Science.gov

Sample records for 5-ht2a receptor blocker

  1. Insights into the regulation of 5-HT2A serotonin receptors by scaffolding proteins and kinases.

    PubMed

    Allen, John A; Yadav, Prem N; Roth, Bryan L

    2008-11-01

    5-HT(2A) serotonin receptors are essential molecular targets for the actions of LSD-like hallucinogens and atypical antipsychotic drugs. 5-HT(2A) serotonin receptors also mediate a variety of physiological processes in peripheral and central nervous systems including platelet aggregation, smooth muscle contraction, and the modulation of mood and perception. Scaffolding proteins have emerged as important regulators of 5-HT(2A) receptors and our recent studies suggest multiple scaffolds exist for 5-HT(2A) receptors including PSD95, arrestin, and caveolin. In addition, a novel interaction has emerged between p90 ribosomal S6 kinase and 5-HT(2A) receptors which attenuates receptor signaling. This article reviews our recent studies and emphasizes the role of scaffolding proteins and kinases in the regulation of 5-HT(2A) trafficking, targeting and signaling.

  2. Functions of 5-HT2A receptor and its antagonists in the cardiovascular system.

    PubMed

    Nagatomo, Takafumi; Rashid, Mamunur; Abul Muntasir, Habib; Komiyama, Tadazumi

    2004-10-01

    The serotonin (5-hydroxytryptamine, 5-HT) receptors have conventionally been divided into seven subfamilies, most of which have several subtypes. Among them, 5-HT(2A) receptor is associated with the contraction of vascular smooth muscle, platelet aggregation and thrombus formation and coronary artery spasms. Accordingly, selective 5-HT(2A) antagonists may have potential in the treatment of cardiovascular diseases. Sarpogrelate, a selective 5-HT(2A) antagonist, has been introduced clinically as a therapeutic agent for the treatment of ischemic diseases associated with thrombosis. Molecular modeling studies also suggest that sarpogrelate is a 5-HT(2A) selective antagonist and is likely to have pharmacological effects beneficial in the treatment of cardiovascular diseases. This review describes the above findings as well as the signaling linkages of the 5-HT(2A) receptors and the mode of agonist binding to 5-HT(2A) receptor using data derived from molecular modeling and site-directed mutagenesis.

  3. Increased hypothalamic 5-HT2A receptor gene expression and effects of pharmacologic 5-HT2A receptor inactivation in obese A{sup y} mice

    SciTech Connect

    Nonogaki, Katsunori . E-mail: knonogaki-tky@umin.ac.jp; Nozue, Kana; Oka, Yoshitomo

    2006-12-29

    Serotonin (5-hydroxytryptamine; 5-HT) 2A receptors contribute to the effects of 5-HT on platelet aggregation and vascular smooth muscle cell proliferation, and are reportedly involved in decreases in plasma levels of adiponectin, an adipokine, in diabetic subjects. Here, we report that systemic administration of sarpogrelate, a 5-HT2A receptor antagonist, suppressed appetite and increased hypothalamic pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript, corticotropin releasing hormone, 5-HT2C, and 5-HT1B receptor gene expression. A{sup y} mice, which have ectopic expression of the agouti protein, significantly increased hypothalamic 5-HT2A receptor gene expression in association with obesity compared with wild-type mice matched for age. Systemic administration of sarpogrelate suppressed overfeeding, body weight gain, and hyperglycemia in obese A{sup y} mice, whereas it did not increase plasma adiponectin levels. These results suggest that obesity increases hypothalamic 5-HT2A receptor gene expression, and pharmacologic inactivation of 5-HT2A receptors inhibits overfeeding and obesity in A{sup y} mice, but did not increase plasma adiponectin levels.

  4. 5-HT2A receptor gene polymorphisms in Croatian subjects with autistic disorder.

    PubMed

    Hranilovic, Dubravka; Blazevic, Sofia; Babic, Marina; Smurinic, Maja; Bujas-Petkovic, Zorana; Jernej, Branimir

    2010-08-15

    Disturbances in the expression/function of the 5-HT2A receptor are implicated in autism. The association of the 5-HT2A receptor gene with autism was studied in the Croatian population. Distribution frequencies for alleles, genotypes and haplotypes of -1438 A/G and His452Tyr polymorphisms were compared in samples of 103 autistic and 214 control subjects. Significant overrepresentation of the G allele and the GG genotype of the -1438 A/G polymorphism was observed in group of autistic subjects, supporting the possible involvement of the 5-HT2A receptor in the development of autism.

  5. 5-HT2A SEROTONIN RECEPTOR BIOLOGY: Interacting proteins, kinases and paradoxical regulation

    PubMed Central

    Roth, Bryan L

    2011-01-01

    5-hydroxytryptamine2A (5-HT2A) serotonin receptors are important pharmacological targets for a large number of central nervous system and peripheral serotonergic medications. In this review article I summarize work mainly from my lab regarding serotonin receptor anatomy, pharmacology, signaling and regulation. I highlight the role of serotonin receptor interacting proteins and the emerging paradigm of G-protein coupled receptor functional selectivity. PMID:21288474

  6. 5-HT2A/C receptors mediate the antipsychotic-like effects of alstonine.

    PubMed

    Linck, V M; Bessa, M M; Herrmann, A P; Iwu, M M; Okunji, C O; Elisabetsky, E

    2012-01-10

    The purpose of this study was to determine the effects of alstonine, an indole alkaloid with putative antipsychotic effects, on working memory by using the step-down inhibitory avoidance paradigm and MK801-induced working memory deficits in mice. Additionally, the role of serotonin 5-HT2A/C receptors in the effects of alstonine on mouse models associated with positive (MK801-induced hyperlocomotion), negative (MK801-induced social interaction deficit), and cognitive (MK801-induced working memory deficit) schizophrenia symptoms was examined. Treatment with alstonine was able to prevent MK801-induced working memory deficit, indicating its potential benefit for cognitive deficits now seen as a core symptom in the disease. Corroborating previously reported data, alstonine was also effective in counteracting MK801-induced hyperlocomotion and social interaction deficit. Ritanserin, a 5-HT2A/C receptor antagonist, prevented alstonine's effects on these three behavioral parameters. This study presents additional evidence that 5-HT2A/C receptors are central to the antipsychotic-like effects of alstonine, consistently seen in mouse models relevant to the three dimensions of schizophrenia symptoms.

  7. 5-HT2A receptor activation is necessary for CO2-induced arousal

    PubMed Central

    Smith, Haleigh R.; MacAskill, Amanda; Richerson, George B.

    2015-01-01

    Hypercapnia-induced arousal from sleep is an important protective mechanism pertinent to a number of diseases. Most notably among these are the sudden infant death syndrome, obstructive sleep apnea and sudden unexpected death in epilepsy. Serotonin (5-HT) plays a significant role in hypercapnia-induced arousal. The mechanism of 5-HT's role in this protective response is unknown. Here we sought to identify the specific 5-HT receptor subtype(s) involved in this response. Wild-type mice were pretreated with antagonists against 5-HT receptor subtypes, as well as antagonists against adrenergic, cholinergic, histaminergic, dopaminergic, and orexinergic receptors before challenge with inspired CO2 or hypoxia. Antagonists of 5-HT2A receptors dose-dependently blocked CO2-induced arousal. The 5-HT2C receptor antagonist, RS-102221, and the 5-HT1A receptor agonist, 8-OH-DPAT, attenuated but did not completely block CO2-induced arousal. Blockade of non-5-HT receptors did not affect CO2-induced arousal. None of these drugs had any effect on hypoxia-induced arousal. 5-HT2 receptor agonists were given to mice in which 5-HT neurons had been genetically eliminated during embryonic life (Lmx1bf/f/p) and which are known to lack CO2-induced arousal. Application of agonists to 5-HT2A, but not 5-HT2C, receptors, dose-dependently restored CO2-induced arousal in these mice. These data identify the 5-HT2A receptor as an important mediator of CO2-induced arousal and suggest that, while 5-HT neurons can be independently activated to drive CO2-induced arousal, in the absence of 5-HT neurons and endogenous 5-HT, 5-HT receptor activation can act in a permissive fashion to facilitate CO2-induced arousal via another as yet unidentified chemosensor system. PMID:25925320

  8. (±)-Nantenine analogs as antagonists at human 5-HT2A receptors: C1 and flexible congeners

    PubMed Central

    Chaudhary, Sandeep; Pecic, Stevan; LeGendre, Onica; Navarro, Hérnan A.; Harding, Wayne W.

    2009-01-01

    C1 and flexible analogs of (±)-nantenine were synthesized and evaluated for antagonist activity at human 5-HT2A receptors in a calcium mobilization assay. This work has resulted in the identification of the most potent 5-HT2A antagonist known based on an aporphine. Our results also suggest that the C1 position may be a key site for increasing 5-HT2A antagonist activity in this compound series. In addition, the structural rigidity of the aporphine core appears to be required for nantenine to function as a 5-HT2A antagonist. PMID:19328689

  9. 5-HT2A receptor antagonist M100907 reduces serotonin synthesis: An autoradiographic study

    PubMed Central

    Hasegawa, Shu; Fikre-Merid, Maraki; Diksic, Mirko

    2013-01-01

    The effects of the administration of the serotonin (5-HT)2A antagonist, M100907, on 5-HT synthesis rates, were evaluated using the α-[14C]methyl-L-tryptophan (α-MTrp) autoradiographic method. In the treatment study, M100907 (10 mg/kg) was injected intraperitoneally 30 min before the α-MTrp injection (30 μCi over 2 min). A single dose of M100907 caused a significant decrease in the synthesis in the anterior olfactory nucleus, accumbens nucleus, frontal cortex, sensory-motor cortex, cingulate cortex, medial caudate-putamen, dorsal thalamus, substantia nigra, inferior collicus, raphe magnus nucleus, superior olive, and raphe pallidus nucleus. These data suggest that the terminal 5-HT2A receptors are involved in the regulation of 5-HT synthesis in the entire brain. Further, 5-HT synthesis is likely regulated by the 5-HT2A antagonistic property of M100907 in the cortices, anterior olfactory nucleus, caudate putamen, and nucleus accumbens. PMID:22056993

  10. 5-HT2A receptors are involved in cognitive but not antidepressant effects of fluoxetine.

    PubMed

    Castañé, Anna; Kargieman, Lucila; Celada, Pau; Bortolozzi, Analía; Artigas, Francesc

    2015-08-01

    The prefrontal cortex (PFC) plays a crucial role in cognitive and affective functions. It contains a rich serotonergic (serotonin, 5-HT) innervation and a high density of 5-HT receptors. Endogenous 5-HT exerts robust actions on the activity of pyramidal neurons in medial PFC (mPFC) via excitatory 5-HT2A and inhibitory 5-HT1A receptors, suggesting the involvement of 5-HT neurotransmission in cortical functions. However, the underlying mechanisms must be elucidated. Here we examine the role of 5-HT2A receptors in the processing of emotional and cognitive signals evoked by increasing the 5-HT tone after acute blockade of the 5-HT transporter. Fluoxetine (5-20mg/kg i.p.) dose-dependently reduced the immobility time in the tail-suspension test in wild-type (WT) and 5-HT2Aknockout (KO2A) mice, with non-significant differences between genotypes. Fluoxetine (10mg/kg i.p.) significantly impaired mice performance in the novel object recognition test 24h post-administration in WT, but not in KO2A mice. The comparable effect of fluoxetine on extracellular 5-HT in the mPFC of both genotypes suggests that presynaptic differences are not accountable. In contrast, single unit recordings of mPFC putative pyramidal neurons showed that fluoxetine (1.8-7.2mg/kg i.v.) significantly increased neuronal discharge in KO2A but not in WT mice. This effect is possibly mediated by an altered excitatory/inhibitory balance in the PFC in KO2A mice. Overall, the present results suggest that 5-HT2A receptors play a detrimental role in long-term memory deficits mediated by an excess 5-HT in PFC.

  11. Selective 5HT2A and 5HT6 Receptor Antagonists Promote Sleep in Rats

    PubMed Central

    Morairty, Stephen R.; Hedley, Linda; Flores, Judith; Martin, Renee; Kilduff, Thomas S.

    2008-01-01

    Study Objectives: Serotonin (5-HT) has long been implicated in the control of sleep and wakefulness. This study evaluated the hypnotic efficacy of the 5-HT6 antagonist RO4368554 (RO) and the 5-HT2A receptor antagonist MDL100907 (MDL) relative to zolpidem. Design: A randomized, repeated-measures design was utilized in which Wistar rats received intraperitoneal injections of RO (1.0, 3.0, and 10 mg/kg), MDL (0.1, 1.0 and 3.0 mg/kg), zolpidem (10 mg/kg), or vehicle in the middle of the dark (active) period. Electroencephalogram, electromyogram, body temperature (Tb) and locomotor activity were analyzed for 6 hours after injection. Measurements and Results: RO, MDL, and zolpidem all produced significant increases in sleep and decreases in waking, compared with vehicle control. All 3 doses of MDL produced more consolidated sleep, increased non-rapid eye movement sleep (NREM) sleep, and increased electroencephalographic delta power during NREM sleep. The highest dose of RO (10.0 mg/kg) produced significant increases in sleep and decreases in waking during hour 2 following dosing. These increases in sleep duration were associated with greater delta power during NREM sleep. ZO Zolpidem induced sleep with the shortest latency and significantly increased NREM sleep and delta power but also suppressed rapid eye movement sleep sleep; in contrast, neither RO nor MDL affected rapid eye movement sleep. Whereas RO did not affect Tb, both zolpidem and MDL reduced Tb relative to vehicle-injected controls. Conclusions: These results support a role for 5-HT2A receptor modulation in NREM sleep and suggest a previously unrecognized role for 5-HT6 receptors in sleep-wake regulation. Citation: Morairty SR; Hedley L; Flores J; Martin R; Kilduff TS. Selective 5HT2A and 5HT6 receptor antagonists promote sleep in rats. SLEEP 2008;31(1):34-44. PMID:18220076

  12. Disrupting 5-HT2A Receptor/PDZ Protein Interactions Reduces Hyperalgesia and Enhances SSRI Efficacy in Neuropathic Pain

    PubMed Central

    Pichon, Xavier; Wattiez, Anne S; Becamel, Carine; Ehrlich, Ingrid; Bockaert, Joel; Eschalier, Alain; Marin, Philippe; Courteix, Christine

    2010-01-01

    Antidepressants are one of the first-line treatments for neuropathic pain. Despite the influence of serotonin (5-hydroxytryptamine, 5-HT) in pain modulation, selective serotonin reuptake inhibitors (SSRIs) are less effective than tricyclic antidepressants. Here, we show, in diabetic neuropathic rats, an alteration of the antihyperalgesic effect induced by stimulation of 5-HT2A receptors, which are known to mediate SSRI-induced analgesia. 5-HT2A receptor density was not changed in the spinal cord of diabetic rats, whereas postsynaptic density protein-95 (PSD-95), one of the PSD-95/disc large suppressor/zonula occludens-1 (PDZ) domain containing proteins interacting with these receptors, was upregulated. Intrathecal injection of a cell-penetrating peptidyl mimetic of the 5-HT2A receptor C-terminus, which disrupts 5-HT2A receptor–PDZ protein interactions, induced an antihyperalgesic effect in diabetic rats, which results from activation of 5-HT2A receptors by endogenous 5-HT. The peptide also enhanced antihyperalgesia induced by the SSRI fluoxetine. Its effects likely resulted from an increase in receptor responsiveness, because it revealed functional 5-HT2A receptor-operated Ca2+ responses in neurons, an effect mimicked by knockdown of PSD-95. Hence, 5-HT2A receptor/PDZ protein interactions might contribute to the resistance to SSRI-induced analgesia in painful diabetic neuropathy. Disruption of these interactions might be a valuable strategy to design novel treatments for neuropathic pain and to increase the effectiveness of SSRIs. PMID:20531396

  13. The role of serotonin 5-HT2A receptors in memory and cognition

    PubMed Central

    Zhang, Gongliang; Stackman, Robert W.

    2015-01-01

    Serotonin 5-HT2A receptors (5-HT2ARs) are widely distributed in the central nervous system, especially in brain region essential for learning and cognition. In addition to endogenous 5-HT, several hallucinogens, antipsychotics, and antidepressants function by targeting 5-HT2ARs. Preclinical studies show that 5-HT2AR antagonists have antipsychotic and antidepressant properties, whereas agonist ligands possess cognition-enhancing and hallucinogenic properties. Abnormal 5-HT2AR activity is associated with a number of psychiatric disorders and conditions, including depression, schizophrenia, and drug addiction. In addition to its traditional activity as a G protein-coupled receptor (GPCR), recent studies have defined novel operations of 5-HT2ARs. Here we review progress in the (1) receptor anatomy and biology: distribution, signaling, polymerization and allosteric modulation; and (2) receptor functions: learning and memory, hallucination and spatial cognition, and mental disorders. Based on the recent progress in basic research on the 5-HT2AR, it appears that post-training 5-HT2AR activation enhances non-spatial memory consolidation, while pre-training 5-HT2AR activation facilitates fear extinction. Further, the potential influence that 5-HT2AR-elicited visual hallucinations may have on visual cue (i.e., landmark) guided spatial cognition is discussed. We conclude that the development of selective 5-HT2AR modulators to target distinct signaling pathways and neural circuits represents a new possibility for treating emotional, neuropsychiatric, and neurodegenerative disorders. PMID:26500553

  14. 5-HT2A receptor antagonists improve motor impairments in the MPTP mouse model of Parkinson's disease.

    PubMed

    Ferguson, Marcus C; Nayyar, Tultul; Deutch, Ariel Y; Ansah, Twum A

    2010-01-01

    Clinical observations have suggested that ritanserin, a 5-HT(2A/C) receptor antagonist may reduce motor deficits in persons with Parkinson's Disease (PD). To better understand the potential antiparkinsonian actions of ritanserin, we compared the effects of ritanserin with the selective 5-HT(2A) receptor antagonist M100907 and the selective 5-HT(2C) receptor antagonist SB 206553 on motor impairments in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP-treated mice exhibited decreased performance on the beam-walking apparatus. These motor deficits were reversed by acute treatment with L-3,4-dihydroxyphenylalanine (levodopa). Both the mixed 5-HT(2A/C) antagonist ritanserin and the selective 5-HT(2A) antagonist M100907 improved motor performance on the beam-walking apparatus. In contrast, SB 206553 was ineffective in improving the motor deficits in MPTP-treated mice. These data suggest that 5-HT(2A) receptor antagonists may represent a novel approach to ameliorate motor symptoms of Parkinson's disease.

  15. Agonist properties of N,N-dimethyltryptamine at serotonin 5-HT2A and 5-HT2C receptors.

    PubMed

    Smith, R L; Canton, H; Barrett, R J; Sanders-Bush, E

    1998-11-01

    Extensive behavioral and biochemical evidence suggests an agonist role at the 5-HT2A receptor, and perhaps the 5-HT2C receptor, in the mechanism of action of hallucinogenic drugs. However the published in vitro pharmacological properties of N,N-dimethyltryptamine (DMT), an hallucinogenic tryptamine analog, are not consistent with this hypothesis. We, therefore, undertook an extensive investigation into the properties of DMT at 5-HT2A and 5-HT2C receptors. In fibroblasts transfected with the 5-HT2A receptor or the 5-HT2C receptor, DMT activated the major intracellular signaling pathway (phosphoinositide hydrolysis) to an extent comparable to that produced by serotonin. Because drug efficacy changes with receptor density and cellular microenvironment, we also examined the properties of DMT in native preparations using a behavioral and biochemical approach. Rats were trained to discriminate an antagonist ketanserin from an agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) in a two-lever choice paradigm. Pharmacological studies showed that responding on the DOI and ketanserin lever reflected agonist and antagonist activity at 5-HT2A receptors, and hence, was a suitable model for evaluating the in vivo functional properties of DMT. Like other 5-HT2A receptor agonists, DMT substituted fully for DOI. Intact choroid plexus was used to evaluate the agonist properties at endogenous 5-HT2C receptors; DMT was a partial agonist at 5-HT2C receptors in this native preparation. Thus, we conclude that DMT behaves as an agonist at both 5-HT2A and 5-HT2A receptors. One difference was evident in that the 5-HT2C, but not the 5-HT2A, receptor showed a profound desensitization to DMT over time. This difference is interesting in light of the recent report that the hallucinogenic activity of DMT does not tolerate in humans and suggests the 5-HT2C receptor plays a less prominent role in the action of DMT.

  16. Expression of α(1)-adrenergic receptors in rat prefrontal cortex: cellular co-localization with 5-HT(2A) receptors.

    PubMed

    Santana, Noemí; Mengod, Guadalupe; Artigas, Francesc

    2013-06-01

    The prefrontal cortex (PFC) is involved in behavioural control and cognitive processes that are altered in schizophrenia. The brainstem monoaminergic systems control PFC function, yet the cells/networks involved are not fully known. Serotonin (5-HT) and norepinephrine (NE) increase PFC neuronal activity through the activation of α(1)-adrenergic receptors (α(1)ARs) and 5-HT(2A) receptors (5-HT(2A)Rs), respectively. Neurochemical and behavioural interactions between these receptors have been reported. Further, classical and atypical antipsychotic drugs share nm in vitro affinity for α(1)ARs while having preferential affinity for D(2) and 5-HT(2A)Rs, respectively. Using double in situ hybridization we examined the cellular expression of α(1)ARs in pyramidal (vGluT1-positive) and GABAergic (GAD(65/67)-positive) neurons in rat PFC and their co-localization with 5-HT(2A)Rs. α(1)ARs are expressed by a high proportion of pyramidal (59-85%) and GABAergic (52-79%) neurons. The expression in pyramidal neurons exhibited a dorsoventral gradient, with a lower percentage of α(1)AR-positive neurons in infralimbic cortex compared to anterior cingulate and prelimbic cortex. The expression of α(1A), α(1B) and α(1D) adrenergic receptors was segregated in different layers and subdivisions. In all them there is a high co-expression with 5-HT(2A)Rs (∼80%). These observations indicate that NE controls the activity of most PFC pyramidal neurons via α(1)ARs, either directly or indirectly, via GABAergic interneurons. Antipsychotic drugs can thus modulate the activity of PFC via α(1)AR blockade. The high co-expression with 5-HT(2A)Rs indicates a convergence of excitatory serotonergic and noradrenergic inputs onto the same neuronal populations. Moreover, atypical antipsychotics may exert a more powerful control of PFC function through the simultaneous blockade of α(1)ARs and 5-HT(2A)Rs.

  17. 5-HT2A receptors control body temperature in mice during LPS-induced inflammation via regulation of NO production.

    PubMed

    Voronova, Irina P; Khramova, Galina M; Kulikova, Elizabeth A; Petrovskii, Dmitrii V; Bazovkina, Daria V; Kulikov, Alexander V

    2016-01-01

    G protein-coupled 5-HT2A receptors are involved in the regulation of numerous normal and pathological physiological functions. At the same time, its involvement in the regulation of body temperature (Tb) in normal conditions is obscure. Here we study the effect of the 5-HT2A receptor activation or blockade on Tb in sick animals. The experiments were carried out on adult C57BL/6 mouse males. Systemic inflammation and sickness were produced by lipopolysaccharide (LPS, 0.1mg/kg, ip), while the 5-HT2A receptor was stimulated or blocked through the administration of the receptor agonist DOI or antagonist ketanserin (1mg/kg), respectively. LPS, DOI or ketanserin alone produced no effect on Tb. However, administration of LPS together with a peripheral or central ketanserin injection reduced Tb (32.2°C). Ketanserin reversed the LPS-induced expression of inducible NO synthase in the brain. Consequently, an involvement of NO in the mechanism of the hypothermic effect of ketanserin in sick mice was hypothesized. Administration of LPS together with NO synthase inhibitor, l-nitro-arginine methyl ester (60mg/kg, ip) resulted in deep (28.5°C) and prolonged (8h) hypothermia, while administration of l-nitro-arginine methyl ester alone produced no effect on Tb. Thus, 5-HT2A receptors play a key role in Tb control in sick mice. Blockade of this GPCR produces hypothermia in mice with systemic inflammation via attenuation of LPS-induced NO production. These results indicate an unexpected role of 5-HT2A receptors in inflammation and NO production and have a considerable biological impact on understanding the mechanism of animal adaptation to pathogens and parasites. Moreover, adverse side effects of 5-HT2A receptor antagonists in patients with inflammation may be expected.

  18. The selective 5-HT2A receptor antagonist M100907 enhances antidepressant-like behavioral effects of the SSRI fluoxetine.

    PubMed

    Marek, Gerard J; Martin-Ruiz, Raul; Abo, Allyson; Artigas, Francesc

    2005-12-01

    The addition of low doses of atypical antipsychotic drugs, which saturate 5-HT(2A) receptors, enhances the therapeutic effect of selective serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibitors (SSRIs) in patients with major depression as well as treatment-refractory obsessive-compulsive disorder. The purpose of the present studies was to test the effects of combined treatment with a low dose of a highly selective 5-HT(2A) receptor antagonist (M100907; formerly MDL 100,907) and low doses of a SSRI using a behavioral screen in rodents (the differential-reinforcement-of low rate 72-s schedule of reinforcement; DRL 72-s) which previously has been shown to be sensitive both to 5-HT(2) antagonists and SSRIs. M100907 has a approximately 100-fold or greater selectivity at 5-HT(2A) receptors vs other 5-HT receptor subtypes, and would not be expected to appreciably occupy non-5-HT(2A) receptors at doses below 100 microg/kg. M100907 increased the reinforcement rate, decreased the response rate, and shifted the inter-response time distributions to the right in a pattern characteristic of antidepressant drugs. In addition, a positive synergistic interaction occurred when testing low doses of the 5-HT(2A) receptor antagonist (6.25-12.5 microg/kg) with clinically relevant doses of the SSRI fluoxetine (2.5-5 mg/kg), which both exerted minimal antidepressant-like effects by themselves. In vivo microdialysis study revealed that a low dose of M100907 (12.5 microg/kg) did not elevate extracellular 5-HT levels in the prefrontal cortex over those observed with fluoxetine alone (5 mg/kg). These results will be discussed in the context that the combined blockade of 5-HT(2A) receptors and serotonin transporters (SERT) may result in greater efficacy in treating neuropsychiatric syndromes than blocking either site alone.

  19. 5-HT2A Serotonin Receptor Density in Adult Male Rats’ Hippocampus after Morphine-based Conditioned Place Preference

    PubMed Central

    Mohammadi, Rabie; Jahanshahi, Mehrdad; Jameie, Seyed Behnamedin

    2016-01-01

    Introduction: A close interaction exists between the brain opioid and serotonin (5-HT) neurotransmitter systems. Brain neurotransmitter 5-HT plays an important role in the regulation of reward-related processing. However, a few studies have investigated the potential role of 5-HT2A receptors in this behavior. Therefore, the aim of the present study was to assess the influence of morphine and Conditioned Place Preference (CPP) on the density of 5-HT2A receptor in neurons of rat hippocampal formation. Methods: Morphine (10 mg/kg, IP) was injected in male Wistar rats for 7 consecutive days (intervention group), but control rats received just normal saline (1 mL/kg, IP). We used a hotplate test of analgesia to assess induction of tolerance to analgesic effects of morphine on days 1 and 8 of injections. Later, two groups of rats were sacrificed one day after 7 days of injections, their whole brains removed, and the striatum and PFC immediately dissected. Then, the NR1 gene expression was examined with a semi-quantitative RT-PCR method. Results: Our data showed that the maximum response was obtained with 2.5 mg/kg of morphine. The density of 5-HT2A receptor in different areas of the hippocampus increased significantly at sham-morphine and CPP groups (P<0.05). On the other hand, the CPP groups had more 5-HT2A receptors than sham-morphine groups and also the sham-morphine groups had more 5-HT2A receptors than the control groups. Conclusion: We concluded that the phenomenon of conditioned place preference induced by morphine can cause a significant increase in the number of serotonin 5-HT2A receptors in neurons of all areas of hippocampus. PMID:27563418

  20. Internalization and recycling of 5-HT2A receptors activated by serotonin and protein kinase C-mediated mechanisms

    PubMed Central

    Bhattacharyya, Samarjit; Puri, Sapna; Miledi, Ricardo; Panicker, Mitradas M.

    2002-01-01

    Serotonin (5-HT), a major neurotransmitter, has a large number of G protein-coupled receptors in mammals. On activation by exposure to their ligand, 5-HT2 receptor subtypes increase IP3 levels and undergo desensitization and internalization. To visualize the receptor in cells during these processes, we have constructed a 5-HT2A-enhanced GFP (SR2-GFP) fusion receptor. We show that this fusion receptor undergoes internalization on exposure to its natural ligand, 5-HT. Because 5-HT2A receptors activate the phospholipase C pathway, we studied the effect of protein kinase C (PKC) on the internalization process and found that activation of PKC by its specific activator phorbol 12-myristate 13-acetate, in the absence of 5-HT, leads to internalization of the receptor. Moreover, inhibition of PKC by its inhibitor sphingosine in the presence of 5-HT prevents the internalization process, suggesting that activation of PKC is sufficient and necessary for the internalization of 5-HT2A receptors. We also show that SR2-GFP recycles back to the plasma membrane after 5-HT-dependent internalization, suggesting a mechanism for resensitization. In addition, receptors that have been internalized on addition of phorbol 12-myristate 13-acetate in the absence of 5-HT also recycle to the surface, with a time course similar to that seen after activation of the receptors by 5-HT. Our study suggests that 5-HT2A receptors internalize and return to the surface after both serotonin- and PKC-mediated processes. This study reveals a role for PKC in receptor internalization and also shows that 5-HT2A receptors are recycled. PMID:12388782

  1. Emotional management and 5-HT2A receptor gene variance in patients with schizophrenia.

    PubMed

    Lo, Chi-Hsuan; Tsai, Guochuan E; Liao, Chun-Hui; Wang, Ming-Yu; Chang, Jane Pei-Chen; Tsuang, Hui-Chun; Lane, Hsien-Yuan

    2010-02-01

    Individuals with schizophrenia exhibit impaired social cognitive functions, particularly emotion management. Emotion management may be partially regulated by the serotoninergic system; the -1438 A/G polymorphism in the promoter region of the 5-HT2A gene can modulate 5-HT2A activity and is linked to certain emotional traits and anger- and aggression-related behaviors. The current study aimed to investigate whether this 5-HT2A genetic variance is associated with social cognitive function, particularly the management of emotions. One hundred and fifteen patients with chronic schizophrenia were stabilized with an optimal-dose of antipsychotic treatment. All were genotyped for the -1438 A/G polymorphism and assessed with symptom rating scales, neurocognitive instruments, and the "Managing Emotions" section of Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT). Multiple regression showed that patients with the A/G genotype performed better than those with G/G in managing emotion (p=0.018) but did not differ from those with the A/A genotype. Regarding the two subtasks of the Managing Emotions section, the A/G heterozygotes also performed better than the G/G homozygotes in the emotion management (p=0.026) and emotional relations (p=0.027) subtasks. The results suggest that variability in the 5-HT2A gene may influence emotion management in patients with schizophrenia.

  2. Biochemical profile of YM992, a novel selective serotonin reuptake inhibitor with 5-HT2A receptor antagonistic activity.

    PubMed

    Hatanaka, K; Nomura, T; Hidaka, K; Takeuchi, H; Yatsugi, S; Fujii, M; Yamaguchi, T

    1996-01-01

    YM992, (S)-2-[[(7-fluoro-4-indanyl)oxy]methyl]morpholine monohydrochloride, exhibited the biochemical profile of a selective serotonin (5-HT) reuptake inhibitor (SSRI) with 5-HT2A receptor antagonistic activity. YM922 showed the same high affinity as fluoxetine against the 5-HT reuptake site (Ki = 21 nM) and a similar affinity to that of crazodone against the 5-HT2A receptor (Ki = 86 nM). In other receptor binding studies, an affinity for the adrenergic alpha 1 receptor (Ki = 200 nM) and 5-HT2C receptor (Ki = 680 nM) was observed. In a monoamine uptake study, YM992 showed a selective 5-HT uptake inhibition (IC50 = 0.15 microM), but only very weakly inhibited both noradrenaline (NA) and dopamine (DA) uptake (IC50 = 3.1 microM (NA), > 10 microM (DA)). YM992 was also found to potently inhibit the aggregation of human platelets (IC50 = 1.9 microM), revealing antagonistic activity for the 5-HT2A receptor in vitro. Enhanced serotonergic neurotransmission, in particular that mediated by the 5-HT1A receptor, has recently been reported to be important in the long-term treatment of depressive disorders with antidepressants. In addition, some 5-HT1A receptor-mediated responses are known to be potentiated by co-administration of 5-HT2A receptor antagonists. Thus, YM992, having both selective 5-HT reuptake inhibition and 5-HT2A antagonistic activity, might show potent therapeutic activity as a novel antidepressant in comparison with conventional SSRIs.

  3. Molecular dynamics of 5-HT1A and 5-HT2A serotonin receptors with methylated buspirone analogues

    NASA Astrophysics Data System (ADS)

    Bronowska, Agnieszka; Chilmonczyk, Zdzisław; Leś, Andrzej; Edvardsen, Øyvind; Østensen, Roy; Sylte, Ingebrigt

    2001-11-01

    In the present study experimentally determined ligand selectivity of three methylated buspirone analogues (denoted as MM2, MM5 and P55) towards 5-HT1A and 5-HT2A serotonin receptors was theoretically investigated on a molecular level. The relationships between the ligand structure and 5-HT1A and 5-HT2A receptor affinities were studied and the results were found to be in agreement with the available site-directed mutagenesis and binding affinity data. Molecular dynamics (MD) simulations of ligand-receptor complexes were performed for each investigated analogue, docked twice into the central cavity of 5-HT1A/5-HT2A, each time in a different orientation. Present results were compared with our previous theoretical results, obtained for buspirone and its non-methylated analogues. It was found that due to the presence of the methyl group in the piperazine ring the ligand position alters and the structure of the ligand-receptor complex is modified. Further, the positions of derivatives with pyrimidinyl aromatic moiety and quinolinyl moiety are significantly different at the 5-HT2A receptor. Thus, methylation of such derivatives alters the 3D structures of ligand-receptor complexes in different ways. The ligand-induced changes of the receptor structures were also analysed. The obtained results suggest, that helical domains of both receptors have different dynamical behaviour. Moreover, both location and topography of putative binding sites for buspirone analogues are different at 5-HT1A and 5-HT2A receptors.

  4. Serotonin 5-HT2A receptor gene variants influence antidepressant response to repeated total sleep deprivation in bipolar depression.

    PubMed

    Benedetti, Francesco; Barbini, Barbara; Bernasconi, Alessandro; Fulgosi, Mara Cigala; Colombo, Cristina; Dallaspezia, Sara; Gavinelli, Chiara; Marino, Elena; Pirovano, Adele; Radaelli, Daniele; Smeraldi, Enrico

    2008-12-12

    5-HT2A receptor density in prefrontal cortex was associated with depression and suicide. 5-HT2A receptor gene polymorphism rs6313 was associated with 5-HT2A receptor binding potential, with the ability of individuals to use environmental support in order to prevent depression, and with sleep improvement after antidepressant treatment with mirtazapine. Studies on response to antidepressant drugs gave inconsistent results. Here we studied the effect of rs6313 on response to repeated total sleep deprivation (TSD) in 80 bipolar depressed inpatients treated with three consecutive TSD cycles (each one made of 36 h awake followed by a night of undisturbed sleep). All genotype groups showed comparable acute effects of the first TSD, but patients homozygotes for the T variant had better perceived and observed benefits from treatment than carriers of the C allele. These effects became significant after the first recovery night and during the following days, leading to a 36% higher final response rate (Hamilton depression rating<8). The higher density of postsynaptic excitatory 5-HT2A receptors in T/T homozygotes could have led to higher behavioural effects of increased 5-HT neurotransmission due to repeated TSD. Other possible mechanisms involve allostatic/homeostatic adaptation to sleep loss, and a different effect of the allele variants on epigenetic influences. Results confirm the interest for individual gene variants of the serotonin pathway in shaping clinical characteristics of depression and antidepressant response.

  5. Long-lasting alterations in 5-HT2A receptor after a binge regimen of methamphetamine in mice.

    PubMed

    Chiu, Hong-Yi; Chan, Ming-Huan; Lee, Mei-Yi; Chen, Shao-Tsu; Zhan, Zih-Yi; Chen, Hwei-Hsien

    2014-10-01

    The repeated administration of methamphetamine (MA) to animals in a single-day 'binge' dosing regimen produces damage to dopamine and serotonin terminals and psychosis-like behaviours similar to those observed in MA abusers. The present study aimed to examine the effects of MA binge exposure on 5-HT2A receptors, the subtype of serotonin receptors putatively involved in psychosis. ICR male mice were treated with MA (4 × 5 mg/kg) or saline at 2 h intervals. Recognition memory and social behaviours were sequentially evaluated by a novel location recognition test, a novel object recognition test, a social interaction and a nest-building test to confirm the persistent cognitive and behavioural impairments after this dosing regimen. Subsequently, a hallucinogenic 5-HT2A/2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI)-induced head-twitch, molecular and electrophysiological responses were monitored. Finally, the levels of 5-HT2C, 5-HT1A, 5-HT2A and mGlu2 receptors in the medial prefrontal cortex were determined. MA binge exposure produced recognition memory impairment, reduced social behaviours, and increased DOI-induced head-twitch response, c-Fos and Egr-2 expression and field potentials in the medial prefrontal cortex. Furthermore, MA binge exposure increased 5-HT2A and decreased mGlu2 receptor expression in the medial frontal cortex, whereas 5-HT2C and 5-HT1A receptors were unaffected. These data reveal that the increased behavioural, molecular and electrophysiological responses to DOI might be associated with an up-regulation of 5-HT2A receptors in the medial prefrontal cortex after MA binge exposure. Identifying the biochemical alterations that parallel the behavioural changes in a mouse model of MA binge exposure may facilitate targeting therapies for treatment of MA-related psychiatric disorders.

  6. The antidepressant 5-HT2A receptor antagonists pizotifen and cyproheptadine inhibit serotonin-enhanced platelet function.

    PubMed

    Lin, Olivia A; Karim, Zubair A; Vemana, Hari Priya; Espinosa, Enma V P; Khasawneh, Fadi T

    2014-01-01

    There is considerable interest in defining new agents or targets for antithrombotic purposes. The 5-HT2A receptor is a G-protein coupled receptor (GPCR) expressed on many cell types, and a known therapeutic target for many disease states. This serotonin receptor is also known to regulate platelet function. Thus, in our FDA-approved drug repurposing efforts, we investigated the antiplatelet activity of cyproheptadine and pizotifen, two antidepressant 5-HT2A Receptor antagonists. Our results revealed that cyproheptadine and pizotifen reversed serotonin-enhanced ADP-induced platelet aggregation in vitro and ex vivo. And the inhibitory effects of these two agents were found to be similar to that of EMD 281014, a 5-HT2A Receptor antagonist under development. In separate experiments, our studies revealed that these 5-HT2A receptor antagonists have the capacity to reduce serotonin-enhanced ADP-induced elevation in intracellular calcium levels and tyrosine phosphorylation. Using flow cytometry, we also observed that cyproheptadine, pizotifen, and EMD 281014 inhibited serotonin-enhanced ADP-induced phosphatidylserine (PS) exposure, P-selectin expression, and glycoprotein IIb-IIIa activation. Furthermore, using a carotid artery thrombosis model, these agents prolonged the time for thrombotic occlusion in mice in vivo. Finally, the tail-bleeding time was investigated to assess the effect of cyproheptadine and pizotifen on hemostasis. Our findings indicated prolonged bleeding time in both cyproheptadine- and pizotifen-treated mice. Notably, the increases in occlusion and bleeding times associated with these two agents were comparable to that of EMD 281014, and to clopidogrel, a commonly used antiplatelet drug, again, in a fashion comparable to clopidogrel and EMD 281014. Collectively, our data indicate that the antidepressant 5-HT2A antagonists, cyproheptadine and pizotifen do exert antiplatelet and thromboprotective effects, but similar to clopidogrel and EMD 281014, their

  7. MDMA Increases Excitability in the Dentate Gyrus: Role of 5HT2A Receptor Induced PGE2 Signaling

    PubMed Central

    Collins, Stuart A.; Huff, Courtney; Chiaia, Nicolas; Gudelsky, Gary A.; Yamamoto, Bryan K.

    2015-01-01

    MDMA is a widely abused psychostimulant which causes release of serotonin in various forebrain regions. Recently, we reported that MDMA increases extracellular glutamate concentrations in the dentate gyrus, via activation of 5HT2A receptors. We examined the role of prostaglandin signaling in mediating the effects of 5HT2A receptor activation on the increases in extracellular glutamate and the subsequent long-term loss of parvalbumin interneurons in the dentate gyrus caused by MDMA. Administration of MDMA into the dentate gyrus of rats increased PGE2 concentrations which was prevented by coadministration of MDL100907, a 5HT2A receptor antagonist. MDMA-induced increases in extracellular glutamate were inhibited by local administration of SC-51089, an inhibitor of the EP1 prostaglandin receptor. Systemic administration of SC-51089 during injections of MDMA prevented the decreases in parvalbumin interneurons observed 10 days later. The loss of parvalbumin immunoreactivity after MDMA exposure coincided with a decrease in paired-pulse inhibition and afterdischarge threshold in the dentate gyrus. These changes were prevented by inhibition of EP1 and 5HT2A receptors during MDMA. Additional experiments revealed an increased susceptibility to kainic acid-induced seizures in MDMA treated rats which could be prevented with SC51089 treatments during MDMA exposure. Overall, these findings suggest that 5HT2A receptors mediate MDMA-induced PGE2 signaling and subsequent increases in glutamate. This signaling mediates parvalbumin cell losses as well as physiologic changes in the dentate gyrus, suggesting that the lack of the inhibition provided by these neurons increases the excitability within the dentate gyrus of MDMA treated rats. PMID:26670377

  8. Effects of Constant Flickering Light on Refractive Status, 5-HT and 5-HT2A Receptor in Guinea Pigs

    PubMed Central

    Li, Tao; Zheng, Changyue; Ji, Shunmei; Ma, Yuanyuan; Zhang, Shuangshuang; Zhou, Xiaodong

    2016-01-01

    Purpose To investigate the effects of constant flickering light on refractive development, the role of serotonin (i.e.5-hydroxytryptamine, 5-HT)and 5-HT2A receptor in myopia induced by flickering light in guinea pigs. Methods Forty-five guinea pigs were randomly divided into three groups: control, form deprivation myopia (FDM) and flickering light induced myopia (FLM) groups(n = 15 for each group). The right eyes of the FDM group were covered with semitransparent hemispherical plastic shells serving as eye diffusers. Guinea pigs in FLM group were raised with illumination of a duty cycle of 50% at a flash frequency of 0.5Hz. The refractive status, axial length (AL), corneal radius of curvature(CRC) were measured by streak retinoscope, A-scan ultrasonography and keratometer, respectively. Ultramicroscopy images were taken by electron microscopy. The concentrations of 5-HTin the retina, vitreous body and retinal pigment epithelium (RPE) were assessed by high performance liquid chromatography, the retinal 5-HT2A receptor expression was evaluated by immunohistofluorescence and western blot. Results The refraction of FDM and FLM eyes became myopic from some time point (the 4th week and the 6th week, respectively) in the course of the experiment, which was indicated by significantly decreased refraction and longer AL when compared with the controls (p<0.05). The concentrations of 5-HT in the retina, vitreous body and RPE of FDM and FLM eyes were significantly increased in comparison with those of control eyes (both p<0.05). Similar to FDM eyes, the expression of retinal 5-HT2A receptor in FLM eyes was significantly up-regulated compared to that of control eyes (both p<0.05). Western blot analysis showed that retinal 5-HT2A receptor level elevated less in the FLM eyes than that in the FDM eyes. Moreover, the levels of norepinephrine and epinephrine in FDM and FLM groups generally decreased when compared with control groups (all p<0.05). Conclusions Constant flickering

  9. Detection of new biased agonists for the serotonin 5-HT2A receptor: modeling and experimental validation.

    PubMed

    Martí-Solano, Maria; Iglesias, Alba; de Fabritiis, Gianni; Sanz, Ferran; Brea, José; Loza, M Isabel; Pastor, Manuel; Selent, Jana

    2015-04-01

    Detection of biased agonists for the serotonin 5-HT2A receptor can guide the discovery of safer and more efficient antipsychotic drugs. However, the rational design of such drugs has been hampered by the difficulty detecting the impact of small structural changes on signaling bias. To overcome these difficulties, we characterized the dynamics of ligand-receptor interactions of known biased and balanced agonists using molecular dynamics simulations. Our analysis revealed that interactions with residues S5.46 and N6.55 discriminate compounds with different functional selectivity. Based on our computational predictions, we selected three derivatives of the natural balanced ligand serotonin and experimentally validated their ability to act as biased agonists. Remarkably, our approach yielded compounds promoting an unprecedented level of signaling bias at the 5-HT2A receptor, which could help interrogate the importance of particular pathways in conditions like schizophrenia.

  10. Chronic treatment with LY341495 decreases 5-HT(2A) receptor binding and hallucinogenic effects of LSD in mice.

    PubMed

    Moreno, José L; Holloway, Terrell; Rayannavar, Vinayak; Sealfon, Stuart C; González-Maeso, Javier

    2013-03-01

    Hallucinogenic drugs, such as lysergic acid diethylamide (LSD), mescaline and psilocybin, alter perception and cognitive processes. All hallucinogenic drugs have in common a high affinity for the serotonin 5-HT(2A) receptor. Metabotropic glutamate 2/3 (mGlu2/3) receptor ligands show efficacy in modulating the cellular and behavioral responses induced by hallucinogenic drugs. Here, we explored the effect of chronic treatment with the mGlu2/3 receptor antagonist 2S-2-amino-2-(1S,2S-2-carboxycyclopropan-1-yl)-3-(xanth-9-yl)-propionic acid (LY341495) on the hallucinogenic-like effects induced by LSD (0.24mg/kg). Mice were chronically (21 days) treated with LY341495 (1.5mg/kg), or vehicle, and experiments were carried out one day after the last injection. Chronic treatment with LY341495 down-regulated [(3)H]ketanserin binding in somatosensory cortex of wild-type, but not mGlu2 knockout (KO), mice. Head-twitch behavior, and expression of c-fos, egr-1 and egr-2, which are responses induced by hallucinogenic 5-HT(2A) agonists, were found to be significantly decreased by chronic treatment with LY341495. These findings suggest that repeated blockade of the mGlu2 receptor by LY341495 results in reduced 5-HT(2A) receptor-dependent hallucinogenic effects of LSD.

  11. Differential involvement of 5-HT(2A) receptors in the discriminative-stimulus effects of cocaine and methamphetamine.

    PubMed

    Munzar, Patrik; Justinova, Zuzana; Kutkat, Scott W; Goldberg, Steven R

    2002-02-01

    Involvement of 5-HT(2A) receptors in the discriminative-stimulus effects of cocaine versus methamphetamine was studied in Sprague Dawley rats (n=10) trained to discriminate 10 mg/kg cocaine, i.p., from saline under a fixed-ratio 10 (FR10) schedule of food presentation. The ability of (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), a 5-HT(2A) receptor agonist, and ketanserin, a 5-HT(2A) receptor antagonist, to either substitute for or block the discriminative-stimulus effects of cocaine, or to shift the cocaine dose-response curve, was evaluated. DOI (0.18-1.0 mg/kg) partially substituted for the training dose of 10 mg/kg cocaine, but only at doses that decreased rates of responding. At the highest dose of DOI tested (1.0 mg/kg), there was about 65% cocaine-appropriate responding. Substitution of DOI for cocaine and DOI-induced decreases in rates of responding were completely reversed by ketanserin (3.0 mg/kg). Ketanserin (3.0 mg/kg) also produced a significant shift to the right of the cocaine dose-response curve and antagonized increases in rates of responding produced by lower doses of cocaine. Ketanserin (1.0-10.0 mg/kg), however, did not block the discriminative-stimulus effects of the training dose of cocaine. When DOI (0.3 mg/kg) was co-administered with different doses of cocaine, there was a slight leftward shift in the cocaine dose-response curve, which was not significant and appeared to reflect simple additive effects of DOI and cocaine. In contrast, the same dose of DOI (0.3 mg/kg) produced a marked and highly significant shift to the left of the methamphetamine (0.18-1.0 mg/kg) dose-response curve in the same subjects and the effects of DOI and methamphetamine were clearly more than additive. The present findings provide new evidence that there is some serotonergic modulation of cocaine's discriminative-stimulus actions, which appears to involve stimulation of 5-HT(2A) receptors. However, involvement of 5-HT(2A) receptor activity in the

  12. Expression of 5-HT2A receptors in prefrontal cortex pyramidal neurons projecting to nucleus accumbens. Potential relevance for atypical antipsychotic action.

    PubMed

    Mocci, Giuseppe; Jiménez-Sánchez, Laura; Adell, Albert; Cortés, Roser; Artigas, Francesc

    2014-04-01

    The prefrontal cortex (PFC) is involved in higher brain functions altered in schizophrenia. Classical antipsychotic drugs modulate information processing in cortico-limbic circuits via dopamine D2 receptor blockade in nucleus accumbens (NAc) whereas atypical antipsychotic drugs preferentially target cortical serotonin (5-HT) receptors. The brain networks involved in the therapeutic action of atypical drugs are not fully understood. Previous work indicated that medial PFC (mPFC) pyramidal neurons projecting to ventral tegmental area express 5-HT2A receptors suggesting that atypical antipsychotic drugs modulate dopaminergic activity distally, via 5-HT2A receptor (5-HT2A-R) blockade in PFC. Since the mPFC also projects heavily to NAc, we examined whether NAc-projecting pyramidal neurons also express 5-HT2A-R. Using a combination of retrograde tracing experiments and in situ hybridization we report that a substantial proportion of mPFC-NAc pyramidal neurons in rat brain express 5-HT2A-R mRNA in a layer- and area-specific manner (up to 68% in layer V of contralateral cingulate). The functional relevance of 5-HT2A-R to modulate mPFC-NAc projections was examined in dual-probe microdialysis experiments. The application of the preferential 5-HT2A-R agonist DOI into mPFC enhanced glutamate release locally (+66 ± 18%) and in NAc (+74 ± 12%) indicating that cortical 5-HT2A-R activation augments glutamatergic transmission in NAc. Since NAc integrates glutamatergic and dopaminergic inputs, blockade of 5-HT2A-R by atypical drugs may reduce cortical excitatory inputs onto GABAergic neurons of NAc, adding to dopamine D2 receptor blockade. Together with previous observations, the present results suggest that atypical antipsychotic drugs may control the activity of the mesolimbic pathway at cell body and terminal level.

  13. Involvement of 5-HT(2A/2B/2C) receptors on memory formation: simple agonism, antagonism, or inverse agonism?

    PubMed

    Meneses, Alfredo

    2002-12-01

    1. The 5-HT2 receptors subdivision into the 5-HT(2A/2B/2C) subtypes along with the advent of the selective antagonists has allowed a more detailed investigation on the role and therapeutic significance of these subtypes in cognitive functions. The present study further analyzed the 5-HT2 receptors role on memory consolidation. 2. The SB-200646 (a selective 5-HT(2B/2C) receptor antagonist) and LY215840 (a nonselective 5-HT(2/7) receptor antagonist) posttraining administration had no effect on an autoshaped memory consolidation. However, both drugs significantly and differentially antagonized the memory impairments induced by 1-(3-chlorophenyl)piperazine (mCPP), 1-naphtyl-piperazine (1-NP), mesulergine, or N-(3-trifluoromethylphenyl) piperazine (TFMPP). 3. In contrast, SB-200646 failed to modify the facilitatory procognitive effect produced by (+/-)-2.5-dimethoxy-4-iodoamphetamine (DOI) or ketanserin, which were sensitive to MDL100907 (a selective 5-HT2A receptor antagonist) and to a LY215840 high dose. 4. Finally, SB-200646 reversed the learning deficit induced by dizocilpine, but not that by scopolamine: while SB-200646 and MDL100907 coadministration reversed memory deficits induced by both drugs. 5. It is suggested that 5-HT(2B/2C) receptors might be involved on memory formation probably mediating a suppressive or constraining action. Whether the drug-induced memory impairments in this study are explained by simple agonism, antagonism, or inverse agonism at 5-HT2 receptors remains unclear at this time. 6. Notably, the 5-HT2 receptor subtypes blockade may provide some benefit to reverse poor memory consolidation conditions associated with decreasedcholinergic, glutamatergic, and/or serotonergic neurotransmission.

  14. 5-HT2A Receptor Binding in the Frontal Cortex of Parkinson's Disease Patients and Alpha-Synuclein Overexpressing Mice: A Postmortem Study.

    PubMed

    Rasmussen, Nadja Bredo; Olesen, Mikkel Vestergaard; Brudek, Tomasz; Plenge, Per; Klein, Anders Bue; Westin, Jenny E; Fog, Karina; Wörtwein, Gitta; Aznar, Susana

    2016-01-01

    The 5-HT2A receptor is highly involved in aspects of cognition and executive function and seen to be affected in neurodegenerative diseases like Alzheimer's disease and related to the disease pathology. Even though Parkinson's disease (PD) is primarily a motor disorder, reports of impaired executive function are also steadily being associated with this disease. Not much is known about the pathophysiology behind this. The aim of this study was thereby twofold: (1) to investigate 5-HT2A receptor binding levels in Parkinson's brains and (2) to investigate whether PD associated pathology, alpha-synuclein (AS) overexpression, could be associated with 5-HT2A alterations. Binding density for the 5-HT2A-specific radioligand [(3)H]-MDL 100.907 was measured in membrane suspensions of frontal cortex tissue from PD patients. Protein levels of AS were further measured using western blotting. Results showed higher AS levels accompanied by increased 5-HT2A receptor binding in PD brains. In a separate study, we looked for changes in 5-HT2A receptors in the prefrontal cortex in 52-week-old transgenic mice overexpressing human AS. We performed region-specific 5-HT2A receptor binding measurements followed by gene expression analysis. The transgenic mice showed lower 5-HT2A binding in the frontal association cortex that was not accompanied by changes in gene expression levels. This study is one of the first to look at differences in serotonin receptor levels in PD and in relation to AS overexpression.

  15. Long-term estrogen therapy and 5-HT(2A) receptor binding in postmenopausal women; a single photon emission tomography (SPET) study.

    PubMed

    Compton, J; Travis, M J; Norbury, R; Erlandsson, K; van Amelsvoort, T; Daly, E; Waddington, W; Matthiasson, P; Eersels, J L H; Whitehead, M; Kerwin, R W; Ell, P J; Murphy, D G M

    2008-01-01

    Variation in estrogen level is reported by some to affect brain maturation and memory. The neurobiological basis for this may include modulation of the serotonergic system. No neuroimaging studies have directly examined the effect of extended estrogen therapy (ET), on the 5-HT(2A) receptor in human brain. We investigated the effect of long-term ET on cortical 5-HT(2A) receptor availability in postmenopausal women. In a cross-sectional study, we compared cortical 5-HT(2A) receptor availability in 17 postmenopausal ERT-naive women and 17 long-term oophorectomised estrogen-users, age- and IQ-matched using single photon emission tomography and the selective 5-HT(2A) receptor ligand (123)I-5-I-R91150. Also, we used the Revised Wechsler Memory Scale to relate memory function to 5-HT(2A) receptor availability. Never-users had significantly higher 5-HT(2A) receptor availability than estrogen-users in hippocampus (1.17 vs. 1.11, respectively, p=0.02), although this did not remain significant after correction for multiple comparisons. Hippocampal 5-HT(2A) receptor availability correlated negatively with verbal and general memory and delayed recall (r=-0.45, p=0.01; r=-0.40, p=0.02; r=-0.36, p=0.04). Right superior temporal 5-HT(2A) receptor availability correlated negatively with verbal memory (r=-0.36, p=0.04). In estrogen-users, receptor availability correlated negatively with verbal and general memory (r=-0.70, p=0.002; r=-0.69, p=0.002); and in never-users, receptor availability negatively correlated with attention and concentration (r=-0.54, p=0.02). Long-term ET may be associated with lower 5-HT(2A) receptor availability in hippocampus. This may reflect increased activity within the serotonergic pathway leading to down-regulation of post-synaptic receptor. Also, increased availability of the 5-HT(2A) receptor in hippocampus is associated with poorer memory function.

  16. Discovering the mechanisms underlying serotonin (5-HT)2A and 5-HT2C receptor regulation following nicotine withdrawal in rats.

    PubMed

    Zaniewska, Magdalena; Alenina, Natalia; Wydra, Karolina; Fröhler, Sebastian; Kuśmider, Maciej; McCreary, Andrew C; Chen, Wei; Bader, Michael; Filip, Małgorzata

    2015-08-01

    We have previously demonstrated that nicotine withdrawal produces depression-like behavior and that serotonin (5-HT)2A/2C receptor ligands modulate that mood-like state. In the present study we aimed to identify the mechanisms (changes in radioligand binding, transcription or RNA-editing) related to such a behavioral outcome. Rats received vehicle or nicotine (0.4 mg/kg, s.c.) for 5 days in home cages. Brain 5-HT2A/2C receptors were analyzed on day 3 of nicotine withdrawal. Nicotine withdrawal increased [(3)H]ketanserin binding to 5-HT2A receptors in the ventral tegmental area and ventral dentate gyrus, yet decreased binding in the nucleus accumbens shell. Reduction in [(3)H]mesulergine binding to 5-HT2C receptors was seen in the ventral dentate gyrus. Profound decrease in the 5-HT2A receptor transcript level was noted in the hippocampus and ventral tegmental area. Out of five 5-HT2C receptor mRNA editing sites, deep sequencing data showed a reduction in editing at the E site and a trend toward reduction at the C site in the hippocampus. In the ventral tegmental area, a reduction for the frequency of CD 5-HT2C receptor transcript was seen. These results show that the reduction in the 5-HT2A receptor transcript level may be an auto-regulatory response to the increased receptor density in the hippocampus and ventral tegmental area during nicotine withdrawal, while decreased 5-HT2C receptor mRNA editing may explain the reduction in receptor labeling in the hippocampus. Serotonin (5-HT)2A/2C receptor ligands alleviate depression-like state in nicotine-withdrawn rats. Here, we show that the reduction in 5-HT2A receptor transcript level may be an auto-regulatory response to the increased receptor number in the hippocampus and ventral tegmental area during nicotine withdrawal, while attenuated 5-HT2C receptor mRNA editing in the hippocampus might explain reduced inverse agonist binding to 5-HT2C receptor and suggest a shift toward a population of more active receptors. 5

  17. Psychological, neuroimaging, and biochemical studies on functional association between impulsive behavior and the 5-HT2A receptor gene polymorphism in humans.

    PubMed

    Nomura, Michio; Nomura, Yasuyuki

    2006-11-01

    It has been suggested that impulsive behavior is caused by dysfunctional serotonergic 5-HT neurotransmission in the central nervous system (CNS). Brain neuroimaging studies have shown that behavioral inhibition is linked to the activation of cortex sites such as the ventral frontal cortex. Positron emission tomography (PET) imaging with [(18)F]altanserin to characterize 5-HT(2A) receptor binding revealed a reduction in 5-HT(2A) binding in the ventral frontal cortex in women who had recovered from impulsive diseases. These clinical, neuroimaging, and pharmacological studies appear to support the hypothesis that functional alteration of neurotransmission due to genetic polymorphisms of the 5-HT receptors may be involved in impulsive behavior modulation. Following evaluation by a self-reporting measure, it was proposed that a polymorphism in the promoter of the 5-HT(2A) receptor gene is the underlying cause of impulsive behavior; however, this hypothesis is not convincing. We examined whether the polymorphism in the 5-HT(2A) receptor gene promoter is involved in impulsive aggression by evaluating a behavioral task (Go/No-go task) in normal volunteers. The polymorphism of the 5-HT(2A) receptor gene promoter in lymphocytes from 71 volunteers was analyzed by using PCR. Impulsivity was defined as the number of commission errors (responding when one should not) recorded during a Go/No-go task; a larger number of commission errors indicate greater difficulty in inhibiting impulsive behavior. The subjects of the A-1438A allele group for the 5-HT(2A) receptor gene made more commission errors under the punishment-reward (PR)condition in a Go/No-go task than those in the G-1438G group. In the present review, we discuss and suggest the possible involvement of the A-1438A polymorphism of the 5HT2A receptor gene promoter in impulsive behavior. This hypothesis was evaluated by using a behavioral task measure that could directly reveal impulsive behavioral traits in humans.

  18. A homology-based model of the human 5-HT2A receptor derived from an in silico activated G-protein coupled receptor

    NASA Astrophysics Data System (ADS)

    Chambers, James J.; Nichols, David E.

    2002-07-01

    A homology-based model of the 5-HT2A receptor was produced utilizing an activated form of the bovine rhodopsin (Rh) crystal structure [1,2]. In silico activation of the Rh structure was accomplished by isomerization of the 11- cis-retinal (1) chromophore, followed by constrained molecular dynamics to relax the resultant high energy structure. The activated form of Rh was then used as a structural template for development of a human 5-HT2A receptor model. Both the 5-HT2A receptor and Rh are members of the G-protein coupled receptor (GPCR) super-family. The resulting homology model of the receptor was then used for docking studies of compounds representing a cross-section of structural classes that activate the 5-HT2A receptor, including ergolines, tryptamines, and amphetamines. The ligand/receptor complexes that ensued were refined and the final binding orientations were observed to be compatible with much of the data acquired through both diversified ligand design and site directed mutagenesis.

  19. Distribution of 5-HT2A receptor immunoreactivity in the rat amygdaloid complex and colocalization with γ-aminobutyric acid.

    PubMed

    Bombardi, Cristiano

    2011-01-25

    The 5-HT2A receptor (5-HT2Ar) is located in a variety of excitatory and inhibitory neurons in many regions of the central nervous system and is a major target for atypical antipsychotic drugs. In the present study, an immunoperoxidase experiment was used to investigate the distribution of 5-HT2Ar immunoreactivity in the rat amygdaloid complex. In the basolateral amygdala, the colocalization of 5-HT2Ar with inhibitory transmitter γ-aminobutyric acid (GABA) was studied using double-immunofluorescence confocal microscopy. The staining pattern obtained was colchicine-sensitive. In fact, pretreatment with colchicine increased the number of 5-HT2Ar-immunoreactive somata. Accordingly, with the exception of the intercalated nuclei, the amygdaloid complex of colchicine-injected rats exhibited a high density of 5-HT2Ar-IR somata. Morphological analyses indicated that 5-HT2Ar was located on both excitatory and inhibitory neurons in the rat amygdaloid complex. In addition, double-immunofluorescence observations revealed that the great majority of GABA-immunoreactive neurons in the basolateral amygdala exhibited 5-HT2Ar immunoreactivity (66.3%-70.6% depending on the nucleus). These data help to clarify the complex role of the 5-HT2Ar in the amygdaloid complex suggesting that this receptor can regulate amygdaloid activity by acting on different neuronal populations.

  20. Cartography of 5-HT1A and 5-HT2A Receptor Subtypes in Prefrontal Cortex and Its Projections.

    PubMed

    Mengod, Guadalupe; Palacios, José M; Cortés, Roser

    2015-07-15

    Since the development of chemical neuroanatomical tools in the 1960s, a tremendous wealth of information has been generated on the anatomical components of the serotonergic system, at the microscopic level in the brain including the prefrontal cortex (PFC). The PFC receives a widespread distribution of serotonin (5-hydroxytryptamine, 5-HT) terminals from the median and dorsal raphe nuclei. 5-HT receptors were first visualized using radioligand autoradiography in the late 1980s and early 1990s and showed, in contrast to 5-HT innervation, a differential distribution of binding sites associated with different 5-HT receptor subtypes. Due to the cloning of the different 5-HT receptor subtype genes in the late 1980s and early 1990s, it was possible, using in situ hybridization histochemistry, to localize cells expressing mRNA for these receptors. Double in situ hybridization histochemistry and immunohistochemistry allowed for the chemical characterization of the phenotype of cells expressing 5-HT receptors. Tract tracing technology allowed a detailed cartography of the neuronal connections of PFC and other brain areas. Based on these data, maps have been constructed that reflect our current understanding of the different circuits where 5-HT receptors can modulate the electrophysiological, pharmacological, and behavioral functions of the PFC. We will review current knowledge regarding the cellular localization of 5-HT1A and 5-HT2A receptors in mammalian PFC and their possible functions in the neuronal circuits of the PFC. We will discuss data generated in our laboratory as well as in others, focusing on localization in the pyramidal and GABAergic neuronal cell populations in different mammalian species using molecular neuroanatomy and on the connections with other brain regions.

  1. Increasing spinal 5-HT2A receptor responsiveness mediates anti-allodynic effect and potentiates fluoxetine efficacy in neuropathic rats. Evidence for GABA release.

    PubMed

    Dupuis, Amandine; Wattiez, Anne-Sophie; Pinguet, Jérémy; Richard, Damien; Libert, Frédéric; Chalus, Maryse; Aissouni, Youssef; Sion, Benoit; Ardid, Denis; Marin, Philippe; Eschalier, Alain; Courteix, Christine

    2017-04-01

    Antidepressants are one of the first line treatments for neuropathic pain but their use is limited by the incidence and severity of side effects of tricyclics and the weak effectiveness of selective serotonin reuptake inhibitors (SSRIs). Serotonin type 2A (5-HT2A) receptors interact with PDZ proteins that regulate their functionality and SSRI efficacy to alleviate pain. We investigated whether an interfering peptide (TAT-2ASCV) disrupting the interaction between 5-HT2A receptors and associated PDZ proteins would improve the treatment of traumatic neuropathic allodynia. Tactile allodynia was assessed in spinal nerve ligation-induced neuropathic pain in rats using von Frey filaments after acute treatment with TAT-2ASCV and/or 5-HT2A receptor agonist, alone or in combination with repeated treatment with fluoxetine. In vivo microdialysis was performed in order to examine the involvement of GABA in TAT-2ASCV/fluoxetine treatment-associated analgesia. TAT-2ASCV (100ng, single i.t. injection) improved SNL-induced tactile allodynia by increasing 5-HT2A receptor responsiveness to endogenous 5-HT. Fluoxetine alone (10mg/kg, five i.p. injections) slightly increased tactile thresholds and its co-administration with TAT-2ASCV (100ng, single i.t. injection) further enhanced the anti-allodynic effect. This effect depends on the integrity of descending serotonergic bulbospinal pathways and spinal release of GABA. The anti-allodynic effect of fluoxetine can be enhanced by disrupting 5-HT2A receptor-PDZ protein interactions. This enhancement depends on 5-HT2A receptor activation, spinal GABA release and GABAA receptor activation.

  2. Differential regulation of 5-HT2A receptor mRNA expression following withdrawal from a chronic escalating dose regimen of D-amphetamine.

    PubMed

    Horner, Kristen A; Gilbert, Yamiece E; Noble, Erika S

    2011-05-16

    Several lines of evidence indicate that psychostimulant withdrawal can induce negative emotional symptoms, such as anhedonia and dysphoria, which may be due in part, to dysfunction of the serotonin (5-HT) system, including alterations in 5-HT receptors. For example, changes in 5-HT(2A) receptor function in prefrontal cortex (PFC) have been reported in association with psychostimulant withdrawal. However, it is not known if alterations in 5-HT(2A) receptor mRNA expression occur in the PFC or other limbic-associated areas following withdrawal from chronic psychostimulant treatment. The goal of the current study was to determine the effects of chronic, escalating doses of D-amphetamine (D-AMPH) and withdrawal on the expression of 5-HT(2A) receptors in the cortex, caudate putamen, NAc and hippocampus of rat brain. Animals were treated three times a day for 4 days with escalating doses of D-AMPH (1-10 mg/kg). Twenty-four hours after the final dose of D-AMPH, animals were sacrificed and the tissue processed for in situ hybridization histochemistry. Chronic, escalating doses of D-AMPH, followed by a 24 h withdrawal period, significantly decreased 5-HT(2A) receptor mRNA expression in the prefrontal, motor and cingulate cortices, while 5-HT(2A) receptor mRNA expression in the NAc, caudal CPu and hippocampus were significantly increased. These data indicate that region-specific changes in 5-HT(2A) receptor mRNA expression occur in limbic system and associated areas following chronic D-AMPH treatment, supporting the notion that alterations in the 5-HT system may contribute to the negative emotional aspects of psychostimulant withdrawal.

  3. Activation of 5-HT2a receptors in the basolateral amygdala promotes defeat-induced anxiety and the acquisition of conditioned defeat in Syrian hamsters.

    PubMed

    Clinard, Catherine T; Bader, Lauren R; Sullivan, Molly A; Cooper, Matthew A

    2015-03-01

    Conditioned defeat is a model in Syrian hamsters (Mesocricetus auratus) in which normal territorial aggression is replaced by increased submissive and defensive behavior following acute social defeat. The conditioned defeat response involves both a fear-related memory for a specific opponent as well as anxiety-like behavior indicated by avoidance of novel conspecifics. We have previously shown that systemic injection of a 5-HT2a receptor antagonist reduces the acquisition of conditioned defeat. Because neural activity in the basolateral amygdala (BLA) is critical for the acquisition of conditioned defeat and BLA 5-HT2a receptors can modulate anxiety but have a limited effect on emotional memories, we investigated whether 5-HT2a receptor modulation alters defeat-induced anxiety but not defeat-related memories. We injected the 5-HT2a receptor antagonist MDL 11,939 (0 mM, 1.7 mM or 17 mM) or the 5-HT2a receptor agonist TCB-2 (0 mM, 8 mM or 80 mM) into the BLA prior to social defeat. We found that injection of MDL 11,939 into the BLA impaired acquisition of the conditioned defeat response and blocked defeat-induced anxiety in the open field, but did not significantly impair avoidance of former opponents in the Y-maze. Furthermore, we found that injection of TCB-2 into the BLA increased the acquisition of conditioned defeat and increased anxiety-like behavior in the open field, but did not alter avoidance of former opponents. Our data suggest that 5-HT2a receptor signaling in the BLA is both necessary and sufficient for the development of conditioned defeat, likely via modulation of defeat-induced anxiety.

  4. Interaction between serotonin 5-HT2A receptor gene and dopamine transporter (DAT1) gene polymorphisms influences personality trait of persistence in Austrian Caucasians.

    PubMed

    Schosser, Alexandra; Fuchs, Karoline; Scharl, Theresa; Schloegelhofer, Monika; Kindler, Jochen; Mossaheb, Nilufar; Kaufmann, Rainer M; Leisch, Friedrich; Kasper, Siegfried; Sieghart, Werner; Aschauer, Harald N

    2010-03-01

    We examined 89 normal volunteers using Cloninger's Temperament and Character Inventory (TCI). Genotyping the 102T/C polymorphism of the serotonin 5HT2A receptor gene and the ser9gly polymorphism in exon 1 of the dopamine D3 receptor (DRD3) gene was performed using PCR-RFLP, whereas the dopamine transporter (DAT1) gene variable number of tandem repeats (VNTR) polymorphism was investigated using PCR amplification followed by electrophoresis in an 8% acrylamide gel with a set of size markers. We found a nominally significant association between gender and harm avoidance (P=0.017; women showing higher scores). There was no association of either DAT1, DRD3 or 5HT2A alleles or genotypes with any dimension of the TCI applying Kruskal-Wallis rank-sum tests. Comparing homozygote and heterozygote DAT1 genotypes, we found higher novelty seeking scores in homozygotes (P=0.054). We further found a nominally significant interaction between DAT1 and 5HT2A homo-/heterozygous gene variants (P=0.0071; DAT1 and 5HT2A genotypes P value of 0.05), performing multivariate analysis of variance (MANOVA). Examining the temperamental TCI subscales, this interaction was associated with persistence (genotypes: P=0.004; homo-/heterozygous gene variants: P=0.0004). We conclude that an interaction between DAT1 and 5HT2A genes might influence the temperamental personality trait persistence.

  5. Regional distribution and behavioral correlates of 5-HT(2A) receptors in Alzheimer's disease with [(18)F]deuteroaltanserin and PET.

    PubMed

    Santhosh, Lekshmi; Estok, Kristina M; Vogel, Rebecca S; Tamagnan, Gilles D; Baldwin, Ronald M; Mitsis, Effie M; Macavoy, Martha G; Staley, Julie K; van Dyck, Christopher H

    2009-09-30

    Postmortem studies show reductions in brain serotonin 2A (5-HT(2A)) receptors in Alzheimer's disease (AD). Converging evidence also suggests that serotonergic dysregulation may contribute to behavioral symptoms that frequently occur in AD. This study aimed to define regional reductions in 5-HT(2A) binding in AD patients and to examine their behavioral correlates. Nine patients with probable AD and eight elderly controls were studied using a constant infusion paradigm for equilibrium modeling of [(18)F]deuteroaltanserin with positron emission tomography (PET). Region of interest analyses were performed on PET images coregistered to MRI scans. The outcome measures BP(P) (ratio of specific brain uptake to total plasma parent concentration) and BP(ND) (ratio of specific to nondisplaceable uptake) were obtained for pertinent cortical and subcortical regions. AD patients showed a statistically significant decrease in the anterior cingulate in both BP(P) and BP(ND), but in no other region. Within the AD patient sample, no significant correlations were observed between regional 5-HT(2A) binding and behavioral measures, including depressive and psychotic symptoms. These results confirm a reduction in cortical 5-HT(2A) receptors in AD, specifically in the anterior cingulate. However, in a limited AD patient sample, they fail to demonstrate a relationship between regional 5-HT(2A) binding and major behavioral symptoms.

  6. Role of serotonin 5-HT2A receptors in the development of cardiac hypertrophy in response to aortic constriction in mice.

    PubMed

    Lairez, O; Cognet, T; Schaak, S; Calise, D; Guilbeau-Frugier, C; Parini, A; Mialet-Perez, J

    2013-06-01

    Serotonin, in addition to its fundamental role as a neurotransmitter, plays a critical role in the cardiovascular system, where it is thought to be involved in the development of cardiac hypertrophy and failure. Indeed, we recently found that mice with deletion of monoamine oxidase A had enhanced levels of blood and cardiac 5-HT, which contributed to exacerbation of hypertrophy in a model of experimental pressure overload. 5-HT2A receptors are expressed in the heart and mediate a hypertrophic response to 5-HT in cardiac cells. However, their role in cardiac remodeling in vivo and the signaling pathways associated are not well understood. In the present study, we evaluated the effect of a selective 5-HT2A receptor antagonist, M100907, on the development of cardiac hypertrophy induced by transverse aortic constriction (TAC). Cardiac 5-HT2A receptor expression was transiently increased after TAC, and was recapitulated in cardiomyocytes, as observed with 5-HT2A in situ labeling by immunohistochemistry. Selective blockade of 5-HT2A receptors prevented the development of cardiac hypertrophy, as measured by echocardiography, cardiomyocyte area and heart weight-to-body weight ratio. Interestingly, activation of calmodulin kinase (CamKII), which is a core mechanism in cardiac hypertrophy, was reduced in cardiac samples from M100907-treated TAC mice compared to vehicle-treated mice. In addition, phosphorylation of histone deacetylase 4 (HDAC4), a downstream partner of CamKII was significantly diminished in M100907-treated TAC mice. Thus, our results show that selective blockade of 5-HT2A receptors has beneficial effect in the development of cardiac hypertrophy through inhibition of the CamKII/HDAC4 pathway.

  7. Extensive Rigid Analogue Design Maps the Binding Conformation of Potent N-Benzylphenethylamine 5-HT2A Serotonin Receptor Agonist Ligands

    PubMed Central

    2012-01-01

    Based on the structure of the superpotent 5-HT2A agonist 2-(4-bromo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine, which consists of a ring-substituted phenethylamine skeleton modified with an N-benzyl group, we designed and synthesized a small library of constrained analogues to identify the optimal arrangement of the pharmacophoric elements of the ligand. Structures consisted of diversely substituted tetrahydroisoquinolines, piperidines, and one benzazepine. Based on the structure of (S,S)-9b, which showed the highest affinity of the series, we propose an optimal binding conformation. (S,S)-9b also displayed 124-fold selectivity for the 5-HT2A over the 5-HT2C receptor, making it the most selective 5-HT2A receptor agonist ligand currently known. PMID:23336049

  8. Role of 5-HT1B, 5-HT2A and 5-HT2C receptors in learning.

    PubMed

    Meneses, A; Hong, E

    1997-08-01

    The effects of post-training (i.p.) injection of TFMPP, mCPP, DOI or 1-NP in the autoshaping learning task was explored. Furthermore, the post-training effects of these agonists after treatment with the antagonists (+/-)-pindolol, (+/-)-propranolol, NAN-190, ketanserin, ritanserin, mesulergine, MDL-72222 or p-chloroamphetamine (5-HT depleter) were studied. Rats were individually trained with a lever-press response (conditioned response; CR) on the autoshaping task and tested 24 h later. The results showed that the injection of TFMPP (1-10 mg/kg), mCPP (1-10 mg/kg), 1-NP (0.1-1.0 mg/kg) or mesulergine (0.4 mg/kg) decreased the rate of CR, while DOI (0.01-0.1 mg/kg) and ritanserin (0.5 mg/kg) and ketanserin (0.001-0.1 mg/kg) increased it. However, the effect induced by TFMPP was reversed by (+/-)-pindolol, ketanserin, ritanserin and PCA; the mCPP-induced effect was antagonized by (+/-)-propranolol, ketanserin, ritanserin and MDL-72222; and the effect produced by 1-NP was reversed by ketanserin, ritanserin and PCA. In addition, the increment in CR provoked by DOI was enhanced by ketanserin, and reversed by ritanserin, mesulergine and PCA. These findings suggest that TFMPP, 1-NP and DOI exerted their effects via stimulation of presynaptic 5-HT receptors. The effects of mCPP most probably reflect activation of postsynaptic receptors. The present data suggest that both 5-HT1B and 5-HT2A-2C receptors play a significant role in the consolidation of learning.

  9. Amelioration of hypoxia-induced striatal 5-HT(2A) receptor, 5-HT transporter and HIF1 alterations by glucose, oxygen and epinephrine in neonatal rats.

    PubMed

    Anju, T R; Paulose, C S

    2011-09-20

    Alterations in neurotransmitters and its receptors expression induce brain injury during neonatal hypoxic insult. Molecular processes regulating the serotonergic receptors play an important role in the control of respiration under hypoxic insult. The present study focused on the serotonergic regulation of neonatal hypoxia and its resuscitation methods. Receptor binding assays and gene expression studies were done to evaluate the changes in 5HT(2A) receptors and its transporter in the corpus striatum of hypoxic neonatal rats and hypoxic rats resuscitated with glucose, oxygen and epinephrine. Total 5HT and 5HT(2A) receptor number was increased in hypoxic neonates along with an up regulation of 5HT(2A) receptor and 5HT transporter gene. The enhanced striatal 5HT(2A) receptors modulate the ventilatory response to hypoxia. Immediate glucose resuscitation was found to ameliorate the receptor and transporter alterations. Hypoxia induced ATP depletion mediated reduction in blood glucose levels can be encountered by glucose administration and oxygenation helps in overcoming the anaerobic condition. The adverse effect of immediate oxygenation and epinephrine supplementation was also reported. This has immense clinical significance in establishing a proper resuscitation for the management of neonatal hypoxia.

  10. INCREASED 5-HT2A RECEPTOR AVAILABILITY IN THE ORBITOFRONTAL CORTEX OF PHYSICALLY AGGRESSIVE PERSONALITY DISORDERED PATIENTS

    PubMed Central

    Rosell, Daniel R.; Thompson, Judy L.; Slifstein, Mark; Xu, Xiaoyan; Frankle, W. Gordon; New, Antonia S.; Goodman, Marianne; Weinstein, Shauna R.; Laruelle, Marc; Dargham, Anissa Abi; Siever, Larry J.

    2011-01-01

    Background Impulsive physical aggression is a common and problematic feature of many personality disorders. The serotonergic system is known to be involved in the pathophysiology of aggression, and multiple lines of evidence have implicated the 5-HT2A receptor (5-HT2AR). We sought to examine the role of the 5-HT2AR in impulsive aggression specifically in the orbitofrontal cortex (OFC), given that our own studies and an extensive literature indicate that serotonergic disturbances in the OFC are linked to aggression. We have previously hypothesized that increased 5-HT2AR function in the OFC is a state phenomenon which promotes impulsive aggression. Methods 5-HT2AR availability was measured with positron emission tomography and the selective 5-HT2AR antagonist radioligand [11C]MDL100907 in two groups of impulsively aggressive personality disordered patients --14 with current physical aggression, and 15 without current physical aggression --and 25 healthy controls. Clinical ratings of various symptom dimensions were also obtained. Results Orbitofrontal 5-HT2AR availability was greater in patients with current physical aggression compared to patients without current physical aggression and healthy controls; no differences in OFC 5-HT2AR availability were observed between patients without current physical aggression and healthy controls. No significant differences in 5-HT2AR availability were observed in other brain regions examined. Among both groups of impulsively aggressive personality disordered patients combined, OFC 5-HT2AR availability was correlated, specifically, with a state measure of impulsive aggression. Conclusions These findings are consistent with our previously described model in which impulsive aggression is related to dynamic changes in 5-HT2AR function in the OFC. PMID:20434136

  11. Allosteric signaling through an mGlu2 and 5-HT2A heteromeric receptor complex and its potential contribution to schizophrenia

    PubMed Central

    Moreno, José L.; Miranda-Azpiazu, Patricia; García-Bea, Aintzane; Younkin, Jason; Cui, Meng; Kozlenkov, Alexey; Ben-Ezra, Ariel; Voloudakis, Georgios; Fakira, Amanda K.; Baki, Lia; Ge, Yongchao; Georgakopoulos, Anastasios; Morón, José A.; Milligan, Graeme; López-Giménez, Juan F.; Robakis, Nikolaos K.; Logothetis, Diomedes E.; Meana, J. Javier; González-Maeso, Javier

    2016-01-01

    Heterotrimeric guanine nucleotide–binding protein (G protein)–coupled receptors (GPCRs) can form multiprotein complexes (heteromers), which can alter the pharmacology and functions of the constituent receptors. Previous findings demonstrated that the Gq/11-coupled serotonin 5-HT2A receptor and the Gi/o-coupled metabotropic glutamate 2 (mGlu2) receptor—GPCRs that are involved in signaling alterations associated with psychosis—assemble into a heteromeric complex in the mammalian brain. In single-cell experiments with various mutant versions of the mGlu2 receptor, we showed that stimulation of cells expressing mGlu2–5-HT2A heteromers with an mGlu2 agonist led to activation of Gq/11 proteins by the 5-HT2A receptors. For this crosstalk to occur, one of the mGlu2 subunits had to couple to Gi/o proteins, and we determined the relative location of the Gi/o-contacting subunit within the mGlu2 homodimer of the heteromeric complex. Additionally, mGlu2-dependent activation of Gq/11, but not Gi/o, was reduced in the frontal cortex of 5-HT2A knockout mice and was reduced in the frontal cortex of postmortem brains from schizophrenic patients. These findings offer structural insights into this important target in molecular psychiatry. PMID:26758213

  12. Tolerance to LSD and DOB induced shaking behaviour: differential adaptations of frontocortical 5-HT(2A) and glutamate receptor binding sites.

    PubMed

    Buchborn, Tobias; Schröder, Helmut; Dieterich, Daniela C; Grecksch, Gisela; Höllt, Volker

    2015-03-15

    Serotonergic hallucinogens, such as lysergic acid diethylamide (LSD) and dimethoxy-bromoamphetamine (DOB), provoke stereotype-like shaking behaviour in rodents, which is hypothesised to engage frontocortical glutamate receptor activation secondary to serotonin2A (5-HT2A) related glutamate release. Challenging this hypothesis, we here investigate whether tolerance to LSD and DOB correlates with frontocortical adaptations of 5-HT2A and/or overall-glutamate binding sites. LSD and DOB (0.025 and 0.25 mg/kg, i.p.) induce a ketanserin-sensitive (0.5 mg/kg, i.p., 30-min pretreatment) increase in shaking behaviour (including head twitches and wet dog shakes), which with repeated application (7× in 4 ds) is undermined by tolerance. Tolerance to DOB, as indexed by DOB-sensitive [(3)H]spiroperidol and DOB induced [(35)S]GTP-gamma-S binding, is accompanied by a frontocortical decrease in 5-HT2A binding sites and 5-HT2 signalling, respectively; glutamate-sensitive [(3)H]glutamate binding sites, in contrast, remain unchanged. As to LSD, 5-HT2 signalling and 5-HT2A binding, respectively, are not or only marginally affected, yet [(3)H]glutamate binding is significantly decreased. Correlation analysis interrelates tolerance to DOB to the reduced 5-HT2A (r=.80) as well as the unchanged [(3)H]glutamate binding sites (r=.84); tolerance to LSD, as opposed, shares variance with the reduction in [(3)H]glutamate binding sites only (r=.86). Given that DOB and LSD both induce tolerance, one correlating with 5-HT2A, the other with glutamate receptor adaptations, it might be inferred that tolerance can arise at either level. That is, if a hallucinogen (like LSD in our study) fails to induce 5-HT2A (down-)regulation, glutamate receptors (activated postsynaptic to 5-HT2A related glutamate release) might instead adapt and thus prevent further overstimulation of the cortex.

  13. Effect of fluvoxamine on platelet 5-HT2A receptors as studied by [3H]lysergic acid diethylamide ([3H]LSD) binding in healthy volunteers.

    PubMed

    Spigset, O; Mjörndal, T

    1997-09-01

    Alterations in platelet 5-HT2A receptor characteristics have been reported in major depression as well as in other psychiatric diseases, and some effort has been made to utilize platelet 5-HT2A receptor status as a biological correlate to antidepressant drug response. In order to investigate whether treatment with a selective serotonin reuptake inhibitor affects platelet 5-HT2A receptors, we have studied platelet [3H]lysergic acid diethylamide ([3H]LSD) binding in healthy subjects treated with fluvoxamine in increasing dosage once weekly for 4 weeks. After 1 week of fluvoxamine treatment (25 mg/day), both Bmax and Kd were significantly lower than before the start of the treatment (19.9 versus 25.5 fmol/mg protein, P = 0.005 for Bmax; 0.45 versus 0.93 nM, P = 0.006 for Kd). Bmax returned to baseline during week 2, whereas Kd was lower than the baseline value throughout the treatment period. After discontinuation of fluvoxamine treatment, there was a significant increase in Kd (0.50 nM before discontinuation vs. 1.14 nM after discontinuation; P = 0.001), but not in Bmax. The study demonstrates that fluvoxamine affects platelet 5-HT2A receptor status irrespective of underlying psychiatric disease, and that this effect is evident already after 1 week at a subtherapeutic fluvoxamine dose.

  14. Cerebral metabolic responses to 5-HT2A/C receptor activation in mice with genetically modified serotonin transporter (SERT) expression.

    PubMed

    Dawson, Neil; Ferrington, Linda; Lesch, Klaus-Peter; Kelly, Paul A T

    2011-01-01

    Variation in the human serotonin transporter gene (hSERT; 5-HTT) resulting in a life-long alteration in SERT function influences anxiety and the risk of developing affective disorders. The mechanisms underlying the influence of the hSERT gene on these phenotypes remain unclear but may involve altered 5-HT receptor function. Here we characterise the cerebral metabolic response to 5-HT(2A/C) receptor activation in two transgenic mouse models of altered SERT function, SERT knock-out (SERT KO) and hSERT over-expressing (hSERT OE) mice, to test the hypothesis that genetically mediated variability in SERT expression alters 5-HT(2A/C) function. We found that a constitutive increase in SERT expression (hSERT OE) enhanced, whereas a constitutive decrease in SERT expression (SERT KO) attenuated, 5-HT(2A/C) function. Therefore, altered 5-HT(2A/C) receptor functioning in response to hSERT gene variation may contribute to its influence on affective phenotypes.

  15. Effects of the 5-HT receptor antagonists GR127935 (5-HT1B/1D) and MDL100907 (5-HT2A) in the consolidation of learning.

    PubMed

    Meneses, A; Terrón, J A; Hong, E

    1997-12-01

    We have previously reported that 5-HT1B/1D and 5-HT2A/2B/2C receptors play a role in learning and memory. The present investigation was devoted to analyze further in the autoshaping learning task: (1) the effects of the 5-HT1A/1B/1D receptor agonist, GR46611, the 5-HT1B/1D receptor antagonist, GR127935, and the selective 5-HT2A receptor antagonist, MDL100907. Consistent with a role of 5-HT1B/1D receptors in learning, the post-training injection of GR46611 (1-10 mg/kg) decreased the consolidation of learning whereas GR127935 (10 mg/kg) increased it; the effects of both drugs were reversed by PCA pretreatment. GR127935 abolished the decrease induced by GR46611, TFMPP and mCPP, whereas MDL100907 (0.1-3.0 mg/kg) had no effect by itself but abolished the effects of DOI, ketanserin and TFMPP and moderately inhibited the effects elicited by mCPP, 1-NP and mesulergine. Neither did GR127935 nor MDL100907 significantly modify the increase in the consolidation of learning induced by 8-OH-DPAT. Thus, the present findings suggest that stimulation of presynaptic 5-HT1B/1D receptors impairs the consolidation of learning whilst stimulation of 5-HT2A/2C receptors enhances it; the blockade of 5-HT2A receptors has no effects. In addition, 5-HT2 receptors seem to modulate this cognitive stage.

  16. DRD2, DRD3 and 5HT2A receptor genes polymorphisms in obsessive-compulsive disorder.

    PubMed

    Nicolini, H; Cruz, C; Camarena, B; Orozco, B; Kennedy, J L; King, N; Weissbecker, K; de la Fuente, J R; Sidenberg, D

    1996-12-01

    We performed an association analysis of the DRD2, DRD3 and 5HT2A genes polymorphisms in 67 Obsessive-Compulsive Disorder (OCD) patients and 54 healthy controls. There were no statistically significant differences in genotype or allele frequencies for any of the polymorphisms studied between OCD subjects and controls. For the subgrouped analysis, no results were significant after correction for multiple testing, although homozygosity of DRD2/A2A2 in subjects displaying vocal or motor tics approached significance compared to controls (Fisher exact test, P = 0.008). Our results may follow the notion that OCD patients with tics represent a different genetic subtype of the disease.

  17. MDMA-induced loss of parvalbumin interneurons within the dentate gyrus is mediated by 5HT2A and NMDA receptors.

    PubMed

    Collins, Stuart A; Gudelsky, Gary A; Yamamoto, Bryan K

    2015-08-15

    MDMA is a widely abused psychostimulant which causes a rapid and robust release of the monoaminergic neurotransmitters dopamine and serotonin. Recently, it was shown that MDMA increases extracellular glutamate concentrations in the dorsal hippocampus, which is dependent on serotonin release and 5HT2A/2C receptor activation. The increased extracellular glutamate concentration coincides with a loss of parvalbumin-immunoreactive (PV-IR) interneurons of the dentate gyrus region. Given the known susceptibility of PV interneurons to excitotoxicity, we examined whether MDMA-induced increases in extracellular glutamate in the dentate gyrus are necessary for the loss of PV cells in rats. Extracellular glutamate concentrations increased in the dentate gyrus during systemic and local administration of MDMA. Administration of the NMDA receptor antagonist, MK-801, during systemic injections of MDMA, prevented the loss of PV-IR interneurons seen 10 days after MDMA exposure. Local administration of MDL100907, a selective 5HT2A receptor antagonist, prevented the increases in glutamate caused by reverse dialysis of MDMA directly into the dentate gyrus and prevented the reduction of PV-IR. These findings provide evidence that MDMA causes decreases in PV within the dentate gyrus through a 5HT2A receptor-mediated increase in glutamate and subsequent NMDA receptor activation.

  18. The role of peripheral 5HT2A and 5HT1A receptors on the orofacial formalin test in rats with persistent temporomandibular joint inflammation.

    PubMed

    Okamoto, K; Imbe, H; Tashiro, A; Kimura, A; Donishi, T; Tamai, Y; Senba, E

    2005-01-01

    The role of peripheral serotonin (5HT) 2A and 5HT1A receptors on the orofacial nocifensive behavioral activities evoked by the injection of formalin into the masseter muscle was evaluated in the rats with persistent temporomandibular joint (TMJ) inflammation evoked by Complete Freund's Adjuvant (CFA). The orofacial nocifensive behavioral activities evoked by the injection of formalin into masseter muscle were significantly enhanced at 1 day (CFA day 1 group) or 7 days (CFA day 7 group) during TMJ inflammation. Pretreatment with local administration of 5HT2A receptor antagonist, ketanserin (0.01, 0.1 mg/rat) into the masseter muscle or systemic administration of ketanserin via i.p. injection (1 mg/kg) reduced the orofacial nocifensive behavioral activities of the late phase evoked by formalin injection into masseter muscle on the side of TMJ inflammation (CFA day 7 group). However, local (0.001-0.1 mg/rat) or systemic (1 mg/kg) administration of 5HT1A receptor antagonist, propranolol, into masseter muscle did not produce the antinociceptive effect in CFA day 7 group. Moreover, local administration of ketanserin (0.1 mg) or propranolol (0.1 mg) into masseter muscle did not inhibit nocifensive orofacial behavior in rats without TMJ inflammation. These data suggest that persistent TMJ inflammation causes the elevation of the orofacial nocifensive behavior, and peripheral 5HT2A receptors play an important role in mediating the deep craniofacial tissue nociception in rats with TMJ inflammation.

  19. Repeated administration of Yokukansan inhibits DOI-induced head-twitch response and decreases expression of 5-hydroxytryptamine (5-HT)2A receptors in the prefrontal cortex.

    PubMed

    Egashira, Nobuaki; Iwasaki, Katsunori; Ishibashi, Ayumi; Hayakawa, Kazuhide; Okuno, Ryoko; Abe, Moe; Uchida, Naoki; Mishima, Kenichi; Takasaki, Kotaro; Nishimura, Ryoji; Oishi, Ryozo; Fujiwara, Michihiro

    2008-08-01

    Behavioral and psychological symptoms of dementia (BPSD) are commonly seen in patients with Alzheimer's disease (AD) and other forms of senile dementia. BPSD have a serious impact on the quality of life of dementia patients, as well as their caregivers. However, an effective drug therapy for BPSD has not been established. Recently, the traditional Japanese medicine Yokukansan (YKS, Yi-gan san in Chinese) has been reported to improve BPSD in a randomized, single-blind, placebo-controlled study. Moreover, abnormalities of the serotonin (5-HT) system such as 5-HT2A receptors have been reported to be associated with BPSD of AD patients. In the present study, we investigated the effect of YKS on head-twitch response induced by 2,5-dimethoxy-4-iodoamphetamine (DOI, 5 mg/kg, i.p.) in mice, a behavioral response that is mediated, in part, by 5-HT2A receptors. Acute treatment with YKS (100 and 300 mg/kg, p.o.) had no effect on the DOI-induced head-twitch response, whilst 14 days repeated treatment with YKS (300 mg/kg, p.o.) significantly inhibited this response. Moreover, repeated treatment with YKS (300 mg/kg, p.o.) decreased expression of 5-HT2A receptors in the prefrontal cortex, which is part of the circuitry mediating the head-twitch response. These findings suggest that the inhibition of DOI-induced head-twitch response by YKS may be mediated, in part, by altered expression of 5-HT2A receptors in the prefrontal cortex, which suggests the involvement of the 5-HT system in psychopharmacological effects of YKS.

  20. Differences in 5-HT2A and mGlu2 Receptor Expression Levels and Repressive Epigenetic Modifications at the 5-HT2A Promoter Region in the Roman Low- (RLA-I) and High- (RHA-I) Avoidance Rat Strains.

    PubMed

    Fomsgaard, Luna; Moreno, Jose L; de la Fuente Revenga, Mario; Brudek, Tomasz; Adamsen, Dea; Rio-Alamos, Cristobal; Saunders, Justin; Klein, Anders Bue; Oliveras, Ignasi; Cañete, Toni; Blazquez, Gloria; Tobeña, Adolf; Fernandez-Teruel, Albert; Gonzalez-Maeso, Javier; Aznar, Susana

    2017-03-06

    The serotonin 2A (5-HT2A) and metabotropic glutamate 2 (mGlu2) receptors regulate each other and are associated with schizophrenia. The Roman high- (RHA-I) and the Roman low- (RLA-I) avoidance rat strains present well-differentiated behavioral profiles, with the RHA-I strain emerging as a putative genetic rat model of schizophrenia-related features. The RHA-I strain shows increased 5-HT2A and decreased mGlu2 receptor binding levels in prefrontal cortex (PFC). Here, we looked for differences in gene expression and transcriptional regulation of these receptors. The striatum (STR) was included in the analysis. 5-HT2A, 5-HT1A, and mGlu2 mRNA and [(3)H]ketanserin binding levels were measured in brain homogenates. As expected, 5-HT2A binding was significantly increased in PFC in the RHA-I rats, while no difference in binding was observed in STR. Surprisingly, 5-HT2A gene expression was unchanged in PFC but significantly decreased in STR. mGlu2 receptor gene expression was significantly decreased in both PFC and STR. No differences were observed for the 5-HT1A receptor. Chromatin immunoprecipitation assay revealed increased trimethylation of histone 3 at lysine 27 (H3K27me3) at the promoter region of the HTR2A gene in the STR. We further looked at the Akt/GSK3 signaling pathway, a downstream point of convergence of the serotonin and glutamate system, and found increased phosphorylation levels of GSK3β at tyrosine 216 and increased β-catenin levels in the PFC of the RHA-I rats. These results reveal region-specific regulation of the 5-HT2A receptor in the RHA-I rats probably due to absence of mGlu2 receptor that may result in differential regulation of downstream pathways.

  1. LSD and DOB: interaction with 5-HT2A receptors to inhibit NMDA receptor-mediated transmission in the rat prefrontal cortex.

    PubMed

    Arvanov, V L; Liang, X; Russo, A; Wang, R Y

    1999-09-01

    Both the phenethylamine hallucinogen (-)-1-2, 5-dimethoxy-4-bromophenyl-2-aminopropane (DOB), a selective serotonin 5-HT2A,2C receptor agonist, and the indoleamine hallucinogen D-lysergic acid diethylamide (LSD, which binds to 5-HT1A, 1B, 1D, 1E, 1F, 2A, 2C, 5, 6, 7, dopamine D1 and D2, and alpha1 and alpha2 adrenergic receptors), but not their non-hallucinogenic congeners, inhibited N-methyl-D-aspartate (NMDA)-induced inward current and NMDA receptor-mediated synaptic responses evoked by electrical stimulation of the forceps minor in pyramidal cells of the prefrontal cortical slices. The inhibitory effect of hallucinogens was mimicked by 5-HT in the presence of selective 5-HT1A and 5-HT3 receptor antagonists. The inhibitory action of DOB, LSD and 5-HT on the NMDA transmission was blocked by the 5-HT2A receptor antagonists R-(+)-alpha-(2, 3-dimethoxyphenil)-1-[4-fluorophenylethyl]-4-piperidineme thanol (M100907) and ketanserin. However, at low concentrations, when both LSD and DOB by themselves only partially depressed the NMDA response, they blocked the inhibitory effect of 5-HT, suggesting a partial agonist action. Whereas N-(4-aminobutyl)-5-chloro-2-naphthalenesulphonamide (W-7, a calmodulin antagonist) and N-[2-[[[3-(4'-chlorophenyl)- 2-propenyl]methylamino]methyl]phenyl]-N-(2-hydroxyethyl)-4'-methoxy-b enzenesulphonamide phosphate (KN-93, a Ca2+/CaM-KII inhibitor), but not the negative control 2-[N-4'methoxybenzenesulphonyl]amino-N-(4'-chlorophenyl)-2-propeny l-N -methylbenzylamine phosphate (KN-92), blocked the inhibitory action of LSD and DOB, the selective protein kinase C inhibitor chelerythrine was without any effect. We conclude that phenethylamine and indoleamine hallucinogens may exert their hallucinogenic effect by interacting with 5-HT2A receptors via a Ca2+/CaM-KII-dependent signal transduction pathway as partial agonists and modulating the NMDA receptors-mediated sensory, perceptual, affective and cognitive processes.

  2. The atypical 5-HT2 receptor mediating tachycardia in pithed rats: pharmacological correlation with the 5-HT2A receptor subtype

    PubMed Central

    Centurión, David; Ortiz, Mario I; Saxena, Pramod R; Villalón, Carlos M

    2002-01-01

    In pithed rats, 5-HT mediates tachycardia both directly (by 5-HT2 receptors) and indirectly (by a tyramine-like effect). The receptor mediating tachycardia directly has been classified as an ‘atypical' 5-HT2 receptor since it was ‘weakly' blocked by ketanserin. Moreover, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), a 5-HT2 agonist, failed to mimic 5-HT-induced tachycardia. Since 5-HT2 receptors consist of 5-HT2A, 5-HT2B and 5-HT2C subtypes, this study investigated if these subtypes mediate the above response. In pithed rats, intraperitoneally (i.p.) pre-treated with reserpine (5 mg kg−1), intravenous (i.v.) administration of 5-HT, 5-methoxytryptamine (5-MeO-T), 1-(3-chlorophenyl) piperazine (mCPP) and 5-carboxamidotryptamine (5-CT) (10, 30, 100 and 300 μg kg−1 each), produced dose-dependent tachycardic responses. Interestingly, DOI (10 – 1000 μg kg−1, i.v.) induced only slight, dose-unrelated, tachycardic responses, whilst the 5-HT2C agonist, Ro 60-0175 (10 – 1000 μg kg−1, i.v.), produced a slight tachycardia only at 300 and 1000 μg kg−1. In contrast, sumatriptan and 1-(m-trifluoromethylphenyl)- piperazine (TFMPP) were inactive. The rank order of potency was: 5-HT⩾5-MeO-T> mCPP⩾5-CT⩾DOI>Ro 60-0175. The tachycardic responses to 5-HT, which remained unaffected after i.v. saline (0.3 and 1 ml kg−1) or propranolol (3 mg kg−1), were selectively blocked by the 5-HT2A antagonists ketanserin (30 and 100 μg kg−1) or spiperone (10 and 30 μg kg−1) as well as by the non-selective 5-HT2 antagonists, ritanserin (10 and 30 μg kg−1) or mesulergine (100 μg kg−1). Remarkably, these responses were unaffected by the antagonists rauwolscine (5-HT2B), SB204741 (5-HT2B/2C) or Ro 04-6790 (5-ht6) (300 and 1000 μg kg−1 each). These results suggest that the ‘atypical' 5-HT2 receptors mediating tachycardia in reserpinized pithed rats are pharmacologically similar to the 5-HT2A

  3. Selective blockade of 5-HT2A receptors attenuates the increased temperature response in brown adipose tissue to restraint stress in rats.

    PubMed

    Ootsuka, Youichirou; Blessing, William W; Nalivaiko, Eugene

    2008-03-01

    Previous studies have demonstrated that 5-HT2A receptors may be involved in the central control of thermoregulation and of the cardiovascular system. Our aim was to test whether these receptors mediate thermogenic and tachycardiac responses induced by acute psychological stress. Three groups of adult male Hooded Wistar rats were instrumented with: (i) a thermistor in the interscapular area (for recording brown adipose tissue temperature) and an ultrasound Doppler probe (to record tail blood flow); (ii) temperature dataloggers to record core body temperature; (iii) ECG electrodes. On the day of the experiment, rats were subjected to a 30-min restraint stress preceded by s.c. injection of either vehicle or SR-46349B (a serotonin 2A receptor antagonist) at doses of 0.01, 0.1 and 1.0 mg/kg. The restraint stress caused a rise in brown adipose tissue temperature (from, mean +/- s.e.m., 36.6 +/- 0.2 to 38.0 +/- 0.2 degrees C), transient cutaneous vasoconstriction (tail blood flow decreased from 12 +/- 2 to 5 +/- 1 cm/s), increase in heart rate (from 303 +/- 15 to 453 +/- 15 bpm at the peak, then reduced to 393 +/- 12 bpm at the steady state), and defaecation (6 +/- 1 pellets per restraint session). The core body temperature was not affected by the restraint. Blockade of 5-HT2A receptors attenuated the increase in brown adipose tissue temperature and transient cutaneous vasoconstriction, but not tachycardia and defaecation elicited by restraint stress. These results indicate that psychological stress causes activation of 5-HT2A receptors in neural pathways that control thermogenesis in the brown adipose tissue and facilitate cutaneous vasoconstriction.

  4. A Model of Post-Infection Fatigue Is Associated with Increased TNF and 5-HT2A Receptor Expression in Mice

    PubMed Central

    Couch, Yvonne; Xie, Qin; Lundberg, Louise; Sharp, Trevor; Anthony, Daniel C.

    2015-01-01

    It is well documented that serotonin (5-HT) plays an important role in psychiatric illness. For example, myalgic encephalomyelitis (ME/CFS), which is often provoked by infection, is a disabling illness with an unknown aetiology and diagnosis is based on symptom-specific criteria. However, 5-HT2A receptor expression and peripheral cytokines are known to be upregulated in ME. We sought to examine the relationship between the 5-HT system and cytokine expression following systemic bacterial endotoxin challenge (LPS, 0.5mg/kg i.p.), at a time when the acute sickness behaviours have largely resolved. At 24 hours post-injection mice exhibit no overt changes in locomotor behaviour, but do show increased immobility in a forced swim test, as well as decreased sucrose preference and reduced marble burying activity, indicating a depressive-like state. While peripheral IDO activity was increased after LPS challenge, central activity levels remained stable and there was no change in total brain 5-HT levels or 5-HIAA/5-HT. However, within the brain, levels of TNF and 5-HT2A receptor mRNA within various regions increased significantly. This increase in receptor expression is reflected by an increase in the functional response of the 5-HT2A receptor to agonist, DOI. These data suggest that regulation of fatigue and depressive-like moods after episodes of systemic inflammation may be regulated by changes in 5-HT receptor expression, rather than by levels of enzyme activity or cytokine expression in the CNS. PMID:26147001

  5. Novel class of arylpiperazines containing N-acylated amino acids: their synthesis, 5-HT1A, 5-HT2A receptor affinity, and in vivo pharmacological evaluation.

    PubMed

    Zajdel, Paweł; Subra, Gilles; Bojarski, Andrzej J; Duszyńska, Beata; Tatarczyńska, Ewa; Nikiforuk, Agnieszka; Chojnacka-Wójcik, Ewa; Pawłowski, Maciej; Martinez, Jean

    2007-04-15

    Novel arylpiperazines with N-acylated amino acids, selected on the basis of a preliminary screening of two libraries previously synthesized on SynPhase Lanterns, were prepared in solution and their affinity for 5-HT(1A), 5-HT(2A), and D(2) receptors was evaluated. The compounds bearing (3-acylamino)pyrrolidine-2,5-dione (19-26) and N-acylprolinamide (29-34) moieties showed high affinity for 5-HT(1A) (K(i)=3-47 nM), high-to-low for 5-HT(2A) (K(i)=4.2-990 nM), and low for D(2) receptors (K(i)=0.77-21.19 microM). All the new o-methoxy derivatives of (3-acylamino)pyrrolidine-2,5-diones tested in vivo revealed agonistic activity at postsynaptic 5-HT(1A) receptors, while m-chloro derivatives were classified as antagonists of these sites; similar relations were observed for o-methoxy (29) and m-chlorophenylpiperazine derivatives of N-acylprolinamides. The reported results show that the amino acid-derived terminal fragment modified the in vivo functional profile. Finally, the selected compounds 19 and 20, a 5-HT(1A) partial agonist and a full agonist, respectively, and 26, a mixed 5-HT(1A)/5-HT(2A) antagonist, were evaluated in preclinical animal models of depression and anxiety. The project allowed selecting the lead compound 20 which exhibited an anxiolytic-like effect in the four-plate test in mice and revealed distinct antidepressant-like effects in the forced swimming and tail suspension tests in mice.

  6. A 5-HT2A/2C receptor agonist, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane, mitigates developmental neurotoxicity of ethanol to serotonergic neurons.

    PubMed

    Ishiguro, Tsukasa; Sakata-Haga, Hiromi; Fukui, Yoshihiro

    2016-07-01

    Prenatal ethanol exposure causes the reduction of serotonergic (5-HTergic) neurons in the midbrain raphe nuclei. In the present study, we examined whether an activation of signaling via 5-HT2A and 5-HT2C receptors during the fetal period is able to prevent the reduction of 5-HTergic neurons induced by prenatal ethanol exposure. Pregnant Sprague-Dawley rats were given a liquid diet containing 2.5 to 5.0% (w/v) ethanol on gestational days (GDs) 10 to 20 (Et). As a pair-fed control, other pregnant rats were fed the same liquid diet except that the ethanol was replaced by isocaloric sucrose (Pf). Each Et and Pf group was subdivided into two groups; one of the groups was treated with 1 mg/kg (i.p.) of 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), an agonist for 5-HT2A/2C receptors, during GDs 13 to 19 (Et-DOI or Pf-DOI), and another was injected with saline vehicle only (Et-Sal or Pf-Sal). Their fetuses were removed by cesarean section on GD 19 or 20, and fetal brains were collected. An immunohistological examination of 5-HTergic neurons in the fetuses on embryonic day 20 using an antibody against tryptophan hydroxylase revealed that the number of 5-HTergic neurons in the midbrain raphe nuclei was significantly reduced in the Et-Sal fetuses compared to that of the Pf-Sal and Pf-DOI fetuses, whereas there were no significant differences between Et-DOI and each Pf control. Thus, we concluded that the reduction of 5-HTergic neurons that resulted in prenatal ethanol exposure could be alleviated by the enhancement of signaling via 5-HT2A/2C receptors during the fetal period.

  7. Blockade of Serotonin 5-HT2A Receptors Suppresses Behavioral Sensitization and Naloxone-Precipitated Withdrawal Symptoms in Morphine-Treated Mice

    PubMed Central

    Pang, Gang; Wu, Xian; Tao, Xinrong; Mao, Ruoying; Liu, Xueke; Zhang, Yong-Mei; Li, Guangwu; Stackman, Robert W.; Dong, Liuyi; Zhang, Gongliang

    2016-01-01

    The increasing prescription of opioids is fueling an epidemic of addiction and overdose deaths. Morphine is a highly addictive drug characterized by a high relapse rate – even after a long period of abstinence. Serotonin (5-HT) neurotransmission participates in the development of morphine dependence, as well as the expression of morphine withdrawal. In this study, we examined the effect of blockade of 5-HT2A receptors (5-HT2ARs) on morphine-induced behavioral sensitization and withdrawal in male mice. 5-HT2AR antagonist MDL 11,939 (0.5 mg/kg, i.p.) suppressed acute morphine (5.0 mg/kg, s.c.)-induced increase in locomotor activity. Mice received morphine (10 mg/kg, s.c.) twice a day for 3 days and then drug treatment was suspended for 5 days. On day 9, a challenge dose of morphine (10 mg/kg) was administered to induce the expression of behavioral sensitization. MDL 11,939 (0.5 mg/kg, i.p.) pretreatment suppressed the expression of morphine-induced behavioral sensitization. Another cohort of mice received increasing doses of morphine over a 7-day period to induce morphine-dependence. MDL 11,939 (0.5 mg/kg, i.p.) prevented naloxone-precipitated withdrawal in morphine-dependent mice on day 7. Moreover, chronic morphine treatment increased 5-HT2AR protein level and decreased the phosphorylation of extracellular signal-regulated kinases in the prefrontal cortex. Together, these results by the first time demonstrate that 5-HT2ARs modulate opioid dependence and blockade of 5-HT2AR may represent a novel strategy for the treatment of morphine use disorders. Highlights (i) Blockade of 5-HT2A receptors suppresses the expression of morphine-induced behavioral sensitization. (ii) Blockade of 5-HT2A receptors suppresses naloxone-precipitated withdrawal in morphine-treated mice. (iii) Chronic morphine exposure induces an increase in 5-HT2A receptor protein level and a decrease in ERK protein phosphorylation in prefrontal cortex. PMID:28082900

  8. Horse chestnut extract contracts bovine vessels and affects human platelet aggregation through 5-HT(2A) receptors: an in vitro study.

    PubMed

    Felixsson, Emma; Persson, Ingrid A-L; Eriksson, Andreas C; Persson, Karin

    2010-09-01

    Extract from seeds and bark of horse chestnut (Aesculus hippocastanum L) is used as an herbal medicine against chronic venous insufficiency. The effect and mechanism of action on veins, arteries, and platelets are not fully understood. The aim of this study was to investigate the effects and mechanisms of action of horse chestnut on the contraction of bovine mesenteric veins and arteries, and human platelet aggregation. Contraction studies showed that horse chestnut extract dose-dependently contracted both veins and arteries, with the veins being the most sensitive. Contraction of both veins and arteries were significantly inhibited by the 5-HT(2A) receptor antagonist ketanserin. No effect on contraction was seen with the cyclooxygenase inhibitor indomethacin, the alpha(1) receptor antagonist prazosin or the angiotensin AT(1) receptor antagonist saralasin neither in veins nor arteries. ADP-induced human platelet aggregation was significantly reduced by horse chestnut. A further reduction was seen with the extract in the presence of ketanserin. In conclusion, horse chestnut contraction of both veins and arteries is, at least partly, mediated through 5-HT(2A) receptors. Human platelet aggregation is reduced by horse chestnut. The clinical importance of these findings concerning clinical use, possible adverse effects, and drug interactions remains to be investigated.

  9. Cerebral 5-HT release correlates with [(11)C]Cimbi36 PET measures of 5-HT2A receptor occupancy in the pig brain.

    PubMed

    Jørgensen, Louise M; Weikop, Pia; Villadsen, Jonas; Visnapuu, Tanel; Ettrup, Anders; Hansen, Hanne D; Baandrup, Anders O; Andersen, Flemming L; Bjarkam, Carsten R; Thomsen, Carsten; Jespersen, Bo; Knudsen, Gitte M

    2017-02-01

    Positron emission tomography (PET) can, when used with appropriate radioligands, non-invasively generate temporal and spatial information about acute changes in brain neurotransmitter systems. We for the first time evaluate the novel 5-HT2A receptor agonist PET radioligand, [(11)C]Cimbi-36, for its sensitivity to detect changes in endogenous cerebral 5-HT levels, as induced by different pharmacological challenges. To enable a direct translation of PET imaging data to changes in brain 5-HT levels, we calibrated the [(11)C]Cimbi-36 PET signal in the pig brain by simultaneous measurements of extracellular 5-HT levels with microdialysis and [(11)C]Cimbi-36 PET after various acute interventions (saline, citalopram, citalopram + pindolol, fenfluramine). In a subset of pigs, para-chlorophenylalanine pretreatment was given to deplete cerebral 5-HT. The interventions increased the cerebral extracellular 5-HT levels to 2-11 times baseline, with fenfluramine being the most potent pharmacological enhancer of 5-HT release, and induced a varying degree of decline in [(11)C]Cimbi-36 binding in the brain, consistent with the occupancy competition model. The observed correlation between changes in the extracellular 5-HT level in the pig brain and the 5-HT2A receptor occupancy indicates that [(11)C]Cimbi-36 binding is sensitive to changes in endogenous 5-HT levels, although only detectable with PET when the 5-HT release is sufficiently high.

  10. The secret ingredient for social success of young males: a functional polymorphism in the 5HT2A serotonin receptor gene.

    PubMed

    Dijkstra, Jan Kornelis; Lindenberg, Siegwart; Zijlstra, Lieuwe; Bouma, Esther; Veenstra, René

    2013-01-01

    In adolescence, being socially successful depends to a large extent on being popular with peers. Even though some youths have what it takes to be popular, they are not, whereas others seem to have a secret ingredient that just makes the difference. In this study the G-allele of a functional polymorphism in the promotor region of the 5HT2A serotonin receptor gene (-G1438A) was identified as a secret ingredient for popularity among peers. These findings build on and extend previous work by Burt (2008, 2009). Tackling limitations from previous research, the role of the 5HT2A serotonin receptor gene was examined in adolescent males (N = 285; average age 13) using a unique sample of the TRAILS study. Carrying the G-allele enhanced the relation between aggression and popularity, particularly for those boys who have many female friends. This seems to be an "enhancer" effect of the G-allele whereby popularity relevant characteristics are made more noticeable. There is no "popularity gene", as the G-allele by itself had no effect on popularity.

  11. The 5-HT(2A) receptor and serotonin transporter in Asperger's disorder: A PET study with [¹¹C]MDL 100907 and [¹¹C]DASB.

    PubMed

    Girgis, Ragy R; Slifstein, Mark; Xu, Xiaoyan; Frankle, W Gordon; Anagnostou, Evdokia; Wasserman, Stacey; Pepa, Lauren; Kolevzon, Alexander; Abi-Dargham, Anissa; Laruelle, Marc; Hollander, Eric

    2011-12-30

    Evidence from biochemical, imaging, and treatment studies suggest abnormalities of the serotonin system in autism spectrum disorders, in particular in frontolimbic areas of the brain. We used the radiotracers [(11)C]MDL 100907 and [(11)C]DASB to characterize the 5-HT(2A) receptor and serotonin transporter in Asperger's Disorder. Seventeen individuals with Asperger's Disorder (age=34.3 ± 11.1 years) and 17 healthy controls (age=33.0 ± 9.6 years) were scanned with [(11)C]MDL 100907. Of the 17 patients, eight (age=29.7 ± 7.0 years) were also scanned with [¹¹C]DASB, as were eight healthy controls (age=28.7 ± 7.0 years). Patients with Asperger's Disorder and healthy control subjects were matched for age, gender, and ethnicity, and all had normal intelligence. Metabolite-corrected arterial plasma inputs were collected and data analyzed by two-tissue compartment modeling. The primary outcome measure was regional binding potential BP(ND). Neither regional [¹¹C]MDL 100907 BP(ND) nor [¹¹C]DASB BP(ND) was statistically different between the Asperger's and healthy subjects. This study failed to find significant alterations in binding parameters of 5-HT(2A) receptors and serotonin transporters in adult subjects with Asperger's disorder.

  12. Test-retest variability of high resolution positron emission tomography (PET) imaging of cortical serotonin (5HT2A) receptors in older, healthy adults

    PubMed Central

    2009-01-01

    Background Position emission tomography (PET) imaging using [18F]-setoperone to quantify cortical 5-HT2A receptors has the potential to inform pharmacological treatments for geriatric depression and dementia. Prior reports indicate a significant normal aging effect on serotonin 5HT2A receptor (5HT2AR) binding potential. The purpose of this study was to assess the test-retest variability of [18F]-setoperone PET with a high resolution scanner (HRRT) for measuring 5HT2AR availability in subjects greater than 60 years old. Methods: Six healthy subjects (age range = 65–78 years) completed two [18F]-setoperone PET scans on two separate occasions 5–16 weeks apart. Results The average difference in the binding potential (BPND) as measured on the two occasions in the frontal and temporal cortical regions ranged between 2 and 12%, with the lowest intraclass correlation coefficient in anterior cingulate regions. Conclusion We conclude that the test-retest variability of [18F]-setoperone PET in elderly subjects is comparable to that of [18F]-setoperone and other 5HT2AR radiotracers in younger subject samples. PMID:19580676

  13. Effects of imipramine and bupropion on the duration of immobility of ACTH-treated rats in the forced swim test: involvement of the expression of 5-HT2A receptor mRNA.

    PubMed

    Kitamura, Yoshihisa; Fujitani, Yoshika; Kitagawa, Kouhei; Miyazaki, Toshiaki; Sagara, Hidenori; Kawasaki, Hiromu; Shibata, Kazuhiko; Sendo, Toshiaki; Gomita, Yutaka

    2008-02-01

    We examined the effect of chronic administration of imipramine and bupropion, monoamine reuptake inhibitors, on the duration of immobility in the forced swim test and serotonin (5-HT)(2A) receptor function in the form of 5-HT(2A) receptor mRNA levels in rats chronically treated with adrenocorticotropic hormone (ACTH). The immobility-decreasing effect of bupropion without imipramine did not influence the chronic ACTH treatment. The effect on the expression of 5-HT(2A) receptor mRNA of chronic ACTH treatment was decreased by bupropion, but not imipramine. These results suggest that bupropion has the effect of reducing immobility time in the forced swim test in the tricyclic antidepressant-resistant depressive model induced by chronic ACTH treatment in rats, and that decreased 5-HT(2A) receptor mRNA levels may be involved in this phenomenon.

  14. Effects of the serotonin 5-HT2A and 5-HT2C receptor ligands on the discriminative stimulus effects of nicotine in rats.

    PubMed

    Zaniewska, Magdalena; McCreary, Andrew C; Przegaliński, Edmund; Filip, Malgorzata

    2007-10-01

    The present study tested the hypothesis that serotonergic (5-HT) 5-HT2A or 5-HT2C receptors or their pharmacological stimulation modulated the discriminative stimulus effects of nicotine in male Wistar rats. To this end the selective 5-HT2A receptor antagonist R-(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl]-4-piperidinemethanol (M100,907; 0.5-1 mg/kg, i.p.), the functional 5-HT2A receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI; 0.1-1 mg/kg, s.c.), the selective 5-HT2C receptor antagonist 6-chloro-5-methyl-1-{[2-(2-methylpyrid-3-yloxy)pyrid-5-yl]carbamoyl}indoline (SB 242,084; 0.25-1 mg/kg, i.p.) and the 5-HT2C receptor agonists (S)-2-chloro-5-fluoro-indol-1-yl)-1-methylethylamine fumarate (Ro 60-0175; 0.3-1 mg/kg, s.c.) and (7bR, 10aR)-1,2,3,4,8,9,10,10a-octahydro-7bH-cyclopenta-[b][1,4]diazepino[6,7,1hi]indole (WAY 163,909; 0.75-1.5 mg/kg, i.p.) were used. Additionally, the effects of the selective alpha4beta2 nicotinic acetylcholine receptor subtype agonist 5-iodo-3-(2(S)-azetidinylmethoxy)pyridine (5-IA; 0.01 mg/kg, s.c.) were investigated. In rats trained to discriminate (-)-nicotine (0.4 mg/kg, s.c.) from saline in a two-lever, water-reinforced fixed ratio 10 task, substitutions were not observed with 5-HT2 receptor ligands (<32% nicotine-lever responding), conversely 5-IA induced a full substitution (100% nicotine-lever responding). In combination studies, fixed doses of M100,907 (0.5-1 mg/kg) or SB 242,084 (0.25-1 mg/kg) did not alter the dose-response curve of nicotine, while DOI (0.3 mg/kg), Ro 60-0175 (1 mg/kg) and WAY 163,909 (1 and 1.5 mg/kg) attenuated the discriminative stimulus effects of nicotine. The decrease in the expression of the discriminative stimulus effects of nicotine produced by DOI was blocked by M100,907 (1 mg/kg), but not by SB 242,084 (1 mg/kg), while that evoked by Ro 60-0175 or WAY 163,909 was blocked by SB 242,084 (1 mg/kg), but not by M100,907 (1 mg/kg). Further studies showed that

  15. Evidence for 5-HT1B/1D and 5-HT2A receptors mediating constriction of the canine internal carotid circulation

    PubMed Central

    Centurión, David; Ortiz, Mario I; Sánchez-López, Araceli; De Vries, Peter; Saxena, Pramod R; Villalón, Carlos M

    2001-01-01

    The present study has investigated the preliminary pharmacological profile of the receptors mediating vasoconstriction to 5-hydroxytryptamine (5-HT) in the internal carotid bed of vagosympathectomised dogs. One minute intracarotid infusions of the agonists 5-HT (0.1–10 μg min−1), sumatriptan (0.3–10 μg min−1; 5-HT1B/1D), 5-methoxytryptamine (1–100 μg min−1; 5-HT1, 5-HT2, 5-HT4, 5-ht6 and 5-HT7) or DOI (0.31–10 μg min−1; 5-HT2), but not 5-carboxamidotryptamine (0.01–0.3 μg min−1; 5-HT1, 5-ht5A and 5-HT7), 1-(m-chlorophenyl)-biguanide (mCPBG; 1–1000 μg min−1; 5-HT3) or cisapride (1–1000 μg min−1; 5-HT4), resulted in dose-dependent decreases in internal carotid blood flow, without changing blood pressure or heart rate. The vasoconstrictor responses to 5-HT, which remained unaffected after saline, were resistant to blockade by i.v. administration of the antagonists ritanserin (100 μg kg−1; 5-HT2A/2B/2C) in combination with tropisetron (3000 μg kg−1; 5-HT3/4) or the cyclo-oxygenase inhibitor, indomethacin (5000 μg kg−1), but were abolished by the 5-HT1B/1D receptor antagonist, GR127935 (30 μg kg−1). Interestingly, after administration of GR127935, the subsequent administration of ritanserin unmasked a dose-dependent vasodilator component. GR127935 or saline did not practically modify the vasoconstrictor effects of 5-MeO-T. In animals receiving GR127935, the subsequent administration of ritanserin abolished the vasoconstrictor responses to 5-MeO-T unmasking a dose-dependent vasodilator component. The vasoconstriction induced by sumatriptan was antagonized by GR127935, but not by ritanserin. Furthermore, ritanserin (100 μg kg−1) or ketanserin (100 μg kg−1; 5-HT2A), but not GR127935, abolished DOI-induced vasoconstrictor responses. The above results suggest that 5-HT-induced internal carotid vasoconstriction is predominantly mediated by 5-HT1B/1D and 5-HT2A receptors

  16. Crucial role of the 5-HT2C receptor, but not of the 5-HT2A receptor, in the down regulation of stimulated dopamine release produced by pressure exposure in freely moving rats.

    PubMed

    Kriem, B; Rostain, J C; Abraini, J H

    1998-06-15

    Helium pressure of more than 2 MPa is a well known factor underlying pressure-dependent central neuroexcitatory disorders, referred to as the high-pressure neurological syndrome. This includes an increase in both serotonin (5-HT) and dopamine (DA) release. The relationship between the increase in 5-HT transmission produced by helium pressure and its effect on DA release has been clarified in a recent study, which have first demonstrated that the helium pressure-induced increase in DA release was dependent on some 5-HT receptor activation. In the present study, we examined in freely moving rats the role of 5-HT2A and 5-HT2C receptors in the increase in DA release induced by 8 MPa helium pressure. We used the 5-HT2A receptor antagonist ketanserin and the 5-HT2C receptor agonist m-CPP which have been demonstrated to reduce DA function. Because neither ketanserin is an ideal 5-HT2A receptor antagonist nor m-CPP an ideal 5-HT2C receptor agonist, additional experiments were made at normal pressure to check up on the selectivity of ketanserin and m-CPP for 5-HT2A and 5-HT2C receptors, respectively. Administration of m-CPP reduced both DA basal level and the helium pressure-induced increase in DA release, whereas administration of ketanserin only showed a little effect on the increase in DA release produced by high helium pressure. These results suggest that the 5-HT2C receptor, but not the 5-HT2A receptor, would play a crucial role in the helium pressure-induced increase in DA release. This further suggests that helium pressure may simultaneously induce an increase in 5-HT transmission at the level of 5-HT2A receptors and a decrease in 5-HT transmission at the level of 5-HT2C receptors.

  17. Variation in Dopamine D2 and Serotonin 5-HT2A Receptor Genes is Associated with Working Memory Processing and Response to Treatment with Antipsychotics

    PubMed Central

    Blasi, Giuseppe; Selvaggi, Pierluigi; Fazio, Leonardo; Antonucci, Linda Antonella; Taurisano, Paolo; Masellis, Rita; Romano, Raffaella; Mancini, Marina; Zhang, Fengyu; Caforio, Grazia; Popolizio, Teresa; Apud, Jose; Weinberger, Daniel R; Bertolino, Alessandro

    2015-01-01

    Dopamine D2 and serotonin 5-HT2A receptors contribute to modulate prefrontal cortical physiology and response to treatment with antipsychotics in schizophrenia. Similarly, functional variation in the genes encoding these receptors is also associated with these phenotypes. In particular, the DRD2 rs1076560 T allele predicts a lower ratio of expression of D2 short/long isoforms, suboptimal working memory processing, and better response to antipsychotic treatment compared with the G allele. Furthermore, the HTR2A T allele is associated with lower 5-HT2A expression, impaired working memory processing, and poorer response to antipsychotics compared with the C allele. Here, we investigated in healthy subjects whether these functional polymorphisms have a combined effect on prefrontal cortical physiology and related cognitive behavior linked to schizophrenia as well as on response to treatment with second-generation antipsychotics in patients with schizophrenia. In a total sample of 620 healthy subjects, we found that subjects with the rs1076560 T and rs6314 T alleles have greater fMRI prefrontal activity during working memory. Similar results were obtained within the attentional domain. Also, the concomitant presence of the rs1076560 T/rs6314 T alleles also predicted lower behavioral accuracy during working memory. Moreover, we found that rs1076560 T carrier/rs6314 CC individuals had better responses to antipsychotic treatment in two independent samples of patients with schizophrenia (n=63 and n=54, respectively), consistent with the previously reported separate effects of these genotypes. These results indicate that DRD2 and HTR2A genetic variants together modulate physiological prefrontal efficiency during working memory and also modulate the response to antipsychotics. Therefore, these results suggest that further exploration is needed to better understand the clinical consequences of these genotype–phenotype relationships. PMID:25563748

  18. Individual Differences in Impulsive Action Reflect Variation in the Cortical Serotonin 5-HT2A Receptor System

    PubMed Central

    Fink, Latham HL; Anastasio, Noelle C; Fox, Robert G; Rice, Kenner C; Moeller, F Gerard; Cunningham, Kathryn A

    2015-01-01

    Impulsivity is an important feature of multiple neuropsychiatric disorders, and individual variation in the degree of inherent impulsivity could play a role in the generation or exacerbation of problematic behaviors. Serotonin (5-HT) actions at the 5-HT2AR receptor (5-HT2AR) promote and 5-HT2AR antagonists suppress impulsive action (the inability to withhold premature responses; motor impulsivity) upon systemic administration or microinfusion directly into the medial prefrontal cortex (mPFC), a node in the corticostriatal circuit that is thought to play a role in the regulation of impulsive action. We hypothesized that the functional capacity of the 5-HT2AR, which is governed by its expression, localization, and protein/protein interactions (eg, postsynaptic density 95 (PSD95)), may drive the predisposition to inherent impulsive action. Stable high-impulsive (HI) and low-impulsive (LI) phenotypes were identified from an outbred rodent population with the 1-choice serial reaction time (1-CSRT) task. HI rats exhibited a greater head-twitch response following administration of the preferential 5-HT2AR agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) and were more sensitive to the effects of the selective 5-HT2AR antagonist M100907 to suppress impulsive action relative to LI rats. A positive correlation was observed between levels of premature responses and 5-HT2AR binding density in frontal cortex ([3H]-ketanserin radioligand binding). Elevated mPFC 5-HT2AR protein expression concomitant with augmented association of the 5-HT2AR with PSD95 differentiated HI from LI rats. The observed differential sensitivity of HI and LI rats to 5-HT2AR ligands and associated distinct 5-HT2AR protein profiles provide evidence that spontaneously occurring individual differences in impulsive action reflect variation in the cortical 5-HT2AR system. PMID:25666313

  19. Hallucinogen-like effects of N,N-dipropyltryptamine (DPT): possible mediation by serotonin 5-HT1A and 5-HT2A receptors in rodents

    PubMed Central

    Fantegrossi, William E.; Reissig, Chad J.; Katz, Elyse B.; Yarosh, Haley L.; Rice, Kenner C.; Winter, Jerrold C.

    2008-01-01

    N,N-dipropyltryptamine (DPT) is a synthetic tryptamine hallucinogen which has been used psychotherapeutically in humans, but has been studied preclinically only rarely. In the present studies, DPT was tested in a drug-elicited head twitch assay in mice, and in rats trained to discriminate lysergic acid diethylamide (LSD), N,N-dimethyl-4-phosphoryloxytryptamine (psilocybin), or 3,4-methylenedioxymethamphetamine (MDMA). A separate group of rats was also trained to recognize DPT itself as a discriminative stimulus, and in all cases, the behavioral effects of DPT were challenged with the selective serotonin (5-HT)2A antagonist M100907, the 5-HT1A selective antagonist WAY-100635, or their combination. In the head twitch assay, DPT elicited dose-dependent effects, producing a biphasic dose-effect curve. WAY-100635 produced a parallel rightward shift in the dose-effect curve for head twitches, indicative of surmountable antagonism, but the antagonist effects of M100907 were functionally insurmountable. DPT produced partial to full substitution when tested in rats trained to discriminate LSD, psilocybin or MDMA, and served as a discriminative stimulus. In all cases, the antagonist effects of M100907 were more profound than were those of WAY-100635. DPT is thus active in two rodent models relevant to 5-HT2 agonist activity. The effectiveness with which M100907 antagonizes the behavioral actions of this compound strongly suggests that the 5-HT2A receptor is an important site of action for DPT, but the modulatory actions of WAY-100635 also imply a 5-HT1A-mediated component to the actions of this compound. PMID:17905422

  20. Effects of serotonin (5-hydroxytryptamine, 5-HT) reuptake inhibition plus 5-HT(2A) receptor antagonism on the firing activity of norepinephrine neurons.

    PubMed

    Szabo, Steven T; Blier, Pierre

    2002-09-01

    YM992 [(S)-2-[[(7-fluoro-4-indanyl)oxy]methyl]morpholine monohydrochloride] is a selective serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibitor (SSRI) and a potent 5-HT(2A) antagonist. The aim of the present study was to assess, using in vivo extracellular unitary recordings, the effect of acute and sustained administration of YM992 (40 mg kg(-1) day(-1) s.c., using osmotic minipumps) on the spontaneous firing activity of locus coeruleus (LC) norepinephrine (NE) neurons. Acute intravenous injection of YM992 (4 mg kg(-1)) significantly decreased NE neuron firing activity by 29% and blocked the inhibitory effect of a subsequent injection of the 5-HT(2) agonist DOI [1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride]. A 2-day treatment with YM992 decreased the firing rate of NE neurons by 66%, whereas a partial recovery was observed after a 7-day treatment and a complete one after a 21-day treatment. Following the injection of the alpha(2)-adrenoceptor antagonist idazoxan (1 mg kg(-1) i.v.), NE neuron firing was equalized in controls and 2-day YM992-treated rats. This put into evidence an increased degree of activation of alpha(2)-adrenergic autoreceptors in the treated rats. The suppressant effect of the alpha(2)-adrenoceptor agonist clonidine was significantly decreased in long-term YM992-treated rats. The recovery of LC firing activity after long-term YM992 administration could thus be explained by a decreased sensitivity of alpha(2)-adrenergic autoreceptors. Sustained SSRI administration leads to a gradual reduction of the firing activity of NE neurons during long-term administration, whereas YM992 produced opposite effects. The exact basis for the increased synaptic availability of NE by YM992 remains to be elucidated. This NE activity, resulting from 5-HT reuptake inhibition plus 5-HT(2A) receptor antagonism, might confer additional benefits in affective and anxiety disorders.

  1. Potential Modes of Interaction of 9-Aminomethyl-9,10-dihydroanthracene (AMDA) Derivatives with the 5-HT2A Receptor: A Ligand Structure-Affinity Relationship, Receptor Mutagenesis and Receptor Modeling Investigation⊕

    PubMed Central

    Runyon, Scott P.; Mosier, Philip D.; Roth, Bryan L.; Glennon, Richard A.; Westkaemper, Richard B.

    2011-01-01

    The effects of 3-position substitution of 9-aminomethyl-9,10-dihydroanthracene (AMDA) on 5-HT2A receptor affinity were determined and compared to a parallel series of DOB-like 1-(2,5-dimethoxyphenyl)-2-aminopropanes substituted at the 4-position. The results were interpreted within the context of 5-HT2A receptor models that suggest that members of the DOB-like series can bind to the receptor in two distinct modes that correlate with the compounds’ functional activity. Automated ligand docking and molecular dynamics suggest that all of the AMDA derivatives, the parent of which is a 5-HT2A antagonist, bind in a fashion analogous to that for the sterically demanding antagonist DOB-like compounds. The failure of the F3406.52L mutation to adversely affect the affinity of AMDA and the 3-bromo derivative is consistent with the proposed modes of orientation. Evaluation of ligand-receptor complex models suggest that a valine/threonine exchange between the 5-HT2A and D2 receptors may be the origin of selectivity for AMDA and two substituted derivatives. PMID:18847250

  2. Potentiation of 5-methoxy-N,N-dimethyltryptamine-induced hyperthermia by harmaline and the involvement of activation of 5-HT1A and 5-HT2A receptors

    PubMed Central

    Jiang, Xi-Ling; Shen, Hong-Wu; Yu, Ai-Ming

    2014-01-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and harmaline are serotonin (5-HT) analogs often abused together, which alters thermoregulation that may indicate the severity of serotonin toxicity. Our recent studies have revealed that co-administration of monoamine oxidase inhibitor harmaline leads to greater and prolonged exposure to 5-HT agonist 5-MeO-DMT that might be influenced by cytochrome P450 2D6 (CYP2D6) status. This study was to define the effects of harmaline and 5-MeO-DMT on thermoregulation in wild-type and CYP2D6-humanized (Tg-CYP2D6) mice, as well as the involvement of 5-HT receptors. Animal core body temperatures were monitored noninvasively in the home cages after implantation of telemetry transmitters and administration of drugs. Harmaline (5 and 15 mg/kg, i.p.) alone was shown to induce hypothermia that was significantly affected by CYP2D6 status. In contrast, higher doses of 5-MeO-DMT (10 and 20 mg/kg) alone caused hyperthermia. Co-administration of harmaline (2, 5 or 15 mg/kg) remarkably potentiated the hyperthermia elicited by 5-MeO-DMT (2 or 10 mg/kg), which might be influenced by CYP2D6 status at certain dose combination. Interestingly, harmaline-induced hypothermia was only attenuated by 5-HT1A receptor antagonist WAY-100635, whereas 5-MeO-DMT- and harmaline-5-MeO-DMT-induced hyperthermia could be suppressed by either WAY-100635 or 5-HT2A receptor antagonists (MDL-100907 and ketanserin). Moreover, stress-induced hyperthermia under home cage conditions was not affected by WAY-100635 but surprisingly attenuated by MDL-100907 and ketanserin. Our results indicate that co-administration of monoamine oxidase inhibitor largely potentiates 5-MeO-DMT-induced hyperthermia that involves the activation of both 5-HT1A and 5-HT2A receptors. These findings shall provide insights into development of anxiolytic drugs and new strategies to relieve the lethal hyperthermia in serotonin toxicity. PMID:25446678

  3. Potentiation of 5-methoxy-N,N-dimethyltryptamine-induced hyperthermia by harmaline and the involvement of activation of 5-HT1A and 5-HT2A receptors.

    PubMed

    Jiang, Xi-Ling; Shen, Hong-Wu; Yu, Ai-Ming

    2015-02-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and harmaline are serotonin (5-HT) analogs often abused together, which alters thermoregulation that may indicate the severity of serotonin toxicity. Our recent studies have revealed that co-administration of monoamine oxidase inhibitor harmaline leads to greater and prolonged exposure to 5-HT agonist 5-MeO-DMT that might be influenced by cytochrome P450 2D6 (CYP2D6) status. This study was to define the effects of harmaline and 5-MeO-DMT on thermoregulation in wild-type and CYP2D6-humanized (Tg-CYP2D6) mice, as well as the involvement of 5-HT receptors. Animal core body temperatures were monitored noninvasively in the home cages after implantation of telemetry transmitters and administration of drugs. Harmaline (5 and 15 mg/kg, i.p.) alone was shown to induce hypothermia that was significantly affected by CYP2D6 status. In contrast, higher doses of 5-MeO-DMT (10 and 20 mg/kg) alone caused hyperthermia. Co-administration of harmaline (2, 5 or 15 mg/kg) remarkably potentiated the hyperthermia elicited by 5-MeO-DMT (2 or 10 mg/kg), which might be influenced by CYP2D6 status at certain dose combination. Interestingly, harmaline-induced hypothermia was only attenuated by 5-HT1A receptor antagonist WAY-100635, whereas 5-MeO-DMT- and harmaline-5-MeO-DMT-induced hyperthermia could be suppressed by either WAY-100635 or 5-HT2A receptor antagonists (MDL-100907 and ketanserin). Moreover, stress-induced hyperthermia under home cage conditions was not affected by WAY-100635 but surprisingly attenuated by MDL-100907 and ketanserin. Our results indicate that co-administration of monoamine oxidase inhibitor largely potentiates 5-MeO-DMT-induced hyperthermia that involves the activation of both 5-HT1A and 5-HT2A receptors. These findings shall provide insights into development of anxiolytic drugs and new strategies to relieve the lethal hyperthermia in serotonin toxicity.

  4. Serotonin 5-HT2A receptor binding in platelets from healthy subjects as studied by [3H]-lysergic acid diethylamide ([3H]-LSD): intra- and interindividual variability.

    PubMed

    Spigset, O; Mjörndal, T

    1997-04-01

    In studies on platelet 5-HT2A receptor binding in patients with neuropsychiatric disorders, there has been a marked variability and a considerable overlap of values between patients and controls. The causes of the large variability in 5-HT2A receptor parameters is still unsettled. In the present study, we have quantified the intra- and interindividual variability of platelet 5-HT2A receptor binding in 112 healthy subjects and explored factors that may influence 5-HT2A receptor binding, using [3H]-lysergic acid diethylamide as radioligand. Age, gender, blood pressure, and metabolic capacity of the liver enzymes CYP2D6 and CYP2C19 did not influence Bmax and Kd values. Body weight and body mass index (BMI) showed a negative correlation with Kd (p = .04 and .03, respectively), but not with Bmax. Bmax was significantly lower in the light half of the year than in the dark half of the year (p = .001), and Kd was significantly lower in the fall than in the summer and winter (p < .001). In females, there was a significant increase in Bmax from week 1 to week 2 of the menstrual cycle (p = .03). Females taking contraceptive pills had significantly higher Kd than drug-free females in weeks 1 and 4 of the menstrual cycle (p = .04). This study shows that a number of factors should be taken into account when using platelet 5-HT2A receptor binding in studies of neuropsychiatric disorders.

  5. Platelet 5-hydroxytryptamine (5-HT) transporter and 5-HT2A receptor binding after chronic hypercorticosteronemia, (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane administration or neurotoxin-induced depletion of central nervous system 5-HT in the rat.

    PubMed

    Owens, M J; Ballenger, C A; Knight, D L; Nemeroff, C B

    1996-09-01

    There is considerable evidence that the number of platelet 5-hydroxytryptamine (5-HT) transporter binding sites, as measured by [3H]imipramine binding, are significantly decreased, and platelet 5-HT2 receptor density is increased, in drug-free patients with major depression. To investigate whether these changes in the platelet 5-HT transporter or 5-HT2 receptor sites resulted from known or hypothesized biochemical changes observed in major depression, we examined, in the rat, whether a chronic hyperglucocorticoid state, or decreases or increases in central nervous system 5-HT neurotransmission, altered binding of the selective ligands [3H]citalopram and [125I] (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane to platelet and brain 5-HT transporters and 5-HT2 receptors, respectively. Chronic (6 weeks) hypercorticosteronemia did not alter either brain or platelet 5-HT transporter or 5-HT2A receptor binding. Similarly, 8-week administration of the 5-HT2A/5-HT2C agonist (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane, at a dose which down-regulates brain 5-HT2A/2C receptors, did not alter brain or platelet 5-HT transporters or platelet 5-HT2A receptors. Additionally, para-chloroamphetamine-(11 weeks) or fenfluramine-induced chronic (1.5-10 weeks) depletion of central nervous system 5-HT did not alter platelet 5-HT transporter or 5-HT2A receptor binding. Finally, there was no correlation between the number of 5-HT transporters in brain and platelets in any of the control or treatment groups. These findings suggest that the observed changes in platelet 5-HT transporter and 5-HT2A receptor binding in depressed patients are more apt to be of genetic origin (i.e., trait-dependent) rather than an epiphenomenon of hypercortisolemia or altered central nervous system 5-HT status.

  6. Cognitive Impairment Induced by Delta9-tetrahydrocannabinol Occurs through Heteromers between Cannabinoid CB1 and Serotonin 5-HT2A Receptors.

    PubMed

    Viñals, Xavier; Moreno, Estefanía; Lanfumey, Laurence; Cordomí, Arnau; Pastor, Antoni; de La Torre, Rafael; Gasperini, Paola; Navarro, Gemma; Howell, Lesley A; Pardo, Leonardo; Lluís, Carmen; Canela, Enric I; McCormick, Peter J; Maldonado, Rafael; Robledo, Patricia

    2015-07-01

    Activation of cannabinoid CB1 receptors (CB1R) by delta9-tetrahydrocannabinol (THC) produces a variety of negative effects with major consequences in cannabis users that constitute important drawbacks for the use of cannabinoids as therapeutic agents. For this reason, there is a tremendous medical interest in harnessing the beneficial effects of THC. Behavioral studies carried out in mice lacking 5-HT2A receptors (5-HT2AR) revealed a remarkable 5-HT2AR-dependent dissociation in the beneficial antinociceptive effects of THC and its detrimental amnesic properties. We found that specific effects of THC such as memory deficits, anxiolytic-like effects, and social interaction are under the control of 5-HT2AR, but its acute hypolocomotor, hypothermic, anxiogenic, and antinociceptive effects are not. In biochemical studies, we show that CB1R and 5-HT2AR form heteromers that are expressed and functionally active in specific brain regions involved in memory impairment. Remarkably, our functional data shows that costimulation of both receptors by agonists reduces cell signaling, antagonist binding to one receptor blocks signaling of the interacting receptor, and heteromer formation leads to a switch in G-protein coupling for 5-HT2AR from Gq to Gi proteins. Synthetic peptides with the sequence of transmembrane helices 5 and 6 of CB1R, fused to a cell-penetrating peptide, were able to disrupt receptor heteromerization in vivo, leading to a selective abrogation of memory impairments caused by exposure to THC. These data reveal a novel molecular mechanism for the functional interaction between CB1R and 5-HT2AR mediating cognitive impairment. CB1R-5-HT2AR heteromers are thus good targets to dissociate the cognitive deficits induced by THC from its beneficial antinociceptive properties.

  7. Cognitive Impairment Induced by Delta9-tetrahydrocannabinol Occurs through Heteromers between Cannabinoid CB1 and Serotonin 5-HT2A Receptors

    PubMed Central

    Lanfumey, Laurence; Cordomí, Arnau; Pastor, Antoni; de La Torre, Rafael; Gasperini, Paola; Navarro, Gemma; Howell, Lesley A.; Pardo, Leonardo; Lluís, Carmen; Canela, Enric I.; McCormick, Peter J.; Maldonado, Rafael; Robledo, Patricia

    2015-01-01

    Activation of cannabinoid CB1 receptors (CB1R) by delta9-tetrahydrocannabinol (THC) produces a variety of negative effects with major consequences in cannabis users that constitute important drawbacks for the use of cannabinoids as therapeutic agents. For this reason, there is a tremendous medical interest in harnessing the beneficial effects of THC. Behavioral studies carried out in mice lacking 5-HT2A receptors (5-HT2AR) revealed a remarkable 5-HT2AR-dependent dissociation in the beneficial antinociceptive effects of THC and its detrimental amnesic properties. We found that specific effects of THC such as memory deficits, anxiolytic-like effects, and social interaction are under the control of 5-HT2AR, but its acute hypolocomotor, hypothermic, anxiogenic, and antinociceptive effects are not. In biochemical studies, we show that CB1R and 5-HT2AR form heteromers that are expressed and functionally active in specific brain regions involved in memory impairment. Remarkably, our functional data shows that costimulation of both receptors by agonists reduces cell signaling, antagonist binding to one receptor blocks signaling of the interacting receptor, and heteromer formation leads to a switch in G-protein coupling for 5-HT2AR from Gq to Gi proteins. Synthetic peptides with the sequence of transmembrane helices 5 and 6 of CB1R, fused to a cell-penetrating peptide, were able to disrupt receptor heteromerization in vivo, leading to a selective abrogation of memory impairments caused by exposure to THC. These data reveal a novel molecular mechanism for the functional interaction between CB1R and 5-HT2AR mediating cognitive impairment. CB1R-5-HT2AR heteromers are thus good targets to dissociate the cognitive deficits induced by THC from its beneficial antinociceptive properties. PMID:26158621

  8. A new class of arylpiperazine derivatives: the library synthesis on SynPhase lanterns and biological evaluation on serotonin 5-HT(1A) and 5-HT(2A) receptors.

    PubMed

    Zajdel, Paweł; Subra, Gilles; Bojarski, Andrzej J; Duszyńska, Beata; Pawłowski, Maciej; Martinez, Jean

    2004-01-01

    An efficient solid-supported method for the synthesis of a new class of arylpiperazine derivatives containing amino acid residues has been developed. A 72-membered library was synthesized on SynPhase Lanterns functionalized by a BAL linker. A one-pot cleavage/cyclization step of aspartic and glutamic acid derivatives yielded succinimide- and pyroglutamyl-containing ligands (chemsets 9 and 10). The library representatives under study showed different levels of affinity for 5-HT(1A) and 5-HT(2A) receptors (estimated K(i) = 24-4000 and 1-2130 nM, respectively). Several dual 5-HT(1A)/5-HT(2A) ligands were found, of which two (9(3,3) and 9(3,5)) displayed high 5-HT(2A) affinity comparable to that of the reference drug ritanserin. A set of individual fragment contributions for the prediction of 5-HT(1A) and 5-HT(2A) affinity of all the library members were defined on the basis of the Free-Wilson analysis of 26 compounds. An alkylarylpiperazine fragment had essentially the same impact on the affinity for both receptors, whereas different terminal amide fragments were preferred by 5-HT(1A) (chemset 17, R(2) = adamantyl) and 5-HT(2A) (chemset 9, R(2) = norborn-2-ylmethyl) binding sites.

  9. Antidepressant-like activity of Tagetes lucida Cav. is mediated by 5-HT(1A) and 5-HT(2A) receptors.

    PubMed

    Bonilla-Jaime, H; Guadarrama-Cruz, G; Alarcon-Aguilar, F J; Limón-Morales, O; Vazquez-Palacios, G

    2015-10-01

    It has been demonstrated that the aqueous extract of Tagetes lucida Cav. shows an antidepressant-like effect on the forced swimming test (FST) in rats. The aim of this study was to analyze the participation of the serotoninergic system in the antidepressant-like effect of the aqueous extract of T. lucida. Different doses of the extract of T. lucida were administered at 72, 48, 24, 18 and 1 h before FST. The animals were pretreated with a 5-HT1A receptor antagonist (WAY-100635, 0.5 mg/kg), a 5-HT2A receptor antagonist (ketanserin, 5 mg/kg), a β-noradrenergic receptor antagonist (propranolol, 200 mg/kg), and with a α2-noradrenergic receptor antagonist (yohimbine, 1 mg/kg) alone or combined with the extract and pretreated with a serotonin synthesis inhibitor (PCPA) before treatment with 8-OH-DPAT + the extract of T. lucida. In addition, suboptimal doses of the 5-HT1A agonist (8-OH-DPAT) + non-effective dose of extract was analyzed in the FST. To determine the presence of flavonoids, the aqueous extract of T. lucida (20 µl, 4 mg/ml) was injected in HPLC; however, a quercetin concentration of 7.72 mg/g of extract weight was detected. A suboptimal dose of 8-OH-DPAT + extract of T. lucida decreased immobility and increased swimming and climbing. An antidepressant-like effect with the aqueous extract of T. lucida at doses of 100 and 200 mg/kg was observed on the FST with decreased immobility behavior and increased swimming; however, this effect was blocked by WAY-100635, ketanserin and PCPA but not by yohimbine and propranolol, suggesting that the extract of T. lucida could be modulating the release/reuptake of serotonin.

  10. Cognition-induced modulation of serotonin in the orbitofrontal cortex: a controlled cross-over PET study of a delayed match-to-sample task using the 5-HT2a receptor antagonist [18F]altanserin.

    PubMed

    Hautzel, Hubertus; Müller, Hans-Wilhelm; Herzog, Hans; Grandt, Rüdiger

    2011-10-01

    Behavioral and cellular studies indicate that serotonin interacting with the 5-HT2a receptor (5-HT2aR) is involved in cognitive processes supporting working memory (WM). However, 5-HT receptor neuroimaging studies directly relating WM-induced neuronal activations to concomitant changes in the availability of 5-HT receptors as a functional measure for serotonin release are lacking. This controlled cross-over PET study aimed to identify brain regions with WM-induced changes in the binding potential (BP(nd)) of the 5-HT2aR antagonist [(18)F]altanserin. Ten young males underwent a delayed match-to-sample task using photographs of faces and a control task. The BP(nd)s for both conditions were calculated by applying Ichise's noninvasive plot. Statistics were performed with the SPM toolbox statistical nonparametric mapping (SnPM3) particularly suited for analyzing whole-brain PET data in an exploratory way. A higher BP(nd) for [(18)F]altanserin during WM versus control was found in the orbitofrontal cortex (OFC) pointing towards an increased [(18)F]altanserin/5-HT2aR interaction in OFC while BP(nd) decreases during WM were not found. Furthermore, no BP(nd) changes in regions known from functional neuroimaging studies to be more specifically involved in WM were identified. These findings may suggest that the increased [(18)F]altanserin BP(nd) under WM challenge and hence the increased availability of 5-HT2aR reflects a decrease in local OFC serotonin. As the OFC plays a prominent role in decision-making and supports cognitive processes related to the central executive functions of WM it might be modulated by the serotoninergic system via the 5-HT2aR in order to support and optimize basic cognitive functions.

  11. Examination of the hippocampal contribution to serotonin 5-HT2A receptor-mediated facilitation of object memory in C57BL/6J mice.

    PubMed

    Zhang, Gongliang; Cinalli, David; Cohen, Sarah J; Knapp, Kristina D; Rios, Lisa M; Martínez-Hernández, José; Luján, Rafael; Stackman, Robert W

    2016-10-01

    The rodent hippocampus supports non-spatial object memory. Serotonin 5-HT2A receptors (5-HT2AR) are widely expressed throughout the hippocampus. We previously demonstrated that the activation of 5-HT2ARs enhanced the strength of object memory assessed 24 h after a limited (i.e., weak memory) training procedure. Here, we examined the subcellular distribution of 5-HT2ARs in the hippocampal CA1 region and underlying mechanisms of 5-HT2AR-mediated object memory consolidation. Analyses with immuno-electron microscopy revealed the presence of 5-HT2ARs on the dendritic spines and shafts of hippocampal CA1 neurons, and presynaptic terminals in the CA1 region. In an object recognition memory procedure that places higher demand on the hippocampus, only post-training systemic or intrahippocampal administration of the 5-HT2AR agonist TCB-2 enhanced object memory. Object memory enhancement by TCB-2 was blocked by the 5-HT2AR antagonist, MDL 11,937. The memory-enhancing dose of systemic TCB-2 increased extracellular glutamate levels in hippocampal dialysate samples, and increased the mean in vivo firing rate of hippocampal CA1 neurons. In summary, these data indicate a pre- and post-synaptic distribution of 5-HT2ARs, and activation of 5-HT2ARs selectively enhanced the consolidation of object memory, without affecting encoding or retrieval. The 5-HT2AR-mediated facilitation of hippocampal memory may be associated with an increase in hippocampal neuronal firing and glutamate efflux during a post-training time window in which recently encoded memories undergo consolidation.

  12. 5-HT2A/C receptors do not mediate the attenuation of compulsive checking by mCPP in the quinpirole sensitization rat model of obsessive-compulsive disorder (OCD).

    PubMed

    Tucci, Mark C; Dvorkin-Gheva, Anna; Johnson, Eric; Wong, Michael; Szechtman, Henry

    2015-02-15

    There is emerging evidence for a dopamine (DA)-serotonin (5-HT) interaction underlying obsessive-compulsive disorder (OCD). In the quinpirole sensitization rat model of OCD, compulsive checking is induced by chronic treatment with the DA agonist quinpirole, and is attenuated by the 5-HT agonist drug mCPP. However, mCPP has affinity for a number of 5-HT receptor subtypes, and it is unknown by which receptors mCPP exerts its effects on quinpirole-treated animals. The present study tested in rats whether mCPP activity at 5-HT2A/C receptors mediates the attenuation of compulsive checking in quinpirole-treated animals. Rats were chronically treated with quinpirole on the open field for the induction of compulsive checking. Following the induction phase, animals were treated with mCPP (1.25 mg/kg) and the selective 5-HT2A/C receptor antagonist ritanserin (1 mg/kg or 5 mg/kg) to test whether blockade of 5-HT2A/C receptors inhibits attenuation of checking by mCPP. Results showed that as expected, quinpirole induced compulsive checking, and mCPP reduced its performance. However, 5-HT2A/C receptor blockade by ritanserin did not inhibit the attenuation of compulsive checking by mCPP. These results suggest that the reduction in compulsive checking by mCPP is not mediated by activity at 5-HT2A/C receptors, but by another receptor subtype.

  13. Effects of olanzapine and betahistine co-treatment on serotonin transporter, 5-HT2A and dopamine D2 receptor binding density.

    PubMed

    Lian, Jiamei; Huang, Xu-Feng; Pai, Nagesh; Deng, Chao

    2013-12-02

    Olanzapine is widely used in treating multiple domains of schizophrenia symptoms but induces serious metabolic side-effects. Recent evidence has showed that co-treatment of betahistine (a histaminergic H1 receptor agonist and H3 receptor antagonist) is effective for preventing olanzapine-induced weight gain/obesity, however it is not clear whether this co-treatment affects on the primary therapeutic receptor binding sites of olanzapine such as serotonergic 5-HT2A receptors (5-HT2AR) and dopaminergic D2 receptors (D2R). Therefore, this study investigated the effects of this co-treatment on 5-HT2AR, 5-HT transporter (5-HTT) and D2R bindings in various brain regions involved in antipsychotic efficacy. Female Sprague Dawley rats were administered orally (t.i.d.) with either olanzapine (1mg/kg), betahistine (2.7 mg/kg), olanzapine plus betahistine (O+B), or vehicle (control) for 2 weeks. Quantitative autoradiography was used to detect the density of [(3)H]ketanserin, [(3)H]paroxetine and [(3)H]raclopride binding site to 5-HT2AR, 5-HTT and D2R. Compared to the controls, olanzapine significantly decreased [(3)H]ketanserin bindings to 5-HT2AR in the prefrontal cortex, cingulate cortex, and nucleus accumbens. Similar changes in 5-HT2AR bindings in these nuclei were also observed in the O+B co-treatment group. Olanzapine also significantly decreased [(3)H]paroxetine binding to 5-HTT in the ventral tegmental area and substantia nigra, however, both olanzapine only and O+B co-treatment did not affect [(3)H]raclopride binding to D2R. The results confirmed the important role of 5-HT2AR in the efficacy of olanzapine, which is not influenced by the O+B co-treatment. Therefore, betahistine co-treatment would be an effective combination therapy to reduce olanzapine-induced weight gain side-effects without affecting olanzapine's actions on 5-HT2AR transmissions.

  14. Responding for a conditioned reinforcer, and its enhancement by nicotine, is blocked by dopamine receptor antagonists and a 5-HT(2C) receptor agonist but not by a 5-HT(2A) receptor antagonist.

    PubMed

    Guy, Elizabeth Glenn; Fletcher, Paul J

    2014-10-01

    An aspect of nicotine reinforcement that may contribute to tobacco addiction is the effect of nicotine to enhance the motivational properties of reward-associated cues, or conditioned stimuli (CSs). Several studies have now shown that nicotine enhances responding for a stimulus that has been paired with a natural reinforcer. This effect of nicotine to enhance responding for a conditioned reinforcer is likely due to nicotine-induced enhancements in mesolimbic dopaminergic activity, but this has not been directly assessed. In this study, we assessed roles for dopamine (DA) D1 or D2 receptors, and two serotonin (5-HT) receptor subtypes known to modulate DA activity, the 5-HT2C or 5-HT2A subtypes, on nicotine-enhanced responding for a conditioned reinforcer. Water-restricted rats were exposed to Pavlovian conditioning sessions, where a CS was paired with water delivery. Then, in a second phase, animals were required to perform a novel, lever-pressing response for presentations of the CS as a conditioned reinforcer. Nicotine (0.4 mg/kg) enhanced responding for the conditioned reinforcer. To examine potential roles for dopamine (DA) and serotonin (5-HT) receptors in this effect, separate groups of animals were used to assess the impact of administering the D1 receptor antagonist SCH 23390, D2 receptor antagonist eticlopride, 5-HT2C receptor agonist Ro 60-0175, or 5-HT2A receptor antagonist M100907 on nicotine-enhanced responding for conditioned reinforcement. SCH 23390, eticlopride, and Ro 60-0175 all reduced responding for conditioned reinforcement, and the ability of nicotine to enhance this effect. M100907 did not alter this behavior. Together, these studies indicate that DA D1 and D2 receptors, but not 5-HT2A receptors, contribute to the effect of nicotine to enhance responding for a conditioned reinforcer. This effect can also be modulated by 5-HT2C receptor activation.

  15. Evaluation of 5-HT2A and mGlu2/3 receptors in postmortem prefrontal cortex of subjects with major depressive disorder: effect of antidepressant treatment.

    PubMed

    Muguruza, Carolina; Miranda-Azpiazu, Patricia; Díez-Alarcia, Rebeca; Morentin, Benito; González-Maeso, Javier; Callado, Luis F; Meana, J Javier

    2014-11-01

    Several studies have demonstrated alterations in serotonin 5-HT2A (5-HT2AR) and glutamate metabotropic mGlu2 (mGlu2R) receptors in depression, but never in the same sample population. Recently it has been shown that both receptors form a functional receptor heterocomplex that is altered in schizophrenia. The present study evaluates the gene expression and protein density of 5-HT2AR and mGlu2/3R in the postmortem prefrontal cortex of subjects with major depressive disorder (n = 14) compared with control subjects (n = 14) in a paired design. No significant differences between subjects with depression and controls in the relative mRNA levels of the genes HTR2A, GRM2 and GRM3 were observed. The 5-HT2AR density evaluated by [(3)H]ketanserin binding was significantly lower in antidepressant-treated subjects (Bmax = 313 ± 17 fmol/mg protein; p < 0.05) compared to controls (Bmax = 360 ± 12 fmol/mg protein) but not in antidepressant-free subjects (Bmax = 394 ± 16 fmol/mg protein; p > 0.05). In rats, chronic treatment with citalopram (10 mg/kg/day) and mirtazapine (5 mg/kg/day) decreased mRNA expression and 5-HT2AR density whereas reboxetine (20 mg/kg/day) modified only mRNA expression. The mGlu2/3R density evaluated by [(3)H]LY341495 binding was not significantly different between depression and control subjects. The present results demonstrate no changes in expression and density of both 5-HT2AR and mGlu2/3R in the postmortem prefrontal cortex of subjects with major depressive disorder under basal conditions. However, antidepressant treatment induces a decrease in 5-HT2AR density. This finding suggests that 5-HT2AR down-regulation may be a mechanism for antidepressant effect.

  16. Enhanced responsivity of 5-HT2A receptors at warm ambient temperatures is responsible for the augmentation of the 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI)-induced hyperthermia

    PubMed Central

    Zhang, Gongliang; Tao, Rui

    2011-01-01

    Warm ambient temperature facilitates hyperthermia and other neurotoxic responses elicited by psychogenic drugs such as MDMA and methamphetamine. However, little is known about the neural mechanism underlying such effects. In the present study, we tested the hypothesis that a warm ambient temperature may enhance the responsivity of 5-HT2A receptors in the central nervous system and thereafter cause an augmented response to 5-HT2A receptor agonists. This hypothesis was tested by measuring changes in body-core temperature in response to the 5-HT2A receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) administered at four different ambient temperature levels: 12 °C (cold), 22 °C (standard), 27 °C (thermoneutral zone) and 32 °C (warm). It was found that DOI only evoked a small increase in body-core temperature at the standard (22 °C) or thermoneutral ambient temperature (27 °C). In contrast, there was a large increase in body-core temperature when the experiments were conducted at the warmer ambient temperature (32 °C). Interestingly, the effect of DOI at the cold ambient temperature of 12 °C was significantly reduced. Moreover, the ambient temperature-dependent response to DOI was completely blocked by pretreatment with the 5-HT2A receptor antagonist ketanserin. Taken together, these findings support the hypothesis that 5-HT2A receptors may be responsible for some neurotoxic effects of psychogenic drugs in the central nervous system, the activity of which is functionally inhibited at cold but enhanced at warm ambient temperature in contrast to that at standard experimental conditions. PMID:21172407

  17. Differences in the C-terminus contribute to variations in trafficking between rat and human 5-HT(2A) receptor isoforms: identification of a primate-specific tripeptide ASK motif that confers GRK-2 and beta arrestin-2 interactions.

    PubMed

    Bhattacharya, Aditi; Sankar, Shobhana; Panicker, Mitradas M

    2010-02-01

    Internalization and recycling of G-protein coupled receptors are important cellular processes regulating receptor function. These are receptor-subtype and cell type-specific. Although important, trafficking variations between receptor isoforms of different species has received limited attention. We report here, differences in internalization and recycling between rat and human serotonin 2A receptor (5-HT(2A)R) isoforms expressed in human embryonic kidney 293 cells in response to serotonin. Although the human and rat 5-HT(2A)Rs differ by only a few amino acids, the human receptor takes longer to recycle to the cell surface after internalization, with the additional involvement of beta arrestin-2 and G-protein receptor kinase 2. The interaction of beta arrestin-2 with the human receptor causes the delay in recycling and is dependent on a primate-specific ASK motif present in the C-terminus of the receptor. Conversion of this motif to NCT, the corresponding sequence present in the rat isoform, results in the human isoform trafficking like the rat receptor. Replacing the serine 457 with alanine in the ASK motif of human isoform resulted in faster recycling, although with continued arrestin-dependent internalization. This study establishes significant differences between the two isoforms with important implications in our understanding of the human 5-HT(2A)R functions; and indicates that extrapolating results from non-human receptor isoforms to human subtypes is not without caveats.

  18. Stress and withdrawal from d-amphetamine alter 5-HT2A receptor mRNA expression in the prefrontal cortex.

    PubMed

    Murray, Ryan C; Hebbard, John C; Logan, Anna S; Vanchipurakel, Golda A; Gilbert, Yamiece E; Horner, Kristen A

    2014-01-24

    Psychostimulant withdrawal results in emotional, behavioral, and cognitive impairments, which may be exacerbated by stress. However, little is known about the neurochemical changes that occur when these two conditions are experienced concomitantly. 5-HT2A receptor (5-HT2AR) mRNA expression in the prefrontal cortex (PFC) is diminished following withdrawal from d-amphetamine (AMPH) and may underlie the emotional and cognitive impairments observed in psychostimulant withdrawal, but whether stress affects 5-HT2AR mRNA expression during psychostimulant withdrawal is unknown. The goal of this study was to examine the impact of forced swim test (FST) exposure during AMPH withdrawal on 5-HT2AR mRNA expression in PFC. Animals were treated 3 times a day for 4 days with escalating doses of AMPH (1-10mg/kg) and 24h or 4 days after the final injection, animals were subjected to FST. At 24h of withdrawal, AMPH-treated animals showed greater immobility in FST and at 4 days of withdrawal, AMPH-treated animals did not show immobility. At 24h of withdrawal, animals showed lower 5-HT2AR mRNA expression in the PFC relative to saline-treated animals, and exposure to FST did not further decrease expression in these animals. At 4 days of withdrawal, AMPH-treated animals showed greater 5-HT2AR mRNA expression relative to saline-treated animals in the PFC, an effect that was diminished by exposure to FST. These data indicate that stress and short-term AMPH withdrawal affect prefrontal 5-HT2AR mRNA expression to a similar degree, and stress experienced during long-term AMPH withdrawal can diminish the recovery of 5-HT2AR mRNA expression. Together, these data suggest that exposure to stress during extended AMPH withdrawal could prolong withdrawal-induced, 5-HT2AR mRNA expression which could be related to 5-HT2AR mediated deficits.

  19. Polymorphism of the 5-HT2A Receptor Gene: Association with Stress-Related Indices in Healthy Middle-Aged Adults

    PubMed Central

    Fiocco, Alexandra J.; Joober, Ridha; Poirier, Judes; Lupien, Sonia

    2007-01-01

    Past research has concentrated on the stress system and personality in order to explain the variance found in cognitive performance in old age. A growing body of research is starting to focus on genetic polymorphism as an individual difference factor to explain the observed heterogeneity in cognitive function. While the functional mechanism is still under investigation, polymorphism of the 5-HT2A receptor gene (−1438A/G) has been linked to certain behavioral and physiological outcomes, including cortisol secretion, the expression of certain personality traits, and memory performance. It was the goal of the present study to investigate the association between the −1438A/G polymorphism and stress hormone secretion, stress-related psychological measures, and cognitive performance in a group of adults between the ages of 50 and 65. To examine these associations, 101 middle-aged adults were recruited, completed a battery of psychological questionnaires and were administered a battery of cognitive tasks that assess frontal lobe and hippocampal function. Basal and stress-reactive salivary cortisol levels were collected, at home and in the laboratory. Analyses on psychological measures showed that participants with the GG genotype reported significantly higher levels of neuroticism compared to the AG group and higher levels of depression and more emotion-based coping strategies compared to both the AG and AA group. In terms of cortisol secretion, the AA genotype was related to a significantly higher awakening cortisol response (ACR) compared to the AG and GG group and the GG genotype group displayed a greater increase in cortisol secretion following a psychosocial stressor compared to the two other groups. On measures of cognitive performance, the AA genotype group performed significantly better on a test of declarative memory and selective attention compared to the other two groups. Together, these results suggest that carriers of the GG genotype are more susceptible

  20. Extended characterisation of the serotonin 2A (5-HT2A) receptor-selective PET radiotracer 11C-MDL100907 in humans: quantitative analysis, test-retest reproducibility, and vulnerability to endogenous 5-HT tone

    PubMed Central

    Talbot, Peter S.; Slifstein, Mark; Hwang, Dah-Ren; Huang, Yiyun; Scher, Erica; Abi-Dargham, Anissa; Laruelle, Marc

    2011-01-01

    Introduction scanning properties and analytic methodology of the 5-HT2A receptor-selective positron emission tomography (PET) tracer 11C-MDL100907 have been partially characterised in previous reports. We present an extended characterisation in healthy human subjects. Methods 64 11C-MDL100907 PET scans with metabolite-corrected arterial input function were performed in 39 healthy adults (18–55 yr). 12 subjects were scanned twice (duration 150 min) to provide data on plasma analysis, model order estimation, and stability and test-retest characteristics of outcome measures. All other scans were 90 min duration. 3 subjects completed scanning at baseline and following 5-HT2A receptor antagonist medication (risperidone or ciproheptadine) to provide definitive data on the suitability of the cerebellum as reference region. 10 subjects were scanned under reduced 5-HT and control conditions using rapid tryptophan depletion to investigate vulnerability to competition with endogenous 5-HT. 13 subjects were scanned as controls in clinical protocols. Pooled data were used to analyze the relationship between tracer injected mass and receptor occupancy, and age-related decline in 5-HT2A receptors. Results optimum analytic method was a 2-tissue compartment model with arterial input function. However, basis function implementation of SRTM may be suitable for measuring between-group differences non-invasively and warrants further investigation. Scan duration of 90 minutes achieved stable outcome measures in all cortical regions except orbitofrontal which required 120 minutes. Binding potential (BPP and BPND) test-retest variability was very good (7–11%) in neocortical regions other than orbitofrontal, and moderately good (14–20%) in orbitofrontal cortex and medial temporal lobe. Saturation occupancy of 5-HT2A receptors by risperidone validates the use of the cerebellum as a region devoid of specific binding for the purposes of PET. We advocate a mass limit of 4.6 µg to remain

  1. Blonanserin Ameliorates Phencyclidine-Induced Visual-Recognition Memory Deficits: the Complex Mechanism of Blonanserin Action Involving D3-5-HT2A and D1-NMDA Receptors in the mPFC

    PubMed Central

    Hida, Hirotake; Mouri, Akihiro; Mori, Kentaro; Matsumoto, Yurie; Seki, Takeshi; Taniguchi, Masayuki; Yamada, Kiyofumi; Iwamoto, Kunihiro; Ozaki, Norio; Nabeshima, Toshitaka; Noda, Yukihiro

    2015-01-01

    Blonanserin differs from currently used serotonin 5-HT2A/dopamine-D2 receptor antagonists in that it exhibits higher affinity for dopamine-D2/3 receptors than for serotonin 5-HT2A receptors. We investigated the involvement of dopamine-D3 receptors in the effects of blonanserin on cognitive impairment in an animal model of schizophrenia. We also sought to elucidate the molecular mechanism underlying this involvement. Blonanserin, as well as olanzapine, significantly ameliorated phencyclidine (PCP)-induced impairment of visual-recognition memory, as demonstrated by the novel-object recognition test (NORT) and increased extracellular dopamine levels in the medial prefrontal cortex (mPFC). With blonanserin, both of these effects were antagonized by DOI (a serotonin 5-HT2A receptor agonist) and 7-OH-DPAT (a dopamine-D3 receptor agonist), whereas the effects of olanzapine were antagonized by DOI but not by 7-OH-DPAT. The ameliorating effect was also antagonized by SCH23390 (a dopamine-D1 receptor antagonist) and H-89 (a protein kinase A (PKA) inhibitor). Blonanserin significantly remediated the decrease in phosphorylation levels of PKA at Thr197 and of NR1 (an essential subunit of N-methyl-D-aspartate (NMDA) receptors) at Ser897 by PKA in the mPFC after a NORT training session in the PCP-administered mice. There were no differences in the levels of NR1 phosphorylated at Ser896 by PKC in any group. These results suggest that the ameliorating effect of blonanserin on PCP-induced cognitive impairment is associated with indirect functional stimulation of the dopamine-D1-PKA-NMDA receptor pathway following augmentation of dopaminergic neurotransmission due to inhibition of both dopamine-D3 and serotonin 5-HT2A receptors in the mPFC. PMID:25120077

  2. Serotonin 5-HT2A but not 5-HT2C receptor antagonism reduces hyperlocomotor activity induced in dopamine-depleted rats by striatal administration of the D1 agonist SKF 82958.

    PubMed

    Bishop, Christopher; Daut, Gregory S; Walker, Paul D

    2005-09-01

    While recent work has indicated that D1 receptor agonist-induced hyperlocomotion in DA-depleted rats is reduced by striatal 5-HT2 receptor antagonism, the 5-HT receptor(s) subtypes mediating these effects are not yet known. In the present study, we examined the influence(s) of striatal 5-HT2A and 5-HT2C receptors on locomotor behavior induced by D1 agonism in neonatal DA-depleted rats. On postnatal day 3, male Sprague-Dawley rats (n=68) were treated with either vehicle or 6-hydroxydopamine (6-OHDA; 60 microg) which produced >98% DA depletion. Sixty days later, all rats were fitted with bilateral striatal cannulae. A subset of control and 6-OHDA-lesioned rats (n=20) was tested for locomotor responses to striatal infusion of the D1 agonist SKF 82958 (0, 0.1, 1.0, 10 microg/side). The remaining rats (n=48) were tested for locomotor responses to intrastriatal SKF 82958 (2.0 microg/side) alone or in combination with the 5-HT2A- or 5-HT2C-preferring antagonists M100907 or RS102221 (0.1 or 1.0 microg/side), respectively. Intrastriatal SKF 82958 dose-dependently increased measures of motor activity within DA-depleted rats. This hyperlocomotor activity was suppressed by co-infusion of M100907, but not RS102221. These results indicate that DA depletion strengthens striatal 5-HT2A/D1 receptor interactions and suggest that 5-HT2A receptor antagonists may prove useful in reducing D1-related movements.

  3. Effects of the 5-HT2C receptor agonist Ro60-0175 and the 5-HT2A receptor antagonist M100907 on nicotine self-administration and reinstatement.

    PubMed

    Fletcher, Paul J; Rizos, Zoë; Noble, Kevin; Soko, Ashlie D; Silenieks, Leo B; Lê, Anh Dzung; Higgins, Guy A

    2012-06-01

    The reinforcing effects of nicotine are mediated in part by brain dopamine systems. Serotonin, acting via 5-HT(2A) and 5-HT(2C) receptors, modulates dopamine function. In these experiments we examined the effects of the 5-HT(2C) receptor agonist Ro60-0175 and the 5-HT(2A) receptor antagonist (M100907, volinanserin) on nicotine self-administration and reinstatement of nicotine-seeking. Male Long-Evans rats self-administered nicotine (0.03 mg/kg/infusion, IV) on either a FR5 or a progressive ratio schedule of reinforcement. Ro60-0175 reduced responding for nicotine on both schedules. While Ro60-0175 also reduced responding for food reinforcement, response rates under drug treatment were several-fold higher than in animals responding for nicotine. M100907 did not alter responding for nicotine, or food, on either schedule. In tests of reinstatement of nicotine-seeking, rats were first trained to lever press for IV infusions of nicotine; each infusion was also accompanied by a compound cue consisting of a light and tone. This response was then extinguished over multiple sessions. Injecting rats with a nicotine prime (0.15 mg/kg) reinstated responding; reinstatement was also observed when responses were accompanied by the nicotine associated cue. Ro60-0175 attenuated reinstatement of responding induced by nicotine and by the cue. The effects of Ro60-0175 on both forms of reinstatement were blocked by the 5-HT(2C) receptor antagonist SB242084. M100907 also reduced reinstatement induced by either the nicotine prime or by the nicotine associated cue. The results indicate that 5-HT(2C) and 5-HT(2A) receptors may be potential targets for therapies to treat some aspects of nicotine dependence.

  4. Targeting dopamine D3 and serotonin 5-HT1A and 5-HT2A receptors for developing effective antipsychotics: synthesis, biological characterization, and behavioral studies.

    PubMed

    Brindisi, Margherita; Butini, Stefania; Franceschini, Silvia; Brogi, Simone; Trotta, Francesco; Ros, Sindu; Cagnotto, Alfredo; Salmona, Mario; Casagni, Alice; Andreassi, Marco; Saponara, Simona; Gorelli, Beatrice; Weikop, Pia; Mikkelsen, Jens D; Scheel-Kruger, Jorgen; Sandager-Nielsen, Karin; Novellino, Ettore; Campiani, Giuseppe; Gemma, Sandra

    2014-11-26

    Combination of dopamine D3 antagonism, serotonin 5-HT1A partial agonism, and antagonism at 5-HT2A leads to a novel approach to potent atypical antipsychotics. Exploitation of the original structure-activity relationships resulted in the identification of safe and effective antipsychotics devoid of extrapyramidal symptoms liability, sedation, and catalepsy. The potential atypical antipsychotic 5bb was selected for further pharmacological investigation. The distribution of c-fos positive cells in the ventral striatum confirmed the atypical antipsychotic profile of 5bb in agreement with behavioral rodent studies. 5bb administered orally demonstrated a biphasic effect on the MK801-induced hyperactivity at dose levels not able to induce sedation, catalepsy, or learning impairment in passive avoidance. In microdialysis studies, 5bb increased the dopamine efflux in the medial prefrontal cortex. Thus, 5bb represents a valuable lead for the development of atypical antipsychotics endowed with a unique pharmacological profile for addressing negative symptoms and cognitive deficits in schizophrenia.

  5. Assessment of the roles of serines 5.43(239) and 5.46(242) for binding and potency of agonist ligands at the human serotonin 5-HT2A receptor.

    PubMed

    Braden, Michael R; Nichols, David E

    2007-11-01

    We assessed the relative importance of two serine residues located near the top of transmembrane helix 5 of the human 5-HT(2A) receptor, comparing the wild type with S5.43(239)A or S5.46(242)A mutations. Using the ergoline lysergic acid diethylamide (LSD), and a series of substituted tryptamine and phenethylamine 5-HT(2A) receptor agonists, we found that Ser5.43(239) is more critical for agonist binding and function than Ser5.46(242). Ser5.43(239) seems to engage oxygen substituents at either the 4- or 5-position of tryptamine ligands and the 5-position of phenylalkylamine ligands. Even when a direct binding interaction cannot occur, our data suggest that Ser5.43(239) is still important for receptor activation. Polar ring-substituted tryptamine ligands also seem to engage Ser5.46(242), but tryptamines lacking such a substituent may adopt an alternate binding orientation that does not engage this residue. Our results are consistent with the role of Ser5.43(239) as a hydrogen bond donor, whereas Ser5.46(242) seems to serve as a hydrogen bond acceptor. These results are consistent with the functional topography and utility of our in silico-activated homology model of the h5-HT(2A) receptor. In addition, being more distal from the absolutely conserved Pro5.50, a strong interaction with Ser5.43(239) may be more effective in straightening the kink in helix 5, a feature that is possibly common to all type A GPCRs that have polar residues at position 5.43.

  6. The antidepressant-like activity of 6-methoxy-2-[4-(2-methoxyphenyl)piperazin-1-yl]-9H-xanthen-9-one involves serotonergic 5-HT(1A) and 5-HT(2A/C) receptors activation.

    PubMed

    Pytka, Karolina; Walczak, Maria; Kij, Agnieszka; Rapacz, Anna; Siwek, Agata; Kazek, Grzegorz; Olczyk, Adrian; Gałuszka, Adam; Waszkielewicz, Anna; Marona, Henryk; Sapa, Jacek; Filipek, Barbara

    2015-10-05

    Xanthone derivatives have been shown to posses many biological properties. Some of them act within the central nervous system and show neuroprotective or antidepressant-like properties. Taking this into account we investigated antidepressant-like activity in mice and the possible mechanism of action of 6-methoxy-2-[4-(2-methoxyphenyl)piperazin-1-yl]-9H-xanthen-9-one (HBK-11) - a new xanthone derivative. We demonstrated that HBK-11 produced antidepressant-like effects in the forced swim test and tail suspension test, comparable to that of venlafaxine. The combined treatment with sub-effective doses of HBK-11 and fluoxetine (but not reboxetine or bupropion) significantly reduced the immobility in the forced swim test. Moreover, the antidepressant-like activity of HBK-11 in the aforementioned test was blocked by p-chlorophenylalanine, and significantly reduced by serotonergic 5HT1A receptor antagonist - WAY-1006335 and 5HT2A/C receptor antagonist - ritanserin. As none of the above treatments influenced the spontaneous locomotor activity, it can be concluded that HBK-11 mediates its activity through a serotonergic system, and its antidepressant-like effect involves 5HT1A and 5HT2A/C receptor activation. Furthermore, at antidepressant-like doses HBK-11 did not cause the mice to display locomotor deficits in rotarod or chimney tests. Considering the pharmacokinetic profile, HBK-11 demonstrated rapid absorption after i.p. administration, high clearance value, short terminal half-life, very high volume of distribution and incomplete bioavailability. The compound studied had good penetration into the brain tissue of mice. Since studied xanthone derivative seems to present interesting, untypical mechanism of antidepressant-like action i.e. 5HT2A/C receptor activation, it may have a potential in the treatment of depressive disorders, and surely requires further studies.

  7. The highly selective 5-hydroxytryptamine (5-HT)2A receptor antagonist, EMD 281014, significantly increases swimming and decreases immobility in male congenital learned helpless rats in the forced swim test.

    PubMed

    Patel, Jignesh G; Bartoszyk, Gerd D; Edwards, Emmeline; Ashby, Charles R

    2004-04-01

    We examined the effect of the highly selective 5-hydroxytryptamine (5-HT)(2A) receptor antagonist 7-[4-[2-(4-fluoro-phenyl)-ethyl]-piperazine-1-carbonyl]-1H-indole-3-carbonitrile HCl (EMD 281014) in congenital learned helpless male rats in the forced swim test. The administration of EMD-281014 (0.3-30 mg/kg i.p.) to congenital learned helpless rats dose-dependently and significantly (at 10 and 30 mg/kg) decreased immobility and increased swimming compared to vehicle-treated animals. Thus, EMD 281014 produces effects in the forced swim test resembling those of antidepressants.

  8. Binding of [(3)H]lysergic acid diethylamide to serotonin 5-HT(2A) receptors and of [(3)H]paroxetine to serotonin uptake sites in platelets from healthy children, adolescents and adults.

    PubMed

    Sigurdh, J; Spigset, O; Allard, P; Mjörndal, T; Hägglöf, B

    1999-11-01

    Possible age effects on binding of [(3)H]lysergic acid diethylamide ([(3)H]LSD) to serotonin 5-HT(2A) receptors and of [(3)H]paroxetine to serotonin uptake sites were studied in platelets from healthy children (11-12 years of age), adolescents (16-17 years of age) and adults. Significant overall age effects were found both for the number of binding sites (B(max)) for [(3)H]LSD binding (p < 0.001), the affinity constant (K(d)) for [(3)H]LSD binding (p < 0.001), B(max) for [(3)H]paroxetine binding (p < 0.001) and K(d) for [(3)H] paroxetine binding (p = 0.006). In general, there was a decrease in B(max) with increasing age, which predominantly occurred between the ages 11-12 years and 16-17 years for the 5-HT(2A) receptor, and after 16-17 years of age for the serotonin uptake site. These developmental changes might have an impact on the effect of treatment with serotonergic drugs in children and adolescents. When the platelet serotonin variables investigated are employed in studies in children or adolescents, age matching or, alternatively, introduction of age control in the statistical analysis should be performed.

  9. 5-HT(2A) and mGlu2 receptor binding levels are related to differences in impulsive behavior in the Roman Low- (RLA) and High- (RHA) avoidance rat strains.

    PubMed

    Klein, A B; Ultved, L; Adamsen, D; Santini, M A; Tobeña, A; Fernandez-Teruel, A; Flores, P; Moreno, M; Cardona, D; Knudsen, G M; Aznar, S; Mikkelsen, J D

    2014-03-28

    The Roman Low- and High-Avoidance rat strains (RLA-I vs RHA-I) have been bidirectionally selected and bred according to their performance in the two-way active avoidance response in the shuttle-box test. Numerous studies have reported a pronounced divergence in emotionality between the two rat strains including differences in novelty seeking, anxiety, stress coping, and susceptibility to addictive substances. However, the underlying molecular mechanisms behind these divergent phenotypes are not known. Here, we determined impulsivity using the 5-choice serial reaction time task and levels of serotonin transporter (SERT), 5-HT(2A) and 5-HT(1A) receptor binding using highly specific radioligands ((3)H-escitalopram, (3)H-MDL100907 and (3)H-WAY100635) and mGlu2/3 receptor binding ((3)H-LY341495) using receptor autoradiography in fronto-cortical sections from RLA-I (n=8) and RHA-I (n=8) male rats. In the more impulsive RHA-I rats, 5-HT(2A), 5-HT(1A) and SERT binding in the frontal cortex was significantly higher compared to RLA-I rats. In contrast, mGlu2/3 receptor binding was decreased by 40% in RHA-I rats compared to RLA-I rats. To differentiate between mGlu2 and mGlu3 receptor protein levels, these were further studied using western blotting, which showed non-detectable levels of mGlu2 receptor protein in RHA rats, while no differences were observed for mGlu3 receptor protein levels. Collectively, these data show general congenital differences in the serotonergic system and a pronounced difference in mGlu2 receptor protein levels. We suggest that the differences in the serotonergic system may mediate some of the phenotypic characteristics in this strain such as hyper-impulsivity and susceptibility to drug addiction.

  10. Evidence for the involvement of the serotonergic 5-HT2A/C and 5-HT3 receptors in the antidepressant-like effect caused by oral administration of bis selenide in mice.

    PubMed

    Jesse, Cristiano R; Wilhelm, Ethel A; Bortolatto, Cristiani F; Nogueira, Cristina W

    2010-03-17

    The present study investigated a possible antidepressant-like activity of bis selenide using two predictive tests for antidepressant effect on rodents: the forced swimming test (FST) and the tail suspension test (TST). Bis selenide (0.5-5 mg/kg, p.o.) decreased the immobility time in the mouse FST and TST. The anti-immobility effect of bis selenide (1 mg/kg, p.o.) in the TST was prevented by the pretreatment of mice with p-chlorophenylalanine methyl ester (PCPA; 100 mg/kg, i.p., an inhibitor of serotonin synthesis), ketanserin (1 mg/kg, i.p., a 5-HT(2A/2C) receptor antagonist), and ondasentron (1 mg/kg, i.p., a 5-HT(3) receptor antagonist). Pretreatment of mice with prazosin (1 mg/kg, i.p., an alpha(1)-adrenoceptor antagonist), yohimbine (1 mg/kg, i.p., an alpha(2)-adrenoceptor antagonist), propranolol (2 mg/kg, i.p., a beta-adrenoceptor antagonist), SCH23390 (0.05 mg/kg, s.c., a dopamine D(1) receptor antagonist), sulpiride (50 mg/kg, i.p., a dopamine D(2) receptor antagonist), or WAY 100635 (0.1 mg/kg, s.c., a selective 5-HT(1A) receptor antagonist) did not block the antidepressant-like effect of bis selenide (1 mg/kg, p.o.) in the TST. Administration of bis selenide (0.1 mg/kg, p.o.) and fluoxetine (1 mg/kg), at subeffective doses, produced an antidepressant-like effect in the TST. Bis selenide did not alter Na(+) K(+) ATPase, MAO-A and MAO-B activities in whole brains of mice. Bis selenide produced an antidepressant-like effect in the mouse TST and FST, which may be related to the serotonergic system (5-HT(2A/2C) and 5-HT(3) receptors).

  11. The Combination of Marketed Antagonists of α1b-Adrenergic and 5-HT2A Receptors Inhibits Behavioral Sensitization and Preference to Alcohol in Mice: A Promising Approach for the Treatment of Alcohol Dependence.

    PubMed

    Trovero, Fabrice; David, Sabrina; Bernard, Philippe; Puech, Alain; Bizot, Jean-Charles; Tassin, Jean-Pol

    2016-01-01

    Alcohol-dependence is a chronic disease with a dramatic and expensive social impact. Previous studies have indicated that the blockade of two monoaminergic receptors, α1b-adrenergic and 5-HT2A, could inhibit the development of behavioral sensitization to drugs of abuse, a hallmark of drug-seeking and drug-taking behaviors in rodents. Here, in order to develop a potential therapeutic treatment of alcohol dependence in humans, we have blocked these two monoaminergic receptors by a combination of antagonists already approved by Health Agencies. We show that the association of ifenprodil (1 mg/kg) and cyproheptadine (1 mg/kg) (α1-adrenergic and 5-HT2 receptor antagonists marketed as Vadilex ® and Periactine ® in France, respectively) blocks behavioral sensitization to amphetamine in C57Bl6 mice and to alcohol in DBA2 mice. Moreover, this combination of antagonists inhibits alcohol intake in mice habituated to alcohol (10% v/v) and reverses their alcohol preference. Finally, in order to verify that the effect of ifenprodil was not due to its anti-NMDA receptors property, we have shown that a combination of prazosin (0.5 mg/kg, an α1b-adrenergic antagonist, Mini-Press ® in France) and cyproheptadine (1 mg/kg) could also reverse alcohol preference. Altogether these findings strongly suggest that combined prazosin and cyproheptadine could be efficient as a therapy to treat alcoholism in humans. Finally, because α1b-adrenergic and 5-HT2A receptors blockade also inhibits behavioral sensitization to psychostimulants, opioids and tobacco, it cannot be excluded that this combination will exhibit some efficacy in the treatment of addiction to other abused drugs.

  12. The Combination of Marketed Antagonists of α1b-Adrenergic and 5-HT2A Receptors Inhibits Behavioral Sensitization and Preference to Alcohol in Mice: A Promising Approach for the Treatment of Alcohol Dependence

    PubMed Central

    Trovero, Fabrice; David, Sabrina; Bernard, Philippe; Puech, Alain; Bizot, Jean-Charles; Tassin, Jean-Pol

    2016-01-01

    Alcohol-dependence is a chronic disease with a dramatic and expensive social impact. Previous studies have indicated that the blockade of two monoaminergic receptors, α1b-adrenergic and 5-HT2A, could inhibit the development of behavioral sensitization to drugs of abuse, a hallmark of drug-seeking and drug-taking behaviors in rodents. Here, in order to develop a potential therapeutic treatment of alcohol dependence in humans, we have blocked these two monoaminergic receptors by a combination of antagonists already approved by Health Agencies. We show that the association of ifenprodil (1 mg/kg) and cyproheptadine (1 mg/kg) (α1-adrenergic and 5-HT2 receptor antagonists marketed as Vadilex ® and Periactine ® in France, respectively) blocks behavioral sensitization to amphetamine in C57Bl6 mice and to alcohol in DBA2 mice. Moreover, this combination of antagonists inhibits alcohol intake in mice habituated to alcohol (10% v/v) and reverses their alcohol preference. Finally, in order to verify that the effect of ifenprodil was not due to its anti-NMDA receptors property, we have shown that a combination of prazosin (0.5 mg/kg, an α1b-adrenergic antagonist, Mini-Press ® in France) and cyproheptadine (1 mg/kg) could also reverse alcohol preference. Altogether these findings strongly suggest that combined prazosin and cyproheptadine could be efficient as a therapy to treat alcoholism in humans. Finally, because α1b-adrenergic and 5-HT2A receptors blockade also inhibits behavioral sensitization to psychostimulants, opioids and tobacco, it cannot be excluded that this combination will exhibit some efficacy in the treatment of addiction to other abused drugs. PMID:26968030

  13. Distinct effect of 5-HT1A and 5-HT2A receptors in the medial nucleus of the amygdala on tonic immobility behavior.

    PubMed

    de Paula, Bruna Balbino; Leite-Panissi, Christie Ramos Andrade

    2016-07-15

    The tonic immobility (TI) response is an innate fear behavior associated with intensely dangerous situations, exhibited by many species of invertebrate and vertebrate animals. In humans, it is possible that TI predicts the severity of posttraumatic stress disorder symptoms. This behavioral response is initiated and sustained by the stimulation of various groups of neurons distributed in the telencephalon, diencephalon and brainstem. Previous research has found the highest Fos-IR in the posteroventral part of the medial nucleus of the amygdala (MEA) during TI behavior; however, the neurotransmission of this amygdaloid region involved in the modulation of this innate fear behavior still needs to be clarified. Considering that a major drug class used for the treatment of psychopathology is based on serotonin (5-HT) neurotransmission, we investigated the effects of serotonergic receptor activation in the MEA on the duration of TI. The results indicate that the activation of the 5HT1A receptors or the blocking of the 5HT2 receptors of the MEA can promote a reduction in fear and/or anxiety, consequently decreasing TI duration in guinea pigs. In contrast, blocking the 5HT1A receptors or activating the 5HT2 receptors in this amygdalar region increased the TI duration, suggesting an increase in fear and/or anxiety. These alterations do not appear to be due to a modification of spontaneous motor activity, which might non-specifically affect TI duration. Thus, these results suggest a distinct role of the 5HT receptors in the MEA in innate fear modulation.

  14. Hallucinogen-like effects of 2-([2-(4-cyano-2,5-dimethoxyphenyl) ethylamino]methyl)phenol (25CN-NBOH), a novel N-benzylphenethylamine with 100-fold selectivity for 5-HT2A receptors, in mice

    PubMed Central

    Gray, Bradley W.; Bailey, Jessica M.; Smith, Douglas; Hansen, Martin; Kristensen, Jesper L.

    2014-01-01

    Rationale 2-([2-(4-cyano-2,5-dimethoxyphenyl)ethylamino]methyl)phenol (25CN-NBOH) is structurally similar to N-benzyl substituted phenethylamine hallucinogens currently emerging as drugs of abuse. 25CN-NBOH exhibits dramatic selectivity for 5-HT2A receptors in vitro, but has not been behaviorally characterized. Objective 25CN-NBOH was compared to the traditional phenethylamine hallucinogen R(−)-2,5-dimethoxy-4-iodoamphetamine (DOI) using mouse models of drug-elicited head twitch behavior and drug discrimination. Methods Drug-elicited head twitches were quantified for 10 min following administration of various doses of either DOI or 25CN-NBOH, with and without pretreatments of 0.01 mg/kg 5-HT2A antagonist M100907 or 3.0 mg/kg 5-HT2C antagonist RS102221. The capacity of 25CN-NBOH to attenuate DOI-elicited head twitch was also investigated. Mice were trained to discriminate DOI or M100907 from saline, and 25CN-NBOH was tested for generalization. Results 25CN-NBOH induced a head twitch response in the mouse that was lower in magnitude than that of DOI, blocked by M100907, but not altered by RS102221. DOI-elicited head twitch was dose-dependently attenuated by 25CN-NBOH pretreatment. 25CN-NBOH produced an intermediate degree of generalization (55%) for the DOI training dose, and these interoceptive effects were attenuated by M100907. Finally, 25CN-NBOH did not generalize to M100907 at any dose, but ketanserin fully substituted in these animals. Conclusions 25CN-NBOH was behaviorally active, but less effective than DOI in two mouse models of hallucinogenic effects. The effectiveness with which M100907 antagonized the behavioral actions of 25CN-NBOH strongly suggests that the 5-HT2A receptor is an important site of agonist action for this compound in vivo. PMID:25224567

  15. Effects of central activation of serotonin 5-HT2A/2C or dopamine D2/3 receptors on the acute and repeated effects of clozapine in the conditioned avoidance response test

    PubMed Central

    Feng, Min; Gao, Jun; Sui, Nan; Li, Ming

    2014-01-01

    Rationale: Acute administration of clozapine (a gold standard of atypical antipsychotics) disrupts avoidance response in rodents, while repeated administration often causes a tolerance effect. Objective: The present study investigated the neuroanatomical basis and receptor mechanisms of acute and repeated effects of clozapine treatment in the conditioned avoidance response test in male Sprague-Dawley rats. Methods: DOI (2,5-dimethoxy-4-iodo-amphetamine, a preferential 5-HT2A/2C agonist) or quinpirole (a preferential dopamine D2/3 agonist) was microinjected into the medial prefrontal cortex (mPFC) or nucleus accumbens shell (NAs), and their effects on the acute and long-term avoidance-disruptive effect of clozapine were tested. Results: Intra-mPFC microinjection of quinpirole enhanced the acute avoidance disruptive effect of clozapine (10 mg/kg, sc), while DOI microinjections reduced it marginally. Repeated administration of clozapine (10 mg/kg, sc) daily for 5 days caused a progressive decrease in its inhibition of avoidance responding, indicating tolerance development. Intra-mPFC microinjection of DOI at 25.0 (but not 5.0) μg/side during this period completely abolished the expression of clozapine tolerance. This was indicated by the finding that clozapine-treated rats centrally infused with 25.0 μg/side DOI did not show higher levels of avoidance responses than the vehicle-treated rats in the clozapine challenge test. Microinjection of DOI into the mPFC immediately before the challenge test also decreased the expression of clozapine tolerance. Conclusions: Acute behavioral effect of clozapine can be enhanced by activation of the D2/3 receptors in the mPFC. Clozapine tolerance expression relies on the neuroplasticity initiated by its antagonist action against 5-HT2A/2C receptors in the mPFC. PMID:25288514

  16. Cultural consonance, a 5HT2A receptor polymorphism, and depressive symptoms: a longitudinal study of gene x culture interaction in urban Brazil.

    PubMed

    Dressler, William W; Balieiro, Mauro C; Ribeiro, Rosane P; Dos Santos, José Ernesto

    2009-01-01

    In this study in urban Brazil we examine, as a predictor of depressive symptoms, the interaction between a single nucleotide polymorphism in the 2A receptor in the serotonin system (-1438G/A) and cultural consonance in family life, a measure of the degree to which an individual perceives her family as corresponding to a widely shared cultural model of the prototypical family. A community sample of 144 adults was followed over a 2-year-period. Cultural consonance in family life was assessed by linking individuals' perceptions of their own families with a shared cultural model of the family derived from cultural consensus analysis. The -1438G/A polymorphism in the 2A serotonin receptor was genotyped using a standard protocol for DNA extracted from leukocytes. Covariates included age, sex, socioeconomic status, and stressful life events. Cultural consonance in family life was prospectively associated with depressive symptoms. In addition, the interaction between genotype and cultural consonance in family life was significant. For individuals with the A/A variant of the -1438G/A polymorphism of the 2A receptor gene, the effect of cultural consonance in family life on depressive symptoms over a 2-year-period was larger (beta = -0.533, P < 0.01) than those effects for individuals with either the G/A (beta = -0.280, P < 0.10) or G/G (beta = -0.272, P < 0.05) variants. These results are consistent with a process in which genotype moderates the effects of culturally meaningful social experience on depressive symptoms.

  17. Dual role of serotonin in the acquisition and extinction of reward-driven learning: involvement of 5-HT1A, 5-HT2A and 5-HT3 receptors.

    PubMed

    Frick, Luciana Romina; Bernardez-Vidal, Micaela; Hocht, Christian; Zanutto, Bonifacio Silvano; Rapanelli, Maximiliano

    2015-01-15

    Serotonin (5-HT) has been proposed as a possible encoder of reward. Nevertheless, the role of this neurotransmitter in reward-based tasks is not well understood. Given that the major serotonergic circuit in the rat brain comprises the dorsal raphe nuclei and the medial prefrontal cortex (mPFC), and because the latter structure is involved in the control of complex behaviors and expresses 1A (5-HT1A), 2A (5-HT2A), and 3 (5-HT3) receptors, the aim was to study the role of 5-HT and of these receptors in the acquisition and extinction of a reward-dependent operant conditioning task. Long Evans rats were trained in an operant conditioning task while receiving fluoxetine (serotonin reuptake inhibitor, 10mg/kg), tianeptine (serotonin reuptake enhancer, 10mg/kg), buspirone (5-HT1A partial agonist, 10mg/kg), risperidone (5-HT2A antagonist, 1mg/kg), ondansetron (5-HT3 antagonist, 2mg/kg) or vehicle. Then, animals that acquired the operant conditioning without any treatment were trained to extinct the task in the presence of the pharmacological agents. Fluoxetine impaired acquisition but improved extinction. Tianeptine administration induced the opposite effects. Buspirone induced a mild deficit in acquisition and had no effects during the extinction phase. Risperidone administration resulted in learning deficits during the acquisition phase, although it promoted improved extinction. Ondansetron treatment showed a deleterious effect in the acquisition phase and an overall improvement in the extinction phase. These data showed a differential role of 5-HT in the acquisition and extinction of an operant conditioning task, suggesting that it may have a dual function in reward encoding.

  18. Effect of 5-HT2A Receptor Polymorphisms, Work Stressors, and Social Support on Job Strain among Petroleum Workers in Xinjiang, China

    PubMed Central

    Jiang, Yu; Tang, Jinhua; Li, Rong; Zhao, Junling; Song, Zhixin; Ge, Hua; Lian, Yulong; Liu, Jiwen

    2016-01-01

    Previous studies have shown that work stressors and social support influence job strain. However, few studies have examined the impact of individual differences on job strain. In Xinjiang, there are a large number of petroleum workers in arid deserts. The present study investigated the effects of work stressors, social support, and 5-hydroxytryptamine receptor (5-HTR2A) genotype on the etiology of job strain among petroleum workers in Xinjiang. A cross-sectional study was carried out between January and August 2013. A total of 700 workers were selected by a three-stage stratified sampling method. 5-HTR2A genotypes were determined with the SNaPshot single nucleotide polymorphism assay. Work stressors and job strain were evaluated with the Occupational Stress Inventory-Revised questionnaire. Social support was assessed with the Chinese Social Support Rating Scale. Work overload and responsibility were significantly associated with job strain. Low social support was associated with severe vocational and interpersonal strain. High social support was a protective factor against job strain (odds ratio (OR) = 0.32, 95% confidence interval (CI): 0.14–0.76). The CC genotype of rs6313 and the AA genotype of rs2070040 were linked to severe vocational strain. Ordinal logistic regression analysis revealed that the CC genotype of rs6313 was linked to higher risk of job strain than the TT genotype (OR = 1.88, 95% CI: 1.10–3.23). These data provide evidence that work stressors, low social support, and 5-HTR2A gene polymorphism contributes to the risk of job strain. PMID:27999378

  19. Serotonin (5-HT) 5-HT2A Receptor (5-HT2AR):5-HT2CR Imbalance in Medial Prefrontal Cortex Associates with Motor Impulsivity.

    PubMed

    Anastasio, Noelle C; Stutz, Sonja J; Fink, Latham H L; Swinford-Jackson, Sarah E; Sears, Robert M; DiLeone, Ralph J; Rice, Kenner C; Moeller, F Gerard; Cunningham, Kathryn A

    2015-07-15

    A feature of multiple neuropsychiatric disorders is motor impulsivity. Recent studies have implicated serotonin (5-HT) systems in medial prefrontal cortex (mPFC) in mediating individual differences in motor impulsivity, notably the 5-HT2AR receptor (5-HT2AR) and 5-HT2CR. We investigated the hypothesis that differences in the ratio of 5-HT2AR:5-HT2CR protein expression in mPFC would predict the individual level of motor impulsivity and that the engineered loss of the 5-HT2CR would result in high motor impulsivity concomitant with elevated 5-HT2AR expression and pharmacological sensitivity to the selective 5-HT2AR antagonist M100907. High and low impulsive rats were identified in a 1-choice serial reaction time task. Native protein levels of the 5-HT2AR and the 5-HT2CR predicted the intensity of motor impulsivity and the 5-HT2AR:5-HT2CR ratio in mPFC positively correlated with levels of premature responses in individual outbred rats. The possibility that the 5-HT2AR and 5-HT2CR act in concert to control motor impulsivity is supported by the observation that high phenotypic motor impulsivity associated with a diminished mPFC synaptosomal 5-HT2AR:5-HT2CR protein:protein interaction. Knockdown of mPFC 5-HT2CR resulted in increased motor impulsivity and triggered a functional disruption of the local 5-HT2AR:5-HT2CR balance as evidenced by a compensatory upregulation of 5-HT2AR protein expression and a leftward shift in the potency of M100907 to suppress impulsive behavior. We infer that there is an interactive relationship between the mPFC 5-HT2AR and 5-HT2CR, and that a 5-HT2AR:5-HT2CR imbalance may be a functionally relevant mechanism underlying motor impulsivity.

  20. Effect of 5-HT2A Receptor Polymorphisms, Work Stressors, and Social Support on Job Strain among Petroleum Workers in Xinjiang, China.

    PubMed

    Jiang, Yu; Tang, Jinhua; Li, Rong; Zhao, Junling; Song, Zhixin; Ge, Hua; Lian, Yulong; Liu, Jiwen

    2016-12-19

    Previous studies have shown that work stressors and social support influence job strain. However, few studies have examined the impact of individual differences on job strain. In Xinjiang, there are a large number of petroleum workers in arid deserts. The present study investigated the effects of work stressors, social support, and 5-hydroxytryptamine receptor (5-HTR2A) genotype on the etiology of job strain among petroleum workers in Xinjiang. A cross-sectional study was carried out between January and August 2013. A total of 700 workers were selected by a three-stage stratified sampling method. 5-HTR2A genotypes were determined with the SNaPshot single nucleotide polymorphism assay. Work stressors and job strain were evaluated with the Occupational Stress Inventory-Revised questionnaire. Social support was assessed with the Chinese Social Support Rating Scale. Work overload and responsibility were significantly associated with job strain. Low social support was associated with severe vocational and interpersonal strain. High social support was a protective factor against job strain (odds ratio (OR) = 0.32, 95% confidence interval (CI): 0.14-0.76). The CC genotype of rs6313 and the AA genotype of rs2070040 were linked to severe vocational strain. Ordinal logistic regression analysis revealed that the CC genotype of rs6313 was linked to higher risk of job strain than the TT genotype (OR = 1.88, 95% CI: 1.10-3.23). These data provide evidence that work stressors, low social support, and 5-HTR2A gene polymorphism contributes to the risk of job strain.

  1. Serotonin (5-HT) 5-HT2A Receptor (5-HT2AR):5-HT2CR Imbalance in Medial Prefrontal Cortex Associates with Motor Impulsivity

    PubMed Central

    Anastasio, Noelle C.; Stutz, Sonja J.; Fink, Latham H. L.; Swinford-Jackson, Sarah E.; Sears, Robert M; DiLeone, Ralph J.; Rice, Kenner C.; Moeller, F. Gerard; Cunningham, Kathryn A.

    2016-01-01

    A feature of multiple neuropsychiatric disorders is motor impulsivity. Recent studies have implicated serotonin (5-HT) systems in medial prefrontal cortex (mPFC) in mediating individual differences in motor impulsivity, notably the 5-HT2AR receptor (5-HT2AR) and 5-HT2CR. We investigated the hypothesis that differences in the ratio of 5-HT2AR:5-HT2CR protein expression in mPFC would predict the individual level of motor impulsivity and that the engineered loss of the 5-HT2CR would result in high motor impulsivity concomitant with elevated 5-HT2AR expression and pharmacological sensitivity to the selective 5-HT2AR antagonist M100907. High and low impulsive rats were identified in a 1-choice serial reaction time task. Native protein levels of the 5-HT2AR and the 5-HT2CR predicted the intensity of motor impulsivity and the 5-HT2AR:5-HT2CR ratio in mPFC positively correlated with levels of premature responses in individual outbred rats. The possibility that the 5-HT2AR and 5-HT2CR act in concert to control motor impulsivity is supported by the observation that high phenotypic motor impulsivity associated with a diminished mPFC synaptosomal 5-HT2AR:5-HT2CR protein:protein interaction. Knockdown of mPFC 5-HT2CR resulted in increased motor impulsivity and triggered a functional disruption of the local 5-HT2AR:5-HT2CR balance as evidenced by a compensatory upregulation of 5-HT2AR protein expression and a leftward shift in the potency of M100907 to suppress impulsive behavior. We infer that there is an interactive relationship between the mPFC 5-HT2AR and 5-HT2CR, and that a 5-HT2AR:5-HT2CR imbalance may be a functionally-relevant mechanism underlying motor impulsivity. PMID:26120876

  2. Restricted access to standard or high fat chow alters sensitivity of rats to the 5-HT2A/2C receptor agonist 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM)

    PubMed Central

    Serafine, Katherine M.; France, Charles P.

    2017-01-01

    Feeding conditions can impact sensitivity to drugs acting on dopamine receptors; less is known about the impact of feeding conditions on the effects of drugs acting on serotonin (5-HT) receptors. This study examined the effects of feeding condition on sensitivity to the direct-acting 5-HT2A/2C receptor agonist 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM; 0.1–3.2 mg/kg) and the direct-acting dopamineD3/D2 receptor agonist quinpirole (0.0032–0.32 mg/kg). Male Sprague-Dawley rats had free access (11 weeks) followed by restricted access (6 weeks) to high (34.3%, n = 8) fat or standard (5.7% fat; n = 7) chow. Rats eating high fat chow became insulin resistant and gained more weight than rats eating standard chow. Free access to high fat chow did not alter sensitivity to DOM-induced head twitch but increased sensitivity to quinpirole-induced yawning. Restricting access to high fat or standard chow shifted the DOM-induced head twitch dose-response curve to the right and shifted the quinpirole-induced yawning dose-response curve downward in both groups of rats. Some drugs of abuse and many therapeutic drugs act on 5-HT and dopamine systems; these results demonstrate that feeding condition impacts sensitivity to drugs acting on these systems, thereby possibly impacting vulnerability to abuse as well as therapeutic effectiveness of drugs. PMID:24346289

  3. Binding of [3H]paroxetine to serotonin uptake sites and of [3H]lysergic acid diethylamide to 5-HT2A receptors in platelets from women with premenstrual dysphoric disorder during gonadotropin releasing hormone treatment.

    PubMed

    Bixo, M; Allard, P; Bäckström, T; Mjörndal, T; Nyberg, S; Spigset, O; Sundström-Poromaa, I

    2001-08-01

    Changes in serotonergic parameters have been reported in psychiatric conditions such as depression but also in the premenstrual dysphoric disorder (PMDD). In addition, hormonal effects on serotonergic activity have been established. In the present study, binding of [3H]paroxetine to platelet serotonin uptake sites and binding of [3H]lysergic acid diethylamide ([3H]LSD) to platelet serotonin (5-HT)2A receptors were studied in patients with PMDD treated with a low dose of a gonadotropin releasing hormone (GnRH) agonist (buserelin) or placebo and compared to controls. The PMDD patients were relieved of premenstrual symptoms like depression and irritability during buserelin treatment. The number of [3H]paroxetine binding sites (Bmax) were significantly higher in the follicular phase in untreated PMDD patients compared to controls. When treated with buserelin the difference disappeared. No differences in [3H]LSD binding between the three groups were shown. The present study demonstrated altered platelet [3H]paroxetine binding characteristics in women with PMDD compared to controls. Furthermore, [3H]paroxetine binding was affected by PMDD treatment with a low dose of buserelin. The results are consistent with the hypothesis that changes in serotonergic transmission could be a trait in the premenstrual dysphoric disorder.

  4. The Role of 5-HT2A, 5-HT2C and mGlu2 Receptors in the Behavioral Effects of Tryptamine Hallucinogens N,N-Dimethyltryptamine and N,N-Diisopropyltryptamine in Rats and Mice

    PubMed Central

    Carbonaro, Theresa M.; Eshleman, Amy J.; Forster, Michael J.; Cheng, Kejun; Rice, Kenner C.; Gatch, Michael B.

    2014-01-01

    Rationale: Serotonin 5-HT2A and 5-HT2C receptors are thought to be the primary pharmacological mechanisms for serotonin-mediated hallucinogenic drugs, but recently there has been interest in metabotropic glutamate (mGluR2) receptors as contributors to the mechanism of hallucinogens. Objective: The present study assesses the role of these 5-HT and glutamate receptors as molecular targets for two tryptamine hallucinogens, N,N-dimethyltryptamine (DMT) and N,N-diisopropyltryptamine (DiPT). Methods: Drug discrimination, head twitch and radioligand binding assays were used. A 5-HT2AR inverse agonist (MDL100907), 5-HT2CR antagonist (SB242084) and mGluR2/3 agonist (LY379268) were tested for their ability to attenuate the discriminative stimulus effects of DMT and DiPT; an mGluR2/3 antagonist (LY341495) was tested for potentiation. MDL100907 was used to attenuate head twitches induced by DMT and DiPT. Radioligand binding studies and inosital-1-phosphate (IP-1) accumulation were performed at the 5-HT2CR for DiPT. Results: MDL100907 fully blocked the discriminative stimulus effects of DMT, but only partially blocked DiPT. SB242084 partially attenuated the discriminative stimulus effects of DiPT, but produced minimal attenuation of DMT’s effects. LY379268 produced potent, but only partial blockade of the discriminative stimulus effects of DMT. LY341495 facilitated DMT- and DiPT-like effects. Both compounds elicited head twitches (DiPT>DMT) which were blocked by MDL1000907. DiPT was a low potency full agonist at 5-HT2CR in vitro. Conclusions: The 5-HT2AR likely plays a major role in mediating the effects of both compounds. 5-HT2C and mGluR2 receptors likely modulate the discriminative stimulus effects of both compounds to some degree. PMID:24985890

  5. Extending David Horrobin's membrane phospholipid theory of schizophrenia: overactivity of cytosolic phospholipase A(2) in the brain is caused by overdrive of coupled serotonergic 5HT(2A/2C) receptors in response to stress.

    PubMed

    Eggers, Arnold E

    2012-12-01

    David Horrobin's membrane phospholipid theory of schizophrenia has held up well over time because his therapeutic prediction that dietary supplementation with eicosapentaenoic acid (EPA) would have a therapeutic effect has been partially verified and undergoes continued testing. In the final version of his theory, he hypothesized that there was hyperactivity of phosphoslipase A(2) (PLA(2)) or a related enzyme but did not explain how the hyperactivity came about. It is known that serotonergic 5HT(2A/2C) receptors are coupled to PLA(2), which hydrolyzes both arachidonic acid (AA) and EPA from diacylglycerides at the sn-2 position. In this paper, Horrobin's theory is combined with a previously published theory of chronic stress in which it was hypothesized that a disinhibited dorsal raphe nucleus, the principal nucleus of the serotonergic system, can organize the neuropathology of diseases such as migraine, hypertension, and the metabolic syndrome. The new or combined theory is that schizophrenia is a disease of chronic stress in which a disinhibited DRN causes widespread serotonergic overdrive in the cerebral cortex. This in turn causes overdrive of cPLA(2) and both central and peripheral depletion of AA and EPA. Because EPA is present in smaller amounts, it falls below threshold for maintaining an intracellular balance between AA-derived and EPA-derived second messenger cascades, which leads to abnormal patterns of neuronal firing. There are two causes of neuronal dysfunction: the disinhibited DRN and EPA depletion. Schizophrenia is statistically associated with metabolic syndrome, hypertension, and migraine because they form a cluster of diseases with similar pathophysiology. The theory provides an explanation for both the central and peripheral phospholipid abnormalities in schizophrenia. It also explains the role of stress in schizophrenia, elevated serum PLA(2) activity in schizophrenia, the relationship between untreated schizophrenia and metabolic syndrome

  6. Stimulation of 5-HT1A, 5-HT1B, 5-HT2A/2C, 5-HT3 and 5-HT4 receptors or 5-HT uptake inhibition: short- and long-term memory.

    PubMed

    Meneses, Alfredo

    2007-11-22

    In order to determine whether short- (STM) and long-term memory (LTM) function in serial or parallel manner, serotonin (5-hydroxtryptamine, 5-HT) receptor agonists were tested in autoshaping task. Results show that control-vehicle animals were modestly but significantly mastering the autoshaping task as illustrated by memory scores between STM and LTM. Thus, post-training administration of 8-OHDPAT (agonist for 5-HT(1A/7) receptors) only at 0.250 and 0.500 mg/kg impaired both STM and LTM. CGS12066 (agonist for 5-HT(1B)) produced biphasic affects, at 5.0 mg/kg impaired STM but at 1.0 and 10.0 mg/kg, respectively, improved or impaired LTM. DOI (agonist for 5-HT(2A/2C) receptors) dose-dependently impaired STM and, at 10.0 mg/kg only impaired LTM. Both, STM and LTM were impaired by either mCPP (mainly agonist for 5-HT(2C) receptors) or mesulergine (mainly antagonist for 5-HT(2C) receptors) lower dose. The 5-HT(3) agonist mCPBG at 1.0 impaired STM and its higher dose impaired both STM and LTM. RS67333 (partial agonist for 5-HT(4) receptors), at 5.0 and 10.0 mg/kg facilitated both STM and LTM. The higher dose of fluoxetine (a 5-HT uptake inhibitor) improved both STM and LTM. Using as head-pokes during CS as an indirect measure of food-intake showed that of 30 memory changes, 21 of these were unrelated to the former. While some STM or LTM impairments can be attributed to decrements in food-intake, but not memory changes (either increase or decreases) produced by 8-OHDPAT, CGS12066, RS67333 or fluoxetine. Except for animals treated with DOI, mCPBG or fluoxetine, other groups treated with 5-HT agonists 6 h following autoshaping training showed similar LTM and unmodified CS-head-pokes scores.

  7. The serotonergic hallucinogen 5-methoxy-N,N-dimethyltryptamine disrupts cortical activity in a regionally-selective manner via 5-HT(1A) and 5-HT(2A) receptors.

    PubMed

    Riga, Maurizio S; Bortolozzi, Analia; Campa, Letizia; Artigas, Francesc; Celada, Pau

    2016-02-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a natural hallucinogen, acting as a non-selective serotonin 5-HT(1A)/5-HT(2A)-R agonist. Psychotomimetic agents such as the non-competitive NMDA-R antagonist phencyclidine and serotonergic hallucinogens (DOI and 5-MeO-DMT) disrupt cortical synchrony in the low frequency range (<4 Hz) in rat prefrontal cortex (PFC), an effect reversed by antipsychotic drugs. Here we extend these observations by examining the effect of 5-MeO-DMT on low frequency cortical oscillations (LFCO, <4 Hz) in PFC, visual (V1), somatosensory (S1) and auditory (Au1) cortices, as well as the dependence of these effects on 5-HT(1A)-R and 5-HT(2A)-R, using wild type (WT) and 5-HT(2A)-R knockout (KO2A) anesthetized mice. 5-MeO-DMT reduced LFCO in the PFC of WT and KO2A mice. The effect in KO2A mice was fully prevented by the 5-HT(1A)-R antagonist WAY-100635. Systemic and local 5-MeO-DMT reduced 5-HT release in PFC mainly via 5-HT(1A)-R. Moreover, 5-MeO-DMT reduced LFCO in S1, Au1 and V1 of WT mice and only in V1 of KO2A mice, suggesting the involvement of 5-HT(1A)-R activation in the 5-MeO-DMT-induced disruption of V1 activity. In addition, antipsychotic drugs reversed 5-MeO-DMT effects in WT mice. The present results suggest that the hallucinogen action of 5-MeO-DMT is mediated by simultaneous alterations of the activity of sensory (S1, Au1, V1) and associative (PFC) cortical areas, also supporting a role of 5-HT(1A)-R stimulation in V1 and PFC, in addition to the well-known action on 5-HT(2A)-R. Moreover, the reversal by antipsychotic drugs of 5-MeO-DMT effects adds to previous literature supporting the usefulness of the present model in antipsychotic drug development.

  8. New arylpiperazinylalkyl derivatives of 8-alkoxy-purine-2,6-dione and dihydro[1,3]oxazolo[2,3-f]purinedione targeting the serotonin 5-HT1A /5-HT2A /5-HT7 and dopamine D2 receptors.

    PubMed

    Chłoń-Rzepa, Grażyna; Zagórska, Agnieszka; Bucki, Adam; Kołaczkowski, Marcin; Pawłowski, Maciej; Satała, Grzegorz; Bojarski, Andrzej J; Partyka, Anna; Wesołowska, Anna; Pękala, Elżbieta; Słoczyńska, Karolina

    2015-04-01

    To obtain potential antidepressants and/or antipsychotics, a series of new long-chain arylpiperazine derivatives of 8-alkoxy-purine-2,6-dione (10-24) and dihydro[1,3]oxazolo[2,3-f]purinedione (30-34) were synthesized and their serotonin (5-HT1A , 5-HT2A , 5-HT6 , 5-HT7 ) and dopamine (D2 ) receptor affinities were determined. The study allowed the identification of some potent 5-HT1A /5-HT7 /D2 ligands with moderate affinity for 5-HT2A sites. The binding mode of representative compounds from both chemical classes (11 and 31) in the site of 5-HT1A receptor was analyzed in computational studies. In functional in vitro studies, the selected compounds 15 and 16 showed antagonistic properties for the evaluated receptors. 8-Methoxy-7-{4-[4-(2-methoxyphenyl)-piperazin-1-yl]-butyl}-1,3-dimethyl-purine-2,6-dione (15) showed a lack of activity in terms and under the conditions of the forced swim, four plate and amphetamine-induced hyperactivity tests in mice, probably as a result of its high first pass effect in the liver.

  9. 5-HT2A SNPs and the Temperament and Character Inventory.

    PubMed

    Serretti, Alessandro; Calati, Raffaella; Giegling, Ina; Hartmann, Annette M; Möller, Hans-Jürgen; Colombo, Cristina; Rujescu, Dan

    2007-08-15

    Temperamental traits, the most basic part of personality, have been largely correlated with neurotransmitter systems and are under genetic control. Among serotonin candidates, the 2A receptor (5-HT(2A)) received considerable attention. We analyzed four SNPs (rs643627, rs594242, rs6311 and rs6313) in the 5-HT(2A) gene and their association with personality traits, as measured with the Temperament and Character Inventory (TCI). The sample was composed of three sub-groups: two German sub-samples, consisting of a healthy group of 289 subjects (42.6% males, mean age: 45.2+/-14.9) and a psychiatric patient group of 111 suicide attempters (38.7% males, mean age: 39.2+/-13.6), and an Italian sub-sample, composed of 60 mood disorder patients (35.0% males, mean age: 44.0+/-14.8). Controlling for sex, age and educational level, the SNPs were not strongly associated with personality dimensions. Only the rs594242 showed an association with Self-Directedness (p=0.003) in the German sample, while rs6313 was marginally associated with Novelty Seeking (p=0.01) in the Italian sample. We conclude that 5-HT(2A) SNPs may marginally modulate personality traits but further studies are required.

  10. T102C polymorphism in the 5HT2A gene and schizophrenia: relation to phenotype and drug response variability.

    PubMed Central

    Joober, R; Benkelfat, C; Brisebois, K; Toulouse, A; Turecki, G; Lal, S; Bloom, D; Labelle, A; Lalonde, P; Fortin, D; Alda, M; Palmour, R; Rouleau, G A

    1999-01-01

    Although genes play a major role in the etiology of schizophrenia, no major genes involved in this disease have been identified. However, several genes with small effect have been reported, though inconsistently, to increase the risk for schizophrenia. Recently, the 5HT2A 2 allele (T102C polymorphism) was reported to be over-represented in patients with schizophrenia. Other reports have found an excess of allele 2(C) only in schizophrenic patients who are resistant to clozapine, not in those who respond to clozapine. In this study, the 5HT2A receptor allele 2 frequencies were compared between 2 groups of patients with schizophrenia (39 responders and 63 nonresponders) based on long-term outcome and response to typical neuroleptics. A control group of 90 healthy volunteers screened for mental disorders was also included. Genotype 2/2 tended to be more frequent in patients with schizophrenia with poor long-term outcome and poor response to typical neuroleptics (Bonferroni corrected p = 0.09). This difference was significant in men (Bonferroni corrected p = 0.054) but not in women. In addition, the age at first contact with psychiatric care was significantly younger in the patients with schizophrenia with genotype 2/2 than in patients with genotype 1/1. These result suggest that the 5HT2A-receptor gene may play a role in a subset of schizophrenia characterized by poor long-term outcome and poor response to neuroleptics. PMID:10212557

  11. Repeated adolescent MDMA ("Ecstasy") exposure in rats increases behavioral and neuroendocrine responses to a 5-HT2A/2C agonist.

    PubMed

    Biezonski, Dominik K; Courtemanche, Andrea B; Hong, Sang B; Piper, Brian J; Meyer, Jerrold S

    2009-02-03

    MDMA (3,4-methylenedioxymethamphetamine) is a popular recreational drug among adolescents. The present study aimed to determine the effects of repeated intermittent administration of 10 mg/kg MDMA during adolescence on behavioral (Experiment 1) and neuroendocrine (Experiment 2) responses of rats to the 5-HT(2A/2C) agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) and on [(3)H]ketanserin binding to 5-HT(2A) receptors. In the first experiment, MDMA pretreatment increased the frequency of head twitches and back muscle contractions, but not wet-dog shakes, to a high-dose DOI challenge. In the second experiment, both the prolactin and corticosterone responses to DOI were potentiated in MDMA-pretreated animals. No changes were found in 5-HT(2A) receptor binding in the hypothalamus or other forebrain areas that were examined. These results indicate that intermittent adolescent MDMA exposure enhances sensitivity of 5-HT(2A/2C) receptors in the CNS, possibly through changes in downstream signaling mechanisms.

  12. Comparison of the anti-dopamine D₂ and anti-serotonin 5-HT(2A) activities of chlorpromazine, bromperidol, haloperidol and second-generation antipsychotics parent compounds and metabolites thereof.

    PubMed

    Suzuki, Hidenobu; Gen, Keishi; Inoue, Yuichi

    2013-04-01

    Second-generation antipsychotics, which have become the standard drug therapies for schizophrenia, are known to have a serotonin 5-HT(2A) receptor blocking effect in addition to a dopamine D₂ receptor blocking effect. However, although chlorpromazine (CPZ) has a 5-HT(2A) receptor blocking effect and has the profile of a second-generation antipsychotic in vitro, it loses this pharmacological profile in vivo. In order to elucidate the differences between the in vivo and in vitro pharmacological characteristics of CPZ, we used a radioreceptor assay to measure the anti-D₂ activity and the anti-5-HT(2A) activity of CPZ and five major metabolites of CPZ, and compared the results to the anti-D₂ activity and anti-5-HT(2A) activity of risperidone, zotepine, perospirone, the major metabolites of each of these drugs, and olanzapine, bromperidol, and haloperidol. The subjects were 182 patients who had received diagnoses of schizophrenia based on the DSM-IV criteria. The results revealed that CPZ exhibited little anti-5-HT(2A) activity, regardless of the anti-D₂ activity level, and that none of the metabolites possessed anti-5-HT(2A) activity. However, both the parent compounds and the metabolites of each of the second-generation antipsychotics possessed both anti-D₂ activity and anti-5-HT(2A) activity. This clarified that, unlike second-generation antipsychotics, the reason CPZ loses its second-generation antipsychotic profiles in vivo is because it does not have any metabolites that possess anti-5-HT(2A) activity.

  13. Hallucinogenic 5-HT2AR agonists LSD and DOI enhance dopamine D2R protomer recognition and signaling of D2-5-HT2A heteroreceptor complexes.

    PubMed

    Borroto-Escuela, Dasiel O; Romero-Fernandez, Wilber; Narvaez, Manuel; Oflijan, Julia; Agnati, Luigi F; Fuxe, Kjell

    2014-01-03

    Dopamine D2LR-serotonin 5-HT2AR heteromers were demonstrated in HEK293 cells after cotransfection of the two receptors and shown to have bidirectional receptor-receptor interactions. In the current study the existence of D2L-5-HT2A heteroreceptor complexes was demonstrated also in discrete regions of the ventral and dorsal striatum with in situ proximity ligation assays (PLA). The hallucinogenic 5-HT2AR agonists LSD and DOI but not the standard 5-HT2AR agonist TCB2 and 5-HT significantly increased the density of D2like antagonist (3)H-raclopride binding sites and significantly reduced the pKiH values of the high affinity D2R agonist binding sites in (3)H-raclopride/DA competition experiments. Similar results were obtained in HEK293 cells and in ventral striatum. The effects of the hallucinogenic 5-HT2AR agonists on D2R density and affinity were blocked by the 5-HT2A antagonist ketanserin. In a forskolin-induced CRE-luciferase reporter gene assay using cotransfected but not D2R singly transfected HEK293 cells DOI and LSD but not TCB2 significantly enhanced the D2LR agonist quinpirole induced inhibition of CRE-luciferase activity. Haloperidol blocked the effects of both quinpirole alone and the enhancing actions of DOI and LSD while ketanserin only blocked the enhancing actions of DOI and LSD. The mechanism for the allosteric enhancement of the D2R protomer recognition and signalling observed is likely mediated by a biased agonist action of the hallucinogenic 5-HT2AR agonists at the orthosteric site of the 5-HT2AR protomer. This mechanism may contribute to the psychotic actions of LSD and DOI and the D2-5-HT2A heteroreceptor complex may thus be a target for the psychotic actions of hallunicogenic 5-HT2A agonists.

  14. Effects of the 5-HT2A agonist psilocybin on mismatch negativity generation and AX-continuous performance task: implications for the neuropharmacology of cognitive deficits in schizophrenia.

    PubMed

    Umbricht, Daniel; Vollenweider, Franz X; Schmid, Liselotte; Grübel, Claudia; Skrabo, Anja; Huber, Theo; Koller, Rene

    2003-01-01

    Previously the NMDA (N-methyl-D-aspartate) receptor (NMDAR) antagonist ketamine was shown to disrupt generation of the auditory event-related potential (ERP) mismatch negativity (MMN) and the performance of an 'AX'-type continuous performance test (AX-CPT)--measures of auditory and visual context-dependent information processing--in a similar manner as observed in schizophrenia. This placebo-controlled study investigated effects of the 5-HT(2A) receptor agonist psilocybin on the same measures in 18 healthy volunteers. Psilocybin administration induced significant performance deficits in the AX-CPT, but failed to reduce MMN generation significantly. These results indirectly support evidence that deficient MMN generation in schizophrenia may be a relatively distinct manifestation of deficient NMDAR functioning. In contrast, secondary pharmacological effects shared by NMDAR antagonists and the 5-HT(2A) agonist (ie disruption of glutamatergic neurotransmission) may be the mechanism underlying impairments in AX-CPT performance observed during both psilocybin and ketamine administration. Comparable deficits in schizophrenia may result from independent dysfunctions of 5-HT(2A) and NMDAR-related neurotransmission.

  15. Reversal of amphetamine-induced behaviours by MDL 100,907, a selective 5-HT2A antagonist.

    PubMed

    Moser, P C; Moran, P M; Frank, R A; Kehne, J H

    1996-01-01

    MDL 100,907 is a potent and selective antagonist of the 5-HT2A receptor which, unlike other antagonists at this receptor, has little affinity for the 5-HT2C receptor. We have investigated the antipsychotic potential of MDL 100,907 by examining its ability to antagonise different behavioural effects of amphetamine in rats. MDL 100,907 reversed the locomotor stimulant effects of amphetamine in rats without itself having any effect on locomotor activity. It also antagonised the disruptive effects of amphetamine on the development of latent inhibition. In contrast, MDL 100,907 had no effect on the discriminative stimulus properties of amphetamine, nor did it affect the ability of amphetamine to reduce the threshold required to sustain rewarding brain stimulation in the ventral tegmental area. This profile is different from that of typical and atypical neuroleptics, and also from other 5-HT2 receptor antagonists, which lack the selectivity of MDL 100,907. These results suggest that MDL 100,907 may have a unique interaction with dopaminergic systems and support the further development of selective 5-HT2 receptor antagonists as a novel therapeutic strategy for schizophrenia.

  16. 5-HT2A Gene Variants Moderate the Association between PTSD and Reduced Default Mode Network Connectivity.

    PubMed

    Miller, Mark W; Sperbeck, Emily; Robinson, Meghan E; Sadeh, Naomi; Wolf, Erika J; Hayes, Jasmeet P; Logue, Mark; Schichman, Steven A; Stone, Angie; Milberg, William; McGlinchey, Regina

    2016-01-01

    The default mode network (DMN) has been used to study disruptions of functional connectivity in a wide variety of psychiatric and neurological conditions, including posttraumatic stress disorder (PTSD). Studies indicate that the serotonin system exerts a modulatory influence on DMN connectivity; however, no prior study has examined associations between serotonin receptor gene variants and DMN connectivity in either clinical or healthy samples. We examined serotonin receptor single nucleotide polymorphisms (SNPs), PTSD, and their interactions for association with DMN connectivity in 134 White non-Hispanic veterans. We began by analyzing candidate SNPs identified in prior meta-analyses of relevant psychiatric traits and found that rs7997012 (an HTR2A SNP), implicated previously in anti-depressant medication response in the Sequenced Treatment Alternatives for Depression study (STAR(*)D; McMahon et al., 2006), interacted with PTSD to predict reduced connectivity between the posterior cingulate cortex (PCC) and the right medial prefrontal cortex and right middle temporal gyrus (MTG). rs130058 (HTR1B) was associated with connectivity between the PCC and right angular gyrus. We then expanded our analysis to 99 HTR1B and HTR2A SNPs and found two HTR2A SNPs (rs977003 and rs7322347) that significantly moderated the association between PTSD severity and the PCC-right MTG component of the DMN after correcting for multiple testing. Finally, to obtain a more precise localization of the most significant SNP × PTSD interaction, we performed a whole cortex vertex-wise analysis of the rs977003 effect. This analysis revealed the locus of the pre-frontal effect to be in portions of the superior frontal gyrus, while the temporal lobe effect was centered in the middle and inferior temporal gyri. These findings point to the influence of HTR2A variants on DMN connectivity and advance knowledge of the role of 5-HT2A receptors in the neurobiology of PTSD.

  17. 5-HT2A Gene Variants Moderate the Association between PTSD and Reduced Default Mode Network Connectivity

    PubMed Central

    Miller, Mark W.; Sperbeck, Emily; Robinson, Meghan E.; Sadeh, Naomi; Wolf, Erika J.; Hayes, Jasmeet P.; Logue, Mark; Schichman, Steven A.; Stone, Angie; Milberg, William; McGlinchey, Regina

    2016-01-01

    The default mode network (DMN) has been used to study disruptions of functional connectivity in a wide variety of psychiatric and neurological conditions, including posttraumatic stress disorder (PTSD). Studies indicate that the serotonin system exerts a modulatory influence on DMN connectivity; however, no prior study has examined associations between serotonin receptor gene variants and DMN connectivity in either clinical or healthy samples. We examined serotonin receptor single nucleotide polymorphisms (SNPs), PTSD, and their interactions for association with DMN connectivity in 134 White non-Hispanic veterans. We began by analyzing candidate SNPs identified in prior meta-analyses of relevant psychiatric traits and found that rs7997012 (an HTR2A SNP), implicated previously in anti-depressant medication response in the Sequenced Treatment Alternatives for Depression study (STAR*D; McMahon et al., 2006), interacted with PTSD to predict reduced connectivity between the posterior cingulate cortex (PCC) and the right medial prefrontal cortex and right middle temporal gyrus (MTG). rs130058 (HTR1B) was associated with connectivity between the PCC and right angular gyrus. We then expanded our analysis to 99 HTR1B and HTR2A SNPs and found two HTR2A SNPs (rs977003 and rs7322347) that significantly moderated the association between PTSD severity and the PCC-right MTG component of the DMN after correcting for multiple testing. Finally, to obtain a more precise localization of the most significant SNP × PTSD interaction, we performed a whole cortex vertex-wise analysis of the rs977003 effect. This analysis revealed the locus of the pre-frontal effect to be in portions of the superior frontal gyrus, while the temporal lobe effect was centered in the middle and inferior temporal gyri. These findings point to the influence of HTR2A variants on DMN connectivity and advance knowledge of the role of 5-HT2A receptors in the neurobiology of PTSD. PMID:27445670

  18. Effect of GABAergic ligands on the anxiolytic-like activity of DOI (a 5-HT(2A/2C) agonist) in the four-plate test in mice.

    PubMed

    Massé, Fabienne; Hascoët, Martine; Bourin, Michel

    2007-01-01

    5-HTergic and GABAergic systems are involved in neurobiology of anxiety. Precedent studies have demonstrated that SSRIs possessed an anxiolytic-like effect in the four-plate test (FPT) at doses that did not modify spontaneous locomotor activity. This effect seems to be mediated through the activation of 5-HT(2A) postsynaptic receptors. The purpose of the present study was to examine the implication of GABA system in the anxiolytic-like activity of DOI in the FPT. To achieve this, the co-administration of DOI (5-HT(2A/2C) receptor agonists) with GABA(A) and GABA(B) receptor ligands was evaluated in the FPT. Alprazolam, diazepam and muscimol (for higher dose) potentiated the anxiolytic-like effect of DOI. Bicuculline, picrotoxin and baclofen inhibited the anxiolytic-like effect of DOI. Flumazenil and CGP 35348 had no effect on the anxiolytic-like activity of DOI. These results suggest that the GABA system seems to be strongly implicated in the anxiolytic-like activity of DOI in the FPT.

  19. Evidence for a common biological basis of the Absorption trait, hallucinogen effects, and positive symptoms: epistasis between 5-HT2a and COMT polymorphisms.

    PubMed

    Ott, Ulrich; Reuter, Martin; Hennig, Juergen; Vaitl, Dieter

    2005-08-05

    Absorption represents a disposition to experience altered states of consciousness characterized by intensively focused attention. It is correlated with hypnotic susceptibility and includes phenomena ranging from vivid perceptions and imaginations to mystical experiences. Based on the assumption that drug-induced and naturally occurring mystical experiences share common neural mechanisms, we hypothesized that Absorption is influenced by the T102C polymorphism affecting the 5-HT2a receptor, which is known to be an important target site of hallucinogens like LSD. Based on the pivotal role ascribed to the prefrontal executive control network for absorbed attention and positive symptoms in schizophrenia, it was further hypothesized that Absorption is associated with the VAL158MET polymorphism of the catechol-O-methyltransferase (COMT) gene affecting the dopaminergic neurotransmitter system. The Tellegen Absorption Scale was administered to 336 subjects (95 male, 241 female). Statistical analysis revealed that the group with the T/T genotype of the T102C polymorphism, implying a stronger binding potential of the 5-HT2a receptor, indeed had significantly higher Absorption scores (F = 10.00, P = 0.002), while no main effect was found for the COMT polymorphism. However, the interaction between T102C and COMT genotypes yielded significance (F = 3.89; P = 0.049), underlining the known functional interaction between the 5-HT and the dopaminergic system. These findings point to biological foundations of the personality trait of Absorption.

  20. The effects of the preferential 5-HT2A agonist psilocybin on prepulse inhibition of startle in healthy human volunteers depend on interstimulus interval.

    PubMed

    Vollenweider, Franz X; Csomor, Philipp A; Knappe, Bernhard; Geyer, Mark A; Quednow, Boris B

    2007-09-01

    Schizophrenia patients exhibit impairments in prepulse inhibition (PPI) of the startle response. Hallucinogenic 5-HT(2A) receptor agonists are used for animal models of schizophrenia because they mimic some symptoms of schizophrenia in humans and induce PPI deficits in animals. Nevertheless, one report indicates that the 5-HT(2A) receptor agonist psilocybin increases PPI in healthy humans. Hence, we investigated these inconsistent results by assessing the dose-dependent effects of psilocybin on PPI in healthy humans. Sixteen subjects each received placebo or 115, 215, and 315 microg/kg of psilocybin at 4-week intervals in a randomized and counterbalanced order. PPI at 30-, 60-, 120-, 240-, and 2000-ms interstimulus intervals (ISIs) was measured 90 and 165 min after drug intake, coinciding with the peak and post-peak effects of psilocybin. The effects of psilocybin on psychopathological core dimensions and sustained attention were assessed by the Altered States of Consciousness Rating Scale (5D-ASC) and the Frankfurt Attention Inventory (FAIR). Psilocybin dose-dependently reduced PPI at short (30 ms), had no effect at medium (60 ms), and increased PPI at long (120-2000 ms) ISIs, without affecting startle reactivity or habituation. Psilocybin dose-dependently impaired sustained attention and increased all 5D-ASC scores with exception of Auditory Alterations. Moreover, psilocybin-induced impairments in sustained attention performance were positively correlated with reduced PPI at the 30 ms ISI and not with the concomitant increases in PPI observed at long ISIs. These results confirm the psilocybin-induced increase in PPI at long ISIs and reveal that psilocybin also produces a decrease in PPI at short ISIs that is correlated with impaired attention and consistent with deficient PPI in schizophrenia.

  1. Association study of T102C 5-HT2A polymorphism in schizophrenic patients: diagnosis, psychopathology, and suicidal behavior

    PubMed Central

    Correa, Humberto; De Marco, Luiz; Boson, Wolfanga; Nicolato, Rodrigo; Teixeira, Antó L.; Campo, Valdir R.; Romano-Silva, Marco A.

    2007-01-01

    The objective of this study was to examine the association between the serotonin (5-HT)2A gene polymorphism (102T/C) and suicidal behavior in schizophrenic inpatients. We studied 129 subjects who met the diagnostic criteria for schizophrenia according to a structured clinicai interview (MINI-PLUS), Patients underwent a semistructured interview to assess suicide attempt history and its characteristics, in addition, at least one close relative of the patient was interviewed to assess prohand and family suicidal behavior. Healthy controls were students and hospital staff members free of psychiatric and medical illness. Genotypes were determined after polymerase chain reaction amplification of the region of 5-HT2A/T102C containing the polymorphic site and digestion with the restriction enzyme Hpall, We found no association between suicidal attempt history and suicide attempt characteristics and genotypic or aileie frequencies. Suicidal behavior was also not associated with demographic or psychopathological characteristics. These results suggest that the S-HT2A gene polymorphism (102T/C) is not involved in genetic susceptibility to suicidal behavior, but further studies in a larger sample are needed. PMID:17506229

  2. Repeated 7-Day Treatment with the 5-HT2C Agonist Lorcaserin or the 5-HT2A Antagonist Pimavanserin Alone or in Combination Fails to Reduce Cocaine vs Food Choice in Male Rhesus Monkeys.

    PubMed

    Banks, Matthew L; Negus, S Stevens

    2017-04-01

    Cocaine use disorder is a global public health problem for which there are no Food and Drug Administration-approved pharmacotherapies. Emerging preclinical evidence has implicated both serotonin (5-HT) 2C and 2A receptors as potential mechanisms for mediating serotonergic attenuation of cocaine abuse-related neurochemical and behavioral effects. Therefore, the present study aim was to determine whether repeated 7-day treatment with the 5-HT2C agonist lorcaserin (0.1-1.0 mg/kg per day, intramuscular; 0.032-0.1 mg/kg/h, intravenous) or the 5-HT2A inverse agonist/antagonist pimavanserin (0.32-10 mg/kg per day, intramuscular) attenuated cocaine reinforcement under a concurrent 'choice' schedule of cocaine and food availability in rhesus monkeys. During saline treatment, cocaine maintained a dose-dependent increase in cocaine vs food choice. Repeated pimavanserin (3.2 mg/kg per day) treatments significantly increased small unit cocaine dose choice. Larger lorcaserin (1.0 mg/kg per day and 0.1 mg/kg/h) and pimavanserin (10 mg/kg per day) doses primarily decreased rates of operant behavior. Coadministration of ineffective lorcaserin (0.1 mg/kg per day) and pimavanserin (0.32 mg/kg per day) doses also failed to significantly alter cocaine choice. These results suggest that neither 5-HT2C receptor activation nor 5-HT2A receptor blockade are sufficient to produce a therapeutic-like decrease in cocaine choice and a complementary increase in food choice. Overall, these results do not support the clinical utility of 5-HT2C agonists and 5-HT2A inverse agonists/antagonists alone or in combination as candidate anti-cocaine use disorder pharmacotherapies.

  3. Type 2 Diabetes and ADP Receptor Blocker Therapy

    PubMed Central

    Samoš, Matej; Fedor, Marián; Kovář, František; Mokáň, Michal; Bolek, Tomáš; Galajda, Peter; Kubisz, Peter; Mokáň, Marián

    2016-01-01

    Type 2 diabetes (T2D) is associated with several abnormalities in haemostasis predisposing to thrombosis. Moreover, T2D was recently connected with a failure in antiplatelet response to clopidogrel, the most commonly used ADP receptor blocker in clinical practice. Clopidogrel high on-treatment platelet reactivity (HTPR) was repeatedly associated with the risk of ischemic adverse events. Patients with T2D show significantly higher residual platelet reactivity on ADP receptor blocker therapy and are more frequently represented in the group of patients with HTPR. This paper reviews the current knowledge about possible interactions between T2D and ADP receptor blocker therapy. PMID:26824047

  4. Modulating the rate and rhythmicity of perceptual rivalry alternations with the mixed 5-HT2A and 5-HT1A agonist psilocybin.

    PubMed

    Carter, Olivia L; Pettigrew, John D; Hasler, Felix; Wallis, Guy M; Liu, Guang B; Hell, Daniel; Vollenweider, Franz X

    2005-06-01

    Binocular rivalry occurs when different images are presented simultaneously to corresponding points within the left and right eyes. Under these conditions, the observer's perception will alternate between the two perceptual alternatives. Motivated by the reported link between the rate of perceptual alternations, symptoms of psychosis and an incidental observation that the rhythmicity of perceptual alternations during binocular rivalry was greatly increased 10 h after the consumption of LSD, this study aimed to investigate the pharmacology underlying binocular rivalry and to explore the connection between the timing of perceptual switching and psychosis. Psilocybin (4-phosphoryloxy-N,N-dimethyltryptamine, PY) was chosen for the study because, like LSD, it is known to act as an agonist at serotonin (5-HT)1A and 5-HT2A receptors and to produce an altered state sometimes marked by psychosis-like symptoms. A total of 12 healthy human volunteers were tested under placebo, low-dose (115 microg/kg) and high-dose (250 microg/kg) PY conditions. In line with predictions, under both low- and high-dose conditions, the results show that at 90 min postadministration (the peak of drug action), rate and rhythmicity of perceptual alternations were significantly reduced from placebo levels. Following the 90 min testing period, the perceptual switch rate successively increased, with some individuals showing increases well beyond pretest levels at the final testing, 360 min postadministration. However, as some subjects had still not returned to pretest levels by this time, the mean phase duration at 360 min was not found to differ significantly from placebo. Reflecting the drug-induced changes in rivalry phase durations, subjects showed clear changes in psychological state as indexed by the 5D-ASC (altered states of consciousness) rating scales. This study suggests the involvement of serotonergic pathways in binocular rivalry and supports the previously proposed role of a brainstem

  5. Beta-Adrenergic Receptor Blockers in Hypertension: Alive and Well.

    PubMed

    Frishman, William H

    2016-10-27

    βeta-Adrenergic receptor blockers (β-blockers) are an appropriate treatment for patients having systemic hypertension (HTN) who have concomitant ischemic heart disease (IHD), heart failure, obstructive cardiomyopathy, aortic dissection or certain cardiac arrhythmias. β-blockers can be used in combination with other antiHTN drugs to achieve maximal blood pressure control. Labetalol can be used in HTN emergencies and urgencies. β-blockers may be useful in HTN patients having a hyperkinetic circulation (palpitations, tachycardia, HTN, and anxiety), migraine headache, and essential tremor. β-blockers are highly heterogeneous with respect to various pharmacologic properties: degree of intrinsic sympathomimetic activity , membrane stabilizing activity , β1 selectivity, α1-adrenergic blocking effects, tissue solubility, routes of systemic elimination, potencies and duration of action, and specific properties may be important in the selection of a drug for clinical use. β-blocker usage to reduce perioperative myocardial ischemia and cardiovascular (CV) complications may not benefit as many patients as was once hoped, and may actually cause harm in some individuals. Currently the best evidence supports perioperative β-blocker use in two patient groups: patients undergoing vascular surgery with known IHD or multiple risk factors for it, and for those patients already receiving β-blockers for known CV conditions.

  6. Chronic betahistine co-treatment reverses olanzapine's effects on dopamine D₂ but not 5-HT2A/2C bindings in rat brains.

    PubMed

    Lian, Jiamei; Huang, Xu-Feng; Pai, Nagesh; Deng, Chao

    2015-01-02

    Olanzapine is widely prescribed for treating schizophrenia and other mental disorders, although it leads to severe body weight gain/obesity. Chronic co-treatment with betahistine has been found to significantly decrease olanzapine-induced weight gain; however, it is not clear whether this co-treatment affects the therapeutic effects of olanzapine. This study investigated the effects of chronic treatment of olanzapine and/or betahistine on the binding density of the serotonergic 5-HT2A (5-HT2AR) and 5-HT2C (5-HT2CR) receptors, 5-HT transporter (5-HTT), and dopaminergic D₂ receptors (D₂R) in the brain regions involved in antipsychotic efficacy, including the prefrontal cortex (PFC), cingulate cortex (Cg), nucleus accumbens (NAc), and caudate putamen (CPu). Rats were treated with olanzapine (1 mg/kg, t.i.d.) or vehicle for 3.5 weeks, and then olanzapine treatment was withdrawn for 19 days. From week 6, the two groups were divided into 4 groups (n=6) for 5 weeks' treatment: (1) olanzapine-only (1 mg/kg, t.i.d.), (2) betahistine-only (9.6 mg/kg, t.i.d.), (3) olanzapine and betahistine co-treatment (O+B), and (4) vehicle. Compared to the control, the olanzapine-only treatment significantly decreased the bindings of 5-HT2AR, 5-HT2CR, and 5-HTT in the PFC, Cg, and NAc. Similar changes were observed in the rats receiving the O+B co-treatment. The olanzapine-only treatment significantly increased the D₂R binding in the Cg, NAc, and CPu, while the betahistine-only treatment reduced D₂R binding. The co-treatment of betahistine reversed the D₂R bindings in the NAc and CPu that were increased by olanzapine. Therefore, chronic O+B co-treatment has similar effects on serotonin transmission as the olanzapine-only treatment, but reverses the D₂R that is up-regulated by chronic olanzapine treatment. The co-treatment maintains the therapeutic effects of olanzapine but decreases/prevents the excess weight gain.

  7. Quantitative structure-activity relationship of phenoxyphenyl-methanamine compounds with 5HT2A, SERT, and hERG activities.

    PubMed

    Mente, Scot; Gallaschun, Randall; Schmidt, Anne; Lebel, Lorrie; Vanase-Frawley, Michelle; Fliri, Anton

    2008-12-01

    QSAR models have been used to evaluate activities for compounds in the phenoxyphenyl-methanamine (PPMA) class of compounds. These models utilize Hammett-type donating-withdrawing substituent values as well as simple parameters to describe substituent size and elucidate the SAR of the 'A' and 'B' rings. Using this methodology, intuitive QSAR relationships were found for the three biological activities with R(2) values of 0.73, 0.45, and 0.58 for 5HT(2A), SerT, and hERG activities.

  8. Blockade of 5-HT2 Receptor Selectively Prevents MDMA-Induced Verbal Memory Impairment

    PubMed Central

    van Wel, J H P; Kuypers, K P C; Theunissen, E L; Bosker, W M; Bakker, K; Ramaekers, J G

    2011-01-01

    3,4-Methylenedioxymethamphetamine (MDMA) or ‘ecstasy' has been associated with memory deficits during abstinence and intoxication. The human neuropharmacology of MDMA-induced memory impairment is unknown. This study investigated the role of 5-HT2A and 5-HT1A receptors in MDMA-induced memory impairment. Ketanserin is a 5-HT2A receptor blocker and pindolol a 5-HT1A receptor blocker. It was hypothesized that pretreatment with ketanserin and pindolol would protect against MDMA-induced memory impairment. Subjects (N=17) participated in a double-blind, placebo-controlled, within-subject design involving six experimental conditions consisting of pretreatment (T1) and treatment (T2). T1 preceded T2 by 30 min. T1–T2 combinations were: placebo–placebo, pindolol 20 mg–placebo, ketanserin 50 mg–placebo, placebo–MDMA 75 mg, pindolol 20 mg–MDMA 75 mg, and ketanserin 50 mg–MDMA 75 mg. Memory function was assessed at Tmax of MDMA by means of a word-learning task (WLT), a spatial memory task and a prospective memory task. MDMA significantly impaired performance in all memory tasks. Pretreatment with a 5-HT2A receptor blocker selectively interacted with subsequent MDMA treatment and prevented MDMA-induced impairment in the WLT, but not in the spatial and prospective memory task. Pretreatment with a 5-HT1A blocker did not affect MDMA-induced memory impairment in any of the tasks. Together, the results demonstrate that MDMA-induced impairment of verbal memory as measured in the WLT is mediated by 5-HT2A receptor stimulation. PMID:21562484

  9. Angiotensin receptor blockers & endothelial dysfunction: Possible correlation & therapeutic implications

    PubMed Central

    Radenković, Miroslav; Stojanović, Marko; Nešić, Ivana Milićević; Prostran, Milica

    2016-01-01

    The endothelium is one of the most important constituents of vascular homeostasis, which is achieved through continual and balanced production of different relaxing and contractile factors. When there is a pathological disturbance in release of these products, endothelial dysfunction (ED) will probably occur. ED is considered to be the initial step in the development of atherosclerosis. This pathological activation and inadequate functioning of endothelial cells was shown to be to some extent a reversible process, which all together resulted in increased interest in investigation of different beneficial treatment options. To this point, the pharmacological approach, including for example, the use of angiotensin-converting enzyme inhibitors or statins, was clearly shown to be effective in the improvement of ED. One of many critical issues underlying ED represents instability in the balance between nitric oxide and angiotensin II (Ang II) production. Considering that Ang II was confirmed to be important for the development of ED, the aim of this review article was to summarize the findings of up to date clinical studies associated with therapeutic application of angiotensin receptor blockers and improvement in ED. In addition, it was of interest to review the pleiotropic actions of angiotensin receptor blockers linked to the improvement of ED. The prospective, randomized, double-blind, placebo or active-controlled clinical trials were identified and selected for the final evaluation. PMID:27934794

  10. Interrupting autocrine ligand-receptor binding: comparison between receptor blockers and ligand decoys.

    PubMed Central

    Forsten, K E; Lauffenburger, D A

    1992-01-01

    Stimulation of cell behavioral functions by ligand/receptor binding can be accomplished in autocrine fashion, where cells secrete ligand capable of binding to receptors on their own surfaces. This proximal secretion of autocrine ligands near the surface receptors on the secreting cell suggests that control of these systems by inhibitors of receptor/ligand binding may be more difficult than for systems involving exogenous ligands. Hence, it is of interest to predict the conditions under which successful inhibition of cell receptor binding by the autocrine ligand can be expected. Previous theoretical work using a compartmentalized model for autocrine cells has elucidated the conditions under which addition of solution decoys for the autocrine ligand can interrupt cell receptor/ligand binding via competitive binding of the secreted molecules (Forsten, K. E., and D. A. Lauffenburger. 1992. Biophys. J. 61:1-12.) We now apply a similar modeling approach to examine the addition of solution blockers targeted against the cell receptor. Comparison of the two alternative inhibition strategies reveals that a significantly lower concentration of receptor blockers, compared to ligand decoys, will obtain a high degree of inhibition. The more direct interruption scheme characteristic of the receptor blockers may make them a preferred strategy when feasible. PMID:1330038

  11. Clinical Profile of Eprosartan: A Different Angiotensin II Receptor Blocker

    PubMed Central

    Blankestijn, P. J; Rupp, H

    2008-01-01

    Rationale. The goal of antihypertensive treatment is to reduce risk of cardiovascular morbidity and mortality. Apart from blood pressure lowering per se, also reducing the activities of the renin-angiotensin system and sympathetic nervous system appears to be important. Angiotensin II receptor blocker drugs (ARBs) have provided a useful class of anti-hypertensive drugs. Eprosartan is a relatively new ARB which is chemically distinct (non-biphenyl, non-tetrazole) from all other ARBs (biphenyl tetrazoles). An analysis has been made on available experimental and clinical data on eprosartan which not only is an effective and well tolerated antihypertensive agent, but also lowers the activities of the renin-angiotensin system and sympathetic nervous system. Experimental and pharmacokinetic studies on eprosartan have shown differences with the other ARBs. The distinct properties of this non-biphenyl, non-tetrazole ARB might be relevant in the effort to reduce cardiovascular risk, also beyond its blood pressure lowering capacity. PMID:18855637

  12. Combination ACE inhibitor and angiotensin receptor blocker therapy - future considerations.

    PubMed

    Sica, Domenic A

    2007-01-01

    Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers are regularly prescribed for the management of hypertension. Each of these drug classes has also been shown to provide survival benefits for patients with heart failure, proteinuric chronic kidney disease, and/or a high cardiac risk profile. The individual gains seen with each of these drug classes have led to speculation that their combination might offer additive if not synergistic outcome benefits. The foundation of this hypothesis, although biologically possible, has thus far not been sufficiently well proven to support the everyday use of these 2 drug classes in combination. Additional outcomes trials, which are currently proceeding to their conclusion, may provide the necessary proof to support an expanded use of these 2 drug classes in combination.

  13. Reappraisal of role of angiotensin receptor blockers in cardiovascular protection.

    PubMed

    Ram, C Venkata S

    2011-01-01

    Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) have shown cardioprotective and renoprotective properties. These agents are recommended as first-line therapy for the treatment of hypertension and the reduction of cardiovascular risk. Early studies pointed to the cardioprotective and renoprotective effects of ARBs in high-risk patients. The ONgoing Telmisartan Alone and in combination with Ramipril Global Endpoint Trial (ONTARGET) established the clinical equivalence of the cardioprotective and renoprotective effects of telmisartan and ramipril, but did not find an added benefit of the combination over ramipril alone. Similar findings were observed in the Telmisartan Randomized AssessmeNt Study in aCE INtolerant subjects with cardiovascular Disease (TRANSCEND) trial conducted in ACEI-intolerant patients. In ONTARGET, telmisartan had a better tolerability profile with similar renoprotective properties compared with ramipril, suggesting a potential clinical benefit over ramipril. The recently completed Olmesartan Reducing Incidence of Endstage Renal Disease in Diabetic Nephropathy Trial (ORIENT) and Olmesartan and Calcium Antagonists Randomized (OSCAR) studies will further define the role of ARBs in cardioprotection and renoprotection for high-risk patients.

  14. Anxiolytics not acting at the benzodiazepine receptor: beta blockers.

    PubMed

    Tyrer, P

    1992-01-01

    1. Although there is clear evidence for many controlled trials in the past 25 years that beta blockers are effective in anxiety disorders clear indications for their use are lacking. 2. The balance of evidence suggests that the mechanism of action of beta-blocking drugs is through peripheral blockade of beta-mediated symptoms. 3. Most evidence to the efficacy of beta-blockers comes from study of their use in generalized anxiety and in acute stress. 4. Because beta-blockers carry no risks of pharmacological dependence they may be preferred to many other anti-anxiety drugs.

  15. Increased infections with β-blocker use in ischemic stroke, a β2-receptor mediated process?

    PubMed

    Starr, Jordan B; Tirschwell, David L; Becker, Kyra J

    2017-03-03

    Strokes promote immunosuppression, partially from increased sympathetic activity. Altering sympathetic drive with β-blockers has variably been shown to improve stroke outcomes. This study adds to this literature using propensity score matching to limit confounding and by examining the effects of selective and non-selective β-blockers. Prospective data from acute ischemic stroke admissions at a single center from July 2010-June 2015 were analyzed. Outcomes included infection (urinary tract infection [UTI], pneumonia, or bacteremia), discharge modified Rankin Score (mRS), and in-hospital death. Any selective and non-selective β-blocker use during the first 3 days of admission were investigated with propensity score matching. A sensitivity analysis was also performed. This study included 1431 admissions. Any β-blocker use was associated with increased infections (16.4 vs. 10.7%, p = 0.030). Non-selective β-blocker use was associated with increased infections (18.9 vs. 9.7%, p = 0.005) and UTIs (13.0 vs. 5.5%, p = 0.009). Selective β-blocker use was not associated with infection. There were no associations between β-blocker use and in-hospital death or discharge mRS. In the sensitivity analysis, the association between non-selective β-blocker use and urinary tract infections persisted (12.5 vs. 4.2%, p = 0.044). No associations with death or mRS were found. Early β-blocker use after ischemic stroke may increase the risk of infection but did not change disability or mortality risk. The mechanism may be mediated by β2-adrenergic receptor antagonism given the different effects seen with selective versus non-selective β-blocker use.

  16. Altered coronary microvascular serotonin receptor expression after coronary artery bypass grafting utilizing cardiopulmonary bypass

    PubMed Central

    Robich, Michael P.; Araujo, Eugenio G.; Feng, Jun; Osipov, Robert M.; Clements, Richard T.; Bianchi, Cesario; Sellke, Frank W.

    2009-01-01

    Objectives Evaluate the role of serotonin receptors 1B and 2A, thromboxane synthase and receptor and phospholipases A2 and C in response to cardiopulmonary bypass in patients. Methods Atrial tissue was harvested from patients before and after cardiopulmonary bypass with cardioplegia (n=13). Coronary microvessels were assessed for vasoactive response to serotonin with and without inhibitors of 5-HT1B and 5-HT2A receceptors, phospholipase A2 and C. Expression of 5-HT1B and 5-HT2A mRNA was determined by RT-PCR. Expression of 5-HT1B, 5-HT2A, Thromboxane A2 receptor and synthase protein was determined by immunoblotting and immunohistochemistry. Results Exposure of microvessels to serotonin elicited a 7.3 ± 2% relaxation response pre-bypass, changing to a strong contraction response of -19.2 ± 2% after bypass (p<0.001). Addition of either a specific 5-HT1B antagonist or inhibitor of PLA2 resulted in a significant decrease in the contractile response to -8.6 ±1% (p<0.001) and 2.8 ± 3% (p= 0.001), respectively. 5-HT1B receptor mRNA expression increased 1.82 ± 0.34 fold after bypass (p=0.044), while 5-HT2A mRNA expression did not change. 5-HT1B receptor, but not 5-HT2A, protein expression increased after bypass by 1.35 ± 0.7 fold (p=0.0413). Neither thromboxane synthase nor thromboxane receptor expression changed after bypass. Immunohistochemistry demonstrated 5-HT1B receptor increased mainly in the arterial smooth muscle. There was no appreciable difference in arterial expression of either thromboxane synthase or receptor. Conclusion These data indicate that 5-HT-induced vascular dysfunction after cardiopulmonary bypass with cardioplegia may be mediated by increased expression of 5-HT1B receptor and subsequent PLA2 activation in myocardial coronary smooth muscle. Mini Abstract The expression of 5-HT1B receptor protein and mRNA were increased in the atrial myocardium after cardioplegia and cardiopulmonary bypass (CP-CPB). Serotonin elicited a strong contraction

  17. Is there any difference between angiotensin converting enzyme inhibitors and angiotensin receptor blockers for heart failure?

    PubMed

    Rain, Carmen; Rada, Gabriel

    2015-07-06

    Angiotensin receptor blockers are usually considered as equivalent to angiotensin converting enzyme inhibitors for patients with heart failure and low-ejection fraction. Some guidelines even recommend the former as first line treatment given their better adverse effects profile. Searching in Epistemonikos database, which is maintained by screening 30 databases, we identified four systematic reviews including eight pertinent randomized controlled trials. We combined the evidence using meta-analysis and generated a summary of findings following the GRADE approach. We concluded angiotensin receptor blockers and angiotensin converting enzyme inhibitors probably have a similar effect on mortality, and they might be equivalent in reducing hospitalization risk too. Treatment withdrawal due to adverse effects is probably lower with angiotensin receptor blockers than with angiotensin converting enzyme inhibitors.

  18. An N-methyl-d-aspartate receptor channel blocker with neuroprotective activity

    PubMed Central

    Tai, Kwok-Keung; Blondelle, Sylvie E.; Ostresh, John M.; Houghten, Richard A.; Montal, Mauricio

    2001-01-01

    Excitotoxicity, resulting from sustained activation of glutamate receptors of the N-methyl-d-aspartate (NMDA) subtype, is considered to play a causative role in the etiology of ischemic stroke and several neurodegenerative diseases. The NMDA receptor is therefore a target for the development of neuroprotective agents. Here, we identify an N-benzylated triamine (denoted as NBTA) as a highly selective and potent NMDA-receptor channel blocker selected by screening a reduced dipeptidomimetic synthetic combinatorial library. NBTA blocks recombinant NMDA receptors expressed in Xenopus laevis oocytes with a mean IC50 of 80 nM; in contrast, it does not block GluR1, a glutamate receptor of the non-NMDA subtype. The blocking activity of NBTA on NMDA receptors exhibits the characteristics of an open-channel blocker: (i) no competition with agonists, (ii) voltage dependence, and (iii) use dependence. Significantly, NBTA protects rodent hippocampal neurons from NMDA receptor, but not kainate receptor-mediated excitotoxic cell death, in agreement with its selective action on the corresponding recombinant receptors. Mutagenesis data indicate that the N site, a key asparagine on the M2 transmembrane segment of the NR1 subunit, is the main determinant of the blocker action. The results highlight the potential of this compound as a neuroprotectant. PMID:11248110

  19. Remission of post-transplant focal segmental glomerulosclerosis with angiotensin receptor blockers

    PubMed Central

    Bansal, S. B.; Sethi, S. K.; Jha, P.; Duggal, R.; Kher, V.

    2017-01-01

    Recurrence of focal segmental glomerulosclerosis (FSGS) is common after kidney transplantation. Plasmapheresis (PP) is considered to be the most effective treatment; however, results are variable and relapse is common after stopping plasmapheresis. Here, we report an unusual case of recurrent FSGS, who achieved complete remission with angiotensin receptor blocker therapy.

  20. Cannabinoid 2 receptor- and beta Arrestin 2-dependent upregulation of serotonin 2A receptors.

    PubMed

    Franklin, J M; Vasiljevik, T; Prisinzano, T E; Carrasco, G A

    2013-07-01

    Recent evidence suggests that cannabinoid receptor agonists may regulate serotonin 2A (5-HT(2A)) receptor neurotransmission in the brain, although no molecular mechanism has been identified. Here, we present experimental evidence that sustained treatment with a non-selective cannabinoid agonist (CP55,940) or selective CB2 receptor agonists (JWH133 or GP1a) upregulate 5-HT(2A) receptors in a neuronal cell line. Furthermore, this cannabinoid receptor agonist-induced upregulation of 5-HT(2A) receptors was prevented in cells stably transfected with either CB2 or β-Arrestin 2 shRNA lentiviral particles. Additionally, inhibition of clathrin-mediated endocytosis also prevented the cannabinoid receptor-induced upregulation of 5-HT(2A) receptors. Our results indicate that cannabinoid agonists might upregulate 5-HT(2A) receptors by a mechanism that requires CB2 receptors and β-Arrestin 2 in cells that express both CB2 and 5-HT(2A) receptors. 5-HT(2A) receptors have been associated with several physiological functions and neuropsychiatric disorders such as stress response, anxiety and depression, and schizophrenia. Therefore, these results might provide a molecular mechanism by which activation of cannabinoid receptors might be relevant to some cognitive and mood disorders in humans.

  1. Prevention of experimental autoimmune cardiomyopathy in rabbits by receptor blockers.

    PubMed

    Matsui, S; Fu, M L

    2001-01-01

    We investigated the effects of beta1-adrenoceptor blockade and M2-muscarinic receptor antagonist in rabbits which have developed dilated cardiomyopathy-like changes after immunization with the peptides from the second extracellular loop of human beta1-adrenoceptor (beta1-peptide) and M2-muscarinic receptor (M2-peptide). Ten rabbits, which were immunized with beta1-peptide once a month for one year, were treated with bisoprolol and 10 rabbits, which were immunized with M2-peptide, were treated with otenzepad. Although both groups treated with receptor blockade or antagonist showed an increased titer of anti-beta1-adrenoceptor or anti-M2-muscarinic receptor antibodies, myocardial damages were markedly less than those in beta1-peptide- or M2-peptide-immunized rabbits. This study indicates that anti-beta1-adrenoceptor and anti-M2-muscarinic receptor antibodies are of pathogenic importance in the development of human dilated cardiomyopathy, and that beta-adrenoceptor blockade, bisoprolol, and M2-muscarinic receptor antagonist, otenzepad, might be clinically useful for treatment of dilated cardiomyopathy.

  2. New Evidence Supporting the Use of Mineralocorticoid Receptor Blockers in Drug-Resistant Hypertension.

    PubMed

    Narayan, Hafid; Webb, David J

    2016-04-01

    Treatment resistant hypertension (TRH), defined as a blood pressure above goal despite treatment with optimally tolerated doses of 3 antihypertensive agents of different classes, ideally including a diuretic, remains a significant problem and its management an area of uncertainty for physicians. One hypothesis is that resistant hypertension is due to abnormal sodium retention, mediated by aldosterone breakthrough occurring despite blockade of the renin-angiotensin-aldosterone system with angiotensin converting enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARB). Thus, there has been renewed interest in the use of mineralocorticoid receptor blockers (MRB) to treat this condition. This article critically evaluates new evidence supporting the use of MRB in TRH published in the last 3 years. We conclude that there is now sufficient evidence to recommend MRB, in particular spironolactone, as the first choice medication to treat this condition, and for its inclusion in future guidelines.

  3. Postnatal acute renal failure after fetal exposure to angiotensin receptor blockers.

    PubMed

    Marchetto, Luca; Sordino, Desiree; De Bernardo, Giuseppe; Trevisanuto, Daniele

    2015-07-02

    Maternal hypertensive treatment with angiotensin receptor blockers (ARBs) during the second and third trimester of pregnancy is associated with several fetal and neonatal complications, and potential adverse outcomes. We report a neonate presenting with transient renal acute failure during the first days of life after maternal treatment with ARBs. Women who became pregnant while taking one of these drugs must modify antihypertensive therapy with a different class drug as soon as pregnancy is recognised.

  4. Identification and characterization of a truncated variant of the 5-hydroxytryptamine(2A) receptor produced by alternative splicing.

    PubMed

    Guest, P C; Salim, K; Skynner, H A; George, S E; Bresnick, J N; McAllister, G

    2000-09-08

    We have identified an alternatively spliced 5-hydroxytryptamine 2A receptor (5-HT(2A)-R) transcript by PCR of human brain cDNA using degenerate oligonucleotide primers to transmembrane (TM) domains 3 and 7 of the 5-HT(2)-R subfamily. The variant contains a 118-bp insertion at the exon II/III boundary of the 5-HT(2A)-R, which produces a frame shift in the coding sequence and a premature stop codon. PCR analysis showed that the truncated receptor (5-HT(2A-tr)) and native 5-HT(2A)-R were co-expressed in most brain tissues, with the highest levels being found in hippocampus, corpus collosum, amygdala and caudate nucleus. Western blot analysis of HEK-293 cells transfected transiently with a 5-HT(2A-tr) construct showed that a 30-kDa protein was expressed on cell membranes. Co-transfection studies showed no effect of the 5-HT(2A-tr) variant on 3H-ketanserin binding to the native 5-HT(2A)-R or on functional coupling of the 5-HT(2A)-R to 5-HT-stimulated Ca(2+) mobilization. The functional significance of the 5-HT(2A-tr) variant and other truncated receptors remains to be established.

  5. [Assessment of the utilization of angiotensin receptor blockers in hypertension].

    PubMed

    Peña Cabia, S; Ricote Lobera, I; Santos Mena, B; Hidalgo Correas, F J; Climent Florez, B; García Díaz, B

    2013-01-01

    Objetivo: Evaluar en nuestra área de Salud el grado en que la utilización de antagonistas de los receptores de la angiotensina II (ARA-II) se ajusta a los criterios propuestos por la Comunidad Autónoma de Madrid (CAM) antes de la instauración del «Plan de Actuación de ARA-II». Estudiar las indicaciones para las que se prescriben e identificar aquellos factores que han podido influir en su prescripción. Métodos: Estudio de utilización de medicamentos del tipo indicación- prescripción, descriptivo y transversal, en el que se seleccionaron pacientes con hipertensión arterial y en tratamiento con ARA-II ingresados en un Hospital General Universitario durante un periodo de estudio de 3 meses. De acuerdo con las situaciones clínicas recogidas en el Documento de la CAM «Criterios para establecer el lugar en la terapéutica de los antagonistas de los receptores de la angiotensina II», se calculó el porcentaje de pacientes con «prescripción adecuada» y «prescripción no adecuada» de ARA-II y se analizó si la edad y el sexo tenían influencia en el tipo de prescripción o en las principales indicaciones para las que se prescribieron. Resultados: De los 153 pacientes que se incluyeron en el estudio, el 67,3% tuvieron una «prescripción no adecuada», el 47,6% de ellos por prescripción de ARA-II como primer fármaco antagonista del sistema renina angiotensina aldosterona y el 34,0% por mal control de la tensión arterial con inhibidores de la enzima convertidora de angiotensina (IECA). No se encontraron diferencias estadísticamente significativas por edad o sexo en cuanto al tipo de prescripción o en las principales indicaciones para las que se prescribieron. Conclusiones: La adecuación a los criterios de uso del Documento de ARA-II se produjo en el 32,7% de los casos. Además, no se observó que factores como la edad y el sexo influyeran en el tipo de prescripción. Asimismo, se evidenciaron percep-

  6. In silico screening for agonists and blockers of the β2 adrenergic receptor: implications of inactive and activated state structures

    PubMed Central

    Costanzi, Stefano; Vilar, Santiago

    2011-01-01

    Ten crystal structures of the β2 adrenergic receptor (β2AR) have been published, reflecting different signaling states. Here, through controlled docking experiments, we examined the implications of using inactive or activated structures on the in silico screening for agonists and blockers of the receptor. Specifically, we targeted the crystal structures solved in complex with carazolol (2RH1), the neutral antagonist alprenalol (3NYA), the irreversible agonist FAUC50 (3PDS) and the full agonist BI-167017 (3P0G). Our results indicate that activated structures favor agonists over blockers while inactive structures favor blockers over agonists. This tendency is more marked for activated than for inactive structures. Additionally, agonists tend to receive more favorable docking scores when docked at activated rather than inactive structures, while blockers do the opposite. Hence, the difference between the docking scores attained with an activated and an inactive structure is an excellent means for the classification of ligands into agonists and blockers, as we determined through receiver operating characteristic (ROC) curves and linear discriminant analysis (LDA). With respect to virtual screening, all structures prioritized well agonists and blockers over non-binders. However, inactive structures worked better for blockers and activated structures worked better for agonists. Notably, the combination of individual docking experiments through receptor ensemble docking (RED) resulted in an excellent performance in the retrieval of both agonists and blockers. Finally, we demonstrated that the induced fit docking of agonists is a viable way of modifying an inactive crystal structure and bias it towards the in silico recognition of agonists rather than blockers. PMID:22170280

  7. Ca sup 2+ channel blockers interact with. alpha. sub 2 -adrenergic receptors in rabbit ileum

    SciTech Connect

    Homaidan, F.R.; Donowitz, M.; Wicks, J.; Cusolito, S.; El Sabban, M.E.; Weiland, G.A.; Sharp, G.W.G. Tufts Univ. School of Medicine and New England Medical Center Hospital, Boston, MA )

    1988-04-01

    An interaction between Ca{sup 2+} channel blockers and {alpha}{sub 2}-adrenergic receptors has been demonstrated in rabbit ileum by studying the effect of clonidine on active electrolyte transport, under short-circuited conditions, in the presence and absence of several Ca{sup 2+} channel blocking agents. Clonidine, verapamil, diltiazem, cadmium, and nitrendipine all decrease short-circuit current and stimulate NaCl absorption to different extents with clonidine having the largest effect. Exposure to verapamil, diltiazem, and cadmium inhibited the effects of clonidine on transport, whereas nitrendipine had no such effect. Verapamil, diltiazem, and cadmium, but not nitrendipine, also decreased the specific binding of ({sup 3}H){alpha}{sub 2}-adrenergic agents to a preparation of ileal basolateral membranes explaining the observed decrease in the transport effects of clonidine. The effective concentrations of the Ca{sup 2+} channel blockers that inhibited the effects of clonidine on transport were fairly similar to the concentrations needed to inhibit its specific binding. The displacement of clonidine by calcium channel blockers is ascribed to a nonspecific effect of these agents, although the possibility that their effects are exerted via their binding to the calcium channels is not excluded.

  8. beta-adrenergic receptor gene polymorphisms and beta-blocker treatment outcomes in hypertension.

    PubMed

    Pacanowski, M A; Gong, Y; Cooper-Dehoff, R M; Schork, N J; Shriver, M D; Langaee, T Y; Pepine, C J; Johnson, J A

    2008-12-01

    Numerous studies have demonstrated that beta(1)- and beta(2)-adrenergic receptor gene (ADRB1 and ADRB2) variants influence cardiovascular risk and beta-blocker responses in hypertension and heart failure. We evaluated the relationship between ADRB1 and ADRB2 haplotypes, cardiovascular risk (death, nonfatal myocardial infarction (MI), and nonfatal stroke), and atenolol-based vs. verapamil sustained-release (SR)-based antihypertensive therapy in 5,895 coronary artery disease (CAD) patients. After an average of 2.8 years, death rates were higher in patients carrying the ADRB1 Ser49-Arg389 haplotype (hazard ratio (HR) 3.66, 95% confidence interval (95% CI) 1.68-7.99). This mortality risk was significant in patients randomly assigned to verapamil SR (HR 8.58, 95% CI 2.06-35.8) but not atenolol (HR 2.31, 95% CI 0.82-6.55), suggesting a protective role for the beta-blocker. ADRB2 haplotype associations were divergent within the treatment groups but did not remain significant after adjustment for multiple comparisons. ADRB1 haplotype variation is associated with mortality risk, and beta-blockers may be preferred in subgroups of patients defined by ADRB1 or ADRB2 polymorphisms.

  9. Treating the Host Response to Ebola Virus Disease with Generic Statins and Angiotensin Receptor Blockers

    PubMed Central

    Jacobson, Jeffrey R.; Rordam, Ole Martin; Opal, Steven M.

    2015-01-01

    ABSTRACT Treatments targeting the Ebola virus may eventually be shown to work, but they will not have an impact on overall Ebola mortality in West Africa. Endothelial dysfunction is responsible for the fluid and electrolyte imbalances seen in Ebola patients. Because inexpensive generic statins and angiotensin receptor blockers restore endothelial barrier integrity, they can be used to treat the host response in these patients. In Sierra Leone, approximately 100 Ebola patients were treated with this combination, and reports indicate that survival was greatly improved. PMID:26106080

  10. Indistinguishable Synaptic Pharmacodynamics of the N-Methyl-d-Aspartate Receptor Channel Blockers Memantine and Ketamine

    PubMed Central

    Emnett, Christine M.; Eisenman, Lawrence N.; Taylor, Amanda M.; Izumi, Yukitoshi; Zorumski, Charles F.

    2013-01-01

    Memantine and ketamine, voltage- and activation-dependent channel blockers of N-methyl-d-aspartate (NMDA) receptors (NMDARs), have enjoyed a recent resurgence in clinical interest. Steady-state pharmacodynamic differences between these blockers have been reported, but it is unclear whether the compounds differentially affect dynamic physiologic signaling. In this study, we explored nonequilibrium conditions relevant to synaptic transmission in hippocampal networks in dissociated culture and hippocampal slices. Equimolar memantine and ketamine had indistinguishable effects on the following measures: steady-state NMDA currents, NMDAR excitatory postsynaptic current (EPSC) decay kinetics, progressive EPSC inhibition during repetitive stimulation, and extrasynaptic NMDAR inhibition. Therapeutic drug efficacy and tolerability of memantine have been attributed to fast kinetics and strong voltage dependence. However, pulse depolarization in drug presence revealed a surprisingly slow and similar time course of equilibration for the two compounds, although memantine produced a more prominent fast component (62% versus 48%) of re-equilibration. Simulations predicted that low gating efficacy underlies the slow voltage–dependent relief from block. This prediction was empirically supported by faster voltage-dependent blocker re-equilibration with several experimental manipulations of gating efficacy. Excitatory postsynaptic potential–like voltage commands produced drug differences only with large, prolonged depolarizations unlikely to be attained physiologically. In fact, we found no difference between drugs on measures of spontaneous network activity or acute effects on plasticity in hippocampal slices. Despite indistinguishable synaptic pharmacodynamics, ketamine provided significantly greater neuroprotection from damage induced by oxygen glucose deprivation, consistent with the idea that under extreme depolarizing conditions, the biophysical difference between drugs

  11. A pentasymmetric open channel blocker for Cys-loop receptor channels.

    PubMed

    Carta, Valentina; Pangerl, Michael; Baur, Roland; Puthenkalam, Roshan; Ernst, Margot; Trauner, Dirk; Sigel, Erwin

    2014-01-01

    γ-Aminobutyric acid type A receptors (GABAA receptors) are chloride ion channels composed of five subunits, mediating fast synaptic and tonic inhibition in the mammalian brain. These receptors show near five-fold symmetry that is most pronounced in the second trans-membrane domain M2 lining the Cl- ion channel. To take advantage of this inherent symmetry, we screened a variety of aromatic anions with matched symmetry and found an inhibitor, pentacyanocyclopentdienyl anion (PCCP-) that exhibited all characteristics of an open channel blocker. Inhibition was strongly dependent on the membrane potential. Through mutagenesis and covalent modification, we identified the region α1V256-α1T261 in the rat recombinant GABAA receptor to be important for PCCP- action. Introduction of positive charges into M2 increased the affinity for PCCP- while PCCP- prevented the access of a positively charged molecule into M2. Interestingly, other anion selective cys-loop receptors were also inhibited by PCCP-, among them the Drosophila RDL GABAA receptor carrying an insecticide resistance mutation, suggesting that PCCP- could serve as an insecticide.

  12. Effects of nicotinic and NMDA receptor channel blockers on intravenous cocaine and nicotine self-administration in mice.

    PubMed

    Blokhina, Elena A; Kashkin, Vladimir A; Zvartau, Edwin E; Danysz, Wojciech; Bespalov, Anton Y

    2005-03-01

    Previous studies have indicated that blockade of N-methyl-D-aspartate (NMDA) subtype of glutamate receptors prevents acquisition of instrumental behaviors reinforced by food and drugs such as morphine and cocaine. The present study aimed to extend this evidence by testing whether NMDA receptor channel blocker, memantine, would exert similar effects on acquisition of cocaine and nicotine self-administration in mice. Inasmuch as memantine also acts as nicotinic receptor channel blocker, this study assessed the effects of mecamylamine and MRZ 2/621 that are more selective nicotinic blockers. Adult male Swiss mice were allowed to self-administer cocaine (0.8-2.4 microg/infusion) or nicotine (0.08-0.32 microg/infusion) during the 30-min test. Pretreatment with memantine (0.1-10 mg/kg) prevented acquisition of nicotine but not cocaine self-administration. Pretreatment with mecamylamine (0.3-3 mg/kg) and MRZ 2/621 (0.3-10 mg/kg) produced dose-dependent suppression of both cocaine and nicotine self-administration. Taken together with the previous reports, these results indicate that nicotinic receptor blockers antagonize acute reinforcing effects of cocaine while NMDA receptor blockade may have limited effectiveness.

  13. Effect of dietary fiber on the level of free angiotensin II receptor blocker in vitro.

    PubMed

    Iwazaki, Ayano; Takahashi, Kazuhiro; Tamezane, Yui; Tanaka, Kenta; Nakagawa, Minami; Imai, Kimie; Nakanishi, Kunio

    2014-01-01

    The interaction between angiotensin II type 1 (AT1) receptor blockers (ARBs), such as losartan potassium (LO), candesartan (CA), and telmisartan (TE), and dietary fiber was studied as to the level of free ARB in vitro. When ARB was incubated with soluble (sodium alginate, pectin, and glucomannan) or insoluble (cellulose and chitosan) dietary fiber, the levels of free LO, TE, and CA decreased. This resulted only from mixing the dietary fiber with the ARBs and differed among the types of dietary fiber, and the pH and electrolytes in the mixture. The levels of free LO and TE tended to decrease with a higher concentration of sodium chloride in pH 1.2 fluid. These results suggest that it is important to pay attention to the possible interactions between ARBs and dietary fiber.

  14. Rimonabant: a cannabinoid receptor type 1 blocker for management of multiple cardiometabolic risk factors.

    PubMed

    Gelfand, Eli V; Cannon, Christopher P

    2006-05-16

    Rimonabant is a first selective blocker of the cannabinoid receptor type 1 (CB1) being developed for the treatment of multiple cardiometabolic risk factors, including abdominal obesity and smoking. In four large trials, after one year of treatment, rimonabant 20 mg led to greater weight loss and reduction in waist circumference compared with placebo. Therapy with rimonabant is also associated with favorable changes in serum lipid levels and an improvement in glycemic control in prediabetes patients and in type 2 diabetic patients. At the same dose, rimonabant significantly increased cigarette smoking quit rates as compared with placebo. Rimonabant seems to be well tolerated, with a primary side effect of mild nausea. As an agent with a novel mechanism of action, rimonabant has a potential to be a useful adjunct to lifestyle and behavior modification in treatment of multiple cardiometabolic risk factors, including abdominal obesity and smoking.

  15. Angiotensin II AT(1) receptor blockers as treatments for inflammatory brain disorders.

    PubMed

    Saavedra, Juan M

    2012-11-01

    The effects of brain AngII (angiotensin II) depend on AT(1) receptor (AngII type 1 receptor) stimulation and include regulation of cerebrovascular flow, autonomic and hormonal systems, stress, innate immune response and behaviour. Excessive brain AT(1) receptor activity associates with hypertension and heart failure, brain ischaemia, abnormal stress responses, blood-brain barrier breakdown and inflammation. These are risk factors leading to neuronal injury, the incidence and progression of neurodegerative, mood and traumatic brain disorders, and cognitive decline. In rodents, ARBs (AT(1) receptor blockers) ameliorate stress-induced disorders, anxiety and depression, protect cerebral blood flow during stroke, decrease brain inflammation and amyloid-β neurotoxicity and reduce traumatic brain injury. Direct anti-inflammatory protective effects, demonstrated in cultured microglia, cerebrovascular endothelial cells, neurons and human circulating monocytes, may result not only in AT(1) receptor blockade, but also from PPARγ (peroxisome-proliferator-activated receptor γ) stimulation. Controlled clinical studies indicate that ARBs protect cognition after stroke and during aging, and cohort analyses reveal that these compounds significantly reduce the incidence and progression of Alzheimer's disease. ARBs are commonly used for the therapy of hypertension, diabetes and stroke, but have not been studied in the context of neurodegenerative, mood or traumatic brain disorders, conditions lacking effective therapy. These compounds are well-tolerated pleiotropic neuroprotective agents with additional beneficial cardiovascular and metabolic profiles, and their use in central nervous system disorders offers a novel therapeutic approach of immediate translational value. ARBs should be tested for the prevention and therapy of neurodegenerative disorders, in particular Alzheimer's disease, affective disorders, such as co-morbid cardiovascular disease and depression, and traumatic

  16. The L-, N-, and T-type triple calcium channel blocker benidipine acts as an antagonist of mineralocorticoid receptor, a member of nuclear receptor family.

    PubMed

    Kosaka, Hiromichi; Hirayama, Kazunori; Yoda, Nobuyuki; Sasaki, Katsutoshi; Kitayama, Tetsuya; Kusaka, Hideaki; Matsubara, Masahiro

    2010-06-10

    Aldosterone-induced activation of mineralocorticoid receptor, a member of the nuclear receptor family, results in increased tissue damage such as vascular inflammation and cardiac and perivascular fibrosis. Benidipine, a long-lasting dihydropyridine calcium channel blocker, is used for hypertension and angina. Benidipine exhibits pleiotropic pharmacological features such as renoprotective and cardioprotective effects through triple blockade of L-, N-, and T-type calcium channels. However, the mechanism of additional beneficial effects on end-organ damage is poorly understood. Here, we examined the effects of benidipine and other calcium channel blockers on aldosterone-induced mineralocorticoid receptor activation using luciferase reporter assay system. Benidipine showed more potent activity than efonidipine, amlodipine, or azelnidipine. Benidipine depressed the response to higher concentrations of aldosterone, whereas pretreatment of eplerenone, a steroidal mineralocorticoid receptor antagonist, did not. Binding studies using [(3)H] aldosterone indicated that benidipine and other calcium channel blockers competed for binding to mineralocorticoid receptor. Benidipine and other calcium channel blockers showed antagonistic activity on Ser810 to Leu mutant mineralocorticoid receptor, which is identified in patients with early-onset hypertension. On the other hand, eplerenone partially activated the mutant. Results of analysis using optical isomers of benidipine indicated that inhibitory effect of aldosterone-induced mineralocorticoid receptor activation was independent of its primary blockade of calcium channels. These results suggested that benidipine directly inhibits aldosterone-induced mineralocorticoid receptor activation, and the antagonistic activity might contribute to the drug's pleiotropic pharmacological features.

  17. Combination therapy of angiotensin II receptor blocker and calcium channel blocker exerts pleiotropic therapeutic effects in addition to blood pressure lowering: amlodipine and candesartan trial in Yokohama (ACTY).

    PubMed

    Maeda, Akinobu; Tamura, Kouichi; Kanaoka, Tomohiko; Ohsawa, Masato; Haku, Sona; Azushima, Kengo; Dejima, Toru; Wakui, Hiromichi; Yanagi, Mai; Okano, Yasuko; Fujikawa, Tetsuya; Toya, Yoshiyuki; Mizushima, Shunsaku; Tochikubo, Osamu; Umemura, Satoshi

    2012-01-01

    Recent guidelines recommend combination antihypertensive therapy to achieve the target blood pressure (BP) and to suppress target organ damage. This study aimed to examine the beneficial effects of combination therapy with candesartan and amlodipine on BP control and markers of target organ function in Japanese essential hypertensive patients (N = 20) who did not achieve the target BP level during the monotherapy period with either candesartan or amlodipine. After the monotherapy period, for patients already being treated with amlodipine, a once-daily 8 mg dose of candesartan was added on during the combination therapy period (angiotensin II receptor blocker [ARB] add-on group, N = 10), and a once-daily 5 mg dose of amlodipine was added on for those already being treated with candesartan (calcium channel blocker [CCB] add-on group, N = 10). Combination therapy with candesartan and amlodipine for 12 weeks significantly decreased clinic and home systolic blood pressure (SBP) and diastolic blood pressure (DBP). In addition, the combination therapy was able to significantly reduce urine albumin excretion without decrease in estimated glomerular filtration ratio and resulted in significant improvements in brachial-ankle pulse wave velocity, central SBP, and insulin sensitivity. Furthermore, the CCB add-on group showed a significantly greater decrease in clinic and home DBP than the ARB add-on group. The calcium channel blocker add-on group also exhibited better improvements in vascular functional parameters than the ARB add-on group. These results suggest that combination therapy with candesartan and amlodipine is an efficient therapeutic strategy for hypertension with pleiotropic benefits.

  18. Otilonium: a potent blocker of neuronal nicotinic ACh receptors in bovine chromaffin cells.

    PubMed Central

    Gandía, L.; Villarroya, M.; Lara, B.; Olmos, V.; Gilabert, J. A.; López, M. G.; Martínez-Sierra, R.; Borges, R.; García, A. G.

    1996-01-01

    1. Otilonium, a clinically useful spasmolytic, behaves as a potent blocker of neuronal nicotinic acetylcholine receptors (AChR) as well as a mild wide-spectrum Ca2+ channel blocker in bovine adrenal chromaffin cells. 2. 45Ca2+ uptake into chromaffin cells stimulated with high K+ (70 mM, 1 min) was blocked by otilonium with an IC50 of 7.6 microM. The drug inhibited the 45Ca2+ uptake stimulated by the nicotinic AChR agonist, dimethylphenylpiperazinium (DMPP) with a 79 fold higher potency (IC50 = 0.096 microM). 3. Whole-cell Ba2+ currents (IBa) through Ca2+ channels of voltage-clamped chromaffin cells were blocked by otilonium with an IC50 of 6.4 microM, very close to that of K(+)-evoked 45Ca2+ uptake. Blockade developed in 10-20 s, almost as a single step and was rapidly and almost fully reversible. 4. Whole-cell nicotinic AChR-mediated currents (250 ms pulses of 100 microM DMPP) applied at 30 s intervals were blocked by otilonium in a concentration-dependent manner, showing an IC50 of 0.36 microM. Blockade was induced in a step-wise manner. Wash out of otilonium allowed a slow recovery of the current, also in discrete steps. 5. In experiments with recordings in the same cells of whole-cell IDMPP, Na+ currents (INa) and Ca2+ currents (ICa), 1 microM otilonium blocked 87% IDMPP, 7% INa and 13% ICa. 6. Otilonium inhibited the K(+)-evoked catecholamine secretory response of superfused bovine chromaffin cells with an IC50 of 10 microM, very close to the IC50 for blockade of K(+)-induced 45Ca2+ uptake and IBa. 7. Otilonium inhibited the secretory responses induced by 10 s pulses of 50 microM DMPP with an IC50 of 7.4 nM. Hexamethonium blocked the DMPP-evoked responses with an IC50 of 29.8 microM, 4,000 fold higher than that of otilonium. 8. In conclusion, otilonium is a potent blocker of nicotinic AChR-mediated responses. The drugs also blocked various subtypes of neuronal voltage-dependent Ca2+ channels at a considerably lower potency. Na+ channels were unaffected by

  19. Renoprotective effect of calcium channel blockers in combination with an angiotensin receptor blocker in elderly patients with hypertension. A randomized crossover trial between benidipine and amlodipine.

    PubMed

    Miyagawa, Koichi; Dohi, Yasuaki; Nakazawa, Ai; Sugiura, Tomonori; Yamashita, Sumiyo; Sato, Koichi; Kimura, Genjiro

    2010-01-01

    Anti-hypertensive medication with an angiotensin II receptor blocker (ARB) is effective in slowing the progression of chronic kidney disease. The present study was designed to investigate whether calcium channel blockers (CCBs) in combination with an ARB differentially affect kidney function. Elderly hypertensive patients with chronic kidney disease (n = 17, 72 +/- 6 years old) were instructed to self-measure blood pressure. They were randomly assigned to receive either benidipine (4-8 mg/day) or amlodipine (5-10 mg/day) combined with olmesartan (10 mg/day). After 3 months, CCBs were switched in each patient and the same protocol was applied for another 3 months. At baseline, significant correlation was obtained between urine albumin (22.8 +/- 16.7 (median +/- median absolute deviation) mg/g creatinine) and self-measured blood pressure (170 +/- 23/87 +/- 10 (mean +/- SD) mmHg, r = 0.65, p < 0.01). Both regimens reduced blood pressure to a similar extent (139 +/- 22/75 +/- 11 mmHg and 133 +/- 17/72 +/- 10 mmHg, respectively; both p < 0.001), while urine albumin decreased only after combination therapy including benidipine (11.7 +/- 6.1 mg/g creatinine, p < 0.05). Benidipine, but not amlodipine, in combination with olmesartan, reduced urinary albumin excretion in elderly hypertensive patients with chronic kidney disease. The results suggest the importance of selecting medications used in combination with ARB in hypertensive patients with chronic kidney disease.

  20. Efficacy and Safety of Combination Therapy Consisting of Angiotensin II Type 1 Receptor Blocker, Calcium Channel Blocker and Hydrochlorothiazide in Patients With Hypertension

    PubMed Central

    Shiga, Yuhei; Miura, Shin-ichiro; Motozato, Kota; Yoshimine, Yuka; Norimatsu, Kenji; Arimura, Tadaaki; Koyoshi, Rie; Morii, Joji; Kuwano, Takashi; Inoue, Ken; Shirotani, Tetsuro; Fujisawa, Kazuaki; Matsunaga, Eiyu; Saku, Keijiro

    2017-01-01

    Background Many patients continue to have high blood pressure (BP) even after treatment with high-dose (H)-angiotensin II type 1 receptor blocker (ARB)/calcium channel blocker (CCB) or middle-dose (M)-ARB/CCB/hydrochlorothiazide (HCTZ). Methods Thirty-two hypertensive patients who had the use of H-ARB/CCB or M-ARB/CCB/HCTZ were enrolled in this study. We applied a changeover with a switch to H-ARB (telmisartan 80 mg/day)/CCB (amlodipine 5 mg/day or nifedipine CR 40 mg/day)/HCTZ (12.5 mg/day). Results Systolic BP (SBP) and diastolic BP (DBP) were significantly decreased in all patients and in the H-ARB/CCB and M-ARB/CCB/HCTZ groups after 3 months. Percentage (%) of patients who reached the target BP after 3 months (72%) in all patients was significantly higher than that at 0 months (19%). There were no serious adverse effects in any of the patients. Conclusions Combination therapy with H-ARB/CCB/HCTZ was associated with a significant reduction of BP. PMID:28090225

  1. The M-channel blocker linopirdine is an agonist of the capsaicin receptor TRPV1.

    PubMed

    Neacsu, Cristian; Babes, Alexandru

    2010-01-01

    Linopirdine is a well known blocker of voltage-gated potassium channels from the Kv7 (or KCNQ) family that generate the so called M current in mammalian neurons. Kv7 subunits are also expressed in pain-sensing neurons in dorsal root ganglia, in which they modulate neuronal excitability. In this study we demonstrate that linopirdine acts as an agonist of TRPV1 (transient receptor potential vanilloid type 1), another ion channel expressed in nociceptors and involved in pain signaling. Linopirdine induces increases in intracellular calcium concentration in human embryonic kidney 293 (HEK293) cells expressing TRPV1, but not TRPA1 and TRPM8 or in wild-type HEK293 cells. Linopirdine also activates an inward current in TRPV1-expressing HEK293 cells that is almost completely blocked by the selective TRPV1 antagonist capsazepine. At low concentrations linopirdine sensitizes both recombinant and native TRPV1 channels to heat, in a manner that is not prevented by the Kv7-channel opener flupirtine. Taken together, these results indicate that linopirdine exerts an excitatory action on mammalian nociceptors not only through inhibition of the M current but also through activation of the capsaicin receptor TRPV1.

  2. Angiotensin II type 1 receptor blockers increase tolerance of cells to copper and cisplatin

    PubMed Central

    Spincemaille, Pieter; Chandhok, Gursimran; Zibert, Andree; Schmidt, Hartmut; Verbeek, Jef; Chaltin, Patrick; Cammue, Bruno P.; Cassiman, David; Thevissen, Karin

    2014-01-01

    The human pathology Wilson disease (WD) is characterized by toxic copper (Cu) accumulation in brain and liver, resulting in, among other indications, mitochondrial dysfunction and apoptosis of hepatocytes. In an effort to identify novel compounds that can alleviate Cu-induced toxicity, we screened the Pharmakon 1600 repositioning library using a Cu-toxicity yeast screen. We identified 2 members of the drug class of Angiotensin II Type 1 receptor blockers (ARBs) that could increase yeast tolerance to Cu, namely Candesartan and Losartan. Subsequently, we show that specific ARBs can increase yeast tolerance to Cu and/or the chemotherapeutic agent cisplatin (Cp). The latter also induces mitochondrial dysfunction and apoptosis in mammalian cells. We further demonstrate that specific ARBs can prevent the prevalence of Cu-induced apoptotic markers in yeast, with Candesartan Cilexetil being the ARB which demonstrated most pronounced reduction of apoptosis-related markers. Next, we tested the sensitivity of a selection of yeast knockout mutants affected in detoxification of reactive oxygen species (ROS) and Cu for Candesartan Cilexetil rescue in presence of Cu. These data indicate that Candesartan Cilexetil increases yeast tolerance to Cu irrespectively of major ROS-detoxifying proteins. Finally, we show that specific ARBs can increase mammalian cell tolerance to Cu, as well as decrease the prevalence of Cu-induced apoptotic markers. All the above point to the potential of ARBs in preventing Cu-induced toxicity in yeast and mammalian cells. PMID:28357214

  3. Angiotensin II receptor blocker telmisartan attenuates aortic stiffening and remodelling in STZ-diabetic rats

    PubMed Central

    2014-01-01

    Background Prevention or attenuation of diabetic vascular complications includes anti-hypertensive treatment with renin-angiotensin system inhibitors on account of their protective effects beyond blood pressure reduction. The present study aimed to investigate the effects of telmisartan, an angiotensin II type 1 receptor blocker (ARB), on blood pressure, aortic stiffening, and aortic remodelling in experimental type 1 diabetes in rats. Methods Diabetes was induced by streptozotocin (STZ) (65 mg/kg) in male Wistar rats. One diabetic group was treated for 10 weeks with telmisartan (10 mg/kg/day p/o). Pressure-independent aortic pulse wave velocity (PWV) was measured under anaesthesia after intravenous infusion of phenylephrine and nitroglycerine. Aortic wall samples were collected for histomorphometrical analysis. Results Untreated diabetes imposed differential effects on aortic stiffening, as demonstrated by increased isobaric PWV over a range of high blood pressures, but not at lower blood pressures. This was associated with loss and disruption of elastin fibres and an increase in collagen fibres in the aortic media. Treatment with telmisartan decreased resting blood pressure, reduced aortic stiffness, and partially prevented the degradation of elastin network within the aortic wall. Conclusions Telmisartan improved the structural and functional indices of aortic stiffening induced by untreated STZ-diabetes, demonstrating the importance of ARBs in the therapeutic approach to diabetic vascular complications. PMID:24920962

  4. Moderation of dietary sodium potentiates the renal and cardiovascular protective effects of angiotensin receptor blockers.

    PubMed

    Lambers Heerspink, Hiddo J; Holtkamp, Frank A; Parving, Hans-Henrik; Navis, Gerjan J; Lewis, Julia B; Ritz, Eberhard; de Graeff, Pieter A; de Zeeuw, Dick

    2012-08-01

    Dietary sodium restriction has been shown to enhance the short-term response of blood pressure and albuminuria to angiotensin receptor blockers (ARBs). Whether this also enhances the long-term renal and cardiovascular protective effects of ARBs is unknown. Here we conducted a post-hoc analysis of the RENAAL and IDNT trials to test this in patients with type 2 diabetic nephropathy randomized to ARB or non-renin-angiotensin-aldosterone system (non-RAASi)-based antihypertensive therapy. Treatment effects on renal and cardiovascular outcomes were compared in subgroups based on dietary sodium intake during treatment, measured as the 24-h urinary sodium/creatinine ratio of 1177 patients with available 24-h urinary sodium measurements. ARB compared to non-RAASi-based therapy produced the greatest long-term effects on renal and cardiovascular events in the lowest tertile of sodium intake. Compared to non-RAASi, the trend in risk for renal events was significantly reduced by 43%, not changed, or increased by 37% for each tertile of increased sodium intake, respectively. The trend for cardiovascular events was significantly reduced by 37%, increased by 2% and 25%, respectively. Thus, treatment effects of ARB compared with non-RAASi-based therapy on renal and cardiovascular outcomes were greater in patients with type 2 diabetic nephropathy with lower than higher dietary sodium intake. This underscores the avoidance of excessive sodium intake, particularly in type 2 diabetic patients receiving ARB therapy.

  5. Renoprotective effect and cost-effectiveness of using benidipine, a calcium channel blocker, to lower the dose of angiotensin receptor blocker in hypertensive patients with albuminuria.

    PubMed

    Saito, Fumio; Fujita, Hirotaka; Takahashi, Atsuhiko; Ichiyama, Izumi; Harasawa, Shinsuke; Oiwa, Kouji; Takahashi, Naoyuki; Otsuka, Yuji; Uchiyama, Takashi; Kanmatsuse, Katsuo; Kushiro, Toshio

    2007-01-01

    In hypertensive patients with chronic renal disease, angiotensin receptor blockers (ARBs) are among the first-line drugs, and calcium channel blockers (CCBs) are recommended as a second line. We examined the effects of two therapeutic strategies using ARBs and benidipine, a CCB, on blood pressure (BP), urinary albumin excretion (UAE), and cost-effectiveness in hypertensive patients with albuminuria. Patients whose BP was 140/90 mmHg or higher despite treatment with low- or medium-dose ARBs were assigned randomly to two groups. In Group A (n=14), the ARB dose was maximized and then benidipine was added until BP targets were reached (<130/85 mmHg). In Group B (n=18), benidipine was administered first and then the ARB dose was increased until BP targets were reached. The BP targets were achieved by ARB alone in 36% of Group A patients and by the addition of benidipine in 83% of Group B patients. Finally, BP decreased in each group, reaching the targets in 93% of Group A patients and 94% of Group B patients after a 4-month therapeutic period. UAE was decreased in both groups after a 4-month therapeutic period compared to the allocation period (-33+/-6% in Group A, -31+/-6% in Group B; p<0.001, respectively). The monthly drug cost was higher (11,426+/-880 vs. 8,955+/-410 yen, p=0.012) and the cost-effectiveness of antihypertensive treatment was lower (p=0.003) in Group A than in Group B. We conclude that the addition of benidipine to low- or medium-dose ARB is, in light of the renal protection and the cost-effectiveness of this approach, a useful therapeutic strategy for controlling BP in hypertensive patients with albuminuria.

  6. Angiotensin Converting-Enzyme Inhibitors, Angiotensin Receptor Blockers, and Calcium Channel Blockers Are Associated with Prolonged Vascular Access Patency in Uremic Patients Undergoing Hemodialysis

    PubMed Central

    Chen, Yu-Wei; Wu, Yu-Te; Lin, Chih-Ching

    2016-01-01

    Background Vascular access failure is a huge burden for patients undergoing hemodialysis. Many efforts have been made to maintain vascular access patency, including pharmacotherapy. Angiotensin converting enzyme inhibitor (ACE-I), angiotensin receptor blocker (ARB), and calcium channel blocker (CCB) are known for their antihypertensive and cardio-protective effects, however, their effects on long-term vascular access patency are still inconclusive. Design, setting, participants and measurements We retrospectively enrolled patients commencing maintenance hemodialysis between January 1, 2000, and December 31, 2006 by using National Health Insurance Research Database in Taiwan. Primary patency was defined as the date of first arteriovenous fistula (AVF) or arteriovenous graft (AVG) creation to the time of access thrombosis or any intervention aimed to maintain or re-establish vascular access patency. Cox proportional hazards models were used to adjust the influences of patient characteristics, co-morbidities and medications. Results Total 42244 patients were enrolled in this study, 37771 (89.4%) used AVF, 4473 (10.6%) used AVG as their first long term dialysis access. ACE-I, ARB, and CCB use were all associated with prolonged primary patency of AVF [hazard ratio (HR) 0.586, 95% confidence interval (CI) 0.557–0.616 for ACE-I use; HR 0.532, CI 0.508–0.556 for ARB use; HR 0.485, CI 0.470–0.501 for CCB use] and AVG (HR 0.557, CI 0.482–0.643 for ACE-I use, HR 0.536, CI 0.467–0.614 for ARB use, HR 0.482, CI 0.442–0.526 for CCB use). Conclusions In our analysis, ACE-I, ARB, and CCB were strongly associated with prolonged primary patency of both AVF and AVG. Further prospective randomized studies are still warranted to prove the causality. PMID:27832203

  7. Comparative effect of angiotensin II type I receptor blockers and calcium channel blockers on laboratory parameters in hypertensive patients with type 2 diabetes

    PubMed Central

    2012-01-01

    Background Both angiotensin II type I receptor blockers (ARBs) and calcium channel blockers (CCBs) are widely used antihypertensive drugs. Many clinical studies have demonstrated and compared the organ-protection effects and adverse events of these drugs. However, few large-scale studies have focused on the effect of these drugs as monotherapy on laboratory parameters. We evaluated and compared the effects of ARB and CCB monotherapy on clinical laboratory parameters in patients with concomitant hypertension and type 2 diabetes mellitus. Methods We used data from the Clinical Data Warehouse of Nihon University School of Medicine obtained between Nov 1, 2004 and July 31, 2011, to identify cohorts of new ARB users (n = 601) and propensity-score matched new CCB users (n = 601), with concomitant mild to moderate hypertension and type 2 diabetes mellitus. We used a multivariate-adjusted regression model to adjust for differences between ARB and CCB users, and compared laboratory parameters including serum levels of triglyceride (TG), total cholesterol (TC), non-fasting blood glucose, hemoglobin A1c (HbA1c), sodium, potassium, creatinine, alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyltransferase (GGT), hemoglobin and hematocrit, and white blood cell (WBC), red blood cell (RBC) and platelet (PLT) counts up to 12 months after the start of ARB or CCB monotherapy. Results We found a significant reduction of serum TC, HbA1c, hemoglobin and hematocrit and RBC count and a significant increase of serum potassium in ARB users, and a reduction of serum TC and hemoglobin in CCB users, from the baseline period to the exposure period. The reductions of RBC count, hemoglobin and hematocrit in ARB users were significantly greater than those in CCB users. The increase of serum potassium in ARB users was significantly greater than that in CCB users. Conclusions Our study suggested that hematological adverse effects and electrolyte imbalance are

  8. Adolescent anabolic-androgenic steroid exposure alters lateral anterior hypothalamic serotonin-2A receptors in aggressive male hamsters.

    PubMed

    Schwartzer, Jared J; Ricci, Lesley A; Melloni, Richard H

    2009-05-16

    Chronic anabolic-androgenic steroid (AAS) treatment during adolescence facilitates offensive aggression in male Syrian hamsters (Mesocricetus auratus). Serotonin (5-HT) modulates aggressive behavior and has been shown to be altered after chronic treatment with AAS. Furthermore, 5-HT type 2 receptors have been implicated in the control of aggression. For example, treatment with 5-HT(2A) receptor antagonists suppress the generation of the offensive aggressive phenotype. However, it is unclear whether these receptors are sensitive to adolescent AAS exposure. The current study assessed whether treatment with AAS throughout adolescence influenced the immunohistochemical localization of 5-HT(2A) in areas of the hamster brain implicated in the control of aggression. Hamsters were administered AAS (5.0 mg/kg) each day throughout adolescence, scored for offensive aggression, and then examined for differences in 5-HT(2A)-immunoreactivity (5-HT(2A)-ir). When compared with non-aggressive oil-treated controls, aggressive AAS-treated hamsters showed significant increases in 5-HT(2A)-ir fibers in the lateral portion of the anterior hypothalamus (LAH). Further analysis revealed that AAS treatment also produced a significant increase in the number of cells expressing 5-HT(2A)-ir in the LAH. Together, these results support a role for altered 5-HT(2A) expression and further implicate the LAH as a central brain region important in the control of adolescent AAS-induced offensive aggression.

  9. Analysis of the 5-HT1A receptor involvement in passive avoidance in the rat

    PubMed Central

    Misane, Ilga; Johansson, Christina; Ove Ögren, Sven

    1998-01-01

    The effects of the 5-HT2A/2C agonist DOB, the selective 5-HT1A agonist NDO 008 (3-dipropylamino-5-hydroxychroman), and the two enantiomers of the selective 5-HT1A agonist 8-OH-DPAT (R(+)-8-OH-DPAT and S(−)-8-OH-DPAT) were studied in a step-through passive avoidance (PA) test in the male rat.The 5-HT1A agonists injected prior to training (conditioning) produced a dose-dependent impairment of PA retention when examined 24 h later. R(+)-8-OH-DPAT was four times more effective than S(−)-8-OH-DPAT to cause an impairment of PA retention. Both NDO 008 and the two enantiomers of 8-OH-DPAT induced the serotonin syndrome at the dose range that produced inhibition of the PA response, thus, indicating activation of postsynaptic 5-HT1A receptors.Neither NDO 008 nor R(+)-8-OH-DPAT induced head-twitches, a behavioural response attributed to stimulation of postsynaptic 5-HT2A receptors. In contrast, DOB induced head-twitches at the 0.01 mg kg−1 dose while a 200 times higher dose was required to produce a significant impairment of PA retention.The impairment of PA retention induced by both NDO 008 and R(+)-8-OH-DPAT was fully blocked by the active S(+)- enantiomer of the selective 5-HT1A antagonist WAY 100135 and the mixed 5-HT1A/β-adrenoceptor antagonist L(−)-alprenolol. In contrast, the mixed 5-HT2A/2C antagonists ketanserin and pirenperone were found to be ineffective. Moreover, the β2-adrenoceptor antagonist ICI 118551, the β1-antagonist metoprolol as well as the mixed β-adrenoceptor blocker D(+)-alprenolol all failed to modify the deficit of PA retention by NDO 008 and R(+)-8-OH-DPAT. None of the 5-HT1A or 5-HT2A/2C receptor antagonists tested or the β-blockers altered PA retention by themselves.A 3 day pretreatment procedure (200+100+100 mg kg−1) with the tryptophan hydroxylase inhibitor p-chlorophenylalanine (PCPA) did not alter PA retention and did not prevent the inhibitory action of the 5-HT1A agonists, indicating that their effects on PA do not

  10. Enhanced brain stem 5HT₂A receptor function under neonatal hypoxic insult: role of glucose, oxygen, and epinephrine resuscitation.

    PubMed

    Anju, T R; Korah, P K; Jayanarayanan, S; Paulose, C S

    2011-08-01

    Molecular processes regulating brain stem serotonergic receptors play an important role in the control of respiration. We evaluated 5-HT(2A) receptor alterations in the brain stem of neonatal rats exposed to hypoxic insult and the effect of glucose, oxygen, and epinephrine resuscitation in ameliorating these alterations. Hypoxic stress increased the total 5-HT and 5-HT(2A) receptor number along with an up regulation of 5-HT Transporter and 5-HT(2A) receptor gene in the brain stem of neonates. These serotonergic alterations were reversed by glucose supplementation alone and along with oxygen to hypoxic neonates. The enhanced brain stem 5-HT(2A) receptors act as a modulator of ventilatory response to hypoxia, which can in turn result in pulmonary vasoconstriction and cognitive dysfunction. The adverse effects of 100% oxygenation and epinephrine administration to hypoxic neonates were also reported. This has immense clinical significance in neonatal care.

  11. Down regulation of cerebellar serotonergic receptors in streptozotocin induced diabetic rats: Effect of pyridoxine and Aegle marmelose.

    PubMed

    Abraham, Pretty Mary; Paul, Jes; Paulose, C S

    2010-04-29

    Oxidative stress plays an important role in cerebellar damage caused by diabetes, leading to deterioration in glucose homeostasis causing metabolic disorders. The present study was carried out to find the effects of Aegle marmelose leaf extract and insulin alone and in combination with pyridoxine on the cerebellar 5-HT through 5-HT(2A) receptor subtype, gene expression studies on the status of antioxidants-superoxide dismutase (SOD), glutathione peroxidase (GPx), 5-HT(2A) and 5-HT transporter (5-HTT) and immunohistochemical studies in streptozotocin induced diabetic rats. 5-HT and 5-HT(2A) receptor binding parameters, B(max) and K(d), showed a significant decrease (p<0.001) in the cerebellum of diabetic rats compared to control. Gene expression studies of SOD, GPx, 5-HT(2A) and 5-HTT in cerebellum showed a significant down regulation (p<0.001) in diabetic rats compared to control. Pyridoxine treated alone and in combination with insulin, A. marmelose to diabetic rats reversed the B(max), K(d) of 5-HT, 5-HT(2A) and the gene expression of SOD, GPx, 5-HT(2A) and 5-HTT in cerebellum to near control. The gene expression of 5-HT(2A) and 5-HTT were confirmed by immunohistochemical studies. Also, the Rotarod test confirms the motor dysfunction and recovery by treatment. These data suggest the antioxidant and neuroprotective role of pyridoxine and A. marmelose through the up regulation of 5-HT through 5-HT(2A) receptor in diabetic rats. Our results suggest that pyridoxine treated alone and in combination with insulin and A. marmelose has a role in the regulation of insulin synthesis and release, normalizing diabetic related oxidative stress and neurodegeneration affecting the motor ability of an individual by serotonergic receptors through 5-HT(2A) function. This has clinical significance in the management of diabetes.

  12. [Analysis of the Cochrane Review: Angiotensin Converging Enzyme Inhibitors Versus Angiotensin Receptor Blockers for Primary Hypertension. Cochrane Database Syst Rev. 2014,8: CD009096].

    PubMed

    Nogueira-Silva, Luís; Fonseca, João A

    2015-01-01

    Angiotensin converting enzyme inhibitors and angiotensin receptor blockers are first line drugs in the treatment of hypertension. The aim of this review was to assess if there are differences between these drug classes regarding the prevention of total mortality, occurrence of cardiovascular events and of adverse effects. A systematic review and metanalysis was performed, searching for studies that compare angiotensin converting enzyme inhibitors and angiotensin receptor blockers face-to-face, in several databases until July 2014. The study selection and data extraction were performed by 2 independent researchers. Nine studies were included, with a total of 10 963 participants, 9 398 of which participated in the same study and had high cardiovascular risk. No differences were observed regarding total mortality, cardiovascular mortality or total cardiovascular events. A slightly smaller risk was observed with angiotensin receptor blockers regarding withdrawal due to adverse effects (55 people were needed to be treated with angiotensin receptor blockers for 4.1 years to avoid one withdrawal due to adverse effect), mainly due to the occurrence of dry cough with angiotensin converting enzyme inhibitors. Thus, no differences were observed between angiotensin converting enzyme inhibitors and angiotensin receptor blockers in the prevention of total mortality and cardiovascular events, and angiotensin receptor blockers were better tolerated. Given the large proportion of participants with a high cardiovascular risk, the generalization of these results to other populations is limited.

  13. Angiotensin-Receptor Blocker, Angiotensin-Converting Enzyme Inhibitor, and Risks of Atrial Fibrillation

    PubMed Central

    Hsieh, Yu-Cheng; Hung, Chen-Ying; Li, Cheng-Hung; Liao, Ying-Chieh; Huang, Jin-Long; Lin, Ching-Heng; Wu, Tsu-Juey

    2016-01-01

    Abstract Both angiotensin-receptor blockers (ARB) and angiotensin-converting enzyme inhibitors (ACEI) have protective effects against atrial fibrillation (AF). The differences between ARB and ACEI in their effects on the primary prevention of AF remain unclear. This study compared ARB and ACEI in combined antihypertensive medications for reducing the risk of AF in patients with hypertension, and determined which was better for AF prevention in a nationwide cohort study. Patients aged ≥55 years and with a history of hypertension were identified from Taiwan National Health Insurance Research Database. Medical records of 25,075 patients were obtained, and included 6205 who used ARB, 8034 who used ACEI, and 10,836 nonusers (no ARB or ACEI) in their antihypertensive regimen. Cox regression models were applied to estimate the hazard ratio (HR) for new-onset AF. During an average of 7.7 years’ follow-up, 1619 patients developed new-onset AF. Both ARB (adjusted HR: 0.51, 95% CI 0.44–0.58, P < 0.001) and ACEI (adjusted HR: 0.53, 95% CI 0.47–0.59, P < 0.001) reduced the risk of AF compared to nonusers. Subgroup analysis showed that ARB and ACEI were equally effective in preventing new-onset AF regardless of age, gender, the presence of heart failure, diabetes, and vascular disease, except for those with prior stroke or transient ischemic attack (TIA). ARB prevents new-onset AF better than ACEI in patients with a history of stroke or TIA (log-rank P = 0.012). Both ARB and ACEI reduce new-onset AF in patients with hypertension. ARB prevents AF better than ACEI in patients with a history of prior stroke or TIA. PMID:27196491

  14. Evidence to Consider Angiotensin II Receptor Blockers for the Treatment of Early Alzheimer's Disease.

    PubMed

    Saavedra, Juan M

    2016-03-01

    Alzheimer's disease is the most frequent type of dementia and diagnosed late in the progression of the illness when irreversible brain tissue loss has already occurred. For this reason, treatments have been ineffective. It is imperative to find novel therapies ameliorating modifiable risk factors (hypertension, stroke, diabetes, chronic kidney disease, and traumatic brain injury) and effective against early pathogenic mechanisms including alterations in cerebral blood flow leading to poor oxygenation and decreased access to nutrients, impaired glucose metabolism, chronic inflammation, and glutamate excitotoxicity. Angiotensin II receptor blockers (ARBs) fulfill these requirements. ARBs are directly neuroprotective against early injury factors in neuronal, astrocyte, microglia, and cerebrovascular endothelial cell cultures. ARBs protect cerebral blood flow and reduce injury to the blood brain barrier and neurological and cognitive loss in animal models of brain ischemia, traumatic brain injury, and Alzheimer's disease. These compounds are clinically effective against major risk factors for Alzheimer's disease: hypertension, stroke, chronic kidney disease, diabetes and metabolic syndrome, and ameliorate age-dependent cognitive loss. Controlled studies on hypertensive patients, open trials, case reports, and database meta-analysis indicate significant therapeutic effects of ARBs in Alzheimer's disease. ARBs are safe compounds, widely used to treat cardiovascular and metabolic disorders in humans, and although they reduce hypertension, they do not affect blood pressure in normotensive individuals. Overall, there is sufficient evidence to consider long-term controlled clinical studies with ARBs in patients suffering from established risk factors, in patients with early cognitive loss, or in normal individuals when reliable biomarkers of Alzheimer's disease risk are identified.

  15. Angiotensin II type 1 receptor blockers as a first choice in patients with acute myocardial infarction

    PubMed Central

    Lee, Jang Hoon; Bae, Myung Hwan; Yang, Dong Heon; Park, Hun Sik; Cho, Yongkeun; Lee, Won Kee; Jeong, Myung Ho; Kim, Young Jo; Cho, Myeong Chan; Kim, Chong Jin; Chae, Shung Chull

    2016-01-01

    Background/Aims: Angiotensin II type 1 receptor blockers (ARBs) have not been adequately evaluated in patients without left ventricular (LV) dysfunction or heart failure after acute myocardial infarction (AMI). Methods: Between November 2005 and January 2008, 6,781 patients who were not receiving angiotensin-converting enzyme inhibitors (ACEIs) or ARBs were selected from the Korean AMI Registry. The primary endpoints were 12-month major adverse cardiac events (MACEs) including death and recurrent AMI. Results: Seventy percent of the patients were Killip class 1 and had a LV ejection fraction ≥ 40%. The prescription rate of ARBs was 12.2%. For each patient, a propensity score, indicating the likelihood of using ARBs during hospitalization or at discharge, was calculated using a non-parsimonious multivariable logistic regression model, and was used to match the patients 1:4, yielding 715 ARB users versus 2,860 ACEI users. The effect of ARBs on in-hospital mortality and 12-month MACE occurrence was assessed using matched logistic and Cox regression models. Compared with ACEIs, ARBs significantly reduced in-hospital mortality(1.3% vs. 3.3%; hazard ratio [HR], 0.379; 95% confidence interval [CI], 0.190 to0.756; p = 0.006) and 12-month MACE occurrence (4.6% vs. 6.9%; HR, 0.661; 95% CI, 0.457 to 0.956; p = 0.028). However, the benefit of ARBs on 12-month mortality compared with ACEIs was marginal (4.3% vs. 6.2%; HR, 0.684; 95% CI, 0.467 to 1.002; p = 0.051). Conclusions: Our results suggest that ARBs are not inferior to, and may actually be better than ACEIs in Korean patients with AMI. PMID:26701233

  16. Determinants for the adoption of angiotensin II receptor blockers by general practitioners.

    PubMed

    Greving, Jacoba P; Denig, Petra; van der Veen, Willem Jan; Beltman, Frank W; Sturkenboom, Miriam C J M; Haaijer-Ruskamp, Flora M

    2006-12-01

    Results of studies conducted 10-20 years ago show the prominence of commercial information sources in the adoption process of new drugs. Over the past decade, there has been a growing emphasis on practicing evidence-based medicine in drug prescribing. This raises the question whether professional information sources currently counterbalance the influence of commercial information sources in the adoption process. The aim of this study was to identify determinants influencing the adoption of a new drug class, the angiotensin II receptor blockers (ARBs), by general practitioners (GPs) in The Netherlands. A retrospective study was conducted to assess prevalent ARB prescribing for hypertensive patients using the Integrated Primary Care Information (IPCI) database. We conducted a survey among all GPs who participated in the IPCI project in 2003 to assess their exposure to commercial and professional information sources, perceived benefits and risks of ARBs, perceived influences of the professional network, and general characteristics. Multilevel logistic regression was applied to identify determinants of ARB adoption while adjusting for patient characteristics. Data were obtained from 70 GPs and 9470 treated hypertensive patients. A total of 1093 patients received ARBs (12%). GPs who reported frequent use of commercial information sources were more likely to prescribe ARBs routinely in preference to other antihypertensives, whereas GPs who used a prescribing decision support system and those who were involved in pharmacotherapy education were less likely to prescribe ARBs. Other factors that were associated with higher levels of ARB adoption included a more positive perception of ARBs regarding their effectiveness in lowering blood pressure, and working in single-handed practices or in rural areas. Aside from determinants related to the patient population, adoption of a new drug class among Dutch GPs is still determined more by their reliance on promotional information

  17. Concentration-dependent mode of interaction of angiotensin II receptor blockers with uric acid transporter.

    PubMed

    Iwanaga, Takashi; Sato, Masanobu; Maeda, Tomoji; Ogihara, Toshio; Tamai, Ikumi

    2007-01-01

    Serum uric acid (SUA) is currently recognized as a risk factor for cardiovascular disease. It has been reported that an angiotensin II receptor blocker (ARB), losartan, decreases SUA level, whereas other ARBs, such as candesartan, have no lowering effect. Because the renal uric acid transporter (URAT1) is an important factor controlling the SUA level, we examined the involvement of URAT1 in those differential effects of various ARBs on SUA level at clinically relevant concentrations. This study was done by using URAT1-expressing Xenopus oocytes. Losartan, pratosartan, and telmisartan exhibited cis-inhibitory effects on the uptake of uric acid by URAT1, whereas at higher concentrations, only telmisartan did, and these ARBs reduced the uptake in competitive inhibition kinetics. On the other hand, candesartan, EXP3174 [2-n-butyl-4-chloro-1-[(2'-(1H-tetrazol-5-yl)biphenyl-4-yI)methyl]imidazole-5-carboxylic acid] (a major metabolite of losartan), olmesartan, and valsartan were not inhibitory. Preloading of those ARBs in the oocytes enhanced the URAT1-mediated uric acid uptake, showing a trans-stimulatory effect. The present study is a first demonstration of the differential effects of ARBs on URAT1 that some ARBs are both cis-inhibitory and trans-stimulatory, depending on concentration, whereas others exhibit either a trans-stimulatory or cis-inhibitory effect alone, which could explain the clinically observed differential effects of ARBs on SUA level. Furthermore, it was found that such differential effects of ARBs on URAT1 could be predicted from the partial chemical structures of ARBs, which will be useful information for the appropriate use and development of ARBs without an increase of SUA.

  18. Toxicity of select beta adrenergic receptor-blocking pharmaceuticals (B-blockers) on aquatic organisms.

    PubMed

    Huggett, D B; Brooks, B W; Peterson, B; Foran, C M; Schlenk, D

    2002-08-01

    One class of pharmaceutical compounds identified in U.S. and European waters are the B-adrenergic receptor blocking compounds (B-blockers). However, little information is available on the potential aquatic toxicity of these compounds. Therefore, Hyalella azteca, Daphnia magna, Ceriodaphnia dubia, and Oryias latipes (Japanese medaka) were exposed to metoprolol, nadolol, and propranolol to determine potential toxicity. Average 48-h LC(50) for propranolol to H. azteca was 29.8 mg/L. The no-observed-effects concentration (NOEC) and lowest-observed-effects concentration (LOEC) for propranolol affecting reproduction of H. azteca were 0.001 and 0.1 mg/L, respectively. The average propranolol and metoprolol 48-h LC(50)s for D. magna were 1.6 and 63.9 mg/L, respectively. C. dubia 48-h LC(50)s were 0.85 and 8.8 mg/L for propranolol and metoprolol, respectively. The NOEC and LOEC of propranolol affecting reproduction in C. dubia were 0.125 and 0.25 mg/L, respectively. In O. latipes, the propranolol 48-h LC(50) was 24.3 mg/L. Medaka growth was decreased at 0.5 mg/L propranolol. A 2-week medaka reproductive study indicated significant changes in plasma steroid levels; however, no changes in the average number of eggs produced or number of viable eggs which hatched was observed. In a 4-week follow-up propranolol exposure, the total number of eggs produced by medaka and the number of viable eggs that hatched were decreased at concentrations as low as 0.5 microg/L. Based on this study and the expected aqueous environmental exposure levels, adverse effects of propranolol to invertebrate populations is unlikely; however, further reproductive studies are need to elucidate the risk to teleosts.

  19. ACE Inhibitor and Angiotensin Receptor Blocker Use and Mortality in Patients with Chronic Kidney Disease

    PubMed Central

    Molnar, Miklos Z; Kalantar-Zadeh, Kamyar; Lott, Evan H; Lu, Jun Ling; Malakauskas, Sandra M; Ma, Jennie Z; Quarles, Darryl L; Kovesdy, Csaba P

    2014-01-01

    Objective To assess the association between ACEI/ARB use and mortality in CKD patients. Background There is insufficient evidence about the association of angiotensin converting enzyme inhibitors (ACEI) or angiotensin receptor blockers (ARBs) with mortality in chronic kidney disease (CKD) patients. Methods A logistic regression analysis was used to calculate the propensity of ACEI/ARB initiation in 141,413 US veterans with non-dialysis CKD previously unexposed to ACEI/ARB treatment. We examined the association of ACEI/ARB administration with all-cause mortality in patients matched by propensity scores, using the Kaplan-Meier method and Cox models in “intention-to-treat” analyses, and in generalized linear models with binary outcomes and inverse probability treatment weighing (IPTW) in “as-treated” analyses. Results The mean±SD age of the patients at baseline was 75±10 years, 8% of patients were black, and 22% were diabetic. ACEI/ARB administration was associated with significantly lower risk of mortality both in the intention-to-treat analysis (HR=0.81; 95%CI: 0.78-0.84, p<0.001) and in the as-treated analysis with IPTW (OR=0.37; 95%CI: 0.34-0.41, p<0.001). The association of ACEI/ARB treatment with lower risk of mortality was present in all examined subgroups. Conclusions In this large contemporary cohort of non-dialysis dependent CKD patients, ACEI/ARB administration was associated with greater survival. PMID:24269363

  20. Renoprotective effects of benidipine in combination with angiotensin II type 1 receptor blocker in hypertensive Dahl rats.

    PubMed

    Yao, Kozo; Sato, Hitoshi; Ina, Yasuhiro; Suzuki, Kazuo; Ohno, Tetsuji; Shirakura, Shiro

    2003-08-01

    We examined the effects of the angiotensin II type 1 receptor blocker candesartan, the calcium channel blockers benidipine and amlodipine, hydralazine, and the combination of candesartan and benidipine or amlodipine on blood pressure and renal function in Dahl salt-sensitive (DS) hypertensive rats. Male DS rats (5 weeks of age) were fed a high-salt (8% NaCl) diet, resulting in hypertension accompanied by glomerular sclerosis and an increased urinary albumin excretion. Drugs were orally administered from 2 to 6 weeks after the start of the feeding. Although candesartan (1 or 10 mg/kg) had little effect on the blood pressure, benidipine (4 mg/kg), amlodipine (4 mg/kg) and hydralazine (5 mg/kg) had similar hypotensive effects. Benidipine, but not amlodipine, hydralazine, or candesartan, significantly inhibited the increase in the albuminuria and glomerular sclerosis. The combination of candesartan (1 mg/kg) and benidipine (4 mg/kg) lowered the levels of blood pressure and albuminuria more effectively than the combination of candesartan (1 mg/kg) and amlodipine (4 mg/kg). These results indicate that benidipine is effective in preventing the impairment of renal function in DS hypertensive rats, and suggest that additional benefits can be expected by combination therapy with benidipine and an angiotensin II type 1 receptor blocker.

  1. Age-dependent effects of the 5-hydroxytryptamine-2a-receptor polymorphism (His452Tyr) on human memory.

    PubMed

    Papassotiropoulos, Andreas; Henke, Katharina; Aerni, Amanda; Coluccia, Daniel; Garcia, Esmeralda; Wollmer, Marc A; Huynh, Kim-Dung; Monsch, Andreas U; Stähelin, Hannes B; Hock, Christoph; Nitsch, Roger M; de Quervain, Dominique J-F

    2005-05-31

    A polymorphism (His452Tyr) of the 5-hydroxytryptamine (5-HT)2a receptor is associated with episodic memory in healthy young humans. Because 5-HT2a-receptor density decreases with increasing age, we tested whether the 5-HT2a receptor genotype effect on memory is influenced by age. We investigated the association of the His452Tyr genotype with memory performance in 622 healthy study participants aged from 18 to 90 years. In young to middle-aged participants, age significantly influenced genotype effects on episodic memory: the His452Tyr genotype exerted a significant influence on memory only in young participants. In the group of elderly cognitively healthy participants, the His452Tyr genotype did not affect memory performance. We conclude that age strongly modulates the effect of the 5-HT2a receptor polymorphism at residue 452 on episodic memory.

  2. Meta-analysis of the efficacy and safety of adding an angiotensin receptor blocker (ARB) to a calcium channel blocker (CCB) following ineffective CCB monotherapy

    PubMed Central

    Ma, Jin; Wang, Xiao-Yan; Hu, Zhi-De; Zhou, Zhi-Rui; Schoenhagen, Paul

    2015-01-01

    Background We conducted this meta-analysis to systematically review and analyze the clinical benefits of angiotensin receptor blocker (ARB) combined with calcium channel blocker (CCB) following ineffective CCB monotherapy. Methods PubMed was searched for articles published until August 2015. Randomized controlled trials (RCTs) evaluating the clinical benefits of ARB combined with CCB following ineffective CCB monotherapy were included. The primary efficacy endpoint of the studies was normal rate of blood pressure, the secondary efficacy endpoints were the response rate and change in blood pressure from baseline. The safety endpoint of the studies was incidence of adverse events. Differences are expressed as relative risks (RRs) with 95% confidence intervals (CIs) for dichotomous outcomes and weighted mean differences (WMDs) with 95% CIs for continuous outcomes. Heterogeneity across studies was tested by using the I2 statistic. Results Seven RCTs were included and had sample sizes ranging from 185 to 1,183 subjects (total: 3,909 subjects). The pooled analysis showed that the on-target rate of hypertension treatment was significantly higher in the amlodipine + ARB group than in the amlodipine monotherapy group (RR =1.59; 95% CI, 1.31–1.91; P<0.01). The response rate of systolic blood pressure (SBP) (RR =1.28; 95% CI, 1.04–1.58; P<0.01) and diastolic blood pressure (DBP) (RR =1.27; 95% CI, 1.12–1.44; P=0.04) were significantly higher in the amlodipine + ARB group than in the amlodipine monotherapy group. The change in SBP (RR =−3.56; 95% CI, −7.76–0.63; P=0.10) and DBP (RR =−3.03; 95% CI, −6.51–0.45; P=0.09) were higher in hypertensive patients receiving amlodipine + ARB but the difference did not reach statistical significance. ARB + amlodipine treatment carried a lower risk of adverse events relative to amlodipine monotherapy (RR =0.88; 95% CI, 0.80-0.96; P<0.01). Conclusions The results of our meta-analysis demonstrate that adding an ARB to CCB

  3. Unambiguous observation of blocked states reveals altered, blocker-induced, cardiac ryanodine receptor gating

    PubMed Central

    Mukherjee, Saptarshi; Thomas, N. Lowri; Williams, Alan J.

    2016-01-01

    The flow of ions through membrane channels is precisely regulated by gates. The architecture and function of these elements have been studied extensively, shedding light on the mechanisms underlying gating. Recent investigations have focused on ion occupancy of the channel’s selectivity filter and its ability to alter gating, with most studies involving prokaryotic K+ channels. Some studies used large quaternary ammonium blocker molecules to examine the effects of altered ionic flux on gating. However, the absence of blocking events that are visibly distinct from closing events in K+ channels makes unambiguous interpretation of data from single channel recordings difficult. In this study, the large K+ conductance of the RyR2 channel permits direct observation of blocking events as distinct subconductance states and for the first time demonstrates the differential effects of blocker molecules on channel gating. This experimental platform provides valuable insights into mechanisms of blocker-induced modulation of ion channel gating. PMID:27703263

  4. General pharmacological profile and effects of E-4716, a novel histamine receptor blocker, on the central nervous system.

    PubMed

    Fisas, M A; Gutiérrez, B; Fort, M; Dordal, A; García, C; Farré, A J

    1998-04-01

    The general pharmacological profile and effects of E-4716 on the CNS have been investigated in comparison with other histamine receptor blockers. In in vitro studies with isolated organs and in binding studies on numerous receptors, E-4716 had no activity even at high concentrations, except for the selective blockade of H1 receptors. No activity was observed in pharmacological trials in vivo, such as the Irwin test or analgesia induced by phenylbenzoquinone or electroshock, suggesting a depressant activity on the CNS. In tests potentiating hypnosis induced by barbiturates, benzodiazepines and ethanol in mice, E-4716 always showed milder potentiating effects than the other reference drugs. In monkeys, no sedating effects were observed at 200 mg/kg, p.o. These results suggest that E-4716 exhibits good clinical efficacy without any secondary effects.

  5. Serotonin 2a Receptor and Serotonin 1a Receptor Interact Within the Medial Prefrontal Cortex During Recognition Memory in Mice

    PubMed Central

    Morici, Juan F.; Ciccia, Lucia; Malleret, Gaël; Gingrich, Jay A.; Bekinschtein, Pedro; Weisstaub, Noelia V.

    2015-01-01

    Episodic memory, can be defined as the memory for unique events. The serotonergic system one of the main neuromodulatory systems in the brain appears to play a role in it. The serotonin 2a receptor (5-HT2aR) one of the principal post-synaptic receptors for 5-HT in the brain, is involved in neuropsychiatric and neurological disorders associated with memory deficits. Recognition memory can be defined as the ability to recognize if a particular event or item was previously encountered and is thus considered, under certain conditions, a form of episodic memory. As human data suggest that a constitutively decrease of 5-HT2A signaling might affect episodic memory performance we decided to compare the performance of mice with disrupted 5-HT2aR signaling (htr2a−/−) with wild type (htr2a+/+) littermates in different recognition memory and working memory tasks that differed in the level of proactive interference. We found that ablation of 5-HT2aR signaling throughout development produces a deficit in tasks that cannot be solved by single item strategy suggesting that 5-HT2aR signaling is involved in interference resolution. We also found that in the absence of 5-HT2aR signaling serotonin has a deleterious effect on recognition memory retrieval through the activation of 5-HT1aR in the medial prefrontal cortex. PMID:26779016

  6. The Beta-1-Receptor Blocker Nebivolol Elicits Dilation of Cerebral Arteries by Reducing Smooth Muscle [Ca2+]i

    PubMed Central

    Cseplo, Peter; Vamos, Zoltan; Ivic, Ivan; Torok, Orsolya; Toth, Attila; Koller, Akos

    2016-01-01

    Rationale Nebivolol is known to have beta-1 blocker activity, but it was also suggested that it elicits relaxation of the peripheral arteries in part via release of nitric oxide (NO). However, the effect of nebivolol on the vasomotor tone of cerebral arteries is still unclear. Objective To assess the effects of nebivolol on the diameter of isolated rat basilar arteries (BA) in control, in the presence of inhibitors of vasomotor signaling pathways of know action and hemolysed blood. Methods and Results Vasomotor responses were measured by videomicroscopy and the intracellular Ca2+ by the Fura-2 AM ratiometric method. Under control conditions, nebivolol elicited a substantial dilation of the BA (from 216±22 to 394±20 μm; p<0.05) in a concentration-dependent manner (10−7 to 10−4 M). The dilatation was significantly reduced by endothelium denudation or by L-NAME (inhibitor of NO synthase) or by SQ22536 (adenylyl cyclase blocker). Dilatation of BA was also affected by beta-2 receptor blockade with butoxamine, but not by the guanylate cyclase blocker ODQ. Interestingly, beta-1 blockade by atenolol inhibited nebivolol-induced dilation. Also, the BKCa channel blocker iberiotoxin and KCa channel inhibitor TEA significantly reduced nebivolol-induced dilation. Nebivolol significantly reduced smooth muscle Ca2+ level, which correlated with the increases in diameters and moreover it reversed the hemolysed blood-induced constriction of BA. Conclusions Nebivolol seems to have an important dilator effect in cerebral arteries, which is mediated via several vasomotor mechanisms, converging on the reduction of smooth muscle Ca2+ levels. As such, nebivolol may be effective to improve cerebral circulation in various diseased conditions, such as hemorrhage. PMID:27716772

  7. 5-HT2 receptors modulate the expression of antipsychotic-induced dopamine supersensitivity.

    PubMed

    Charron, Alexandra; Hage, Cynthia El; Servonnet, Alice; Samaha, Anne-Noël

    2015-12-01

    Antipsychotic treatment can produce supersensitivity to dopamine receptor stimulation. This compromises the efficacy of ongoing treatment and increases the risk of relapse to psychosis upon treatment cessation. Serotonin 5-HT2 receptors modulate dopamine function and thereby influence dopamine-dependent responses. Here we evaluated the hypothesis that 5-HT2 receptors modulate the behavioural expression of antipsychotic-induced dopamine supersensitivity. To this end, we first treated rats with the antipsychotic haloperidol using a clinically relevant treatment regimen. We then assessed the effects of a 5-HT2 receptor antagonist (ritanserin; 0.01 and 0.1mg/kg) and of a 5-HT2A receptor antagonist (MDL100,907; 0.025-0.1mg/kg) on amphetamine-induced psychomotor activity. Antipsychotic-treated rats showed increased amphetamine-induced locomotion relative to antipsychotic-naïve rats, indicating a dopamine supersensitive state. At the highest dose tested (0.1mg/kg for both antagonists), both ritanserin and MDL100,907 suppressed amphetamine-induced locomotion in antipsychotic-treated rats, while having no effect on this behaviour in control rats. In parallel, antipsychotic treatment decreased 5-HT2A receptor density in the prelimbic cortex and nucleus accumbens core and increased 5-HT2A receptor density in the caudate-putamen. Thus, activation of either 5-HT2 receptors or of 5-HT2A receptors selectively is required for the full expression of antipsychotic-induced dopamine supersensitivity. In addition, antipsychotic-induced dopamine supersensitivity enhances the ability of 5-HT2/5-HT2A receptors to modulate dopamine-dependent behaviours. These effects are potentially linked to changes in 5-HT2A receptor density in the prefrontal cortex and the striatum. These observations raise the possibility that blockade of 5-HT2A receptors might overcome some of the behavioural manifestations of antipsychotic-induced dopamine supersensitivity.

  8. N-methyl-D-aspartate receptor channel blockers prevent pentylenetetrazole-induced convulsions and morphological changes in rat brain neurons.

    PubMed

    Zaitsev, Aleksey V; Kim, Kira Kh; Vasilev, Dmitry S; Lukomskaya, Nera Ya; Lavrentyeva, Valeria V; Tumanova, Natalia L; Zhuravin, Igor A; Magazanik, Lev G

    2015-03-01

    Alterations in inhibitory and excitatory neurotransmission play a central role in the etiology of epilepsy, with overstimulation of glutamate receptors influencing epileptic activity and corresponding neuronal damage. N-methyl-D-aspartate (NMDA) receptors, which belong to a class of ionotropic glutamate receptors, play a primary role in this process. This study compared the anticonvulsant properties of two NMDA receptor channel blockers, memantine and 1-phenylcyclohexylamine (IEM-1921), in a pentylenetetrazole (PTZ) model of seizures in rats and investigated their potencies in preventing PTZ-induced morphological changes in the brain. The anticonvulsant properties of IEM-1921 (5 mg/kg) were more pronounced than those of memantine at the same dose. IEM-1921 and memantine decreased the duration of convulsions by 82% and 37%, respectively. Both compounds were relatively effective at preventing the tonic component of seizures but not myoclonic seizures. Memantine significantly reduced the lethality caused by PTZ-induced seizures from 42% to 11%, and all animals pretreated with IEM-1921 survived. Morphological examination of the rat brain 24 hr after administration of PTZ revealed alterations in the morphology of 20-25% of neurons in the neocortex and the hippocampus, potentially induced by excessive glutamate. The expression of the excitatory amino acid transporter 1 protein was increased in the hippocampus of the PTZ-treated rats. However, dark neurons did not express caspase-3 and were immunopositive for the neuronal nuclear antigen protein, indicating that these neurons were alive. Both NMDA antagonists prevented neuronal abnormalities in the brain. These results suggest that NMDA receptor channel blockers might be considered possible neuroprotective agents for prolonged seizures or status epilepticus leading to neuronal damage.

  9. Telmisartan, an angiotensin II type 1 receptor blocker, prevents the development of diabetes in male Spontaneously Diabetic Torii rats.

    PubMed

    Hasegawa, Goji; Fukui, Michiaki; Hosoda, Hiroko; Asano, Mai; Harusato, Ichiko; Tanaka, Muhei; Shiraishi, Emi; Senmaru, Takashi; Sakabe, Kazumi; Yamasaki, Masahiro; Kitawaki, Jo; Fujinami, Aya; Ohta, Mitsuhiro; Obayashi, Hiroshi; Nakamura, Naoto

    2009-03-01

    To assess the beneficial effects of the angiotensin II type 1 receptor blocker telmisartan on a non-obese animal model of reduced function and mass of islet beta-cells prior to the development of diabetes, Spontaneously Diabetic Torii (SDT) rats were treated with telmisartan at 8 weeks of age. At 24 weeks of age, the treatment with telmisartan dose-dependently ameliorated hyperglycemia and hypoinsulinemia, and high-dose (5 mg/kg/day) treated SDT rats did not developed diabetes. Real-time RT-PCR analysis revealed that treatment with high-dose telmisartan reduced mRNA expression of local renin-angiotensin system (RAS) components, components of NAD(P)H oxidase, transforming growth factor-beta1 and vascular endothelial growth factor in the pancreas of male SDT rats. Immunohistochemical and Western blot analyses revealed that treatment with telmisartan also reduced expression of p47(phox). These results suggest that treatment with telmisartan reduces oxidative stress by local RAS activation and protects against islet beta-cell damage and dysfunction. These findings provide at least a partial explanation for the reduced incidence of new-onset diabetes that has been observed in several clinical trials involving angiotensin II type 1 receptor blockers and ACE inhibitors.

  10. Induction of human adiponectin gene transcription by telmisartan, angiotensin receptor blocker, independently on PPAR-{gamma} activation

    SciTech Connect

    Moriuchi, Akie ||. E-mail: f1195@cc.nagasaki-u-ac.jp; Shimamura, Mika; Kita, Atsushi; Kuwahara, Hironaga; Satoh, Tsuyoshi; Satoh, Tsuyoshi; Fujishima, Keiichiro; Fukushima, Keiko |; Hayakawa, Takao; Mizuguchi, Hiroyuki; Nagayama, Yuji; Kawasaki, Eiji

    2007-05-18

    Adiponectin, an adipose tissue-specific plasma protein, has been shown to ameliorate insulin resistance and inhibit the process of atherosclerosis. Recently, several reports have stated that angiotensin type 1 receptor blockers (ARBs), increase adiponectin plasma level, and ameliorate insulin resistance. Telmisartan, a subclass of ARBs, has been shown to be a partial agonist of the peroxisome proliferator-activated receptor (PPAR)-{gamma}, and to increase the plasma adiponectin level. However, the transcriptional regulation of the human adiponectin gene by telmisartan has not been determined yet. To elucidate the effect of telmisartan on adiponectin, the stimulatory regulation of human adiponectin gene by telmisartan was investigated in 3T3-L1 adipocytes, utilizing adenovirus-mediated luciferase reporter gene-transferring technique. This study indicates that telmisartan may stimulate adiponectin transcription independent of PPAR-{gamma}.

  11. Allergic sensitization modifies the pulmonary expression of 5-hydroxytryptamine receptors in guinea pigs.

    PubMed

    Córdoba-Rodríguez, Guadalupe; Vargas, Mario H; Ruiz, Víctor; Carbajal, Verónica; Campos-Bedolla, Patricia; Mercadillo-Herrera, Paulina; Arreola-Ramírez, José Luis; Segura-Medina, Patricia

    2016-03-01

    There is mounting evidence that 5-hydroxytryptamine (5-HT) plays a role in asthma. However, scarce information exists about the pulmonary expression of 5-HT receptors and its modification after allergic sensitization. In the present work, we explored the expression of 5-HT1A, 5-HT2A, 5-HT3, 5-HT4, 5-ht5a, 5-HT6, and 5-HT7 receptors in lungs from control and sensitized guinea pigs through qPCR and Western blot. In control animals, mRNA from all receptors was detectable in lung homogenates, especially from 5-HT2A and 5-HT4 receptors. Sensitized animals had decreased mRNA expression of 5-HT2A and 5-HT4 receptors and increased that of 5-HT7 receptor. In contrast, they had increased protein expression of 5-HT2A receptor in bronchial epithelium and of 5-HT4 receptor in lung parenchyma. The degree of airway response to the allergic challenge was inversely correlated with mRNA expression of the 5-HT1A receptor. In summary, our results showed that major 5-HT receptor subtypes are constitutively expressed in the guinea pig lung, and that allergic sensitization modifies the expression of 5-HT2A, 5-HT4, and 5-HT7 receptors.

  12. An angiotensin II receptor blocker-calcium channel blocker combination prevents cardiovascular events in elderly high-risk hypertensive patients with chronic kidney disease better than high-dose angiotensin II receptor blockade alone.

    PubMed

    Kim-Mitsuyama, Shokei; Ogawa, Hisao; Matsui, Kunihiko; Jinnouchi, Tomio; Jinnouchi, Hideaki; Arakawa, Kikuo

    2013-01-01

    The OSCAR study was a multicenter, prospective randomized open-label blinded end-point study of 1164 Japanese elderly hypertensive patients comparing the efficacy of angiotensin II receptor blocker (ARB) uptitration to an ARB plus calcium channel blocker (CCB) combination. In this prospective study, we performed prespecified subgroup analysis according to baseline estimated glomerular filtration rate (eGFR) with chronic kidney disease (CKD) defined as an eGFR <60 ml/min per 1.73 m(2). Blood pressure was lower in the combined therapy than in the high-dose ARB cohort in both groups with and without CKD. In patients with CKD, significantly more primary events (a composite of cardiovascular events and noncardiovascular death) occurred in the high-dose ARB group than in the combination group (30 vs. 16, respectively, hazard ratio 2.25). Significantly more cerebrovascular and more heart failure events occurred in the high-dose ARB group than in the combination group. In patients without CKD, however, the incidence of primary events was similar between the two treatments. The treatment-by-subgroup interaction was significant. Allocation to the high-dose ARB was a significant independent prognostic factor for primary events in patients with CKD. Thus, the ARB plus CCB combination conferred greater benefit in prevention of cardiovascular events in patients with CKD compared with high-dose ARB alone. Our findings provide new insight into the antihypertensive strategy for elderly hypertensive patients with CKD.

  13. Color development upon reaction of ferric ion with the toxin JSTX, a glutamate receptor blocker present in the venom gland of the spider Nephila clavata (Joro spider).

    PubMed

    Yoshioka, M; Narai, N; Pan-Hou, H; Shimazaki, K; Miwa, A; Kawai, N

    1988-01-01

    A spider toxin, JSTX, derived from Nephila clavata, which blocks glutamate receptor was found to react with Fe3+. Mechanism of the coloration may be chelate formation since the green color completely faded upon the addition of EDTA. The colored JSTX significantly lost its neurophysiological activity. This unique coloration may be useful for not only detecting specific blockers of the glutamate receptor in spider venom but also for characterizing the glutamate receptor.

  14. Toll-like receptor 4 blocker as potential therapy for acetaminophen-induced organ failure in mice

    PubMed Central

    SALAMA, MOHAMED; ELGAMAL, MOHAMED; ABDELAZIZ, AZZA; ELLITHY, MOATAZ; MAGDY, DINA; ALI, LINA; FEKRY, EMAD; MOHSEN, ZINAB; MOSTAFA, MARIAM; ELGAMAL, HODA; SHEASHAA, HUSSEIN; SOBH, MOHAMED

    2015-01-01

    Acetaminophen (APAP, 4-hydroxyacetanilide) is the most common cause of acute liver failure in the United States. In addition to exhibiting hepatotoxicity, APAP exerts a nephrotoxic effect may be independent of the induced liver damage. Toll-like receptors (TLRs) have been suggested as a potential class of novel therapeutic targets. The aim of the present study was to investigate the potential of the TLR-4 blocker TAK-242 in the prevention of APAP-induced hepato-renal failure. Four groups of C57BL mice were studied: Vehicle-treated/control (VEH), APAP-treated (APAP), N-acetyl cysteine (NAC)-pretreated plus APAP (APAP + NAC) and TAK-242-pretreated plus APAP (APAP + TAK) groups. Mice were clinically assessed then perfused 4 h later. Liver and kidney tissues were collected and examined histologically using basic hematoxylin and eosin staining to detect signs of necrosis and inflammation. Plasma samples were collected to measure the levels of alanine transaminase, aspartate transaminase and serum creatinine. In addition, liver and kidney tissues were assayed to determine the levels of reduced glutathione. The results of the present study indicate the potential role of TLR-4 in APAP-induced organ toxicity. In the APAP + TAK and APAP + NAC groups, histopathological examination indicated that pretreatment with TAK-242 or NAC afforded protection against APAP-induced injury. However, this protective effect was more clinically evident in the APAP + TAK group compared with the APAP + NAC group. The various biochemical parameters (serum enzymes and reduced glutathione) revealed no significant protection in either of the pretreated groups. Therefore, the present study indicated that the TLR-4 blocker had protective effects against acute APAP toxicity in liver and kidney tissues. These effects were identified clinically, histologically and biochemically. Furthermore, the TLR-4 blocker TAK-242 exhibited antioxidant properties in addition to anti-inflammatory effects. PMID:26170942

  15. Toll-like receptor 4 blocker as potential therapy for acetaminophen-induced organ failure in mice.

    PubMed

    Salama, Mohamed; Elgamal, Mohamed; Abdelaziz, Azza; Ellithy, Moataz; Magdy, Dina; Ali, Lina; Fekry, Emad; Mohsen, Zinab; Mostafa, Mariam; Elgamal, Hoda; Sheashaa, Hussein; Sobh, Mohamed

    2015-07-01

    Acetaminophen (APAP, 4-hydroxyacetanilide) is the most common cause of acute liver failure in the United States. In addition to exhibiting hepatotoxicity, APAP exerts a nephrotoxic effect may be independent of the induced liver damage. Toll-like receptors (TLRs) have been suggested as a potential class of novel therapeutic targets. The aim of the present study was to investigate the potential of the TLR-4 blocker TAK-242 in the prevention of APAP-induced hepato-renal failure. Four groups of C57BL mice were studied: Vehicle-treated/control (VEH), APAP-treated (APAP), N-acetyl cysteine (NAC)-pretreated plus APAP (APAP + NAC) and TAK-242-pretreated plus APAP (APAP + TAK) groups. Mice were clinically assessed then perfused 4 h later. Liver and kidney tissues were collected and examined histologically using basic hematoxylin and eosin staining to detect signs of necrosis and inflammation. Plasma samples were collected to measure the levels of alanine transaminase, aspartate transaminase and serum creatinine. In addition, liver and kidney tissues were assayed to determine the levels of reduced glutathione. The results of the present study indicate the potential role of TLR-4 in APAP-induced organ toxicity. In the APAP + TAK and APAP + NAC groups, histopathological examination indicated that pretreatment with TAK-242 or NAC afforded protection against APAP-induced injury. However, this protective effect was more clinically evident in the APAP + TAK group compared with the APAP + NAC group. The various biochemical parameters (serum enzymes and reduced glutathione) revealed no significant protection in either of the pretreated groups. Therefore, the present study indicated that the TLR-4 blocker had protective effects against acute APAP toxicity in liver and kidney tissues. These effects were identified clinically, histologically and biochemically. Furthermore, the TLR-4 blocker TAK-242 exhibited antioxidant properties in addition to anti-inflammatory effects.

  16. Activation, internalization, and recycling of the serotonin 2A receptor by dopamine

    PubMed Central

    Bhattacharyya, Samarjit; Raote, Ishier; Bhattacharya, Aditi; Miledi, Ricardo; Panicker, Mitradas M.

    2006-01-01

    Serotonergic and dopaminergic systems, and their functional interactions, have been implicated in the pathophysiology of various CNS disorders. Here, we use recombinant serotonin (5-HT) 2A (5-HT2A) receptors to further investigate direct interactions between dopamine and 5-HT receptors. Previous studies in Xenopus oocytes showed that dopamine, although not the cognate ligand for the 5-HT2A receptor, acts as a partial-efficacy agonist. At micromolar concentrations, dopamine also acts as a partial-efficacy agonist on 5-HT2A receptors in HEK293 cells. Like 5-HT, dopamine also induces receptor-internalization in these cells, although at significantly higher concentrations than 5-HT. Interestingly, if the receptors are first sensitized or “primed” by subthreshold concentrations of 5-HT, then dopamine-induced internalization occurs at concentrations ≈10-fold lower than when dopamine is used alone. Furthermore, unlike 5-HT-mediated internalization, dopamine-mediated receptor internalization, alone, or after sensitization by 5-HT, does not depend on PKC. Dopamine-internalized receptors recycle to the surface at rates similar to those of 5-HT-internalized receptors. Our results suggest a previously uncharacterized role for dopamine in the direct activation and internalization of 5-HT2A receptors that may have clinical relevance to the function of serotonergic systems in anxiety, depression, and schizophrenia and also to the treatment of these disorders. PMID:17005723

  17. Angiotensin receptor blocker drugs and inhibition of adrenal beta-arrestin-1-dependent aldosterone production: Implications for heart failure therapy

    PubMed Central

    Lymperopoulos, Anastasios; Aukszi, Beatrix

    2017-01-01

    Aldosterone mediates many of the physiological and pathophysiological/cardio-toxic effects of angiotensin II (AngII). Its synthesis and secretion from the zona glomerulosa cells of the adrenal cortex, elevated in chronic heart failure (HF), is induced by AngII type 1 receptors (AT1Rs). The AT1R is a G protein-coupled receptor, mainly coupling to Gq/11 proteins. However, it can also signal through β-arrestin-1 (βarr1) or -2 (βarr2), both of which mediate G protein-independent signaling. Over the past decade, a second, Gq/11 protein-independent but βarr1-dependent signaling pathway emanating from the adrenocortical AT1R and leading to aldosterone production has become appreciated. Thus, it became apparent that AT1R antagonists that block both pathways equally well are warranted for fully effective aldosterone suppression in HF. This spurred the comparison of all of the currently marketed angiotensin receptor blockers (ARBs, AT1R antagonists or sartans) at blocking activation of the two signaling modes (G protein-, and βarr1-dependent) at the AngII-activated AT1R and hence, at suppression of aldosterone in vitro and in vivo. Although all agents are very potent inhibitors of G protein activation at the AT1R, candesartan and valsartan were uncovered to be the most potent ARBs at blocking βarr activation by AngII and at suppressing aldosterone in vitro and in vivo in post-myocardial infarction HF animals. In contrast, irbesartan and losartan are virtually G protein-“biased” blockers at the human AT1R, with very low efficacy for βarr inhibition and aldosterone suppression. Therefore, candesartan and valsartan (and other, structurally similar compounds) may be the most preferred ARB agents for HF pharmacotherapy, as well as for treatment of other conditions characterized by elevated aldosterone.

  18. Lysergic acid diethylamide-induced Fos expression in rat brain: role of serotonin-2A receptors.

    PubMed

    Gresch, P J; Strickland, L V; Sanders-Bush, E

    2002-01-01

    Lysergic acid diethylamide (LSD) produces altered mood and hallucinations in humans and binds with high affinity to serotonin-2A (5-HT(2A)) receptors. Although LSD interacts with other receptors, the activation of 5-HT(2A) receptors is thought to mediate the hallucinogenic properties of LSD. The goal of this study was to identify the brain sites activated by LSD and to determine the influence of 5-HT(2A) receptors in this activation. Rats were pretreated with the 5-HT(2A) receptor antagonist MDL 100907 (0.3 mg/kg, i.p.) or vehicle 30 min prior to LSD (500 microg/kg, i.p.) administration and killed 3 h later. Brain tissue was examined for Fos protein expression by immunohistochemistry. LSD administration produced a five- to eight-fold increase in Fos-like immunoreactivity in medial prefrontal cortex, anterior cingulate cortex, and central nucleus of amygdala. However, in dorsal striatum and nucleus accumbens no increase in Fos-like immunoreactivity was observed. Pretreatment with MDL 100907 completely blocked LSD-induced Fos-like immunoreactivity in medial prefrontal cortex and anterior cingulate cortex, but only partially blocked LSD-induced Fos-like immunoreactivity in amygdala. Double-labeled immunohistochemistry revealed that LSD did not induce Fos-like immunoreactivity in cortical cells expressing 5-HT(2A) receptors, suggesting an indirect activation of cortical neurons. These results indicate that the LSD activation of medial prefrontal cortex and anterior cingulate cortex is mediated by 5-HT(2A) receptors, whereas in amygdala 5-HT(2A) receptor activation is a component of the response. These findings support the hypothesis that the medial prefrontal cortex, anterior cingulate cortex, and perhaps the amygdala, are important regions involved in the production of hallucinations.

  19. The comparative efficacy and safety of the angiotensin receptor blockers in the management of hypertension and other cardiovascular diseases.

    PubMed

    Abraham, Hazel Mae A; White, C Michael; White, William B

    2015-01-01

    All national guidelines for the management of hypertension recommend angiotensin receptor blockers (ARBs) as an initial or add-on antihypertensive therapy. The eight available ARBs have variable clinical efficacy when used for control of hypertension. Additive blood pressure-lowering effects have been demonstrated when ARBs are combined with thiazide diuretics or dihydropyridine calcium channel blockers, augmenting hypertension control. Furthermore, therapeutic use of ARBs goes beyond their antihypertensive effects, with evidence-based benefits in heart failure and diabetic renal disease particularly among angiotensin-converting enzyme inhibitor-intolerant patients. On the other hand, combining renin-angiotensin system blocking agents, a formerly common practice among medical subspecialists focusing on the management of hypertension, has ceased, as there is not only no evidence of cardiovascular benefit but also modest evidence of harm, particularly with regard to renal dysfunction. ARBs are very well tolerated as monotherapy, as well as in combination with other antihypertensive medications, which improve adherence to therapy and have become a mainstay in the treatment of stage 1 and stage 2 hypertension.

  20. Transcranial random noise stimulation-induced plasticity is NMDA-receptor independent but sodium-channel blocker and benzodiazepines sensitive

    PubMed Central

    Chaieb, Leila; Antal, Andrea; Paulus, Walter

    2015-01-01

    Background: Application of transcranial random noise stimulation (tRNS) between 0.1 and 640 Hz of the primary motor cortex (M1) for 10 min induces a persistent excitability increase lasting for at least 60 min. However, the mechanism of tRNS-induced cortical excitability alterations is not yet fully understood. Objective: The main aim of this study was to get first efficacy data with regard to the possible neuronal effect of tRNS. Methods: Single-pulse transcranial magnetic stimulation (TMS) was used to measure levels of cortical excitability before and after combined application of tRNS at an intensity of 1 mA for 10 min stimulation duration and a pharmacological agent (or sham) on eight healthy male participants. Results: The sodium channel blocker carbamazepine showed a tendency toward inhibiting MEPs 5–60 min poststimulation. The GABAA agonist lorazepam suppressed tRNS-induced cortical excitability increases at 0–20 and 60 min time points. The partial NMDA receptor agonist D-cycloserine, the NMDA receptor antagonist dextromethorphan and the D2/D3 receptor agonist ropinirole had no significant effects on the excitability increases seen with tRNS. Conclusions: In contrast to transcranial direct current stimulation (tDCS), aftereffects of tRNS are seem to be not NMDA receptor dependent and can be suppressed by benzodiazepines suggesting that tDCS and tRNS depend upon different mechanisms. PMID:25914617

  1. Renin-angiotensin-aldosterone system inhibition: overview of the therapeutic use of angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, mineralocorticoid receptor antagonists, and direct renin inhibitors.

    PubMed

    Mercier, Kelly; Smith, Holly; Biederman, Jason

    2014-12-01

    Angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) therapy in hypertensive diabetic patients with macroalbuminuria, microalbuminuria, or normoalbuminuria has been repeatedly shown to improve cardiovascular mortality and reduce the decline in glomerular filtration rate. Renin-angiotensin-aldosterone system (RAAS) blockade in normotensive diabetic patients with normoalbuminuria or microalbuminuria cannot be advocated at present. Dual RAAS inhibition with ACE inhibitors plus ARBs or ACE inhibitors plus direct renin inhibitors has failed to improve cardiovascular or renal outcomes but has predisposed patients to serious adverse events.

  2. Influence of initial angiotensin receptor blockers on treatment persistence in uncomplicated hypertension: A nation-wide population-based study.

    PubMed

    Ah, Young-Mi; Lee, Ju-Yeun; Choi, Yun-Jung; Kong, Jisun; Kim, Baegeum; Choi, Kyung Hee; Han, Nayoung; Yu, Yun Mi; Oh, Jung Mi; Shin, Wan Gyoon; Lee, Hae-Young

    2016-01-01

    We identified 55 504 uncomplicated, treatment-naïve hypertensive patients who started angiotensin II receptor blockers (ARBs) in 2012 from national claims data. The proportion of patients remaining on any hypertension treatment at 12 months and the adherence rate were similar between the losartan cohort (66.82% and 68.25%) and the nonlosartan ARB cohort (67.48% and 69.01%). After adjusting for confounding factors, there was no difference in persistence (aHR 0.98, 95% confidence interval (CI) 0.95-1.01) on hypertension treatment between losartan and nonlosartan ARB cohort. Post hoc analysis showed that patients initially prescribed eprosartan, irbesartan (both, aHR 1.33), and telmisartan (aHR 1.11) were more likely to discontinue the initial drug, whereas valsartan initiators (aHR 0.96) were less likely compared with losartan initiators.

  3. Perioperative management of patients treated with angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers: a quality improvement audit.

    PubMed

    Vijay, A; Grover, A; Coulson, T G; Myles, P S

    2016-05-01

    Previous studies have shown that patients continuing angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers on the day of surgery are more likely to have significant intraoperative hypotension, higher rates of postoperative acute kidney injury, and lower incidences of postoperative atrial fibrillation. However, many of these studies were prone to bias and confounding, and questions remain over the validity of these outcomes. This observational, before-and-after quality improvement audit aimed to assess the effect of withholding these medications on the morning of surgery. We recruited 323 participants, with 83 (26%) having their preoperative angiotensin-converting enzyme inhibitor (ACEi) or angiotensin II receptor blocker (ARB) withheld on the day of surgery. There were only very small Spearman rank-order correlations between time since last dose of these medications (rho -0.12, P=0.057) and intraoperative and recovery room intravenous fluid administration (rho -0.11, P=0.042). There was no statistically significant difference between the continued or withheld groups in vasopressor (metaraminol use 3.5 [1.5-8.3] mg versus 3.5 [1.5-8.5] mg, P=0.67) or intravenous fluid administration (1000 ml [800-1500] ml versus 1000 [800-1500] ml, P=0.096), nor rates of postoperative acute kidney injury (13% vs 18%, P=0.25) or atrial fibrillation (15% versus 18%, P=0.71). This audit found no significant differences in measured outcomes between the continued or withheld ACEi/ARB groups. This finding should be interpreted with caution due to the possibility of confounding and an insufficient sample size. However, as the finding is in contrast to many previous studies, future prospective randomised clinical trials are required to answer this important question.

  4. A retrospective study of the effects of angiotensin receptor blockers and angiotensin converting enzyme inhibitors in diabetic nephropathy

    PubMed Central

    Pathak, Jahnavi V.; Dass, Ervilla E.

    2015-01-01

    Objective: Till date, several studies have compared angiotensin converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs) in terms of delaying the progression of diabetic nephropathy. But the superiority of one drug class over the other remains unsettled. This study has retrospectively compared the effects of ACE inhibitors and ARBs in diabetic nephropathy. The study aims to compare ACE inhibitors and ARBs in terms of delaying or preventing the progression of diabetic nephropathy, association between blood pressure (B.P) and urinary albumin and also B.P and serum creatinine with ACE inhibitor and ARB, know the percentage of hyperkalemia in patients of diabetic nephropathy receiving ACE inhibitor or ARB. Settings and Design: A total of 134 patients diagnosed with diabetic nephropathy during the years 2001–2010 and having a complete follow-up were studied, out of which 99 were on ARB (63 patients of Losartan and 36 of Telmisartan) and 35 on ACE inhibitor (Ramipril). Subjects and Methods: There was at least 1-month of interval between each observation made and also between the date of treatment started and the first reading that is, the observation of the 1st month. In total, three readings were taken that is, of the 1st, 2nd and 3rd month after the treatment started. Comparison of the 1st and 3rd month after the treatment started was done. Mean ± standard deviation, Paired t-test, and Chi-square were used for the analysis of the data. Results: The results reflect that ARBs (Losartan and Telmisartan) when compared to ACE inhibitor (Ramipril) are more effective in terms of delaying the progression of diabetic nephropathy and also in providing renoprotection. Also, ARBs have the property of simultaneously decreasing the systolic B.P and albuminuria when compared to ACE inhibitor (Ramipril). Conclusions: Angiotensin receptor blockers are more renoprotective than ACE inhibitors and also provide better cardioprotection. PMID:25878372

  5. Age-related difference in the sleep pressure-lowering effect between an angiotensin II receptor blocker and a calcium channel blocker in Asian hypertensives: the ACS1 Study.

    PubMed

    Kario, Kazuomi; Hoshide, Satoshi

    2015-04-01

    Sleep blood pressure (BP), which is partly determined by salt sensitivity and intake, is an important cardiovascular risk in hypertensives. However, there have been no studies on age-related differences in the sleep BP-lowering effect between angiotensin II receptor blockers and calcium channel blockers in Asians. Azilsartan Circadian and Sleep Pressure-the 1st Study was a multicenter, randomized, open-label, 2-parallel-group study conducted to compare the efficacy of 8-week oral treatment with an angiotensin II receptor blocker (azilsartan 20 mg) or a calcium channel blocker (amlodipine 5 mg) on sleep BP as evaluated by ambulatory BP monitoring. Among the overall population, amlodipine treatment achieved significantly greater reduction in sleep BP, awake BP, and 24-hour BP than azilsartan treatment. BP reduction by amlodipine was particularly pronounced in elderly hypertensive patients aged ≥60 years old. Among patients ≥60 years old, the amlodipine group had numerically, but not significantly, higher control rate of sleep BP compared with the azilsartan group. Similar results were found for awake BP and 24-hour BP. These results suggest a greater BP reduction/control by amlodipine compared with azilsartan and that reduction/control of BP by amlodipine was also more effective in the elderly population. As recommended in the American Society of Hypertension/The international Society of Hypertension and the National Institute for Health and Clinical Excellence guidelines for differentiating treatment according to age, amlodipine should be one of the options for starting treatment in the elderly population. CLINICAL TRIAL URL: http://clinicaltrials.gov/show/NCT01762501 CLINICAL TRIAL ID: NCT01762501.

  6. Chloride channels of glycine and GABA receptors with blockers: Monte Carlo minimization and structure-activity relationships.

    PubMed Central

    Zhorov, B S; Bregestovski, P D

    2000-01-01

    GABA and glycine receptors (GlyRs) are pentameric ligand-gated ion channels that respond to the inhibitory neurotransmitters by opening a chloride-selective central pore lined with five M2 segments homologous to those of alpha(1) GlyR/ ARVG(2')LGIT(6')TVLTMTTQSSGSR. The activity of cyanotriphenylborate (CTB) and picrotoxinin (PTX), the best-studied blockers of the Cl(-) pores, depends essentially on the subunit composition of the receptors, in particular, on residues in positions 2' and 6' that form the pore-facing rings R(2') and R(6'). Thus, CTB blocks alpha(1) and alpha(1)/beta, but not alpha(2) GlyRs (Rundström, N., V. Schmieden, H. Betz, J. Bormann, and D. Langosch. 1994. Proc. Natl. Acad. Sci. U.S.A. 91:8950-8954). PTX blocks homomeric receptors (alpha(1) GlyR and rat rho(1) GABAR), but weakly antagonizes heteromeric receptors (alpha(1)/beta GlyR and rho(1)/rho(2) GABAR) (Pribilla, I., T. Takagi, D. Langosch, J. Bormann, and H. Betz. 1992. EMBO J. 11:4305-4311; Zhang D., Z. H. Pan, X. Zhang, A. D. Brideau, and S. A. Lipton. 1995. Proc. Natl. Acad. Sci. U.S.A. 92:11756-11760). Using as a template the kinked-helices model of the nicotinic acetylcholine receptor in the open state (Tikhonov, D. B., and B. S. Zhorov. 1998. Biophys. J. 74:242-255), we have built homology models of GlyRs and GABARs and calculated Monte Carlo-minimized energy profiles for the blockers pulled through the pore. The profiles have shallow minima at the wide extracellular half of the pore, a barrier at ring R(6'), and a deep minimum between rings R(6') and R(2') where the blockers interact with five M2s simultaneously. The star-like CTB swings necessarily on its way through ring R(6') and its activity inversely correlates with the barrier at R(6'): Thr(6')s and Ala(2')s in alpha(2) GlyR confine the swinging by increasing the barrier, while Gly(2')s in alpha(1) GlyR and Phe(6')s in beta GlyR shrink the barrier. PTX has an egg-like shape with an isopropenyl group at the elongated end and

  7. The angiotensin receptor blocker losartan reduces coronary arteriole remodeling in type 2 diabetic mice.

    PubMed

    Husarek, Kathryn E; Katz, Paige S; Trask, Aaron J; Galantowicz, Maarten L; Cismowski, Mary J; Lucchesi, Pamela A

    2016-01-01

    Cardiovascular complications are a leading cause of morbidity and mortality in type 2 diabetes mellitus (T2DM) and are associated with alterations of blood vessel structure and function. Although endothelial dysfunction and aortic stiffness have been documented, little is known about the effects of T2DM on coronary microvascular structural remodeling. The renin-angiotensin-aldosterone system plays an important role in large artery stiffness and mesenteric vessel remodeling in hypertension and T2DM. The goal of this study was to determine whether the blockade of AT1R signaling dictates vascular smooth muscle growth that partially underlies coronary arteriole remodeling in T2DM. Control and db/db mice were given AT1R blocker losartan via drinking water for 4 weeks. Using pressure myography, we found that coronary arterioles from 16-week db/db mice undergo inward hypertrophic remodeling due to increased wall thickness and wall-to-lumen ratio with a decreased lumen diameter. This remodeling was accompanied by decreased elastic modulus (decreased stiffness). Losartan treatment decreased wall thickness, wall-to-lumen ratio, and coronary arteriole cell number in db/db mice. Losartan treatment did not affect incremental elastic modulus. However, losartan improved coronary flow reserve. Our data suggest that Ang II-AT1R signaling mediates, at least in part, coronary arteriole inward hypertrophic remodeling in T2DM without affecting vascular mechanics, further suggesting that targeting the coronary microvasculature in T2DM may help reduce cardiac ischemic events.

  8. Clinic and Home Blood Pressure Lowering Effect of an Angiotensin Receptor Blocker, Fimasartan, in Postmenopausal Women with Hypertension

    PubMed Central

    Kim, Song-Yi; Joo, Seung-Jae; Shin, Mi-Seung; Kim, Changsoo; Cho, Eun Joo; Sung, Ki-Chul; Kang, Seok-Min; Kim, Dong-Soo; Lee, Seung Hwan; Hwang, Kyung-Kuk; Park, Jeong Bae

    2016-01-01

    Abstract Angiotensin receptor blockers may be an appropriate first-line agent for postmenopausal women with hypertension because the activation of renin–angiotensin–aldosterone system is suggested as one possible mechanism of postmenopausal hypertension. However, there are few studies substantiating this effect. This study aimed to investigate clinic and home blood pressure (BP) lowering effect of fimasartan, a new angiotensin receptor blocker, in postmenopausal women with hypertension. Among patients with hypertension enrolled in K-Mets Study, 1373 women with fimasartan as a first antihypertensive drug and 3-months follow-up data were selected. They were divided into 2 groups; premenopausal women (pre-MPW; n = 382, 45.3 ± 4.6 years) and postmenopausal women (post-MPW; n = 991, 60.9 ± 8.2 years). Baseline clinic systolic BP was not different (pre-MPW; 152.9 ± 15.2 vs. post-MPW; 152.8 ± 13.5 mm Hg), but diastolic BP was lower in post-MPW (pre-MPW; 95.7 ± 9.4 vs. post-MPW; 91.9 ± 9.4 mm Hg, P <0.001). After 3-month treatment, clinic BP declined effectively without significant differences between 2 groups (Δsystolic/diastolic BP: pre-MPW; −25.7 ± 17.7/−14.2 ± 11.3 vs. post-MPW; −25.7 ± 16.3/−13.1 ± 10.9 mm Hg). Home morning and evening systolic BP decreased similarly in both groups (Δmorning/evening systolic BP: pre-MPW; −21.3 ± 17.9/−23.1 ± 15.8 vs. post-MPW; −20.4 ± 17.3/−20.2 ± 19.2 mm Hg). Fimasartan also significantly decreased the standard deviations of home morning and evening systolic BP of pre-MPW and post-MPW. Fimasartan was a similarly effective BP lowering agent in both post-MPW and pre-MPW with hypertension, and it also decreased day-to-day BP variability. PMID:27258507

  9. Activation of serotonin 2A receptors underlies the psilocybin-induced effects on α oscillations, N170 visual-evoked potentials, and visual hallucinations.

    PubMed

    Kometer, Michael; Schmidt, André; Jäncke, Lutz; Vollenweider, Franz X

    2013-06-19

    Visual illusions and hallucinations are hallmarks of serotonergic hallucinogen-induced altered states of consciousness. Although the serotonergic hallucinogen psilocybin activates multiple serotonin (5-HT) receptors, recent evidence suggests that activation of 5-HT2A receptors may lead to the formation of visual hallucinations by increasing cortical excitability and altering visual-evoked cortical responses. To address this hypothesis, we assessed the effects of psilocybin (215 μg/kg vs placebo) on both α oscillations that regulate cortical excitability and early visual-evoked P1 and N170 potentials in healthy human subjects. To further disentangle the specific contributions of 5-HT2A receptors, subjects were additionally pretreated with the preferential 5-HT2A receptor antagonist ketanserin (50 mg vs placebo). We found that psilocybin strongly decreased prestimulus parieto-occipital α power values, thus precluding a subsequent stimulus-induced α power decrease. Furthermore, psilocybin strongly decreased N170 potentials associated with the appearance of visual perceptual alterations, including visual hallucinations. All of these effects were blocked by pretreatment with the 5-HT2A antagonist ketanserin, indicating that activation of 5-HT2A receptors by psilocybin profoundly modulates the neurophysiological and phenomenological indices of visual processing. Specifically, activation of 5-HT2A receptors may induce a processing mode in which stimulus-driven cortical excitation is overwhelmed by spontaneous neuronal excitation through the modulation of α oscillations. Furthermore, the observed reduction of N170 visual-evoked potentials may be a key mechanism underlying 5-HT2A receptor-mediated visual hallucinations. This change in N170 potentials may be important not only for psilocybin-induced states but also for understanding acute hallucinatory states seen in psychiatric disorders, such as schizophrenia and Parkinson's disease.

  10. Effects of isoflurane on the actions of neuromuscular blockers on the muscle nicotine acetylcholine receptors.

    PubMed

    Li, Chuanxiang; Yao, Shanglong; Nie, Hui; Lü, Bin

    2004-01-01

    In this study, we tested the hypothesis that volatile anesthetic enhancement of muscle relaxation is the result of combined drug effects on the nicotinic acetylcholine receptors. The poly A m RNA from muscle by isolation were microinjected into Xenopus oocytes for receptor expression. Concentration-effect curves for the inhibition of Ach-induced currents were established for vecuronium, rocuranium, and isoflurane. Subsequently, inhibitory effects of NDMRs were studied in the presence of the isoflurane at a concentration equivalent to half the concentration producing a 50% inhibition alone. All tested drugs produced rapid and readily reversible concentration-dependent inhibition. The 50% inhibitory concentration values were 889 micromol/L (95% CI: 711-1214 micromol). 33.4 micromol (95% CI: 27.1-41.7 nmol) and 9.2 nmol (95% CI: 7.9-12.3 nmol) for isoflurane. rocuranium and vecuronium, respectively. Coapplication of isoflurane significantly enhanced the inhibitory effects of rocuranium and vecuronium, and it was especially so at low concentration of NMDRs. Isoflurane increases the potency of NDMRs, possibly by enhancing antagonist affinity at the receptor site.

  11. Alpha Blockers

    MedlinePlus

    ... conditions such as high blood pressure and benign prostatic hyperplasia. Find out more about this class of medication. ... these conditions: High blood pressure Enlarged prostate (benign prostatic hyperplasia) Though alpha blockers are commonly used to treat ...

  12. Beta Blockers

    MedlinePlus

    Diseases and Conditions High blood pressure (hypertension) Beta blockers, also called beta-adrenergic blocking agents, treat a variety of conditions, such as high blood pressure and migraines. Find out more about this ...

  13. The anthelmintic pyrantel acts as a low efficacious agonist and an open-channel blocker of mammalian acetylcholine receptors.

    PubMed

    Rayes, D; De Rosa, M J; Spitzmaul, G; Bouzat, C

    2001-08-01

    Pyrantel is an anthelmintic which acts as an agonist of nicotinic receptors (AChRs) of nematodes and exerts its therapeutic effects by depolarizing their muscle membranes. Here we explore at the single-channel level the action of pyrantel at mammalian muscle AChR. AChR currents are elicited by pyrantel. However, openings do not appear in clearly identifiable clusters over a range of pyrantel concentrations (1-300 microM). The mean open time decreases as a function of concentration, indicating an additional open-channel block. Single-channel recordings in the presence of high ACh concentrations and pyrantel demonstrate that the anthelmintic acts as a high-affinity open-channel blocker. When analyzed in terms of a sequential blocking scheme, the calculated forward rate constant for the blocking process is 8x10(7) M(-1) x s(-1), the apparent dissociation constant is 8 microM at a membrane potential of -70 mV and the process is voltage dependent. Pyrantel displaces alpha-bungarotoxin binding but the concentration dependence of equilibrium binding is shifted towards higher concentrations with respect to that of ACh binding. Thus, by acting at the binding site pyrantel activates mammalian AChRs with low efficacy, and by sterical blockade of the pore, the activated channels are then rapidly inhibited.

  14. Effects of an angiotensin 2 receptor blocker plus diuretic combination drug in chronic heart failure complicated by hypertension.

    PubMed

    Suzuki, O; Ishii, H; Kobayashi, S

    2011-01-01

    The effects of 24 weeks' treatment with an angiotensin 2 receptor blocker (ARB)/diuretic combination drug were investigated in an open-label study of 61 patients with stabilized chronic heart failure. Renin-angiotensin-aldosterone system inhibitors were replaced with a tablet containing hydrochlorothiazide 6.25 mg plus candesartan 8 mg, administered orally, once daily, in patients with systolic blood pressure (SBP) ≥ 140 mmHg or diastolic blood pressure (DBP) ≥ 90 mmHg while under optimal treatment. Both SBP and DBP declined significantly during the ARB/diuretic combination treatment. Diuretics administered previously were discontinued during the study period in 15 patients, decreasing the number of drugs being taken. During ARB/diuretic combination treatment, the blood urea nitrogen level worsened but no significant changes were noted in potassium or estimated glomerular filtration rate, which had been a matter of concern. Additionally, the level of brain natriuretic peptide, an indicator of the severity of heart failure, was improved, indicating effectiveness and safety of the ARB/diuretic combination drug.

  15. Cardiovascular risk reduction in hypertension: angiotensin-converting enzyme inhibitors, angiotensin receptor blockers. Where are we up to?

    PubMed

    Sindone, A; Erlich, J; Lee, C; Newman, H; Suranyi, M; Roger, S D

    2016-03-01

    Previously, management of hypertension has concentrated on lowering elevated blood pressure. However, the target has shifted to reducing absolute cardiovascular (CV) risk. It is estimated that two in three Australian adults have three or more CV risk factors at the same time. Moderate reductions in several risk factors can, therefore, be more effective than major reductions in one. When managing hypertension, therapy should be focused on medications with the strongest evidence for CV event reduction, substituting alternatives only when a primary choice is not appropriate. Hypertension management guidelines categorise angiotensin-converting enzyme inhibitors (ACEI) and angiotensin receptor blockers (ARB) interchangeably as first-line treatments in uncomplicated hypertension. These medications have different mechanisms of action and quite different evidence bases. They are not interchangeable and their prescription should be based on clinical evidence. Despite this, currently ARB prescriptions are increasing at a higher rate than those for ACEI and other antihypertensive classes. Evidence that ACEI therapy prevents CV events and death, in patients with coronary artery disease or multiple CV risk factors, emerged from the European trial on reduction of cardiac events with perindopril in stable coronary artery disease (EUROPA) and Heart Outcomes Prevention Evaluation (HOPE) trials respectively. The consistent benefit has been demonstrated in meta-analyses. The clinical trial data for ARB are less consistent, particularly regarding CV outcomes and mortality benefit. The evidence supports the use of ACEI (Class 1a) compared with ARB despite current prescribing trends.

  16. The putative (pro)renin receptor blocker HRP fails to prevent (pro)renin signaling.

    PubMed

    Feldt, Sandra; Maschke, Ulrike; Dechend, Ralf; Luft, Friedrich C; Muller, Dominik N

    2008-04-01

    The prorenin/renin receptor is a recently discovered component of the renin-angiotensin system. The effects of aliskiren, a direct inhibitor of human renin, were compared with the handle region decoy peptide (HRP), which blocks the prorenin/renin receptor, in double-transgenic rats overexpressing the human renin and angiotensinogen genes. After 7 wk, all aliskiren-treated rats were alive, whereas mortality was 40% in vehicle-treated and 58% in HRP-treated rats. Aliskiren but not the HRP reduced BP and normalized albuminuria, cystatin C, and neutrophil gelatinase-associated lipocalin, a marker of renal tubular damage, to the levels of nontransgenic controls. In vitro, human renin and prorenin induced extracellular signal-regulated kinase 1/2 phosphorylation, independent of angiotensin II (AngII), in vascular smooth muscle cells. Preincubation with the HRP or aliskiren did not prevent renin- and prorenin-induced extracellular signal-regulated kinase 1/2 phosphorylation, whereas the MAP kinase kinase (MEK1/2) inhibitor PD98059 prevented both. In conclusion, renin inhibition but not treatment with the HRP protects against AngII-induced renal damage in double-transgenic rats. In addition, the in vitro data do not support the use of the HRP to block AngII-independent prorenin- or renin-mediated effects.

  17. Arginine-Vasopressin Receptor Blocker Conivaptan Reduces Brain Edema and Blood-Brain Barrier Disruption after Experimental Stroke in Mice

    PubMed Central

    Zeynalov, Emil; Jones, Susan M.; Seo, Jeong-Woo; Snell, Lawrence D.; Elliott, J. Paul

    2015-01-01

    Background Stroke is a major cause of morbidity and mortality. Stroke is complicated by brain edema and blood-brain barrier (BBB) disruption, and is often accompanied by increased release of arginine-vasopressin (AVP). AVP acts through V1a and V2 receptors to trigger hyponatremia, vasospasm, and platelet aggregation which can exacerbate brain edema. The AVP receptor blockers conivaptan (V1a and V2) and tolvaptan (V2) are used to correct hyponatremia, but their effect on post-ischemic brain edema and BBB disruption remains to be elucidated. Therefore, we conducted this study to investigate if these drugs can prevent brain edema and BBB disruption in mice after stroke. Methods Experimental mice underwent the filament model of middle cerebral artery occlusion (MCAO) with reperfusion. Mice were treated with conivaptan, tolvaptan, or vehicle. Treatments were initiated immediately at reperfusion and administered IV (conivaptan) or orally (tolvaptan) for 48 hours. Physiological variables, neurological deficit scores (NDS), plasma and urine sodium and osmolality were recorded. Brain water content (BWC) and Evans Blue (EB) extravasation index were evaluated at the end point. Results Both conivaptan and tolvaptan produced aquaresis as indicated by changes in plasma and urine sodium levels. However plasma and urine osmolality was changed only by conivaptan. Unlike tolvaptan, conivaptan improved NDS and reduced BWC in the ipsilateral hemisphere: from 81.66 ± 0.43% (vehicle) to 78.28 ± 0.48% (conivaptan, 0.2 mg, p < 0.05 vs vehicle). Conivaptan also attenuated the EB extravasation from 1.22 ± 0.08 (vehicle) to 1.01 ± 0.02 (conivaptan, 0.2 mg, p < 0.05). Conclusion Continuous IV infusion with conivaptan for 48 hours after experimental stroke reduces brain edema, and BBB disruption. Conivaptan but not tolvaptan may potentially be used in patients to prevent brain edema after stroke. PMID:26275173

  18. Unmasking the functions of the chromaffin cell α7 nicotinic receptor by using short pulses of acetylcholine and selective blockers

    PubMed Central

    López, Manuela G.; Montiel, Carmen; Herrero, Carlos J.; García-Palomero, Esther; Mayorgas, Inés; Hernández-Guijo, Jesús M.; Villarroya, M.; Olivares, Román; Gandía, Luis; McIntosh, J. Michael; Olivera, Baldomero M.; García, Antonio G.

    1998-01-01

    Methyllycaconitine (MLA), α-conotoxin ImI, and α-bungarotoxin inhibited the release of catecholamines triggered by brief pulses of acetylcholine (ACh) (100 μM, 5 s) applied to fast-superfused bovine adrenal chromaffin cells, with IC50s of 100 nM for MLA and 300 nM for α-conotoxin ImI and α-bungarotoxin. MLA (100 nM), α-conotoxin ImI (1 μM), and α-bungarotoxin (1 μM) halved the entry of 45Ca2+ stimulated by 5-s pulses of 300 μM ACh applied to incubated cells. These supramaximal concentrations of α7 nicotinic receptor blockers depressed by 30% (MLA), 25% (α-bungarotoxin), and 50% (α-conotoxin ImI) the inward current generated by 1-s pulses of 100 μM ACh, applied to voltage-clamped chromaffin cells. In Xenopus oocytes expressing rat brain α7 neuronal nicotinic receptor for acetylcholine nAChR, the current generated by 1-s pulses of ACh was blocked by MLA, α-conotoxin ImI, and α-bungarotoxin with IC50s of 0.1 nM, 100 nM, and 1.6 nM, respectively; the current through α3β4 nAChR was unaffected by α-conotoxin ImI and α-bungarotoxin, and weakly blocked by MLA (IC50 = 1 μM). The functions of controlling the electrical activity, the entry of Ca2+, and the ensuing exocytotic response of chromaffin cells were until now exclusively attributed to α3β4 nAChR; the present results constitute the first evidence to support a prominent role of α7 nAChR in controlling such functions, specially under the more physiological conditions used here to stimulate chromaffin cells with brief pulses of ACh. PMID:9826675

  19. Angiotensin II Receptor Blocker Neprilysin Inhibitor (ARNI): New Avenues in Cardiovascular Therapy.

    PubMed

    Volpe, M; Tocci, G; Battistoni, A; Rubattu, S

    2015-09-01

    The burden of cardiovascular disease (CVD) is continuously and progressively raising worldwide. Essential hypertension is a major driver of cardiovascular events, including coronary artery disease, myocardial infarction, ischemic stroke and congestive heart failure. This latter may represent the final common pathway of different cardiovascular diseases, and it is often mediated by progressive uncontrolled hypertension. Despite solid advantages derived from effective and sustained blood pressure control, and the widespread availability of effective antihypertensive medications, the vast majority of the more than 1 billion hypertensive patients worldwide continue to have uncontrolled hypertension. Among various factors that may be involved, the abnormal activation of neurohormonal systems is one consistent feature throughout the continuum of cardiovascular diseases. These systems may initiate biologically meaningful "injury responses". However, their sustained chronic overactivity often may induce and maintain the progression from hypertension towards congestive heart failure. The renin-angiotensin-aldosteron system, the sympathetic nervous system and the endothelin system are major neurohormonal stressor systems that are not only able to elevate blood pressure levels by retaining water and sodium, but also to play a role in the pathophysiology of cardiovascular diseases. More recently, the angiotensin receptor neprilysin inhibitor (ARNI) represents a favourable approach to inhibit neutral endopeptidase (NEP) and suppress the RAAS via blockade of the AT1 receptors, without the increased risk of angioedema. LCZ696, the first-in-class ARNI, has already demonstrated BP lowering efficacy in patients with hypertension, in particular with respect to systolic blood pressure levels, improved cardiac biomarkers, cardiac remodelling and prognosis in patients with heart failure. This manuscript will briefly overview the main pathophysiological and therapeutic aspects of ARNI in

  20. Snooker Structure-Based Pharmacophore Model Explains Differences in Agonist and Blocker Binding to Bitter Receptor hTAS2R39

    PubMed Central

    Roland, Wibke S. U.; Sanders, Marijn P. A.; van Buren, Leo; Gouka, Robin J.; Gruppen, Harry; Vincken, Jean-Paul; Ritschel, Tina

    2015-01-01

    The human bitter taste receptor hTAS2R39 can be activated by many dietary (iso)flavonoids. Furthermore, hTAS2R39 activity can be blocked by 6-methoxyflavanones, 4’-fluoro-6-methoxyflavanone in particular. A structure-based pharmacophore model of the hTAS2R39 binding pocket was built using Snooker software, which has been used successfully before for drug design of GPCRs of the rhodopsin subfamily. For the validation of the model, two sets of compounds, both of which contained actives and inactives, were used: (i) an (iso)flavonoid-dedicated set, and (ii) a more generic, structurally diverse set. Agonists were characterized by their linear binding geometry and the fact that they bound deeply in the hTAS2R39 pocket, mapping the hydrogen donor feature based on T5.45 and N3.36, analogues of which have been proposed to play a key role in activation of GPCRs. Blockers lack hydrogen-bond donors enabling contact to the receptor. Furthermore, they had a crooked geometry, which could sterically hinder movement of the TM domains upon receptor activation. Our results reveal characteristics of hTAS2R39 agonist and bitter blocker binding, which might facilitate the development of blockers suitable to counter the bitterness of dietary hTAS2R39 agonists in food applications. PMID:25729848

  1. 5-HT2 receptors mediate functional modulation of GABAa receptors and inhibitory synaptic transmissions in human iPS-derived neurons

    PubMed Central

    Wang, Haitao; Hu, Lingli; Liu, Chunhua; Su, Zhenghui; Wang, Lihui; Pan, Guangjin; Guo, Yiping; He, Jufang

    2016-01-01

    Neural progenitors differentiated from induced pluripotent stem cells (iPS) hold potentials for treating neurological diseases. Serotonin has potent effects on neuronal functions through multiple receptors, underlying a variety of neural disorders. Glutamate and GABA receptors have been proven functional in neurons differentiated from iPS, however, little is known about 5-HT receptor-mediated modulation in such neuronal networks. In the present study, human iPS were differentiated into cells possessing featured physiological properties of cortical neurons. Whole-cell patch-clamp recording was used to examine the involvement of 5-HT2 receptors in functional modulation of GABAergic synaptic transmission. We found that serotonin and DOI (a selective agonist of 5-HT2A/C receptor) reversibly reduced GABA-activated currents, and this 5-HT2A/C receptor mediated inhibition required G protein, PLC, PKC, and Ca2+ signaling. Serotonin increased the frequency of miniature inhibitory postsynaptic currents (mIPSCs), which could be mimicked by α-methylserotonin, a 5-HT2 receptor agonist. In contrast, DOI reduced both frequency and amplitude of mIPSCs. These findings suggested that in iPS-derived human neurons serotonin postsynaptically reduced GABAa receptor function through 5-HT2A/C receptors, but presynaptically other 5-HT2 receptors counteracted the action of 5-HT2A/C receptors. Functional expression of serotonin receptors in human iPS-derived neurons provides a pre-requisite for their normal behaviors after grafting. PMID:26837719

  2. Debate: angiotensin-converting enzyme inhibitors versus angiotensin II receptor blockers--a gap in evidence-based medicine.

    PubMed

    Ball, Stephen G; White, William B

    2003-05-22

    In this article, 2 leading physicians debate the strength of outcome data on the efficacy of angiotensin-converting enzyme (ACE) inhibitors versus angiotensin II receptor blockers (ARBs) for reducing the incidence of cardiovascular, cerebrovascular, and renovascular events. Dr. Stephen G. Ball notes that the efficacy of ACE inhibitors for reducing the risk for myocardial infarction independent of their effects on blood pressure is controversial. In the Heart Outcomes Prevention Evaluation (HOPE) study, ramipril treatment in high-risk patients was associated with a 20% reduction in the risk for myocardial infarction; mean reduction in blood pressure was 3 mm Hg for systolic blood pressure and 1 mm Hg for diastolic blood pressure. The HOPE investigators propose that the 20% reduction was much greater than would be expected based on the observed blood pressure reduction. However, a meta-regression analysis of blood pressure reduction in >20 antihypertensive therapy outcome trials found that the reduction in myocardial infarction risk with ramipril observed in HOPE was consistent with the modest blood pressure reduction seen with that agent. Nevertheless, there are convincing data for prevention of myocardial infarction with ACE inhibitors in patients with heart failure, including those with heart failure after myocardial infarction, as well as supportive evidence from studies in patients with diabetes mellitus and concomitant hypertension. On the other hand, Dr. William B. White takes the position that ARBs are well-tolerated antihypertensive agents that specifically antagonize the angiotensin II type 1 (AT(1)) receptor and provide a more complete block of the pathologic effects of angiotensin II-which are mediated via the AT(1) receptor-than ACE inhibitors. The Evaluation of Losartan in the Elderly (ELITE) II study and the Valsartan Heart Failure Trial (ValHeFT) suggest that ARBs reduce the risk for mortality in patients with congestive heart failure. The Losartan

  3. Evaluation of the serotonin receptor blocker methiothepin in broilers injected intravenously with lipopolysaccharide and microparticles.

    PubMed

    Chapman, M E; Wideman, R F

    2006-12-01

    There has been considerable interest in the role of serotonin (5-hydroxytryptamine, 5-HT) in the pathogenesis of pulmonary hypertension due to episodes of primary pulmonary hypertension in humans linked to serotoninergic appetite-suppressant drugs. In this study, we investigated the effect of 5-HT on the development of pulmonary hypertension induced by injecting bacterial lipopolysaccharide (LPS; endotoxin) and cellulose microparticles intravenously, using the nonselective 5-HT(1/2)receptor, antagonist methiothepin. In Experiment 1, broilers selected for ascites susceptibility or resistance under conditions of hypobaric hypoxia were treated with methiothepin or saline, followed by injection of LPS, while recording pulmonary arterial pressure (PAP). In Experiment 2 ascites-susceptible broilers were treated with methiothepin or saline, followed by injection of cellulose microparticles, while recording PAP. In Experiment 3, an i.v. microparticle injection dose shown to cause 50% mortality was injected into ascites-susceptible and ascites-resistant broilers after methiothepin or saline treatment. Injecting methiothepin reduced PAP below baseline values in ascites-susceptible and ascites-resistant broilers, suggesting a role for 5-HT in maintaining the basal tone of the pulmonary vasculature in broilers. Injecting microparticles into the wing vein had no affect on the PAP in the broilers treated with methiothepin, suggesting that 5-HT is an important mediator in the pulmonary hypertensive response of broilers to microparticles. Furthermore, injecting an 50% lethal dose of microparticles into ascites-susceptible and ascites-resistant broilers pretreated with methiothepin resulted in reduced mortality. Serotonin appears to play a less prominent role in the pulmonary hypertensive response of broilers to intravenously injected LPS, indicating that other mediators within the innate response to inflammatory stimuli may also be involved. These results are consistent with our

  4. Structure-Function Basis of Attenuated Inverse Agonism of Angiotensin II Type 1 Receptor Blockers for Active-State Angiotensin II Type 1 Receptor.

    PubMed

    Takezako, Takanobu; Unal, Hamiyet; Karnik, Sadashiva S; Node, Koichi

    2015-09-01

    Ligand-independent signaling by the angiotensin II type 1 receptor (AT1R) can be activated in clinical settings by mechanical stretch and autoantibodies as well as receptor mutations. Transition of the AT1R to the activated state is known to lower inverse agonistic efficacy of clinically used AT1R blockers (ARBs). The structure-function basis for reduced efficacy of inverse agonists is a fundamental aspect that has been understudied not only in relation to the AT1R but also regarding other homologous receptors. Here, we demonstrate that the active-state transition in the AT1R indeed attenuates an inverse agonistic effect of four biphenyl-tetrazole ARBs through changes in specific ligand-receptor interactions. In the ground state, tight interactions of four ARBs with a set of residues (Ser109(TM3), Phe182(ECL2), Gln257(TM6), Tyr292(TM7), and Asn295(TM7)) results in potent inverse agonism. In the activated state, the ARB-AT1R interactions shift to a different set of residues (Val108(TM3), Ser109(TM3), Ala163(TM4), Phe182(ECL2), Lys199(TM5), Tyr292(TM7), and Asn295(TM7)), resulting in attenuated inverse agonism. Interestingly, V108I, A163T, N295A, and F182A mutations in the activated state of the AT1R shift the functional response to the ARB binding toward agonism, but in the ground state the same mutations cause inverse agonism. Our data show that the second extracellular loop is an important regulator of the functional states of the AT1R. Our findings suggest that the quest for discovering novel ARBs, and improving current ARBs, fundamentally depends on the knowledge of the unique sets of residues that mediate inverse agonistic potency in the two states of the AT1R.

  5. Structure-Function Basis of Attenuated Inverse Agonism of Angiotensin II Type 1 Receptor Blockers for Active-State Angiotensin II Type 1 Receptor

    PubMed Central

    Unal, Hamiyet; Karnik, Sadashiva S.; Node, Koichi

    2015-01-01

    Ligand-independent signaling by the angiotensin II type 1 receptor (AT1R) can be activated in clinical settings by mechanical stretch and autoantibodies as well as receptor mutations. Transition of the AT1R to the activated state is known to lower inverse agonistic efficacy of clinically used AT1R blockers (ARBs). The structure-function basis for reduced efficacy of inverse agonists is a fundamental aspect that has been understudied not only in relation to the AT1R but also regarding other homologous receptors. Here, we demonstrate that the active-state transition in the AT1R indeed attenuates an inverse agonistic effect of four biphenyl-tetrazole ARBs through changes in specific ligand-receptor interactions. In the ground state, tight interactions of four ARBs with a set of residues (Ser109TM3, Phe182ECL2, Gln257TM6, Tyr292TM7, and Asn295TM7) results in potent inverse agonism. In the activated state, the ARB-AT1R interactions shift to a different set of residues (Val108TM3, Ser109TM3, Ala163TM4, Phe182ECL2, Lys199TM5, Tyr292TM7, and Asn295TM7), resulting in attenuated inverse agonism. Interestingly, V108I, A163T, N295A, and F182A mutations in the activated state of the AT1R shift the functional response to the ARB binding toward agonism, but in the ground state the same mutations cause inverse agonism. Our data show that the second extracellular loop is an important regulator of the functional states of the AT1R. Our findings suggest that the quest for discovering novel ARBs, and improving current ARBs, fundamentally depends on the knowledge of the unique sets of residues that mediate inverse agonistic potency in the two states of the AT1R. PMID:26121982

  6. Identification of ghrelin receptor blocker, D-[Lys3] GHRP-6 as a CXCR4 receptor antagonist.

    PubMed

    Patel, Kalpesh; Dixit, Vishwa Deep; Lee, Jun Ho; Kim, Jie Wan; Schaffer, Eric M; Nguyen, Dzung; Taub, Dennis D

    2012-01-01

    [D-Lys3]-Growth Hormone Releasing Peptide-6 (DLS) is widely utilized in vivo and in vitro as a selective ghrelin receptor (GHS-R) antagonist. Unexpectedly, we identified that DLS also has the ability to block CXCL12 binding and activity through CXCR4 on T cells and peripheral blood mononuclear cells (PBMCs). Moreover, as CXCR4 has been shown to act as a major co-receptor for HIV-1 entry into CD4 positive host cells, we have also found that DLS partially blocks CXCR4-mediated HIV-1 entry and propagation in activated human PBMCs. These data demonstrate that DLS is not the specific and selective antagonist as thought for GHS-R1a and appears to have additional effects on the CXCR4 chemokine receptor. Our findings also suggest that structural analogues that mimic DLS binding properties may also have properties of blocking HIV infectivity, CXCR4 dependent cancer cell migration and attenuating chemokine-mediated immune cell trafficking in inflammatory disorders.

  7. A Pilot Study on the Effect of Angiotensin Receptor Blockers on Platelet Aggregation in Hypertensive Patients- A Prospective Observational Study

    PubMed Central

    Sanji, Narendranath; Kamath, Pallavi Mahadeva; Devendrappa, Srinivas Lokikere; Hanumanthareddy, Shashikala Gowdara; Maniyar, Imran; Rudrappa, Suresh Surappla

    2016-01-01

    Introduction Thrombosis is an invariable component contributing to cardiovascular events in patients with hypertension. One of the risk factors of cardiovascular disease is increased platelet activity. One among the widely used antihypertensive agents are Angiotensin II type 1 Receptor Blockers (ARBs). Even though there are many studies involving antihypertensive agents, their antithrombotic properties remain elusive and not fully characterized. Aim To evaluate the anti-aggregatory effect of ARBs on platelets in-vivo. Materials and Methods A total of 60 subjects were included in this observational pilot study conducted in the medicine out patient department of JJM Hospital, Davanagere, Karnataka, India. Among them, 30 patients with essential hypertension attending Medicine OPD of a tertiary care hospital, who were on ARB for at least one month, were enrolled into study group. The control group consisted of 30 normotensive subjects who were not on any drug affecting platelet function. The Bleeding Time (BT) was evaluated for both the groups using Duke method of BT estimation. Data was analysed using SPSS software version 20. The test group was compared with control group using student’s unpaired t-test. Results The mean BT of study group was 2.488 minutes ± 0.0361 Standard Error of Mean (SEM) and that of control group was 1.998 minutes ± 0.0362 SEM. The result was statistically significant (p<0.001). The average duration of treatment was 2.933 years. Conclusion ARB have antiplatelet activity. Increase in BT in ARB group when compared with that of control group is a reflection of antiplatelet activity. PMID:28050394

  8. Aliskiren in Patients Failing to Achieve Blood Pressure Targets With Angiotensin Converting Enzyme Inhibitors or Angiotensin Receptor Blockers

    PubMed Central

    Hawkins, Elizabeth B.; Ling, Hua; Burns, Tammy L.; Mooss, Aryan N.; Hilleman, Daniel E.

    2012-01-01

    Background To assess the efficacy of aliskiren in patients failing to reach blood pressure (BP) goals with angiotensin converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB). Methods A total of 107 patients who failed to reach BP goals on ACEI or ARB were switched to aliskiren. Changes in BP were determined during maximal ACEI, ARB, or aliskiren therapy. Results Mean reduction in sBP and dBP with ACEI was 8.5 ± 6.3 mmHg and 6.0 ± 4.7 mmHg, respectively. Mean reduction in sBP and dBP with ARB was 8.3 ± 6.7 mmHg and 5.0 ± 5.2 mmHg, respectively. Mean reduction in sBP and dBP with aliskiren 150 mg/d was 6.7 ± 5.4 mmHg and 5.4 ± 4.8 mmHg, respectively. Mean reduction in sBP and dBP with aliskiren 300 mg/d was 8.6 ± 6.3 mmHg and 6.0 ± 4.9 mmHg, respectively. BP reductions between ACEI, ARB, and aliskiren were not significantly different. Conclusions Aliskiren is ineffective in patients failing ACEI or ARB therapy. Given the label changes restricting the use of aliskiren in combination with ACEI and ARB, excess cost compared to ACEI and ARB, and a paucity of outcome data, there is a limited role for aliskiren in practice.

  9. ACE inhibitors and angiotensin II receptor blockers in IgA nephropathy with mild proteinuria: the ACEARB study.

    PubMed

    Pozzi, Claudio; Del Vecchio, Lucia; Casartelli, Donatella; Pozzoni, Pietro; Andrulli, Simeone; Amore, Alessandro; Peruzzi, Licia; Coppo, Rosanna; Locatelli, Francesco

    2006-01-01

    Few studies have investigated IgA nephropathy patients presenting with 'favorable' clinical features at onset, such as normal renal function, proteinuria<1 g/24 hours and the absence of hypertension, and no controlled clinical trials have tested the effects of treatment in such patients who may nevertheless develop end-stage renal disease. It is therefore important to find a well-tolerated and economic therapy capable of decreasing their risk of high proteinuria and blood pressure levels. The aim of this multicenter open-label randomized clinical trial is to test whether blocking the renin-angiotensin system (RAS) decreases the risk of progression in patients aged 3-60 years with biopsy-proven benign IgA glomerulonephritis, proteinuria levels of 0.3-0.9 g/24 hours, and normal renal function and blood pressure. The RAS is blocked by first using a single drug class (angiotensin-converting enzyme inhibitor or angiotensin II receptor blocker), and then combining the 2 classes as soon as the 1-drug blockade has become ineffective. We plan to enroll 378 patients over the next 3 years and randomize them to receive ramipril 5 mg/day (3 mg/m2 in children) (group A), irbesartan 300 mg/day (175 mg/m 2 in children) (group B) or supportive therapy (group C); if an increase in proteinuria of at least 50% from baseline is detected after 6 months of treatment, the other RAS inhibitor will be added. The observation period will be at least 5 years (except in the case of the development of the primary end point).

  10. Antihypertensive efficacy of the angiotensin receptor blocker azilsartan medoxomil compared with the angiotensin-converting enzyme inhibitor ramipril

    PubMed Central

    Bönner, G; Bakris, G L; Sica, D; Weber, M A; White, W B; Perez, A; Cao, C; Handley, A; Kupfer, S

    2013-01-01

    Drug therapy often fails to control hypertension. Azilsartan medoxomil (AZL-M) is a newly developed angiotensin II receptor blocker with high efficacy and good tolerability. This double-blind, controlled, randomised trial compared its antihypertensive efficacy and safety vs the angiotensin-converting enzyme inhibitor ramipril (RAM) in patients with clinic systolic blood pressure (SBP) 150–180 mm Hg. Patients were randomised (n=884) to 20 mg AZL-M or 2.5 mg RAM once daily for 2 weeks, then force-titrated to 40 or 80 mg AZL-M or 10 mg RAM for 22 weeks. The primary endpoint was change in trough, seated, clinic SBP. Mean patient age was 57±11 years, 52.4% were male, 99.5% were Caucasian. Mean baseline BP was 161.1±7.9/94.9±9.0 mm Hg. Clinic SBP decreased by 20.6±0.95 and 21.2±0.95 mm Hg with AZL-M 40 and 80 mg vs12.2±0.95 mm Hg with RAM (P<0.001 for both AZL-M doses). Adverse events leading to discontinuation were less frequent with AZL-M 40 and 80 mg (2.4% and 3.1%, respectively) than with RAM (4.8%). These data demonstrated that treatment of stage 1–2 hypertension with AZL-M was more effective than RAM and better tolerated. PMID:23514842

  11. Initial reduction of oxidative stress by angiotensin receptor blocker contributes long term outcomes after percutaneous coronary intervention

    PubMed Central

    Noro, Tadanori; Takehara, Naofumi; Sumitomo, Kazuhiro; Takeuchi, Toshiharu; Ishii, Yoshinao; Kato, Jun-ichi; Kawabe, Jun-ichi; Hasebe, Naoyuki

    2014-01-01

    Background: It remains unclear whether administration of ARB with reactive oxygen species (ROS) scavenging effects improves the prognosis of patients undergoing PCI. Objectives: This study investigated whether the pre-intervention antioxidant effect of angiotensin receptor blocker (ARB) affects long-term outcomes in patients after successful percutaneous coronary intervention (PCI) without early adverse events. Methods: Fifty-two patients who underwent elective PCI were randomly assigned for treatment with or without ARB, which was administered within 48 hours before PCI. ROS levels in mononuclear cells (MNCs) and serum superoxide dismutase (SOD) activity were measured pre-PCI and 6 months post-PCI. After exclusion of unexpected early adverse events during angiographic follow-up period, the long-term outcome (major adverse cerebro-cardiovascular event; MACCE) was assessed in eligible patients. Results: Forty-three patients (non-ARB n = 22, ARB n = 21) were followed up in this study. During angiographic follow-up period, ROS formation in MNCs was significantly increased in the non-ARB group (from 29.4 [21.6-35.2] to 37.2 [30.7-45.1] arbitrary units; p = 0.031) compared to that in the ARB group. Meanwhile, SOD activity was significantly impaired in the non-ARB group alone (from 24.0 ± 17.0 to 16.3 ± 13.8%, p = 0.004). During the follow-up period (median, 63.3 months), MACCEs were observed in 6 patients. The cumulative event ratio of MACCE was significantly higher in the non-ARB group than in the ARB group (p = 0.018). Conclusions: Concomitant administration of ARB effectively reduced ROS production of PCI patients during angiographic follow-up period. Initial ROS inhibition following ARB administration may contribute to improvement of worse outcomes in patients who have undergone successful PCI. PMID:25628957

  12. The renal protective effect of angiotensin receptor blockers depends on intra-individual response variation in multiple risk markers

    PubMed Central

    Schievink, Bauke; de Zeeuw, Dick; Parving, Hans-Henrik; Rossing, Peter; Lambers Heerspink, Hiddo Jan

    2015-01-01

    Aims Angiotensin receptor blockers (ARBs) are renoprotective and targeted to blood pressure. However, ARBs have multiple other (off-target) effects which may affect renal outcome. It is unknown whether on-target and off-target effects are congruent within individuals. If not, this variation in short term effects may have important implications for the prediction of individual long term renal outcomes. Our aim was to assess intra-individual variability in multiple parameters in response to ARBs in type 2 diabetes. Methods Changes in systolic blood pressure (SBP), albuminuria, potassium, haemoglobin, cholesterol and uric acid after 6 months of losartan treatment were assessed in the RENAAL database. Improvement in predictive performance of renal outcomes (ESRD or doubling serum creatinine) for each individual using ARB-induced changes in all risk markers was assessed by the relative integrative discrimination index (RIDI). Results SBP response showed high variability (mean –5.7 mmHg, 5th to 95th percentile –36.5 to +24.0 mmHg) between individuals. Changes in off-target parameters also showed high variability between individuals. No congruency was observed between responses to losartan in multiple parameters within individuals. Using individual responses in all risk markers significantly improved renal risk prediction (RIDI 30.4%, P < 0.01) compared with using only SBP changes. Results were successfully replicated in two independent trials with irbesartan, IDNT and IRMA-2. Conclusions In this post hoc analysis we showed that ARBs have multiple off-target effects which vary between and within individuals. Combining all ARB-induced responses beyond SBP provides a more accurate prediction of who will benefit from ARB therapy. Prospective trials are required to validate these findings. PMID:25872610

  13. Angiotensin converting enzyme inhibitors and angiotensin receptor blockers in the treatment of hypertension: should they be used together?

    PubMed

    Verdecchia, Paolo; Angeli, Fabio; Mazzotta, Giovanni; Ambrosio, Giuseppe; Reboldi, Gianpaolo

    2010-11-01

    The combined use of angiotensin converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) poses a dilemma to clinicians. On the one hand, indirect evidence from compelling, but still surrogate outcome measures such as blood pressure and proteinuria suggest some merits of this combination. On the other hand, the outcome benefits of the ACEIs+ARBs combination in morbidity/mortality trials remain confined to patients with severe congestive heart failure (CHF) and reduced ejection fraction. Incidentally, most of the benefit offered by the ACEIs+ARBs combination in these patients was not driven by mortality, but by fewer rehospitalizations for CHF. Even in patients with renal disease and proteinuria, the combined use of ACEIs and ARBs, although highly effective in reducing urinary protein excretion, has not yet been proven to significantly delay end-stage renal disease and the need for dialysis. In the Ongoing Telmisartan Alone and In Combination With Ramipril Global Endpoint Trial (ONTARGET), the dual blockade of the renin angiotensin system did not produce additional outcome benefit over that afforded by ACE inhibition alone. Notably, however, patients with BP >160/100 mmHg at entry were excluded from ONTARGET, thus limiting the applicability of these results to the treatment of hypertension. The European Society of Hypertension guidelines do not suggest large-scale use of the ACEIs+ARBs combination in patients with hypertension. However, patients with resistant hypertension, particularly if proteinuria coexists, could benefit from this combination, which however requires close monitoring for adverse events, including hyperkalemia and worsening renal function.

  14. Impact of alpha- and beta-adrenergic receptor blockers on fractional flow reserve and index of microvascular resistance.

    PubMed

    Barbato, Emanuele; Sarno, Giovanna; Berza, Catalina Trana; Di Gioia, Giuseppe; Bartunek, Jozef; Vanderheyden, Marc; Di Serafino, Luigi; Wijns, William; Trimarco, Bruno; De Bruyne, Bernard

    2014-12-01

    We investigated the effect of β- and α-adrenergic blockers on fractional flow reserve (FFR) and index of microvascular resistance (IMR). In 43 patients (pts) with intermediate stenoses, we measured FFR and IMR before and after nonselective β-blocker propranolol (30 μg/kg, n = 20) and selective β1-blocker metoprolol (40 μg/kg, n = 23) IC; (b) In additional 21 pts after percutaneous coronary intervention (PCI), FFR and IMR were measured before and after α-blocker phentolamine (3 mg) IC. Neither propranolol nor metoprolol changed values of FFR and IMR. Phentolamine slightly decreased FFR (from 0.88 ± 0.05 to 0.87 ± 0.06, p = 0.025) but did not change IMR. FFR decreased from >0.80 to ≤0.80 in 3 pts (14%), but in none, the value decreased to <0.75. β-blockers do not affect FFR and IMR in intermediate stenoses. After PCI, a mild decrease in FFR occurs after α-blockers, though of limited clinical impact.

  15. Effects of the AT(1) receptor blocker losartan and the calcium channel blocker benidipine on the accumulation of lipids in the kidney of a rat model of metabolic syndrome.

    PubMed

    Ishizaka, Nobukazu; Hongo, Makiko; Matsuzaki, Gen; Furuta, Kyoko; Saito, Kan; Sakurai, Ryota; Sakamoto, Aiko; Koike, Kazuhiko; Nagai, Ryozo

    2010-03-01

    Unfavorable lipid accumulation may occur in the kidneys in the presence of metabolic syndrome and diabetes. The aim of this study was to investigate whether excess lipids would accumulate in the kidneys of Otsuka Long-Evans Tokushima Fatty (OLETF) rats, an animal model of metabolic syndrome. From 34 weeks of age, OLETF rats were treated orally with a calcium channel blocker, benidipine (3 mg kg(-1) per day), or an AT1 receptor blocker, losartan (25 mg kg(-1) per day), for 8 weeks. Blood pressure was slightly but significantly higher in the untreated OLETF rats (149+/-4 mm Hg) than in Long-Evans Tokushima Otsuka (LETO) rats (136+/-2 mm Hg), and both losartan (135+/-3 mm Hg) and benidipine (138+/-3 mm Hg) reduced blood pressure in OLETF rats to a level comparable to that in LETO rats. Tissue content of triglycerides (TG) was greater in OLETF rats than in LETO rats (6.24+/-3.77 and 2.85+/-1.32 microg mg(-1) x tissue, respectively), and both losartan and benidipine reduced these values. Histological analysis showed lipid droplets in tubular cells in which increased dihydroethidium fluorescence was present. Expression of peroxisome proliferator-activated receptor-alpha, PGC-1alpha and uncoupling protein-2 was found to be higher in OLETF rats than in LETO rats; however, the expression of these genes was not altered by treatment with either antihypertensive drug. In contrast, both losartan and benidipine increased the amount of total and phosphorylated forms of AMP kinase and the expression of carnitine palmitoyltransferase-1 (CPT-1). In conclusion, treatment of OLETF rats with losartan and benidipine reduced the tissue content of TG, decreased the production of superoxide and regulated the expression of genes related to fatty acid oxidation such as AMP-activated protein kinase and CPT-1 in the kidneys.

  16. JD-5006 and JD-5037: peripherally restricted (PR) cannabinoid-1 receptor blockers related to SLV-319 (Ibipinabant) as metabolic disorder therapeutics devoid of CNS liabilities.

    PubMed

    Chorvat, Robert J; Berbaum, Jennifer; Seriacki, Kristine; McElroy, John F

    2012-10-01

    Analogs of SLV-319 (Ibipinibant), a CB1 receptor inverse agonist, were synthesized with functionality intended to limit brain exposure while maintaining the receptor affinity and selectivity of the parent compound. Structure activity relationships of this series, and pharmacology of two lead compounds, 16 (JD-5006) and 23 (JD-5037) showing little brain presence as indicated by tissue distribution and receptor occupancy studies, are described. Effects with one of these compounds on plasma triglyceride levels, liver weight and enzymes, glucose tolerance and insulin sensitivity support the approach that blockade of peripheral CB(1) receptors is sufficient to produce many of the beneficial metabolic effects of globally active CB(1) blockers. Thus, PR CB(1) inverse agonists may indeed represent a safer alternative to highly brain-penetrant agents for the treatment of metabolic disorders, including diabetes, liver diseases, dyslipidemias, and obesity.

  17. H2 blockers

    MedlinePlus

    ... ulcer disease - H2 blockers; PUD - H2 blockers; Gastroesophageal reflux - H2 blockers ... blockers are used to: Relieve symptoms of acid reflux, or gastroesophageal reflux disease (GERD). This is a ...

  18. Novel insights into the potential involvement of 5-HT7 receptors in endocrine dysregulation in stress-related disorders.

    PubMed

    Terrón, José A

    2014-01-01

    A hyperactive hypothalamic-pituitary-adrenal (HPA) axis is a common feature of stress-related disorders, and the brain serotonin (5-HT) system plays a major role in HPA axis modulation. Glucocorticoids and stress profoundly affect the 5-HT system so it is possible that alterations of endocrine 5-HT mechanisms may underlie HPA axis overdrive in stress-related diseases. Available evidence suggests a role of 5-HT1A, 5-HT2A/2C and 5-HT7 receptors in HPA system activation, and pharmacological blockade of 5-HT7 receptors produces a fast-acting antidepressant-like action and shortens the onset of antidepressant-like effects of various classes of antidepressants. The mechanisms involved in this effect have not been elucidated, but recent findings suggest a role of 5-HT7 receptors in the development of HPA axis overdrive as a result of chronic stress. Remarkably, clinical findings have shown an association between corticosteroid-producing adenomas and expression of ectopic 5-HT7 receptors in corticosteroid-producing adrenocortical cells. These observations might therefore reveal an endocrine mechanism for the antidepressant-like action of 5-HT7 receptor blockers, possibly through normalization of HPA axis function. If such a preliminary hypothesis is confirmed, the potential therapeutic usefulness of 5-HT7 receptor antagonists could extend beyond depression to include other diseases, the pathophysiology of which has been associated with chronic stress and HPA axis dysregulation.

  19. Distinct properties of telmisartan on agonistic activities for peroxisome proliferator-activated receptor γ among clinically used angiotensin II receptor blockers: drug-target interaction analyses.

    PubMed

    Kakuta, Hirotoshi; Kurosaki, Eiji; Niimi, Tatsuya; Gato, Katsuhiko; Kawasaki, Yuko; Suwa, Akira; Honbou, Kazuya; Yamaguchi, Tomohiko; Okumura, Hiroyuki; Sanagi, Masanao; Tomura, Yuichi; Orita, Masaya; Yonemoto, Takako; Masuzaki, Hiroaki

    2014-04-01

    A proportion of angiotensin II type 1 receptor blockers (ARBs) improves glucose dyshomeostasis and insulin resistance in a clinical setting. Of these ARBs, telmisartan has the unique property of being a partial agonist for peroxisome proliferator-activated receptor γ (PPARγ). However, the detailed mechanism of how telmisartan acts on PPARγ and exerts its insulin-sensitizing effect is poorly understood. In this context, we investigated the agonistic activity of a variety of clinically available ARBs on PPARγ using isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR) system. Based on physicochemical data, we then reevaluated the metabolically beneficial effects of telmisartan in cultured murine adipocytes. ITC and SPR assays demonstrated that telmisartan exhibited the highest affinity of the ARBs tested. Distribution coefficient and parallel artificial membrane permeability assays were used to assess lipophilicity and cell permeability, for which telmisartan exhibited the highest levels of both. We next examined the effect of each ARB on insulin-mediated glucose metabolism in 3T3-L1 preadipocytes. To investigate the impact on adipogenesis, 3T3-L1 preadipocytes were differentiated with each ARB in addition to standard inducers of differentiation for adipogenesis. Telmisartan dose-dependently facilitated adipogenesis and markedly augmented the mRNA expression of adipocyte fatty acid-binding protein (aP2), accompanied by an increase in the uptake of 2-deoxyglucose and protein expression of glucose transporter 4 (GLUT4). In contrast, other ARBs showed only marginal effects in these experiments. In accordance with its highest affinity of binding for PPARγ as well as the highest cell permeability, telmisartan superbly activates PPARγ among the ARBs tested, thereby providing a fresh avenue for treating hypertensive patients with metabolic derangement.

  20. Comparison of the antiproteinuric effects of the calcium channel blockers benidipine and amlodipine administered in combination with angiotensin receptor blockers to hypertensive patients with stage 3-5 chronic kidney disease.

    PubMed

    Abe, Masanori; Okada, Kazuyoshi; Maruyama, Takashi; Maruyama, Noriaki; Matsumoto, Koichi

    2009-04-01

    Benidipine, an L- and T-type calcium channel blocker, dilates both efferent and afferent arterioles and reduces glomerular pressure. Thus, it may exert renoprotective effects. We conducted an open-labeled, randomized trial to compare the blood pressure (BP)-lowering effect and antiproteinuric effect of benidipine with those of amlodipine in hypertensive patients with moderate-to-advanced-stage chronic kidney disease (CKD) (stages 3-5). These patients were already being administered the current maximum recommended doses of angiotensin receptor blockers (ARBs). Patients with BP >or=140/90 mm Hg, despite treatment with the maximum recommended dose of ARBs, were randomly assigned to two groups. The patients received either of the following treatment regimens: 4 mg day(-1) of benidipine, which was increased up to a dose of 16 mg day(-1) (B group; n=24), and 2.5 mg day(-1) of amlodipine, which was increased up to a dose of 10 mg day(-1) amlodipine (A group; n=23). After 6 months of treatment, a significant and comparable reduction in the systolic and diastolic BP was seen in both groups. The decrease in the urinary protein to creatinine ratio in the B group was significantly lower than that in the A group. Benidipine exerted antiproteinuric effect to a greater extent than did amlodipine, even in patients with diabetic nephropathy. We conclude that the addition of benidipine, rather than amlodipine, ameliorates urinary protein excretion in hypertensive patients with CKD who are already being administered ARBs. Therefore, we propose a combination therapy with benidipine and ARBs, even for patients with moderate-to-advanced-stage CKD.

  1. Fixed-Dose Combinations of Renin-Angiotensin System Inhibitors and Calcium Channel Blockers in the Treatment of Hypertension: A Comparison of Angiotensin Receptor Blockers and Angiotensin-Converting Enzyme Inhibitors.

    PubMed

    Hsiao, Fu-Chih; Tung, Ying-Chang; Chou, Shing-Hsien; Wu, Lung-Sheng; Lin, Chia-Pin; Wang, Chun-Li; Lin, Yu-Sheng; Chang, Chee-Jen; Chu, Pao-Hsien

    2015-12-01

    Fixed-dose combinations (FDCs) of different regimens are recommended in guidelines for the treatment of hypertension. However, clinical studies comparing FDCs of angiotensin receptor blocker (ARB)/calcium channel blocker (CCB) and angiotensin-converting enzyme inhibitor (ACE inhibitor)/CCB in hypertensive patients are lacking.Using a propensity score matching of 4:1 ratio, this retrospective claims database study compared 2 FDC regimens, ARB/CCB and ACE inhibitor/CCB, in treating hypertensive patients with no known atherosclerotic cardiovascular disease. All patients were followed for at least 3 years or until the development of major adverse cardiovascular events (MACEs) during the study period. In addition, the effect of medication adherence on clinical outcomes was evaluated in subgroup analysis based on different portions of days covered.There was no significant difference in MACE-free survival (hazard ratio [HR]: 1.21; 95% confidence interval [CI]: 0.98-1.50; P = 0.08) and survival free from hospitalization for heart failure (HR: 1.15; 95% CI: 082-1.61; P = 0.431), new diagnosis of chronic kidney disease (HR: 0.98; 95% CI: 071-1.36; P = 0.906), and initiation of dialysis (HR: 0.99; 95% CI: 050-1.92; P = 0.965) between the 2 study groups. The results remained the same within each subgroup of patients with different adherence statuses.ARBs in FDC regimens with CCBs in the present study were shown to be as effective as ACE inhibitors at reducing the risks of MACEs, hospitalization for heart failure, new diagnosis of chronic kidney disease, and new initiation of dialysis in hypertensive patients, regardless of the medication adherence status.

  2. Effects of angiotensin II receptor blockers on the relationships between ambulatory blood pressure and anti-hypertensive effects, autonomic function, and health-related quality of life.

    PubMed

    Okano, Yasuko; Tamura, Kouichi; Masuda, Shinitirou; Ozawa, Motoko; Tochikubo, Osamu; Umemura, Satoshi

    2009-11-01

    The aim of the present study was to examine the relationships between the anti-hypertensive effects, autonomic function, and health-related quality of life (HRQOL) following treatment of hypertensive subjects with angiotensin receptor blockers (ARBs) in hypertensives. Nineteen patients with hypertension were assigned randomly to daily treatment with ARBs. After 16 weeks of treatment, blood pressure (BP) and 24 h the ratio of low frequency to high frequency component (LF/HF), an index of sympathovagal balance were decreased by ARBs. The HRQOL scores improved during the study. In this study, ARB therapy was associated with an improvement in BP, autonomic function, and HRQOL.

  3. Interaction of psychoactive tryptamines with biogenic amine transporters and serotonin receptor subtypes

    PubMed Central

    Blough, Bruce E.; Landavazo, Antonio; Decker, Ann M.; Partilla, John S.; Baumann, Michael H.; Rothman, Richard B.

    2014-01-01

    Rationale Synthetic hallucinogenic tryptamines, especially those originally described by Alexander Shulgin, continue to be abused in the United States. The range of subjective experiences produced by different tryptamines suggests that multiple neurochemical mechanisms are involved in their actions, in addition to the established role of agonist activity at serotonin-2A (5-HT2A) receptors. Objectives This study evaluated the interaction of a series of synthetic tryptamines with biogenic amine neurotransmitter transporters and with serotonin (5-HT) receptor subtypes implicated in psychedelic effects. Methods Neurotransmitter transporter activity was determined in rat brain synaptosomes. Receptor activity was determined using calcium mobilization and DiscoveRx PathHunter® assays in HEK293, Gα16-CHO, and CHOk1 cells transfected with human receptors. Results Twenty-one tryptamines were analyzed in transporter uptake and release assays, and 5-HT2A, serotonin 1A (5-HT1A), and 5-HT2A β-arrestin functional assays. Eight of the compounds were found to have 5-HT-releasing activity. Thirteen compounds were found to be 5-HT uptake inhibitors or were inactive. All tryptamines were 5-HT2A agonists with a range of potencies and efficacies, but only a few compounds were 5-HT1A agonists. Most tryptamines recruited β-arrestin through 5-HT2A activation. Conclusions All psychoactive tryptamines are 5-HT2A agonists, but 5-HT transporter (SERT) activity may contribute significantly to the pharmacology of certain compounds. The in vitro transporter data confirm structure-activity trends for releasers and uptake inhibitors whereby releasers tend to be structurally smaller compounds. Interestingly, two tertiary amines were found to be selective substrates at SERT, which dispels the notion that 5-HT-releasing activity is limited only to primary or secondary amines. PMID:24800892

  4. Neuronal localization of the 5-HT2 receptor family in the amygdaloid complex.

    PubMed

    Bombardi, Cristiano

    2014-01-01

    The amygdaloid complex (or amygdala), a heterogeneous structure located in the medial portion of the temporal lobe, is composed of deep, superficial, and "remaining" nuclei. This structure is involved in the generation of emotional behavior, in the formation of emotional memories and in the modulation of the consolidation of explicit memories for emotionally arousing events. The serotoninergic fibers originating in the dorsal and medial raphe nuclei are critically involved in amygdalar functions. Serotonin (5-hydroxytryptamine, 5-HT) regulates amygdalar activity through the activation of the 5-HT2 receptor family, which includes three receptor subtypes: 5-HT2A, 5-HT2B, and 5-HT2C. The distribution and the functional activity of the 5-HT2 receptor family has been studied more extensively than that of the 5-HT2A receptor subtypes, especially in the deep nuclei. In these nuclei, the 5-HT2A receptor is expressed on both pyramidal and non-pyramidal neurons, and could play a critical role in the formation of emotional memories. However, the exact role of the 5-HT2A receptor subtypes, as well as that of the 5-HT2B and 5-HT2C receptor subtypes, in the modulation of the amygdalar microcircuits requires additional study. The present review reports data concerning the distribution and the functional roles of the 5-HT2 receptor family in the amygdala.

  5. Tall Fescue Alkaloids Bind Serotonin Receptors in Cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The serotonin (5HT) receptor 5HT2A is involved in the tall fescue alkaloid-induced vascular contraction in the bovine periphery. This was determined by evaluating the contractile responses of lateral saphenous veins biopsied from cattle grazing different tall fescue/endophyte combinations. The contr...

  6. Interaction between μ-opioid and 5-HT1A receptors in the regulation of panic-related defensive responses in the rat dorsal periaqueductal grey.

    PubMed

    Rangel, Marcel P; Zangrossi, Hélio; Roncon, Camila M; Graeff, Frederico G; Audi, Elisabeth A

    2014-12-01

    A wealth of evidence indicates that the activation of 5-HT1A and 5-HT2A receptors in the dorsal periaqueductal grey matter (dPAG) inhibits escape, a panic-related defensive behaviour. Results that were previously obtained with the elevated T-maze test of anxiety/panic suggest that 5-HT1A and μ-opioid receptors in this midbrain area work together to regulate this response. To investigate the generality of this finding, we assessed whether the same cooperative mechanism is engaged when escape is evoked by a different aversive stimulus electrical stimulation of the dPAG. Administration of the μ-receptor blocker CTOP into the dPAG did not change the escape threshold, but microinjection of the μ-receptor agonist DAMGO (0.3 and 0.5 nmol) or the 5-HT1A receptor agonist 8-OHDPAT (1.6 nmol) increased this index, indicating a panicolytic-like effect. Pretreatment with CTOP antagonised the anti-escape effect of 8-OHDPAT. Additionally, combined administration of subeffective doses of DAMGO and 8-OHDPAT increased the escape threshold, indicating drug synergism. Therefore, regardless of the aversive nature of the stimulus, μ-opioid and 5-HT1A receptors cooperatively act to regulate escape behaviour. A better comprehension of this mechanism might allow for new therapeutic strategies for panic disorder.

  7. Receptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens.

    PubMed

    Rickli, Anna; Moning, Olivier D; Hoener, Marius C; Liechti, Matthias E

    2016-08-01

    The present study investigated interactions between the novel psychoactive tryptamines DiPT, 4-OH-DiPT, 4-OH-MET, 5-MeO-AMT, and 5-MeO-MiPT at monoamine receptors and transporters compared with the classic hallucinogens lysergic acid diethylamide (LSD), psilocin, N,N-dimethyltryptamine (DMT), and mescaline. We investigated binding affinities at human monoamine receptors and determined functional serotonin (5-hydroxytryptamine [5-HT]) 5-HT2A and 5-HT2B receptor activation. Binding at and the inhibition of human monoamine uptake transporters and transporter-mediated monoamine release were also determined. All of the novel tryptamines interacted with 5-HT2A receptors and were partial or full 5-HT2A agonists. Binding affinity to the 5-HT2A receptor was lower for all of the tryptamines, including psilocin and DMT, compared with LSD and correlated with the reported psychoactive doses in humans. Several tryptamines, including psilocin, DMT, DiPT, 4-OH-DiPT, and 4-OH-MET, interacted with the serotonin transporter and partially the norepinephrine transporter, similar to 3,4-methylenedioxymethamphetamine but in contrast to LSD and mescaline. LSD but not the tryptamines interacted with adrenergic and dopaminergic receptors. In conclusion, the receptor interaction profiles of the tryptamines predict hallucinogenic effects that are similar to classic serotonergic hallucinogens but also MDMA-like psychoactive properties.

  8. Differences in the clinical effects of angiotensin-converting enzyme inhibitors and Angiotensin receptor blockers: a critical review of the evidence.

    PubMed

    Dézsi, Csaba András

    2014-06-01

    The renin-angiotensin-aldosterone system plays a major role in the pathophysiology of hypertension and closely related cardio- and cerebrovascular events. Although both angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor antagonists (angiotensin receptor blockers; ARBs) are equally important in the treatment of hypertension, according to the results of recent years, there might be substantial differences in their cardiovascular protective effects, and these differences might be explained by our increasing knowledge of their non-overlapping mechanisms of action. The number of studies investigating how ACE inhibitors and ARB agents differ will certainly be increasing in the future. ACE inhibitors are the safe therapeutic opportunity for hypertensive patients at high risk, with a cardiological comorbidity.

  9. Modulation of GABA release from the thalamic reticular nucleus by cocaine and caffeine: role of serotonin receptors.

    PubMed

    Goitia, Belén; Rivero-Echeto, María Celeste; Weisstaub, Noelia V; Gingrich, Jay A; Garcia-Rill, Edgar; Bisagno, Verónica; Urbano, Francisco J

    2016-02-01

    Serotonin receptors are targets of drug therapies for a variety of neuropsychiatric and neurodegenerative disorders. Cocaine inhibits the re-uptake of serotonin (5-HT), dopamine, and noradrenaline, whereas caffeine blocks adenosine receptors and opens ryanodine receptors in the endoplasmic reticulum. We studied how 5-HT and adenosine affected spontaneous GABAergic transmission from thalamic reticular nucleus. We combined whole-cell patch clamp recordings of miniature inhibitory post-synaptic currents (mIPSCs) in ventrobasal thalamic neurons during local (puff) application of 5-HT in wild type (WT) or knockout mice lacking 5-HT2A receptors (5-HT2A -/-). Inhibition of mIPSCs frequency by low (10 μM) and high (100 μM) 5-HT concentrations was observed in ventrobasal neurons from 5-HT2A -/- mice. In WT mice, only 100 μM 5-HT significantly reduced mIPSCs frequency. In 5-HT2A -/- mice, NAN-190, a specific 5-HT1A antagonist, prevented the 100 μM 5-HT inhibition while blocking H-currents that prolonged inhibition during post-puff periods. The inhibitory effects of 100 μM 5-HT were enhanced in cocaine binge-treated 5-HT2A -/- mice. Caffeine binge treatment did not affect 5-HT-mediated inhibition. Our findings suggest that both 5-HT1A and 5-HT2A receptors are present in pre-synaptic thalamic reticular nucleus terminals. Serotonergic-mediated inhibition of GABA release could underlie aberrant thalamocortical physiology described after repetitive consumption of cocaine. Our findings suggest that both 5-HT1A , 5-HT2A and A1 receptors are present in pre-synaptic TRN terminals. 5-HT1A and A1 receptors would down-regulate adenylate cyclase, whereas 5-HT1A would also increase the probability of the opening of G-protein-activated inwardly rectifying K(+) channels (GIRK). Sustained opening of GIRK channels would hyperpolarize pre-synaptic terminals activating H-currents, resulting in less GABA release. 5-HT2A -would activate PLC and IP3 , increasing intracellular [Ca(2+) ] and

  10. The serotonin 2C receptor potently modulates the head-twitch response in mice induced by a phenethylamine hallucinogen

    PubMed Central

    Canal, Clinton E.; Olaghere da Silva, Uade B.; Gresch, Paul J.; Watt, Erin E.; Sanders-Bush, Elaine

    2010-01-01

    Rationale Hallucinogenic serotonin 2A (5-HT2A) receptor partial agonists, such as (±)-1-(2,5-dimethoxy-4-iodo-phenyl)-2-aminopropane hydrochloride (DOI), induce a frontal cortex-dependent head-twitch response (HTR) in rodents, a behavioral proxy of a hallucinogenic response that is blocked by 5-HT2A receptor antagonists. In addition to 5-HT2A receptors, DOI and most other serotonin-like hallucinogens have high affinity and potency as partial agonists at 5-HT2C receptors. Objectives We tested for involvement of 5-HT2C receptors in the HTR induced by DOI. Results Comparison of 5-HT2C receptor knockout and wild-type littermates revealed an approximately 50% reduction in DOI-induced HTR in knockout mice. Also, pretreatment with either the 5-HT2C receptor antagonist SB206553 or SB242084 eradicated a twofold difference in DOI-induced HTR between the standard inbred mouse strains C57BL/6J and DBA/2J, and decreased the DOI-induced HTR by at least 50% in both strains. None of several measures of 5-HT2A receptors in frontal cortex explained the strain difference, including 5-HT2A receptor density, Gαq or Gαi/o protein levels, phospholipase C activity, or DOI-induced expression of Egr1 and Egr2. 5-HT2C receptor density in the brains of C57BL/6J and DBA/2J was also equivalent, suggesting that 5-HT2C receptor-mediated intracellular signaling or other physiological modulators of the HTR may explain the strain difference in response to DOI. Conclusions We conclude that the HTR to DOI in mice is strongly modulated by 5-HT2C receptor activity. This novel finding invites reassessment of hallucinogenic mechanisms involving 5-HT2 receptors. PMID:20165943

  11. Analysis of second- and third-line antihypertensive treatments after initial therapy with an angiotensin II receptor blocker using real-world Japanese data.

    PubMed

    Hiroi, Shinzo; Shimasaki, Yukio; Kikuchi, Takashi; Otsuka, Yujiro; Iwasaki, Kosuke; Ohishi, Mitsuru

    2016-12-01

    Combination therapy using two or three classes of drugs is often required to treat hypertension to prevent cardiovascular disease. In this study, we examined combination therapies administered following initial therapy with an angiotensin II receptor blocker (ARB) in hypertensive Japanese patients. To determine which classes of antihypertensives are being prescribed as second- or third-line treatments for patients who were initially treated with a single ARB, we analyzed prescription claims data from two Japanese health-care databases for 2008 to 2015. Among the 26 998 patients who were initially treated with a single ARB (from one database), calcium channel blockers (CCBs) were the most frequently prescribed second-line antihypertensive, as these medicines were added for >20% of patients within 1 year of ARB prescription initiation. The addition rates of CCBs as a second-line therapy differed depending on the initial ARB type. In contrast, <10% of patients received a diuretic as a second-line antihypertensive. Among the 48 813 patients who were prescribed an ARB in combination with a CCB (as shown in the other database), diuretics were prescribed as third-line antihypertensives more frequently than increased doses of CCBs or ARBs. Diuretics were added for 8% of patients within 2 years of CCB addition, and the addition rates differed based on the CCB dose used for combination therapy. We also found that the addition rates of diuretics differed depending on patient clinical histories among ARB and CCB recipients.

  12. Identification and characterization of the protein components of the skeletal muscle receptor for the 1,4-dihydropyridine Ca sup 2+ channel blockers

    SciTech Connect

    Sharp, A.H.

    1988-01-01

    In these studies, photoaffinity labeling and immunolabeling approaches were used to identify and characterize components of the skeletal muscle receptor for the 1,4-dihydropyridine Ca{sup 2+} channel blockers. The 1,4-dihydropyridine receptor purified from rabbit skeletal muscle consists of proteins of 175,000, 170,000, 52,000, and 32,000 Da when analyzed by SDS-PAGE under nonreducing conditions and stained with Coomassie Blue dye. After reduction of disulfide bonds, the 175,000 Da protein shifts in apparent molecular mass to 150,000 Da. Photoaffinity labeling using the dihydropyridine ligands ({sup 3}H)azidopine and ({sup 3}H)PN200-110 identified a protein of 170,000 Da as the dihydropyridine binding component of the receptor. Specific polyclonal antibodies were developed against both the nonreduced and reduced forms of the 175/150,000 and 32,000 Da proteins and were used to show that the 150,000 and 32,000 Da proteins are distinct from each other and from other components of the receptor and that they copurify with the 170,000 Da protein at each step of purification. In addition, monoclonal antibodies against the 170,000 and 52,000 Da polypeptides were shown to coimmunoprecipitate the 150,000 and 32,000 Da polypeptides from solubilized skeletal muscle triads.

  13. In vivo imaging of oxidative stress in the kidney of diabetic mice and its normalization by angiotensin II type 1 receptor blocker

    SciTech Connect

    Sonta, Toshiyo; Inoguchi, Toyoshi . E-mail: toyoshi@intmed3.med.kyushu-u.ac.jp; Matsumoto, Shingo; Yasukawa, Keiji; Inuo, Mieko; Tsubouchi, Hirotaka; Sonoda, Noriyuki; Kobayashi, Kunihisa; Utsumi, Hideo; Nawata, Hajime

    2005-05-06

    This study was undertaken to evaluate oxidative stress in the kidney of diabetic mice by electron spin resonance (ESR) imaging technique. Oxidative stress in the kidney was evaluated as organ-specific reducing activity with the signal decay rates of carbamoyl-PROXYL probe using ESR imaging. The signal decay rates were significantly faster in corresponding image pixels of the kidneys of streptozotocin-induced diabetic mice than in those of controls. This technique further demonstrated that administration of angiotensin II type 1 receptor blocker (ARB), olmesartan (5 mg/kg), completely restored the signal decay rates in the diabetic kidneys to control values. In conclusion, this study provided for the first time the in vivo evidence for increased oxidative stress in the kidneys of diabetic mice and its normalization by ARB as evaluated by ESR imaging. This technique would be useful as a means of further elucidating the role of oxidative stress in diabetic nephropathy.

  14. Contribution of a helix 5 locus to selectivity of hallucinogenic and nonhallucinogenic ligands for the human 5-hydroxytryptamine2A and 5-hydroxytryptamine2C receptors: direct and indirect effects on ligand affinity mediated by the same locus.

    PubMed

    Almaula, N; Ebersole, B J; Ballesteros, J A; Weinstein, H; Sealfon, S C

    1996-07-01

    An important determinant of the neurobehavioral responses induced by a drug is its relative receptor selectivity. The molecular basis of ligand selectivity of hallucinogenic and nonhallucinogenic compounds of varying structural classes for the human 5-hydroxytryptamine (5-HT)2A and 5-HT2C receptors was investigated with the use of reciprocal site-directed mutagenesis. Because these two closely related receptor subtypes differ in the amino acid present at position 5.46 (residues 242 and 222 in the sequences, respectively), the effects of corresponding substitutions in the 5-HT2A[S5.46(242)-->A] and 5-HT2C[A5.46(222)-->S] receptors were studied in tandem. By studying both receptors, the direct and indirect effects of mutations on affinity and selectivity can be distinguished. The ergolines studied, mesulergine (selective for the 5-HT2C receptor) and d-lysergic acid diethylamide (selective for the 5-HT2A receptor), reversed their relative affinity with mutations in each receptor, supporting a direct role of this locus in the selectivity of these ligands. However, interchange mutations in either receptor led to decreased or unchanged affinity for (+/-)-1-)(2,5-dimethoxy-4-iodophenyl)-2-aminopropane and ketanserin, which have higher affinity for the 5-HT2A receptor, consistent with little contribution of this locus to the selectivity of these ligands. The indoleamines studied were affected differently by mutations in each receptor, suggesting that they bind differently to the two receptor subtypes. Mutation of this locus in the 5-HT2A receptor decreased the affinity of all indoleamines, whereas the interchange mutation of the 5-HT2C receptor did not affect indoleamine affinity. These results are consistent with a direct interaction between this side chain and indoleamines for the 5-HT2A receptor but not for the 5-HT2C receptor. Furthermore, this analysis shows that the higher affinity of 5-HT and tryptamine for the 5-HT2C receptor than for the 5-HT2A receptors is not

  15. [Efficacy and Safety of a Fixed Combination of Perindopril Arginine and Amlodipine in Patients With Hypertension Uncontrolled by Treatment With Angiotensin II Receptor Blockers in Real Clinical Practice. Results of the PREVOSHODSTVO (SUPERIORITY) Program].

    PubMed

    Ostroumova, O D

    2017-01-01

    The article presents preliminary results of a subanalysis of PREVOSHODSTVO (SUPERIORITY) phase IV study. Aim of this subanalysis was to assess efficacy and tolerability of a fixed-dose perindopril/amlodipine combination (FDPAC) in patients with arterial hypertension (AP) uncontrolled on previous treatment with angiotensin receptor blockers (ARBs).

  16. [Gender-related differences in the efficacy of treatment of hypertensive and coronary heart diseases in aged and elderly patients by angiotensin II receptor blockers and angiotensin converting enzyme inhibitors].

    PubMed

    Zaslavskaia, R M; Krivchikova, L V

    2013-01-01

    The aim of the work was to study hemodynamics and clinical symptoms before and after treatment of arterial hypertension (AH) and coronary heart disease (CHD) using angiotensin II receptor blockers and angiotensin converting enzyme inhibitors depending on the patients' sex. A total of 150 patients with AH and CHD were examined (80 women and 70 men, mean age 70 a 66 yr respectively). Eighty two of them (group 1) were given receptor blockers (losap, losartan, lorista, bloctran) and 63 (group 2) inhibitors (prestarium, noliprel). Effectiveness of treatment was evaluated from the results of 24-hr AP monitoring, daily self-control of AP (as described by Korotkov) and responds to questionnaires. The effectiveness of receptor blockers showed marked gender-specific differences. Specifically, they reduced systolic and diastolic pressure and improved well-being in women. In men, this treatment decreased the frequency of angina attacks, headache, and heart throbs. Enzyme inhibitors caused a greater reduction of diastolic AP in women but less pronounced gender-related changes in dynamics of main AP and ECG parameters than receptor blockers.

  17. What is a preferred angiotensin II receptor blocker-based combination therapy for blood pressure control in hypertensive patients with diabetic and non-diabetic renal impairment?

    PubMed Central

    2012-01-01

    Hypertension has a major associated risk for organ damage and mortality, which is further heightened in patients with prior cardiovascular (CV) events, comorbid diabetes mellitus, microalbuminuria and renal impairment. Given that most patients with hypertension require at least two antihypertensives to achieve blood pressure (BP) goals, identifying the most appropriate combination regimen based on individual risk factors and comorbidities is important for risk management. Single-pill combinations (SPCs) containing two or more antihypertensive agents with complementary mechanisms of action offer potential advantages over free-drug combinations, including simplification of treatment regimens, convenience and reduced costs. The improved adherence and convenience resulting from SPC use is recognised in updated hypertension guidelines. Despite a wide choice of SPCs for hypertension treatment, clinical evidence from direct head-to-head comparisons to guide selection for individual patients is lacking. However, in patients with evidence of renal disease or at greater risk of developing renal disease, such as those with diabetes mellitus, microalbuminura and high-normal BP or overt hypertension, guidelines recommend renin-angiotensin system (RAS) blocker-based combination therapy due to superior renoprotective effects compared with other antihypertensive classes. Furthermore, RAS inhibitors attenuate the oedema and renal hyperfiltration associated with calcium channel blocker (CCB) monotherapy, making them a good choice for combination therapy. The occurrence of angiotensin-converting enzyme (ACE) inhibitor-induced cough supports the use of angiotensin II receptor blockers (ARBs) for RAS blockade rather than ACE inhibitors. In this regard, ARB-based SPCs are available in combination with the diuretic, hydrochlorothiazide (HCTZ) or the calcium CCB, amlodipine. Telmisartan, a long-acting ARB with preferential pharmacodynamic profile compared with several other ARBs, and the

  18. Interaction of SR 33557 with skeletal muscle calcium channel blocker receptors in the baboon: characterization of its binding sites

    SciTech Connect

    Sol-Rolland, J.; Joseph, M.; Rinaldi-Carmona, M. )

    1991-05-01

    A procedure for the isolation of primate skeletal microsomal membranes was initiated. Membranes exhibited specific enzymatic markers such as 5'-nucleotidase, Ca{sup 2}{sup +},Mg({sup 2}{sup +})-adenosine triphosphatase and an ATP-dependent calcium uptake. Baboon skeletal microsomes bound specifically with high-affinity potent Ca{sup 2}{sup +} channel blockers such as dihydropyridine, phenylalkylamine and benzothiazepine derivatives. Scatchard analysis of equilibrium binding assays with ({sup 3}H)(+)-PN 200-110, ({sup 3}H)(-)-desmethoxyverapamil (( {sup 3}H)(-)-D888) and ({sup 3}H)-d-cis-dilitiazem were consistent with a single class of binding sites for the three radioligands. The pharmacological profile of SR 33557, an original compound with calcium antagonist properties, was investigated using radioligand binding studies. SR 33557 totally inhibited the specific binding of the three main classes of Ca{sup 2}{sup +} channel effectors and interacted allosterically with them. In addition, SR 33557 bound with high affinity to a homogeneous population of binding sites in baboon skeletal muscle.

  19. Dorsal prefrontal cortical serotonin 2A receptor binding indices are differentially related to individual scores on harm avoidance.

    PubMed

    Baeken, Chris; Bossuyt, Axel; De Raedt, Rudi

    2014-02-28

    Although the serotonergic system has been implicated in healthy as well as in pathological emotional states, knowledge about its involvement in personality is limited. Earlier research on this topic suggests that post-synaptic 5-HT2A receptors could be involved in particular in frontal cortical areas. In drug-naïve healthy individuals, we examined the relationship between these 5-HT2A receptors and the temperament dimension harm avoidance (HA) using 123I-5-I-R91150 single photon emission computed tomography (SPECT). HA is a personality feature closely related to stress, anxiety and depression proneness, and it is thought to be mediated by the serotonergic system. We focused on the prefrontal cortices as these regions are frequently implicated in cognitive processes related to a variety of affective disorders. We found a positive relationship between dorsal prefrontal cortical (DPFC) 5-HT2A receptor binding indices (BI) and individual HA scores. Further, our results suggest that those individuals with a tendency to worry or to ruminate are particularly prone to display significantly higher 5-HT2A receptor BI in the left DPFC. Although we only examined psychologically healthy individuals, this relationship suggests a possible vulnerability for affective disorders.

  20. Potential of the angiotensin receptor blockers (ARBs) telmisartan, irbesartan, and candesartan for inhibiting the HMGB1/RAGE axis in prevention and acute treatment of stroke.

    PubMed

    Kikuchi, Kiyoshi; Tancharoen, Salunya; Ito, Takashi; Morimoto-Yamashita, Yoko; Miura, Naoki; Kawahara, Ko-ichi; Maruyama, Ikuro; Murai, Yoshinaka; Tanaka, Eiichiro

    2013-09-13

    Stroke is a major cause of mortality and disability worldwide. The main cause of stroke is atherosclerosis, and the most common risk factor for atherosclerosis is hypertension. Therefore, antihypertensive treatments are recommended for the prevention of stroke. Three angiotensin receptor blockers (ARBs), telmisartan, irbesartan and candesartan, inhibit the expression of the receptor for advanced glycation end-products (RAGE), which is one of the pleiotropic effects of these drugs. High mobility group box 1 (HMGB1) is the ligand of RAGE, and has been recently identified as a lethal mediator of severe sepsis. HMGB1 is an intracellular protein, which acts as an inflammatory cytokine when released into the extracellular milieu. Extracellular HMGB1 causes multiple organ failure and contributes to the pathogenesis of hypertension, hyperlipidemia, diabetes mellitus, atherosclerosis, thrombosis, and stroke. This is the first review of the literature evaluating the potential of three ARBs for the HMGB1-RAGE axis on stroke therapy, including prevention and acute treatment. This review covers clinical and experimental studies conducted between 1976 and 2013. We propose that ARBs, which inhibit the HMGB1/RAGE axis, may offer a novel option for prevention and acute treatment of stroke. However, additional clinical studies are necessary to verify the efficacy of ARBs.

  1. Impact of Angiotensin I-converting Enzyme Inhibitors and Angiotensin II Type-1 Receptor Blockers on Survival of Patients with NSCLC

    PubMed Central

    Miao, Lili; Chen, Wei; Zhou, Ling; Wan, Huanying; Gao, Beili; Feng, Yun

    2016-01-01

    It has been shown that angiotensin I-converting enzyme inhibitors (ACEIs) and angiotensin II type-1 receptor blockers (ARBs) can decrease tumor growth and tumor-associated angiogenesis and inhibit metastasis. Epidermal growth factor receptor (EGFR) mutations are found in approximately 30% of patients with advanced non-small cell lung cancer (NSCLC) in East Asia and in 10–15% of such patients in Western countries. We retrospectively identified 228 patients with histologically confirmed advanced NSCLC and 73 patients with early stage disease; 103 of these patients took antihypertensive drugs, and 112 received treatment with EGFR tyrosine kinase inhibitors (TKIs). There was a significant difference in progression-free survival after first-line therapy (PFS1) between the ACEI/ARB group and the non-ACEI/ARB group. For the patients treated with TKIs, there was a significant difference in PFS but not in overall survival (OS) between the ACEI/ARB group and the non-ACEI/ARB group. For the patients with advanced NSCLC, there was a significant difference in PFS1 between the ACEI/ARB group and the non-ACEI/ARB group. ACEI/ARB in combination with standard chemotherapy or TKIs had a positive effect on PFS1 or OS, regardless of whether the lung cancer was in the early or advanced stage. PMID:26883083

  2. 5-HT2 Receptor Regulation of Mitochondrial Genes: Unexpected Pharmacological Effects of Agonists and Antagonists.

    PubMed

    Harmon, Jennifer L; Wills, Lauren P; McOmish, Caitlin E; Demireva, Elena Y; Gingrich, Jay A; Beeson, Craig C; Schnellmann, Rick G

    2016-04-01

    In acute organ injuries, mitochondria are often dysfunctional, and recent research has revealed that recovery of mitochondrial and renal functions is accelerated by induction of mitochondrial biogenesis (MB). We previously reported that the nonselective 5-HT2 receptor agonist DOI [1-(4-iodo-2,5-dimethoxyphenyl)propan-2-amine] induced MB in renal proximal tubular cells (RPTCs). The goal of this study was to determine the role of 5-HT2 receptors in the regulation of mitochondrial genes and oxidative metabolism in the kidney. The 5-HT2C receptor agonist CP-809,101 [2-[(3-chlorophenyl)methoxy]-6-(1-piperazinyl)pyrazine] and antagonist SB-242,084 [6-chloro-2,3-dihydro-5-methyl-N-[6-[(2-methyl-3-pyridinyl)oxy]-3-pyridinyl]-1H-indole-1-carboxyamide dihydrochloride] were used to examine the induction of renal mitochondrial genes and oxidative metabolism in RPTCs and in mouse kidneys in the presence and absence of the 5-HT2C receptor. Unexpectedly, both CP-809,101 and SB-242,084 increased RPTC respiration and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) mRNA expression in RPTCs at 1-10 nM. In addition, CP-809,101 and SB-242,084 increased mRNA expression of PGC-1α and the mitochondrial proteins NADH dehydrogenase subunit 1 and NADH dehydrogenase (ubiquinone) β subcomplex 8 in mice. These compounds increased mitochondrial genes in RPTCs in which the 5-HT2C receptor was downregulated with small interfering RNA and in the renal cortex of mice lacking the 5-HT2C receptor. By contrast, the ability of these compounds to increase PGC-1α mRNA and respiration was blocked in RPTCs treated with 5-HT2A receptor small interfering RNA or the 5-HT2A receptor antagonist eplivanserin. In addition, the 5-HT2A receptor agonist NBOH-2C-CN [4-[2-[[(2-hydroxyphenyl)methyl]amino]ethyl]-2,5-dimethoxybenzonitrile] increased RPTC respiration at 1-100 nM. These results suggest that agonism of the 5-HT2A receptor induces MB and that the classic 5-HT2C receptor agonist CP

  3. Secreted phospholipase A2 inhibitors are also potent blockers of binding to the M-type receptor.

    PubMed

    Boilard, Eric; Rouault, Morgane; Surrel, Fanny; Le Calvez, Catherine; Bezzine, Sofiane; Singer, Alan; Gelb, Michael H; Lambeau, Gérard

    2006-11-07

    Mammalian secreted phospholipases A(2) (sPLA(2)s) constitute a family of structurally related enzymes that are likely to play numerous biological roles because of their phospholipid hydrolyzing activity and binding to soluble and membrane-bound proteins, including the M-type receptor. Over the past decade, a number of competitive inhibitors have been developed against the inflammatory-type human group IIA (hGIIA) sPLA(2) with the aim of specifically blocking its catalytic activity and pathophysiological functions. The fact that many of these inhibitors, including the indole analogue Me-Indoxam, inhibit several other sPLA(2)s that bind to the M-type receptor prompted us to investigate the impact of Me-Indoxam and other inhibitors on the sPLA(2)-receptor interaction. By using a Ca(2+) loop mutant derived from a venom sPLA(2) which is insensitive to hGIIA inhibitors but still binds to the M-type receptor, we demonstrate that Me-Indoxam dramatically decreases the affinity of various sPLA(2)s for the receptor, yet an sPLA(2)-Me-Indoxam-receptor complex can form at very high sPLA(2) concentrations. Me-Indoxam inhibits the binding of iodinated mouse sPLA(2)s to the mouse M-type receptor expressed on live cells but also enhances binding of sPLA(2) to phospholipids. Because Me-Indoxam and other competitive inhibitors protrude out of the sPLA(2) catalytic groove, it is likely that the inhibitors interfere with the sPLA(2)-receptor interaction by steric hindrance and to different extents that depend on the type of sPLA(2) and inhibitor. Our finding suggests that the various anti-inflammatory therapeutic effects of sPLA(2) inhibitors may be due not only to inhibition of enzymatic activity but also to modulation of binding of sPLA(2) to the M-type receptor or other as yet unknown protein targets.

  4. Inhibition of tumor angiogenesis and growth by a small-molecule multi-FGF receptor blocker with allosteric properties.

    PubMed

    Bono, Françoise; De Smet, Frederik; Herbert, Corentin; De Bock, Katrien; Georgiadou, Maria; Fons, Pierre; Tjwa, Marc; Alcouffe, Chantal; Ny, Annelii; Bianciotto, Marc; Jonckx, Bart; Murakami, Masahiro; Lanahan, Anthony A; Michielsen, Christof; Sibrac, David; Dol-Gleizes, Frédérique; Mazzone, Massimiliano; Zacchigna, Serena; Herault, Jean-Pascal; Fischer, Christian; Rigon, Patrice; Ruiz de Almodovar, Carmen; Claes, Filip; Blanc, Isabelle; Poesen, Koen; Zhang, Jie; Segura, Inmaculada; Gueguen, Geneviève; Bordes, Marie-Françoise; Lambrechts, Diether; Broussy, Roselyne; van de Wouwer, Marlies; Michaux, Corinne; Shimada, Toru; Jean, Isabelle; Blacher, Silvia; Noel, Agnès; Motte, Patrick; Rom, Eran; Rakic, Jean-Marie; Katsuma, Susumu; Schaeffer, Paul; Yayon, Avner; Van Schepdael, Ann; Schwalbe, Harald; Gervasio, Francesco Luigi; Carmeliet, Geert; Rozensky, Jef; Dewerchin, Mieke; Simons, Michael; Christopoulos, Arthur; Herbert, Jean-Marc; Carmeliet, Peter

    2013-04-15

    Receptor tyrosine kinases (RTK) are targets for anticancer drug development. To date, only RTK inhibitors that block orthosteric binding of ligands and substrates have been developed. Here, we report the pharmacologic characterization of the chemical SSR128129E (SSR), which inhibits fibroblast growth factor receptor (FGFR) signaling by binding to the extracellular FGFR domain without affecting orthosteric FGF binding. SSR exhibits allosteric properties, including probe dependence, signaling bias, and ceiling effects. Inhibition by SSR is highly conserved throughout the animal kingdom. Oral delivery of SSR inhibits arthritis and tumors that are relatively refractory to anti-vascular endothelial growth factor receptor-2 antibodies. Thus, orally-active extracellularly acting small-molecule modulators of RTKs with allosteric properties can be developed and may offer opportunities to improve anticancer treatment.

  5. The GHS-R blocker D-[Lys3] GHRP-6 serves as CCR5 chemokine receptor antagonist.

    PubMed

    Patel, Kalpesh; Dixit, Vishwa Deep; Lee, Jun Ho; Kim, Jie Wan; Schaffer, Eric M; Nguyen, Dzung; Taub, Dennis D

    2012-01-01

    [D-Lys3]-Growth Hormone Releasing Peptide-6 (DLS) is widely utilized in vivo and in vitro as a selective ghrelin receptor (GHS-R) antagonist. This antagonist is one of the most common antagonists utilized in vivo to block GHS-R function and activity. Here, we found that DLS also has the ability to modestly block chemokine function and ligand binding to the chemokine receptor CCR5. The DLS effects on RANTES binding and Erk signaling as well as calcium mobilization appears to be much stronger than its effects on MIP-1α and MIP-1β. CCR5 have been shown to act as major co-receptor for HIV-1 entry into the CD4 positive host cells. To this end, we also found that DLS blocks M-tropic HIV-1 propagation in activated human PBMCs. These data demonstrate that DLS may not be a highly selective GHS-R1a inhibitor and may also effects on other G-protein coupled receptor (GPCR) family members. Moreover, DLS may have some potential clinical applications in blocking HIV infectivity and CCR5-mediated migration and function in various inflammatory disease states.

  6. Antagonism of lateral saphenous vein serotonin receptors from steers grazing endophyte-free, wild-type, or novel endophyte-infected tall fescue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pharmacologic profiling of 5-hydroxytryptamine (5HT) receptors of bovine lateral saphenous vein has shown that cattle grazing endophyte-infected (Neotyphodium coenophialum) tall fescue (Lolium arundinaceum) have altered responses to ergovaline (ERV), 5HT, 5HT2A and 5HT7 agonists. To determine if 5HT...

  7. Additive Effect of Qidan Dihuang Grain, a Traditional Chinese Medicine, and Angiotensin Receptor Blockers on Albuminuria Levels in Patients with Diabetic Nephropathy: A Randomized, Parallel-Controlled Trial

    PubMed Central

    Xiang, Lei; Jiang, Pingping; Zhou, Lin; Sun, Xiaomin; Bi, Jianlu; Cui, Lijuan; Nie, Xiaoli; Luo, Ren; Liu, Yanyan

    2016-01-01

    Albuminuria is characteristic of early-stage diabetic nephropathy (DN). The conventional treatments with angiotensin receptor blockers (ARB) are unable to prevent the development of albuminuria in normotensive individuals with type 2 diabetes mellitus (T2DM). Purpose. The present study aimed to evaluate the effect of ARB combined with a Chinese formula Qidan Dihuang grain (QDDHG) in improving albuminuria and Traditional Chinese Medicine Symptom (TCMS) scores in normotensive individuals with T2DM. Methods. Eligible patients were randomized to the treatment group and the control group. Results. Compared with baseline (week 0), both treatment and control groups markedly improved the 24-hour albuminuria, total proteinuria (TPU), and urinary albumin to creatinine ratio (A/C) at 4, 8, and 12 weeks. Between treatment and the control group, the levels of albuminuria in the treatment group were significantly lower than in the control group at 8 and 12 weeks (p < 0.05). In addition, treatment group markedly decreased the scores of TCMS after treatment. Conclusion. This trial suggests that QDDHG combined with ARB administration decreases the levels of albuminuria and the scores for TCMS in normotensive individuals with T2DM. PMID:27375762

  8. Patients With Newly Diagnosed Hypertension Treated With the Renin Angiotensin Receptor Blocker Azilsartan Medoxomil vs Angiotensin-Converting Enzyme Inhibitors: The Prospective EARLY Registry.

    PubMed

    Schmieder, Roland E; Potthoff, Sebastian A; Bramlage, Peter; Baumgart, Peter; Mahfoud, Felix; Buhck, Hartmut; Ouarrak, Taoufik; Ehmen, Martina; Senges, Jochen; Gitt, Anselm K

    2015-12-01

    For patients with newly diagnosed hypertension, angiotensin-converting enzyme (ACE) inhibitors or angiotensin receptor blockers (ARBs) are usually the first-line therapies. There is, however, no real-life data regarding the relative clinical effectiveness and tolerability of either drug class. The prospective registry, Treatment With Azilsartan Compared to ACE Inhibitors in Antihypertensive Therapy (EARLY), was conducted to evaluate the effectiveness of the ARB azilsartan medoxomil (AZL-M) vs ACE inhibitors in real-world patients. Of the 1153 patients with newly diagnosed hypertension who were included in the registry, 789 were prescribed AZL-M and 364 were prescribed an ACE inhibitor. After multivariate adjustment, AZL-M was found to provide superior blood pressure reduction and better target blood pressure (<140/90 mm Hg) achievement. The proportion of patients with adverse events was not statistically different between groups. The authors conclude that in newly diagnosed hypertensive patients, AZL-M provides superior blood pressure control with a similar safety profile compared with ACE inhibitors.

  9. TRC120038, a Novel Dual AT1/ETA Receptor Blocker for Control of Hypertension, Diabetic Nephropathy, and Cardiomyopathy in ob-ZSF1 Rats

    PubMed Central

    Mohanan, Anookh; Gupta, Ram; Dubey, Amita; Jagtap, Vikrant; Mandhare, Appaji; Gupta, Ramesh C.; Chauthaiwale, Vijay; Dutt, Chaitanya

    2011-01-01

    In hypertensive subjects, angiotensin II and endothelin participate in a manner involving closely interwoven pathways in increasing blood pressure (BP) and inducing end organ damage. The primary objective of this study was to determine the effect of TRC120038, a novel dual AT1/ETA receptor blocker on BP, in obese Zucker spontaneously hypertensive fatty rats (ob-ZSF1), an animal model of moderate hypertension, diabetes with progressive renal and cardiac dysfunction. Ob-ZSF1 rats loaded with 0.5% salt were treated with TRC120038 (11.8 mg/kg bid.) or candesartan cilexetil (0.3 mg/kg od.) or vehicle control. Blood pressure (by radio-telemetry) and renal functional markers were monitored throughout the study. Cardiac function was assessed terminally by pressure volume catheter. Markers for renal dysfunction were measured and changes were evaluated histopathologically. TRC120038 showed greater fall in both systolic and diastolic BP in comparison to candesartan at its maximum antihypertensive dose. TRC120038 also reduced the severity of renal dysfunction and preserved cardiac function in ob-ZSF1 rat. PMID:22235363

  10. The H1 histamine receptor blocker, chlorpheniramine, completely prevents the increase in REM sleep induced by immobilization stress in rats.

    PubMed

    Rojas-Zamorano, J A; Esqueda-Leon, E; Jimenez-Anguiano, A; Cintra-McGlone, L; Mendoza Melendez, M A; Velazquez Moctezuma, J

    2009-01-01

    Chlorpheniramine is a selective antagonist of the H1 histaminergic receptor subtype and its effects in humans include somnolence. Chlorpheniramine affects sleep in rats, mainly by decreasing REM sleep. On the other hand, stress by immobilization induces an important increase in the percentage of REM sleep. In this study we analyzed the effects of blocking histaminergic receptors on REM sleep induced by immobilization stress. Adult male Wistar rats were chronically implanted for sleep recording. Immobilization stress was induced by placing the rat in a small cylinder for 2 h. Experimental conditions were: A. Control; B. Stress; C. Stress plus vehicle and D. Stress plus chlorpheniramine. Independent experiments were done both in the dark, as well as the light period. Results showed that the increase in REM sleep observed after immobilization stress was completely abolished by chlorpheniramine, both in the dark and in the light phase. Furthermore, the decrease in REM sleep was significant even when compared to the non-stressed control rats. REM sleep latency was also significantly longer during both light phases. The present results suggest that REM sleep is quite sensitive to histaminergic blockage. It is possible that chlorpheniramine is also blocking the cholinergic mechanisms generating REM sleep.

  11. Induction of transient hyperprolactinaemia in neonatal rats by direct or maternal treatment with the dopamine receptor blocker, sulpiride.

    PubMed

    Lewis, M; Howie, P W

    1987-07-01

    Prolactin was measured in the plasma of neonatal rats after iv and ip injection of the dopamine receptor blocking drug sulpiride, and after its ip injection to neonatal rats' nursing mothers. The sulpiride dose PRL response relationship in 10-25 day old neonatal rats was similar to that found in lactating rats, with a threshold sensitivity around 29 nmol sulpiride/kg body weight and a maximal response at about 2.9 mumol/kg. Absolute levels of PRL in the neonate (both peak and increment-over-basal) were, however, 90% lower than in adults. Treatment of lactating mothers with a maximally stimulatory dose of sulpiride (2.9 mumol/kg) twice daily for 4 days resulted in small but highly significant increases in neonatal PRL on days 1 and 2 but complete loss of response by day 4. These data demonstrate that there is a close similarity between the responses of maternal and neonatal rats to sulpiride and that transfer of the drug to the neonate via milk can induce neonatal hyperprolactinaemia. The subsequent loss of the neonatal PRL response on chronic exposure to sulpiride may indicate a degree of disturbance of hypothalamic dopaminergic mechanisms. In the clinical situation this would suggest that doses of dopamine receptor-blocking drugs used to enhance maternal milk production should be carefully chosen.

  12. A novel design of combining the angiotensin converting enzyme (ACE) inhibitor captopril with the angiotensin receptor blocker (ARB) losartan using homo coupling via PEG diacid linker.

    PubMed

    Hashemzadeh, Mehrnoosh; Park, Shery; Ju, Hee; Movahed, Mohammad R

    2013-12-01

    Cardiovascular disease is the leading cause of death in American adults. Furthermore, the incidence of congestive heart failure is on the rise as a major cause of hospitalization and mortality in this population. Angiotensin Converting Enzyme (ACE) inhibitors prevent the production of angiotensin II, which has been shown to reduce mortality in patients with congestive heart failure. Angiotensin II receptor blockers (ARB) were developed as a direct inhibitor of angiotensin II. ARBs have been shown to be effective in the treatment of patients with systolic heart failure but do not cause chronic coughing which is a common side effect of ACE inhibitors. In theory, a compound that has the combined effect of an ACE inhibitor and an ARB should be more effective in treating heart failure patients than either agents alone. Therefore, the purpose of this manuscript is to design and discuss the benefits of a new molecule, which combines captopril, an ACE inhibitor, with losartan, an ARB. In this experiment Captopril and Losartan were modified and synthesized separately and combined by homo or mono coupling. This was achieved by taking advantage of PEG (Polyethylene glycol) as a linker. It is expected that this molecule will have the combined modes of action of both ACEs and ARBs. Benefits from combination therapy include; increased efficacy, reduced adverse effects, convenience, compliance, and prolonged duration. Consequently, this combined molecule is expected to block the production of angiotensin II more efficiently and effectively. Although captopril and losartan work in the same system by blocking the effect of angiotensin II they have different action sites and mechanisms some patents are also discussed. Losartan blocks the AT1 receptor which is expressed on the cell surface, while captopril inhibits ACE, preventing production of angiotensin II, which is present in both the plasma and on the cell surface, especially on endothelial and smooth muscle cells.

  13. Serotonin-2C and -2A Receptor Co-expression on Cells in the Rat Medial Prefrontal Cortex

    PubMed Central

    Nocjar, Christine; Alex, Katherine D; Sonneborn, Alex; Abbas, Atheir I; Roth, Bryan L; Pehek, Elizabeth A

    2015-01-01

    Neural function within the medial prefrontal cortex (mPFC) regulates normal cognition, attention and impulse control, implicating neuroregulatory abnormalities within this region in mental dysfunction related to schizophrenia, depression and drug abuse. Both serotonin -2A (5-HT2A) and -2C (5-HT2C) receptors are known to be important in neuropsychiatric drug action and are distributed throughout the mPFC. However, their interactive role in serotonergic cortical regulation is poorly understood. While the main signal transduction mechanism for both receptors is stimulation of phosphoinositide production, they can have opposite effects downstream. 5-HT2A versus 5-HT2C receptor activation oppositely regulates behavior and can oppositely affect neurochemical release within the mPFC. These distinct receptor effects could be caused by their differential cellular distribution within the cortex and/or other areas. It is known that both receptors are located on GABAergic and pyramidal cells within the mPFC, but it is not clear whether they are expressed on the same or different cells. The present work employed immunofluorescence with confocal microscopy to examine this in layers V-VI of the prelimbic mPFC. The majority of GABA cells in the deep prelimbic mPFC expressed 5-HT2C receptor immunoreactivity. Furthermore, most cells expressing 5-HT2C receptor immunoreactivity notably co-expressed 5-HT2A receptors. However, 27% of 5-HT2C receptor immunoreactive cells were not GABAergic, indicating that a population of prelimbic pyramidal projection cells could express the 5-HT2C receptor. Indeed, some cells with 5-HT2C and 5-HT2A receptor co-labeling had a pyramidal shape and were expressed in the typical layered fashion of pyramidal cells. This indirectly demonstrates that 5-HT2C and 5-HT2A receptors may be commonly co-expressed on GABAergic cells within the deep layers of the prelimbic mPFC and perhaps co-localized on a small population of local pyramidal projection cells. Thus a

  14. Antihypertensive treatment using an angiotensin receptor blocker and a thiazide diuretic improves patients' quality of life: the Saga Challenge Antihypertensive Study (S-CATS).

    PubMed

    Kamura, Aoi; Inoue, Teruo; Kuroki, Shigetaka; Ishida, Shiro; Iimori, Kenichirou; Kato, Toru; Naitoh, Hirofumi; Tamesue, Satoshi; Ikeda, Hideo; Node, Koichi

    2011-12-01

    The aim of the Saga Challenge Antihypertensive Study (S-CATS), a single-arm, prospective and multi-center trial, was to evaluate the effectiveness of combined antihypertensive treatment with losartan and hydrochlorothiazide (HCTZ). Enrolled in the study were a total of 161 patients with hypertension, who in spite of treatment with an angiotensin receptor blocker (ARB) alone or an ARB and calcium channel blocker (CCB), had not been able to reach blood pressure control goals set by the Japanese Society of Hypertension Guidelines (JSH 2004). The ARBs were replaced with a combination pill containing losartan (50 mg) and HCTZ (12.5 mg), and this treatment was continued for 3 months. This change in therapy resulted in significant decreases in systolic (158±14 to 137±15 mm Hg, P<0.001) and diastolic (85±11 to 76±10 mm Hg, P<0.001) blood pressure and heart rate (73±3 to 72±3) during the study. The patients' quality of life (QOL) score, the EuroQol 5 dimensions (EQ-5D) and the visual analog scale (VAS) (n=96; 70.0 (68.8-80.0) to 80.0 (70.0-90.0), P<0.01) all improved significantly. Another QOL score, the hypertension symptom score (HSS), which we originally developed for the S-CATS trial, decreased significantly (n=93; 4.0 (1.0-9.0) to 2.0 (1.0-8.0), P<0.05). The Pittsburgh sleep quality index (PSQI), which is a psychometric assessment of subjective sleep quality, also decreased significantly (n=45; 4.0 (2.0-7.0) to 3.0 (2.0-5.0), P<0.05). There was a significant correlation between a change in HSS (baseline value -3-months value) and a decrease in systolic blood pressure (n=93; R=0.241, P<0.05). These results suggest that an anti-hypertensive treatment combined with an ARB and a thiazide diuretic may improve patients' QOL, including sleep quality.

  15. Structure of the high-affinity binding site for noncompetitive blockers of the acetylcholine receptor: (/sup 3/H)chlorpromazine labels homologous residues in the. beta. and delta chains

    SciTech Connect

    Giraudat, J.; Dennis, M.; Heidmann, T.; Haumont, P.Y.; Lederer, F.; Changeux, J.P.

    1987-05-05

    The membrane-bound acetylcholine receptor from Torpedo marmorata was photolabeled by the noncompetitive channel blocker (/sup 3/H)chlorpromazine under equilibrium conditions in the presence of the agonist carbamoylcholine. The amount of radioactivity incorporated into all subunits was reduced by addition of phencyclidine, a specific ligand for the high-affinity site for noncompetitive blockers. The labeled ..beta.. chain was purified and digested with trypsin or CNBr, and the resulting fragments were fractionated by high-performance liquid chromatography. Sequence analysis resulted in the identification of Ser-254 and Leu-257 as residues labeled by (/sup 3/H)chlorpromazine in a phencyclidine-sensitive manner. These residues are located in the hydrophobic and potentially transmembrane segment M II of the ..beta.. chain, a region homologous to that containing the chlorpromazine-labeled Ser-262 in the delta chain. These results show that homologous regions of different receptor subunits contribute to the unique high-affinity site for noncompetitive blockers, a finding consistent with the location of this site on the axis of symmetry of the receptor molecule.

  16. Serotonin receptors in suicide victims with major depression.

    PubMed

    Stockmeier, C A; Dilley, G E; Shapiro, L A; Overholser, J C; Thompson, P A; Meltzer, H Y

    1997-02-01

    Serotonin1A (5-HT1A) and serotonin2A (5-HT2A) receptors in the brain have been implicated in the pathophysiology of suicide. Brain samples were collected at autopsy from suicide victims with a current episode of major depression and matched comparison subjects who died of natural or accidental causes. Retrospective psychiatric assessments were collected from knowledgeable informants for all suicide victims and most of the comparison subjects. Psychiatric diagnoses were determined according to DSM-III-R criteria. Any subjects with current psychoactive substance use disorders were excluded. Quantitative receptor autoradiography was used in serial sections of the right prefrontal cortex (area 10) and hippocampus to measure the binding of [3H]8-hydroxy-2-(di-n-propyl)-aminotetralin ([3H]8-OH-DPAT) to 5-HT1A receptors and [3H]ketanserin to 5-HT2A receptors. Analysis of covariance was used to compare control subjects and suicide victims with major depression. The age of subjects, the time from death to freezing the tissue (postmortem interval), and the storage time of tissues in the freezer were used as covariates in the analyses. There were no significant differences between suicide victims with major depression and comparison subjects in 5-HT1A or 5-HT2A receptors in area 10 of the right prefrontal cortex or the hippocampus. The current results suggest that the number of 5-HT1A and 5-HT2A receptors in the right prefrontal cortex (area 10) or hippocampus are not different in suicide victims with major depression.

  17. Familial risk for mood disorder and the personality risk factor, neuroticism, interact in their association with frontolimbic serotonin 2A receptor binding.

    PubMed

    Frokjaer, Vibe G; Vinberg, Maj; Erritzoe, David; Baaré, William; Holst, Klaus Kähler; Mortensen, Erik Lykke; Arfan, Haroon; Madsen, Jacob; Jernigan, Terry L; Kessing, Lars Vedel; Knudsen, Gitte Moos

    2010-04-01

    Life stress is a robust risk factor for later development of mood disorders, particularly for individuals at familial risk. Likewise, scoring high on the personality trait neuroticism is associated with an increased risk for mood disorders. Neuroticism partly reflects stress vulnerability and is positively correlated to frontolimbic serotonin 2A (5-HT(2A)) receptor binding. Here, we investigate whether neuroticism interacts with familial risk in relation to frontolimbic 5-HT(2A) receptor binding. Twenty-one healthy twins with a co-twin history of mood disorder and 16 healthy twins without a co-twin history of mood disorder were included. They answered self-report personality questionnaires and underwent [(18)F]altanserin positron emission tomography. We found a significant interaction between neuroticism and familial risk in predicting the frontolimbic 5-HT(2A) receptor binding (p=0.026) in an analysis adjusting for age and body mass index. Within the high-risk group only, neuroticism and frontolimbic 5-HT(2A) receptor binding was positively associated (p=0.0037). In conclusion, our data indicate that familial risk and neuroticism interact in their relation to frontolimbic 5-HT(2A) receptor binding. These findings point at a plausible neurobiological link between genetic and personality risk factors and vulnerability to developing mood disorders. It contributes to our understanding of why some people at high risk develop mood disorders while others do not. We speculate that an increased stress reactivity in individuals at high familial risk for mood disorders might enhance the effect of neuroticism in shaping the impact of potential environmental stress and thereby influence serotonergic neurotransmission.

  18. Activation of serotonin2A receptors in the medial septum-diagonal band of Broca complex enhanced working memory in the hemiparkinsonian rats.

    PubMed

    Li, Li-Bo; Zhang, Li; Sun, Yi-Na; Han, Ling-Na; Wu, Zhong-Heng; Zhang, Qiao-Jun; Liu, Jian

    2015-04-01

    Serotonin2A (5-HT2A) receptors are highly expressed in the medial septum-diagonal band of Broca complex (MS-DB), especially in parvalbumin (PV)-positive neurons linked to hippocampal theta rhythm, which is involved in cognition. Cognitive impairments commonly occur in Parkinson's disease. Here we performed behavioral, electrophysiological, neurochemical and immunohistochemical studies in rats with complete unilateral 6-hydroxydopamine lesions of the medial forebrain bundle (MFB) to assess the importance of dopamine (DA) depletion and MS-DB 5-HT2A receptors for working memory. The MFB lesions resulted in working memory impairment and decreases in firing rate and density of MS-DB PV-positive neurons, peak frequency of hippocampal theta rhythm, and DA levels in septohippocampal system and medial prefrontal cortex (mPFC) compared to control rats. Intra-MS-DB injection of high affinity 5-HT2A receptor agonist TCB-2 enhanced working memory, increased firing rate of PV-positive neurons and peak frequency of hippocampal theta rhythm, elevated DA levels in the hippocampus and mPFC, and decreased 5-HT level in the hippocampus in control and lesioned rats. Compared to control rats, the duration of the excitatory effect produced by TCB-2 on the firing rate of PV-positive neurons was markedly shortened in lesioned rats, indicating dysfunction of 5-HT2A receptors. These findings suggest that unilateral lesions of the MFB in rats induced working memory deficit, and activation of MS-DB 5-HT2A receptors enhanced working memory, which may be due to changes in the activity of septohippocampal network and monoamine levels in the hippocampus and mPFC.

  19. Investigation of serotonin-1A receptor function in the human psychopharmacology of MDMA.

    PubMed

    Hasler, F; Studerus, E; Lindner, K; Ludewig, S; Vollenweider, F X

    2009-11-01

    Serotonin (5-HT) release is the primary pharmacological mechanism of 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') action in the primate brain. Dopamine release and direct stimulation of dopamine D2 and serotonin 5-HT2A receptors also contributes to the overall action of MDMA. The role of 5-HT1A receptors in the human psychopharmacology of MDMA, however, has not yet been elucidated. In order to reveal the consequences of manipulation at the 5-HT1A receptor system on cognitive and subjective effects of MDMA, a receptor blocking study using the mixed beta-adrenoreceptor blocker/5-HT1A antagonist pindolol was performed. Using a double-blind, placebo-controlled within-subject design, 15 healthy male subjects were examined under placebo (PL), 20 mg pindolol (PIN), MDMA (1.6 mg/kg b.wt.), MDMA following pre-treatment with pindolol (PIN-MDMA). Tasks from the Cambridge Neuropsychological Test Automated Battery were used for the assessment of cognitive performance. Psychometric questionnaires were applied to measure effects of treatment on core dimensions of Altered States of Consciousness, mood and state anxiety. Compared with PL, MDMA significantly impaired sustained attention and visual-spatial memory, but did not affect executive functions. Pre-treatment with PIN did not significantly alter MDMA-induced impairment of cognitive performance and only exerted a minor modulating effect on two psychometric scales affected by MDMA treatment ('positive derealization' and 'dreaminess'). Our findings suggest that MDMA differentially affects higher cognitive functions, but does not support the hypothesis from animal studies, that some of the MDMA effects are causally mediated through action at the 5-HT1A receptor system.

  20. Role of cytokines in anti-implantation activity of H2 receptor blockers in albino Wistar rats.

    PubMed

    Agrawal, Shyam S; Ittiyavirah, Sibi P

    2010-03-01

    In this study, the negative effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin(TCDD) on the immune system and body weight gain of rats and the preventive effects of curcumin were examined. For this purpose, 3-4 months old 128 Wistar albino rats with 280-310g body weights were used. The 2microg/kg dose of 2,3,7,8-TCDD and 100mg/kg dose of curcumin were dissolved in corn oil and orally given to the rats found in the experimental and control groups. Then, the serum samples were taken from all rats at 15, 30, 45 and 60th days to analyzed for the determination of TNF-alpha, IFN-gamma, IL-12 and IL-13 levels by ELISA method. The data of body weight gain was measured at 15, 30, 45 and 60th days. The results indicated that 2,3,7,8,3,7,8-TCDD caused to increase significantly (p<0.05) in serum TNF-alpha levels. However, it caused significantly (p<0.05) decreases in the levels of IFN-gamma, IL-12 and IL-13 in rats. On contrary, curcumin increased IFN-gamma, IL-12 and IL-13 levels, but decreased TNF-alpha level in rats. Additionally, TCDD caused significantly (P<0.01) reductions in the body weight gain. However curcumin reversed this effect of TCDD.In conclusion, 2,3,7,8-TCDD significantly suppressed the humoral immunity and body weight gain in rats at doses of 2microg/kg. However curcumin, which was found in some plants, eliminated the effect of TCDD on immune system and body weight when it was given together with 2,3,7,8-TCDD. It is thought that this effect may have occurred via curcumin and TCDD were binding aryl hydrocarbon receptor (AhR) competitively.

  1. NGS-based transcriptome profiling reveals biomarkers for companion diagnostics of the TGF-β receptor blocker galunisertib in HCC.

    PubMed

    Cao, Yuan; Agarwal, Rahul; Dituri, Francesco; Lupo, Luigi; Trerotoli, Paolo; Mancarella, Serena; Winter, Peter; Giannelli, Gianluigi

    2017-02-23

    Transforming growth factor-beta (TGF-β) signaling has gained extensive interest in hepatocellular carcinoma (HCC). The small molecule kinase inhibitor galunisertib, targeting the TGF-β receptor I (TGF-βRI), blocks HCC progression in preclinical models and shows promising effects in ongoing clinical trials. As the drug is not similarly effective in all patients, this study was aimed at identifying new companion diagnostics biomarkers for patient stratification. Next-generation sequencing-based massive analysis of cDNA ends was used to investigate the transcriptome of an invasive HCC cell line responses to TGF-β1 and galunisertib. These identified mRNA were validated in 78 frozen HCC samples and in 26 ex-vivo HCC tissues treated in culture with galunisertib. Respective protein levels in patients blood were measured by enzyme-linked immunosorbent assay. SKIL, PMEPA1 ANGPTL4, SNAI1, Il11 and c4orf26 were strongly upregulated by TGF-β1 and downregulated by galunisertib in different HCC cell lines. In the 78 HCC samples, only SKIL and PMEPA1 (P<0.001) were correlated with endogenous TGF-β1. In ex-vivo samples, SKIL and PMEPA1 were strongly downregulated (P<0.001), and correlated (P<0.001) with endogenous TGF-β1. SKIL and PMEPA1 mRNA expression in tumor tissues was significantly increased compared with controls and not correlated with protein levels in the blood of paired HCC patients. SKIL and PMEPA1 mRNA levels were positively correlated with TGF-β1 mRNA concentrations in HCC tissues and strongly downregulated by galunisertib. The target genes identified here may serve as biomarkers for the stratification of HCC patients undergoing treatment with galunisertib.

  2. Endogenous hallucinogens as ligands of the trace amine receptors: a possible role in sensory perception.

    PubMed

    Wallach, J V

    2009-01-01

    While the endogenous hallucinogens, N,N-dimethyltryptamine, 5-hydroxy-N,N-dimethyl-tryptamine and 5-methoxy-N,N-dimethyltryptamine, have been acknowledged as naturally occurring components of the mammalian body for decades, their biological function remains as elusive now as it was at the time of their discovery. The recent discovery of the trace amine associated receptors and the activity of DMT and other hallucinogenic compounds at these receptor sites leads to the hypothesis that the endogenous hallucinogens act as neurotransmitters of a subclass of these trace amine receptors. Additionally, while activity at the serotonin 5-HT2A receptor has been proposed as being responsible for the hallucinogenic affects of administered hallucinogens, in their natural setting the 5-HT2A receptor may not interact with the endogenous hallucinogens at all. Additionally 5-HT2A agonist activity is unable to account for the visual altering effects of many of the administered hallucinogens; these effects may be mediated by one of the endogenous hallucinogen trace amine receptors rather than the serotonin 5-HT2A receptor. Therefore, activity at the trace amine receptors, in addition to serotonin receptors, may play a large role in the sensory altering effects of administered hallucinogens and the trace amine receptors along with their endogenous hallucinogen ligands may serve an endogenous role in mediating sensory perception in the mammalian central nervous system. Thus the theory proposed states that these compounds act as true endogenous hallucinogenic transmitters acting in regions of the central nervous system involved in sensory perception.

  3. Alterations in expression of Cat-315 epitope of perineuronal nets during normal ageing, and its modulation by an open-channel NMDA receptor blocker, memantine.

    PubMed

    Yamada, Jun; Ohgomori, Tomohiro; Jinno, Shozo

    2017-03-08

    The perineuronal net (PNN), a specialized aggregate of the extracellular matrix, is involved in neuroprotection against oxidative stress, which is now recognized as a major contributor to age-related decline in brain functions. In this study, we investigated the age-related molecular changes of PNNs using monoclonal antibody Cat-315, which recognizes human natural killer-1 (HNK-1) glycan on aggrecan-based PNNs. Western blot analysis showed that the expression levels of Cat-315 epitope in the hippocampus were higher in middle-aged (MA, 12-month-old) mice than in young adult (YA, 2-month-old) mice. Although there were no differences in the expression levels of Cat-315 epitope between old age (OA, 20-month-old) and MA mice, Cat-315 immunoreactivity was also detected in astrocytes of OA mice. To focus on Cat-315 epitope in PNNs, we used YA and MA mice in the following experiments. Optical disector analysis showed that there were no differences in the numbers of Cat-315-positive (Cat-315(+) ) PNNs between YA and MA mice. Fluorescence intensity analysis indicated that Cat-315 immunoreactivity in PNNs increased with age in the dorsal hippocampus, which is mainly involved in cognitive functions. Administration of an open-channel blocker of NMDA receptor, memantine, reduced the expression levels of Cat-315 epitope in the hippocampus. Furthermore, the numbers of glutamatergic and GABAergic terminals colocalized with Cat-315 epitope around parvalbumin-positive neurons were decreased by memantine. These findings provide novel insight into the involvement of PNNs in normal brain ageing, and suggest that memantine may counteract the age-related alterations in expression levels of Cat-315 epitope via regulation of its subcellular localization. This article is protected by copyright. All rights reserved.

  4. Angiotensin II receptor type 1 blockers suppress the cell proliferation effects of angiotensin II in breast cancer cells by inhibiting AT1R signaling.

    PubMed

    Du, Ning; Feng, Jiang; Hu, Li-Juan; Sun, Xin; Sun, Hai-Bing; Zhao, Yang; Yang, Yi-Ping; Ren, Hong

    2012-06-01

    Chronic stress and a high-fat diet are well-documented risk factors associated with the renin-angiotensin system in the development of breast cancer. The angiotensin II type 1 receptor (AT1R) is a novel component of the renin-angiotensin system. Several recent studies have focused on the function of AT1R in cell proliferation during cancer development. Thus, we hypothesized that angiotensin II (Ang Ⅱ) can promote proliferation of breast cancer via activated AT1R; the activation of AT1R may play an important role in promoting breast cancer growth, and AT1R blocker (ARB) may suppress the promotional effect on proliferation by antagonizing AT1R. The expression level of AT1R was found to be significantly upregulated in breast cancer cells by immunohistochemistry, but no correlation between AT1R expression and ER/PR/Her-2 expression was observed. The AT1R(+)-MCF-7 cell line exhibited high expression of AT1R protein, and we generated the AT1R(-)-MCF-7 cell line using RNA interference. ARBs, and in particular irbesartan, effectively inhibited the effects of Ang II on cell proliferation, cell cycle development and downstream AT1R signaling events, including the activation of the Ras-Raf-MAPK pathway and the transcription factors NF-κB and CREB. Irbesartan also significantly altered p53, PCNA and cyclin D1 expression, which was also influenced by activated AT1R in AT1R(+)-MCF-7 cells. These results suggest that ARBs may be useful as a novel preventive and therapeutic strategy for treating breast cancer.

  5. Role of RAAS and adipokines in cardiovascular protection: effect of different doses of angiotensin II receptor blocker on adipokines level in hypertensive patients.

    PubMed

    Hass, Anat; Oz, Hadar; Mashavi, Margarita; Shargorodsky, Marina

    2014-10-01

    The present study was designed to determine the effect of different doses of the angiotensin II receptor blocker (ARB), candesartan, on circulating adiponectin and leptin levels as well as leptin adiponectin ratio (LAR) in hypertensive patients with multiple cardiovascular risk factors.Sixty-nine hypertensive patients were randomized to three groups: group 1 included patients treated with high doses of Candesartan (32 mg); group 2 included patients treated with conventional doses of Candesartan (16 mg); and group 3 included patients that received antihypertensive treatment other than ARBs or angiotensin-converting-enzyme inhibitors. Patients were evaluated for lipid profile, HbA1C, insulin, C-peptide, c-reactive protein, aldosterone, renin, Homeostasis model assessment-insulin resistance, leptin, adiponectin and LAR. Baseline adiponectin, leptin, and LAR levels did not differ significantly between the three groups. After 6 months of treatment, LAR was significantly higher in group 3 than group 1 (P = .007) or group 2 (P = .023). Differences between effects of high (32 mg) and conventional doses (16 mg) of Candesartan on LAR were not observed (P = .678). Marginal across-group differences were detected for posttreatment circulating adiponectin level (P = .064). Univariate general linear model (GLM) analysis of posttreatment LAR detected significant by-group differences even after adjustment for age, gender, baseline values of LAR, and blood pressure. In this model, group was the only significant predictor of LAR after controlling for these variables. Treatment with high doses of the ARB, candesartan, is associated with significantly reduced LAR and marginally increased circulating adiponectin levels in hypertensive patients with multiple cardiovascular risk factors.

  6. Diuretics enhance effects of increased dose of candesartan on ambulatory blood pressure reduction in Japanese patients with uncontrolled hypertension treated with medium-dose angiotensin II receptor blockers.

    PubMed

    Sakima, Atsushi; Kita, Toshihiro; Nakada, Seigo; Yokota, Naoto; Tamaki, Noboru; Etoh, Takuma; Shimokubo, Toru; Kitamura, Kazuo; Takishita, Shuichi; Ohya, Yusuke

    2014-01-01

    Abstract Although blockade of the renin-angiotensin system by increasing the dose of angiotensin II receptor blockers (ARBs) is recommended to achieve clinical benefits in terms of blood pressure (BP) control and cardiovascular and renal outcomes, the effect of this increased dose on ambulatory BP monitoring has not been evaluated completely in Japanese patients with uncontrolled hypertension undergoing medium-dose ARB therapy. The primary objective of this study was to examine the effect of the relatively high dose of the ARB candesartan (12 mg/day) on 24-h systolic BP and the attainment of target BP levels in uncontrolled hypertension treated with a medium dose of ARBs. A total of 146 hypertensive patients (age: 69.9 ± 9.3 years; females: 65.8%) completed the study. After switching to candesartan at 12 mg/day, all these BP measurements decreased significantly (p<0.001). Attainment of the target office BP (p=0.0014) and 24-h BP levels (p=0.0296) also improved significantly. Subgroup analysis indicated that the reduction of 24-h systolic BP was larger in patients treated with diuretics than those without (p=0.0206). Multivariate analysis revealed a significant correlation between the combined ARB and diuretic therapy, and the change in 24-h systolic BP irrespective of preceding ARBs. In conclusion, the switching therapy to increased dose of candesartan caused significant reductions in office and ambulatory BP levels, and improved the attainment of target BP levels in patients with uncontrolled hypertension treated with a medium dose of ARBs. Combination with diuretics enhanced this effect.

  7. Comparative Effects of Direct Renin Inhibitor and Angiotensin Receptor Blocker on Albuminuria in Hypertensive Patients with Type 2 Diabetes. A Randomized Controlled Trial

    PubMed Central

    Uzu, Takashi; Araki, Shin-ichi; Kashiwagi, Atsunori; Haneda, Masakazu; Koya, Daisuke; Yokoyama, Hiroki; Kida, Yasuo; Ikebuchi, Motoyoshi; Nakamura, Takaaki; Nishimura, Masataka; Takahara, Noriko; Obata, Toshiyuki; Omichi, Nobuyuki; Sakamoto, Katsuhiko; Shingu, Ryosuke; Taki, Hideki; Nagai, Yoshio; Tokuda, Hiroaki; Kitada, Munehiro; Misawa, Miwa; Nishiyama, Akira; Kobori, Hiroyuki; Maegawa, Hiroshi

    2016-01-01

    Background In patients with diabetes, albuminuria is a risk marker of end-stage renal disease and cardiovascular events. An increased renin-angiotensin system activity has been reported to play an important role in the pathological processes in these conditions. We compared the effect of aliskiren, a direct renin inhibitor (DRI), with that of angiotensin receptor blockers (ARBs) on albuminuria and urinary excretion of angiotensinogen, a marker of intrarenal renin-angiotensin system activity. Methods We randomly assigned 237 type 2 diabetic patients with high-normal albuminuria (10 to <30 mg/g of albumin-to-creatinine ratio) or microalbuminuria (30 to <300 mg/g) to the DRI group or ARB group (any ARB) with a target blood pressure of <130/80 mmHg. The primary endpoint was a reduction in albuminuria. Results Twelve patients dropped out during the observation period, and a total of 225 patients were analyzed. During the study period, the systolic and diastolic blood pressures were not different between the groups. The changes in the urinary albumin-to-creatinine ratio from baseline to the end of the treatment period in the DRI and ARB groups were similar (-5.5% and -6.7%, respectively). In contrast, a significant reduction in the urinary excretion of angiotensinogen was observed in the ARB group but not in the DRI group. In the subgroup analysis, a significant reduction in the albuminuria was observed in the ARB group but not in the DRI group among high-normal albuminuria patients. Conclusion DRI and ARB reduced albuminuria in hypertensive patients with type 2 diabetes. In addition, ARB, but not DRI, reduced albuminuria even in patients with normal albuminuria. DRI is not superior to ARB in the reduction of urinary excretion of albumin and angiotensinogen. PMID:28033332

  8. The beta2 adrenergic receptor Gln27Glu polymorphism affects insulin resistance in patients with heart failure: possible modulation by choice of beta blocker.

    PubMed

    Vardeny, Orly; Detry, Michelle A; Moran, John J M; Johnson, Maryl R; Sweitzer, Nancy K

    2008-12-01

    Insulin resistance is prevalent in heart failure (HF) patients, and beta2 adrenergic receptors (beta2-AR) are involved in glucose homeostasis. We hypothesized that beta2-AR Gln27Glu and Arg16Gly polymorphisms affect insulin resistance in HF patients, and we explored if effects of beta2-AR polymorphisms on glucose handling are modified by choice of beta blocker. We studied 30 nondiabetic adults with HF and a history of systolic dysfunction; 15 were receiving metoprolol succinate, and 15 were receiving carvedilol. We measured fasting glucose, insulin, and insulin resistance, and we determined beta2-AR genotypes at codons 27 and 16. The cohort was insulin resistant with a mean HOMA-IR score of 3.4 (95% CI, 2.3 to 4.5; normal value, 1.0). Patients with the Glu27Glu genotype exhibited higher insulin and HOMA-IR compared to individuals carrying a Gln allele (P = 0.019). Patients taking carvedilol demonstrated lower insulin resistance if also carrying a wild-type allele at codon 27 (fasting insulin, 9.8 +/- 10.5 versus 20.5 +/- 2.1 for variant, P = 0.072; HOMA-IR, 2.4 +/- 2.7 versus 5.1 +/- 0.6, P = 0.074); those on metoprolol succinate had high insulin resistance irrespective of genotype. The beta2-AR Glu27Glu genotype may be associated with higher insulin concentrations and insulin resistance in patients with HF. Future studies are needed to confirm whether treatment with carvedilol may be associated with decreased insulin and insulin resistance in beta2-AR codon 27 Gln carriers.

  9. Addition of hydrochlorothiazide to angiotensin receptor blocker therapy can achieve a lower sodium balance with no acceleration of intrarenal renin angiotensin system in patients with chronic kidney disease

    PubMed Central

    Fuwa, Daisuke; Fukuda, Michio; Ogiyama, Yoshiaki; Sato, Ryo; Mizuno, Masashi; Miura, Toshiyuki; Abe-Dohmae, Sumiko; Michikawa, Makoto; Kobori, Hiroyuki; Ohte, Nobuyuki

    2016-01-01

    Objective Angiotensin receptor blockers (ARBs) produce a lower sodium (Na) balance, and the natriuretic effect is enhanced under Na deprivation, despite falls in blood pressure (BP) and glomerular filtration rate (GFR). Methods The effect of additional hydrochlorothiazide (HCTZ; 12.5 mg/day) to ARB treatment (valsartan; 80 mg/day) on glomerulotubular Na balance was evaluated in 23 patients with chronic kidney disease. Results Add-on HCTZ decreased GFR, tubular Na load, and tubular Na reabsorption (tNa), although 24-hour urinary Na excretion (UNaV) remained constant. Daily urinary angiotensinogen excretion (UAGTV, 152±10→82±17 μg/g Cre) reduced (p=0.02). Changes in tubular Na load (r2=0.26) and tNa (r2=0.25) correlated with baseline 24-hour UAGTV. Changes in filtered Na load correlated with changes in nighttime systolic BP (r2=0.17), but not with changes in daytime systolic BP. The change in the tNa to filtered Na load ratio was influenced by the change in daytime UNaV (β=−0.67, F=16.8), rather than the change in nighttime UNaV. Conclusions Lower Na balance was produced by add-on HCTZ to ARB treatment without an increase of intra-renal renin-angiotensin system activity, leading to restoration of nocturnal hypertension. A further study is needed to demonstrate that the reduction of UAGTV by additional diuretics to ARBs prevents the progression of nephropathy or cardiovascular events. PMID:27283968

  10. Comparable effect of aliskiren or a diuretic added on an angiotensin II receptor blocker on augmentation index in hypertension: a multicentre, prospective, randomised study

    PubMed Central

    Miyoshi, Toru; Murakami, Takashi; Sakuragi, Satoru; Doi, Masayuki; Nanba, Seiji; Mima, Atsushi; Tominaga, Youkou; Oka, Takafumi; Kajikawa, Yutaka; Nakamura, Kazufumi; Ito, Hiroshi

    2017-01-01

    Background The effects of antihypertensive drug combination therapy on central blood pressure (BP) and augmentation index (AI) have not been fully elucidated. We investigated the effects of the direct renin inhibitor, aliskiren, or a diuretic added to an angiotensin II receptor blocker on AI in patients with essential hypertension. Methods A 24-week, prospective, multicentre, randomised, open-label study enrolled 103 patients already treated with valsartan. Participants were randomly allocated to receive either valsartan with aliskiren (V+A), or valsartan with trichlormethiazide (V+T). The primary outcome was the change in AI derived from radial artery tonometry. Secondary outcome measures included systolic and diastolic BP, cardio-ankle vascular index (CAVI, which reflects arterial stiffness) and urinary 8-hydroxydeoxyguanosine concentration. Results After 24 weeks, systolic and diastolic BP were significantly reduced in both groups to a broadly comparable extent. There was no significant difference in AI at the end of the study between the V+A group and the V+T group (between-group difference: −2.3%, 95% CI −6.9% to 2.2%, p=0.31). Central BP at the end of the study also did not differ between the two groups (p=0.62). There was no significant difference in the CAVI between the groups at the end of the study. Urinary 8-hydroxydeoxyguanosine concentration was significantly lower in the V+A group than in the V+T group (p<0.01), suggesting that V+A attenuated oxidative stress more than V+T. Conclusion The combination of valsartan and aliskiren had an effect on AI comparable with that of the combination of valsartan and trichlormethiazide. UMIN Clinical Trial Registration number UMIN000005726.

  11. Role of angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, and aldosterone antagonists in the prevention of atrial and ventricular arrhythmias.

    PubMed

    Makkar, Kathy M; Sanoski, Cynthia A; Spinler, Sarah A

    2009-01-01

    Atrial arrhythmias, ventricular arrhythmias, and sudden cardiac death (SCD) are significant health problems and an economic burden to society. The renin-angiotensin-aldosterone system (RAAS) may play a key role in the occurrence of structural and electrical remodeling, potentially explaining the development of atrial and ventricular arrhythmias. Angiotensin II has been shown to regulate cardiac cell proliferation and to modulate cardiac myocyte ion channels. Results of post hoc analyses from prospective clinical trials appear to show that angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) are most effective in the prevention of new-onset atrial fibrillation in patients with heart failure. It is difficult to determine if these agents are useful in the prevention of new-onset atrial fibrillation after myocardial infarction, and available evidence suggests that the benefit of ACE inhibitors and ARBs for prevention of new-onset atrial fibrillation in patients with hypertension appears limited to those with left ventricular hypertrophy. Patients with structural changes in cardiac muscle, such as those with heart failure and left ventricular hypertrophy, appear to benefit the most from RAAS blockade, possibly due to the theory of reversal of cardiac remodeling. There is no evidence, to our knowledge, that either ACE inhibitors or ARBs facilitate direct electrical current cardioversion in patients with atrial fibrillation; however, it appears that RAAS blockade may be useful in the prevention of recurrent atrial fibrillation after direct electrical current cardioversion. Whether ACE inhibitors may prevent life-threatening ventricular arrhythmias or SCD is unclear. Aldosterone antagonists appear to be useful for the prevention of SCD in patients with left ventricular systolic dysfunction. Results from ongoing clinical trials are anticipated to provide further insight on the potential roles of RAAS inhibitors for the prevention of

  12. Differential effects of serotonin (5-HT)2 receptor-targeting ligands on locomotor responses to nicotine-repeated treatment.

    PubMed

    Zaniewska, Magdalena; McCreary, Andrew C; Wydra, Karolina; Filip, Małgorzata

    2010-07-01

    We verified the hypothesis that serotonin (5-HT)(2) receptors control the locomotor effects of nicotine (0.4 mg kg(-1)) in rats by using the 5-HT(2A) receptor antagonist M100907, the preferential 5-HT(2A) receptor agonist DOI, the 5-HT(2C) receptor antagonist SB 242084, and the 5-HT(2C) receptor agonists Ro 60-0175 and WAY 163909. Repeated pairings of a test environment with nicotine for 5 days, on Day 10 significantly augmented the locomotor activity following nicotine administration. Of the investigated 5-HT(2) receptor ligands, M100907 (2 mg kg(-1)) or DOI (1 mg kg(-1)) administered during the first 5 days in combination with nicotine attenuated or enhanced, respectively, the development of nicotine sensitization. Given acutely on Day 10, M100907 (2 mg kg(-1)), Ro 60-0175 (1 mg kg(-1)), and WAY 163909 (1.5 mg kg(-1)) decreased the expression of nicotine sensitization. In another set of experiments, where the nicotine challenge test was performed on Day 15 in animals treated repeatedly (Days: 1-5, 10) with nicotine, none of 5-HT(2) receptor ligands administered during the second withdrawal period (Days: 11-14) to nicotine-treated rats altered the sensitizing effect of nicotine given on Day 15. Our data indicate that 5-HT(2A) receptors (but not 5-HT(2C) receptors) play a permissive role in the sensitizing effects of nicotine, while stimulation of 5-HT(2A) receptors enhances the development of nicotine sensitization and activation of 5-HT(2C) receptors is essential for the expression of nicotine sensitization. Repeated treatment with the 5-HT(2) receptor ligands within the second nicotine withdrawal does not inhibit previously established sensitization.

  13. Combined antagonism of adrenoceptors and dopamine and 5-HT receptors underlies the atypical profile of clozapine.

    PubMed

    Prinssen, E P; Ellenbroek, B A; Cools, A R

    1994-09-01

    Previous studies have shown that alpha 1-adrenoceptors, dopamine D1-like and 5-HT2A receptors play an important role in the effects of the atypical neuroleptic, clozapine, on the parameter modelling antipsychotic efficacy in the paw test. Therefore, it became of interest to investigate whether antagonism of all these receptors together would give rise to effects characteristic of clozapine. The effects of the combined administration of the alpha 1-adrenoceptor antagonist phenoxybenzamine, the dopamine D1 receptor antagonist, SCH 39166 (4-(4-chloro-3-methoxyphenyl)-1,2- dihydronaphthalene), and the 5-HT2A receptor antagonist, ketanserin, were therefore measured in the paw test. The present data show that all three drugs together, but not simply combinations of two out of three, produced a profile similar to that of clozapine: a significant increase in the parameter modelling antipsychotic efficacy and no change in the parameter modelling extrapyramidal side-effects.

  14. Inhibition of alpha oscillations through serotonin-2A receptor activation underlies the visual effects of ayahuasca in humans.

    PubMed

    Valle, Marta; Maqueda, Ana Elda; Rabella, Mireia; Rodríguez-Pujadas, Aina; Antonijoan, Rosa Maria; Romero, Sergio; Alonso, Joan Francesc; Mañanas, Miquel Àngel; Barker, Steven; Friedlander, Pablo; Feilding, Amanda; Riba, Jordi

    2016-07-01

    Ayahuasca is an Amazonian psychotropic plant tea typically obtained from two plants, Banisteriopsis caapi and Psychotria viridis. It contains the psychedelic 5-HT2A and sigma-1 agonist N,N-dimethyltryptamine (DMT) plus β-carboline alkaloids with monoamine-oxidase (MAO)-inhibiting properties. Although the psychoactive effects of ayahuasca have commonly been attributed solely to agonism at the 5-HT2A receptor, the molecular target of classical psychedelics, this has not been tested experimentally. Here we wished to study the contribution of the 5-HT2A receptor to the neurophysiological and psychological effects of ayahuasca in humans. We measured drug-induced changes in spontaneous brain oscillations and subjective effects in a double-blind randomized placebo-controlled study involving the oral administration of ayahuasca (0.75mg DMT/kg body weight) and the 5-HT2A antagonist ketanserin (40mg). Twelve healthy, experienced psychedelic users (5 females) participated in four experimental sessions in which they received the following drug combinations: placebo+placebo, placebo+ayahuasca, ketanserin+placebo and ketanserin+ayahuasca. Ayahuasca induced EEG power decreases in the delta, theta and alpha frequency bands. Current density in alpha-band oscillations in parietal and occipital cortex was inversely correlated with the intensity of visual imagery induced by ayahuasca. Pretreatment with ketanserin inhibited neurophysiological modifications, reduced the correlation between alpha and visual effects, and attenuated the intensity of the subjective experience. These findings suggest that despite the chemical complexity of ayahuasca, 5-HT2A activation plays a key role in the neurophysiological and visual effects of ayahuasca in humans.

  15. Nifedipine, a calcium channel blocker, inhibits advanced glycation end product (AGE)-elicited mesangial cell damage by suppressing AGE receptor (RAGE) expression via peroxisome proliferator-activated receptor-gamma activation

    SciTech Connect

    Matsui, Takanori; Yamagishi, Sho-ichi; Takeuchi, Masayoshi; Ueda, Seiji; Fukami, Kei; Okuda, Seiya

    2009-07-24

    The interaction between advanced glycation end products (AGE) and their receptor RAGE mediates the progressive alteration in renal architecture and loss of renal function in diabetic nephropathy. Oxidative stress generation and inflammation also play a central role in diabetic nephropathy. This study investigated whether and how nifedipine, a calcium channel blocker (CCB), blocked the AGE-elicited mesangial cell damage in vitro. Nifedipine, but not amlodipine, a control CCB, down-regulated RAGE mRNA levels and subsequently reduced reactive oxygen species (ROS) generation in AGE-exposed mesangial cells. AGE increased mRNA levels of vascular cell adhesion molecule-1 (VCAM-1) and induced monocyte chemoattractant protein-1 (MCP-1) production in mesangial cells, both of which were prevented by the treatment with nifedipine, but not amlodipine. The beneficial effects of nifedipine on AGE-exposed mesangial cells were blocked by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}). Although nifedipine did not affect expression levels of PPAR-{gamma}, it increased the PPAR-{gamma} transcriptional activity in mesangial cells. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-inflammatory agent against AGE by suppressing RAGE expression in cultured mesangial cells via PPAR-{gamma} activation.

  16. Is it safe to use TNF-α blockers for systemic inflammatory disease in patients with heart failure? Importance of dosage and receptor specificity.

    PubMed

    Diamantopoulos, Andreas P; Larsen, Alf I; Omdal, Roald

    2013-09-01

    Tumor necrosis factor-alpha (TNF-α) blockers are widely used in the treatment of chronic inflammatory diseases, especially chronic arthritis. Current guidelines advise against the use of such agents in patients who have a concomitant heart failure. Consequently, a group of patients with a devastating inflammatory disease cannot benefit from an excellent treatment option. After a critical review of the current literature, we conclude that there is not sufficient evidence to warn against such a regimen if recommended standard doses are used. A negative effect on the heart function seems to occur if unconventional high doses of TNF-α blockers are given. The theoretical background for this is discussed.

  17. Impact of drug price adjustments on utilization of and expenditures on angiotensin-converting enzyme inhibitors and angiotensin receptor blockers in Taiwan

    PubMed Central

    2012-01-01

    Background A previous study has suggested that drug price adjustments allow physicians in Taiwan to gain greater profit by prescribing generic drugs. To better understand the effect of price adjustments on physician choice, this study used renin-angiotensin drugs (including angiotensin-converting enzyme inhibitors [ACEIs] and angiotensin receptor blockers [ARBs]) to examine the impact of price adjustments on utilization of and expenditures on patented and off-patent drugs with the same therapeutic indication. Methods Using the Taiwan’s Longitudinal Health Insurance Database (2005), we identified 147,157 patients received ACEIs and/or ARBs between 1997 and 2008. The annual incident and prevalent users of ACEIs, ARBs and overall renin-angiotensin drugs were examined. Box-Tiao intervention analysis was applied to assess the impact of price adjustments on monthly utilization of and expenditures on these drugs. ACEIs were divided into patented and off-patent drugs, off-patent ACEIs were further divided into original brands and generics, and subgroup analyses were performed. Results The number of incident renin-angiotensin drug users decreased over the study period. The number of prevalent ARB users increased and exceeded the cumulative number of first-time renin-angiotensin drug users starting on ARBs, implying that some patients switched from ACEIs to ARBs. After price adjustments, long term trend increases in utilization were observed for patented ACEIs and ARBs; a long-term trend decrease was observed for off-patent ACEIs; long-term trend change was not significant for overall renin-angiotensin drugs. Significant long-term trend increases in expenditures were observed for patented ACEIs after price adjustment in 2007 (200.9%, p = 0.0088) and in ARBs after price adjustments in 2001 (173.4%, p < 0.0001) and 2007 (146.3%, p < 0.0001). A significant long-term trend decrease in expenditures was observed for off-patent ACEIs after 2004 price adjustment (

  18. Effect of angiotensin-converting enzyme inhibitors and receptor blockers on appropriate implantable cardiac defibrillator shock in patients with severe systolic heart failure (from the GRADE Multicenter Study).

    PubMed

    AlJaroudi, Wael A; Refaat, Marwan M; Habib, Robert H; Al-Shaar, Laila; Singh, Madhurmeet; Gutmann, Rebecca; Bloom, Heather L; Dudley, Samuel C; Ellinor, Patrick T; Saba, Samir F; Shalaby, Alaa A; Weiss, Raul; McNamara, Dennis M; Halder, Indrani; London, Barry

    2015-04-01

    Sudden cardiac death (SCD) is a leading cause of mortality in patients with cardiomyopathy. Although angiotensin-converting enzyme inhibitors (ACEi) and angiotensin receptor blockers (ARBs) decrease cardiac mortality in these cohorts, their role in preventing SCD has not been well established. We sought to determine whether the use of ACEi or ARB in patients with cardiomyopathy is associated with a lower incidence of appropriate implantable cardiac defibrillator (ICD) shocks in the Genetic Risk Assessment of Defibrillator Events study that included subjects with an ejection fraction of ≤30% and ICDs. Treatment with ACEi/ARB versus no-ACEi/ARB was physician dependent. There were 1,509 patients (mean age [SD] 63 [12] years, 80% men, mean [SD] EF 21% [6%]) with 1,213 (80%) on ACEi/ARB and 296 (20%) not on ACEi/ARB. We identified 574 propensity-matched patients (287 in each group). After a mean (SD) of 2.5 (1.9) years, there were 334 (22%) appropriate shocks in the entire cohort. The use of ACEi/ARB was associated with lower incidence of shocks at 1, 3, and 5 years in the matched cohort (7.7%, 16.7%, and 18.5% vs 13.2%, 27.5%, and 32.0%; RR = 0.61 [0.43 to 0.86]; p = 0.005). Among patients with glomerular filtration rate (GFR) >60 and 30 to 60 ml/min/1.73 m(2), those on no-ACEi/ARB were at 45% and 77% increased risk of ICD shock compared with those on ACEi/ARB, respectively. ACEi/ARB were associated with significant lower incidence of appropriate ICD shock in patients with cardiomyopathy and GFR ≥30 ml/min/1.73 m(2) and with neutral effect in those with GFR <30 ml/min/1.73 m(2).

  19. β-Adrenergic blockers.

    PubMed

    Frishman, William H; Saunders, Elijah

    2011-09-01

    KEY POINTS AND PRACTICAL RECOMMENDATIONS: •  β-Blockers are appropriate treatment for patients with hypertension and those who have concomitant ischemic heart disease, heart failure, obstructive cardiomyopathy, or certain arrhythmias. •  β-Blockers can be used in combination with other antihypertensive drugs to achieve maximal blood pressure control. Labetalol can be used in hypertensive emergencies and urgencies. •  β-Blockers may be useful in patients having hyperkinetic circulation (palpitations, tachycardia, hypertension, and anxiety), migraine headache, and essential tremor. •  β-Blockers are highly heterogeneous with respect to various pharmacologic effects: degree of intrinsic sympathomimetic activity, membrane-stabilizing activity, β(1) selectivity, α(1) -adrenergic-blocking effect, tissue solubility, routes of systemic elimination, potencies and duration of action, and specific effects may be important in the selection of a drug for clinical use. •  β-Blocker usage to reduce perioperative ischemia and cardiovascular complications may not benefit as many patients as was once hoped and may actually cause harm in some individuals. Currently the best evidence supports β-blocker use in two patient groups: patients undergoing vascular surgery with known ischemic heart disease or multiple risk factors for it and for patients already receiving β-blockers for known cardiovascular conditions.

  20. Beta blockers in hypertension.

    PubMed

    Thadani, U

    1983-11-10

    Beta-adrenoceptor antagonists are effective in the management of patients with mild-to-moderate hypertension. Noncardioselective agents, cardioselective agents and beta blockers with intrinsic sympathomimetic activity (ISA) are equally effective, provided they are used in equipotent doses. Beta blockers can be used as first-line therapy in the management of hypertension and can be safely combined with diuretics, vasodilators, or both, for a better control of blood pressure. The exact mechanism by which beta blockers decrease blood pressure remains speculative, but they all reduce cardiac output during long-term therapy; drugs with ISA lower cardiac output and heart rate less than do drugs without ISA. Pharmacokinetic properties of beta blockers differ widely; drugs metabolized by the liver have shorter plasma half-lives than drugs primarily excreted by the kidneys. Although many of the side effects of various beta blockers are similar, differences in water and lipid solubility account for a higher incidence of central nervous system side effects with lipid-soluble drugs (such as propranolol and metoprolol) than with hydrophilic drugs (such as atenolol and timolol). The incidence of cold extremities has been reported to be less with drugs with ISA, and the incidence of bronchospasm less with cardioselective drugs. In the management of uncomplicated mild-to-moderate hypertension, all beta blockers are equally effective and produce less troublesome side effects than alternative antihypertensive agents. For effective therapy beta blockers can be used in 2 divided daily doses or even once daily.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Time to virological failure with atazanavir/ritonavir and lopinavir/ritonavir, with or without an H2-receptor blocker, not significantly different in HIV observational database study.

    PubMed

    Keiser, Philip H; Nassar, Naiel

    2008-08-01

    A retrospective electronic database study was conducted to determine any differences in time to virological failure and percent of virological failure among HIV-infected patients concurrently receiving H2-blockers versus patients not receiving these agents while receiving atazanavir (ATV)/ritonavir (r) or lopinavir (LPV)/r-containing antiretroviral treatment regimens. Data were culled from October 2003 (when ATV became commercially available) through February 2006. Virological failure was defined as (1) two plasma HIV-1 RNA levels >400 copies/mL after at least one HIV-1 RNA level below the level of detection or (2) failure to achieve an HIV-1 RNA <400 copies/mL within 24 weeks. Data from 267 ATV/r-treated patients who met the case definition were compared with data from 670 LPV/r-treated patients. Approximately 10% of the ATV/r group received concurrent H2-blockers when compared with 20% of the LPV/r group. Multivariate analysis showed no statistically significant differences regarding time to virological failure between or among the four subgroups, adjusting for differences in baseline characteristics (P = 0.79, log-rank test). At 750 days following treatment initiation, the proportion of patients not experiencing virological failure was 56% in the ATV/r-blocker subgroup, 48% in the ATV/r-alone subgroup, 45% in the LPV/r-alone subgroup and 42% in the LPV/r-blocker subgroup.

  2. Aromatic interactions impact ligand binding and function at serotonin 5-HT2C G protein-coupled receptors: receptor homology modelling, ligand docking, and molecular dynamics results validated by experimental studies

    NASA Astrophysics Data System (ADS)

    Córdova-Sintjago, Tania; Villa, Nancy; Fang, Lijuan; Booth, Raymond G.

    2014-02-01

    The serotonin (5-hydroxytryptamine, 5-HT) 5-HT2 G protein-coupled receptor (GPCR) family consists of types 2A, 2B, and 2C that share ∼75% transmembrane (TM) sequence identity. Agonists for 5-HT2C receptors are under development for psychoses; whereas, at 5-HT2A receptors, antipsychotic effects are associated with antagonists - in fact, 5-HT2A agonists can cause hallucinations and 5-HT2B agonists cause cardiotoxicity. It is known that 5-HT2A TM6 residues W6.48, F6.51, and F6.52 impact ligand binding and function; however, ligand interactions with these residues at the 5-HT2C receptor have not been reported. To predict and validate molecular determinants for 5-HT2C-specific activation, results from receptor homology modelling, ligand docking, and molecular dynamics simulation studies were compared with experimental results for ligand binding and function at wild type and W6.48A, F6.51A, and F6.52A point-mutated 5-HT2C receptors.

  3. Redefining beta-blocker use in hypertension: selecting the right beta-blocker and the right patient.

    PubMed

    Mann, Samuel J

    2017-01-01

    Randomized controlled trials have concluded that the cardiovascular outcome of first-step treatment of hypertension with traditional vasoconstricting beta-blockers is inferior to treatment with other antihypertensive drug classes. Beta-blocker use is also associated with undesirable side effects. Consequently, some recent guidelines consider beta-blockers an inferior option for first-step treatment of hypertension. Despite this, beta-blockers are still widely prescribed, and likely overused, in the management of hypertension. It is the contention of this perspective that beta-blockers do have an important role in treating hypertension, but their use needs to be much better targeted, by better identification of both the right patient and the right beta-blocker. Identifying the right patient involves consideration of underlying mechanisms of hypertension. In the absence of comorbidities for which a beta-blocker is indicated, beta-blockers would not seem to be the preferred treatment for patients with either sodium/volume-mediated hypertension, for which they are usually ineffective, or for those with renin-angiotensin system-mediated hypertension, for which angiotensin-converting enzyme inhibitors and angiotensin receptor blockers provide equal antihypertensive efficacy with evidence of better outcome and fewer adverse effects. Beta-blockers would instead appear to be best suited for patients with sympathetically driven, that is, neurogenic, hypertension, whether as a first-step drug, such as in patients with hypertension in the acute post-stroke period, in so-called "hyperkinetic" patients, and in patients with labile hypertension, or as an add-on drug in patients with resistant hypertension. In choosing among the beta-blockers, combined alpha/beta-blockade offers advantages over beta-blocker monotherapy and merits greater clinical and research attention. Finally, unreliable bioavailability greatly interferes with the effectiveness of lipophilic, but not

  4. The noncompetitive blocker ( sup 3 H)chlorpromazine labels three amino acids of the acetylcholine receptor gamma subunit: Implications for the alpha-helical organization of regions MII and for the structure of the ion channel

    SciTech Connect

    Revah, F.; Galzi, J.L.; Giraudat, J.; Haumont, P.Y.; Lederer, F.; Changeux, J.P. )

    1990-06-01

    Labeling studies of Torpedo marmorata nicotinic acetylcholine receptor with the noncompetitive channel blocker ({sup 3}H)chlorpromazine have led to the initial identification of amino acids plausibly participating to the walls of the ion channel on the alpha, beta, and delta subunits. We report here results obtained with the gamma subunit, which bring additional information on the structure of the channel. After photolabeling of the membrane-bound receptor under equilibrium conditions in the presence of agonist and with or without phencyclidine (a specific ligand for the high-affinity site for noncompetitive blockers), the purified labeled gamma subunit was digested with trypsin, and the resulting fragments were fractionated by HPLC. Sequence analysis of peptide mixtures containing various amounts of highly hydrophobic fragments showed that three amino acids are labeled by ({sup 3}H)chlorpromazine in a phencyclidine-sensitive manner: Thr-253, Ser-257, and Leu-260. These residues all belong to the hydrophobic and putative transmembrane region MII of the gamma subunit. Their distribution along the sequence is consistent with an alpha-helical organization of this segment. The ({sup 3}H)chlorpromazine-labeled amino acids are conserved at homologous positions in the known sequences of other ligand-gated ion channels and may, thus, play a critical role in ion-transport mechanisms.

  5. In silico optimization of pharmacokinetic properties and receptor binding affinity simultaneously: a 'parallel progression approach to drug design' applied to β-blockers.

    PubMed

    Advani, Poonam; Joseph, Blessy; Ambre, Premlata; Pissurlenkar, Raghuvir; Khedkar, Vijay; Iyer, Krishna; Gabhe, Satish; Iyer, Radhakrishnan P; Coutinho, Evans

    2016-01-01

    The present work exploits the potential of in silico approaches for minimizing attrition of leads in the later stages of drug development. We propose a theoretical approach, wherein 'parallel' information is generated to simultaneously optimize the pharmacokinetics (PK) and pharmacodynamics (PD) of lead candidates. β-blockers, though in use for many years, have suboptimal PKs; hence are an ideal test series for the 'parallel progression approach'. This approach utilizes molecular modeling tools viz. hologram quantitative structure activity relationships, homology modeling, docking, predictive metabolism, and toxicity models. Validated models have been developed for PK parameters such as volume of distribution (log Vd) and clearance (log Cl), which together influence the half-life (t1/2) of a drug. Simultaneously, models for PD in terms of inhibition constant pKi have been developed. Thus, PK and PD properties of β-blockers were concurrently analyzed and after iterative cycling, modifications were proposed that lead to compounds with optimized PK and PD. We report some of the resultant re-engineered β-blockers with improved half-lives and pKi values comparable with marketed β-blockers. These were further analyzed by the docking studies to evaluate their binding poses. Finally, metabolic and toxicological assessment of these molecules was done through in silico methods. The strategy proposed herein has potential universal applicability, and can be used in any drug discovery scenario; provided that the data used is consistent in terms of experimental conditions, endpoints, and methods employed. Thus the 'parallel progression approach' helps to simultaneously fine-tune various properties of the drug and would be an invaluable tool during the drug development process.

  6. Hippocampal serotonin-2A receptor-immunoreactive neurons density increases after testosterone therapy in the gonadectomized male mice

    PubMed Central

    Nikmahzar, Emsehgol; Ghaemi, Amir; Naseri, Gholam Reza; Moharreri, Ali Reza; Lotfinia, Ahmad Ali

    2016-01-01

    The change of steroid levels may also exert different modulatory effects on the number and class of serotonin receptors present in the plasma membrane. The effects of chronic treatment of testosterone for anxiety were examined and expression of 5-HT2A serotonergic receptor, neuron, astrocyte, and dark neuron density in the hippocampus of gonadectomized male mice was determined. Thirty-six adult male NMRI mice were randomly divided into six groups: intact-no testosterone treatment (No T), gonadectomy (GDX)-No T, GDX-Vehicle, GDX-6.25 mg/kg testosterone (T), GDX-12.5 mg/kg T, and GDX-25 mg/kg T. Anxiety-related behavior was evaluated using elevated plus maze apparatus. The animals were anesthetized after 48 hours after behavioral testing, and decapitated and micron slices were prepared for immunohistochemical as well as histopathological assessment. Subcutaneous injection of testosterone (25 mg/kg) may induce anxiogenic-like behavior in male mice. In addition, immunohistochemical data reveal reduced expression of 5-HT2A serotonergic receptor after gonadectomy in all areas of the hippocampus. However, treatment with testosterone could increase the mean number of dark neurons as well as immunoreactive neurons in CA1 and CA3 area, dose dependently. The density of 5-HT2A receptor-immunoreactive neurons may play a crucial role in the induction of anxiety like behavior. As reduction in such receptor expression have shown to significantly enhance anxiety behaviors. However, replacement of testosterone dose dependently enhances the number of 5-HT2A receptor-immunoreactive neurons and interestingly also reduced anxiety like behaviors. PMID:28127501

  7. Marine Bivalve Cellular Responses to Beta Blocker Exposures

    EPA Science Inventory

    β blockers are prescription drugs used for medical treatment of hypertension and arrhythmias. They prevent binding of agonists such as catecholamines to β adrenoceptors. In the absence of agonist induced activation of the receptor, adenylate cyclase is not activated whi...

  8. Effects of serotonin 2A/1A receptor stimulation on social exclusion processing.

    PubMed

    Preller, Katrin H; Pokorny, Thomas; Hock, Andreas; Kraehenmann, Rainer; Stämpfli, Philipp; Seifritz, Erich; Scheidegger, Milan; Vollenweider, Franz X

    2016-05-03

    Social ties are crucial for physical and mental health. However, psychiatric patients frequently encounter social rejection. Moreover, an increased reactivity to social exclusion influences the development, progression, and treatment of various psychiatric disorders. Nevertheless, the neuromodulatory substrates of rejection experiences are largely unknown. The preferential serotonin (5-HT) 2A/1A receptor agonist, psilocybin (Psi), reduces the processing of negative stimuli, but whether 5-HT2A/1A receptor stimulation modulates the processing of negative social interactions remains unclear. Therefore, this double-blind, randomized, counterbalanced, cross-over study assessed the neural response to social exclusion after the acute administration of Psi (0.215 mg/kg) or placebo (Pla) in 21 healthy volunteers by using functional magnetic resonance imaging (fMRI) and resting-state magnetic resonance spectroscopy (MRS). Participants reported a reduced feeling of social exclusion after Psi vs. Pla administration, and the neural response to social exclusion was decreased in the dorsal anterior cingulate cortex (dACC) and the middle frontal gyrus, key regions for social pain processing. The reduced neural response in the dACC was significantly correlated with Psi-induced changes in self-processing and decreased aspartate (Asp) content. In conclusion, 5-HT2A/1A receptor stimulation with psilocybin seems to reduce social pain processing in association with changes in self-experience. These findings may be relevant to the normalization of negative social interaction processing in psychiatric disorders characterized by increased rejection sensitivity. The current results also emphasize the importance of 5-HT2A/1A receptor subtypes and the Asp system in the control of social functioning, and as prospective targets in the treatment of sociocognitive impairments in psychiatric illnesses.

  9. Effects of serotonin 2A/1A receptor stimulation on social exclusion processing

    PubMed Central

    Preller, Katrin H.; Pokorny, Thomas; Hock, Andreas; Kraehenmann, Rainer; Stämpfli, Philipp; Seifritz, Erich; Scheidegger, Milan; Vollenweider, Franz X.

    2016-01-01

    Social ties are crucial for physical and mental health. However, psychiatric patients frequently encounter social rejection. Moreover, an increased reactivity to social exclusion influences the development, progression, and treatment of various psychiatric disorders. Nevertheless, the neuromodulatory substrates of rejection experiences are largely unknown. The preferential serotonin (5-HT) 2A/1A receptor agonist, psilocybin (Psi), reduces the processing of negative stimuli, but whether 5-HT2A/1A receptor stimulation modulates the processing of negative social interactions remains unclear. Therefore, this double-blind, randomized, counterbalanced, cross-over study assessed the neural response to social exclusion after the acute administration of Psi (0.215 mg/kg) or placebo (Pla) in 21 healthy volunteers by using functional magnetic resonance imaging (fMRI) and resting-state magnetic resonance spectroscopy (MRS). Participants reported a reduced feeling of social exclusion after Psi vs. Pla administration, and the neural response to social exclusion was decreased in the dorsal anterior cingulate cortex (dACC) and the middle frontal gyrus, key regions for social pain processing. The reduced neural response in the dACC was significantly correlated with Psi-induced changes in self-processing and decreased aspartate (Asp) content. In conclusion, 5-HT2A/1A receptor stimulation with psilocybin seems to reduce social pain processing in association with changes in self-experience. These findings may be relevant to the normalization of negative social interaction processing in psychiatric disorders characterized by increased rejection sensitivity. The current results also emphasize the importance of 5-HT2A/1A receptor subtypes and the Asp system in the control of social functioning, and as prospective targets in the treatment of sociocognitive impairments in psychiatric illnesses. PMID:27091970

  10. Multiple 5-HT receptors in the guinea-pig superior cervical ganglion.

    PubMed Central

    Watkins, C. J.; Newberry, N. R.

    1996-01-01

    1. We have studied the pharmacology of the depolarization by 5-hydroxytryptamine (5-HT) of the guinea-pig isolated superior cervical ganglion (SCG) using the grease-gap technique. We studied the effects of selective and non-selective antagonists on the responses to 5-HT and other 5-HT receptor agonists. 2. We have extended the pharmacology of the 5-HT3 receptor in this preparation by studying the effects of granisetron, BRL 46470 and mianserin on the concentration-response curve (CRC) to 2-methyl-5-HT. As with other 5-HT3 receptor antagonists, these compounds exhibited a lower affinity for guinea-pig 5-HT3 receptors than for rat 5-HT3 receptors. 3. We have confirmed that low concentrations of 5-HT (< or = 1 microM) mediate ketanserin-sensitive responses and higher concentrations of 5-HT also recruit 5-HT3 receptors. The responses to low concentrations of 5-HT were antagonized by low concentrations of ketanserin, spiperone, mianserin, DOI and LSD indicating probably mediation by 5-HT2A receptors. At high concentrations, the hallucinogen, DOI, but not LSD, evoked a ketanserin-sensitive depolarization. 4. Although mianserin could bind to the 5-HT2A receptors in this preparation, we could not demonstrate a down-regulation of depolarizations evoked by these receptors after a 10 day oral treatment with mianserin (10 mg kg-1, daily). 5. 5-Carboxamidotryptamine (5-CT) evoked a prolonged depolarization. Although high concentrations of 5-CT (> or = microM) appeared to activate 5-HT2A receptors, lower concentrations of 5-CT evoked a response with a distinct pharmacology. After studying the action of 20 selective and non-selective 5-HT receptor ligands we believe that this response may be mediated by a novel receptor; but its pharmacology is closest to that of receptors in the 5-HT2 receptor family. Like 5-CT, 5-HT (3-300 microM) could evoke an LSD-sensitive response in the presence of the 5-HT2 receptor antagonist, ketanserin and the 5-HT3 receptor antagonist, tropisetron

  11. Rationale and study design of the Prospective comparison of Angiotensin Receptor neprilysin inhibitor with Angiotensin receptor blocker MEasuring arterial sTiffness in the eldERly (PARAMETER) study

    PubMed Central

    Williams, Bryan; Cockcroft, John R; Kario, Kazuomi; Zappe, Dion H; Cardenas, Pamela; Hester, Allen; Brunel, Patrick; Zhang, Jack

    2014-01-01

    Introduction Hypertension in elderly people is characterised by elevated systolic blood pressure (SBP) and increased pulse pressure (PP), which indicate large artery ageing and stiffness. LCZ696, a first-in-class angiotensin receptor neprilysin inhibitor (ARNI), is being developed to treat hypertension and heart failure. The Prospective comparison of Angiotensin Receptor neprilysin inhibitor with Angiotensin receptor blocker MEasuring arterial sTiffness in the eldERly (PARAMETER) study will assess the efficacy of LCZ696 versus olmesartan on aortic stiffness and central aortic haemodynamics. Methods and analysis In this 52-week multicentre study, patients with hypertension aged ≥60 years with a mean sitting (ms) SBP ≥150 to <180 and a PP>60 mm Hg will be randomised to once daily LCZ696 200 mg or olmesartan 20 mg for 4 weeks, followed by a forced-titration to double the initial doses for the next 8 weeks. At 12–24 weeks, if the BP target has not been attained (msSBP <140  and ms diastolic BP <90 mm Hg), amlodipine (2.5–5 mg) and subsequently hydrochlorothiazide (6.25–25 mg) can be added. The primary and secondary endpoints are changes from baseline in central aortic systolic pressure (CASP) and central aortic PP (CAPP) at week 12, respectively. Other secondary endpoints are the changes in CASP and CAPP at week 52. A sample size of 432 randomised patients is estimated to ensure a power of 90% to assess the superiority of LCZ696 over olmesartan at week 12 in the change from baseline of mean CASP, assuming an SD of 19 mm Hg, the difference of 6.5 mm Hg and a 15% dropout rate. The primary variable will be analysed using a two-way analysis of covariance. Ethics and dissemination The study was initiated in December 2012 and final results are expected in 2015. The results of this study will impact the design of future phase III studies assessing cardiovascular protection. Clinical trials identifier EUDract number 2012

  12. Mammal-like striatal functions in Anolis. I. Distribution of serotonin receptor subtypes, and absence of striosome and matrix organization.

    PubMed

    Clark, E C; Baxter, L R

    2000-11-01

    Serotonin (5-HT) 5-HT(2A) and 5-HT(2C) receptors are thought to play important roles in the mammalian striatum. As basal ganglia functions in general are thought highly conserved among amniotes, we decided to use in situ autoradiographic methods to determine the occurrence and distribution of pharmacologically mammal-like 5-HT(2A) and 5-HT(2C) receptors in the lizard, Anolis carolinensis, with particular attention to the striatum. We also determined the distributions of 5-HT(1A), 5-HT(1B/D), 5 HT(3), and 5-HT(uptake) receptors for comparison. All 5-HT receptors examined showed pharmacological binding specificity, and forebrain binding density distributions that resembled those reported for mammals. Anolis 5 HT(2A/C) and 5-HT(1A) site distributions were similar in both in vivo and ex vivo binding experiments. 5-HT(2A & C) receptors occur in both high and low affinity states, the former having preferential affinity for (125)I-(+/-)-2,5-dimethoxy-4-iodo-amphetamine hydrochloride ((125)I-DOI). In mammals (125)I-DOI binding shows a patchy density distribution in the striatum, being more dense in striosomes than in surrounding matrix. There was no evidence of any such patchy density of (125)I-DOI binding in the anole striatum, however. As a further indication that anoles do not possess a striosome and matrix striatal organization, neither (3)H-naloxone binding nor histochemical staining for acetylcholinesterase activity (AChE) were patchy. AChE did show a band-like striatal distribution, however, similar to that seen in birds.

  13. The alpha2 adrenergic receptor antagonist idazoxan, but not the serotonin-2A receptor antagonist M100907, partially attenuated reward deficits associated with nicotine, but not amphetamine, withdrawal in rats.

    PubMed

    Semenova, Svetlana; Markou, Athina

    2010-10-01

    Based on phenomenological similarities between anhedonia (reward deficits) associated with drug withdrawal and the negative symptoms of schizophrenia, we showed previously that the atypical antipsychotic clozapine attenuated reward deficits associated with psychostimulant withdrawal. Antagonism of alpha(2) adrenergic and 5-HT(2A) receptors may contribute to these effects of clozapine. We investigated here whether blockade of alpha(2) or 5-HT(2A) receptors by idazoxan and M100907, respectively, would reverse anhedonic aspects of psychostimulant withdrawal. Idazoxan treatment facilitated recovery from spontaneous nicotine, but not amphetamine, withdrawal by attenuating reward deficits and increase the number of somatic signs. Thus, alpha(2) adrenoceptor blockade may have beneficial effects against nicotine withdrawal and may be involved in the effects of clozapine previously observed. M100907 worsened the anhedonia associated with nicotine and amphetamine withdrawal, suggesting that monotherapy with M100907 may exacerbate the expression of the negative symptoms of schizophrenia or nicotine withdrawal symptoms in people, including schizophrenia patients, attempting to quit smoking.

  14. Maternal influenza viral infection causes schizophrenia-like alterations of 5-HT₂A and mGlu₂ receptors in the adult offspring.

    PubMed

    Moreno, José L; Kurita, Mitsumasa; Holloway, Terrell; López, Javier; Cadagan, Richard; Martínez-Sobrido, Luis; García-Sastre, Adolfo; González-Maeso, Javier

    2011-02-02

    Epidemiological studies indicate that maternal influenza viral infection increases the risk for schizophrenia in the adult offspring. The serotonin and glutamate systems are suspected in the etiology of schizophrenia, as well as in the mechanism of action of antipsychotic drugs. The effects of hallucinogens, such as psilocybin and mescaline, require the serotonin 5-HT(2A) receptor, and induce schizophrenia-like psychosis in humans. In addition, metabotropic glutamate receptor mGlu(2/3) agonists show promise as a new treatment for schizophrenia. Here, we investigated the level of expression and behavioral function of 5-HT(2A) and mGlu(2) receptors in a mouse model of maternal influenza viral infection. We show that spontaneous locomotor activity is diminished by maternal infection with the mouse-adapted influenza A/WSN/33 (H1N1) virus. The behavioral responses to hallucinogens and glutamate antipsychotics are both affected by maternal exposure to influenza virus, with increased head-twitch response to hallucinogens and diminished antipsychotic-like effect of the glutamate agonist. In frontal cortex of mice born to influenza virus-infected mothers, the 5-HT(2A) receptor is upregulated and the mGlu(2) receptor is downregulated, an alteration that may be involved in the behavioral changes observed. Additionally, we find that the cortical 5-HT(2A) receptor-dependent signaling pathways are significantly altered in the offspring of infected mothers, showing higher c-fos, egr-1, and egr-2 expression in response to the hallucinogenic drug DOI. Identifying a biochemical alteration that parallels the behavioral changes observed in a mouse model of prenatal viral infection may facilitate targeting therapies for treatment and prevention of schizophrenia.

  15. Clinical impacts of additive use of olmesartan in hypertensive patients with chronic heart failure: the supplemental benefit of an angiotensin receptor blocker in hypertensive patients with stable heart failure using olmesartan (SUPPORT) trial.

    PubMed

    Sakata, Yasuhiko; Shiba, Nobuyuki; Takahashi, Jun; Miyata, Satoshi; Nochioka, Kotaro; Miura, Masanobu; Takada, Tsuyoshi; Saga, Chiharu; Shinozaki, Tsuyoshi; Sugi, Masafumi; Nakagawa, Makoto; Sekiguchi, Nobuyo; Komaru, Tatsuya; Kato, Atsushi; Fukuchi, Mitsumasa; Nozaki, Eiji; Hiramoto, Tetsuya; Inoue, Kanichi; Goto, Toshikazu; Ohe, Masatoshi; Tamaki, Kenji; Ibayashi, Setsuro; Ishide, Nobumasa; Maruyama, Yukio; Tsuji, Ichiro; Shimokawa, Hiroaki

    2015-04-14

    We examined whether an additive treatment with an angiotensin receptor blocker, olmesartan, reduces the mortality and morbidity in hypertensive patients with chronic heart failure (CHF) treated with angiotensin-converting enzyme (ACE) inhibitors, β-blockers, or both. In this prospective, randomized, open-label, blinded endpoint study, a total of 1147 hypertensive patients with symptomatic CHF (mean age 66 years, 75% male) were randomized to the addition of olmesartan (n = 578) to baseline therapy vs. control (n = 569). The primary endpoint was a composite of all-cause death, non-fatal acute myocardial infarction, non-fatal stroke, and hospitalization for worsening heart failure. During a median follow-up of 4.4 years, the primary endpoint occurred in 192 patients (33.2%) in the olmesartan group and in 166 patients (29.2%) in the control group [hazard ratio (HR) 1.18; 95% confidence interval (CI), 0.96-1.46, P = 0.112], while renal dysfunction developed more frequently in the olmesartan group (16.8 vs. 10.7%, HR 1.64; 95% CI 1.19-2.26, P = 0.003). Subgroup analysis revealed that addition of olmesartan to combination of ACE inhibitors and β-blockers was associated with increased incidence of the primary endpoint (38.1 vs. 28.2%, HR 1.47; 95% CI 1.11-1.95, P = 0.006), all-cause death (19.4 vs. 13.5%, HR 1.50; 95% CI 1.01-2.23, P = 0.046), and renal dysfunction (21.1 vs. 12.5%, HR 1.85; 95% CI 1.24-2.76, P = 0.003). Additive use of olmesartan did not improve clinical outcomes but worsened renal function in hypertensive CHF patients treated with evidence-based medications. Particularly, the triple combination therapy with olmesartan, ACE inhibitors and β-blockers was associated with increased adverse cardiac events. This study is registered at clinicaltrials.gov-NCT00417222.

  16. Effect of olanzapine on scopolamine induced deficits in differential reinforcement of low rate 72s (DRL-72s) schedule in rats: involvement of the serotonergic receptors in restoring the deficits.

    PubMed

    Jayarajan, Pradeep; Nirogi, Ramakrishna; Shinde, Anil

    2013-11-15

    Scopolamine, a non-selective muscarinic receptor antagonist has widespread central nervous system effects. Muscarinic receptors located in the central nervous system play a vital role in the modulation of impulsivity. The objective of the current study was to evaluate the effect of scopolamine on impulsivity using differential-reinforcement-of-low-rate 72-s schedule (DRL-72s) and to demonstrate the involvement of serotonergic receptors in mediating the effect of olanzapine (atypical antipsychotic) on scopolamine induced impulsivity. Scopolamine impaired the performance of the rats trained under DRL-72s schedule. Olanzapine reversed the deficits induced by scopolamine. We evaluated the effect of donepezil (cholinesterase inhibitor), SB-742457 (5-HT6 and 5-HT2a antagonist), and haloperidol (typical antipsychotic) in rats challenged with scopolamine in the DRL-72s schedule to identify the receptor(s) involved in reversing the deficits. SB-742457 partially reversed the deficits, but donepezil and haloperidol did not show any effects on the deficits induced by scopolamine. Olanzapine and SB-742457 shifted the peak location (PkL) towards longer IRT duration, indicating a decrease in motor impulsivity. Modulation of scopolamine-induced impulsivity by olanzapine could be partly due to its antagonistic action at 5-HT2a and 5-HT6 receptors, respectively. Superior effects of olanzapine on impulsivity in schizophrenic patients may be mediated through the antagonism of 5-HT2a and 5-HT6 receptors.

  17. N-Benzyl-5-methoxytryptamines as Potent Serotonin 5-HT2 Receptor Family Agonists and Comparison with a Series of Phenethylamine Analogues

    PubMed Central

    2015-01-01

    A series of N-benzylated-5-methoxytryptamine analogues was prepared and investigated, with special emphasis on substituents in the meta position of the benzyl group. A parallel series of several N-benzylated analogues of 2,5-dimethoxy-4-iodophenethylamine (2C-I) also was included for comparison of the two major templates (i.e., tryptamine and phenethylamine). A broad affinity screen at serotonin receptors showed that most of the compounds had the highest affinity at the 5-HT2 family receptors. Substitution at the para position of the benzyl group resulted in reduced affinity, whereas substitution in either the ortho or the meta position enhanced affinity. In general, introduction of a large lipophilic group improved affinity, whereas functional activity often followed the opposite trend. Tests of the compounds for functional activity utilized intracellular Ca2+ mobilization. Function was measured at the human 5-HT2A, 5-HT2B, and 5-HT2C receptors, as well as at the rat 5-HT2A and 5-HT2C receptors. There was no general correlation between affinity and function. Several of the tryptamine congeners were very potent functionally (EC50 values from 7.6 to 63 nM), but most were partial agonists. Tests in the mouse head twitch assay revealed that many of the compounds induced the head twitch and that there was a significant correlation between this behavior and functional potency at the rat 5-HT2A receptor. PMID:25547199

  18. Interactions of serotonin (5-HT)2 receptor-targeting ligands and nicotine: locomotor activity studies in rats.

    PubMed

    Zaniewska, Magdalena; McCreary, Andrew C; Filip, Małgorzata

    2009-08-01

    Male Wistar rats were used to verify the hypothesis that serotonin (5-HT)(2A) or 5-HT(2C) receptors may control the locomotor effects evoked by nicotine (0.4 mg/kg). The 5-HT(2A) receptor antagonist (M100,907), the 5-HT(2A) receptor agonist (DOI), the 5-HT(2C) receptor antagonist (SB 242,084), and the 5-HT(2C) receptor agonists (Ro 60-0175 and WAY 163,909) were used. M100,907 (0.5-2mg/kg) did not alter, while DOI (1 mg/kg) enhanced the nicotine-induced hyperlocomotion. The effect of DOI was antagonized by M100,907 (1 mg/kg). SB 242,084 (0.25-1 mg/kg) augmented, while Ro 60-0175 (1 and 3 mg/kg) and WAY 163,909 (1.5 mg/kg) decreased the overall effect of acute nicotine; effects of Ro 60-0175 and WAY 163,909 were attenuated by SB 242,084 (0.125 mg/kg). In another set of experiments, M100,907 (2 mg/kg) on Day 10 attenuated, while DOI (0.1-1 mg/kg) enhanced the nicotine-evoked conditioned hyperlocomotion in rats repeatedly (Days 1-5) treated with nicotine in experimental chambers. SB 242,084 (0.125 or 1 mg/kg) did not change, while Ro 60-0175 (1 mg/kg) or WAY 163,909 (1.5 mg/kg) decreased the expression of nicotine-induced conditioned hyperactivity. Only DOI (0.3 and 1 mg/kg) and SB 242,084 (1 mg/kg) enhanced the basal locomotion. The present data indicate that 5-HT(2A) receptors are significant for the expression of nicotine-evoked conditioned hyperactivity. Conversely, 5-HT(2C) receptors play a pivotal role in the acute effects of nicotine. Pharmacological stimulation of 5-HT(2A) receptors enhances the conditioned hyperlocomotion, while activation of 5-HT(2C) receptors decreases both the response to acute nicotine and conditioned hyperactivity.

  19. Pharmacogenetics of beta-blockers.

    PubMed

    Shin, Jaekyu; Johnson, Julie A

    2007-06-01

    Beta-blockers are an important cardiovascular drug class, recommended as first-line treatment of numerous diseases such as heart failure, hypertension, and angina, as well as treatment after myocardial infarction. However, responses to a beta-blocker are variable among patients. Results of numerous studies now suggest that genetic polymorphisms may contribute to variability in responses to beta-blockers. This review summarizes the pharmacogenetic data for beta-blockers in patients with various diseases and discusses the potential implications of beta-blocker pharmacogenetics in clinical practice.

  20. Changes in intensity of serotonin syndrome caused by adverse interaction between monoamine oxidase inhibitors and serotonin reuptake blockers.

    PubMed

    Tao, Rui; Rudacille, Mary; Zhang, Gongliang; Ma, Zhiyuan

    2014-07-01

    Drug interaction between inhibitors of monoamine oxidase (MAOIs) and selective serotonin (5-hydroxytryptamine, 5-HT) reuptake (SSRIs) induces serotonin syndrome, which is usually mild but occasionally severe in intensity. However, little is known about neural mechanisms responsible for the syndrome induction and intensification. In this study, we hypothesized that the syndrome induction and intensity utilize two different but inter-related mechanisms. Serotonin syndrome is elicited by excessive 5-HT in the brain (presynaptic mechanism), whereas syndrome intensity is attributed to neural circuits involving 5-HT2A and NMDA receptors (postsynaptic mechanism). To test this hypothesis, basal 5-HT efflux and postsynaptic circuits were pharmacologically altered in rats by once daily pretreatment of the MAOI clorgyline for 3, 6, or 13 days. Syndrome intensity was estimated by measuring 5-HT efflux, neuromuscular activity, and body-core temperature in response to challenge injection of clorgyline combined with the SSRI paroxetine. Results showed that the onset of serotonin syndrome is caused by 5-HT efflux exceeding 10-fold above baseline, confirming the presynaptic hypothesis. The neuromuscular and body-core temperature abnormalities, which were otherwise mild in drug-naive rats, were significantly intensified to a severe level in rats pretreated with daily clorgyline for 3 and 6 days but not in rats pretreated for 13 days. The intensified effect was blocked by M100907 and MK-801, suggesting that variation in syndrome intensity was mediated through a 5-HT2A and NMDA receptor-engaged circuit. Therefore, we concluded that pretreatments of MAOI pharmacologically alter the activity of postsynaptic circuits, which is responsible for changes in syndrome intensity.

  1. The response of juxtacellular labeled GABA interneurons in the basolateral amygdaloid nucleus anterior part to 5-HT₂A/₂C receptor activation is decreased in rats with 6-hydroxydopamine lesions.

    PubMed

    Sun, Yi-Na; Li, Li-Bo; Zhang, Qiao-Jun; Hui, Yan-Ping; Wang, Yong; Zhang, Li; Chen, Li; Han, Ling-Na; Guo, Yuan; Liu, Jian

    2013-10-01

    Here we report that juxtacellular labeled GABA interneurons in the basolateral amygdaloid nucleus anterior part (BLA) of rats with 6-hydroxydopamine lesions of the substantia nigra pars compacta (SNc) showed a more burst-firing pattern, while having no change in the firing rate. In sham-operated and the lesioned rats, systemic administration of 5-HT(2A/2C) receptor agonist DOI produced excitation, inhibition and unchanged in the firing rate of the interneurons, and the mean response of DOI was excitatory. However, cumulative dose producing excitation in the lesioned rats was higher than that of sham-operated rats. The local administration of DOI in the BLA also produced three types of responses in two groups of rats. Furthermore, the local administration of DOI excited the interneurons in sham-operated rats, whereas the mean firing rate of the interneurons in the lesioned rats was not affected at the same dose. The excitatory effect of the majority of the interneurons after systemic and local administration of DOI was not reversed by the selective 5-HT(2C) receptor antagonist SB242084, and the inhibitory effect of DOI in all the interneurons examined was reversed by GABA(A) receptor antagonist picrotoxinin. The SNc lesion in rats did not change the density of GAD67/5-HT(2A) receptor co-expressing neurons in the BLA. These results indicate that the SNc lesion changes the firing activity of BLA GABA interneurons. Moreover, DOI regulated the firing activity of the interneurons mainly through activation of 5-HT(2A) receptor, and the lesion led to a decreased response of the interneurons to DOI, which attributes to dysfunction of 5-HT(2A) receptor on these interneurons.

  2. Involvement of local serotonin-2A but not serotonin-1B receptors in the reinforcing effects of ethanol within the posterior ventral tegmental area of female Wistar rats

    PubMed Central

    Ding, Zheng-Ming; Toalston, Jamie E.; Oster, Scott M.; McBride, William J.; Rodd, Zachary A.

    2010-01-01

    Rationale Previous studies indicated that ethanol could be self-infused into the posterior ventral tegmental area (p-VTA) and that activation of local serotonin-3 (5-HT3) receptors was involved. 5-HT1B and 5-HT2A receptors are involved in the effects of 5-HT and ethanol on VTA dopamine neurons. Objective The current study used the intracranial self-administration (ICSA) procedure to determine the involvement of local 5-HT1B and 5-HT2A receptors in the self-infusion of ethanol into the p-VTA. Materials and methods Female Wistar rats were implanted unilaterally with a guide cannula aimed at the p-VTA. Seven days after surgery, rats were placed into the two-lever operant conditioning chambers for ICSA tests. The tests consisted of four acquisition sessions with self-infusion of 200 mg% ethanol alone, two or three sessions with co-infusion of the 5-HT1B antagonist GR 55562 (10, 100, or 200 μM) or the 5-HT2A antagonist R-96544 (10, 100, or 200 μM) with 200 mg% ethanol, and one final session with 200 mg% ethanol alone. Results During the acquisition sessions, all rats readily self-infused ethanol and discriminated the active from inactive lever. Co-infusion of GR 55562, at all three doses, had no effect on the self-infusion of ethanol. In contrast, co-infusion of R-96544, at the two higher doses, attenuated responding on the active lever for ethanol infusion (p<0.05). Conclusion The results suggest that the reinforcing effects of ethanol within the p-VTA are modulated, at least in part, by activation of local 5-HT2A, but not 5-HT1B, receptors. PMID:19165471

  3. Serotonin 2A Receptors, Citalopram and Tryptophan-Depletion: a Multimodal Imaging Study of their Interactions During Response Inhibition

    PubMed Central

    Macoveanu, Julian; Hornboll, Bettina; Elliott, Rebecca; Erritzoe, David; Paulson, Olaf B; Siebner, Hartwig; Knudsen, Gitte M; Rowe, James B

    2013-01-01

    Poor behavioral inhibition is a common feature of neurological and psychiatric disorders. Successful inhibition of a prepotent response in ‘NoGo' paradigms requires the integrity of both the inferior frontal gyrus (IFG) and the serotonergic system. We investigated individual differences in serotonergic regulation of response inhibition. In 24 healthy adults, we used 18F-altanserin positron emission tomography to assess cerebral 5-HT2A receptors, which have been related to impulsivity. We then investigated the impact of two acute manipulations of brain serotonin levels on behavioral and neural correlates of inhibition using intravenous citalopram and acute tryptophan depletion during functional magnetic resonance imaging. We adapted the NoGo paradigm to isolate effects on inhibition per se as opposed to other aspects of the NoGo paradigm. Successful NoGo inhibition was associated with greater activation of the right IFG compared to control trials with alternative responses, indicating that the IFG is activated with inhibition in NoGo trials rather than other aspects of invoked cognitive control. Activation of the left IFG during NoGo trials was greater with citalopram than acute tryptophan depletion. Moreover, with the NoGo-type of response inhibition, the right IFG displayed an interaction between the type of serotonergic challenge and neocortical 5-HT2A receptor binding. Specifically, acute tryptophan depletion (ATD) produced a relatively larger NoGo response in the right IFG in subjects with low 5-HT2A BPP but reduced the NoGo response in those with high 5-HT2A BPP. These links between serotonergic function and response inhibition in healthy subjects may help to interpret serotonergic abnormalities underlying impulsivity in neuropsychiatric disorders. PMID:23303045

  4. Occurrence and fate of the angiotensin II receptor antagonist transformation product valsartan acid in the water cycle--a comparative study with selected β-blockers and the persistent anthropogenic wastewater indicators carbamazepine and acesulfame.

    PubMed

    Nödler, Karsten; Hillebrand, Olav; Idzik, Krzysztof; Strathmann, Martin; Schiperski, Ferry; Zirlewagen, Johannes; Licha, Tobias

    2013-11-01

    The substantial transformation of the angiotensin II receptor antagonist valsartan to the transformation product 2'-(2H-tetrazol-5-yl)-[1,1'-biphenyl]-4-carboxylic acid (referred to as valsartan acid) during the activated sludge process was demonstrated in the literature and confirmed in the here presented study. However, there was a severe lack of knowledge regarding the occurrence and fate of this compound in surface water and its behavior during drinking water treatment. In this work a comparative study on the occurrence and persistency of valsartan acid, three frequently used β-blockers (metoprolol, atenolol, and sotalol), atenolol acid (one significant transformation product of atenolol and metoprolol), and the two widely distributed persistent anthropogenic wastewater indicators carbamazepine and acesulfame in raw sewage, treated wastewater, surface water, groundwater, and tap water is presented. Median concentrations of valsartan acid in the analyzed matrices were 101, 1,310, 69, <1.0, and 65 ng L(-1), respectively. Treated effluents from wastewater treatment plants were confirmed as significant source. Regarding concentration levels of pharmaceutical residues in surface waters valsartan acid was found just as relevant as the analyzed β-blockers and the anticonvulsant carbamazepine. Regarding its persistency in surface waters it was comparable to carbamazepine and acesulfame. Furthermore, removal of valsartan acid during bank filtration was poor, which demonstrated the relevance of this compound for drinking water suppliers. Regarding drinking water treatment (Muelheim Process) the compound was resistant to ozonation but effectively eliminated (≥90%) by subsequent activated carbon filtration. However, without applying activated carbon filtration the compound may enter the drinking water distribution system as it was demonstrated for Berlin tap water.

  5. Beta-Blockers and Calcium Channel Blockers: First Line Agents.

    PubMed

    Pascual, Isaac; Moris, Cesar; Avanzas, Pablo

    2016-08-01

    Beta-blockers and calcium channel blockers (CCB) are milestones in the treatment of stable coronary ischaemic disease. Their main effects are particularly suited for the management of effort-induced angina because of the reduction of oxygen demand they achieve. The clinical benefits of these drugs are highly reproducible and have been shown to improve overall clinical outcomes. Despite the availability of other, and newer antianginal drugs, treatment guidelines continue to recommend the use of beta-blockers and calcium channel blockers as first line therapies.

  6. Effects of chronic fluoxetine treatment on catalepsy and the immune response in mice with a genetic predisposition to freezing reactions: the roles of types 1A and 2A serotonin receptors and the tph2 and SERT genes.

    PubMed

    Tikhonova, M A; Alperina, E L; Tolstikova, T G; Bazovkina, D V; Di, V Y; Idova, G V; Kulikov, A V; Popova, N K

    2010-06-01

    ASC (Antidepressant-Sensitive Catalepsy) mice, bred for a high predisposition to catalepsy, are characterized by depression-like behavior and decreased immune responses. Chronic administration of fluoxetine, which is a selective serotonin reuptake inhibitor antidepressant widely used in clinical practice, to mice of this strain weakened catalepsy and normalized the number of rosette-forming cells in the spleen. In mice of the parental cataleptic strain CBA/Lac, fluoxetine had no effect on the level of catalepsy or the immune response. Analysis of the effects of fluoxetine on the functional activity of 5-HT(1A) and 5-HT(2A) receptors, and the expression of 5-HT(1A) receptor genes in the frontal cortex and midbrain and 5-HT(2A) receptors in the frontal cortex, as well as the tryptophan hydroxylase-2 and the serotonin transporter genes in the midbrain showed that the antidepressant had no effect on these parameters in ASC mice, but decreased the functional activity of 5-HT(2A) receptors in CBA/Lac mice. The possibility that the actions of fluoxetine on catalepsy and the immune response in mice with depression-like states are mediated via other serotoninergic mechanisms is discussed.

  7. Pharmacokinetics, metabolism and excretion of [(14)C]-lanicemine (AZD6765), a novel low-trapping N-methyl-d-aspartic acid receptor channel blocker, in healthy subjects.

    PubMed

    Guo, Jian; Zhou, Diansong; Grimm, Scott W; Bui, Khanh H

    2015-03-01

    1.(1S)-1-phenyl-2-(pyridin-2-yl)ethanamine (lanicemine; AZD6765) is a low-trapping N-methyl-d-aspartate (NMDA) channel blocker that has been studied as an adjunctive treatment in major depressive disorder. The metabolism and disposition of lanicemine was determined in six healthy male subjects after a single intravenous infusion dose of 150 mg [(14)C]-lanicemine. 2.Blood, urine and feces were collected from all subjects. The ratios of Cmax and AUC(0-∞) of lanicemine to plasma total radioactivity were 84 and 66%, respectively, indicating that lanicemine was the major circulating component with T1/2 at 16 h. The plasma clearance of lanicemine was 8.3 L/h, revealing that lanicemine is a low-clearance compound. The mean recovery of radioactivity from urine was 93.8% of radioactive dose. 3.In urine samples, 10 metabolites of lanicemine were identified. Among which, an O-glucuronide conjugate (M1) was the most abundant metabolite (∼11% of the dose in excreta). In plasma, the circulatory metabolites were identified as a para-hydroxylated metabolite (M1), an O-glucuronide (M2), an N-carbamoyl glucuronide (M3) and an N-acetylated metabolite (M6). The average amount of each of metabolite was less than 4% of total radioactivity detected in plasma or urine. 4.In conclusion, lanicemine is a low-clearance compound. The unchanged drug and metabolites are predominantly eliminated via urinary excretion.

  8. Beta-Adrenergic blockers as antiarrhythmic and antifibrillatory compounds: an overview.

    PubMed

    Singh, Bramah N

    2005-06-01

    Beta-Adrenergic blockers have a wide spectrum of action for controlling cardiac arrhythmias that is larger than initially thought. Data from the past several decades indicate that, as an antiarrhythmic class, beta-blockers remain among the very few pharmacologic agents that reduce the incidence of sudden cardiac death, prolong survival, and ameliorate symptoms caused by arrhythmias in patients with cardiac disease. As a class of compounds, beta-blockers have a fundamental pharmacologic property that attenuates the effects of competitive adrenergic receptors. However, the net clinical effects of the different beta-receptor blockers may vary quantitatively because of variations in associated intrinsic sympathomimetic agonism and in their intrinsic potency for binding to beta-receptors. These individual compounds also differ in their selectivity for beta(1)- and beta(2)-receptors. Metoprolol is a beta(1)-selective blocker, whereas carvedilol is a nonselective beta(1)- and beta(2)-blocker, an antioxidant, and has a propensity to inhibit alpha(1)-receptors and endothelin. Evolving data from controlled and uncontrolled clinical trials suggest that there are clinically significant differences among this class of drugs. Recent evidence also suggests that the antiarrhythmic actions of certain beta-receptor blockers such as carvedilol and metoprolol extend beyond the ventricular tissue to encompass atrial cells and help maintain sinus rhythm in patients with atrial fibrillation, especially in combination with potent antifibrillatory agents such as amiodarone. This introduction provides a current perspective on these newer developments in the understanding of the antiarrhythmic and antifibrillatory actions of beta-blockers.

  9. Suppression of piriform cortex activity in rat by corticotropin-releasing factor 1 and serotonin 2A/C receptors.

    PubMed

    Narla, Chakravarthi; Dunn, Henry A; Ferguson, Stephen S G; Poulter, Michael O

    2015-01-01

    The piriform cortex (PC) is richly innervated by corticotropin-releasing factor (CRF) and serotonin (5-HT) containing axons arising from central amygdala and Raphe nucleus. CRFR1 and 5-HT2A/2CRs have been shown to interact in manner where CRFR activation subsequently potentiates the activity of 5-HT2A/2CRs. The purpose of this study was to determine how the activation of CRFR1 and/or 5-HT2Rs modulates PC activity at both the circuit and cellular level. Voltage sensitive dye imaging showed that CRF acting through CRFR1 dampened activation of the Layer II of PC and interneurons of endopiriform nucleus. Application of the selective 5-HT2A/CR agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) following CRFR1 activation potentiated this effect. Blocking the interaction between CRFR1 and 5-HT2R with a Tat-CRFR1-CT peptide abolished this potentiation. Application of forskolin did not mimic CRFR1 activity but instead blocked it, while a protein kinase A antagonist had no effect. However, activation and antagonism of protein kinase C (PKC) either mimicked or blocked CRF modulation, respectively. DOI had no effect when applied alone indicating that the prior activation of CRFR1 receptors was critical for DOI to show significant effects similar to CRF. Patch clamp recordings showed that both CRF and DOI reduced the synaptic responsiveness of Layer II pyramidal neurons. CRF had highly variable effects on interneurons within Layer III, both increasing and decreasing their excitability, but DOI had no effect on the excitability of this group of neurons. These data show that CRF and 5-HT, acting through both CRFR1 and 5-HT2A/CRs, reduce the activation of the PC. This modulation may be an important blunting mechanism of stressor behaviors mediated through the olfactory cortex.

  10. Centruroides toxin, a selective blocker of surface Na+ channels in skeletal muscle: voltage-clamp analysis and biochemical characterization of the receptor.

    PubMed

    Jaimovich, E; Ildefonse, M; Barhanin, J; Rougier, O; Lazdunski, M

    1982-06-01

    This paper describes the effects of a toxin from the scorpion Centruroides suffusus suffusus on frog skeletal muscle. The main findings are the following, (i) Centruroides toxin (CssII) blocks the early phase of the inward sodium current in the muscle that arises from influx via Na+ channels in the surface membrane, but it does not affect the late phase of the inward current that represents flux through Na+ channels in the T-tubule membranes, (ii) CssII, in marked contrast to tetrodotoxin, does not affect contraction of the muscle, (iii) Measurements of the binding of 125I-labeled CssII to a partially purified membrane preparation from the muscle indicate that the Kd of the CssII--receptor complex is approximately 0.4 nM. The half-life for the dissociation of this complex is 3 min at 22 degrees C and 16 min at 2 degrees C. Binding of the radiolabeled toxin varies markedly with pH and becomes insignificant at pH greater than 8.5. Proteolytic digestion of the membrane preparation decreases its ability to bind CssII, suggesting that the receptor is a protein. (iv) The number of binding sites for a radiolabeled derivative of tetrodotoxin on the membrane preparation was similar to that for CssII. However, neither tetrodotoxin nor any of seven other neurotoxins and some local anesthetics that alter the functioning of the Na+ channel have any effect on the binding of CssII to the muscle membrane. These results therefore indicate that CssII belongs to a different class of neurotoxins that has a different receptor on the Na+ channel.

  11. Centruroides toxin, a selective blocker of surface Na+ channels in skeletal muscle: voltage-clamp analysis and biochemical characterization of the receptor.

    PubMed Central

    Jaimovich, E; Ildefonse, M; Barhanin, J; Rougier, O; Lazdunski, M

    1982-01-01

    This paper describes the effects of a toxin from the scorpion Centruroides suffusus suffusus on frog skeletal muscle. The main findings are the following, (i) Centruroides toxin (CssII) blocks the early phase of the inward sodium current in the muscle that arises from influx via Na+ channels in the surface membrane, but it does not affect the late phase of the inward current that represents flux through Na+ channels in the T-tubule membranes, (ii) CssII, in marked contrast to tetrodotoxin, does not affect contraction of the muscle, (iii) Measurements of the binding of 125I-labeled CssII to a partially purified membrane preparation from the muscle indicate that the Kd of the CssII--receptor complex is approximately 0.4 nM. The half-life for the dissociation of this complex is 3 min at 22 degrees C and 16 min at 2 degrees C. Binding of the radiolabeled toxin varies markedly with pH and becomes insignificant at pH greater than 8.5. Proteolytic digestion of the membrane preparation decreases its ability to bind CssII, suggesting that the receptor is a protein. (iv) The number of binding sites for a radiolabeled derivative of tetrodotoxin on the membrane preparation was similar to that for CssII. However, neither tetrodotoxin nor any of seven other neurotoxins and some local anesthetics that alter the functioning of the Na+ channel have any effect on the binding of CssII to the muscle membrane. These results therefore indicate that CssII belongs to a different class of neurotoxins that has a different receptor on the Na+ channel. PMID:6285366

  12. Beta-blockers in hypertension.

    PubMed

    Ram, C Venkata S

    2010-12-15

    Beta blockers have been used in the treatment of cardiovascular conditions for decades. Despite a long history and status as a guideline-recommended treatment option for hypertension, recent meta-analyses have brought into question whether β blockers are still an appropriate therapy given outcomes data from other antihypertensive drug classes. However, β blockers are a heterogenous class of agents with diverse pharmacologic and physiologic properties. Much of the unfavorable data revealed in the recent meta-analyses were gleaned from studies involving nonvasodilating, traditional β blockers, such as atenolol. However, findings with traditional β blockers may not be extrapolated to other members of the class, particularly those agents with vasodilatory activity. Vasodilatory β blockers (i.e., carvedilol and nebivolol) reduce blood pressure in large part through reducing systemic vascular resistance rather than by decreasing cardiac output, as is observed with traditional β blockers. Vasodilating ability may also ameliorate some of the concerns associated with traditional β blockade, such as the adverse effects on metabolic and lipid parameters, including an increased risk for new-onset diabetes. Furthermore, vasodilating ability is physiologically relevant and important in treating a condition with common co-morbidities involving metabolic and lipid abnormalities such as hypertension. In patients with hypertension and diabetes or coronary artery disease, vasodilating β blockers provide effective blood pressure control with neutral or beneficial effects on important parameters for the co-morbid disease. In conclusion, it is time for a reexamination of the clinical evidence for the use of β blockers in hypertension, recognizing that there are patients for whom β blockers, particularly those with vasodilatory actions, are an appropriate treatment option.

  13. Anti-Fibrotic Effect of Losartan, an Angiotensin II Receptor Blocker, Is Mediated through Inhibition of ER Stress via Up-Regulation of SIRT1, Followed by Induction of HO-1 and Thioredoxin

    PubMed Central

    Kim, Hyosang; Baek, Chung Hee; Lee, Raymond Bok; Chang, Jai Won; Yang, Won Seok; Lee, Sang Koo

    2017-01-01

    Endoplasmic reticulum (ER) stress is increasingly identified as modulator of fibrosis. Losartan, an angiotensin II receptor blocker, has been widely used as the first choice of treatment in chronic renal diseases. We postulated that anti-fibrotic effect of losartan is mediated through inhibition of ER stress via SIRT1 (silent mating type information regulation 2 homolog 1) hemeoxygenase-1 (HO-1)/thioredoxin pathway. Renal tubular cells, tunicamycin (TM)-induced ER stress, and unilateral ureteral obstruction (UUO) mouse model were used. Expression of ER stress was assessed by Western blot analysis and immunohistochemical stain. ER stress was induced by chemical ER stress inducer, tunicamycin, and non-chemical inducers such as TGF-β, angiotensin II, high glucose, and albumin. Losartan suppressed the TM-induced ER stress, as shown by inhibition of TM-induced expression of GRP78 (glucose related protein 78) and p-eIF2α (phosphospecific-eukaryotic translation initiation factor-2α), through up-regulation of SIRT1 via HO-1 and thioredoxin. Losartan also suppressed the ER stress by non-chemical inducers. In both animal models, losartan reduced the tubular expression of GRP78, which were abolished by pretreatment with sirtinol (SIRT1 inhibitor). Sirtinol also blocked the inhibitory effect of losartan on the UUO-induced renal fibrosis. These findings provide new insights into renoprotective effects of losartan and suggest that SIRT1, HO-1, and thioredoxin may be potential pharmacological targets in kidney diseases under excessive ER stress condition. PMID:28146117

  14. The Decrement of Hemoglobin Concentration with Angiotensin II Receptor Blocker Treatment Is Correlated with the Reduction of Albuminuria in Non-Diabetic Hypertensive Patients: Post-Hoc Analysis of ESPECIAL Trial.

    PubMed

    An, Jung Nam; Hwang, Jin Ho; Lee, Jung Pyo; Chin, Ho Jun; Kim, Sejoong; Kim, Dong Ki; Kim, Suhnggwon; Park, Jung Hwan; Shin, Sung Joon; Lee, Sang Ho; Choi, Bum Soon; Lim, Chun Soo

    2015-01-01

    Blockade of the renin-angiotensin-aldosterone system exhibits a renoprotective effect; however, blockade of this system may also decrease hemoglobin (Hb) and erythropoietin (EPO) levels. We evaluated the correlation between reduced albuminuria and decreased hemoglobin concentrations after treatment with an angiotensin II receptor blocker (ARB). Two hundred forty-five non-diabetic hypertensive participants with established albuminuria and relatively preserved renal function were treated with an ARB (40 mg/day olmesartan) for eight weeks. Subsequent changes in various clinical parameters, including Hb, EPO, and albuminuria, were analyzed following treatment. After the 8-week treatment with an ARB, Hb and EPO levels significantly decreased. Patients with a greater decrease in Hb exhibited a greater reduction in 24-hour urinary albumin excretion compared with patients with less of a decrease or no decrease in Hb, whereas no associations with a decline in renal function and EPO levels were noted. Multivariate logistic regression analysis demonstrated a correlation between the reduction of urine albumin excretion and the decrease in Hb levels (after natural logarithm transformation, adjusted odds ratio 1.76, 95% confidence interval 1.21-2.56, P = 0.003). Linear regression analysis also supported this positive correlation (Pearson correlation analysis; R = 0.24, P < 0.001). Decreased Hb concentrations following ARB treatment were positively correlated with reduced albuminuria in non-diabetic hypertensive patients, regardless of decreased blood pressure and EPO levels or renal function decline.

  15. Interleukin-17 retinotoxicity is prevented by gene transfer of a soluble interleukin-17 receptor acting as a cytokine blocker: implications for age-related macular degeneration.

    PubMed

    Ardeljan, Daniel; Wang, Yujuan; Park, Stanley; Shen, Defen; Chu, Xi Kathy; Yu, Cheng-Rong; Abu-Asab, Mones; Tuo, Jingsheng; Eberhart, Charles G; Olsen, Timothy W; Mullins, Robert F; White, Gary; Wadsworth, Sam; Scaria, Abraham; Chan, Chi-Chao

    2014-01-01

    Age-related macular degeneration (AMD) is a common yet complex retinal degeneration that causes irreversible central blindness in the elderly. Pathology is widely believed to follow loss of retinal pigment epithelium (RPE) and photoreceptor degeneration. Here we report aberrant expression of interleukin-17A (IL17A) and the receptor IL17RC in the macula of AMD patients. In vitro, IL17A induces RPE cell death characterized by the accumulation of cytoplasmic lipids and autophagosomes with subsequent activation of pro-apoptotic Caspase-3 and Caspase-9. This pathology is reduced by siRNA knockdown of IL17RC. IL17-dependent retinal degeneration in a mouse model of focal retinal degeneration can be prevented by gene therapy with adeno-associated virus vector encoding soluble IL17 receptor. This intervention rescues RPE and photoreceptors in a MAPK-dependent process. The IL17 pathway plays a key role in RPE and photoreceptor degeneration and could hold therapeutic potential in AMD.

  16. Multiple receptor subtypes mediate the effects of serotonin on rat subfornical organ neurons

    NASA Technical Reports Server (NTRS)

    Scrogin, K. E.; Johnson, A. K.; Schmid, H. A.

    1998-01-01

    The subfornical organ (SFO) receives significant serotonergic innervation. However, few reports have examined the functional effects of serotonin on SFO neurons. This study characterized the effects of serotonin on spontaneously firing SFO neurons in the rat brain slice. Of 31 neurons tested, 80% responded to serotonin (1-100 microM) with either an increase (n = 15) or decrease (n = 10) in spontaneous activity. Responses to serotonin were dose dependent and persisted after synaptic blockade. Excitatory responses could also be mimicked by the 5-hydroxytryptamine (5-HT)2A/2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI; 1-10 microM) and could be blocked by the 5-HT2A/2C-receptor antagonist LY-53,857 (10 microM). LY-53,857 unmasked inhibitory responses to serotonin in 56% of serotonin-excited cells tested. Serotonin-inhibited cells were also inhibited by the 5-HT1A-receptor agonist 8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT; 1-10 microM; n = 7). The data indicate that SFO neurons are responsive to serotonin via postsynaptic activation of multiple receptor subtypes. The results suggest that excitatory responses to serotonin are mediated by 5-HT2A or 5-HT2C receptors and that inhibitory responses may be mediated by 5-HT1A receptors. In addition, similar percentages of serotonin-excited and -inhibited cells were also sensitive to ANG II. As such the functional relationship between serotonin and ANG II in the SFO remains unclear.

  17. The role of 5-HT7 receptor antagonism in the amelioration of MK-801-induced learning and memory deficits by the novel atypical antipsychotic drug lurasidone.

    PubMed

    Horisawa, Tomoko; Nishikawa, Hiroyuki; Toma, Satoko; Ikeda, Atsushi; Horiguchi, Masakuni; Ono, Michiko; Ishiyama, Takeo; Taiji, Mutsuo

    2013-05-01

    Lurasidone is a novel atypical antipsychotic with high affinity for dopamine D2, serotonin 5-HT7 and 5-HT2A receptors. We previously reported that lurasidone and the selective 5-HT7 receptor antagonist, SB-656104-A improved learning and memory deficits induced by MK-801, an N-methyl-d-aspartate (NMDA) receptor antagonist, in the rat passive avoidance test. In this study, we first examined the role of the 5-HT7 receptor antagonistic activity of lurasidone in its pro-cognitive effect to ameliorate MK-801-induced deficits in the rat passive avoidance test. The 5-HT7 receptor agonist, AS19, (2S)-(+)-5-(1,3,5-trimethylpyrazol-4-yl)-2-(dimethylamino) tetralin, (3 mg/kg, s.c.) completely blocked the attenuating effects of lurasidone (3 mg/kg, p.o.), highlighting the importance of 5-HT7 receptor antagonism in the pro-cognitive effect of lurasidone. AS19 (3 mg/kg, s.c.) also blocked the ameliorating effect of SB-656104-A (10 mg/kg, i.p.) in the same experimental paradigm. To further extend our observation, we next tested whether 5-HT7 receptor antagonism still led to the amelioration of MK-801-induced deficits when combined with D2 and 5-HT2A receptor antagonists, and found that SB-656104-A (10 mg/kg, i.p.) significantly ameliorated MK-801-induced deficits even in the presence of the D2 receptor antagonist raclopride (0.1 mg/kg, s.c.) and 5-HT2A receptor antagonist ketanserin (1 mg/kg, s.c.). Taken together, these results suggest that the 5-HT7 receptor antagonistic activity of lurasidone plays an important role in its effectiveness against MK-801-induced deficits, and may contribute to its pharmacological actions in patients with schizophrenia.

  18. Support for 5-HT2C receptor functional selectivity in vivo utilizing structurally diverse, selective 5-HT2C receptor ligands and the 2,5-dimethoxy-4-iodoamphetamine elicited head-twitch response model.

    PubMed

    Canal, Clinton E; Booth, Raymond G; Morgan, Drake

    2013-07-01

    There are seemingly conflicting data in the literature regarding the role of serotonin (5-HT) 5-HT2C receptors in the mouse head-twitch response (HTR) elicited by the hallucinogenic 5-HT2A/2B/2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI). Namely, both 5-HT2C receptor agonists and antagonists, regarding 5-HT2C receptor-mediated Gq-phospholipase C (PLC) signaling, reportedly attenuate the HTR response. The present experiments tested the hypothesis that both classes of 5-HT2C receptor compounds could attenuate the DOI-elicited-HTR in a single strain of mice, C57Bl/6J. The expected results were considered in accordance with ligand functional selectivity. Commercially-available 5-HT2C agonists (CP 809101, Ro 60-0175, WAY 161503, mCPP, and 1-methylpsilocin), novel 4-phenyl-2-N,N-dimethyl-aminotetralin (PAT)-type 5-HT2C agonists (with 5-HT2A/2B antagonist activity), and antagonists selective for 5-HT2A (M100907), 5-HT2C (SB-242084), and 5-HT2B/2C (SB-206553) receptors attenuated the DOI-elicited-HTR. In contrast, there were differential effects on locomotion across classes of compounds. The 5-HT2C agonists and M100907 decreased locomotion, SB-242084 increased locomotion, SB-206553 resulted in dose-dependent biphasic effects on locomotion, and the PATs did not alter locomotion. In vitro molecular pharmacology studies showed that 5-HT2C agonists potent for attenuating the DOI-elicited-HTR also reduced the efficacy of DOI to activate mouse 5-HT2C receptor-mediated PLC signaling in HEK cells. Although there were differences in affinities of a few compounds at mouse compared to human 5-HT2A or 5-HT2C receptors, all compounds tested retained their selectivity for either receptor, regardless of receptor species. Results indicate that 5-HT2C receptor agonists and antagonists attenuate the DOI-elicited-HTR in C57Bl/6J mice, and suggest that structurally diverse 5-HT2C ligands result in different 5-HT2C receptor signaling outcomes compared to DOI.

  19. Antibody to dihydropyridine calcium entry blockers

    SciTech Connect

    Thayer, S.; Minaskanian, G.; Fairhurst, A.

    1986-03-05

    Antibodies that recognize dihydropyridine calcium entry blockers were elicited from rabbits. A sensitive and specific radioimmunoassay for dihydropyridines was developed and its specificity compared to the DHP binding site in skeletal muscle membranes. The antibody bound (/sup 3/H)nitrendipine with a higher affinity (K/sub D/ = 0.155 nM) than did the DHP receptor of skeletal muscle (K/sub D/ = 1-3 nM). However, in contrast to the DHP receptor, the antibody recognized only those DHP drugs with meta-nitrophenyl substituents at the 4-position on the DHP ring, and thus reflected the meta position of the nitro group on the DHP hapten used as an antigen. Both the antibody and the receptor exhibited stereospecificity, with each site recognizing the (+) isomer of nicardipine as the more potent. This antibody should prove useful in the studies of some potentially irreversible DHP molecules and for use in the production of anti-idotype antibodies.

  20. Systemic paracetamol-induced analgesic and antihyperalgesic effects through activation of descending serotonergic pathways involving spinal 5-HT₇ receptors.

    PubMed

    Dogrul, Ahmet; Seyrek, Melik; Akgul, Emin Ozgur; Cayci, Tuncer; Kahraman, Serdar; Bolay, Hayrunnisa

    2012-02-29

    Although some studies have shown the essential role of descending serotonergic pathways and spinal 5-HT(1A), 5-HT(2A), or 5-HT(3) receptors in the antinociceptive effects of paracetamol, other studies have presented conflicting results, and the particular subtype of spinal 5-HT receptors involved in paracetamol-induced analgesia remains to be clarified. Recent studies have demonstrated the importance of spinal 5-HT(7) receptors in descending serotonergic pain inhibitory pathways. In this study, we investigated the role of descending serotonergic pathways and spinal 5-HT(7) receptors compared with 5-HT(3) and 5-HT(2A) receptors in the antinociceptive and antihyperalgesic effects of paracetamol. Tail-flick, hot plate and plantar incision tests were used to determine nociception in male BALB/c mice. Lesion of serotonergic bulbospinal pathways was performed by intrathecal (i.th.) injection of 5,7-dihydroxytryptamine (5,7-DHT), and spinal 5-HT levels were measured by HPLC. To evaluate the particular subtypes of the spinal 5-HT receptors, the selective 5-HT(7), 5-HT(3) and 5-HT(2A) receptor antagonists SB 269970, ondansetron and ketanserin, respectively, were given i.th. after oral administration of paracetamol. Oral paracetamol (200, 400 and 600 mg/kg) elicits dose-dependent antinociceptive and antihyperalgesic effects. I.th. pretreatment with 5,7-DHT (50 μg) sharply reduced 5-HT levels in the spinal cord. Depletion of spinal 5-HT totally abolished the antinociceptive and antihyperalgesic effects of paracetamol. I.th. injection of SB 2669970 (10 μg) blocked the antinociceptive and antihyperalgesic effects of paracetamol, but ondansetron and ketanserin (10 μg) did not. Our findings suggest that systemic administration of paracetamol may activate descending serotonergic pathways and spinal 5-HT(7) receptors to produce a central antinociceptive and antihyperalgesic effects.

  1. Effects of direct- and indirect-acting serotonin receptor agonists on the antinociceptive and discriminative stimulus effects of morphine in rhesus monkeys.

    PubMed

    Li, Jun-Xu; Koek, Wouter; Rice, Kenner C; France, Charles P

    2011-04-01

    Serotonergic (5-HT) systems modulate pain, and drugs acting on 5-HT systems are used with opioids to treat pain. This study examined the effects of 5-HT receptor agonists on the antinociceptive and discriminative stimulus effects of morphine in monkeys. Morphine increased tail-withdrawal latency in a dose-related manner; 5-HT receptor agonists alone increased tail-withdrawal latency at 50 °C but not 55 °C water. The antinociceptive effects of morphine occurred with smaller doses when monkeys received an indirect-acting (fenfluramine) or direct acting (8-OH-DPAT, F13714, buspirone, quipazine, DOM, and 2C-T-7) agonist. The role of 5-HT receptor subtypes in these interactions was confirmed with selective 5-HT(1A) (WAY100635) and 5-HT(2A) (MDL100907) receptor antagonists. None of the 5-HT drugs had morphine-like discriminative stimulus effects; however, fenfluramine and 5-HT(2A) receptor agonists attenuated the discriminative stimulus effects of morphine and this attenuation was prevented by MDL100907. The 5-HT(1A) receptor agonists did not alter the discriminative stimulus effects of morphine. Thus, 5-HT receptor agonists increase the potency of morphine in an assay of antinociception, even under conditions where 5-HT agonists are themselves without effect (ie, 55 °C water), without increasing (and in some cases decreasing) the potency of morphine in a drug discrimination assay. Whereas 5-HT(2A) receptor agonists increase the potency of morphine for antinociception at doses that have no effect on the rate of operant responding, 5-HT(1A) receptor agonists increase the potency of morphine only at doses that eliminate operant responding. These data suggest that drugs acting selectively on 5-HT receptor subtypes could help to improve the use of opioids for treating pain.

  2. Behavioral and neurochemical pharmacology of six psychoactive substituted phenethylamines: Mouse locomotion, rat drug discrimination and in vitro receptor and transporter binding and function

    PubMed Central

    Eshleman, Amy J.; Forster, Michael J.; Wolfrum, Katherine M.; Johnson, Robert A.; Janowsky, Aaron; Gatch, Michael B.

    2014-01-01

    Rationale Psychoactive substituted phenethylamines 2,5-dimethoxy-4-chlorophenethylamine (2C-C); 2,5-dimethoxy-4-methylphenethylamine (2C-D); 2,5-dimethoxy-4-ethylphenethylamine (2C-E); 2,5-dimethoxy-4-iodophenethylamine (2C-I); 2,5-dimethoxy-4-ethylthiophenethylamine (2C-T-2) and 2,5-dimethoxy-4-chloroamphetamine (DOC) are used recreationally and may have deleterious side effects. Objectives This study compares behavioral effects and mechanisms of action of these substituted phenethylamines with those of hallucinogens and a stimulant. Methods The effects of these compounds on mouse locomotor activity and in rats trained to discriminate dimethyltryptamine, (−)DOM, (+)LSD, (±)MDMA and (S+)methamphetamine were assessed. Binding and functional activity of the phenethylamines at 5-HT1A, 5-HT2A, 5-HT2C receptors and monoamine transporters were assessed using cells heterologously expressing these proteins. Results The phenethylamines depressed mouse locomotor activity, although 2C-D and 2C-E stimulated activity at low doses. The phenethylamines except 2C-T-2 fully substituted for at least one hallucinogenic training compound but none fully substituted for (+)-methamphetamine. At 5-HT1A receptors, only 2C-T-2 and 2C-I were partial-to-full very low potency agonists. In 5-HT2A arachidonic acid release assays, the phenethylamines were partial to full agonists except 2C-I which was an antagonist. All compounds were full agonists at 5-HT2A and 5-HT2C receptor inositol phosphate assays. Only 2C-I had moderate affinity for, and very low potency at, the serotonin transporter. Conclusions The discriminative stimulus effects of 2C-C, 2C-D, 2C-E, 2C-I and DOC were similar to those of several hallucinogens but not methamphetamine. Additionally, the substituted phenethylamines were full agonists at 5-HT2A and 5-HT2C receptors, but for 2C-T-2, this was not sufficient to produce hallucinogenlike discriminative stimulus effects. Additionally, the 5-HT2A inositol phosphate pathway may

  3. Conjugates of γ-Carbolines and Phenothiazine as new selective inhibitors of butyrylcholinesterase and blockers of NMDA receptors for Alzheimer Disease.

    PubMed

    Makhaeva, Galina F; Lushchekina, Sofya V; Boltneva, Natalia P; Sokolov, Vladimir B; Grigoriev, Vladimir V; Serebryakova, Olga G; Vikhareva, Ekaterina A; Aksinenko, Alexey Yu; Barreto, George E; Aliev, Gjumrakch; Bachurin, Sergey O

    2015-08-18

    Alzheimer disease is a multifactorial pathology and the development of new multitarget neuroprotective drugs is promising and attractive. We synthesized a group of original compounds, which combine in one molecule γ-carboline fragment of dimebon and phenothiazine core of methylene blue (MB) linked by 1-oxo- and 2-hydroxypropylene spacers. Inhibitory activity of the conjugates toward acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and structurally close to them carboxylesterase (CaE), as well their binding to NMDA-receptors were evaluated in vitro and in silico. These newly synthesized compounds showed significantly higher inhibitory activity toward BChE with IC50 values in submicromolar and micromolar range and exhibited selective inhibitory action against BChE over AChE and CaE. Kinetic studies for the 9 most active compounds indicated that majority of them were mixed-type BChE inhibitors. The main specific protein-ligand interaction is π-π stacking of phenothiazine ring with indole group of Trp82. These compounds emerge as promising safe multitarget ligands for the further development of a therapeutic approach against aging-related neurodegenerative disorders such as Alzheimer and/or other pathological conditions.

  4. Hypersensitivity of acetylcholine receptor in diabetic skeletal muscle to neuromuscular blockers: the effect of myotubes cultured with spinal cord or its extract.

    PubMed

    Kimura, M; Fujihara, M; Nojima, H; Kimura, I

    1986-01-01

    The hypersensitivity of the neuromuscular junctions of diabetic mice to succinylcholine (SuCh), but not to d-tubocurarine (d-TC), was investigated using a cross culture preparation of diabetic skeletal muscle or spinal cord extract with normal tissues. Whether the hypersensitivity is due to the muscle cells themselves was examined using adult muscle of diabetic KK-CAy, prediabetic KK-CAy and normal ddY mice cocultured with embryonic spinal cord of normal ddY mice. The cultured neuromuscular junctions between diabetic KK-CAy muscle and normal ddY spinal cord was hypersensitive to SuCh, but not to d-TC. In contrast, such junctions between prediabetic KK-CAy muscle and normal ddY spinal cord were not hypersensitive to either drug. The involvement of neuronal factors in hypersensitivity to SuCh in diabetic KK-CAy neuromuscular junctions was examined using adult spinal cord extract (SCE) from diabetic KK-CAy and from normal ddY mice. We followed the time course of change in sensitivity of the acetylcholine (ACh) receptors in normal ddY embryonic myotubes to SuCh and d-TC. Both diabetic SCE and normal SCE reduced the sensitivity of myotubes to ACh; the reduction of ACh potential amplitudes by the former was less than that by the latter. Myotubes cultured with diabetic SCE was hypersensitive to both 1.51 microM SuCh and 0.134 microM d-TC. These results suggest that the hypersensitivity of the neuromuscular junctions in diabetic KK-CAy mice to SuCh but not to d-TC is mainly attributable to the diabetic muscle cells themselves.

  5. A pharmacological analysis of serotonergic receptors: effects of their activation of blockade in learning.

    PubMed

    Meneses, A; Hong, E

    1997-02-01

    1. The authors have tested several 5-HT selective agonists and antagonists (5-HT1A/1B, 5-HT2A/2B/2C, 5-HT3 or 5-HT4), an uptake inhibitor and 5-HT depletors in the autoshaping learning task. 2. The present work deals with the receptors whose stimulation increases or decreases learning. 3. Impaired consolidation of learning was observed after the presynaptic activation of 5-HT1B, 5-HT3 or 5-HT4 or the blockade of postsynaptic 5-HT2C/2B receptors. 4. In contrast, an improvement occurred after the presynaptic activation of 5-HT1A, 5-HT2C, and the blockade of presynaptic 5-HT2A, 5-HT2C and 5-HT3 receptors. 5. The blockade of postsynaptic 5-HT1A, 5-HT1B, 5-HT3 or 5-HT4 receptors and 5-HT inhibition of synthesis and its depletion did no alter learning by themselves. 6. The present data suggest that multiple pre- and postsynaptic serotonergic receptors are involved in the consolidation of learning. 7. Stimulation of most 5-HT receptors increases learning, however, some of 5-HT subtypes seem to limit the data storage. 8. Furthermore, the role of 5-HT receptors in learning seem to require an interaction with glutamatergic, GABAergic and cholinergic neurotransmission systems.

  6. PD-1 Blockers.

    PubMed

    Wolchok, Jedd D

    2015-08-27

    Nivolumab and pembrolizumab are monoclonal antibodies that block the programmed death-1 receptor (PD-1, CD279), resulting in dis-inhibition of tumor-specific immune responses. Both are recently approved for use in the treatment of metastatic melanoma, and nivolumab as well for non-small cell lung cancer.

  7. Involvement of serotonin receptor subtypes in the antidepressant-like effect of beta receptor agonist Amibegron (SR 58611A): an experimental study.

    PubMed

    Tanyeri, Pelin; Buyukokuroglu, Mehmet Emin; Mutlu, Oguz; Ulak, Güner; Yıldız Akar, Füruzan; Komsuoglu Celikyurt, Ipek; Erden, Bekir Faruk

    2013-04-01

    New therapeutic strategies against depression, with less side effects and thus greater efficacy in larger proportion of depressed patients, are needed. Amibegron (SR58611A) is the first selective β3 adrenergic agent that has been shown to possess a profile of antidepressant activity in rodents. To investigate the involvement of serotonin receptors in the effects of amibegron, we used the serotonin 5HT1A receptor antagonist WAY-100635 (WAY) or serotonin 5HT2A-2C receptor antagonist ketanserin or serotonin 5HT3 receptor antagonist ondansetron in mice forced swimming test (FST). The locomotor activity was evaluated by measuring the total distance moved in the apparatus and the speed of the animals in the open field test. Imipramine (30mg/kg) significantly reduced immobility time compared to vehicle-treated group while amibegron (5 and 10mg/kg) dose dependently reduced immobility time in the FST. WAY(0.1mg/kg), ondansetron (1mg/kg), ketanserin(5mg/kg) had no effect on immobility time in naive mice while all of the drugs partially and significantly reversed amibegron (10mg/kg) induced decreasement in the immobility time in FST. None of the drugs alter locomotor activity in the open field test. The antidepressant-like effect of amibegron in the FST seems to be mediated by an interaction with serotonin 5-HT1A, serotonin 5-HT2A-2C and serotonin 5-HT3 receptors.

  8. Stimulation of glutamate receptors in the ventral tegmental area is necessary for serotonin-2 receptor-induced increases in mesocortical dopamine release

    PubMed Central

    Pehek, E.A.; Hernan, A.E.

    2017-01-01

    Modulation of dopamine (DA) released by serotonin-2 (5-HT2) receptors has been implicated in the mechanism of action of antipsychotic drugs. The mesocortical DA system has been implicated particularly in the cognitive deficits observed in schizophrenia. Agonism at 5-HT2A receptors in the prefrontal cortex is associated with increases in cortical DA release. Evidence indicates that 5-HT2A receptors in the cortex regulate mesocortical DA release through stimulation of a “long-loop” feedback system from the PFC to the VTA and back. However, a causal role for VTA glutamate in the 5-HT2-induced increases in PFC DA has not been established. The present study does so by measuring 5-HT2 agonist-induced DA release in the cortex after infusions of glutamate antagonists into the VTA. Infusions of a combination of a NMDA (AP-5: 2-amino-5-phosphopentanoic acid) and an AMPA/kainate (CNQX: 6-cyano-7-nitroquinoxaline-2,3-dione) receptor antagonist into the VTA blocked the increases in cortical DA produced by administration of the 5-HT2 agonist DOI [(±)-2,5-Dimethoxy-4-iodoamphetamine] (2.5 mg/kg s.c.). These results demonstrate that stimulation of glutamate receptors in the VTA is necessary for 5-HT2 agonist-induced increases in cortical DA. PMID:25637799

  9. Gender, personality, and serotonin-2A receptor binding in healthy subjects

    PubMed Central

    Soloff, Paul H.; Price, Julie C.; Mason, Neale Scott; Becker, Carl; Meltzer, Carolyn C.

    2009-01-01

    The vulnerability to mood disorders, impulsive-aggression, eating disorders, and suicidal behavior varies greatly with gender, and may reflect gender differences in central serotonergic function. We investigated the relationships of gender, mood, impulsivity, aggression and temperament to 5HT2A receptor binding in 21 healthy subjects using [18F]altanserin and PET neuro-imaging. Binding potentials in pre-defined Regions of Interest (ROI) were calculated using the Logan graphical method, corrected for partial volume effects, and compared by gender with age co-varied. SPM analysis was used for voxel level comparisons. Altanserin binding (BPp) was greater in male than female subjects in 9 ROIs: hippocampus (HIP) and Lt. HIP, lateral orbital frontal cortex (LOF) and Lt.LOF, left medial frontal cortex (Lt.MFC), left medial temporal cortex (Lt. MTC), left occipital cortex (Lt. OCC), thalamus (THL) and Lt. THL. Differences in Lt. HIP and Lt. MTL remained significant after Bonferroni correction. Gender differences were noted in the co-variation of psychological traits with BPp values in specific ROIs. Among males alone, aggression was negatively correlated with BPp values in Lt. LOF and Lt. MFC, and Suspiciousness positively correlated in LOF, Lt. LOF and Lt. MFC. Among female subjects alone, Negativism was positively correlated with BPp values in HIP, and Verbal Hostility in Lt. HIP. Altanserin binding in Lt. MTC was positively correlated with Persistence, with no significant gender effect. Gender differences in 5HT2A receptor function in specific ROIs may mediate expression of psychological characteristics such as aggression, suspiciousness and negativism. Future studies of 5HT2A receptor function and its relationship to behavior should control for gender. PMID:19959344

  10. Antagonizing 5-HT₂A receptors with M100907 and stimulating 5-HT₂C receptors with Ro60-0175 blocks cocaine-induced locomotion and zif268 mRNA expression in Sprague-Dawley rats.

    PubMed

    Burton, Christie L; Rizos, Zoë; Diwan, Mustansir; Nobrega, José N; Fletcher, Paul J

    2013-03-01

    Serotonin (5-HT) plays a role in several psychiatric disorders including drug addiction. The 5-HT system modulates the activity of midbrain dopamine (DA) systems, and the behavioural effects of psychostimulants mediated by these systems. The direction of this modulation depends upon the 5-HT receptor subtypes involved, with 5-HT(2A) and 5-HT(2C) receptors having opposing effects. For example the 5-HT(2A) receptor antagonist M100907 and the 5-HT(2C) receptor agonist Ro60-0175 both attenuate several cocaine-induced behavioural and neurochemical effects. To investigate the possible brain regions involved in the interactions between 5-HT(2A) or 5-HT(2C) receptor ligands and cocaine-induced behaviour, we examined the effects of M100907 or Ro60-0175 on cocaine-induced locomotion and mRNA expression of the immediate early gene zif268. Sprague-Dawley rats were pre-treated with M100907 (0.5mg/kg), Ro60-0175 (1.0mg/kg) or vehicle, and then injected with cocaine (15mg/kg) or vehicle. Locomotor activity was monitored for 60 min before rats were sacrificed for zif268 mRNA in situ hybridization mapping. Cocaine increased locomotor activity and zif268 mRNA expression consistently in the nucleus accumbens core, the orbitofrontal cortex and the caudate. M100907 attenuated cocaine-induced locomotion and zif268 mRNA expression in these brain regions in a defined subset of rats but failed to alter any effects of cocaine in another defined subset of rats. Ro60-0175 blocked cocaine-induced locomotion and zif268 mRNA expression in similar brain regions. Our results suggest that despite the opposing actions of 5-HT at 5-HT(2A) and 5-HT(2C) receptors, ligands acting on these receptors likely modulate cocaine-induced locomotion via a common mechanism to influence DA-dependent circuitry.

  11. Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens.

    PubMed

    Halberstadt, Adam L; Geyer, Mark A

    2011-09-01

    Serotonergic hallucinogens produce profound changes in perception, mood, and cognition. These drugs include phenylalkylamines such as mescaline and 2,5-dimethoxy-4-methylamphetamine (DOM), and indoleamines such as (+)-lysergic acid diethylamide (LSD) and psilocybin. Despite their differences in chemical structure, the two classes of hallucinogens produce remarkably similar subjective effects in humans, and induce cross-tolerance. The phenylalkylamine hallucinogens are selective 5-HT(2) receptor agonists, whereas the indoleamines are relatively non-selective for serotonin (5-HT) receptors. There is extensive evidence, from both animal and human studies, that the characteristic effects of hallucinogens are mediated by interactions with the 5-HT(2A) receptor. Nevertheless, there is also evidence that interactions with other receptor sites contribute to the psychopharmacological and behavioral effects of the indoleamine hallucinogens. This article reviews the evidence demonstrating that the effects of indoleamine hallucinogens in a variety of animal behavioral paradigms are mediated by both 5-HT(2) and non-5-HT(2) receptors.

  12. Antidepressant-like effect of chromium chloride in the mouse forced swim test: involvement of glutamatergic and serotonergic receptors.

    PubMed

    Piotrowska, Anna; Młyniec, Katarzyna; Siwek, Agata; Dybała, Małgorzata; Opoka, Włodzimierz; Poleszak, Ewa; Nowak, Gabriel

    2008-01-01

    Chromium (Cr) (III), an essential microelement of living organisms, was reported to exhibit potential antidepressant properties in preclinical and clinical studies. The aim of the present study was to examine the effect of CrCl(3) ip administration in the forced swim test (FST) in mice and the involvement of glutamatergic and serotonergic receptors in the antidepressant-like activity of chromium. CrCl(3) in a dose of 12 mg/kg, but not in doses of 6 or 32 mg/kg, reduced the immobility time in the FST. The locomotor activity was reduced by CrCl(3) in a dose of 32 mg/kg. Moreover, the reduction of the immobility time induced by the active dose (12 mg/kg) of CrCl(3) was completely abolished by NBQX (10 mg/kg; an antagonist of the AMPA receptor) pretreatment and partially inhibited by ritanserin (4 mg/kg; an antagonist of 5-HT(2A/C) receptor), WAY 1006335 (0.1 mg/kg; an antagonist of 5-HT(1A) receptor) and N-methyl-D-aspartate (75 mg/kg; agonist of NMDA receptor) administration. The present study demonstrates the antidepressant-like activity of chromium in the mouse FST and indicates the major role of the AMPA receptor and participation of NMDA glutamatergic and 5-HT(1) and 5-HT(2A/C) serotonin receptors in this activity.

  13. Behavioral tolerance to lysergic acid diethylamide is associated with reduced serotonin-2A receptor signaling in rat cortex.

    PubMed

    Gresch, Paul J; Smith, Randy L; Barrett, Robert J; Sanders-Bush, Elaine

    2005-09-01

    Tolerance is defined as a decrease in responsiveness to a drug after repeated administration. Tolerance to the behavioral effects of hallucinogens occurs in humans and animals. In this study, we used drug discrimination to establish a behavioral model of lysergic acid diethylamide (LSD) tolerance and examined whether tolerance to the stimulus properties of LSD is related to altered serotonin receptor signaling. Rats were trained to discriminate 60 microg/kg LSD from saline in a two-lever drug discrimination paradigm. Two groups of animals were assigned to either chronic saline treatment or chronic LSD treatment. For chronic treatment, rats from each group were injected once per day with either 130 microg/kg LSD or saline for 5 days. Rats were tested for their ability to discriminate either saline or 60 microg/kg LSD, 24 h after the last chronic injection. Rats receiving chronic LSD showed a 44% reduction in LSD lever selection, while rats receiving chronic vehicle showed no change in percent choice on the LSD lever. In another group of rats receiving the identical chronic LSD treatment, LSD-stimulated [35S]GTPgammaS binding, an index of G-protein coupling, was measured in the rat brain by autoradiography. After chronic LSD, a significant reduction in LSD-stimulated [35S]GTPgammaS binding was observed in the medial prefrontal cortex and anterior cingulate cortex. Furthermore, chronic LSD produced a significant reduction in 2,5-dimethoxy-4-iodoamphetamine-stimulated [35S]GTPgammaS binding in medial prefrontal cortex and anterior cingulate cortex, which was blocked by MDL 100907, a selective 5-HT2A receptor antagonist, but not SB206553, a 5-HT2C receptor antagonist, indicating a reduction in 5-HT2A receptor signaling. 125I-LSD binding to 5-HT2A receptors was reduced in cortical regions, demonstrating a reduction in 5-HT2A receptor density. Taken together, these results indicate that adaptive changes in LSD-stimulated serotonin receptor signaling may mediate tolerance

  14. Tuning Photochromic Ion Channel Blockers

    PubMed Central

    2011-01-01

    Photochromic channel blockers provide a conceptually simple and convenient way to modulate neuronal activity with light. We have recently described a family of azobenzenes that function as tonic blockers of Kv channels but require UV-A light to unblock and need to be actively switched by toggling between two different wavelengths. We now introduce red-shifted compounds that fully operate in the visible region of the spectrum and quickly turn themselves off in the dark. Furthermore, we have developed a version that does not block effectively in the dark-adapted state, can be switched to a blocking state with blue light, and reverts to the inactive state automatically. Photochromic blockers of this type could be useful for the photopharmacological control of neuronal activity under mild conditions. PMID:22860175

  15. Mapping the binding site pocket of the serotonin 5-Hydroxytryptamine2A receptor. Ser3.36(159) provides a second interaction site for the protonated amine of serotonin but not of lysergic acid diethylamide or bufotenin.

    PubMed

    Almaula, N; Ebersole, B J; Zhang, D; Weinstein, H; Sealfon, S C

    1996-06-21

    Like other amine neurotransmitters that activate G-protein-coupled receptors, 5-hydroxytryptamine (5-HT) binds to the 5-HT2A receptor through the interaction of its cationic primary amino group with the conserved Asp3.32(155) in transmembrane helix 3. Computational experiments with a 5-HT2A receptor model suggest that the same functional group of 5-hydroxytryptamine also forms a hydrogen bond with the side chain of Ser3.36(159), which is adjacent in space to Asp3.32(155). However, other 5-HT2A receptor ligands like lysergic acid diethylamide (LSD), in which the amine nitrogen is embedded in a heterocycle, or N,N-dimethyl 5-HT, in which the side chain is a tertiary amine, are found in the computational simulations to interact with the aspartate but not with the serine, due mainly to steric hindrance. The predicted difference in the interaction of various ligands in the same receptor binding pocket was tested with site-directed mutagenesis of Ser3.36(159) --> Ala and Ser3.36(159) --> Cys. The alanine substitution led to an 18-fold reduction in 5-HT affinity and the cysteine substitution to an intermediate 5-fold decrease. LSD affinity, in contrast, was unaffected by either mutation. N,N-Dimethyl 5-HT affinity was unaffected by the cysteine mutation and had a comparatively small 3-fold decrease in affinity for the alanine mutant. These findings identify a mode of ligand-receptor complexation that involves two receptor side chains interacting with the same functional group of specific serotonergic ligands. This interaction serves to orient the ligands in the binding pocket and may influence the degree of receptor activation.

  16. Use of LC/MS to assess brain tracer distribution in preclinical, in vivo receptor occupancy studies: dopamine D2, serotonin 2A and NK-1 receptors as examples.

    PubMed

    Chernet, Eyassu; Martin, Laura J; Li, Dominic; Need, Anne B; Barth, Vanessa N; Rash, Karen S; Phebus, Lee A

    2005-12-12

    High performance liquid chromatography combined with either single quad or triple quad mass spectral detectors (LC/MS) was used to measure the brain distribution of receptor occupancy tracers targeting dopamine D2, serotonin 5-HT2A and neurokinin NK-1 receptors using the ligands raclopride, MDL-100907 and GR205171, respectively. All three non-radiolabeled tracer molecules were easily detectable in discrete rat brain areas after intravenous doses of 3, 3 and 30 microg/kg, respectively. These levels showed a differential brain distribution caused by differences in receptor density, as demonstrated by the observation that pretreatment with compounds that occupy these receptors reduced this differential distribution in a dose-dependent manner. Intravenous, subcutaneous and oral dose-occupancy curves were generated for haloperidol at the dopamine D2 receptor as were oral curves for the antipsychotic drugs olanzapine and clozapine. In vivo dose-occupancy curves were also generated for orally administered clozapine, olanzapine and haloperidol at the cortical 5-HT2A binding site. In vivo occupancy at the striatal neurokinin NK-1 binding site by various doses of orally administered MK-869 was also measured. Our results demonstrate the utility of LC/MS to quantify tracer distribution in preclinical brain receptor occupancy studies.

  17. Optimization of 2-phenylcyclopropylmethylamines as selective serotonin 2C receptor agonists and their evaluation as potential antipsychotic agents.

    PubMed

    Cheng, Jianjun; Giguère, Patrick M; Onajole, Oluseye K; Lv, Wei; Gaisin, Arsen; Gunosewoyo, Hendra; Schmerberg, Claire M; Pogorelov, Vladimir M; Rodriguiz, Ramona M; Vistoli, Giulio; Wetsel, William C; Roth, Bryan L; Kozikowski, Alan P

    2015-02-26

    The discovery of a new series of compounds that are potent, selective 5-HT2C receptor agonists is described herein as we continue our efforts to optimize the 2-phenylcyclopropylmethylamine scaffold. Modifications focused on the alkoxyl substituent present on the aromatic ring led to the identification of improved ligands with better potency at the 5-HT2C receptor and excellent selectivity against the 5-HT2A and 5-HT2B receptors. ADMET studies coupled with a behavioral test using the amphetamine-induced hyperactivity model identified four compounds possessing drug-like profiles and having antipsychotic properties. Compound (+)-16b, which displayed an EC50 of 4.2 nM at 5-HT2C, no activity at 5-HT2B, and an 89-fold selectivity against 5-HT2A, is one of the most potent and selective 5-HT2C agonists reported to date. The likely binding mode of this series of compounds to the 5-HT2C receptor was also investigated in a modeling study, using optimized models incorporating the structures of β2-adrenergic receptor and 5-HT2B receptor.

  18. Antidepressant-like activity of aroxyalkyl derivatives of 2-methoxyphenylpiperazine and evidence for the involvement of serotonin receptor subtypes in their mechanism of action.

    PubMed

    Kubacka, Monika; Mogilski, Szczepan; Bednarski, Marek; Nowiński, Leszek; Dudek, Magdalena; Żmudzka, Elżbieta; Siwek, Agata; Waszkielewicz, Anna M; Marona, Henryk; Satała, Grzegorz; Bojarski, Andrzej; Filipek, Barbara; Pytka, Karolina

    2016-02-01

    Since serotonin (5-HT) is strongly involved in the etiology and pathophysiology of depression, the development of new antidepressants is still based on the serotonergic system. The complexity of serotonergic system provides an opportunity for the development of compounds with multiple and complementary mechanism of action. This study describes serotonin receptor profile, functional characterization, and pharmacological in vivo evaluation of new aroxyalkyl derivatives of 2-methoxyphenylpiperazine. The obtained results allowed for the identification of compound 3, (1-[3-(2,6-dimethylphenoxy)propyl]-4-(2-methoxyphenyl)piperazine hydrochloride), a partial 5-HT1A receptor agonist, and 5-HT2A receptor antagonist, with high affinity toward 5-HT7 receptors, showing antidepressant- and anxiolytic-like properties. Moreover, 5-HT1A receptor activation is crucial for the antidepressant-like activity of compound 3. The rest of the compounds (except compounds 1 and 9) showed antidepressant but not anxiolytic-like properties, which did not result from 5-HT1A receptors activation. Furthermore, the compounds are 5-HT1A and weak 5-HT3 receptors antagonists, and some of them 5-HT2A antagonists. Moreover, none of the studied compounds impaired motor coordination at antidepressant-like doses. Since the studied compounds exhibited activity in behavioral assays and interacted with various receptors, the results of our experiments are very promising and require further studies.

  19. Beta-Blockers and Nitrates: Pharmacotherapy and Indications.

    PubMed

    Facchini, Emanuela; Degiovanni, Anna; Cavallino, Chiara; Lupi, Alessandro; Rognoni, Andrea; Bongo, Angelo S

    2015-01-01

    Many clinically important differences exist between beta blockers. B1-selectivity is of clinical interest because at clinically used doses, b1- selective agents block cardiac b-receptors while having minor effects on bronchial and vascular b-receptors. Beta-adrenergic blocking agents significantly decrease the frequency and duration of angina pectoris, instead the prognostic benefit of beta-blockers in stable angina has been extrapolated from studies of post myocardial infarction but has not yet been documented without left ventricular disfunction or previous myocardial infarction. Organic nitrates are among the oldest drugs, but they still remain a widely used adjuvant in the treatment of symptomatic coronary artery disease. While their efficacy in relieving angina pectoris symptoms in acute settings and in preventing angina before physical or emotional stress is undisputed, the chronic use of nitrates has been associated with potentially important side effects such as tolerance and endothelial dysfunction. B-blockers are the firstline anti-anginal therapy in stable stable angina patients without contraindications, while nitrates are the secondline anti-anginal therapy. Despite 150 years of clinical practice, they remain fascinating drugs, which in a chronic setting still deserve investigation. This review evaluated pharmacotherapy and indications of Beta-blockers and nitrates in stable angina.

  20. Evidence that the anorexia induced by lipopolysaccharide is mediated by the 5-HT2C receptor.

    PubMed

    von Meyenburg, Claudia; Langhans, Wolfgang; Hrupka, Brian J

    2003-01-01

    Rats consistently reduce their food intake following injections of bacterial lipopolysaccharides (LPS). Because inhibition of serotonergic (5-HT) activity by 8-OH-DPAT (5-HT(1A) activation) attenuates LPS-induced anorexia, we conducted a series of studies to examine whether other 5-HT-receptors are involved in the mediation of peripheral LPS-induced anorexia. In all experiments, rats were injected with LPS (100 microg/kg body weight [BW] ip) at lights out (hour 0). Antagonists were administered peripherally at hour 4, shortly after the onset of anorexia, which presumably follows the enhanced cytokine production after LPS. Food intake was then recorded during the subsequent 2 h or longer. 5-HT receptor antagonists cyanopindolol and SB 224289 (5-HT(1B)), ketanserin (5-HT(2A)), RS-102221 (5-HT(2C)), and metoclopramide (5-HT(3)) failed to attenuate LPS-induced anorexia. In contrast, both ritanserin (5-HT(2A/C)-receptor antagonist) (0.5 mg/kg BW) and SB 242084 (5-HT(2C)) (0.3 mg/kg BW) attenuated LPS-induced anorexia at doses that did not alter food intake in non-LPS-treated rats (all P<.01). Our results suggest that at least part of the anorexia following peripheral LPS administration is mediated through an enhanced 5-HT-ergic activity and the 5-HT(2C) receptor.

  1. How Do Beta Blocker Drugs Affect Exercise?

    MedlinePlus

    ... Aneurysm More How do beta blocker drugs affect exercise? Updated:Aug 5,2015 Beta blockers are a ... about them: Do they affect your ability to exercise? The answer can vary a great deal, depending ...

  2. Can Beta Blockers Cause Weight Gain?

    MedlinePlus

    Diseases and Conditions High blood pressure (hypertension) Can beta blockers cause weight gain? Answers from Sheldon G. Sheps, ... can occur as a side effect of some beta blockers, especially the older ones, such as atenolol (Tenormin) ...

  3. Formulary considerations in selection of beta-blockers.

    PubMed

    Yedinak, K C

    1993-08-01

    Selection of beta-adrenergic blockers for formulary addition can be a difficult task, especially with the increasing availability of new beta-blockers, as well as the numerous differences in pharmacodynamic and pharmacokinetic properties of currently available agents. Nevertheless, appropriate evaluation of the important characteristics of beta-blockers should allow selection of the most cost-effective agents for formulary addition. Most importantly, differences in efficacy, product formulation and cost should be carefully considered when making formulary decisions. Notably, evidence from clinical trials indicates differences in efficacy among beta-blockers for post-myocardial infarction prophylaxis, situational anxiety, essential tremor, thyrotoxicosis, migraine prophylaxis and prevention of bleeding associated with oesophageal varices. For many clinical situations, it is also important to select an effective agent that is available in both an oral and intravenous formulation, especially for cardioprotection after acute myocardial infarction and for use in supraventricular arrhythmias. In addition, availability of sustained release products and generic formulations should be considered for their potential to increase compliance and decrease cost, respectively. Comparative drug costs, as well as costs associated with decreased compliance, should also be carefully evaluated. Differences in beta-receptor selectivity, duration of action and presence of intrinsic sympathomimetic activity (ISA) are also important considerations in the selection of beta-blockers for formulary consideration. Although degree of selectivity is relative, beta 1-selective agents may be less likely to induce bronchospasm in patients with chronic obstructive pulmonary disease (COPD) and may be less likely to affect glucose homeostasis in patients with diabetes mellitus. Duration of action of a beta-blocker is an important consideration for evaluation of efficacy throughout the recommended

  4. Lack of association between serotonin-2A receptor gene (HTR2A) polymorphisms and tardive dyskinesia in schizophrenia.

    PubMed

    Basile, V S; Ozdemir, V; Masellis, M; Meltzer, H Y; Lieberman, J A; Potkin, S G; Macciardi, F M; Petronis, A; Kennedy, J L

    2001-03-01

    Tardive dyskinesia (TD) is a disabling neurological side effect associated with long-term treatment with typical antipsychotics. Family studies and animal models lend evidence for hereditary predisposition to TD. The newer atypical antipsychotics pose a minimal risk for TD which is in part attributed to their ability to block the serotonin-2A (5-HT(2A)) receptor. 5-HT(2A) receptors were also identified in the basal ganglia; a brain region that plays a critical role in antipsychotic-induced movement disorders. We tested the significance of variation in the 5-HT(2A) receptor gene (HTR2A) in relation to the TD phenotype. Three polymorphisms in HTR2A, one silent (C102T), one that alters the amino acid sequence (his452tyr) and one in the promoter region (A-1437G) were investigated in 136 patients refractory or intolerant to treatment with typical antipsychotics and with a DSM-IIIR diagnosis of schizophrenia. We did not find any significant difference in allele, genotype or haplotype frequencies of polymorphisms in HTR2A among patients with or without TD (P > 0.05). Further analysis using the ANCOVA statistic with a continuous measure of the TD phenotype (Abnormal Involuntary Movement Scale (AIMS) score) found that the AIMS scores were not significantly influenced by HTR2A polymorphisms, despite controlling for potential confounders such as age, gender and ethnicity (P > 0.05). Theoretically, central serotonergic function can be subject to genetic control at various other mechanistic levels including the rate of serotonin synthesis (tryptophane hydroxylase gene), release, reuptake (serotonin transporter gene) and degradation (monoamine oxidase gene). Analyses of these other serotonergic genes are indicated. In summary, polymorphisms in HTR2A do not appear to influence the risk for TD. Further studies evaluating in tandem multiple candidate genes relevant for the serotonergic system are warranted to dissect the genetic basis of the complex TD phenotype.

  5. Serotonin receptors contribute to the promnesic effects of P. olacoides (Marapuama).