binding in healthy subjects treated with fluvoxamine in increasing dosage once weekly for 4 weeks. After 1 week of fluvoxamine treatment (25 mg/day), both Bmax and Kd were significantly lower than before the start of the treatment (19.9 versus 25.5 fmol/mg protein, P = 0.005 for Bmax; 0.45 versus 0.93 nM, P = 0.006 for Kd). Bmax returned to baseline during week 2, whereas Kd was lower than the baseline value throughout the treatment period. After discontinuation of fluvoxamine treatment, there was a significant increase in Kd (0.50 nM before discontinuation vs. 1.14 nM after discontinuation; P = 0.001), but not in Bmax. The study demonstrates that fluvoxamine affects platelet 5-HT2A receptor status irrespective of underlying psychiatric disease, and that this effect is evident already after 1 week at a subtherapeutic fluvoxamine dose.

  15. Functional selectivity of hallucinogenic phenethylamine and phenylisopropylamine derivatives at human 5-hydroxytryptamine (5-HT)2A and 5-HT2C receptors.

    PubMed

    Moya, Pablo R; Berg, Kelly A; Gutiérrez-Hernandez, Manuel A; Sáez-Briones, Patricio; Reyes-Parada, Miguel; Cassels, Bruce K; Clarke, William P

    2007-06-01

    2,5-Dimethoxy-4-substituted phenylisopropylamines and phenethylamines are 5-hydroxytryptamine (serotonin) (5-HT)(2A/2C) agonists. The former are partial to full agonists, whereas the latter are partial to weak agonists. However, most data come from studies analyzing phospholipase C (PLC)-mediated responses, although additional effectors [e.g., phospholipase A(2) (PLA(2))] are associated with these receptors. We compared two homologous series of phenylisopropylamines and phenethylamines measuring both PLA(2) and PLC responses in Chinese hamster ovary-K1 cells expressing human 5-HT(2A) or 5-HT(2C) receptors. In addition, we assayed both groups of compounds as head shake inducers in rats. At the 5-HT(2C) receptor, most compounds were partial agonists for both pathways. Relative efficacy of some phenylisopropylamines was higher for both responses compared with their phenethylamine counterparts, whereas for others, no differences were found. At the 5-HT(2A) receptor, most compounds behaved as partial agonists, but unlike findings at 5-HT(2C) receptors, all phenylisopropylamines were more efficacious than their phenethylamine counterparts. 2,5-Dimethoxyphenylisopropylamine activated only the PLC pathway at both receptor subtypes, 2,5-dimethoxyphenethylamine was selective for PLC at the 5-HT(2C) receptor, and 2,5-dimethoxy-4-nitrophenethylamine was PLA(2)-specific at the 5-HT(2A) receptor. For both receptors, the rank order of efficacy of compounds differed depending upon which response was measured. The phenylisopropylamines were strong head shake inducers, whereas their phenethylamine congeners were not, in agreement with in vitro results and the involvement of 5-HT(2A) receptors in the head shake response. Our results support the concept of functional selectivity and indicate that subtle changes in ligand structure can result in significant differences in the cellular signaling profile.

  16. Hallucinogen-like effects of 2-([2-(4-cyano-2,5-dimethoxyphenyl) ethylamino]methyl)phenol (25CN-NBOH), a novel N-benzylphenethylamine with 100-fold selectivity for 5-HT2A receptors, in mice

    PubMed Central

    Gray, Bradley W.; Bailey, Jessica M.; Smith, Douglas; Hansen, Martin; Kristensen, Jesper L.

    2014-01-01

    Rationale 2-([2-(4-cyano-2,5-dimethoxyphenyl)ethylamino]methyl)phenol (25CN-NBOH) is structurally similar to N-benzyl substituted phenethylamine hallucinogens currently emerging as drugs of abuse. 25CN-NBOH exhibits dramatic selectivity for 5-HT2A receptors in vitro, but has not been behaviorally characterized. Objective 25CN-NBOH was compared to the traditional phenethylamine hallucinogen R(−)-2,5-dimethoxy-4-iodoamphetamine (DOI) using mouse models of drug-elicited head twitch behavior and drug discrimination. Methods Drug-elicited head twitches were quantified for 10 min following administration of various doses of either DOI or 25CN-NBOH, with and without pretreatments of 0.01 mg/kg 5-HT2A antagonist M100907 or 3.0 mg/kg 5-HT2C antagonist RS102221. The capacity of 25CN-NBOH to attenuate DOI-elicited head twitch was also investigated. Mice were trained to discriminate DOI or M100907 from saline, and 25CN-NBOH was tested for generalization. Results 25CN-NBOH induced a head twitch response in the mouse that was lower in magnitude than that of DOI, blocked by M100907, but not altered by RS102221. DOI-elicited head twitch was dose-dependently attenuated by 25CN-NBOH pretreatment. 25CN-NBOH produced an intermediate degree of generalization (55%) for the DOI training dose, and these interoceptive effects were attenuated by M100907. Finally, 25CN-NBOH did not generalize to M100907 at any dose, but ketanserin fully substituted in these animals. Conclusions 25CN-NBOH was behaviorally active, but less effective than DOI in two mouse models of hallucinogenic effects. The effectiveness with which M100907 antagonized the behavioral actions of 25CN-NBOH strongly suggests that the 5-HT2A receptor is an important site of agonist action for this compound in vivo. PMID:25224567

  17. Dual role of serotonin in the acquisition and extinction of reward-driven learning: involvement of 5-HT1A, 5-HT2A and 5-HT3 receptors.

    PubMed

    Frick, Luciana Romina; Bernardez-Vidal, Micaela; Hocht, Christian; Zanutto, Bonifacio Silvano; Rapanelli, Maximiliano

    2015-01-15

    Serotonin (5-HT) has been proposed as a possible encoder of reward. Nevertheless, the role of this neurotransmitter in reward-based tasks is not well understood. Given that the major serotonergic circuit in the rat brain comprises the dorsal raphe nuclei and the medial prefrontal cortex (mPFC), and because the latter structure is involved in the control of complex behaviors and expresses 1A (5-HT1A), 2A (5-HT2A), and 3 (5-HT3) receptors, the aim was to study the role of 5-HT and of these receptors in the acquisition and extinction of a reward-dependent operant conditioning task. Long Evans rats were trained in an operant conditioning task while receiving fluoxetine (serotonin reuptake inhibitor, 10mg/kg), tianeptine (serotonin reuptake enhancer, 10mg/kg), buspirone (5-HT1A partial agonist, 10mg/kg), risperidone (5-HT2A antagonist, 1mg/kg), ondansetron (5-HT3 antagonist, 2mg/kg) or vehicle. Then, animals that acquired the operant conditioning without any treatment were trained to extinct the task in the presence of the pharmacological agents. Fluoxetine impaired acquisition but improved extinction. Tianeptine administration induced the opposite effects. Buspirone induced a mild deficit in acquisition and had no effects during the extinction phase. Risperidone administration resulted in learning deficits during the acquisition phase, although it promoted improved extinction. Ondansetron treatment showed a deleterious effect in the acquisition phase and an overall improvement in the extinction phase. These data showed a differential role of 5-HT in the acquisition and extinction of an operant conditioning task, suggesting that it may have a dual function in reward encoding. PMID:24949809

  18. Exploring the relationship between binding modes of 9-(aminomethyl)-9,10-dihydroanthracene and cyproheptadine analogues at the 5-HT2A serotonin receptor.

    PubMed

    Westkaemper, R B; Runyon, S P; Savage, J E; Roth, B L; Glennon, R A

    2001-02-26

    Comparison of the serotonin 5-HT2A receptor affinities of a parallel series of structural analogues of the novel ligand 9-aminomethyl-9,10-dihydroanthracene (AMDA) and a structurally similar prototypical tricyclic amine cyproheptadine suggests that the two agents bind to the receptor in different fashions. Examination of ligand-receptor model complexes supports the experimental data and suggests a potential origin for the differences in binding modes.

  19. Synthesis and in vitro evaluation of [18F]FECIMBI-36: A potential agonist PET ligand for 5-HT2A/2C receptors

    PubMed Central

    Prabhakaran, Jaya; Underwood, Mark D.; Dileep Kumar, J. S.; Simpson, Norman R.; Kassir, Suham A.; Bakalian, Mihran J.; Mann, J. John; Arango, Victoria

    2016-01-01

    Radiosynthesis and in vitro evaluation of [18F]-2-(4-bromo-2,5-dimethoxyphenyl)-N-(2-(2-fluoroethoxy)benzyl)ethanamine, ([18F]FECIMBI-36) or ([18F]1), a potential agonist PET imaging agent for 5-HT2A/2C receptors is described. Syntheses of reference standard 1 and the corresponding des-fluoroethyl radiolabeling precursor (2) were achieved with 75% and 65% yields, respectively. In vitro pharmacology assay of FECIMBI-36 by [3H]-ketanserin competition binding assay obtained from NIMH-PDSP showed high affinities to 5-HT2AR (Ki = 1 nM) and 5-HT2CR (Ki = 1.7 nM). Radiolabeling of FECIMBI-36 was achieved from the boc-protected precursor 2 using [18F]-fluoroethyltosylate in presence of Cs2CO3 in DMSO followed by removal of the protective group. [18F]1 was isolated using RP-HPLC in 25 ± 5% yield, purity ≥95% and specific activity 1–2 Ci/μmol (N = 6). In vitro autoradiography studies demonstrate that [18F]1 selectively label 5-HT2A and 5-HT2C receptors in slide-mounted sections of postmortem human brain using phosphor imaging. Our results indicate the potential of [18F]1 for imaging 5-HT2A/2C receptors in the high affinity state in vivo using PET imaging. PMID:26253634

  20. 1,4-Disubstituted aromatic piperazines with high 5-HT2A/D2 selectivity: Quantitative structure-selectivity investigations, docking, synthesis and biological evaluation.

    PubMed

    Möller, Dorothee; Salama, Ismail; Kling, Ralf C; Hübner, Harald; Gmeiner, Peter

    2015-09-15

    Simultaneous targeting of dopamine D2 and 5-HT2A receptors for the treatment of schizophrenia is one key feature of typical and atypical antipsychotics. In most of the top-selling antipsychotic drugs like aripiprazole and risperidone, high affinity to both receptors can be attributed to the presence of 1,4-disubstituted aromatic piperazines or piperidines as primary receptor recognition elements. Taking advantage of our in-house library of phenylpiperazine-derived dopamine receptor ligands and experimental data, we established highly significant CoMFA and CoMSIA models for the prediction of 5-HT2A over D2 selectivity. Subsequently, the models were applied to identify the selective candidates 55-57 from our newly synthesized library of GPCR ligands comprising a pyrazolo[1,5-a]pyridine head group and a 1,2,3-triazole based linker unit. The test compound 57 showed subnanomolar a Ki value (0.64 nM) for 5-HT2A and more than 10- and 30-fold selectivity over the dopamine receptor isoforms D2S and D2L, respectively. PMID:26299826

  1. Synthesis and in vitro evaluation of [18F]FECIMBI-36: A potential agonist PET ligand for 5-HT2A/2C receptors.

    PubMed

    Prabhakaran, Jaya; Underwood, Mark D; Kumar, J S Dileep; Simpson, Norman R; Kassir, Suham A; Bakalian, Mihran J; Mann, J John; Arango, Victoria

    2015-09-15

    Radiosynthesis and in vitro evaluation of [(18)F]-2-(4-bromo-2,5-dimethoxyphenyl)-N-(2-(2-fluoroethoxy)benzyl)ethanamine, ([(18)F]FECIMBI-36) or ([(18)F]1), a potential agonist PET imaging agent for 5-HT2A/2C receptors is described. Syntheses of reference standard 1 and the corresponding des-fluoroethyl radiolabeling precursor (2) were achieved with 75% and 65% yields, respectively. In vitro pharmacology assay of FECIMBI-36 by [(3)H]-ketanserin competition binding assay obtained from NIMH-PDSP showed high affinities to 5-HT2AR (Ki = 1nM) and 5-HT2CR (Ki=1.7 nM). Radiolabeling of FECIMBI-36 was achieved from the boc-protected precursor 2 using [(18)F]-fluoroethyltosylate in presence of Cs2CO3 in DMSO followed by removal of the protective group. [(18)F]1 was isolated using RP-HPLC in 25 ± 5% yield, purity > 95% and specific activity 1-2Ci/μmol (N = 6). In vitro autoradiography studies demonstrate that [(18)F]1 selectively label 5-HT2A and 5-HT2C receptors in slide-mounted sections of postmortem human brain using phosphor imaging. Our results indicate the potential of [(18)F]1 for imaging 5-HT2A/2C receptors in the high affinity state in vivo using PET imaging.

  2. Development of a Multiplex Assay for Studying Functional Selectivity of Human Serotonin 5-HT2A Receptors and Identification of Active Compounds by High-Throughput Screening.

    PubMed

    Iglesias, Alba; Lage, Sonia; Cadavid, Maria Isabel; Loza, Maria Isabel; Brea, José

    2016-09-01

    G protein-coupled receptors (GPCRs) exist as collections of conformations in equilibrium, and the efficacy of drugs has been proposed to be associated with their absolute and relative affinities for these different conformations. The serotonin 2A (5-HT2A) receptor regulates multiple physiological functions, is involved in the pathophysiology of schizophrenia, and serves as an important target of atypical antipsychotic drugs. This receptor was one of the first GPCRs for which the functional selectivity phenomenon was observed, with its various ligands exerting differential effects on the phospholipase A2 (PLA2) and phospholipase C (PLC) signaling pathways. We aimed to develop a multiplex functional assay in 96-well plates for the simultaneous measurement of the PLA2 and PLC pathways coupled to 5-HT2A receptors; this approach enables the detection of either functional selectivity or cooperativity phenomena in early drug screening stages. The suitability of the method for running screening campaigns was tested using the Prestwick Chemical Library, and 22 confirmed hits with activities of more than 90% were identified; 11 of these hits produced statistically significant differences between the two effector pathways. Thus, we have developed a miniaturized multiplex assay in 96-well plates to measure functional selectivity for 5-HT2A receptors in the early stages of the drug discovery process. PMID:27095818

  3. Serotonin 2A Receptors in Obsessive-Compulsive Disorder: a Positron Emission Tomography Study with [11C]MDL 100907

    PubMed Central

    Simpson, H. Blair; Slifstein, Mark; Bender, James; Xu, Xiaoyan; Hackett, Elizabeth; Maher, Michael J.; Abi-Dargham, Anissa

    2014-01-01

    Background Serotonergic abnormalities are hypothesized to contribute to obsessive-compulsive disorder (OCD). This study used positron emission tomography (PET) with the radioligand [11C]MDL 100907 to examine whether the distribution of one of the serotonin receptors, the 5-HT2A receptor, is altered in OCD. Methods Nineteen OCD subjects, free of psychiatric medications and depression, and 19 matched healthy controls underwent PET scans following injection of [11C]MDL 100907. Total distribution volumes (VT) were derived by kinetic analysis using the arterial input function. Two measures of 5-HT2A availability were computed (BPND and BPP). Groups were compared using a region of interest (ROI) analysis and voxelwise analysis of spatially normalized parametric maps. ROIs included cortical regions (orbitofrontal, dorsolateral prefrontal, medial prefrontal, anterior cingulate, temporal, parietal, occipital, and insular cortex) and limbic regions (entorhinal cortex, parahippocampal gyrus, and medial temporal lobe). Results No significant group differences were observed in [11C]MDL 100907 BPND or BPP in the ROIs or in the voxelwise analysis of BPND maps. There was a significant correlation in the orbitofrontal cortex between [11C] MDL 100907 binding and age of onset, with earlier age of onset associated with higher binding. Conclusions In contrast to prior reports, people with OCD (free of psychiatric medications and depression) are not characterized as a group by major changes in 5-HT2A availability in cortical or limbic brain regions. Further research is warranted to examine potential differences in 5-HT2A availability between early and late onset OCD and to assess 5-HT2A function in relation to other neurotransmitter systems implicated in OCD. PMID:21855857

  4. Effects of central activation of serotonin 5-HT2A/2C or dopamine D2/3 receptors on the acute and repeated effects of clozapine in the conditioned avoidance response test

    PubMed Central

    Feng, Min; Gao, Jun; Sui, Nan; Li, Ming

    2014-01-01

    Rationale: Acute administration of clozapine (a gold standard of atypical antipsychotics) disrupts avoidance response in rodents, while repeated administration often causes a tolerance effect. Objective: The present study investigated the neuroanatomical basis and receptor mechanisms of acute and repeated effects of clozapine treatment in the conditioned avoidance response test in male Sprague-Dawley rats. Methods: DOI (2,5-dimethoxy-4-iodo-amphetamine, a preferential 5-HT2A/2C agonist) or quinpirole (a preferential dopamine D2/3 agonist) was microinjected into the medial prefrontal cortex (mPFC) or nucleus accumbens shell (NAs), and their effects on the acute and long-term avoidance-disruptive effect of clozapine were tested. Results: Intra-mPFC microinjection of quinpirole enhanced the acute avoidance disruptive effect of clozapine (10 mg/kg, sc), while DOI microinjections reduced it marginally. Repeated administration of clozapine (10 mg/kg, sc) daily for 5 days caused a progressive decrease in its inhibition of avoidance responding, indicating tolerance development. Intra-mPFC microinjection of DOI at 25.0 (but not 5.0) μg/side during this period completely abolished the expression of clozapine tolerance. This was indicated by the finding that clozapine-treated rats centrally infused with 25.0 μg/side DOI did not show higher levels of avoidance responses than the vehicle-treated rats in the clozapine challenge test. Microinjection of DOI into the mPFC immediately before the challenge test also decreased the expression of clozapine tolerance. Conclusions: Acute behavioral effect of clozapine can be enhanced by activation of the D2/3 receptors in the mPFC. Clozapine tolerance expression relies on the neuroplasticity initiated by its antagonist action against 5-HT2A/2C receptors in the mPFC. PMID:25288514

  5. A Model of Post-Infection Fatigue Is Associated with Increased TNF and 5-HT2A Receptor Expression in Mice.

    PubMed

    Couch, Yvonne; Xie, Qin; Lundberg, Louise; Sharp, Trevor; Anthony, Daniel C

    2015-01-01

    It is well documented that serotonin (5-HT) plays an important role in psychiatric illness. For example, myalgic encephalomyelitis (ME/CFS), which is often provoked by infection, is a disabling illness with an unknown aetiology and diagnosis is based on symptom-specific criteria. However, 5-HT2A receptor expression and peripheral cytokines are known to be upregulated in ME. We sought to examine the relationship between the 5-HT system and cytokine expression following systemic bacterial endotoxin challenge (LPS, 0.5 mg/kg i.p.), at a time when the acute sickness behaviours have largely resolved. At 24 hours post-injection mice exhibit no overt changes in locomotor behaviour, but do show increased immobility in a forced swim test, as well as decreased sucrose preference and reduced marble burying activity, indicating a depressive-like state. While peripheral IDO activity was increased after LPS challenge, central activity levels remained stable and there was no change in total brain 5-HT levels or 5-HIAA/5-HT. However, within the brain, levels of TNF and 5-HT2A receptor mRNA within various regions increased significantly. This increase in receptor expression is reflected by an increase in the functional response of the 5-HT2A receptor to agonist, DOI. These data suggest that regulation of fatigue and depressive-like moods after episodes of systemic inflammation may be regulated by changes in 5-HT receptor expression, rather than by levels of enzyme activity or cytokine expression in the CNS. PMID:26147001

  6. A Model of Post-Infection Fatigue Is Associated with Increased TNF and 5-HT2A Receptor Expression in Mice

    PubMed Central

    Couch, Yvonne; Xie, Qin; Lundberg, Louise; Sharp, Trevor; Anthony, Daniel C.

    2015-01-01

    It is well documented that serotonin (5-HT) plays an important role in psychiatric illness. For example, myalgic encephalomyelitis (ME/CFS), which is often provoked by infection, is a disabling illness with an unknown aetiology and diagnosis is based on symptom-specific criteria. However, 5-HT2A receptor expression and peripheral cytokines are known to be upregulated in ME. We sought to examine the relationship between the 5-HT system and cytokine expression following systemic bacterial endotoxin challenge (LPS, 0.5mg/kg i.p.), at a time when the acute sickness behaviours have largely resolved. At 24 hours post-injection mice exhibit no overt changes in locomotor behaviour, but do show increased immobility in a forced swim test, as well as decreased sucrose preference and reduced marble burying activity, indicating a depressive-like state. While peripheral IDO activity was increased after LPS challenge, central activity levels remained stable and there was no change in total brain 5-HT levels or 5-HIAA/5-HT. However, within the brain, levels of TNF and 5-HT2A receptor mRNA within various regions increased significantly. This increase in receptor expression is reflected by an increase in the functional response of the 5-HT2A receptor to agonist, DOI. These data suggest that regulation of fatigue and depressive-like moods after episodes of systemic inflammation may be regulated by changes in 5-HT receptor expression, rather than by levels of enzyme activity or cytokine expression in the CNS. PMID:26147001

  7. Differential effects of neonatal handling on anxiety, corticosterone response to stress, and hippocampal glucocorticoid and serotonin (5-HT)2A receptors in Lewis rats.

    PubMed

    Durand, M; Sarrieau, A; Aguerre, S; Mormède, P; Chaouloff, F

    1998-05-01

    Neonatal handling (during the first 3 weeks of age) has been reported by others to diminish the hypothalamo-pituitary-adrenal (HPA) responsivity to stress in adult Long Evans rats, an effect involving a serotonin (5-HT)2A receptor-mediated increase in glucocorticoid receptor (GR) gene expression in the frontal cortex and the hippocampus. In addition, handled animals may also display enduring reductions in anxiety-related behaviours, including in the elevated plus-maze. We have thus analysed the aforementioned neuroendocrine and behavioural consequences of neonatal stress in male and female adult Lewis rats, a strain characterised by its high anxiety and its hyporesponsive HPA axis. Plasma corticosterone, but not behavioural, responses to an elevated plus-maze test were decreased in handled rats. Besides, hippocampal mineralocorticoid receptor (MR) and GR binding capacities were not different between handled and non-handled Lewis rats, an observation which could be extended to our adult Long Evans rats. Lastly, neither hippocampal nor cortical 5-HT2A receptor binding capacities in adult Lewis rats were affected by prior handling. In keeping with the failure to detect early handling-induced increases in hippocampal GR binding in 3-week old Lewis and Long Evans rats, the present study reinforces past findings indicating that environmental and genetic factors are crucial variables in the neonatal handling paradigm.

  8. Evidence for a common biological basis of the Absorption trait, hallucinogen effects, and positive symptoms: epistasis between 5-HT2a and COMT polymorphisms.

    PubMed

    Ott, Ulrich; Reuter, Martin; Hennig, Juergen; Vaitl, Dieter

    2005-08-01

    Absorption represents a disposition to experience altered states of consciousness characterized by intensively focused attention. It is correlated with hypnotic susceptibility and includes phenomena ranging from vivid perceptions and imaginations to mystical experiences. Based on the assumption that drug-induced and naturally occurring mystical experiences share common neural mechanisms, we hypothesized that Absorption is influenced by the T102C polymorphism affecting the 5-HT2a receptor, which is known to be an important target site of hallucinogens like LSD. Based on the pivotal role ascribed to the prefrontal executive control network for absorbed attention and positive symptoms in schizophrenia, it was further hypothesized that Absorption is associated with the VAL158MET polymorphism of the catechol-O-methyltransferase (COMT) gene affecting the dopaminergic neurotransmitter system. The Tellegen Absorption Scale was administered to 336 subjects (95 male, 241 female). Statistical analysis revealed that the group with the T/T genotype of the T102C polymorphism, implying a stronger binding potential of the 5-HT2a receptor, indeed had significantly higher Absorption scores (F = 10.00, P = 0.002), while no main effect was found for the COMT polymorphism. However, the interaction between T102C and COMT genotypes yielded significance (F = 3.89; P = 0.049), underlining the known functional interaction between the 5-HT and the dopaminergic system. These findings point to biological foundations of the personality trait of Absorption.

  9. Effect of GABAergic ligands on the anxiolytic-like activity of DOI (a 5-HT(2A/2C) agonist) in the four-plate test in mice.

    PubMed

    Massé, Fabienne; Hascoët, Martine; Bourin, Michel

    2007-01-01

    5-HTergic and GABAergic systems are involved in neurobiology of anxiety. Precedent studies have demonstrated that SSRIs possessed an anxiolytic-like effect in the four-plate test (FPT) at doses that did not modify spontaneous locomotor activity. This effect seems to be mediated through the activation of 5-HT(2A) postsynaptic receptors. The purpose of the present study was to examine the implication of GABA system in the anxiolytic-like activity of DOI in the FPT. To achieve this, the co-administration of DOI (5-HT(2A/2C) receptor agonists) with GABA(A) and GABA(B) receptor ligands was evaluated in the FPT. Alprazolam, diazepam and muscimol (for higher dose) potentiated the anxiolytic-like effect of DOI. Bicuculline, picrotoxin and baclofen inhibited the anxiolytic-like effect of DOI. Flumazenil and CGP 35348 had no effect on the anxiolytic-like activity of DOI. These results suggest that the GABA system seems to be strongly implicated in the anxiolytic-like activity of DOI in the FPT.

  10. Effects of imipramine and bupropion on the duration of immobility of ACTH-treated rats in the forced swim test: involvement of the expression of 5-HT2A receptor mRNA.

    PubMed

    Kitamura, Yoshihisa; Fujitani, Yoshika; Kitagawa, Kouhei; Miyazaki, Toshiaki; Sagara, Hidenori; Kawasaki, Hiromu; Shibata, Kazuhiko; Sendo, Toshiaki; Gomita, Yutaka

    2008-02-01

    We examined the effect of chronic administration of imipramine and bupropion, monoamine reuptake inhibitors, on the duration of immobility in the forced swim test and serotonin (5-HT)(2A) receptor function in the form of 5-HT(2A) receptor mRNA levels in rats chronically treated with adrenocorticotropic hormone (ACTH). The immobility-decreasing effect of bupropion without imipramine did not influence the chronic ACTH treatment. The effect on the expression of 5-HT(2A) receptor mRNA of chronic ACTH treatment was decreased by bupropion, but not imipramine. These results suggest that bupropion has the effect of reducing immobility time in the forced swim test in the tricyclic antidepressant-resistant depressive model induced by chronic ACTH treatment in rats, and that decreased 5-HT(2A) receptor mRNA levels may be involved in this phenomenon.

  11. In Vivo Quantification of 5-HT2A Brain Receptors in Mdr1a KO Rats with 123I-R91150 Single-Photon Emission Computed Tomography.

    PubMed

    Dumas, Noé; Moulin-Sallanon, Marcelle; Fender, Pascal; Tournier, Benjamin B; Ginovart, Nathalie; Charnay, Yves; Millet, Philippe

    2015-01-01

    Our goal was to identify suitable image quantification methods to image 5-hydroxytryptamine2A (5-HT2A) receptors in vivo in Mdr1a knockout (KO) rats (i.e., P-glycoprotein KO) using 123I-R91150 single-photon emission computed tomography (SPECT). The 123I-R91150 binding parameters estimated with different reference tissue models (simplified reference tissue model [SRTM], Logan reference tissue model, and tissue ratio [TR] method) were compared to the estimates obtained with a comprehensive three-tissue/seven-parameter (3T/7k)-based model. The SRTM and Logan reference tissue model estimates of 5-HT2A receptor (5-HT2AR) nondisplaceable binding potential (BPND) correlated well with the absolute receptor density measured with the 3T/7k gold standard (r > .89). Quantification of 5-HT2AR using the Logan reference tissue model required at least 90 minutes of scanning, whereas the SRTM required at least 110 minutes. The TR method estimates were also highly correlated to the 5-HT2AR density (r > .91) and only required a single 20-minute scan between 100 and 120 minutes postinjection. However, a systematic overestimation of the BPND values was observed. The Logan reference tissue method is more convenient than the SRTM for the quantification of 5-HT2AR in Mdr1a KO rats using 123I-R91150 SPECT. The TR method is an interesting and simple alternative, despite its bias, as it still provides a valid index of 5-HT2AR density. PMID:26105563

  12. The effects of the preferential 5-HT2A agonist psilocybin on prepulse inhibition of startle in healthy human volunteers depend on interstimulus interval.

    PubMed

    Vollenweider, Franz X; Csomor, Philipp A; Knappe, Bernhard; Geyer, Mark A; Quednow, Boris B

    2007-09-01

    Schizophrenia patients exhibit impairments in prepulse inhibition (PPI) of the startle response. Hallucinogenic 5-HT(2A) receptor agonists are used for animal models of schizophrenia because they mimic some symptoms of schizophrenia in humans and induce PPI deficits in animals. Nevertheless, one report indicates that the 5-HT(2A) receptor agonist psilocybin increases PPI in healthy humans. Hence, we investigated these inconsistent results by assessing the dose-dependent effects of psilocybin on PPI in healthy humans. Sixteen subjects each received placebo or 115, 215, and 315 microg/kg of psilocybin at 4-week intervals in a randomized and counterbalanced order. PPI at 30-, 60-, 120-, 240-, and 2000-ms interstimulus intervals (ISIs) was measured 90 and 165 min after drug intake, coinciding with the peak and post-peak effects of psilocybin. The effects of psilocybin on psychopathological core dimensions and sustained attention were assessed by the Altered States of Consciousness Rating Scale (5D-ASC) and the Frankfurt Attention Inventory (FAIR). Psilocybin dose-dependently reduced PPI at short (30 ms), had no effect at medium (60 ms), and increased PPI at long (120-2000 ms) ISIs, without affecting startle reactivity or habituation. Psilocybin dose-dependently impaired sustained attention and increased all 5D-ASC scores with exception of Auditory Alterations. Moreover, psilocybin-induced impairments in sustained attention performance were positively correlated with reduced PPI at the 30 ms ISI and not with the concomitant increases in PPI observed at long ISIs. These results confirm the psilocybin-induced increase in PPI at long ISIs and reveal that psilocybin also produces a decrease in PPI at short ISIs that is correlated with impaired attention and consistent with deficient PPI in schizophrenia.

  13. Synthesis and structure-affinity relationships of novel small molecule natural product derivatives capable of discriminating between serotonin 5-HT1A, 5-HT2A, 5-HT2C receptor subtypes

    PubMed Central

    Cummings, David F.; Canseco, Diana C.; Sheth, Pratikkumar; Johnson, James E.; Schetz, John A.

    2010-01-01

    Efforts to develop ligands that distinguish between clinically relevant 5-HT2A and 5-HT2C serotonin receptor subtypes have been challenging, because their sequences have high homology. Previous studies reported that a novel aplysinopsin belonging to a chemical class of natural products isolated from a marine sponge was selective for the 5-HT2C over the 5-HT2A receptor subtype. Our goal was to explore the 5-HT2A/2C receptor structure-affinity relationships of derivatives based on the aplysinopsin natural product pharmacophore. Twenty aplysinopsin derivatives were synthesized, purified and tested for their affinities for cloned human serotonin 5-HT1A, 5-HT2A and 5-HT2C receptor subtypes. Four compounds in this series had >30-fold selectivity for 5-HT2A or 5-HT2C receptors. The compound (E)-5-((5,6-dichloro-1H-indol-3-yl)methylene)-2-imino-1,3-dimethylimidazolidin-4-one (UNT-TWU-22, 16) had approximately 2100-fold selectivity for the serotonin 5-HT2C receptor subtype: an affinity for 5-HT2C equal to 46 nM and no detectable affinity for the 5-HT1A or 5-HT2A receptor subtypes. The two most important factors controlling 5-HT2A or 5-HT2C receptor subtype selectivity were the combined R1, R3-alkylation of the imidazolidinone ring and the type and number of halogens on the indole ring of the aplysinopsin pharmacophore. PMID:20570529

  14. Serotonin 5-HT2A receptor binding in platelets from healthy subjects as studied by [3H]-lysergic acid diethylamide ([3H]-LSD): intra- and interindividual variability.

    PubMed

    Spigset, O; Mjörndal, T

    1997-04-01

    In studies on platelet 5-HT2A receptor binding in patients with neuropsychiatric disorders, there has been a marked variability and a considerable overlap of values between patients and controls. The causes of the large variability in 5-HT2A receptor parameters is still unsettled. In the present study, we have quantified the intra- and interindividual variability of platelet 5-HT2A receptor binding in 112 healthy subjects and explored factors that may influence 5-HT2A receptor binding, using [3H]-lysergic acid diethylamide as radioligand. Age, gender, blood pressure, and metabolic capacity of the liver enzymes CYP2D6 and CYP2C19 did not influence Bmax and Kd values. Body weight and body mass index (BMI) showed a negative correlation with Kd (p = .04 and .03, respectively), but not with Bmax. Bmax was significantly lower in the light half of the year than in the dark half of the year (p = .001), and Kd was significantly lower in the fall than in the summer and winter (p < .001). In females, there was a significant increase in Bmax from week 1 to week 2 of the menstrual cycle (p = .03). Females taking contraceptive pills had significantly higher Kd than drug-free females in weeks 1 and 4 of the menstrual cycle (p = .04). This study shows that a number of factors should be taken into account when using platelet 5-HT2A receptor binding in studies of neuropsychiatric disorders.

  15. Metabotropic glutamate mGlu2 receptor is necessary for the pharmacological and behavioral effects induced by hallucinogenic 5-HT2A receptor agonists.

    PubMed

    Moreno, José L; Holloway, Terrell; Albizu, Laura; Sealfon, Stuart C; González-Maeso, Javier

    2011-04-15

    Hallucinogenic drugs, including mescaline, psilocybin and lysergic acid diethylamide (LSD), act at serotonin 5-HT2A receptors (5-HT2ARs). Metabotropic glutamate receptor 2/3 (mGluR2/3) ligands show efficacy in modulating the responses induced by activation of 5-HT2ARs. The formation of a 5-HT2AR-mGluR2 complex suggests a functional interaction that affects the hallucinogen-regulated cellular signaling pathways. Here, we tested the cellular and behavioral effects of hallucinogenic 5-HT2AR agonists in mGluR2 knockout (mGluR2-KO) mice. Mice were intraperitoneally injected with the hallucinogens DOI (2 mg/kg) and LSD (0.24 mg/kg), or vehicle. Head-twitch behavioral response, expression of c-fos, which is induced by all 5-HT2AR agonists, and expression of egr-2, which is hallucinogen-specific, were determined in wild type and mGluR2-KO mice. [(3)H]Ketanserin binding displacement curves by DOI were performed in mouse frontal cortex membrane preparations. Head twitch behavior was abolished in mGluR2-KO mice. The high-affinity binding site of DOI was undetected in mGluR2-KO mice. The hallucinogen DOI induced c-fos in both wild type and mGluR2-KO mice. However, the induction of egr-2 by DOI was eliminated in mGlu2-KO mice. These findings suggest that the 5-HT2AR-mGluR2 complex is necessary for the neuropsychological responses induced by hallucinogens.

  16. Modulating the rate and rhythmicity of perceptual rivalry alternations with the mixed 5-HT2A and 5-HT1A agonist psilocybin.

    PubMed

    Carter, Olivia L; Pettigrew, John D; Hasler, Felix; Wallis, Guy M; Liu, Guang B; Hell, Daniel; Vollenweider, Franz X

    2005-06-01

    Binocular rivalry occurs when different images are presented simultaneously to corresponding points within the left and right eyes. Under these conditions, the observer's perception will alternate between the two perceptual alternatives. Motivated by the reported link between the rate of perceptual alternations, symptoms of psychosis and an incidental observation that the rhythmicity of perceptual alternations during binocular rivalry was greatly increased 10 h after the consumption of LSD, this study aimed to investigate the pharmacology underlying binocular rivalry and to explore the connection between the timing of perceptual switching and psychosis. Psilocybin (4-phosphoryloxy-N,N-dimethyltryptamine, PY) was chosen for the study because, like LSD, it is known to act as an agonist at serotonin (5-HT)1A and 5-HT2A receptors and to produce an altered state sometimes marked by psychosis-like symptoms. A total of 12 healthy human volunteers were tested under placebo, low-dose (115 microg/kg) and high-dose (250 microg/kg) PY conditions. In line with predictions, under both low- and high-dose conditions, the results show that at 90 min postadministration (the peak of drug action), rate and rhythmicity of perceptual alternations were significantly reduced from placebo levels. Following the 90 min testing period, the perceptual switch rate successively increased, with some individuals showing increases well beyond pretest levels at the final testing, 360 min postadministration. However, as some subjects had still not returned to pretest levels by this time, the mean phase duration at 360 min was not found to differ significantly from placebo. Reflecting the drug-induced changes in rivalry phase durations, subjects showed clear changes in psychological state as indexed by the 5D-ASC (altered states of consciousness) rating scales. This study suggests the involvement of serotonergic pathways in binocular rivalry and supports the previously proposed role of a brainstem

  17. Molecular Pharmacology and Ligand Docking Studies Reveal a Single Amino Acid Difference between Mouse and Human Serotonin 5-HT2A Receptors That Impacts Behavioral Translation of Novel 4-Phenyl-2-dimethylaminotetralin Ligands

    PubMed Central

    Cordova-Sintjago, Tania; Liu, Yue; Kim, Myong S.; Morgan, Drake; Booth, Raymond G.

    2013-01-01

    During translational studies to develop 4-phenyl-2-dimethylaminotetralin (PAT) compounds for neuropsychiatric disorders, the (2R,4S)-trans-(+)- and (2S,4R)-trans-(−)-enantiomers of the analog 6-hydroxy-7-chloro-PAT (6-OH-7-Cl-PAT) demonstrated unusual pharmacology at serotonin (5-HT) 5-HT2 G protein–coupled receptors (GPCRs). The enantiomers had similar affinities (Ki) at human (h) 5-HT2A receptors (∼70 nM). In an in vivo mouse model of 5-HT2A receptor activation [(±)-(2,5)-dimethoxy-4-iodoamphetamine (DOI)–elicited head twitch], however, (−)-6-OH-7-Cl-PAT was about 5-fold more potent than the (+)-enantiomer at attenuating the DOI-elicited response. It was discovered that (+)-6-OH-7-Cl-PAT (only) had ∼40-fold-lower affinity at mouse (m) compared with h5-HT2A receptors. Molecular modeling and computational ligand docking studies indicated that the 6-OH moiety of (+)- but not (−)-6-OH-7-Cl-PAT could form a hydrogen bond with serine residue 5.46 of the h5-HT2A receptor. The m5-HT2A as well as m5-HT2B, h5-HT2B, m5-HT2C, and h5-HT2C receptors have alanine at position 5.46, obviating this interaction; (+)-6-OH-7-Cl-PAT also showed ∼50-fold lower affinity than (−)-6-OH-7-Cl-PAT at m5-HT2C and h5-HT2C receptors. Mutagenesis studies confirmed that 5-HT2A S5.46 is critical for (+)- but not (−)-6-OH-7-Cl-PAT binding, as well as function. The (+)-6-OH-7-Cl-PAT enantiomer showed partial agonist effects at h5-HT2A wild-type (WT) and m5-HT2A A5.46S point-mutated receptors but did not activate m5-HT2A WT and h5-HT2A S5.46A point-mutated receptors, or h5-HT2B, h5-HT2C, and m5-HT2C receptors; (−)-6-OH-7-Cl-PAT did not activate any of the 5-HT2 receptors. Experiments also included the (2R,4S)-trans-(+)- and (2S,4R)-trans-(−)-enantiomers of 6-methoxy-7-chloro-PAT to validate hydrogen bonding interactions proposed for the corresponding 6-OH analogs. Results indicate that PAT ligand three-dimensional structure impacts target receptor binding and translational

  18. The Relationship Between Single Nucleotide Polymorphisms in 5-HT2A Signal Transduction-Related Genes and the Response Efficacy to Selective Serotonin Reuptake Inhibitor Treatments in Chinese Patients with Major Depressive Disorder

    PubMed Central

    Li, Heng-Fen; Yu, Xue; He, Cha-Ye; Kou, Shao-Jie; Cao, Su-Xia

    2012-01-01

    Objective: To explore the possible relationship between six single nucleotide polymorphisms (SNPs) (rs6311 and rs6305 of 5-HT2A, rs5443 of Gβ3, rs2230739 of ACDY9, rs1549870 of PDE1A and rs255163 of CREB1, which are all related with 5-HT2A the signal transduction pathway) and the response efficacy to selective serotonin reuptake inhibitor (SSRI) treatments in major depressive disorder (MDD) Chinese. Methods: This study included 194 depressed patients to investigate the influence of 6 polymorphisms in 5-HT2A signal transduction-related genes on the efficacy of SSRIs assessed over 1 year. The efficacies of SSRIs on 194 MDD patients were evaluated in an 8-week open-trial study. Over 1 year, a follow-up study was completed for 174 of them to observe the long-term efficacy of SSRIs. The optimal-scaling regression analysis was used for testing the relationship between the different genotypes of five SNPs and the efficacy in MDD. Results: It showed that the patients with rs5443TT and rs2230739GG have a relatively good efficacy in response to short-term SSRIs. We also found that good efficacy appeared in depressed patients with rs2230739GG in response to long-term SSRIs. Conclusions: It suggested that different genotypes of rs5443 and rs2230739 might influence the signal transduction pathways of second message and affect therapeutic efficacy. PMID:22480177

  19. Changes in the 5-HT2A receptor system in the pre-mammillary hypothalamus of the ewe are related to regulation of LH pulsatile secretion by an endogenous circannual rhythm

    PubMed Central

    Chemineau, Philippe; Daveau, Agnès; Pelletier, Jean; Malpaux, Benoît; Karsch, Fred J; Viguié, Catherine

    2003-01-01

    Background We wanted to determine if changes in the expression of serotonin 2A receptor (5HT2A receptor) gene in the premammillary hypothalamus are associated with changes in reproductive neuroendocrine status. Thus, we compared 2 groups of ovariectomized-estradiol-treated ewes that expressed high vs low LH pulsatility in two different paradigms (2 groups per paradigm): (a) refractoriness (low LH secretion) or not (high LH secretion) to short days in pineal-intact Ile-de-France ewes (RSD) and (b) endogenous circannual rhythm (ECR) in free-running pinealectomized Suffolk ewes in the active or inactive stage of their reproductive rhythm. Results In RSD ewes, density of 5HT2A receptor mRNA (by in situ hybridization) was significantly higher in the high LH group (25.3 ± 1.4 vs 21.4 ± 1.5 grains/neuron, P < 0.05) and 3H-Ketanserin binding (a specific radioligand) of the median part of the premammillary hypothalamus tended to be higher in the high group (29.1 ± 4.0 vs 24.6 ± 4.2 fmol/mg tissu-equivalent; P < 0.10). In ECR ewes, density of 5HT2A receptor mRNA and 3H-Ketanserin binding were both significantly higher in the high LH group (20.8 ± 1.6 vs 17.0 ± 1.5 grains/neuron, P < 0.01, and 19.7 ± 5.0 vs 7.4 ± 3.4 fmol/mg tissu-equivalent; P < 0.05, respectively). Conclusions We conclude that these higher 5HT2A receptor gene expression and binding activity of 5HT2A receptor in the premammillary hypothalamus are associated with stimulation of LH pulsatility expressed before the development of refractoriness to short days and prior to the decline of reproductive neuroendocrine activity during expression of the endogenous circannual rhythm. PMID:12553884

  20. The role of the 5-HT2A and 5-HT2C receptors in the stimulus effects of hallucinogenic drugs. III: The mechanistic basis for supersensitivity to the LSD stimulus following serotonin depletion.

    PubMed

    Fiorella, D; Helsley, S; Lorrain, D S; Rabin, R A; Winter, J C

    1995-10-01

    The present study was designed to determine the effects of p-chlorophenylalanine (PCPA) and p-chloroamphetamine (PCA) administration on (1) the levels of serotonin (5-hydroxytryptamine, 5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) in rat brain, (2) the sensitivity of LSD-trained rats to the stimulus effects of LSD, and (3) the maximal levels of 5-HT2A and 5-HT2C receptor mediated phosphoinositide (PI) hydrolysis in rat brain. PCA and PCPA both produced a significant depletion of whole brain 5-HT and 5-HIAA concentrations. The depletion of serotonin with PCPA, but not PCA, resulted in supersensitivity of LSD-trained subjects to the stimulus effects of LSD. Neither PCPA nor PCA treatment altered the maximal level of 5-HT2A receptor-mediated PI hydrolysis. However, PCPA, but not PCA, treatment resulted in a significant upregulation (46%, P < 0.05) of the maximal level of 5-HT2C receptor mediated PI hydrolysis. These data suggest that upregulation of the 5-HT2C receptor mediates the supersensitivity to LSD discriminative stimulus which follows the depletion of central nervous system serotonin by PCPA.

  1. Binding of [(3)H]lysergic acid diethylamide to serotonin 5-HT(2A) receptors and of [(3)H]paroxetine to serotonin uptake sites in platelets from healthy children, adolescents and adults.

    PubMed

    Sigurdh, J; Spigset, O; Allard, P; Mjörndal, T; Hägglöf, B

    1999-11-01

    Possible age effects on binding of [(3)H]lysergic acid diethylamide ([(3)H]LSD) to serotonin 5-HT(2A) receptors and of [(3)H]paroxetine to serotonin uptake sites were studied in platelets from healthy children (11-12 years of age), adolescents (16-17 years of age) and adults. Significant overall age effects were found both for the number of binding sites (B(max)) for [(3)H]LSD binding (p < 0.001), the affinity constant (K(d)) for [(3)H]LSD binding (p < 0.001), B(max) for [(3)H]paroxetine binding (p < 0.001) and K(d) for [(3)H] paroxetine binding (p = 0.006). In general, there was a decrease in B(max) with increasing age, which predominantly occurred between the ages 11-12 years and 16-17 years for the 5-HT(2A) receptor, and after 16-17 years of age for the serotonin uptake site. These developmental changes might have an impact on the effect of treatment with serotonergic drugs in children and adolescents. When the platelet serotonin variables investigated are employed in studies in children or adolescents, age matching or, alternatively, introduction of age control in the statistical analysis should be performed.

  2. Sustained Recreational Use of Ecstasy Is Associated with Altered Pre and Postsynaptic Markers of Serotonin Transmission in Neocortical Areas: A PET Study with [11C]DASB and [11C]MDL 100907

    PubMed Central

    Urban, Nina BL; Girgis, Ragy R; Talbot, Peter S; Kegeles, Lawrence S; Xu, X; Frankle, W Gordon; Hart, Carl L; Slifstein, Mark; Abi-Dargham, Anissa; Laruelle, Marc

    2012-01-01

    3,4-Methylenedioxymethamphetamine (MDMA), the main psychoactive component of the recreational drug ecstasy, is a potent serotonin (5-HT) releaser. In animals, MDMA induces 5-HT depletion and toxicity in 5-HT neurons. The aim of this study was to investigate both presynaptic (5-HT transporter, SERT) and postsynaptic (5-HT2A receptor) markers of 5-HT transmission in recently abstinent chronic MDMA users compared with matched healthy controls. We hypothesized that MDMA use is associated with lower SERT density and concomitant upregulation of 5-HT2A receptors. Positron emission tomography studies using the SERT ligand [11C]DASB and the 5-HT2A receptor ligand [11C]MDL 100907 were evaluated in 13 current and recently detoxified MDMA users and 13 matched healthy controls. MDMA users reported a mean duration of ecstasy use of 8 years, regular exposure, and at least 2 weeks of abstinence before the scans. SERT and 5-HT2A receptor availability (binding potential, BPND) were analyzed with a two-tissue compartment model with arterial input function. Current recreational MDMA use was significantly associated with lower SERT BPND and higher 5-HT2A receptor BPND in cortical, but not subcortical regions. Decreased SERT BPND was regionally associated with upregulated 5-HT2A receptor BPND. In light of the animal literature, the most parsimonious interpretation is that repeated exposure to MDMA in humans, even in moderate amounts, leads to damage in 5-HT neuron terminals innervating the cortex. Alterations in mood, cognition, and impulse control associated with these changes might contribute to sustain MDMA use. The reversibility of these changes upon abstinence remains to be firmly established. PMID:22353758

  3. Color segmentation using MDL clustering

    NASA Astrophysics Data System (ADS)

    Wallace, Richard S.; Suenaga, Yasuhito

    1991-02-01

    This paper describes a procedure for segmentation of color face images. A cluster analysis algorithm uses a subsample of the input image color pixels to detect clusters in color space. The clustering program consists of two parts. The first part searches for a hierarchical clustering using the NIHC algorithm. The second part searches the resultant cluster tree for a level clustering having minimum description length (MDL). One of the primary advantages of the MDL paradigm is that it enables writing robust vision algorithms that do not depend on user-specified threshold parameters or other " magic numbers. " This technical note describes an application of minimal length encoding in the analysis of digitized human face images at the NTT Human Interface Laboratories. We use MDL clustering to segment color images of human faces. For color segmentation we search for clusters in color space. Using only a subsample of points from the original face image our clustering program detects color clusters corresponding to the hair skin and background regions in the image. Then a maximum likelyhood classifier assigns the remaining pixels to each class. The clustering program tends to group small facial features such as the nostrils mouth and eyes together but they can be separated from the larger classes through connected components analysis.

  4. Brain structures implicated in the four-plate test in naïve and experienced Swiss mice using injection of diazepam and the 5-HT2A agonist DOI.

    PubMed

    Petit-Demoulière, Benoit; Massé, Fabienne; Cogrel, Nicolas; Hascoët, Martine; Bourin, Michel

    2009-12-01

    Four-plate test-retest (FPT-R) is a useful tool to study aversive memory and abolishment of benzodiazepine effects in experienced mice to four-plate test (FPT), namely one-trial tolerance. In the present study, we have used local injections paradigm, in order to localize structures implied in anxiolytic-like effects of two drugs in naïve and experienced mice: a benzodiazepine, diazepam that is only active in naïve mice; and a 5-HT(2A/2C) agonist, DOI that exert its anxiolytic-like effect both in naïve and experienced mice. Periacqueductal grey substance, three sub-regions of hippocampus (CA1, CA2 and CA3) and two nuclei of amygdala (BLA and LA) have been studied. Local injections did not cause any modifications of ambulatory activity. DOI injections elicit anxiolytic-like effects only when injected into CA2, in naïve and experienced mice. Diazepam had an anxiolytic-like effect in naïve mice, only when injected into lateral nucleus of amygdala; and in experienced mice when injected into PAG. These results help us to better understand the way of action of these two compounds and the structures functionally involved in their effects and in one-trial tolerance (OTT).

  5. Binding of [3H]paroxetine to serotonin uptake sites and of [3H]lysergic acid diethylamide to 5-HT2A receptors in platelets from women with premenstrual dysphoric disorder during gonadotropin releasing hormone treatment.

    PubMed

    Bixo, M; Allard, P; Bäckström, T; Mjörndal, T; Nyberg, S; Spigset, O; Sundström-Poromaa, I

    2001-08-01

    Changes in serotonergic parameters have been reported in psychiatric conditions such as depression but also in the premenstrual dysphoric disorder (PMDD). In addition, hormonal effects on serotonergic activity have been established. In the present study, binding of [3H]paroxetine to platelet serotonin uptake sites and binding of [3H]lysergic acid diethylamide ([3H]LSD) to platelet serotonin (5-HT)2A receptors were studied in patients with PMDD treated with a low dose of a gonadotropin releasing hormone (GnRH) agonist (buserelin) or placebo and compared to controls. The PMDD patients were relieved of premenstrual symptoms like depression and irritability during buserelin treatment. The number of [3H]paroxetine binding sites (Bmax) were significantly higher in the follicular phase in untreated PMDD patients compared to controls. When treated with buserelin the difference disappeared. No differences in [3H]LSD binding between the three groups were shown. The present study demonstrated altered platelet [3H]paroxetine binding characteristics in women with PMDD compared to controls. Furthermore, [3H]paroxetine binding was affected by PMDD treatment with a low dose of buserelin. The results are consistent with the hypothesis that changes in serotonergic transmission could be a trait in the premenstrual dysphoric disorder.

  6. Extending David Horrobin's membrane phospholipid theory of schizophrenia: overactivity of cytosolic phospholipase A(2) in the brain is caused by overdrive of coupled serotonergic 5HT(2A/2C) receptors in response to stress.

    PubMed

    Eggers, Arnold E

    2012-12-01

    David Horrobin's membrane phospholipid theory of schizophrenia has held up well over time because his therapeutic prediction that dietary supplementation with eicosapentaenoic acid (EPA) would have a therapeutic effect has been partially verified and undergoes continued testing. In the final version of his theory, he hypothesized that there was hyperactivity of phosphoslipase A(2) (PLA(2)) or a related enzyme but did not explain how the hyperactivity came about. It is known that serotonergic 5HT(2A/2C) receptors are coupled to PLA(2), which hydrolyzes both arachidonic acid (AA) and EPA from diacylglycerides at the sn-2 position. In this paper, Horrobin's theory is combined with a previously published theory of chronic stress in which it was hypothesized that a disinhibited dorsal raphe nucleus, the principal nucleus of the serotonergic system, can organize the neuropathology of diseases such as migraine, hypertension, and the metabolic syndrome. The new or combined theory is that schizophrenia is a disease of chronic stress in which a disinhibited DRN causes widespread serotonergic overdrive in the cerebral cortex. This in turn causes overdrive of cPLA(2) and both central and peripheral depletion of AA and EPA. Because EPA is present in smaller amounts, it falls below threshold for maintaining an intracellular balance between AA-derived and EPA-derived second messenger cascades, which leads to abnormal patterns of neuronal firing. There are two causes of neuronal dysfunction: the disinhibited DRN and EPA depletion. Schizophrenia is statistically associated with metabolic syndrome, hypertension, and migraine because they form a cluster of diseases with similar pathophysiology. The theory provides an explanation for both the central and peripheral phospholipid abnormalities in schizophrenia. It also explains the role of stress in schizophrenia, elevated serum PLA(2) activity in schizophrenia, the relationship between untreated schizophrenia and metabolic syndrome

  7. The influence of 5-HT2 and 5-HT4 receptor antagonists to modify drug induced disinhibitory effects in the mouse light/dark test

    PubMed Central

    Costall, Brenda; Naylor, Robert J

    1997-01-01

    The ability of 5-HT2 and 5-HT4 receptor antagonists to modify the disinhibitory profile of diazepam and other agents was investigated in male BKW mice in the light/dark test box. The 5-HT2A/2B/2C receptor antagonists ritanserin, MDL11939 and RP62203 and also methysergide, which failed to modify mouse behaviour when administered alone, caused dose-related enhancements (4 to 8 fold) in the potency of diazepam to disinhibit behavioural responding to the aversive situation of the test box. Ritanserin was shown to enhance the disinhibitory potency of other benzodiazepines, chlordiazepoxide (4 fold), temazepam (10 fold) and lorazepam (10 fold), the 5-HT1A receptor ligands, 8-OH-DPAT (25 fold), buspirone (100 fold) and lesopitron (500 fold), the 5-HT3 receptor antagonists, ondansetron (100 fold) R(+)-zacopride (100 fold) and S(−)-zacopride (greater than a 1000 fold), the substituted benzamides, sulpiride (10 fold) and tiapride (5 to 10 fold) and the cholecystokinin (CCK)A receptor antagonist, devazepide (100 fold). It also reduced the onset of action of disinhibition following treatment with the 5-HT synthesis inhibitor parachlorophenylalanine. Ritanserin failed to enhance the disinhibitory effects of the CCKB receptor antagonist CI-988, the angiotensin AT1 receptor antagonist losarten or the angiotensin converting enzyme inhibitor ceranapril. The 5-HT4 receptor antagonists SDZ205-557, GR113808 and SB204070 caused dose-related reductions in the disinhibitory effect of diazepam, returning values to those shown in vehicle treated controls. The antagonists failed to modify mouse behaviour when administered alone. GR113808 was also shown to cause a dose-related antagonism of the disinhibitory effects of chlordiazepoxide, lorazepam, 8-OH-DPAT, buspirone, lesopitron, ondansetron, R(+)-zacopride, sulpiride, tiapride, devazepide, CI-988, losarten, ceranapril and parachlorophenylalanine. It was concluded that in BKW mice (a) the failure of 5-HT2 and 5-HT4 receptor antagonists

  8. 5-HT2 Receptor Regulation of Mitochondrial Genes: Unexpected Pharmacological Effects of Agonists and Antagonists.

    PubMed

    Harmon, Jennifer L; Wills, Lauren P; McOmish, Caitlin E; Demireva, Elena Y; Gingrich, Jay A; Beeson, Craig C; Schnellmann, Rick G

    2016-04-01

    In acute organ injuries, mitochondria are often dysfunctional, and recent research has revealed that recovery of mitochondrial and renal functions is accelerated by induction of mitochondrial biogenesis (MB). We previously reported that the nonselective 5-HT2 receptor agonist DOI [1-(4-iodo-2,5-dimethoxyphenyl)propan-2-amine] induced MB in renal proximal tubular cells (RPTCs). The goal of this study was to determine the role of 5-HT2 receptors in the regulation of mitochondrial genes and oxidative metabolism in the kidney. The 5-HT2C receptor agonist CP-809,101 [2-[(3-chlorophenyl)methoxy]-6-(1-piperazinyl)pyrazine] and antagonist SB-242,084 [6-chloro-2,3-dihydro-5-methyl-N-[6-[(2-methyl-3-pyridinyl)oxy]-3-pyridinyl]-1H-indole-1-carboxyamide dihydrochloride] were used to examine the induction of renal mitochondrial genes and oxidative metabolism in RPTCs and in mouse kidneys in the presence and absence of the 5-HT2C receptor. Unexpectedly, both CP-809,101 and SB-242,084 increased RPTC respiration and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) mRNA expression in RPTCs at 1-10 nM. In addition, CP-809,101 and SB-242,084 increased mRNA expression of PGC-1α and the mitochondrial proteins NADH dehydrogenase subunit 1 and NADH dehydrogenase (ubiquinone) β subcomplex 8 in mice. These compounds increased mitochondrial genes in RPTCs in which the 5-HT2C receptor was downregulated with small interfering RNA and in the renal cortex of mice lacking the 5-HT2C receptor. By contrast, the ability of these compounds to increase PGC-1α mRNA and respiration was blocked in RPTCs treated with 5-HT2A receptor small interfering RNA or the 5-HT2A receptor antagonist eplivanserin. In addition, the 5-HT2A receptor agonist NBOH-2C-CN [4-[2-[[(2-hydroxyphenyl)methyl]amino]ethyl]-2,5-dimethoxybenzonitrile] increased RPTC respiration at 1-100 nM. These results suggest that agonism of the 5-HT2A receptor induces MB and that the classic 5-HT2C receptor agonist CP

  9. MDL approach for multiple low-observable track initiation

    NASA Astrophysics Data System (ADS)

    Chen, Huimin; Kirubarajan, Thiagalingam; Bar-Shalom, Yaakov; Pattipati, Krishna R.

    2002-08-01

    In this paper the track initiation problem is formulated as multiple composite hypothesis testing using maximum likelihood estimation with probabilistic data association (ML-PDA), an algorithm known to work under very low SNR conditions. This algorithm does not have to make a decision as to which measurement is target originated. The hypothesis testing is based on the minimum description length (MDL) criterion. We first review some well-known approaches for statistical model selection and the advantage of the MDL criterion. Then we present an approximate penalty in accounting for the model complexity to simplify the calculation of MDL. Finally, we apply the MDL approach for the detection and initiation of tracks of incoming tactical ballistic missiles in the exo-atmospheric phase using a surface based electronically scanned array (ESA) radar. The targets are characterized by low SNR, which leads to low detection probability and high false alarm rate. The target acquisition problem is formulated using a batch of radar scans to detect the presence of up to two targets. The ML-PDA estimator is used to initiate the tracks assuming the target trajectories follow a deterministic state propagation. The approximate MDL criterion is used to determine the number of valid tracks in a surveillance region. The detector and estimator are shown to be effective even at 4.4 dB average SNR in a resolution cell (at the end of the signal processing chain).

  10. The 5-hydroxytryptamine2A receptor antagonist R-(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl-4-piperidinemethanol (M100907) attenuates impulsivity after both drug-induced disruption (dizocilpine) and enhancement (antidepressant drugs) of differential-reinforcement-of-low-rate 72-s behavior in the rat.

    PubMed

    Ardayfio, Paul A; Benvenga, Mark J; Chaney, Stephen F; Love, Patrick L; Catlow, John; Swanson, Steven P; Marek, Gerard J

    2008-12-01

    Previous work has suggested that N-methyl-d-aspartate (NMDA) receptor antagonism and 5-hydroxytryptamine (5-HT)(2A) receptor blockade may enhance and attenuate, respectively, certain types of impulsivity mediated by corticothalamostriatal circuits. More specifically, past demonstrations of synergistic "antidepressant-like" effects of a 5-HT(2A) receptor antagonist and fluoxetine on differential-reinforcement-of-low-rate (DRL) 72-s schedule of operant reinforcement may speak to the role of 5-HT(2A) receptor blockade with respect to response inhibition as an important prefrontal cortical executive function relating to motor impulsivity. To examine the dynamic range over which 5-HT(2A) receptor blockade may exert effects on impulsivity, [R-(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl-4-piperidinemethanol] (M100907) was examined both alone and in combination with the psychotomimetic NMDA receptor antagonist dizocilpine [e.g., (-)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate; MK-801] and two different antidepressants, the tricyclic antidepressant desmethylimipramine (DMI) and the monoamine oxidase inhibitor tranylcypromine in rats performing under a DRL 72-s schedule. MK-801 increased the response rate, decreased the number of reinforcers obtained, and exerted a leftward shift in the inter-response time (IRT) distribution as expected. A dose of M100907 that exerted minimal effect on DRL behavior by itself attenuated the psychotomimetic effects of MK-801. Extending previous M100907-fluoxetine observations, addition of a minimally active dose of M100907 to low doses of DMI and tranylcypromine enhanced the antidepressant-like effect of the antidepressants. Therefore, it may be that a tonic excitation of 5-HT(2A) receptors modulates impulsivity and function of corticothalamostriatal circuits over an extensive dynamic range. PMID:18772320

  11. 40 CFR 721.2582 - Reaction product of alkylene diamine, MDl, substituted carbomonocyclic amine and alkylamine...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reaction product of alkylene diamine... Reaction product of alkylene diamine, MDl, substituted carbomonocyclic amine and alkylamine (generic). (a... generically as reaction product of alkylene diamine, MDl, substituted carbomonocyclic amine and...

  12. 40 CFR 721.2582 - Reaction product of alkylene diamine, MDl, substituted carbomonocyclic amine and alkylamine...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Reaction product of alkylene diamine... Reaction product of alkylene diamine, MDl, substituted carbomonocyclic amine and alkylamine (generic). (a... generically as reaction product of alkylene diamine, MDl, substituted carbomonocyclic amine and...

  13. 40 CFR 721.2582 - Reaction product of alkylene diamine, MDl, substituted carbomonocyclic amine and alkylamine...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reaction product of alkylene diamine... Reaction product of alkylene diamine, MDl, substituted carbomonocyclic amine and alkylamine (generic). (a... generically as reaction product of alkylene diamine, MDl, substituted carbomonocyclic amine and...

  14. 40 CFR 721.2582 - Reaction product of alkylene diamine, MDl, substituted carbomonocyclic amine and alkylamine...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reaction product of alkylene diamine... Reaction product of alkylene diamine, MDl, substituted carbomonocyclic amine and alkylamine (generic). (a... generically as reaction product of alkylene diamine, MDl, substituted carbomonocyclic amine and...

  15. 40 CFR 721.2582 - Reaction product of alkylene diamine, MDl, substituted carbomonocyclic amine and alkylamine...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reaction product of alkylene diamine... Reaction product of alkylene diamine, MDl, substituted carbomonocyclic amine and alkylamine (generic). (a... generically as reaction product of alkylene diamine, MDl, substituted carbomonocyclic amine and...

  16. Antimicrobial activity of MDL 63,246, a new semisynthetic glycopeptide antibiotic.

    PubMed

    Goldstein, B P; Candiani, G; Arain, T M; Romanò, G; Ciciliato, I; Berti, M; Abbondi, M; Scotti, R; Mainini, M; Ripamonti, F

    1995-07-01

    MDL 63,246 is a semisynthetic derivative of the naturally occurring glycopeptide antibiotic MDL 62,476 (A40926). It was more active in vitro against Staphylococcus aureus and coagulase-negative staphylococci than MDL 62,476, teicoplanin, and vancomycin and was more active than mideplanin (MDL 62,873) against some isolates. MDL 63,246 had excellent activity against streptococci and teicoplanin-susceptible enterococci, and it also had in vitro activity against some VanA enterococcal isolates. It was more active than teicoplanin and vancomycin against acute staphylococcal, streptococcal, and enterococcal septicemia in immunocompetent and neutropenic mice. It was highly efficacious in reducing the bacterial load in the hearts of rats in staphylococcal endocarditis experiments and the bacterial load of Staphylococcus epidermis in a high infection model in neutropenic mice. The excellent in vivo activity of MDL 63,246 appears to correlate both with its in vitro antibacterial activity and with its long half-life in rodents. PMID:7492108

  17. MDL-1, a growth- and tumor-suppressor, slows aging and prevents germline hyperplasia and hypertrophy in C. elegans.

    PubMed

    Riesen, Michèle; Feyst, Inna; Rattanavirotkul, Nattaphong; Ezcurra, Marina; Tullet, Jennifer M A; Papatheodorou, Irene; Ziehm, Matthias; Au, Catherine; Gilliat, Ann F; Hellberg, Josephine; Thornton, Janet M; Gems, David

    2014-02-01

    In C. elegans, increased lifespan in daf-2 insulin/IGF-1 receptor mutants is accompanied by up-regulation of the MDL-1 Mad basic helix-loop-helix leucine zipper transcription factor. Here we describe the role of mdl-1 in C. elegans germline proliferation and aging. The deletion allele mdl-1(tm311) shortened lifespan, and did so significantly more so in long-lived daf-2 mutants implying that mdl-1(+) contributes to effects of daf-2 on lifespan. mdl-1 mutant hermaphrodites also lay increased numbers of unfertilized oocytes. During aging, unfertilized oocytes in the uterus develop into tumors, whose development was accelerated by mdl-1(tm311). Opposite phenotypes were seen in daf-2 mutants, i.e. mdl-1 and daf-2 mutant germlines are hyperplastic and hypoplastic, respectively. Thus, MDL-1, like its mammalian orthologs, is an inhibitor of cell proliferation and growth that slows progression of an age-related pathology in C. elegans (uterine tumors). In addition, intestine-limited rescue of mdl-1 increased lifespan but not to wild type levels. Thus, mdl-1 likely acts both in the intestine and the germline to influence age-related mortality.

  18. Pharmacogenetic Study of Serotonin Transporter and 5HT2A Genotypes in Autism

    PubMed Central

    Najjar, Fedra; Owley, Thomas; Mosconi, Matthew W.; Jacob, Suma; Hur, Kwan; Guter, Stephen J.; Sweeney, John A.; Gibbons, Robert D; Bishop, Jeffrey R.

    2015-01-01

    Abstract Objective: The purpose of this study was to determine whether polymorphisms in the serotonin transporter (SLC6A4) and serotonin-2A receptor (HTR2A) genes are associated with response to escitalopram in patients with autism spectrum disorder (ASD). Methods: Forty-four participants with ASD were enrolled in a 6 week, forced titration, open label examination of the selective serotonin reuptake inhibitor (SSRI) escitalopram. Doses increased at weekly intervals starting at 2.5mg daily with a maximum possible dose of 20 mg daily achieved by the end of the study. If adverse events were experienced, participants subsequently received the previously tolerated dose for the duration of study. SLC6A4 (5-HTTLPR) and HTR2A (rs7997012) genotype groups were assessed in relation to treatment outcomes and drug doses. Results: Insistence on sameness and irritability symptoms significantly improved over the course of the 6 week treatment period (p<0.0001) in this open-label trial. There were no significant differences observed in the rate of symptom improvement over time across genotype groups. Similarly, dosing trajectory was not significantly associated with genotype groups. Conclusions: Previous studies have identified SLC6A4 and HTR2A associations with SSRI response in patients with depression and 5-HTTLPR (SLC6A4) associations with escitalopram response in ASD. We did not observe evidence for similar relationships in this ASD study. PMID:26262902

  19. The 5-HT2A serotonin receptor in executive function: Implications for neuropsychiatric and neurodegenerative diseases.

    PubMed

    Aznar, Susana; Hervig, Mona El-Sayed

    2016-05-01

    Executive function entails the interplay of a group of cognitive processes enabling the individual to anticipate consequences, attain self-control, and undertake appropriate goal-directed behaviour. Serotonin signalling at serotonin 2A receptors (5-HT2AR) has important effects on these behavioural and cognitive pathways, with the prefrontal cortex (PFC) as the central actor. Indeed, the 5-HT2ARs are highly expressed in PFC, where they modulate cortical activity and local network oscillations (brain waves). Numerous psychiatric and neurodegenerative diseases result in disrupted executive function. Animal and human studies have linked these disorders with alterations in the 5-HT2AR system, making this an important pharmacological target for the treatment of disorders with impaired cognitive function. This review aims to describe the current state of knowledge on the role of 5-HT2AR signalling in components of executive function, and how 5-HT2AR systems may relate to executive dysfunctions occurring in psychiatric and neurodegenerative diseases. We hope thereby to provide insight into how pharmacotherapy targeting the 5-HT2AR may ameliorate (or exacerbate) aspects of these disorders. PMID:26891819

  20. Lysergic acid diethylamide-induced Fos expression in rat brain: role of serotonin-2A receptors.

    PubMed

    Gresch, P J; Strickland, L V; Sanders-Bush, E

    2002-01-01

    Lysergic acid diethylamide (LSD) produces altered mood and hallucinations in humans and binds with high affinity to serotonin-2A (5-HT(2A)) receptors. Although LSD interacts with other receptors, the activation of 5-HT(2A) receptors is thought to mediate the hallucinogenic properties of LSD. The goal of this study was to identify the brain sites activated by LSD and to determine the influence of 5-HT(2A) receptors in this activation. Rats were pretreated with the 5-HT(2A) receptor antagonist MDL 100907 (0.3 mg/kg, i.p.) or vehicle 30 min prior to LSD (500 microg/kg, i.p.) administration and killed 3 h later. Brain tissue was examined for Fos protein expression by immunohistochemistry. LSD administration produced a five- to eight-fold increase in Fos-like immunoreactivity in medial prefrontal cortex, anterior cingulate cortex, and central nucleus of amygdala. However, in dorsal striatum and nucleus accumbens no increase in Fos-like immunoreactivity was observed. Pretreatment with MDL 100907 completely blocked LSD-induced Fos-like immunoreactivity in medial prefrontal cortex and anterior cingulate cortex, but only partially blocked LSD-induced Fos-like immunoreactivity in amygdala. Double-labeled immunohistochemistry revealed that LSD did not induce Fos-like immunoreactivity in cortical cells expressing 5-HT(2A) receptors, suggesting an indirect activation of cortical neurons. These results indicate that the LSD activation of medial prefrontal cortex and anterior cingulate cortex is mediated by 5-HT(2A) receptors, whereas in amygdala 5-HT(2A) receptor activation is a component of the response. These findings support the hypothesis that the medial prefrontal cortex, anterior cingulate cortex, and perhaps the amygdala, are important regions involved in the production of hallucinations.

  1. Serotonin aggravates exercise-induced cardiac ischemia in the dog: effect of serotonin receptor antagonists.

    PubMed

    Guilbert, Frédérique; Lainée, Pierre; Dubreuil, Brigitte; McCort, Gary; O'Connor, Stephen E; Janiak, Philip; Herbert, Jean-Marc

    2004-08-16

    We investigated the effects of serotonin (5-HT), SL65.0472 (7-fluoro-2-oxo-4-[2-[4-thieno[3,2-c]pyridine-4-yl)piperazin-1-yl]ethyl]-1,2-dihydroquinoline-1-acetamide, a 5-HT(1B)/5-HT(2A) receptor antagonist) and ketanserin (a 5-HT(2A) receptor antagonist) during exercise-induced cardiac ischemia in conscious dogs. Dogs were administered a hypercholesterolemic diet and an inhibitor of nitric oxide synthetase to produce chronic endothelial dysfunction. Myocardial ischemia was induced by a treadmill exercise test associated with limitation of left anterior descending coronary blood flow. Infusion of serotonin during exercise produced dose-related cardiovascular changes (after 10 microg/kg/min; heart rate +27+/-6 bpm, systolic blood pressure +18+/-3 mm Hg, left circumflex coronary blood flow +64+/-8 ml/min, myocardial segment length shortening in the ischemic zone -5.9+/-1.9%, P<0.05). SL65.0472 blocked serotonin-induced increases in blood pressure, rate pressure product and circumflex coronary artery flow (100 microg/kg i.v., P<0.05) and reduced serotonin-induced ischemic myocardial segment length shortening (300 microg/kg i.v., P<0.05). Ketanserin (30-300 microg/kg i.v.) had no significant effect on any serotonin-induced changes during exercise. Thus, SL65.0472 opposes serotonin-induced myocardial dysfunction in a dog model of exercise-induced ischemia.

  2. Statistical Analysis of the Performance of MDL Enumeration for Multiple-Missed Detection in Array Processing

    PubMed Central

    Du, Fei; Li, Yibo; Jin, Shijiu

    2015-01-01

    An accurate performance analysis on the MDL criterion for source enumeration in array processing is presented in this paper. The enumeration results of MDL can be predicted precisely by the proposed procedure via the statistical analysis of the sample eigenvalues, whose distributive properties are investigated with the consideration of their interactions. A novel approach is also developed for the performance evaluation when the source number is underestimated by a number greater than one, which is denoted as “multiple-missed detection”, and the probability of a specific underestimated source number can be estimated by ratio distribution analysis. Simulation results are included to demonstrate the superiority of the presented method over available results and confirm the ability of the proposed approach to perform multiple-missed detection analysis. PMID:26295232

  3. Calpain inhibitor, MDL 28170 confer electrophysiological, nociceptive and biochemical improvement in diabetic neuropathy.

    PubMed

    Kharatmal, Shivsharan B; Singh, Jitendra N; Sharma, Shyam S

    2015-10-01

    Calpain plays an important role in the pathophysiology of neurological and cardiovascular complications, but its functional association in diabetic neuropathy is not yet elucidated. Therefore, we investigated the role of calpain in modulation of tetrodotoxin-resistant sodium channels (TTX-R Na(+) channels) in dorsal root ganglion (DRG) neurons using a pharmacological approach. The effects of a calpain inhibitor, MDL 28170 (3 and 10 mg/kg, i.p.) on TTX-R Na(+) channels in DRG neurons of streptozotocin-induced diabetic rats were assessed by using whole-cell patch-clamp technique. In addition to this biochemical, functional and behavioral deficits were also measured. Diabetic rats demonstrated the mechanical allodynia and thermal hyperalgesia with reduced nerve perfusion and conduction velocity as compared to control. MDL 28170 treatments significantly recovered these functional and nociceptive deficits. Moreover, diabetic rats exhibited increased calpain activation, lipid peroxidation and proinflammatory cytokines as compared to control. Drug treatment significantly improved these biochemical deficits. Additionally, DRG neurons from diabetic rats illustrated a significant increase in TTX-R sodium current (INa) density as compared to control. MDL 28170 treatments in diabetic rats significantly blocked the altered channel kinetics with hyperpolarizing shift in voltage-dependence of steady-state activation and inactivation curves. All together, our study provides evidence that calpain activation is directly associated with alterations in TTX-R Na(+) channels and triggers functional, nociceptive and biochemical deficits in experimental diabetic neuropathy. The calpain inhibitor, MDL 28710 have shown beneficial effects in alleviating diabetic neuropathy via modulation of TTX-R Na(+) channel kinetics and reduction of oxidative stress and neuro-inflammation.

  4. The Calpain Inhibitor MDL28170 Induces the Expression of Apoptotic Markers in Leishmania amazonensis Promastigotes

    PubMed Central

    Marinho, Fernanda A.; Gonçalves, Keyla C. S.; Oliveira, Simone S. C.; Gonçalves, Diego S.; Matteoli, Filipe P.; Seabra, Sergio H.; Oliveira, Ana Carolina S.; Bellio, Maria; Oliveira, Selma S.; Souto-Padrón, Thaïs; d'Avila-Levy, Claudia M.; Santos, André L. S.; Branquinha, Marta H.

    2014-01-01

    Background Human cutaneous leishmaniasis is caused by distinct species, including Leishmania amazonensis. Treatment of cutaneous leishmaniasis is far from satisfactory due to increases in drug resistance and relapses, and toxicity of compounds to the host. As a consequence for this situation, the development of new leishmanicidal drugs and the search of new targets in the parasite biology are important goals. Methodology/Principal Findings In this study, we investigated the mechanism of death pathway induced by the calpain inhibitor MDL28170 on Leishmania amazonensis promastigote forms. The combined use of different techniques was applied to contemplate this goal. MDL28170 treatment with IC50 (15 µM) and two times the IC50 doses induced loss of parasite viability, as verified by resazurin assay, as well as depolarization of the mitochondrial membrane, which was quantified by JC-1 staining. Scanning and transmission electron microscopic images revealed drastic alterations on the parasite morphology, some of them resembling apoptotic-like death, including cell shrinking, surface membrane blebs and altered chromatin condensation pattern. The lipid rearrangement of the plasma membrane was detected by Annexin-V labeling. The inhibitor also induced a significant increase in the proportion of cells in the sub-G0/G1 phase, as quantified by propidium iodide staining, as well as genomic DNA fragmentation, detected by TUNEL assay. In cells treated with MDL28170 at two times the IC50 dose, it was also possible to observe an oligonucleossomal DNA fragmentation by agarose gel electrophoresis. Conclusions/Significance The data presented in the current study suggest that MDL28170 induces apoptotic marker expression in promastigotes of L. amazonensis. Altogether, the results described in the present work not only provide a rationale for further exploration of the mechanism of action of calpain inhibitors against trypanosomatids, but may also widen the investigation of the

  5. Inhibitory Effect of Serotonin Antagonist on Leukocyte-Endothelial Interactions In Vivo and In Vitro

    PubMed Central

    Kataoka, Hiroshi; Ariyama, Yuno; Deushi, Michiyo; Osaka, Mizuko; Nitta, Kosaku; Yoshida, Masayuki

    2016-01-01

    Background Although 5-HT2A serotonergic antagonists have been used to treat vascular disease in patients with diabetes mellitus or obesity, their effects on leukocyte-endothelial interactions have not been fully investigated. In this study, we assessed the effects of sarpogrelate hydrochloride (SRPO), a 5-HT2A receptor inverse agonist, on leukocyte-endothelial cell interactions in obesity both in vivo and in vitro. Methods and Findings In the in vivo experiment, C57BL/6 mice were fed a high-fat high-fructose diet (HFFD), comprising 20% fat and 30% fructose, with or without intraperitoneal injection of 5 mg/kg/day SRPO for 4 weeks. The body weight, visceral fat weight, and serum monocyte chemoattractant protein-1 levels in the mice increased significantly with the HFFD, but these effects were prevented by chronic injections of SRPO. Intravital microscopy of the femoral artery detected significant leukocyte-endothelial interactions after treatment with HFFD, but these leukocyte-endothelial interactions were reduced in the mice injected with SRPO. In the in vitro experiment, pre-incubation of activated human umbilical vein endothelial cells (HUVECs) with platelet-rich plasma (PRP) induced THP-1 cell adhesion under physiological flow conditions, but the adhesion was reduced by pretreatment of PRP with SRPO. A fluorescent immunobinding assay showed that PRP induced significant upregulation of E-selectin in HUVECs, but this upregulation was reduced by pretreatment of PRP with SRPO. In other in vitro conditions, pre-incubation of THP-1 cells with phorbol 12-myristate 13-acetate increased the adhesion of THP-1 cells to activated HUVECs under rotational conditions, but this adhesion was reduced by pretreatment with SRPO. Western blotting analysis showed that protein kinase C α activation in THP-1 cells was inhibited by SRPO. Conclusion Our findings indicated that SRPO inhibits vascular inflammation in obesity via inactivation of platelets and leukocytes, and improvement of

  6. Simultaneous depletion of Atm and Mdl rebalances cytosolic Fe-S cluster assembly but not heme import into the mitochondrion of Trypanosoma brucei.

    PubMed

    Horáková, Eva; Changmai, Piya; Paris, Zdeněk; Salmon, Didier; Lukeš, Julius

    2015-11-01

    ABC transporter mitochondrial 1 (Atm1) and multidrug resistance-like 1 (Mdl) are mitochondrial ABC transporters. Although Atm1 was recently suggested to transport different forms of glutathione from the mitochondrion, which are used for iron-sulfur (Fe-S) cluster maturation in the cytosol, the function of Mdl remains elusive. In Trypanosoma brucei, we identified one homolog of each of these genes, TbAtm and TbMdl, which were downregulated either separately or simultaneously using RNA interference. Individual depletion of TbAtm and TbMdl led to limited growth defects. In cells downregulated for TbAtm, the enzymatic activities of the Fe-S cluster proteins aconitase and fumarase significantly decreased in the cytosol but not in the mitochondrion. Downregulation of TbMdl did not cause any change in activities of the Fe-S proteins. Unexpectedly, the simultaneous downregulation of TbAtm and TbMdl did not result in any growth defect, nor were the Fe-S cluster protein activities altered in either the cytosolic or mitochondrial compartments. Additionally, TbAtm and TbMdl were able to partially restore the growth of the Saccharomyces cerevisiae Δatm1 and Δmdl2 null mutants, respectively. Because T. brucei completely lost the heme b biosynthesis pathway, this cofactor has to be obtained from the host. Based on our results, TbMdl is a candidate for mitochondrial import of heme b, which was markedly decreased in both TbMdl and TbAtm + TbMdl knockdowns. Moreover, the levels of heme a were strongly decreased in the same knockdowns, suggesting that TbMdl plays a key role in heme a biosynthesis, thus affecting the overall heme homeostasis in T. brucei. PMID:26277108

  7. Simultaneous depletion of Atm and Mdl rebalances cytosolic Fe-S cluster assembly but not heme import into the mitochondrion of Trypanosoma brucei.

    PubMed

    Horáková, Eva; Changmai, Piya; Paris, Zdeněk; Salmon, Didier; Lukeš, Julius

    2015-11-01

    ABC transporter mitochondrial 1 (Atm1) and multidrug resistance-like 1 (Mdl) are mitochondrial ABC transporters. Although Atm1 was recently suggested to transport different forms of glutathione from the mitochondrion, which are used for iron-sulfur (Fe-S) cluster maturation in the cytosol, the function of Mdl remains elusive. In Trypanosoma brucei, we identified one homolog of each of these genes, TbAtm and TbMdl, which were downregulated either separately or simultaneously using RNA interference. Individual depletion of TbAtm and TbMdl led to limited growth defects. In cells downregulated for TbAtm, the enzymatic activities of the Fe-S cluster proteins aconitase and fumarase significantly decreased in the cytosol but not in the mitochondrion. Downregulation of TbMdl did not cause any change in activities of the Fe-S proteins. Unexpectedly, the simultaneous downregulation of TbAtm and TbMdl did not result in any growth defect, nor were the Fe-S cluster protein activities altered in either the cytosolic or mitochondrial compartments. Additionally, TbAtm and TbMdl were able to partially restore the growth of the Saccharomyces cerevisiae Δatm1 and Δmdl2 null mutants, respectively. Because T. brucei completely lost the heme b biosynthesis pathway, this cofactor has to be obtained from the host. Based on our results, TbMdl is a candidate for mitochondrial import of heme b, which was markedly decreased in both TbMdl and TbAtm + TbMdl knockdowns. Moreover, the levels of heme a were strongly decreased in the same knockdowns, suggesting that TbMdl plays a key role in heme a biosynthesis, thus affecting the overall heme homeostasis in T. brucei.

  8. Corpus callosum analysis using MDL-based sequential models of shape and appearance

    NASA Astrophysics Data System (ADS)

    Stegmann, Mikkel B.; Davies, Rhodri H.; Ryberg, Charlotte

    2004-05-01

    This paper describes a method for automatically analysing and segmenting the corpus callosum from magnetic resonance images of the brain based on the widely used Active Appearance Models (AAMs) by Cootes et al. Extensions of the original method, which are designed to improve this specific case are proposed, but all remain applicable to other domain problems. The well-known multi-resolution AAM optimisation is extended to include sequential relaxations on texture resolution, model coverage and model parameter constraints. Fully unsupervised analysis is obtained by exploiting model parameter convergence limits and a maximum likelihood estimate of shape and pose. Further, the important problem of modelling object neighbourhood is addressed. Finally, we describe how correspondence across images is achieved by selecting the minimum description length (MDL) landmarks from a set of training boundaries using the recently proposed method of Davies et al. This MDL-approach ensures a unique parameterisation of corpus callosum contour variation, which is crucial for neurological studies that compare reference areas such as rostrum, splenium, et cetera. We present quantitative and qualitative results that show that the method produces accurate, robust and rapid segmentations in a cross sectional study of 17 subjects, establishing its feasibility as a fully automated clinical tool for analysis and segmentation.

  9. Kisspeptin antagonists.

    PubMed

    Roseweir, Antonia Kathryn; Millar, Robert P

    2013-01-01

    Kisspeptin is now known to be an important regulator of the hypothalamic--pituitary-gonadal axis and is the target of a range of regulators, such as steroid hormone feedback, nutritional and metabolic regulation. Kisspeptin binds to its cognate receptor, KISS1R (also called GPR54), on GnRH neurons and stimulates their activity, which in turn provides an obligatory signal for GnRH secretion-thus gating down-stream events supporting reproduction. The development of peripherally active kisspeptin antagonists could offer a unique therapeutic agent for treating hormone-dependent disorders of reproduction, including precocious puberty, endometriosis, and metastatic prostate cancer. The following chapter discusses the advances made in the search for both peptide and small molecule kisspeptin antagonists and their use in delineating the role of kisspeptin within the reproductive system. To date, four peptide antagonists and one small molecule antagonist have been designed.

  10. A case of 25I-NBOMe (25-I) intoxication: a new potent 5-HT2A agonist designer drug

    PubMed Central

    Rose, S. Rutherfoord; Poklis, Justin L.; Poklis, Alphonse

    2014-01-01

    Context Abuse of synthetic stimulant compounds resulting in significant toxicity is being increasingly reported by poison centers. Toxicologic assessment is complicated by inconsistent manufacturing processes and limited laboratory testing. We describe a case of self-reported exposure to 25-I (25I-NBOMe), a novel phenethylamine derivative, with subsequent quantification in serum. Case details An 18-year-old male presented to the emergency department (ED) with severe agitation and hallucinations after jumping out of a moving car. He was tachycardiac (150–160 bpm) and hypertensive (150–170 mm Hg systolic and 110 mg Hg diastolic), and required physical restraints and treatment with intravenous lorazepam administration. His symptoms gradually improved and vital signs returned to normal over 48 h, though he continued to have episodes of aggressiveness. An assay was developed by our analytical toxicology laboratory for 25-I, and serum obtained during ED evaluation and treatment was found to contain 0.76 ng/ml of 25-I. Case discussion For 25I-NBOMe, 25-I is a common abbreviation for 25I-NBOMe, which is a (n-benzyl) phenethylamine in the 2C “family.” Initially synthesized for research, cases of self-reported use of 25-I have recently appeared in the literature, some of which contain qualitative urine conf rmation. There are no commercially available quantitative assays, and no previous reports have published serum concentrations. 25-I is a potent new synthetic drug with apparent significant behavioral toxicity that can be detected and quantified in serum. PMID:23473462

  11. Serotonin (5-HT) and 5-HT2A receptor agonists suppress lipolysis in primary rat adipose cells.

    PubMed

    Hansson, Björn; Medina, Anya; Fryklund, Claes; Fex, Malin; Stenkula, Karin G

    2016-05-27

    Serotonin (5-HT) is a biogenic monoamine that functions both as a neurotransmitter and a circulating hormone. Recently, the metabolic effects of 5-HT have gained interest and peripheral 5-HT has been proposed to influence lipid metabolism in various ways. Here, we investigated the metabolic effects of 5-HT in isolated, primary rat adipose cells. Incubation with 5-HT suppressed β-adrenergically stimulated glycerol release and decreased phosphorylation of protein kinase A (PKA)-dependent substrates, hormone sensitive lipase (Ser563) and perilipin (Ser522). The inhibitory effect of 5-HT on lipolysis enhanced the anti-lipolytic effect of insulin, but sustained in the presence of phosphodiesterase inhibitors, OPC3911 and isobuthylmethylxanthine (IBMX). The relative expression of 5-HT1A, -2B and -4 receptor class family were significantly higher in adipose tissue compared to adipose cells, whereas 5-HT1D, -2A and -7 were highly expressed in isolated adipose cells. Similar to 5-HT, 5-HT2 receptor agonists reduced lipolysis while 5-HT1 receptor agonists rather decreased non-stimulated and insulin-stimulated glucose uptake. Together, these data provide evidence of a direct effect of 5-HT on adipose cells, where 5-HT suppresses lipolysis and glucose uptake, which could contribute to altered systemic lipid- and glucose metabolism. PMID:27109474

  12. 5-HT2A and 5-HT2C receptors as hypothalamic targets of developmental programming in male rats

    PubMed Central

    Martin-Gronert, Malgorzata S.; Stocker, Claire J.; Wargent, Edward T.; Cripps, Roselle L.; Garfield, Alastair S.; Jovanovic, Zorica; D'Agostino, Giuseppe; Yeo, Giles S. H.; Cawthorne, Michael A.; Arch, Jonathan R. S.; Heisler, Lora K.; Ozanne, Susan E.

    2016-01-01

    ABSTRACT Although obesity is a global epidemic, the physiological mechanisms involved are not well understood. Recent advances reveal that susceptibility to obesity can be programmed by maternal and neonatal nutrition. Specifically, a maternal low-protein diet during pregnancy causes decreased intrauterine growth, rapid postnatal catch-up growth and an increased risk for diet-induced obesity. Given that the synthesis of the neurotransmitter 5-hydroxytryptamine (5-HT) is nutritionally regulated and 5-HT is a trophic factor, we hypothesised that maternal diet influences fetal 5-HT exposure, which then influences development of the central appetite network and the subsequent efficacy of 5-HT to control energy balance in later life. Consistent with our hypothesis, pregnant rats fed a low-protein diet exhibited elevated serum levels of 5-HT, which was also evident in the placenta and fetal brains at embryonic day 16.5. This increase was associated with reduced levels of 5-HT2CR, the primary 5-HT receptor influencing appetite, in the fetal, neonatal and adult hypothalamus. As expected, a reduction of 5-HT2CR was associated with impaired sensitivity to 5-HT-mediated appetite suppression in adulthood. 5-HT primarily achieves effects on appetite by 5-HT2CR stimulation of pro-opiomelanocortin (POMC) peptides within the arcuate nucleus of the hypothalamus (ARC). We show that 5-HT2ARs are also anatomically positioned to influence the activity of ARC POMC neurons and that mRNA encoding 5-HT2AR is increased in the hypothalamus of in utero growth-restricted offspring that underwent rapid postnatal catch-up growth. Furthermore, these animals at 3 months of age are more sensitive to appetite suppression induced by 5-HT2AR agonists. These findings not only reveal a 5-HT-mediated mechanism underlying the programming of susceptibility to obesity, but also provide a promising means to correct it, by treatment with a 5-HT2AR agonist. PMID:26769798

  13. Endothelin antagonists.

    PubMed

    Benigni, A; Remuzzi, G

    1999-01-01

    The very potent endogenous vasoconstrictor endothelin was discovered in 1988. We know now that there are three isoforms (1, 2, and 3) and two receptor subtypes (A and B). A whole range of peptide and non-peptide antagonists has been developed, some selective for A or B receptors and others with non-selective A/B antagonistic activity. So far the main application of these agents has been experimental--ie, endothelin blockers are used to throw light on disease mechanisms, most notably cardiovascular and renal. However, the non-selective antagonist bosentan and a few other agents have been studied clinically. Evidence so far from preclinical studies and healthy volunteers and from the limited number of investigations in patients permits a listing of the potential areas of clinical interest. These are mainly cardiovascular (eg, hypertension, cerebrovascular damage, and possibly heart failure) and renal. Clouds on the horizon are the need to show that these new agents are better than existing drugs; the possibility of conflicting actions if mixed A/B antagonists are used; and animal evidence hinting that endothelin blockade during development could be dangerous.

  14. Using the U.S. Geological Survey National Water Quality Laboratory LT-MDL to Evaluate and Analyze Data

    USGS Publications Warehouse

    Bonn, Bernadine A.

    2008-01-01

    A long-term method detection level (LT-MDL) and laboratory reporting level (LRL) are used by the U.S. Geological Survey?s National Water Quality Laboratory (NWQL) when reporting results from most chemical analyses of water samples. Changing to this method provided data users with additional information about their data and often resulted in more reported values in the low concentration range. Before this method was implemented, many of these values would have been censored. The use of the LT-MDL and LRL presents some challenges for the data user. Interpreting data in the low concentration range increases the need for adequate quality assurance because even small contamination or recovery problems can be relatively large compared to concentrations near the LT-MDL and LRL. In addition, the definition of the LT-MDL, as well as the inclusion of low values, can result in complex data sets with multiple censoring levels and reported values that are less than a censoring level. Improper interpretation or statistical manipulation of low-range results in these data sets can result in bias and incorrect conclusions. This document is designed to help data users use and interpret data reported with the LTMDL/ LRL method. The calculation and application of the LT-MDL and LRL are described. This document shows how to extract statistical information from the LT-MDL and LRL and how to use that information in USGS investigations, such as assessing the quality of field data, interpreting field data, and planning data collection for new projects. A set of 19 detailed examples are included in this document to help data users think about their data and properly interpret lowrange data without introducing bias. Although this document is not meant to be a comprehensive resource of statistical methods, several useful methods of analyzing censored data are demonstrated, including Regression on Order Statistics and Kaplan-Meier Estimation. These two statistical methods handle complex

  15. PRESEE: an MDL/MML algorithm to time-series stream segmenting.

    PubMed

    Xu, Kaikuo; Jiang, Yexi; Tang, Mingjie; Yuan, Changan; Tang, Changjie

    2013-01-01

    Time-series stream is one of the most common data types in data mining field. It is prevalent in fields such as stock market, ecology, and medical care. Segmentation is a key step to accelerate the processing speed of time-series stream mining. Previous algorithms for segmenting mainly focused on the issue of ameliorating precision instead of paying much attention to the efficiency. Moreover, the performance of these algorithms depends heavily on parameters, which are hard for the users to set. In this paper, we propose PRESEE (parameter-free, real-time, and scalable time-series stream segmenting algorithm), which greatly improves the efficiency of time-series stream segmenting. PRESEE is based on both MDL (minimum description length) and MML (minimum message length) methods, which could segment the data automatically. To evaluate the performance of PRESEE, we conduct several experiments on time-series streams of different types and compare it with the state-of-art algorithm. The empirical results show that PRESEE is very efficient for real-time stream datasets by improving segmenting speed nearly ten times. The novelty of this algorithm is further demonstrated by the application of PRESEE in segmenting real-time stream datasets from ChinaFLUX sensor networks data stream.

  16. seqlm: an MDL based method for identifying differentially methylated regions in high density methylation array data

    PubMed Central

    Kolde, Raivo; Märtens, Kaspar; Lokk, Kaie; Laur, Sven; Vilo, Jaak

    2016-01-01

    Motivation: One of the main goals of large scale methylation studies is to detect differentially methylated loci. One way is to approach this problem sitewise, i.e. to find differentially methylated positions (DMPs). However, it has been shown that methylation is regulated in longer genomic regions. So it is more desirable to identify differentially methylated regions (DMRs) instead of DMPs. The new high coverage arrays, like Illuminas 450k platform, make it possible at a reasonable cost. Few tools exist for DMR identification from this type of data, but there is no standard approach. Results: We propose a novel method for DMR identification that detects the region boundaries according to the minimum description length (MDL) principle, essentially solving the problem of model selection. The significance of the regions is established using linear mixed models. Using both simulated and large publicly available methylation datasets, we compare seqlm performance to alternative approaches. We demonstrate that it is both more sensitive and specific than competing methods. This is achieved with minimal parameter tuning and, surprisingly, quickest running time of all the tried methods. Finally, we show that the regional differential methylation patterns identified on sparse array data are confirmed by higher resolution sequencing approaches. Availability and Implementation: The methods have been implemented in R package seqlm that is available through Github: https://github.com/raivokolde/seqlm Contact: rkolde@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27187204

  17. Systemic inflammation alters central 5-HT function as determined by pharmacological MRI

    PubMed Central

    Couch, Yvonne; Martin, Chris J.; Howarth, Clare; Raley, Josie; Khrapitchev, Alexandre A.; Stratford, Michael; Sharp, Trevor; Sibson, Nicola R.; Anthony, Daniel C.

    2013-01-01

    Considerable evidence indicates a link between systemic inflammation and central 5-HT function. This study used pharmacological magnetic resonance imaging (phMRI) to study the effects of systemic inflammatory events on central 5-HT function. Changes in blood oxygenation level dependent (BOLD) contrast were detected in selected brain regions of anaesthetised rats in response to intravenous administration of the 5-HT-releasing agent, fenfluramine (10 mg/kg). Further groups of rats were pre-treated with the bacterial lipopolysaccharide (LPS; 0.5 mg/kg), to induce systemic inflammation, or the selective 5-HT2A receptor antagonist MDL100907 prior to fenfluramine. The resultant phMRI data were investigated further through measurements of cortical 5-HT release (microdialysis), and vascular responsivity, as well as a more thorough investigation of the role of the 5-HT2A receptor in sickness behaviour. Fenfluramine evoked a positive BOLD response in the motor cortex (+ 15.9 ± 2%) and a negative BOLD response in the dorsal raphe nucleus (− 9.9 ± 4.2%) and nucleus accumbens (− 7.7 ± 5.3%). In all regions, BOLD responses to fenfluramine were significantly attenuated by pre-treatment with LPS (p < 0.0001), but neurovascular coupling remained intact, and fenfluramine-evoked 5-HT release was not affected. However, increased expression of the 5-HT2A receptor mRNA and decreased 5-HT2A-dependent behaviour (wet-dog shakes) was a feature of the LPS treatment and may underpin the altered phMRI signal. MDL100907 (0.5 mg/kg), 5-HT2A antagonist, significantly reduced the BOLD responses to fenfluramine in all three regions (p < 0.0001) in a similar manner to LPS. Together these results suggest that systemic inflammation decreases brain 5-HT activity as assessed by phMRI. However, these effects do not appear to be mediated by changes in 5-HT release, but are associated with changes in 5-HT2A-receptor-mediated downstream signalling pathways. PMID:23473937

  18. Differential effects of three 5-HT receptor antagonists on the performance of rats in attentional and working memory tasks.

    PubMed

    Ruotsalainen, S; Sirviö, J; Jäkälä, P; Puumala, T; MacDonald, E; Riekkinen, P

    1997-05-01

    The effects of three different serotonin (5-HT) receptor antagonists (ketanserin, methysegide, methiothepin) in the modulation of attention, working memory and behavioural activity were investigated in this study by assessing the performance of rats in two separate cognitive models; the 5-choice serial reaction time (5-CSRT) task, which measures attention, and the delayed non-matching to position (DNMTP) task, which measures working memory. Methysergide and methiothepin bind at the 5-HT1 and 5-HT2 as well as the 5-HT5-7 receptors, with varying degrees of selectivity, and ketanserin binds at the 5-HT2A receptors rather selectively. None of these agents bind to any significant extent to 5-HT3 or 5-HT4 receptors. In the 5-CSRT task, neither methiothepin (0.15 mg/kg) nor ketanserin (1.0 and 3.0 mg/kg) impaired the choice accuracy of rats, although they induced sedation. The low doses of methysergide (1.5 and 3.0 mg/kg) slightly increased the behavioural activity of rats, whereas the high dose of methysergide (15.0 mg/kg) reduced behavioural activity and slightly reduced choice accuracy of the rats in the attentional task (monitoring of visual stimuli) under the baseline conditions or curtailed stimulus duration. This effect was not augmented at the reduced stimulus intensity. These findings suggest that the high dose of methysergide did not interfere with the visual discrimination of rats. Furthermore, methysergide did not reduce motivation for this task, since it did not increase food collection latencies. In the DNMTP task, methiothepin (0.15 mg/kg) induced a delay non-dependent deficit in choice accuracy. This could be due to an impaired alternation ability or akinesia, which increases an actual delay between sample and choice. Methiothepin (0.15 mg/kg) also interfered with behavioural activity of rats. Interestingly, ketanserin (1.0 mg/kg and 3.0 mg/kg) and methysergide (3.0-15.0 mg/kg) neither impaired the choice accuracy nor reduced the behavioural activity of

  19. Inhibition of peripheral aromatization in baboons by an enzyme-activated aromatase inhibitor (MDL 18,962)

    SciTech Connect

    Longcope, C.; Femino, A.; Johnston, J.O.

    1988-05-01

    The peripheral aromatization ((rho)BM) of androstenedione (A) and testosterone (T) was measured before and after administration of the aromatase inhibitor 10-(2 propynyl)estr-4-ene-3,17-dione (MDL-18,962) to five mature female baboons, Papio annubis. The measurements were made by infusing (3H)androstenedione/(14C)estrone or (3H)testosterone/(14C)estradiol for 3.5 h and collecting blood samples during the infusions and all urine for 96 h from the start of the infusion. Blood samples were analyzed for radioactivity as infused and product steroids, and the data were used to calculate MCRs. An aliquot of the pooled urine was analyzed for the glucuronides of estrone and estradiol and used to calculate the (rho)BM. MDL-18,962 was administered as a pulse in polyethylene glycol-400 (1-5 ml) either iv or via gastric tube 30 min before administration of the radiolabeled steroids. Control studies were done with and without polyethylene glycol-400 administration. When MDL-18,962 was given iv at 4 mg/kg, the aromatization of A was decreased 91.8 +/- 0.9% from the control value of 1.23 +/- 0.13% to 0.11 +/- 0.01%. At the same dose, aromatization of T was decreased 82.0 +/- 7.1%, from a control value of 0.20 +/- 0.03% to 0.037 +/- 0.018%. When MDL-18,962 was given iv at doses of 0.4, 0.1, 0.04, and 0.01 mg/kg, the values for aromatization of A were 0.16 +/- 0.03%, 0.18 +/- 0.06%, 0.37 +/- 11%, and 0.65 +/- 0.09%, respectively. The administration of MDL-18,962 via gastric tube at 4 mg/kg as a pulse decreased the aromatization of A from 1.35 +/- 0.06% to 0.43 +/- 0.12%, an inhibition of 67.2 +/- 10.7%. When administered via gastric tube daily for 5 days at 4 mg/kg, the aromatization of A fell from 1.35 +/- 0.06% to 0.063 +/- 0.003%, an inhibition of 84.4 +/- 0.5%.

  20. ACTH Antagonists.

    PubMed

    Clark, Adrian John; Forfar, Rachel; Hussain, Mashal; Jerman, Jeff; McIver, Ed; Taylor, Debra; Chan, Li

    2016-01-01

    Adrenocorticotropin (ACTH) acts via a highly selective receptor that is a member of the melanocortin receptor subfamily of type 1 G protein-coupled receptors. The ACTH receptor, also known as the melanocortin 2 receptor (MC2R), is unusual in that it is absolutely dependent on a small accessory protein, melanocortin receptor accessory protein (MRAP) for cell surface expression and function. ACTH is the only known naturally occurring agonist for this receptor. This lack of redundancy and high degree of ligand specificity suggests that antagonism of this receptor could provide a useful therapeutic aid and a potential investigational tool. Clinical situations in which this could be useful include (1) Cushing's disease and ectopic ACTH syndrome - especially while preparing for definitive treatment of a causative tumor, or in refractory cases, or (2) congenital adrenal hyperplasia - as an adjunct to glucocorticoid replacement. A case for antagonism in other clinical situations in which there is ACTH excess can also be made. In this article, we will explore the scientific and clinical case for an ACTH antagonist, and will review the evidence for existing and recently described peptides and modified peptides in this role. PMID:27547198

  1. ACTH Antagonists

    PubMed Central

    Clark, Adrian John; Forfar, Rachel; Hussain, Mashal; Jerman, Jeff; McIver, Ed; Taylor, Debra; Chan, Li

    2016-01-01

    Adrenocorticotropin (ACTH) acts via a highly selective receptor that is a member of the melanocortin receptor subfamily of type 1 G protein-coupled receptors. The ACTH receptor, also known as the melanocortin 2 receptor (MC2R), is unusual in that it is absolutely dependent on a small accessory protein, melanocortin receptor accessory protein (MRAP) for cell surface expression and function. ACTH is the only known naturally occurring agonist for this receptor. This lack of redundancy and high degree of ligand specificity suggests that antagonism of this receptor could provide a useful therapeutic aid and a potential investigational tool. Clinical situations in which this could be useful include (1) Cushing’s disease and ectopic ACTH syndrome – especially while preparing for definitive treatment of a causative tumor, or in refractory cases, or (2) congenital adrenal hyperplasia – as an adjunct to glucocorticoid replacement. A case for antagonism in other clinical situations in which there is ACTH excess can also be made. In this article, we will explore the scientific and clinical case for an ACTH antagonist, and will review the evidence for existing and recently described peptides and modified peptides in this role. PMID:27547198

  2. How good is crude MDL for solving the bias-variance dilemma? An empirical investigation based on Bayesian networks.

    PubMed

    Cruz-Ramírez, Nicandro; Acosta-Mesa, Héctor Gabriel; Mezura-Montes, Efrén; Guerra-Hernández, Alejandro; Hoyos-Rivera, Guillermo de Jesús; Barrientos-Martínez, Rocío Erandi; Gutiérrez-Fragoso, Karina; Nava-Fernández, Luis Alonso; González-Gaspar, Patricia; Novoa-del-Toro, Elva María; Aguilera-Rueda, Vicente Josué; Ameca-Alducin, María Yaneli

    2014-01-01

    The bias-variance dilemma is a well-known and important problem in Machine Learning. It basically relates the generalization capability (goodness of fit) of a learning method to its corresponding complexity. When we have enough data at hand, it is possible to use these data in such a way so as to minimize overfitting (the risk of selecting a complex model that generalizes poorly). Unfortunately, there are many situations where we simply do not have this required amount of data. Thus, we need to find methods capable of efficiently exploiting the available data while avoiding overfitting. Different metrics have been proposed to achieve this goal: the Minimum Description Length principle (MDL), Akaike's Information Criterion (AIC) and Bayesian Information Criterion (BIC), among others. In this paper, we focus on crude MDL and empirically evaluate its performance in selecting models with a good balance between goodness of fit and complexity: the so-called bias-variance dilemma, decomposition or tradeoff. Although the graphical interaction between these dimensions (bias and variance) is ubiquitous in the Machine Learning literature, few works present experimental evidence to recover such interaction. In our experiments, we argue that the resulting graphs allow us to gain insights that are difficult to unveil otherwise: that crude MDL naturally selects balanced models in terms of bias-variance, which not necessarily need be the gold-standard ones. We carry out these experiments using a specific model: a Bayesian network. In spite of these motivating results, we also should not overlook three other components that may significantly affect the final model selection: the search procedure, the noise rate and the sample size.

  3. How good is crude MDL for solving the bias-variance dilemma? An empirical investigation based on Bayesian networks.

    PubMed

    Cruz-Ramírez, Nicandro; Acosta-Mesa, Héctor Gabriel; Mezura-Montes, Efrén; Guerra-Hernández, Alejandro; Hoyos-Rivera, Guillermo de Jesús; Barrientos-Martínez, Rocío Erandi; Gutiérrez-Fragoso, Karina; Nava-Fernández, Luis Alonso; González-Gaspar, Patricia; Novoa-del-Toro, Elva María; Aguilera-Rueda, Vicente Josué; Ameca-Alducin, María Yaneli

    2014-01-01

    The bias-variance dilemma is a well-known and important problem in Machine Learning. It basically relates the generalization capability (goodness of fit) of a learning method to its corresponding complexity. When we have enough data at hand, it is possible to use these data in such a way so as to minimize overfitting (the risk of selecting a complex model that generalizes poorly). Unfortunately, there are many situations where we simply do not have this required amount of data. Thus, we need to find methods capable of efficiently exploiting the available data while avoiding overfitting. Different metrics have been proposed to achieve this goal: the Minimum Description Length principle (MDL), Akaike's Information Criterion (AIC) and Bayesian Information Criterion (BIC), among others. In this paper, we focus on crude MDL and empirically evaluate its performance in selecting models with a good balance between goodness of fit and complexity: the so-called bias-variance dilemma, decomposition or tradeoff. Although the graphical interaction between these dimensions (bias and variance) is ubiquitous in the Machine Learning literature, few works present experimental evidence to recover such interaction. In our experiments, we argue that the resulting graphs allow us to gain insights that are difficult to unveil otherwise: that crude MDL naturally selects balanced models in terms of bias-variance, which not necessarily need be the gold-standard ones. We carry out these experiments using a specific model: a Bayesian network. In spite of these motivating results, we also should not overlook three other components that may significantly affect the final model selection: the search procedure, the noise rate and the sample size. PMID:24671204

  4. How Good Is Crude MDL for Solving the Bias-Variance Dilemma? An Empirical Investigation Based on Bayesian Networks

    PubMed Central

    Cruz-Ramírez, Nicandro; Acosta-Mesa, Héctor Gabriel; Mezura-Montes, Efrén; Guerra-Hernández, Alejandro; Hoyos-Rivera, Guillermo de Jesús; Barrientos-Martínez, Rocío Erandi; Gutiérrez-Fragoso, Karina; Nava-Fernández, Luis Alonso; González-Gaspar, Patricia; Novoa-del-Toro, Elva María; Aguilera-Rueda, Vicente Josué; Ameca-Alducin, María Yaneli

    2014-01-01

    The bias-variance dilemma is a well-known and important problem in Machine Learning. It basically relates the generalization capability (goodness of fit) of a learning method to its corresponding complexity. When we have enough data at hand, it is possible to use these data in such a way so as to minimize overfitting (the risk of selecting a complex model that generalizes poorly). Unfortunately, there are many situations where we simply do not have this required amount of data. Thus, we need to find methods capable of efficiently exploiting the available data while avoiding overfitting. Different metrics have been proposed to achieve this goal: the Minimum Description Length principle (MDL), Akaike’s Information Criterion (AIC) and Bayesian Information Criterion (BIC), among others. In this paper, we focus on crude MDL and empirically evaluate its performance in selecting models with a good balance between goodness of fit and complexity: the so-called bias-variance dilemma, decomposition or tradeoff. Although the graphical interaction between these dimensions (bias and variance) is ubiquitous in the Machine Learning literature, few works present experimental evidence to recover such interaction. In our experiments, we argue that the resulting graphs allow us to gain insights that are difficult to unveil otherwise: that crude MDL naturally selects balanced models in terms of bias-variance, which not necessarily need be the gold-standard ones. We carry out these experiments using a specific model: a Bayesian network. In spite of these motivating results, we also should not overlook three other components that may significantly affect the final model selection: the search procedure, the noise rate and the sample size. PMID:24671204

  5. Particle System Based Adaptive Sampling on Spherical Parameter Space to Improve the MDL Method for Construction of Statistical Shape Models

    PubMed Central

    Zhou, Xiangrong; Hirano, Yasushi; Tachibana, Rie; Hara, Takeshi; Kido, Shoji; Fujita, Hiroshi

    2013-01-01

    Minimum description length (MDL) based group-wise registration was a state-of-the-art method to determine the corresponding points of 3D shapes for the construction of statistical shape models (SSMs). However, it suffered from the problem that determined corresponding points did not uniformly spread on original shapes, since corresponding points were obtained by uniformly sampling the aligned shape on the parameterized space of unit sphere. We proposed a particle-system based method to obtain adaptive sampling positions on the unit sphere to resolve this problem. Here, a set of particles was placed on the unit sphere to construct a particle system whose energy was related to the distortions of parameterized meshes. By minimizing this energy, each particle was moved on the unit sphere. When the system became steady, particles were treated as vertices to build a spherical mesh, which was then relaxed to slightly adjust vertices to obtain optimal sampling-positions. We used 47 cases of (left and right) lungs and 50 cases of livers, (left and right) kidneys, and spleens for evaluations. Experiments showed that the proposed method was able to resolve the problem of the original MDL method, and the proposed method performed better in the generalization and specificity tests. PMID:23861721

  6. MDL 74,968, a new acyclonucleotide analog: activity against human immunodeficiency virus in vitro and in the hu-PBL-SCID.beige mouse model of infection.

    PubMed

    Bridges, C G; Taylor, D L; Ahmed, P S; Brennan, T M; Hornsperger, J M; Navé, J F; Casara, P; Tyms, A S

    1996-05-01

    The novel acyclonucleotide derivative of guanine, 9-[2-methylidene-3-(phosphonomethoxy)propyl] guanine (MDL 74,968), had antiviral activity comparable to those of 9-(2-phosphonomethoxyethyl) adenine (PMEA) and 2',3'-dideoxyinosine against laboratory strains of both human immunodeficiency virus (HIV) types 1 and 2 cultured in MT-4 cells and several clinical HIV isolates cultured in human peripheral blood mononuclear cells (PBMCs). MDL 74,968 was at least fourfold less toxic than PMEA to MT-4 cells or PBMCs, thereby producing a more favorable in vitro selectivity index for the former compound. Studies of acute toxicity in CD-1 mice showed that MDL 74,968 was not toxic at doses of 1,600 mg/kg of body weight via the intraperitoneal route or at doses of 500 mg/kg via the intravenous route. Furthermore, no adverse effects of MDL 74,968 were apparent when mice were treated at doses of 200 mg/kg twice daily for 5 days. Treatment by continuous subcutaneous infusion of MDL 74,968 or PMEA at the daily dose of 20 mg/kg in the hu-PBL-SCID.beige murine model of HIV infection significantly reduced the severity of infection compared with that in placebo-treated controls. Quantitation of virus recovery by endpoint titration of spleen cells in coculture with mitogen-activated PBMCs demonstrated that MDL 74,968 as well as PMEA significantly reduced the amount of virus (P < 0.02). Moreover, by using DNA extracted from spleens, the mean HIV:HLA PCR product ratio, which takes into account individual variation in immune system reconstitution, were 0.50 and 0.40 for MDL 74,968 and PMEA treatments, respectively, whereas animals receiving the placebo control had significantly higher levels of HIV proviral DNA (mean 0.78; P < 0.02). Taken together, these promising findings suggest that an orally bioavailable prodrug of MDL 74,968 should be developed for the treatment of HIV infection.

  7. Characterization of the discriminative stimulus effects of lorcaserin in rats.

    PubMed

    Serafine, Katherine M; Rice, Kenner C; France, Charles P

    2016-09-01

    Lorcaserin is approved by the Food and Drug Administration for treating obesity and is under consideration for treating substance use disorders; it has agonist properties at serotonin (5-HT)2C receptors and might also have agonist properties at other 5-HT receptor subtypes. This study used drug discrimination to investigate the mechanism(s) of action of lorcaserin. Male Sprague-Dawley rats discriminated 0.56 mg/kg i.p. lorcaserin from saline while responding under a fixed-ratio 5 schedule for food. Lorcaserin (0.178-1.0 mg/kg) dose-dependently increased lorcaserin-lever responding. The 5-HT2C receptor agonist mCPP and the 5-HT2A receptor agonist DOM each occasioned greater than 90% lorcaserin-lever responding in seven of eight rats. The 5-HT1A receptor agonist 8-OH-DPAT occasioned greater than 90% lorcaserin-lever responding in four of seven rats. The 5-HT2C receptor selective antagonist SB 242084 attenuated lorcaserin-lever responding in all eight rats and the 5-HT2A receptor selective antagonist MDL 100907 attenuated lorcaserin-lever responding in six of seven rats. These results suggest that, in addition to agonist properties at 5-HT2C receptors, lorcaserin also has agonist properties at 5-HT2A and 5-HT1A receptors. Because some drugs with 5-HT2A receptor agonist properties are abused, it is important to fully characterize the behavioral effects of lorcaserin while considering its potential for treating substance use disorders. PMID:27640338

  8. Behavioral and pharmacokinetic interactions between monoamine oxidase inhibitors and the hallucinogen 5-methoxy-N,N-dimethyltryptamine.

    PubMed

    Halberstadt, Adam L

    2016-04-01

    Monoamine oxidase inhibitors (MAOIs) are often ingested together with tryptamine hallucinogens, but relatively little is known about the consequences of their combined use. We have shown previously that monoamine oxidase-A (MAO-A) inhibitors alter the locomotor profile of the hallucinogen 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) in rats, and enhance its interaction with 5-HT2A receptors. The goal of the present studies was to investigate the mechanism for the interaction between 5-MeO-DMT and MAOIs, and to determine whether other behavioral responses to 5-MeO-DMT are similarly affected. Hallucinogens disrupt prepulse inhibition (PPI) in rats, an effect typically mediated by 5-HT2A activation. 5-MeO-DMT also disrupts PPI but the effect is primarily attributable to 5-HT1A activation. The present studies examined whether an MAOI can alter the respective contributions of 5-HT1A and 5-HT2A receptors to the effects of 5-MeO-DMT on PPI. A series of interaction studies using the 5-HT1A antagonist WAY-100,635 and the 5-HT2A antagonist MDL 11,939 were performed to assess the respective contributions of these receptors to the behavioral effects of 5-MeO-DMT in rats pretreated with an MAOI. The effects of MAO-A inhibition on the pharmacokinetics of 5-MeO-DMT and its metabolism to bufotenine were assessed using liquid chromatography-electrospray ionization-selective reaction monitoring-tandem mass spectrometry (LC-ESI-SRM-MS/MS). 5-MeO-DMT (1mg/kg) had no effect on PPI when tested 45-min post-injection but disrupted PPI in animals pretreated with the MAO-A inhibitor clorgyline or the MAO-A/B inhibitor pargyline. The combined effect of 5-MeO-DMT and pargyline on PPI was antagonized by pretreatment with either WAY-100,635 or MDL 11,939. Inhibition of MAO-A increased the level of 5-MeO-DMT in plasma and whole brain, but had no effect on the conversion of 5-MeO-DMT to bufotenine, which was found to be negligible. The present results confirm that 5-MeO-DMT can disrupt PPI by

  9. Behavioral and pharmacokinetic interactions between monoamine oxidase inhibitors and the hallucinogen 5-methoxy-N,N-dimethyltryptamine.

    PubMed

    Halberstadt, Adam L

    2016-04-01

    Monoamine oxidase inhibitors (MAOIs) are often ingested together with tryptamine hallucinogens, but relatively little is known about the consequences of their combined use. We have shown previously that monoamine oxidase-A (MAO-A) inhibitors alter the locomotor profile of the hallucinogen 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) in rats, and enhance its interaction with 5-HT2A receptors. The goal of the present studies was to investigate the mechanism for the interaction between 5-MeO-DMT and MAOIs, and to determine whether other behavioral responses to 5-MeO-DMT are similarly affected. Hallucinogens disrupt prepulse inhibition (PPI) in rats, an effect typically mediated by 5-HT2A activation. 5-MeO-DMT also disrupts PPI but the effect is primarily attributable to 5-HT1A activation. The present studies examined whether an MAOI can alter the respective contributions of 5-HT1A and 5-HT2A receptors to the effects of 5-MeO-DMT on PPI. A series of interaction studies using the 5-HT1A antagonist WAY-100,635 and the 5-HT2A antagonist MDL 11,939 were performed to assess the respective contributions of these receptors to the behavioral effects of 5-MeO-DMT in rats pretreated with an MAOI. The effects of MAO-A inhibition on the pharmacokinetics of 5-MeO-DMT and its metabolism to bufotenine were assessed using liquid chromatography-electrospray ionization-selective reaction monitoring-tandem mass spectrometry (LC-ESI-SRM-MS/MS). 5-MeO-DMT (1mg/kg) had no effect on PPI when tested 45-min post-injection but disrupted PPI in animals pretreated with the MAO-A inhibitor clorgyline or the MAO-A/B inhibitor pargyline. The combined effect of 5-MeO-DMT and pargyline on PPI was antagonized by pretreatment with either WAY-100,635 or MDL 11,939. Inhibition of MAO-A increased the level of 5-MeO-DMT in plasma and whole brain, but had no effect on the conversion of 5-MeO-DMT to bufotenine, which was found to be negligible. The present results confirm that 5-MeO-DMT can disrupt PPI by

  10. Characterization of MDL 73005EF as a 5-HT1A selective ligand and its effects in animal models of anxiety: comparison with buspirone, 8-OH-DPAT and diazepam.

    PubMed Central

    Moser, P. C.; Tricklebank, M. D.; Middlemiss, D. N.; Mir, A. K.; Hibert, M. F.; Fozard, J. R.

    1990-01-01

    1. With radioligand binding techniques, MDL 73005 EF (8-[2-(2,3-dihydro-1,4-benzodioxin-2-yl-methylamino)ethyl]-8-az aspiro[4, 5]decane-7,9-dione methyl sulphonate) shows high affinity (pIC50 8.6) and selectivity (greater than 100 fold compared to other monoamine and benzodiazepine receptor sites) for the 5-hydroxytryptamine (5-HT)1A recognition site; it was both more potent and more selective than buspirone in this respect. 2. In rats pretreated with reserpine, 8-hydroxy-2-(di-n-propyl-amino) tetralin (8-OH-DPAT) induced forepaw treading and flat body posture; in the same model, MDL 73005EF and buspirone showed minimal agonist activity and at high doses MDL 73005EF inhibited responses to 8-OH-DPAT. 3. In rats trained to discriminate 8-OH-DPAT from saline in a drug discrimination paradigm, both MDL 73005EF and buspirone generalized dose-dependently and completely to the 8-OH-DPAT cue. 4. To define the anxiolytic potential of MDL 73005EF, it was examined in the elevated plus-maze test and in the water-lick conflict test in comparison with diazepam and buspirone. In both tests MDL 73005EF induced effects similar to those seen following diazepam. Buspirone had similar effects to both MDL 73005EF and diazepam in the water-lick conflict test but opposite effects in the elevated plus-maze. 8-OH-DPAT also had opposite effects in the elevated plus-maze test to MDL 73005EF and diazepam. 5. The anti-conflict effects of MDL 73005EF were reversed by low doses of the 5-HT1A receptor agonist, 8-OH-DPAT; those of buspirone were neither antagonised nor mimicked by 8-OH-DPAT.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1970269

  11. Serotonin antagonists fail to alter MDMA self-administration in rats.

    PubMed

    Schenk, Susan; Foote, Jason; Aronsen, Dane; Bukholt, Natasha; Highgate, Quenten; Van de Wetering, Ross; Webster, Jeremy

    2016-09-01

    Acute exposure to ±3,4-methylenedioxymethamphetamine (MDMA) preferentially increases release of serotonin (5-HT), and a role of 5-HT in many of the behavioral effects of acute exposure to MDMA has been demonstrated. A role of 5-HT in MDMA self-administration in rats has not, however, been adequately determined. Therefore, the present study measured the effect of pharmacological manipulation of some 5-HT receptor subtypes on self-administration of MDMA. Rats received extensive experience with self-administered MDMA prior to tests with 5-HT ligands. Doses of the 5-HT1A antagonist, WAY 100635 (0.1-1.0mg/kg), 5-HT1B antagonist, GR 127935 (1.0-3.0mg/kg), and the 5-HT2A antagonist, ketanserin (1.0-3.0mg/kg) that have previously been shown to decrease self-administration of other psychostimulants and that decreased MDMA-produced hyperactivity in the present study did not alter MDMA self-administration. Experimenter-administered injections of MDMA (10.0mg/kg, ip) reinstated extinguished drug-taking behavior, but this also was not decreased by any of the antagonists. In contrast, both WAY 100635 and ketanserin, but not GR 127935, decreased cocaine-produced drug seeking in rats that had been trained to self-administered cocaine. The 5-HT1A agonist, 8-OH-DPAT (0.1-1.0mg/kg), but not the 5-HT1B/1A agonist, RU 24969 (0.3-3.0mg/kg), decreased drug-seeking produced by the reintroduction of a light stimulus that had been paired with self-administered MDMA infusions. These findings suggest a limited role of activation of 5-HT1A, 5-HT1B or 5-HT2 receptor mechanisms in MDMA self-administration or in MDMA-produced drug-seeking following extinction. The data suggest, however, that 5-HT1A agonists inhibit cue-induced drug-seeking following extinction of MDMA self-administration and might, therefore, be useful adjuncts to therapies to limit relapse to MDMA use. PMID:27264435

  12. Pharmacological evaluation of novel 5-HT3 receptor antagonist, QCM-13 (N-cyclohexyl-3-methoxyquinoxalin-2-carboxamide) as anti-anxiety agent in behavioral test battery

    PubMed Central

    Gupta, Deepali; Radhakrishnan, Mahesh; Thangaraj, Devadoss; Kurhe, Yeshwant

    2015-01-01

    Objective: In the last few decades, serotonin type-3 (5-HT3) receptor antagonists have been identified as potential targets for anxiety disorders. In preclinical studies, 5-HT3 antagonists have shown promising antianxiety effects. In this study, a novel 5-HT3 receptor antagonist, QCM-13(N-cyclohexyl-3-methoxyquinoxalin-2-carboxamide) was evaluated for anxiolytic-like activity in rodent behavioral test battery. Materials and Methods: Mice were given QCM-13 (2 and 4 mg/kg, intraperitoneally [i.p.]) or diazepam (2 mg/kg, i.p.) or vehicle and after 30 min, mice were subjected to four validated behavioral test batteries viz. elevated plus maze, hole board, light-dark and open field tests. Interaction study of QCM-13 with m-chlorophenyl piperazine (mCPP) (mCPP, a 5-HT2A/2C receptor agonist, 1 mg/kg, i.p.) and buspirone (BUS, a partial 5-HT1A agonist, 10 mg/kg, i.p.) were performed to assess the pharmacological mechanism of the drug. Results: QCM-13 expressed potential anxiolytic effect with significant (P < 0.05) increase in behavioral parameters measured in aforementioned preliminary models. Besides, QCM-13 was unable to reverse the anxiogenic effect of mCPP, but potentiated anxiolytic affect of BUS. Conclusion: The results suggest that QCM-13 can be a potential therapeutic candidate for the management of anxiety-like disorders and combination doses of novel 5-HT3 receptor antagonist with standard anxiolytics may improve therapeutic efficacy. PMID:25883513

  13. Distinct effect of 5-HT1A and 5-HT2A receptors in the medial nucleus of the amygdala on tonic immobility behavior.

    PubMed

    de Paula, Bruna Balbino; Leite-Panissi, Christie Ramos Andrade

    2016-07-15

    The tonic immobility (TI) response is an innate fear behavior associated with intensely dangerous situations, exhibited by many species of invertebrate and vertebrate animals. In humans, it is possible that TI predicts the severity of posttraumatic stress disorder symptoms. This behavioral response is initiated and sustained by the stimulation of various groups of neurons distributed in the telencephalon, diencephalon and brainstem. Previous research has found the highest Fos-IR in the posteroventral part of the medial nucleus of the amygdala (MEA) during TI behavior; however, the neurotransmission of this amygdaloid region involved in the modulation of this innate fear behavior still needs to be clarified. Considering that a major drug class used for the treatment of psychopathology is based on serotonin (5-HT) neurotransmission, we investigated the effects of serotonergic receptor activation in the MEA on the duration of TI. The results indicate that the activation of the 5HT1A receptors or the blocking of the 5HT2 receptors of the MEA can promote a reduction in fear and/or anxiety, consequently decreasing TI duration in guinea pigs. In contrast, blocking the 5HT1A receptors or activating the 5HT2 receptors in this amygdalar region increased the TI duration, suggesting an increase in fear and/or anxiety. These alterations do not appear to be due to a modification of spontaneous motor activity, which might non-specifically affect TI duration. Thus, these results suggest a distinct role of the 5HT receptors in the MEA in innate fear modulation. PMID:27150816

  14. D-serine deficiency attenuates the behavioral and cellular effects induced by the hallucinogenic 5-HT(2A) receptor agonist DOI.

    PubMed

    Santini, Martin A; Balu, Darrick T; Puhl, Matthew D; Hill-Smith, Tiffany E; Berg, Alexandra R; Lucki, Irwin; Mikkelsen, Jens D; Coyle, Joseph T

    2014-02-01

    Both the serotonin and glutamate systems have been implicated in the pathophysiology of schizophrenia, as well as in the mechanism of action of antipsychotic drugs. Psychedelic drugs act through the serotonin 2A receptor (5-HT2AR), and elicit a head-twitch response (HTR) in mice, which directly correlates to 5-HT2AR activation and is absent in 5-HT2AR knockout mice. The precise mechanism of this response remains unclear, but both an intrinsic cortico-cortical pathway and a thalamo-cortical pathway involving glutamate release have been proposed. Here, we used a genetic model of NMDAR hypofunction, the serine racemase knockout (SRKO) mouse, to explore the role of glutamatergic transmission in regulating 5-HT2AR-mediated cellular and behavioral responses. SRKO mice treated with the 5-HT2AR agonist (±)-2,5-dimethoxy-4-iodoamphetamine (DOI) showed a clearly diminished HTR and lower induction of c-fos mRNA. These altered functional responses in SRKO mice were not associated with changes in cortical or hippocampal 5-HT levels or in 5-HT2AR and metabotropic glutamate-2 receptor (mGluR2) mRNA and protein expression. Together, these findings suggest that D-serine-dependent NMDAR activity is involved in mediating the cellular and behavioral effects of 5-HT2AR activation.

  15. Investigation of the role of 5-HT2 receptor subtypes in the control of the bladder and the urethra in the anaesthetized female rat

    PubMed Central

    Mbaki, Y; Ramage, A G

    2008-01-01

    Background and purpose: Micturition is controlled by central 5-HT-containing pathways. 5-HT2 receptors have been implicated in this system especially in control of the urethra, which is a drug target for treating urinary incontinence. This study investigates the role of each of the three subtypes of this receptor with emphasis on sphincter regulation. Experimental approach: Recordings of urethral and bladder pressure, external urethral sphincter (EUS) EMG, as well as the micturition reflex induced by bladder distension along with blood pressure and heart rate were made in anaesthetized rats. The effects of agonists and antagonists for 5-HT2 receptor subtypes were studied on these variables. Key results: The 5-HT2C agonists Ro 60-0175, WAY 161503 and mCPP, i.v., activated the EUS, increased urethral pressure and inhibited the micturition reflex. The effects of Ro 60-0175 on the EUS were blocked by the 5-HT2C antagonist SB 242084 and the 5-HT2A antagonists, ketanserin and MDL 100907. SB 242084 also blocked the inhibitory action on the reflex, while the 5-HT2B antagonist RS 127445 only blocked the increase in urethral pressure. The 5-HT2A receptor agonist DOI given i.v. or i.t. but not i.c.v. activated the EUS. Conclusions and implications: 5-HT2A/2C receptors located in the sacral spinal cord activate the EUS, while central 5-HT2C receptors inhibit the micturition reflex and 5-HT2B receptors, probably at the level of the urethra, increase urethral smooth muscle tone. Furthermore, 5-HT2B and 5-HT2C receptors do not seem to play an important role in the physiological regulation of micturition. PMID:18604238

  16. Random antagonistic matrices

    NASA Astrophysics Data System (ADS)

    Cicuta, Giovanni M.; Molinari, Luca Guido

    2016-09-01

    The ensemble of antagonistic matrices is introduced and studied. In antagonistic matrices the entries {{ A }}i,j and {{ A }}j,i are real and have opposite signs, or are both zero, and the diagonal is zero. This generalization of antisymmetric matrices is suggested by the linearized dynamics of competitive species in ecology.

  17. Agonist- and antagonist-induced up-regulation of surface 5-HT3A receptors

    PubMed Central

    Morton, Russell A; Baptista-Hon, Daniel T; Hales, Tim G; Lovinger, David M

    2015-01-01

    Background and Purpose The 5-HT3 receptor is a member of the pentameric ligand-gated ion channel family and is pharmacologically targeted to treat irritable bowel syndrome and nausea/emesis. Furthermore, many antidepressants elevate extracellular concentrations of 5-HT. This study investigates the functional consequences of exposure of recombinant 5-HT3A receptors to agonists and antagonists. Experimental Approach We used HEK cells stably expressing recombinant 5-HT3A receptors and the ND7/23 (mouse neuroblastoma/dorsal root ganglion hybrid) cell line, which expresses endogenous 5-HT3 receptors. Surface expression of recombinant 5-HT3A receptors, modified to contain the bungarotoxin (BTX) binding sequence, was quantified using fluorescence microscopy to image BTX-conjugated fluorophores. Whole cell voltage-clamp electrophysiology was used to measure the density of current mediated by 5-HT3A receptors. Key Results 5-HT3A receptors were up-regulated by the prolonged presence of agonists (5-HT and m-chlorophenylbiguanide) and antagonists (MDL-72222 and morphine). The up-regulation of 5-HT3A receptors by 5-HT and MDL-72222 was time- and concentration-dependent but was independent of newly translated receptors. The phenomenon was observed for recombinant rodent and human 5-HT3A receptors and for endogenous 5-HT3 receptors in neuronal ND7/23 cells. Conclusions and Implications Up-regulation of 5-HT3A receptors, following exposure to either agonists or antagonists suggests that this phenomenon may occur in response to different therapeutic agents. Medications that elevate 5-HT levels, such as the antidepressant inhibitors of 5-HT reuptake and antiemetic inhibitors of 5-HT3 receptor function, may both raise receptor expression. However, this will require further investigation in vivo. PMID:25989383

  18. Retinal Neuroprotective Effects of Flibanserin, an FDA-Approved Dual Serotonin Receptor Agonist-Antagonist

    PubMed Central

    Ryals, Renee C.; Ku, Cristy A.; Fischer, Cody M.; Patel, Rachel C.; Datta, Shreya; Yang, Paul; Wen, Yuquan; Hen, René; Pennesi, Mark E.

    2016-01-01

    Purpose To assess the neuroprotective effects of flibanserin (formerly BIMT-17), a dual 5-HT1A agonist and 5-HT2A antagonist, in a light-induced retinopathy model. Methods Albino BALB/c mice were injected intraperitoneally with either vehicle or increasing doses of flibanserin ranging from 0.75 to 15 mg/kg flibanserin. To assess 5-HT1A-mediated effects, BALB/c mice were injected with 10 mg/kg WAY 100635, a 5-HT1A antagonist, prior to 6 mg/kg flibanserin and 5-HT1A knockout mice were injected with 6 mg/kg flibanserin. Injections were administered once immediately prior to light exposure or over the course of five days. Light exposure lasted for one hour at an intensity of 10,000 lux. Retinal structure was assessed using spectral domain optical coherence tomography and retinal function was assessed using electroretinography. To investigate the mechanisms of flibanserin-mediated neuroprotection, gene expression, measured by RT-qPCR, was assessed following five days of daily 15 mg/kg flibanserin injections. Results A five-day treatment regimen of 3 to 15 mg/kg of flibanserin significantly preserved outer retinal structure and function in a dose-dependent manner. Additionally, a single-day treatment regimen of 6 to 15 mg/kg of flibanserin still provided significant protection. The action of flibanserin was hindered by the 5-HT1A antagonist, WAY 100635, and was not effective in 5-HT1A knockout mice. Creb, c-Jun, c-Fos, Bcl-2, Cast1, Nqo1, Sod1, and Cat were significantly increased in flibanserin-injected mice versus vehicle-injected mice. Conclusions Intraperitoneal delivery of flibanserin in a light-induced retinopathy mouse model provides retinal neuroprotection. Mechanistic data suggests that this effect is mediated through 5-HT1A receptors and that flibanserin augments the expression of genes capable of reducing mitochondrial dysfunction and oxidative stress. Since flibanserin is already FDA-approved for other indications, the potential to repurpose this drug for

  19. Translating the N-methyl-D-aspartate receptor antagonist model of schizophrenia to treatments for cognitive impairment in schizophrenia.

    PubMed

    Meltzer, Herbert Y; Rajagopal, Lakshmi; Huang, Mei; Oyamada, Yoshihiro; Kwon, Sunoh; Horiguchi, Masakuni

    2013-11-01

    The N-methyl-D-aspartate receptor (NMDAR) antagonists, phencyclidine (PCP), dizocilpine (MK-801), or ketamine, given subchronically (sc) to rodents and primates, produce prolonged deficits in cognitive function, including novel object recognition (NOR), an analog of human declarative memory, one of the cognitive domains impaired in schizophrenia. Atypical antipsychotic drugs (AAPDs) have been reported to improve declarative memory in some patients with schizophrenia, as well as to ameliorate and prevent the NOR deficit in rodents following scNMDAR antagonist treatment. While the efficacy of AAPDs to improve cognitive impairment in schizophrenia (CIS) is limited, at best, and controversial, single doses of all currently available AAPDs so far tested transiently restore NOR in rodents following scNMDAR antagonist treatment. Typical antipsychotic drugs (APDs), e.g. haloperidol and perphenazine, are ineffective in this rodent model, and may be less effective as treatments of some domains of CIS. Serotonergic mechanisms, including, but not limited to serotonin (5-HT)2A and 5-HT7 antagonism, 5-HT(1A), and GABA(A) agonism, contribute to the efficacy of the AAPDs in the scNMDAR antagonist rodent models, which are relevant to the loss of GABA interneuron/hyperglutamate hypothesis of the etiology of CIS. The ability of sub-effective doses of the atypical APDs to ameliorate NOR in the scNMDAR-treated rodents can be restored by the addition of a sub-effective dose of the 5-HT(1A) partial agonist, tandospirone, or the 5-HT7 antagonist, SB269970. The mGluR2/3 agonist, LY379268, which itself is unable to restore NOR in the scNMDAR-treated rodents, can also restore NOR when given with lurasidone, an AAPD. Enhancing cortical and hippocampal dopamine and acetylcholine efflux, or both, may contribute to the restoration of NOR by the atypical APDs. Importantly, co-administration of lurasidone, tandospirone, or SB269970, with PCP, to rodents, at doses 5-10 fold greater than those

  20. The hypolipidemic drug metabolites nafenopin-CoA and ciprofibroyl-CoA are competitive P2Y1 receptor antagonists.

    PubMed

    Coddou, Claudio; Loyola, Gloria; Boyer, José Luis; Bronfman, Miguel; Huidobro-Toro, J Pablo

    2003-02-11

    Coenzyme A (CoA-SH), endogenous and drug-derived CoA-derivatives were tested as putative antagonists of P2Y receptors expressed in Xenopus laevis oocytes, a method used to determine calcium-activated chloride current, an indicator of the activation of these receptors. CoA-SH antagonized reversibly and in a concentration-dependent manner the ATP-gated currents evoked by the human P2Y(1) but not the P2Y(2) receptor. Palmitoyl-CoA was four-fold more potent than CoA-SH as an antagonist while palmitoyl-carnitine was inactive, highlighting the role of the CoA-SH moiety in the antagonism. The CoA derivatives of nafenopin and ciprofibrate, two clinically relevant hypolipidemic drugs, increased 13 and three-fold the potency of CoA-SH, respectively. The K(B)s of nafenopin-CoA and ciprofibroyl-CoA were 58 and 148 nM, respectively; the slopes of the Schild plots were unitary. Neither 100 microM nafenopin nor ciprofibrate alone altered the P2Y(1) receptor activity. Neither CoA-SH nor ciprofibroyl-CoA antagonized the rat P2X(2) or the P2X(4) nucleotide receptors nor interacted with the 5-HT(2A/C) receptors. The bulky drug CoA-SH derivatives identify a hydrophobic pocket, which may serve as a potential target for novel selective P2Y(1) antagonists.

  1. Leukotriene receptor antagonist therapy

    PubMed Central

    Dempsey, O

    2000-01-01

    Leukotriene receptor antagonists (LTRA) are a new class of drugs for asthma treatment, available in tablet form. Their unique mechanism of action results in a combination of both bronchodilator and anti-inflammatory effects. While their optimal place in asthma management is still under review, LTRA represent an important advance in asthma pharmacotherapy.


Keywords: leukotriene receptor antagonist; asthma; montelukast; zafirlukast PMID:11085767

  2. SB 242084, a selective and brain penetrant 5-HT2C receptor antagonist.

    PubMed

    Kennett, G A; Wood, M D; Bright, F; Trail, B; Riley, G; Holland, V; Avenell, K Y; Stean, T; Upton, N; Bromidge, S; Forbes, I T; Brown, A M; Middlemiss, D N; Blackburn, T P

    1997-01-01

    SB 242084 has a high affinity (pKi 9.0) for the cloned human 5-HT2C receptor and 100- and 158-fold selectivity over the closely related cloned human 5-HT2B and 5-HT2A subtypes respectively. SB 242084 had over 100-fold selectivity over a range of other 5-HT, dopamine and adrenergic receptors. In studies of 5-HT-stimulated phosphatidylinositol hydrolysis using SH-SY5Y cells stably expressing the cloned human 5-HT2C receptor, SB 242084 acted as an antagonist with a pKb of 9.3, which closely resembled its corresponding receptor binding affinity. SB 242084 potently inhibited m-chlorophenylpiperazine (mCPP, 7 mgkg i.p. 20 min pre-test)-induced hypolocomotion in rats, a model of in vivo central 5-HT2C receptor function, with an ID50 of 0.11 mg/kg i.p., and 2.0 mg/kg p.o. SB 242084 (0.1-1 mg/kg i.p.) exhibited an anxiolytic-like profile in the rat social interaction test, increasing time spent in social interaction, but having no effect on locomotion. SB 242084 (0.1-1 mg/kg i.p.) also markedly increased punished responding in a rat Geller-Seifter conflict test of anxiety, but had no consistent effect on unpunished responding. A large acute dose of SB 242084 (30 mg/kg p.o.) had no effect on seizure susceptibility in the rat maximal electroshock seizure threshold test. Also, while SB 242084 (2 and 6 mg/kg p.o. 1 hr pre-test) antagonized the hypophagic response to mCPP, neither acute nor subchronic administration of the drug, for 5 days at 2 or 6 mg/kg p.o. twice daily, affected food intake or weight gain. The results suggest that SB 242084 is the first reported selective potent and brain penetrant 5-HT2C receptor antagonist and has anxiolytic-like activity, but does not possess either proconvulsant or hyperphagic properties which are characteristic of mutant mice lacking the 5-HT2C receptor. PMID:9225286

  3. Ago-Antagonistic Systems

    NASA Astrophysics Data System (ADS)

    Bernard-Weil, Élie

    Today, bio-medical sciences and human sciences in general are demanding some new epistemological paradigms, in the same manner that quantum physics began to proceed to a renewal of this kind eighteen years ago. Such paradigms seem to be connected with systems science, and especially a special branch of it, called agonistic-antagonistic systemics (AAS), combining co-operativity and conflict between two poles. AAS is under the necessity of considering, at the same time, both sides of whatever phenomenon—which may appear as contradictory, opposite or only different—and, finally, of taking into account the unity to which both sides belong. The dynamics study of the behavior of these couples, or of the so-called agonistic-antagonistic networks, allows to better understand the occurrence of amazing phenomena, as well as to consider special types of control, when agonistic antagonistic unbalances have occurred.

  4. Vasopressin receptor antagonists.

    PubMed

    Palmer, Biff F

    2015-01-01

    Arginine vasopressin (AVP) is the principal hormone involved in regulating the tonicity of body fluids. Less appreciated is the role that AVP plays in a variety of other physiologic functions including glucose metabolism, cardiovascular homeostasis, bone metabolism, and cognitive behavior. AVP receptor antagonists are now available and currently approved to treat hyponatremia. There is a great deal of interest in exploring the potential benefits that these drugs may play in blocking AVP-mediated effects in other organ systems. The purpose of this report is to provide an update on the expanding role of AVP receptor antagonists and what disease states these drugs may eventually be used for.

  5. Vasopressin receptor antagonists.

    PubMed

    Palmer, Biff F

    2015-01-01

    Arginine vasopressin (AVP) is the principal hormone involved in regulating the tonicity of body fluids. Less appreciated is the role that AVP plays in a variety of other physiologic functions including glucose metabolism, cardiovascular homeostasis, bone metabolism, and cognitive behavior. AVP receptor antagonists are now available and currently approved to treat hyponatremia. There is a great deal of interest in exploring the potential benefits that these drugs may play in blocking AVP-mediated effects in other organ systems. The purpose of this report is to provide an update on the expanding role of AVP receptor antagonists and what disease states these drugs may eventually be used for. PMID:25604388

  6. Opioid Antagonist Impedes Exposure.

    ERIC Educational Resources Information Center

    Merluzzi, Thomas V.; And Others

    1991-01-01

    Thirty spider-phobic adults underwent exposure to 17 phobic-related, graded performance tests. Fifteen subjects were assigned to naltrexone, an opioid antagonist, and 15 were assigned to placebo. Naltrexone had a significant effect on exposure, with naltrexone subjects taking significantly longer to complete first 10 steps of exposure and with…

  7. Sex differences and serotonergic mechanisms in the behavioural effects of psilocin.

    PubMed

    Tylš, Filip; Páleníček, Tomáš; Kadeřábek, Lukáš; Lipski, Michaela; Kubešová, Anna; Horáček, Jiří

    2016-06-01

    Psilocybin has recently attracted a great deal of attention as a clinical research and therapeutic tool. The aim of this paper is to bridge two major knowledge gaps regarding its behavioural pharmacology - sex differences and the underlying receptor mechanisms. We used psilocin (0.25, 1 and 4 mg/kg), an active metabolite of psilocybin, in two behavioural paradigms - the open-field test and prepulse inhibition (PPI) of the acoustic startle reaction. Sex differences were evaluated with respect to the phase of the female cycle. The contribution of serotonin receptors in the behavioural action was tested in male rats with selective serotonin receptor antagonists: 5-HT1A receptor antagonist (WAY100635 1 mg/kg), 5-HT2A receptor antagonist (MDL100907 0.5 mg/kg), 5-HT2B receptor antagonist (SB215505 1 mg/kg) and 5-HT2C receptor antagonist (SB242084 1 mg/kg). Psilocin induced dose-dependent inhibition of locomotion and suppression of normal behaviour in rats (behavioural serotonin syndrome, impaired PPI). The effects were more pronounced in male rats than in females. The inhibition of locomotion was normalized by 5-HT1A and 5-HT2B/C antagonists; however, PPI was not affected significantly by these antagonists. Our findings highlight an important issue of sex-specific reactions to psilocin and that apart from 5-HT2A-mediated effects 5-HT1A and 5-HT2C/B receptors also play an important role. These findings have implications for recent clinical trials. PMID:26461483

  8. HBK-7 - A new xanthone derivative and a 5-HT1A receptor antagonist with antidepressant-like properties.

    PubMed

    Pytka, Karolina; Kazek, Grzegorz; Siwek, Agata; Mordyl, Barbara; Głuch-Lutwin, Monika; Rapacz, Anna; Olczyk, Adrian; Gałuszka, Adam; Waszkielewicz, Anna; Marona, Henryk; Sapa, Jacek; Filipek, Barbara; Zygmunt, Małgorzata

    2016-01-01

    Xanthone derivatives possess many biological properties, including neuroprotective, antioxidant or antidepressant-like. In this study we aimed to investigate antidepressant- and anxiolytic-like properties of a new xanthone derivative - 6-methoxy-4-[4-(2-methoxyphenyl)piperazin-1-yl]-9H-xanthen-9-one (HBK-7), as well as its possible mechanism of action, and the influence on cognitive and motor function. HBK-7 in our earlier studies showed high affinity for serotonergic 5-HT1A receptor. We determined the affinity of HBK-7 for CNS receptors and transporters using radioligand assays and examined its intrinsic activity towards 5-HT1A receptor. We evaluated antidepressant- and anxiolytic-like activity of HBK-7 in the mouse forced swim test, and four-plate test, respectively. We examined the influence on locomotor activity in mice to determine if the effect observed in the forced swim test was specific. We used step-through passive avoidance and rotarod tests to evaluate the influence of HBK-7 on cognitive and motor function, respectively. HBK-7 showed moderate affinity for dopaminergic D2 receptor and very low for serotonergic 5-HT2A, adrenergic α2 receptors, as well as serotonin transporter. Functional studies revealed that HBK-7 was a 5-HT1A receptor antagonist. HBK-7 (10mg/kg) decreased immobility time in the forced swim test. Combined treatment with sub-effective doses of HBK-7 and fluoxetine reduced immobility of mice in the forced swim test. Pretreatment with p-chlorophenylalanine and WAY-100,635 antagonized the antidepressant-like effect of HBK-7. Neither of the treatments influenced locomotor activity of mice. HBK-7 at antidepressant-like dose did not impair memory or motor coordination in mice. We demonstrated that HBK-7 was a 5-HT1A receptor antagonist with potent, comparable to mianserin, antidepressant-like activity. HBK-7 mediated its effect through serotonergic system and its antidepressant-like action required the activation of 5-HT1A receptors. At active

  9. HBK-7 - A new xanthone derivative and a 5-HT1A receptor antagonist with antidepressant-like properties.

    PubMed

    Pytka, Karolina; Kazek, Grzegorz; Siwek, Agata; Mordyl, Barbara; Głuch-Lutwin, Monika; Rapacz, Anna; Olczyk, Adrian; Gałuszka, Adam; Waszkielewicz, Anna; Marona, Henryk; Sapa, Jacek; Filipek, Barbara; Zygmunt, Małgorzata

    2016-01-01

    Xanthone derivatives possess many biological properties, including neuroprotective, antioxidant or antidepressant-like. In this study we aimed to investigate antidepressant- and anxiolytic-like properties of a new xanthone derivative - 6-methoxy-4-[4-(2-methoxyphenyl)piperazin-1-yl]-9H-xanthen-9-one (HBK-7), as well as its possible mechanism of action, and the influence on cognitive and motor function. HBK-7 in our earlier studies showed high affinity for serotonergic 5-HT1A receptor. We determined the affinity of HBK-7 for CNS receptors and transporters using radioligand assays and examined its intrinsic activity towards 5-HT1A receptor. We evaluated antidepressant- and anxiolytic-like activity of HBK-7 in the mouse forced swim test, and four-plate test, respectively. We examined the influence on locomotor activity in mice to determine if the effect observed in the forced swim test was specific. We used step-through passive avoidance and rotarod tests to evaluate the influence of HBK-7 on cognitive and motor function, respectively. HBK-7 showed moderate affinity for dopaminergic D2 receptor and very low for serotonergic 5-HT2A, adrenergic α2 receptors, as well as serotonin transporter. Functional studies revealed that HBK-7 was a 5-HT1A receptor antagonist. HBK-7 (10mg/kg) decreased immobility time in the forced swim test. Combined treatment with sub-effective doses of HBK-7 and fluoxetine reduced immobility of mice in the forced swim test. Pretreatment with p-chlorophenylalanine and WAY-100,635 antagonized the antidepressant-like effect of HBK-7. Neither of the treatments influenced locomotor activity of mice. HBK-7 at antidepressant-like dose did not impair memory or motor coordination in mice. We demonstrated that HBK-7 was a 5-HT1A receptor antagonist with potent, comparable to mianserin, antidepressant-like activity. HBK-7 mediated its effect through serotonergic system and its antidepressant-like action required the activation of 5-HT1A receptors. At active

  10. MDMA modulates spontaneous firing of subthalamic nucleus neurons in vitro.

    PubMed

    Liebig, Luise; von Ameln-Mayerhofer, Andreas; Hentschke, Harald

    2015-01-01

    3,4-Methylene-dioxy-N-methylamphetamine (MDMA, 'ecstasy') has a broad spectrum of molecular targets in the brain, among them receptors and transporters of the serotonergic (5-hydroxytryptamine, 5-HT) and noradrenergic systems. Its action on the serotonergic system modulates motor systems in rodents and humans. Although parts of the basal ganglia could be identified as mediators of the motor effects of MDMA, very little is known about the role of the subthalamic nucleus (STN). Therefore, this study investigated the modulation of spontaneous action potential activity of the STN by MDMA (2.5-20 µM) in vitro. MDMA had very heterogeneous effects, ranging from a complete but reversible inhibition to a more than twofold increase in firing at 5 µM. On average, MDMA excited STN neurons moderately, but lost its excitatory effect in the presence of the 5-HT(2A) antagonist MDL 11,939. 5-HT(1A) receptors did not appear to play a major role. Effects of MDMA on transporters for serotonin (SERT) and norepinephrine (NET) were investigated by coapplication of the reuptake inhibitors citalopram and desipramine, respectively. Similar to the effects of 5-HT(2A) receptor blockade, antagonism of SERT and NET bestowed an inhibitory effect on MDMA. From these results, we conclude that both the 5-HT and the noradrenergic system mediate MDMA-induced effects on STN neurons.

  11. Directly Observable Behavioral Effects of Lorcaserin in Rats

    PubMed Central

    Serafine, Katherine M.; Rice, Kenner C.

    2015-01-01

    (1R)-8-chloro-1-methyl-2,3,4,5-tetrahydro-1H-3-benzazepine (lorcaserin) is approved by the United States Food and Drug Administration for treating obesity, and its therapeutic effects are thought to result from agonist activity at serotonin (5-HT)2C receptors. Lorcaserin has affinity for other 5-HT receptor subtypes, although its activity at those subtypes is not fully described. The current study compared the behavioral effects of lorcaserin (0.0032–32.0 mg/kg) to the effects of other 5-HT receptor selective agonists in rats (n = 8). The 5-HT2C receptor selective agonist 1-(3-chlorophenyl)piperazine (mCPP, 0.032–1.0 mg/kg) and lorcaserin induced yawning which was attenuated by the 5-HT2C receptor selective antagonist 6-chloro-5-methyl-N-(6-[(2-methylpyridin-3-yl)oxy]pydidin-3-yl)indoline-1-carboxamide (1.0 mg/kg). The 5-HT2A receptor selective agonist 2,5-dimethoxy-4-methylamphetamine (0.1–3.2 mg/kg) induced head twitching, which was attenuated by the 5-HT2A receptor selective antagonist R-(+)-2,3-dimethoxyphenyl-1-[2-(4-piperidine)-methanol] (MDL 100907, 0.01 mg/kg), lorcaserin (3.2 mg/kg), and mCPP (3.2 mg/kg). In rats pretreated with MDL 100907 (1.0 mg/kg), lorcaserin also induced head twitching. At larger doses, lorcaserin produced forepaw treading, which was attenuated by the 5-HT1A receptor selective antagonist N-(2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl)-N-(2-pyridyl)cyclohexanecarboxamide (0.178 mg/kg). While the behavioral effects of lorcaserin in rats are consistent with it having agonist activity at 5-HT2C receptors, these data suggest that at larger doses it also has agonist activity at 5-HT2A and possibly 5-HT1A receptors. Mounting evidence suggests that 5-HT2C receptor agonists might be effective for treating drug abuse. A more complete description of the activity of lorcaserin at 5-HT receptor subtypes will facilitate a better understanding of the mechanisms that mediate its therapeutic effects. PMID:26384326

  12. Behavioral tolerance to lysergic acid diethylamide is associated with reduced serotonin-2A receptor signaling in rat cortex.

    PubMed

    Gresch, Paul J; Smith, Randy L; Barrett, Robert J; Sanders-Bush, Elaine

    2005-09-01

    Tolerance is defined as a decrease in responsiveness to a drug after repeated administration. Tolerance to the behavioral effects of hallucinogens occurs in humans and animals. In this study, we used drug discrimination to establish a behavioral model of lysergic acid diethylamide (LSD) tolerance and examined whether tolerance to the stimulus properties of LSD is related to altered serotonin receptor signaling. Rats were trained to discriminate 60 microg/kg LSD from saline in a two-lever drug discrimination paradigm. Two groups of animals were assigned to either chronic saline treatment or chronic LSD treatment. For chronic treatment, rats from each group were injected once per day with either 130 microg/kg LSD or saline for 5 days. Rats were tested for their ability to discriminate either saline or 60 microg/kg LSD, 24 h after the last chronic injection. Rats receiving chronic LSD showed a 44% reduction in LSD lever selection, while rats receiving chronic vehicle showed no change in percent choice on the LSD lever. In another group of rats receiving the identical chronic LSD treatment, LSD-stimulated [35S]GTPgammaS binding, an index of G-protein coupling, was measured in the rat brain by autoradiography. After chronic LSD, a significant reduction in LSD-stimulated [35S]GTPgammaS binding was observed in the medial prefrontal cortex and anterior cingulate cortex. Furthermore, chronic LSD produced a significant reduction in 2,5-dimethoxy-4-iodoamphetamine-stimulated [35S]GTPgammaS binding in medial prefrontal cortex and anterior cingulate cortex, which was blocked by MDL 100907, a selective 5-HT2A receptor antagonist, but not SB206553, a 5-HT2C receptor antagonist, indicating a reduction in 5-HT2A receptor signaling. 125I-LSD binding to 5-HT2A receptors was reduced in cortical regions, demonstrating a reduction in 5-HT2A receptor density. Taken together, these results indicate that adaptive changes in LSD-stimulated serotonin receptor signaling may mediate tolerance

  13. Discriminative stimulus effects of 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane in rhesus monkeys.

    PubMed

    Li, Jun-Xu; Rice, Kenner C; France, Charles P

    2008-02-01

    Discriminative stimulus effects of 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM) and related drugs have been studied extensively in rodents, although the generality of those findings across species is not known. The goals of this study were to see whether monkeys could discriminate DOM and to characterize the DOM discriminative stimulus by studying a variety of drugs, including those with hallucinogenic activity in humans. Four rhesus monkeys discriminated between 0.32 mg/kg s.c. DOM and vehicle after an average of 116 (range = 85-166) sessions while responding under a fixed ratio 5 schedule of stimulus shock termination. Increasing doses of DOM occasioned increased responding on the drug lever with the training dose occasioning DOM-lever responding for up to 2 h. The serotonin (5-HT)(2A/2C) receptor antagonists ritanserin and ketanserin, the 5-HT(2A) receptor antagonist (+)2,3-dimethoxyphenyl-1-[2-(4-piperidine)-methanol] (MDL100907), and its (-)stereoisomer MDL100009 [(-)2,3-dimethoxyphenyl-1-[2-(4-piperidine)-methanol], but not haloperidol, completely blocked the discriminative stimulus effects of DOM. Quipazine as well as several drugs with hallucinogenic activity in humans, including (+)lysergic acid diethylamide, (-)DOM, and 2,5-dimethoxy-4-(n)-propylthiophenethylamine (2C-T-7), occasioned DOM-lever responding. The kappa-opioid receptor agonists U-50488 and salvinorin A (a hallucinogen) did not exert DOM-like effects and neither did ketamine, phencyclidine, amphetamine, methamphetamine, cocaine, morphine, yohimbine, fenfluramine, 8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT), or (+/-)-2-(N-phenethyl-N-1'-propyl)amino-5-hydroxytetralin hydrochloride (N-0434). These data confirm in nonhuman primates a prominent role for 5-HT(2A) receptors in the discriminative stimulus effects of some drugs with hallucinogenic activity in humans. The failure of another drug with hallucinogenic activity (salvinorin A) to substitute for DOM indicates that

  14. Cariprazine (RGH-188), a dopamine D(3) receptor-preferring, D(3)/D(2) dopamine receptor antagonist-partial agonist antipsychotic candidate: in vitro and neurochemical profile.

    PubMed

    Kiss, Béla; Horváth, Attila; Némethy, Zsolt; Schmidt, Eva; Laszlovszky, István; Bugovics, Gyula; Fazekas, Károly; Hornok, Katalin; Orosz, Szabolcs; Gyertyán, István; Agai-Csongor, Eva; Domány, György; Tihanyi, Károly; Adham, Nika; Szombathelyi, Zsolt

    2010-04-01

    Cariprazine {RGH-188; trans-N-[4-[2-[4-(2,3-dichlorophenyl)piperazin-1-yl]ethyl]cyclohexyl]-N',N'-dimethylurea hydrochloride}, a novel candidate antipsychotic, demonstrated approximately 10-fold higher affinity for human D(3) versus human D(2L) and human D(2S) receptors (pKi 10.07, 9.16, and 9.31, respectively). It displayed high affinity at human serotonin (5-HT) type 2B receptors (pK(i) 9.24) with pure antagonism. Cariprazine had lower affinity at human and rat hippocampal 5-HT(1A) receptors (pK(i) 8.59 and 8.34, respectively) and demonstrated low intrinsic efficacy. Cariprazine displayed low affinity at human 5-HT(2A) receptors (pK(i) 7.73). Moderate or low affinity for histamine H(1) and 5-HT(2C) receptors (pK(i) 7.63 and 6.87, respectively) suggest cariprazine's reduced propensity for adverse events related to these receptors. Cariprazine demonstrated different functional profiles at dopamine receptors depending on the assay system. It displayed D(2) and D(3) antagonism in [(35)S]GTPgammaS binding assays, but stimulated inositol phosphate (IP) production (pEC(50) 8.50, E(max) 30%) and antagonized (+/-)-quinpirole-induced IP accumulation (pK(b) 9.22) in murine cells expressing human D(2L) receptors. It had partial agonist activity (pEC(50) 8.58, E(max) 71%) by inhibiting cAMP accumulation in Chinese hamster ovary cells expressing human D(3) receptors and potently antagonized R(+)-2-dipropylamino-7-hydroxy-1,2,3,4-tetrahydronaphtalene HBr (7-OH-DPAT)-induced suppression of cAMP formation (pK(b) 9.57). In these functional assays, cariprazine showed similar (D(2)) or higher (D(3)) antagonist-partial agonist affinity and greater (3- to 10-fold) D(3) versus D(2) selectivity compared with aripiprazole. In in vivo turnover and biosynthesis experiments, cariprazine demonstrated D(2)-related partial agonist and antagonist properties, depending on actual dopaminergic tone. The antagonist-partial agonist properties of cariprazine at D(3) and D(2) receptors, with very high

  15. Involvement of spinal muscarinic and serotonergic receptors in the anti-allodynic effect of electroacupuncture in rats with oxaliplatin-induced neuropathic pain

    PubMed Central

    Lee, Ji Hwan; Go, Donghyun; Kim, Woojin; Lee, Giseog; Bae, Hyojeong; Quan, Fu Shi

    2016-01-01

    This study was performed to investigate whether the spinal cholinergic and serotonergic analgesic systems mediate the relieving effect of electroacupuncture (EA) on oxaliplatin-induced neuropathic cold allodynia in rats. The cold allodynia induced by an oxaliplatin injection (6 mg/kg, i.p.) was evaluated by immersing the rat's tail into cold water (4℃) and measuring the withdrawal latency. EA stimulation (2 Hz, 0.3-ms pulse duration, 0.2~0.3 mA) at the acupoint ST36, GV3, or LI11 all showed a significant anti-allodynic effect, which was stronger at ST36. The analgesic effect of EA at ST36 was blocked by intraperitoneal injection of muscarinic acetylcholine receptor antagonist (atropine, 1 mg/kg), but not by nicotinic (mecamylamine, 2 mg/kg) receptor antagonist. Furthermore, intrathecal administration of M2 (methoctramine, 10 µg) and M3 (4-DAMP, 10 µg) receptor antagonist, but not M1 (pirenzepine, 10 µg) receptor antagonist, blocked the effect. Also, spinal administration of 5-HT3 (MDL-72222, 12 µg) receptor antagonist, but not 5-HT1A (NAN-190, 15 µg) or 5-HT2A (ketanserin, 30 µg) receptor antagonist, prevented the anti-allodynic effect of EA. These results suggest that EA may have a signifi cant analgesic action against oxaliplatin-induced neuropathic pain, which is mediated by spinal cholinergic (M2, M3) and serotonergic (5-HT3) receptors. PMID:27382357

  16. Sexually antagonistic genes: experimental evidence.

    PubMed

    Rice, W R

    1992-06-01

    When selection differs between the sexes, a mutation beneficial to one sex may be harmful to the other (sexually antagonistic). Because the sexes share a common gene pool, selection in one sex can interfere with the other's adaptive evolution. Theory predicts that sexually antagonistic mutations should accumulate in tight linkage with a new sex-determining gene, even when the harm to benefit ratio is high. Genetic markers and artificial selection were used to make a pair of autosomal genes segregate like a new pair of sex-determining genes in a Drosophila melanogaster model system. A 29-generation study provides experimental evidence that sexually antagonistic genes may be common in nature and will accumulate in response to a new sex-determining gene. PMID:1604317

  17. 5-Hydroxytryptamine 2A receptor signaling cascade modulates adiponectin and plasminogen activator inhibitor 1 expression in adipose tissue.

    PubMed

    Uchida-Kitajima, Shoko; Yamauchi, Toshimasa; Takashina, Youko; Okada-Iwabu, Miki; Iwabu, Masato; Ueki, Kohjiro; Kadowaki, Takashi

    2008-09-01

    Knowledge of the regulatory factors associated with down-regulation of adiponectin gene expression and up-regulation of PAI-1 gene expression is crucial to understand the pathophysiological basis of obesity and metabolic diseases, and could establish new treatment strategies for these conditions. We showed that expression of 5-HT(2A) receptors was up-regulated in hypertrophic 3T3-L1 adipocytes, which exhibited decreased expression of adiponectin and increased expression of PAI-1. 5-HT(2A) receptor antagonists and suppression of 5-HT(2A) receptor gene expression enhanced adiponectin expression. Activation of Gq negatively regulated adiponectin expression, and inhibition of mitogen-activated protein kinase reversed the Gq-induced effect. Moreover, the 5-HT(2A) receptor blockade reduced PAI-1 expression. These findings indicate that antagonism of 5-HT(2A) receptors in adipocytes could improve the obesity-linked decreases in adiponectin expression and increases in PAI-1 expression.

  18. Synthesis of potential mescaline antagonists.

    PubMed

    DeSantis, F; Nieforth, K A

    1976-10-01

    1-[2-(3,4,5-Trimethoxyphenyl)ethyl]-3-pyrroline, 2-(3,4,5-trimethoxybenzyl)-1,2,3,6-tetrahydropyridine, N-n-propylmescaline, N-cyclopropylmethylmescaline, and N-allylmescaline were synthesized as potential mescaline antagonists. The ability of these compounds to antagonize mescaline-induced disruption of swim behavior is also given.

  19. Pharmacological studies of N-(2,5-dimethyl-1H-pyrrol-1-yl)-6-(4-morpholinyl)-3-pyridazinamine hydrochloride (MDL-899), a new long-acting antihypertensive vasodilator.

    PubMed

    Baldoli, E; Bianchi, G; Corsico, N; Di Francesco, G F

    1985-01-01

    N-(2,5-Dimethyl-1H-pyrrol-1-yl)-6-(4-morpholinyl)-3-pyridazinamine hydrochloride (MDL-899) is a new long-acting antihypertensive vasodilator which reduces the blood pressure of conscious hypertensive rats and dogs to normal levels. The oral doses that reduce blood pressure by 50 mmHg are: 4.4 mg/kg in conscious spontaneously hypertensive rats (SHR), 18 mg/kg in conscious Milan hypertensive strain (MHS) and 1.7 mg/kg in conscious renal hypertensive dog (RHD). The i.v. doses are 1.26, 3.2 and 0.9 mg/kg. The reduction in blood pressure is slow (peak effect at 3 h) and long-lasting (more than 7 h) after p.o. or i.v. administration. Tolerance to MDL-899 is seen to develop in hypertensive dogs, whereas in hypertensive rats this phenomenon never occurs. The compound antagonizes the development of hypertension when given to SHR between days 25 and 88. The haemodynamic study in conscious normotensive rats (labelled microspheres) demonstrated that the fall in blood pressure is accompanied by increases in heart rate and cardiac output and a decrease in total peripheral resistance. The lack of alpha-blocking activity, in the rat caudal artery "in vitro"; beta 2-stimulating activity, in SHR pretreated with propranolol, and prostaglandin (PG) release activity, in SHR pretreated with indomethacin, excludes the possibility that the hypotension is due to one of these mechanisms. MDL-899 given orally to rats has no important depressant effects on the CNS at hypotensive or higher doses and induces no adrenergic system stimulation symptoms (midriasis, exophthalmus). In comparison with hydralazine, it is slower in onset and longer lasting, devoid of adrenergic system stimulation, less toxic and nonmutagenic. They are equipotent after p.o. treatment. PMID:2862874

  20. The influence of 5-HT(2A) activity on a 5-HT(2C) specific in vivo assay used for early identification of multiple acting SERT and 5-HT(2C) receptor ligands.

    PubMed

    Éliás, Olivér; Nógrádi, Katalin; Domány, György; Szakács, Zoltán; Kóti, János; Szántay, Csaba; Tarcsay, Ákos; Keserű, György M; Gere, Anikó; Kiss, Béla; Kurkó, Dalma; Kolok, Sándor; Némethy, Zsolt; Kapui, Zoltán; Hellinger, Éva; Vastag, Mónika; Sághy, Katalin; Kedves, Rita; Gyertyán, István

    2016-02-01

    As a result of our exploratory programme aimed at elaborating dually acting compounds towards the serotonin (5-HT) transporter (SERT) and the 5-HT2C receptor a novel series of 3-amino-1-phenylpropoxy substituted diphenylureas was identified. From that collection two promising compounds (2 and 3) exhibiting highest 5-HT2C receptor affinity strongly inhibited the 5-HT2C receptor agonist 1-(3-chlorophenyl)piperazine (mCPP) induced hypomotility in mice. In further pursuance of that objective (2-aminoethyl)(benzyl)sulfamoyl diphenylureas and diphenylpiperazines have also been elaborated. Herein we report the synthesis of potent multiple-acting compounds from this new class. However, when two optimized representatives (6 and 14) possessing the desired in vitro profile were tested neither reduced the motor activity of mCPP treated animals. Comparative albeit limited in vitro structure-activity relationship (SAR) analysis and detailed in vivo studies are discussed and explanation for their intricate behaviour is proposed.

  1. Syntheses and pharmacological evaluation of two potent antagonists for dopamine D4 receptors: [11C]YM-50001 and N-[2-[4-(4-Chlorophenyl)-piperizin-1-yl]ethyl]-3-[11C]methoxybenzamide.

    PubMed

    Zhang, Ming-Rong; Haradahira, Terushi; Maeda, Jun; Okauchi, Takashi; Kawabe, Kouichi; Noguchi, Junko; Kida, Takayo; Suzuki, Kazutoshi; Suhara, Tetsuya

    2002-02-01

    Two benzamide derivatives as dopamine D4 receptor antagonists, YM-50001(4) and N- [2-[4-(4-chlorophenyl]piperizin-1-yl]ethyl]-3-methoxybenzamide (9), were labeled by positron-emitter (11C), and their pharmacological specificities to dopamine D4 receptors were examined by quantitative autoradiography and positron emission tomography (PET). Radiosyntheses were accomplished by O-methylation of corresponding phenol precursors (5 and 10) with [11C]CH3I followed by HPLC purifications. In vitro binding on rat brain slices showed different distribution patterns and pharmacological properties between the two radioligands. The [11C]4 showed the highest binding in the striatum, which was inhibited not only by 10 microM 4 but also by 10 microM raclopride, a selective dopamine D2 receptor antagonist. In contrast, [11C]9 showed the highest binding in the cerebral cortex, which was inhibited by several D4 receptor antagonists (9, RBI-254, L-745,870), but not by any other receptor ligands (D1/D5, D2/D3, 5-HT1A, 5-HT2A, sigma1 and alpha1) tested. In vivo brain distribution of [11C]9 in rat showed the highest uptake in the frontal cortex, a region that has a high density of D4 receptors. These results indicate that the pharmacological property of [11C]9 matches the rat brain D4 receptors, but that of [11C]4 rather appears to match the rat brain D2 receptors. The results for the benzamide [11C]9 prompted us to further evaluate its potential as a PET radioligand for D4 receptors by employing PET on monkey brain. Unfortunately, in contrast to rats, neither specific binding nor differences in regional uptake of radioactivity were observed in monkey brain after intravenous 11C]9 injection. Based on that specific activities of radioligands might be critical in mapping the neurotransmitter receptors if they are only faintly expressed in the brain, 11C]9 with an extremely high specific activity (1810 GBq/micromol) was used for PET study. However, the effort to determine the specific binding

  2. Mineralcorticoid antagonists in heart failure.

    PubMed

    D'Elia, Emilia; Krum, Henry

    2014-10-01

    Mineralocorticoid receptor antagonists (MRAs) have become mandated therapy in patients with reduced ejection fraction (systolic) heart failure (HF) across all symptom classes. These agents should also be prescribed in the early post-myocardial infarction setting in those with reduced ejection fraction and either HF symptoms or diabetes. This article explores the pathophysiological role of aldosterone, an endogenous ligand for the mineralcorticoid receptor (MR), and summarizes the clinical data supporting guideline recommendations for these agents in systolic HF. The use of MRAs in novel areas beyond systolic HF ejection is also explored. Finally, the current status of newer agents will be examined. PMID:25217431

  3. Long-acting muscarinic antagonists.

    PubMed

    Melani, Andrea S

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is a major cause of death and disability worldwide. Inhaled bronchodilators are the mainstay of COPD pharmacological treatment. Long-acting muscarinic antagonists (LAMAs) are a major class of inhaled bronchodilators. Some LAMA/device systems with different characteristics and dosing schedules are currently approved for maintenance therapy of COPD and a range of other products are being developed. They improve lung function and patient-reported outcomes and reduce acute bronchial exacerbations with good safety. LAMAs are used either alone or associated with long-acting β₂-agonists, eventually in fixed dose combinations. Long-acting β₂-agonist/LAMA combinations assure additional benefits over the individual components alone. The reader will obtain a view of the safety and efficacy of the different LAMA/device systems in COPD patients. PMID:26109098

  4. A new alcohol antagonist: Phaclofen

    SciTech Connect

    Allan, A.M. ); Harris, R.A. )

    1989-01-01

    The ability of the GABA{sub B} receptor antagonist, phaclofen to alter behavioral effects of ethanol was evaluated by loss of righting reflex (sleep time), motor incoordination (bar holding), spontaneous locomotion (open field activity) and hypothermia. Pretreatment with phaclofen significantly decreased the effects of ethanol on motor incoordination, locomotor activity and hypothermia. However, phaclofen had no effect on either pentobarbital- or diazepam-induced motor incoordination. Phaclofen slightly increased the ED{sub 50} for loss of the righting reflex but did not alter either the duration of reflex loss produced by ethanol or blood ethanol levels at awakening. Our results suggest phaclofen is rapidly inactivated resulting in difficulty in observing antagonism of long duration ethanol effects. These findings suggest that the GABA{sub B} system may play a role in mediating several important actions of ethanol.

  5. [Differential therapy with calcium antagonists].

    PubMed

    Scholze, Jürgen E

    2003-12-01

    EFFICACY OF CALCIUM ANTAGONISTS: Calcium-channel blockers (CCBs) have long been recognized as potent agents for hypertensive therapy, with substantial blood pressure reduction in all age groups and races. CCBs improve endothelial function, may positively influence atherosclerosis in carotid arteries, reduce left ventricular hypertrophy, and hypertrophy of the resistance vessels, and improve arterial compliance. They do not adversely affect lipids and serum glucose. USE IN PRACTICE: CCBs are also a heterogenous class of drugs composed of the phenylalkylamine verapamil, the benzothiazepine diltiazem, and the large group of dihydropyridines (DHPs) with the prototype nifedipine, and an increasing number of newer agents (e. g. nitrendipine, nisoldipine, amlodipine, felodipine, lacidipine and lercanidipine). DHPs are primarily vasodilators, lowering blood pressure by decreasing peripheral vascular resistance at the level of the small arterioles which can be followed by an autonomic counterregulation especially in drugs with a rapid onset of action. This is markedly reduced or abolished in the treatment with the modern long acting DHPs and is also not the case in the treatment with non-DHPs. Prospective randomized controlled outcome studies demonstrated a significant reduction in stroke in elderly patients with isolated systolic hypertension compared with placebo (Syst-Eur [Syst-China]), and no significant differences in cardiovascular mortality and combined morbidity compared with diuretics, beta blockers or ACE-Inhibitors (STOP-2, INSIGHT, NORDIL, ALLHAT, INVEST). To normalize the blood pressure it is mostly necessary to combine antihypertensive drugs. Here are CCBs ideal partners for a therapy with ACE-inhibitors, AT1 antagonists or beta blockers (DHP) and diuretics (verapamil). With respect to the antihypertensive differential therapy the author recommends CCBs based on studies with the evidence grade 1-3; especially for elderly hypertensives (with isolated systolic

  6. Client Perceptions of Two Antagonist Programs.

    ERIC Educational Resources Information Center

    Capone, Thomas A.; And Others

    1980-01-01

    Reports results of a questionnaire administered to participants in an antagonist drug outpatient clinic and an antagonist drug work-release program to obtain awareness of acceptance of the program participants. Naltrexone patients recommended an alternative method of administering the drug and changing the money system to award deserving inmates…

  7. Antagonists of the kappa opioid receptor.

    PubMed

    Urbano, Mariangela; Guerrero, Miguel; Rosen, Hugh; Roberts, Edward

    2014-05-01

    The research community has increasingly focused on the development of OPRK antagonists as pharmacotherapies for the treatment of depression, anxiety, addictive disorders and other psychiatric conditions produced or exacerbated by stress. Short-acting OPRK antagonists have been recently developed as a potential improvement over long-acting prototypic ligands including nor-BNI and JDTic. Remarkably the short-acting LY2456302 is undergoing phase II clinical trials for the augmentation of the antidepressant therapy in treatment-resistant depression. This Letter reviews relevant chemical and pharmacological advances in the identification and development of OPRK antagonists.

  8. Plant Evolution: Evolving Antagonistic Gene Regulatory Networks.

    PubMed

    Cooper, Endymion D

    2016-06-20

    Developing a structurally complex phenotype requires a complex regulatory network. A new study shows how gene duplication provides a potential source of antagonistic interactions, an important component of gene regulatory networks. PMID:27326708

  9. Plant Evolution: Evolving Antagonistic Gene Regulatory Networks.

    PubMed

    Cooper, Endymion D

    2016-06-20

    Developing a structurally complex phenotype requires a complex regulatory network. A new study shows how gene duplication provides a potential source of antagonistic interactions, an important component of gene regulatory networks.

  10. Pyrrolo[1,3]benzothiazepine-based serotonin and dopamine receptor antagonists. Molecular modeling, further structure-activity relationship studies, and identification of novel atypical antipsychotic agents.

    PubMed

    Campiani, Giuseppe; Butini, Stefania; Fattorusso, Caterina; Catalanotti, Bruno; Gemma, Sandra; Nacci, Vito; Morelli, Elena; Cagnotto, Alfredo; Mereghetti, Ilario; Mennini, Tiziana; Carli, Miriana; Minetti, Patrizia; Di Cesare, M Assunta; Mastroianni, Domenico; Scafetta, Nazzareno; Galletti, Bruno; Stasi, M Antonietta; Castorina, Massimo; Pacifici, Licia; Vertechy, Mario; Di Serio, Stefano; Ghirardi, Orlando; Tinti, Ornella; Carminati, Paolo

    2004-01-01

    Recently we reported the pharmacological characterization of the 9,10-dihydropyrrolo[1,3]benzothiazepine derivative (S)-(+)-8 as a novel atypical antipsychotic agent. This compound had an optimum pK(i) 5-HT(2A)/D(2) ratio of 1.21 (pK(i) 5-HT(2A) = 8.83; pK(i) D(2) = 7.79). The lower D(2) receptor affinity of (S)-(+)-8 compared to its enantiomer was explained by the difficulty in reaching the conformation required to optimally fulfill the D(2) pharmacophore. With the aim of finding novel atypical antipsychotics we further investigated the core structure of (S)-(+)-8, synthesizing analogues with specific substituents; the structure-activity relationship (SAR) study was also expanded with the design and synthesis of other analogues characterized by a pyrrolo[2,1-b][1,3]benzothiazepine skeleton, substituted on the benzo-fused ring or on the pyrrole system. On the 9,10-dihydro analogues the substituents introduced on the pyrrole ring were detrimental to affinity for dopamine and for 5-HT(2A) receptors, but the introduction of a double bond at C-9/10 on the structure of (S)-(+)-8 led to a potent D(2)/5-HT(2A) receptor ligand with a typical binding profile (9f, pK(i) 5-HT(2A)/D(2) ratio of 1.01, log Y = 8.43). Then, to reduce D(2) receptor affinity and restore atypicality on unsaturated analogues, we exploited the effect of specific substitutions on the tricyclic system of 9f. Through a molecular modeling approach we generated a novel series of potential atypical antipsychotic agents, with optimized 5HT(2A)/D(2) receptor affinity ratios and that were easier to synthesize and purify than the reference compound (S)-(+)-8. A number of SAR trends were identified, and among the analogues synthesized and tested in binding assays, 9d and 9m were identified as the most interesting, giving atypical log Y scores respectively 4.98 and 3.18 (pK(i) 5-HT(2A)/D(2) ratios of 1.20 and 1.30, respectively). They had a multireceptor affinity profile and could be promising atypical agents

  11. High-affinity neuropeptide Y receptor antagonists.

    PubMed Central

    Daniels, A J; Matthews, J E; Slepetis, R J; Jansen, M; Viveros, O H; Tadepalli, A; Harrington, W; Heyer, D; Landavazo, A; Leban, J J

    1995-01-01

    Neuropeptide Y (NPY) is one of the most abundant peptide transmitters in the mammalian brain. In the periphery it is costored and coreleased with norepinephrine from sympathetic nerve terminals. However, the physiological functions of this peptide remain unclear because of the absence of specific high-affinity receptor antagonists. Three potent NPY receptor antagonists were synthesized and tested for their biological activity in in vitro, ex vivo, and in vivo functional assays. We describe here the effects of these antagonists inhibiting specific radiolabeled NPY binding at Y1 and Y2 receptors and antagonizing the effects of NPY in human erythroleukemia cell intracellular calcium mobilization perfusion pressure in the isolated rat kidney, and mean arterial blood pressure in anesthetized rats. PMID:7568074

  12. Antagonistic formation motion of cooperative agents

    NASA Astrophysics Data System (ADS)

    Lu, Wan-Ting; Dai, Ming-Xiang; Xue, Fang-Zheng

    2015-02-01

    This paper investigates a new formation motion problem of a class of first-order multi-agent systems with antagonistic interactions. A distributed formation control algorithm is proposed for each agent to realize the antagonistic formation motion. A sufficient condition is derived to ensure that all of the agents make an antagonistic formation motion in a distributed manner. It is shown that all of the agents can be spontaneously divided into several groups and that agents in the same group collaborate while agents in different groups compete. Finally, a numerical simulation is included to demonstrate our theoretical results. Project supported by the National Natural Science Foundation of China (Grant Nos. 61203080 and 61473051) and the Natural Science Foundation of Chongqing City (Grant No. CSTC 2011BB0081).

  13. Antagonist-elicited cannabis withdrawal in humans.

    PubMed

    Gorelick, David A; Goodwin, Robert S; Schwilke, Eugene; Schwope, David M; Darwin, William D; Kelly, Deanna L; McMahon, Robert P; Liu, Fang; Ortemann-Renon, Catherine; Bonnet, Denis; Huestis, Marilyn A

    2011-10-01

    Cannabinoid CB1 receptor antagonists have potential therapeutic benefits, but antagonist-elicited cannabis withdrawal has not been reported in humans. Ten male daily cannabis smokers received 8 days of increasingly frequent 20-mg oral Δ⁹-tetrahydrocannabinol (THC) dosages (40-120 mg/d) around-the-clock to standardize cannabis dependence while residing on a closed research unit. On the ninth day, double-blind placebo or 20- (suggested therapeutic dose) or 40-mg oral rimonabant, a CB1-cannabinoid receptor antagonist, was administered. Cannabis withdrawal signs and symptoms were assessed before and for 23.5 hours after rimonabant. Rimonabant, THC, and 11-hydroxy-THC plasma concentrations were quantified by mass spectrometry. The first 6 subjects received 20-mg rimonabant (1 placebo); the remaining 4 subjects received 40-mg rimonabant (1 placebo). Fourteen subjects enrolled; 10 completed before premature termination because of withdrawal of rimonabant from clinical development. Three of 5 subjects in the 20-mg group, 1 of 3 in the 40-mg group, and none of 2 in the placebo group met the prespecified withdrawal criterion of 150% increase or higher in at least 3 visual analog scales for cannabis withdrawal symptoms within 3 hours of rimonabant dosing. There were no significant associations between visual analog scale, heart rate, or blood pressure changes and peak rimonabant plasma concentration, area-under-the-rimonabant-concentration-by-time curve (0-8 hours), or peak rimonabant/THC or rimonabant/(THC + 11-hydroxy-THC) plasma concentration ratios. In summary, prespecified criteria for antagonist-elicited cannabis withdrawal were not observed at the 20- or 40-mg rimonabant doses. These data do not preclude antagonist-elicited withdrawal at higher rimonabant doses.

  14. Antagonist-elicited cannabis withdrawal in humans.

    PubMed

    Gorelick, David A; Goodwin, Robert S; Schwilke, Eugene; Schwope, David M; Darwin, William D; Kelly, Deanna L; McMahon, Robert P; Liu, Fang; Ortemann-Renon, Catherine; Bonnet, Denis; Huestis, Marilyn A

    2011-10-01

    Cannabinoid CB1 receptor antagonists have potential therapeutic benefits, but antagonist-elicited cannabis withdrawal has not been reported in humans. Ten male daily cannabis smokers received 8 days of increasingly frequent 20-mg oral Δ⁹-tetrahydrocannabinol (THC) dosages (40-120 mg/d) around-the-clock to standardize cannabis dependence while residing on a closed research unit. On the ninth day, double-blind placebo or 20- (suggested therapeutic dose) or 40-mg oral rimonabant, a CB1-cannabinoid receptor antagonist, was administered. Cannabis withdrawal signs and symptoms were assessed before and for 23.5 hours after rimonabant. Rimonabant, THC, and 11-hydroxy-THC plasma concentrations were quantified by mass spectrometry. The first 6 subjects received 20-mg rimonabant (1 placebo); the remaining 4 subjects received 40-mg rimonabant (1 placebo). Fourteen subjects enrolled; 10 completed before premature termination because of withdrawal of rimonabant from clinical development. Three of 5 subjects in the 20-mg group, 1 of 3 in the 40-mg group, and none of 2 in the placebo group met the prespecified withdrawal criterion of 150% increase or higher in at least 3 visual analog scales for cannabis withdrawal symptoms within 3 hours of rimonabant dosing. There were no significant associations between visual analog scale, heart rate, or blood pressure changes and peak rimonabant plasma concentration, area-under-the-rimonabant-concentration-by-time curve (0-8 hours), or peak rimonabant/THC or rimonabant/(THC + 11-hydroxy-THC) plasma concentration ratios. In summary, prespecified criteria for antagonist-elicited cannabis withdrawal were not observed at the 20- or 40-mg rimonabant doses. These data do not preclude antagonist-elicited withdrawal at higher rimonabant doses. PMID:21869692

  15. High affinity retinoic acid receptor antagonists: analogs of AGN 193109.

    PubMed

    Johnson, A T; Wang, L; Gillett, S J; Chandraratna, R A

    1999-02-22

    A series of high affinity retinoic acid receptor (RAR) antagonists were prepared based upon the known antagonist AGN 193109 (2). Introduction of various phenyl groups revealed a preference for substitution at the para-position relative to the meta-site. Antagonists with the highest affinities for the RARs possessed hydrophobic groups, however, the presence of polar functionality was also well tolerated.

  16. Lixivaptan: a novel vasopressin receptor antagonist.

    PubMed

    Ku, Elaine; Nobakht, Niloofar; Campese, Vito M

    2009-05-01

    Arginine vasopressin, also known as antidiuretic hormone, is a neuropeptide that functions in the maintenance of body water homeostasis. Inappropriate secretion of vasopressin has been implicated in the pathophysiology of multiple diseases, including polycystic kidney disease, syndrome of inappropriate antidiuretic hormone (SIADH) secretion, and the hyponatremia commonly associated with cirrhosis and congestive heart failure. Vasopressin receptor antagonists are novel agents that block the physiologic actions of vasopressin. Lixivaptan is a vasopressin receptor antagonist with high V2 receptor affinity and is now undergoing Phase III clinical trials. Studies so far have demonstrated that lixivaptan is efficacious in the correction of hyponatremia in SIADH, heart failure and liver cirrhosis with ascites, and few adverse effects have been noted. Thus, lixivaptan remains a promising therapeutic modality for the treatment of multiple diseases and prevention of the associated morbidity and mortality associated with hyponatremia.

  17. [Cutaneous adverse effects of TNFalpha antagonists].

    PubMed

    Failla, V; Sabatiello, M; Lebas, E; de Schaetzen, V; Dezfoulian, B; Nikkels, A F

    2012-01-01

    The TNFalpha antagonists, including adalimumab, etanercept and infliximab, represent a class of anti-inflammatory and immunosuppressive drugs. Although cutaneous adverse effects are uncommon, they are varied. There is no particular risk profile to develop cutaneous adverse effects. The principal acute side effects are injection site reactions and pruritus. The major long term cutaneous side effects are infectious and inflammatory conditions. Neoplastic skin diseases are exceptional. The association with other immunosuppressive agents can increase the risk of developing cutaneous adverse effects. Some adverse effects, such as lupus erythematosus, require immediate withdrawal of the biological treatment, while in other cases temporary withdrawal is sufficient. The majority of the other cutaneous adverse effects can be dealt without interrupting biologic treatment. Preclinical and clinical investigations revealed that the new biologics, aiming IL12/23, IL23 and IL17, present a similar profile of cutaneous adverse effects, although inflammatory skin reactions may be less often encountered compared to TNFalpha antagonists.

  18. TRPV1 antagonists as potential antitussive agents.

    PubMed

    McLeod, Robbie L; Correll, Craig C; Jia, Yanlin; Anthes, John C

    2008-01-01

    Cough is an important defensive pulmonary reflex that removes irritants, fluids, or foreign materials from the airways. However, when cough is exceptionally intense or when it is chronic and/or nonproductive it may require pharmacologic suppression. For many patients, antitussive therapies consist of OTC products with inconsequential efficacies. On the other hand, the prescription antitussive market is dominated by older opioid drugs such as codeine. Unfortunately, "codeine-like" drugs suppress cough at equivalent doses that also often produce significant ancillary liabilities such as GI constipation, sedation, and respiratory depression. Thus, the discovery of a novel and effective antitussive drug with an improved side effect profile relative to codeine would fulfill an unmet clinical need in the treatment of cough. Afferent pulmonary nerves are endowed with a multitude of potential receptor targets, including TRPV1, that could act to attenuate cough. The evidence linking TRPV1 to cough is convincing. TRPV1 receptors are found on sensory respiratory nerves that are important in the generation of the cough reflex. Isolated pulmonary vagal afferent nerves are responsive to TRPV1 stimulation. In vivo, TRPV1 agonists such as capsaicin elicit cough when aerosolized and delivered to the lungs. Pertinent to the debate on the potential use of TRPV1 antagonist as antitussive agents are the observations that airway afferent nerves become hypersensitive in diseased and inflamed lungs. For example, the sensitivity of capsaicin-induced cough responses following upper respiratory tract infection and in airway inflammatory diseases such as asthma and COPD is increased relative to that of control responses. Indeed, we have demonstrated that TRPV1 antagonism can attenuate antigen-induced cough in the allergic guinea pig. However, it remains to be determined if the emerging pharmacologic profile of TRPV1 antagonists will translate into a novel human antitussive drug. Current

  19. Management of calcium channel antagonist overdose.

    PubMed

    Salhanick, Steven D; Shannon, Michael W

    2003-01-01

    Calcium channel antagonists are used primarily for the treatment of hypertension and tachyarrhythmias. Overdose of calcium channel antagonists can be lethal. Calcium channel antagonists act at the L-type calcium channels primarily in cardiac and vascular smooth muscle preventing calcium influx into cells with resultant decreases in vascular tone and cardiac inotropy and chronotropy. The L-type calcium channel is a complex structure and is thus affected by a large number of structurally diverse antagonists. In the setting of overdose, patients may experience vasodilatation and bradycardia leading to a shock state. Patients may also be hyperglycaemic and acidotic due to the blockade of L-type calcium channels in the pancreatic islet cells that affect insulin secretion. Aggressive therapy is warranted in the setting of toxicity. Gut decontamination with charcoal, or whole bowel irrigation or multiple-dose charcoal in the setting of extended-release products is indicated. Specific antidotes include calcium salts, glucagon and insulin. Calcium salts may be given in bolus doses or may be employed as a continuous infusion. Care should be exercised to avoid the administration of calcium in the setting of concomitant digoxin toxicity. Insulin administration has been used effectively to increase cardiac inotropy and survival. The likely mechanism involves a shift to carbohydrate metabolism in the setting of decreased availability of carbohydrates due to decreased insulin secretion secondary to blockade of calcium channels in pancreatic islet cells. Glucose should be administered as well to maintain euglycaemia. Supportive care including the use of phosphodiesterase inhibitors, adrenergic agents, cardiac pacing, balloon pump or extracorporeal bypass is frequently indicated if antidotal therapy is not effective. Careful evaluation of asymptomatic patients, including and electrocardiogram and a period of observation, is indicated. Patients ingesting a nonsustained

  20. Activation of serotonin 2A receptors underlies the psilocybin-induced effects on α oscillations, N170 visual-evoked potentials, and visual hallucinations.

    PubMed

    Kometer, Michael; Schmidt, André; Jäncke, Lutz; Vollenweider, Franz X

    2013-06-19

    Visual illusions and hallucinations are hallmarks of serotonergic hallucinogen-induced altered states of consciousness. Although the serotonergic hallucinogen psilocybin activates multiple serotonin (5-HT) receptors, recent evidence suggests that activation of 5-HT2A receptors may lead to the formation of visual hallucinations by increasing cortical excitability and altering visual-evoked cortical responses. To address this hypothesis, we assessed the effects of psilocybin (215 μg/kg vs placebo) on both α oscillations that regulate cortical excitability and early visual-evoked P1 and N170 potentials in healthy human subjects. To further disentangle the specific contributions of 5-HT2A receptors, subjects were additionally pretreated with the preferential 5-HT2A receptor antagonist ketanserin (50 mg vs placebo). We found that psilocybin strongly decreased prestimulus parieto-occipital α power values, thus precluding a subsequent stimulus-induced α power decrease. Furthermore, psilocybin strongly decreased N170 potentials associated with the appearance of visual perceptual alterations, including visual hallucinations. All of these effects were blocked by pretreatment with the 5-HT2A antagonist ketanserin, indicating that activation of 5-HT2A receptors by psilocybin profoundly modulates the neurophysiological and phenomenological indices of visual processing. Specifically, activation of 5-HT2A receptors may induce a processing mode in which stimulus-driven cortical excitation is overwhelmed by spontaneous neuronal excitation through the modulation of α oscillations. Furthermore, the observed reduction of N170 visual-evoked potentials may be a key mechanism underlying 5-HT2A receptor-mediated visual hallucinations. This change in N170 potentials may be important not only for psilocybin-induced states but also for understanding acute hallucinatory states seen in psychiatric disorders, such as schizophrenia and Parkinson's disease. PMID:23785166

  1. Activation of serotonin 2A receptors underlies the psilocybin-induced effects on α oscillations, N170 visual-evoked potentials, and visual hallucinations.

    PubMed

    Kometer, Michael; Schmidt, André; Jäncke, Lutz; Vollenweider, Franz X

    2013-06-19

    Visual illusions and hallucinations are hallmarks of serotonergic hallucinogen-induced altered states of consciousness. Although the serotonergic hallucinogen psilocybin activates multiple serotonin (5-HT) receptors, recent evidence suggests that activation of 5-HT2A receptors may lead to the formation of visual hallucinations by increasing cortical excitability and altering visual-evoked cortical responses. To address this hypothesis, we assessed the effects of psilocybin (215 μg/kg vs placebo) on both α oscillations that regulate cortical excitability and early visual-evoked P1 and N170 potentials in healthy human subjects. To further disentangle the specific contributions of 5-HT2A receptors, subjects were additionally pretreated with the preferential 5-HT2A receptor antagonist ketanserin (50 mg vs placebo). We found that psilocybin strongly decreased prestimulus parieto-occipital α power values, thus precluding a subsequent stimulus-induced α power decrease. Furthermore, psilocybin strongly decreased N170 potentials associated with the appearance of visual perceptual alterations, including visual hallucinations. All of these effects were blocked by pretreatment with the 5-HT2A antagonist ketanserin, indicating that activation of 5-HT2A receptors by psilocybin profoundly modulates the neurophysiological and phenomenological indices of visual processing. Specifically, activation of 5-HT2A receptors may induce a processing mode in which stimulus-driven cortical excitation is overwhelmed by spontaneous neuronal excitation through the modulation of α oscillations. Furthermore, the observed reduction of N170 visual-evoked potentials may be a key mechanism underlying 5-HT2A receptor-mediated visual hallucinations. This change in N170 potentials may be important not only for psilocybin-induced states but also for understanding acute hallucinatory states seen in psychiatric disorders, such as schizophrenia and Parkinson's disease.

  2. Antagonistic functional duality of cancer genes.

    PubMed

    Stepanenko, A A; Vassetzky, Y S; Kavsan, V M

    2013-10-25

    Cancer evolution is a stochastic process both at the genome and gene levels. Most of tumors contain multiple genetic subclones, evolving in either succession or in parallel, either in a linear or branching manner, with heterogeneous genome and gene alterations, extensively rewired signaling networks, and addicted to multiple oncogenes easily switching with each other during cancer progression and medical intervention. Hundreds of discovered cancer genes are classified according to whether they function in a dominant (oncogenes) or recessive (tumor suppressor genes) manner in a cancer cell. However, there are many cancer "gene-chameleons", which behave distinctly in opposite way in the different experimental settings showing antagonistic duality. In contrast to the widely accepted view that mutant NADP(+)-dependent isocitrate dehydrogenases 1/2 (IDH1/2) and associated metabolite 2-hydroxyglutarate (R)-enantiomer are intrinsically "the drivers" of tumourigenesis, mutant IDH1/2 inhibited, promoted or had no effect on cell proliferation, growth and tumorigenicity in diverse experiments. Similar behavior was evidenced for dozens of cancer genes. Gene function is dependent on genetic network, which is defined by the genome context. The overall changes in karyotype can result in alterations of the role and function of the same genes and pathways. The diverse cell lines and tumor samples have been used in experiments for proving gene tumor promoting/suppressive activity. They all display heterogeneous individual karyotypes and disturbed signaling networks. Consequently, the effect and function of gene under investigation can be opposite and versatile in cells with different genomes that may explain antagonistic duality of cancer genes and the cell type- or the cellular genetic/context-dependent response to the same protein. Antagonistic duality of cancer genes might contribute to failure of chemotherapy. Instructive examples of unexpected activity of cancer genes and

  3. Mineralocorticoid receptor antagonists and endothelial function

    PubMed Central

    Maron, Bradley A.; Leopold, Jane A.

    2010-01-01

    Hyperaldosteronism has been associated with endothelial dysfunction and impaired vascular reactivity in patients with hypertension or congestive heart failure. The mineralocorticoid receptor (MR) antagonists spironolactone and eplerenone have been shown to reduce morbidity and mortality, in part, by ameliorating the adverse effects of aldosterone on vascular function. Although spironolactone and eplerenone are increasingly utilized in patients with cardiovascular disease, widespread clinical use is limited by the development of gynecomastia with spironolactone and hyperkalemia with both agents. This suggests that the development of newer agents with favorable side effect profiles is warranted. PMID:18729003

  4. Rational discovery of novel nuclear hormone receptor antagonists

    NASA Astrophysics Data System (ADS)

    Schapira, Matthieu; Raaka, Bruce M.; Samuels, Herbert H.; Abagyan, Ruben

    2000-02-01

    Nuclear hormone receptors (NRs) are potential targets for therapeutic approaches to many clinical conditions, including cancer, diabetes, and neurological diseases. The crystal structure of the ligand binding domain of agonist-bound NRs enables the design of compounds with agonist activity. However, with the exception of the human estrogen receptor-, the lack of antagonist-bound "inactive" receptor structures hinders the rational design of receptor antagonists. In this study, we present a strategy for designing such antagonists. We constructed a model of the inactive conformation of human retinoic acid receptor- by using information derived from antagonist-bound estrogen receptor-α and applied a computer-based virtual screening algorithm to identify retinoic acid receptor antagonists. Thus, the currently available crystal structures of NRs may be used for the rational design of antagonists, which could lead to the development of novel drugs for a variety of diseases.

  5. Activins and activin antagonists in hepatocellular carcinoma

    PubMed Central

    Deli, Alev; Kreidl, Emanuel; Santifaller, Stefan; Trotter, Barbara; Seir, Katja; Berger, Walter; Schulte-Hermann, Rolf; Rodgarkia-Dara, Chantal; Grusch, Michael

    2008-01-01

    In many parts of the world hepatocellular carcinoma (HCC) is among the leading causes of cancer-related mortality but the underlying molecular pathology is still insufficiently understood. There is increasing evidence that activins, which are members of the transforming growth factor β (TGFβ) superfamily of growth and differentiation factors, could play important roles in liver carcinogenesis. Activins are disulphide-linked homo- or heterodimers formed from four different β subunits termed βA, βB, βC, and βE, respectively. Activin A, the dimer of two βA subunits, is critically involved in the regulation of cell growth, apoptosis, and tissue architecture in the liver, while the hepatic function of other activins is largely unexplored so far. Negative regulators of activin signals include antagonists in the extracellular space like the binding proteins follistatin and FLRG, and at the cell membrane antagonistic co-receptors like Cripto or BAMBI. Additionally, in the intracellular space inhibitory Smads can modulate and control activin activity. Accumulating data suggest that deregulation of activin signals contributes to pathologic conditions such as chronic inflammation, fibrosis and development of cancer. The current article reviews the alterations in components of the activin signaling pathway that have been observed in HCC and discusses their potential significance for liver tumorigenesis. PMID:18350601

  6. Smoking, calcium, calcium antagonists, and aging.

    PubMed

    Nicita-Mauro, V

    1990-01-01

    Aging is characterized, besides other changes, by a progressive increase in calcium content in the arterial wall, which is enhanced by diabetes mellitus, osteoporosis, arterial hypertension, and tabagism. As to tabagism, experiments in animals have shown that nicotine can increase calcium content of the arterial wall, and clinical studies have demonstrated that cigarette smoking induces peripheral vasoconstriction, with consequent increase in blood pressure levels. In order to study the role of calcium ions in the pathogenesis of the vasoconstrictive lesions caused by "acute" smoking, the author has studied the peripheral vascular effects of the calcium-channel antagonist nifedipine, a dihydropyridine derivative, and calcitonin, a hypocalcemizing hormone which possess vasoactive actions on 12 elderly regular smokers (mean age 65.8 years). The results demonstrated that both nifedipine (10 mg sublingually 20 min before smoking) and salmon calcitonin (100 MRC U/daily intramuscularly for three days) are able to prevent peripheral vasoconstriction evaluated by Doppler velocimetry, as well as the increase of blood pressure induced by smoking. On the basis of our results, the author proposes that cigarette smoking-induced vasoconstriction is a calcium-mediated process, which can be hindered by drugs with calcium antagonist action. PMID:2226675

  7. Antagonistic coevolution between quantitative and Mendelian traits.

    PubMed

    Yamamichi, Masato; Ellner, Stephen P

    2016-03-30

    Coevolution is relentlessly creating and maintaining biodiversity and therefore has been a central topic in evolutionary biology. Previous theoretical studies have mostly considered coevolution between genetically symmetric traits (i.e. coevolution between two continuous quantitative traits or two discrete Mendelian traits). However, recent empirical evidence indicates that coevolution can occur between genetically asymmetric traits (e.g. between quantitative and Mendelian traits). We examine consequences of antagonistic coevolution mediated by a quantitative predator trait and a Mendelian prey trait, such that predation is more intense with decreased phenotypic distance between their traits (phenotype matching). This antagonistic coevolution produces a complex pattern of bifurcations with bistability (initial state dependence) in a two-dimensional model for trait coevolution. Furthermore, with eco-evolutionary dynamics (so that the trait evolution affects predator-prey population dynamics), we find that coevolution can cause rich dynamics including anti-phase cycles, in-phase cycles, chaotic dynamics and deterministic predator extinction. Predator extinction is more likely to occur when the prey trait exhibits complete dominance rather than semidominance and when the predator trait evolves very rapidly. Our study illustrates how recognizing the genetic architectures of interacting ecological traits can be essential for understanding the population and evolutionary dynamics of coevolving species. PMID:27009218

  8. History of the 'geste antagoniste' sign in cervical dystonia.

    PubMed

    Poisson, A; Krack, P; Thobois, S; Loiraud, C; Serra, G; Vial, C; Broussolle, E

    2012-08-01

    The geste antagoniste is a voluntary maneuver that temporarily reduces the severity of dystonic posture or movements. It is a classical feature of focal and particularly cervical dystonia. However, the precise historical aspects of geste antagoniste still remain obscure. The goals of this review were (1) to clarify the origin of the geste antagoniste sign; (2) to identify the factors that led to its diffusion in the international literature; (3) to follow the evolution of that term across the twentieth century. We used medical and neurological French, German and English literature of the late nineteenth and early twentieth centuries, and the PubMed database by entering the terms geste antagoniste, antagonistic gesture and sensory trick. The geste antagoniste sign is a legacy of the Paris Neurological School of the end of the nineteenth century. The term was introduced by Meige and Feindel in their 1902 book on tics, written in the vein of their master, Brissaud, who first described this sign in 1893. The almost immediate translations of this book by Giese into German and Kinnier Wilson into English contributed to the rapid spreading of the term geste antagoniste, which is still in use worldwide today. The term antagonistic gesture is the translation proposed by Kinnier Wilson, which also led to the use of the term geste antagonistique. The geste antagoniste sign has long been considered a solid argument for the psychogenic origins of dystonia until the 1980s when Marsden made strong arguments for its organic nature.

  9. H1 receptor antagonist treatment of chronic rhinitis.

    PubMed

    Simons, F E; Simons, K J

    1988-05-01

    In patients with chronic rhinitis, H1 receptor antagonists play an important role in relieving the symptoms of sneezing, itching, and rhinorrhea. New information about the pharmacokinetics and pharmacodynamics of first-generation H1 receptor antagonists such as chlorpheniramine has become available in the past few years. Comprehensive pharmacokinetic and pharmacodynamic studies of new relatively nonsedating H1 receptor antagonists such as terfenadine, astemizole, loratadine, and cetirizine are appearing. An understanding of the differences in pharmacokinetics and pharmacodynamics among H1 receptor antagonists is required for optimal use of these drugs.

  10. Mutually-antagonistic interactions in baseball networks

    NASA Astrophysics Data System (ADS)

    Saavedra, Serguei; Powers, Scott; McCotter, Trent; Porter, Mason A.; Mucha, Peter J.

    2010-03-01

    We formulate the head-to-head matchups between Major League Baseball pitchers and batters from 1954 to 2008 as a bipartite network of mutually-antagonistic interactions. We consider both the full network and single-season networks, which exhibit structural changes over time. We find interesting structure in the networks and examine their sensitivity to baseball’s rule changes. We then study a biased random walk on the matchup networks as a simple and transparent way to (1) compare the performance of players who competed under different conditions and (2) include information about which particular players a given player has faced. We find that a player’s position in the network does not correlate with his placement in the random walker ranking. However, network position does have a substantial effect on the robustness of ranking placement to changes in head-to-head matchups.

  11. Discovery of Octahydroindenes as PAR1 Antagonists

    PubMed Central

    2013-01-01

    Octahydroindene was identified as a novel scaffold for protease activated receptor 1 (PAR1) antagonists. Herein, the 2-position (C2) was explored for structure–activity relationship (SAR) studies. Compounds 14, 19, and 23b showed IC50 values of 1.3, 8.6, and 2.7 nM in a PAR1 radioligand binding assay, respectively, and their inhibitory activities on platelet activation were comparable to that of vorapaxar in a platelet rich plasma (PRP) aggregation assay. This series of compounds showed high potency and no significant cytotoxicity; however, the compounds were metabolically unstable in both human and rat liver microsomes. Current research efforts are focused on optimizing the compounds to improve metabolic stability and physicochemical properties as well as potency. PMID:24900604

  12. Antagonistic and Bargaining Games in Optimal Marketing Decisions

    ERIC Educational Resources Information Center

    Lipovetsky, S.

    2007-01-01

    Game theory approaches to find optimal marketing decisions are considered. Antagonistic games with and without complete information, and non-antagonistic games techniques are applied to paired comparison, ranking, or rating data for a firm and its competitors in the market. Mix strategy, equilibrium in bi-matrix games, bargaining models with…

  13. Early gonadotropin-releasing hormone antagonist start improves follicular synchronization and pregnancy outcome as compared to the conventional antagonist protocol

    PubMed Central

    Park, Chan Woo; Hwang, Yu Im; Koo, Hwa Seon; Kang, Inn Soo; Yang, Kwang Moon

    2014-01-01

    Objective To assess whether an early GnRH antagonist start leads to better follicular synchronization and an improved clinical pregnancy rate (CPR). Methods A retrospective cohort study. A total of 218 infertile women who underwent IVF between January 2011 and February 2013. The initial cohort (Cohort I) that underwent IVF between January 2011 and March 2012 included a total of 68 attempted IVF cycles. Thirty-four cycles were treated with the conventional GnRH antagonist protocol, and 34 cycles with an early GnRH antagonist start protocol. The second cohort (Cohort II) that underwent IVF between June 2012 and February 2013 included a total of 150 embryo-transfer (ET) cycles. Forty-three cycles were treated with the conventional GnRH antagonist protocol, 34 cycles with the modified early GnRH antagonist start protocol using highly purified human menopause gonadotropin and an addition of GnRH agonist to the luteal phase support, and 73 cycles with the GnRH agonist long protocol. Results The analysis of Cohort I showed that the number of mature oocytes retrieved was significantly higher in the early GnRH antagonist start cycles than in the conventional antagonist cycles (11.9 vs. 8.2, p=0.04). The analysis of Cohort II revealed higher but non-significant CPR/ET in the modified early GnRH antagonist start cycles (41.2%) than in the conventional antagonist cycles (30.2%), which was comparable to that of the GnRH agonist long protocol cycles (39.7%). Conclusion The modified early antagonist start protocol may improve the mature oocyte yield, possibly via enhanced follicular synchronization, while resulting in superior CPR as compared to the conventional antagonist protocol, which needs to be studied further in prospective randomized controlled trials. PMID:25599038

  14. Interaction between Antagonist of Cannabinoid Receptor and Antagonist of Adrenergic Receptor on Anxiety in Male Rat

    PubMed Central

    Komaki, Alireza; Abdollahzadeh, Fatemeh; Sarihi, Abdolrahman; Shahidi, Siamak; Salehi, Iraj

    2014-01-01

    Introduction Anxiety is among the most common and treatable mental disorders. Adrenergic and cannabinoid systems have an important role in the neurobiology of anxiety. The elevated plus-maze (EPM) has broadly been used to investigate anxiolytic and anxiogenic compounds. The present study investigated the effects of intraperitoneal (IP) injection of cannabinoid CB1 receptor antagonist (AM251) in the presence of alpha-1 adrenergic antagonist (Prazosin) on rat behavior in the EPM. Methods In this study, the data were obtained from male Wistar rat, which weighing 200- 250 g. Animal behavior in EPM were videotaped and saved in computer for 10 min after IP injection of saline, AM251 (0.3 mg/kg), Prazosin (0.3 mg/kg) and AM251 + Prazosin, subsequently scored for conventional indices of anxiety. During the test period, the number of open and closed arms entries, the percentage of entries into the open arms of the EPM, and the spent time in open and closed arms were recorded. Diazepam was considered as a positive control drug with anxiolytic effect (0.3, 0.6, 1.2 mg/kg). Results Diazepam increased the number of open arm entries and the percentage of spent time on the open arms. IP injection of AM251 before EPM trial decreased open arms exploration and open arm entry. Whereas, Prazosin increased open arms exploration and open arm entry. This study showed that both substances in simultaneous injection have conflicting effects on the responses of each of these two compounds in a single injection. Discussion Injection of CB1 receptor antagonist may have an anxiogenic profile in rat, whereas adrenergic antagonist has an anxiolytic effect. Further investigations are essential for better understanding of anxiolytic and anxiogenic properties and neurobiological mechanisms of action and probable interactions of the two systems. PMID:25337383

  15. Pharmacokinetic interactions with calcium channel antagonists (Part I).

    PubMed

    Schlanz, K D; Myre, S A; Bottorff, M B

    1991-11-01

    Calcium channel antagonists are a diverse class of drugs widely used in combination with other therapeutic agents. The potential exists for many clinically significant pharmacokinetic interactions between these and other concurrently administered drugs. The mechanisms of calcium channel antagonist-induced changes in drug metabolism include altered hepatic blood flow and impaired hepatic enzyme metabolising activity. Increases in serum concentrations and/or reductions in clearance have been reported for several drugs used with a number of calcium channel antagonists. A number of reports and studies of calcium channel antagonist interactions have yielded contradictory results and the clinical significance of pharmacokinetic changes seen with these agents is ill-defined. The first part of this article deals with interactions between calcium antagonists and marker compounds, theophylline, midazolam, lithium, doxorubicin, oral hypoglycaemics and cardiac drugs. PMID:1773549

  16. β1-adrenergic receptor antagonists signal via PDE4 translocation.

    PubMed

    Richter, Wito; Mika, Delphine; Blanchard, Elise; Day, Peter; Conti, Marco

    2013-03-01

    It is generally assumed that antagonists of Gs-coupled receptors do not activate cAMP signalling, because they do not stimulate cAMP production via Gs-protein/adenylyl cyclase activation. Here, we report a new signalling pathway whereby antagonists of β1-adrenergic receptors (β1ARs) increase cAMP levels locally without stimulating cAMP production directly. Binding of antagonists causes dissociation of a preformed complex between β1ARs and Type-4 cyclic nucleotide phosphodiesterases (PDE4s). This reduces the local concentration of cAMP-hydrolytic activity, thereby increasing submembrane cAMP and PKA activity. Our study identifies receptor/PDE4 complex dissociation as a novel mechanism of antagonist action that contributes to the pharmacological properties of β1AR antagonists and might be shared by other receptor subtypes.

  17. Discriminative stimulus effects of the imidazoline I2 receptor ligands BU224 and phenyzoline in rats

    PubMed Central

    Qiu, Yanyan; Zhang, Yanan; Li, Jun-Xu

    2015-01-01

    Although imidazoline I2 receptor ligands have been used as discriminative stimuli, the role of efficacy of I2 receptor ligands as a critical determinant in drug discrimination has not been explored. This study characterized the discriminative stimulus effects of selective imidazoline I2 receptor ligands BU224 (a low-efficacy I2 receptor ligand) and phenyzoline (a higher efficacy I2 receptor ligand) in rats. Two groups of male Sprague-Dawley rats were trained to discriminate 5.6 mg/kg BU224 or 32 mg/kg phenyzoline (i.p.) from their vehicle in a two-lever food-reinforced drug discrimination procedure, respectively. All rats acquired the discriminations after an average of 18 (BU224) and 56 (phenyzoline) training sessions, respectively. BU224 and phenyzoline completely substituted for one another symmetrically. Several I2 receptor ligands (tracizoline, CR4056, RS45041, and idazoxan) all occasioned > 80% drug-associated lever responding in both discriminations. The I2 receptor ligand 2-BFI and a monoamine oxidase inhibitor harmane occasioned > 80% drug-associated lever responding in rats discriminating BU224. Other drugs that occasioned partial or less substitution to BU224 cue included clonidine, methamphetamine, ketamine, morphine, methadone and agmatine. Clonidine, methamphetamine and morphine also only produced partial substitution to phenyzoline cue. Naltrexone, dopamine D2 receptor antagonist haloperidol and serotonin (5-HT) 2A receptor antagonist MDL100907 failed to alter the discriminative stimulus effects of BU224 or phenyzoline. Combined, these results are the first to demonstrate that BU224 and phenyzoline can serve as discriminative stimuli and that the low-efficacy I2 receptor ligand BU224 shares similar discriminative stimulus effects with higher-efficacy I2 receptor ligands such as phenyzoline and 2-BFI. PMID:25617792

  18. An animal model of schizophrenia based on chronic LSD administration: old idea, new results.

    PubMed

    Marona-Lewicka, Danuta; Nichols, Charles D; Nichols, David E

    2011-09-01

    Many people who take LSD experience a second temporal phase of LSD intoxication that is qualitatively different, and was described by Daniel Freedman as "clearly a paranoid state." We have previously shown that the discriminative stimulus effects of LSD in rats also occur in two temporal phases, with initial effects mediated by activation of 5-HT(2A) receptors (LSD30), and the later temporal phase mediated by dopamine D2-like receptors (LSD90). Surprisingly, we have now found that non-competitive NMDA antagonists produced full substitution in LSD90 rats, but only in older animals, whereas in LSD30, or in younger animals, these drugs did not mimic LSD. Chronic administration of low doses of LSD (>3 months, 0.16 mg/kg every other day) induces a behavioral state characterized by hyperactivity and hyperirritability, increased locomotor activity, anhedonia, and impairment in social interaction that persists at the same magnitude for at least three months after cessation of LSD treatment. These behaviors, which closely resemble those associated with psychosis in humans, are not induced by withdrawal from LSD; rather, they are the result of neuroadaptive changes occurring in the brain during the chronic administration of LSD. These persistent behaviors are transiently reversed by haloperidol and olanzapine, but are insensitive to MDL-100907. Gene expression analysis data show that chronic LSD treatment produced significant changes in multiple neurotransmitter system-related genes, including those for serotonin and dopamine. Thus, we propose that chronic treatment of rats with low doses of LSD can serve as a new animal model of psychosis that may mimic the development and progression of schizophrenia, as well as model the established disease better than current acute drug administration models utilizing amphetamine or NMDA antagonists such as PCP.

  19. Synthesis and pharmacological evaluation of novel tricyclic[2,1-f]theophylline derivatives.

    PubMed

    Zagórska, Agnieszka; Pawłowski, Maciej; Siwek, Agata; Kazek, Grzegorz; Partyka, Anna; Wróbel, Dagmara; Jastrzębska-Więsek, Magdalena; Wesołowska, Anna

    2013-11-01

    The multireceptor strategy was implemented to obtain potential antipsychotics and/or antidepressants in a series of long-chain arylpiperazines bearing a tricyclic theophylline fragment. Their binding profile toward monoaminergic receptors (α1, 5-HT(1A), 5-HT(2A), 5-HT6, 5-HT7, D2, D3) was determined as well. The selected compounds 7 and 9 were tested in functional in vivo models and showed, like atypical antipsychotic drugs, presynaptic 5-HT(1A) receptor agonistic and postsynaptic 5-HT(1A), 5-HT(2A), and D2 receptor antagonistic activity.

  20. Behavioral evidence for interactions between a hallucinogenic drug and group II metabotropic glutamate receptors.

    PubMed

    Gewirtz, J C; Marek, G J

    2000-11-01

    Recent electrophysiological studies in our laboratory have demonstrated a physiological interaction between 5-HT(2A) and metabotropic glutamate2/3 (mGlu2/3) receptors in the medial prefrontal cortex. Several behavioral studies have found that phenethylamine hallucinogens with partial agonist activity at 5-HT(2A) receptors induce head shakes when directly administered into the medial prefrontal cortex. The purpose of the present experiments was to examine whether an interaction occurs between mGlu2/3 and 5-HT(2A) receptors on a behavioral level using head shakes induced by phenethylamine hallucinogens as a model of 5-HT(2A) receptor activation. Administration of the mGlu2/3 agonist LY354740 (0.3-10 mg/kg, ip) suppressed head shakes induced by the phenethylamine hallucinogen 1-(2, 5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI). Conversely, administration of the mGlu2/3 antagonist LY341495 (1 mg/kg, ip) enhanced the frequency of DOI-induced head shakes. Taken together, these results raise the possibility that the psychomimetic properties of hallucinogenic drugs may be mediated in part, via increased glutamate release following activation of 5-HT(2A) receptors.

  1. Behavioural effects of histamine and its antagonists: a review.

    PubMed

    White, J M; Rumbold, G R

    1988-01-01

    This review focuses on the behavioural effects of histamine and drugs which affect histaminergic function, particularly the H1- and H2-receptors antagonists. Research in this area has assumed considerable importance with increasing interest in the role of brain histamine, the clinical use of both H1 and H2 antagonists and evidence of nonmedical use of H1 antagonists. Results from a number of studies show that H1 and H2 antagonists have clear, but distinct subjective effects and that H1 antagonists have discriminative effects in animals. While H1 antagonists are reinforcers in certain conditions, histamine itself is a punisher. Moderate doses of H1 antagonists affect psychomotor performance in some situations, but the results are variable. The exceptions are terfenadine and astemizole, which do not seem to penetrate the blood-brain barrier readily. In studies of schedule-controlled behaviour, marked changes in response rate have been observed following administration of H1 antagonists, with the magnitude and direction dependent on the dose and the baseline behaviour. Histamine reduces avoidance responding, an effect mediated via H1-receptors. Changes in drinking and aggressive behaviour have also been observed following histamine administration and distinct roles for H1- and H2-receptors have been delineated. Separate H1- and H2-receptor mechanisms have also been suggested to account for changes in activity level. While the H2 antagonists do not always have strong behavioural effects when administered peripherally, there is evidence that cimetidine has a depressant effect on sexual function. These and other findings reveal an important role for histaminergic systems in a wide range of behaviour. PMID:3133686

  2. Aldosterone receptor antagonists: current perspectives and therapies

    PubMed Central

    Guichard, Jason L; Clark, Donald; Calhoun, David A; Ahmed, Mustafa I

    2013-01-01

    Aldosterone is a downstream effector of angiotensin II in the renin–angiotensin–aldosterone system and binds to the mineralocorticoid receptor. The classical view of aldosterone primarily acting at the level of the kidneys to regulate plasma potassium and intravascular volume status is being supplemented by evidence of new “off-target” effects of aldosterone in other organ systems. The genomic effects of aldosterone are well known, but there is also evidence for non-genomic effects and these recently identified effects of aldosterone have required a revision in the traditional view of aldosterone’s role in human health and disease. The aim of this article is to review the biological action of aldosterone and the mineralocorticoid receptor leading to subsequent physiologic and pathophysiologic effects involving the vasculature, central nervous system, heart, and kidneys. Furthermore, we outline current evidence evaluating the use of mineralocorticoid receptor antagonists in the treatment of primary aldosteronism, primary hypertension, resistant hypertension, obstructive sleep apnea, heart failure, and chronic kidney disease. PMID:23836977

  3. The search for calcium receptor antagonists (calcilytics).

    PubMed

    Nemeth, E F

    2002-08-01

    The Ca(2+) receptor on the surface of parathyroid cells is the primary molecular entity regulating secretion of parathyroid hormone (PTH). Because of this, it is a particularly appealing target for new drugs intended to increase or decrease circulating levels of PTH. Calcilytic compounds are Ca(2+) receptor antagonists which increase the secretion of PTH. The first reported calcilytic compound was NPS 2143, an orally active molecule which elicits rapid, 3- to 4-fold increases in circulating levels of PTH. These rapid changes in plasma PTH levels are sufficient to increase bone turnover in ovariectomized, osteopenic rats. When administered together with an antiresorptive agent (estradiol), NPS 2143 causes an increase in trabecular bone volume and bone mineral density in osteopenic rats. The magnitude of these changes are far in excess of those caused by estradiol alone and are comparable with those achieved by daily administration of PTH or a peptide analog. These anabolic effects of NPS 2143 on bone are not associated with hyperplasia of the parathyroid glands. Calcilytic compounds can increase endogenous levels of circulating PTH to an extent that stimulates new bone formation. Such compounds could replace the use of exogenous PTH or its peptide fragments in treating osteoporosis. PMID:12200226

  4. Antagonistic neural networks underlying differentiated leadership roles

    PubMed Central

    Boyatzis, Richard E.; Rochford, Kylie; Jack, Anthony I.

    2014-01-01

    The emergence of two distinct leadership roles, the task leader and the socio-emotional leader, has been documented in the leadership literature since the 1950s. Recent research in neuroscience suggests that the division between task-oriented and socio-emotional-oriented roles derives from a fundamental feature of our neurobiology: an antagonistic relationship between two large-scale cortical networks – the task-positive network (TPN) and the default mode network (DMN). Neural activity in TPN tends to inhibit activity in the DMN, and vice versa. The TPN is important for problem solving, focusing of attention, making decisions, and control of action. The DMN plays a central role in emotional self-awareness, social cognition, and ethical decision making. It is also strongly linked to creativity and openness to new ideas. Because activation of the TPN tends to suppress activity in the DMN, an over-emphasis on task-oriented leadership may prove deleterious to social and emotional aspects of leadership. Similarly, an overemphasis on the DMN would result in difficulty focusing attention, making decisions, and solving known problems. In this paper, we will review major streams of theory and research on leadership roles in the context of recent findings from neuroscience and psychology. We conclude by suggesting that emerging research challenges the assumption that role differentiation is both natural and necessary, in particular when openness to new ideas, people, emotions, and ethical concerns are important to success. PMID:24624074

  5. Antagonists for acute oral cadmium chloride intoxication

    SciTech Connect

    Basinger, M.A.; Jones, M.M.; Holscher, M.A.; Vaughn, W.K.

    1988-01-01

    An examination has been carried out on the relative efficacy of a number of chelating agents when acting as antagonists for oral cadmium chloride intoxication in mice. The compounds were administered orally after the oral administration of cadmium chloride at 1 mmol/kg. Of the compounds examined, several were useful in terms of enhancing survival, but by far the most effective in both enhancing survival and leaving minimal residual levels of cadmium in the liver and the kidney, was meso-2,3-dimercaptosuccinic acid (DMSA). Several polyaminocarboxylic acids also enhanced survival. The most effective of these in reducing liver and kidney levels of cadmium were diethylenetriaminepentaacetic acid (DTPA), trans-1,2-diaminocyclohexane-N,N,N'N'-tetraacetic acid (CDTA), and triethylenetetraminehexaacetic acid (TTHA). D-Penicillamine (DPA) was found to promote survival but also led to kidney cadmium levels higher than those found in the controls. Sodium 2,3-dimercaptopropane-1-sulfonate (DMPS) was as effective in promoting survival as DMSA but left levels of cadmium in the kidney and liver that were approximately four times greater than those found with DMSA.

  6. Identification of a novel conformationally constrained glucagon receptor antagonist.

    PubMed

    Lee, Esther C Y; Tu, Meihua; Stevens, Benjamin D; Bian, Jianwei; Aspnes, Gary; Perreault, Christian; Sammons, Matthew F; Wright, Stephen W; Litchfield, John; Kalgutkar, Amit S; Sharma, Raman; Didiuk, Mary T; Ebner, David C; Filipski, Kevin J; Brown, Janice; Atkinson, Karen; Pfefferkorn, Jeffrey A; Guzman-Perez, Angel

    2014-02-01

    Identification of orally active, small molecule antagonists of the glucagon receptor represents a novel treatment paradigm for the management of type 2 diabetes mellitus. The present work discloses novel glucagon receptor antagonists, identified via conformational constraint of current existing literature antagonists. Optimization of lipophilic ligand efficiency (LLE or LipE) culminated in enantiomers (+)-trans-26 and (-)-trans-27 which exhibit good physicochemical and in vitro drug metabolism profiles. In vivo, significant pharmacokinetic differences were noted with the two enantiomers, which were primarily driven through differences in clearance rates. Enantioselective oxidation by cytochrome P450 was ruled out as a causative factor for pharmacokinetic differences.

  7. Multiple Targeting Approaches on Histamine H3 Receptor Antagonists

    PubMed Central

    Khanfar, Mohammad A.; Affini, Anna; Lutsenko, Kiril; Nikolic, Katarina; Butini, Stefania; Stark, Holger

    2016-01-01

    With the very recent market approval of pitolisant (Wakix®), the interest in clinical applications of novel multifunctional histamine H3 receptor antagonists has clearly increased. Since histamine H3 receptor antagonists in clinical development have been tested for a variety of different indications, the combination of pharmacological properties in one molecule for improved pharmacological effects and reduced unwanted side-effects is rationally based on the increasing knowledge on the complex neurotransmitter regulations. The polypharmacological approaches on histamine H3 receptor antagonists on different G-protein coupled receptors, transporters, enzymes as well as on NO-signaling mechanism are described, supported with some lead structures. PMID:27303254

  8. PAF receptor and "Cache-oreilles" effect. Simple PAF antagonists.

    PubMed

    Lamotte-Brasseur, J; Heymans, F; Dive, G; Lamouri, A; Batt, J P; Redeuilh, C; Hosford, D; Braquet, P; Godfroid, J J

    1991-12-01

    Nine simple and structurally flexible PAF antagonists were synthesized and their inhibitory effects on PAF induced platelet aggregation were measured. Compounds with PAF antagonistic activity exhibited a negative electrostatic potential generated by two trimethoxyphenyl groups (isocontour at -10 Kcal/mole) at various distances between the negative clouds. The optimal distance between the atoms generating the "cache-oreilles" system for exhibiting potent PAF antagonistic activity is estimated to be 11-13 A. In the flexible molecules studied, the dispersion of the electronic distribution is not necessarily favorable for anti-PAF activity. The data support the simple bipolarized model for the PAF receptor that has been proposed by the authors.

  9. Behavioral effects of a calcium channel antagonist: nifedipine.

    PubMed

    Tazi, A; Farh, M; Hakkou, F

    1991-01-01

    A series of experiments investigated the behavioral effects of a calcium channel antagonist, nifedipine. This antagonist has facilitatory effects on learning and memory as assessed by the active and passive avoidance tests respectively. In the forced swimming test, nifedipine at a dose of 5 mg/kg had an inhibitory effect on immobilization. Finally, nifedipine (2.5 and 5.0 mg/kg) induced an anxiolytic effect in the water consumption test in a novel environment. These findings are discussed with respect to other findings in the same field and to the neurochemical changes known to be induced by calcium channel antagonists.

  10. Multiple Targeting Approaches on Histamine H3 Receptor Antagonists.

    PubMed

    Khanfar, Mohammad A; Affini, Anna; Lutsenko, Kiril; Nikolic, Katarina; Butini, Stefania; Stark, Holger

    2016-01-01

    With the very recent market approval of pitolisant (Wakix®), the interest in clinical applications of novel multifunctional histamine H3 receptor antagonists has clearly increased. Since histamine H3 receptor antagonists in clinical development have been tested for a variety of different indications, the combination of pharmacological properties in one molecule for improved pharmacological effects and reduced unwanted side-effects is rationally based on the increasing knowledge on the complex neurotransmitter regulations. The polypharmacological approaches on histamine H3 receptor antagonists on different G-protein coupled receptors, transporters, enzymes as well as on NO-signaling mechanism are described, supported with some lead structures. PMID:27303254

  11. Single exposure of dopamine D1 antagonist prevents and D2 antagonist attenuates methylphenidate effect

    PubMed Central

    Claussen, Catherine M; Witte, Lindsey J; Dafny, Nachum

    2015-01-01

    Methylphenidate (MPD) is a readily prescribed drug for the treatment of attention deficit hyperactivity disorder (ADHD) and moreover is used illicitly by youths for its cognitive-enhancing effects and recreation. MPD exposure in rodents elicits increased locomotor activity. Repetitive MPD exposure leads to further augmentation of their locomotor activity. This behavioral response is referred to as behavioral sensitization. Behavioral sensitization is used as an experimental marker for a drug’s ability to elicit dependence. There is evidence that dopamine (DA) is a key player in the acute and chronic MPD effect; however, the role of DA in the effects elicited by MPD is still debated. The objective of this study was to investigate the role of D1 and/or D2 DA receptors in the acute and chronic effect of MPD on locomotor activity. The study lasted for 12 consecutive days. Seven groups of male Sprague Dawley® rats were used. A single D1 or D2 antagonist was given before and after acute and chronic MPD administration. Single injection of D1 DA antagonist was able to significantly attenuate the locomotor activity when given prior to the initial MPD exposure and after repetitive MPD exposure, while the D2 DA antagonist partially attenuated the locomotor activity only when given before the second MPD exposure. The results show the role, at least in part, of the D1 DA receptor in the mechanism of behavioral sensitization, whereas the D2 DA receptor only partially modulates the response to acute and chronic MPD. PMID:27186140

  12. Complications of TNF-α antagonists and iron homeostasis

    EPA Science Inventory

    TNF-α is a central regulator of inflammation and its blockade downregulates other proinflammatory cytokines, chemokines, and growth factors. Subsequently, TNF-α antagonists are currently used in treatment regimens directed toward several inflammatory diseases. Despite a beneficia...

  13. Serotonin 2A receptor agonist binding in the human brain with [11C]Cimbi-36

    PubMed Central

    Ettrup, Anders; da Cunha-Bang, Sophie; McMahon, Brenda; Lehel, Szabolcs; Dyssegaard, Agnete; Skibsted, Anine W; Jørgensen, Louise M; Hansen, Martin; Baandrup, Anders O; Bache, Søren; Svarer, Claus; Kristensen, Jesper L; Gillings, Nic; Madsen, Jacob; Knudsen, Gitte M

    2014-01-01

    [11C]Cimbi-36 was recently developed as a selective serotonin 2A (5-HT2A) receptor agonist radioligand for positron emission tomography (PET) brain imaging. Such an agonist PET radioligand may provide a novel, and more functional, measure of the serotonergic system and agonist binding is more likely than antagonist binding to reflect 5-HT levels in vivo. Here, we show data from a first-in-human clinical trial with [11C]Cimbi-36. In 29 healthy volunteers, we found high brain uptake and distribution according to 5-HT2A receptors with [11C]Cimbi-36 PET. The two-tissue compartment model using arterial input measurements provided the most optimal quantification of cerebral [11C]Cimbi-36 binding. Reference tissue modeling was feasible as it induced a negative but predictable bias in [11C]Cimbi-36 PET outcome measures. In five subjects, pretreatment with the 5-HT2A receptor antagonist ketanserin before a second PET scan significantly decreased [11C]Cimbi-36 binding in all cortical regions with no effects in cerebellum. These results confirm that [11C]Cimbi-36 binding is selective for 5-HT2A receptors in the cerebral cortex and that cerebellum is an appropriate reference tissue for quantification of 5-HT2A receptors in the human brain. Thus, we here describe [11C]Cimbi-36 as the first agonist PET radioligand to successfully image and quantify 5-HT2A receptors in the human brain. PMID:24780897

  14. Anthropomorphic finger antagonistically actuated by SMA plates.

    PubMed

    Engeberg, Erik D; Dilibal, Savas; Vatani, Morteza; Choi, Jae-Won; Lavery, John

    2015-10-01

    Most robotic applications that contain shape memory alloy (SMA) actuators use the SMA in a linear or spring shape. In contrast, a novel robotic finger was designed in this paper using SMA plates that were thermomechanically trained to take the shape of a flexed human finger when Joule heated. This flexor actuator was placed in parallel with an extensor actuator that was designed to straighten when Joule heated. Thus, alternately heating and cooling the flexor and extensor actuators caused the finger to flex and extend. Three different NiTi based SMA plates were evaluated for their ability to apply forces to a rigid and compliant object. The best of these three SMAs was able to apply a maximum fingertip force of 9.01N on average. A 3D CAD model of a human finger was used to create a solid model for the mold of the finger covering skin. Using a 3D printer, inner and outer molds were fabricated to house the actuators and a position sensor, which were assembled using a multi-stage casting process. Next, a nonlinear antagonistic controller was developed using an outer position control loop with two inner MOSFET current control loops. Sine and square wave tracking experiments demonstrated minimal errors within the operational bounds of the finger. The ability of the finger to recover from unexpected disturbances was also shown along with the frequency response up to 7 rad s(-1). The closed loop bandwidth of the system was 6.4 rad s(-1) when operated intermittently and 1.8 rad s(-1) when operated continuously. PMID:26292164

  15. Suppressing antagonistic bioengineering feedbacks doubles restoration success.

    PubMed

    Suykerbuyk, Wouter; Bouma, Tjeerd J; van der Heide, Tjisse; Faust, Cornelia; Govers, Laura L; Giesen, Wim B J T; de Jong, Dick J; van Katwijk, Marieke M

    2012-06-01

    In a seagrass restoration project, we explored the potential for enhancing the restoration process by excluding antagonistic engineering interactions (i.e., biomechanical warfare) between two ecosystem engineers: the bioturbating lugworm Arenicola marina and the sediment-stabilizing seagrass Zostera noltii Hornem. Applying a shell layer underneath half of our seagrass transplants successfully reduced adult lugworm density by over 80% and reduced lugworm-induced microtopography (a proxy for lugworm disturbance) at the wave-sheltered site. At the wave-exposed site adult lugworm densities and microtopography were already lower than at the sheltered site but were further reduced in the shell-treated units. Excluding lugworms and their bioengineering effects corresponded well with a strongly enhanced seagrass growth at the wave-sheltered site, which was absent at the exposed site. Enhanced seagrass growth in the present study was fully assigned to the removal of lugworms' negative engineering effects and not to any (indirect) evolving effects such as an altered biogeochemistry or sediment-stabilizing effects by the shell layer. The context-dependency implies that seagrass establishment at the exposed site is not constrained by negative ecosystem-engineering interactions only, but also by overriding physical stresses causing poor growth conditions. Present findings underline that, in addition to recent emphasis on considering positive (facilitating) interactions in ecological theory and practice, it is equally important to consider negative engineering interactions between ecosystem-engineering species. Removal of such negative interactions between ecosystem-engineering species can give a head start to the target species at the initial establishment phase, when positive engineering feedbacks by the target species on itself are still lacking. Though our study was carried out in a marine environment with variable levels of wave disturbance, similar principles may be

  16. Identification of M-CSF agonists and antagonists

    SciTech Connect

    Pandit, Jayvardhan; Jancarik, Jarmila; Kim, Sung-Hou; Koths, Kirston; Halenbeck, Robert; Fear, Anna Lisa; Taylor, Eric; Yamamoto, Ralph; Bohm, Andrew

    2000-02-15

    The present invention is directed to methods for crystallizing macrophage colony stimulating factor. The present invention is also directed to methods for designing and producing M-CSF agonists and antagonists using information derived from the crystallographic structure of M-CSF. The invention is also directed to methods for screening M-CSF agonists and antagonists. In addition, the present invention is directed to an isolated, purified, soluble and functional M-CSF receptor.

  17. Azogabazine; a photochromic antagonist of the GABAA receptor.

    PubMed

    Huckvale, Rosemary; Mortensen, Martin; Pryde, David; Smart, Trevor G; Baker, James R

    2016-07-12

    The design and synthesis of azogabazine is described, which represents a highly potent (IC50 = 23 nM) photoswitchable antagonist of the GABAA receptor. An azologization strategy is adopted, in which a benzyl phenyl ether in a high affinity gabazine analogue is replaced by an azobenzene, with resultant retention of antagonist potency. We show that cycling from blue to UV light, switching between trans and cis isomeric forms, leads to photochemically controlled antagonism of the GABA ion channel. PMID:27327397

  18. CXCR3 antagonist VUF10085 binds to an intrahelical site distinct from that of the broad spectrum antagonist TAK–779

    PubMed Central

    Nedjai, Belinda; Viney, Jonathan M; Li, Hubert; Hull, Caroline; Anderson, Caroline A; Horie, Tomoki; Horuk, Richard; Vaidehi, Nagarajan; Pease, James E

    2015-01-01

    Background and Purpose The chemokine receptor CXCR3 is implicated in a variety of clinically important diseases, notably rheumatoid arthritis and atherosclerosis. Consequently, antagonists of CXCR3 are of therapeutic interest. In this study, we set out to characterize binding sites of the specific low MW CXCR3 antagonist VUF10085 and the broad spectrum antagonist TAK-779 which blocks CXCR3 along with CCR2 and CCR5. Experimental Approach Molecular modelling of CXCR3, followed by virtual ligand docking, highlighted several CXCR3 residues likely to contact either antagonist, notably a conserved aspartate in helix 2 (Asp-1122:63), which was postulated to interact with the quaternary nitrogen of TAK-779. Validation of modelling was carried out by site-directed mutagenesis of CXCR3, followed by assays of cell surface expression, ligand binding and receptor activation. Key Results Mutation of Asn-1323.33, Phe-207 and Tyr-2716.51 within CXCR3 severely impaired both ligand binding and chemotactic responses, suggesting that these residues are critical for maintenance of a functional CXCR3 conformation. Contrary to our hypothesis, mutation of Asp-1122:63 had no observable effects on TAK-779 activity, but clearly decreased the antagonist potency of VUF 10085. Likewise, mutations of Phe-1313.32, Ile-2796.59 and Tyr-3087.43 were well tolerated and were critical for the antagonist activity of VUF 10085 but not for that of TAK-779. Conclusions and Implications This more detailed definition of a binding pocket within CXCR3 for low MW antagonists should facilitate the rational design of newer CXCR3 antagonists, with obvious clinical potential. PMID:25425280

  19. Effects of H1 and H2 receptor antagonists on Tetrahymena.

    PubMed

    Csaba, G; László, V; Darvas, Z

    1978-01-01

    In Tetrahymena pyriformis the phagocytotic rate increases in response to histamine, but neither the H1 antagonist phenindamine nor the H2 antagonist metiamide stimulate phagocytosis. The H1 antagonist counteracts the effect of histamine, whereas the H2 antagonist does not. The histamine receptor of Tetrahymena is of H1-type, since it cannot distinguish between histamine and antagonists which are closely related to it chemically. It does, however, distinguish between histamine and the chemically unrelated H1 antagonist, phenindamine. The H2 antagonist does not interact with the receptor.

  20. Early Illustrations of Geste Antagoniste in Cervical and Generalized Dystonia

    PubMed Central

    Broussolle, Emmanuel; Laurencin, Chloé; Bernard, Emilien; Thobois, Stéphane; Danaila, Teodor; Krack, Paul

    2015-01-01

    Background Geste antagoniste, or sensory trick, is a voluntary maneuver that temporarily reduces the severity of dystonic postures or movements. We present a historical review of early reports and illustrations of geste antagoniste. Results In 1894, Brissaud described this phenomenon in Paris in patients with torticollis. He noted that a violent muscular contraction could be reversed by a minor voluntary action. He considered the improvement obtained by what he called “simple mannerisms, childish behaviour or fake pathological movements” was proof of the psychogenic origin of what he named mental torticollis. This concept was supported by photographical illustrations of the patients. The term geste antagoniste was used by Brissaud’s pupils, Meige and Feindel, in their 1902 monograph on movement disorders. Other reports and illustrations of this sign were published in Europe between 1894 and 1906. Although not mentioned explicitly, geste antagoniste was also illustrated in a case report of generalized dystonia in Oppenheim’s 1911 seminal description of dystonia musculorum deformans in Berlin. Discussion Brissaud-Meige’s misinterpretation of the geste antagoniste unfortunately anchored the psychogenic origin of dystonia for decades. In New York, Herz brought dystonia back into the realm of organic neurology in 1944. Thereafter, it was given prominence by other authors, notably Fahn and Marsden in the 1970–1980s. Nowadays, neurologists routinely investigate for geste antagoniste when a dystonic syndrome is suspected, because it provides a further argument in favor of dystonia. The term alleviating maneuver was proposed in 2014 to replace sensory trick or geste antagoniste. This major sign is now part of the motor phenomenology of the 2013 Movement Disorder Society’s classification of dystonia. PMID:26417535

  1. Regulation of Cell Death by IAPs and Their Antagonists.

    PubMed

    Vasudevan, Deepika; Ryoo, Hyung Don

    2015-01-01

    Inhibitors of apoptosis (IAPs) family of genes encode baculovirus IAP-repeat domain-containing proteins with antiapoptotic function. These proteins also contain RING or UBC domains and act by binding to major proapoptotic factors and ubiquitylating them. High levels of IAPs inhibit caspase-mediated apoptosis. For these cells to undergo apoptosis, IAP function must be neutralized by IAP-antagonists. Mammalian IAP knockouts do not exhibit obvious developmental phenotypes, but the cells are more sensitized to apoptosis in response to injury. Loss of the mammalian IAP-antagonist ARTS results in reduced stem cell apoptosis. In addition to the antiapoptotic properties, IAPs regulate the innate immune response, and the loss of IAP function in humans is associated with immunodeficiency. The roles of IAPs in Drosophila apoptosis regulation are more apparent, where the loss of IAP1, or the expression of IAP-antagonists in Drosophila cells, is sufficient to trigger apoptosis. In this organism, apoptosis as a fate is conferred by the transcriptional induction of the IAP-antagonists. Many signaling pathways often converge on shared enhancer regions of IAP-antagonists. Cell death sensitivity is further regulated by posttranscriptional mechanisms, including those regulated by kinases, miRs, and ubiquitin ligases. These mechanisms are employed to eliminate damaged or virus-infected cells, limit neuroblast (neural stem cell) numbers, generate neuronal diversity, and sculpt tissue morphogenesis.

  2. Gonadotrophin releasing hormone antagonist in IVF/ICSI

    PubMed Central

    MS, Kamath; AM, Mangalraj; KM, Muthukumar; K, George

    2008-01-01

    OBJECTIVE: To study the efficacy of gonadotrophin releasing hormone (GnRH) antagonist in In-vitro-fertilization/Intracytoplasmic sperm injection (IVF/ICSI) cycles. TYPE OF STUDY: Observational study. SETTING: Reproductive Medicine Unit, Christian Medical College Hospital, Vellore, Tamil Nadu. MATERIALS AND METHODS: GnRH antagonists were introduced into our practice in November 2005. Fifty-two women undergoing the antagonist protocol were studied and information gathered regarding patient profile, treatment parameters (total gonadotrophin dosage, duration of treatment, and oocyte yield), and outcomes in terms of embryological parameters (cleavage rates, implantation rates) and clinical pregnancy. These parameters were compared with 121 women undergoing the standard long protocol. The costs between the two groups were also compared. MAIN OUTCOME: Clinical pregnancy rate. RESULTS: The clinical pregnancy rate per embryo transfer in the antagonist group was 31.7% which was comparable to the clinical pregnancy rate in women undergoing the standard long protocol (30.63%). The costs between the two groups were comparable. CONCLUSIONS: GnRH antagonist protocol was found to be effective and comparable to the standard long protocol regimen. In addition it was simple, convenient, and patient friendly. PMID:19562061

  3. Neuroprotective Effects of Glutamate Antagonists and Extracellular Acidity

    NASA Astrophysics Data System (ADS)

    Kaku, David A.; Giffard, Rona G.; Choi, Dennis W.

    1993-06-01

    Glutamate antagonists protect neurons from hypoxic injury both in vivo and in vitro, but in vitro studies have not been done under the acidic conditions typical of hypoxia-ischemia in vivo. Consistent with glutamate receptor antagonism, extracellular acidity reduced neuronal death in murine cortical cultures that were deprived of oxygen and glucose. Under these acid conditions, N-methyl-D-aspartate and α-amino-3-hydroxy-5-methyl-4-isox-azolepropionate-kainate antagonists further reduced neuronal death, such that some neurons tolerated prolonged oxygen and glucose deprivation almost as well as did astrocytes. Neuroprotection induced by this combination exceeded that induced by glutamate antagonists alone, suggesting that extracellular acidity has beneficial effects beyond the attenuation of ionotropic glutamate receptor activation.

  4. Development and Characterization of High Affinity Leptins and Leptin Antagonists*

    PubMed Central

    Shpilman, Michal; Niv-Spector, Leonora; Katz, Meirav; Varol, Chen; Solomon, Gili; Ayalon-Soffer, Michal; Boder, Eric; Halpern, Zamir; Elinav, Eran; Gertler, Arieh

    2011-01-01

    Leptin is a pleiotropic hormone acting both centrally and peripherally. It participates in a variety of biological processes, including energy metabolism, reproduction, and modulation of the immune response. So far, structural elements affecting leptin binding to its receptor remain unknown. We employed random mutagenesis of leptin, followed by selection of high affinity mutants by yeast surface display and discovered that replacing residue Asp-23 with a non-negatively charged amino acid leads to dramatically enhanced affinity of leptin for its soluble receptor. Rational mutagenesis of Asp-23 revealed the D23L substitution to be most effective. Coupling the Asp-23 mutation with alanine mutagenesis of three amino acids (L39A/D40A/F41A) previously reported to convert leptin into antagonist resulted in potent antagonistic activity. These novel superactive mouse and human leptin antagonists (D23L/L39A/D40A/F41A), termed SMLA and SHLA, respectively, exhibited over 60-fold increased binding to leptin receptor and 14-fold higher antagonistic activity in vitro relative to the L39A/D40A/F41A mutants. To prolong and enhance in vivo activity, SMLA and SHLA were monopegylated mainly at the N terminus. Administration of the pegylated SMLA to mice resulted in a remarkably rapid, significant, and reversible 27-fold more potent increase in body weight (as compared with pegylated mouse leptin antagonist), because of increased food consumption. Thus, recognition and mutagenesis of Asp-23 enabled construction of novel compounds that induce potent and reversible central and peripheral leptin deficiency. In addition to enhancing our understanding of leptin interactions with its receptor, these antagonists enable in vivo study of the role of leptin in metabolic and immune processes and hold potential for future therapeutic use in disease pathologies involving leptin. PMID:21119198

  5. Development and characterization of high affinity leptins and leptin antagonists.

    PubMed

    Shpilman, Michal; Niv-Spector, Leonora; Katz, Meirav; Varol, Chen; Solomon, Gili; Ayalon-Soffer, Michal; Boder, Eric; Halpern, Zamir; Elinav, Eran; Gertler, Arieh

    2011-02-11

    Leptin is a pleiotropic hormone acting both centrally and peripherally. It participates in a variety of biological processes, including energy metabolism, reproduction, and modulation of the immune response. So far, structural elements affecting leptin binding to its receptor remain unknown. We employed random mutagenesis of leptin, followed by selection of high affinity mutants by yeast surface display and discovered that replacing residue Asp-23 with a non-negatively charged amino acid leads to dramatically enhanced affinity of leptin for its soluble receptor. Rational mutagenesis of Asp-23 revealed the D23L substitution to be most effective. Coupling the Asp-23 mutation with alanine mutagenesis of three amino acids (L39A/D40A/F41A) previously reported to convert leptin into antagonist resulted in potent antagonistic activity. These novel superactive mouse and human leptin antagonists (D23L/L39A/D40A/F41A), termed SMLA and SHLA, respectively, exhibited over 60-fold increased binding to leptin receptor and 14-fold higher antagonistic activity in vitro relative to the L39A/D40A/F41A mutants. To prolong and enhance in vivo activity, SMLA and SHLA were monopegylated mainly at the N terminus. Administration of the pegylated SMLA to mice resulted in a remarkably rapid, significant, and reversible 27-fold more potent increase in body weight (as compared with pegylated mouse leptin antagonist), because of increased food consumption. Thus, recognition and mutagenesis of Asp-23 enabled construction of novel compounds that induce potent and reversible central and peripheral leptin deficiency. In addition to enhancing our understanding of leptin interactions with its receptor, these antagonists enable in vivo study of the role of leptin in metabolic and immune processes and hold potential for future therapeutic use in disease pathologies involving leptin.

  6. Pharmacokinetic interactions with calcium channel antagonists (Part II).

    PubMed

    Schlanz, K D; Myre, S A; Bottorff, M B

    1991-12-01

    Since calcium channel antagonists are a diverse class of drugs frequently administered in combination with other agents, the potential for clinically significant pharmacokinetic drug interactions exists. These interactions occur most frequently via altered hepatic blood flow and impaired hepatic enzyme activity. Part I of the article, which appeared in the previous issue of the Journal, dealt with interactions between calcium antagonists and marker compounds, theophylline, midazolam, lithium, doxorubicin, oral hypoglycaemics and cardiac drugs. Part II examines interactions with cyclosporin, anaesthetics, carbamazepine and cardiovascular agents. PMID:1782739

  7. Hyperglycemia of Diabetic Rats Decreased by a Glucagon Receptor Antagonist

    NASA Astrophysics Data System (ADS)

    Johnson, David G.; Ulichny Goebel, Camy; Hruby, Victor J.; Bregman, Marvin D.; Trivedi, Dev

    1982-02-01

    The glucagon analog [l-Nα-trinitrophenylhistidine, 12-homoarginine]-glucagon (THG) was examined for its ability to lower blood glucose concentrations in rats made diabetic with streptozotocin. In vitro, THG is a potent antagonist of glucagon activation of the hepatic adenylate cyclase assay system. Intravenous bolus injections of THG caused rapid decreases (20 to 35 percent) of short duration in blood glucose. Continuous infusion of low concentrations of the inhibitor led to larger sustained decreases in blood glucose (30 to 65 percent). These studies demonstrate that a glucagon receptor antagonist can substantially reduce blood glucose levels in diabetic animals without addition of exogenous insulin.

  8. Bradykinin antagonists with dehydrophenylalanine analogues at position 5.

    PubMed

    Greiner, G; Dornberger, U; Paegelow, I; Schölkens, B A; Liebmann, C; Reissmann, S

    1998-04-01

    Continuing the studies on structural requirements of bradykinin antagonists, it has been found that analogues with dehydrophenylalanine (deltaPhe) or its ring-substituted analogues (deltaPhe(X)) at position 5 act as antagonists on guinea pig pulmonary artery, and on guinea pig ileum. Because both organs are considered to be bradykinin B2 receptor tissues, the analogues with deltaPhe or deltaPhe(X) at position 5, but without any replacement at position 7, seem to represent a new structural type of B2 receptor antagonist. All the analogues investigated act as partial antagonists; they inhibit the bradykinin-induced contraction at low concentrations and act as agonists at higher concentrations. Ring substitutions by methyl groups or iodine reduce both the agonistic and antagonistic activity. Only substitution by fluorine gives a high potency. Incorporation of deltaPhe into different representative antagonists with key modifications at position 7 does not enhance the antagonist activity of the basic structures, with one exception. Only the combination of deltaPhe at position 5 with DPhe at position 7 increases the antagonistic potency on guinea pig ileum by about one order of magnitude. Radioligand binding studies indicate the importance of position 5 for the discrimination of B2 receptor subtypes. The binding affinity to the low-affinity binding site (KL) was not significantly changed by replacement of Phe by deltaPhe. In contrast, ring-methylation of deltaPhe results in clearly reduced binding to KL. The affinity to the high-affinity binding site (KH) was almost unchanged by the replacement of Phe in position 5 by deltaPhe, whereas the analogue with 2-methyl-dehydrophenylalanine completely failed to detect the KH-site. The peptides were synthesized on the Wang-resin according to the Fmoc/Bu(t) strategy using Mtr protection for the side chain of Arg. The dehydrophenylalanine analogues were prepared by a strategy involving PyBop couplings of the dipeptide unit Fmoc

  9. Discovery of cannabinoid-1 receptor antagonists by virtual screening.

    PubMed

    Lee, Gil Nam; Kim, Kwang Rok; Ahn, Sung-Hoon; Bae, Myung Ae; Kang, Nam Sook

    2010-09-01

    In this work, we tried to find a new scaffold for a CB1 receptor antagonist using virtual screening. We first analyzed structural features for the known cannabinoid-1 receptor antagonists and, then, we built pharmacophore models using the HipHop concept and carried out a docking study based on our homology CB1 receptor 3D structure. The most active compound, including thiazole-4-one moiety, showed an activity value of 125 nM IC(50), with a good PK profile. PMID:20667724

  10. Discovery of Tertiary Sulfonamides as Potent Liver X Receptor Antagonists

    SciTech Connect

    Zuercher, William J.; Buckholz†, Richard G.; Campobasso, Nino; Collins, Jon L.; Galardi, Cristin M.; Gampe, Robert T.; Hyatt, Stephen M.; Merrihew, Susan L.; Moore, John T.; Oplinger, Jeffrey A.; Reid, Paul R.; Spearing, Paul K.; Stanley, Thomas B.; Stewart, Eugene L.; Willson, Timothy M.

    2010-08-12

    Tertiary sulfonamides were identified in a HTS as dual liver X receptor (LXR, NR1H2, and NR1H3) ligands, and the binding affinity of the series was increased through iterative analogue synthesis. A ligand-bound cocrystal structure was determined which elucidated key interactions for high binding affinity. Further characterization of the tertiary sulfonamide series led to the identification of high affinity LXR antagonists. GSK2033 (17) is the first potent cell-active LXR antagonist described to date. 17 may be a useful chemical probe to explore the cell biology of this orphan nuclear receptor.

  11. Discovery of small molecule antagonists of TRPV1.

    PubMed

    Rami, Harshad K; Thompson, Mervyn; Wyman, Paul; Jerman, Jeffrey C; Egerton, Julie; Brough, Stephen; Stevens, Alexander J; Randall, Andrew D; Smart, Darren; Gunthorpe, Martin J; Davis, John B

    2004-07-16

    Small molecule antagonists of the vanilloid receptor 1 (TRPV1, also known as VR1) are disclosed. Ureas such as 5 (SB-452533) were used to explore the structure activity relationship with several potent analogues identified. Pharmacological studies using electrophysiological and FLIPR Ca(2+) based assays showed compound 5 was an antagonist versus capsaicin, noxious heat and acid mediated activation of TRPV1. Study of a quaternary salt of 5 supports a mode of action in which compounds from this series cause inhibition via an extracellularly accessible binding site on the TRPV1 receptor. PMID:15203132

  12. Discovery of cannabinoid-1 receptor antagonists by virtual screening.

    PubMed

    Lee, Gil Nam; Kim, Kwang Rok; Ahn, Sung-Hoon; Bae, Myung Ae; Kang, Nam Sook

    2010-09-01

    In this work, we tried to find a new scaffold for a CB1 receptor antagonist using virtual screening. We first analyzed structural features for the known cannabinoid-1 receptor antagonists and, then, we built pharmacophore models using the HipHop concept and carried out a docking study based on our homology CB1 receptor 3D structure. The most active compound, including thiazole-4-one moiety, showed an activity value of 125 nM IC(50), with a good PK profile.

  13. Histamine 2 Receptor Antagonists and Proton Pump Inhibitors.

    PubMed

    Brinkworth, Megan D; Aouthmany, Mouhammad; Sheehan, Michael

    2016-01-01

    Within the last 50 years, the pharmacologic market for gastric disease has grown exponentially. Currently, medical management with histamine 2 receptor antagonist and proton pump inhibitors are the mainstay of therapy over surgical intervention. These are generally regarded as safe medications, but there are growing numbers of cases documenting adverse effects, especially those manifesting in the skin. Here we review the pharmacology, common clinical applications, and adverse reactions of both histamine 2 receptor antagonists and proton pump inhibitors with a particular focus on the potential for allergic reactions including allergic contact dermatitis. PMID:27172303

  14. Characterization of a novel non-steroidal glucocorticoid receptor antagonist

    SciTech Connect

    Li, Qun-Yi; Zhang, Meng; Hallis, Tina M.; DeRosier, Therese A.; Yue, Jian-Min; Ye, Yang; Mais, Dale E.; Wang, Ming-Wei

    2010-01-15

    Selective antagonists of the glucocorticoid receptor (GR) are desirable for the treatment of hypercortisolemia associated with Cushing's syndrome, psychic depression, obesity, diabetes, neurodegenerative diseases, and glaucoma. NC3327, a non-steroidal small molecule with potent binding affinity to GR (K{sub i} = 13.2 nM), was identified in a high-throughput screening effort. As a full GR antagonist, NC3327 greatly inhibits the dexamethasone (Dex) induction of marker genes involved in hepatic gluconeogenesis, but has a minimal effect on matrix metalloproteinase 9 (MMP-9), a GR responsive pro-inflammatory gene. Interestingly, the compound recruits neither coactivators nor corepressors to the GR complex but competes with glucocorticoids for the interaction between GR and a coactivator peptide. Moreover, NC3327 does not trigger GR nuclear translocation, but significantly blocks Dex-induced GR transportation to the nucleus, and thus appears to be a 'competitive' GR antagonist. Therefore, the non-steroidal compound, NC3327, may represent a new class of GR antagonists as potential therapeutics for a variety of cortisol-related endocrine disorders.

  15. Medium-Induced Antagonistic Behavior in Staphylococcus Aureus.

    ERIC Educational Resources Information Center

    Benathen, Isaiah A.

    1992-01-01

    Antagonism is the production of substances by microorganisms that inhibit or prevent the growth of other bacteria. This paper demonstrates the antagonistic behavior of gram-positive coccus on the B. subtilis and Enterococcus faecalis gram-positive microorganisms, showing that the process of antagonism is sometimes dependent on the nutritional…

  16. Antagonistic peptide technology for functional dissection of CLE peptides revisited.

    PubMed

    Czyzewicz, Nathan; Wildhagen, Mari; Cattaneo, Pietro; Stahl, Yvonne; Pinto, Karine Gustavo; Aalen, Reidunn B; Butenko, Melinka A; Simon, Rüdiger; Hardtke, Christian S; De Smet, Ive

    2015-08-01

    In the Arabidopsis thaliana genome, over 1000 putative genes encoding small, presumably secreted, signalling peptides can be recognized. However, a major obstacle in identifying the function of genes encoding small signalling peptides is the limited number of available loss-of-function mutants. To overcome this, a promising new tool, antagonistic peptide technology, was recently developed. Here, this antagonistic peptide technology was tested on selected CLE peptides and the related IDA peptide and its usefulness in the context of studies of peptide function discussed. Based on the analyses, it was concluded that the antagonistic peptide approach is not the ultimate means to overcome redundancy or lack of loss-of-function lines. However, information collected using antagonistic peptide approaches (in the broad sense) can be very useful, but these approaches do not work in all cases and require a deep insight on the interaction between the ligand and its receptor to be successful. This, as well as peptide ligand structure considerations, should be taken into account before ordering a wide range of synthetic peptide variants and/or generating transgenic plants.

  17. Neuroprotection by NMDA receptor antagonists in a variety of neuropathologies.

    PubMed

    Palmer, G C

    2001-09-01

    Because of adverse reactions, early efforts to introduce high affinity competitive or use-dependent NMDA receptor antagonists into patients suffering from stroke, head trauma or epilepsy met with failure. Later it was discovered that both low affinity use-dependent NMDA receptor antagonists and compounds with selective affinity for the NR2B receptor subunit met the criteria for safe administration into patients. Furthermore, these low affinity antagonists exhibit significant mechanistic differences from their higher affinity counterparts. Success of the latter is attested to the ability of the following low affinity compounds to be marketed: 1) Cough suppressant-dextromethorphan (available for decades); 2) Parkinson's disease--amantadine, memantine and budipine; 3) Dementia--memantine; and 4) Epilepsy--felbamate. Moreover, Phase III clinical trials are ongoing with remacemide for epilepsy and Huntington's disease and head trauma for HU-211. A host of compounds are or were under evaluation for the possible treatment of stroke, head trauma, hyperalgesia and various neurodegenerative disorders. Despite the fact that other drugs with associated NMDA receptor mechanisms have reached clinical status, this review focuses only on those competitive and use-dependent NMDA receptor antagonists that reached clinical trails. The ensuing discussions link the in vivo pharmacological investigations that led to the success/mistakes/ failures for eventual testing of promising compounds in the clinic. PMID:11554551

  18. Non-NMDA receptor antagonist-induced drinking in rat

    NASA Technical Reports Server (NTRS)

    Xu, Z.; Johnson, A. K.

    1998-01-01

    Glutamate has been implicated in the central control of mechanisms that maintain body fluid homeostasis. The present studies demonstrate that intracerebroventricular (i.c.v.) injections of the non-N-methyl-d-aspartate (NMDA) receptor antagonists 6, 7-dinitroquinoxaline-2,3-dione (DNQX) and 6-cyano-7-nitroquinoxaline-2,3 dione (CNQX) induce drinking in rats. The dipsogenic effect of i.c.v. DNQX was antagonized by the non-NMDA receptor agonist alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA). The water intake induced by DNQX was also blocked by pretreatment with a NMDA receptor antagonist, MK-801, but not by angiotensin type 1 (AT1) or acetylcholine muscarinic receptor antagonists (losartan and atropine). The results indicate that non-NMDA receptors may exert a tonic inhibitory effect within brain circuits that control dipsogenic activity and that functional integrity of NMDA receptors may be required for the non-NMDA receptor antagonists to induce water intake. Copyright 1998 Published by Elsevier Science B.V.

  19. Retention and Outcome in a Narcotic Antagonist Treatment Program.

    ERIC Educational Resources Information Center

    Capone, Thomas; And Others

    1986-01-01

    Patients in an outpatient narcotic antagonist treatment program were followed through their course of treatment. Those who remained longer were found to enter treatment with more stable employment records and less recent opiate use. They also appeared more successful at termination, with better vocational stability, less extraneous drug use, and…

  20. Myofascial force transmission via extramuscular pathways occurs between antagonistic muscles.

    PubMed

    Huijing, Peter A; Baan, Guus C

    2008-01-01

    Most often muscles (as organs) are viewed as independent actuators. To test if this is true for antagonistic muscles, force was measured simultaneously at: (1) the proximal and distal tendons of the extensor digitorum muscle (EDL) to quantify any proximo-distal force differences, as an indicator of myofascial force transmission, (2) at the distal tendons of the whole antagonistic peroneal muscle group (PER) to test if effects of EDL length changes are present and (3) at the proximal end of the tibia to test if myofascially transmitted force is exerted there. EDL length was manipulated either at the proximal or distal tendons. This way equal EDL lengths are attained at two different positions of the muscle with respect to the tibia and antagonistic muscles. Despite its relatively small size, lengthening of the EDL changed forces exerted on the tibia and forces exerted by its antagonistic muscle group. Apart from its extramuscular myofascial connections, EDL has no connections to either the tibia or these antagonistic muscles. Proximal EDL lengthening increased distal muscular forces (active PER DeltaF approximately +1.7%), but decreased tibial forces (passive from 0.3 to 0 N; active DeltaF approximately -5%). Therefore, it is concluded that these antagonistic muscles do not act independently, because of myofascial force transmission between them. Such a decrease in tibial force indicates release of pre-strained connections. Distal EDL lengthening had opposite effects (tripling passive force exerted on tibia; active PER force DeltaF approximately -3.6%). It is concluded that the length and relative position of the EDL is a co-determinant of passive and active force exerted at tendons of nearby antagonistic muscle groups. These results necessitate a new view of the locomotor apparatus, which needs to take into account the high interdependence of muscles and muscle fibres as force generators, as well as proximo-distal force differences and serial and parallel

  1. Myofascial force transmission via extramuscular pathways occurs between antagonistic muscles.

    PubMed

    Huijing, Peter A; Baan, Guus C

    2008-01-01

    Most often muscles (as organs) are viewed as independent actuators. To test if this is true for antagonistic muscles, force was measured simultaneously at: (1) the proximal and distal tendons of the extensor digitorum muscle (EDL) to quantify any proximo-distal force differences, as an indicator of myofascial force transmission, (2) at the distal tendons of the whole antagonistic peroneal muscle group (PER) to test if effects of EDL length changes are present and (3) at the proximal end of the tibia to test if myofascially transmitted force is exerted there. EDL length was manipulated either at the proximal or distal tendons. This way equal EDL lengths are attained at two different positions of the muscle with respect to the tibia and antagonistic muscles. Despite its relatively small size, lengthening of the EDL changed forces exerted on the tibia and forces exerted by its antagonistic muscle group. Apart from its extramuscular myofascial connections, EDL has no connections to either the tibia or these antagonistic muscles. Proximal EDL lengthening increased distal muscular forces (active PER DeltaF approximately +1.7%), but decreased tibial forces (passive from 0.3 to 0 N; active DeltaF approximately -5%). Therefore, it is concluded that these antagonistic muscles do not act independently, because of myofascial force transmission between them. Such a decrease in tibial force indicates release of pre-strained connections. Distal EDL lengthening had opposite effects (tripling passive force exerted on tibia; active PER force DeltaF approximately -3.6%). It is concluded that the length and relative position of the EDL is a co-determinant of passive and active force exerted at tendons of nearby antagonistic muscle groups. These results necessitate a new view of the locomotor apparatus, which needs to take into account the high interdependence of muscles and muscle fibres as force generators, as well as proximo-distal force differences and serial and parallel

  2. Diversity, distribution, and antagonistic activities of rhizobacteria of Panax notoginseng

    PubMed Central

    Fan, Ze-Yan; Miao, Cui-Ping; Qiao, Xin-Guo; Zheng, You-Kun; Chen, Hua-Hong; Chen, You-Wei; Xu, Li-Hua; Zhao, Li-Xing; Guan, Hui-Lin

    2015-01-01

    Background Rhizobacteria play an important role in plant defense and could be promising sources of biocontrol agents. This study aimed to screen antagonistic bacteria and develop a biocontrol system for root rot complex of Panax notoginseng. Methods Pure-culture methods were used to isolate bacteria from the rhizosphere soil of notoginseng plants. The identification of isolates was based on the analysis of 16S ribosomal RNA (rRNA) sequences. Results A total of 279 bacteria were obtained from rhizosphere soils of healthy and root-rot notoginseng plants, and uncultivated soil. Among all the isolates, 88 showed antagonistic activity to at least one of three phytopathogenic fungi, Fusarium oxysporum, Fusarium solani, and Phoma herbarum mainly causing root rot disease of P. notoginseng. Based on the 16S rRNA sequencing, the antagonistic bacteria were characterized into four clusters, Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetesi. The genus Bacillus was the most frequently isolated, and Bacillus siamensis (Hs02), Bacillus atrophaeus (Hs09) showed strong antagonistic activity to the three pathogens. The distribution pattern differed in soil types, genera Achromobacter, Acidovorax, Brevibacterium, Brevundimonas, Flavimonas, and Streptomyces were only found in rhizosphere of healthy plants, while Delftia, Leclercia, Brevibacillus, Microbacterium, Pantoea, Rhizobium, and Stenotrophomonas only exist in soil of diseased plant, and Acinetobacter only exist in uncultivated soil. Conclusion The results suggest that diverse bacteria exist in the P. notoginseng rhizosphere soil, with differences in community in the same field, and antagonistic isolates may be good potential biological control agent for the notoginseng root-rot diseases caused by F. oxysporum, Fusarium solani, and Panax herbarum. PMID:27158229

  3. Mineralocorticoid receptor antagonists: emerging roles in cardiovascular medicine

    PubMed Central

    Funder, John W

    2013-01-01

    Spironolactone was first developed over 50 years ago as a potent mineralocorticoid receptor (MR) antagonist with undesirable side effects; it was followed a decade ago by eplerenone, which is less potent but much more MR-specific. From a marginal role as a potassium-sparing diuretic, spironolactone was shown to be an extraordinarily effective adjunctive agent in the treatment of progressive heart failure, as was eplerenone in subsequent heart failure trials. Neither acts as an aldosterone antagonist in the heart as the cardiac MR are occupied by cortisol, which becomes an aldosterone mimic in conditions of tissue damage. The accepted term “MR antagonist”, (as opposed to “aldosterone antagonist” or, worse, “aldosterone blocker”), should be retained, despite the demonstration that they act not to deny agonist access but as inverse agonists. The prevalence of primary aldosteronism is now recognized as accounting for about 10% of hypertension, with recent evidence suggesting that this figure may be considerably higher: in over two thirds of cases of primary aldosteronism therapy including MR antagonists is standard of care. MR antagonists are safe and vasoprotective in uncomplicated essential hypertension, even in diabetics, and at low doses they also specifically lower blood pressure in patients with so-called resistant hypertension. Nowhere are more than 1% of patients with primary aldosteronism ever diagnosed and specifically treated. Given the higher risk profile in patients with primary aldosteronism than that of age, sex, and blood pressure matched essential hypertension, on public health grounds alone the guidelines for first-line treatment of all hypertension should mandate inclusion of a low-dose MR antagonist. PMID:24133375

  4. The comparative pharmacokinetics of H1-receptor antagonists.

    PubMed

    Simons, F E; Simons, K J; Chung, M; Yeh, J

    1987-12-01

    H1-receptor antagonists appear to be absorbed rapidly after oral administration, with peak serum concentrations being reached one to three hours after a dose. For most of these drugs, the absolute bioavailability is unknown because no intravenous formulations are available for comparative purposes. The serum elimination half-life values of these agents are variable: a few hours for terfenadine and triprolidine; about 9 hours for cetirizine, azatadine, and loratadine; from 20 to 25 hours for hydroxyzine, chlorpheniramine, and brompheniramine; and from 5 to 14 days for astemizole. Few pharmacokinetic studies of H1-receptor antagonists in children have been reported. However, it is known that chlorpheniramine, hydroxyzine, cetirizine, and terfenadine have shorter elimination half-life values in children than in adults. Regardless of the age of patients, for most of the H1-receptor antagonists the apparent volumes of distribution and total body clearances appear to be large (3.4 to 18.5 L/kg and 4.4 to 32.1 mL/min/kg, respectively). Cetirizine is an exception, with values of 0.8 L/kg and 0.5 mL/min/kg. Urinary excretion of unchanged antihistamine is higher after cetirizine (60% of dose) than any other H1 blocker. For H1-receptor antagonists with long half-life values, steady state may not be reached for several days (chlorpheniramine and brompheniramine) or several weeks (astemizole), and significant accumulation of drug occurs if the dosing interval is more frequent than every half-life. There is no evidence for the introduction of metabolism of H1-receptor antagonists, even after months of treatment.

  5. Are CB1 Receptor Antagonists Nootropic or Cognitive Impairing Agents?

    PubMed Central

    Varvel, Stephen A.; Wise, Laura E.; Lichtman, Aron H.

    2010-01-01

    For more than a decade, a considerable amount of research has examined the effects of rimonabant (SR 141716) and other CB1 receptor antagonists in both in vivo and in vitro models of learning and memory. In addition to its utility in determining whether the effects of drugs are mediated though a CB1 receptor mechanism of action, these antagonists are useful in providing insight into the physiological function of the endogenous cannabinoid system. Several groups have reported that CB1 receptor antagonists enhance memory duration in a variety of spatial and operant paradigms, but not in all paradigms. Conversely, disruption of CB1 receptor signaling also impairs extinction learning in which the animal actively suppresses a learned response when reinforcement has been withheld. These extinction deficits occur in aversively motivated tasks, such as in fear conditioning or escape behavior in the Morris water maze task, but not in appetitively motivated tasks. Similarly, in electrophysiological models, CB1 receptor antagonists elicit a variety of effects, including enhancement of long-term potentiation (LTP), while disrupting long-term depression (LTD) and interfering with transient forms of plasticity, including depolarization-induced suppression of inhibition (DSI) and depolarization-induced suppression of excitation (DSE). The collective results of the in vivo and in vitro studies employing CB1 receptor antagonists, demonstrate that these receptors play integral roles in different components of cognitive processing. Functionally, pharmacological blockade of CB1 receptors may strengthen memory duration, but interferes with extinction of learned behaviors that are associated with traumatic or aversive memories. PMID:20539824

  6. Accumulation of Deleterious Mutations Near Sexually Antagonistic Genes

    PubMed Central

    Connallon, Tim; Jordan, Crispin Y.

    2016-01-01

    Mutation generates a steady supply of genetic variation that, while occasionally useful for adaptation, is more often deleterious for fitness. Recent research has emphasized that the fitness effects of mutations often differ between the sexes, leading to important evolutionary consequences for the maintenance of genetic variation and long-term population viability. Some forms of sex-specific selection—i.e., stronger purifying selection in males than females—can help purge a population’s load of female-harming mutations and promote population growth. Other scenarios—e.g., sexually antagonistic selection, in which mutations that harm females are beneficial for males—inflate genetic loads and potentially dampen population viability. Evolutionary processes of sexual antagonism and purifying selection are likely to impact the evolutionary dynamics of different loci within a genome, yet theory has mostly ignored the potential for interactions between such loci to jointly shape the evolutionary genetic basis of female and male fitness variation. Here, we show that sexually antagonistic selection at a locus tends to elevate the frequencies of deleterious alleles at tightly linked loci that evolve under purifying selection. Moreover, haplotypes that segregate for different sexually antagonistic alleles accumulate different types of deleterious mutations. Haplotypes that carry female-benefit sexually antagonistic alleles preferentially accumulate mutations that are primarily male harming, whereas male-benefit haplotypes accumulate mutations that are primarily female harming. The theory predicts that sexually antagonistic selection should shape the genomic organization of genetic variation that differentially impacts female and male fitness, and contribute to sexual dimorphism in the genetic basis of fitness variation. PMID:27226163

  7. Accumulation of Deleterious Mutations Near Sexually Antagonistic Genes.

    PubMed

    Connallon, Tim; Jordan, Crispin Y

    2016-01-01

    Mutation generates a steady supply of genetic variation that, while occasionally useful for adaptation, is more often deleterious for fitness. Recent research has emphasized that the fitness effects of mutations often differ between the sexes, leading to important evolutionary consequences for the maintenance of genetic variation and long-term population viability. Some forms of sex-specific selection-i.e., stronger purifying selection in males than females-can help purge a population's load of female-harming mutations and promote population growth. Other scenarios-e.g., sexually antagonistic selection, in which mutations that harm females are beneficial for males-inflate genetic loads and potentially dampen population viability. Evolutionary processes of sexual antagonism and purifying selection are likely to impact the evolutionary dynamics of different loci within a genome, yet theory has mostly ignored the potential for interactions between such loci to jointly shape the evolutionary genetic basis of female and male fitness variation. Here, we show that sexually antagonistic selection at a locus tends to elevate the frequencies of deleterious alleles at tightly linked loci that evolve under purifying selection. Moreover, haplotypes that segregate for different sexually antagonistic alleles accumulate different types of deleterious mutations. Haplotypes that carry female-benefit sexually antagonistic alleles preferentially accumulate mutations that are primarily male harming, whereas male-benefit haplotypes accumulate mutations that are primarily female harming. The theory predicts that sexually antagonistic selection should shape the genomic organization of genetic variation that differentially impacts female and male fitness, and contribute to sexual dimorphism in the genetic basis of fitness variation. PMID:27226163

  8. The neuromedin B receptor antagonist, BIM-23127, is a potent antagonist at human and rat urotensin-II receptors.

    PubMed

    Herold, Christopher L; Behm, David J; Buckley, Peter T; Foley, James J; Wixted, William E; Sarau, Henry M; Douglas, Stephen A

    2003-05-01

    The functional activity of the peptidic neuromedin B receptor antagonist BIM-23127 was investigated at recombinant and native urotensin-II receptors (UT receptors). Human urotensin-II (hU-II) promoted intracellular calcium mobilization in HEK293 cells expressing the human UT (hUT) or rat UT (rUT) receptors with pEC(50) values of 9.80+/-0.34 (n=6) and 9.06+/-0.32 (n=4), respectively. While BIM-23127 alone had no effect on calcium responses in either cell line, it was a potent and competitive antagonist at both hUT (pA(2)=7.54+/-0.14; n=3) and rUT (pA(2)=7.70+/-0.05; n=3) receptors. Furthermore, BIM-23127 reversed hU-II-induced contractile tone in the rat-isolated aorta with a pIC(50) of 6.66+/-0.04 (n=4). In conclusion, BIM- 23127 is the first hUT receptor antagonist identified to date and should not be considered as a selective neuromedin B receptor antagonist. PMID:12770925

  9. Modulation of GABA release from the thalamic reticular nucleus by cocaine and caffeine: role of serotonin receptors.

    PubMed

    Goitia, Belén; Rivero-Echeto, María Celeste; Weisstaub, Noelia V; Gingrich, Jay A; Garcia-Rill, Edgar; Bisagno, Verónica; Urbano, Francisco J

    2016-02-01

    Serotonin receptors are targets of drug therapies for a variety of neuropsychiatric and neurodegenerative disorders. Cocaine inhibits the re-uptake of serotonin (5-HT), dopamine, and noradrenaline, whereas caffeine blocks adenosine receptors and opens ryanodine receptors in the endoplasmic reticulum. We studied how 5-HT and adenosine affected spontaneous GABAergic transmission from thalamic reticular nucleus. We combined whole-cell patch clamp recordings of miniature inhibitory post-synaptic currents (mIPSCs) in ventrobasal thalamic neurons during local (puff) application of 5-HT in wild type (WT) or knockout mice lacking 5-HT2A receptors (5-HT2A -/-). Inhibition of mIPSCs frequency by low (10 μM) and high (100 μM) 5-HT concentrations was observed in ventrobasal neurons from 5-HT2A -/- mice. In WT mice, only 100 μM 5-HT significantly reduced mIPSCs frequency. In 5-HT2A -/- mice, NAN-190, a specific 5-HT1A antagonist, prevented the 100 μM 5-HT inhibition while blocking H-currents that prolonged inhibition during post-puff periods. The inhibitory effects of 100 μM 5-HT were enhanced in cocaine binge-treated 5-HT2A -/- mice. Caffeine binge treatment did not affect 5-HT-mediated inhibition. Our findings suggest that both 5-HT1A and 5-HT2A receptors are present in pre-synaptic thalamic reticular nucleus terminals. Serotonergic-mediated inhibition of GABA release could underlie aberrant thalamocortical physiology described after repetitive consumption of cocaine. Our findings suggest that both 5-HT1A , 5-HT2A and A1 receptors are present in pre-synaptic TRN terminals. 5-HT1A and A1 receptors would down-regulate adenylate cyclase, whereas 5-HT1A would also increase the probability of the opening of G-protein-activated inwardly rectifying K(+) channels (GIRK). Sustained opening of GIRK channels would hyperpolarize pre-synaptic terminals activating H-currents, resulting in less GABA release. 5-HT2A -would activate PLC and IP3 , increasing intracellular [Ca(2+) ] and

  10. Tumor necrosis factor-alpha antagonist-induced sarcoidosis.

    PubMed

    Clementine, Rochelle Robicheaux; Lyman, Justin; Zakem, Jerald; Mallepalli, Jyothi; Lindsey, Stephen; Quinet, Robert

    2010-09-01

    Sarcoidosis is a multisystem granulomatous disease of unknown etiology. Tumor necrosis factor (TNF)-alpha is an important player in granuloma formation, and recent clinical trials have investigated the efficacy of TNF-alpha inhibitors in sarcoidosis. Paradoxically, there are several case reports in the medical literature describing the development of sarcoidosis in patients treated with TNF-alpha inhibitors. We describe 3 cases of TNF-alpha antagonist-induced sarcoidosis: 1 case of pulmonary, ocular and cutaneous sarcoidosis developing in a patient receiving infliximab for erosive rheumatoid arthritis, 1 case of etanercept-induced sarcoidosis in a patient with seronegative rheumatoid arthritis, and 1 case of sarcoidosis developing in a patient receiving etanercept for erosive rheumatoid arthritis. We also provide a brief discussion on the role of TNF alpha in granuloma formation and implications in the use of TNF-alpha antagonists in autoimmune disease.

  11. Agonist-antagonist combinations in opioid dependence: a translational approach

    PubMed Central

    Mannelli, P.

    2011-01-01

    Summary The potential therapeutic benefits of co-administering opiate agonist and antagonist agents remain largely to be investigated. This paper focuses on the mechanisms of very low doses of naltrexone that help modulate the effects of methadone withdrawal and review pharmacological properties of the buprenorphine/naltrexone combination that support its clinical investigation. The bench-to-bedside development of the very low dose naltrexone treatment can serve as a translational paradigm to investigate and treat drug addiction. Further research on putative mechanisms elicited by the use of opioid agonist-antagonist combinations may lead to effective pharmacological alternatives to the gold standard methadone treatment, also useful for the management of the abuse of non opioid drugs and alcohol. PMID:22448305

  12. Clinical pharmacokinetics and pharmacodynamics of the endothelin receptor antagonist macitentan.

    PubMed

    Sidharta, P N; Treiber, A; Dingemanse, J

    2015-05-01

    Pulmonary arterial hypertension (PAH) is a progressive disease of the lung vascular system, which leads to right-sided heart failure and ultimately death if untreated. Treatments to regulate the pulmonary vascular pressure target the prostacyclin, nitric oxide, and endothelin (ET) pathways. Macitentan, an oral, once-daily, dual ETA and ETB receptor antagonist with high affinity and sustained receptor binding is the first ET receptor antagonist to show significant reduction of the risk of morbidity and mortality in PAH patients in a large-scale phase III study with a long-term outcome. Here we present a review of the available clinical pharmacokinetic, pharmacodynamic, pharmacokinetic/pharmacodynamic relationship, and drug-drug interaction data of macitentan in healthy subjects, patients with PAH, and in special populations.

  13. Lead Optimization Studies of Cinnamic Amide EP2 Antagonists

    PubMed Central

    2015-01-01

    Prostanoid receptor EP2 can play a proinflammatory role, exacerbating disease pathology in a variety of central nervous system and peripheral diseases. A highly selective EP2 antagonist could be useful as a drug to mitigate the inflammatory consequences of EP2 activation. We recently identified a cinnamic amide class of EP2 antagonists. The lead compound in this class (5d) displays anti-inflammatory and neuroprotective actions. However, this compound exhibited moderate selectivity to EP2 over the DP1 prostanoid receptor (∼10-fold) and low aqueous solubility. We now report compounds that display up to 180-fold selectivity against DP1 and up to 9-fold higher aqueous solubility than our previous lead. The newly developed compounds also display higher selectivity against EP4 and IP receptors and a comparable plasma pharmacokinetics. Thus, these compounds are useful for proof of concept studies in a variety of models where EP2 activation is playing a deleterious role. PMID:24773616

  14. Antagonistic Coevolution of Marine Planktonic Viruses and Their Hosts

    NASA Astrophysics Data System (ADS)

    Martiny, Jennifer B. H.; Riemann, Lasse; Marston, Marcia F.; Middelboe, Mathias

    2014-01-01

    The potential for antagonistic coevolution between marine viruses and their (primarily bacterial) hosts is well documented, but our understanding of the consequences of this rapid evolution is in its infancy. Acquisition of resistance against co-occurring viruses and the subsequent evolution of virus host range in response have implications for bacterial mortality rates as well as for community composition and diversity. Drawing on examples from a range of environments, we consider the potential dynamics, underlying genetic mechanisms and fitness costs, and ecological impacts of virus-host coevolution in marine waters. Given that much of our knowledge is derived from laboratory experiments, we also discuss potential challenges and approaches in scaling up to diverse, complex networks of virus-host interactions. Finally, we note that a variety of novel approaches for characterizing virus-host interactions offer new hope for a mechanistic understanding of antagonistic coevolution in marine plankton.

  15. Antagonists of Plant-parasitic Nematodes in Florida Citrus

    PubMed Central

    Walter, David Evans; Kaplan, David T.

    1990-01-01

    In a survey of antagonists of nematodes in 27 citrus groves, each with a history of Tylenchulus semipenetrans infestation, and 17 noncitrus habitats in Florida, approximately 24 species of microbial antagonists capable of attacking vermiform stages of Radopholus citrophilus were recovered. Eleven of these microbes and a species of Pasteuria also were observed attacking vermiform stages of T. semipenetrans. Verticillium chlamydosporium, Paecilomyces lilacinus, P. marquandii, Streptomyces sp., Arthrobotrys oligospora, and Dactylella ellipsospora were found infecting T. semipenetrans egg masses. Two species of nematophagous amoebae, five species of predatory nematodes, and 29 species of nematophagous arthropods also were detected. Nematode-trapping fungi and nematophagous arthropods were common inhabitants of citrus groves with a history of citrus nematode infestation; however, obligate parasites of nematodes were rare. PMID:19287759

  16. Cytoplasmic Dynein Antagonists with Improved Potency and Isoform Selectivity.

    PubMed

    See, Stephanie K; Hoogendoorn, Sascha; Chung, Andrew H; Ye, Fan; Steinman, Jonathan B; Sakata-Kato, Tomoyo; Miller, Rand M; Cupido, Tommaso; Zalyte, Ruta; Carter, Andrew P; Nachury, Maxence V; Kapoor, Tarun M; Chen, James K

    2016-01-15

    Cytoplasmic dyneins 1 and 2 are related members of the AAA+ superfamily (ATPases associated with diverse cellular activities) that function as the predominant minus-end-directed microtubule motors in eukaryotic cells. Dynein 1 controls mitotic spindle assembly, organelle movement, axonal transport, and other cytosolic, microtubule-guided processes, whereas dynein 2 mediates retrograde trafficking within motile and primary cilia. Small-molecule inhibitors are important tools for investigating motor protein-dependent mechanisms, and ciliobrevins were recently discovered as the first dynein-specific chemical antagonists. Here, we demonstrate that ciliobrevins directly target the heavy chains of both dynein isoforms and explore the structure-activity landscape of these inhibitors in vitro and in cells. In addition to identifying chemical motifs that are essential for dynein blockade, we have discovered analogs with increased potency and dynein 2 selectivity. These antagonists effectively disrupt Hedgehog signaling, intraflagellar transport, and ciliogenesis, making them useful probes of these and other cytoplasmic dynein 2-dependent cellular processes.

  17. Biological effects of growth hormone and its antagonist.

    PubMed

    Okada, S; Kopchick, J J

    2001-03-01

    Serum levels of growth hormone (GH) can vary. Low levels of GH can result in a dwarf phenotype and have been positively correlated with an increased life expectancy. High levels of GH can lead to gigantism or a clinical syndrome termed acromegaly and has been implicated in diabetic eye and kidney damage. Additionally the GH/IGF-1 system has been postulated as a risk factor for several types of cancers. Thus both elevated and suppressed circulating levels of GH can have pronounced physiological effects. More than a decade ago the first drug of a new class, a GH antagonist, was discovered. This molecule is now being tested for its ability to combat the effects of high circulating levels of GH. Here, we discuss some of the detrimental actions of GH, and how a GH antagonist can be used to combat these effects. PMID:11286784

  18. Calmodulin antagonists promote TRA-8 therapy of resistant pancreatic cancer.

    PubMed

    Yuan, Kaiyu; Yong, Sun; Xu, Fei; Zhou, Tong; McDonald, Jay M; Chen, Yabing

    2015-09-22

    Pancreatic cancer is highly malignant with limited therapy and a poor prognosis. TRAIL-activating therapy has been promising, however, clinical trials have shown resistance and limited responses of pancreatic cancers. We investigated the effects of calmodulin(CaM) antagonists, trifluoperazine(TFP) and tamoxifen(TMX), on TRA-8-induced apoptosis and tumorigenesis of TRA-8-resistant pancreatic cancer cells, and underlying mechanisms. TFP or TMX alone did not induce apoptosis of resistant PANC-1 cells, while they dose-dependently enhanced TRA-8-induced apoptosis. TMX treatment enhanced efficacy of TRA-8 therapy on tumorigenesis in vivo. Analysis of TRA-8-induced death-inducing-signaling-complex (DISC) identified recruitment of survival signals, CaM/Src, into DR5-associated DISC, which was inhibited by TMX/TFP. In contrast, TMX/TFP increased TRA-8-induced DISC recruitment/activation of caspase-8. Consistently, caspase-8 inhibition blocked the effects of TFP/TMX on TRA-8-induced apoptosis. Moreover, TFP/TMX induced DR5 expression. With a series of deletion/point mutants, we identified CaM antagonist-responsive region in the putative Sp1-binding domain between -295 to -300 base pairs of DR5 gene. Altogether, we have demonstrated that CaM antagonists enhance TRA-8-induced apoptosis of TRA-8-resistant pancreatic cancer cells by increasing DR5 expression and enhancing recruitment of apoptotic signal while decreasing survival signals in DR5-associated DISC. Our studies support the use of these readily available CaM antagonists combined with TRAIL-activating agents for pancreatic cancer therapy.

  19. Aldosterone antagonist improves diastolic function in essential hypertension.

    PubMed

    Grandi, Anna M; Imperiale, Daniela; Santillo, Rosa; Barlocco, Elena; Bertolini, Andrea; Guasti, Luigina; Venco, Achille

    2002-11-01

    Experimental studies demonstrated that mineralocorticoid antagonists prevent or reverse myocardial fibrosis. Therefore, we tested the hypothesis that the aldosterone antagonist canrenone can improve left ventricular diastolic function in essential hypertension. Using digitized M-mode echocardiography and 24-hour blood pressure monitoring (ABPM), we realized a prospective, randomized, controlled study on 34 never-treated essential hypertensives with left ventricular diastolic dysfunction. Echocardiogram and ABPM were repeated after 6 months of effective antihypertensive treatment with ACE inhibitors and calcium antagonists (second evaluation) and then after a 6-month period with 17 patients randomly assigned to add canrenone 50 mg/d to the previous treatment (third evaluation). At the basal evaluation 32 patients had left ventricular concentric hypertrophy, and 2 patients had left ventricular concentric remodeling. All the patients had normal left ventricular systolic function. At the second evaluation blood pressure was reduced (P<0.0001), left ventricular mass index decreased (P<0.0001), and diastolic function improved (P<0.0001). After randomization, the canrenone and control groups had similar 24-hour blood pressure and left ventricular morpho-functional characteristics. At the third evaluation, despite unchanged blood pressure and similar decrease of left ventricular mass index, the canrenone group, compared with control group, showed a significantly greater increase in left ventricular diastolic indices. In essential hypertension, a low dose of aldosterone antagonist added to antihypertensive treatment significantly improved left ventricular diastolic function. This improvement, not accounted for by changes in blood pressure and left ventricular mass, can be therefore ascribed to a direct action of the drug on the myocardium. PMID:12411457

  20. Disubstituted piperidines as potent Orexin (hypocretin) receptor antagonists

    PubMed Central

    Jiang, Rong; Song, Xinyi; Bali, Purva; Smith, Anthony; Bayona, Claudia Ruiz; Lin, Li; Cameron, Michael D.; McDonald, Patricia H.; Kenny, Paul J.

    2012-01-01

    A series of orexin receptor antagonists was synthesized based on a substituted piperidine scaffold. Through traditional medicinal chemistry structure activity relationships (SAR), installation of various groups at the 3–6-positions of the piperidine led to modest enhancement in receptor selectivity. Compounds were profiled in vivo for plasma and brain levels in order to identify candidates suitable for efficacy in a model of drug addiction. PMID:22617492

  1. Calcium channel antagonists in the treatment of interstitial cystitis.

    PubMed

    Fleischmann, J

    1994-02-01

    The calcium channel antagonist nifedipine has shown efficacy in the treatment of interstitial cystitis and the urethral syndrome. The optimal daily dose of nifedipine can be determined with the use of a nifedipine titration test. To complete the repair of damaged bladder and/or urethral mucosa, nifedipine therapy should be used for a minimum of 3 months. Patients who do not respond well to nifedipine are those with the pelvic floor muscle spasm syndrome variant of interstitial cystitis.

  2. Novel alkoxy-oxazolyl-tetrahydropyridine muscarinic cholinergic receptor antagonists.

    PubMed

    Shannon, H E; Bymaster, F P; Hendrix, J C; Quimby, S J; Mitch, C H

    1995-01-01

    The purpose of the present studies was to compare a novel series of alkoxy-oxazolyl-tetrahydropyridines (A-OXTPs) as muscarinic receptor antagonists. The affinity of these compounds for muscarinic receptors was determined by inhibition of [3H]pirenzepine to M1 receptors in hippocampus, [3H]QNB to M2 receptors in brainstem, and [3H]oxotremorine-M to high affinity muscarinic agonist binding sites in cortex. All of the compounds had higher affinity for [3H]pirenzepine than for [3H]QNB or [3H]oxotremorine-M labeled receptors, consistent with an interpretation that they are relatively selective M1 receptor antagonists, although none were as selective as pirenzepine. In addition, dose-response curves were determined for antagonism of oxotremorine-induced salivation (mediated by M3 receptors) and tremor (mediated by non-M1 receptors) in mice. In general, the A-OXTPs were equipotent and equieffective in antagonizing both salivation and tremor, although there were modest differences for some compounds. Dose-response curves also were determined on behavior maintained under a spatial-alternation schedule of food presentation in rats as a measure of effects on working memory. The A-OXTPs produced dose-related decreases in percent correct responding at doses three- to ten-fold lower than those which decreased rates of responding. However, only one compound, MB-OXTP, produced effects on percent correct responding consistent with a selective effect on memory as opposed to non-memory variables. The present results provide evidence that these alkoxy-oxazolyl-tetrahydropyridines are a novel series of modestly M1-selective muscarinic receptor antagonists, and that one member of the series, MB-OXTP, appears to be more selective in its effects on memory than previously studies muscarinic antagonists. PMID:7753969

  3. Neurokinin-1 Receptor Antagonists in Preventing Postoperative Nausea and Vomiting

    PubMed Central

    Liu, Meng; Zhang, Hao; Du, Bo-Xiang; Xu, Feng-Ying; Zou, Zui; Sui, Bo; Shi, Xue-Yin

    2015-01-01

    Abstract Newly developed neurokinin-1 receptor (NK-1R) antagonists have been recently tried in the prevention of postoperative nausea and vomiting (PONV). This systematic review and meta-analysis was conducted to explore whether NK-1R antagonists were effective in preventing PONV. The PRISMA statement guidelines were followed. Randomized clinical trials (RCTs) that tested the preventive effects of NK-1R antagonists on PONV were identified by searching EMBASE, CINAHL, PubMed, and the Cochrane Library databases followed by screening. Data extraction was performed using a predefined form and trial quality was assessed using a modified Jadad scale. The primary outcome measure was the incidence of PONV. Meta-analysis was performed for studies using similar interventions. Network meta-analysis (NMA) was conducted to compare the anti-vomiting effects of placebo, ondansetron, and aprepitant at different doses. Fourteen RCTs were included. Meta-analysis found that 80 mg of aprepitant could reduce the incidences of nausea (3 RCTs with 224 patients, pooled risk ratio (RR) = 0.60, 95% confidence interval (CI) = 0.47 to 0.75), and vomiting (3 RCTs with 224 patients, pooled RR = 0.13, 95% CI = 0.04 to 0.37) compared with placebo. Neither 40 mg (3 RCTs with 1171 patients, RR = 0.47, 95% CI = 0.37 to 0.60) nor 125 mg (2 RCTs with 1058 patients, RR = 0.32, 95% CI = 0.13 to 0.78) of aprepitant showed superiority over 4 mg of ondansetron in preventing postoperative vomiting. NMA did not find a dose-dependent effect of aprepitant on preventing postoperative vomiting. Limited data suggested that NK-1R antagonists, especially aprepitant were effective in preventing PONV compared with placebo. More large-sampled high-quality RCTs are needed. PMID:25984662

  4. [Modulation of myometrium mitochondrial membrane potential by calmodulin antagonists].

    PubMed

    Shlykov, S H; Babich, L H; Ievtushenko, M Ie; Karakhim, S O; Kosterin, S O

    2014-01-01

    Influence of calmodulin antagonists on mitochondrial membrane potential was investigated using a flow cytometry method, confocal microscopy and fluorescent potential-sensitive probes TMRM and MTG. Influence of different concentrations of calmodulin antagonists on mitochondrial membrane potential was studied using flow cytometry method and a fraction of myometrium mitochondria of unpregnant rats. It was shown that 1-10 microM calmidazolium gradually reduced mitochondria membrane potential. At the same time 10-100 microM trifluoperazine influenced as follows: 10 microM--increased polarization, while 100 microM--caused almost complete depolarization of mitochondrial membranes. In experiments which were conducted with the use of confocal microscopy method and myometrium cells it was shown, that MTG addition to the incubation medium led to the appearance of fluorescence signal in a green range. Addition of the second probe (TMRM) resulted in the appearance of fluorescent signal in a red range. Mitochondrial membrane depolarization by 1 microM CCCP or 10 mM NaN3 was accompanied by the decline of "red" fluorescence intensity, "green" fluorescence was kept. The 10-15 minute incubation of myometrium cells in the presence 10 microM calmidazolium or 100 microM trifluoperazine was accompanied by almost complete decrease of the TMRM fluorescent signal. Thus, with the use of potential-sensitive fluorescent probes TMRM and MTG it was shown, that calmodulin antagonists modulate mitochondrial membrane potential of myometrium cells.

  5. IAP antagonists sensitize murine osteosarcoma cells to killing by TNFα

    PubMed Central

    Shekhar, Tanmay M.; Miles, Mark A.; Gupte, Ankita; Taylor, Scott; Tascone, Brianna; Walkley, Carl R.; Hawkins, Christine J.

    2016-01-01

    Outcomes for patients diagnosed with the bone cancer osteosarcoma have not improved significantly in the last four decades. Only around 60% of patients and about a quarter of those with metastatic disease survive for more than five years. Although DNA-damaging chemotherapy drugs can be effective, they can provoke serious or fatal adverse effects including cardiotoxicity and therapy-related cancers. Better and safer treatments are therefore needed. We investigated the anti-osteosarcoma activity of IAP antagonists (also known as Smac mimetics) using cells from primary and metastatic osteosarcomas that arose spontaneously in mice engineered to lack p53 and Rb expression in osteoblast-derived cells. The IAP antagonists SM-164, GDC-0152 and LCL161, which efficiently target XIAP and cIAPs, sensitized cells from most osteosarcomas to killing by low levels of TNFα but not TRAIL. RIPK1 expression levels and activity correlated with sensitivity. RIPK3 levels varied considerably between tumors and RIPK3 was not required for IAP antagonism to sensitize osteosarcoma cells to TNFα. IAP antagonists, including SM-164, lacked mutagenic activity. These data suggest that drugs targeting XIAP and cIAP1/2 may be effective for osteosarcoma patients whose tumors express abundant RIPK1 and contain high levels of TNFα, and would be unlikely to provoke therapy-induced cancers in osteosarcoma survivors. PMID:27129149

  6. Approaches to the rational design of selective melanocortin receptor antagonists

    PubMed Central

    Hruby, Victor J; Cai, Minying; Nyberg, Joel; Muthu, Dhanasekaran

    2015-01-01

    Introduction When establishing the physiological roles of specific receptors in normal and disease states, it is critical to have selective antagonist ligands for each receptor in a receptor system with several subtypes. The melanocortin receptors have five subtypes referred to as the melanocortin 1 receptor, melanocortin 2 receptor, melanocortin 3 receptor, melanocortin 4 receptor and melanocortin 5 receptor, and they are of critical importance for many aspects of human health and disease. Areas covered This article reviews the current efforts to design selective antagonistic ligands for the five human melanocortin receptors summarizing the currently published orthosteric and allosteric antagonists for each of these receptors. Expert opinion Though there has been progress, there are still few drugs available that address the many significant biological activities and diseases that are associated with these receptors, which is possibly due to the lack of receptor selectivity that these designed ligands are currently showing. The authors believe that further studies into the antagonists’ 3D conformational and topographical properties in addition to future mutagenesis studies will provide greater insight into these ligands which could play a role in the treatment of various diseases in the future. PMID:22646078

  7. μ Opioid receptor: novel antagonists and structural modeling

    NASA Astrophysics Data System (ADS)

    Kaserer, Teresa; Lantero, Aquilino; Schmidhammer, Helmut; Spetea, Mariana; Schuster, Daniela

    2016-02-01

    The μ opioid receptor (MOR) is a prominent member of the G protein-coupled receptor family and the molecular target of morphine and other opioid drugs. Despite the long tradition of MOR-targeting drugs, still little is known about the ligand-receptor interactions and structure-function relationships underlying the distinct biological effects upon receptor activation or inhibition. With the resolved crystal structure of the β-funaltrexamine-MOR complex, we aimed at the discovery of novel agonists and antagonists using virtual screening tools, i.e. docking, pharmacophore- and shape-based modeling. We suggest important molecular interactions, which active molecules share and distinguish agonists and antagonists. These results allowed for the generation of theoretically validated in silico workflows that were employed for prospective virtual screening. Out of 18 virtual hits evaluated in in vitro pharmacological assays, three displayed antagonist activity and the most active compound significantly inhibited morphine-induced antinociception. The new identified chemotypes hold promise for further development into neurochemical tools for studying the MOR or as potential therapeutic lead candidates.

  8. Toxicological Differences Between NMDA Receptor Antagonists and Cholinesterase Inhibitors.

    PubMed

    Shi, Xiaodong; Lin, Xiaotian; Hu, Rui; Sun, Nan; Hao, Jingru; Gao, Can

    2016-08-01

    Cholinesterase inhibitors (ChEIs), represented by donepezil, rivastigmine, and galantamine, used to be the only approved class of drugs for the treatment of Alzheimer's disease. After the approval of memantine by the Food and Drug Administration (FDA), N-methyl-d-aspartic acid (NMDA) receptor antagonists have been recognized by authorities and broadly used in the treatment of Alzheimer's disease. Along with complementary mechanisms of action, NMDA antagonists and ChEIs differ not only in therapeutic effects but also in adverse reactions, which is an important consideration in clinical drug use. And the number of patients using NMDA antagonists and ChEIs concomitantly has increased, making the matter more complicated. Here we used the FDA Adverse Event Reporting System for statistical analysis , in order to compare the adverse events of memantine and ChEIs. In general, the clinical evidence confirmed the safety advantages of memantine over ChEIs, reiterating the precautions of clinical drug use and the future direction of antidementia drug development. PMID:26769920

  9. The serotonin 2C receptor potently modulates the head-twitch response in mice induced by a phenethylamine hallucinogen

    PubMed Central

    Canal, Clinton E.; Olaghere da Silva, Uade B.; Gresch, Paul J.; Watt, Erin E.; Sanders-Bush, Elaine

    2010-01-01

    Rationale Hallucinogenic serotonin 2A (5-HT2A) receptor partial agonists, such as (±)-1-(2,5-dimethoxy-4-iodo-phenyl)-2-aminopropane hydrochloride (DOI), induce a frontal cortex-dependent head-twitch response (HTR) in rodents, a behavioral proxy of a hallucinogenic response that is blocked by 5-HT2A receptor antagonists. In addition to 5-HT2A receptors, DOI and most other serotonin-like hallucinogens have high affinity and potency as partial agonists at 5-HT2C receptors. Objectives We tested for involvement of 5-HT2C receptors in the HTR induced by DOI. Results Comparison of 5-HT2C receptor knockout and wild-type littermates revealed an approximately 50% reduction in DOI-induced HTR in knockout mice. Also, pretreatment with either the 5-HT2C receptor antagonist SB206553 or SB242084 eradicated a twofold difference in DOI-induced HTR between the standard inbred mouse strains C57BL/6J and DBA/2J, and decreased the DOI-induced HTR by at least 50% in both strains. None of several measures of 5-HT2A receptors in frontal cortex explained the strain difference, including 5-HT2A receptor density, Gαq or Gαi/o protein levels, phospholipase C activity, or DOI-induced expression of Egr1 and Egr2. 5-HT2C receptor density in the brains of C57BL/6J and DBA/2J was also equivalent, suggesting that 5-HT2C receptor-mediated intracellular signaling or other physiological modulators of the HTR may explain the strain difference in response to DOI. Conclusions We conclude that the HTR to DOI in mice is strongly modulated by 5-HT2C receptor activity. This novel finding invites reassessment of hallucinogenic mechanisms involving 5-HT2 receptors. PMID:20165943

  10. Serotonin 2A and 2B receptor-induced phrenic motor facilitation: differential requirement for spinal NADPH oxidase activity

    PubMed Central

    MacFarlane, P.M.; Vinit, S.; Mitchell, G.S.

    2011-01-01

    Acute intermittent hypoxia (AIH) facilitates phrenic motor output by a mechanism that requires spinal serotonin (type 2) receptor activation, NADPH oxidase activity and formation of reactive oxygen species (ROS). Episodic spinal serotonin (5-HT) receptor activation alone, without changes in oxygenation, is sufficient to elicit NADPH oxidase-dependent phrenic motor facilitation (pMF). Here we investigated: 1) whether serotonin 2A and/or 2B (5-HT2a/b) receptors are expressed in identified phrenic motor neurons, and 2) which receptor subtype is capable of eliciting NADPH-oxidase-dependent pMF. In anesthetized, artificially ventilated adult rats, episodic C4 intrathecal injections (3 × 6µl injections, 5 min intervals) of a 5-HT2a (DOI) or 5-HT2b (BW723C86) receptor agonist elicited progressive and sustained increases in integrated phrenic nerve burst amplitude (i.e. pMF), an effect lasting at least 90 minutes post-injection for both receptor subtypes. 5-HT2a and 5-HT2b receptor agonist-induced pMF were both blocked by selective antagonists (ketanserin and SB206553, respectively), but not by antagonists to the other receptor subtype. Single injections of either agonist failed to elicit pMF, demonstrating a need for episodic receptor activation. Phrenic motor neurons retrogradely labeled with cholera toxin B fragment expressed both 5-HT2a and 5-HT2b receptors. Pre-treatment with NADPH oxidase inhibitors (apocynin and DPI) blocked 5-HT2b, but not 5-HT2a-induced pMF. Thus, multiple spinal type 2 serotonin receptors elicit pMF, but they act via distinct mechanisms that differ in their requirement for NADPH oxidase activity. PMID:21223996

  11. Arginine mimetic structures in biologically active antagonists and inhibitors.

    PubMed

    Masic, Lucija Peterlin

    2006-01-01

    Peptidomimetics have found wide application as bioavailable, biostable, and potent mimetics of naturally occurring biologically active peptides. L-Arginine is a guanidino group-containing basic amino acid, which is positively charged at neutral pH and is involved in many important physiological and pathophysiological processes. Many enzymes display a preference for the arginine residue that is found in many natural substrates and in synthetic inhibitors of many trypsin-like serine proteases, e.g. thrombin, factor Xa, factor VIIa, trypsin, and in integrin receptor antagonists, used to treat many blood-coagulation disorders. Nitric oxide (NO), which is produced by oxidation of L-arginine in an NADPH- and O(2)-dependent process catalyzed by isoforms of nitric oxide synthase (NOS), exhibits diverse roles in both normal and pathological physiologies and has been postulated to be a contributor to the etiology of various diseases. Development of NOS inhibitors as well as analogs and mimetics of the natural substrate L-arginine, is desirable for potential therapeutic use and for a better understanding of their conformation when bound in the arginine binding site. The guanidino residue of arginine in many substrates, inhibitors, and antagonists forms strong ionic interactions with the carboxylate of an aspartic acid moiety, which provides specificity for the basic amino acid residue in the active side. However, a highly basic guanidino moiety incorporated in enzyme inhibitors or receptor antagonists is often associated with low selectivity and poor bioavailability after peroral application. Thus, significant effort is focused on the design and preparation of arginine mimetics that can confer selective inhibition for specific trypsin-like serine proteases and NOS inhibitors as well as integrin receptor antagonists and possess reduced basicity for enhanced oral bioavailability. This review will describe the survey of arginine mimetics designed to mimic the function of the

  12. Comparison of the effects of PAR1 antagonists, PAR4 antagonists, and their combinations on thrombin-induced human platelet activation.

    PubMed

    Wu, Chin-Chung; Teng, Che-Ming

    2006-09-28

    Thrombin activates human platelets through proteolytic activation of two protease-activated receptors (PARs), PAR1 and PAR4. In the present study, we show that, RWJ-56110, a potent synthetic PAR1 antagonist, inhibited platelet aggregation caused by a low concentration (0.05 U/ml) of thrombin, but lost its effectiveness when higher concentrations of thrombin were used as stimulators. YD-3, a non-peptide PAR4 antagonist, alone had little or no effect on thrombin-induced platelet aggregation, significantly enhanced the anti-aggregatory activity of PAR1 antagonist. In addition, we demonstrate for the first time that P-selectin expression in thrombin-stimulated platelets can be synergistically prevented by combined treatment of PAR1 antagonist and PAR4 antagonist. These results indicate that thrombin-induced platelet activation cannot be effectively inhibited by just blocking either single thrombin receptor pathway, and suggest a rationale for potential combination therapy in arterial thrombosis. PMID:16890935

  13. Generation of N-methyl-D-aspartate agonist and competitive antagonist pharmacophore models. Design and synthesis of phosphonoalkyl-substituted tetrahydroisoquinolines as novel antagonists.

    PubMed

    Ortwine, D F; Malone, T C; Bigge, C F; Drummond, J T; Humblet, C; Johnson, G; Pinter, G W

    1992-04-17

    The preparation and binding affinity of a series of tetrahydroisoquinoline carboxylic acids at the N-methyl-D-aspartate (NMDA) subtype of the glutamate receptor is described, together with a molecular modeling analysis of NMDA agonists and antagonists. Using published NMDA ligands, the active analogue mapping approach was employed in the generation of an agonist pharmacophore model. Although known competitive antagonists such as CPP (1) could be superimposed onto the agonist model, to overcome the assumption that they bind to the same receptor site, an independent modeling approach was used to derive a separate pharmacophore model. Development of a competitive antagonist model involved a stepwise approach that included the definition of a preferred geometry for PO3H2-receptor interactions, multiple conformational searches, and the determination of volume and electronic tolerances. This model, which is described in detail, is consistent with observed affinities of potent NMDA antagonists and has provided an explanation for the observed periodicity in affinities for the known antagonists AP5, AP6, and AP7. The features of the agonist and antagonist models are compared, and hypotheses advanced about the nature of the receptor interactions for these two classes of compounds. The pharmacophore models reported herein are consistent with a single recognition site at the NMDA receptor that can accommodate both agonist and antagonist ligands. To assist in first defining and later exploring the predictive power of the competitive antagonist model, a series of conformationally constrained NMDA antagonist (phosphonoalkyl)tetrahydroisoquinoline-1- and 3-carboxylates was prepared. From this work, 1,2,3,4-tetrahydro-5-(2-phosphonoethyl)-3- isoquinolinecarboxylic acid (89) was identified as the most active lead structure, with an IC50 of 270 nM in [3H]CPP binding. The synthesis and structure-activity relationships of these novel antagonists are described.

  14. Classification and virtual screening of androgen receptor antagonists.

    PubMed

    Li, Jiazhong; Gramatica, Paola

    2010-05-24

    Computational tools, such as quantitative structure-activity relationship (QSAR), are highly useful as screening support for prioritization of substances of very high concern (SVHC). From the practical point of view, QSAR models should be effective to pick out more active rather than inactive compounds, expressed as sensitivity in classification works. This research investigates the classification of a big data set of endocrine-disrupting chemicals (EDCs)-androgen receptor (AR) antagonists, mainly aiming to improve the external sensitivity and to screen for potential AR binders. The kNN, lazy IB1, and ADTree methods and the consensus approach were used to build different models, which improve the sensitivity on external chemicals from 57.1% (literature) to 76.4%. Additionally, the models' predictive abilities were further validated on a blind collected data set (sensitivity: 85.7%). Then the proposed classifiers were used: (i) to distinguish a set of AR binders into antagonists and agonists; (ii) to screen a combined estrogen receptor binder database to find out possible chemicals that can bind to both AR and ER; and (iii) to virtually screen our in-house environmental chemical database. The in silico screening results suggest: (i) that some compounds can affect the normal endocrine system through a complex mechanism binding both to ER and AR; (ii) new EDCs, which are nonER binders, but can in silico bind to AR, are recognized; and (iii) about 20% of compounds in a big data set of environmental chemicals are predicted as new AR antagonists. The priority should be given to them to experimentally test the binding activities with AR.

  15. Central actions of a novel and selective dopamine antagonist

    SciTech Connect

    Schulz, D.W.

    1985-01-01

    Receptors for the neurotransmitter dopamine traditionally have been divided into two subgroups: the D/sub 1/ class, which is linked to the stimulation of adenylate cyclase-activity, and the D/sub 2/ class which is not. There is much evidence suggesting that it is the D/sub 2/ class which is not. There is much evidence suggesting that it is the D/sub 2/ dopamine receptor that mediates the physiological and behavioral actions of dopamine in the intact animal. However, the benzazepine SCH23390 is a dopamine antagonist which has potent behavioral actions while displaying apparent neurochemical selectivity for the D/sub 1/ class of dopamine receptors. The purpose of this dissertation was to (1) confirm and characterize this selectivity, and (2) test certain hypothesis related to possible modes of action of SCH233390. The inhibition of adenylate cyclase by SCH23390 occurred via an action at the dopamine receptor only. A radiolabeled analog of SCH23390 displayed the receptor binding properties of a specific high-affinity ligand, and regional receptor densities were highly correlated with dopamine levels. The subcellular distribution of (/sup 3/H)-SCH23390 binding did not correspond completely with that of dopamine-stimulated adenylate cyclase. The neurochemical potency of SCH23390 as a D/sub 1/ receptor antagonist was preserved following parental administration. A variety of dopamine agonists and antagonists displayed a high correlation between their abilities to compete for (/sup 3/H)-SCH23390 binding in vitro and to act at an adenylate cyclase-linked receptor. Finally, the relative affinities of dopamine and SCH23390 for both D/sub 1/ receptors and (/sup 3/H)-SCH23390 binding sites were comparable. It is concluded that the behavioral effects of SCH23390 are mediated by actions at D/sub 1/ dopamine receptors only, and that the physiological importance of this class of receptors should be reevaluated.

  16. Nkd1 Functions as a Passive Antagonist of Wnt Signaling

    PubMed Central

    Angonin, Diane; Van Raay, Terence J.

    2013-01-01

    Wnt signaling is involved in many aspects of development and in the homeostasis of stem cells. Its importance is underscored by the fact that misregulation of Wnt signaling has been implicated in numerous diseases, especially colorectal cancer. However, how Wnt signaling regulates itself is not well understood. There are several Wnt negative feedback regulators, which are active antagonists of Wnt signaling, but one feedback regulator, Nkd1, has reduced activity compared to other antagonists, yet is still a negative feedback regulator. Here we describe our efforts to understand the role of Nkd1 using Wnt signaling compromised zebrafish mutant lines. In several of these lines, Nkd1 function was not any more active than it was in wild type embryos. However, we found that Nkd1’s ability to antagonize canonical Wnt/β-catenin signaling was enhanced in the Wnt/Planar Cell Polarity mutants silberblick (slb/wnt11) and trilobite (tri/vangl2). While slb and tri mutants do not display alterations in canonical Wnt signaling, we found that they are hypersensitive to it. Overexpression of the canonical Wnt/β-catenin ligand Wnt8a in slb or tri mutants resulted in dorsalized embryos, with tri mutants being much more sensitive to Wnt8a than slb mutants. Furthermore, the hyperdorsalization caused by Wnt8a in tri could be rescued by Nkd1. These results suggest that Nkd1 functions as a passive antagonist of Wnt signaling, functioning only when homeostatic levels of Wnt signaling have been breached or when Wnt signaling becomes destabilized. PMID:24009776

  17. Virtual High-Throughput Screening To Identify Novel Activin Antagonists

    PubMed Central

    Zhu, Jie; Mishra, Rama K.; Schiltz, Gary E.; Makanji, Yogeshwar; Scheidt, Karl A.; Mazar, Andrew P.; Woodruff, Teresa K.

    2015-01-01

    Activin belongs to the TGFβ superfamily, which is associated with several disease conditions, including cancer-related cachexia, preterm labor with delivery, and osteoporosis. Targeting activin and its related signaling pathways holds promise as a therapeutic approach to these diseases. A small-molecule ligand-binding groove was identified in the interface between the two activin βA subunits and was used for a virtual high-throughput in silico screening of the ZINC database to identify hits. Thirty-nine compounds without significant toxicity were tested in two well-established activin assays: FSHβ transcription and HepG2 cell apoptosis. This screening workflow resulted in two lead compounds: NUCC-474 and NUCC-555. These potential activin antagonists were then shown to inhibit activin A-mediated cell proliferation in ex vivo ovary cultures. In vivo testing showed that our most potent compound (NUCC-555) caused a dose-dependent decrease in FSH levels in ovariectomized mice. The Blitz competition binding assay confirmed target binding of NUCC-555 to the activin A:ActRII that disrupts the activin A:ActRII complex’s binding with ALK4-ECD-Fc in a dose-dependent manner. The NUCC-555 also specifically binds to activin A compared with other TGFβ superfamily member myostatin (GDF8). These data demonstrate a new in silico-based strategy for identifying small-molecule activin antagonists. Our approach is the first to identify a first-in-class small-molecule antagonist of activin binding to ALK4, which opens a completely new approach to inhibiting the activity of TGFβ receptor superfamily members. in addition, the lead compound can serve as a starting point for lead optimization toward the goal of a compound that may be effective in activin-mediated diseases. PMID:26098096

  18. Extra-helical binding site of a glucagon receptor antagonist.

    PubMed

    Jazayeri, Ali; Doré, Andrew S; Lamb, Daniel; Krishnamurthy, Harini; Southall, Stacey M; Baig, Asma H; Bortolato, Andrea; Koglin, Markus; Robertson, Nathan J; Errey, James C; Andrews, Stephen P; Teobald, Iryna; Brown, Alastair J H; Cooke, Robert M; Weir, Malcolm; Marshall, Fiona H

    2016-05-12

    Glucagon is a 29-amino-acid peptide released from the α-cells of the islet of Langerhans, which has a key role in glucose homeostasis. Glucagon action is transduced by the class B G-protein-coupled glucagon receptor (GCGR), which is located on liver, kidney, intestinal smooth muscle, brain, adipose tissue, heart and pancreas cells, and this receptor has been considered an important drug target in the treatment of diabetes. Administration of recently identified small-molecule GCGR antagonists in patients with type 2 diabetes results in a substantial reduction of fasting and postprandial glucose concentrations. Although an X-ray structure of the transmembrane domain of the GCGR has previously been solved, the ligand (NNC0640) was not resolved. Here we report the 2.5 Å structure of human GCGR in complex with the antagonist MK-0893 (ref. 4), which is found to bind to an allosteric site outside the seven transmembrane (7TM) helical bundle in a position between TM6 and TM7 extending into the lipid bilayer. Mutagenesis of key residues identified in the X-ray structure confirms their role in the binding of MK-0893 to the receptor. The unexpected position of the binding site for MK-0893, which is structurally similar to other GCGR antagonists, suggests that glucagon activation of the receptor is prevented by restriction of the outward helical movement of TM6 required for G-protein coupling. Structural knowledge of class B receptors is limited, with only one other ligand-binding site defined--for the corticotropin-releasing hormone receptor 1 (CRF1R)--which was located deep within the 7TM bundle. We describe a completely novel allosteric binding site for class B receptors, providing an opportunity for structure-based drug design for this receptor class and furthering our understanding of the mechanisms of activation of these receptors. PMID:27111510

  19. Scalable synthesis of a prostaglandin EP4 receptor antagonist.

    PubMed

    Gauvreau, Danny; Dolman, Sarah J; Hughes, Greg; O'Shea, Paul D; Davies, Ian W

    2010-06-18

    The evolution of scalable, economically viable synthetic approaches to the potent and selective prostaglandin EP4 antagonist 1 is presented. The chromatography-free synthesis of multikilogram quantities of 1 using a seven-step sequence (six in the longest linear sequence) is described. This approach has been further modified in an effort to identify a long-term manufacturing route. Our final synthesis involves no step requiring cryogenic (< -25 degrees C) conditions; comprises a total of four steps, only three of which are in the longest linear synthesis; and features the use of two consecutive iron-catalyzed Friedel-Crafts substitutions.

  20. Substituted Tetrahydroisoquinolines as Selective Antagonists for the Orexin 1 Receptor

    PubMed Central

    Perrey, David A.; German, Nadezhda A.; Gilmour, Brian P.; Li, Jun-Xu; Harris, Danni L.; Thomas, Brian F.; Zhang, Yanan

    2013-01-01

    Increasing evidence implicates the orexin 1 (OX1) receptor in reward processes, suggesting OX1 antagonism could be therapeutic in drug addiction. In a program to develop an OX1 selective antagonist, we designed and synthesized a series of substituted tetrahydroisoquinolines and determined their potency in OX1 and OX2 calcium mobilization assays. Structure-activity relationship (SAR) studies revealed limited steric tolerance and preference for electron deficiency at the 7-position. Pyridylmethyl groups were shown to be optimal for activity at the acetamide position. Computational studies resulted in a pharmacophore model and confirmed the SAR results. Compound 72 significantly attenuated the development of place preference for cocaine in rats. PMID:23941044

  1. Non-Vitamin K Antagonist Oral Anticoagulants in Atrial Fibrillation.

    PubMed

    Plitt, Anna; Ruff, Christian T; Giugliano, Robert P

    2016-10-01

    For more than 50 years, vitamin K antagonists (VKAs) have been the standard of care for treatment of atrial fibrillation (AF). However, the numerous limitations of VKAs have led to the development of non-VKA oral anticoagulants (NOACs). There are 4 NOACs currently approved for prevention of thromboembolism in patients with nonvalvular AF. This article provides an overview of AF, summarizes basic properties of NOACs, and reviews the landmark trials. Current data on use of NOACs in special populations and specific clinical scenarios are also presented. Lastly, recommendations from experts on controversial topics of bleeding management and reversal are described. PMID:27637305

  2. Estrogen Receptor Agonists and Antagonists in the Yeast Estrogen Bioassay.

    PubMed

    Wang, Si; Bovee, Toine F H

    2016-01-01

    Cell-based bioassays can be used to predict the eventual biological activity of a substance on a living organism. In vitro reporter gene bioassays are based on recombinant vertebrate cell lines or yeast strains and especially the latter are easy-to-handle, cheap, and fast. Moreover, yeast cells do not express estrogen, androgen, progesterone or glucocorticoid receptors, and are thus powerful tools in the development of specific reporter gene systems that are devoid of crosstalk from other hormone pathways. This chapter describes our experience with an in-house developed RIKILT yeast estrogen bioassay for testing estrogen receptor agonists and antagonists, focusing on the applicability of the latter. PMID:26585147

  3. Esthetic Prosthetic Restorations: Reliability and Effects on Antagonist Dentition

    PubMed Central

    Daou, Elie E.

    2015-01-01

    Recent advances in ceramics have greatly improved the functional and esthetic properties of restorative materials. New materials offer an esthetic and functional oral rehabilitation, however their impact on opposing teeth is not welldocumented. Peer-reviewed articles published till December 2014 were identified through Pubmed (Medline and Elsevier). Scientifically, there are several methods of measuring the wear process of natural dentition which enhances the comparison of the complicated results. This paper presents an overview of the newly used prosthetic materials and their implication on antagonist teeth or prostheses, especially emphasizing the behavior of zirconia restorations. PMID:26962376

  4. Multiple GPCR conformations and signalling pathways: implications for antagonist affinity estimates

    PubMed Central

    Baker, Jillian G.; Hill, Stephen J.

    2007-01-01

    Antagonist affinity measurements have traditionally been considered important in characterizing the cell-surface receptors present in a particular cell or tissue. A central assumption has been that antagonist affinity is constant for a given receptor–antagonist interaction, regardless of the agonist used to stimulate that receptor or the downstream response that is measured. As a consequence, changes in antagonist affinity values have been taken as initial evidence for the presence of novel receptor subtypes. Emerging evidence suggests, however, that receptors can possess multiple binding sites and the same receptor can show different antagonist affinity measurements under distinct experimental conditions. Here, we discuss several mechanisms by which antagonists have different affinities for the same receptor as a consequence of allosterism, coupling to different G proteins, multiple (but non-interacting) receptor sites, and signal-pathway-dependent pharmacology (where the pharmacology observed varies depending on the signalling pathway measured). PMID:17629959

  5. Antagonist of prostaglandin E2 receptor 4 induces metabolic alterations in liver of mice.

    PubMed

    Li, Ning; Zhang, Limin; An, Yanpeng; Zhang, Lulu; Song, Yipeng; Wang, Yulan; Tang, Huiru

    2015-03-01

    Prostaglandin E2 receptor 4 (EP4) is one of the receptors for prostaglandin E2 and plays important roles in various biological functions. EP4 antagonists have been used as anti-inflammatory drugs. To investigate the effects of an EP4 antagonist (L-161982) on the endogenous metabolism in a holistic manner, we employed a mouse model, and obtained metabolic and transcriptomic profiles of multiple biological matrixes, including serum, liver, and urine of mice with and without EP4 antagonist (L-161982) exposure. We found that this EP4 antagonist caused significant changes in fatty acid metabolism, choline metabolism, and nucleotide metabolism. EP4 antagonist exposure also induced oxidative stress to mice. Our research is the first of its kind to report information on the alteration of metabolism associated with an EP4 antagonist. This information could further our understanding of current and new biological functions of EP4.

  6. Naftopidil inhibits 5-hydroxytryptamine-induced bladder contraction in rats.

    PubMed

    Sakai, Takumi; Kasahara, Ken-ichi; Tomita, Ken-ichi; Ikegaki, Ichiro; Kuriyama, Hiroshi

    2013-01-30

    Naftopidil is an α(1D) and α(1A) subtype-selective α(1)-adrenoceptor antagonist that has been used to treat lower urinary tract symptoms of benign prostatic hyperplasia. In this study, we investigated the effects of naftopidil on 5-hydroxytryptamine (5-HT)-induced rat bladder contraction (10(-8)-10(-4) M). Naftopidil (0.3, 1, and 3 μM) inhibited 5-HT-induced bladder contraction in a concentration-dependent manner. On the other hand, other α(1)-adrenoceptor antagonists, tamsulosin, silodosin or prazosin, did not inhibit 5-HT-induced bladder contraction. The 5-HT-induced bladder contraction was inhibited by both ketanserin and 4-(4-fluoronaphthalen-1-yl)-6-propan-2-ylpyrimidin-2-amine (RS127445), serotonin 5-HT(2A) and 5-HT(2B) receptor antagonists, respectively. In addition, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) and α-methyl-5-HT, 5-HT(2A) and 5-HT(2) receptor agonists, respectively, induced bladder contraction. The 5-HT-induced bladder contraction was not inhibited by N-[2-[4-(2-methoxyphenyl)piperazin-1-yl]ethyl]-N-pyridin-2-yl-cyclohexanecarboxamide (WAY-100635), [1-[2[(methylsulfonyl)amino]ethyl]-4-piperidinyl]methyl-1-methyl-1H-indole-3-carboxylate (GR113808) or (R)-3-[2-[2-(4-methylpiperidin-1-yl)ethyl]pyrrolidine-1-sulphonyl]phenol (SB269970), 5-HT(1A), 5-HT(4) and 5-HT(7) receptor antagonists, respectively. Naftopidil inhibited both the 5-HT(2A) and 5-HT(2) receptor agonists-induced bladder contractions. Naftopidil binds to the human 5-HT(2A) and 5-HT(2B) receptors with pKi values of 6.55 and 7.82, respectively. These results suggest that naftopidil inhibits 5-HT-induced bladder contraction via blockade of the 5-HT(2A) and 5-HT(2B) receptors in rats. Furthermore, 5-HT-induced bladder contraction was enhanced in bladder strips obtained from bladder outlet obstructed rats, with this contraction inhibited by naftopidil. The beneficial effects of naftopidil on storage symptoms such as urinary frequency and nocturia in patients with benign

  7. Structure-Guided Rescaffolding of Selective Antagonists of BCL-XL

    PubMed Central

    2014-01-01

    Because of the promise of BCL-2 antagonists in combating chronic lymphocytic leukemia (CLL) and non-Hodgkin’s lymphoma (NHL), interest in additional selective antagonists of antiapoptotic proteins has grown. Beginning with a series of selective, potent BCL-XL antagonists containing an undesirable hydrazone functionality, in silico design and X-ray crystallography were utilized to develop alternative scaffolds that retained the selectivity and potency of the starting compounds. PMID:24944740

  8. Human homosexuality: a paradigmatic arena for sexually antagonistic selection?

    PubMed

    Camperio Ciani, Andrea; Battaglia, Umberto; Zanzotto, Giovanni

    2015-01-29

    Sexual conflict likely plays a crucial role in the origin and maintenance of homosexuality in our species. Although environmental factors are known to affect human homosexual (HS) preference, sibling concordances and population patterns related to HS indicate that genetic components are also influencing this trait in humans. We argue that multilocus, partially X-linked genetic factors undergoing sexually antagonistic selection that promote maternal female fecundity at the cost of occasional male offspring homosexuality are the best candidates capable of explaining the frequency, familial clustering, and pedigree asymmetries observed in HS male proband families. This establishes male HS as a paradigmatic example of sexual conflict in human biology. HS in females, on the other hand, is currently a more elusive phenomenon from both the empirical and theoretical standpoints because of its fluidity and marked environmental influence. Genetic and epigenetic mechanisms, the latter involving sexually antagonistic components, have been hypothesized for the propagation and maintenance of female HS in the population. However, further data are needed to truly clarify the evolutionary dynamics of this trait.

  9. Evolution of coreceptor utilization to escape CCR5 antagonist therapy

    PubMed Central

    Zhang, Jie; Gao, Xiang; Martin, John; Rosa, Bruce; Chen, Zheng; Mitreva, Makedonka; Henrich, Timothy; Kuritzkes, Daniel; Ratner, Lee

    2016-01-01

    The HIV-1 envelope interacts with coreceptors CCR5 and CXCR4 in a dynamic, multi-step process, its molecular details not clearly delineated. Use of CCR5 antagonists results in tropism shift and therapeutic failure. Here we describe a novel approach using full-length patient-derived gp160 quasispecies libraries cloned into HIV-1 molecular clones, their separation based on phenotypic tropism in vitro, and deep sequencing of the resultant variants for structure-function analyses. Analysis of functionally validated envelope sequences from patients who failed CCR5 antagonist therapy revealed determinants strongly associated with coreceptor specificity, especially at the gp120-gp41 and gp41-gp41 interaction surfaces that invite future research on the roles of subunit interaction and envelope trimer stability in coreceptor usage. This study identifies important structure-function relationships in HIV-1 envelope, and demonstrates proof of concept for a new integrated analysis method that facilitates laboratory discovery of resistant mutants to aid in development of other therapeutic agents. PMID:27128349

  10. NMDA receptor antagonists extend the sensitive period for imprinting.

    PubMed

    Parsons, C H; Rogers, L J

    2000-03-01

    Filial imprinting in the domestic chick occurs during a sensitive period of development. The exact timing of this period can vary according to the methods used to measure imprinting. Using our imprinting paradigm, we have shown that normal, dark-reared chicks lose the ability to imprint after the second day post-hatching. Further, we reported that chicks treated 10 h after hatching with a mixture of the noncompetitive NMDA receptor antagonist ketamine (55 mg/kg) and the alpha(2)-adrenergic receptor agonist xylazine (6 mg/kg) were able to imprint on day 8 after hatching, whereas controls treated with saline did not imprint. We now show that the effect of the ketamine-xylazine mixture can be mimicked by treating chicks with ketamine alone or with another noncompetitive NMDA receptor antagonist, MK-801 (5 mg/kg). Treating chicks with a single dose of ketamine (55 mg/kg) or with a single dose of xylazine (6 mg/kg) failed to produce the effect on the sensitive period. However, prolonging the action of ketamine by treating chicks with two doses of ketamine (at 10 and 12 h after hatching) did allow imprinting on day 8. In contrast, prolonging the action of xylazine had no effect on the sensitive period for imprinting. Chicks treated with MK-801 were also able to imprint on day 8. Thus, we have evidence that the NMDA receptor system is involved in the mechanisms that control the sensitive period for imprinting.

  11. Human homosexuality: a paradigmatic arena for sexually antagonistic selection?

    PubMed

    Camperio Ciani, Andrea; Battaglia, Umberto; Zanzotto, Giovanni

    2015-04-01

    Sexual conflict likely plays a crucial role in the origin and maintenance of homosexuality in our species. Although environmental factors are known to affect human homosexual (HS) preference, sibling concordances and population patterns related to HS indicate that genetic components are also influencing this trait in humans. We argue that multilocus, partially X-linked genetic factors undergoing sexually antagonistic selection that promote maternal female fecundity at the cost of occasional male offspring homosexuality are the best candidates capable of explaining the frequency, familial clustering, and pedigree asymmetries observed in HS male proband families. This establishes male HS as a paradigmatic example of sexual conflict in human biology. HS in females, on the other hand, is currently a more elusive phenomenon from both the empirical and theoretical standpoints because of its fluidity and marked environmental influence. Genetic and epigenetic mechanisms, the latter involving sexually antagonistic components, have been hypothesized for the propagation and maintenance of female HS in the population. However, further data are needed to truly clarify the evolutionary dynamics of this trait. PMID:25635045

  12. Carbobenzoxy amino acids: Structural requirements for cholecystokinin receptor antagonist activity

    SciTech Connect

    Maton, P.N.; Sutliff, V.E.; Jensen, R.T.; Gardner, J.D.

    1985-04-01

    The authors used dispersed acini prepared from guinea pig pancreas to examine 28 carbobenzoxy (CBZ) amino acids for their abilities to function as cholecystokinin receptor antagonists. All amino acid derivatives tested, except for CBZ-alanine, CBZ-glycine, and N alpha-CBZ- lysine, were able to inhibit the stimulation of amylase secretion caused by the C-terminal octapeptide of cholecystokinin. In general, there was a good correlation between the ability of a carbobenzoxy amino acid to inhibit stimulated amylase secretion and the ability of the amino acid derivative to inhibit binding of /sup 125/I-cholecystokinin. The inhibition of cholecystokinin-stimulated amylase secretion was competitive, fully reversible, and specific for those secretagogues that interact with the cholecystokinin receptor. The potencies with which the various carbobenzoxy amino acids inhibited the action of cholecystokinin varied 100-fold and CBZ-cystine was the most potent cholecystokinin receptor antagonist. This variation in potency was primarily but not exclusively a function of the hydrophobicity of the amino acid side chain.

  13. Interleukin-6 (IL-6) Receptor Antagonist Protects Against Rheumatoid Arthritis.

    PubMed

    Li, Songsong; Wu, Zhenzhou; Li, Ling; Liu, Xuehua

    2016-01-01

    BACKGROUND The aim of this study was to investigate the protective effect of interleukin-6 (IL-6) receptor antagonist tocilizumab (TCZ) on rheumatoid arthritis (RA) and its related mechanism. MATERIAL AND METHODS Thirty RA patients receiving long-term methotrexate therapy at moderate and severe active stages were selected and treated with TCZ 8 mg/kg/time iv gtt intravenously guttae every 4 weeks. Peripheral blood was extracted before and 24 weeks after TCZ treatment. Peripheral blood mononuclear cells (PBMC) were collected by density gradient centrifugation. Flow cytometry was used to detect the ratio of CD4 naïve T cells and CD4 memory T cells, Th17 cells, and Treg cells in PBMC. DAS28 score, CRP, RF, and CCP levels in patients were evaluated. RESULTS Compared with before treatment, IL-6 receptor antagonist TCZ significantly improved patients' condition, including DAS28 score, CRP, RF, and CCP levels (P<0.01). Furthermore, TCZ obviously upregulated CD4 naïve T cells proportion and decreased CD4 memory T cells ratio (P<0.01). TCZ also markedly reduced the proportion of Th17 cells and increased the proportion of Treg cells (P<0.01). CONCLUSIONS TCZ can treat RA patients through regulating the ratio of CD4 naïve T cells, CD4 memory T cells, Th17 cells, and Treg cells in PBMC. PMID:27322646

  14. Interleukin-6 (IL-6) Receptor Antagonist Protects Against Rheumatoid Arthritis

    PubMed Central

    Li, Songsong; Wu, Zhenzhou; Li, Ling; Liu, Xuehua

    2016-01-01

    Background The aim of this study was to investigate the protective effect of interleukin-6 (IL-6) receptor antagonist tocilizumab (TCZ) on rheumatoid arthritis (RA) and its related mechanism. Material/Methods Thirty RA patients receiving long-term methotrexate therapy at moderate and severe active stages were selected and treated with TCZ 8 mg/kg/time iv gtt intravenously guttae every 4 weeks. Peripheral blood was extracted before and 24 weeks after TCZ treatment. Peripheral blood mononuclear cells (PBMC) were collected by density gradient centrifugation. Flow cytometry was used to detect the ratio of CD4 naïve T cells and CD4 memory T cells, Th17 cells, and Treg cells in PBMC. DAS28 score, CRP, RF, and CCP levels in patients were evaluated. Results Compared with before treatment, IL-6 receptor antagonist TCZ significantly improved patients’ condition, including DAS28 score, CRP, RF, and CCP levels (P<0.01). Furthermore, TCZ obviously upregulated CD4 naïve T cells proportion and decreased CD4 memory T cells ratio (P<0.01). TCZ also markedly reduced the proportion of Th17 cells and increased the proportion of Treg cells (P<0.01). Conclusions TCZ can treat RA patients through regulating the ratio of CD4 naïve T cells, CD4 memory T cells, Th17 cells, and Treg cells in PBMC. PMID:27322646

  15. [GnRH antagonists and benign prostatic hyperplasia].

    PubMed

    Comaru-Schally, d'Ana Maria

    2005-10-01

    Early treatment of benign prostatic hyperplasia (BPH) helps to decrease the need for surgery and thus places the medical treatment at the forefront which implies, optimising its efficacy and tolerance. Alpha-blockers and 5-alpha-reductase inhibitors are the two main classes of currently used drugs. The role in the growth of glandular, muscular and fibroblastic tissues of the prostate of androgens, testosterone and especially intraprostatic dihydrotestosterone was properly established. These physiopathological data prompted to evaluate the efficacy of inhibition of the hypothalamic-pituitary-gonadal axis, by means of LH-RH analogues. The agonists lead to a biological castration associated with a significant improvement of BPH symptoms. Unfortunately clinical relapse is systematic when treatment is discontinued. The antagonists, particulary cetrorelix, improve BPH symptoms, with a persistant benefit after treatment, discontinuation, although the effect on the prostate volume reduction is transitory. It can be suggested that beside the well known hormonal action, there is a direct apoptic effect cells as well as inhibition of the intratissue growth factors. The LH-RH antagonists could thus become an alternative to the current drugs by offering a relatively short treatment with a prolonged benefit.

  16. Cytoplasmic Dynein Antagonists with Improved Potency and Isoform Selectivity

    PubMed Central

    2015-01-01

    Cytoplasmic dyneins 1 and 2 are related members of the AAA+ superfamily (ATPases associated with diverse cellular activities) that function as the predominant minus-end-directed microtubule motors in eukaryotic cells. Dynein 1 controls mitotic spindle assembly, organelle movement, axonal transport, and other cytosolic, microtubule-guided processes, whereas dynein 2 mediates retrograde trafficking within motile and primary cilia. Small-molecule inhibitors are important tools for investigating motor protein-dependent mechanisms, and ciliobrevins were recently discovered as the first dynein-specific chemical antagonists. Here, we demonstrate that ciliobrevins directly target the heavy chains of both dynein isoforms and explore the structure–activity landscape of these inhibitors in vitro and in cells. In addition to identifying chemical motifs that are essential for dynein blockade, we have discovered analogs with increased potency and dynein 2 selectivity. These antagonists effectively disrupt Hedgehog signaling, intraflagellar transport, and ciliogenesis, making them useful probes of these and other cytoplasmic dynein 2-dependent cellular processes. PMID:26555042

  17. Contrasting effects of intralocus sexual conflict on sexually antagonistic coevolution

    PubMed Central

    Pennell, Tanya M.; de Haas, Freek J. H.; Morrow, Edward H.; van Doorn, G. Sander

    2016-01-01

    Evolutionary conflict between the sexes can induce arms races in which males evolve traits that are detrimental to the fitness of their female partners, and vice versa. This interlocus sexual conflict (IRSC) has been proposed as a cause of perpetual intersexual antagonistic coevolution with wide-ranging evolutionary consequences. However, theory suggests that the scope for perpetual coevolution is limited, if traits involved in IRSC are subject to pleiotropic constraints. Here, we consider a biologically plausible form of pleiotropy that has hitherto been ignored in treatments of IRSC and arrive at drastically different conclusions. Our analysis is based on a quantitative genetic model of sexual conflict, in which genes controlling IRSC traits have side effects in the other sex, due to incompletely sex-limited gene expression. As a result, the genes are exposed to intralocus sexual conflict (IASC), a tug-of-war between opposing male- and female-specific selection pressures. We find that the interaction between the two forms of sexual conflict has contrasting effects on antagonistic coevolution: Pleiotropic constraints stabilize the dynamics of arms races if the mating traits are close to evolutionary equilibrium but can prevent populations from ever reaching such a state. Instead, the sexes are drawn into a continuous cycle of arms races, causing the buildup of IASC, alternated by phases of IASC resolution that trigger the next arms race. These results encourage an integrative perspective on the biology of sexual conflict and generally caution against relying exclusively on equilibrium stability analysis. PMID:26755609

  18. Evodiamine as a novel antagonist of aryl hydrocarbon receptor

    SciTech Connect

    Yu, Hui; Tu, Yongjiu; Zhang, Chun; Fan, Xia; Wang, Xi; Wang, Zhanli; Liang, Huaping

    2010-11-05

    Research highlights: {yields} Evodiamine interacted with the AhR. {yields} Evodiamine inhibited the specific binding of [{sup 3}H]-TCDD to the AhR. {yields} Evodiamine acts as an antagonist of the AhR. -- Abstract: Evodiamine, the major bioactive alkaloid isolated from Wu-Chu-Yu, has been shown to interact with a wide variety of proteins and modify their expression and activities. In this study, we investigated the interaction between evodiamine and the aryl hydrocarbon receptor (AhR). Molecular modeling results revealed that evodiamine directly interacted with the AhR. Cytosolic receptor binding assay also provided the evidence that evodiamine could interact with the AhR with the K{sub i} value of 28.4 {+-} 4.9 nM. In addition, we observed that evodiamine suppressed the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced nuclear translocation of the AhR and the expression of CYP1A1 dose-dependently. These results suggested that evodiamine was able to bind to the AhR as ligand and exhibit antagonistic effects.

  19. Safety profile of mineralocorticoid receptor antagonists: Spironolactone and eplerenone.

    PubMed

    Lainscak, Mitja; Pelliccia, Francesco; Rosano, Giuseppe; Vitale, Cristiana; Schiariti, Michele; Greco, Cesare; Speziale, Giuseppe; Gaudio, Carlo

    2015-12-01

    Spironolactone was first developed over 50 years ago as a potent mineralocorticoid receptor antagonist with undesirable side effects; it was followed a decade ago by eplerenone, which is less potent but much more mineralocorticoid receptor-specific. From a marginal role as a potassium-sparing diuretic, spironolactone has been shown to be an extraordinarily effective adjunctive agent in the treatment of progressive heart failure. Also, spironolactone is safe and protective in arterial hypertension, particularly in patients with so-called resistant hypertension. Eplerenone is the second oral aldosterone antagonist available for the treatment of arterial hypertension and heart failure. Treatment with eplerenone has been associated with decreased blood pressure and improved survival for patients with heart failure and reduced left ventricular ejection fraction. Due to the selectivity of eplerenone for the aldosterone receptor, severe adverse effects such as gynecomastia and vaginal bleeding seem to be less likely in patients who take eplerenone than in those who take spironolactone. The most common and potentially dangerous side effect of spironolactone--hyperkalemia--is also observed with eplerenone but the findings from clinical trials do not indicate more hyperkalemia induced drug withdrawals. Treatment with eplerenone should be initiated at a dosage of 25mg once daily and titrated to a target dosage of 50mg once daily preferably within 4 weeks. Serum potassium levels and renal function should be assessed prior to initiating eplerenone therapy, and periodic monitoring is recommended, especially in patients at high risk of developing hyperkalemia.

  20. Percolation on networks with antagonistic and dependent interactions

    NASA Astrophysics Data System (ADS)

    Kotnis, Bhushan; Kuri, Joy

    2015-03-01

    Drawing inspiration from real world interacting systems, we study a system consisting of two networks that exhibit antagonistic and dependent interactions. By antagonistic and dependent interactions we mean that a proportion of functional nodes in a network cause failure of nodes in the other, while failure of nodes in the other results in failure of links in the first. In contrast to interdependent networks, which can exhibit first-order phase transitions, we find that the phase transitions in such networks are continuous. Our analysis shows that, compared to an isolated network, the system is more robust against random attacks. Surprisingly, we observe a region in the parameter space where the giant connected components of both networks start oscillating. Furthermore, we find that for Erdős-Rényi and scale-free networks the system oscillates only when the dependence and antagonism between the two networks are very high. We believe that this study can further our understanding of real world interacting systems.

  1. Antagonists of IAP proteins: novel anti-tumor agents.

    PubMed

    Wan, Yichao; Liu, Tingting; Hou, Xuben; Dun, Yanyan; Guan, Peng; Fang, Hao

    2014-01-01

    Evasion of apoptosis is an important reason for tumor cells to resist the anticancer drugs in cancer therapy. As a critical regulator, the inhibitor of apoptosis proteins (IAPs) can block the apoptosis by inhibiting the activities of caspases. Scientists find that IAPs are over-expressed in many cancer cells, such as leukemia and B-cell lymphoma, which elucidate that high levels of IAPs are closely related to tumorigenesis and cancer development. Thus, targeting IAPs may be an attractive strategy for anti-tumor treatment. As an endogenous antagonist of IAPs, second mitochondria-derived activator of caspases (Smac) can suppress their activities through directly binding to IAPs. Based on structural biology study, Smac interacts with IAPs through the Ala-Val-Pro-Ile (AVPI) tetra-peptide of Smac. Therefore, many agents have been studied to suppress the IAPs which result in the activation of caspases and subsequently induce the apoptosis of tumor cells based on mimicking AVPI peptide strategy. In this review, the functions of IAPs in apoptosis and the recent advance of IAPs antagonists will be discussed.

  2. Rogue Sperm Indicate Sexually Antagonistic Coevolution in Nematodes

    PubMed Central

    Ellis, Ronald E.; Schärer, Lukas

    2014-01-01

    Intense reproductive competition often continues long after animals finish mating. In many species, sperm from one male compete with those from others to find and fertilize oocytes. Since this competition occurs inside the female reproductive tract, she often influences the outcome through physical or chemical factors, leading to cryptic female choice. Finally, traits that help males compete with each other are sometimes harmful to females, and female countermeasures may thwart the interests of males, which can lead to an arms race between the sexes known as sexually antagonistic coevolution. New studies from Caenorhabditis nematodes suggest that males compete with each other by producing sperm that migrate aggressively and that these sperm may be more likely to win access to oocytes. However, one byproduct of this competition appears to be an increased probability that these sperm will go astray, invading the ovary, prematurely activating oocytes, and sometimes crossing basement membranes and leaving the gonad altogether. These harmful effects are sometimes observed in crosses between animals of the same species but are most easily detected in interspecies crosses, leading to dramatically lowered fitness, presumably because the competitiveness of the sperm and the associated female countermeasures are not precisely matched. This mismatch is most obvious in crosses involving individuals from androdioecious species (which have both hermaphrodites and males), as predicted by the lower levels of sperm competition these species experience. These results suggest a striking example of sexually antagonistic coevolution and dramatically expand the value of nematodes as a laboratory system for studying postcopulatory interactions. PMID:25072813

  3. ErbB antagonists patenting: "playing chess with cancer".

    PubMed

    Aifa, Sami; Rebai, Ahmed

    2008-01-01

    ErbBs signalling is always associated with the development of the majority of solid cancers via both the MAPK pathway leading to cell cycle progression and the PI3K pathway causing cell survival. As a consequence, many ErbB antagonists have been developed and patented for cancer treatment purposes. These antagonists belong to two drug classes: monoclonal antibodies (mAbs) and small molecules competing with ATP and inhibiting the tyrosine kinase domain (TKIs). Three patented mAbs are currently approved in clinical cancer treatment: Trastuzumab (Herceptin) directed against HER2 and used to treat breast cancer, Cetuximab and Panitumumab which are anti-EGFR antibodies approved for colorectal cancer treatment. Unfortunately, these mAbs are facing cancer resistance mediated by paracrine activation of other ErbB members or compensatory ErbB signalling factors. In parallel, three TKIs have been approved to treat cancer: Gefitinib (Iressa), Erlotinib (Tarceva) inhibiting specifically EGFR and approved to treat non small cell lung cancer and Lapatinib (Tykerb) which has the dual specificity EGFR/HER2 and recently approved to treat metastatic breast cancer. These TKIs are also facing resistance mutations within the TK domain which increase its affinity to ATP. Resistance problems are leading to the adoption of a new strategy based on the combination of different therapies and this is likely to be the most promising future of cancer treatments. PMID:19075865

  4. Two Potent OXE-R Antagonists: Assignment of Stereochemistry.

    PubMed

    Patel, Pranav; Reddy, Chintam Nagendra; Gore, Vivek; Chourey, Shishir; Ye, Qiuji; Ouedraogo, Yannick P; Gravel, Sylvie; Powell, William S; Rokach, Joshua

    2014-07-10

    5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is formed by the oxidation of 5-hydroxy-6E,8Z,11Z,14Z-eicosatetraenoic acid (5-HETE), which is a major metabolite of enzymatic oxidation of arachidonic acid (AA). 5-Oxo-ETE is the most potent lipid chemoattractant for human eosinophils. Its actions are mediated by the selective OXE receptor, which is therefore an attractive target in eosinophilic diseases such as allergic rhinitis and asthma. Recently, we have reported two excellent OXE receptor antagonists that have IC50 values at low nanomolar concentrations. Each of these antagonists has a chiral center, and the isolation of the individual enantiomers by chiral high-performance liquid chromatography (HPLC) revealed that in each case one enantiomer is over 300 times more potent than the other. To unambiguously assign the stereochemistry of these enantiomers and to provide access to larger amounts of the active compounds for biological testing, we report here their total synthesis.

  5. [Growth hormone receptor antagonist in the treatment of acromegaly].

    PubMed

    Hubina, Erika; Tóth, Agnes; Kovács, Gábor László; Dénes, Judit; Kovács, László; Góth, Miklós

    2011-05-01

    Exploration of construction, function and interaction of human growth hormone and growth hormone receptor in details resulted in the innovation of the new growth hormone receptor antagonist, pegvisomant. Pegvisomant with different mechanism of action extended the tools of medical management of acromegaly. Importance of the novel treatment modality is high. In one hand the necessity of the strict control of growth hormone/insulin-like growth factor-I axis has been proven regarding the mortality of the disease. On the other hand, despite the use of all current modes of treatment (surgery, radiotherapy, dopamine agonists, somatostatin analogs), a significant cohort of patients with acromegaly remains inadequately controlled. Pegvisomant has been registered in 2004. Since 2006, it has been used in Hungary for the treatment of acromegaly in patients who have had an inadequate response to surgery and/or radiation therapy and/or other medical therapies, or for whom these therapies are not appropriate. Clinical use of pegvisomant in the treatment of acromegaly is effective, well tolerated, and safe, based on international Acrostudy database. In order to improve the efficacy of therapy clinical trials started with pegvisomant and somatostatin analog combination treatment. Evidence of several further effects of the growth hormone/insulin-like growth factor-I axis suggests other potential uses of growth hormone receptor antagonists. PMID:21498159

  6. 3D pharmacophore models for thromboxane A(2) receptor antagonists.

    PubMed

    Wei, Jing; Liu, Yixi; Wang, Songqing

    2009-10-01

    Thromboxane A(2) (TXA(2)) is an endogenous arachidonic acid derivative closely correlated to thrombosis and other cardiovascular diseases. The action of TXA(2) can be effectively inhibited with TXA(2) receptor antagonists (TXRAs). Previous studies have attempted to describe the interactions between the TXA(2) receptor and its ligands, but their conclusions are still controversial. In this study, ligand-based computational drug design is used as a new and effective way to investigate the structure-activity relationship of TXRAs. Three-dimensional pharmacophore models of TXRAs were built with HypoGenRefine and HipHop modules in CATALYST software. The optimal HypoGenRefine model was developed on the basis of 25 TXRAs. It consists of two hydrophobic groups, one aromatic ring, one hydrogen-bond acceptor and four excluded volumes. The optimal HipHop model contains two hydrophobic groups and two hydrogen-bond acceptors. These models describe the key structure-activity relationship of TXRAs, can predict their activities, and can thus be used to design novel antagonists. PMID:19263096

  7. 3D pharmacophore models for thromboxane A(2) receptor antagonists.

    PubMed

    Wei, Jing; Liu, Yixi; Wang, Songqing

    2009-10-01

    Thromboxane A(2) (TXA(2)) is an endogenous arachidonic acid derivative closely correlated to thrombosis and other cardiovascular diseases. The action of TXA(2) can be effectively inhibited with TXA(2) receptor antagonists (TXRAs). Previous studies have attempted to describe the interactions between the TXA(2) receptor and its ligands, but their conclusions are still controversial. In this study, ligand-based computational drug design is used as a new and effective way to investigate the structure-activity relationship of TXRAs. Three-dimensional pharmacophore models of TXRAs were built with HypoGenRefine and HipHop modules in CATALYST software. The optimal HypoGenRefine model was developed on the basis of 25 TXRAs. It consists of two hydrophobic groups, one aromatic ring, one hydrogen-bond acceptor and four excluded volumes. The optimal HipHop model contains two hydrophobic groups and two hydrogen-bond acceptors. These models describe the key structure-activity relationship of TXRAs, can predict their activities, and can thus be used to design novel antagonists.

  8. Growth hormone receptor antagonists: discovery and potential uses.

    PubMed

    Kopchick, J J; Okada, S

    2001-06-01

    Serum levels of growth hormone (GH) in the human body vary and can influence the levels of insulin-like growth factor I (IGF-1). Low levels of GH can result in a dwarf phenotype and have been positively correlated with an increased life expectancy. High levels of GH can lead to gigantism or a clinical syndrome termed acromegaly, and also have been implicated in diabetic eye and kidney damage. Additionally, it has been postulated that the GH-IGF-I system can be involved in several types of cancers. Overall, both elevated and suppressed circulating levels of GH can have pronounced physiological effects. More than a decade ago a new class of drug, a GH antagonist, was discovered. It is now being tested for its ability to combat the effects of high circulating levels of GH. In this review, we will discuss some of the detrimental actions of GH and how a GH antagonist may be used to combat these effects. PMID:11527080

  9. NMDA receptor antagonists extend the sensitive period for imprinting.

    PubMed

    Parsons, C H; Rogers, L J

    2000-03-01

    Filial imprinting in the domestic chick occurs during a sensitive period of development. The exact timing of this period can vary according to the methods used to measure imprinting. Using our imprinting paradigm, we have shown that normal, dark-reared chicks lose the ability to imprint after the second day post-hatching. Further, we reported that chicks treated 10 h after hatching with a mixture of the noncompetitive NMDA receptor antagonist ketamine (55 mg/kg) and the alpha(2)-adrenergic receptor agonist xylazine (6 mg/kg) were able to imprint on day 8 after hatching, whereas controls treated with saline did not imprint. We now show that the effect of the ketamine-xylazine mixture can be mimicked by treating chicks with ketamine alone or with another noncompetitive NMDA receptor antagonist, MK-801 (5 mg/kg). Treating chicks with a single dose of ketamine (55 mg/kg) or with a single dose of xylazine (6 mg/kg) failed to produce the effect on the sensitive period. However, prolonging the action of ketamine by treating chicks with two doses of ketamine (at 10 and 12 h after hatching) did allow imprinting on day 8. In contrast, prolonging the action of xylazine had no effect on the sensitive period for imprinting. Chicks treated with MK-801 were also able to imprint on day 8. Thus, we have evidence that the NMDA receptor system is involved in the mechanisms that control the sensitive period for imprinting. PMID:10764906

  10. Inhibition of ionotropic neurotransmitter receptors by antagonists: strategy to estimate the association and the dissociation rate constant of antagonists with very strong affinity to the receptors.

    PubMed

    Aoshima, H; Inoue, Y; Hori, K

    1992-10-01

    Since binding of an agonist to an ionotropic neurotransmitter receptor causes not only channel opening, but also desensitization of the receptor, inhibition of the receptor by the antagonist sometimes becomes very complicated. The transient state kinetics of ligand association and dissociation, and desensitization of the receptor were considered on the basis of the minimal model proposed by Hess' group, and the following possibilities were proposed. 1) When an agonist is simultaneously applied to the receptor with an antagonist whose affinity to the receptor is extremely strong and different from that of the agonist, it is usually impossible to estimate the real inhibition constant exactly from the responses because desensitization of the receptor proceeds before the equilibrium of the ligand binding. Simultaneous addition of the antagonist with strong affinity to the receptor may apparently accelerate inactivation (desensitization) of the receptor. The association rate constant of the antagonist can be estimated by analyses of the rate of the inactivation in the presence and the absence of the antagonist. 2) A preincubated antagonist with a slow dissociation rate constant, i.e., a very effective inhibitor, may cause apparent noncompetitive inhibition of the receptor, since the receptor is desensitized by an agonist as soon as the antagonist dissociates from the receptor and the dissociation of the antagonist from the receptor becomes the rate-determining step. A nicotinic acetylcholine receptor (nAChR) was expressed in Xenopus oocytes by injecting mRNA prepared from Electrophorus electricus electroplax and used for the experiments on inhibition by an antagonist.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1337082

  11. Discovery of a tetracyclic quinoxaline derivative as a potent and orally active multifunctional drug candidate for the treatment of neuropsychiatric and neurological disorders.

    PubMed

    Li, Peng; Zhang, Qiang; Robichaud, Albert J; Lee, Taekyu; Tomesch, John; Yao, Wei; Beard, J David; Snyder, Gretchen L; Zhu, Hongwen; Peng, Youyi; Hendrick, Joseph P; Vanover, Kimberly E; Davis, Robert E; Mates, Sharon; Wennogle, Lawrence P

    2014-03-27

    We report the synthesis and structure-activity relationships of a class of tetracyclic butyrophenones that exhibit potent binding affinities to serotonin 5-HT(2A) and dopamine D2 receptors. This work has led to the discovery of 4-((6bR,10aS)-3-methyl-2,3,6b,9,10,10a-hexahydro-1H,7H-pyrido[3',4':4,5]pyrrolo[1,2,3-de]quinoxalin-8-yl)-1-(4-fluorophenyl)-butan-1-one 4-methylbenzenesulfonate (ITI-007), which is a potent 5-HT(2A) antagonist, postsynaptic D2 antagonist, and inhibitor of serotonin transporter. This multifunctional drug candidate is orally bioavailable and exhibits good antipsychotic efficacy in vivo. Currently, this investigational new drug is under clinical development for the treatment of neuropsychiatric and neurological disorders.

  12. In Silico Discovery of Androgen Receptor Antagonists with Activity in Castration Resistant Prostate Cancer

    PubMed Central

    Shen, Howard C.; Shanmugasundaram, Kumaran; Simon, Nicholas I.; Cai, Changmeng; Wang, Hongyun; Chen, Sen; Rigby, Alan C.

    2012-01-01

    Previously available androgen receptor (AR) antagonists (bicalutamide, flutamide, and nilutamide) have limited activity against AR in prostate cancers that relapse after castration [castration resistant prostate cancer (CRPC)]. However, recent AR competitive antagonists such as MDV3100, generated through chemical modifications to the current AR ligands, appear to have increased activity in CRPC and have novel mechanisms of action. Using pharmacophore models and a refined homology model of the antagonist-liganded AR ligand binding domain, we carried out in silico screens of small molecule libraries and report here on the identification of a series of structurally distinct nonsteroidal small molecule competitive AR antagonists. Despite their unique chemical architectures, compounds representing each of six chemotypes functioned in vitro as pure AR antagonists. Moreover, similarly to MDV3100 and in contrast to previous AR antagonists, these compounds all prevented AR binding to chromatin, consistent with each of the six chemotypes stabilizing a similar AR antagonist conformation. Additional studies with the lead chemotype (chemotype A) showed enhanced AR protein degradation, which was dependent on helix 12 in the AR ligand binding domain. Significantly, chemotype A compounds functioned as AR antagonists in vivo in normal male mice and suppressed AR activity and tumor cell proliferation in human CRPC xenografts. These data indicate that certain ligand-induced structural alterations in the AR ligand binding domain may both impair AR chromatin binding and enhance AR degradation and support continued efforts to develop AR antagonists with unique mechanisms of action and efficacy in CRPC. PMID:23023563

  13. Synthesis of Indole Derived Protease-Activated Receptor 4 Antagonists and Characterization in Human Platelets

    PubMed Central

    Young, Summer E.; Duvernay, Matthew T.; Schulte, Michael L.; Lindsley, Craig W.; Hamm, Heidi E.

    2013-01-01

    Protease activated receptor-4 (PAR4) is one of the thrombin receptors on human platelets and is a potential target for the management of thrombotic disorders. We sought to develop potent, selective, and novel PAR4 antagonists to test the role of PAR4 in thrombosis and hemostasis. Development of an expedient three-step synthetic route to access a novel series of indole-based PAR4 antagonists also necessitated the development of a platelet based high-throughput screening assay. Screening and subsequent structure activity relationship analysis yielded several selective PAR4 antagonists as well as possible new scaffolds for future antagonist development. PMID:23776495

  14. Phosphoinositide system-linked serotonin receptor subtypes and their pharmacological properties and clinical correlates.

    PubMed Central

    Pandey, S C; Davis, J M; Pandey, G N

    1995-01-01

    Serotonergic neurotransmission represents a complex mechanism involving pre- and post-synaptic events and distinct 5-HT receptor subtypes. Serotonin (5-HT) receptors have been classified into several categories, and they are termed as 5-HT1, 5-HT2, 5-HT3, 5-HT4, 5-HT5, 5-HT6 and 5-HT7 type receptors. 5-HT1 receptors have been further subdivided into 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E and 5-HT1F. 5-HT2 receptors have been divided into 5-HT2A, 5-HT2B and 5-HT2C receptors. All 5-HT2 receptor subtypes are linked to the multifunctional phosphoinositide (PI) signalling system. 5-HT3 receptors are considered ion-gated receptors and are also linked to the PI signalling system by an unknown mechanism. The 5-HT2A receptor subtype is the most widely studied of the 5-HT receptors in psychiatric disorders (for example, suicide, depression and schizophrenia) as well as in relation to the mechanism of action of antidepressant drugs. The roles of 5-HT2C and 5-HT3 receptors in psychiatric disorders are less clear. These 5-HT receptors also play an important role in alcoholism. It has been shown that 5-HT2A, 5-HT2C and 5-HT3 antagonists cause attenuation of alcohol intake in animals and humans. However, the exact mechanisms are unknown. The recent cloning of the cDNAs for 5-HT2A, 5-HT2C and 5-HT3 receptors provides the opportunity to explore the molecular mechanisms responsible for the alterations in these receptors during illness as well as pharmacotherapy. This review article will focus on the current research into the pharmacological properties, molecular biology, and clinical correlates of 5-HT2A, 5-HT2C and 5-HT3 receptors. PMID:7786883

  15. Effects of the hallucinogen 2,5-dimethoxy-4-iodophenethylamine (2C-I) and superpotent N-benzyl derivatives on the head twitch response.

    PubMed

    Halberstadt, Adam L; Geyer, Mark A

    2014-02-01

    N-benzyl substitution markedly enhances the affinity of phenethylamine hallucinogens at the 5-HT(2A) receptor. N-benzyl substituted derivatives of 2,5-dimethoxy-4-iodophenethylamine (2C-I), such as N-(2-methoxybenzyl)-2,5-dimethoxy-4-iodophenethylamine (25I-NBOMe) and N-(2,3-methylenedioxybenzyl)-2,5-dimethoxy-4-iodophenethylamine (25I-NBMD), have appeared recently as designer drugs, but have not been characterized behaviorally. The head twitch response (HTR) is induced by 5-HT(2A) receptor activation in rats and mice, and is widely used as a behavioral proxy for hallucinogen effects in humans. Nevertheless, it is not clear whether phenethylamine hallucinogens reliably provoke this behavior. Hence, we investigated whether 2C-I, 25I-NBOMe and 25I-NBMD induce head twitches in C57BL/6J mice. The HTR was assessed using a head-mounted magnet and a magnetometer coil. 2C-I (1-10 mg/kg SC), 25I-NBOMe (0.1-1 mg/kg SC), and 25I-NBMD (1-10 mg/kg SC) induced the HTR. 25I-NBOMe displayed 14-fold higher potency than 2C-I, and the selective 5-HT(2A) antagonist M100,907 completely blocked the HTR induced by all three compounds. These findings show that phenethylamine hallucinogens induce the HTR by activating 5-HT(2A) receptors. Our results demonstrate that 25I-NBOMe is a highly potent derivative of 2C-I, confirming previous in vitro findings that N-benzyl substitution increases 5-HT(2A) affinity. Given the high potency and ease of synthesis of N-benzylphenethylamines, it is likely that the recreational use of these hallucinogens will become more widespread in the future.

  16. Effects of the hallucinogen 2,5-dimethoxy-4-iodophenethylamine (2C-I) and superpotent N-benzyl derivatives on the head twitch response

    PubMed Central

    Halberstadt, Adam L.; Geyer, Mark A.

    2013-01-01

    N -benzyl substitution markedly enhances the affinity of phenethylamine hallucinogens at the 5-HT2A receptor. N-benzyl substituted derivatives of 2,5-dimethoxy-4-iodophenethylamine (2C-I), such as N-(2-methoxybenzyl)-2,5-dimethoxy-4-iodophenethylamine (25I-NBOMe) and N-(2,3-methylenedioxybenzyl)-2,5-dimethoxy-4-iodophenethylamine (25I-NBMD), have appeared recently as designer drugs, but have not been characterized behaviorally. The head twitch response (HTR) is induced by 5-HT2A receptor activation in rats and mice, and is widely used as a behavioral proxy for hallucinogen effects in humans. Nevertheless, it is not clear whether phenethylamine hallucinogens reliably provoke this behavior. Hence, we investigated whether 2C-I, 25I-NBOMe and 25I-NBMD induce head twitches in C57BL/6J mice. The HTR was assessed using a head-mounted magnet and a magnetometer coil. 2C-I (1–10 mg/kg SC), 25I-NBOMe (0.1–1 mg/kg SC), and 25I-NBMD (1–10 mg/kg SC) induced the HTR. 25I-NBOMe displayed 14-fold higher potency than 2C-I, and the selective 5-HT2A antagonist M100,907 completely blocked the HTR induced by all three compounds. These findings show that phenethylamine hallucinogens induce the HTR by activating 5-HT2A receptors. Our results demonstrate that 25I-NBOMe is a highly potent derivative of 2C-I, confirming previous in vitro findings that N-benzyl substitution increases 5-HT2A affinity. Given the high potency and ease of synthesis of N-benzylphenethylamines, it is likely that the recreational use of these hallucinogens will become more widespread in the future. PMID:24012658

  17. Inhibition of alpha oscillations through serotonin-2A receptor activation underlies the visual effects of ayahuasca in humans.

    PubMed

    Valle, Marta; Maqueda, Ana Elda; Rabella, Mireia; Rodríguez-Pujadas, Aina; Antonijoan, Rosa Maria; Romero, Sergio; Alonso, Joan Francesc; Mañanas, Miquel Àngel; Barker, Steven; Friedlander, Pablo; Feilding, Amanda; Riba, Jordi

    2016-07-01

    Ayahuasca is an Amazonian psychotropic plant tea typically obtained from two plants, Banisteriopsis caapi and Psychotria viridis. It contains the psychedelic 5-HT2A and sigma-1 agonist N,N-dimethyltryptamine (DMT) plus β-carboline alkaloids with monoamine-oxidase (MAO)-inhibiting properties. Although the psychoactive effects of ayahuasca have commonly been attributed solely to agonism at the 5-HT2A receptor, the molecular target of classical psychedelics, this has not been tested experimentally. Here we wished to study the contribution of the 5-HT2A receptor to the neurophysiological and psychological effects of ayahuasca in humans. We measured drug-induced changes in spontaneous brain oscillations and subjective effects in a double-blind randomized placebo-controlled study involving the oral administration of ayahuasca (0.75mg DMT/kg body weight) and the 5-HT2A antagonist ketanserin (40mg). Twelve healthy, experienced psychedelic users (5 females) participated in four experimental sessions in which they received the following drug combinations: placebo+placebo, placebo+ayahuasca, ketanserin+placebo and ketanserin+ayahuasca. Ayahuasca induced EEG power decreases in the delta, theta and alpha frequency bands. Current density in alpha-band oscillations in parietal and occipital cortex was inversely correlated with the intensity of visual imagery induced by ayahuasca. Pretreatment with ketanserin inhibited neurophysiological modifications, reduced the correlation between alpha and visual effects, and attenuated the intensity of the subjective experience. These findings suggest that despite the chemical complexity of ayahuasca, 5-HT2A activation plays a key role in the neurophysiological and visual effects of ayahuasca in humans. PMID:27039035

  18. Inhibition of alpha oscillations through serotonin-2A receptor activation underlies the visual effects of ayahuasca in humans.

    PubMed

    Valle, Marta; Maqueda, Ana Elda; Rabella, Mireia; Rodríguez-Pujadas, Aina; Antonijoan, Rosa Maria; Romero, Sergio; Alonso, Joan Francesc; Mañanas, Miquel Àngel; Barker, Steven; Friedlander, Pablo; Feilding, Amanda; Riba, Jordi

    2016-07-01

    Ayahuasca is an Amazonian psychotropic plant tea typically obtained from two plants, Banisteriopsis caapi and Psychotria viridis. It contains the psychedelic 5-HT2A and sigma-1 agonist N,N-dimethyltryptamine (DMT) plus β-carboline alkaloids with monoamine-oxidase (MAO)-inhibiting properties. Although the psychoactive effects of ayahuasca have commonly been attributed solely to agonism at the 5-HT2A receptor, the molecular target of classical psychedelics, this has not been tested experimentally. Here we wished to study the contribution of the 5-HT2A receptor to the neurophysiological and psychological effects of ayahuasca in humans. We measured drug-induced changes in spontaneous brain oscillations and subjective effects in a double-blind randomized placebo-controlled study involving the oral administration of ayahuasca (0.75mg DMT/kg body weight) and the 5-HT2A antagonist ketanserin (40mg). Twelve healthy, experienced psychedelic users (5 females) participated in four experimental sessions in which they received the following drug combinations: placebo+placebo, placebo+ayahuasca, ketanserin+placebo and ketanserin+ayahuasca. Ayahuasca induced EEG power decreases in the delta, theta and alpha frequency bands. Current density in alpha-band oscillations in parietal and occipital cortex was inversely correlated with the intensity of visual imagery induced by ayahuasca. Pretreatment with ketanserin inhibited neurophysiological modifications, reduced the correlation between alpha and visual effects, and attenuated the intensity of the subjective experience. These findings suggest that despite the chemical complexity of ayahuasca, 5-HT2A activation plays a key role in the neurophysiological and visual effects of ayahuasca in humans.

  19. Psilocybin-induced deficits in automatic and controlled inhibition are attenuated by ketanserin in healthy human volunteers.

    PubMed

    Quednow, Boris B; Kometer, Michael; Geyer, Mark A; Vollenweider, Franz X

    2012-02-01

    The serotonin-2A receptor (5-HT(2A)R) has been implicated in the pathogenesis of schizophrenia and related inhibitory gating and behavioral inhibition deficits of schizophrenia patients. The hallucinogen psilocybin disrupts automatic forms of sensorimotor gating and response inhibition in humans, but it is unclear so far whether the 5-HT(2A)R or 5-HT(1A)R agonist properties of its bioactive metabolite psilocin account for these effects. Thus, we investigated whether psilocybin-induced deficits in automatic and controlled inhibition in healthy humans could be attenuated by the 5-HT(2A/2C)R antagonist ketanserin. A total of 16 healthy participants received placebo, ketanserin (40 mg p.o.), psilocybin (260 μg/kg p.o.), or psilocybin plus ketanserin in a double-blind, randomized, and counterbalanced order. Sensorimotor gating was measured by prepulse inhibition (PPI) of the acoustic startle response. The effects on psychopathological core dimensions and behavioral inhibition were assessed by the altered states of consciousness questionnaire (5D-ASC), and the Color-Word Stroop Test. Psilocybin decreased PPI at short lead intervals (30 ms), increased all 5D-ASC scores, and selectively increased errors in the interference condition of the Stroop Test. Stroop interference and Stroop effect of the response latencies were increased under psilocybin as well. Psilocybin-induced alterations were attenuated by ketanserin pretreatment, whereas ketanserin alone had no significant effects. These findings suggest that the disrupting effects of psilocybin on automatic and controlled inhibition processes are attributable to 5-HT(2A)R stimulation. Sensorimotor gating and attentional control deficits of schizophrenia patients might be due to changes within the 5-HT(2A)R system.

  20. Dihydrobenzofuran analogues of hallucinogens. 4. Mescaline derivatives.

    PubMed

    Monte, A P; Waldman, S R; Marona-Lewicka, D; Wainscott, D B; Nelson, D L; Sanders-Bush, E; Nichols, D E

    1997-09-12

    Dihydrobenzofuran and tetrahydrobenzodifuran functionalities were employed as conformationally restricted bioisosteres of the aromatic methoxy groups in the prototypical hallucinogen, mescaline (1). Thus, 4-(2-aminoethyl)-6,7-dimethoxy-2,3-dihydrobenzofuran hydrochloride (8) and 1-(8-methoxy-2,3,5,6-tetrahydrobenzo[1,2-b:5,4-b']difuran-4-yl)-2- aminoethane hydrochloride (9) were prepared and evaluated along with 1 for activity in the two-lever drug discrimination (DD) paradigm in rats trained to discriminate saline from LSD tartrate (0.08 mg/kg). Also, 1, 8, and 9 were assayed for their ability to displace [3H]ketanserin from rat cortical homogenate 5-HT2A receptors and [3H]8-OH-DPAT from rat hippocampal homogenate 5-HT1A receptors. In addition, these compounds were evaluated for their ability to compete for agonist and antagonist binding to cells expressing cloned human 5-HT2A, 5-HT2B, and 5-HT2C receptors. Finally, agonist efficacy was assessed by measurement of phosphoinositide hydrolysis in NIH 3T3 cells expressing the rat 5-HT2A or 5-HT2C receptors. Although 1 fully substituted for LSD in the DD assays (ED50 = 33.5 mumol/kg), neither 8 nor 9 substituted for LSD, with just 50% of the rats administered 8 selecting the drug lever, and only 29% of the rats administered 9 selecting the drug lever. All of the test compounds had micromolar affinity for the 5-HT1A and 5-HT2A receptors in rat brain homogenate. Curiously, the rank order of affinities of the compounds at 5-HT2A sites was opposite their order of potency in the behavioral assay. An evaluation for ability to stimulate phosphoinositide turnover as a measure of functional efficacy revealed that all the compounds were of approximately equal efficacy to serotonin in 5-HT2C receptors. At 5-HT2A receptors, however, 8 and 9 were significantly less efficacious, eliciting only 61 and 45%, respectively, of the maximal response. These results are consistent with the proposed mechanism of action for phenethylamine

  1. Functionalized Congeners of P2Y1 Receptor Antagonists:

    SciTech Connect

    de Castro, Sonia; Maruoka, Hiroshi; Hong, Kunlun; Kilbey, II, S Michael; Costanzi, Stefano; Hechler, Béatrice; Gachet, Christian; Harden, T. Kendall; Jacobson, Kenneth A.

    2010-01-01

    The P2Y{sub 1} receptor is a prothrombotic G protein-coupled receptor (GPCR) activated by ADP. Preference for the North (N) ring conformation of the ribose moiety of adenine nucleotide 3',5'-bisphosphate antagonists of the P2Y{sub 1} receptor was established by using a ring-constrained methanocarba (a bicyclo[3.1.0]hexane) ring as a ribose substitute. A series of covalently linkable N{sup 6}-methyl-(N)-methanocarba-2'-deoxyadenosine-3',5'-bisphosphates containing extended 2-alkynyl chains was designed, and binding affinity at the human (h) P2Y{sub 1} receptor determined. The chain of these functionalized congeners contained hydrophilic moieties, a reactive substituent, or biotin, linked via an amide. Variation of the chain length and position of an intermediate amide group revealed high affinity of carboxylic congener 8 (K{sub i} 23 nM) and extended amine congener 15 (K{sub i} 132 nM), both having a 2-(1-pentynoyl) group. A biotin conjugate 18 containing an extended {epsilon}-aminocaproyl spacer chain exhibited higher affinity than a shorter biotinylated analogue. Alternatively, click coupling of terminal alkynes of homologous 2-dialkynyl nucleotide derivatives to alkyl azido groups produced triazole derivatives that bound to the P2Y{sub 1} receptor following deprotection of the bisphosphate groups. The preservation of receptor affinity of the functionalized congeners was consistent with new P2Y{sub 1} receptor modeling and ligand docking. Attempted P2Y{sub 1} antagonist conjugation to PAMAM dendrimer carriers by amide formation or palladium-catalyzed reaction between an alkyne on the dendrimer and a 2-iodopurine-derivatized nucleotide was unsuccessful. A dialkynyl intermediate containing the chain length favored in receptor binding was conjugated to an azide-derivatized dendrimer, and the conjugate inhibited ADP-promoted human platelet aggregation. This is the first example of attaching a strategically functionalized P2Y receptor antagonist to a PAMAM dendrimer to

  2. Combined effects of oestrogen receptor antagonists on in vitro vitellogenesis.

    PubMed

    Petersen, Karina; Tollefsen, Knut Erik

    2012-05-15

    Some environmental compounds are known to have anti-oestrogenic activity and their modes of action (MoA) are believed to include competitive inhibition of 17β-estradiol (E2) binding to the oestrogen receptor (ER) or interference with ER-dependent processes. The presence of multiple compounds having the same MoA may cause concern, as exposure to multiple compounds at concentrations below their threshold for effect can interact with cellular targets to cause effects in combination. The combined effect of mixtures can be assessed using prediction models such as concentration addition (CA) and independent action (IA). The objective of the present study was to determine if the CA and IA prediction models could accurately characterise the combined effects of mixtures of ER antagonists in rainbow trout (Oncorhynchus mykiss) hepatocytes using the ER-mediated production of the oestrogenic biomarker vitellogenin (Vtg) as a screening assay. Model anti-oestrogens (4-hydroxytamoxifen and ZM 189.154) and environmentally relevant compounds (PCBs and PAHs) were tested to ensure inclusion of compounds from different chemical classes and with different MoAs. All eleven tested compounds had the ability to reduce the in vitro E2-induced production of Vtg in a concentration-dependent manner. The potency of the tested compounds differed by four orders of magnitude based on the concentrations for 50% inhibition (IC(50)). The observed order of potency was 2,3,7,8-tetrachlorodibenzo-p-dioxin>4-hydroxytamoxifen>3,3',4,4',5-pentachlorobiphenyl>benzo(k)fluoranthene>3,3',4,4'-tetrachlorobiphenyl>β-naphthoflavone>ZM 189.154>indeno[1,2,3-cd]pyrene>benzo(b)fluoranthene>benzo(a)pyrene>benzo(a)anthracene. The CA and IA models were able to predict the combined effects of mixtures of ER antagonists with similar MoA. The mixtures of certain ER-antagonists with different and/or complex MoA caused deviations from both the CA and the IA model by causing higher anti-oestrogenic activity than predicted

  3. M sub 1 muscarinic antagonists interact with. sigma. recognition sites

    SciTech Connect

    Hudkins, R.L. ); DeHaven-Hudkins, D.L. )

    1991-01-01

    The M{sub 1}-selective muscarinic antagonists aprophen, caramiphen, carbetapentane, 2-DAEX, dicyclomine, hexahydrosiladifenidol, iodocaramiphen, nitrocaramiphen, oxybutynin and trihexyphenidyl potently inhibited binding to {sigma} sites in brain. Both basic ester and non-ester structural type compounds which exhibit affinity for the muscarinic receptor also demonstrated affinity for the {sigma} site, while the classical antimuscarinic agents atropine and QNB, and the tricyclic pirenzepine, were ineffective in binding to this site. The authors also observed a significant correlation between the K{sub i} values for {sigma}compounds to inhibit ({sup 3}H)pirenzepine binding and their IC{sub 50} values to inhibit carbachol-stimulated phosphoinositide turnover. These observations may aid in elucidating the relationship of {sigma} binding to inhibition of phosphoinositide turnover stimulated by cholinergic agonists.

  4. Interaction intimacy organizes networks of antagonistic interactions in different ways

    PubMed Central

    Pires, Mathias M.; Guimarães, Paulo R.

    2013-01-01

    Interaction intimacy, the degree of biological integration between interacting individuals, shapes the ecology and evolution of species interactions. A major question in ecology is whether interaction intimacy also shapes the way interactions are organized within communities. We combined analyses of network structure and food web models to test the role of interaction intimacy in determining patterns of antagonistic interactions, such as host–parasite, predator–prey and plant–herbivore interactions. Networks describing interactions with low intimacy were more connected, more nested and less modular than high-intimacy networks. Moreover, the performance of the models differed across networks with different levels of intimacy. All models reproduced well low-intimacy networks, whereas the more elaborate models were also capable of reproducing networks depicting interactions with higher levels of intimacy. Our results indicate the key role of interaction intimacy in organizing antagonisms, suggesting that greater interaction intimacy might be associated with greater complexity in the assembly rules shaping ecological networks. PMID:23015523

  5. Leukotriene receptor antagonists for the treatment of asthma.

    PubMed

    Kemp, J P

    2000-04-01

    Leukotriene receptor antagonists (LTRAs) are novel medications that provide symptom control in patients with persistent asthma. Current guidelines recommend the use of LTRAs as a treatment option for patients with mild-persistent asthma of at least 12 years of age. As illustrated by the results of controlled, multicenter clinical trials with zafirlukast and montelukast, as well as studies with pranlukast in Japan, LTRAs reduce daytime and night time asthma symptoms, improve pulmonary function, lower beta-adrenergic agonist use, and reduce asthma morbidity in patients with mild-intermittent to moderate-persistent asthma. Moreover, several recent clinical studies demonstrate that these agents are effective in preventing exercise-induced bronchoconstriction in children, and in improving disease control in symptomatic patients taking inhaled steroids. Based on clinical results to date, LTRAs appear to be safe and well tolerated in patients with mildto- moderate asthma. These agents represent an important addition to the drug armamentarium against asthma.

  6. Rational use of calcium-channel antagonists in Raynaud's phenomenon.

    PubMed

    Sturgill, M G; Seibold, J R

    1998-11-01

    Raynaud's phenomenon (RP) is a peripheral circulatory disorder characterized by sudden episodes of digital artery spasm, often precipitated by cold temperature or emotional stress. Although the cause of RP is not fully known, it appears to involve inappropriate adrenergic response to cold stimuli. Treatment of RP is conservative in most patients, but in patients with severe disease includes the use of agents that promote digital vasodilation. The calcium-channel antagonists, particularly the dihydropyridine derivative nifedipine, are the most thoroughly studied drug class for the treatment of RP. Approximately two thirds of patients respond favorably, with significant reductions in the frequency and severity of vasospastic attacks. Nifedipine use is often limited by the appearance of adverse vasodilatory effects such as headache or peripheral edema. The newer second-generation dihydropyridines such as amlodipine, isradipine, nicardipine, and felodipine also appear to be effective in patients with RP and may be associated with fewer adverse effects.

  7. Vasopressin receptor antagonists, heart failure, and polycystic kidney disease.

    PubMed

    Torres, Vicente E

    2015-01-01

    The synthesis of nonpeptide orally bioavailable vasopressin antagonists devoid of agonistic activity (vaptans) has made possible the selective blockade of vasopressin receptor subtypes for therapeutic purposes. Vaptans acting on the vasopressin V2 receptors (aquaretics) have attracted attention as a possible therapy for heart failure and polycystic kidney disease. Despite a solid rationale and encouraging preclinical testing, aquaretics have not improved clinical outcomes in randomized clinical trials for heart failure. Additional clinical trials with select population targets, more flexible dosing schedules, and possibly a different drug type or combination (balanced V1a/V2 receptor antagonism) may be warranted. Aquaretics are promising for the treatment of autosomal dominant polycystic kidney disease and have been approved in Japan for this indication. More studies are needed to better define their long-term safety and efficacy and optimize their utilization.

  8. Mineralocorticoid receptor antagonists-pharmacodynamics and pharmacokinetic differences.

    PubMed

    Yang, Jun; Young, Morag J

    2016-04-01

    Mineralocorticoid receptor antagonists (MRAs) are best known as potassium-sparing diuretics due to their blockade of aldosterone action in renal epithelial tissues. They are also beneficial for the treatment of heart failure, primarily due to effects in non-epithelial tissues. Currently there are only two steroidal MRAs that have been approved for use; spironolactone (and its active metabolite canrenone) and eplerenone. However, the search is on for novel generations of MRAs with increased potency and tissue selectivity. A number of novel non-steroidal compounds are in preclinical and early development, with one agent moving to phase III trials. The development of these agents and the mechanisms for their pharmacologic superiority compared to earlier generations of MRAs will be discussed in this review. PMID:26939027

  9. Leptin: From structural insights to the design of antagonists.

    PubMed

    Zabeau, Lennart; Peelman, Frank; Tavernier, Jan

    2015-11-01

    After its discovery in 1994, it soon became clear that leptin acts as an adipocyte-derived hormone with a central role in the control of body weight and energy homeostasis. However, a growing body of evidence has revealed that leptin is a pleiotropic cytokine with activities on many peripheral cell types. Inappropriate leptin signaling can promote autoimmunity, certain cardiovascular diseases, elevated blood pressure and cancer, which makes leptin and the leptin receptor interesting targets for antagonism. Profound insights in the leptin receptor (LR) activation mechanisms are a prerequisite for the rational design of these antagonists. In this review, we focus on the molecular mechanisms underlying leptin receptor activation and signaling. We also discuss the current strategies to interfere with leptin signaling and their therapeutic potential.

  10. Acyclic Tethers Mimicking Subunits of Polysaccharide Ligands: Selectin Antagonists

    PubMed Central

    2014-01-01

    We report on the design and synthesis of molecules having E- and P-selectins blocking activity both in vitro and in vivo. The GlcNAc component of the selectin ligand sialyl LewisX was replaced by an acyclic tether that links two saccharide units. The minimization of intramolecular dipole–dipole interactions and the gauche effect would be at the origin of the conformational bias imposed by this acyclic tether. The stereoselective synthesis of these molecules, their biochemical and biological evaluations using surface plasmon resonance spectroscopy (SPR), and in vivo assays are described. Because the structure of our analogues differs from the most potent E-selectin antagonists reported, our acyclic analogues offer new opportunities for chemical diversity. PMID:25221666

  11. [Antifibrillatory activity of dipeptide antagonist of nerve growth factor].

    PubMed

    Kryzhanovskiĭ, S A; Stoliarchuk, V N; Vititnova, M B; Tsorin, I B; Pekel'dina, E S; Gudasheva, T A

    2012-01-01

    In experiments on anesthetized rats were assessed antifibrillatoty action of dipeptide GK-1. This compound is the fragment of fourth loop of nerve growth factor (NGF) and manifests antagonistic activity in respect to TrkA receptor, that specified for NGF. It is shown that this compound is able to significantly increase the threshold of electrical fibrillation of the heart and its effectiveness is not inferior to the reference antiarrhythmics I and III class on Vaughan Williams classification. However, unlike the latter, antifibrillatory action of dipeptide GK-1 was delayed and realized within 40-60 minutes after its administration. It is discussed possible mechanisms underlying antifibrillatory action of dipeptide GK-1, that, to some extent, may be associated with its ability to change the reactivity of beta-adrenergic structures of the heart.

  12. Development of second generation EP2 antagonists with high selectivity

    PubMed Central

    Ganesh, Thota; Jiang, Jianxiong; Dingledine, Ray

    2014-01-01

    EP2 receptor has emerged as an important biological target for therapeutic intervention. In particular, it has been shown to exacerbate disease progression of a variety of CNS and peripheral diseases. Deletion of the EP2 receptor in mouse models recapitulates several features of the COX-2 inhibition, thus presenting a new avenue for anti-inflammatory therapy which could bypass some of the adverse side effects observed by the COX-2 inhibition therapy. We have recently reported a cinnamic amide class of EP2 antagonists with high potency, but these compounds exhibited a moderate selectivity against prostanoid receptor DP1. Moreover they possess acrylamide moiety in the structure, which may result in liver toxicity over longer period of use in a chronic disease model. Thus, we now developed a second generation compounds that devoid of the acrylamide functionality and possess high potency and improved (>1000-fold) selectivity to EP2 over other prostanoid receptors. PMID:24937185

  13. 1/f scaling in heart rate requires antagonistic autonomic control

    NASA Astrophysics Data System (ADS)

    Struzik, Zbigniew R.; Hayano, Junichiro; Sakata, Seiichiro; Kwak, Shin; Yamamoto, Yoshiharu

    2004-11-01

    We present systematic evidence for the origins of 1/f -type temporal scaling in human heart rate. The heart rate is regulated by the activity of two branches of the autonomic nervous system: the parasympathetic (PNS) and the sympathetic (SNS) nervous systems. We examine alterations in the scaling property when the balance between PNS and SNS activity is modified, and find that the relative PNS suppression by congestive heart failure results in a substantial increase in the Hurst exponent H towards random-walk scaling 1/f2 and a similar breakdown is observed with relative SNS suppression by primary autonomic failure. These results suggest that 1/f scaling in heart rate requires the intricate balance between the antagonistic activity of PNS and SNS.

  14. Suvorexant: The first orexin receptor antagonist to treat insomnia

    PubMed Central

    Dubey, Ashok K.; Handu, Shailendra S.; Mediratta, Pramod K.

    2015-01-01

    Primary insomnia is mainly treated with drugs acting on benzodiazepine receptors and a few other classes of drugs used for different co-morbidities. A novel approach to treat insomnia has been introduced recently, with the approval of suvorexant, the first in a new class of orexin receptor antagonists. Orexin receptors in the brain have been found to play an important role in the regulation of various aspects of arousal and motivation. The drugs commonly used for insomnia therapy to date, have often been associated with adverse effects, such as, day-time somnolence, amnesia, confusion, and gait disturbance, apart from the risk of dependence on chronic use. Suvorexant has not shown these adverse effects because of its unique mechanism of action. It also appears to be suitable as a chronic therapy for insomnia, because of minimal physical dependence. The availability of this new drug as an effective and safe alternative is an important and welcome development in insomnia management. PMID:25969666

  15. Physico-chemical pathways in radioprotective action of calmodulin antagonists

    NASA Astrophysics Data System (ADS)

    Varshney, Rajeev; Kale, R. K.

    1996-04-01

    Ghost membranes prepared from erythrocytes of Swiss albino mice were irradiated with gamma rays at a dose rate of 0.9 Gy/s. The fluidity of membrane decreased with radiation dose and in the presence of calmodulin antagonists (CA) like chlorpromazine (CPZ), promethazine (PMZ) and trimeprazine (TMZ) it increased. Radiation induced release of Ca 2+ from membranes. This release was inhibited by CA mainly by CPZ and PMZ. Being Ca 2+ dependent, the changes in the activity of acetylcholine estrase (AchE) following irradiation was also studied. Radiation decreased the activity of AchE in dose dependent manner. Presence of CPZ and PMZ diminished the radiation induced inhibition of AchE but not in the presence of TMZ at the lower concentration tested. It is suggested that apart from scavenging of free radicals, CA perhaps exert their euxoic radioprotective effect through Ca 2+ dependent processes.

  16. Exploring antagonistic metabolites of established biocontrol agent of marine origin.

    PubMed

    Rane, Makarand Ramesh; Sarode, Prashant Diwakar; Chaudhari, Bhushan Liladhar; Chincholkar, Sudhir Bhaskarrao

    2008-12-01

    Biocontrol ability of Pseudomonas aeruginosa ID 4365, a biocontrol agent of groundnut phytopathogens from marine origin, was previously attributed to the production of pyoverdin type of siderophores. However, pyoverdin-rich supernatants of this organism showed better antifungal activity compared to equivalent amount of purified pyoverdin indicating presence of undetected metabolite(s) in pyoverdin rich supernatants. On the basis of observation that antagonistic activity was iron-dependent and iron-independent, an attempt was made to detect the presence of additional metabolites. In addition to pyoverdin, strain produced additional siderophores, viz. pyochelin and salicylic acid. Two broad spectrum antifungal compounds, viz. pyocyanin and phenazine-1-carboxylic acid, were detected, characterized, and activity against phytopathogens was demonstrated. Iron- and phosphate-dependent co-production of siderophores and phenazines was confirmed. Strain showed additional features like production of hydrogen cyanide, indol-3-acetic acid, and phosphate solubilization. PMID:18626581

  17. Interaction intimacy organizes networks of antagonistic interactions in different ways.

    PubMed

    Pires, Mathias M; Guimarães, Paulo R

    2013-01-01

    Interaction intimacy, the degree of biological integration between interacting individuals, shapes the ecology and evolution of species interactions. A major question in ecology is whether interaction intimacy also shapes the way interactions are organized within communities. We combined analyses of network structure and food web models to test the role of interaction intimacy in determining patterns of antagonistic interactions, such as host-parasite, predator-prey and plant-herbivore interactions. Networks describing interactions with low intimacy were more connected, more nested and less modular than high-intimacy networks. Moreover, the performance of the models differed across networks with different levels of intimacy. All models reproduced well low-intimacy networks, whereas the more elaborate models were also capable of reproducing networks depicting interactions with higher levels of intimacy. Our results indicate the key role of interaction intimacy in organizing antagonisms, suggesting that greater interaction intimacy might be associated with greater complexity in the assembly rules shaping ecological networks.

  18. Design, synthesis and biological evaluation of nonpeptide integrin antagonists.

    PubMed

    Nicolaou, K C; Trujillo, J I; Jandeleit, B; Chibale, K; Rosenfeld, M; Diefenbach, B; Cheresh, D A; Goodman, S L

    1998-08-01

    Recent studies demonstrated that peptide and antibody antagonists of integrin alpha v beta 3 block angiogenesis and tumor growth. In this article, the design, synthesis and biological evaluation of a series of nitroaryl ether-based, nonpeptide mimetics are described. The design of these compounds was based on Merck's arylether/alpha-aminoacid/guanidine framework and incorporates a novel nitroaryl system. The synthesized mimetics were tested against a variety of integrins (alpha v beta 3, alpha IIb beta 3, and alpha v beta 5) in order to determine their binding selectivity and ability to inhibit cell adhesion. Selected compounds were also tested for their ability to inhibit angiogenesis in vivo in the CAM (chick chorioallantoic membrane) assay. From the generated compound library, compounds 16 and 19 proved to be potent and selective inhibitors of alpha IIb beta 3 (IC50 = 14 nM) whereas compound 11 showed excellent in vivo inhibition of angiogenesis (at 30 micrograms/embryo).

  19. Antagonistic pleiotropy involving promoter sequences in a virus

    PubMed Central

    Presloid, John B.; Ebendick-Corpus, Bonnie E.; Zárate, Selene; Novella, Isabel S.

    2008-01-01

    Selection of specialist genotypes, that is, populations with limited niche width, promotes the maintenance of diversity. Specialization to a particular environment may have a cost in other environments, including fitness tradeoffs. When the tradeoffs are the result of mutations that have a beneficial effect in the selective environment, but a deleterious effect in other environment, we have antagonistic pleiotropy. Alternatively, tradeoffs can result from the fixation of mutations that are neutral in the selective environment but have a negative effect in other environment, and thus the tradeoff is due to mutation accumulation. We tested the mechanisms underlying the fitness tradeoffs observed during adaptation to persistent infection of vesicular stomatitis virus in insect cells by sequencing the full-length genomes of twelve strains with a history of replication in a single niche (acute mammalian infection or persistent insect infection) or in temporally-heterogeneous niches, and correlated genetic and fitness changes. Ecological theory predicts a correlation between the selective environment and the niche width of the evolved populations, such that adaptation to single niches should lead to the selection of specialists and niche cycling should result in the selection of generalists. Contrary to this expectation, adaptation to one of the single niches resulted in a generalist and adaptation to a heterogeneous environment led to the selection of a specialist. Only one-third of the mutations that accumulated during persistent infection had a fitness cost that could be explained in all cases by antagonistic pleiotropy. Mutations involved in fitness tradeoffs included changes in regulatory sequences, particularly at the 3′ termini of the genomes, which contain the single promoter that controls viral transcription and replication. PMID:18644381

  20. NAN-190, a possible specific antagonist for methamphetamine.

    PubMed

    Ginawi, O T; Al-Majed, A A; Al-Suwailem, A K

    2005-03-01

    Effect of NAN-190, a selective 5-HT(1A) receptor antagonist, on methamphetamine-induced locomotor activity, anorexia, analgesia, and hyperthermia was investigated in male mice. Methamphetamine (1.5 mg/kg, i.p) produced a significant increase in locomotor activity, which was significantly antagonized by NAN-190 at a dose of 4 mg/kg, i.p. NAN-190 did not alter the antinociceptive activity of mice when it was administered alone. Methamphetamine (2 mg/kg, i.p) produced a significant decrease in food intake of mice, which were deprived of food during the previous 24h. This anorectic activity of methamphetamine was significantly antagonized by NAN-190 at a dose of 2 mg/kg, i.p. NAN-190 did not alter the food intake of mice when it was administered alone. Methamphetamine (2 mg/kg, i.p) also produced a significant increase in body temperature of mice, which was significantly antagonized by NAN-190 at a dose of 0.5 mg/kg, i.p. NAN-190 did not alter the body temperature of mice when it was administered alone. In the writhing test, methamphetamine (1 mg/kg, i.p) produced a significant antinociceptive effect in mice. This was significantly antagonized by NAN-190 at a dose of 1 mg/kg, i.p. NAN-190 did not alter the antinociceptive activity of mice when it was administered alone. The results of the present study indicate a possible role for serotonergic mechanisms, in addition to the catecholaminergic systems, in the above-studied activities of methamphetamine in mice. This role is possibly mediated through direct stimulation of the 5-HT(1A) receptor subtype. All of the above-studied activities of methamphetamine were antagonized by NAN-190, which may indicate that NAN-190 is a possible antagonist for methamphetamine.

  1. Antagonistic regulation of Arabidopsis growth by brassinosteroids and abiotic stresses.

    PubMed

    Chung, Yuhee; Kwon, Soon Il; Choe, Sunghwa

    2014-11-01

    To withstand ever-changing environmental stresses, plants are equipped with phytohormone-mediated stress resistance mechanisms. Salt stress triggers abscisic acid (ABA) signaling, which enhances stress tolerance at the expense of growth. ABA is thought to inhibit the action of growth-promoting hormones, including brassinosteroids (BRs). However, the regulatory mechanisms that coordinate ABA and BR activity remain to be discovered. We noticed that ABA-treated seedlings exhibited small, round leaves and short roots, a phenotype that is characteristic of the BR signaling mutant, brassinosteroid insensitive1-9 (bri1-9). To identify genes that are antagonistically regulated by ABA and BRs, we examined published Arabidopsis microarray data sets. Of the list of genes identified, those upregulated by ABA but downregulated by BRs were enriched with a BRRE motif in their promoter sequences. After validating the microarray data using quantitative RT-PCR, we focused on RD26, which is induced by salt stress. Histochemical analysis of transgenic Arabidopsis plants expressing RD26pro:GUS revealed that the induction of GUS expression after NaCl treatment was suppressed by co-treatment with BRs, but enhanced by co-treatment with propiconazole, a BR biosynthetic inhibitor. Similarly, treatment with bikinin, an inhibitor of BIN2 kinase, not only inhibited RD26 expression, but also reduced the survival rate of the plant following exposure to salt stress. Our results suggest that ABA and BRs act antagonistically on their target genes at or after the BIN2 step in BR signaling pathways, and suggest a mechanism by which plants fine-tune their growth, particularly when stress responses and growth compete for resources.

  2. Agonistic and antagonistic estrogens in licorice root (Glycyrrhiza glabra).

    PubMed

    Simons, Rudy; Vincken, Jean-Paul; Mol, Loes A M; The, Susan A M; Bovee, Toine F H; Luijendijk, Teus J C; Verbruggen, Marian A; Gruppen, Harry

    2011-07-01

    The roots of licorice (Glycyrrhiza glabra) are a rich source of flavonoids, in particular, prenylated flavonoids, such as the isoflavan glabridin and the isoflavene glabrene. Fractionation of an ethyl acetate extract from licorice root by centrifugal partitioning chromatography yielded 51 fractions, which were characterized by liquid chromatography-mass spectrometry and screened for activity in yeast estrogen bioassays. One third of the fractions displayed estrogenic activity towards either one or both estrogen receptors (ERs; ERα and ERβ). Glabrene-rich fractions displayed an estrogenic response, predominantly to the ERα. Surprisingly, glabridin did not exert agonistic activity to both ER subtypes. Several fractions displayed higher responses than the maximum response obtained with the reference compound, the natural hormone 17β-estradiol (E(2)). The estrogenic activities of all fractions, including this so-called superinduction, were clearly ER-mediated, as the estrogenic response was inhibited by 20-60% by known ER antagonists, and no activity was found in yeast cells that did not express the ERα or ERβ subtype. Prolonged exposure of the yeast to the estrogenic fractions that showed superinduction did, contrary to E(2), not result in a decrease of the fluorescent response. Therefore, the superinduction was most likely the result of stabilization of the ER, yeast-enhanced green fluorescent protein, or a combination of both. Most fractions displaying superinduction were rich in flavonoids with single prenylation. Glabridin displayed ERα-selective antagonism, similar to the ERα-selective antagonist RU 58668. Whereas glabridin was able to reduce the estrogenic response of E(2) by approximately 80% at 6 × 10(-6) M, glabrene-rich fractions only exhibited agonistic responses, preferentially on ERα.

  3. SP 01-3 ALDOSTERONE ANTAGONISTS IN HEART FAILURE.

    PubMed

    Johnston, Colin

    2016-09-01

    Aldosterone's deleterious pathophysiological effects on the cardiovascular system if blocked by mineralcorticord antagonists (MRAs) logically should lead to improvement in heart function and outcomes in heart failure (HF). The first trial to test this hypothesis was tthe RALES trial in 1999 which treated patients with class III-IV HF with spironolactone. It showed significant reduction in mortality and cardiovascular hospitalzation rates. This was confirmed & extended in EMHASIS-HF RCT with classs II-III being treated with ACEIs & BB who received placebo or elperinone (a MRA) with again a statistically significant fall in mortality & hospitalization.The possible cardioprotective effects of MRA post acute myocardial infarct (MI) is less clear. The EPHESUS RCT in 2003 demostrated that elperinone given 3-14 days AMI in patients with early signs of HF reduced mortality & morbidity. However in the ALBTROSS trial using spironolactone 2 days after AMI showed no benfit in patients without HF but in a subgroup with ST elevation there was a 80% reduction in mortality after 6 months. However a recent meta-analysis from 25 RCT with data invovling 19,333 patients with either HF or post MI assigned aldosterone antagonists (AA)or placebo showed a 18% reduction in mortality including a 20% fall in CV mortality and a 19% reduction in SCD.The role of AA in HFPEF is even even more contraversial. The TOPCAT RCT of 3445 patients with symptomatc HFPEF randomised to spironolactone failed to meet the primary composite end point of death, aborted cardiac arrest or hospitalization although there was a reduction in hospitalization for HF (HR 0.83 P = 0.04).The differences between selective or non-selective MRAs, their ADRs & off target effects will also be discussed. PMID:27643096

  4. N-Benzylpiperidine Derivatives as α7 Nicotinic Receptor Antagonists.

    PubMed

    Criado, Manuel; Mulet, José; Sala, Francisco; Sala, Salvador; Colmena, Inés; Gandía, Luis; Bautista-Aguilera, Oscar M; Samadi, Abdelouahid; Chioua, Mourad; Marco-Contelles, José

    2016-08-17

    A series of multitarget directed propargylamines, as well as other differently susbstituted piperidines have been screened as potential modulators of neuronal nicotinic acetylcholine receptors (nAChRs). Most of them showed antagonist actions on α7 nAChRs. Especially, compounds 13, 26, and 38 displayed submicromolar IC50 values on homomeric α7 nAChRs, whereas they were less effective on heteromeric α3β4 and α4β2 nAChRs (up to 20-fold higher IC50 values in the case of 13). Antagonism was concentration dependent and noncompetitive, suggesting that these compounds behave as negative allosteric modulators of nAChRs. Upon the study of a series of less complex derivatives, the N-benzylpiperidine motif, common to these compounds, was found to be the main pharmacophoric group. Thus, 2-(1-benzylpiperidin-4-yl)-ethylamine (48) showed an inhibitory potency comparable to the one of the previous compounds and also a clear preference for α7 nAChRs. In a neuroblastoma cell line, representative compounds 13 and 48 also inhibited, in a concentration-dependent manner, cytosolic Ca(2+) signals mediated by nAChRs. Finally, compounds 38 and 13 inhibited 5-HT3A serotonin receptors whereas they had no effect on α1 glycine receptors. Given the multifactorial nature of many pathologies in which nAChRs are involved, these piperidine antagonists could have a therapeutic potential in cases where cholinergic activity has to be negatively modulated. PMID:27254782

  5. Calcium antagonists and neural control of circulation in essential hypertension.

    PubMed

    Mancia, G; Parati, G; Grassi, G; Pomidossi, G; Giannattasio, C; Casadei, R; Groppelli, A; Saino, A; Gregorini, L; Perondi, R

    1987-12-01

    Data from animals and from man suggest that calcium antagonists interfere with alpha-adrenergic receptors and that this mechanism may be responsible for some of the vasodilation induced by these drugs. However, alpha-adrenergic receptors play a primary role in baroreceptor regulation of the cardiovascular system and blood pressure homeostasis, which might therefore be adversely affected by calcium antagonist treatment. We addressed this question in 14 essential hypertensives studied before treatment, 1 h after 20 mg oral nitrendipine and 5-7 days after daily administration of 20 mg oral nitrendipine. Blood pressure was measured by an intra-arterial catheter, heart rate by an electrocardiogram, cardiac output by thermodilution and forearm blood flow by venous occlusion plethysmography. Total peripheral and forearm vascular resistances were calculated by dividing mean blood pressure by blood flow values. Plasma norepinephrine was also measured (high performance liquid chromatography) in blood taken from the right atrium. Compared with the pretreatment values, acute nitrendipine administration caused a fall in resting blood pressure, an increase in the resting heart rate and cardiac output, and a fall in resting peripheral and forearm vascular resistance. The resting hypotension and vasodilation were also evident during the prolonged nitrendipine administration, which was, however, accompanied by much less resting cardiac stimulation than that observed in the acute condition. Baroreceptor control of the heart rate (vasoactive drug method) was similar before and after acute and prolonged nitrendipine treatment. This was also the case for carotid baroreceptor control of blood pressure (neck chamber technique) and for control of forearm vascular resistance as exerted by receptors in the cardiopulmonary region (lower-body negative-pressure and passive leg-raising techniques).(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Binding and functional characterization of the cardioselective muscarinic antagonist methoctramine.

    PubMed

    Giraldo, E; Micheletti, R; Montagna, E; Giachetti, A; Viganò, M A; Ladinsky, H; Melchiorre, C

    1988-03-01

    The antimuscarinic properties of the newly synthetized polymethylene tetramine derivative, methoctramine, were investigated in binding and functional assays. Methoctramine displaced the specific binding of [3H]-N-methylscopolamine [( 3H]NMS) and [3H] pirenzepine from membranes of rat tissues with the following order of affinities: heart = cerebellum greater than cortex greater than submandibular glands, the ratio of the affinities of the compound for the heart and the glands amounting to about 130. Computer fits of binding curves generated in cardiac and cortical membranes were compatible with an interaction at one binding site, whereas those in submandibular glands and cerebellum had slopes significantly lower than 1. Experiments performed in cardiac membranes to investigate the effect of methoctramine on the dissociation kinetics of [3H]-NMS showed that concentrations of compound up to 1 microM did not affect the dissociation of [3H]-NMS elicited by an excess of NMS. At greater concentrations (10-100 microM), methoctramine dose dependently inhibited [3H]-NMS dissociation, thus revealing an allosteric interaction. In in vitro functional assays, methoctramine displayed more than 100 times greater affinity for the muscarinic receptors mediating negative inotropic and chronotropic effects in guinea pig atria than for those responsible for tracheal contraction. Similarly, the compound was a more potent antagonist of the bradycardial response to bethanechol than of the bladder tonus increase, saliva secretion and hypotension induced by the muscarinic agonist in anesthetized cats. Finally, in the pithed rat, methoctramine preferentially inhibited cardiac M2 (vagal bradycardia) over ganglionic M1 (McN-A-343-induced hypertension) responses. The evidence appears to characterize methoctramine as being the most selective M2 muscarinic antagonist described to date.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3252019

  7. Prostaglandins, H2-receptor antagonists and peptic ulcer disease.

    PubMed

    Bright-Asare, P; Habte, T; Yirgou, B; Benjamin, J

    1988-01-01

    Peptic ulcer develops when offensive factors overwhelm defensive processes in the gastroduodenal mucosa. Offensive factors include NSAIDs, hydrochloric acid-peptic activity, bile reflux, and some products of the lipoxygenase pathway such as leukotriene B4; whereas defensive processes are largely mediated by prostaglandins through poorly understood mechanisms uniformly termed cytoprotection. Cytoprotection, a physiological process working through the products of arachidonic acid metabolism, may result from the net effect of the protective actions of prostaglandins versus the damaging actions of leukotrienes. Some prostaglandins also have antisecretory effects. Therefore the peptic ulcer healing effects of prostaglandin analogues, all of which have significant antisecretory activity, may be more due to their antisecretory effects than primarily to their effects on mucosal defences. Certain drug-induced gastroduodenal lesions, e.g. NSAID-induced ulcers, which are often unresponsive to H2-receptor antagonists, have been healed and their recurrence prevented by the use of PGE1 and PGE2 analogues. All the prostaglandin analogues investigated to date in humans have the potential for inducing abortion, an important side effect which may limit their worldwide use. The optimal prostaglandin analogue for ulcer healing should not induce abortion and should be potently cytoprotective. The predominant damaging agent in the development of peptic ulcer disease is gastric hydrochloric acid. Thus, the worldwide established efficacy and safety of H2-receptor antagonists such as cimetidine, ranitidine, famotidine and most recently of roxatidine acetate suggest that these agents have become the standard by which other forms of anti-ulcer therapy should be judged. PMID:2905237

  8. Antagonistic Regulation of Arabidopsis Growth by Brassinosteroids and Abiotic Stresses

    PubMed Central

    Chung, Yuhee; Kwon, Soon Il; Choe, Sunghwa

    2014-01-01

    To withstand ever-changing environmental stresses, plants are equipped with phytohormone-mediated stress resistance mechanisms. Salt stress triggers abscisic acid (ABA) signaling, which enhances stress tolerance at the expense of growth. ABA is thought to inhibit the action of growth-promoting hormones, including brassinosteroids (BRs). However, the regulatory mechanisms that coordinate ABA and BR activity remain to be discovered. We noticed that ABA-treated seedlings exhibited small, round leaves and short roots, a phenotype that is characteristic of the BR signaling mutant, brassinosteroid insensitive1-9 (bri1-9). To identify genes that are antagonistically regulated by ABA and BRs, we examined published Arabidopsis microarray data sets. Of the list of genes identified, those upregulated by ABA but downregulated by BRs were enriched with a BRRE motif in their promoter sequences. After validating the microarray data using quantitative RT-PCR, we focused on RD26, which is induced by salt stress. Histochemical analysis of transgenic Arabidopsis plants expressing RD26pro:GUS revealed that the induction of GUS expression after NaCl treatment was suppressed by co-treatment with BRs, but enhanced by co-treatment with propiconazole, a BR biosynthetic inhibitor. Similarly, treatment with bikinin, an inhibitor of BIN2 kinase, not only inhibited RD26 expression, but also reduced the survival rate of the plant following exposure to salt stress. Our results suggest that ABA and BRs act antagonistically on their target genes at or after the BIN2 step in BR signaling pathways, and suggest a mechanism by which plants fine-tune their growth, particularly when stress responses and growth compete for resources. PMID:25377253

  9. 2,5-Diketopiperazines as potent and selective oxytocin antagonists 1: Identification, stereochemistry and initial SAR.

    PubMed

    Wyatt, Paul G; Allen, Michael J; Borthwick, Alan D; Davies, Dave E; Exall, Anne M; Hatley, Richard J D; Irving, Wendy R; Livermore, David G; Miller, Neil D; Nerozzi, Fabrizio; Sollis, Steve L; Szardenings, Anna Katrin

    2005-05-16

    This paper covers efforts to discover orally active potent and selective oxytocin antagonists. Screening pooled libraries identified a novel series of 2,5-diketopiperazine derivatives with antagonist activity at the human oxytocin receptor. We report the initial structure-activity relationship investigations and the determination of the stereochemistry of the most potent compounds.

  10. Hotspots of damage by antagonists shape the spatial structure of plant-pollinator interactions.

    PubMed

    Rodríguez-Rodríguez, María C; Jordano, Pedro; Valido, Alfredo

    2015-08-01

    The balance between mutualistic and antagonistic plant-animal interactions and their spatial variation results in a highly dynamic mosaic of reproductive success within plant populations. Yet, the ecological drivers of this small-scale heterogeneity of interaction patterns and their outcomes remain virtually unexplored. We analyzed spatial structure in the frequency and intensity of interactions that vertebrate pollinators (birds and lizards) and invertebrate antagonists (florivores, nectar larcenists, and seed predators) had when interacting with the insular plant Isoplexis canariensis, and their effect on plant fitness. Spatially autocorrelated variation in plant reproductive success (fruit and viable seed set) emerged from the combined action of mutualists and antagonists, rather than reflecting the spatial pattern of any specific animal group. However, the influence of antagonists on plant fitness was stronger primarily due to the florivores' action on earlier reproductive stages, consuming and damaging floral structures before the arrival of pollinators. Our results indicate that the early action of antagonists creates hotspots of increased plant damage, where the effects of later acting mutualists are not translated into increased reproductive benefits. We foresee the potential for antagonists to shape the intra-population mosaics of plant fitness in situations where antagonists outnumber mutualists, when their interactions occur before those of mutualists, and when mutualists can detect and avoid damaged plants while foraging. Severely damaged plants in antagonistic hotspots might be excluded from the mating network and render a limited production of viable seeds, reducing both the growth rate of the plant population and the effective population size. PMID:26405743

  11. Control of blue mold of apple by combining controlled atmosphere, antagonist mixtures and sodium bicarbonate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    'Golden Delicious' apples were wound-inoculated with Penicillium expansum, treated with various combinations of sodium bicarbonate and two antagonists, and stored in air or controlled atmosphere (1.4% O2, 3% CO2). The fruit were stored for 2 or 4 months at 1°C. The antagonists survived and their p...

  12. Inhibition of tryptase release from human colon mast cells by histamine receptor antagonists.

    PubMed

    He, Shao-Heng; Xie, Hua; Fu, Yi-Ling

    2005-03-01

    The main objective of this study was to investigate the ability of histamine receptor antagonists to modulate tryptase release from human colon mast cells induced by histamine. Enzymatically dispersed cells from human colon were challenged with histamine in the absence or presence of the histamine receptor antagonists, and the tryptase release was determined. It was found that histamine induced tryptase release from colon mast cells was inhibited by up to approximately 61.5% and 24% by the H1 histamine receptor antagonist terfenadine and the H2 histamine receptor antagonist cimetidine, respectively, when histamine and its antagonists were added to cells at the same time. The H3 histamine receptor antagonist clobenpropit had no effect on histamine induced tryptase release from colon mast cells at all concentrations tested. Preincubation of terfenadine, cimetidine or clobenpropit with cells for 20 minutes before challenging with histamine did not enhance the ability of these antihistamines to inhibit histamine induced tryptase release. Apart from terfenadine at 100 microg/ml, the antagonists themselves did not stimulate tryptase release from colon mast cells following both 15 minutes and 35 minutes incubation periods. It was concluded that H1 and H2 histamine receptor antagonists were able to inhibit histamine induced tryptase release from colon mast cells. This not only added some new data to our hypothesis of self-amplification mechanisms of mast cell degranulation, but also suggested that combining these two types of antihistamine drugs could be useful for the treatment of inflammatory bowel disease (IBD).

  13. Agar composition affects in vitro screening of biocontrol activity of antagonistic microorganisms.

    PubMed

    Bosmans, L; De Bruijn, I; De Mot, R; Rediers, H; Lievens, B

    2016-08-01

    Agar-based screening assays are the method of choice when evaluating antagonistic potential of bacterial biocontrol-candidates against pathogens. We showed that when using the same medium, but different agar compositions, the activity of a bacterial antagonist against Agrobacterium was strongly affected. Consequently, results from in vitro screenings should be interpreted cautiously. PMID:27166668

  14. Purification and reconstitution of the calcium antagonist receptor of the voltage-sensitive calcium channel

    SciTech Connect

    Curtis, B.M.

    1986-01-01

    Treatment with digitonin solubilized the calcium antagonist receptor as a stable complex with (/sup 3/H)nitrendipine from rat brain membranes. The solubilized complex retains allosteric coupling to binding sites for diltiazem, verapamil, and inorganic calcium antagonist sites. The calcium antagonist receptor from cardiac sarcolemma and the transverse-tubule membrane of skeletal muscle is also efficiently solubilized with digitonin and the receptor in all three tissues is a large glycoprotein with a sedimentation coefficient of 20 S. The T-tubule calcium antagonist receptor complex was extensively purified by a combination of chromatography on WGA-Sepharose, ion exchange chromatography, and sedimentation on sucrose gradients to yield preparations estimated to be 41% homogeneous by specific activity and 63% homogeneous by SDS gel electrophoresis. Analysis of SDS gels detect three polypeptides termed ..cap alpha..(Mr 135,000), ..beta..(Mr 50,000), and ..gamma..(Mr 32,000) as noncovalently associated subunits of the calcium antagonist receptor. The ..cap alpha.. and ..gamma.. subunits are glycosylated polypeptides, and the molecular weight of the core polypeptides are 108,000 and 24,000 respectively. The calcium antagonist receptor was reconstituted into a phospholipid bilayer by adding CHAPS and exogeneous lipid to the purified receptor followed by rapid detergent removal. This procedure resulted in the incorporation of 45% of the calcium antagonist receptor into closed phospholipid vesicles. Data suggests that the ..cap alpha.., ..beta.., and ..gamma.. subunits of the T-tubule calcium antagonist receptor are sufficient to form a functional calcium channel.

  15. A long-acting GH receptor antagonist through fusion to GH binding protein

    PubMed Central

    Wilkinson, Ian R.; Pradhananga, Sarbendra L.; Speak, Rowena; Artymiuk, Peter J.; Sayers, Jon R.; Ross, Richard J.

    2016-01-01

    Acromegaly is a human disease of growth hormone (GH) excess with considerable morbidity and increased mortality. Somatostatin analogues are first line medical treatment but the disease remains uncontrolled in up to 40% of patients. GH receptor (GHR) antagonist therapy is more effective but requires frequent high-dose injections. We have developed an alternative technology for generating a long acting potent GHR antagonist through translational fusion of a mutated GH linked to GH binding protein and tested three candidate molecules. All molecules had the amino acid change (G120R), creating a competitive GHR antagonist and we tested the hypothesis that an amino acid change in the GH binding domain (W104A) would increase biological activity. All were antagonists in bioassays. In rats all antagonists had terminal half-lives >20 hours. After subcutaneous administration in rabbits one variant displayed a terminal half-life of 40.5 hours. A single subcutaneous injection of the same variant in rabbits resulted in a 14% fall in IGF-I over 7 days. In conclusion: we provide proof of concept that a fusion of GHR antagonist to its binding protein generates a long acting GHR antagonist and we confirmed that introducing the W104A amino acid change in the GH binding domain enhances antagonist activity. PMID:27731358

  16. Identification of potent CNS-penetrant thiazolidinones as novel CGRP receptor antagonists.

    PubMed

    Joshi, Pramod; Anderson, Corey; Binch, Hayley; Hadida, Sabine; Yoo, Sanghee; Bergeron, Danielle; Decker, Caroline; terHaar, Ernst; Moore, Jonathan; Garcia-Guzman, Miguel; Termin, Andreas

    2014-02-01

    Calcitonin gene-related peptide (CGRP) has been implicated in acute migraine pathogenesis. In an effort to identify novel CGRP receptor antagonists for the treatment of migraine, we have discovered thiazolidinone 49, a potent (Ki=30 pM, IC50=1 nM), orally bioavailable, CNS-penetrant CGRP antagonist with good pharmacokinetic properties. PMID:24405707

  17. New strategies for effective treatment of vitamin K antagonist-associated bleeding.

    PubMed

    Yates, S G; Sarode, R

    2015-06-01

    Vitamin K antagonists have been used as oral anticoagulants in the treatment and prevention of thromboembolic events for over half a century. Although vitamin K antagonists are effective in the management of thromboembolic events, the need for routine monitoring and the associated risk of bleeding has resulted in the development and licensing of direct oral anticoagulants for specific clinical indications. Despite these developments, vitamin K antagonists remain the oral anticoagulants of choice in many clinical conditions. Severe bleeding associated with oral anticoagulation requires urgent reversal. Several options for the reversal of vitamin K antagonist exist, including vitamin K, prothrombin complex concentrates and plasma. In this manuscript, we review current evidence and provide physicians with treatment strategies for more effective management of vitamin K antagonist-associated bleeding.

  18. Screening of antagonistic bacteria for biological control of nursery wilt of black pepper (Piper nigrum).

    PubMed

    Anith, K N; Radhakrishnan, N V; Manomohandas, T P

    2003-01-01

    Bacterial antagonists of Phytophthora capsici were isolated from underground shoot portions of rooted cuttings of black pepper. Initially isolates were screened by dual culture on potato dextrose agar and carrot agar. Further, a screening was done on black pepper shoots for supression of lesion caused by the pathogen. Most of the antagonists showed varying levels of antagonism in the dual culture and the shoot assay. Isolate PN-026, showing the highest suppression of lesion development in the shoot assay was found to be the most efficient antagonist in reducing Phytophthora capsici induced nursery wilt of black pepper. This screening involving the host, pathogen, and the antagonist, performed on black pepper shoot (the planting material for this vegetatively propagated crop), could be used as a rapid and reliable method for the isolation of efficient bacterial antagonists of P. capsici.

  19. To pill or not to pill in GnRH antagonist cycles: that is the question!

    PubMed

    Garcia-Velasco, Juan A; Fatemi, Human M

    2015-01-01

    Worldwide, gonadotrophin-releasing hormone (GnRH) antagonists are gaining ground, and the number of patients being treated for IVF with a GnRH antagonist is increasing. Cycle planning in GnRH antagonist IVF cycles has been a challenge. During the past 2 years, debate has been ongoing about the possible disadvantages of oral contraceptive pill (OCP) pre-treatment in GnRH antagonist IVF cycles. A recent meta-analysis clearly showed a significant decrease in ongoing pregnancy rates between patients who received OCP pre-treatment and those who did not. In this review, the published meta-analysis are is evaluated. It is argued that caution must be exercised in drawing conclusions too quckly on whether or not OCP pre-treatment might have a negative effect on outcome in GnRH antagonist IVF cycles. PMID:25447926

  20. Ca(2+)-antagonistic action of bevantolol on hypothalamic neurons in vitro: its comparison with those of other beta-adrenoceptor antagonists, a local anesthetic and a Ca(2+)-antagonist.

    PubMed

    Omura, T; Kobayashi, T; Nishioka, K; Miyake, N; Akaike, N

    1996-01-15

    The Ca(2+)-antagonistic action of bevantolol, a beta 1-adrenoceptor antagonist, on high- and low-voltage activated Ca2+ currents (HVA- and LVA-ICa) was examined on neurons dissociated from rat brain. Bevantolol (10(-6) to 10(-4) M) inhibited concentration-dependently both ICa. The IC50 value of bevantolol for LVA-ICa was 4 x 10(-5) M, while bevantolol at 10(-4) M inhibited HVA-ICa by 28.5 +/- 7.7%. The potency of bevantolol in inhibiting both ICa was greater than those of propranolol, labetalol and lidocaine, while the inhibitory action of bevantolol on voltage-activated Na+ current was weakest among them. Bevantolol may possess Ca(2+)-antagonistic action that is independent from local anesthetic action.

  1. Anxiolytic-like effects of 5-HT2 ligands on three mouse models of anxiety.

    PubMed

    Nic Dhonnchadha, Bríd Aine; Bourin, Michel; Hascoët, Martine

    2003-03-18

    The behavioural effects of 5-HT(2) receptor agonists, 5-HT(2A) and 5-HT(2C) receptor antagonists were investigated in the mouse four plates test (FPT), light/dark paradigm (L/D) and the elevated plus maze (EPM), in order to elucidate the role of the 5-HT(2) receptor subtypes in these models and to address the inconclusive results previously reported using rat psychopharmacological models. All compounds were administered intraperitoneally 30 min before each test. DOI, a preferential 5-HT(2A) agonist (0.5-8 mg/kg) and BW 723C86, a 5-HT(2B) agonist (8 and 16 mg/kg) provoked an anxiolytic-like response in the FPT. In the EPM, an anxiolytic-like effect was observed for DOI (0.5, 1 and 2 mg/kg), BW 723C86 (0.5, 4, 8 and 16 mg/kg), RO 60-0175 a 5-HT(2C) agonist (4 mg/kg) and the non-selective 5-HT(2) receptor agonist mCPP (0.25 mg/kg.). Ketanserin, a 5-HT(2A/2C) non-selective receptor antagonist (0.015 and 0.03 mg/kg), induced an anxiogenic-like effect in the L/D paradigm. The 5-HT(2C) antagonists (RS 10-2221, SDZ SER082 and SB 206553) were without effect in all three tests. These behavioural results are indicative of an anxiolytic-like action of 5-HT(2) receptor agonists, an anxiogenic-like effect of 5-HT(2A) receptor antagonism, whereas the blockade of 5-HT(2C) receptors are without effect in the mouse models studied.

  2. The NK1 receptor antagonist L822429 reduces heroin reinforcement.

    PubMed

    Barbier, Estelle; Vendruscolo, Leandro F; Schlosburg, Joel E; Edwards, Scott; Juergens, Nathan; Park, Paula E; Misra, Kaushik K; Cheng, Kejun; Rice, Kenner C; Schank, Jesse; Schulteis, Gery; Koob, George F; Heilig, Markus

    2013-05-01

    Genetic deletion of the neurokinin 1 receptor (NK1R) has been shown to decrease the reinforcing properties of opioids, but it is unknown whether pharmacological NK1R blockade has the same effect. Here, we examined the effect of L822429, a rat-specific NK1R antagonist, on the reinforcing properties of heroin in rats on short (1 h: ShA) or long (12 h: LgA) access to intravenous heroin self-administration. ShA produces heroin self-administration rates that are stable over time, whereas LgA leads to an escalation of heroin intake thought to model important dependence-related aspects of addiction. L822429 reduced heroin self-administration and the motivation to consume heroin, measured using a progressive-ratio schedule, in both ShA and LgA rats. L822429 also decreased anxiety-like behavior in both groups, measured on the elevated plus maze, but did not affect mechanical hypersensitivity observed in LgA rats. Expression of TacR1 (the gene encoding NK1R) was decreased in reward- and stress-related brain areas both in ShA and LgA rats compared with heroin-naïve rats, but did not differ between the two heroin-experienced groups. In contrast, passive exposure to heroin produced increases in TacR1 expression in the prefrontal cortex and nucleus accumbens. Taken together, these results show that pharmacological NK1R blockade attenuates heroin reinforcement. The observation that animals with ShA and LgA to heroin were similarly affected by L822429 indicates that the SP/NK1R system is not specifically involved in neuroadaptations that underlie escalation resulting from LgA self-administration. Instead, the NK1R antagonist appears to attenuate acute, positively reinforcing properties of heroin and may be useful as an adjunct to relapse prevention in detoxified opioid-dependent subjects.

  3. Action of selected serotonin antagonists on hyperthermia evoked by intracerebrally injected beta-endorphin.

    PubMed

    Martin, G E; Bacino, C B; Papp, N L

    1981-01-01

    Methergoline, an antagonist of cerebral serotonin receptors, has been shown to significantly reduce the rise in rectal temperature (Tre) produced by the intracerebral microinjection of beta-endorphin. In this study the role of serotonin in the increase in Tre elicited by beta-endorphin was further examined using three additional serotonin antagonists. beta-Endorphin was administered twice to rats using a crossover design in which half of the animals were first pretreated with the vehicle solution and half with the antagonist. Serotonin antagonists used were: methergoline, methysergide, cinanserin and cyproheptadine. Although methergoline did cause a marked reduction in the beta-endorphin-induced rise in Tre, neither methysergide, nor cinanserin, nor cyproheptadine produced a marked reduction in the hyperthermia. Since methergoline also interacts with the dopamine receptor, the effect of a dopamine antagonist, haloperidol, on the endorphin-evoked response was also examined. Haloperidol failed to attenuate the rise in Tre. The reason for the apparent discrepancy in the action of these serotonin antagonists is unclear. Further research may reveal distinct subpopulations of serotonin receptors at which these antagonists exert differential effects.

  4. Effect of calmodulin antagonists on the growth and graviresponsiveness of primary roots of maize.

    PubMed

    Stinemetz, C L; Hasenstein, K H; Young, L M; Evans, M L

    1992-11-01

    We examined the effect of calmodulin (CaM) antagonists applied at the root tip on root growth, gravity-induced root curvature, and the movement of calcium across the root tip and auxin (IAA) across the elongation zone of gravistimulated roots. All of the CaM antagonists used in these studies delayed gravity-induced curvature at a concentration (1 micromole) that did not affect root growth. Calmodulin antagonists (> or = 1 micromole) inhibited downward transport of label from 45Ca2+ across the caps of gravistimulated roots relative to the downward transport of 45Ca2+ in gravistimulated roots which were not treated with CaM antagonists. Application of CaM antagonists at the root tip (> or = 1 micromole) also decreased the relative downward movement of label from 3H-IAA applied to the upper side of the elongation zone of gravistimulated roots. In general, tip application of antagonists inhibited neither the upward transport of 45Ca2+ in the root tip nor the upward movement of label from 3H-IAA in the elongation zone of gravistimulated roots. Thus, roots treated with CaM antagonists > or = 1 micromole become less graviresponsive and exhibit reduced or even a reversal of downward polarity of calcium transport across the root tip and IAA transport across the elongation zone. The results indicate that calmodulin-regulated events play a role in root gravitropism. PMID:11537498

  5. The Role of α1-Adrenoceptor Antagonists in the Treatment of Prostate and Other Cancers

    PubMed Central

    Batty, Mallory; Pugh, Rachel; Rathinam, Ilampirai; Simmonds, Joshua; Walker, Edwin; Forbes, Amanda; Anoopkumar-Dukie, Shailendra; McDermott, Catherine M.; Spencer, Briohny; Christie, David; Chess-Williams, Russ

    2016-01-01

    This review evaluates the role of α-adrenoceptor antagonists as a potential treatment of prostate cancer (PCa). Cochrane, Google Scholar and Pubmed were accessed to retrieve sixty-two articles for analysis. In vitro studies demonstrate that doxazosin, prazosin and terazosin (quinazoline α-antagonists) induce apoptosis, decrease cell growth, and proliferation in PC-3, LNCaP and DU-145 cell lines. Similarly, the piperazine based naftopidil induced cell cycle arrest and death in LNCaP-E9 cell lines. In contrast, sulphonamide based tamsulosin did not exhibit these effects. In vivo data was consistent with in vitro findings as the quinazoline based α-antagonists prevented angiogenesis and decreased tumour mass in mice models of PCa. Mechanistically the cytotoxic and antitumor effects of the α-antagonists appear largely independent of α 1-blockade. The proposed targets include: VEGF, EGFR, HER2/Neu, caspase 8/3, topoisomerase 1 and other mitochondrial apoptotic inducing factors. These cytotoxic effects could not be evaluated in human studies as prospective trial data is lacking. However, retrospective studies show a decreased incidence of PCa in males exposed to α-antagonists. As human data evaluating the use of α-antagonists as treatments are lacking; well designed, prospective clinical trials are needed to conclusively demonstrate the anticancer properties of quinazoline based α-antagonists in PCa and other cancers. PMID:27537875

  6. The Role of α1-Adrenoceptor Antagonists in the Treatment of Prostate and Other Cancers.

    PubMed

    Batty, Mallory; Pugh, Rachel; Rathinam, Ilampirai; Simmonds, Joshua; Walker, Edwin; Forbes, Amanda; Anoopkumar-Dukie, Shailendra; McDermott, Catherine M; Spencer, Briohny; Christie, David; Chess-Williams, Russ

    2016-01-01

    This review evaluates the role of α-adrenoceptor antagonists as a potential treatment of prostate cancer (PCa). Cochrane, Google Scholar and Pubmed were accessed to retrieve sixty-two articles for analysis. In vitro studies demonstrate that doxazosin, prazosin and terazosin (quinazoline α-antagonists) induce apoptosis, decrease cell growth, and proliferation in PC-3, LNCaP and DU-145 cell lines. Similarly, the piperazine based naftopidil induced cell cycle arrest and death in LNCaP-E9 cell lines. In contrast, sulphonamide based tamsulosin did not exhibit these effects. In vivo data was consistent with in vitro findings as the quinazoline based α-antagonists prevented angiogenesis and decreased tumour mass in mice models of PCa. Mechanistically the cytotoxic and antitumor effects of the α-antagonists appear largely independent of α 1-blockade. The proposed targets include: VEGF, EGFR, HER2/Neu, caspase 8/3, topoisomerase 1 and other mitochondrial apoptotic inducing factors. These cytotoxic effects could not be evaluated in human studies as prospective trial data is lacking. However, retrospective studies show a decreased incidence of PCa in males exposed to α-antagonists. As human data evaluating the use of α-antagonists as treatments are lacking; well designed, prospective clinical trials are needed to conclusively demonstrate the anticancer properties of quinazoline based α-antagonists in PCa and other cancers. PMID:27537875

  7. Isolation and characterization of antagonistic fungi against potato scab pathogens from potato field soils.

    PubMed

    Tagawa, Masahiro; Tamaki, Hideyuki; Manome, Akira; Koyama, Osamu; Kamagata, Yoichi

    2010-04-01

    Potato scab is a serious plant disease caused by several Streptomyces sp., and effective control methods remain unavailable. Although antagonistic bacteria and phages against potato scab pathogens have been reported, to the best of our knowledge, there is no information about fungi that are antagonistic to the pathogens. The aim of this study was to isolate fungal antagonists, characterize their phylogenetic positions, determine their antagonistic activities against potato scab pathogens, and highlight their potential use as control agents under lower pH conditions. Fifteen fungal stains isolated from potato field soils were found to have antagonistic activity against three well-known potato scab pathogens: Streptomyces scabiei, Streptomyces acidiscabiei, and Streptomyces turgidiscabiei. These 15 fungal strains were phylogenetically classified into at least six orders and nine genera based on 18S rRNA gene sequencing analysis. These fungal isolates were related to members of the genera Penicillium, Eupenicillium, Chaetomium, Fusarium, Cladosporium, Mortierella, Kionochaeta, Pseudogymnoascus, and Lecythophora. The antagonistic activities of most of the fungal isolates were highly strengthened under the lower pH conditions, suggesting the advantage of combining their use with a traditional method such as soil acidification. This is the first report to demonstrate that phylogenetically diverse fungi show antagonistic activity against major potato scab pathogens. These fungal strains could be used as potential agents to control potato scab disease.

  8. Pharmacophore modeling of dual angiotensin II and endothelin A receptor antagonists.

    PubMed

    Xue, Wei-Zhe; Lü, Wei; Zhou, Zhi-Ming; Wang, Zhan-Li

    2009-09-01

    Three-dimensional pharmacophore models were generated for AT1 and ET(A) receptors based on highly selective AT1 and ET(A) antagonists using the program Catalyst/HipHop. Both the best pharmacophore model for selective AT1 antagonists (Hypo-AT(1)-7) and ETA antagonists (Hypo-ET(A)-1) were obtained through a careful validation process. All five features contained in Hypo-AT(1)-7 and Hypo-ET(A)-1 (hydrogen-bond acceptor (A), hydrophobic aliphatic (Z), negative ionizable (N), ring aromatic (R), and hydrophobic aromatic (Y)) seem to be essential for antagonists in terms of binding activity. Dual AT1 and ET(A) receptor antagonists (DARAs) can map to both Hypo-AT(1)-7 and Hypo-ET(A)-1, separately. Comparison of Hypo-AT(1)-7 and Hypo-ET(A)-1, not only AT1 and ET(A) antagonist pharmacophore models consist of essential features necessary for compounds to be highly active and selective toward their corresponding receptor, but also have something in common. The results in this study will act as a valuable tool for designing and researching structural relationship of novel dual AT1 and ET(A) receptor antagonists. PMID:20055175

  9. Pharmacophore modeling of dual angiotensin II and endothelin A receptor antagonists.

    PubMed

    Xue, Wei-Zhe; Lü, Wei; Zhou, Zhi-Ming; Wang, Zhan-Li

    2009-09-01

    Three-dimensional pharmacophore models were generated for AT1 and ET(A) receptors based on highly selective AT1 and ET(A) antagonists using the program Catalyst/HipHop. Both the best pharmacophore model for selective AT1 antagonists (Hypo-AT(1)-7) and ETA antagonists (Hypo-ET(A)-1) were obtained through a careful validation process. All five features contained in Hypo-AT(1)-7 and Hypo-ET(A)-1 (hydrogen-bond acceptor (A), hydrophobic aliphatic (Z), negative ionizable (N), ring aromatic (R), and hydrophobic aromatic (Y)) seem to be essential for antagonists in terms of binding activity. Dual AT1 and ET(A) receptor antagonists (DARAs) can map to both Hypo-AT(1)-7 and Hypo-ET(A)-1, separately. Comparison of Hypo-AT(1)-7 and Hypo-ET(A)-1, not only AT1 and ET(A) antagonist pharmacophore models consist of essential features necessary for compounds to be highly active and selective toward their corresponding receptor, but also have something in common. The results in this study will act as a valuable tool for designing and researching structural relationship of novel dual AT1 and ET(A) receptor antagonists.

  10. Effect of calmodulin antagonists on the growth and graviresponsiveness of primary roots of maize

    NASA Technical Reports Server (NTRS)

    Stinemetz, C. L.; Hasenstein, K. H.; Young, L. M.; Evans, M. L.

    1992-01-01

    We examined the effect of calmodulin (CaM) antagonists applied at the root tip on root growth, gravity-induced root curvature, and the movement of calcium across the root tip and auxin (IAA) across the elongation zone of gravistimulated roots. All of the CaM antagonists used in these studies delayed gravity-induced curvature at a concentration (1 micromole) that did not affect root growth. Calmodulin antagonists (> or = 1 micromole) inhibited downward transport of label from 45Ca2+ across the caps of gravistimulated roots relative to the downward transport of 45Ca2+ in gravistimulated roots which were not treated with CaM antagonists. Application of CaM antagonists at the root tip (> or = 1 micromole) also decreased the relative downward movement of label from 3H-IAA applied to the upper side of the elongation zone of gravistimulated roots. In general, tip application of antagonists inhibited neither the upward transport of 45Ca2+ in the root tip nor the upward movement of label from 3H-IAA in the elongation zone of gravistimulated roots. Thus, roots treated with CaM antagonists > or = 1 micromole become less graviresponsive and exhibit reduced or even a reversal of downward polarity of calcium transport across the root tip and IAA transport across the elongation zone. The results indicate that calmodulin-regulated events play a role in root gravitropism.

  11. A general population genetic framework for antagonistic selection that accounts for demography and recurrent mutation.

    PubMed

    Connallon, Tim; Clark, Andrew G

    2012-04-01

    Antagonistic selection--where alleles at a locus have opposing effects on male and female fitness ("sexual antagonism") or between components of fitness ("antagonistic pleiotropy")--might play an important role in maintaining population genetic variation and in driving phylogenetic and genomic patterns of sexual dimorphism and life-history evolution. While prior theory has thoroughly characterized the conditions necessary for antagonistic balancing selection to operate, we currently know little about the evolutionary interactions between antagonistic selection, recurrent mutation, and genetic drift, which should collectively shape empirical patterns of genetic variation. To fill this void, we developed and analyzed a series of population genetic models that simultaneously incorporate these processes. Our models identify two general properties of antagonistically selected loci. First, antagonistic selection inflates heterozygosity and fitness variance across a broad parameter range--a result that applies to alleles maintained by balancing selection and by recurrent mutation. Second, effective population size and genetic drift profoundly affect the statistical frequency distributions of antagonistically selected alleles. The "efficacy" of antagonistic selection (i.e., its tendency to dominate over genetic drift) is extremely weak relative to classical models, such as directional selection and overdominance. Alleles meeting traditional criteria for strong selection (N(e)s > 1, where N(e) is the effective population size, and s is a selection coefficient for a given sex or fitness component) may nevertheless evolve as if neutral. The effects of mutation and demography may generate population differences in overall levels of antagonistic fitness variation, as well as molecular population genetic signatures of balancing selection. PMID:22298707

  12. Haematopoietic malignancies in rheumatoid arthritis: lymphoma risk and characteristics after exposure to tumour necrosis factor antagonists

    PubMed Central

    Askling, J; Fored, C; Baecklund, E; Brandt, L; Backlin, C; Ekbom, A; Sundstrom, C; Bertilsson, L; Coster, L; Geborek, P; Jacobsson, L; Lindblad, S; Lysholm, J; Rantapaa-Dahlqvis..., S; Saxne, T; Klareskog, L; Feltelius, N

    2005-01-01

    Background: Patients with rheumatoid arthritis (RA) are at increased risk of malignant lymphomas, and maybe also of leukaemia and multiple myeloma. The effect of tumour necrosis factor (TNF) antagonists on lymphoma risk and characteristics is unclear. Objective: To assess expected rates and relative risks of haematopoietic malignancies, especially those associated with TNF antagonists, in large population based cohorts of patients with RA. Methods: A population based cohort study was performed of patients with RA (one prevalent cohort (n = 53 067), one incident cohort (n = 3703), and one TNF antagonist treated cohort 1999 through 2003 (n = 4160)), who were linked with the Swedish Cancer Register. Additionally, the lymphoma specimens for the 12 lymphomas occurring in patients with RA exposed to TNF antagonists in Sweden 1999 through 2004 were reviewed. Results: Study of almost 500 observed haematopoietic malignancies showed that prevalent and incident patients with RA were at increased risk of lymphoma (SIR = 1.9 and 2.0, respectively) and leukaemia (SIR = 2.1 and 2.2, respectively) but not of myeloma. Patients with RA treated with TNF antagonists had a tripled lymphoma risk (SIR = 2.9) compared with the general population. After adjustment for sex, age, and disease duration, the lymphoma risk after exposure to TNF antagonists was no higher than in the other RA cohorts. Lymphomas associated with TNF antagonists had characteristics similar to those of other RA lymphomas. Conclusion: Overall, patients with RA are at equally increased risks for lymphomas and leukaemias. Patients with RA treated with TNF antagonists did not have higher lymphoma risks than other patients with RA. Prolonged observation is needed to determine the long term effects of TNF antagonists on lymphoma risk. PMID:15843454

  13. Pyrido[2,3-d]pyrimidine angiotensin II antagonists.

    PubMed

    Ellingboe, J W; Antane, M; Nguyen, T T; Collini, M D; Antane, S; Bender, R; Hartupee, D; White, V; McCallum, J; Park, C H

    1994-02-18

    A series of pyrido[2,3-d]pyrimidine angiotensin II (A II) antagonists was synthesized and tested for antagonism of A II. Compounds with a biphenylyltetrazole pharmacophore and small alkyl groups at the 2- and 4-positions of the pyridopyrimidine ring were found to be the most potent in an AT1 receptor binding assay and in blocking the A II pressor response in anesthetized, ganglion-blocked A II-infused rats. 5,8-Dihydro-2,4-dimethyl-8-[(2'-(1H-tetrazol-5-yl) [1,1'-biphenyl]-4-yl)methyl]pyrido[2,3-d]pyrimidin-7(6H)-one (4a) was one of the more potent compounds in the binding assay and was the most efficacious compound in the A II-infused rat model. Further study of 4a in Goldblatt (2K-1C) rats showed the compound to have oral bioavailability and to be an efficacious and potent compound in a high renin form of hypertension.

  14. Antagonistic Activity of Lactobacillus Isolates against Salmonella typhi In Vitro

    PubMed Central

    Abdel-Daim, Amira; Hassouna, Nadia; Hafez, Mohamed; Ashor, Mohamed Seif Aldeen; Aboulwafa, Mohammad M.

    2013-01-01

    Background. Enteric fever is a global health problem, and rapidly developing resistance to various drugs makes the situation more alarming. The potential use of Lactobacillus to control typhoid fever represents a promising approach, as it may exert protective actions through various mechanisms. Methods. In this study, the probiotic potential and antagonistic activities of 32 Lactobacillus isolates against Salmonella typhi were evaluated. The antimicrobial activity of cell free supernatants of Lactobacillus isolates, interference of Lactobacillus isolates with the Salmonella adherence and invasion, cytoprotective effect of Lactobacillus isolates, and possibility of concurrent use of tested Lactobacillus isolates and antibiotics were evaluated by testing their susceptibilities to antimicrobial agents, and their oxygen tolerance was also examined. Results. The results revealed that twelve Lactobacillus isolates could protect against Salmonella typhi infection through interference with both its growth and its virulence properties, such as adherence, invasion, and cytotoxicity. These Lactobacillus isolates exhibited MIC values for ciprofloxacin higher than those of Salmonella typhi and oxygen tolerance and were identified as Lactobacillus plantarum. Conclusion. The tested Lactobacillus plantarum isolates can be introduced as potential novel candidates that have to be subjected for in vivo and application studies for treatment and control of typhoid fever. PMID:24191248

  15. Antagonistic autoregulation speeds up a homogeneous response in Escherichia coli

    PubMed Central

    Rodrigo, Guillermo; Bajic, Djordje; Elola, Ignacio; Poyatos, Juan F.

    2016-01-01

    By integrating positive and negative feedback loops, biological systems establish intricate gene expression patterns linked to multistability, pulsing, and oscillations. This depends on the specific characteristics of each interlinked feedback, and thus one would expect additional expression programs to be found. Here, we investigate one such program associated with an antagonistic positive and negative transcriptional autoregulatory motif derived from the multiple antibiotic resistance (mar) system of Escherichia coli. We studied the dynamics of the system by combining a predictive mathematical model with high-resolution experimental measures of the response both at the population and single-cell level. We show that in this motif the weak positive autoregulation does not slow down but rather enhances response speedup in combination with a strong negative feedback loop. This balance of feedback strengths anticipates a homogeneous population phenotype, which we corroborate experimentally. Theoretical analysis also emphasized the specific molecular properties that determine the dynamics of the mar phenotype. More broadly, response acceleration could provide a rationale for the presence of weak positive feedbacks in other biological scenarios exhibiting these interlinked regulatory architectures. PMID:27796341

  16. Controlled natural cycle IVF with antagonist use and blastocyst transfer.

    PubMed

    Trokoudes, K M; Minbattiwalla, M B; Kalogirou, L; Pantelides, K; Mitsingas, P; Sokratous, A; Chrysanthou, A; Fasouliotis, S J

    2005-12-01

    A method of controlled natural cycle IVF (CONCIVF) was sought to provide simpler and shorter treatment without the risks of ovarian hyperstimulation syndrome and multiple pregnancies. A total of 138 couples with normal ovulation and normal sperm parameters, in whom the women were <40 years old, were the candidates for this study. Gonadotrophin-releasing hormone antagonist was used before human chorionic gonadotrophin (HCG) administration if LH increased to a concentration of 10 mIU/ml before HCG injection. Treatment was initiated at > or =16 mm follicular growth and at oestradiol concentrations > or =400 pmol/l with 5000 IU HCG induction. All the embryos were cultured to the blastocyst stage and transferred only if they reached early or advanced blastulation. A total of 126 patients underwent oocyte retrieval. In 102 cases, one oocyte was retrieved; 95% of the oocytes fertilized, 99% cleaved and 47.9% achieved the blastocyst stage. The implantation rate per blastocyst transfer was 53.3% and the live-birth rate per embryo transfer was 40%. Therefore, CONCIVF with blastocyst transfer gives acceptable blastocyst development and implantation rates without the long- or short-term side effects of ovulation induction. PMID:16417731

  17. Antagonistic functions of two stardust isoforms in Drosophila photoreceptor cells.

    PubMed

    Bulgakova, Natalia A; Rentsch, Michaela; Knust, Elisabeth

    2010-11-15

    Membrane-associated guanylate kinases (MAGUKs) are scaffolding proteins that organize supramolecular protein complexes, thereby partitioning the plasma membrane into spatially and functionally distinct subdomains. Their modular organization is ideally suited to organize protein complexes with cell type- or stage-specific composition, or both. Often more than one MAGUK isoform is expressed by one gene in the same cell, yet very little is known about their individual in vivo functions. Here, we show that two isoforms of Drosophila stardust, Sdt-H (formerly called Sdt-B2) and Sdt-D, which differ in their N terminus, are expressed in adult photoreceptors. Both isoforms associate with Crumbs and PATJ, constituents of the conserved Crumbs-Stardust complex. However, they form distinct complexes, localized at the stalk, a restricted region of the apical plasma membrane. Strikingly, Sdt-H and Sdt-D have antagonistic functions. While Sdt-H overexpression increases stalk membrane length and prevents light-dependent retinal degeneration, Sdt-D overexpression reduces stalk length and enhances light-dependent retinal degeneration. These results suggest that a fine-tuned balance of different Crumbs complexes regulates photoreceptor homeostasis.

  18. Bioactivation pathways of the cannabinoid receptor 1 antagonist rimonabant.

    PubMed

    Bergström, Moa Andresen; Isin, Emre M; Castagnoli, Neal; Milne, Claire E

    2011-10-01

    In the present work, the characterization of the biotransformation and bioactivation pathways of the cannabinoid receptor 1 antagonist rimonabant (Acomplia) is described. Rimonabant was approved in Europe in 2006 for the treatment of obesity but was withdrawn in 2008 because of a significant drug-related risk of serious psychiatric disorders. The aim of the present work is to characterize the biotransformation and potential bioactivation pathways of rimonabant in vitro in human and rat liver microsomes. The observation of a major iminium ion metabolite led us to perform reactive metabolite trapping, covalent binding to proteins, and time-dependent inhibition of cytochrome P450 3A4 studies. The major biotransformation pathways were oxidative dehydrogenation of the piperidinyl ring to an iminium ion, hydroxylation of the 3 position of the piperidinyl ring, and cleavage of the amide linkage. In coincubations with potassium cyanide, three cyanide adducts were detected. A high level of covalent binding of rimonabant in human liver microsomes was observed (920 pmol equivalents/mg protein). In coincubations with potassium cyanide and methoxylamine, the covalent binding was reduced by approximately 40 and 30%, respectively, whereas GSH had no significant effect on covalent binding levels. Rimonabant was also found to inhibit cytochrome P450 3A4 irreversibly in a time-dependent manner. In view of these findings, it is noteworthy that, to date, no toxicity findings related to the formation of reactive metabolites from rimonabant have been reported. PMID:21733882

  19. Bovine pancreatic polypeptide as an antagonist of muscarinic cholinergic receptors

    SciTech Connect

    Pan, G.Z.; Lu, L.; Qian, J.; Xue, B.G.

    1987-03-01

    In dispersed acini from rat pancreas, it was found that bovine pancreatic polypeptide (BPP) and its C-fragment hexapeptide amide (PP-6), at concentrations of 0.1 and 30 ..mu..M, respectively, could significantly inhibit amylase secretion stimulated by carbachol, and this inhibition by BPP was dose dependent. /sup 45/Ca outflux induced by carbachol was also inhibited by BPP or PP-6, but they had no effect on cholecystokinin octapeptide- (CCK-8) or A23187-stimulated /sup 45/Ca outflux. BPP was also capable of displacing the specific binding of (/sup 3/H)-quinuclidinyl benzilate to its receptors, and it possessed a higher affinity (K/sub i/35nM) than carbachol (K/sub i/ 1.8 ..mu..M) in binding with M-receptors. It is concluded from this study that BPP acts as an antagonist of muscarinic cholinergic receptors in rat pancreatic acini. In addition, BPP inhibited the potentiation of amylase secretion caused by the combination of carbachol plus secretin or vasoactive intestinal peptide. This may be a possible explanation of the inhibitory effect of BPP on secretin-induced pancreatic enzyme secretion shown in vivo, since pancreatic enzyme secretion stimulated by secretin under experimental conditions may be the result of potentiation of enzyme release produced by the peptide in combination with a cholinergic stimulant.

  20. Antagonistic Functions of Two Stardust Isoforms in Drosophila Photoreceptor Cells

    PubMed Central

    Bulgakova, Natalia A.; Rentsch, Michaela

    2010-01-01

    Membrane-associated guanylate kinases (MAGUKs) are scaffolding proteins that organize supramolecular protein complexes, thereby partitioning the plasma membrane into spatially and functionally distinct subdomains. Their modular organization is ideally suited to organize protein complexes with cell type- or stage-specific composition, or both. Often more than one MAGUK isoform is expressed by one gene in the same cell, yet very little is known about their individual in vivo functions. Here, we show that two isoforms of Drosophila stardust, Sdt-H (formerly called Sdt-B2) and Sdt-D, which differ in their N terminus, are expressed in adult photoreceptors. Both isoforms associate with Crumbs and PATJ, constituents of the conserved Crumbs–Stardust complex. However, they form distinct complexes, localized at the stalk, a restricted region of the apical plasma membrane. Strikingly, Sdt-H and Sdt-D have antagonistic functions. While Sdt-H overexpression increases stalk membrane length and prevents light-dependent retinal degeneration, Sdt-D overexpression reduces stalk length and enhances light-dependent retinal degeneration. These results suggest that a fine-tuned balance of different Crumbs complexes regulates photoreceptor homeostasis. PMID:20861315

  1. [Near-patient testing devices to monitor vitamin K antagonists].

    PubMed

    Brionne-Francois, Marie; Le Querrec, Agnès; Lasne, Dominique

    2013-11-01

    Monitoring of the anticoagulant effect with the International normalized ratio (INR) is essential for patients receiving vitamin K antagonists (VKAs). The majority of point of care (POC) devices for INR monitoring has shown a good precision and accuracy with results similar to those obtained in a laboratory. In many countries, INR POC devices are widely used at home by the patients for self-testing. Their use in the hospital by the clinical staff (doctor or nurses) for bedside measurement is also growing. The INR POC testing is performed using fully automated devices. Capillary blood samples are easy to obtain. In the emergency room, POC INR devices are commonly used. This improves the quality of care for patient with suspicion of VKAs overdosage. INR measurement using bedside monitors is also of great interest in care units for specific populations of patients like paediatrics or geriatrics. Moreover, bedside INR monitoring may be useful in anticoagulant clinics or when the care unit is far from a laboratory. Although the bedside INR monitors are easy to use, their implementation requires adequate training and intermittent re-evaluation of any person performing the tests to ensure reliability of results. Such equipment must comply with EN ISO 22870 standard for POC testing accreditation, under the supervision of a biologist. In order to achieve these targets, connect the instrument to the laboratory's data management system is essential.

  2. Discovery and characterization of an endogenous CXCR4 antagonist.

    PubMed

    Zirafi, Onofrio; Kim, Kyeong-Ae; Ständker, Ludger; Mohr, Katharina B; Sauter, Daniel; Heigele, Anke; Kluge, Silvia F; Wiercinska, Eliza; Chudziak, Doreen; Richter, Rudolf; Moepps, Barbara; Gierschik, Peter; Vas, Virag; Geiger, Hartmut; Lamla, Markus; Weil, Tanja; Burster, Timo; Zgraja, Andreas; Daubeuf, Francois; Frossard, Nelly; Hachet-Haas, Muriel; Heunisch, Fabian; Reichetzeder, Christoph; Galzi, Jean-Luc; Pérez-Castells, Javier; Canales-Mayordomo, Angeles; Jiménez-Barbero, Jesus; Giménez-Gallego, Guillermo; Schneider, Marion; Shorter, James; Telenti, Amalio; Hocher, Berthold; Forssmann, Wolf-Georg; Bonig, Halvard; Kirchhoff, Frank; Münch, Jan

    2015-05-01

    CXCL12-CXCR4 signaling controls multiple physiological processes and its dysregulation is associated with cancers and inflammatory diseases. To discover as-yet-unknown endogenous ligands of CXCR4, we screened a blood-derived peptide library for inhibitors of CXCR4-tropic HIV-1 strains. This approach identified a 16 amino acid fragment of serum albumin as an effective and highly specific CXCR4 antagonist. The endogenous peptide, termed EPI-X4, is evolutionarily conserved and generated from the highly abundant albumin precursor by pH-regulated proteases. EPI-X4 forms an unusual lasso-like structure and antagonizes CXCL12-induced tumor cell migration, mobilizes stem cells, and suppresses inflammatory responses in mice. Furthermore, the peptide is abundant in the urine of patients with inflammatory kidney diseases and may serve as a biomarker. Our results identify EPI-X4 as a key regulator of CXCR4 signaling and introduce proteolysis of an abundant precursor protein as an alternative concept for chemokine receptor regulation. PMID:25921529

  3. [Vascular calcifications, the hidden side effects of vitamin K antagonists].

    PubMed

    Bennis, Youssef; Vengadessane, Subashini; Bodeau, Sandra; Gras, Valérie; Bricca, Giampiero; Kamel, Saïd; Liabeuf, Sophie

    2016-09-01

    Despite the availability of new oral anticoagulants, vitamin K antagonists (VKA, such as fluindione, acenocoumarol or warfarin) remain currently the goal standard medicines for oral prevention or treatment of thromboembolic disorders. They inhibit the cycle of the vitamin K and its participation in the enzymatic gamma-carboxylation of many proteins. The VKA prevent the activation of the vitamin K-dependent blood clotting factors limiting thus the initiation of the coagulation cascade. But other proteins are vitamin K-dependent and also remain inactive in the presence of VKA. This is the case of matrix Gla-protein (MGP), a protein that plays a major inhibitory role in the development of vascular calcifications. Several experimental and epidemiological results suggest that the use of the VKA could promote the development of vascular calcifications increasing thus the cardiovascular risk. This risk seems to be higher in patients with chronic kidney disease or mellitus diabetes who are more likely to develop vascular calcifications, and may be due to a decrease of the MGP activity. This review aims at summarizing the data currently available making vascular calcifications the probably underestimated side effects of VKA.

  4. Vasopressin receptor antagonists and their role in clinical medicine

    PubMed Central

    Narayen, Girish; Mandal, Surya Narayan

    2012-01-01

    Hyponatremia is the most common electrolyte abnormality in hospitalized patients. Its treatment is based not only on extracellular fluid volume status of patients but also on its pathogenetic mechanisms. Conventional treatment of hyponatremia like fluid restriction, which is useful in euvolemic and hypervolemic hyponatremia, has very poor patient compliance over long term. Vasopressin receptor antagonists (Vaptans) are a new group of nonpeptide drugs which have been used in various clinical conditions with limited success. Whereas conivaptan is to be administered intravenously, the other vaptans like tolvaptan, lixivaptan, and satavaptan are effective as oral medication. They produce aquaresis by their action on vasopressin type 2 (V2R) receptors in the collecting duct and thus increase solute free water excretion. Vaptans are being used as an alternative to fluid restriction in euvolemic and hypervolemic hyponatremic patients. Efficacy of vaptans is now well accepted for management of correction of hyponatremia over a short period. However, its efficacy in improving the long-term morbidity and mortality in patients with chronic hyponatremia due to cirrhosis and heart failure is yet to be established. Vaptans have not become the mainstay treatment of hyponatremia yet. PMID:22470853

  5. Locomotor adaptation to a soleus EMG-controlled antagonistic exoskeleton.

    PubMed

    Gordon, Keith E; Kinnaird, Catherine R; Ferris, Daniel P

    2013-04-01

    Locomotor adaptation in humans is not well understood. To provide insight into the neural reorganization that occurs following a significant disruption to one's learned neuromuscular map relating a given motor command to its resulting muscular action, we tied the mechanical action of a robotic exoskeleton to the electromyography (EMG) profile of the soleus muscle during walking. The powered exoskeleton produced an ankle dorsiflexion torque proportional to soleus muscle recruitment thus limiting the soleus' plantar flexion torque capability. We hypothesized that neurologically intact subjects would alter muscle activation patterns in response to the antagonistic exoskeleton by decreasing soleus recruitment. Subjects practiced walking with the exoskeleton for two 30-min sessions. The initial response to the perturbation was to "fight" the resistive exoskeleton by increasing soleus activation. By the end of training, subjects had significantly reduced soleus recruitment resulting in a gait pattern with almost no ankle push-off. In addition, there was a trend for subjects to reduce gastrocnemius recruitment in proportion to the soleus even though only the soleus EMG was used to control the exoskeleton. The results from this study demonstrate the ability of the nervous system to recalibrate locomotor output in response to substantial changes in the mechanical output of the soleus muscle and associated sensory feedback. This study provides further evidence that the human locomotor system of intact individuals is highly flexible and able to adapt to achieve effective locomotion in response to a broad range of neuromuscular perturbations. PMID:23307949

  6. Streptomycetes and micromycetes as perspective antagonists of fungal phytopathogens.

    PubMed

    Postolaky, O; Syrbu, T; Poiras, N; Baltsat, K; Maslobrod, S; Boortseva, S

    2012-01-01

    Among natural factors that permanently influence on the plants, the soil microorganisms play a special role for the growing of plants as habitants of their rhizosphere. Mainly they are the representatives of actinomycetes genus Streptomyces and fungal genus Penicillium and their metabolic products stimulate plant growth and inhibit the growth of pathogenic fungi and bacteria. The aim of our study was to determine the antagonism of actinomycetes and micromycetes isolated from soils of R. Moldova against the fungal pathogens of agricultural plants. The strains were isolated from 5 types of chernozem (black soil) from central zone of R. Moldova, with different concentration of humus. Most of micromycetes and streptomycetes were isolated from soil sample 1 (monoculture of maize) and soil sample 2 (Poltava road border) with similar humus content (2.4-2.6%). The antifungal activity of micromycetes strains was occurring mostly against Fusarium solani and Thelaviopsis basicola, at streptomycetes against Alternaria alternata and Botrytis cinerea. It was revealed the strains completely inhibit the growth of Alt. alternata (streptomycetes strains 23, 33, 37), B. cinerea (Streptomyces sp. 17), and F. solani (Penicillium sp. 104). Our results allow to consider the actinomycetes Streptomyces sp.9, Streptomyces sp. 12, Streptomyces sp. 17, Streptomyces sp. 37 Streptomyces sp. 66 and micromycetes Penicillium sp. 5, Penicillium sp. 65, Penicillium sp. 104 isolated from soils of R. Moldova, as prospective strains-antagonists against the phytopathogenic fungus, the causative agents of agricultural plants deseasis. PMID:23878981

  7. Mineralocorticoid Receptor Antagonists for Treatment of Hypertension and Heart Failure

    PubMed Central

    Sica, Domenic A.

    2015-01-01

    Spironolactone and eplerenone are both mineralocorticoid-receptor antagonists. These compounds block both the epithelial and nonepithelial actions of aldosterone, with the latter assuming increasing clinical relevance. Spironolactone and eplerenone both affect reductions in blood pressure either as mono- or add-on therapy; moreover, they each afford survival benefits in diverse circumstances of heart failure and the probability of renal protection in proteinuric chronic kidney disease. However, as use of mineralocorticoid-blocking agents has expanded, the hazards inherent in taking such drugs have become more apparent. Whereas the endocrine side effects of spironolactone are in most cases little more than a cosmetic annoyance, the potassium-sparing effects of both spironolactone and eplerenone can prove disastrous, even fatal, if sufficient degrees of hyperkalemia emerge. For most patients, however, the risk of developing hyperkalemia in and of itself should not discourage the sensible clinician from bringing these compounds into play. Hyperkalemia should always be considered a possibility in patients receiving either of these medications; therefore, anticipatory steps should be taken to minimize the likelihood of its occurrence if long-term therapy of these agents is being considered. PMID:27057293

  8. A TRPA1 antagonist reverts oxaliplatin-induced neuropathic pain.

    PubMed

    Nativi, Cristina; Gualdani, Roberta; Dragoni, Elisa; Di Cesare Mannelli, Lorenzo; Sostegni, Silvia; Norcini, Martina; Gabrielli, Gabriele; la Marca, Giancarlo; Richichi, Barbara; Francesconi, Oscar; Moncelli, Maria Rosa; Ghelardini, Carla; Roelens, Stefano

    2013-01-01

    Neuropathic pain (NeP) is generally considered an intractable problem, which becomes compelling in clinical practice when caused by highly effective chemotherapeutics, such as in the treatment of cancer with oxaliplatin (OXA) and related drugs. In the present work we describe a structurally new compound, ADM_09, which proved to effectively revert OXA-induced NeP in vivo in rats without eliciting the commonly observed negative side-effects. ADM_09 does not modify normal behavior in rats, does not show any toxicity toward astrocyte cell cultures, nor any significant cardiotoxicity. Patch-clamp recordings demonstrated that ADM_09 is an effective antagonist of the nociceptive sensor channel TRPA1, which persistently blocks mouse as well as human variants of TRPA1. A dual-binding mode of action has been proposed for ADM_09, in which a synergic combination of calcium-mediated binding of the carnosine residue and disulphide-bridge-forming of the lipoic acid residue accounts for the observed persistent blocking activity toward the TRPA1 channel.

  9. Therapeutic potential of growth factors and their antagonists.

    PubMed Central

    Garner, A.

    1992-01-01

    This article describes studies with four peptides, epidermal growth factor (EGF), transforming growth factor alpha (TGF alpha), gastrin-releasing peptide/bombesin (GRP), and gastrin. The mitogenic and anti-secretory activities of EGF/TGF alpha appear to be mediated by a single class of high-affinity membrane receptors but may involve different signal transducing mechanisms. Biological activity of EGF resides in the N-terminal 42 amino acid fragment with the C-terminal undecapeptide determining binding affinity. A parenteral depot formulation of an EGF-related peptide or a small molecule agonist of the EGF receptor could have utility in treating various ulcerative disorders of the gut. Although antagonism of EGF (and thus TGF alpha) receptors and/or transducing mechanisms is frequently cited as a potential therapeutic approach to hyperproliferative diseases, blocking the action of TGF alpha, GRP, or gastrin with neutralizing antibodies or receptor antagonists did not influence the growth of a wide range of solid tumors in nude mice. These findings suggest that, unless tumor growth displays absolute dependency on one particular mitogen, antagonism of a specific growth factor is unlikely to have great effect in cancer therapy. PMID:1341074

  10. Antagonistic evolution in an aposematic predator-prey signaling system.

    PubMed

    Speed, Michael P; Franks, Daniel W

    2014-10-01

    Warning signals within species, such as the bright colors of chemically defended animals, are usually considered mutualistic, monomorphic traits. Such a view is however increasingly at odds with the growing empirical literature, showing nontrivial levels of signal variation within prey populations. Key to understanding this variation, we argue, could be a recognition that toxicity levels frequently vary within populations because of environmental heterogeneity. Inequalities in defense may undermine mutualistic monomorphic signaling, causing evolutionary antagonism between loci that determine appearance of less well-defended and better defended prey forms within species. In this article, we apply a stochastic model of evolved phenotypic plasticity to the evolution of prey signals. We show that when toxicity levels vary, then antagonistic interactions can lead to evolutionary conflict between alleles at different signaling loci, causing signal evolution, "red queen-like" evolutionary chase, and one or more forms of signaling equilibria. A key prediction is that variation in the way that predators use information about toxicity levels in their attack behaviors profoundly affects the evolutionary characteristics of the prey signaling systems. Environmental variation is known to cause variation in many qualities that organisms signal; our approach may therefore have application to other signaling systems.

  11. A TRPA1 antagonist reverts oxaliplatin-induced neuropathic pain

    PubMed Central

    Nativi, Cristina; Gualdani, Roberta; Dragoni, Elisa; Di Cesare Mannelli, Lorenzo; Sostegni, Silvia; Norcini, Martina; Gabrielli, Gabriele; la Marca, Giancarlo; Richichi, Barbara; Francesconi, Oscar; Moncelli, Maria Rosa; Ghelardini, Carla; Roelens, Stefano

    2013-01-01

    Neuropathic pain (NeP) is generally considered an intractable problem, which becomes compelling in clinical practice when caused by highly effective chemotherapeutics, such as in the treatment of cancer with oxaliplatin (OXA) and related drugs. In the present work we describe a structurally new compound, ADM_09, which proved to effectively revert OXA-induced NeP in vivo in rats without eliciting the commonly observed negative side-effects. ADM_09 does not modify normal behavior in rats, does not show any toxicity toward astrocyte cell cultures, nor any significant cardiotoxicity. Patch-clamp recordings demonstrated that ADM_09 is an effective antagonist of the nociceptive sensor channel TRPA1, which persistently blocks mouse as well as human variants of TRPA1. A dual-binding mode of action has been proposed for ADM_09, in which a synergic combination of calcium-mediated binding of the carnosine residue and disulphide-bridge-forming of the lipoic acid residue accounts for the observed persistent blocking activity toward the TRPA1 channel. PMID:23774285

  12. Major Depressive Disorder and Kappa Opioid Receptor Antagonists

    PubMed Central

    Li, Wei; Sun, Huijiao; Chen, Hao; Yang, Xicheng; Xiao, Li; Liu, Renyu; Shao, Liming; Qiu, Zhuibai

    2016-01-01

    Major depressive disorder (MDD) is a common psychiatric disease worldwide. The clinical use of tricyclic antidepressants (TCAs), monoamine oxidase inhibitors (MAOIs) and selective serotonin reuptake inhibitors (SSRIs)/serotonin–norepinephrine reuptake inhibitor (SNRIs) for this condition have been widely accepted, but they were challenged by unacceptable side-effects, potential drug-drug interactions (DDIs) or slow onset/lack of efficacy. The endogenous opioid system is involved in stress and emotion regulatory processes and its role in MDD has been implicated. Although several KOR antagonists including JDTic and PF-04455242 were discontinued in early clinical trials, ALKS 5461 and CERC-501(LY-2456302) survived and entered into Phase-III and Phase-II trials, respectively. Considering the efficacy and safety of early off-label use of buprenorphine in the management of the treatment-resistant depression (TRD), it will be not surprising to predict the potential success of ALKS 5461 (a combination of buprenorphine and ALKS-33) in the near future. Moreover, CERC-501 will be expected to be available as monotherapy or adjuvant therapy with other first-line antidepressants in the treatment of TRD, if ongoing clinical trials continue to provide positive benefit-risk profiles. Emerging new researches might bring more drug candidates targeting the endogenous opioid system to clinical trials to address current challenges in MDD treatment in clinical practice. PMID:27213169

  13. The effect of epistasis on sexually antagonistic genetic variation

    PubMed Central

    Arnqvist, Göran; Vellnow, Nikolas; Rowe, Locke

    2014-01-01

    There is increasing evidence of segregating sexually antagonistic (SA) genetic variation for fitness in laboratory and wild populations, yet the conditions for the maintenance of such variation can be restrictive. Epistatic interactions between genes can contribute to the maintenance of genetic variance in fitness and we suggest that epistasis between SA genes should be pervasive. Here, we explore its effect on SA genetic variation in fitness using a two locus model with negative epistasis. Our results demonstrate that epistasis often increases the parameter space showing polymorphism for SA loci. This is because selection in one locus is affected by allele frequencies at the other, which can act to balance net selection in males and females. Increased linkage between SA loci had more marginal effects. We also show that under some conditions, large portions of the parameter space evolve to a state where male benefit alleles are fixed at one locus and female benefit alleles at the other. This novel effect of epistasis on SA loci, which we term the ‘equity effect’, may have important effects on population differentiation and may contribute to speciation. More generally, these results support the suggestion that epistasis contributes to population divergence. PMID:24870040

  14. Orexin receptor antagonists as therapeutic agents for insomnia

    PubMed Central

    Equihua, Ana C.; De La Herrán-Arita, Alberto K.; Drucker-Colin, Rene

    2013-01-01

    Insomnia is a common clinical condition characterized by difficulty initiating or maintaining sleep, or non-restorative sleep with impairment of daytime functioning. Currently, treatment for insomnia involves a combination of cognitive behavioral therapy (CBTi) and pharmacological therapy. Among pharmacological interventions, the most evidence exists for benzodiazepine (BZD) receptor agonist drugs (GABAA receptor), although concerns persist regarding their safety and their limited efficacy. The use of these hypnotic medications must be carefully monitored for adverse effects. Orexin (hypocretin) neuropeptides have been shown to regulate transitions between wakefulness and sleep by promoting cholinergic/monoaminergic neural pathways. This has led to the development of a new class of pharmacological agents that antagonize the physiological effects of orexin. The development of these agents may lead to novel therapies for insomnia without the side effect profile of hypnotics (e.g., impaired cognition, disturbed arousal, and motor balance difficulties). However, antagonizing a system that regulates the sleep-wake cycle may create an entirely different side effect profile. In this review, we discuss the role of orexin and its receptors on the sleep-wake cycle and that of orexin antagonists in the treatment of insomnia. PMID:24416019

  15. Iontophoresis of Endothelin Receptor Antagonists in Rats and Men

    PubMed Central

    Roustit, Matthieu; Blaise, Sophie; Arnaud, Claire; Hellmann, Marcin; Millet, Claire; Godin-Ribuot, Diane; Dufournet, Boris; Boutonnat, Jean; Ribuot, Christophe; Cracowski, Jean-Luc

    2012-01-01

    Introduction The treatment of scleroderma-related digital ulcers is challenging. The oral endothelin receptor antagonist (ERA) bosentan has been approved but it may induce liver toxicity. The objective of this study was to test whether ERAs bosentan and sitaxentan could be locally delivered using iontophoresis. Methods Cathodal and anodal iontophoresis of bosentan and sitaxentan were performed on anaesthetized rat hindquarters without and during endothelin-1 infusion. Skin blood flow was quantified using laser-Doppler imaging and cutaneous tolerability was assessed. Iontophoresis of sitaxentan (20 min, 20 or 100 µA) was subsequently performed on the forearm skin of healthy men (n = 5). Results In rats neither bosentan nor sitaxentan increased skin blood flux compared to NaCl. When simultaneously infusing endothelin-1, cathodal iontophoresis of sitaxentan increased skin blood flux compared to NaCl (AUC0–20 were 44032.2±12277 and 14957.5±23818.8 %BL.s, respectively; P = 0.01). In humans, sitaxentan did not significantly increase skin blood flux as compared to NaCl. Iontophoresis of ERAs was well tolerated both in animals and humans. Conclusions This study shows that cathodal iontophoresis of sitaxentan but not bosentan partially reverses endothelin-induced skin vasoconstriction in rats, suggesting that sitaxentan diffuses into the dermis. However, sitaxentan does not influence basal skin microvascular tone in rats or in humans. PMID:22808263

  16. Sexually antagonistic epigenetic marks that canalize sexually dimorphic development.

    PubMed

    Rice, William R; Friberg, Urban; Gavrilets, Sergey

    2016-04-01

    The sexes share the same autosomal genomes, yet sexual dimorphism is common due to sex-specific gene expression. When present, XX and XY karyotypes trigger alternate regulatory cascades that determine sex-specific gene expression profiles. In mammals, secretion of testosterone (T) by the testes during foetal development is the master switch influencing the gene expression pathways (male vs. female) that will be followed, but many genes have sex-specific expression prior to T secretion. Environmental factors, like endocrine disruptors and mimics, can interfere with sexual development. However, sex-specific ontogeny can be canalized by the production of epigenetic marks (epimarks) generated during early ontogeny that increase sensitivity of XY embryos to T and decrease sensitivity of XX embryos. Here, we integrate and synthesize the evidence indicating that canalizing epimarks are produced during early ontogeny. We will also describe the evidence that such epimarks sometimes carry over across generations and produce mosaicism in which some traits are discordant with the gonad. Such carryover epimarks are sexually antagonistic because they benefit the individual in which they were formed (via canalization) but harm opposite-sex offspring when they fail to erase across generations and produce gonad-trait discordances. SA-epimarks have the potential to: i) magnify phenotypic variation for many sexually selected traits, ii) generate overlap along many dimensions of the masculinity/femininity spectrum, and iii) influence medically important gonad-trait discordances like cryptorchidism, hypospadias and idiopathic hirsutism. PMID:26600375

  17. Regulation of the feedback antagonist naked cuticle by Wingless signaling

    PubMed Central

    Chang, Jinhee L.; Chang, Mikyung V.; Barolo, Scott; Cadigan, Ken M.

    2008-01-01

    Signaling pathways usually activate transcriptional targets in a cell type-specific manner. Notable exceptions are pathway-specific feedback antagonists, which serve to restrict the range or duration of the signal. These factors are often activated by their respective pathways in a broad array of cell types. For example, the Wnt ligand Wingless (Wg) activates the naked cuticle (nkd) gene in all tissues examined throughout Drosophila development. How does the nkd gene respond in such an unrestricted manner to Wg signaling? Analysis in cell culture revealed regions of the nkd locus that contain Wg response elements (WREs) that are directly activated by the pathway via the transcription factor TCF. In flies, Wg signaling activates these WREs in multiple tissues, in distinct but overlapping patterns. These WREs are necessary and largely sufficient for nkd expression in late stage larval tissues, but only contribute to part of the embryonic expression pattern of nkd. These results demonstrate that nkd responsiveness to Wg signaling is achieved by several WREs which are broadly (but not universally) activated by the pathway. The existence of several WREs in the nkd locus may have been necessary to allow the Wg signaling-Nkd feedback circuit to remain intact as Wg expression diversified during animal evolution. PMID:18585374

  18. CGRP Receptor Antagonists in the Treatment of Migraine

    PubMed Central

    Durham, Paul L.; Vause, Carrie V.

    2011-01-01

    Based on preclinical and clinical studies, the neuropeptide calcitonin gene-related peptide (CGRP) is proposed to play a central role in the underlying pathology of migraine. CGRP and its receptor are widely expressed in both the peripheral and central nervous system by multiple cell types involved in the regulation of inflammatory and nociceptive responses. Peripheral release of CGRP from trigeminal nerve fibers within the dura and from the cell body of trigeminal ganglion neurons is likely to contribute to peripheral sensitization of trigeminal nociceptors. Similarly, the release of CGRP within the trigeminal nucleus caudalis can facilitate activation of nociceptive second order neurons and glial cells. Thus, CGRP is involved in the development and maintenance of persistent pain, central sensitization, and allodynia, events characteristic of migraine pathology. In contrast, CGRP release within the brain is likely to function in an anti-nociceptive capacity. This review will focus on the development and clinical data on CGRP receptor antagonists as well as discussing their potential roles in migraine therapy via modulation of multiple cell types within the peripheral and central nervous systems. PMID:20433208

  19. NMDA receptor antagonist ketamine impairs feature integration in visual perception.

    PubMed

    Meuwese, Julia D I; van Loon, Anouk M; Scholte, H Steven; Lirk, Philipp B; Vulink, Nienke C C; Hollmann, Markus W; Lamme, Victor A F

    2013-01-01

    Recurrent interactions between neurons in the visual cortex are crucial for the integration of image elements into coherent objects, such as in figure-ground segregation of textured images. Blocking N-methyl-D-aspartate (NMDA) receptors in monkeys can abolish neural signals related to figure-ground segregation and feature integration. However, it is unknown whether this also affects perceptual integration itself. Therefore, we tested whether ketamine, a non-competitive NMDA receptor antagonist, reduces feature integration in humans. We administered a subanesthetic dose of ketamine to healthy subjects who performed a texture discrimination task in a placebo-controlled double blind within-subject design. We found that ketamine significantly impaired performance on the texture discrimination task compared to the placebo condition, while performance on a control fixation task was much less impaired. This effect is not merely due to task difficulty or a difference in sedation levels. We are the first to show a behavioral effect on feature integration by manipulating the NMDA receptor in humans. PMID:24223927

  20. NMDA Receptor Antagonist Ketamine Impairs Feature Integration in Visual Perception

    PubMed Central

    Meuwese, Julia D. I.; van Loon, Anouk M.; Scholte, H. Steven; Lirk, Philipp B.; Vulink, Nienke C. C.; Hollmann, Markus W.; Lamme, Victor A. F.

    2013-01-01

    Recurrent interactions between neurons in the visual cortex are crucial for the integration of image elements into coherent objects, such as in figure-ground segregation of textured images. Blocking N-methyl-D-aspartate (NMDA) receptors in monkeys can abolish neural signals related to figure-ground segregation and feature integration. However, it is unknown whether this also affects perceptual integration itself. Therefore, we tested whether ketamine, a non-competitive NMDA receptor antagonist, reduces feature integration in humans. We administered a subanesthetic dose of ketamine to healthy subjects who performed a texture discrimination task in a placebo-controlled double blind within-subject design. We found that ketamine significantly impaired performance on the texture discrimination task compared to the placebo condition, while performance on a control fixation task was much less impaired. This effect is not merely due to task difficulty or a difference in sedation levels. We are the first to show a behavioral effect on feature integration by manipulating the NMDA receptor in humans. PMID:24223927

  1. Calcium antagonists. A role in the management of cyanide poisoning

    SciTech Connect

    Maduh, E.U.; Porter, D.W.; Baskin, S.I.

    1993-12-31

    The physiological role of calcium was demonstrated by Ringer (1883) when he linked the omission of calcium (Ca++) from the bathing medium to the induction of cardiac arrest in the isolated frog heart. This observation established that Ca++ controlled muscle contraction but it was not until the autumn of 1963 that the specific pharmacological significance of this contribution was realised by Fleckenstein (1964), leading to the development of Ca++ antagonism as a concept in drug action (Fleckenstein 1977). Identifying the precise role of Ca++ ions in toxic cell injury and tissue death attributable to drug and chemical intoxication has lagged behind developments in Ca++ physiology and pharmacology and to date, much remains to be learned, although studies aimed at characterising the role of Ca++ in cytotoxic cell injury are receiving intense attention (Bondy Komulainen 1988; Maduh et al. l988a, l99Oa,b; Orrenius et al. 1989; Trump et al. 1989). On the other hand, the importance of cyanide as a poison has been known from antiquity (for references to earlier literature see Baskin Fricke 1992; Solomonson 1981). In experimental cyanide poisoning, recent studies have examined alterations in cell Ca++ and the influence of Ca++ antagonists in the management of this chemical toxicological emergency. These efforts have principally focused on the cellular Ca++ homeostasis system, its interrelationship with cellular components, and its susceptibility to cyanide action.

  2. Preliminary investigations into triazole derived androgen receptor antagonists.

    PubMed

    Altimari, Jarrad M; Niranjan, Birunthi; Risbridger, Gail P; Schweiker, Stephanie S; Lohning, Anna E; Henderson, Luke C

    2014-05-01

    A range of 1,4-substituted-1,2,3-N-phenyltriazoles were synthesized and evaluated as non-steroidal androgen receptor (AR) antagonists. The motivation for this study was to replace the N-phenyl amide portion of small molecule antiandrogens with a 1,2,3-triazole and determine effects, if any, on biological activity. The synthetic methodology presented herein is robust, high yielding and extremely rapid. Using this methodology a series of 17 N-aryl triazoles were synthesized from commercially available starting materials in less than 3h. After preliminary biological screening at 20 and 40 μM, the most promising three compounds were found to display IC50 values of 40-50 μM against androgen dependent (LNCaP) cells and serve as a starting point for further structure-activity investigations. All compounds in this work were the focus of an in silico study to dock the compounds into the human androgen receptor ligand binding domain (hARLBD) and compare their predicted binding affinity with known antiandrogens. A comparison of receptor-ligand interactions for the wild type and T877A mutant AR revealed two novel polar interactions. One with Q738 of the wild type site and the second with the mutated A877 residue.

  3. Can paternal leakage maintain sexually antagonistic polymorphism in the cytoplasm?

    PubMed Central

    Kuijper, B; Lane, N; Pomiankowski, A

    2015-01-01

    A growing number of studies in multicellular organisms highlight low or moderate frequencies of paternal transmission of cytoplasmic organelles, including both mitochondria and chloroplasts. It is well established that strict maternal inheritance is selectively blind to cytoplasmic elements that are deleterious to males – ’mother's curse’. But it is not known how sensitive this conclusion is to slight levels of paternal cytoplasmic leakage. We assess the scope for polymorphism when individuals bear multiple cytoplasmic alleles in the presence of paternal leakage, bottlenecks and recurrent mutation. When fitness interactions among cytoplasmic elements within an individual are additive, we find that sexually antagonistic polymorphism is restricted to cases of strong selection on males. However, when fitness interactions among cytoplasmic elements are nonlinear, much more extensive polymorphism can be supported in the cytoplasm. In particular, mitochondrial mutants that have strong beneficial fitness effects in males and weak deleterious fitness effects in females when rare (i.e. ’reverse dominance’) are strongly favoured under paternal leakage. We discuss how such epistasis could arise through preferential segregation of mitochondria in sex-specific somatic tissues. Our analysis shows how paternal leakage can dampen the evolution of deleterious male effects associated with predominant maternal inheritance of cytoplasm, potentially explaining why ’mother's curse’ is less pervasive than predicted by earlier work. PMID:25653025

  4. Agonists and Antagonists of TGF-β Family Ligands.

    PubMed

    Chang, Chenbei

    2016-08-01

    The discovery of the transforming growth factor β (TGF-β) family ligands and the realization that their bioactivities need to be tightly controlled temporally and spatially led to intensive research that has identified a multitude of extracellular modulators of TGF-β family ligands, uncovered their functions in developmental and pathophysiological processes, defined the mechanisms of their activities, and explored potential modulator-based therapeutic applications in treating human diseases. These studies revealed a diverse repertoire of extracellular and membrane-associated molecules that are capable of modulating TGF-β family signals via control of ligand availability, processing, ligand-receptor interaction, and receptor activation. These molecules include not only soluble ligand-binding proteins that were conventionally considered as agonists and antagonists of TGF-β family of growth factors, but also extracellular matrix (ECM) proteins and proteoglycans that can serve as "sink" and control storage and release of both the TGF-β family ligands and their regulators. This extensive network of soluble and ECM modulators helps to ensure dynamic and cell-specific control of TGF-β family signals. This article reviews our knowledge of extracellular modulation of TGF-β growth factors by diverse proteins and their molecular mechanisms to regulate TGF-β family signaling.

  5. Side Effects of Leukotriene Receptor Antagonists in Asthmatic Children

    PubMed Central

    Erdem, Semiha Bahceci; Nacaroglu, Hikmet Tekin; Unsal Karkiner, Canan Sule; Gunay, Ilker; Can, Demet

    2015-01-01

    Background: Leukotriene receptor antagonists (LTRAs) are drugs which have been widely used more than ten years. As the use of LTRAs increases, our knowledge with respect to their side effects increases as well. Objectives: The objective of our study was to evaluat the observed side effects of LTRAs used in patients with astma. Patients and Methods: 1024 patients treated only with LTRAs owing to asthma or early wheezing were included in the study for a five-year period. The observed side effects of LTRAs in these patients were retrospectively investigated. The side effects were divided into two parts as psychiatric and non-psychiatric. Results: Among the 1024 cases included in the study, 67.5% of the patients out of 41 with side effects were male, 32.5% were female and the average age was 6.5 years. The rate of patients with asthma was 63.41% and 36.58% of the patients had early wheezing. It was determined that sex, age and diagnosis (early wheezing or asthma) of the patients were ineffective in the emergence of side effects. The average period for the emergence of side effects was the first month. It was observed that hyperactivity was the most frequently observed psychiatric side effect and that abdominal pain was the non-psychiatric side effect. Conclusions: The side effects of LTRAs were common in children. Therefore, patients must be informed at the beginning of the treatment and they must be evaluated at certain intervals. PMID:26495098

  6. Non-vitamin K antagonist oral anticoagulants (NOACs): a view from the laboratory.

    PubMed

    Blann, A D

    2014-01-01

    Disadvantages with traditional anticoagulants (vitamin K antagonists and heparinoids) have led to the development on non-vitamin K antagonist oral anticoagulants (NOACs). These agents are set to replace the traditional anticoagulants in situations such as following orthopaedic surgery, in atrial fibrillation, and in the prevention and treatment of venous thromboembolism. Although superior to vitamin K antagonists and heparinoids in several aspects, NOACs retain the ability to cause haemorrhage and, despite claims to the contrary, may need monitoring. This review aims to summarise key aspects of the NOACs of relevance to the laboratory. PMID:25562993

  7. Discovery of diarylurea P2Y(1) antagonists with improved aqueous solubility.

    PubMed

    Wang, Tammy C; Qiao, Jennifer X; Clark, Charles G; Jua, Ji; Price, Laura A; Wu, Qimin; Chang, Ming; Zheng, Joanna; Huang, Christine S; Everlof, Gerry; Schumacher, William A; Wong, Pancras C; Seiffert, Dietmar A; Stewart, Anne B; Bostwick, Jeffrey S; Crain, Earl J; Watson, Carol A; Rehfuss, Robert; Wexler, Ruth R; Lam, Patrick Y S

    2013-06-01

    Preclinical data suggests that P2Y1 antagonists, such as diarylurea compound 1, may provide antithrombotic efficacy similar to P2Y12 antagonists and may have the potential of providing reduced bleeding liabilities. This manuscript describes a series of diarylureas bearing solublizing amine side chains as potent P2Y1 antagonists. Among them, compounds 2l and 3h had improved aqueous solubility and maintained antiplatelet activity compared with compound 1. Compound 2l was moderately efficacious in both rat and rabbit thrombosis models and had a moderate prolongation of bleeding time in rats similar to that of compound 1. PMID:23602442

  8. Pharmacology of glutamate receptor antagonists in the kindling model of epilepsy.

    PubMed

    Löscher, W

    1998-04-01

    It is widely accepted that excitatory amino acid transmitters such as glutamate are involved in the initiation of seizures and their propagation. Most attention has been directed to synapses using NMDA receptors, but more recent evidence indicates potential roles for ionotropic non-NMDA (AMPA/kainate) and metabotropic glutamate receptors as well. Based on the role of glutamate in the development and expression of seizures, antagonism of glutamate receptors has long been thought to provide a rational strategy in the search for new, effective anticonvulsant drugs. Furthermore, because glutamate receptor antagonists, particularly those acting on NMDA receptors, protect effectively in the induction of kindling, it was suggested that they may have utility in epilepsy prophylaxis, for example, after head trauma. However, first clinical trials with competitive and uncompetitive NMDA receptor antagonists in patients with partial (focal) seizures, showed that these drugs lack convincing anticonvulsant activity but induce severe neurotoxic adverse effects in doses which were well tolerated in healthy volunteers. Interestingly, the only animal model which predicted the unfavorable clinical activity of competitive NMDA antagonists in patients with chronic epilepsy was the kindling model of temporal lobe epilepsy, indicating that this model should be used in the search for more effective and less toxic glutamate receptor antagonists. In this review, results from a large series of experiments on different categories of glutamate receptor antagonists in fully kindled rats are summarized and discussed. NMDA antagonists, irrespective whether they are competitive, high- or low-affinity uncompetitive, glycine site or polyamine site antagonists, do not counteract focal seizure activity and only weakly, if at all, attenuate propagation to secondarily generalized seizures in this model, indicating that once kindling is established, NMDA receptors are not critical for the expression of

  9. [Antagonistic properties of Lactobacillus plantarum strains, isolated from traditional fermented products of Ukraine].

    PubMed

    Vasyliuk, O M; Kovalenko, N K; Harmasheva, I L

    2014-01-01

    The antagonistic activity of 109 lactobacillus strains, isolated from traditional fermented products of Ukraine, has been investigated and it has been shown that the significant part of strains show different levels of inhibition of opportunistic and phytopathogenic microorganisms. It has been shown that the antagonistic effect of Lactobacillus plantarum strains on the opportunistic and phytopathogenic microorganisms was dependent on the sources of Lactobacillus strains isolation. L. plantarum strains show a higher level of inhibition against phytopathogenic microorganisms than opportunistic test-strains. Eleven strains of L. plantarum demonstrated antagonistic activity for all used test-strains. PMID:25007440

  10. The metabotropic glutamate receptor subtype 5 antagonist fenobam is analgesic and has improved in vivo selectivity compared with the prototypical antagonist 2-methyl-6-(phenylethynyl)-pyridine.

    PubMed

    Montana, Michael C; Cavallone, Laura F; Stubbert, Kristi K; Stefanescu, Andrei D; Kharasch, Evan D; Gereau, Robert W

    2009-09-01

    Metabotropic glutamate receptor subtype 5 (mGlu5) has been demonstrated to play a role in the modulation of numerous nociceptive modalities. When administered via peripheral, intrathecal, or systemic routes, mGlu5 antagonists have analgesic properties in a variety of preclinical pain models. Despite a wealth of data supporting the use of mGlu5 antagonists to treat pain, studies have been limited to preclinical animal models due to a lack of mGlu5 antagonists that are approved for use in humans. It has been demonstrated previously that fenobam [N-(3-chlorophenyl)-N'-(4,5-dihydro-1-methyl-4-oxo-1H-imidazole-2-yl)urea], an anxiolytic shown to be safe and effective in human trials, is a selective and potent noncompetitive antagonist of mGlu5 (J Pharmacol Exp Ther 315:711-721, 2005). Here, we report a series of studies aimed at testing whether fenobam, similar to the prototypical mGlu5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP), has analgesic properties in mice. We show that fenobam reduces formalin-induced pain behaviors and relieves established inflammation-induced thermal hypersensitivity in mice. Similar results were seen with MPEP. Administration of fenobam resulted in an increase in locomotor activity in the open-field task but did not impair performance on the accelerating Rotarod. Analysis of brain and plasma fenobam levels indicated that fenobam is rapidly concentrated in brain after intraperitoneal administration in mice but is essentially cleared from circulation within 1 h after injection. Fenobam had no analgesic effect in mGlu5 knockout mice, whereas the prototypical antagonist MPEP retained significant analgesic efficacy in mGlu5 knockouts. These results demonstrate that fenobam is analgesic in mice and has an improved in vivo selectivity for mGlu5 over MPEP. PMID:19515968

  11. Effect of antagonistic yeast XL-1 on resistance-associated enzyme activities in postharvest cantaloupe.

    PubMed

    Shan, C-H; Chen, W; Zhang, H; Tang, F-X; Tong, J-M

    2014-08-15

    The effect of the antagonistic yeast XL-1 on resistance-associated enzyme activities in postharvest cantaloupe was studied by inoculating the antagonistic yeast XL-1. Cantaloupes were sterilized, dried in air, and soaked in antagonistic yeast treatment liquid for 30 s. After drying in air, the cantaloupe was stored at room temperature (2°-5°C). The activities of resistance-associated enzymes in cantaloupe like polyphenol oxidase, β-1,3-glucanase, peroxidase, and superoxide dismutase were measured every 7 days. Our results indicated that the antagonistic yeast XL-1 significantly improved the activity of β-1,3-glucanase and chitinase to promote the disease resistance of postharvest cantaloupe.

  12. Anxiolytic Effects of the MCH1R Antagonist TPI 1361-17

    PubMed Central

    Lee, Cheol; Parks, Gregory S.

    2010-01-01

    Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide that acts on the MCH1 receptor. MCH1R is expressed widely throughout the brain, particularly in regions thought to be involved in the regulation of stress and emotional response. The role of MCH in anxiety has been controversial, however. Central administration of MCH has been reported to promote or reduce anxiety-like behaviors. The anxiolytic activity of several MCH1R antagonists has also been debated. To address this issue, we have tested whether TPI 1361-17, a highly specific and high affinity MCH1R antagonist, exerts anxiolytic effects in two commonly used models of anxiety, the elevated plus maze and the light–dark transition test. We show that this MCH1R antagonist exerts potent anxiolytic effects in both assays. Our study therefore supports previous studies indicating that MCH1R antagonists may be useful in the treatment of anxiety. PMID:20635163

  13. Identification of Trisubstituted-pyrazol Carboxamide Analogs as Novel and Potent Antagonists of Farnesoid X Receptor

    PubMed Central

    Yu, Donna D.; Lin, Wenwei; Forman, Barry M.; Chen, Taosheng

    2014-01-01

    Farnesoid X receptor (FXR, NRIH4) plays a major role in the control of cholesterol metabolism. This suggests that antagonizing the transcriptional activity of FXR is a potential means to treat cholestasis and related metabolic disorders. Here we describe the synthesis, biological evaluation, and structure-activity relationship (SAR) studies of trisubstituted-pyrazol carboxamides as novel and potent FXR antagonists. One of these novel FXR antagonists, 4j has an IC50 of 7.5 nM in an FXR binding assay and 468.5 nM in a cell-based FXR antagonistic assay. Compound 4j has no dete